Computational Methods for Studying the Interaction between Polycyclic Aromatic Hydrocarbons and Biological Macromolecules .
The mechanisms for the processes that result in significant biological activity of PAHs depend on the interaction of these molecules or their metabol...
Biologically important compounds in synfuels processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, B R; Ho, C; Griest, W H
1980-01-01
Crude products, by-products and wastes from synfuel processes contain a broad spectrum of chemical compounds - many of which are active in biological systems. Discerning which compound classes are most important is necessary in order to establish effective control over release or exposure. Polycyclic aromatic hydrocarbons (PAH), multialkylated PAH, primary aromatic amines and N-heterocyclic PAH are significant contributors to the overall mutagenic activities of a large number of materials examined. Ames test data show that the basic, primary aromatic amine fraction is the most active. PAHs, multialkylated PAHs and N-heterocyclic PAHs are all components of the neutral fraction. In nearlymore » all cases, the neutral fractions contribute the largest portion of the mutagenic activity, while the basic primary aromatic amine fractions have the highest specific activity. Neutral fractions are usually the largest (wt %) whereas the total basic fractions are small by comparison; thus, the overall greater contribution of the neutral fraction to the mutagenic activity of most samples. Biologically active constituents are isolated in preparative scale amounts from complex mixtures utilizing combinations of liquid-liquid extraction and various liquid chromatographic column-eluant combinations. Fractions are characterized using a combination of spectroscopic techniques and gas chromatography/mass spectrometry.« less
Joshi, Rakesh K.; Satyal, Prabodh; Setzer, Wiliam N.
2016-01-01
Aromatic plants have played key roles in the lives of tribal peoples living in the Himalaya by providing products for both food and medicine. This review presents a summary of aromatic medicinal plants from the Indian Himalaya, Nepal, and Bhutan, focusing on plant species for which volatile compositions have been described. The review summarizes 116 aromatic plant species distributed over 26 families. PMID:28930116
A Survey of Chemical Compositions and Biological Activities of Yemeni Aromatic Medicinal Plants
Chhetri, Bhuwan K.; Awadh Ali, Nasser A.; Setzer, William N.
2015-01-01
Yemen is a small country located in the southwestern part of the Arabian Peninsula. Yemen’s coastal lowlands, eastern plateau, and deserts give it a diverse topography, which along with climatic factors make it opulent in flora. Despite the introduction of Western medicinal system during the middle of the twentieth century, herbal medicine still plays an important role in Yemen. In this review, we present a survey of several aromatic plants used in traditional medicine in Yemen, their traditional uses, their volatile chemical compositions, and their biological activities. PMID:28930202
Theppawong, Atiruj; Van de Walle, Tim; Grootaert, Charlotte; Bultinck, Margot; Desmet, Tom; Van Camp, John; D'hooghe, Matthias
2018-05-01
Curcumin, a natural compound extracted from the rhizomes of Curcuma longa , displays pronounced anticancer properties but lacks good bioavailability and stability. In a previous study, we initiated structure modification of the curcumin scaffold by imination of the labile β-diketone moiety to produce novel β-enaminone derivatives. These compounds showed promising properties for elaborate follow-up studies. In this work, we focused on another class of nitrogen-containing curcuminoids with a similar objective: to address the bioavailability and stability issues and to improve the biological activity of curcumin. This paper thus reports on the synthesis of new pyridine-, indole-, and pyrrole-based curcumin analogues (aza-aromatic curcuminoids) and discusses their water solubility, antioxidant activity, and antiproliferative properties. In addition, multivariate statistics, including hierarchical clustering analysis and principal component analysis, were performed on a broad set of nitrogen-containing curcuminoids. Compared to their respective mother structures, that is, curcumin and bisdemethoxycurcumin, all compounds, and especially the pyridin-3-yl β-enaminone analogues, showed better water solubility profiles. Interestingly, the pyridine-, indole-, and pyrrole-based curcumin derivatives demonstrated improved biological effects in terms of mitochondrial activity impairment and protein content, in addition to comparable or decreased antioxidant properties. Overall, the biologically active N -alkyl β-enaminone aza-aromatic curcuminoids were shown to offer a desirable balance between good solubility and significant bioactivity.
Xia, Yi; Qu, Fanqi; Peng, Ling
2010-08-01
Synthetic nucleoside mimics are important candidates in the searing for antiviral and anticancer drugs. Ribavirin, the first antiviral nucleoside drug, is unique in its antiviral activity with mutilple modes of action, which are mainly due to its special triazole heterocycle as nucleobase. Additionally, introducing aromatic functionalities to the nucleobase is able to confer novel mechanisms of action for nucleoside mimics. With the aim to combine the special characteristics of unnatural triazole heterocycles with those of the appended aromatic groups on the nucleobases, novel 1,2,4-triazole nucleoside analogs bearing aromatic moieties were designed and developed. The present short review summarizes the molecular design, chemical synthesis and biological activity of these triazole nucleoside analogs. Indeed, the discovery of antiviral and anticancer activities shown by these triazole nucleosides as well as the new mechanism underlying the biological activity by one of the anticancer leads has validated the rationale for molecular design and impacted us to further explore the concept with the aim of developing structurally novel nucleoside drug candidates with new modes of action.
Mamadalieva, Nilufar Z.; Akramov, Davlat Kh.; Ovidi, Elisa; Tiezzi, Antonio; Nahar, Lutfun; Azimova, Shahnoz S.; Sarker, Satyajit D.
2017-01-01
Plants of the Lamiaceae family are important ornamental, medicinal, and aromatic plants, many of which produce essential oils that are used in traditional and modern medicine, and in the food, cosmetics, and pharmaceutical industry. Various species of the genera Hyssopus, Leonurus, Mentha, Nepeta, Origanum, Perovskia, Phlomis, Salvia, Scutellaria, and Ziziphora are widespread throughout the world, are the most popular plants in Uzbek traditional remedies, and are often used for the treatment of wounds, gastritis, infections, dermatitis, bronchitis, and inflammation. Extensive studies of the chemical components of these plants have led to the identification of many compounds, as well as essentials oils, with medicinal and other commercial values. The purpose of this review is to provide a critical overview of the literature surrounding the traditional uses, ethnopharmacology, biological activities, and essential oils composition of aromatic plants of the family Lamiaceae, from the Uzbek flora. PMID:28930224
Valorization of essential oils from Moroccan aromatic plants.
Santana, Omar; Fe Andrés, Maria; Sanz, Jesús; Errahmani, Naima; Abdeslam, Lamiri; González-Coloma, Azucena
2014-08-01
The chemical composition and biological activity of cultivated and wild medicinal and aromatic plants from Morocco (Artemisia herba-alba, Lippia citriodora, Mentha pulegium, M. spicata, Myrtus communis, Rosmarinus officinalis, and Thymus satureioides) are described. The essential oils (EOs) of these species have been analyzed by GC-MS. The antifeedant, nematicidal and phytotoxic activities of the EOs were tested on insect pests (Spodoptera littoralis, Myzus persicae and Rhopalosiphum padi), root-knot nematodes (Meloydogine javanica) and plants (Lactuca sativa, Lolium perenne and Lycopersicum esculentum). EOs from A. herba-alba, M. pulegium and R. officinalis were strong antifeedants against S. littoralis, M. persicae and R. padi. EOs from L. citriodora, M. spicata and T. satureioides showed high nematicidal activity. These biological effects are explained by the activity of the major EO components and/or synergistic effects.
Activity of selected aromatic amino acids in biological systems.
Krzyściak, Wirginia
2011-01-01
Besides the structural function in proteins, aromatic amino acids are precursors of many important biological compounds essential for normal functioning of the human organism. Many of these compounds may be used as markers for identification of specific pathological states. Comprehensive knowledge about the metabolism of aromatic amino acids and mechanisms of action of their metabolites made it possible to develop effective treatments for many disorders. However, it should not be forgotten that in some pathological conditions, these compounds could not only be involved in the pathogenesis of many disease entities but could also be used as an important tool in prediction of many diseases. This paper contains a review of published literature on aromatic amino acids in the context of physiological processes of the human body and chosen social disorders, such as cancers; psychiatric disorders: depression, anxiety states, schizophrenia, bipolar affective disorders; neurodegenerative, and cardiovascular diseases; chronic kidney insufficiency or diabetes.
Roy, M; Lee, R W; Kaarsholm, N C; Thøgersen, H; Brange, J; Dunn, M F
1990-06-12
The aromatic region of the 1H-FT-NMR spectrum of the biologically fully-potent, monomeric human insulin mutant, B9 Ser----Asp, B27 Thr----Glu has been investigated in D2O. At 1 to 5 mM concentrations, this mutant insulin is monomeric above pH 7.5. Coupling and amino acid classification of all aromatic signals is established via a combination of homonuclear one- and two-dimensional methods, including COSY, multiple quantum filters, selective spin decoupling and pH titrations. By comparisons with other insulin mutants and with chemically modified native insulins, all resonances in the aromatic region are given sequence-specific assignments without any reliance on the various crystal structures reported for insulin. These comparisons also give the sequence-specific assignments of most of the aromatic resonances of the mutant insulins B16 Tyr----Glu, B27 Thr----Glu and B25 Phe----Asp and the chemically modified species des-(B23-B30) insulin and monoiodo-Tyr A14 insulin. Chemical dispersion of the assigned resonances, ring current perturbations and comparisons at high pH have made possible the assignment of the aromatic resonances of human insulin, and these studies indicate that the major structural features of the human insulin monomer (including those critical to biological function) are also present in the monomeric mutant.
Wang, Pan; Wen, Yujing; Han, Gui-Zhen; Sidhu, Pritam Kaur; Zhu, Bao Ting
2009-01-01
Background and purpose: The endogenous oestrogens have important biological functions in men as well as in women. Because 17β-oestradiol and oestrone are also formed in the male body, these aromatic oestrogens are generally thought to be responsible for exerting the required oestrogenic functions in the male. In the present study, we tested the hypothesis that some of the non-aromatic steroids that are androgen precursors or metabolites with hydroxyl groups at C-3 and/or C-17 positions may also be able to serve as ligands for the oestrogen receptors (ER) in the male. Experimental approach: A total of sixty non-aromatic steroids (selected from families of androstens, androstans, androstadiens, oestrens and oestrans) were analysed for their ability to bind and activate the human ERα and ERβin vitro and in cultured cells. Key results: Six of the non-aromatic steroids, that is, 5-androsten-3β,17β-diol, 5α-androstan-3β,17β-diol, 5(10)-oestren-3α,17β-diol, 5(10)-oestren-3β,17β-diol, 4-oestren-3β,17β-diol and 5α-oestran-3β,17β-diol, were found to have physiologically relevant high binding affinity (∼50% of that of oestrone) for human ERα and ERβ. These non-aromatic steroids also activated the transcriptional activity of human ERs and elicited biological responses (such as growth stimulation) in two representative ER-positive human cancer cell lines (MCF-7 and LNCaP) with physiologically relevant potency and efficacy. Molecular docking analysis of these six active compounds showed that they could bind to ERα and ERβ in a manner similar to that of 17β-oestradiol. Conclusions and implications: These results provide evidence for the possibility that some of the endogenous androgen precursors or metabolites could serve as male-specific ER ligands. PMID:19888961
Payne, Christina M.; Bomble, Yannick J.; Taylor, Courtney B.; McCabe, Clare; Himmel, Michael E.; Crowley, Michael F.; Beckham, Gregg T.
2011-01-01
Proteins employ aromatic residues for carbohydrate binding in a wide range of biological functions. Glycoside hydrolases, which are ubiquitous in nature, typically exhibit tunnels, clefts, or pockets lined with aromatic residues for processing carbohydrates. Mutation of these aromatic residues often results in significant activity differences on insoluble and soluble substrates. However, the thermodynamic basis and molecular level role of these aromatic residues remain unknown. Here, we calculate the relative ligand binding free energy by mutating tryptophans in the Trichoderma reesei family 6 cellulase (Cel6A) to alanine. Removal of aromatic residues near the catalytic site has little impact on the ligand binding free energy, suggesting that aromatic residues immediately upstream of the active site are not directly involved in binding, but play a role in the glucopyranose ring distortion necessary for catalysis. Removal of aromatic residues at the entrance and exit of the Cel6A tunnel, however, dramatically impacts the binding affinity, suggesting that these residues play a role in chain acquisition and product stabilization, respectively. The roles suggested from differences in binding affinity are confirmed by molecular dynamics and normal mode analysis. Surprisingly, our results illustrate that aromatic-carbohydrate interactions vary dramatically depending on the position in the enzyme tunnel. As aromatic-carbohydrate interactions are present in all carbohydrate-active enzymes, these results have implications for understanding protein structure-function relationships in carbohydrate metabolism and recognition, carbon turnover in nature, and protein engineering strategies for biomass utilization. Generally, these results suggest that nature employs aromatic-carbohydrate interactions with a wide range of binding affinities for diverse functions. PMID:21965672
McKinney, J D
1989-01-01
Molecular/theoretical modeling studies have revealed that thyroid hormones and toxic chlorinated aromatic hydrocarbons of environmental significance (for which dioxin or TCDD is the prototype) have similar structural properties that could be important in molecular recognition in biochemical systems. These molecular properties include a somewhat rigid, sterically accessible and polarizable aromatic ring and size-limited, hydrophobic lateral substituents, usually contained in opposite adjoining rings of a diphenyl compound. These molecular properties define the primary binding groups thought to be important in molecular recognition of both types of structures in biochemical systems. Similar molecular reactivities are supported by the demonstration of effective specific binding of thyroid hormones and chlorinated aromatic hydrocarbons with four different proteins, enzymes, or receptor preparations that are known or suspected to be involved in the expression of thyroid hormone activity. These binding interactions represent both aromatic-aromatic (stacking) and molecular cleft-type recognition processes. A multiple protein or multifunctional receptor-ligand binding mechanism model is proposed as a way of visualizing the details and possible role of both the stacking and cleft type molecular recognition factors in the expression of biological activity. The model suggests a means by which hormone-responsive effector-linked sites (possible protein-protein-DNA complexes) can maintain highly structurally specific control of hormone action. Finally, the model also provides a theoretical basis for the design and conduct of further biological experimentation on the molecular mechanism(s) of action of toxic chlorinated aromatic hydrocarbons and thyroid hormones. Images FIGURE 3. A FIGURE 3. B FIGURE 3. C FIGURE 3. D PMID:2551666
deRonde, Brittany M; Birke, Alexander; Tew, Gregory N
2015-02-09
Cell-penetrating peptides (CPPs) and their synthetic mimics (CPPMs) represent a class of molecules that facilitate the intracellular delivery of various cargo. Previous studies indicated that the presence of aromatic functionalities improved CPPM activity. Given that aromatic functionalities play prominent roles in membrane biology and participate in various π interactions, we explored whether these interactions could be optimized for improved CPPM activity. CPPMs were synthesized by ring-opening metathesis polymerization by using monomers that contained aromatic rings substituted with electron-donating and electron-withdrawing groups and covered an electrostatic potential range from -29.69 to +15.57 kcal mol(-1) . These groups altered the quadrupole moments of the aromatic systems and were used to test if such structural modifications changed CPPM activity. CPPMs were added to dye-loaded vesicles and the release of carboxyfluorescein was monitored as a function of polymer concentration. Changes in the effective polymer concentration to release 50% of the dye (effective concentration, EC50 ) were monitored. Results from this assay showed that the strength of the electron-donating and electron-withdrawing groups incorporated in the CPPMs did not alter polymer EC50 values or activity. This suggests that other design parameters may have a stronger impact on CPPM activity. In addition, these results indicate that a wide range of aromatic groups can be incorporated without negatively impacting polymer activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Occurrences and behaviors of naphthenic acids in a petroleum refinery wastewater treatment plant.
Wang, Beili; Wan, Yi; Gao, Yingxin; Zheng, Guomao; Yang, Min; Wu, Song; Hu, Jianying
2015-05-05
Naphthenic acids (NAs) are one class of compounds in wastewaters from petroleum industries that are known to cause toxic effects, and their removal from oilfield wastewater is an important challenge for remediation of large volumes of petrochemical effluents. The present study investigated occurrences and behaviors of total NAs and aromatic NAs in a refinery wastewater treatment plant, located in north China, which combined physicochemical and biological processes. Concentrations of total NAs were semiquantified to be 113-392 μg/L in wastewater from all the treatment units, and the percentages of aromatic NAs in total NAs was estimated to be 2.1-8.8%. The mass reduction for total NAs and aromatic NAs was 15±16% and 7.5±24% after the physicochemical treatment, respectively. Great mass reduction (total NAs: 65±11%, aromatic NAs: 86±5%) was observed in the biological treatment units, and antiestrogenic activities observed in wastewater from physicochemical treatment units disappeared in the effluent of the activated sludge system. The distributions of mass fractions of NAs demonstrated that biodegradation via activated sludge was the major mechanism for removing alicyclic NAs, aromatic NAs, and related toxicities in the plant, and the polycyclic NA congener classes were relatively recalcitrant to biodegradation, which is a complete contrast to the preferential adsorption of NAs with higher cyclicity (low Z value). Removal efficiencies of total NAs were 73±17% in summer, which were higher than those in winter (53±15%), and the seasonal variation was possibly due to the relatively high microbial biotransformation activities in the activated sludge system in summer (indexed by O3-NAs/NAs). The results of the investigations indicated that biotransformation of NA mixtures by the activated sludge system were largely affected by temperature, and employing an efficient adsorbent together with biodegradation processes would help cost-effectively remove NAs in petroleum effluents.
Agrawal, Vijay K; Sharma, Ruchi; Khadikar, Padmakar V
2002-09-01
QSAR studies on modelling of biological activity (hCAI) for a series of ureido and thioureido derivatives of aromatic/heterocyclic sulfonamides have been made using a pool of topological indices. Regression analysis of the data showed that excellent results were obtained in multiparametric correlations upon introduction of indicator parameters. The predictive abilities of the models are discussed using cross-validation parameters.
Oh, Seung-Min; Chung, Kyu-Hyuck
2006-03-01
A bioassay-directed chemical analysis which consists of mammalian cell bioassays (comet assay, CBMN assay and EROD-microbioassay) in conjunction with analytical measurements was performed to identify the most biologically active compounds of the diesel exhaust particulate matters (DEPs) on mutagenic activity. These bioassay systems were suitable to estimate the mammalian genotoxic potentials of pollutants present in low concentrations in limited environmental samples, as is the case with DEPEs. The results from mutagenic assay showed that the aromatic and slightly polar fraction of DEPs induced chromosomal damage and DNA breakage in a non-cytotoxic dose. It was also revealed that indirect-acting mutagens may mainly contribute to the mutagenic effect of aromatic fraction via the enzyme metabolism system. In the aromatic fraction, several indirect-acting mutagenic PAHs such as dibenzo(a,h)anthracene, chrysene, and 1,2-benzanthracene were detected by GC-MS and the complex mixture effect of this fraction was quantified in terms of its biological-TCDD equivalent concentration (bio-TEQ) which was 32.82 bio-TEQ ng/g-DEPs by EROD-microbioassay. Conclusively, we confirmed that indirect-acting mutagens contained in aromatic fraction may be important causatives of the genotoxicity of extracts of DEPs by integrating the results obtained from a mammalian cell bioassay-directed fractionation.
NASA Astrophysics Data System (ADS)
Semenov, M. A.; Blyzniuk, Iu. N.; Bolbukh, T. V.; Shestopalova, A. V.; Evstigneev, M. P.; Maleev, V. Ya.
2012-09-01
By the methods of vibrational spectroscopy (Infrared and Raman) the investigation of the hetero-association of biologically active aromatic compounds: flavin-mononucleotide (FMN), ethidium bromide (EB) and proflavine (PRF) was performed in aqueous solutions. It was shown that between the functional groups (Cdbnd O and NH2) the intermolecular hydrogen bonds are formed in the hetero-complexes FMN-EB and FMN-PRF, additionally stabilizing these structures. An estimation of the enthalpy of Н-bonding obtained from experimental shifts of carbonyl vibrational frequencies has shown that the H-bonds do not dominate in the magnitude of experimentally measured total enthalpy of the hetero-association reactions. The main stabilization is likely due to intermolecular interactions of the molecules in these complexes and their interaction with water environment.
Mosunov, A A; Kostiukov, V V; Evstigneev, M P
2012-01-01
The analysis of heteroassociation of antibiotic topotecan (TPT) with aromatic biologically active compounds (BAC): caffeine, mutagens ethidium bromide and proflavine, antibiotic daunomycin, vitamins flavin-mononucleotide and nicotinamide, has been carried out in the work using 1H NMR spectroscopy data. The equilibrium constants of heteroassociation and induced chemical shifts of the protons have been obtained in the complexes with BAC. It is found that the complex formation TPT-BAC has the nature of stacking of the chromophores, additionally stabilized in the case of proflavine by intermolecular hydrogen bond. Calculation of the basic components of the Gibbs free energy of the complexation reactions is carried out, and the factors which stabilize and destabilize the heterocomplexes of molecules are revealed.
Lipińska, Aneta; Wyszkowska, Jadwiga; Kucharski, Jan
2015-12-01
Polycyclic aromatic hydrocarbons are organic compounds with highly toxic, carcinogenic, and mutagenic properties, which adversely affect the basic biological parameters of the soil, including the count of microorganisms, and the enzymatic activity. In addition to disturbances to the biological activity of the soil, PAHs may also exhibit toxic effects on plants. In view of the above, the study involved testing aimed at the determination of the effects of polycyclic aromatic hydrocarbons in a form of naphthalene, phenanthrene, anthracene and pyrene on the count, colony development (CD) index, ecophysiological (EP) diversity index of organotrophic bacteria, and the activity of soil dehydrogenases and soil urease. Moreover, an attempt was made to determine the soil's resistance based on the activity of the above-listed enzymes, and the effect of polycyclic aromatic hydrocarbons on seed germination and root growth was assessed by Lepidium sativum, Sorghum saccharatum, and Sinapis alba. In addition, the species of bacteria found in a soil subjected to strong pressure of polycyclic aromatic hydrocarbons were isolated. The experiment was performed in a laboratory on samples of loamy sand. Polycyclic aromatic hydrocarbons were introduced into the soil in an amount of 0, 1000, 2000, and 4000 mg kg(-1) of soil dry matter. Germination and growth of cress (L. sativum), white mustard (S. alba), and sweet sorghum (S. saccharatum) were determined using Phytotoxkit tests. It was found that the tested PAHs increased the average colony counts of organotrophic soil bacteria; pyrene did so to the greatest extent (2.2-fold relative to non-contaminated soil), phenanthrene to the smallest extent (1.4-fold relative to non-contaminated soil). None of the PAHs changed the value of the bacterial colony development (CD) index, while anthracene and pyrene increased the value of the eco-physiological (EP) diversity indicator. PAHs lowered the activity of the tested enzymes. The activity of dehydrogenases was dependent on a greater extent by the type of hydrocarbon (54.56%) rather than by the dose (10.64%), while for the activity of urease, it was the opposite. The greater extent was dependent on dose (95.42%) rather than by type (0.21%). Dehydrogenases are characterised by greater resistance to the action of PAHs than urease. Based on seed germination and root growth, it has shown that S. alba is best suited, being the most vulnerable plant, while S. saccharatum is the least suited. Subjecting a soil to strong pressure of PAHs leads to disturbances to the biological parameters of the soil, seed germination, and root growth L. sativum, S. saccharatum, and S. alba.
Semenov, M A; Blyzniuk, Iu N; Bolbukh, T V; Shestopalova, A V; Evstigneev, M P; Maleev, V Ya
2012-09-01
By the methods of vibrational spectroscopy (Infrared and Raman) the investigation of the hetero-association of biologically active aromatic compounds: flavin-mononucleotide (FMN), ethidium bromide (EB) and proflavine (PRF) was performed in aqueous solutions. It was shown that between the functional groups (CO and NH(2)) the intermolecular hydrogen bonds are formed in the hetero-complexes FMN-EB and FMN-PRF, additionally stabilizing these structures. An estimation of the enthalpy of Н-bonding obtained from experimental shifts of carbonyl vibrational frequencies has shown that the H-bonds do not dominate in the magnitude of experimentally measured total enthalpy of the hetero-association reactions. The main stabilization is likely due to intermolecular interactions of the molecules in these complexes and their interaction with water environment. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Andrejuk, D. D.; Hernandez Santiago, A. A.; Khomich, V. V.; Voronov, V. K.; Davies, D. B.; Evstigneev, M. P.
2008-10-01
The hetero-association of theophylline (THP) with other biologically-active aromatic molecules ( e.g. the anti-cancer drugs daunomycin and novantrone, the antibiotic norfloxacin, the vitamin flavin-mononucleotide and two mutagens ethidium bromide and proflavine) has been studied by NMR in aqueous-salt solution (0.1 M Na-phosphate buffer, p D 7.1). It was found that THP shows an essentially similar hetero-association ability as caffeine (CAF) towards aromatic drugs, except for novantrone (NOV), which has much less affinity to THP than CAF as a result of energetically unfavourable orthogonal orientation of the chromophores of THP and NOV in the hetero-complex.
Kumano, Takuto; Richard, Stéphane B.; Noel, Joseph P.; Nishiyama, Makoto; Kuzuyama, Tomohisa
2010-01-01
NphB is a soluble prenyltransferase from Streptomyces sp. strain CL190 that attaches a geranyl group to a 1,3,6,8-tetrahydroxynaphthalene-derived polyketide during the biosynthesis of anti-oxidant naphterpin. Here we report multiple chemoenzymatic syntheses of various prenylated compounds from aromatic substrates including flavonoids using two prenyltransferases NphB and SCO7190, a NphB homolog from Streptomyces coelicolor A3(2), as biocatalysts. NphB catalyzes carbon–carbon-based and carbon–oxygen-based geranylation of a diverse collection of hydroxyl-containing aromatic acceptors. Thus, this simple method using the prenyltransferases can be used to explore novel prenylated aromatic compounds with biological activities. Kinetic studies with NphB reveal that the prenylation reaction follows a sequential ordered mechanism. PMID:18682327
Wang, Li; Bao, Bo-Bo; Song, Guo-Qing; Chen, Cheng; Zhang, Xu-Meng; Lu, Wei; Wang, Zefang; Cai, Yan; Li, Shuang; Fu, Sheng; Song, Fu-Hang; Yang, Haitao; Wang, Jian-Guo
2017-09-08
The worldwide outbreak of severe acute respiratory syndrome (SARS) in 2003 had caused a high rate of mortality. Main protease (M pro ) of SARS-associated coronavirus (SARS-CoV) is an important target to discover pharmaceutical compounds for the therapy of this life-threatening disease. During the course of screening new anti-SARS agents, we have identified that a series of unsymmetrical aromatic disulfides inhibited SARS-CoV M pro significantly for the first time. Herein, 40 novel unsymmetrical aromatic disulfides were synthesized chemically and their biological activities were evaluated in vitro against SARS-CoV M pro . These novel compounds displayed excellent IC 50 data in the range of 0.516-5.954 μM. Preliminary studies indicated that these disulfides are reversible and mpetitive inhibitors. A possible binding mode was generated via molecular docking simulation and a comparative field analysis (CoMFA) model was constructed to understand the structure-activity relationships. The present research therefore has provided some meaningful guidance to design and identify anti-SARS drugs with totally new chemical structures. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Dearomative dihydroxylation with arenophiles
NASA Astrophysics Data System (ADS)
Southgate, Emma H.; Pospech, Jola; Fu, Junkai; Holycross, Daniel R.; Sarlah, David
2016-10-01
Aromatic hydrocarbons are some of the most elementary feedstock chemicals, produced annually on a million metric ton scale, and are used in the production of polymers, paints, agrochemicals and pharmaceuticals. Dearomatization reactions convert simple, readily available arenes into more complex molecules with broader potential utility, however, despite substantial progress and achievements in this field, there are relatively few methods for the dearomatization of simple arenes that also selectively introduce functionality. Here we describe a new dearomatization process that involves visible-light activation of small heteroatom-containing organic molecules—arenophiles—that results in their para-cycloaddition with a variety of aromatic compounds. The approach uses N-N-arenophiles to enable dearomative dihydroxylation and diaminodihydroxylation of simple arenes. This strategy provides direct and selective access to highly functionalized cyclohexenes and cyclohexadienes and is orthogonal to existing chemical and biological dearomatization processes. Finally, we demonstrate the synthetic utility of this strategy with the concise synthesis of several biologically active compounds and natural products.
NASA Astrophysics Data System (ADS)
Lantushenko, Anastasia O.; Mukhina, Yulia V.; Veselkov, Kyrill A.; Davies, David B.; Veselkov, Alexei N.
2004-07-01
NMR spectroscopy has been used to elucidate the molecular mechanism of solubilization action of hydrotropic agents nicotinamide (NA) and caffeine (CAF). Hetero-association of NA with riboflavine-mononucleotide (FMN) and CAF with low soluble in aqueous solution synthetic analogue of antibiotic actinomycin D, actinocyl-bis-(3-dimethylaminopropyl) amine (Actill), has been investigated by 500 MHz 1H NMR spectroscopy. Concentration and temperature dependences of proton chemical shifts have been analysed in terms of a statistical-thermodynamic model of indefinite self- and heteroassociation of aromatic molecules. The obtained results enable to conclude that NA-FMN and CAF-Actill intermolecular complexes are mainly stabilized by the stacking interactions of the aromatic chromophores. Hetero-association of the investigated molecules plays an important role in solubilization of aromatic drugs by hydrotropic agents nicotinamide and caffeine.
Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.).
Gigliarelli, Giulia; Becerra, Judith X; Curini, Massimo; Marcotullio, Maria Carla
2015-12-12
Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus) and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal.
Portuguese Thymbra and Thymus species volatiles: chemical composition and biological activities.
Figueiredo, A C; Barroso, J G; Pedro, L G; Salgueiro, L; Miguel, M G; Faleiro, M L
2008-01-01
Thymbra capitata and Thymus species are commonly known in Portugal as thyme and they are currently used as culinary herbs, as well as for ornamental, aromatizing and traditional medicinal purposes. The present work reports on the state of the art on the information available on the taxonomy, ethnobotany, cell and molecular biology of the Portuguese representatives of these genera and on the chemotaxonomy and antibacterial, antifungal and antioxidant activities of their essential oils and other volatile-containing extracts.
Monocyclic aromatic amines as potential human carcinogens: old is new again
Skipper, Paul L.; Kim, Min Young; Sun, H.-L. Patty; Wogan, Gerald N.; Tannenbaum, Steven R.
2010-01-01
Alkylanilines are a group of chemicals whose ubiquitous presence in the environment is a result of the multitude of sources from which they originate. Exposure assessments indicate that most individuals experience lifelong exposure to these compounds. Many alkylanilines have biological activity similar to that of the carcinogenic multi-ring aromatic amines. This review provides an overview of human exposure and biological effects. It also describes recent investigations into the biochemical mechanisms of action that lead to the assessment that they are most probably more complex than those of the more extensively investigated multi-ring aromatic amines. Not only is nitrenium ion chemistry implicated in DNA damage by alkylanilines but also reactions involving quinone imines and perhaps reactive oxygen species. Recent results described here indicate that alkylanilines can be potent genotoxins for cultured mammalian cells when activated by exogenous or endogenous phase I and phase II xenobiotic-metabolizing enzymes. The nature of specific DNA damage products responsible for mutagenicity remains to be identified but evidence to date supports mechanisms of activation through obligatory N-hydroxylation as well as subsequent conjugation by sulfation and/or acetylation. A fuller understanding of the mechanisms of alkylaniline genotoxicity is expected to provide important insights into the environmental and genetic origins of one or more human cancers and may reveal a substantial role for this group of compounds as potential human chemical carcinogens. PMID:19887514
Aromatic Amino Acids and Related Substances: Chemistry, Biology, Medicine, and Application
USDA-ARS?s Scientific Manuscript database
On the occasion of the "Transdisciplinary International Conference on Aromatic Amino Acids and Related Substances," the organizing committee honors and thanks the expert participants from many areas of aromatic amino acid (AAA)3 research. In this transdisciplinary meeting, "aromatic paradigms" were ...
TOXICITY OF AROMATIC AEROBIC BIOTRANSFORMATION PRODUCTS OF TOLUENE TO HELA CELLS
Petroleum contamination of groundwater is widely recognized as a serious environmental problem. Toluene (methylbenzene) occurs naturally in crude oil and is commonly found as a contaminant in the subsurface as a result of waste disposal and storage activities. Biological transf...
USDA-ARS?s Scientific Manuscript database
The Himalayan region is very rich in a great variety of medicinal plants. In this investigation the essential oils of two selected species are described for their antimicrobial and larvicidal as well as biting deterrent activities. Additionally, the odors are characterized. Analyzed by simultaneous ...
Spectral Response and Diagnostics of Biological Activity of Hydroxyl-Containing Aromatic Compounds
NASA Astrophysics Data System (ADS)
Tolstorozhev, G. B.; Mayer, G. V.; Bel'kov, M. V.; Shadyro, O. I.
2016-08-01
Using IR Fourier spectra and employing quantum-chemical calculations of electronic structure, spectra, and proton-acceptor properties, synthetic derivatives of aminophenol exhibiting biological activity in the suppression of herpes, influenza, and HIV viruses have been investigated from a new perspective, with the aim of establishing the spectral response of biological activity of the molecules. It has been experimentally established that the participation of the aminophenol hydroxyl group in intramolecular hydrogen bonds is characteristic of structures with antiviral properties. A quantum-chemical calculation of the proton-acceptor ability of the investigated aminophenol derivatives has shown that biologically active structures are characterized by a high proton-acceptor ability of oxygen of the hydroxyl group. A correlation that has been obtained among the formation of an intramolecular hydrogen bond, high proton-acceptor ability, and antiviral activity of substituted aminophenols enables us to predict the pharmacological properties of new medical preparations of the given class of compounds.
Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation.
Alegbeleye, Oluwadara Oluwaseun; Opeolu, Beatrice Oluwatoyin; Jackson, Vanessa Angela
2017-10-01
The degree of polycyclic aromatic hydrocarbon contamination of environmental matrices has increased over the last several years due to increase in industrial activities. Interest has surrounded the occurrence and distribution of polycyclic aromatic hydrocarbons for many decades because they pose a serious threat to the health of humans and ecosystems. The importance of the need for sustainable abatement strategies to alleviate contamination therefore cannot be overemphasised, as daily human activities continue to create pollution from polycyclic aromatic hydrocarbons and impact the natural environment. Globally, attempts have been made to design treatment schemes for the remediation and restoration of contaminated sites. Several techniques and technologies have been proposed and tested over time, the majority of which have significant limitations. This has necessitated research into environmentally friendly and cost-effective clean-up techniques. Bioremediation is an appealing option that has been extensively researched and adopted as it has been proven to be relatively cost-effective, environmentally friendly and is publicly accepted. In this review, the physicochemical properties of some priority polycyclic aromatic hydrocarbons, as well as the pathways and mechanisms through which they enter the soil, river systems, drinking water, groundwater and food are succinctly examined. Their effects on human health, other living organisms, the aquatic ecosystem, as well as soil microbiota are also elucidated. The persistence and bioavailability of polycyclic aromatic hydrocarbons are discussed as well, as they are important factors that influence the rate, efficiency and overall success of remediation. Bioremediation (aerobic and anaerobic), use of biosurfactants and bioreactors, as well as the roles of biofilms in the biological treatment of polycyclic aromatic hydrocarbons are also explored.
Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation
NASA Astrophysics Data System (ADS)
Alegbeleye, Oluwadara Oluwaseun; Opeolu, Beatrice Oluwatoyin; Jackson, Vanessa Angela
2017-10-01
The degree of polycyclic aromatic hydrocarbon contamination of environmental matrices has increased over the last several years due to increase in industrial activities. Interest has surrounded the occurrence and distribution of polycyclic aromatic hydrocarbons for many decades because they pose a serious threat to the health of humans and ecosystems. The importance of the need for sustainable abatement strategies to alleviate contamination therefore cannot be overemphasised, as daily human activities continue to create pollution from polycyclic aromatic hydrocarbons and impact the natural environment. Globally, attempts have been made to design treatment schemes for the remediation and restoration of contaminated sites. Several techniques and technologies have been proposed and tested over time, the majority of which have significant limitations. This has necessitated research into environmentally friendly and cost-effective clean-up techniques. Bioremediation is an appealing option that has been extensively researched and adopted as it has been proven to be relatively cost-effective, environmentally friendly and is publicly accepted. In this review, the physicochemical properties of some priority polycyclic aromatic hydrocarbons, as well as the pathways and mechanisms through which they enter the soil, river systems, drinking water, groundwater and food are succinctly examined. Their effects on human health, other living organisms, the aquatic ecosystem, as well as soil microbiota are also elucidated. The persistence and bioavailability of polycyclic aromatic hydrocarbons are discussed as well, as they are important factors that influence the rate, efficiency and overall success of remediation. Bioremediation (aerobic and anaerobic), use of biosurfactants and bioreactors, as well as the roles of biofilms in the biological treatment of polycyclic aromatic hydrocarbons are also explored.
Polycyclic Aromatic Hydrocarbons Content in Contaminated Forest Soils with Different Humus Types.
Lasota, Jarosław; Błońska, Ewa
2018-01-01
The aim of the study was to determine polycyclic aromatic hydrocarbon (PAH) content in different forest humus types. The investigation was carried out in Chrzanów Forest District in southern Poland. Twenty research plots with different humus types (mor and mull) were selected. The samples for analysis were taken after litter horizons removing from a depth of 0-10 cm (from the Of- and Oh-horizon total or A-horizon). pH, organic carbon and total nitrogen content, base cations, acidity, and heavy metal content were determined. In the natural moisture state, the activity of dehydrogenase was determined. The study included the determination of PAH content. The conducted research confirms strong contamination of study soil by PAHs and heavy metals. Our experiment provided evidence that different forest humus types accumulate different PAH amounts. The highest content of PAHs and heavy metals was recorded in mor humus type. The content of PAHs in forest humus horizon depends on the content and quality of soil organic matter. Weaker degradation of hydrocarbons is associated with lower biological activity of soils. The mull humus type showed lower content of PAHs and at the same time the highest biological activity confirmed by high dehydrogenase activity.
NASA Astrophysics Data System (ADS)
Makarska-Bialokoz, Magdalena
2018-07-01
The specific spectroscopic and redox properties of porphyrins predestine them to fulfill the role of sensors during interacting with different biologically active substances. Monitoring of binding interactions in the systems porphyrin-biologically active compound is a key question not only in the field of physiological functions of living organisms, but also in environmental protection, notably in the light of the rapidly growing drug consumption and concurrently the production of drug effluents. Not always beneficial action of drugs on natural porphyrin systems induces to further studies, with commercially available porphyrins as the model systems. Therefore the binding process between several water-soluble porphyrins and a series of biologically active compounds (e.g. caffeine, guanine, theophylline, theobromine, xanthine, uric acid) has been studied in different aqueous solutions analyzing their absorption and steady-state fluorescence spectra, the porphyrin fluorescence lifetimes and their quantum yields. The magnitude of the binding and fluorescence quenching constants values for particular quenchers decreases in a series: uric acid > guanine > caffeine > theophylline > theobromine > xanthine. In all the systems studied there are characters of static quenching, as a consequence of the π-π-stacked non-covalent and non-fluorescent complexes formation between porphyrins and interacting compounds, accompanied simultaneously by the additional specific binding interactions. The porphyrin fluorescence quenching can be explain by the photoinduced intermolecular electron transfer from aromatic compound to the center of the porphyrin molecule, playing the role of the binding site. Presented results can be valuable for designing of new fluorescent porphyrin chemosensors or monitoring of drug traces in aqueous solutions. The obtained outcomes have also the toxicological and medical importance, providing insight into the interactions of the water-soluble porphyrins with biologically active substances.
NASA Astrophysics Data System (ADS)
Dong, Huanhuan; Liu, Jing; Liu, Xiaoru; Yu, Yanying; Cao, Shuwen
2018-01-01
A collection of thirty-six aromatic heterocycle thiosemicarbazone analogues presented a broad span of anti-tyrosinase activities were designed and obtained. A robust and reliable two-dimensional quantitative structure-activity relationship model, as evidenced by the high q2 and r2 values (0.848 and 0.893, respectively), was gained based on the analogues to predict the quantitative chemical-biological relationship and the new modifier direction. Inhibitory activities of the compounds were found to greatly depend on molecular shape and orbital energy. Substituents brought out large ovality and high highest-occupied molecular orbital energy values helped to improve the activity of these analogues. The molecular docking results provided visual evidence for QSAR analysis and inhibition mechanism. Based on these, two novel tyrosinase inhibitors O04 and O05 with predicted IC50 of 0.5384 and 0.8752 nM were designed and suggested for further research.
Complexation of C60 fullerene with aromatic drugs.
Evstigneev, Maxim P; Buchelnikov, Anatoly S; Voronin, Dmitry P; Rubin, Yuriy V; Belous, Leonid F; Prylutskyy, Yuriy I; Ritter, Uwe
2013-02-25
The contributions of various physical factors to the energetics of complexation of aromatic drug molecules with C(60) fullerene are investigated in terms of the calculated magnitudes of equilibrium complexation constants and the components of the net Gibbs free energy. Models of complexation are developed taking into account the polydisperse nature of fullerene solutions in terms of the continuous or discrete (fractal) aggregation of C(60) molecules. Analysis of the energetics has shown that stabilization of the ligand-fullerene complexes in aqueous solution is mainly determined by intermolecular van der Waals interactions and, to lesser extent, by hydrophobic interactions. The results provide a physicochemical basis for a potentially new biotechnological application of fullerenes as modulators of biological activity of aromatic drugs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Arruda-Santos, Roxanny Helen de; Schettini, Carlos Augusto França; Yogui, Gilvan Takeshi; Maciel, Daniele Claudino; Zanardi-Lamardo, Eliete
2018-05-15
Goiana estuary is a well preserved marine protected area (MPA) located on the northeastern coast of Brazil. Despite its current state, human activities in the watershed represent a potential threat to long term local preservation. Dissolved/dispersed aromatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) were investigated in water and sediments across the estuarine salt gradient. Concentration of aromatic hydrocarbons was low in all samples. According to results, aromatic hydrocarbons are associated to suspended particulate matter (SPM) carried to the estuary by river waters. An estuarine turbidity maximum (ETM) was identified in the upper estuary, indicating that both sediments and contaminants are trapped prior to an occasional export to the adjacent sea. PAHs distribution in sediments were associated with organic matter and mud content. Diagnostic ratios indicated pyrolytic processes as the main local source of PAHs that are probably associated with sugarcane burning and combustion engines. Low PAH concentrations probably do not cause adverse biological effects to the local biota although their presence indicate anthropogenic contamination and pressure on the Goiana estuary MPA. Copyright © 2017 Elsevier B.V. All rights reserved.
Opioid receptor probes derived from cycloaddition of the hallucinogen natural product salvinorin A.
Lozama, Anthony; Cunningham, Christopher W; Caspers, Michael J; Douglas, Justin T; Dersch, Christina M; Rothman, Richard B; Prisinzano, Thomas E
2011-04-25
As part of our continuing efforts toward more fully understanding the structure-activity relationships of the neoclerodane diterpene salvinorin A, we report the synthesis and biological characterization of unique cycloadducts through [4+2] Diels-Alder cycloaddition. Microwave-assisted methods were developed and successfully employed, aiding in functionalizing the chemically sensitive salvinorin A scaffold. This demonstrates the first reported results for both cycloaddition of the furan ring and functionalization via microwave-assisted methodology of the salvinorin A skeleton. The cycloadducts yielded herein introduce electron-withdrawing substituents and bulky aromatic groups into the C-12 position. Kappa opioid (KOP) receptor space was explored through aromatization of the bent oxanorbornadiene system possessed by the cycloadducts to a planar phenyl ring system. Although dimethyl- and diethylcarboxylate analogues 5 and 6 retain some affinity and selectivity for KOP receptors and are full agonists, their aromatized counterparts 13 and 14 have reduced affinity for KOP receptors. The methods developed herein signify a novel approach toward rapidly probing the structure-activity relationships of furan-containing natural products.
Yields of potato and alternative crops impacted by humic product application
USDA-ARS?s Scientific Manuscript database
Humic substance (HA—humic acid, fulvic acid, and humin) are a family of organic molecules made up of long carbon chains and numerous active functional groups such as phenols and other aromatics. Humic substances play dynamic roles in soil physical, chemical biological functions essential to soil he...
The fate of 14 polycyclic aromatic hydrocarbon (PAH) compounds was evaluated with regard to interphase transfer potential and mechanisms of treatment in soil under unsaturated conditions. Volatilization and abiotic and biotic fate of the PAHs were determined using two soils not p...
SYNTHESIS, IN VITRO METABOLISM, MUTAGENICITY, AND DNA-ADDUCTION OF NAPHTHO[1,2-E]PYRENE
SYNTHESIS, IN V1TRO METABOLISM, MUTAGENICITY , AND DNA-ADDUCnON OF NAPHTHO[l ,2-e ]PYRENE
Literature data, although limited, underscore the contribution of C24HI4 polycyclic aromatic hydrocarbons to the biological activity of the extracts of complex environmental samples....
Stabilities and Biological Activities of Vanadium Drugs: What is the Nature of the Active Species?
Levina, Aviva; Lay, Peter A
2017-07-18
Diverse biological activities of vanadium(V) drugs mainly arise from their abilities to inhibit phosphatase enzymes and to alter cell signaling. Initial interest focused on anti-diabetic activities but has shifted to anti-cancer and anti-parasitic drugs. V-based anti-diabetics are pro-drugs that release active components (e.g., H 2 VO 4 - ) in biological media. By contrast, V anti-cancer drugs are generally assumed to enter cells intact; however, speciation studies indicate that nearly all drugs are likely to react in cell culture media during in vitro assays and the same would apply in vivo. The biological activities are due to V V and/or V IV reaction products with cell culture media, or the release of ligands (e.g., aromatic diimines, 8-hydroxyquinolines or thiosemicarbazones) that bind to essential metal ions in the media. Careful consideration of the stability and speciation of V complexes in cell culture media and in biological fluids is essential to design targeted V-based anti-cancer therapies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ramos, Gerardo; Limon-Flores, Alberto Yairh; Ullrich, Stephen E
2007-12-01
Dermal exposure to military (JP-8) and/or commercial (Jet-A) jet fuel suppresses cell-mediated immune reactions. Immune regulatory cytokines and biological modifiers, including platelet activating factor (PAF), prostaglandin E(2), and interleukin-10, have been implicated in the pathway of events leading to immune suppression. It is estimated that approximately 260 different hydrocarbons are found in jet fuel, and the exact identity of the active immunotoxic agent(s) is unknown. The recent availability of synthetic jet fuel (S-8), which is refined from natural gas, and is devoid of aromatic hydrocarbons, made it feasible to design experiments to address this problem. Here we tested the hypothesis that the aromatic hydrocarbons present in jet fuel are responsible for immune suppression. We report that applying S-8 to the skin of mice does not upregulate the expression of epidermal cyclooxygenase-2 (COX-2) nor does it induce immune suppression. Adding back a cocktail of seven of the most prevalent aromatic hydrocarbons found in jet fuel (benzene, toluene, ethylbenzene, xylene, 1,2,4-trimethlybenzene, cyclohexylbenzene, and dimethylnaphthalene) to S-8 upregulated epidermal COX-2 expression and suppressed a delayed-type hypersensitivity (DTH) reaction. Injecting PAF receptor antagonists, or a selective cycloozygenase-2 inhibitor into mice treated with S-8 supplemented with the aromatic cocktail, blocked suppression of DTH, similar to data previously reported using JP-8. These findings identify the aromatic hydrocarbons found in jet fuel as the agents responsible for suppressing DTH, in part by the upregulation of COX-2, and the production of immune regulatory factors and cytokines.
Dhifi, Wissal; Bellili, Sana; Jazi, Sabrine; Bahloul, Nada; Mnif, Wissem
2016-01-01
This review covers literature data summarizing, on one hand, the chemistry of essential oils and, on the other hand, their most important activities. Essential oils, which are complex mixtures of volatile compounds particularly abundant in aromatic plants, are mainly composed of terpenes biogenerated by the mevalonate pathway. These volatile molecules include monoterpenes (hydrocarbon and oxygenated monoterpens), and also sesquiterpenes (hydrocarbon and oxygenated sesquiterpens). Furthermore, they contain phenolic compounds, which are derived via the shikimate pathway. Thanks to their chemical composition, essential oils possess numerous biological activities (antioxidant, anti-inflammatory, antimicrobial, etc…) of great interest in food and cosmetic industries, as well as in the human health field. PMID:28930135
Trumbore, David C; Osborn, Linda V; Johnson, Kathleen A; Fayerweather, William E
2015-01-01
We studied exposure of 151 workers to polycyclic aromatic compounds and asphalt emissions during the manufacturing of asphalt roofing products-including 64 workers from 10 asphalt plants producing oxidized, straight-run, cutback, and wax- or polymer-modified asphalts, and 87 workers from 11 roofing plants producing asphalt shingles and granulated roll roofing. The facilities were located throughout the United States and used asphalt from many refiners and crude oils. This article helps fill a gap in exposure data for asphalt roofing manufacturing workers by using a fluorescence technique that targets biologically active 4-6 ring polycyclic aromatic compounds and is strongly correlated with carcinogenic activity in animal studies. Worker exposures to polycyclic aromatic compounds were compared between manufacturing plants, at different temperatures and using different raw materials, and to important external benchmarks. High levels of fine limestone particulate in the plant air during roofing manufacturing increased polycyclic aromatic compound exposure, resulting in the hypothesis that the particulate brought adsorbed polycyclic aromatic compounds to the worker breathing zone. Elevated asphalt temperatures increased exposures during the pouring of asphalt. Co-exposures in these workplaces which act as confounders for both the measurement of total organic matter and fluorescence were detected and their influence discussed. Exposures to polycyclic aromatic compounds in asphalt roofing manufacturing facilities were lower than or similar to those reported in hot-mix paving application studies, and much below those reported in studies of hot application of built-up roofing asphalt. These relatively low exposures in manufacturing are primarily attributed to air emission controls in the facilities, and the relatively moderate temperatures, compared to built-up roofing, used in these facilities for oxidized asphalt. The exposure to polycyclic aromatic compounds was a very small part of the overall worker exposure to asphalt fume, on average less than 0.07% of the benzene-soluble fraction. Measurements of benzene-soluble fraction were uniformly below the American Conference of Governmental Industrial Hygienists' Threshold Limit Value for asphalt fume.
Biodegradation of naphthenic acid surrogates by axenic cultures.
Yue, Siqing; Ramsay, Bruce A; Ramsay, Juliana A
2015-07-01
This is the first study to report that bacteria from the genera Ochrobactrum, Brevundimonas and Bacillus can be isolated by growth on naphthenic acids (NAs) extracted from oil sands process water (OSPW). These pure cultures were screened for their ability to use a range of aliphatic, cyclic and aromatic NA surrogates in 96-well microtiter plates using water-soluble tetrazolium redox dyes (Biolog Redox Dye H) as the indicator of metabolic activity. Of the three cultures, Ochrobactrum showed most metabolic activity on the widest range of NA surrogates. Brevundomonas and especially Ochrobactrum had higher metabolic activity on polycyclic aromatic compounds than other classes of NA surrogates. Bacillus also oxidized a wide range of NA surrogates but not as well as Ochrobactrum. Using this method to characterize NA utilisation, one can identify which NAs or NA classes in OSPW are more readily degraded. Since aromatic NAs have been shown to have an estrogenic effect and polycyclic monoaromatic compounds have been suggested to pose the greatest environmental threat among the NAs, these bacterial genera may play an important role in detoxification of OSPW. Furthermore, this study demonstrates that bacteria belonging to the genera Ochrobactrum and Bacillus can also degrade surrogates of tricyclic NAs.
Biological Activities of Three Essential Oils of the Lamiaceae Family
Nieto, Gema
2017-01-01
Herbs and spices have been used since ancient times to improve the sensory characteristics of food, to act as preservatives and for their nutritional and healthy properties. Herbs and spices are generally recognized as safe (GRAS) and are excellent substitutes for chemical additives. Essential oils are mixtures of volatile compounds obtained, mainly by steam distillation, from medicinal and aromatic plants. They are an alternative to synthetic additives for the food industry, and they have gained attention as potential sources for natural food preservatives due to the growing interest in the development of safe, effective, natural food preservation. Lamiaceae is one of the most important families in the production of essential oils with antioxidants and antimicrobial properties. Aromatic plants are rich in essential oils and are mainly found in the Mediterranean region, where the production of such oils is a profitable source of ecological and economic development. The use of essential oils with antimicrobial and antioxidant properties to increase the shelf life of food is a promising technology, and the essential oils of the Lamiaceae family, such as rosemary, thyme, and sage, have been extensively studied with respect to their use as food preservatives. Regarding the new applications of essential oils, this review gives an overview of the current knowledge and recent trends in the use of these oils from aromatic plants as antimicrobials and antioxidants in foods, as well as their biological activities, future potential, and challenges. PMID:28930277
Opioid Receptor Probes Derived from Cycloaddition of the Hallucinogen Natural Product Salvinorin A†
Lozama, Anthony; Cunningham, Christopher W.; Caspers, Michael J.; Douglas, Justin T.; Dersch, Christina M.; Rothman, Richard B.; Prisinzano, Thomas E.
2011-01-01
As part of our continuing efforts toward more fully understanding the structure-activity relationships of the neoclerodane diterpene salvinorin A, we report the synthesis and biological characterization of unique cycloadducts through [4+2] Diels-Alder cycloaddition. Microwave-assisted methods were developed and successfully employed, aiding in functionalizing the chemically sensitive salvinorin A scaffold. This demonstrates the first reported results for both cycloaddition of the furan ring and functionalization via microwave-assisted methodology of the salvinorin A skeleton. The cycloadducts yielded herein introduce electron-withdrawing substituents and bulky aromatic groups into the C-12 position. Kappa opioid (KOP) receptor space was explored through aromatization of the bent oxanorbornadiene system possessed by the cycloadducts to a planar phenyl ring system. Although dimethyl- and diethylcarboxylate analogues 5 and 6 retain some affinity and selectivity for KOP receptors and are full agonists, their aromatized counterparts 13 and 14 have reduced affinity for KOP receptors. The methods developed herein signify a novel approach toward rapidly probing the structure-activity relationships of furan containing natural products. PMID:21338114
NASA Astrophysics Data System (ADS)
Czylkowski, R.; Karolak-Wojciechowska, J.; Mrozek, A.; Yalçin, I.; Aki-Şener, E.
2001-12-01
The mutual position of two pharmacophoric elements in flexible biologically active molecules depends on the spacer conformation. This is true even for a two-atomic chain put to use as a spacer. It was established for 2-substituted-benzoxazoles containing two aromatic centres joined by -CH2-X- (X=S or O). From crystallographic studies of four molecules it was found that the role of heteroatom is essential for the whole molecule conformation. The spacer with X=S adopts the (-)synclinal conformation while for X=O the (+)antiperiplanar one. Such preferences were also found in the statistical data from Cambridge Structural Database (CSD).
An Aromatic Adventure with Allelopathy: Using Garlic to Study Allelopathy in the Classroom
ERIC Educational Resources Information Center
Shimabukuro, Mary A.; Haberman, Vickie
2006-01-01
In this paper, the authors explore the potential of garlic ("Allium sativum L.") to illustrate the concept of allelopathy and demonstrate the biological activity of plant volatiles. This article describes several classroom experiments involving garlic that can be used as a method of introducing students of various ages to the following important…
Makarska-Bialokoz, Magdalena
2018-07-05
The specific spectroscopic and redox properties of porphyrins predestine them to fulfill the role of sensors during interacting with different biologically active substances. Monitoring of binding interactions in the systems porphyrin-biologically active compound is a key question not only in the field of physiological functions of living organisms, but also in environmental protection, notably in the light of the rapidly growing drug consumption and concurrently the production of drug effluents. Not always beneficial action of drugs on natural porphyrin systems induces to further studies, with commercially available porphyrins as the model systems. Therefore the binding process between several water-soluble porphyrins and a series of biologically active compounds (e.g. caffeine, guanine, theophylline, theobromine, xanthine, uric acid) has been studied in different aqueous solutions analyzing their absorption and steady-state fluorescence spectra, the porphyrin fluorescence lifetimes and their quantum yields. The magnitude of the binding and fluorescence quenching constants values for particular quenchers decreases in a series: uric acid > guanine > caffeine > theophylline > theobromine > xanthine. In all the systems studied there are characters of static quenching, as a consequence of the π-π-stacked non-covalent and non-fluorescent complexes formation between porphyrins and interacting compounds, accompanied simultaneously by the additional specific binding interactions. The porphyrin fluorescence quenching can be explain by the photoinduced intermolecular electron transfer from aromatic compound to the center of the porphyrin molecule, playing the role of the binding site. Presented results can be valuable for designing of new fluorescent porphyrin chemosensors or monitoring of drug traces in aqueous solutions. The obtained outcomes have also the toxicological and medical importance, providing insight into the interactions of the water-soluble porphyrins with biologically active substances. Copyright © 2018 Elsevier B.V. All rights reserved.
Pathiratne, Asoka; Pathiratne, K A S; De Seram, P K C
2010-08-01
Biomarkers measured at the molecular and cellular level in fish have been proposed as sensitive "early warning" tools for biological effect measurements in environmental quality assessments. Lake Beira is a hypertrophic urban water body with a complex mixture of pollutants including polycyclic aromatic hydrocarbons (PAHs) and Microcystins. In this study, a suite of biomarker responses viz. biliary fluorescent aromatic compounds (FACs), hepatic ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST), brain and muscle cholinesterases (ChE), serum sorbitol dehydrogenase (SDH), and liver histology of Oreochromis niloticus, the dominant fish inhabiting this tropical Lake were evaluated to assess the pollution exposure and biological effects. Some fish sampled in the dry periods demonstrated prominent structural abnormalities in the liver and concomitant increase in serum SDH and reduction in hepatic GST activities in comparison to the control fish and the fish sampled in the rainy periods. The resident fish with apparently normal liver demonstrated induction of hepatic EROD and GST activities and increase in biliary FACs irrespective of the sampling period indicating bioavailability of PAHs. Muscle ChE activities of the resident fish were depressed significantly indicating exposure to anticholinesterase substances. The results revealed that fish populations residing in this Lake is under threat due to the pollution stress. Hepatic abnormalities in the fish may be mainly associated with the pollution stress due to recurrent exposure to PAHs and toxigenic Microcystis blooms in the Lake.
Davis, Jeffery T [College Park, MD; Sidorov, Vladimir [Richmond, VA; Kotch, Frank W [New Phila., PA
2008-04-08
A compound containing at least two aromatic rings covalently bonded together, with each aromatic ring containing at least one oxyacetamide-based side chain, the compound being capable of forming a chloride ion channel across a lipid bilayer, and transporting chloride ion across the lipid bilayer.
Molecular Biology of Anaerobic Aromatic Biodegradation.
1992-08-14
manipulate and clone genes for aromatic acid degradation from the bacterium, Rhodopseudomonas palustris . These tools have enabled us to identify genes...anaerobic degradation of two selected aromatic acids - benzoate and 4-hydroxybenzoate - by one bacterial species - Rhodopseudomonas palustris . Our...PUBLICATIONS. Papers: Gibson, J., J. F. Geissler, and C. S. Harwood. 1990. Benzoate-coenzyme A ligase from Rhodopseudomonas palustris . Methods in Enzymology
Synthesis and biological evaluation of novel bis-aromatic amides as novel PTP1B inhibitors.
Wang, Wen-Long; Huang, Chao; Gao, Li-Xin; Tang, Chun-Lan; Wang, Jun-Qing; Wu, Min-Chen; Sheng, Li; Chen, Hai-Jun; Nan, Fa-Jun; Li, Jing-Ya; Li, Jia; Feng, Bainian
2014-04-15
A series of bis-aromatic amides was designed, synthesized, and evaluated as a new class of inhibitors with IC50 values in the micromolar range against protein tyrosine phosphatase 1B (PTP1B). Among them, compound 15 displayed an IC50 value of 2.34±0.08 μM with 5-fold preference over TCPTP. More importantly, the treatment of CHO/HIR cells with compound 15 resulted in increased phosphorylation of insulin receptor (IR), which suggested extensive cellular activity of compound 15. These results provided novel lead compounds for the design of inhibitors of PTP1B as well as other PTPs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Aromatic proteinaceous surfactants stabilize long-lived gas microbubbles from natural sources
NASA Technical Reports Server (NTRS)
Darrigo, J. S.
1981-01-01
Three different types of protein-specific chemical tests were performed on long-lived gas microbubbles derived from aqueous solutions of agarose powder and from filtered aqueous extracts of Hawaiian forest soil. The separate protein-specific tests involved use of either 0.3% (w/v) ninhydrin, 100 microM methylene blue dye, or 0.7-1.0 M 2-hydroxy-5-nitrobenzyl bromide. The chemical test results obtained with each of the two natural substances, i.e., agarose powder and Hawaiian forest soil, were very similar and indicate that the biological surfactants which surround and stabilize long-lived gas microbubbles are proteinaceous compounds that contain, and whose surface activity depends upon, aromatic amino acid residues, particularly tryptophan.
NASA Astrophysics Data System (ADS)
He, Huarui; Uray, Georg; Wolfbeis, Otto S.
1991-09-01
This paper presents a method for optically sensing enantiomers (optical isomers) of biological amines such as norephedrine, and drugs such as the (Beta) -blocker propranolol. It is based on the use of a new lipophilic aromatic ammonium ion carrier (DODD) and a highly fluorescent lipophilic proton carrier (DZ 49) dissolved in a pvc membrane. Recognition of one of the enantiomers is accomplished by specific interaction of the amine with the optically active lipophilic substrate in a pvc membrane. The amine, which is present as an ammonium ion at physiological pH, is carried into the pvc membranes. Simultaneously, a proton is released from the proton carrier (a lipophilic xanthene dye) that thereby undergoes a change in both color and fluorescence intensity. The sensors respond to three analytes in the concentration range from 0.01 to 10 mM for propranolol, 0.3 to 100 mM for norephedrine, and 1 to 100 mM for 1-phenylethylamine. The selectivity coefficients (Kopt) are 0.8, 0.7, and 0.8 for propranolol, norephedrine,a nd 1-phenylethylamine, respectively. It is of potential utility for specifically recognizing one out of several isomers, in particular bioactive amines, where one form usually is active only. The carrier showed stronger affinity for compounds which contain naphthyl rather than phenyl substituents.
Anaerobic Catabolism of Aromatic Compounds: a Genetic and Genomic View
Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F.; Valderrama, J. Andrés; Barragán, María J. L.; García, José Luis; Díaz, Eduardo
2009-01-01
Summary: Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach. PMID:19258534
The structural biology of phenazine biosynthesis
Blankenfeldt, Wulf; Parsons, James F.
2014-01-01
The phenazines are a class of over 150 nitrogen-containing aromatic compounds of bacterial and archeal origin. Their redox properties not only explain their activity as broad-specificity antibiotics and virulence factors but also enable them to function as respiratory pigments, thus extending their importance to the primary metabolism of phenazine-producing species. Despite their discovery in the mid-19th century, the molecular mechanisms behind their biosynthesis have only been unraveled in the last decade. Here, we review the contribution of structural biology that has led to our current understanding of phenazine biosynthesis. PMID:25215885
NASA Astrophysics Data System (ADS)
Dertinger, Jennifer J.; Walker, Amy V.
2013-08-01
The role of the ionic liquid (IL) anion structure on analyte signal enhancements has been systematically investigated in secondary ion mass spectrometry (SIMS) using a variety of samples, including lipids, sterols, polymers, and peptides. Twenty-four ILs were synthesized. The 12 matrix acids were cinnamic acid derivatives. Two bases were employed: 1-methylimidazole and tripropylamine. Three matrices, methylimmidazolium o-coumarate, tripropylammonium o-coumarate, and tripropylammonium 3,4,5-trimethoxycinnamate, were "universal" matrices enhancing all analytes tested. The pKa of the matrix acid does not appear to have a strong effect on analyte ion intensities. Rather, it is observed that a single hydroxyl group on the anion aromatic ring leads to significantly increased molecular ion intensities. No analyte signal enhancements were observed for -CH3, -CF3 and -OCH3 groups present on the aromatic ring. The position of the -OH group on the aromatic ring also alters molecular ion intensity enhancements. As well as the chemical identity and position of substituents, the number of moieties on the aromatic ring may affect the analyte signal enhancements observed. These observations suggest that the activation of the IL anion aromatic ring is important for optimizing analyte signal intensities. The implications for SIMS imaging of complex structures, such as biological samples, are discussed.
Temporal dynamics of the arthropod community in pear orchards intercropped with aromatic plants.
Beizhou, Song; Jie, Zhang; Jinghui, Hu; Hongying, Wu; Yun, Kong; Yuncong, Yao
2011-09-01
Increasing attention has been paid to enhancing biological control through habitat management in agricultural systems for enhanced pest management. Pest management benefits can be realised by intercropping, which can increase natural enemy abundance and, in turn, reduce pest abundance. In this study, the composition and temporal dynamics of arthropod communities in pear orchards when intercropped with aromatic plants were investigated, and the effectiveness and applicability of aromatic plants as intercrops for enhancing insect control were assessed. When compared with natural grasses or clean tillage, intercropping significantly reduced pest abundance and increased the ratio of natural enemies to pests. Intercropping also shortened the occurrence duration and depressed the incidence peak in annual dynamics curves of the pest subcommunity and the arthropod community, mainly because of the repellent effects of aromatic plants. Equally important, intercropping significantly reduced the numbers of major pests, such as Psylla chinensis, Aphis citricola and Pseudococcus comstocki, while their incidence period was delayed to varying degrees, and the numbers of their dominant natural enemies (Coccinella septempunctata, Phytoseiulus persimilis and Chrysoperla sinica) increased. Intercropping with aromatic plants led to a considerable improvement in arthropod pest management by enhancing the activity of the beneficial arthropod community within the pear orchard ecosystem. Copyright © 2011 Society of Chemical Industry.
Recent Advances in Microbial Production of Aromatic Chemicals and Derivatives.
Noda, Shuhei; Kondo, Akihiko
2017-08-01
Along with the development of metabolic engineering and synthetic biology tools, various microbes are being used to produce aromatic chemicals. In microbes, aromatics are mainly produced via a common important precursor, chorismate, in the shikimate pathway. Natural or non-natural aromatics have been produced by engineering metabolic pathways involving chorismate. In the past decade, novel approaches have appeared to produce various aromatics or to increase their productivity, whereas previously, the targets were mainly aromatic amino acids and the strategy was deregulating feedback inhibition. In this review, we summarize recent studies of microbial production of aromatics based on metabolic engineering approaches. In addition, future perspectives and challenges in this research area are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Exposure to a variety of xenobiotics, including polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs), results in the induction of CYP1A and related biological activity. Historically, antibodies against purified CYP1A have been raised...
Anticancer activity of ferrocenylthiosemicarbazones.
Sandra, Cortez-Maya; Elena, Klimova; Marcos, Flores-Alamo; Elena, Martínez-Klimova; Arturo, Ramírez-Ramírez; Teresa, Ramírez Apan; Marcos, Martínez-García
2014-03-01
Aliphatic and aromatic ferrocenylthiosemicarbazones were synthesized. The characterization of the new ferrocenylthiosemicarbazones was done by IR, (1)H-NMR and (13)C-NMR spectroscopy, elemental analysis and X-ray diffraction studies. The biological activity of the obtained compounds was assessed in terms of anticancer activity. Their activity against U251 (human glyoblastoma), PC-3 (human prostatic adenocarcinoma), K562 (human chronic myelogenous leukemia), HCT-15 (human colorectal adenocarcinoma), MCF-7 (human mammary adenocarcinoma) and SKLU-1 (human lung adenocarcinoma) cell lines was studied and compared with cisplatin. All tested compounds showed good activity and the aryl-chloro substituted ferrocenylthiosemicarbazones showed the best anticancer activity.
The Significance of Lichens and Their Metabolites
NASA Astrophysics Data System (ADS)
Huneck, S.
Lichens, symbiontic organisms of fungi and algae, synthesize numerous metabolites, the "lichen substances," which comprise aliphatic, cycloaliphatic, aromatic, and terpenic compounds. Lichens and their metabolites have a manifold biological activity: antiviral, antibiotic, antitumor, allergenic, plant growth inhibitory, antiherbivore, and enzyme inhibitory. Usnic acid, a very active lichen substance is used in pharmaceutical preparations. Large amounts of Pseudevernia furfuracea and Evernia prunastri are processed in the perfume industry, and some lichens are sensitive reagents for the evaluation of air pollution.
van der Knaap, Matthijs; Lageveen, Lianne T; Busscher, Henk J; Mars-Groenendijk, Roos; Noort, Daan; Otero, José M; Llamas-Saiz, Antonio L; van Raaij, Mark J; van der Marel, Gijsbert A; Overkleeft, Herman S; Overhand, Mark
2011-05-02
The influence of replacing the d-phenylalanine residue with substituted and unsubstituted azoles on the structure and biological activity of the antibiotic gramicidin S was investigated against a representative panel of Gram-positive and Gram-negative bacteria strains. Substituted triazole derivatives, obtained using a convergent synthetic strategy, are as active as gramicidin S, provided that any substituent on the triazole moiety is not too large. The unsubstituted triazole derivative was biologically less active than the parent natural product, gramicidin S. In general for the triazole series, the hemolytic activity could be correlated with the antibacterial activity, that is, the higher the antibacterial activity, the higher the toxicity towards blood cells. Interestingly, its imidazole counterpart showed high antibacterial activity, combined with significantly diminished hemolytic activity. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polêto, Marcelo D; Rusu, Victor H; Grisci, Bruno I; Dorn, Marcio; Lins, Roberto D; Verli, Hugo
2018-01-01
The identification of lead compounds usually includes a step of chemical diversity generation. Its rationale may be supported by both qualitative (SAR) and quantitative (QSAR) approaches, offering models of the putative ligand-receptor interactions. In both scenarios, our understanding of which interactions functional groups can perform is mostly based on their chemical nature (such as electronegativity, volume, melting point, lipophilicity etc.) instead of their dynamics in aqueous, biological solutions (solvent accessibility, lifetime of hydrogen bonds, solvent structure etc.). As a consequence, it is challenging to predict from 2D structures which functional groups will be able to perform interactions with the target receptor, at which intensity and relative abundance in the biological environment, all of which will contribute to ligand potency and intrinsic activity. With this in mind, the aim of this work is to assess properties of aromatic rings, commonly used for drug design, in aqueous solution through molecular dynamics simulations in order to characterize their chemical features and infer their impact in complexation dynamics. For this, common aromatic and heteroaromatic rings were selected and received new atomic charge set based on the direction and module of the dipole moment from MP2/6-31G * calculations, while other topological terms were taken from GROMOS53A6 force field. Afterwards, liquid physicochemical properties were simulated for a calibration set composed by nearly 40 molecules and compared to their respective experimental data, in order to validate each topology. Based on the reliance of the employed strategy, we expanded the dataset to more than 100 aromatic rings. Properties in aqueous solution such as solvent accessible surface area, H-bonds availability, H-bonds residence time, and water structure around heteroatoms were calculated for each ring, creating a database of potential interactions, shedding light on features of drugs in biological solutions, on the structural basis for bioisosterism and on the enthalpic/entropic costs for ligand-receptor complexation dynamics.
He, Guochun; Zhao, Bin; Denison, Michael S
2011-08-01
Leachate from rubber tire material contains a complex mixture of chemicals previously shown to produce toxic and biological effects in aquatic organisms. The ability of these leachates to induce Ah receptor (AhR)-dependent cytochrome P4501A1 expression in fish indicated the presence of AhR active chemicals, but the responsible chemicals and their direct interaction with the AhR signaling pathway were not examined. Using a combination of AhR-based bioassays, we have demonstrated the ability of tire extract to stimulate both AhR DNA binding and AhR-dependent gene expression and confirmed that the responsible chemicals were metabolically labile. The application of CALUX (chemical-activated luciferase gene expression) cell bioassay-driven toxicant identification evaluation not only revealed that tire extract contained a variety of known AhR-active polycyclic aromatic hydrocarbons but also identified 2-methylthiobenzothiazole and 2-mercaptobenzothiazole as AhR agonists. Analysis of a structurally diverse series of benzothiazoles identified many that could directly stimulate AhR DNA binding and transiently activate the AhR signaling pathway and identified benzothiazoles as a new class of AhR agonists. In addition to these compounds, the relatively high AhR agonist activity of a large number of fractions strongly suggests that tire extract contains a large number of physiochemically diverse AhR agonists whose identities and toxicological/biological significances are unknown. Copyright © 2011 SETAC.
He, Guochun; Zhao, Bin; Denison, Michael S.
2012-01-01
Leachate from rubber tire material contains a complex mixture of chemicals previously shown to produce toxic and biological effects in aquatic organisms. While the ability of these leachates to induce Ah receptor (AhR)-dependent cytochrome P4501A1 expression in fish indicated the presence of AhR active chemicals, the responsible chemical(s) and their direct interaction with the AhR signaling pathway were not examined. Using a combination of AhR-based bioassays, we have demonstrated the ability of tire extract to stimulate both AhR DNA binding and AhR-dependent gene expression and confirmed that the responsible chemical(s) was metabolically labile. The application of CALUX (Chemical-Activated LUciferase gene eXpression) cell bioassay-driven toxicant identification evaluation not only revealed that tire extract contained a variety of known AhR-active polycyclic aromatic hydrocarbons, but also identified 2-methylthiobenzothiazole and 2-mercaptobenzothiazole as AhR agonists. Analysis of a structurally diverse series of benzothiazoles identified many that could directly stimulate AhR DNA binding and transiently activate the AhR signaling pathway and identified benzothiazoles as a new class of AhR agonists. In addition to these compounds, the relatively high AhR agonist activity of a large number of fractions strongly suggests that tire extract contains a large number of physiochemically diverse AhR agonists whose identities and toxicological/biological significances are unknown. PMID:21590714
Jackson, Michael R; Beahm, Robert; Duvvuru, Suman; Narasimhan, Chandrasegara; Wu, Jun; Wang, Hsin-Neng; Philip, Vivek M; Hinde, Robert J; Howell, Elizabeth E
2007-07-19
Noncovalent interactions are quite important in biological structure-function relationships. To study the pairwise interaction of aromatic amino acids (phenylalanine, tyrosine, tryptophan) with anionic amino acids (aspartic and glutamic acids), small molecule mimics (benzene, phenol or indole interacting with formate) were used at the MP2 level of theory. The overall energy associated with an anion-quadrupole interaction is substantial (-9.5 kcal/mol for a benzene-formate planar dimer at van der Waals contact distance), indicating the electropositive ring edge of an aromatic group can interact with an anion. Deconvolution of the long-range coplanar interaction energy into fractional contributions from charge-quadrupole interactions, higher-order electrostatic interactions, and polarization terms was achieved. The charge-quadrupole term contributes between 30 to 45% of the total MP2 benzene-formate interaction; most of the rest of the interaction arises from polarization contributions. Additional studies of the Protein Data Bank (PDB Select) show that nearly planar aromatic-anionic amino acid pairs occur more often than expected from a random angular distribution, while axial aromatic-anionic pairs occur less often than expected; this demonstrates the biological relevance of the anion-quadrupole interaction. While water may mitigate the strength of these interactions, they may be numerous in a typical protein structure, so their cumulative effect could be substantial.
A phenylalanine rotameric switch for signal-state control in bacterial chemoreceptors
NASA Astrophysics Data System (ADS)
Ortega, Davi R.; Yang, Chen; Ames, Peter; Baudry, Jerome; Parkinson, John S.; Zhulin, Igor B.
2013-12-01
Bacterial chemoreceptors are widely used as a model system for elucidating the molecular mechanisms of transmembrane signalling and have provided a detailed understanding of how ligand binding by the receptor modulates the activity of its associated kinase CheA. However, the mechanisms by which conformational signals move between signalling elements within a receptor dimer and how they control kinase activity remain unknown. Here, using long molecular dynamics simulations, we show that the kinase-activating cytoplasmic tip of the chemoreceptor fluctuates between two stable conformations in a signal-dependent manner. A highly conserved residue, Phe396, appears to serve as the conformational switch, because flipping of the stacked aromatic rings of an interacting F396-F396‧ pair in the receptor homodimer takes place concomitantly with the signal-related conformational changes. We suggest that interacting aromatic residues, which are common stabilizers of protein tertiary structure, might serve as rotameric molecular switches in other biological processes as well.
Salve, Preeti S; Alegaon, Shankar G; Sriram, Dharmarajan
2017-04-15
An efficient three-component, one-pot protocol is described for the synthesis of biologically interesting 2-(benzylideneamino)-N-(7-chloroquinolin-4-yl)benzohydrazide derivatives from isatoic anhydride, 7-chloro-4-hydrazinylquinoline and aromatic and/or hetero aromatic aldehydes under catalyst free condensation by using water as reaction media. All synthesized compounds were evaluated for their antimycobacterial activity against Mycobacterium tuberculosis (MTB) and cytotoxicity activity against normal VERO cell lines. The synthesized compounds exhibited minimum inhibitory concentration (MIC) ranging from 0.78 to 25μM. Among the tested compounds 4c, 4o, 4r, and 4u exhibited promising inhibitory activity (MIC=3.12μM). Compounds 4h and 4i stand out, showing MIC values of 0.78 and 1.56μM respectively. Both compounds were further screened for their Mycobacterium tuberculosis DNA gyrase inhibitory assay which suggested that these compounds have a great potential for further optimization and development as antitubercular agents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Trofimova, E S; Zykova, M V; Ligacheva, A A; Sherstoboev, E Yu; Zhdanov, V V; Belousov, M V; Yusubov, M S; Krivoshchekov, S V; Danilets, M G; Dygai, A M
2016-09-01
A screening study of biological activity of native humic acids isolated from peat was performed; several physical and chemical parameters of their structures were studied by UV- and infrared spectroscopy. Spectroscopy yielded similar shape of light absorption curves of humic acids of different origin, which can reflect similarity of general structural principles of these substances. Alkaline humic acids have more developed system of polyconjugation, while molecular structures of pyrophosphate humic acids were characterized by higher aromaticity and condensation indexes. Biological activity of the studied humic acids was assessed by NO-stimulating capacity during their culturing with murine peritoneal macrophages in a wide concentration range. It was shown that due to dose-dependent enhancement of NO production humic acids can change the functional state of macrophages towards development of pro-inflammatory properties. These changes were associated with high activity of humic acids isolated by pyrophosphate extraction, which allows considering effects of isolation method on biological activity.
1986-01-01
biological activity. Pullman, in 1945 , noted that active compounds contained angular benzo rings. She introduced the terminology "K- region" to refer to...Figure 1.6) give .... ~~~~~. .. .. .. . ........ . _............ . _.-.•.-•.. . ..... ... ,. 12 .xcellent correlation when measured reactivity ( hydrolysis ...molecular plane, the diol epoxide is trans or series 2. Early studies indicated that isomer 1 is the more reactive diol epoxide in hydrolysis reactions
Pintori, Didier G; Greaney, Michael F
2010-01-01
Insertion of benzene rings into the amide bond using the reactive intermediate benzyne is described. Aromatic amides undergo smooth insertion when treated with O-triflatophenyl silane benzyne precursors, producing versatile aminobenzophenone products in good to excellent yield. The process is entirely metal-free and has been exemplified on the synthesis of biologically active acridones and acridines.
Akocak, Suleyman; Lolak, Nabih; Nocentini, Alessio; Karakoc, Gulcin; Tufan, Anzel; Supuran, Claudiu T
2017-06-15
A series of sixteen novel aromatic and heterocyclic bis-sulfonamide Schiff bases were prepared by conjugation of well known aromatic and heterocyclic aminosulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitor pharmacophores with aromatic and heterocyclic bis-aldehydes. The obtained bis-sulfonamide Schiff bases were investigated as inhibitors of four selected human (h) CA isoforms, hCA I, hCA II, hCA VII and hCA IX. Most of the newly synthesized compounds showed a good inhibitory profile against isoforms hCA II and hCA IX, also showing moderate selectivity against hCA I and VII. Several efficient lead compounds were identified among this bis-sulfonamide Schiff bases with low nanomolar to sub-nanomolar activity against hCA II (K i s ranging between 0.4 and 861.1nM) and IX (K i s between 0.5 and 933.6nM). Since hCA II and hCA IX are important drug targets (antiglaucoma and anti-tumor agents), these isoform-selective inhibitors may be considered of interest for various biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Metal complexes as DNA intercalators.
Liu, Hong-Ke; Sadler, Peter J
2011-05-17
DNA has a strong affinity for many heterocyclic aromatic dyes, such as acridine and its derivatives. Lerman in 1961 first proposed intercalation as the source of this affinity, and this mode of DNA binding has since attracted considerable research scrutiny. Organic intercalators can inhibit nucleic acid synthesis in vivo, and they are now common anticancer drugs in clinical therapy. The covalent attachment of organic intercalators to transition metal coordination complexes, yielding metallointercalators, can lead to novel DNA interactions that influence biological activity. Metal complexes with σ-bonded aromatic side arms can act as dual-function complexes: they bind to DNA both by metal coordination and through intercalation of the attached aromatic ligand. These aromatic side arms introduce new modes of DNA binding, involving mutual interactions of functional groups held in close proximity. The biological activity of both cis- and trans-diamine Pt(II) complexes is dramatically enhanced by the addition of σ-bonded intercalators. We have explored a new class of organometallic "piano-stool" Ru(II) and Os(II) arene anticancer complexes of the type [(η(6)-arene)Ru/Os(XY)Cl](+). Here XY is, for example, ethylenediamine (en), and the arene ligand can take many forms, including tetrahydroanthracene, biphenyl, or p-cymene. Arene-nucleobase stacking interactions can have a significant influence on both the kinetics and thermodynamics of DNA binding. In particular, the cytotoxic activity, conformational distortions, recognition by DNA-binding proteins, and repair mechanisms are dependent on the arene. A major difficulty in developing anticancer drugs is cross-resistance, a phenomenon whereby a cell that is resistant to one drug is also resistant to another drug in the same class. These new complexes are non-cross-resistant with cisplatin towards cancer cells: they constitute a new class of anticancer agents, with a mechanism of action that differs from the anticancer drug cisplatin and its analogs. The Ru-arene complexes with dual functions are more potent towards cancer cells than their nonintercalating analogs. In this Account, we focus on recent studies of dual-function organometallic Ru(II)- and Os(II)-arene complexes and the methods used to detect arene-DNA intercalation. We relate these interactions to the mechanism of anticancer activity and to structure-activity relationships. The interactions between these complexes and DNA show close similarities to those of covalent polycyclic aromatic carcinogens, especially to N7-alkylating intercalation compounds. However, Ru-arene complexes exhibit some new features. Classical intercalation and base extrusion next to the metallated base is observed for {(η(6)-biphenyl)Ru(ethylenediamine)}(2+) adducts of a 14-mer duplex, while penetrating arene intercalation occurs for adducts of the nonaromatic bulky intercalator {(η(6)-tetrahydroanthracene)Ru(ethylenediamine)}(2+) with a 6-mer duplex. The introduction of dual-function Ru-arene complexes introduces new mechanisms of antitumor activity, novel mechanisms for attack on DNA, and new concepts for developing structure- activity relationships. We hope this discussion will stimulate thoughtful and focused research on the design of anticancer chemotherapeutic agents using these unique approaches.
NASA Astrophysics Data System (ADS)
Batukaev, Abdulmalik; Sushkova, Svetlana; Minkina, Tatiana; Antonenko, Elena; Salamova, Anzhelika; Gimp, Alina; Deryabkina, Irina
2017-04-01
Polycyclic aromatic hydrocarbons (PAHs) are one of the most significant environmental contaminants with mutagenic and carcinogenic properties to all living organisms. The changes in microbial community structure in technogenic polluted soil may be used as tools for predicting and monitoring natural degradation and for search the most effective and appropriate pathways of bioremediation. The present study is aimed to research the biological activity of the soil in the emission zone of Novocherkassk Power station (NPs) (Russia) polluted by PAHs in 2015. The NPs is one of the largest thermal power stations in the south of Russia burning low-quality coal appurtenant the enterprises of I hazardous class. Monitoring plots were located on virgin or no-till fallow areas and not subject to the sanitary-protection zone of the NPs. Soil samples were taken from a depth of 0- to 20-cm, because the major part of PAHs are accumulated in the surface soil layer. The soils of the plots mainly include Chernozems Calcic (plots 1, 4, 5, 7, 9 and 10), Phaeozems Haplic (plots 3, 6, 8 and 11) Fluvisols Umbric (plots 2 and 12). In the soil of 12 monitoring plots located around NPs there were determined the main enzymes, abundance of soil bacteria and 17 priority PAHs. PAHs extraction from soil was performed by new developed ecologically clean method of subcritical water extraction without organic solvents (Sushkova et al., 2015). The level of PAHs around NPs is high at the nearest to factory monitoring plots situated at distance 1,0-1,2 km and reaches from 1600,1±14,7 up to 373,6±7,1 mkg/kg in the 20-cm soil layer. Gradually decrease of PAHs contamination is observed while increasing the distance from the NPs. The level of highmolecular PAHs (4-6 aromatic rings) exceeds the level of lowmolecular (2-3 aromatic rings) PAHs in all monitoring plots situated though the prevailing wind direction from NPs. The close correlations were found between PAHs content and biological activity parameters in the monitoring plots situated through the prevailing wind direction from NPs. Level of dehydrogenases has high positive correlation with technogenic accumulated biphenyl, acenaphthene and negative correlation with anthracene content in studied soil. The lowmolecular PAHs content of soil influenced activity of dehydrogenases positively. Urease activity of monitoring plots has a high positive correlation with 12 PAHs exclude biphenyl, benzo(a)anthracene, naphthalene. Negative dependence of urease activity was observed for lowmolecular PAHs. The abundance of soil bacteria has a negative correlation with PAHs level. Anthracene has no correlations with abundance of soil bacteria and negatively influences on dehydrogenase, urease. Thus, the most subjected to technogenic pollution in 2015 were monitoring plots situated through the prevailing wind direction from NPs. It was established that ratio of low- and highmolecular PAHs content in soils of monitoring plots is the indicator of technogenic pollution soils. Contamination by PAHs in the affected zone has negative influence at the abundance of soil bacteria. The most number of PAHs has positive correlation with biological activity parameters of soil. This work was supported by grant of the Russian Scientific Foundation № 16-14-10217.
McDonald, Sarah K; Fleming, Karen G
2016-06-29
Quantitating and understanding the physical forces responsible for the interactions of biomolecules are fundamental to the biological sciences. This is especially challenging for membrane proteins because they are embedded within cellular bilayers that provide a unique medium in which hydrophobic sequences must fold. Knowledge of the energetics of protein-lipid interactions is thus vital to understand cellular processes involving membrane proteins. Here we used a host-guest mutational strategy to calculate the Gibbs free energy changes of water-to-lipid transfer for the aromatic side chains Trp, Tyr, and Phe as a function of depth in the membrane. This work reveals an energetic gradient in the transfer free energies for Trp and Tyr, where transfer was most favorable to the membrane interfacial region and comparatively less favorable into the bilayer center. The transfer energetics follows the concentration gradient of polar atoms across the bilayer normal that naturally occurs in biological membranes. Additional measurements revealed nearest-neighbor coupling in the data set are influenced by a network of aromatic side chains in the host protein. Taken together, these results show that aromatic side chains contribute significantly to membrane protein stability through either aromatic-aromatic interactions or placement at the membrane interface.
Applications of Carboxylic Acid Reductases in Oleaginous Microbes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resch, Michael G.; Linger, Jeffrey; McGeehan, John
2016-05-26
Carboxylic acid reductases (CARs) are recently emerging reductive enzymes for the direct production of aldehydes from biologically-produced carboxylic acids. Recent work has demonstrated that these powerful enzymes are able to reduce a very broad range of volatile- to long-chain fatty acids as well as aromatic acids. Here, we express four CAR enzymes from different fungal origins to test their activity against fatty acids commonly produced in oleaginous microbes. These in vitro results will inform metabolic engineering strategies to conduct mild biological reduction of carboxylic acids in situ, which is conventionally done via hydrotreating catalysis at high temperatures and hydrogen pressures.
Wei, Chao; Wang, Runyu; Wei, Lv; Cheng, Longhuai; Li, Zhifei; Xi, Zhen; Yi, Long
2014-12-01
Hydrogen sulfide (H2S) is an endogenously produced gaseous signaling molecule with multiple biological functions. To visualize the endogenous in situ production of H2S in real time, new coumarin- and boron-dipyrromethene-based fluorescent turn-on probes were developed for fast sensing of H2S in aqueous buffer and in living cells. Introduction of a fluoro group in the ortho position of the aromatic azide can lead to a greater than twofold increase in the rate of reaction with H2S. On the basis of o-fluorinated aromatic azides, fluorescent probes with high sensitivity and selectivity toward H2S over other biologically relevant species were designed and synthesized. The probes can be used to in situ to visualize exogenous H2S and D-cysteine-dependent endogenously produced H2S in living cells, which makes them promising tools for potential applications in H2S biology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wierzba, Waldemar; Radowicki, Stanisław; Bojar, Iwona; Pinkas, Jarosław
2018-03-14
Phenol and 1-hydroxypyrene are biological markers of exposure to polycyclic aromatic hydrocarbons (PAH) that have certain negative effects on parenchymal organs such as the human placenta. The literature presents only few reports regarding the effects of elevated PAH levels on the functions of the human placenta. The aim of the work is to assess the effects of elevated PAH levels in excreted urine on the endocrine and metabolic functions of the human placenta obtained from a normal pregnancy. Tissue material from 50 afterbirths from Płock constituted a study group, whereas 50 afterbirths from Kutno constituted a control group. Immunohistochemical reactions with the peroxidase method using LSAB kits (DAKO, Denmark) were performed. The extent and intensity of reactions were analysed. The levels of phenols and 1-hydroxypyrene in the excreted urine of pregnant women (undergoing delivery) were detected using gas chromatography and colorimetry. The statistical analysis used the PQStat v.1.6.2 software; moreover, t-student and chi-square tests were used. Differences were considered to be significant at the significance level of 95% (p<0.05). The levels of phenol and 1-hydroxypyrene in the excreted urine were demonstrated to be statistically significantly higher in patients living in the area of Płock. Statistically lower expression of placental glutathione transferase and lower immunohistochemical demonstration of the placental phosphatase activity were observed in placentas from Płock. It has been demonstrated that the expression of the oestrogen receptor activity and placental gonadotropin is significantly higher in placentas from areas not contaminated with aromatic hydrocarbons (Kutno). The course of pregnancy in the environment with elevated levels of aromatic hydrocarbons leads to impaired placental functioning and reduced endocrine and metabolic activity of the placenta.
Aromatic thiol-mediated cleavage of N-O bonds enables chemical ubiquitylation of folded proteins
NASA Astrophysics Data System (ADS)
Weller, Caroline E.; Dhall, Abhinav; Ding, Feizhi; Linares, Edlaine; Whedon, Samuel D.; Senger, Nicholas A.; Tyson, Elizabeth L.; Bagert, John D.; Li, Xiaosong; Augusto, Ohara; Chatterjee, Champak
2016-09-01
Access to protein substrates homogenously modified by ubiquitin (Ub) is critical for biophysical and biochemical investigations aimed at deconvoluting the myriad biological roles for Ub. Current chemical strategies for protein ubiquitylation, however, employ temporary ligation auxiliaries that are removed under harsh denaturing conditions and have limited applicability. We report an unprecedented aromatic thiol-mediated N-O bond cleavage and its application towards native chemical ubiquitylation with the ligation auxiliary 2-aminooxyethanethiol. Our interrogation of the reaction mechanism suggests a disulfide radical anion as the active species capable of cleaving the N-O bond. The successful semisynthesis of full-length histone H2B modified by the small ubiquitin-like modifier-3 (SUMO-3) protein further demonstrates the generalizability and compatibility of our strategy with folded proteins.
Ghosh, Puja; Roychoudhury, Aryadeep
2018-01-01
Accounting for aroma production in different aromatic indica rice varieties based on variations in the levels of concerned metabolites and enzymes is poorly explored. The present investigation was, therefore, focused on unraveling the differential levels of metabolites and activities of enzymes related to aroma formation in eleven indigenous aromatic rice varieties, as compared with four non-aromatic varieties. The levels of metabolites such as proline (Pro) and Δ 1 -pyrroline-5-carboxylate (P5C), and the activity of related enzymes such as proline dehydrogenase (PDH), Δ 1 -pyrroline-5-carboxylate synthetase (P5CS), and ornithine aminotransferase (OAT) were comparatively higher in the aromatic varieties, with Kalonunia and Tulaipanji registering the highest Pro, Kalonunia the highest P5C content, Gobindobhog with the highest PDH activity, Gobindobhog and Tulaipanji with the highest P5CS, and Pusa Basmati-1 with the highest OAT activity. The levels of putrescine (Put) and γ-aminobutyric acid (GABA) were comparatively lower in aromatic varieties, with concomitant higher diamine oxidase (DAO) activity, especially in the varieties Gobindobhog and Tulaipanji. The betaine-aldehyde dehydrogenase 2 (BADH2) enzyme activity was remarkably lesser in aromatic varieties, especially Radhunipagal and Gobindobhog. Though the metabolites such as glycine-betaine and higher polyamines such as spermidine and spermine showed no specific trend with respect to their quantitative level in either aromatic or non-aromatic varieties, they were notably lower in the aromatic varieties such as Gobindobhog, Kalonunia, and Tulaipanji, indicating a possibility of their involvement in aroma formation. Therefore, the levels of metabolites such as Pro, P5C and methylglyoxal (MG), and the activity of enzymes such as PDH, P5CS, OAT, and DAO were comparatively higher in the aromatic rice varieties than the non-aromatic ones, whereas the levels of Put, GABA, and BADH2 were lower. Overall, the present study showed that there exist variations in the accumulations of such metabolites as well as differential activity of enzymes controlling their production, which altogether regulate generation of aroma in aromatic varieties.
2011-01-01
Aromatic amines and heterocyclic aromatic amines (HAAs) are structurally related classes of carcinogens that are formed during the combustion of tobacco or during the high-temperature cooking of meats. Both classes of procarcinogens undergo metabolic activation by N-hydroxylation of the exocyclic amine group, to produce a common proposed intermediate, the arylnitrenium ion, which is the critical metabolite implicated in toxicity and DNA damage. However, the biochemistry and chemical properties of these compounds are distinct and different biomarkers of aromatic amines and HAAs have been developed for human biomonitoring studies. Hemoglobin adducts have been extensively used as biomarkers to monitor occupational and environmental exposures to a number of aromatic amines; however, HAAs do not form hemoglobin adducts at appreciable levels and other biomarkers have been sought. A number of epidemiologic studies that have investigated dietary consumption of well-done meat in relation to various tumor sites reported a positive association between cancer risk and well-done meat consumption, although some studies have shown no associations between well-done meat and cancer risk. A major limiting factor in most epidemiological studies is the uncertainty in quantitative estimates of chronic exposure to HAAs and, thus, the association of HAAs formed in cooked meat and cancer risk has been difficult to establish. There is a critical need to establish long-term biomarkers of HAAs that can be implemented in molecular epidemioIogy studies. In this review article, we highlight and contrast the biochemistry of several prototypical carcinogenic aromatic amines and HAAs to which humans are chronically exposed. The biochemical properties and the impact of polymorphisms of the major xenobiotic-metabolizing enzymes on the biological effects of these chemicals are examined. Lastly, the analytical approaches that have been successfully employed to biomonitor aromatic amines and HAAs, and emerging biomarkers of HAAs that may be implemented in molecular epidemiology studies are discussed. PMID:21688801
The roles and relative importance of nonpyrogenic organic carbon (NPOC) and black carbon (BC) as binding phases of polycyclic aromatic hydrocarbons (PAHs) were assessed by their ability to estimate pore water concentrations and biological uptake in various marine sediments. Sedim...
NASA Astrophysics Data System (ADS)
Soriano-Correa, Catalina; Raya, Angélica; Barrientos-Salcedo, Carolina; Esquivel, Rodolfo O.
2014-06-01
Activity of steroid hormones is dependent upon a number of factors, as solubility, transport and metabolism. The functional differences caused by structural modifications could exert an influence on the chemical reactivity and biological effect. The goal of this work is to study the influence of the physicochemical and aromatic properties on the chemical reactivity and its relation with the carcinogenic risk that can associate with the anticoagulant effect of 17β-aminoestrogens using quantum-chemical descriptors at the DFT-B3LYP, BH&HLYP and M06-2X levels. The relative acidity of (H1) of the hydroxyl group increases with electron-withdrawing groups. Electron-donor groups favor the basicity. The steric hindrance of the substituents decreases the aromatic character and consequently diminution the carcinogenic effect. Density descriptors: hardness, electrophilic index, atomic charges, molecular orbitals, electrostatic potential and their geometric parameters permit analyses of the chemical reactivity and physicochemical features and to identify some reactive sites of 17β-aminoestrogens.
Precise through-space control of an abiotic electrophilic aromatic substitution reaction
NASA Astrophysics Data System (ADS)
Murphy, Kyle E.; Bocanegra, Jessica L.; Liu, Xiaoxi; Chau, H.-Y. Katharine; Lee, Patrick C.; Li, Jianing; Schneebeli, Severin T.
2017-04-01
Nature has evolved selective enzymes for the efficient biosynthesis of complex products. This exceptional ability stems from adapted enzymatic pockets, which geometrically constrain reactants and stabilize specific reactive intermediates by placing electron-donating/accepting residues nearby. Here we perform an abiotic electrophilic aromatic substitution reaction, which is directed precisely through space. Ester arms--positioned above the planes of aromatic rings--enable it to distinguish between nearly identical, neighbouring reactive positions. Quantum mechanical calculations show that, in two competing reaction pathways, both [C-H...O]-hydrogen bonding and electrophile preorganization by coordination to a carbonyl group likely play a role in controlling the reaction. These through-space-directed mechanisms are inspired by dimethylallyl tryptophan synthases, which direct biological electrophilic aromatic substitutions by preorganizing dimethylallyl cations and by stabilizing reactive intermediates with [C-H...N]-hydrogen bonding. Our results demonstrate how the third dimension above and underneath aromatic rings can be exploited to precisely control electrophilic aromatic substitutions.
Polybenzimidazole via aromatic nucleophilic displacement
NASA Technical Reports Server (NTRS)
Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Joseph G. (Inventor)
1994-01-01
Di(hydroxyphenyl)benzimidazole monomers were prepared from phenyl-4-hydroxybenzoate and aromatic bis(o-diamine)s. These monomers were used in the synthesis of soluble polybenzimidazoles. The reaction involved the aromatic nucleophilic displacement of various di(hydroxyphenyl)benzimidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds in the presence of an alkali metal base. These polymers exhibited lower glass transition temperatures, improved solubility, and better compression moldability over their commercial counterparts.
Total synthesis of the Daphniphyllum alkaloid daphenylline
NASA Astrophysics Data System (ADS)
Lu, Zhaoyong; Li, Yong; Deng, Jun; Li, Ang
2013-08-01
The Daphniphyllum alkaloids are a large class of natural products isolated from a genus of evergreen plants widely used in Chinese herbal medicine. They display a remarkable range of biological activities, including anticancer, antioxidant, and vasorelaxation properties as well as elevation of nerve growth factor. Daphenylline is a structurally unique member among the predominately aliphatic Daphniphyllum alkaloids, and contains a tetrasubstituted arene moiety mounted on a sterically compact hexacyclic scaffold. Herein, we describe the first total synthesis of daphenylline. A gold-catalysed 6-exo-dig cyclization reaction and a subsequent intramolecular Michael addition reaction, inspired by Dixon's seminal work, were exploited to construct the bridged 6,6,5-tricyclic motif of the natural product at an early stage, and the aromatic moiety was forged through a photoinduced olefin isomerization/6π-electrocyclization cascade followed by an oxidative aromatization process.
Designed β-Boomerang Antiendotoxic and Antimicrobial Peptides
Bhunia, Anirban; Mohanram, Harini; Domadia, Prerna N.; Torres, Jaume; Bhattacharjya, Surajit
2009-01-01
Lipopolysaccharide (LPS), an integral part of the outer membrane of Gram-negative bacteria, is involved in a variety of biological processes including inflammation, septic shock, and resistance to host-defense molecules. LPS also provides an environment for folding of outer membrane proteins. In this work, we describe the structure-activity correlation of a series of 12-residue peptides in LPS. NMR structures of the peptides derived in complex with LPS reveal boomerang-like β-strand conformations that are stabilized by intimate packing between the two aromatic residues located at the 4 and 9 positions. This structural feature renders these peptides with a high ability to neutralize endotoxicity, >80% at 10 nm concentration, of LPS. Replacements of these aromatic residues either with Ala or with Leu destabilizes the boomerang structure with the concomitant loss of antiendotoxic and antimicrobial activities. Furthermore, the aromatic packing stabilizing the β-boomerang structure in LPS is found to be maintained even in a truncated octapeptide, defining a structured LPS binding motif. The mode of action of the active designed peptides correlates well with their ability to perturb LPS micelle structures. Fourier transform infrared spectroscopy studies of the peptides delineate β-type conformations and immobilization of phosphate head groups of LPS. Trp fluorescence studies demonstrated selective interactions with LPS and the depth of insertion into the LPS bilayer. Our results demonstrate the requirement of LPS-specific structures of peptides for endotoxin neutralizations. In addition, we propose that structures of these peptides may be employed to design proteins for the outer membrane. PMID:19520860
Enhanced bioavailability of polyaromatic hydrocarbons in the form of mucin complexes.
Drug, Eyal; Landesman-Milo, Dalit; Belgorodsky, Bogdan; Ermakov, Natalia; Frenkel-Pinter, Moran; Fadeev, Ludmila; Peer, Dan; Gozin, Michael
2011-03-21
Increasing exposure of biological systems to large amounts of polycyclic aromatic hydrocarbons is of great public concern. Organisms have an array of biological defense mechanisms, and it is believed that mucosal gel (which covers the respiratory system, the gastrointestinal tract, etc.) provides an effective chemical shield against a range of toxic materials. However, in this work, we demonstrate, for the first time, that, upon complexation of polyaromatic hydrocarbons with mucins, enhanced bioavailability and, therefore, toxicity are obtained. This work was aimed to demonstrate how complexation of various highly hydrophobic polycyclic aromatic hydrocarbons with representative mucin glycoprotein could lead to the formation of previously undescribed materials, which exhibit increased toxicity versus pristine polycyclic aromatic hydrocarbons. In the present work, we show that a representative mucin glycoprotein, bovine submaxillary mucin, has impressive and unprecedented capabilities of binding and solubilizing water-insoluble materials in physiological solution. The complexes formed between the mucin and a series of polycyclic aromatic hydrocarbons were comprehensively characterized, and their toxicity was evaluated by both in vivo and in vitro assays. In addition, the bioavailability and membrane-penetration capabilities were tested using an internalization assay. Our results provide, for the first time, evidence of an unknown route by which hydrophobic materials may achieve higher bioavailability, penetrating some of the biological defense systems, in the form of water-soluble complexes with mucosal proteins.
Bhunia, Anirban; Mohanram, Harini; Domadia, Prerna N; Torres, Jaume; Bhattacharjya, Surajit
2009-08-14
Lipopolysaccharide (LPS), an integral part of the outer membrane of Gram-negative bacteria, is involved in a variety of biological processes including inflammation, septic shock, and resistance to host-defense molecules. LPS also provides an environment for folding of outer membrane proteins. In this work, we describe the structure-activity correlation of a series of 12-residue peptides in LPS. NMR structures of the peptides derived in complex with LPS reveal boomerang-like beta-strand conformations that are stabilized by intimate packing between the two aromatic residues located at the 4 and 9 positions. This structural feature renders these peptides with a high ability to neutralize endotoxicity, >80% at 10 nM concentration, of LPS. Replacements of these aromatic residues either with Ala or with Leu destabilizes the boomerang structure with the concomitant loss of antiendotoxic and antimicrobial activities. Furthermore, the aromatic packing stabilizing the beta-boomerang structure in LPS is found to be maintained even in a truncated octapeptide, defining a structured LPS binding motif. The mode of action of the active designed peptides correlates well with their ability to perturb LPS micelle structures. Fourier transform infrared spectroscopy studies of the peptides delineate beta-type conformations and immobilization of phosphate head groups of LPS. Trp fluorescence studies demonstrated selective interactions with LPS and the depth of insertion into the LPS bilayer. Our results demonstrate the requirement of LPS-specific structures of peptides for endotoxin neutralizations. In addition, we propose that structures of these peptides may be employed to design proteins for the outer membrane.
Opportunities and challenges in biological lignin valorization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckham, Gregg T.; Johnson, Christopher W.; Karp, Eric M.
Lignin is a primary component of lignocellulosic biomass that is an underutilized feedstock in the growing biofuels industry. Despite the fact that lignin depolymerization has long been studied, the intrinsic heterogeneity of lignin typically leads to heterogeneous streams of aromatic compounds, which in turn present significant technical challenges when attempting to produce lignin-derived chemicals where purity is often a concern. In Nature, microorganisms often encounter this same problem during biomass turnover wherein powerful oxidative enzymes produce heterogeneous slates of aromatics compounds. Some microbes have evolved metabolic pathways to convert these aromatic species via ‘upper pathways’ into central intermediates, which canmore » then be funneled through ‘lower pathways’ into central carbon metabolism in a process we dubbed ‘biological funneling’. This funneling approach offers a direct, biological solution to overcome heterogeneity problems in lignin valorization for the modern biorefinery. Coupled to targeted separations and downstream chemical catalysis, this concept offers the ability to produce a wide range of molecules from lignin. This perspective describes research opportunities and challenges ahead for this new field of research, which holds significant promise towards a biorefinery concept wherein polysaccharides and lignin are treated as equally valuable feedstocks. In particular, we discuss tailoring the lignin substrate for microbial utilization, host selection for biological funneling, ligninolytic enzyme–microbe synergy, metabolic engineering, expanding substrate specificity for biological funneling, and process integration, each of which presents key challenges. Ultimately, for biological solutions to lignin valorization to be viable, multiple questions in each of these areas will need to be addressed, making biological lignin valorization a multidisciplinary, co-design problem.« less
Clayton, J.L.; King, J.D.
1987-01-01
GC-MS analyses were performed on core samples collected from a shale outcrop of the Permian Phosphoria Formation in Utah, U.S.A., to study effects of weathering on selected biological marker and aromatic (phenanthrene) hydrocarbon compounds. Among the biological markers, the most important weathering effects are a decrease in the 20S 20R diastereomer ratio of the C29 steranes and loss of low molecular weight triaromatic steroids. A decrease in the C19 through C22 tricylcic terpanes occurs relative to the total C19-C26 tricyclic fraction. Pronounced loss of methyl-substituted phenanthrenes occurs relative to phenanthrene. No major effect on the overall distribution of pentacyclic terpanes is evident. ?? 1987.
Mäkelä, Miia R; Marinović, Mila; Nousiainen, Paula; Liwanag, April J M; Benoit, Isabelle; Sipilä, Jussi; Hatakka, Annele; de Vries, Ronald P; Hildén, Kristiina S
2015-01-01
The biological conversion of plant lignocellulose plays an essential role not only in carbon cycling in terrestrial ecosystems but also is an important part of the production of second generation biofuels and biochemicals. The presence of the recalcitrant aromatic polymer lignin is one of the major obstacles in the biofuel/biochemical production process and therefore microbial degradation of lignin is receiving a great deal of attention. Fungi are the main degraders of plant biomass, and in particular the basidiomycete white rot fungi are of major importance in converting plant aromatics due to their ability to degrade lignin. However, the aromatic monomers that are released from lignin and other aromatic compounds of plant biomass are toxic for most fungi already at low levels, and therefore conversion of these compounds to less toxic metabolites is essential for fungi. Although the release of aromatic compounds from plant biomass by fungi has been studied extensively, relatively little attention has been given to the metabolic pathways that convert the resulting aromatic monomers. In this review we provide an overview of the aromatic components of plant biomass, and their release and conversion by fungi. Finally, we will summarize the applications of fungal systems related to plant aromatics. Copyright © 2015 Elsevier Inc. All rights reserved.
Evstigneev, M P; Mosunov, A A; Evstigneev, V P; Parkes, H G; Davies, D B
2011-08-01
Using published in vitro data on the dependence of the percentage of apoptosis induced by the anti-cancer drug topotecan in a leukaemia cell line on the concentration of added caffeine, and a general model of competitive binding in a system containing two aromatic drugs and DNA, it has been shown to be possible to quantify the relative change in the biological effect just using a set of component concentrations and equilibrium constants of the complexation of the drugs. It is also proposed that a general model of competitive binding and parameterization of that model may potentially be applied to any system of DNA-targeting aromatic drugs under in vitro conditions. The main reasons underpinning the proposal are the general feature of the complexation of aromatic drugs with DNA and their interaction in physiological media via hetero-association.
Schiff bases in medicinal chemistry: a patent review (2010-2015).
Hameed, Abdul; Al-Rashida, Mariya; Uroos, Maliha; Abid Ali, Syed; Khan, Khalid Mohammed
2017-01-01
Schiff bases are synthetically accessible and structurally diverse compounds, typically obtained by facile condensation between an aldehyde, or a ketone with primary amines. Schiff bases contain an azomethine (-C = N-) linkage that stitches together two or more biologically active aromatic/heterocyclic scaffolds to form various molecular hybrids with interesting biological properties. Schiff bases are versatile metal complexing agents and have been known to coordinate all metals to form stable metal complexes with vast therapeutic applications. Areas covered: This review aims to provide a comprehensive overview of the various patented therapeutic applications of Schiff bases and their metal complexes from 2010 to 2015. Expert opinion: Schiff bases are a popular class of compounds with interesting biological properties. Schiff bases are also versatile metal complexing ligands and have been used to coordinate almost all d-block metals as well as lanthanides. Therapeutically, Schiff bases and their metal complexes have been reported to exhibit a wide range of biological activities such as antibacterial including antimycobacterial, antifungal, antiviral, antimalarial, antiinflammatory, antioxidant, pesticidal, cytotoxic, enzyme inhibitory, and anticancer including DNA damage.
Tamilvanan, Thangaraju; Hopper, Waheeta
2014-01-01
Yersinia pestis, a Gram negative bacillus, spreads via lymphatic to lymph nodes and to all organs through the bloodstream, causing plague. Yersinia outer protein H (YopH) is one of the important effector proteins, which paralyzes lymphocytes and macrophages by dephosphorylating critical tyrosine kinases and signal transduction molecules. The purpose of the study is to generate a three-dimensional (3D) pharmacophore model by using diverse sets of YopH inhibitors, which would be useful for designing of potential antitoxin. In this study, we have selected 60 biologically active inhibitors of YopH to perform Ligand based pharmacophore study to elucidate the important structural features responsible for biological activity. Pharmacophore model demonstrated the importance of two acceptors, one hydrophobic and two aromatic features toward the biological activity. Based on these features, different databases were screened to identify novel compounds and these ligands were subjected for docking, ADME properties and Binding energy prediction. Post docking validation was performed using molecular dynamics simulation for selected ligands to calculate the Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuation (RMSF). The ligands, ASN03270114, Mol_252138, Mol_31073 and ZINC04237078 may act as inhibitors against YopH of Y. pestis.
Dehua, Ma; Cong, Liu; Xiaobiao, Zhu; Rui, Liu; Lujun, Chen
2016-09-01
This study investigated the changes of toxic compounds in coking wastewater with biological treatment (anaerobic reactor, anoxic reactor and aerobic-membrane bioreactor, A1/A2/O-MBR) and advanced physicochemical treatment (Fenton oxidation and activated carbon adsorption) stages. As the biological treatment stages preceding, the inhibition effect of coking wastewater on the luminescence of Vibrio qinghaiensis sp. Nov. Q67 decreased. Toxic units (TU) of coking wastewater were removed by A1/A2/O-MBR treatment process, however approximately 30 % TU remained in the biologically treated effluent. There is a tendency that fewer and fewer residual organic compounds could exert equal acute toxicity during the biological treatment stages. Activated carbon adsorption further removed toxic pollutants of biologically treated effluent but the Fenton effluent increased acute toxicity. The composition of coking wastewater during the treatment was evaluated using the three-dimensional fluorescence spectra, gas chromatography-mass spectrometry (GC-MS). The organic compounds with high polarity were the main cause of acute toxicity in the coking wastewater. Aromatic protein-like matters in the coking wastewater with low biodegradability and high toxicity contributed mostly to the remaining acute toxicity of the biologically treated effluents. Chlorine generated from the oxidation process was responsible for the acute toxicity increase after Fenton oxidation. Therefore, the incorporation of appropriate advanced physicochemical treatment process, e.g., activated carbon adsorption, should be implemented following biological treatment processes to meet the stricter discharge standards and be safer to the environment.
Distribution of polycyclic aromatic hydrocarbons in coke plant wastewater.
Burmistrz, Piotr; Burmistrz, Michał
2013-01-01
The subject of examinations presented in this paper is the distribution of polycyclic aromatic hydrocarbons (PAHs) between solid and liquid phases in samples of raw wastewater and wastewater after treatment. The content of 16 PAHs according to the US EPA was determined in the samples of coke plant wastewater from the Zdzieszowice Coke Plant, Poland. The samples contained raw wastewater, wastewater after physico-chemical treatment as well as after biological treatment. The ΣPHA16 content varied between 255.050 μg L(-1) and 311.907 μg L(-1) in raw wastewater and between 0.940 and 4.465 μg L(-1) in wastewater after full treatment. Investigation of the distribution of PAHs showed that 71-84% of these compounds is adsorbed on the surface of suspended solids and 16-29% is dissolved in water. Distribution of individual PAHs and ΣPHA16 between solid phase and liquid phase was described with the use of statistically significant, linear equations. The calculated values of the partitioning coefficient Kp changed from 0.99 to 7.90 for naphthalene in samples containing mineral-organic suspension and acenaphthylene in samples with biological activated sludge, respectively.
Polyimidazoles via aromatic nucleophilic displacement
NASA Technical Reports Server (NTRS)
Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor)
1992-01-01
Polyimidazoles (PI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl) imidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The reactions are carried out in polar aprotic solvents such as N,N-dimethyl acetamide, sulfolane, N-methylpyrrolidinone, dimethylsulfoxide, or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl) imidazole monomers are prepared by reacting an aromatic aldehyde with a dimethoxybenzil or by reacting an aromatic dialdehyde with a methoxybenzil in the presence of ammonium acetate. The di(methoxyphenyl) imidazole is subsequently treated with aqueous hydrobromic acid to give the di(hydroxphenyl) imidazole monomer. This synthetic route has provided high molecular weight PI of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the availability of a large variety of activated aromatic dihalides and dinitro compounds.
Polyimidazoles via aromatic nucleophilic displacement
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor)
1991-01-01
Polyimidazoles (Pl) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl)imidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The reactions are carried out in polar aprotic solvents such as N,N-dimethylacetamide, sulfolane, N-methylpyrroldinone, dimethylsulfoxide, or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperature under nitrogen. The di(hydroxyphenyl)imidazole monomers are prepared by reacting an aromatic aldehyde with a dimethoxybenzil or by reacting an aromatic dialdehyde with a methoxybenzil in the presence of ammonium acetate. The di(methoxyphenyl)imidazole is subsequently treated with aqueous hydrobromic acid to give the di(hydroxyphenyl)imidazole monomer. This synthetic route has provided high molecular weight Pl of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the availability of a large variety of activated aromatic dihalides and dinitro compounds.
Silva, Cynthia C.; Hayden, Helen; Sawbridge, Tim; Mele, Pauline; De Paula, Sérgio O.; Silva, Lívia C. F.; Vidigal, Pedro M. P.; Vicentini, Renato; Sousa, Maíra P.; Torres, Ana Paula R.; Santiago, Vânia M. J.; Oliveira, Valéria M.
2013-01-01
Two fosmid libraries, totaling 13,200 clones, were obtained from bioreactor sludge of petroleum refinery wastewater treatment system. The library screening based on PCR and biological activity assays revealed more than 400 positive clones for phenol degradation. From these, 100 clones were randomly selected for pyrosequencing in order to evaluate the genetic potential of the microorganisms present in wastewater treatment plant for biodegradation, focusing mainly on novel genes and pathways of phenol and aromatic compound degradation. The sequence analysis of selected clones yielded 129,635 reads at an estimated 17-fold coverage. The phylogenetic analysis showed Burkholderiales and Rhodocyclales as the most abundant orders among the selected fosmid clones. The MG-RAST analysis revealed a broad metabolic profile with important functions for wastewater treatment, including metabolism of aromatic compounds, nitrogen, sulphur and phosphorus. The predicted 2,276 proteins included phenol hydroxylases and cathecol 2,3- dioxygenases, involved in the catabolism of aromatic compounds, such as phenol, byphenol, benzoate and phenylpropanoid. The sequencing of one fosmid insert of 33 kb unraveled the gene that permitted the host, Escherichia coli EPI300, to grow in the presence of aromatic compounds. Additionally, the comparison of the whole fosmid sequence against bacterial genomes deposited in GenBank showed that about 90% of sequence showed no identity to known sequences of Proteobacteria deposited in the NCBI database. This study surveyed the functional potential of fosmid clones for aromatic compound degradation and contributed to our knowledge of the biodegradative capacity and pathways of microbial assemblages present in refinery wastewater treatment system. PMID:23637911
Elnagar, Ahmed Y; Wali, Vikram B; Sylvester, Paul W; El Sayed, Khalid A
2010-01-15
Vitamin E (VE) is a generic term that represents a family of compounds composed of various tocopherol and tocotrienol isoforms. Tocotrienols display potent anti-angiogenic and antiproliferative activities. Redox-silent tocotrienol analogues also display potent anticancer activity. The ultimate objective of this study was to develop semisynthetically C-6-modified redox-silent tocotrienol analogues with enhanced antiproliferative and anti-invasive activities as compared to their parent compound. Examples of these are carbamate and ether analogues of alpha-, gamma-, and delta-tocotrienols (1-3). Various aliphatic, olefinic, and aromatic substituents were used. Steric limitation, electrostatic, hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) properties were varied at this position and the biological activities of these derivatives were tested. Three-dimensional quantitative structure-activity relationship (3D QSAR) studies were performed using Comparative Molecular Field (CoMFA) and Comparative Molecular Similarity Indices Analyses (CoMSIA) to better understand the structural basis for biological activity and guide the future design of more potent VE analogues. Copyright 2009 Elsevier Ltd. All rights reserved.
Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants.
Gandhi, Sumit G; Mahajan, Vidushi; Bedi, Yashbir S
2015-02-01
Medicinal and aromatic plants are known to produce secondary metabolites that find uses as flavoring agents, fragrances, insecticides, dyes and drugs. Biotechnology offers several choices through which secondary metabolism in medicinal plants can be altered in innovative ways, to overproduce phytochemicals of interest, to reduce the content of toxic compounds or even to produce novel chemicals. Detailed investigation of chromatin organization and microRNAs affecting biosynthesis of secondary metabolites as well as exploring cryptic biosynthetic clusters and synthetic biology options, may provide additional ways to harness this resource. Plant secondary metabolites are a fascinating class of phytochemicals exhibiting immense chemical diversity. Considerable enigma regarding their natural biological functions and the vast array of pharmacological activities, amongst other uses, make secondary metabolites interesting and important candidates for research. Here, we present an update on changing trends in the biotechnological approaches that are used to understand and exploit the secondary metabolism in medicinal and aromatic plants. Bioprocessing in the form of suspension culture, organ culture or transformed hairy roots has been successful in scaling up secondary metabolite production in many cases. Pathway elucidation and metabolic engineering have been useful to get enhanced yield of the metabolite of interest; or, for producing novel metabolites. Heterologous expression of putative plant secondary metabolite biosynthesis genes in a microbe is useful to validate their functions, and in some cases, also, to produce plant metabolites in microbes. Endophytes, the microbes that normally colonize plant tissues, may also produce the phytochemicals produced by the host plant. The review also provides perspectives on future research in the field.
Chemical properties of peat used in balneology
NASA Astrophysics Data System (ADS)
Szajdak, L.; Hładoń, T.
2009-04-01
The physiological activity of peats is observed in human peat-bath therapy and in the promotion of growth in some plants. Balneological peat as an ecologically clean and natural substance is perceived as being more 'human friendly' than synthetic compounds. Poland has a long tradition of using balneological peat for therapeutic purposes. Balneological peat reveals a physical effect by altering temperature and biochemical effects through biologically active substances. It is mainly used for the treatment of rheumatic diseases that are quite common in Poland. Peat represents natural product. Physico-chemical properties of peat in particular surface-active, sorption and ion exchanges, defining their biological function, depend mainly on the chemical composition and molecular structure of humic substances representing the major constituent of organic soil (peat). The carbon of organic matter of peats is composed of 10 to 20% carbohydrates, primarily of microbial origin; 20% nitrogen-containing constituents, such as amino acids and amino sugars; 10 to 20% aliphatic fatty acids, alkanes, etc.; with the rest of carbon being aromatic. For balneology peat should be highly decomposed (preferably H8), natural and clean. The content of humic acids should exceed 20% of dry weight, ash content will be less than 15 15% of dry weight, sulphur content less than 0.3% of dry weight and the amount of water more than 85%. It will not contain harmful bacteria and heavy metals. Humic substances (HS) of peat are known to be macromolecular polydisperse biphyllic systems including both hydrophobic domains (saturated hydrocarbon chains, aromatic structural units) and hydrophilic functional groups, i. e having amphiphilic character. Amphiphilic properties of FA are responsible for their solubility, viscosity, conformation, surfactant-like character and a variety of physicochemical properties of considerable biologically practical significance. The chemical composition of peats depends significantly on the genesis of peatlands and the depth of sampling. The chemical properties of peat fulvic acids (FA) have some genetic peculiarities due to the specific conditions of the process of humification of peat-forming plants in mires. The process of humification in mires takes place in the top-forming layer under amphibious moisture conditions. Substances of microbial origin are water-soluble and can participate in the formation of peat FA to a little extent. So a main source of structural units for the peat HA and FA is suggested to be organic constituents of peat forming plants of various botanical composition. The content of aromatic units in peat FA was shown to depend on the content of lignin in peat-forming plants and also of the aromatization of polysaccharides mainly due to the transformation of cellulose. FA characterized lower than humic acids molecular weight (1000-30,000). FA's are composed of a series of highly oxidized aromatic rings with a large number of side chains. Building blocks are benzene carboxylic acids and phenolic acids. These are held together by hydrogen bonding van der Waals' forces and ionic bonding. FA contains larger concentrations of nitrogen. This fraction also contains a great deal of polysaccharide materials, as well as low molecular fatty acids and cytoplasmic constituents of microorganisms. These compounds are linear, flexible colloids at low concentrations, and spherical colloids at high solution concentrations and low pH values. A more adequate knowledge of the chemical structure of humic materials will assist us in better understanding the physiological effects and also the function of these macromolecules on the health that these materials are know to exert. This improved knowledge provides us better information on chemical structure of humic substances from peats, which are responsible for pharmacotherapeutic, pharmacokinetic and biopharmaceutical effect. This structure of FA creates proper conditions for uptake of nutrient as well as bioavailability of biologically active substances. The solubilization in water by humic materials of organic substances which are otherwise water-insoluble is a matter of considerable interest to chemist deals with the problem of the function of organic matter. There has been considerable evidence that humic substances can "complex" with several biologically active substances and so modify their physiological activity. It has been noteworthy that FA can "fix" high-molecular weight water-insoluble organic compounds and make them water-soluble. FA may so act as a vehicle for the mobilization, transport and immobilization of such substances in physiological conditions. Analysis of HA and FA carried out by several analytical methods revealed that there were no chemical interaction among biologically active substances but that latter was firmly adsorbed, possible by hydrogen-bonding, on the FA surfaces. Amino acids account for the majority of organic N fraction in humic substances. Most of the amino acids in organic matter occur in bound form in the humino-peptides fraction. These amino acids are commonly bound to the central core of FA. These humino-peptides fraction of FA mediate in respiration and act as hydrogen acceptors, thus affecting oxidation-reaction reactions. Thus, what is needed at this time is more fundamental research in order to solve practical pharmacological, pharmacokinetic and biopharmaceutical problem of great significance for human health.
Aliphatic, Cyclic, and Aromatic Organic Acids, Vitamins, and Carbohydrates in Soil: A Review
Vranova, Valerie; Rejsek, Klement; Formanek, Pavel
2013-01-01
Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research. PMID:24319374
Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review.
Vranova, Valerie; Rejsek, Klement; Formanek, Pavel
2013-11-10
Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research.
Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds.
Rodriguez, Alberto; Martínez, Juan A; Flores, Noemí; Escalante, Adelfo; Gosset, Guillermo; Bolivar, Francisco
2014-09-09
The production of aromatic amino acids using fermentation processes with recombinant microorganisms can be an advantageous approach to reach their global demands. In addition, a large array of compounds with alimentary and pharmaceutical applications can potentially be synthesized from intermediates of this metabolic pathway. However, contrary to other amino acids and primary metabolites, the artificial channelling of building blocks from central metabolism towards the aromatic amino acid pathway is complicated to achieve in an efficient manner. The length and complex regulation of this pathway have progressively called for the employment of more integral approaches, promoting the merge of complementary tools and techniques in order to surpass metabolic and regulatory bottlenecks. As a result, relevant insights on the subject have been obtained during the last years, especially with genetically modified strains of Escherichia coli. By combining metabolic engineering strategies with developments in synthetic biology, systems biology and bioprocess engineering, notable advances were achieved regarding the generation, characterization and optimization of E. coli strains for the overproduction of aromatic amino acids, some of their precursors and related compounds. In this paper we review and compare recent successful reports dealing with the modification of metabolic traits to attain these objectives.
Vojacek, Steffen; Beese, Katja; Alhalabi, Zayan; Swyter, Sören; Bodtke, Anja; Schulzke, Carola; Jung, Manfred; Sippl, Wolfgang; Link, Andreas
2017-07-01
Nonpolar derivatives of heterocyclic aromatic screening hits like the non-selective sirtuin inhibitor splitomicin tend to be poorly soluble in biological fluids. Unlike sp 3 -rich natural products, flat aromatic compounds are prone to stacking and often difficult to optimize into leads with activity in cellular systems. The aim of this work was to identify anchor points for the introduction of sp 3 -rich fragments with polar functional groups into the newly discovered active (IC 50 = 5 μM) but nonpolar scaffold 1,2-dihydro-3H-naphth[1,2-e][1,3]oxazine-3-thione by a molecular modeling approach. Docking studies were conducted with structural data from crystallized human SIRT2 enzyme. Subsequent evaluation of the in silico hypotheses through synthesis and biological evaluation of the designed structures was accomplished with the aim to discover new SIRT2 inhibitors with improved aqueous solubility. Derivatives of 8-bromo-1,2-dihydro-3H-naphth[1,2-e][1,3]oxazine-3-thione N-alkylated with a hydrophilic morpholino-alkyl chain at the thiocarbamate group intended for binding in the acetyl-lysine pocket of the enzyme appeared to be promising. Both the sulfur of the thiocarbamate and the bromo substituent were assumed to result in favorable hydrophobic interactions and the basic morpholino-nitrogen was predicted to build a hydrogen bond with the backbone Ile196. While the brominated scaffold showed moderately improved activity (IC 50 = 1.8 μM), none of the new compounds displayed submicromolar activity. Synthesis and characterization of the new compounds are reported and the possible reasons for the outcome are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization of π-stacking interactions between aromatic amino acids and quercetagetin
NASA Astrophysics Data System (ADS)
Akher, Farideh Badichi; Ebrahimi, Ali; Mostafavi, Najmeh
2017-01-01
In the present study, the π-stacking interactions between quercetagetin (QUE), which is one of the most representative flavonol compounds with biological and chemical activities, and some aromatic amino acid (AA) residues has been investigated by the quantum mechanical calculations. The trend in the absolute value of stacking interaction energy |ΔE| with respect to AAs is HIS > PHE > TYR > TPR. The results show that the sum of donor-acceptor interaction energy between AAs and QUE (∑E2) and the sum of electron densities ρ calculated at BCPs and CCPs between the rings (∑ρBCPs and ∑ρCCP) can be useful descriptors for prediction of the ΔE values of the complexes. The Osbnd H bond dissociation enthalpy (BDE) slightly decreases by the π-stacking interaction, which confirms the positive effect of that interaction on the antioxidant activity of QUE. A reverse trend is observed for BDE when is compared with the |ΔE| values. A reliable relationship is also observed between the Muliken spin density (MSD) distributions of the radical species and the most convenient Osbnd H bond dissociations. In addition, reactivity is in good correlation with the antioxidant activity of the complexes.
Gao, Jie; Midde, Narasimha; Zhu, Jun; Terry, Alvin V; McInnes, Campbell; Chapman, James M
2016-11-15
Using molecular modeling and rationally designed structural modifications, the multi-target structure-activity relationship for a series of ranitidine analogs has been investigated. Incorporation of a variety of isosteric groups indicated that appropriate aromatic moieties provide optimal interactions with the hydrophobic and π-π interactions with the peripheral anionic site of the AChE active site. The SAR of a series of cyclic imides demonstrated that AChE inhibition is increased by additional aromatic rings, where 1,8-naphthalimide derivatives were the most potent analogs and other key determinants were revealed. In addition to improving AChE activity and chemical stability, structural modifications allowed determination of binding affinities and selectivities for M1-M4 receptors and butyrylcholinesterase (BuChE). These results as a whole indicate that the 4-nitropyridazine moiety of the JWS-USC-75IX parent ranitidine compound (JWS) can be replaced with other chemotypes while retaining effective AChE inhibition. These studies allowed investigation into multitargeted binding to key receptors and warrant further investigation into 1,8-naphthalimide ranitidine derivatives for the treatment of Alzheimer's disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wu, Manli; Li, Wei; Dick, Warren A; Ye, Xiqiong; Chen, Kaili; Kost, David; Chen, Liming
2017-02-01
Bioremediation of hydrocarbon degradation in petroleum-polluted soil is carried out by various microorganisms. However, little information is available for the relationships between hydrocarbon degradation rates in petroleum-contaminated soil and microbial population and activity in laboratory assay. In a microcosm study, degradation rate and efficiency of total petroleum hydrocarbons (TPH), alkanes, and polycyclic aromatic hydrocarbons (PAH) in a petroleum-contaminated soil were determined using an infrared photometer oil content analyzer and a gas chromatography mass spectrometry (GC-MS). Also, the populations of TPH, alkane, and PAH degraders were enumerated by a modified most probable number (MPN) procedure, and the hydrocarbon degrading activities of these degraders were determined by the Biolog (MT2) MicroPlates assay. Results showed linear correlations between the TPH and alkane degradation rates and the population and activity increases of TPH and alkane degraders, but no correlation was observed between the PAH degradation rates and the PAH population and activity increases. Petroleum hydrocarbon degrading microbial population measured by MPN was significantly correlated with metabolic activity in the Biolog assay. The results suggest that the MPN procedure and the Biolog assay are efficient methods for assessing the rates of TPH and alkane, but not PAH, bioremediation in oil-contaminated soil in laboratory. Copyright © 2016 Elsevier Ltd. All rights reserved.
Poly(1,3,4-oxadiazoles) via aromatic nucleophilic displacement
NASA Technical Reports Server (NTRS)
Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Wolf, Peter (Inventor)
1992-01-01
Poly(1,3,4-oxadiazoles) (POX) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl) 1,3,4-oxadiazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The polymerizations are carried out in polar aprotic solvents such as sulfolane or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl) 1,3,4-oxadiazole monomers are synthesized by reacting 4-hydroxybenzoic hydrazide with phenyl 4-hydrobenzoate in the melt and also by reacting aromatic dihydrazides with two moles of phenyl 4-hydroxybenzoate in the melt. This synthetic route has provided high molecular weight POX of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the large variety of activated aromatic dihalides which are available.
NASA Astrophysics Data System (ADS)
Shute, Richard E.; Jackson, David E.; Bycroft, Barrie W.
1989-06-01
The halogenated 6-spiroepoxypenicillins are a series of novel semisynthetic β-lactam compounds with highly conformationally restricted side chains incorporating an epoxide. Their biological activity profiles depend crucially on the configuration at position C-3 of that epoxide. In derivatives with aromatic-containing side chains, e.g., anilide, the 3 R-compounds possess notable Gram-positive antibacterial activity and potent β-lactamase inhibitory properties. The comparable 3S-compounds are antibacterially inactive, but retain β-lactamase inhibitory activity. Using the molecular simulation programs COSMIC and ASTRAL, we attempted to map a putative, lipophilic accessory binding site on the PBPs that must interact with the side-chain aromatic residue. Comparative computer-assisted modelling of the 3 R, and 3 S-anilides, along with benzylpenicillin, indicated that the available conformational space at room temperature for the side chains of the 3 R and the 3 S-anilides was mutually exclusive. The conformational space for the more flexible benzylpenicillin could accommodate the side chains of both the constrained penicillin derivatives. By a combination of van der Waals surface calculations and a pharmacophoric distance approach, closely coincident conformers of the 3 R-anilide and benzylpenicillin were identified. These conformers must be related to the antibacterial, `bioactive' conformer for the classical β-lactam antibiotics. From these proposed bioactive conformations, a model for the binding of benzylpenicillin to the PBPs relating the three-dimensional arrangement of a putative lipophilic S2-subsite, specific for the side-chain aromatic moiety, and the 3 α-carboxylate functionality is presented.
Di(hydroxyphenyl)- benzimidazole monomers
NASA Technical Reports Server (NTRS)
Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Joseph G. (Inventor)
1993-01-01
Di(hydroxyphenyl)benzimidazole monomers were prepared from phenyl-hydroxybenzoate and aromatic bis(o-diamine)s. These monomers were used in the synthesis of soluble polybenzimidazoles. The reaction involved the aromatic nucleophilic displacement of various di(hydroxyphenyl)benzimidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds in the presence of an alkali metal base. These polymers exhibited lower glass transition temperatures, improved solubility, and better compression moldability over their commercial counterparts.
Tovar, John D.; Diegelmann, Stephen R.; Peart, Patricia A.
2010-01-01
This article will highlight our recent work using conjugated oligomers as precursors to electroactive polymer films and self-assembling nanomaterials. One area of investigation has focused on nonbenzenoid aromaticity in the context of charge delocalization in conjugated polymers. In these studies, polymerizable pi-conjugated units were coupled onto unusual aromatic cores such as methano[10]annulene. This article will also show how biologically-inspired assembly of molecularly well-defined oligopeptides that flank pi-conjugated oligomers has resulted in the aqueous construction of 1-dimensional nanomaterials that encourage electronic delocalization among the pi-electron systems.
Attardi, Barbara J.; Pham, Trung C.; Radler, Lisa M.; Burgenson, Janet; Hild, Sheri A.; Reel, Jerry R.
2008-01-01
Dimethandrolone undecanoate (DMAU: 7α,11β-dimethyl-19-nortestosterone 17β-undecanoate) is a potent orally active androgen in development for hormonal therapy in men. Cleavage of the 17β-ester bond by esterases in vivo leads to liberation of the biologically active androgen, dimethandrolone (DMA), a 19-norandrogen. For hormone replacement in men, administration of C19 androgens such as testosterone (T) may lead to elevations in circulating levels of estrogens due to aromatization. As several reports have suggested that certain 19-norandrogens may serve as substrates for the aromatase enzyme and are converted to the corresponding aromatic A-ring products, it was important to investigate whether DMA, the related compound, 11β-methyl-19-nortestosterone (11β-MNT), also being tested for hormonal therapy in men, and other 19-norandrogens can be converted to aromatic A-ring products by human aromatase. The hypothetical aromatic A-ring product corresponding to each substrate was obtained by chemical synthesis. These estrogens bound with high affinity to purified recombinant human estrogen receptors (ER) α and β in competitive binding assays (IC50's: 5−12 × 10−9 M) and stimulated transcription of 3XERE-luciferase in T47Dco human breast cancer cells with a potency equal to or greater than that of estradiol (E2) (EC50's: 10−12 to 10−11 M). C19 androgens (T, 17α-methyltestosterone (17α-MT), androstenedione (AD), and 16α-hydroxyandrostenedione (16α-OHAD)), 19-norandrogens (DMA, 11β-MNT, 19-nortestosterone (19-NT), and 7α-methyl-19-nortestosterone (MENT)) or the structurally similar 19-norprogestin, norethindrone (NET) were incubated at 50 μM with recombinant human aromatase for 10−180 min at 37 °C. The reactions were terminated by extraction with acetonitrile and centrifugation, and substrate and potential product were separated by HPLC. Retention times were monitored by UV absorption, and UV peaks were quantified using standard curves. Aromatization of the positive controls, T, AD, and 16α-OHAD was linear for 40−60 min, and conversion of T or AD was complete by 120 min. The nonsteroidal aromatase inhibitor, letrozole, demonstrated concentration-dependent suppression of T aromatization. Under the same conditions, there was no detectable conversion of DMA, 11β-MNT, or NET to their respective hypothetical aromatic A-ring products during incubation times up to 180 min. Aromatization of MENT and 19-NT proceeded slowly and was limited. Collectively, these data support the notion that in the absence of the C19-methyl group, which is the site of attack by oxygen, aromatization of androgenic substrates proceeds slowly or not at all and that this reaction is impeded by the presence of a methyl group at the 11β position. PMID:18555683
Mining of Microbial Genomes for the Novel Sources of Nitrilases.
Sharma, Nikhil; Thakur, Neerja; Raj, Tilak; Savitri; Bhalla, Tek Chand
2017-01-01
Next-generation DNA sequencing (NGS) has made it feasible to sequence large number of microbial genomes and advancements in computational biology have opened enormous opportunities to mine genome sequence data for novel genes and enzymes or their sources. In the present communication in silico mining of microbial genomes has been carried out to find novel sources of nitrilases. The sequences selected were analyzed for homology and considered for designing motifs. The manually designed motifs based on amino acid sequences of nitrilases were used to screen 2000 microbial genomes (translated to proteomes). This resulted in identification of one hundred thirty-eight putative/hypothetical sequences which could potentially code for nitrilase activity. In vitro validation of nine predicted sources of nitrilases was done for nitrile/cyanide hydrolyzing activity. Out of nine predicted nitrilases, Gluconacetobacter diazotrophicus , Sphingopyxis alaskensis , Saccharomonospora viridis , and Shimwellia blattae were specific for aliphatic nitriles, whereas nitrilases from Geodermatophilus obscurus , Nocardiopsis dassonvillei , Runella slithyformis , and Streptomyces albus possessed activity for aromatic nitriles. Flavobacterium indicum was specific towards potassium cyanide (KCN) which revealed the presence of nitrilase homolog, that is, cyanide dihydratase with no activity for either aliphatic, aromatic, or aryl nitriles. The present study reports the novel sources of nitrilases and cyanide dihydratase which were not reported hitherto by in silico or in vitro studies.
Carbazole Scaffold in Medicinal Chemistry and Natural Products: A Review from 2010-2015.
Tsutsumi, Lissa S; Gündisch, Daniela; Sun, Dianqing
2016-01-01
9H-carbazole is an aromatic molecule that is tricyclic in nature, with two benzene rings fused onto a 5-membered pyrrole ring. Obtained from natural sources or by synthetic routes, this scaffold has gained much interest due to its wide range of biological activity upon modifications, including antibacterial, antimalarial, anticancer, and anti-Alzheimer properties. This review reports a survey of the literature on carbazole-containing molecules and their medicinal activities from 2010 through 2015. In particular, we focus on their in vitro and in vivo activities and summarize structure-activity relationships (SAR), mechanisms of action, and/or cytotoxicity/selectivity findings when available to provide future guidance for the development of clinically useful agents from this template.
Thompson, Mark E.; Diev, Viacheslav; Hanson, Kenneth; Forrest, Stephen R.
2015-08-18
A compound that can be used as a donor material in organic photovoltaic devices comprising a non-activated porphyrin fused with one or more non-activated polycyclic aromatic rings or one or more non-activated heterocyclic rings can be obtained by a thermal fusion process. The compounds can include structures of Formula I: ##STR00001## By heating the reaction mixture of non-activated porphyrins with non-activated polycyclic aromatic rings or heterocyclic rings to a fusion temperature and holding for a predetermined time, fusion of one or more polycyclic rings or heterocyclic rings to the non-activated porphyrin core in meso,.beta. fashion is achieved resulting in hybrid structures containing a distorted porphyrin ring with annulated aromatic rings. The porphyrin core can be olygoporphyrins.
Second generation engineering of transketolase for polar aromatic aldehyde substrates.
Payongsri, Panwajee; Steadman, David; Hailes, Helen C; Dalby, Paul A
2015-04-01
Transketolase has significant industrial potential for the asymmetric synthesis of carboncarbon bonds with new chiral centres. Variants evolved on propanal were found previously with nascent activity on polar aromatic aldehydes 3-formylbenzoic acid (3-FBA), 4-formylbenzoic acid (4-FBA), and 3-hydroxybenzaldehyde (3-HBA), suggesting a potential novel route to analogues of chloramphenicol. Here we evolved improved transketolase activities towards aromatic aldehydes, by saturation mutagenesis of two active-site residues (R358 and S385), predicted to interact with the aromatic substituents. S385 variants selectively controlled the aromatic substrate preference, with up to 13-fold enhanced activities, and KM values comparable to those of natural substrates with wild-type transketolase. S385E even completely removed the substrate inhibition for 3-FBA, observed in all previous variants. The mechanisms of catalytic improvement were both mutation type and substrate dependent. S385E improved 3-FBA activity via kcat, but reduced 4-FBA activity via KM. Conversely, S385Y/T improved 3-FBA activity via KM and 4-FBA activity via kcat. This suggested that both substrate proximity and active-site orientation are very sensitive to mutation. Comparison of all variant activities on each substrate indicated different binding modes for the three aromatic substrates, supported by computational docking. This highlights a potential divergence in the evolution of different substrate specificities, with implications for enzyme engineering. Copyright © 2015 Elsevier Inc. All rights reserved.
Aerobic Heterotrophic Bacterial Populations of Sewage and Activated Sludge
Prakasam, T. B. S.; Dondero, N. C.
1970-01-01
An activated sludge from a sewage treatment plant and a laboratory activated sludge developed on an artificial waste were compared for their ability to utilize 11 aromatic compounds. There were several significant differences between them. The laboratory sludge contained higher numbers of organisms and metabolized the aromatics to a greater extent. Laboratory activated sludges acclimated to utilization of the aromatics differed from each other in population structure and the pattern of oxygen consumption with aromatic substrates. The oxidative patterns of uncontrolled mixed populations were unreliable for investigating metabolic pathways. Extracts of the various sludges elevated the plate counts of the sludges. PMID:5418946
Change in Caco-2 cells following treatment with various lavender essential oils.
Donadu, M G; Usai, D; Mazzarello, V; Molicotti, P; Cannas, S; Bellardi, M G; Zanetti, S
2017-09-01
Lavender is an aromatic evergreen shrub diffused in the Mediterranean basin appreciated since antiquity. The genus Lavandula is part of Lamiaceae family and includes more than 20 species, among which true lavender (L. vera D.C. or L. angustifolia Miller.) and spike lavender (L. latifolia Medikus); there are also numerous hybrids known as lavandins (L. hybrida Rev.). L. vera, spike lavender and several hybrids are the most intensely used breeding species for the production of essential oils. Lavender and lavandin essential oils have been applied in food, pharmaceutical and other agro industries as biological products. In their chemical composition, terpenes linalool and linalyl acetate along with terpenoids such as 1,8-cineole are mostly responsible for biological and therapeutic activities. This study evaluates cytotoxic activity of essential oils derived from four lavender species on human epithelial colorectal adenocarcinoma cells. Analysis of pre- and post-treatment cell morphology has been performed using scanning electron microscope.
Molecular Biology of Anaerobic Aromatic Biodegradation.
1992-08-14
degradation from the bacterium, Rhodopseudomonas palustris . These tools have enabled us to identify genes specifying two enzymes that initiate the...hydroxybenzoate - by one bacterial species - Rhodopseudomonas palustris . Our emphasis has been on developing tools to explore the genetic basis of aromatic acid...1991. Regulation of benzoate-CoA ligase in Rhodopseudomonas palustris . FEMS Microbiol. Letts. 83:199-204. Dispensa, M., C. T. Thomas, M.-K. Kim, J. A
Expedited Synthesis of Fluorine-18 Labeled Phenols. A Missing Link in PET Radiochemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katzenellenbogen, John A.; Zhou, Dong
Fluorine-18 (F-18) is arguably the most valuable radionuclide for positron emission tomographic (PET) imaging. However, while there are many methods for labeling small molecules with F-18 at aliphatic positions and on electron-deficient aromatic rings, there are essentially no reliable and practical methods to label electron-rich aromatic rings such as phenols, with F-18 at high specific activity. This is disappointing because fluorine-labeled phenols are found in many drugs; there are also many interesting plant metabolites and hormones that contain either phenols or other electron-rich aromatic systems such as indoles whose metabolism, transport, and distribution would be interesting to study if theymore » could readily be labeled with F-18. Most approaches to label phenols with F-18 involve the labeling of electron-poor precursor arenes by nucleophilic aromatic substitution, followed by subsequent conversion to phenols by oxidation or other multi-step sequences that are often inefficient and time consuming. Thus, the lack of good methods for labeling phenols and other electron-rich aromatics with F-18 at high specific activity represents a significant methodological gap in F-18 radiochemistry that can be considered a “Missing Link in PET Radiochemistry”. The objective of this research project was to develop and optimize a series of unusual synthetic transformations that will enable phenols (and other electron-rich aromatic systems) to be labeled with F-18 at high specific activity, rapidly, reliably, and conveniently, thereby bridging this gap. Through the studies conducted with support of this project, we have substantially advanced synthetic methodology for the preparation of fluorophenols. Our progress is presented in detail in the sections below, and much has been published or presented publication; other components are being prepared for publication. In essence, we have developed a completely new method to prepare o-fluorophenols from non-aromatic precursors (diazocyclohexenones) by a novel reaction sequence that uses fluoride ion as a precursor and various activating electrophiles, and we have improved methods for the preparation of heterodiaryl iodonium salts. Both methods have been used to prepare interesting potential radiotracers. Other advances have been made in labeling dendrimeric nanoparticle structures of increasing interest for multimodal imaging and in advancing labeling through fluorosilane bonds. Thus, the progress we have made substantially fills the significant gap in PET radiochemistry that we originally identified, and it provides for the field new methodology that can be applied to a number of current challenges, including the preparation of several molecules of interest as radiotracers, such as 2-[18F]Fluoroestradiol (2-FES) and m-fluorotyrosine, which we have illustrated. These methods can be used by any skilled radiochemist interesting in preparing these agents or similar fluorine-18 labeled electron-rich arene systems of interested for PET biological imaging in the most general sense.« less
NASA Astrophysics Data System (ADS)
Samsonowicz, M.; Kowczyk-Sadowy, M.; Piekut, J.; Regulska, E.; Lewandowski, W.
2016-04-01
The structural and vibrational properties of lithium, sodium, potassium, rubidium and cesium homovanillates were investigated in this paper. Supplementary molecular spectroscopic methods such as: FT-IR, FT-Raman in the solid phase, UV and NMR were applied. The geometrical parameters and energies were obtained from density functional theory (DFT) B3LYP method with 6-311++G** basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned. Geometric and magnetic aromaticity indices, atomic charges, dipole moments, HOMO and LUMO energies were also calculated. The microbial activity of investigated compounds was tested against Bacillus subtilis (BS), Pseudomonas aeruginosa (PA), Escherichia coli (EC), Staphylococcus aureus (SA) and Candida albicans (CA). The relationship between the molecular structure of tested compounds and their antimicrobial activity was studied. The principal component analysis (PCA) was applied in order to attempt to distinguish the biological activities of these compounds according to selected band wavenumbers. Obtained data show that the FT-IR spectra can be a rapid and reliable analytical tool and a good source of information for the quantitative analysis of the relationship between the molecular structure of the compound and its biological activity.
Fitsiou, Eleni; Mitropoulou, Gregoria; Spyridopoulou, Katerina; Tiptiri-Kourpeti, Angeliki; Vamvakias, Manolis; Bardouki, Haido; Panayiotidis, Mihalis Ι; Galanis, Alex; Kourkoutas, Yiannis; Chlichlia, Katerina; Pappa, Aglaia
2016-08-16
Natural products, known for their medicinal properties since antiquity, are continuously being studied for their biological properties. In the present study, we analyzed the composition of the volatile preparations of essential oils of the Greek plants Ocimum basilicum (sweet basil), Mentha spicata (spearmint), Pimpinella anisum (anise) and Fortunella margarita (kumquat). GC/MS analyses revealed that the major components in the essential oil fractions, were carvone (85.4%) in spearmint, methyl chavicol (74.9%) in sweet basil, trans-anethole (88.1%) in anise, and limonene (93.8%) in kumquat. We further explored their biological potential by studying their antimicrobial, antioxidant and antiproliferative activities. Only the essential oils from spearmint and sweet basil demonstrated cytotoxicity against common foodborne bacteria, while all preparations were active against the fungi Saccharomyces cerevisiae and Aspergillus niger. Antioxidant evaluation by DPPH and ABTS radical scavenging activity assays revealed a variable degree of antioxidant potency. Finally, their antiproliferative potential was tested against a panel of human cancer cell lines and evaluated by using the sulforhodamine B (SRB) assay. All essential oil preparations exhibited a variable degree of antiproliferative activity, depending on the cancer model used, with the most potent one being sweet basil against an in vitro model of human colon carcinoma.
Hasegawa, R; Toyama, K; Miyanaga, K; Tanji, Y
2014-02-01
Oil souring has important implications with respect to energy resources. Understanding the physiology of the microorganisms that play a role and the biological mechanisms are both important for the maintenance of infrastructure and mitigation of corrosion processes. The objective of this study was to identify crude-oil components and microorganisms in oil-field water that contribute to crude-oil souring. To identify the crude-oil components and microorganisms that are responsible for anaerobic souring in oil reservoirs, biological conversion of crude-oil components under anaerobic conditions was investigated. Microorganisms in oil field water in Akita, Japan degraded alkanes and aromatics to volatile fatty acids (VFAs) under anaerobic conditions, and fermenting bacteria such as Fusibacter sp. were involved in VFA production. Aromatics such as toluene and ethylbenzene were degraded by sulfate-reducing bacteria (Desulfotignum sp.) via the fumarate-addition pathway and not only degradation of VFA but also degradation of aromatics by sulfate-reducing bacteria was the cause of souring. Naphthenic acid and 2,4-xylenol were not converted.
NASA Astrophysics Data System (ADS)
Papaefthimiou, Dimitra; Papanikolaou, Antigoni; Falara, Vasiliki; Givanoudi, Stella; Kostas, Stefanos; Kanellis, Angelos
2014-06-01
The family Cistaceae (Angiosperm, Malvales) consists of 8 genera and 180 species, with 5 genera native of the Mediterranean area (Cistus, Fumara, Halimium, Helianthemum and Tuberaria). Traditionally, a number of Cistus specie have been used in Mediterranean folk medicine as herbal tea infusions for healing, digestive problems and colds, as extracts for the treatment of diseases, and as fragrances. The resin, ladano, secreted by the glandular trichomes of certain Cistus species contains a number of phytochemicals with antioxidant, antibacterial, antifungal and anticancer properties. Furthermore, total leaf aqueous extracts possess anti-influenza virus activity. All these properties have been attributed to phytochemicals such as terpenoids, including diterpenes, labdane-type diterpenes and clerodanes, phenylpropanoids, including flavonoids and ellagitannins, several groups of alkaloids and other types of secondary metabolites. In the past 20 years, research on Cistus involved chemical, biological and phylogenetic analysis but recent investigations have involved genomic and molecular approaches. Our lab is exploring the biosynthetic machinery that generates terpenoids and phenylpropanoids, with a goal to harness their numerous properties that have applications in the pharmaceutical, chemical and aromatic industries. This review focuses on the systematics, botanical characteristics, geographic distribution, chemical analyses, biological function and biosynthesis of major compounds, as well as genomic analyses and biotechnological approaches of the main Cistus species found in the Mediterranean basin, namely C. albidus, C. creticus, C. crispus, C. parviflorus, C. monspeliensis, C. populifolius, C. salviifolius, C. ladanifer, C. laurifolius and C. clusii.
Biological, medicinal and toxicological significance of Eucalyptus leaf essential oil: a review.
Dhakad, Ashok K; Pandey, Vijay V; Beg, Sobia; Rawat, Janhvi M; Singh, Avtar
2018-02-01
The genus Eucalyptus L'Heritier comprises about 900 species, of which more than 300 species contain volatile essential oil in their leaves. About 20 species, within these, have a high content of 1,8-cineole (more than 70%), commercially used for the production of essential oils in the pharmaceutical and cosmetic industries. However, Eucalyptus is extensively planted for pulp, plywood and solid wood production, but its leaf aromatic oil has astounding widespread biological activities, including antimicrobial, antiseptic, antioxidant, chemotherapeutic, respiratory and gastrointestinal disorder treatment, wound healing, and insecticidal/insect repellent, herbicidal, acaricidal, nematicidal, and perfumes, soap making and grease remover. In the present review, we have made an attempt to congregate the biological ingredients of leaf essential oil, leaf oil as a natural medicine, and pharmacological and toxicological values of the leaf oil of different Eucalyptus species worldwide. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Tafi, Andrea; Costi, Roberta; Botta, Maurizio; Di Santo, Roberto; Corelli, Federico; Massa, Silvio; Ciacci, Andrea; Manetti, Fabrizio; Artico, Marino
2002-06-20
The synthesis, anti-Candida activity, and quantitative structure-activity relationship (QSAR) studies of a series of 2,4-dichlorobenzylimidazole derivatives having a phenylpyrrole moiety (related to the antibiotic pyrrolnitrin) in the alpha-position are reported. A number of substituents on the phenyl ring, ranging from hydrophobic (tert-butyl, phenyl, or 1-pyrrolyl moiety) to basic (NH(2)), polar (CF(3), CN, SCH(3), NO(2)), or hydrogen bond donors and acceptor (OH) groups, were chosen to better understand the interaction of these compounds with cytochrome P450 14-alpha-lanosterol demethylase (P450(14DM)). Finally, the triazole counterpart of one of the imidazole compounds was synthesized and tested to investigate influence of the heterocyclic ring on biological activity. The in vitro antifungal activities of the newly synthesized azoles 10p-v,x-c' were tested against Candida albicans and Candida spp. at pH 7.2 and pH 5.6. A CoMFA model, previously derived for a series of antifungal agents belonging to chemically diverse families related to bifonazole, was applied to the new products. Because the results produced by this approach were not encouraging, Catalyst software was chosen to perform a new 3D-QSAR study. Catalyst was preferred this time because of the possibility of considering each compound as a collection of energetically reasonable conformations and of considering alternative stereoisomers. The pharmacophore model developed by Catalyst, named HYPO1, showed good performances in predicting the biological activity data, although it did not exhibit an unequivocal preference for one enantiomeric series of inhibitors relative to the other. One aromatic nitrogen with a lone pair in the ring plane (mapped by all of the considered compounds) and three aromatic ring features were recognized to have pharmacophoric relevance, whereas neither hydrogen bond acceptor nor hydrophobic features were found. These findings confirmed that the key interaction of azole antifungals with the demethylase enzyme is the coordination bond to the iron ion of the porphyrin system, while interactions with amino acids localized in proximity of heme could modulate the biological activity of diverse antifungal agents. In conclusion, HYPO1 conveys important information in an intuitive manner and can provide predictive capability for evaluating new compounds.
Structural Analogues of Selfotel.
Dziuganowska, Zofia A; Ślepokura, Katarzyna; Volle, Jean-Noël; Virieux, David; Pirat, Jean-Luc; Kafarski, Paweł
2016-06-17
A small library of phosphonopiperidylcarboxylic acids, analogues of NMDA antagonist selfotel (CGS 19755), was synthesized. First, the series of aromatic esters was obtained via a palladium-catalyzed cross-coupling reaction (Hirao coupling) of dialkyl phosphites with bromopyridinecarboxylates, followed by their hydrolysis. Then, hydrogenation of the resulting phosphonopyridylcarboxylic acids over PtO2 yielded the desired phosphonopiperidylcarboxylic acids. NMR studies indicated that the hydrogenation reaction proceeds predominantly by cis addition. Several compounds were obtained as monocrystal structures. Preliminary biological studies performed on cultures of neurons suggest that the obtained compounds possess promising activity toward NMDA receptors.
Božović, Mijat; Ragno, Rino
2017-02-14
Medicinal plants play an important role in the treatment of a wide range of diseases, even if their chemical constituents are not always completely recognized. Observations on their use and efficacy significantly contribute to the disclosure of their therapeutic properties. Calamintha nepeta (L.) Savi is an aromatic herb with a mint-oregano flavor, used in the Mediterranean areas as a traditional medicine. It has an extensive range of biological activities, including antimicrobial, antioxidant and anti-inflammatory, as well as anti-ulcer and insecticidal properties. This study aims to review the scientific findings and research reported to date on Calamintha nepeta (L.) Savi that prove many of the remarkable various biological actions, effects and some uses of this species as a source of bioactive natural compounds. On the other hand, pulegone, the major chemical constituent of Calamintha nepeta (L.) Savi essential oil, has been reported to exhibit numerous bioactivities in cells and animals. Thus, this integrated overview also surveys and interprets the present knowledge of chemistry and analysis of this oxygenated monoterpene, as well as its beneficial bioactivities. Areas for future research are suggested.
Božović, Mijat; Pirolli, Adele; Ragno, Rino
2015-05-13
Since herbal medicines play an important role in the treatment of a wide range of diseases, there is a growing need for their quality control and standardization. Mentha suaveolens Ehrh. (MS) is an aromatic herb with fruit and a spearmint flavor, used in the Mediterranean areas as a traditional medicine. It has an extensive range of biological activities, including cytotoxic, antimicrobial, antioxidant, anti-inflammatory, hypotensive and insecticidal properties, among others. This study aims to review the scientific findings and research reported to date on MS that prove many of the remarkable various biological actions, effects and some uses of this species as a source of bioactive natural compounds. On the other hand, piperitenone oxide (PO), the major chemical constituent of the carvone pathway MS essential oil, has been reported to exhibit numerous bioactivities in cells and animals. Thus, this integrated overview also surveys and interprets the present knowledge of chemistry and analysis of this oxygenated monoterpene, as well as its beneficial bioactivities. Areas for future research are suggested.
Polybenzimidazoles Via Aromatic Nucleophilic Displacement
NASA Technical Reports Server (NTRS)
Connell, John W. (Inventor); Hergerrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)
1997-01-01
Novel molecular weight controlled and endcapped polybenzimidazoles (PBI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenylbenzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The PBI are endcapped with mono(hydroxyphenyl)benzimidazoles. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. Mono(hydroxyphenyl)benzimidazoles are synthesized by reacting phenyl-4-hydroxybenzoate with aromatic (o-diamine)s in diphenylsulfone. Molecular weight controlled and endcapped PBI of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.
Polybenzimidazoles via aromatic nucleophilic displacement
NASA Technical Reports Server (NTRS)
Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)
1995-01-01
Novel molecular weight controlled and endcapped polybenzimidazoles (PBI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl benzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The PBI are endcapped with mono(hydroxyphenyl) benzimidazoles. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. Mono(hydroxyphenyl) benzimidazoles are synthesizedby reacting phenyl-4-hydroxybenzoate with aromatic (o-diamine)s in diphenylsulfone. Molecular weight controlled and endcapped PBI of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.
Hu, Zenghui; Wang, Chunling; Shen, Hong; Zhang, Kezhong; Leng, Pingsheng
2017-12-01
This study aims to investigate the antioxidant effect of aromatic volatiles of three common aromatic plants, Lavandula dentata, Mentha spicata, and M. piperita. In this study, kunming mice subjected to low oxygen condition were treated with the volatiles emitted from these aromatic plants through inhalation administration. Then the blood cell counts, and the activities and gene expressions of antioxidant enzymes in different tissues were tested. The results showed that low oxygen increased the counts of red blood cells, white blood cells, and blood platelets of mice, and aromatic volatiles decreased their counts. Exposure to aromatic volatiles resulted in decreases in the malonaldehyde contents, and increases in the activities and gene expressions of superoxide dismutase, glutathione peroxidase, and catalase in different tissues under low oxygen. In addition, as the main component of aromatic volatiles, eucalyptol was the potential source that imparted positive antioxidant effect.
Ice Radiation Chemistry as a Source of Potential False Biomarkers on the Surface of Europa
NASA Technical Reports Server (NTRS)
Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.
2004-01-01
If we find evidence of Life elsewhere in the Solar System it will probably be in form of chemical biomarkers, quintessentially biological molecules that indicate the presence of micro-organisms. While molecules such as amino acids and nucleo-bases might seem to be biomarkers, and alkyl substituted aromatics have been invoked as such, they are not necessarily. These molecules are present in some meteorites and are expected to be present on the surface of other planets even in the absence of life. Understanding the range of non-biological organic molecules which could act as false biomarkers in space is a prerequisite for any reasonable search for true biomarkers on other worlds. Our experiments have shown that some organic molecules in meteorites that appear biological in nature are formed by energetic processing of extraterrestrial ices can account for amino acids, quinones and other functionalized aromatic compounds. In the past, such molecules have been proposed as biomarkers. For example, alkylated aromatics were invoked as biomarkers in the Alan Hills 84001 'Martian meteorite.' When simple organics arrive at the surface of a body like Europa, either from below or from space, how long do they survive and what do they make? How can we distinguish these from real biomarkers?
Gulyas, Holger; Argáez, Ángel Santiago Oria; Kong, Fanzhuo; Jorge, Carlos Liriano; Eggers, Susanne; Otterpohl, Ralf
2013-01-01
The aim of the study was to evaluate whether the addition of activated carbon in the photocatalytic oxidation of biologically pretreated greywater and of a polar aliphatic compound gives synergy, as previously demonstrated with phenol. Photocatalytic oxidation kinetics were recorded with fivefold concentrated biologically pretreated greywater and with aqueous tetraethylene glycol dimethyl ether solutions using a UV lamp and the photocatalyst TiO2 P25 in the presence and the absence of powdered activated carbon. The synergy factor, SF, was quantified as the ratio of photocatalytic oxidation rate constant in the presence of powdered activated carbon to the rate constant without activated carbon. No synergy was observed for the greywater concentrate (SF ≈ 1). For the aliphatic compound, tetraethylene glycol dimethyl ether, addition of activated carbon actually had an inhibiting effect on photocatalysis (SF < 1), while synergy was confirmed in reference experiments using aqueous phenol solutions. The absence of synergy for the greywater concentrate can be explained by low adsorbability of its organic constituents by activated carbon. Inhibition of the photocatalytic oxidation of tetraethylene glycol dimethyl ether by addition of powdered activated carbon was attributed to shading of the photocatalyst by the activated carbon particles. It was assumed that synergy in the hybrid process was limited to aromatic organics. Regardless of the lack of synergy in the case of biologically pretreated greywater, the addition of powdered activated carbon is advantageous since, due to additional adsorptive removal of organics, photocatalytic oxidation resulted in a 60% lower organic concentration when activated carbon was present after the same UV irradiation time. PMID:24191472
Yılmaz, Durmuşhan; Şahin, Engin; Dertli, Enes
2017-11-01
Chiral secondary alcohols are valuable intermediates for many important enantiopure pharmaceuticals and biologically active molecules. In this work, we studied asymmetric reduction of aromatic ketones to produce the corresponding chiral secondary alcohols using lactic acid bacteria (LAB) as new biocatalysts. Seven LAB strains were screened for their ability to reduce acetophenones to their corresponding alcohols. Among these strains, Lactobacillus paracasei BD101 was found to be the most successful at reducing the ketones to the corresponding alcohols. The reaction conditions were further systematically optimized for this strain and high enantioselectivity (99%) and very good yields were obtained. These secondary alcohols were further tested for their antimicrobial activities against important pathogens and significant levels of antimicrobial activities were observed although these activities were altered depending on the secondary alcohols as well as their enantiomeric properties. The current methodology demonstrates a promising and alternative green approach for the synthesis of chiral secondary alcohols of biological importance in a cheap, mild, and environmentally useful process. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Recent advance in oxazole-based medicinal chemistry.
Zhang, Hui-Zhen; Zhao, Zhi-Long; Zhou, Cheng-He
2018-01-20
Oxazole compounds containing nitrogen and oxygen atoms in the five-membered aromatic ring are readily able to bind with a variety of enzymes and receptors in biological systems via diverse non-covalent interactions, and thus display versatile biological activities. The related researches in oxazole-based derivatives including oxazoles, isoxazoles, oxazolines, oxadiazoles, oxazolidones, benzoxazoles and so on, as medicinal drugs have been an extremely active topic, and numerous excellent achievements have been acquired. Noticeably, a large number of oxazole compounds as clinical drugs or candidates have been frequently employed for the treatment of various types of diseases, which have shown their large development value and wide potential as medicinal agents. This work systematically reviewed the recent researches and developments of the whole range of oxazole compounds as medicinal drugs, including antibacterial, antifungal, antiviral, antitubercular, anticancer, anti-inflammatory and analgesic, antidiabetic, antiparasitic, anti-obesitic, anti-neuropathic, antioxidative as well as other biological activities. The perspectives of the foreseeable future in the research and development of oxazole-based compounds as medicinal drugs are also presented. It is hoped that this review will serve as a stimulant for new thoughts in the quest for rational designs of more active and less toxic oxazole medicinal drugs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Wong, Chin Ken; Mason, Alexander F; Stenzel, Martina H; Thordarson, Pall
2017-11-01
Polymersomes, made up of amphiphilic block copolymers, are emerging as a powerful tool in drug delivery and synthetic biology due to their high stability, chemical versatility, and surface modifiability. The full potential of polymersomes, however, has been hindered by a lack of versatile methods for shape control. Here we show that a range of non-spherical polymersome morphologies with anisotropic membranes can be obtained by exploiting hydrophobic directional aromatic interactions between perylene polymer units within the membrane structure. By controlling the extent of solvation/desolvation of the aromatic side chains through changes in solvent quality, we demonstrate facile access to polymersomes that are either ellipsoidal or tubular-shaped. Our results indicate that perylene aromatic interactions have a great potential in the design of non-spherical polymersomes and other structurally complex self-assembled polymer structures.
Tarkowská, Danuse; Dolezal, Karel; Tarkowski, Petr; Astot, Crister; Holub, Jan; Fuksová, Kvetoslava; Schmülling, Thomas; Sandberg, Göran; Strnad, Miroslav
2003-04-01
A search for naturally occurring aromatic cytokinins (ARCKs) in Arabidopsis thaliana plants and Populus x canadensis leaves led to the discovery of four new plant hormone substances: 6-(2-methoxybenzylamino)purine (ortho-methoxytopolin, MeoT), 6-(3-methoxybenzylamino)purine (meta-methoxytopolin, MemT) (Fig. 1) and their 9-beta-D-ribofuranosyl derivatives. These substances were identified by liquid chromatography electrospray ionization mass spectrometry [LC (+)ESI-MS] and capillary-liquid chromatography/frit-fast atom bombardment-mass spectrometry [CapLC/frit-FAB-MS] after pre-column derivatization. The chemical structures were subsequently confirmed by chemical synthesis. Because of lack of heavy labelled internal standards, the endogenous levels of methoxytopolins in A. thaliana plants, Populus x canadensis leaves and samples derived from cultures of Agrobacterium tumefaciens strain GV3101 were determined by enzyme-linked immunosorbent assay (ELISA) of HPLC-fractionated extracts. While the levels of MeoT, MemT and their ribosides in A. thaliana shoots and Populus x canadensis leaves were relatively low (approximately 0.25-10 pmol g-1 FW for MeoT and MemT, respectively), the A. tumefaciens strain produced up to 600 times more of the newly identified substances. Cytokinin activity of methoxytopolines was demonstrated in three bioassays testing their ability to stimulate tobacco callus growth, to delay chlorophyll degradation in excised wheat leaves, and to induce betacyanin synthesis in Amaranthus caudatus var. atropurpurea cotyledons. Notably, their anti-senescing activity in the wheat leaf assay exceeded that of BAP and Z by almost 200%. Methoxytopolins are proposed to be new members of the biologically active aromatic cytokinin family, which might have specific physiological functions.
Deekonda, Srinivas; Wugalter, Lauren; Kulkarni, Vinod; Rankin, David; Largent-Milnes, Tally M; Davis, Peg; Bassirirad, Neemah M; Lai, Josephine; Vanderah, Todd W; Porreca, Frank; Hruby, Victor J
2015-09-15
A new series of novel opioid ligands have been designed and synthesized based on the 4-anilidopiperidine scaffold containing a 5-substituted tetrahydronaphthalen-2yl)methyl group with different N-phenyl-N-(piperidin-4-yl)propionamide derivatives to study the biological effects of these substituents on μ and δ opioid receptor interactions. Recently our group reported novel 4-anilidopiperidine analogues, in which several aromatic ring-contained amino acids were conjugated with N-phenyl-N-(piperidin-4-yl)propionamide and examined their biological activities at the μ and δ opioid receptors. In continuation of our efforts in these novel 4-anilidopiperidine analogues, we took a peptidomimetic approach in the present design, in which we substituted aromatic amino acids with tetrahydronaphthalen-2yl methyl moiety with amino, amide and hydroxyl substitutions at the 5th position. In in vitro assays these ligands, showed very good binding affinity and highly selective toward the μ opioid receptor. Among these, the lead ligand 20 showed excellent binding affinity (2 nM) and 5000 fold selectivity toward the μ opioid receptor, as well as functional selectivity in GPI assays (55.20 ± 4.30 nM) and weak or no agonist activities in MVD assays. Based on the in vitro bioassay results the lead compound 20 was chosen for in vivo assessment for efficacy in naïve rats after intrathecal administration. Compound 20 was not significantly effective in alleviating acute pain. This discrepancy between high in vitro binding affinity, moderate in vitro activity, and low in vivo activity may reflect differences in pharmacodynamics (i.e., engaging signaling pathways) or pharmacokinetics (i.e., metabolic stability). In sum, our data suggest that further optimization of this compound 20 is required to enhance in vivo activity. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Porter, W. C.; Heald, C. L.; Safieddine, S.
2016-12-01
Rising temperatures associated with global warming can increase concentrations of tropospheric ozone (O3) in many regions worldwide, a correlation often described as the "ozone climate penalty". This effect is driven by a variety of underlying chemical, physical, and biological mechanisms, including temperature-dependent reaction rates, emissions of volatile organic compounds (VOCs) from trees and other plant life, and correlations with other meteorological variables. While many of the most important O3-producing VOCs, such as isoprene, are represented in typical chemical transport models such as GEOS-Chem, others - including aromatics from fires and human activity and monoterpenes from natural sources - are not always included in gas-phase chemistry. Here we examine the impact of increased VOC reactivity on the ozone climate penalty due to a more comprehensive treatment of aromatics and monoterpenes in the chemical transport model GEOS-Chem, finding regional impacts not only on daily O3 levels themselves, but also on the O3/temperature relationship. While many uncertainties related to the emissions and chemistry of these species remain, the impact of their inclusion on both current simulations and future projections indicates their importance towards the overall goal of more accurately modeled surface O3.
Kasmi, Manal; Aourach, Mohammed; El Boukari, Mohammed; Barrijal, Said; Essalmani, Haiat
2017-08-01
Grey mould is a major disease threatening the Moroccan tomato; this disease is often controlled by fungicides. However, the latter are a real danger to human health and environment. Thus, this study is part of the research of harmless alternatives such extracts of aromatic and medicinal plants (Lavandula officinalis, Thymus vulgaris, Cymbopogon citratus, and Melissa officinalis). In this study, the extracts of four medicinal and aromatic plants were tested for their antifungal potency in vitro and in vivo in order to select the most effective. The results show that, in vitro, the Lavandula officinalis, Thymus vulgaris and Cymbopogon citratus aqueous extracts all possess significant antifungal activity, whereas Melissa officinalis shows the least effective. Also in vivo only the aqueous extract of Cymbopogon citratus proves most effective against B. cinerea on tomato fruit. The test of the plants confirms that aqueous extracts of Cymbopogon citratus and Thymus vulgaris are most effective, while the aqueous extracts of Melissa officinalis and Lavandula officinalis always seem to be the least effective. Therefore, the aqueous extracts of Cymbopogon citratus and Thymus vulgaris are the most envisaged for the biological control of grey mould. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Microbial diversity and activity of an aged soil contaminated by polycyclic aromatic hydrocarbons.
Zhao, Xiaohui; Fan, Fuqiang; Zhou, Huaidong; Zhang, Panwei; Zhao, Gaofeng
2018-06-01
In-depth understanding of indigenous microbial assemblages resulted from aged contamination by polycyclic aromatic hydrocarbons (PAHs) is of vital importance in successful in situ bioremediation treatments. Soil samples of three boreholes were collected at 12 different vertical depths. Overall, the dominating three-ring PAHs (76.2%) were closely related to distribution patterns of soil dehydrogenase activity, microbial cell numbers, and Shannon biodiversity index (H') of indigenous microorganisms. High-molecular-weight PAHs tend to yield more diverse communities. Results from 16S rRNA analysis indicated that possible functional groups of PAH degradation include three species in Bacillus cereus group, Bacillus sp. SA Ant14, Nocardioides sp., and Ralstonia pickettii. Principal component analysis indicates significant positive correlations between the content of high-molecular-weight PAHs and the distribution of Bacillus weihenstephanensis KBAB4 and Nocardioides sp. The species B. cereus 03BB102, Bacillus thuringiensis, B. weihenstephanensis KBAB4, and Nocardioides sp. were recognized as main PAH degraders and thus recommended to be utilized in further bioremediation applications. The vertical distribution characteristics of PAHs in soil profiles (1-12 m) and the internal relationship between the transport mechanisms of PAHs and the response of soil biological properties help further understand the microbial diversity and activity in an aged site.
Han, Zhantao; Sani, Badruddeen; Akkanen, Jarkko; Abel, Sebastian; Nybom, Inna; Karapanagioti, Hrissi K; Werner, David
2015-04-09
Addition of activated carbon (AC) or biochar (BC) to sediment to reduce the chemical and biological availability of organic contaminants is a promising in-situ remediation technology. But concerns about leaving the adsorbed pollutants in place motivate research into sorbent recovery methods. This study explores the use of magnetic sorbents. A coal-based magnetic activated carbon (MAC) was identified as the strongest of four AC and BC derived magnetic sorbents for polycyclic aromatic hydrocarbons (PAHs) remediation. An 8.1% MAC amendment (w/w, equal to 5% AC content) was found to be as effective as 5% (w/w) pristine AC in reducing aqueous PAHs within three months by 98%. MAC recovery from sediment after three months was 77%, and incomplete MAC recovery had both, positive and negative effects. A slight rebound of aqueous PAH concentrations was observed following the MAC recovery, but aqueous PAH concentrations then dropped again after six months, likely due to the presence of the 23% unrecovered MAC. On the other hand, the 77% recovery of the 8.1% MAC dose was insufficient to reduce ecotoxic effects of fine grained AC or MAC amendment on the egestion rate, growth and reproduction of the AC sensitive species Lumbriculus variegatus. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, T K; Epler, J L; Guerin, M R
1980-01-01
In order to determine the long range health effects such as carcinogenicity/mutagenicity/teratogenicity/toxicity, associated with the newly emerging energy technologies, we have utilized the Ames Salmonella assay to evaluate mutagenic properties of synthetic fuels. Coupling with class fractionation was necessary. Organic extraction and liquid/liquid partitioning was used to separate acidic and basic fraction. The neutral material was separated using Sephadex LH-20 gel filtration into saturated and aromatic fractions of various ring sizes. The alkaline fraction was subfractionated eluting with benzene and ethanol on a basic alumina column and then with isopropanol and acetone using a Sephadex LH-20 gel column. The frameshiftmore » strain TA-98 was utilized along with Aroclor-induced rat liver homogenate (S-9 mix) for the mutagenicity assay. The natural crude oils were slightly mutagenic, the polynucleararomatics constituting the activity, while the coal-derived fuels indicated mutagenicity associated with alkaline constituents as well as polyaromatics. Hydrotreated coal (H-coal, HDT) or Shale (Paraho-Shale oil, HDT) derived fuels were not mutagenic. Ninety percent of the mutagenic activity in alkaline fraction was recovered in the acetone subfraction. High resolution spectroscopy of this fraction indicates polycyclic aromatic primary amines along with azaarenes as organic constituents responsible for the mutagenic activity associated with shale- and coal-derived fuels.« less
BILIARY PAH METABOLITES AS A BIOLOGICAL INDICATOR OF FISH EXPOSURE IN TRIBUTARIES OF LAKE ERIE
Biliary polynuclear aromatic hydrocarbons (PAH) metabolites have been studied as a biological indicator of fish exposure to PAHs since the mid 1980's. Brown bullheads were collected from the following Lake Erie tributaries: Buffalo River (BUF), Niagara River at Love Canal (NIA)...
Guetat, Arbi; Boulila, Abdennacer; Boussaid, Mohamed
2018-04-16
The present study describes the chemical composition of the essential oil of different plant parts of Devrra tortuosa; in vivo and in vitro biological activities of plant extract and essential oils. Apiol was found to be the major component of the oil (between 65.73% and 74.41%). The best antioxidant activities were observed for the oil of flowers (IC50 = 175 μg/ml). The samples of stems and roots exhibit lower antioxidant activity (IC50 = 201 μg/ml and 182 μg/ml, respectively). The values of IC50 showed that the extracts of methanol exhibit the highest antioxidants activities (IC50 = 64.8 102 μg/ml). EOs showed excellent antifungal activity against yeasts with low azole susceptibilities (i.e. Malassezia spp. and Candida krusei). The MIC values of oils varied between 2.85 mg/mL and 27 mg/mL. The obtained results also showed that the plant extracts inhibited the germination and the shoot and root growth of Triticum æstivum seedlings.
Bhargava, Dinesh; Karthikeyan, C; Moorthy, N S H N; Trivedi, Piyush
2009-09-01
QSAR study was carried out for a series of piperazinyl phenylalanine derivatives exhibiting VLA-4/VCAM-1 inhibitory activity to find out the structural features responsible for the biological activity. The QSAR study was carried out on V-life Molecular Design Suite software and the derived best QSAR model by partial least square (forward) regression method showed 85.67% variation in biological activity. The statistically significant model with high correlation coefficient (r2=0.85) was selected for further study and the resulted validation parameters of the model, crossed squared correlation coefficient (q2=0.76 and pred_r2=0.42) show the model has good predictive ability. The model showed that the parameters SaaNEindex, SsClcount slogP,and 4PathCount are highly correlated with VLA-4/VCAM-1 inhibitory activity of piperazinyl phenylalanine derivatives. The result of the study suggests that the chlorine atoms in the molecule and fourth order fragmentation patterns in the molecular skeleton favour VLA-4/VCAM-1 inhibition shown by the title compounds whereas lipophilicity and nitrogen bonded to aromatic bond are not conducive for VLA-4/VCAM-1 inhibitory activity.
Chlorodifluoromethane-triggered formation of difluoromethylated arenes catalysed by palladium
NASA Astrophysics Data System (ADS)
Feng, Zhang; Min, Qiao-Qiao; Fu, Xia-Ping; An, Lun; Zhang, Xingang
2017-09-01
Difluoromethylated aromatic compounds are of increasing importance in pharmaceuticals, agrochemicals and materials. Chlorodifluoromethane (ClCF2H), an inexpensive, abundant and widely used industrial raw material, represents the ideal and most straightforward difluoromethylating reagent, but introduction of the difluoromethyl group (CF2H) from ClCF2H into aromatics has not been reported. Here, we describe a direct palladium-catalysed difluoromethylation method for coupling ClCF2H with arylboronic acids and esters to generate difluoromethylated arenes with high efficiency. The reaction exhibits a remarkably broad substrate scope, including heteroarylboronic acids, and was used for difluoromethylation of a range of pharmaceuticals and biologically active compounds. Preliminary mechanistic studies revealed that a palladium difluorocarbene intermediate is involved in the reaction. Although numerous metal-difluorocarbene complexes have been prepared, the catalytic synthesis of difluoromethylated or difluoromethylenated compounds involving metal-difluorocarbene complexes has not received much attention. This new reaction therefore also opens the door to understand metal-difluorocarbene complex catalysed reactions.
2009-01-01
The 190-kDa Paenibacillus β-1,3-glucanase (LamA) contains a catalytic module of the glycoside hydrolase family 16 (GH16) and several auxiliary domains. Of these, a discoidin domain (DS domain), present in both eukaryotic and prokaryotic proteins with a wide variety of functions, exists at the carboxyl-terminus. To better understand the bacterial DS domain in terms of its structure and function, this domain alone was expressed in Escherichia coli and characterized. The results indicate that the DS domain binds various polysaccharides and enhances the biological activity of the GH16 module on composite substrates. We also investigated the importance of several conserved aromatic residues in the domain's stability and substrate-binding affinity. Both were affected by mutations of these residues; however, the effect on protein stability was more notable. In particular, the forces contributed by a sandwiched triad (W1688, R1756, and W1729) were critical for the presumable β-sandwich fold. PMID:19930717
Duran, Robert; Cravo-Laureau, Cristiana
2016-01-01
Polycyclic aromatic hydrocarbons (PAHs) are widespread in marine ecosystems and originate from natural sources and anthropogenic activities. PAHs enter the marine environment in two main ways, corresponding to chronic pollution or acute pollution by oil spills. The global PAH fluxes in marine environments are controlled by the microbial degradation and the biological pump, which plays a role in particle settling and in sequestration through bioaccumulation. Due to their low water solubility and hydrophobic nature, PAHs tightly adhere to sediments leading to accumulation in coastal and deep sediments. Microbial assemblages play an important role in determining the fate of PAHs in water and sediments, supporting the functioning of biogeochemical cycles and the microbial loop. This review summarises the knowledge recently acquired in terms of both chronic and acute PAH pollution. The importance of the microbial ecology in PAH-polluted marine ecosystems is highlighted as well as the importance of gaining further in-depth knowledge of the environmental services provided by microorganisms. PMID:28201512
Mutagens and carcinogens - Occurrence and role during chemical and biological evolution
NASA Technical Reports Server (NTRS)
Giner-Sorolla, A.; Oro, J.
1981-01-01
The roles of mutagenic and carcinogenic substances in early biologic evolution is examined, along with terrestrial and extraterrestrial sources of mutagens and carcinogens. UV solar radiation is noted to have served to stimulate prebiotic life while also causing harmful effects in plants and animals. Aromatic compounds have been found in meteorites, and comprise leukemogens, polycyclic hydrocarbons, and nitrasamine precursors. Other mutagenic sources are volcanoes, and the beginning of evolution with mutagenic substances is complicated by the appearance of malignancies due to the presence of carcinogens. The atmosphere of the Precambrian period contained both mutagens and early carcinogens and, combined with volcanic activity discharges, formed an atmospheric chemical background analogous to the background ionizing radiation. Carcinogenesis is concluded to be intrinsic to nature, having initiated evolution and, eventually, cancer cells.
Poly(arylene ether)s That Resist Atomic Oxygen
NASA Technical Reports Server (NTRS)
Connell, John W.; Hergenrother, Paul; Smith, Joseph G., Jr.
1994-01-01
Novel poly(arylene ether)s containing phosphine oxide (PAEPO's) made via aromatic nucleophilic displacement reactions of activated aromatic dihalides (or, in some cases, activated aromatic dinitro compounds) with new bisphenol monomers containing phosphine oxide. Exhibited favorable combination of physical and mechanical properties and resistance to monatomic oxygen in oxygen plasma environment. Useful as adhesives, coatings, films, membranes, moldings, and composite matrices.
Potential of Penicillium Species in the Bioremediation Field
Leitão, Ana Lúcia
2009-01-01
The effects on the environment of pollution, particularly that caused by various industrial activities, have been responsible for the accelerated fluxes of organic and inorganic matter in the ecosphere. Xenobiotics such as phenol, phenolic compounds, polycyclic aromatic hydrocarbons (PAHs), and heavy metals, even at low concentrations, can be toxic to humans and other forms of life. Many of the remediation technologies currently being used for contaminated soil and water involve not only physical and chemical treatment, but also biological processes, where microbial activity is the responsible for pollutant removal and/or recovery. Fungi are present in aquatic sediments, terrestrial habitats and water surfaces and play a significant part in natural remediation of metal and aromatic compounds. Fungi also have advantages over bacteria since fungal hyphae can penetrate contaminated soil, reaching not only heavy metals but also xenobiotic compounds. Despite of the abundance of such fungi in wastes, penicillia in particular have received little attention in bioremediation and biodegradation studies. Additionally, several studies conducted with different strains of imperfecti fungi, Penicillium spp. have demonstrated their ability to degrade different xenobiotic compounds with low co-substrate requirements, and could be potentially interesting for the development of economically feasible processes for pollutant transformation. PMID:19440525
Wang, Sai-Jun; Wu, Zhen-Feng; Yang, Ming; Wang, Ya-Qi; Hu, Peng-Yi; Jie, Xiao-Lu; Han, Fei; Wang, Fang
2014-09-01
Aromatic traditional Chinese medicines have a long history in China, with wide varieties. Volatile oils are active ingredients extracted from aromatic herbal medicines, which usually contain tens or hundreds of ingredients, with many biological activities. Therefore, volatile oils are often used in combined prescriptions and made into various efficient preparations for oral administration or external use. Based on the sources from the database of Newly Edited National Chinese Traditional Patent Medicines (the second edition), the author selected 266 Chinese patent medicines containing volatile oils in this paper, and then established an information sheet covering such items as name, dosage, dosage form, specification and usage, and main functions. Subsequently, on the basis of the multidisciplinary knowledge of pharmaceutics, traditional Chinese pharmacology and basic theory of traditional Chinese medicine, efforts were also made in the statistics of the dosage form and usage, variety of volatile oils and main functions, as well as the status analysis on volatile oils in terms of the dosage form development, prescription development, drug instruction and quality control, in order to lay a foundation for the further exploration of the market development situations of volatile oils and the future development orientation.
Genotoxic effects of structurally related beta-carboline alkaloids.
Picada, J N; da Silva, K V; Erdtmann, B; Henriques, A T; Henriques, J A
1997-10-06
beta-Carboline alkaloids, found in medicinal plants, tobacco smoke and well-cooked foods, have shown a variety of actions in biological systems related to their interaction with DNA. Therefore, these alkaloids can be considered potentially mutagenic. In this work, the genotoxic, mutagenic, and cytotoxic activities of three aromatic beta-carboline alkaloids (harman, harmine, and harmol) and two dihydro-beta-carboline alkaloids (harmaline and harmalol) were evaluated by means of the Salmonella/microsome assay (Salmonella typhimurium TA98, TA97, TA100, and TA102) and SOS chromotest (Escherichia coli PQ37) with and without metabolic activation. Moreover, harman and harmine were analyzed by the micronucleus assay in vivo. It was shown that genotoxicity was inhibited by the addition of S9 mix for aromatic beta-carbolines harman and harmol in TA97. However, harmine showed signs of mutagenicity only in the presence of S9 mix in TA98 and TA97 frameshift strains. In the SOS chromotest, only harman induced SOS functions in the absence of S9 mix. Dihydro-beta-carbolines were not genotoxic in any of the microorganisms used. The negative responses obtained in the micronucleus assay indicated that harman and harmine were not able to induce chromosomal mutations.
Chemical Composition and Bioactivity of Essential Oil from Blepharocalyx salicifolius
Furtado, Fabiana Barcelos; Borges, Bruna Cristina; Teixeira, Thaise Lara; de Almeida Junior, Luiz Domingues; Alves, Fernanda Cristina Bérgamo; da Silva, Claudio Vieira
2018-01-01
Natural products represent a source of biologically active molecules that have an important role in drug discovery. The aromatic plant Blepharocalyx salicifolius has a diverse chemical constitution but the biological activities of its essential oils have not been thoroughly investigated. The aims of this paper were to evaluate in vitro cytotoxic, antifungal and antibacterial activities of an essential oil from leaves of B. salicifolius and to identify its main chemical constituents. The essential oil was extracted by steam distillation, chemical composition was determined by gas chromatography/mass spectrometry, and biological activities were performed by a microdilution broth method. The yield of essential oil was 0.86% (w/w), and the main constituents identified were bicyclogermacrene (17.50%), globulol (14.13%), viridiflorol (8.83%), γ-eudesmol (7.89%) and α-eudesmol (6.88%). The essential oil was cytotoxic against the MDA-MB-231 (46.60 μg·mL−1) breast cancer cell line, being more selective for this cell type compared to the normal breast cell line MCF-10A (314.44 μg·mL−1). Flow cytometry and cytotoxicity results showed that this oil does not act by inducing cell death, but rather by impairment of cellular metabolism specifically of the cancer cells. Furthermore, it presented antifungal activity against Paracoccidioides brasiliensis (156.25 μg·mL−1) but was inactive against other fungi and bacteria. Essential oil from B. salicifolius showed promising biological activities and is therefore a source of molecules to be exploited in medicine or by the pharmaceutical industry. PMID:29300307
Vitale, Rosa Maria; Rispoli, Vincenzo; Desiderio, Doriana; Sgammato, Roberta; Thellung, Stefano; Canale, Claudio; Vassalli, Massimo; Carbone, Marianna; Ciavatta, Maria Letizia; Mollo, Ernesto; Felicità, Vera; Arcone, Rosaria; Gavagnin Capoggiani, Margherita; Masullo, Mariorosario; Florio, Tullio; Amodeo, Pietro
2018-03-07
Multitargeting or polypharmacological approaches, looking for single chemical entities retaining the ability to bind two or more molecular targets, are a potentially powerful strategy to fight complex, multifactorial pathologies. Unfortunately, the search for multiligand agents is challenging because only a small subset of molecules contained in molecular databases are bioactive and even fewer are active on a preselected set of multiple targets. However, collections of natural compounds feature a significantly higher fraction of bioactive molecules than synthetic ones. In this view, we searched our library of 1175 natural compounds from marine sources for molecules including a 2-aminoimidazole+aromatic group motif, found in known compounds active on single relevant targets for Alzheimer's disease (AD). This identified two molecules, a pseudozoanthoxanthin (1) and a bromo-pyrrole alkaloid (2), which were predicted by a computational approach to possess interesting multitarget profiles on AD target proteins. Biochemical assays experimentally confirmed their biological activities. The two compounds inhibit acetylcholinesterase, butyrylcholinesterase, and β-secretase enzymes in high- to sub-micromolar range. They are also able to prevent and revert β-amyloid (Aβ) aggregation of both Aβ 1-40 and Aβ 1-42 peptides, with 1 being more active than 2. Preliminary in vivo studies suggest that compound 1 is able to restore cholinergic cortico-hippocampal functional connectivity.
Davis, Matthew R.; Dougherty, Dennis A.
2015-01-01
Cation-π interactions are common in biological systems, and many structural studies have revealed the aromatic box as a common motif. With the aim of understanding the nature of the aromatic box, several computational methods were evaluated for their ability to reproduce experimental cation-π binding energies. We find the DFT method M06 with the 6-31G(d,p) basis set performs best of several methods tested. The binding of benzene to a number of different cations (sodium, potassium, ammonium, tetramethylammonium, and guanidinium) was studied. In addition, the binding of the organic cations NH4+ and NMe4+ to ab initio generated aromatic boxes as well as examples of aromatic boxes from protein crystal structures were investigated. These data, along with a study of the distance dependence of the cation-π interaction, indicate that multiple aromatic residues can meaningfully contribute to cation binding, even with displacements of more than an angstrom from the optimal cation-π interaction. Progressive fluorination of benzene and indole was studied as well, and binding energies obtained were used to reaffirm the validity of the “fluorination strategy” to study cation-π interactions in vivo. PMID:26467787
Davis, Matthew R; Dougherty, Dennis A
2015-11-21
Cation-π interactions are common in biological systems, and many structural studies have revealed the aromatic box as a common motif. With the aim of understanding the nature of the aromatic box, several computational methods were evaluated for their ability to reproduce experimental cation-π binding energies. We find the DFT method M06 with the 6-31G(d,p) basis set performs best of several methods tested. The binding of benzene to a number of different cations (sodium, potassium, ammonium, tetramethylammonium, and guanidinium) was studied. In addition, the binding of the organic cations NH4(+) and NMe4(+) to ab initio generated aromatic boxes as well as examples of aromatic boxes from protein crystal structures were investigated. These data, along with a study of the distance dependence of the cation-π interaction, indicate that multiple aromatic residues can meaningfully contribute to cation binding, even with displacements of more than an angstrom from the optimal cation-π interaction. Progressive fluorination of benzene and indole was studied as well, and binding energies obtained were used to reaffirm the validity of the "fluorination strategy" to study cation-π interactions in vivo.
Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes.
Vargas-Tah, Alejandra; Gosset, Guillermo
2015-01-01
The aromatic compounds cinnamic and p-hydroxycinnamic acids (pHCAs) are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic, and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings, such as the generation of toxic subproducts or a low concentration in plant material. Alternative production methods are being developed to enable the biotechnological production of cinnamic and (pHCAs) by genetically engineering various microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pseudomonas putida, and Streptomyces lividans. The natural capacity to synthesize these aromatic acids is not existent in these microbial species. Therefore, genetic modification have been performed that include the heterologous expression of genes encoding phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities, which catalyze the conversion of l-phenylalanine (l-Phe) and l-tyrosine (l-Tyr) to cinnamic acid and (pHCA), respectively. Additional host modifications include the metabolic engineering to increase carbon flow from central metabolism to the l-Phe or l-Tyr biosynthetic pathways. These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate. These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass. A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement.
Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes
Vargas-Tah, Alejandra; Gosset, Guillermo
2015-01-01
The aromatic compounds cinnamic and p-hydroxycinnamic acids (pHCAs) are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic, and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings, such as the generation of toxic subproducts or a low concentration in plant material. Alternative production methods are being developed to enable the biotechnological production of cinnamic and (pHCAs) by genetically engineering various microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pseudomonas putida, and Streptomyces lividans. The natural capacity to synthesize these aromatic acids is not existent in these microbial species. Therefore, genetic modification have been performed that include the heterologous expression of genes encoding phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities, which catalyze the conversion of l-phenylalanine (l-Phe) and l-tyrosine (l-Tyr) to cinnamic acid and (pHCA), respectively. Additional host modifications include the metabolic engineering to increase carbon flow from central metabolism to the l-Phe or l-Tyr biosynthetic pathways. These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate. These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass. A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement. PMID:26347861
5-Hydroxyindoles by intramolecular alkynol-furan diels-alder cycloaddition.
LaPorte, Matthew; Hong, Ki Bum; Xu, Jie; Wipf, Peter
2013-01-04
A convergent approach provides a convenient access to synthetically and biologically useful 3,4-disubstituted 5-hydroxyindoles. The one-pot procedure uses microwave heating to initiate an intramolecular [4 + 2]-cycloaddition of an alkynol segment onto a furan followed by a fragmentation, aromatization, and N-Boc deprotection cascade. Yields range from 15 to 74%, with aromatic substituents providing better conversions. 4-Trimethylsilylated analogues undergo a 1,3-silatropic rearrangement to give the O-TMS ethers.
Jahn, Linda; Schafhauser, Thomas; Wibberg, Daniel; Rückert, Christian; Winkler, Anika; Kulik, Andreas; Weber, Tilmann; Flor, Liane; van Pée, Karl-Heinz; Kalinowski, Jörn; Ludwig-Müller, Jutta; Wohlleben, Wolfgang
2017-09-10
Fungal aromatic polyketides display a very diverse and widespread group of natural products. Due to their excellent light absorption properties and widely studied biological activities, they offer numerous application for food, textile and pharmaceutical industry. The biosynthetic pathways of fungal aromatic polyketides usually involve a set of successive enzymes, in which a non-reductive polyketide synthase iteratively catalyzes the essential assembly of simple building blocks into (often polycyclic) aromatic compounds. However, only a limited number of such pathways have been described so far and further elucidation of the individual biosynthetic steps is needed to fully exploit the biotechnological and medicinal potential of these compounds. Here, we identified the bisanthraquinone skyrin as the main pigment of the fungus Cyanodermella asteris, an endophyte that has recently been isolated from the traditional Chinese medicinal plant Aster tataricus. The genome of C. asteris was sequenced, assembled and annotated, which enables first insights into a genome from a non-lichenized member of the class Lecanoromycetes. Genetic and in silico analyses led to the identification of a gene cluster of five genes suggested to encode the enzymatic pathway for skyrin. Our study is a starting point for rational pathway engineering in order to drive the production towards higher yields or more active derivatives. Moreover, our investigations revealed a large potential of secondary metabolite production in C. asteris as well as in all Lecanoromycetes of which genomes were available. These findings convincingly emphasize that Lecanoromycetes are prolific producers of secondary metabolites. Copyright © 2017 Elsevier B.V. All rights reserved.
Medicinally important aromatic plants with radioprotective activity
Samarth, Ravindra M; Samarth, Meenakshi; Matsumoto, Yoshihisa
2017-01-01
Aromatic plants are often used as natural medicines because of their remedial and inherent pharmacological properties. Looking into natural resources, particularly products of plant origin, has become an exciting area of research in drug discovery and development. Aromatic plants are mainly exploited for essential oil extraction for applications in industries, for example, in cosmetics, flavoring and fragrance, spices, pesticides, repellents and herbal beverages. Although several medicinal plants have been studied to treat various conventional ailments only a handful studies are available on aromatic plants, especially for radioprotection. Many plant extracts have been reported to contain antioxidants that scavenge free radicals produced due to radiation exposure, thus imparting radioprotective efficacy. The present review focuses on a subset of medicinally important aromatic plants with radioprotective activity. PMID:29134131
Lécrivain, Nathalie; Aurenche, Vincent; Cottin, Nathalie; Frossard, Victor; Clément, Bernard
2018-04-01
The lake littoral sediment is exposed to a large array of contaminants that can exhibit significant spatial variability and challenge our ability to assess contamination at lake scale. In this study, littoral sediment contamination was characterized among ten different sites in a large peri-alpine lake (Lake Bourget) regarding three groups of contaminants: 6 heavy metals, 15 polycyclic aromatic hydrocarbons and 7 polychlorinated biphenyls. The contamination profiles significantly varied among sites and differed from those previously reported for the deepest zone of the lake. An integrative approach including chemical and biological analyses was conducted to relate site contamination to ecological risk. The chemical approach consisted in mean PEC quotient calculation (average of the ratios of the contaminants concentration to their corresponding Probable Effect Concentration values) and revealed a low and heterogeneous toxicity of the contaminant mixture along the littoral. Biological analysis including both laboratory (microcosm assays) and in situ (Acetylcholine Esterase (AChE) and Glutathione S-Transferase (GST) activity measurements) experiments highlighted significant differences among sites both in the field and in laboratory assays suggesting a spatial variation of the biota response to contamination. Linear regressions were performed between mean PEC quotients and biological results to assess whether littoral ecological risk was explained by the contamination profiles. The results highly depended on the study benthic or pelagic compartment. Regarding autochthonous Corbicula fluminea, no significant relationship between mean PEC quotients and biomarker activity was found while a significant increase in AChE was observed on autochthonous chironomids, suggesting different stress among benthic organisms. Both AChE and GST in caged pelagic Daphnia magna showed a significant positive relationship with mean PEC quotients. This study underlines the importance of accounting for spatial variations in lake littoral sediment contamination and the need for performing an integrative approach coupling chemical, field and laboratory analyses to assess the ecological risk. Copyright © 2017 Elsevier B.V. All rights reserved.
Toledano-Magaña, Yanis; García-Ramos, Juan Carlos; Navarro-Olivarria, Marisol; Flores-Alamo, Marcos; Manzanera-Estrada, Mayra; Ortiz-Frade, Luis; Galindo-Murillo, Rodrigo; Ruiz-Azuara, Lena; Meléndrez-Luevano, Ruth Ma; Cabrera-Vivas, Blanca M
2015-05-29
Four new hydrazones were synthesized by the condensation of the selected hydrazine and the appropriate nitrobenzaldehyde. A complete characterization was done employing 1H- and 13C-NMR, electrochemical techniques and theoretical studies. After the characterization and electrochemical analysis of each compound, amoebicidal activity was tested in vitro against the HM1:IMSS strain of Entamoeba histolytica. The results showed the influence of the nitrobenzene group and the hydrazone linkage on the amoebicidal activity. meta-Nitro substituted compound 2 presents a promising amoebicidal activity with an IC50 = 0.84 μM, which represents a 7-fold increase in cell growth inhibition potency with respect to metronidazole (IC50 = 6.3 μM). Compounds 1, 3, and 4 show decreased amoebicidal activity, with IC50 values of 7, 75 and 23 µM, respectively, as a function of the nitro group position on the aromatic ring. The observed differences in the biological activity could be explained not only by the redox potential of the molecules, but also by their capacity to participate in the formation of intra- and intermolecular hydrogen bonds. Redox potentials as well as the amoebicidal activity can be described with parameters obtained from the DFT analysis.
Joshi, Dev Raj; Zhang, Yu; Zhang, Hong; Gao, Yingxin; Yang, Min
2018-01-01
Nitrogenous heterocyclic compounds are key pollutants in coking wastewater; however, the functional potential of microbial communities for biodegradation of such contaminants during biological treatment is still elusive. Herein, a high throughput functional gene array (GeoChip 5.0) in combination with Illumina HiSeq2500 sequencing was used to compare and characterize the microbial community functional structure in a long run (500days) bench scale bioreactor treating coking wastewater, with a control system treating synthetic wastewater. Despite the inhibitory toxic pollutants, GeoChip 5.0 detected almost all key functional gene (average 61,940 genes) categories in the coking wastewater sludge. With higher abundance, aromatic ring cleavage dioxygenase genes including multi ring1,2diox; one ring2,3diox; catechol represented significant functional potential for degradation of aromatic pollutants which was further confirmed by Illumina HiSeq2500 analysis results. Response ratio analysis revealed that three nitrogenous compound degrading genes- nbzA (nitro-aromatics), tdnB (aniline), and scnABC (thiocyanate) were unique for coking wastewater treatment, which might be strong cause to increase ammonia level during the aerobic process. Additionally, HiSeq2500 elucidated carbozole and isoquinoline degradation genes in the system. These findings expanded our understanding on functional potential of microbial communities to remove organic nitrogenous pollutants; hence it will be useful in optimization strategies for biological treatment of coking wastewater. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghattyvenkatakrishna, Pavan K; Uberbacher, Edward C
2013-01-01
The presence of an unusually large number of aromatic residues in the active site gorge of acetylcholinesterase has been a topic of great interest. Flexibility of these residues has been suspected to be a key player in controlling ligand traversal in the gorge. This raises the question of whether the over representation of aromatic residues in the gorge implies higher than normal flexibility of those residues. The current study suggests that it does not. Large changes in the hydrophobic cross sectional area due to dihedral oscillations are probably the reason behind their presence in the gorge.
Novel Structures of Self-Associating Stapled Peptides
Bhattacharya, Shibani; Zhang, Hongtao; Cowburn, David; Debnath, Asim K.
2012-01-01
Hydrocarbon stapling of peptides is a powerful technique to transform linear peptides into cell-permeable helical structures that can bind to specific biological targets. In this study, we have used high resolution solution NMR techniques complemented by Dynamic Light Scattering to characterize extensively a family of hydrocarbon stapled peptides with known inhibitory activity against HIV-1 capsid assembly to evaluate the various factors that modulate activity. The helical peptides share a common binding motif but differ in charge, the length and position of the staple. An important outcome of the study was to show the peptides share a propensity to self-associate into organized polymeric structures mediated predominantly by hydrophobic interactions between the olefinic chain and the aromatic side-chains from the peptide. We have also investigated in detail the structural significance of the length and position of the staple, and of olefinic bond isomerization in stabilizing the helical conformation of the peptides as potential factors driving polymerization. This study presents the numerous challenges of designing biologically active stapled peptides and the conclusions have broad implications for optimizing a promising new class of compounds in drug discovery. PMID:22170623
A constitutively active dioxin/aryl hydrocarbon receptor induces stomach tumors
NASA Astrophysics Data System (ADS)
Andersson, Patrik; McGuire, Jacqueline; Rubio, Carlos; Gradin, Katarina; Whitelaw, Murray L.; Pettersson, Sven; Hanberg, Annika; Poellinger, Lorenz
2002-07-01
The dioxin/aryl hydrocarbon receptor (AhR) functions as a ligand-activated transcription factor regulating transcription of a battery of genes encoding xenobiotic metabolizing enzymes. Known receptor ligands are environmental pollutants including polycyclic aromatic hydrocarbons and polychlorinated dioxins. Loss-of-function (gene-disruption) studies in mice have demonstrated that the AhR is involved in toxic effects of dioxins but have not yielded unequivocal results concerning the physiological function of the receptor. Gain-of-function studies therefore were performed to unravel the biological functions of the AhR. A constitutively active AhR expressed in transgenic mice reduced the life span of the mice and induced tumors in the glandular part of the stomach, demonstrating the oncogenic potential of the AhR and implicating the receptor in regulation of cell proliferation.
Ramasubba Rao, Vidadala; Muthenna, Puppala; Shankaraiah, Gundeti; Akileshwari, Chandrasekhar; Hari Babu, Kothapalli; Suresh, Ganji; Suresh Babu, Katragadda; Chandra Kumar, Rotte Sateesh; Rajendra Prasad, Kothakonda; Ashok Yadav, Potharaju; Petrash, J. Mark; Bhanuprakash Reddy, Geereddy; Madhusudana Rao, Janaswamy
2013-01-01
As a continuation of our efforts directed towards the development of anti-diabetic agents from natural sources, piplartine was isolated from Piper chaba, and was found to inhibit recombinant human ALR2 with an IC50 of 160 µM. To improve the efficacy, a series of analogues have been synthesized by modification of the styryl/aromatic and heterocyclic ring functionalities of this natural product lead. All the derivatives were tested for their ALR2 inhibitory activity, and results indicated that adducts 3c, 3e and 2j prepared by the Michael addition of piplartine with indole derivatives displayed potent ARI activity, while the other compounds displayed varying degrees of inhibition. The active compounds were also capable of preventing sorbitol accumulation in human red blood cells. PMID:23124161
SEDIMENT-ASSOCIATED REACTIONS OF AROMATIC AMINES: QSAR DEVELOPMENT
Despite the common occurrence of the aromatic amine functional group in environmental contaminants, few quantitative structure-activity relationships (QSARs) have been developed to predict sorption kinetics for aromatic amines in natural soils and sediments. Towards the goal of d...
Increased electrical conductivity of peptides through annealing process
NASA Astrophysics Data System (ADS)
Namgung, Seok Daniel; Lee, Jaehun; Choe, Ik Rang; Sung, Taehoon; Kim, Young-O.; Lee, Yoon-Sik; Nam, Ki Tae; Kwon, Jang-Yeon
2017-08-01
Biocompatible biologically occurring polymer is suggested as a component of human implantable devices since conventional inorganic materials are apt to trigger inflammation and toxicity problem within human body. Peptides consisting of aromatic amino acid, tyrosine, are chosen, and enhancement on electrical conductivity is studied. Annealing process gives rise to the decrease on resistivity of the peptide films and the growth of the carrier concentration is a plausible reason for such a decrease on resistivity. The annealed peptides are further applied to an active layer of field effect transistor, in which low on/off current ratio (˜10) is obtained.
Tamaru, Yoshiaki; Umezawa, Kiwamu; Yoshida, Makoto
2018-07-01
The aim of the study was to obtain information about the enzymatic properties of aryl-alcohol oxidase from the plant saprophytic basidiomycete Coprinopsis cinerea (rCcAAO), which is classified into the auxiliary activities family 3 subfamily 2 (AA3_2). The gene encoding AAO from the plant saprophytic basidiomycete Coprinopsis cinerea (CcAAO) was cloned, and the recombinant CcAAO (rCcAAO) was heterologously expressed in the methylotrophic yeast Pichia pastoris. The purified rCcAAO showed significant activity not only against trans,trans-2,4-hexadien-1-ol but also against a broad range of aromatic alcohols including aromatic compounds that were reported to be poor substrates for known AAOs. Moreover, site-directed mutagenesis analysis demonstrated that mutants with substitutions from leucine to phenylalanine and tryptophan at position 416 exhibited decreases of activity for aromatic alcohols but still maintained the activity for trans,trans-2,4-hexadien-1-ol. Leucine 416 in CcAAO contributes to the broad substrate specificity against various aromatic alcohols, which is useful for the production of hydrogen peroxide using this enzyme.
NASA Astrophysics Data System (ADS)
Sanader, Željka; Brunet, Claire; Broyer, Michel; Antoine, Rodolphe; Dugourd, Philippe; Mitrić, Roland; Bonačić-Koutecký, Vlasta
2013-05-01
We have theoretically investigated the influence of protons and noble metal cations on optical properties of 2,4-dinitrophenylhydrazine (DNPH). We show that optical properties of aromatic rings can be tuned by cation-induced electrochromism in DNPH due to binding to specific NO2 groups. Our findings on cation-induced electrochromism in DNPH may open new routes in two different application areas, due to the fact that DNPH can easily bind to biological molecules and surface materials through carbonyl groups.
Synthesis of thermally stable polypyrazoles, polypyrimidines and other heteroaromatic polymers
NASA Technical Reports Server (NTRS)
Bass, R. G.
1986-01-01
As part of a continuing effort to prepare high performance-high temperature polymers for functional and structural applications, the reactions of aromatic dipropynones with aromatic dihydrazine, aromatic dithiols, and aromatic diamidines to provide polypyrazoles, polyenonesulfides, and polypyrimidines respectively were investigated. During the past year, it was demonstrated that polypyrazoles and polyenonesulfides may be prepared by the proposed procedures. However, the preparation of polypyrimidines was not achieved. The preparation and characterization of some polypyrazolones by reaction or aromatic dihydrazines with an activated diacetylenic diester was achieved.
Benabdelkader, Tarek; Zitouni, Abdelghani; Guitton, Yann; Jullien, Frédéric; Maitre, Dany; Casabianca, Hervé; Legendre, Laurent; Kameli, Abdelkrim
2011-05-01
In an effort to develop local productions of aromatic and medicinal plants, a comprehensive assessment of the composition and biological activities of the essential oils (EOs) extracted from the aerial flowering parts of wild growing Lavandula stoechas L. collected from eleven different locations in northern Algeria was performed. The oils were characterized by GC-FID and GC/MS analyses, and 121 compounds were identified, accounting for 69.88-91.2% of the total oil compositions. The eleven oils greatly differed in their compositions, since only 66 compounds were common to all oils. Major EO components were fenchone (2; 11.27-37.48%), camphor (3, 1.94-21.8%), 1,8-cineole (1; 0.16-8.71%), and viridiflorol (10; 2.89-7.38%). The assessed in vitro biological properties demonstrated that the DPPH-based radical-scavenging activities and the inhibition of the β-carotene/linoleic acid-based lipid oxidation differed by an eight-fold factor between the most and the least active oils and were linked to different sets of molecules in the different EOs. The eleven EOs exhibited good antimicrobial activities against most of the 16 tested strains of bacteria, filamentous fungi, and yeasts, with minimum inhibitory concentrations (MICs) ranging from 0.16 to 11.90 mg/ml. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.
Cébron, Aurélie; Cortet, Jérôme; Criquet, Stéven; Biaz, Asmaa; Calvert, Virgile; Caupert, Cécile; Pernin, Céline; Leyval, Corinne
2011-11-01
A large number of soil bioindicators were used to assess biological diversity and activity in soil polluted with polycyclic aromatic hydrocarbons (PAHs) and the same soil after thermal desorption (TD) treatment. Abundance and biodiversity of bacteria, fungi, protozoa, nematodes and microarthropods, as well as functional parameters such as enzymatic activities and soil respiration, were assessed during a two year period of in situ monitoring. We investigated the influence of vegetation (spontaneous vegetation and Medicago sativa) and TD treatment on biological functioning. Multivariate analysis was performed to analyze the whole data set. A principal response curve (PRC) technique was used to evaluate the different treatments (various vegetation and contaminated vs. TD soil) contrasted with control (bare) soil over time. Our results indicated the value of using a number of complementary bioindicators, describing both diversity and functions, to assess the influence of vegetation on soil and discriminate polluted from thermal desorption (TD)-treated soil. Plants had an influence on the abundance and activity of all organisms examined in our study, favoring the whole trophic chain development. However, although TD-treated soil had a high abundance and diversity of microorganisms and fauna, enzymatic activities were weak because of the strong physical and chemical modifications of this soil. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Carcinogenic potential of hydrotreated petroleum aromatic extracts.
Doak, S M; Hend, R W; van der Wiel, A; Hunt, P F
1985-01-01
Five experimental petroleum extracts were produced from luboil distillates derived from Middle East paraffinic crude by solvent extraction and severe hydrotreatment. The polycyclic aromatic content (PCA) of the extracts was determined by dimethyl sulphoxide extraction and ranged from 3.7-9.2% w/w. The five extracts were evaluated for their potential to induce cutaneous and systemic neoplasia in female mice derived from Carworth Farm No 1 strain (CF1). The test substances were applied undiluted (0.2 ml per application) to the shorn dorsal skin twice weekly for up to 78 weeks, with 48 mice in each treatment group and 96 in the untreated control group; two further groups, each of 48 mice, were similarly treated either with a non-hydrotreated commercial aromatic extract (PCA content, 19.7% w/v) or with a low dose of benzo(a)pyrene (12.5 micrograms/ml acetone). The mice were housed individually in polypropylene cages in specified pathogen free conditions. The incidence of cutaneous and systemic tumours was determined from histological analysis of haematoxylin and eosin stained tissue sections. The results were correlated with the PCA content of the extracts and compared with those from female mice exposed to a non-hydrotreated commercial aromatic extract. Four of the hydrotreated extracts were carcinogenic for murine skin; the two products with the lower PCA contents were less carcinogenic than the products with the higher PCA contents and all were less carcinogenic than the commercial extract. One extract with the lowest PCA content was non-carcinogenic. Thus refining by severe hydrotreatment was an effective method of reducing the carcinogenic potential of petroleum aromatic extracts. Although other physicochemical properties may influence the biological activity of oil products, the PCA content determined by dimethyl sulphoxide extraction may be a useful indicator of the potential of oil products to induce cutaneous tumours in experimental animals. There was no evidence that the commercial or hydrotreated extracts increased the incidence of systemic neoplasms when applied twice weekly to the dorsal skin. PMID:4005190
Synthesis and antifungal activities of 3-alkyl substituted thieno[2,3-d]pyrimidinones
NASA Astrophysics Data System (ADS)
Wang, H. M.; Deng, S. H.; Zheng, A. H.; Zhang, Q. Y.; Chen, X. B.; Zeng, X. H.; Hu, Y. G.
2016-08-01
The 3-aryl substituted thieno[2,3-d]pyrimidinones 3 by sequential reaction of iminophosphorane 1, aromatic isocyanates and various nucleophiles (HY), found some compounds showed good antitumor and antibacterial activities. Meanwhile, aliphatic isocyanates were applied in the reaction to prepare 3-alkyl substituted thieno[2,3- d]pyrimidinones, but there are no reports of their antifungal activities. As a continuation of our research for new biologically active heterocycles, we herein wish to report a facile synthesis and antifungal activities of 3-alkyl substituted thieno[2,3-d]pyrimidinones 6 via easily accessible iminophosphorane 1. The growth inhibitory effect of one concentration (50mg/L) of compounds 6 against five fungus(Fusarium oxysporium, Rhizoctonia solani, Colletotrichum gossypii, Gibberella zeae and Dothiorella gregaria) in vitro was tested by the method of toxic medium. Compound 6d showed the best inhibition rate against Gibberella zeae with 85.68%.
Smith, Stephen B.; Anderson, Patrick J.; Baumann, Paul C.; DeWeese, Lawrence R.; Goodbred, Steven L.; Coyle, James J.; Smith, David S.
2012-01-01
The Charles River Project provided an opportunity to simultaneously deploy a combination of biomonitoring techniques routinely used by the U.S. Geological Survey National Water Quality Assessment Program, the Biomonitoring of Environmental Status and Trends Project, and the Contaminant Biology Program at an urban site suspected to be contaminated with polycyclic aromatic hydrocarbons. In addition to these standardized methods, additional techniques were used to further elucidate contaminant exposure and potential impacts of exposure on biota. The purpose of the study was to generate a comprehensive, multi-metric data set to support assessment of contaminant exposure and effects at the site. Furthermore, the data set could be assessed to determine the relative performance of the standardized method suites typically used by the National Water Quality Assessment Program and the Biomonitoring of Environmental Status and Trends Project, as well as the additional biomonitoring methods used in the study to demonstrate ecological effects of contaminant exposure. The Contaminant Effects Workgroup, an advisory committee of the U.S. Geological Survey/Contaminant Biology Program, identified polycyclic aromatic hydrocarbons as the contaminant class of greatest concern in urban streams of all sizes. The reach of the Charles River near Watertown, Massachusetts, was selected as the site for this study based on the suspected presence of polycyclic aromatic hydrocarbon contamination and the presence of common carp (Cyprinus carpio), largemouth bass (Micropterus salmoides), and white sucker (Catostomus commersoni). All of these fish have extensive contaminant-exposure profiles related to polycyclic aromatic hydrocarbons and other environmental contaminants. This project represented a collaboration of universities, Department of the Interior bureaus including multiple components of the USGS (Biological Resources Discipline and Water Resources Discipline Science Centers, the Contaminant Biology Program, and the Status and Trends of Biological Resources Program), and the U.S. Fish and Wildlife Service. Samples for analyzing water chemistry, sediment chemistry and toxicity, fish community structure, tissue chemistry, and fish (20 carp, 20 bass, and 40 white sucker) and invertebrate pathology were collected in late August, 2005. This report provides results from the analyses of fish pathology, biomarkers of exposure and effects (reproductive, carcinogenic, genotoxic, and immunologic), sediment chemistry, toxicity, and fish and invertebrate community structure.
Mollica, Adriano; Mirzaie, Sako; Costante, Roberto; Carradori, Simone; Macedonio, Giorgia; Stefanucci, Azzurra; Dvoracsko, Szabolcs; Novellino, Ettore
2016-12-01
The dipeptide aspartame (Asp-Phe-OMe) is a sweetener widely used in replacement of sucrose by food industry. 2',6'-Dimethyltyrosine (DMT) and 2',6'-dimethylphenylalanine (DMP) are two synthetic phenylalanine-constrained analogues, with a limited freedom in χ-space due to the presence of methyl groups in position 2',6' of the aromatic ring. These residues have shown to increase the activity of opioid peptides, such as endomorphins improving the binding to the opioid receptors. In this work, DMT and DMP have been synthesized following a diketopiperazine-mediated route and the corresponding aspartame derivatives (Asp-DMT-OMe and Asp-DMP-OMe) have been evaluated in vivo and in silico for their activity as synthetic sweeteners.
Ecological Roles and Biological Activities of Specialized Metabolites from the Genus Nicotiana.
Jassbi, Amir Reza; Zare, Somayeh; Asadollahi, Mojtaba; Schuman, Meredith C
2017-10-11
Species of Nicotiana grow naturally in different parts of the world and have long been used both medicinally and recreationally by human societies. More recently in our history, Nicotiana tabacum has attracted interest as one of the most economically important industrial crops. Nicotiana species are frequently investigated for their bioactive natural products, and the ecological role of their specialized metabolites in responses to abiotic stress or biotic stress factors like pathogens and herbivores. The interest of tobacco companies in genetic information as well as the success of a few wild tobacco species as experimental model organisms have resulted in growing knowledge about the molecular biology and ecology of these plants and functional studies of the plant's natural products. Although a large number of reviews and books on biologically active natural products already exists, mostly from N. tabacum, we focus our attention on the ecological roles and biological activity of natural products, versus products from cured and processed material, in this Review. The studied compounds include alkaloids, aromatic compounds, flavonoids, volatiles, sesquiterpenoids, diterpenes alcohols, and sugar esters from trichomes of the plants, and recently characterized acyclic hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). In this Review (1800s-2017), we describe the above-mentioned classes of natural products, emphasizing their biological activities and functions as they have been determined either in bioassay-guided purification approaches or in bioassays with plants in which the expression of specific biosynthetic genes has been genetically manipulated. Additionally, a review on the history, taxonomy, ecology, and medicinal application of different Nicotiana species growing around the globe presented in this Review may be of interest for pharmacognosists, natural products, and ecological chemists.
Wierzchowski, Marcin; Dutkiewicz, Zbigniew; Gielara-Korzańska, Agnieszka; Korzański, Artur; Teubert, Anna; Teżyk, Artur; Stefański, Tomasz; Baer-Dubowska, Wanda; Mikstacka, Renata
2017-12-01
Cytochromes P450 family 1 (CYP1) are responsible for the metabolism of procarcinogens, for example polycyclic aromatic hydrocarbons and aromatic and heterocyclic amines. The inhibition of CYP1 activity is examined in terms of chemoprevention and cancer chemotherapy. We designed and synthesized a series of trans-stilbene derivatives possessing a combination of methoxy and methylthio functional groups attached in different positions to the trans-stilbene skeleton. We determined the effects of synthesized compounds on the activities of human recombinant CYP1A1, CYP1A2 and CYP1B1 and, to explain the variation of inhibitory potency of methoxystilbene derivatives and their methylthio analogues, we employed computational analysis. The compounds were docked to CYP1A1, CYP1A2 and CYP1B1 binding sites with the use of Accelrys Discovery Studio 4.0 by the CDOCKER procedure. For CYP1A2 and CYP1B1, values of scoring functions correlated well with inhibitory potency of stilbene derivatives. All compounds were relatively poor inhibitors of CYP1A2 that possess the most narrow and flat enzyme cavity among CYP1s. For the most active CYP1A1 inhibitor, 2-methoxy-4'-methylthio-trans-stilbene, a high number of molecular interactions was observed, although the interaction energies were not distinctive. © 2017 John Wiley & Sons A/S.
The physical characteristics of human proteins in different biological functions.
Wang, Tengjiao; Tang, Hailin
2017-01-01
The physical properties of gene products are the foundation of their biological functions. In this study, we systematically explored relationships between physical properties and biological functions. The physical properties including origin time, evolution pressure, mRNA and protein stability, molecular weight, hydrophobicity, acidity/alkaline, amino acid compositions, and chromosome location. The biological functions are defined from 4 aspects: biological process, molecular function, cellular component and cell/tissue/organ expression. We found that the proteins associated with basic material and energy metabolism process originated earlier, while the proteins associated with immune, neurological system process etc. originated later. Tissues may have a strong influence on evolution pressure. The proteins associated with energy metabolism are double-stable. Immune and peripheral cell proteins tend to be mRNA stable/protein unstable. There are very few function items with double-unstable of mRNA and protein. The proteins involved in the cell adhesion tend to consist of large proteins with high proportion of small amino acids. The proteins of organic acid transport, neurological system process and amine transport have significantly high hydrophobicity. Interestingly, the proteins involved in olfactory receptor activity tend to have high frequency of aromatic, sulfuric and hydroxyl amino acids.
The physical characteristics of human proteins in different biological functions
Tang, Hailin
2017-01-01
The physical properties of gene products are the foundation of their biological functions. In this study, we systematically explored relationships between physical properties and biological functions. The physical properties including origin time, evolution pressure, mRNA and protein stability, molecular weight, hydrophobicity, acidity/alkaline, amino acid compositions, and chromosome location. The biological functions are defined from 4 aspects: biological process, molecular function, cellular component and cell/tissue/organ expression. We found that the proteins associated with basic material and energy metabolism process originated earlier, while the proteins associated with immune, neurological system process etc. originated later. Tissues may have a strong influence on evolution pressure. The proteins associated with energy metabolism are double-stable. Immune and peripheral cell proteins tend to be mRNA stable/protein unstable. There are very few function items with double-unstable of mRNA and protein. The proteins involved in the cell adhesion tend to consist of large proteins with high proportion of small amino acids. The proteins of organic acid transport, neurological system process and amine transport have significantly high hydrophobicity. Interestingly, the proteins involved in olfactory receptor activity tend to have high frequency of aromatic, sulfuric and hydroxyl amino acids. PMID:28459865
Weininger, Ulrich; Modig, Kristofer; Akke, Mikael
2014-07-22
Intramolecular motions of proteins are critical for biological function. Transient structural fluctuations underlie a wide range of processes, including enzyme catalysis, ligand binding to buried sites, and generic protein motions, such as 180° rotation of aromatic side chains in the protein interior, but remain poorly understood. Understanding the dynamics and molecular nature of concerted motions requires characterization of their rates and energy barriers. Here we use recently developed (13)C transverse relaxation dispersion methods to improve our current understanding of aromatic ring flips in basic pancreatic trypsin inhibitor (BPTI). We validate these methods by benchmarking ring-flip rates against the three previously characterized cases in BPTI, namely, Y23, Y35, and F45. Further, we measure conformational exchange for one additional aromatic ring, F22, which can be interpreted in terms of a flip rate of 666 s(-1) at 5 °C. Upon inclusion of our previously reported result that Y21 also flips slowly [Weininger, U., et al. (2013) J. Phys. Chem. B 117, 9241-9247], the (13)C relaxation dispersion experiments thus reveal relatively slow ring-flip rates for five of eight aromatic residues in BPTI. These results are in contrast with previous reports, which have estimated that all rings, except Y23, Y35, and F45, flip with a high rate at ambient temperature. The (13)C relaxation dispersion data result in an updated rank order of ring-flip rates in BPTI, which agrees considerably better with that estimated from a recent 1 ms molecular dynamics trajectory than do previously published NMR data. However, significant quantitative differences remain between experiment and simulation, in that the latter yields flip rates that are in many cases too fast by 1-2 orders of magnitude. By measuring flip rates across a temperature range of 5-65 °C, we determined the activation barriers of ring flips for Y23, Y35, and F45. Y23 and F45 have identical activation parameters, suggesting that the fluctuations of the protein core around these residues are similar in character. Y35 differs from the other two in its apparent activation entropy. These results might be rationalized by the fact that Y23 and F45 are located in the same region of the structure while Y35 is remote from the other two rings. As indicated by our new results for the exceptionally well-characterized protein BPTI, (13)C relaxation dispersion experiments open the possibility of studying ring flips in a range of cases wider than that previously possible.
Beloborodova, N V; Arkhipova, A S; Beloborodov, D M; Boĭko, N B; Mel'ko, A I; Olenin, A Iu
2006-02-01
The investigation quantitatively determined the content of low-molecular-weight aromatic compounds of microbial origin in the sera of 34 individuals by chromatographic mass spectrometry. An "Agilent Technogies 6890N" gas chromatograph with a 5973 mass selective detector was applied; chromatographic separation of components was effected on an Hp-5MS quartz capillary column. Aromatic small molecules originating from microbes (SMOM) were determined in the sera of 7 patients with sepsis. The diagnosis of sepsis was documented by the presence of the systemic inflammation syndrome and by that of bacteriemia and/or artificial ventilation-associated pneumonia along with the level of procalcitonin of higher than 10 ng/ml. The levels of aromatic SMOM were compared in 10 healthy donors, 8 preoperative cardiosurgical patients, and 9 patients with different abnormalities without sepsis treated in an intensive care unit (ICU). Serum phenylacetic and 3-phenylpropionic acids were found to be prevalent in the healthy donors and postoperative cardiosurgical patients. In ICU patients with different complications without sepsis, more than half the compounds under study were undetectable, the others were found in very low concentrations, which may be accounted for by antibiotic therapy. At the same time, almost the whole spectrum of the test compounds (other than 3-phenylpropionic acid) with the highest concentrations of 3-phenyllactic, p-hydroxyphenylacetic, 3-(p-hydroxyphenyl)lactic and 2-hydroxybutanic acids, was detectable in septic patients receiving a more intensive therapy. The differences were statistically significant (by the Mann-Whitney U-test; p < 0.05). By taking into account the potentially high biological activity of the test compounds, studies are to be continued in this area.
Qiao, Meng; Qi, Wei-xiao; Zhao, Xu; Liu, Hui-juan; Qu, Jiu-hui
2016-04-15
Substituted polycyclic aromatic hydrocarbons (SPAHs) can be emitted to the environment not only through the incomplete combustion, but also through the transformation from parent polycyclic aromatic hydrocarbons (PAHs) by photo chemical and biological processes. The toxicities of some SPAHs are higher than their corresponding PAHs. Samples were collected from the wastewater treatment plants in Beijing. Three types of SPAHs, including oxy-PAHs (OPAHs), methyl-PAHs (MPAHs) and nitro-PAHs (NPAHs), as well as 16 PAHs were analyzed, in order to study the occurrence and behavior of these compounds during the wastewater biological treatment process. MPAHs, OPAHs and PAHs were detected in the influent and effluent, but no NPAHs. The concentrations of PAHs in the influent in both the aquatic and particulate phases ranged from 1.94 to 4.34 µg · L⁻¹, and SPAHs from 1.16 to 2.20 µg · L⁻¹. The concentrations of PAHs in the effluent were between 0.77 and 0.98 µg · L⁻¹, and SPAHs from 0.39 to 0.45 µg · L⁻¹. The concentrations of the MPAHs were lower than their corresponding PAHs, while OPAHs were higher. The removal efficiencies of all the compounds ranged from 53% to 83%. PAHs and SPAHs were mainly removed by adsorption and biodegradation during the activated sludge treatment processes. Some OPAHs could be transformed from PAHs, and could be accumulated. The PAHs were mainly originated from incomplete combustion of wood and coal, and some from combustion of petroleum, while only a little from the discharge of petroleum. The concentrations of PAHs and SPAHs in the effluent were higher in autumn than summer and winter. Most of the SPAHs and PAHs were discharged to the agriculture area through the river-water irrigation, which might pose potential risk to the humans. As a result, it is necessary to upgrade the wastewater treatment process to improve the removal efficiency of PAHs and SPAHs.
Wang, Yu; Zhang, Wenbing; Fan, Ruifang; Sheng, Guoying; Fu, Jiamo
2014-01-01
The study was undertaken to evaluate the environmental exposure to polycyclic aromatic hydrocarbons in subjects living in the area of recycling electronic garbage in Southern China and research the influence of environment smoke tobacco (EST) to people through active and passive smoking. Urinary concentrations of 2-hydroxynaphthalene, 2-hydoxyfluorene, 9-hydroxyphenanthrene, and 1-hydroxypyrene were determined in 141 randomly selected voluntary residents aged 13 to 81 years in two polycyclic aromatic hydrocarbon (PAH)-exposed groups, two control groups, and an EST research group. The concentrations of 2-hydroxynaphthalene, 2-hydoxyfluorene, 9-hydroxyphenanthrene, and 1-hydroxypyrene in PAH-exposed groups are significantly higher (p<0.05) than those of control groups. Mean value of 1-hydroxypyrene in the residents living in the area of recycling electronic garbage (1.1 μmol/mol creatinine) is a little higher than those of iron foundry workers, automobile repair workers, and firefighters. Mean value of 2-hydroxynaphthalene (11.3 μmol/mol creatinine) is much higher than that of shipyard and aircraft maintenance and much lower than some occupational exposure, such as coking batteries, sorting department, and distillation department in coking plant. Some metabolites of PAHs (PAHm) are significantly elevated through active and passive smoking, while the influence of EST to other PAHm is not statistically significant. 2-Hydroxynaphthalene, 2-hydoxyfluorene, 9-hydroxyphenanthrene, and 1-hydroxypyrene in the urine of smokers are, respectively, 3.9, 1.9, 1.4, and 1.9 times to those of nonsmokers. In nonsmokers, passive smokers excreted 1.1, 1.5, 1.9, and 1.5 times of 2-hydroxynaphthalene, 2-hydoxyfluorene, 9-hydroxyphenanthrene, and 1-hydroxypyrene compared to nonpassive smokers.
Ohta, Yukari; Nishi, Shinro; Hasegawa, Ryoichi; Hatada, Yuji
2015-01-01
Lignin, an aromatic polymer of phenylpropane units joined predominantly by β-O-4 linkages, is the second most abundant biomass component on Earth. Despite the continuous discharge of terrestrially produced lignin into marine environments, few studies have examined lignin degradation by marine microorganisms. Here, we screened marine isolates for β-O-4 cleavage activity and determined the genes responsible for this enzymatic activity in one positive isolate. Novosphingobium sp. strain MBES04 converted all four stereoisomers of guaiacylglycerol-β-guaiacyl ether (GGGE), a structural mimic of lignin, to guaiacylhydroxypropanone as an end metabolite in three steps involving six enzymes, including a newly identified Nu-class glutathione-S-transferase (GST). In silico searches of the strain MBES04 genome revealed that four GGGE-metabolizing GST genes were arranged in a cluster. Transcriptome analysis demonstrated that the lignin model compounds GGGE and (2-methoxyphenoxy)hydroxypropiovanillone (MPHPV) enhanced the expression of genes in involved in energy metabolism, including aromatic-monomer assimilation, and evoked defense responses typically expressed upon exposure to toxic compounds. The findings from this study provide insight into previously unidentified bacterial enzymatic systems and the physiological acclimation of microbes associated with the biological transformation of lignin-containing materials in marine environments. PMID:26477321
NASA Astrophysics Data System (ADS)
Kumar, Shubha S.; Biju, S.; Sadasivan, V.
2018-03-01
A new aromatic hydrazone 5-(2-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)hydrazono)-2,2-dimethyl-1,3-dioxane-4,6-dione has been synthesized by Japp-Klingemann reaction from diazotized 4-aminoantipyrine and Meldrum's acid. A few 3d-metal ion complexes of this hydrazone were synthesized. The compound and its complexes were characterized by UV-Visible, 1H NMR, ESR, Mass spectral, molar conductance and magnetic susceptibility measurements. The compound was found to exist in hydrazone form in solid state and solution from SXRD and 1H NMR study. The influence of pH on the molecule was studied and found that it shows azo/enol-hydrazone tautomerism in solution. This molecule act as a univalent tridentate ligand and the complexes were assigned to have a 1:2 stoichiometry (M:L). The antioxidant properties of the compounds were explored by DPPH assay and found that the ligand possesses better free radical scavenging effect than the complexes. Antimicrobial activities of these compounds were investigated and were found to be active.
NASA Astrophysics Data System (ADS)
Dayuti, S.
2018-04-01
Red alga was widely used in several fields, including food, feed, phamacy and industrial point of view. The chemical analysis showed that red alga contained terpenoid, acetogenic, and aromatic compounds, which have a wide range of biological activities, such as anti-micobial, anti-inflammatory and anti-viral. The objectives of this research was to evaluate the effect of extraction solvent and time on antibacterial activity of red alga (Gracilaria verrucosa), and to explore the bioactive compound contained within Gracilaria verrucosa. The method in this study used descriptive reseach. These findings revealed that the highest inhibition activity among all extracts was obtained with the ratio of methanol:aquades (75:25) and extraction time around 72 hours against Escherichia coli and Salmonella typhimurium. The bioactive compounds of Gracilaria verrucosa tested by phytochemical analysisi consisted of flavonoid, alkaloid, and saponin. Those secondary metabolites may be approximated as antibactial substances.
Increasing Prion Propensity by Hydrophobic Insertion
Petri, Michelina; Flores, Noe; Rogge, Ryan A.; Cascarina, Sean M.; Ross, Eric D.
2014-01-01
Prion formation involves the conversion of proteins from a soluble form into an infectious amyloid form. Most yeast prion proteins contain glutamine/asparagine-rich regions that are responsible for prion aggregation. Prion formation by these domains is driven primarily by amino acid composition, not primary sequence, yet there is a surprising disconnect between the amino acids thought to have the highest aggregation propensity and those that are actually found in yeast prion domains. Specifically, a recent mutagenic screen suggested that both aromatic and non-aromatic hydrophobic residues strongly promote prion formation. However, while aromatic residues are common in yeast prion domains, non-aromatic hydrophobic residues are strongly under-represented. Here, we directly test the effects of hydrophobic and aromatic residues on prion formation. Remarkably, we found that insertion of as few as two hydrophobic residues resulted in a multiple orders-of-magnitude increase in prion formation, and significant acceleration of in vitro amyloid formation. Thus, insertion or deletion of hydrophobic residues provides a simple tool to control the prion activity of a protein. These data, combined with bioinformatics analysis, suggest a limit on the number of strongly prion-promoting residues tolerated in glutamine/asparagine-rich domains. This limit may explain the under-representation of non-aromatic hydrophobic residues in yeast prion domains. Prion activity requires not only that a protein be able to form prion fibers, but also that these fibers be cleaved to generate new independently-segregating aggregates to offset dilution by cell division. Recent studies suggest that aromatic residues, but not non-aromatic hydrophobic residues, support the fiber cleavage step. Therefore, we propose that while both aromatic and non-aromatic hydrophobic residues promote prion formation, aromatic residues are favored in yeast prion domains because they serve a dual function, promoting both prion formation and chaperone-dependent prion propagation. PMID:24586661
Scognamiglio, Monica; D'Abrosca, Brigida; Esposito, Assunta; Fiorentino, Antonio
2015-01-01
An NMR-based metabolomic approach has been applied to analyse seven aromatic Mediterranean plant species used in traditional cuisine. Based on the ethnobotanical use of these plants, the approach has been employed in order to study the metabolic changes during different seasons. Primary and secondary metabolites have been detected and quantified. Flavonoids (apigenin, quercetin, and kaempferol derivatives) and phenylpropanoid derivatives (e.g., chlorogenic and rosmarinic acid) are the main identified polyphenols. The richness in these metabolites could explain the biological properties ascribed to these plant species. PMID:25785229
Stappen, Iris; Tabanca, Nurhayat; Ali, Abbas; Wedge, David E; Wanner, Jürgen; Kaul, Vijay K; Lal, Brij; Jaitak, Vikas; Gochev, Velizar K; Schmidt, Erich; Jirovetz, Leopold
2015-06-01
The Himalayan region is very rich in a great variety of medicinal plants. In this investigation the essential oils of two selected species are described for their antimicrobial and larvicidal as well as biting deterrent activities. Additionally, the odors are characterized. Analyzed by simultaneous GC-MS and GC-FID, the essential oils' chemical compositions are given. The main components of Skimmia laureola oil were linalool and linalyl acetate whereas sabinene was found as the main compound for Juniperus macropoda essential oil. Antibacterial testing by agar dilution assay revealed highest activity of S. laureola oil against all tested bacteria, followed by J. macropoda oil. Antifungal activity was evaluated against the strawberry anthracnose causing plant pathogens Colletotrichum acutatum, C. fragariae and C. gloeosporioides. Juniperus macropoda essential oil indicated higher antifungal activity against all three pathogens than S. laureola oil. Both essential oils showed biting deterrent activity above solvent control but low larvicidal activity.
ENGINEERING BULLETIN: COMPOSTING
Composting is an emerging ex situ biological technology that is potentially applicable to nonvolatile and semivolatile organic compounds (SVOCs) in soils. It has been applied to polycyclic aromatic hydrocarbons (PAHs) and explosives. It has been found to be potentially effectiv...
Risk evaluation of possible human hazards by chemicals, particles, and infectious units
NASA Astrophysics Data System (ADS)
Weber, Lothar W.; Spleiss, Martin
1996-12-01
Formation of laser plume by laser-tissue interaction means an inhomogeneous, pluriphasic and dynamic multicomponent system of biological material and induced modifications. While IR_laser applications often simulate processes of thermal food preservation, UV-lasers favor formation of aromatic organic compounds as VOC. Along with traces of PAH, nitriles and O-/N-containing heterocyclic compounds two classes of dialkyldiketopyrroli(di)nes are special formed VOC as laser solvents. Inhalable particles or partially dried and modified biomass contain - along with infectious particles - a lot of temperature degradation products. Ames tests and Comet-assays gave hint to some mutagenic activities present in laser smoke.
Small potent ligands to the insulin-regulated aminopeptidase (IRAP)/AT(4) receptor.
Axén, Andreas; Andersson, Hanna; Lindeberg, Gunnar; Rönnholm, Harriet; Kortesmaa, Jarkko; Demaegdt, Heidi; Vauquelin, Georges; Karlén, Anders; Hallberg, Mathias
2007-07-01
Angiotensin IV analogs encompassing aromatic scaffolds replacing parts of the backbone of angiotensin IV have been synthesized and evaluated in biological assays. Several of the ligands displayed high affinities to the insulin-regulated aminopeptidase (IRAP)/AT(4) receptor. Displacement of the C-terminal of angiotensin IV with an o-substituted aryl acetic acid derivative delivered the ligand 4, which exhibited the highest binding affinity (K(i) = 1.9 nM). The high affinity of this ligand provides support to the hypothesis that angiotensin IV adopts a gamma-turn in the C-terminal of its bioactive conformation. Ligand (4) inhibits both human IRAP and aminopeptidase N-activity and induces proliferation of adult neural stem cells at low concentrations. Furthermore, ligand 4 is degraded considerably more slowly in membrane preparations than angiotensin IV. Hence, it might constitute a suitable research tool for biological studies of the (IRAP)/AT(4) receptor.
Combined treatment of mezcal vinasses by ozonation and activated sludge.
2017-10-18
In Mexico, mezcal production generates huge amounts of vinasses (MV) that cause negative environmental impacts. Thus, MV treatment is necessary before discharge to water bodies. Although there is no information for mezcal vinasses, similar effluents have been treated by biological processes (i.e. anaerobic and aerobic) usually complemented by oxidative chemical pretreatments (ozonation) and physico-chemical methods. In this work MV were first ozonated and followed by batch aerobic biological degradation. In the ozonation stage, organic matter removals were 4.5-11 % as COD, whereas the removal of aromatic compounds and phenols were 16-32 % and 48-83 % respectively. In the aerobic post-treatment, COD depletions up to 85 % were achieved; removals in ozone pre-treated vinasses were higher (80 to 85 %) than that of raw vinasse (69 %). It seems that ozonation preferentially attacked the recalcitrant fraction of organic matter present in the vinasses and increased its aerobic biodegradability.
Liu, Qiying; Guo, Yuanming; Sun, Xiumei; Hao, Qing; Cheng, Xin; Zhang, Lu
2018-02-22
We propose a method for the simultaneous determination of 15 kinds of polycyclic aromatic hydrocarbons in marine samples (muscle) employing gas chromatography with mass spectrometry after saponification with ultrasound-assisted extraction and solid-phase extraction. The experimental conditions were optimized by the response surface method. In addition, the effects of different lyes and extractants on polycyclic aromatic hydrocarbons extraction were discussed, and saturated sodium carbonate was first used as the primary saponification reaction and extracted with 10 mL of ethyl acetate and secondly 1 mol/L of sodium hydroxide and 10 mL of n-hexane were used to achieve better results. The average recovery was 67-112%. Satisfactory data showed that the method has good reproducibility with a relative standard deviation of <13%. The detection limits of polycyclic aromatic hydrocarbons were 0.02-0.13 ng/g. Compared with other methods, this method has the advantages of simple pretreatment, low solvent consumption, maximum polycyclic aromatic hydrocarbons extraction, the fast separation speed, and the high extraction efficiency. It is concluded that this method meets the batch processing requirements of the sample and can also be used to determine polycyclic aromatic hydrocarbons in other high-fat (fish, shrimp, crab, shellfish) biological samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Workshop on perinatal exposure to dioxin-like compounds. VI. Role of biomarkers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooper, K.; Clark, C.G.
1995-03-01
Studies of perinatal exposures to dioxin-like compounds (DLCs), coplanar polycyclic halogenated aromatics whose prototype is 2,3,7,8-tetra-chlorodibenzo-p-dioxin (TCDD), have employed a variety of outcome measures to investigate effects on the reproductive/developmental, endocrine, immune, and neurobehavioral systems. The effects include infertility, growth retardation, fetal loss, changed sexual differentiation, reduced cognitive/motor function, dermatologic and other ectodermal effects, and decreased immune response. Significant biomarkers have included sperm count; CD4/CD8 ratio; and levels of testosterone, T4, and clopamine. Using specific dioxin or PCB congeners, these and other markers were used to investigate the mechanisms of the observed effects. The DLCs, which include some PCB congeners,more » are characterized by high-affinity binding to the Ah receptor; most biological effects are thought to be mediated by the ligand-Ah receptor complex. Other PCB congeners have low affinity for the Ah receptor, and operate by non-Ah receptor mechanisms. The biologic activity of a PCB mixture is the sum of the agonist and antagonist activities of the different constituents in the mixture. Animal studies with specific PCB congeners can help to clarify these activities. With similar approaches, biologic markers of effect can be developed and applied in epidemiologic studies to monitor for, and predict, adverse effects in humans. 52 refs., 2 figs., 1 tab.« less
Li, Xiang; Zhang, Yuan; Li, Xu; Feng, DaoFu; Zhang, ShuHui; Zhao, Xin; Chen, DongYan; Zhang, ZhiXiang; Feng, XiZeng
2017-06-01
Little is known about the biological effect of non-planar polycyclic aromatic hydrocarbons (PAH) such as corannulene on organisms. In this study, we compared the effect of corannulene (non-planar PAH) and graphene (planar PAH) on embryonic development and sleep/wake behaviors of larval zebrafish. First, the toxicity of graded doses of corannulene (1, 10, and 50μg/mL) was tested in developing zebrafish embryos. Corannulene showed minimal developmental toxicity only induced an epiboly delay. Further, a significant decrease in locomotion/increase in sleep was observed in larvae treated with the highest dose (50μg/mL) of corannulene while no significant locomotion alterations were induced by graphene. Finally, the effect of corannulene or graphene on the hypocretin (hcrt) system and sleep/wake regulators such as hcrt, hcrt G-protein coupled receptor (hcrtr), and arylalkylamine N-acetyltransferase-2 (aanat2) was evaluated. Corannulene increased sleep and reduced locomotor activity and the expression of hcrt and hcrtr mRNA while graphene did not obviously disturb the sleep behavior and gene expression patterns. These results suggest that the corannulene has the potential to cause hypnosis-like behavior in larvae and provides a fundamental comparative understanding of the effects of corannulene and graphene on biology systems. Little is known about the biological effect of non-planar polycyclic aromatic hydrocarbons (PAH) such as corannulene on organisms. Here, we compare the effect of corannulene (no-planar PAH) and graphene (planar PAH) on embryonic development and sleep/wake behaviors of larval zebrafish. And we aim to investigate the effect of curvature on biological system. First, toxicity of corannulene over the range of doses (1μg/mL, 10μg/mL and 50μg/mL) was tested in developing zebrafish embryos. Corannulene has minimal developmental toxicity, only incurred epiboly delay. Subsequently, a significant decrease in locomotion/increase in sleep at the highest dose (50μg/mL) was detected in corannulene treated larvae while no significant locomotion alterations was induced by graphene. Finally, the impact of corannulene or graphene on hypocretin system and sleep/wake regulator such as hcrt, hcrtr and aanat2 was evaluated. Corannulene increased sleep, reduced locomotor activity and the expression of hcrt and hcrtr mRNA while graphene did not obviously disturb the sleep behaviors and gene expression patterns. This result may indicate the potential effect of corannulene to cause hypnosia-like behavior in larvae and provide the fundamental understanding for the biological effect of curvature on biology system. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Poly(N-arylenbenzimidazoles) via aromatic nucleophilic displacement
NASA Technical Reports Server (NTRS)
Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)
1995-01-01
Novel poly(N-arylenebenzimidazole)s (PNABIs) are prepared by the aromatic nucleophilic displacement reaction of novel di(hydroxyphenyl-N-arylene benzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl N-arylenebenzimidazole) monomers are synthesized by reacting phenyl 4-hydroxybenzoate with bis(2-aminoanilino) arylenes in diphenylsulfone. Moderate molecular weight PNABIs of new chemical structures were prepared that exhibit a favorable combination of physical and mechanical properties. The use of the novel di(hydroxyphenyl N-arylenebenzimidazole)s permits a more economical and easier way to prepare PNABIs than previous routes.
Poly(N-arylenebenzimidazole)s via aromatic nucleophilic displacement
NASA Technical Reports Server (NTRS)
Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Jr., Joseph G. (Inventor)
1996-01-01
Novel poly(N-arylenebenzimidazole)s (PNABls) are prepared by the aromatic nucleophilic displacement reaction of novel di(hydroxyphenyl-N-arylene benzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl-N-arylenebenzimidazole) monomers are synthesized by reacting phenyl-4-hydroxybenzoate with bis(2-aminoanilino)arylenes in diphenylsulfone. Moderate molecular weight PNABIs of new chemical structures were prepared that exhibit a favorable combination of physical and mechanical properties. The use of the novel di(hydroxyphenyI-N-arylenebenzimidazole)s permits a more economical and easier way to prepare PNABIs than previous routes.
ERIC Educational Resources Information Center
Nuttonson, M. Y.
Ten papers were translated: Maximum permissible concentrations of noxious substances in the atmospheric air of populated areas; Some aspects of the biological effect of microconcentrations of two chloroisocyanates; The toxicology of low concentrations of aromatic hydrocarbons; Chronic action of low concentrations of acrolein in air on the…
Kumar, Gyanendra; Agarwal, Rakhi; Swaminathan, Subramanyam
2016-09-15
Botulinum neurotoxins (BoNTs) are the most poisonous biological substance known to humans. They cause flaccid paralysis by blocking the release of acetylcholine at the neuromuscular junction. Here, we report a number of small molecule non-peptide inhibitors of BoNT serotype E. The structure-activity relationship and a pharmacophore model are presented. Although non-peptidic in nature, these inhibitors mimic key features of the uncleavable substrate peptide Arg-Ile-Met-Glu (RIME) of the SNAP-25 protein. Among the compounds tested, most of the potent inhibitors bear a zinc-chelating moiety connected to a hydrophobic and aromatic moiety through a carboxyl or amide linker. All of them show low micromolar IC50 values. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pharmacophore modeling of diverse classes of p38 MAP kinase inhibitors.
Sarma, Rituparna; Sinha, Sharat; Ravikumar, Muttineni; Kishore Kumar, Madala; Mahmood, S K
2008-12-01
Mitogen-activated protein (MAP) p38 kinase is a serine-threonine protein kinase and its inhibitors are useful in the treatment of inflammatory diseases. Pharmacophore models were developed using HypoGen program of Catalyst with diverse classes of p38 MAP kinase inhibitors. The best pharmacophore hypothesis (Hypo1) with hydrogen-bond acceptor (HBA), hydrophobic (HY), hydrogen-bond donor (HBD), and ring aromatic (RA) as features has correlation coefficient of 0.959, root mean square deviation (RMSD) of 1.069 and configuration cost of 14.536. The model was validated using test set containing 119 compounds and had high correlation coefficient of 0.851. The results demonstrate that results obtained in this study can be considered to be useful and reliable tools in identifying structurally diverse compounds with desired biological activity.
Kumar, Gyanendra; Agarwal, Rakhi; Swaminathan, Subramanyam
2016-06-18
Botulinum neurotoxins (BoNTs) are the most poisonous biological substance known to humans. They cause flaccid paralysis by blocking the release of acetylcholine at the neuromuscular junction. Here, we report a number of small molecule non-peptide inhibitors of BoNT serotype E. In addition, the structure–activity relationship and a pharmacophore model are presented. Although non-peptidic in nature, these inhibitors mimic key features of the uncleavable substrate peptide Arg-Ile-Met-Glu (RIME) of the SNAP-25 protein. Among the compounds tested, most of the potent inhibitors bear a zinc-chelating moiety connected to a hydrophobic and aromatic moiety through a carboxyl or amide linker. All of themmore » show low micromolar IC 50 values.« less
Pathiratne, Asoka; Hemachandra, Chamini K
2010-08-01
Despite ubiquity of polycyclic aromatic hydrocarbons (PAHs) in the tropical environments, little information is available concerning responses of tropical fish to PAHs and associated toxicity. In the present study, effects of five PAHs containing two to four aromatic rings on hepatic CYP1A dependent ethoxyresorufin O-deethylase (EROD), glutathione S-transferase (GST) and serum sorbitol dehydrogenase (SDH) activities in Nile tilapia, a potential fish species for biomonitoring pollution in tropical waters, were evaluated. Results showed that EROD activities were induced by the PAHs containing four aromatic rings (pyrene and chrysene) in a dose dependent manner. However PAHs with two to three aromatic rings (naphthalene, phenanthrene and fluoranthene) caused no effect or inhibition of EROD activities depending on the dose and the duration. Fluoranthene was the most potent inhibitor. SDH results demonstrated that high doses of fluoranthene induced hepatic damage. GST activity was induced by the lowest dose of phenanthrene, fluoranthene and chrysene but high doses had no effect. The results indicate that induction of EROD enzyme in Nile tilapia is a useful biomarker of exposure to PAHs such as pyrene and chrysene. However EROD inhibiting PAHs such as fluoranthene in the natural environment may modulate the EROD inducing potential of other PAHs thereby influencing PAH exposure assessments.
2015-01-01
We performed a structure–activity relationship study of 2-((3-(3,6-dichloro-9H-carbazol-9-yl)-2-hydroxypropyl)amino)-2-(hydroxymethyl)propane-1,3-diol (DCAP), which is an antibacterial agent that disrupts the membrane potential and permeability of bacteria. The stereochemistry of DCAP had no effect on the biological activity of DCAP. The aromaticity and electronegativity of the chlorine-substituted carbazole was required for activity, suggesting that its planar and dipolar characteristics orient DCAP in membranes. Increasing the hydrophobicity of the tail region of DCAP enhanced its antibiotic activity. Two DCAP analogues displayed promising antibacterial activity against the BSL-3 pathogens Bacillus anthracis and Francisella tularensis. Codosing DCAP analogues with ampicillin or kanamycin increased their potency. These studies demonstrate that DCAP and its analogues may be a promising scaffold for developing chemotherapeutic agents that bind to bacterial membranes and kill strains of slow-growing or dormant bacteria that cause persistent infections. PMID:25941556
Campos, Jaqueline Ferreira; dos Santos, Uilson Pereira; Macorini, Luis Fernando Benitez; de Melo, Adriana Mary Mestriner Felipe; Balestieri, José Benedito Perrella; Paredes-Gamero, Edgar Julian; Cardoso, Claudia Andrea Lima; de Picoli Souza, Kely; dos Santos, Edson Lucas
2014-03-01
Propolis from stingless bees is well known for its biologic properties; however, few studies have demonstrated these effects. Therefore, this study aimed to investigate the chemical composition and antimicrobial, antioxidant and cytotoxic activities of propolis from the stingless bee Melipona orbignyi, found in Mato Grosso do Sul, Brazil. The chemical composition of the ethanol extract of propolis (EEP) indicated the presence of aromatic acids, phenolic compounds, alcohols, terpenes and sugars. The EEP was active against the bacterium Staphylococcus aureus and the fungus Candida albicans. The EEP showed antioxidant activity by scavenging free radicals and inhibiting hemolysis and lipid peroxidation in human erythrocytes incubated with an oxidizing agent. Additionally, EEP promoted cytotoxic activity and primarily necrotic death in K562 erythroleukemia cells. Taken together, these results indicate that propolis from M. orbignyi has therapeutic potential for the treatment and/or prevention of diseases related to microorganism activity, oxidative stress and tumor cell proliferation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Souza, Beatriz C C; De Oliveira, Tiago B; Aquino, Thiago M; de Lima, Maria C A; Pitta, Ivan R; Galdino, Suely L; Lima, Edeltrudes O; Gonçalves-Silva, Teresinha; Militão, Gardênia C G; Scotti, Luciana; Scotti, Marcus T; Mendonça, Francisco J B
2012-06-01
A series of 2-[(arylidene)amino]-cycloalkyl[b]thiophene-3-carbonitriles (2a-x) was synthesized by incorporation of substituted aromatic aldehydes in Gewald adducts (1a-c). The title compounds were screened for their antifungal activity against Candida krusei and Criptococcus neoformans and for their antiproliferative activity against a panel of 3 human cancer cell lines (HT29, NCI H-292 and HEP). For antiproliferative activity, the partial least squares (PLS) methodology was applied. Some of the prepared compounds exhibited promising antifungal and proliferative properties. The most active compounds for antifungal activity were cyclohexyl[b]thiophene derivatives, and for antiproliferative activity cycloheptyl[b]thiophene derivatives, especially 2-[(1H-indol-2-yl-methylidene)amino]- 5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carbonitrile (2r), which inhibited more than 97 % growth of the three cell lines. The PLS discriminant analysis (PLS-DA) applied generated good exploratory and predictive results and showed that the descriptors having shape characteristics were strongly correlated with the biological data.
Carrizo, Daniel; Domeño, Celia; Nerín, Isabel; Alfaro, Pilar; Nerín, Cristina
2015-01-01
A new screening and semi-quantitative approach has been developed for direct analysis of polycyclic aromatic hydrocarbons (PAHs) and their nitro and oxo derivatives in environmental and biological matrices using atmospheric pressure solid analysis probe (ASAP) quadrupole-time of flight mass spectrometry (Q-TOF-MS). The instrumental parameters were optimized for the analysis of all these compounds, without previous sample treatment, in soil, motor oil, atmospheric particles (ashes) and biological samples such as urine and saliva of smokers and non-smokers. Ion source parameters in the MS were found to be the key parameters, with little variation within PAHs families. The optimized corona current was 4 µA, sample cone voltage 80 V for PAHs, nitro-PAHs and oxo-PAHs, while the desolvation temperatures varied from 300°C to 500°C. The analytical method performance was checked using a certified reference material. Two deuterated compounds were used as internal standards for semi-quantitative purposes together with the pure individual standard for each compound and the corresponding calibration plot. The compounds nitro PAH 9-nitroanthracene and oxo-PAH 1,4-naphthalenedione, were found in saliva and urine in a range below 1 µg/g while the range of PAHs in these samples was below 2 µg/g. Environmental samples provided higher concentration of all pollutants than urine and saliva. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H.; Ogo, Seiji; Fish, R.H.
Molecular recognition, via non-covalent processes such as hydrogen bonding, {pi}-{pi}, and hydrophobic interactions, is an important biological phenomenon for guests, such as drugs, proteins, and other important biological molecules with, for example, host DNA/RNA. We have studied a novel molecular recognition process using guests that encompass aromatic and aliphatic amino acids [L-alanine, L-glutamine (L-Gln), L-histidine, L-isoleucine(L-Ile), L-leucine(L-Leu), L-phenylalanine(L-Phe), L-proline, L-tryptophan(L-Trp), L-valine(L-Val)], substituted aromatic carboxylic acids o-, m-, p-aminobenzoic acids (G1-3), benzoic acid (G4), phenylacetic acid (G5), p-methoxyphenylacetic acid (G6), o-methyoxybenozoic acid (G9), o-nitrobenzoic acid (G10), and aliphatic carboxylic acids [cyclohexylacetic acid (G7), 1-adamantanecarboxylic acid (G8)] with supramolecular, bioorganometallic hosts, ({eta}{supmore » 5}-pentamethylcyclopentadienyl)rhodium (Cp{sup *}Rh)-nucleobase, nucleoside, and nucleotide cyclic trimer complexes in aqueous solution at pH 7, utilizing {sup 1}H NMR, NOE, and molecular modeling techniques, and, as well, determining association constants (K{sub a}) and free energies of complexation ({Delta}{degree}G). The host-guest complexation occurs predominantly via non-covalent {pi}-{pi}, hydrophobic, and possible subtle H-bonding interactions, with steric, electronic, and molecular conformational parameters as important criteria. 8 refs., 6 figs., 3 tabs.« less
SITE EMERGING TECHNOLOGY REPORT: INNOVATIVE METHODS FOR BIOSLURRY TREATMENT
IT Corporation (IT), Knoxville, Tennessee, in collaboration with U.S. Environmental protection Agency (EPA), investigated the feasibility of combined biological and chemical oxidation of polycyclic aromatic hydrocarbons (PAH). Bioslurry treatment of PAH-contaminated soils was dem...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonkopii, V.; Zagrebin, A.; Sherstneva, L.
1995-12-31
The effect of different polychlorinated aromatics (DDT, Aroclor 1254, certain polychlorinated biphenyls and dibenzofurans) on the toxicity of OP (DDVP paraoxon, malaoxon) to Daphnia magna was studied. Pretreatment of daphnids with chlorinated compounds during 72 hours in nontoxic concentrations (1/5--1/20 CL{sub 50}) has been shown to reduce the toxicity of OP for hydrobionts. For study of influence of chlorinated compounds on biotransformation of OP the activity of enzymes which are hydrolyzing the OP was investigated in Daphnia`s homogenates or microsomes. The activity of carboxylesterase (tributyrinase, aliesterase) and arylesterase (phosphorylphosphatase) with usage as substrates accordingly {alpha}-naphthylacetate and paraoxon was measured. Besidesmore » that the activity of cholinesterase with application of propionylthiocholine as substrate was determined. After polychlorinated aromatic compounds treatment of daphnids activities of both aryl-and carboxylesterase increased markedly. It decreased the inhibition of Daphnia`s cholinesterase caused by incubation with OP in concentrations 0.5--1.0 CL{sub 50}. Thus the induction by chlorinate aromatics of OP metabolizing enzymes seems to play the important role in reduction of OP toxicity to Daphnia magna. Perhaps the aryl- and carboxylesterase of Daphnia can be used as biomarkers of pollution by polychlorinated aromatics in water.« less
NASA Astrophysics Data System (ADS)
Calderon, Francisco M.
1993-03-01
One hundred twenty-two workers (sixteen from a coke production plant and 106 from a graphite electrode manufacturing plant) agreed to participate in this study evaluating the relationship between exposure to polycyclic aromatic hydrocarbons (PAHs) and urinary excretion of 1-hydroxypyrene (1-HOP), the main metabolite of pyrene. The results show that the concentration of pyrene in air is highly correlated with total PAHs (r equals 0.83, P < 0.0001). The correlation coefficient between pyrene in air and 1-HOP is (r equals 0.69, P < 0.0001) and between 1-HOP and total PAHs is (r equals 0.77, P < 0.0001). The biological half life of the 1-HOP was determined (18 hrs) and the noninterference of smoking habits in relation to 1-HOP urinary excretion was established, concluding that 1-HOP is a suitable bioindicator of the occupational exposure to PAHs.
Remarkably selective iridium catalysts for the elaboration of aromatic C-H bonds.
Cho, Jian-Yang; Tse, Man Kin; Holmes, Daniel; Maleczka, Robert E; Smith, Milton R
2002-01-11
Arylboron compounds have intriguing properties and are important building blocks for chemical synthesis. A family of Ir catalysts now enables the direct synthesis of arylboron compounds from aromatic hydrocarbons and boranes under "solventless" conditions. The Ir catalysts are highly selective for C-H activation and do not interfere with subsequent in situ transformations, including Pd-mediated cross-couplings with aryl halides. By virtue of their favorable activities and exceptional selectivities, these Ir catalysts impart the synthetic versatility of arylboron reagents to C-H bonds in aromatic and heteroaromatic hydrocarbons.
Bacterial Degradation of Aromatic Compounds
Seo, Jong-Su; Keum, Young-Soo; Li, Qing X.
2009-01-01
Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms. PMID:19440284
Tairova, Zhanna; Strand, Jakob; Bossi, Rossana; Larsen, Martin M; Förlin, Lars; Bignert, Anders; Hedman, Jenny; Gercken, Jens; Lang, Thomas; Fricke, Nicolai F; Asmund, Gert; Long, Manhai; Bonefeld-Jørgensen, Eva C
2017-01-01
The aim of this study was to investigate the spatial distribution, levels of dioxin-like compounds (DLC), and biological responses in two fish species. The viviparous eelpout (Zoarces viviparus) was collected from various locations in the Baltic Sea and in fjords of Kattegat and Skagerrak, while shorthorn sculpin (Myoxocephalus scorpius) was obtained at the polychlorinated biphenyl (PCB) polluted site in North West Greenland. Significant differences were detected both in contaminant levels and relative contributions from either polychlorinated dibenzodioxins (PCDD) or polychlorinated dibenzofurans (PCDF or furans) and mono-ortho- and non-ortho (coplanar) polychlorinated biphenyls (dl-PCB). Fish from the eastern Baltic Sea generally displayed higher contributions from PCDD/F compared to dl-PCB, whereas dl-PCB were generally predominated in fish from Danish, Swedish, and German sites. Levels of dl-PCB in muscle tissues were above OSPAR environmental assessment criteria (EAC) for PCB118, indicating a potential risk of adverse biological effects in the ecosystem, whereas levels of the total WHO-TEQs were below threshold for sea food suggesting limited risks for humans. No significant relationships between levels of DLC (expressed as WHO-TEQ), and biological responses such as the induction of CYP1A enzymatic activity and fry reproductive disorders were observed in eelpout. No marked relationship between WHO-TEQ and combined biological aryl hydrocarbon receptor-mediated transactivity (expressed as AhR-TEQ) was noted. However, there was a positive correlation between polycyclic aromatic hydrocarbon (PAH) metabolites and induction of CYP1A activity, suggesting that PAH exhibited greater potential than DLC to produce biological effects in eelpout from the Baltic Sea.
Lucas, Ricardo; Peñalver, Pablo; Gómez-Pinto, Irene; Vengut-Climent, Empar; Mtashobya, Lewis; Cousin, Jonathan; Maldonado, Olivia S; Perez, Violaine; Reynes, Virginie; Aviñó, Anna; Eritja, Ramón; González, Carlos; Linclau, Bruno; Morales, Juan C
2014-03-21
Carbohydrate-aromatic interactions are highly relevant for many biological processes. Nevertheless, experimental data in aqueous solution relating structure and energetics for sugar-arene stacking interactions are very scarce. Here, we evaluate how structural variations in a monosaccharide including carboxyl, N-acetyl, fluorine, and methyl groups affect stacking interactions with aromatic DNA bases. We find small differences on stacking interaction among the natural carbohydrates examined. The presence of fluorine atoms within the pyranose ring slightly increases the interaction with the C-G DNA base pair. Carbohydrate hydrophobicity is the most determinant factor. However, gradual increase in hydrophobicity of the carbohydrate does not translate directly into a steady growth in stacking interaction. The energetics correlates better with the amount of apolar surface buried upon sugar stacking on top of the aromatic DNA base pair.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Materese, Christopher K.; Nuevo, Michel; Sandford, Scott A., E-mail: christopher.k.materese@nasa.gov
Aromatic heterocyclic molecules are an important class of molecules of astrophysical and biological significance that include pyridine, pyrimidine, and their derivatives. Such compounds are believed to exist in interstellar and circumstellar environments, though they have never been observed in the gas phase. Regardless of their presence in the gas phase in space, numerous heterocycles have been reported in carbonaceous meteorites, which indicates that they are formed under astrophysical conditions. The experimental work described here shows that N- and O-heterocyclic molecules can form from the ultraviolet (UV) irradiation of the homocyclic aromatic molecules benzene (C{sub 6}H{sub 6}) or naphthalene (C{sub 10}H{submore » 8}) mixed in ices containing H{sub 2}O and NH{sub 3}. This represents an alternative way to generate aromatic heterocycles to those considered before and may have important implications for astrochemistry and astrobiology.« less
Hermawan, Idam; Furuta, Atsushi; Higashi, Masahiro; Fujita, Yoshihisa; Akimitsu, Nobuyoshi; Yamashita, Atsuya; Moriishi, Kohji; Tsuneda, Satoshi; Tani, Hidenori; Nakakoshi, Masamichi; Tsubuki, Masayoshi; Sekiguchi, Yuji; Noda, Naohiro; Tanaka, Junichi
2017-01-01
Bioassay-guided separation of a lipophilic extract of the crinoid Alloeocomatella polycladia, inhibiting the activity of HCV NS3 helicase, yielded two groups of molecules: cholesterol sulfate and four new aromatic sulfates 1–4. The structures of the aromatics were elucidated by spectroscopic analysis in addition to theoretical studies. The aromatic sulfates 1–4 showed moderate inhibition against NS3 helicase with IC50 values of 71, 95, 7, and 5 μM, respectively. PMID:28398249
Hermawan, Idam; Furuta, Atsushi; Higashi, Masahiro; Fujita, Yoshihisa; Akimitsu, Nobuyoshi; Yamashita, Atsuya; Moriishi, Kohji; Tsuneda, Satoshi; Tani, Hidenori; Nakakoshi, Masamichi; Tsubuki, Masayoshi; Sekiguchi, Yuji; Noda, Naohiro; Tanaka, Junichi
2017-04-11
Bioassay-guided separation of a lipophilic extract of the crinoid Alloeocomatella polycladia , inhibiting the activity of HCV NS3 helicase, yielded two groups of molecules: cholesterol sulfate and four new aromatic sulfates 1 - 4 . The structures of the aromatics were elucidated by spectroscopic analysis in addition to theoretical studies. The aromatic sulfates 1 - 4 showed moderate inhibition against NS3 helicase with IC 50 values of 71, 95, 7, and 5 μM, respectively.
Generation of N-Heterocycles via Tandem Reactions of N '-(2-Alkynylbenzylidene)hydrazides.
Qiu, Guanyinsheng; Wu, Jie
2016-02-01
As a powerful synthon, N '-(2-alkynylbenzylidene)hydrazides have been utilized efficiently for the construction of N-heterocycles. Since N '-(2-alkynylbenzylidene)hydrazides can easily undergo intramolecular 6-endo cyclization promoted by silver triflate or electrophiles, the resulting isoquinolinium-2-yl amides can proceed through subsequent transformations including [3 + 2] cycloaddition, nucleophilic addition, and [3 + 3] cycloaddition. Several unexpected rearrangements via radical processes were observed in some cases, which afforded nitrogen-containing heterocycles with molecular complexity. Reactive partners including internal alkynes, arynes, ketenimines, ketenes, allenoates, and activated alkenes reacted through [3 + 2] cycloaddition and subsequent aromatization, leading to diverse H-pyrazolo[5,1-a]isoquinolines with high efficiency. Nucleophilic addition to the in situ generated isoquinolinium-2-yl amide followed by aromatization also produced H-pyrazolo[5,1-a]isoquinoline derivatives when terminal alkynes, carbonyls, enamines, and activated methylene compounds were used as nucleophiles. Isoquinoline derivatives were obtained when indoles or phosphites were employed as nucleophiles in the reactions of N '-(2-alkynylbenzylidene)hydrazides. A tandem 6-endo cyclization and [3 + 3] cycloaddition of cyclopropane-1,1-dicarboxylates with N '-(2-alkynylbenzylidene)hydrazides was observed as well. Small libraries of these compounds were constructed. Biological evaluation suggested that some compounds showed promising activities for inhibition of CDC25B, TC-PTP, HCT-116, and PTP1B. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Safna Hussan, K P; Thayyil, M Shahin; Rajan, Vijisha K; Muraleedharan, K
2018-02-01
Molecular aspects of a double active pharmaceutical ingredient in ionic liquid form, benzalkonium ibuprofenate (BaIb), were studied using density functional theory (DFT/B3LYP/6-31+G (d, p)). A detailed discussion on optimized geometry, energy, heat and the enthalpy of BaIb was carried out. The computed vibrational results agree well with the experimental results. The stability and biological activity were compared to the parent drugs on the basis of global descriptive parameters. The electrophilic and nucleophilic sites were pointed out in the MESP structures well evidently. NBO analysis was also done to predict the relative aromaticity, delocalization effects and the contribution towards stabilization energy of the title compound. The information about non-covalent, non-ionic weak interaction between the cation and anion was obtained from the list of Mulliken charges and NBO analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recent discoveries of anticancer flavonoids.
Raffa, Demetrio; Maggio, Benedetta; Raimondi, Maria Valeria; Plescia, Fabiana; Daidone, Giuseppe
2017-12-15
In this review we report the recent advances in anticancer activity of the family of natural occurring flavonoids, covering the time span of the last five years. The bibliographic data will be grouped, on the basis of biological information, in two great categories: reports in which the extract plants bioactivity is reported and the identification of each flavonoid is present or not, and reports in which the anticancer activity is attributable to purified and identified flavonoids from plants. Wherever possible, the targets and mechanisms of action as well as the structure-activity relationships of the molecules will be reported. Also, in the review it was thoroughly investigated the recent discovery on flavonoids containing the 2-phenyl-4H-chromen-4-one system even if some examples of unusual flavonoids, bearing a non-aromatic B-ring or other ring condensed to the base structure are reported. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Zholdikova, Z I; Kharchevnikova, N V
2006-01-01
A version of logical-combinatorial JSM type intelligent system was used to predict the presence and the degree of a carcinogenic effect. This version was based on combined description of chemical substances including both structural and numeric parameters. The new version allows for the fact that the toxicity and danger caused by chemical substances often depend on their biological activation in the organism. The authors substantiate classifying chemicals according to their carcinogenic activity, and illustrate the use of the system to predict the carcinogenicity of polycyclic aromatic hydrocarbons using a model of bioactivation via the formation of diolepoxides, and the carcinogenicity of halogenated alkanes using a model of bioactivation via oxidative dehalogenation. The paper defined the boundary level of an energetic parameter, the exceeding of which correlated with the inhibition of halogenated alkanes's metabolism and the absence of carcinogenic activity.
Common Commercial and Consumer Products Contain Activators of the Aryl Hydrocarbon (Dioxin) Receptor
Zhao, Bin; Bohonowych, Jessica E. S.; Timme-Laragy, Alicia; Jung, Dawoon; Affatato, Alessandra A.; Rice, Robert H.; Di Giulio, Richard T.; Denison, Michael S.
2013-01-01
Activation of the Ah receptor (AhR) by halogenated aromatic hydrocarbons (HAHs), such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin), can produce a wide variety of toxic and biological effects. While recent studies have shown that the AhR can bind and be activated by structurally diverse chemicals, how widespread of these AhR agonists are in environmental, biological and synthetic materials remains to be determined. Using AhR-based assays, we demonstrate the presence of potent AhR agonists in a variety of common commercial and consumer items. Solvent extracts of paper, rubber and plastic products contain chemicals that can bind to and stimulate AhR DNA binding and/or AhR-dependent gene expression in hepatic cytosol, cultured cell lines, human epidermis and zebrafish embryos. In contrast to TCDD and other persistent dioxin-like HAHs, activation of AhR-dependent gene expression by these extracts was transient, suggesting that the agonists are metabolically labile. Solvent extracts of rubber products produce AhR-dependent developmental toxicity in zebrafish in vivo, and inhibition of expression of the metabolic enzyme CYP1A, significantly increased their toxic potency. Although the identity of the responsible AhR-active chemicals and their toxicological impact remain to be determined, our data demonstrate that AhR active chemicals are widely distributed in everyday products. PMID:23441220
EMERGING TECHNOLOGY SUMMARY: INNOVATIVE METHODS FOR BIOSLURRY TREATMENT
The tests reported herein were conducted by IT Corporation (IT), Knoxville, TN, to investigate the feasibility of combined biological and chemical treatments to treat polycyclic aromatic hydrocarbons (PAHs). Bioslurry treatment of PAH-contaminated soils was demonstrated under the...
Aromatization of n-hexane over ZnO/H-ZSM-5 catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanai, J.; Kawata, N.
The mechanism of transformation of n-hexane into aromatics over ZnO/H-ZSM-5 catalyst has been investigated. The yields of aromatics in the transformation of n-hexane over H-ZSM-5 are enhanced by mechanical mixing of ZnO as well as by ion exchange or impregnation of zinc cation. It is concluded that aromatization of n-hexane over ZnO/H-ZSM-5 is a bifunctional reaction, and that ZnO as well as H-ZSM-5 takes part both in the activation of n-hexane and in the aromatization of lower olefins. By contrasting the conversion of n-hexane with that of 1-hexane, it is found that aromatization of n-hexane over ZnO/H-ZSM-5 involves both themore » dehydrogenation of n-hexane into hexene and that of the oligomerized products into aromatics. It is proposed that ZnO catalyzes the dehydrogenation of n-hexane into hexene and of the oligomerized products into aromatics.« less
González-Macías, C; Schifter, I; Lluch-Cota, D B; Méndez-Rodríguez, L; Hernández-Vázquez, S
2007-10-01
Concentrations of total aromatic hydrocarbons and extractable organic matter in the water column and sediment were determined in samples collected in the course of the last 20 years from the Salina Cruz Harbor, México, to assess the degree of organic contamination. In sediments, organic compounds accumulate in shallow areas mostly associated with extractable organic matter and fine fractions. Calculated geocumulation index and enrichment factors suggest that contamination could be derived from anthropogenic activities attributed to harbor and ship scrapping activities, as well as transboundary source. Concentration of total aromatic hydrocarbons (as chrysene equivalents) ranged from 0.01 to 534 microg l(-1) in water, and from 0.10 to 2,160 microg g(-1) in sediments. Total aromatic concentration of 5 microg g(-1) is proposed as background concentration.
Changes in mutagenicity of protein pyrolyzates by reaction with nitrite.
Yoshida, D; Matsumoto, T
1978-09-01
Pyrolyzates of protein and related materials were treated with nitrite under acidic conditions, and the mutagenic activity toward Salmonella tester strains was determined. After treatment with nitrite in acidic solution, casein pyrolyzate, an extract of roasted chicken meat, tobacco-smoke condensate and some aromatic amines showed appreciable decreases in their mutagenic activities toward Salmonella typhimurium TA 98. Aromatic amines in the pyrolyzates may be changed by nitrite treatment to other forms having no or lower mutagenic activity toward Salmonella typhimurium TA 98. The contribution by aromatic amines to the total mutagenic activity of the pyrolyzates was as high as 80% in both casein pyrolyzate and extract of roasted chicken meat and 50% in tobacco-smoke condensate. Pyrolyzates of protein and related materials did not show a decrease in the mutagenic activity toward Salmonella typhimurium TA 100 with the same treatment.
Structural analysis and antimicrobial activity of 2[1H]-pyrimidinethione/selenone derivatives
NASA Astrophysics Data System (ADS)
Żesławska, Ewa; Korona-Głowniak, Izabela; Szczesio, Małgorzata; Olczak, Andrzej; Żylewska, Alicja; Tejchman, Waldemar; Malm, Anna
2017-08-01
Four new crystal structures of sulfur and selenium analogues of 2[1H]-pyrimidinone derivatives were determined with the use of X-ray diffraction method. The molecular geometry and intermolecular interactions of the investigated molecules were analyzed in order to find the structural features and geometrical parameters, which can be responsible for antimicrobial activities. The influence of chalcogen substituents (sulfur and selenium) on the crystal packing was also studied. The main differences in the molecular structures exist in mutual arrangement of two aromatic rings. The intermolecular interactions in all investigated compounds are similar. Furthermore, the in vitro antibacterial and antifungal activities for these compounds were evaluated. Preliminary investigations have identified two highly potent antibacterial compounds containing selenium atom, which display selectivity towards staphylococci and micrococci. This selectivity was not observed for a control compound used as a drug, namely vancomycin. These compounds possess also good antifungal activity. This is the first report of biological activities of 2[1H]-pyrimidineselenone derivatives.
Conformationally restrained aromatic analogues of fosmidomycin and FR900098.
Kurz, Thomas; Schlüter, Katrin; Pein, Miriam; Behrendt, Christoph; Bergmann, Bärbel; Walter, Rolf D
2007-07-01
The synthesis and in-vitro antimalarial activity of conformationally restrained bis(pivaloyloxymethyl) ester analogues of the natural product fosmidomycin is presented. In contrast to alpha-aryl-substituted analogues, conformationally restrained aromatic analogues exhibit only moderate in-vitro antimalarial activity against the chloroquine-sensitive strain 3D7 of Plasmodium falciparum. The most active derivative displays an IC(50) value of 47 microM.
Zhao, Jincan; Fang, Hong; Han, Jianlin; Pan, Yi
2014-05-02
Cu-catalyzed dehydrogenation-olefination and esterification of C(sp(3))-H bonds of cycloalkanes with TBHP as an oxidant has been developed. The reaction involves four C-H bond activations and gives cycloallyl ester products directly from cycloalkanes and aromatic aldehydes.
The bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) by the filter-feeding soft-shell clam Mya arenaria was evaluated at three sites near Boston (MA, USA) by assessing the chemical activities of those hydrophobic organic compounds (H...
Moraes, Eduardo C; Alvarez, Thabata M; Persinoti, Gabriela F; Tomazetto, Geizecler; Brenelli, Livia B; Paixão, Douglas A A; Ematsu, Gabriela C; Aricetti, Juliana A; Caldana, Camila; Dixon, Neil; Bugg, Timothy D H; Squina, Fabio M
2018-01-01
Lignin is a heterogeneous polymer representing a renewable source of aromatic and phenolic bio-derived products for the chemical industry. However, the inherent structural complexity and recalcitrance of lignin makes its conversion into valuable chemicals a challenge. Natural microbial communities produce biocatalysts derived from a large number of microorganisms, including those considered unculturable, which operate synergistically to perform a variety of bioconversion processes. Thus, metagenomic approaches are a powerful tool to reveal novel optimized metabolic pathways for lignin conversion and valorization. The lignin-degrading consortium (LigMet) was obtained from a sugarcane plantation soil sample. The LigMet taxonomical analyses (based on 16S rRNA) indicated prevalence of Proteobacteria , Actinobacteria and Firmicutes members, including the Alcaligenaceae and Micrococcaceae families, which were enriched in the LigMet compared to sugarcane soil. Analysis of global DNA sequencing revealed around 240,000 gene models, and 65 draft bacterial genomes were predicted. Along with depicting several peroxidases, dye-decolorizing peroxidases, laccases, carbohydrate esterases, and lignocellulosic auxiliary (redox) activities, the major pathways related to aromatic degradation were identified, including benzoate (or methylbenzoate) degradation to catechol (or methylcatechol), catechol ortho-cleavage, catechol meta-cleavage, and phthalate degradation. A novel Paenarthrobacter strain harboring eight gene clusters related to aromatic degradation was isolated from LigMet and was able to grow on lignin as major carbon source. Furthermore, a recombinant pathway for vanillin production was designed based on novel gene sequences coding for a feruloyl-CoA synthetase and an enoyl-CoA hydratase/aldolase retrieved from the metagenomic data set. The enrichment protocol described in the present study was successful for a microbial consortium establishment towards the lignin and aromatic metabolism, providing pathways and enzyme sets for synthetic biology engineering approaches. This work represents a pioneering study on lignin conversion and valorization strategies based on metagenomics, revealing several novel lignin conversion enzymes, aromatic-degrading bacterial genomes, and a novel bacterial strain of potential biotechnological interest. The validation of a biosynthetic route for vanillin synthesis confirmed the applicability of the targeted metagenome discovery approach for lignin valorization strategies.
Remediation of aged diesel contaminated soil by alkaline activated persulfate.
Lominchar, M A; Santos, A; de Miguel, E; Romero, A
2018-05-01
The present work studies the efficiency of alkaline activated persulfate (PS) to remediate an aged diesel fuel contaminated soil from a train maintenance facility. The Total Petroleum Hydrocarbon (TPH) concentration in soil was approximately 5000mgkg -1 with a ratio of aliphatic:aromatic compounds of 70:30. Aromatic compounds were mainly naphtalenes and phenanthrenes. The experiments were performed in batch mode where different initial concentrations of persulfate (105mM, 210mM and 420mM) and activator:persulfate ratios (2 and 4) were evaluated, with NaOH used as activator. Runs were carried out during 56days. Complete TPH conversion was obtained with the highest concentration of PS and activator, whereas in the other runs the elimination of fuel ranged between 60 and 77%. Besides, the abatement of napthalenes and phenantrenes was faster than aliphatic reduction (i. e. after 4days of treatment, the conversions of the aromatic compounds were around 0.8 meanwhile the aliphatic abatements were 0.55) and no aromatic oxidation intermediates from naphtalenes or phenantrenes were detected. These results show that this technology is effective for the remediation of aged diesel in soil with alkaline pH. Copyright © 2017 Elsevier B.V. All rights reserved.
Anti-aging activities of extracts from Tunisian medicinal halophytes and their aromatic constituents
Jdey, A.; Falleh, H.; Ben Jannet, S.; Mkadmini Hammi, K.; Dauvergne, X.; Magné, C.; Ksouri, R.
2017-01-01
Six medicinal halophytes widely represented in North Africa and commonly used in traditional medicine were screened for pharmacological properties to set out new promising sources of natural ingredients for cosmetic or nutraceutical applications. Thus, Citrullus colocynthis, Cleome arabica, Daemia cordata, Haloxylon articulatum, Pituranthos scoparius and Scorzonera undulata were examined for their in vitro antioxidant (DPPH scavenging and superoxide anion-scavenging, β-carotene bleaching inhibition and iron-reducing tests), antibacterial (microdilution method, against four human pathogenic bacteria) and anti-tyrosinase activities. Besides, their aromatic composition was determined by RP-HPLC. H. articulatum shoot extracts exhibited the strongest antioxidant activity and inhibited efficiently the growth of Salmonella enterica and Escherichia coli. P. scoparius and C. arabica inhibited slightly monophenolase, whereas H. articulatum was the most efficient inhibitor of diphenolase activity. Furthermore, H. articulatum exhibited the highest aromatic content (3.4 % DW), with dopamine as the major compound. These observations suggest that shoot extract of H. articulatum, and to a lesser extent of C. arabica, could be used as antioxidant, antibiotic as well as new natural skin lightening agents. Also, possible implication of aromatic compounds in anti-tyrosinase activity is discussed. PMID:28827992
Jdey, A; Falleh, H; Ben Jannet, S; Mkadmini Hammi, K; Dauvergne, X; Magné, C; Ksouri, R
2017-01-01
Six medicinal halophytes widely represented in North Africa and commonly used in traditional medicine were screened for pharmacological properties to set out new promising sources of natural ingredients for cosmetic or nutraceutical applications. Thus, Citrullus colocynthis , Cleome arabica , Daemia cordata , Haloxylon articulatum , Pituranthos scoparius and Scorzonera undulata were examined for their in vitro antioxidant (DPPH scavenging and superoxide anion-scavenging, β -carotene bleaching inhibition and iron-reducing tests), antibacterial (microdilution method, against four human pathogenic bacteria) and anti-tyrosinase activities. Besides, their aromatic composition was determined by RP-HPLC. H. articulatum shoot extracts exhibited the strongest antioxidant activity and inhibited efficiently the growth of Salmonella enterica and Escherichia coli . P. scoparius and C. arabica inhibited slightly monophenolase, whereas H. articulatum was the most efficient inhibitor of diphenolase activity. Furthermore, H. articulatum exhibited the highest aromatic content (3.4 % DW), with dopamine as the major compound. These observations suggest that shoot extract of H. articulatum , and to a lesser extent of C. arabica , could be used as antioxidant, antibiotic as well as new natural skin lightening agents. Also, possible implication of aromatic compounds in anti-tyrosinase activity is discussed.
Di(hydroxyphenyl)- 1,2,4-triazole monomers
NASA Technical Reports Server (NTRS)
Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Wolf, Peter (Inventor)
1993-01-01
The di(hydroxyphenyl)- 1,2,4-triazole monomers were first synthesized by reacting bis (4-hydroxyphenyl) hydrazide with aniline hydrochloride at 250 C in the melt and also by reacting 1,3 or 1,4-bis- (4-hydroxyphenyl)- phenylene- dihydrazide with 2 moles of aniline hydrochloride in the melt. Purification of the di(hydroxyphenyl)- 1,2,4-triazole monomers was accomplished by recrystallization. Poly (1,2,4-triazoles) (PT) were prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl)- 1,2,4-triazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The reactions were carried out in polar aprotic solvents such as sulfolane or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. This synthetic route has provided high molecular weight PT of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the availability of a large variety of activated aromatic dihalides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonner, C.A.; Fischer, R.S.; Ahmad, S.
The pathway construction for biosynthesis of aromatic amino acids in Escherichia coli is atypical of the phylogenetic subdivision of gram-negative bacteria to which it belongs. Related organisms possess second pathways to phenylalanine and tyrosine which depend upon the expression of a monofunctional chorismate mutase (CM-F) and cyclohexadienyl dehydratase (CDT). Some enteric bacteria, unlike E. coli, possess either CM-F or CDT. These essentially cryptic remnants of an ancestral pathway can be a latent source of biochemical potential under certain conditions. As one example of advantageous biochemical potential, the presence of CM-F in Salmonella typhimurium increases the capacity for prephenate accumulation inmore » a tyrA auxotroph. We report the finding that a significant fraction of the latter prephenate is transaminated to L-arogenate. The tyrA19 mutant is now the organism of choice for isolation of L-arogenate, uncomplicated by the presence of other cyclohexadienyl products coaccumulated by a Neurospora crassa mutant that had previously served as the prime biological source of L-arogenate. Prephenate aminotransferase activity was not conferred by a discrete enzyme, but rather was found to be synonymous with the combined activities of aspartate aminotransferase (aspC), aromatic aminotransferase (tyrB), and branched-chain aminotransferase (ilvE).« less
Sun, Runxia; Sun, Yue; Li, Qing X; Zheng, Xiaobo; Luo, Xiaojun; Mai, Bixian
2018-05-30
Intensive human activities aggravate environmental pollution, particularly in the coastal environment. Sixteen priority polycyclic aromatic hydrocarbons (PAHs) were determined in the sediments and marine species from Zhanjiang Harbor, a large harbor in China. The total PAH concentrations ranged from 151 to 453 ng/g dry weight (dw) in sediments and from 86.7 to 256 ng/g wet weight (ww) in organism tissues. High levels of PAHs occurred in the sample sites next to the estuary. A decrease in PAH levels was observed in comparison to the previous survey prior to 2012. Fish exhibited lower lipid weight normalized PAH concentrations than the other species, which may be related to their efficient metabolic transformation. Three ring PAHs dominated both in marine sediments and species, but low molecular weight PAHs exhibited higher proportions in biota than in sediments (p < 0.05). Petrogenic and pyrolytic sources both contributed to the occurrence of PAHs, and the latter became increasingly important in the study area. The ecological risk from PAHs in the sediments was relatively low (9% incidence of adverse biological effect) according to the effects-based sediment quality guideline values. Exposure to PAHs via consuming seafoods might pose a health risk to local residents. Overall, these results revealed anthropogenic activities in the coastal area have an impact on the local ecosystem. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmich, Kate E.; Pereira, Jose Henrique; Gall, Daniel L.
Here, lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, wemore » present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.« less
Polyimidazoles Via Aromatic Nucleophilic Displacement
NASA Technical Reports Server (NTRS)
Connell, John W.; Hergenrother, Paul M.
1990-01-01
Experiments show variety of polyimidazoles prepared by aromatic nucleophilic displacement, from reactions of bisphenol imidazoles with activated difluoro compounds. Polyimidazoles have good mechanical properties making them suitable for use as films, moldings, and adhesives.
Matsui, Eriko; Abe, Junko; Yokoyama, Hideshi; Matsui, Ikuo
2004-04-16
Flap endonuclease-1 (FEN-1) possessing 5'-flap endonuclease and 5'-->3' exonuclease activity plays important roles in DNA replication and repair. In this study, the kinetic parameters of mutants at highly conserved aromatic residues, Tyr33, Phe35, Phe79, and Phe278-Phe279, in the vicinity of the catalytic centers of FEN-1 were examined. The substitution of these aromatic residues with alanine led to a large reduction in kcat values, although these mutants retained Km values similar to that of the wild-type enzyme. Notably, the kcat of Y33A and F79A decreased 333-fold and 71-fold, respectively, compared with that of the wild-type enzyme. The aromatic residues Tyr33 and Phe79, and the aromatic cluster Phe278-Phe279 mainly contributed to the recognition of the substrates without the 3' projection of the upstream strand (the nick, 5'-recess-end, single-flap, and pseudo-Y substrates) for the both exo- and endo-activities, but played minor roles in recognizing the substrates with the 3' projection (the double flap substrate and the nick substrate with the 3' projection). The replacement of Tyr33, Phe79, and Phe278-Phe279, with non-charged aromatic residues, but not with aliphatic hydrophobic residues, recovered the kcat values almost fully for the substrates without the 3' projection of the upstream strand, suggesting that the aromatic groups of Tyr33, Phe79, and Phe278-Phe279 might be involved in the catalytic reaction, probably via multiple stacking interactions with nucleotide bases. The stacking interactions of Tyr33 and Phe79 might play important roles in fixing the template strand and the downstream strand, respectively, in close proximity to the active center to achieve the productive transient state leading to the hydrolysis.
Synthesis and preliminary biological evaluations of (+)-isocampholenic acid-derived amides.
Grošelj, Uroš; Golobič, Amalija; Knez, Damijan; Hrast, Martina; Gobec, Stanislav; Ričko, Sebastijan; Svete, Jurij
2016-08-01
The synthesis of two novel (+)-isocampholenic acid-derived amines has been realized starting from commercially available (1S)-(+)-10-camphorsulfonic acid. The novel amines as well as (+)-isocampholenic acid have been used as building blocks in the construction of a library of amides using various aliphatic, aromatic, and amino acid-derived coupling partners using BPC and CDI as activating agents. Amide derivatives have been assayed against several enzymes that hold potential for the development of new drugs to battle bacterial infections and Alzheimer's disease. Compounds 20c and 20e showed promising selective sub-micromolar inhibition of human butyrylcholinesterase [Formula: see text] ([Formula: see text] values [Formula: see text] and [Formula: see text], respectively).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Gyanendra; Agarwal, Rakhi; Swaminathan, Subramanyam
Botulinum neurotoxins (BoNTs) are the most poisonous biological substance known to humans. They cause flaccid paralysis by blocking the release of acetylcholine at the neuromuscular junction. Here, we report a number of small molecule non-peptide inhibitors of BoNT serotype E. In addition, the structure–activity relationship and a pharmacophore model are presented. Although non-peptidic in nature, these inhibitors mimic key features of the uncleavable substrate peptide Arg-Ile-Met-Glu (RIME) of the SNAP-25 protein. Among the compounds tested, most of the potent inhibitors bear a zinc-chelating moiety connected to a hydrophobic and aromatic moiety through a carboxyl or amide linker. All of themmore » show low micromolar IC 50 values.« less
Nucleophilic Aromatic Substitution.
ERIC Educational Resources Information Center
Avila, Walter B.; And Others
1990-01-01
Described is a microscale organic chemistry experiment which demonstrates one feasible route in preparing ortho-substituted benzoic acids and provides an example of nucleophilic aromatic substitution chemistry. Experimental procedures and instructor notes for this activity are provided. (CW)
NASA Astrophysics Data System (ADS)
Hatcher, P.; Ware, S. A.; Vaughn, D.; Waggoner, D. C.; Bianchi, T. S.
2017-12-01
Sediment samples extending from the main channel of the Mississippi River to edge of the continental shelf of the Gulf of Mexico were extracted to recover humic acids from the organic matter and subjected to molecular level characterization by electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS). The data show that sedimentary organic matter at the river mouth contains humic substances with a predominantly terrestrial signature resembling those obtained from soils. Condensed aromatic molecules and carboxyl rich alicyclic molecules (CRAM) typify the major structures observed. The CRAM-like molecules persist progressing seaward into the Gulf while the condensed aromatic molecules diminish in relative abundance. This trend is characteristic of traditional mixing of allochthonous terrestrial with autochthonous source materials, consistent with published isotope and lignin phenol biomarker data. Alternatively, the trend could also be explained by oxidative degradation of mainly terrestrial organic matter whereby the condensed aromatic molecules would be selectively oxidized. CRAM molecules would then become selectively enriched as one progresses from the channel to the continental shelf. Laboratory studies show that aromatic molecules (like those in lignin) subjected to oxidative degradation mainly by hydroxyl radical attack, either biologically or non-biologically, undergo molecular rearrangement via ring-opening to form reactive species. These can interact with nucleophilic molecules such as peptides and sulfur-containing species and/or can undergo cycloaddition reactions to produce CRAM-like species. This latter explanation suggests that the main source of organic matter in this coastal depocenter is terrestrial and that autochthonous organic matter contributes little to sedimentary organic matter.
Polyphenylquinoxalines via aromatic nucleophilic displacement
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor)
1990-01-01
Polyphenylquinoxalines are prepared by the nucleophilic displacement reaction of di(hydroxyphenyl)quinoxaline monomers with activated aromatic dihalides or dinitro compounds. The reactions are carried out in polar aprotic solvents using alkali metal bases at elevated temperatures under nitrogen. The di(hydroxyphenyl)quinoxaline monomers are prepared either by reacting stoichiometric quantities of aromatic bis(o-diamines) with a hydroxybenzil or by reacting o-phenylenediamine with a dihydroxybenzil or bis(hydroxyphenylglyoxylyl)benzene.
Polyphenylquinoxalines via aromatic nucleophilic displacement
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor)
1991-01-01
Polyphenylquinoxalines are prepared by the nucleophilic displacement reaction of di(hydroxyphenyl)quinoxaline monomers with activated aromatic dihalides or dinitro compounds. The reactions are carried out in polar aprotic solvents during alkali metal bases at elevated temperatures under nitrogen. The di(hydroxyphenyl)quinoxaline monomers are prepared either by reacting stoichiometric quantities of aromatic bis(o-diamines) with a hydroxybenzil or by reacting o-phenylenediamine with a dihydroxybenzil or bis(hydroxyphenylglyoxylyl)benzene.
Saraç, Selma; Ciftçi, Murat; Zorkun, Inci Selin; Tunç, Ozgül; Erol, Kevser
2007-01-01
6-Ethyl-4-aryl-5-methoxycarbonyl-3,4-dihydropyrimidin-2(1H)-one derivatives (1-10) were synthesized by condensing urea with methyl 3-oxopentanoate and aromatic aldehydes in absol. ethanol using HCl as a catalyst according to the Biginelli reaction. The structures of the compounds were confirmed by spectroscopic and elemental analysis. The calcium channel blocker activities of the compounds were determined by the tests performed on isolated rat ileum and lamb carotid artery. On the isolated rat ileum, compound 2 was found to be more effective at 10(-5) mol/L concentration than nicardipine (CAS 55985-32-5). On the lamb carotid artery compounds 5, 6 and 4, 5, 6 were significantly active at 10(-6) mol/L and 10(-5) mol/L concentrations, respectively.
Vignet, Caroline; Trenkel, Verena M.; Vouillarmet, Annick; Bricca, Giampiero; Bégout, Marie-Laure; Cousin, Xavier
2017-01-01
Zebrafish were exposed through diet to two environmentally relevant polycyclic aromatic hydrocarbons (PAHs) mixtures of contrasted compositions, one of pyrolytic (PY) origin and one from light crude oil (LO). Monoamine concentrations were quantified in the brains of the fish after six month of exposure. A significant decrease in noradrenaline (NA) was observed in fish exposed to both mixtures, while a decrease in serotonin (5HT) and dopamine (DA) was observed only in LO-exposed fish. A decrease in metabolites of 5HT and DA was observed in fish exposed to both mixtures. Several behavioural disruptions were observed that depended on mixtures, and parallels were made with changes in monoamine concentrations. Indeed, we observed an increase in anxiety in fish exposed to both mixtures, which could be related to the decrease in 5HT and/or NA, while disruptions of daily activity rhythms were observed in LO fish, which could be related to the decrease in DA. Taken together, these results showed that (i) chronic exposures to PAHs mixtures disrupted brain monoamine contents, which could underlie behavioural disruptions, and that (ii) the biological responses depended on mixture compositions. PMID:28273853
Essential oil composition of three Peperomia species from the Amazon, Brazil.
de Lira, Patricia Natália B; da Silva, Joyce Kelly R; Andrade, Eloisa Helena A; Sousa, Pergentino José; Silva, Nayla N S; Maia, José Guilherme S
2009-03-01
The essential oils of three species of Peperomia from the Amazon, Brazil, were hydrodistilled and their 96 volatile constituents identified by GC and GC-MS. The main constituents found in the oil of P. macrostachya were epi-alpha-bisabolol (15.9%), caryophyllene oxide (12.9%), myristicin (7.6%), an aromatic compound (6.6%) and limonene (5.4%). The oil of P. pellucida was dominated by dillapiole (55.3%), (E)-caryophyllene (14.3%) and carotol (8.1%). The major volatile found in the oil of P. rotundifolia was decanal (43.3%), probably a fatty acid-derived compound, followed by dihydro-P3-santalol (9.0%), (E)-nerolidol (7.9%) and limonene (7.7%). The aromatic compounds elemicin, myristicin, apiole, dillapiole and safrole identified in these Peperomia species has been found also in Amazon Piper species. The oils and methanol extracts showed high brine shrimp larvicidal activities. The oil of P. rotundifolia (LC50 = 1.9 +/- 0.1 microg/mL) was the more toxic, followed by the extract of P. pellucida (LC50 = 2.4 +/- 0.5 microg/mL) and the oil of P. macrostachya (LC50 = 9.0 +/- 0.4 microg/mL), therefore with important biological properties.
Gough, Jonathan D; Barrett, Elvis J; Silva, Yenia; Lees, Watson J
2006-08-20
Thiol based redox buffers are used to enhance the folding rates of disulfide-containing proteins in vitro. Traditionally, small molecule aliphatic thiols such as glutathione are employed. Recently, we have demonstrated that aromatic thiols can further enhance protein-folding rates. In the presence of para-substituted aromatic thiols the folding rate of a disulfide-containing protein was increased by 4-23 times over that measured for glutathione. However, several important practical issues remain to be addressed. Aromatic thiols have never been tested in the presence of denaturants such as guanidine hydrochloride. Only two of the para-substituted aromatic thiols previously examined are commercially available. To expand the number of aromatic thiols for protein folding, several commercially available meta- and ortho-substituted aromatic thiols were studied. Furthermore, an ortho-substituted aromatic thiol, easily obtained from inexpensive starting materials, was investigated. Folding rates of scrambled ribonuclease A at pH 6.0, 7.0 and 7.7, with ortho- and meta-substituted aromatic thiols, were up to 10 times greater than those with glutathione. In the presence of the common denaturant guanidine hydrochloride (0.5M) aromatic thiols provided 100% yield of active protein while maintaining equivalent folding rates.
Behl, Mamta; Rice, Julie R.; Smith, Marjo V.; Co, Caroll A.; Bridge, Matthew F.; Hsieh, Jui-Hua; Freedman, Jonathan H.; Boyd, Windy A.
2016-01-01
With the phasing-out of the polybrominated diphenyl ether (PBDE) flame retardants due to concerns regarding their potential developmental toxicity, the use of replacement compounds such as organophosphate flame retardants (OPFRs) has increased. Limited toxicity data are currently available to estimate the potential adverse health effects of the OPFRs. The toxicological effects of 4 brominated flame retardants, including 3 PBDEs and 3,3',5,5'-tetrabromobisphenol A, were compared with 6 aromatic OPFRs and 2 aliphatic OPFRs. The effects of these chemicals were determined using 3 biological endpoints in the nematode Caenorhabditis elegans (feeding, larval development, and reproduction). Because C. elegans development was previously reported to be sensitive to mitochondrial function, results were compared with those from an in vitro mitochondrial membrane permeabilization (MMP) assay. Overall 11 of the 12 flame retardants were active in 1 or more C. elegans biological endpoints, with only tris(2-chloroethyl) phosphate inactive across all endpoints including the in vitro MMP assay. For 2 of the C. elegans endpoints, at least 1 OPFR had similar toxicity to the PBDEs: triphenyl phosphate (TPHP) inhibited larval development at levels comparable to the 3 PBDEs; whereas TPHP and isopropylated phenol phosphate (IPP) affected C. elegans reproduction at levels similar to the PBDE commercial mixture, DE-71. The PBDEs reduced C. elegans feeding at lower concentrations than any OPFR. In addition, 9 of the 11 chemicals that inhibited C. elegans larval development also caused significant mitochondrial toxicity. These results suggest that some of the replacement aromatic OPFRs may have levels of toxicity comparable to PBDEs. PMID:27566445
Riley, Stephanie M; Ahoor, Danika C; Regnery, Julia; Cath, Tzahi Y
2018-02-01
Dissolved organic matter (DOM) present in oil and gas (O&G) produced water and fracturing flowback was characterized and quantified by multiple analytical techniques throughout a hybrid biological-physical treatment process. Quantitative and qualitative analysis of DOM by liquid chromatography - organic carbon detection (LC-OCD), liquid chromatography-high-resolution mass spectrometry (LC-HRMS), gas chromatography-mass spectrometry (GC-MS), and 3D fluorescence spectroscopy, demonstrated increasing removal of all groups of DOM throughout the treatment train, with most removal occurring during biological pretreatment and some subsequent removal achieved during membrane treatment. Parallel factor analysis (PARAFAC) further validated these results and identified five fluorescent components, including DOM described as humic acids, fulvic acids, proteins, and aromatics. Tryptophan-like compounds bound by complexation to humics/fulvics were most difficult to remove biologically, while aromatics (particularly low molecular weight neutrals) were more challenging to remove with membranes. Strong correlation among PARAFAC, LC-OCD, LC-HRMS, and GC-MS suggests that PARAFAC can be a quick, affordable, and accurate tool for evaluating the presence or removal of specific DOM groups in O&G wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.
Wicke, Daniel; Reemtsma, Thorsten
2010-02-01
The effect of hydrolytic exoenzymes on the release of hydrophobic organic contaminants (HOC) from two different surface soils was studied in laboratory batch experiments. Incubation of the soils with cellulase with an activity fivefold above the inherent soil activity enhanced the release of hydrophobic contaminants (polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and hydroxylated PCB) by 40-200%. Xylanase and invertase did not show measurable effects at comparable relative activity levels. This suggests that cellulose substructures are important for the retention of HOC in soil organic matter (SOM). Hydrolytic exoenzymes, and the microorganisms that release them, contribute to the mobilization of HOC from soil, by shifting the sorption equilibrium in the course of SOM transformation into dissolved organic matter or by facilitating HOC diffusion as a consequence of reduced rigidity of SOM. We conclude that not only biodegradation but also sorption and desorption of HOC in soil can be influenced by (micro-) biology and the factors that determine its activity.
Chávez, María I.; Soto, Mauricio; Taborga, Lautaro; Díaz, Katy; Olea, Andrés F.; Bay, Camila; Peña-Cortés, Hugo; Espinoza, Luis
2015-01-01
The inhibitory effects on the mycelial growth of plant pathogen Botritys cinerea have been evaluated for a series of geranylphenols substituted with one, two and three methoxy groups in the aromatic ring. The results show that the antifungal activity depends on the structure of the geranylphenols, increasing from 40% to 90% by increasing the number of methoxy groups. On the other hand, the acetylation of the –OH group induces a change of activity that depends on the number of methoxy groups. The biological activity of digeranyl derivatives is lower than that exhibited by the respective monogeranyl compound. All tested geranylphenols have been synthesized by direct coupling of geraniol and the respective phenol. The effect of solvent on yields and product distribution is discussed. For monomethoxyphenols the reaction gives better yields when acetonitrile is used as a solvent and AgNO3 is used as a secondary catalyst. However, for di- and trimethoxyphenols the reaction proceeds only in dioxane. PMID:26287171
Bendifallah, Leila; Belguendouz, Rachida; Hamoudi, Latifa; Arab, Karim
2018-06-06
The present work is conducted as part of the development and the valorization of bioactive natural substances from Algerian medicinal and aromatic spontaneous plants, a clean alternative method in biological control. For this purpose, the bio-acaricidal activity of Salvia officinalis (sage)essential oil (EO)was evaluated against the Varroa destructor , a major threat to the honey bee Apis mellifera ssp. intermissa . The aerial parts of S. officinalis L., 1753 were collected from the Chrea mountainous area in Northern Algeria. They were subjected to hydro distillation by a Clevenger apparatus type to obtain the EO, and screened for bio-acaricidal activity against Varroa destructor by the method of strips impregnated with the mixture EO and twin according to three doses. Pre-treatment results revealed infestation rates in the experimental site ranging from 3.76% to 21.22%. This showed the heterogeneity of infestations in hives according to the density of bees. This constituted a difficulty in monitoring the population dynamics of this parasite. After treatment, a difference in the acaricidal effect of Sage essential oil is noticed. It gives a mortality rate of 6.09% by the dose D1: 5%, 2.32% by the dose D2: 15%, and a low mortality rate of 0.9% by the dose D3: 20%. The chemical treatment carried out by Bayvarol gives a result close to that of the essential oil of Sage (9.97%).These results point to the fact that Sage essential oil treatments have a significant effect and good biological activity with regard to harmful species.
Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics.
Wang, Yifan; Li, Jiasong; Liu, Aimin
2017-04-01
Molecular oxygen is utilized in numerous metabolic pathways fundamental for life. Mononuclear nonheme iron-dependent oxygenase enzymes are well known for their involvement in some of these pathways, activating O 2 so that oxygen atoms can be incorporated into their primary substrates. These reactions often initiate pathways that allow organisms to use stable organic molecules as sources of carbon and energy for growth. From the myriad of reactions in which these enzymes are involved, this perspective recounts the general mechanisms of aromatic dihydroxylation and oxidative ring cleavage, both of which are ubiquitous chemical reactions found in life-sustaining processes. The organic substrate provides all four electrons required for oxygen activation and insertion in the reactions mediated by extradiol and intradiol ring-cleaving catechol dioxygenases. In contrast, two of the electrons are provided by NADH in the cis-dihydroxylation mechanism of Rieske dioxygenases. The catalytic nonheme Fe center, with the aid of active site residues, facilitates these electron transfers to O 2 as key elements of the activation processes. This review discusses some general questions for the catalytic strategies of oxygen activation and insertion into aromatic compounds employed by mononuclear nonheme iron-dependent dioxygenases. These include: (1) how oxygen is activated, (2) whether there are common intermediates before oxygen transfer to the aromatic substrate, and (3) are these key intermediates unique to mononuclear nonheme iron dioxygenases?
Synthesis of tetra- and octa-aurated heteroaryl complexes towards probing aromatic indoliums
Yuan, Jun; Sun, Tingting; He, Xin; An, Ke; Zhu, Jun; Zhao, Liang
2016-01-01
Polymetalated aromatic compounds are particularly challenging synthetic goals because of the limited thermodynamic stability of polyanionic species arising from strong electrostatic repulsion between adjacent carbanionic sites. Here we describe a facile synthesis of two polyaurated complexes including a tetra-aurated indole and an octa-aurated benzodipyrrole. The imido trinuclear gold(I) moiety exhibits nucleophilicity and undergoes an intramolecular attack on a gold(I)-activated ethynyl to generate polyanionic heteroaryl species. Their computed magnetic properties reveal the aromatic character in the five-membered ring. The incorporation of the aurated substituents at the nitrogen atom can convert non-aromaticity in the parent indolium into aromaticity in the aurated one because of hyperconjugation. Thus, the concept of hyperconjugative aromaticity is extended to heterocycles with transition metal substituents. More importantly, further analysis indicates that the aurated substituents can perform better than traditional main-group substituents. This work highlights the difference in aromaticity between polymetalated aryls and their organic prototypes. PMID:27186982
Cytotoxicity and genotoxicity properties of particulate matter fraction 2.5 μm
NASA Astrophysics Data System (ADS)
Bełcik, Maciej K.; Trusz-Zdybek, Agnieszka; Zaczyńska, Ewa; Czarny, Anna; Piekarska, Katarzyna
2017-11-01
In the ambient is more than 2,000 chemical substances, some of them are absorbed on the surface of the particulate matter and may causes many health problems. Air pollution is responsible for more than 3.2 million premature deaths which classifies it as a second place environmental risk factor. Especially dangerous for health are polycyclic aromatic hydrocarbons and their nitro- and amino derivatives which shows mutagenic and carcinogenic properties. Air pollutions were also classified by International Agency for Research on Cancer to group which carcinogenic properties on human were proved by available knowledge. Air pollutions, including particulate matter are one of the biggest problem in Polish cities. World Health Organization in report published in May 2016 set many of Polish cities on the top of the list most polluted in European Union. The article presents results of mutagenicity, genotoxicity and cytotoxicity researches conducted on a particulate matter fraction 2.5 μm collected during all year long in Wroclaw agglomeration. The material were collected on filters using high-flow air aspirator and extracted using dichloromethane. Additionally it was fractionated into 2 parts containing: all pollutants and only polycyclic aromatic hydrocarbons. Dry residue of this fractions were dissolving in DMSO and tested using biological methods. Biological methods include mutagenicity properties which are investigated by Salmonella assay (Ames assay). Other biological method was comet assay and 4 parameter cytotoxicity test PAN-I assay. Results of the conducted experiments shows differences in mutagenic, genotoxic and cytotoxic properties between seasons of collection and between volume of dust pollutions fractions. The worst properties shows particles collected in autumn and winter season and this containing only polycyclic aromatics hydrocarbons. Results showed also some correlations in results obtained during different methods and properties.
Nzila, Alexis
2018-05-07
The biodegradation of low- and high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) (LWM-PAHs and HMW-PAHs, respectively) has been studied extensively under aerobic conditions. Molecular O 2 plays 2 critical roles in this biodegradation process. O 2 activates the aromatic rings through hydroxylation prior to ring opening and serves as a terminal electron acceptor (TEA). However, several microorganisms have devised ways of activating aromatic rings, leading to ring opening (and thus biodegradation) when TEAs other than O 2 are used (under anoxic conditions). These microorganisms belong to the sulfate-, nitrate-, and metal-ion-reducing bacteria and the methanogens. Although the anaerobic biodegradation of monocyclic aromatic hydrocarbons and LWM-PAH naphthalene have been studied, little information is available about the biodegradation of HMW-PAHs. This manuscript reviews studies of the anaerobic biodegradation of HMW-PAHs and identifies gaps that limit both our understanding and the efficiency of this biodegradation process. Strategies that can be employed to overcome these limitations are also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ahlberg, Ernst; Amberg, Alexander; Beilke, Lisa D; Bower, David; Cross, Kevin P; Custer, Laura; Ford, Kevin A; Van Gompel, Jacky; Harvey, James; Honma, Masamitsu; Jolly, Robert; Joossens, Elisabeth; Kemper, Raymond A; Kenyon, Michelle; Kruhlak, Naomi; Kuhnke, Lara; Leavitt, Penny; Naven, Russell; Neilan, Claire; Quigley, Donald P; Shuey, Dana; Spirkl, Hans-Peter; Stavitskaya, Lidiya; Teasdale, Andrew; White, Angela; Wichard, Joerg; Zwickl, Craig; Myatt, Glenn J
2016-06-01
Statistical-based and expert rule-based models built using public domain mutagenicity knowledge and data are routinely used for computational (Q)SAR assessments of pharmaceutical impurities in line with the approach recommended in the ICH M7 guideline. Knowledge from proprietary corporate mutagenicity databases could be used to increase the predictive performance for selected chemical classes as well as expand the applicability domain of these (Q)SAR models. This paper outlines a mechanism for sharing knowledge without the release of proprietary data. Primary aromatic amine mutagenicity was selected as a case study because this chemical class is often encountered in pharmaceutical impurity analysis and mutagenicity of aromatic amines is currently difficult to predict. As part of this analysis, a series of aromatic amine substructures were defined and the number of mutagenic and non-mutagenic examples for each chemical substructure calculated across a series of public and proprietary mutagenicity databases. This information was pooled across all sources to identify structural classes that activate or deactivate aromatic amine mutagenicity. This structure activity knowledge, in combination with newly released primary aromatic amine data, was incorporated into Leadscope's expert rule-based and statistical-based (Q)SAR models where increased predictive performance was demonstrated. Copyright © 2016 Elsevier Inc. All rights reserved.
Deng, Z; Chen, C J; Zerby, D; Delecluse, H J; Lieberman, P M
2001-11-01
Epstein-Barr virus (EBV) lytic cycle transcription and DNA replication require the transcriptional activation function of the viral immediate-early protein Zta. We describe a series of alanine substitution mutations in the Zta activation domain that reveal two functional motifs based on amino acid composition. Alanine substitution of single or paired hydrophobic aromatic amino acid residues resulted in modest transcription activation defects, while combining four substitutions of aromatic residues (F22/F26/W74/F75) led to more severe transcription defects. Substitution of acidic amino acid residue E27, D35, or E54 caused severe transcription defects on most viral promoters. Promoter- and cell-specific defects were observed for some substitution mutants. Aromatic residues were required for Zta interaction with TFIIA-TFIID and the CREB-binding protein (CBP) and for stimulation of CBP histone acetyltransferase activity in vitro. In contrast, acidic amino acid substitution mutants interacted with TFIIA-TFIID and CBP indistinguishably from the wild type. The nuclear domain 10 (ND10) protein SP100 was dispersed by most Zta mutants, but acidic residue mutations led to reduced, while aromatic substitution mutants led to increased SP100 nuclear staining. Acidic residue substitution mutants had more pronounced defects in transcription activation of endogenous viral genes in latently infected cells and for viral replication, as measured by the production of infectious virus. One mutant, K12/F13, was incapable of stimulating EBV lytic replication but had only modest transcription defects. These results indicate that Zta stimulates viral reactivation through two nonredundant structural motifs, one of which interacts with general transcription factors and coactivators, and the other has an essential but as yet not understood function in lytic transcription.
(Hetero)aromatics from dienynes, enediynes and enyne-allenes.
Raviola, Carlotta; Protti, Stefano; Ravelli, Davide; Fagnoni, Maurizio
2016-08-07
The construction of aromatic rings has become a key objective for organic chemists. While several strategies have been developed for the functionalization of pre-formed aromatic rings, the direct construction of an aromatic core starting from polyunsaturated systems is yet a less explored field. The potential of such reactions in the formation of aromatics increased at a regular pace in the last few years. Nowadays, there are reliable and well-established procedures to prepare polyenic derivatives, such as dienynes, enediynes, enyne-allenes and hetero-analogues. This has stimulated their use in the development of innovative cycloaromatizations. Different examples have recently emerged, suggesting large potential of this strategy in the preparation of (hetero)aromatics. Accordingly, this review highlights the recent advancements in this field and describes the different conditions exploited to trigger the process, including thermal and photochemical activation, as well as the use of transition metal catalysis and the addition of electrophiles/nucleophiles or radical species.
BIOLOGICAL PROCESS OF CANCER EXPLORED TO IMPROVE RISK ASSESSEMENT
Cancer research at EPA is advancing understanding of how a group of air pollutants, polycyclic aromatic hydrocarbons (PAHs) cause cancer in experimental animals. The research also will provide scientific information on responses of dose and effect that will respond to gaps in our...
LAND TREATMENT OF TWO PLATEAU MATERIALS CONTAMINATED WITH PAHS
This study was designed to evaluate several treatments for their ability to enhance the biological removal of polycyclic aromatic hydrocarbons (PAHs) from contaminated soil and sediment. Previously land-treated material was used to test the treatments in a 13 week bench scale stu...
Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review.
Rubio-Clemente, Ainhoa; Torres-Palma, Ricardo A; Peñuela, Gustavo A
2014-04-15
Due to their carcinogenic, mutagenic and teratogenic potential, the removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous environment using physical, biological and chemical processes has been studied by several researchers. This paper reviews the current state of knowledge concerning PAHs including their physico-chemical properties, input sources, occurrence, adverse effects and conventional and alternative chemical processes applied for their removal from water. The mechanisms and reactions involved in each treatment method are reported, and the effects of various variables on the PAH degradation rate as well as the extent of degradation are also discussed. Extensive literature analysis has shown that an effective way to perform the conversion and mineralization of this type of substances is the application of advanced oxidation processes (AOPs). Furthermore, combined processes, particularly AOPs coupled with biological treatments, seem to be one of the best solutions for the treatment of effluents containing PAHs. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kovács, Krisztina; Sági, Gyuri; Takács, Erzsébet; Wojnárovits, László
2017-10-01
Being a toxic substance, hydrogen peroxide (H2O2) formed during application of advanced oxidation processes disturbs the biological assessment of the treated solutions. Therefore, its removal is necessary when the concentration exceeds the critical level relevant to the biological tests. In this study, H2O2 removal was tested using catalase enzyme or MnO2 as catalysts and the concentration changes were measured by the Cu(II)/phenanthroline method. MnO2 and Cu(II) were found to react not only with H2O2 but also with the partly oxidized intermediates formed in the hydroxyl radical induced degradation of aromatic antibiotic and pesticide compounds. Catalase proved to be a milder oxidant, it did not show significant effects on the composition of organic molecules. The Cu(II)/phenanthroline method gives the correct H2O2 concentration only in the absence of easily oxidizable compounds, e.g. certain phenol type molecules.
Dion, Johann; Deshayes, Frédérique; Storozhylova, Nataliya; Advedissian, Tamara; Lambert, Annie; Viguier, Mireille; Tellier, Charles; Dussouy, Christophe; Poirier, Françoise; Grandjean, Cyrille
2017-04-18
Galectins have been recognized as potential novel therapeutic targets for the numerous fundamental biological processes in which they are involved. Galectins are key players in homeostasis, and as such their expression and function are finely tuned in vivo. Thus, their modes of action are complex and remain largely unexplored, partly because of the lack of dedicated tools. We thus designed galectin inhibitors from a lactosamine core, functionalized at key C2 and C3' positions by aromatic substituents to ensure both high affinity and selectivity, and equipped with a spacer that can be modified on demand to further modulate their physico-chemical properties. As a proof-of-concept, galectin-3 was selectively targeted. The efficacy of the synthesized di-aromatic lactosamine tools was shown in cellular assays to modulate collective epithelial cell migration and to interfere with actin/cortactin localization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Toxicity of N-substituted aromatics to acetoclastic methanogenic activity in granular sludge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donlon, B.A.; Razo-Flores, E.; Field, J.A.
1995-11-01
N-substituted aromatics are important priority pollutants entering the environment primarily through anthropogenic activities associated associated with the industrial production of dyes, explosives, pestides, and pharmaceuticals. Anaerobic treatment of wastewaters discharged by these industries could potentially be problematical as a result of the high toxicity of N-substituted aromatics. The objective of this study was to examine the structure-toxicity relationship of N-substituted aromatic compounds to acetoclastic methanogenic bacteria. The toxicity was assayed to serum flasks by measuring methane production in granular sludge. Unacclimated cultures were used to minimize the biotransformation of the toxic organic chemicals during the test. The nature and themore » degree of the aromatic substitution were observed to have a profound effect on the toxicity of the test compound. Nitroaromatic compounds were, on the average, over 500-fold more toxic than their corresponding aromatic amines. Considering the facile reduction of nitro groups by anerobic microorganisms, a dramatic detoxification of nitroaromatics towards methanogens can be expected to occur during anaerobic wastewater treatment. While the toxicity exerted by the N-substituted aromatic compounds was closely correlated with compound apolarity (log P), it was observed that at any given log P, N-substituted phenols had a toxicity that was 2 orders of magnitude higher than that of chlorophenols and alkylphenols. This indicates that toxicity due to the chemical reactivity of nitroaromatics is much more important than partitioning effects in bacterial membranes. 41 refs., 3 figs., 1 tab.« less
Attardi, Barbara J; Burgenson, Janet; Hild, Sheri A; Reel, Jerry R
2004-03-01
In determining the biological profiles of various antiprogestins, it is important to assess the hormonal and antihormonal activity, selectivity, and potency of their proximal metabolites. The early metabolism of mifepristone is characterized by rapid demethylation and hydroxylation. Similar initial metabolic pathways have been proposed for CDB-2914 (CDB: Contraceptive Development Branch of NICHD) and CDB-4124, and their putative metabolites have been synthesized. We have examined the functional activities and potencies, in various cell-based assays, and relative binding affinities (RBAs) for progesterone receptors (PR) and glucocorticoid receptors (GR) of the putative mono- and didemethylated metabolites of CDB-2914, CDB-4124, and mifepristone and of the 17alpha-hydroxy and aromatic A-ring derivatives of CDB-2914 and CDB-4124. The binding affinities of the monodemethylated metabolites for rabbit uterine PR and human PR-A and PR-B were similar to those of the parent compounds. Monodemethylated mifepristone bound to rabbit thymic GR with higher affinity than monodemethylated CDB-2914 or CDB-4124. T47D-CO cells were used to assess inhibition of R5020-stimulated endogenous alkaline phosphatase activity and transactivation of the PRE(2)-thymidine kinase (tk)-luciferase (LUC) reporter plasmid in transient transfections. The antiprogestational potency was as follows: mifepristone/CDB-2914/CDB-4124/monodemethylated metabolites (IC(50)'s approximately 10(-9)M) > aromatic A-ring derivatives (IC(50)'s approximately 10(-8)M) > didemethylated/17alpha-hydroxy derivatives (IC(50)'s approximately 10(-7)M). Antiglucocorticoid activity was determined by inhibition of dexamethasone-stimulated transcriptional activity in HepG2 cells. The mono- and didemethylated metabolites of CDB-2914 and CDB-4124 had less antiglucocorticoid activity (IC(50)'s approximately 10(-6)M) than monodemethylated mifepristone (IC(50) approximately 10(-8)M) or the other test compounds. At 10(-6)M in transcription assays, none of these compounds showed progestin agonist activity, whereas mifepristone and its monodemethylated metabolite manifested slight glucocorticoid agonist activity. The reduced antiglucocorticoid activity of monodemethylated CDB-2914 and CDB-4124 was confirmed in vivo by the thymus involution assay in adrenalectomized male rats. The aromatic A-ring derivatives-stimulated transcription of an estrogen-responsive reporter plasmid in MCF-7 and T47D-CO human breast cancer cells but were much less potent than estradiol. Taken together, these data suggest that the proximal metabolites of mifepristone, CDB-2914, and CDB-4124 contribute significantly to the antiprogestational activity of the parent compounds in vivo. Furthermore, the reduced antiglucocorticoid activity of CDB-2914 and CDB-4124 compared to mifepristone in vivo may be due in part to decreased activity of their putative proximal metabolites.
[Chemical, physical and biological risks in law enforcement].
Magrini, Andrea; Grana, Mario; Vicentini, Laura
2014-01-01
Chemical, physical and biological risks among public safety and security forces. Law enforcement personnel, involved in routine tasks and in emergency situations, are exposed to numerous and several occupational hazards (chemical, physical and biological) whith likely health and security consequences. These risks are particularly high when the organization and preparation are inadequate, there is a lacking or insufficient coordination, information, education and communication and safety and personal protective equipment are inadequate or insufficient. Despite the objective difficulties, caused by the actual special needs related to the service performed or the organizational peculiarities, the risk identification and assessment is essential for worker health and safety of personnel, as provided for by Legislative Decree no. 81/2008. Chemical risks include airborne pollutants due to vehicular traffic (carbon monoxide, ultrafine particles, benzene, polycyclic aromatic hydrocarbons, aldehydes, nitrogen and sulfur oxides, lead), toxic gases generated by combustion process following fires (aromatic hydrocarbons, PAHs, dioxins and furans, biphenyls, formaldehyde, metals and cyanides), substances emitted in case of chemical accidents (solvents, pesticides, toxic gases, caustics), drugs (methylamphetamine), riot control agents and self-defence spray, lead at firing ranges, and several materials and reagents used in forensic laboratory. The physical hazards are often caused by activities that induce biomechanical overload aid the onset of musculoskeletal disorders, the use of visual display terminals and work environments that may expose to heat stress and discomfort, high and low pressure, noise, vibrations, ionizing and non-ionizing radiation. The main biological risks are blood-borne diseases (viral hepatitis, AIDS), airborne diseases (eg, tuberculosis, meningitis, SARS, anthrax), MRSA, and vector-borne diseases. Many of these risk factors are unavoidable or are not predictable; so a proper risk assessment is very important, especially in case of emergencies, and also the necessary preventive measures, a careful analysis of alternative options for action and decision-making, implementation of security measures due to the provision of appropriate PPE and effective management of risk communication have great importance. Another important aspect is the education and training of staff, as in emergency situations should be able to take protective measures as quickly as possible.
Kohoude, Midéko Justin; Gbaguidi, Fernand; Agbani, Pierre; Ayedoun, Marc-Abel; Cazaux, Sylvie; Bouajila, Jalloul
2017-12-01
Boswellia dalzielii Hutch. (Burseraceae) is an aromatic plant. The leaves are used for beverage flavouring. This study investigates the chemical composition and biological activities of various extracts. The essential oil was prepared via hydrodistillation. Identification and quantification were realized via GC-MS and GC-FID. Consecutive extractions (cyclohexane, dichloromethane, ethyl acetate and methanol) were carried out and various chemical groups (phenolics, flavonoids, tannins, antocyanins and sugar) were quantified. The volatile compounds of organic extracts were identified before and after derivatization. Antioxidant, antihyperuricemia, anti-Alzheimer, anti-inflammatory and anticancer activities were evaluated. In the essential oil, 50 compounds were identified, including 3-carene (27.72%) and α-pinene (15.18%). 2,5-Dihydroxy acetophenone and β-d-xylopyranose were identified in the methanol extract. Higher phenolic (315.97 g GAE/kg dry mass) and flavonoid (37.19 g QE/kg dry mass) contents were observed in the methanol extract. The methanol extract has presented remarkable IC 50 = 6.10 mg/L for antiDPPH, 35.10 mg/L for antixanthine oxidase and 28.01 mg/L for anti-5-lipoxygenase. For acetylcholinesterase inhibition, the best IC 50 (76.20 and 67.10 mg/L) were observed, respectively, with an ethyl acetate extract and the essential oil. At 50 mg/L, the dichloromethane extract inhibited OVCAR-3 cell lines by 65.10%, while cyclohexane extract inhibited IGROV-1 cell lines by 92.60%. Biological activities were fully correlated with the chemical groups of the extracts. The ethyl acetate and methanol extracts could be considered as potential alternatives for use in dietary supplements for the prevention or treatment of diseases because of these extracts natural antioxidant, antihyperuricemic and anti-inflammatory activities.
Kronenberg, Maria; Trably, Eric; Bernet, Nicolas; Patureau, Dominique
2017-12-01
Polycyclic aromatic hydrocarbons (PAHs) are hardly biodegradable carcinogenic organic compounds. Bioremediation is a commonly used method for treating PAH contaminated environments such as soils, sediment, water bodies and wastewater. However, bioremediation has various drawbacks including the low abundance, diversity and activity of indigenous hydrocarbon degrading bacteria, their slow growth rates and especially a limited bioavailability of PAHs in the aqueous phase. Addition of nutrients, electron acceptors or co-substrates to enhance indigenous microbial activity is costly and added chemicals often diffuse away from the target compound, thus pointing out an impasse for the bioremediation of PAHs. A promising solution is the adoption of bioelectrochemical systems. They guarantee a permanent electron supply and withdrawal for microorganisms, thereby circumventing the traditional shortcomings of bioremediation. These systems combine biological treatment with electrochemical oxidation/reduction by supplying an anode and a cathode that serve as an electron exchange facility for the biocatalyst. Here, recent achievements in polycyclic aromatic hydrocarbon removal using bioelectrochemical systems have been reviewed. This also concerns PAH precursors: total petroleum hydrocarbons and diesel. Removal performances of PAH biodegradation in bioelectrochemical systems are discussed, focussing on configurational parameters such as anode and cathode designs as well as environmental parameters like porosity, salinity, adsorption and conductivity of soil and sediment that affect PAH biodegradation in BESs. The still scarcely available information on microbiological aspects of bioelectrochemical PAH removal is summarised here. This comprehensive review offers a better understanding of the parameters that affect the removal of PAHs within bioelectrochemical systems. In addition, future experimental setups are proposed in order to study syntrophic relationships between PAH degraders and exoelectrogens. This synopsis can help as guide for researchers in their choices for future experimental designs aiming at increasing the power densities and PAH biodegradation rates using microbial bioelectrochemistry. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cozzarelli, I.M.; Herman, J.S.; Baedecker, M. Jo
1995-01-01
A combined field and laboratory study was undertaken to understand the distribution and geochemical conditions that influence the prevalence of low molecular weight organic acids in groundwater of a shallow aquifer contaminated with gasoline. Aromatic hydrocarbons from gasoline were degraded by microbially mediated oxidation-reduction reactions, including reduction of nitrate, sulfate, and Fe(III). The biogeochemical reactions changed overtime in response to changes in the hydrogeochemical conditions in the aquifer. Aliphatic and aromatic organic acids were associated with hydrocarbon degradation in anoxic zones of the aquifer. Laboratory microcosms demonstrated that the biogeochemical fate of specific organic acids observed in groundwater varied with the structure of the acid and the availability of electron acceptors. Benzoic and phenylacetic acid were degraded by indigenous aquifer microorganisms when nitrate was supplied as an electron acceptor. Aromatic acids with two or more methyl substituants on the benzene ring persisted under nitrate-reducing conditions. Although iron reduction and sulfate reduction were important processes in situ and occurred in the microcosms, these reactions were not coupled to the biological oxidation of aromatic organic acids that were added to the microcosms as electron donors. ?? 1995 American Chemical Society.
Shukla, Rashmi; Singh, Ajeet P; Sonar, Pankaj K; Mishra, Mudita; Saraf, Shailendra K
2016-01-01
Schiff bases have a broad spectrum of biological activities like antiinflammatory, analgesic, antimicrobial, anticonvulsant, antitubercular, anticancer, antioxidant, anthelmintic and so forth. Thus, after a thorough perusal of literature, it was decided to conjugate benzothiazol-2-ylamine/thiazolo [5, 4-b] pyridin-2-ylamine with aromatic and heteroaromatic aldehydes to get a series of Schiff bases. Synthesis, characterization, in-silico toxicity profiling and anticonvulsant activity of the Schiff bases of Benzothiazol-2-ylamine and Thiazolo [5, 4-b] pyridin-2-ylamine. Aniline/4-aminopyridine was converted to the corresponding thiourea derivatives, which were cyclized to obtain benzothiazol-2-ylamine/thiazolo [5, 4-b] pyridin-2-ylamine. Finally, these were condensed with various aromatic and heteroaromatic aldehydes to obtain Schiff bases of benzothiazol-2-ylamine and thiazolo [5, 4-b] pyridin-2-ylamine. The synthesized compounds were characterized and screened for their anticonvulsant activity using maximal electroshock (MES) test and isoniazid (INH) induced convulsions test. In-silico toxicity profiling of all the synthesized compounds was done through "Lazar" and "Osiris" properties explorer. Majority of the compounds were more potent against MES induced convulsions than INH induced convulsions. Schiff bases of benzothiazol-2-ylamine were more effective than thiazolo [5, 4-b] pyridin-2-ylamine against MES induced convulsions. The compound benzothiazol-2-yl-(1H-indol-2-ylmethylene)-amine (VI) was the most potent member of the series against both types of convulsions. Compound VI exhibited the most significant activity profile in both the models. The compounds did not exhibit any carcinogenicity or acute toxicity in the in-silico studies. Thus, it may be concluded that the Schiff bases of benzothiazol-2-ylamine exhibit the potential to be promising and non-toxic anticonvulsant agents.
Preparation of dibenzo[e,g]isoindol-1-ones via Scholl-type oxidative cyclization reactions.
van Loon, Amy A; Holton, Maeve K; Downey, Catherine R; White, Taryn M; Rolph, Carly E; Bruening, Stephen R; Li, Guanqun; Delaney, Katherine M; Pelkey, Sarah J; Pelkey, Erin T
2014-09-05
A flexible synthesis of dibenzo[e,g]isoindol-1-ones has been developed. Dibenzo[e,g]isoindol-1-ones represent simplified benzenoid analogues of biological indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-ones (indolocarbazoles), compounds that have demonstrated a wide range of biological activity. The synthesis of the title compounds involved tetramic acid sulfonates. Different aryl groups were introduced at C4 of the heterocyclic ring via Suzuki-Miyaura cross-coupling reactions. Finally, mild Scholl-type oxidative cyclizations mediated by phenyliodine(III) bis(trifluoroacetate) (PIFA) converted some of the latter compounds into the corresponding dibenzo[e,g]isoindol-1-ones. A systematic study of the oxidative cyclization revealed the following reactivity trend: 3,4-dimethoxyphenyl ≫ 3-methoxyphenyl > 3,4,5-trimethoxyphenyl > 4-methoxyphenyl ≈ phenyl. Overall, the oxidative cyclization required at least two methoxy groups distributed in the aromatic rings, at least one of which had to be located para to the site of the cyclization.
Preparation of Dibenzo[e,g]isoindol-1-ones via Scholl-Type Oxidative Cyclization Reactions
2015-01-01
A flexible synthesis of dibenzo[e,g]isoindol-1-ones has been developed. Dibenzo[e,g]isoindol-1-ones represent simplified benzenoid analogues of biological indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-ones (indolocarbazoles), compounds that have demonstrated a wide range of biological activity. The synthesis of the title compounds involved tetramic acid sulfonates. Different aryl groups were introduced at C4 of the heterocyclic ring via Suzuki–Miyaura cross-coupling reactions. Finally, mild Scholl-type oxidative cyclizations mediated by phenyliodine(III) bis(trifluoroacetate) (PIFA) converted some of the latter compounds into the corresponding dibenzo[e,g]isoindol-1-ones. A systematic study of the oxidative cyclization revealed the following reactivity trend: 3,4-dimethoxyphenyl ≫ 3-methoxyphenyl > 3,4,5-trimethoxyphenyl > 4-methoxyphenyl ≈ phenyl. Overall, the oxidative cyclization required at least two methoxy groups distributed in the aromatic rings, at least one of which had to be located para to the site of the cyclization. PMID:25138638
Synthesis and antibacterial activity of aromatic and heteroaromatic amino alcohols.
de Almeida, Camila G; Reis, Samira G; de Almeida, Angelina M; Diniz, Claudio G; da Silva, Vânia L; Le Hyaric, Mireille
2011-11-01
Two series of aromatic and heteroaromatic amino alcohols were synthesized from alcohols and aldehydes and evaluated for their antibacterial activities. All the octylated compounds displayed a better activity against the four bacteria tested when evaluated by the agar diffusion method and were selected for the evaluation of minimal inhibitory concentration. The best results were obtained for p-octyloxybenzyl derivatives against Staphylococcus epidermidis (minimal inhibitory concentrations = 32 μm). © 2011 John Wiley & Sons A/S.
Trace derivatives of kynurenine potently activate the aryl hydrocarbon receptor (AHR).
Seok, Seung-Hyeon; Ma, Zhi-Xiong; Feltenberger, John B; Chen, Hongbo; Chen, Hui; Scarlett, Cameron; Lin, Ziqing; Satyshur, Kenneth A; Cortopassi, Marissa; Jefcoate, Colin R; Ge, Ying; Tang, Weiping; Bradfield, Christopher A; Xing, Yongna
2018-02-09
Cellular metabolites act as important signaling cues, but are subject to complex unknown chemistry. Kynurenine is a tryptophan metabolite that plays a crucial role in cancer and the immune system. Despite its atypical, non-ligand-like, highly polar structure, kynurenine activates the aryl hydrocarbon receptor (AHR), a PER, ARNT, SIM (PAS) family transcription factor that responds to diverse environmental and cellular ligands. The activity of kynurenine is increased 100-1000-fold by incubation or long-term storage and relies on the hydrophobic ligand-binding pocket of AHR, with identical structural signatures for AHR induction before and after activation. We purified trace-active derivatives of kynurenine and identified two novel, closely related condensation products, named trace-extended aromatic condensation products (TEACOPs), which are active at low picomolar levels. The synthesized compound for one of the predicted structures matched the purified compound in both chemical structure and AHR pharmacology. Our study provides evidence that kynurenine acts as an AHR pro-ligand, which requires novel chemical conversions to act as a receptor agonist. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Biomedical properties and potentiality of Lippia microphylla Cham. and its essential oils
Simões, Evelyne Rolim Braun; Santos, Evelyne Alves; de Abreu, Maria Carolina; Silva, Jurandy do Nascimento; Nunes, Nárcia Mariana Fonseca; da Costa, Marcília Pinheiro; Pessoa, Otília Deusdênia Loiola; Pessoa, Cláudia; Ferreira, Paulo Michel Pinheiro
2015-01-01
Lippia microphylla Cham. (Verbenaceae) is an endemic underexploited Brazilian vegetal. This work reviewed the biological potentialities of Lippia microphylla, emphasizing the properties of essential oils (EOs) and analyzed scientific indicators about genus Lippia and L. microphylla. Databases from 1948 to the present were searched and a software (vantage point 7.1) associated with Derwent Innovation Index was used to identify the indicators of the genus Lippia, and biological activities and compounds in the L. macrophylla species. Ethnopharmacological records report use of L. microphylla leaves to treat gastrointestinal disorders, influenza, bronchitis, cough, nasal congestion, and sinusitis during vaporization, whose aromatic volatile oils are rich in monoterpenes, especially cineole, terpineol, and thymol. Other EOs have larvicidal activity on Aedes aegypti larvae, and antifungal, antibacterial and cytotoxic and antitumor action on human and murine cancer cells. Brazil is the country with more articles about Lippia species, but it deposited only 9 patents since 1993. Most of the publications about L. microphylla are concentrated in food and chemical sciences. This bioprospection helps to choice areas of interest for capital investment and to give support for Brazilian Institutions to establish cooperation and improve technological impact at the point of view of creation and innovation. PMID:26401417
Biomedical properties and potentiality of Lippia microphylla Cham. and its essential oils.
Simões, Evelyne Rolim Braun; Santos, Evelyne Alves; de Abreu, Maria Carolina; Silva, Jurandy do Nascimento; Nunes, Nárcia Mariana Fonseca; da Costa, Marcília Pinheiro; Pessoa, Otília Deusdênia Loiola; Pessoa, Cláudia; Ferreira, Paulo Michel Pinheiro
2015-01-01
Lippia microphylla Cham. (Verbenaceae) is an endemic underexploited Brazilian vegetal. This work reviewed the biological potentialities of Lippia microphylla, emphasizing the properties of essential oils (EOs) and analyzed scientific indicators about genus Lippia and L. microphylla. Databases from 1948 to the present were searched and a software (vantage point 7.1) associated with Derwent Innovation Index was used to identify the indicators of the genus Lippia, and biological activities and compounds in the L. macrophylla species. Ethnopharmacological records report use of L. microphylla leaves to treat gastrointestinal disorders, influenza, bronchitis, cough, nasal congestion, and sinusitis during vaporization, whose aromatic volatile oils are rich in monoterpenes, especially cineole, terpineol, and thymol. Other EOs have larvicidal activity on Aedes aegypti larvae, and antifungal, antibacterial and cytotoxic and antitumor action on human and murine cancer cells. Brazil is the country with more articles about Lippia species, but it deposited only 9 patents since 1993. Most of the publications about L. microphylla are concentrated in food and chemical sciences. This bioprospection helps to choice areas of interest for capital investment and to give support for Brazilian Institutions to establish cooperation and improve technological impact at the point of view of creation and innovation.
Teles, Helder Lopes; Sordi, Renata; Silva, Geraldo Humberto; Castro-Gamboa, Ian; Bolzani, Vanderlan da Silva; Pfenning, Ludwig Heinrich; de Abreu, Lucas Magalhães; Costa-Neto, Claudio Miguel; Young, Maria Claudia Marx; Araújo, Angela Regina
2006-12-01
6,8-Dimethoxy-3-(2'-oxo-propyl)-coumarin (1) and 2,4-dihydroxy-6-[(1'E,3'E)-penta-1',3'-dienyl]-benzaldehyde (2), in addition to the known compound periconicin B (3), were isolated from the ethyl acetate extract of Periconia atropurpurea, an endophytic fungus obtained from the leaves of Xylopia aromatica, a native plant of the Brazilian Cerrado. Their chemical structures were assigned based on analyses of MS, 1D and 2D-NMR spectroscopic experiments. Biological analyses were performed using two mammalian cell lines, human cervix carcinoma (HeLa) and Chinese hamster ovary (CHO). The results showed that compound 1 had no effect when compared to the control group, which was treated with the vehicle (DMSO). Compound 2 was able to induce a slight increase in cell proliferation of HeLa (37% of increase) and CHO (38% of increase) cell lines. Analysis of compound 3 showed that it has potent cytotoxic activity against both cell lines, with an IC50 of 8.0 microM. Biological analyses using the phytopathogenic fungi Cladosporium sphaerospermum and C. cladosporioides revealed that also 2 showed potent antifungal activity compared to nystatin.
Pharmacological and biotechnological advances with Rosmarinus officinalis L.
Neves, Josynaria Araújo; Neves, Josyanne Araújo; Oliveira, Rita de Cassia Meneses
2018-05-01
Rosmarinus officinalis L. is an aromatic plant with a number of biological properties. Recently, has been studied regarding its therapeutic potential. The objective of this study was to perform a systematic review on R. officinalis essential oil for its pharmacological properties and biotechnological applications. Areas covered: The databases were searched for articles (Science Direct, Pub Med and Web of Science) and patents (INPI, WIPO and EPO) with publications on R. officinalis and associations with essential oil (EO-Ro), cardiovascular system, hypertension and cyclodextrin. We selected 305 articles on EO-Ro in the most diverse subjects and six articles with of R. officinalis associated with hypertension. 59 patents were analyzed. The results demonstrate how extensive the studies are on the biological activities with the extract and EO-Ro. These have shown effects antibacterial, antifungal, anti-inflammatory, antitumor and other. The properties exhibited by EO-Ro reinforce the use of this plant as a phytotherapeutic agent. Expert opinion: Although there are several pharmacological properties, studies on the prevention or treatment of cardiovascular diseases with EO-Ro are scarce, especially to evaluate the antihypertensive activity of EO-Ro. It has also become clear that EO-Ro can be exploited in different commercial products as supplement, cosmetics and new formulations.
An ethnopharmacological study of aromatic Uyghur medicinal plants in Xinjiang, China.
Zhao, Lu; Tian, Shuge; Wen, E; Upur, Halmuart
2017-12-01
An ethnobotanical survey was completed in a remote village and surrounding country of Xinjiang, where most Uyghur medicinal plants could be collected. This work clarifies and increases ethnobotanical data. We surveyed and organized aromatic medicinal plants that are commonly used in clinical settings to provide a significant reference for studying new medical activities. In the survey, informants who have traditional knowledge on aromatic Uyghur medicinal plants were interviewed between March 2014 and September 2014. Aromatic medicinal plant species and pertinent information were collected. Some therapeutic methods and modes of preparation of traditional aromatic medicinal plants were found. A total of 86 aromatic medicinal plant species belonging to 36 families were included in our study. We identified 34 plant species introduced from different regions such as Europe, India and Mediterranean areas. Fruits and whole plants were the most commonly used parts of plant, and most aromatic medicinal plants could be applied as medicine and food. We assigned the medicinal plants a use value (UV). Knowing the UV of species is useful in determining the use reliability and pharmacological features of related plants. Xinjiang is an area in which indigenous aromatic medicinal plants are diversely used and has therefore established a sound dimensional medical healthcare treatment system. Some aromatic Uyghur medicinal plants are on the verge of extinction. Hence, further strategies for the conservation of these aromatic medicinal plants should be prioritized.
The Minnesota Children's Pesticide Exposure Study (MNCPES) provides exposure, environmental, and biologic data relating to multi-pathway exposures of children for four primary pesticides (chlorpyrifos, malathion, diazinon, and atrazine), 14 secondary pesticides, and 13 polynucl...
Benzo[ a ]pyrene (BP) is a well-studied polycyclic aromatic hydrocarbon (P AH) .Many
mechanisms have been suggested to explain its carcinogenic activity, yet many questions still
remain. K-region dihydrodiols (diols) ofPAHs are common metabolites and some are genotoxic. W...
Isotopic exchange of hydrogen in aromatic amino acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pshenichnikova, A.B.; Karnaukhova, E.N.; Mitsner, B.I.
The kinetics of the isotopic replacement of hydrogen in the aromatic amino acids L-tryptophan, L-tyrosine, and L-phenylalanine in solutions of deuterochloric and deuterosulfuric acids in deuterium oxide were investigated by PMR spectroscopy. The reactions were shown to be of first orders with respect both to the concentration of the substrate and to the activity of the deuterium ion. The isotopic effects of hydrogen and the values of the activation energy of H-D exchange in different positions of the aromatic ring in tryptophan and tyrosine were determined. The effect of properties of the medium on the rate of the isotopic exchangemore » of hydrogen is discussed. 17 refs., 2 figs., 2 tabs.« less
Chavez, María I; Soto, Mauricio; Cimino, Franco A; Olea, Andrés F; Espinoza, Luis; Díaz, Katy; Taborga, Lautaro
2018-05-29
A series of new and known geranylated phenol/methoxyphenol derivatives has been tested in vitro as inhibitor agents of mycelial growth of Phytophthora cinnamomi . The activity of tested compounds is correlated with the nature, number, and position of the substituent group on the aromatic ring. Results indicate that the most active geranylated derivatives are those having two hydroxyl groups (or one ⁻OH and one ⁻OCH₃) attached to the aromatic ring. Interestingly, these derivatives are as active as Metalaxil ® , a commonly used commercial fungicide. Thus, our results suggest that some of these compounds might be of agricultural interest due to their potential use as fungicides against P. cinnamomi . The effect of structure on fungicide activity is discussed in terms of electronic distribution on both the aromatic ring and side geranyl chain. All tested compounds have been synthesized by direct coupling of geraniol and the respective phenol. Interestingly, new digeranylated derivatives were obtained by increasing the reaction time.
Peroxidase(s) in Environment Protection
Bansal, Neelam; Kanwar, Shamsher S.
2013-01-01
Industrial discharges of untreated effluents into water bodies and emissions into air have deteriorated the quality of water and air, respectively. The huge amount of pollutants derived from industrial activities represents a threat for the environment and ecologic equilibrium. Phenols and halogenated phenols, polycyclic aromatic hydrocarbons (PAH), endocrine disruptive chemicals (EDC), pesticides, dioxins, polychlorinated biphenyls (PCB), industrial dyes, and other xenobiotics are among the most important pollutants. Peroxidases are enzymes that are able to transform a variety of compounds following a free radical mechanism, thereby yielding oxidized or polymerized products. The peroxidase transformation of these pollutants is accompanied by a reduction in their toxicity, due to loss of biological activity, reduction in the bioavailability, or the removal from aqueous phase, especially when the pollutant is found in water. The review describes the sources of peroxidases, the reactions catalyzed by them, and their applications in the management of pollutants in the environment. PMID:24453894
Vikram, Paritala; Chiruvella, Kishore Kumar; Ripain, Ilfah Husna Abdullah; Arifullah, Mohammed
2014-01-01
Medicinal plants and herbal preparations are gaining renowned interest in scientific communities nowadays due to their reliable pharmacological actions and affordability to common people which makes them effective in control of various diseases. Polygonum minus (Polygonaceae) locally known as kesum is an aromatic plant commonly used in Malay delicacies. The plant is having potential applications due to its high volatile oil constituents in perfumes and powerful antioxidant activity. It has been used traditionally to treat various ailments including dandruff. The research has been carried out by various researchers using different in vitro and in vivo models for biological evaluations to support these claims. This review paper may help upcoming research activities on Polygonum minus by giving up to date information on the phytochemical constituents and medicinal properties of kesum to a possible extent with relevant data. PMID:25182942
Peroxidase(s) in environment protection.
Bansal, Neelam; Kanwar, Shamsher S
2013-01-01
Industrial discharges of untreated effluents into water bodies and emissions into air have deteriorated the quality of water and air, respectively. The huge amount of pollutants derived from industrial activities represents a threat for the environment and ecologic equilibrium. Phenols and halogenated phenols, polycyclic aromatic hydrocarbons (PAH), endocrine disruptive chemicals (EDC), pesticides, dioxins, polychlorinated biphenyls (PCB), industrial dyes, and other xenobiotics are among the most important pollutants. Peroxidases are enzymes that are able to transform a variety of compounds following a free radical mechanism, thereby yielding oxidized or polymerized products. The peroxidase transformation of these pollutants is accompanied by a reduction in their toxicity, due to loss of biological activity, reduction in the bioavailability, or the removal from aqueous phase, especially when the pollutant is found in water. The review describes the sources of peroxidases, the reactions catalyzed by them, and their applications in the management of pollutants in the environment.
Antiplasmodial dimeric chalcone derivatives from the roots of Uvaria siamensis.
Salae, Abdul-Wahab; Chairerk, Orapan; Sukkoet, Piyanut; Chairat, Therdsak; Prawat, Uma; Tuntiwachwuttikul, Pittaya; Chalermglin, Piya; Ruchirawat, Somsak
2017-03-01
Four dimeric chalcone derivatives, 8″,9″-dihydrowelwitschin H, uvarins A-C, a naphthalene derivative, 2-hydroxy-3-methoxy-6-(4'- hydroxyphenyl)naphthalene, and the known dimeric chalcones, dependensin and welwitschin E, flavonoids, a cyclohexane oxide derivative, an aromatic aldehyde were isolated from the roots of Uvaria siamensis (Annonaceae). The structures of the compounds were elucidated by spectroscopic analysis, as well as by comparison with literature data. The isolated compounds with a sufficient amount for biological assays were evaluated for their antimalarial, antimycobacterial, and cytotoxic activities. The dimeric chalcones 8″,9″-dihydrowelwitschin H, uvarins B and C, dependensin and welwitschin E showed strong antiplasmodial activity with IC 50 values of 3.10, 3.02, 3.09, 4.21 and 3.99 μg/mL, respectively. A possible biosynthesis pathway of the dimeric chalcones is discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Influence of Selected Organic Micropollutants on Organisms
NASA Astrophysics Data System (ADS)
Włodarczyk-Makuła, Maria
2017-03-01
This article describes the toxicity of organic micropollutants on tested microorganisms. Itis a current issue because organic micropollutants are identified in all elements of environmental (surface water, ground water, soils) and in food products. The organic micropollutants include: polychlorinated dibenzodioxyns PCDD, polychlorinated dibenzofurans PCDF, polychlorinated biphenyls PCB, polycyclic aromatic hydrocarbons PAH, halogenated compounds and by-products of water treatment. Some organic compounds cause hazard for health and human life due to their estrogenic biological activity, carcinogenic, mutagenic or teratogenic activity. The influence on organisms indicators of these compounds based on literature data were presented. The level of TEQ (toxic equivalency) in response to organic chlorine derivatives (PCDDs, PCDF, PCBs) is usually determined by toxic equivalency factor (TEF). The International Agency for Research on Cancer classifies organic micropollutants as carcinogenic to humans (Group 1), possibly carcinogenic (Group 2A) or probably carcinogenic to humans (Group 2B).
Integrated assessment of oil pollution using biological monitoring and chemical fingerprinting.
Lewis, Ceri; Guitart, Carlos; Pook, Chris; Scarlett, Alan; Readman, James W; Galloway, Tamara S
2010-06-01
A full assessment of the impact of oil and chemical spills at sea requires the identification of both the polluting chemicals and the biological effects they cause. Here, a combination of chemical fingerprinting of surface oils, tissue residue analysis, and biological effects measures was used to explore the relationship between spilled oil and biological impact following the grounding of the MSC Napoli container ship in Lyme Bay, England in January 2007. Initially, oil contamination remained restricted to a surface slick in the vicinity of the wreck, and there was no chemical evidence to link biological impairment of animals (the common limpet, Patella vulgata) on the shore adjacent to the oil spill. Secondary oil contamination associated with salvage activities in July 2007 was also assessed. Chemical analyses of aliphatic hydrocarbons and terpanes in shell swabs taken from limpet shells provided an unequivocal match with the fuel oil carried by the ship. Corresponding chemical analysis of limpet tissues revealed increased concentrations of polycyclic aromatic hydrocarbons (PAHs) dominated by phenanthrene and C1 to C3 phenanthrenes with smaller contributions from heavier molecular weight PAHs. Concurrent ecotoxicological tests indicated impairment of cellular viability (p < 0.001), reduced immune function (p < 0.001), and damage to DNA (Comet assay, p < 0.001) in these animals, whereas antioxidant defenses were elevated relative to un-oiled animals. These results illustrate the value of combining biological monitoring with chemical fingerprinting for the rapid identification of spilled oils and their sublethal impacts on biota in situ. Copyright 2010 SETAC.
de Vries, Ronald P; vanKuyk, Patricia A; Kester, Harry C M; Visser, Jaap
2002-04-15
The faeB gene encoding a second feruloyl esterase from Aspergillus niger has been cloned and characterized. It consists of an open reading frame of 1644 bp containing one intron. The gene encodes a protein of 521 amino acids that has sequence similarity to that of an Aspergillus oryzae tannase. However, the encoded enzyme, feruloyl esterase B (FAEB), does not have tannase activity. Comparison of the physical characteristics and substrate specificity of FAEB with those of a cinnamoyl esterase from A. niger [Kroon, Faulds and Williamson (1996) Biotechnol. Appl. Biochem. 23, 255-262] suggests that they are in fact the same enzyme. The expression of faeB is specifically induced in the presence of certain aromatic compounds, but not in the presence of other constituents present in plant-cell-wall polysaccharides such as arabinoxylan or pectin. The expression profile of faeB in the presence of aromatic compounds was compared with the expression of A. niger faeA, encoding feruloyl esterase A (FAEA), and A. niger bphA, the gene encoding a benzoate-p-hydroxylase. All three genes have different subsets of aromatic compounds that induce their expression, indicating the presence of different transcription activating systems in A. niger that respond to aromatic compounds. Comparison of the activity of FAEA and FAEB on sugar-beet pectin and wheat arabinoxylan demonstrated that they are both involved in the degradation of both polysaccharides, but have opposite preferences for these substrates. FAEA is more active than FAEB towards wheat arabinoxylan, whereas FAEB is more active than FAEA towards sugar-beet pectin.
de Vries, Ronald P; vanKuyk, Patricia A; Kester, Harry C M; Visser, Jaap
2002-01-01
The faeB gene encoding a second feruloyl esterase from Aspergillus niger has been cloned and characterized. It consists of an open reading frame of 1644 bp containing one intron. The gene encodes a protein of 521 amino acids that has sequence similarity to that of an Aspergillus oryzae tannase. However, the encoded enzyme, feruloyl esterase B (FAEB), does not have tannase activity. Comparison of the physical characteristics and substrate specificity of FAEB with those of a cinnamoyl esterase from A. niger [Kroon, Faulds and Williamson (1996) Biotechnol. Appl. Biochem. 23, 255-262] suggests that they are in fact the same enzyme. The expression of faeB is specifically induced in the presence of certain aromatic compounds, but not in the presence of other constituents present in plant-cell-wall polysaccharides such as arabinoxylan or pectin. The expression profile of faeB in the presence of aromatic compounds was compared with the expression of A. niger faeA, encoding feruloyl esterase A (FAEA), and A. niger bphA, the gene encoding a benzoate-p-hydroxylase. All three genes have different subsets of aromatic compounds that induce their expression, indicating the presence of different transcription activating systems in A. niger that respond to aromatic compounds. Comparison of the activity of FAEA and FAEB on sugar-beet pectin and wheat arabinoxylan demonstrated that they are both involved in the degradation of both polysaccharides, but have opposite preferences for these substrates. FAEA is more active than FAEB towards wheat arabinoxylan, whereas FAEB is more active than FAEA towards sugar-beet pectin. PMID:11931668
Li, Jian-Long; Zhao, Wei; Zhou, Chen; Zhang, Ya-Xuan; Li, Hong-Mei; Tang, Ya-Ling; Liang, Xin-Hua; Chen, Tao; Tang, Ya-Jie
2015-01-01
Herein is a first effort to systematically study the significance of carbon-sulfur (C-S) and carbon-amine (C-NH) bonds on the antitumor proliferation activity of podophyllum derivatives and their precise mechanism of apoptosis. Compared with the derivative modified by a C-NH bond, the derivative modified by a C-S bond exhibited superior antitumor activity, the inhibition activity of target proteins tubulin or Topo II, cell cycle arrest, and apoptosis induction. Antitumor mechanistic studies showed that the death receptor and the mitochondrial apoptotic pathways were simultaneously activated by the C-S bond modified aromatic heterocyclic podophyllum derivatives with a higher cellular uptake percentage of 60–90% and induction of a higher level of reactive oxygen species (ROS). Only the mitochondrial apoptotic pathway was activated by the C-NH bond modified aromatic heterocyclic podophyllum derivatives, with a lower cellular uptake percentage of 40–50%. This study provided insight into effects of the C-S and C-NH bond modification on the improvement of the antitumor activity of Podophyllum derivatives. PMID:26443888
Oxidation of aromatic contaminants coupled to microbial iron reduction
Lovley, D.R.; Baedecker, M.J.; Lonergan, D.J.; Cozzarelli, I.M.; Phillips, E.J.P.; Siegel, D.I.
1989-01-01
THE contamination of sub-surface water supplies with aromatic compounds is a significant environmental concern1,2. As these contaminated sub-surface environments are generally anaerobic, the microbial oxidation of aromatic compounds coupled to nitrate reduction, sulphate reduction and methane production has been studied intensively1-7. In addition, geochemical evidence suggests that Fe(III) can be an important electron acceptor for the oxidation of aromatic compounds in anaerobic groundwater. Until now, only abiological mechanisms for the oxidation of aromatic compounds with Fe(III) have been reported8-12. Here we show that in aquatic sediments, microbial activity is necessary for the oxidation of model aromatic compounds coupled to Fe(III) reduction. Furthermore, a pure culture of the Fe(III)-reducing bacterium GS-15 can obtain energy for growth by oxidizing benzoate, toluene, phenol or p-cresol with Fe(III) as the sole electron acceptor. These results extend the known physiological capabilities of Fe(III)-reducing organisms and provide the first example of an organism of any type which can oxidize an aromatic hydrocarbon anaerobically. ?? 1989 Nature Publishing Group.
Aromatic hydrocarbons from the Middle Jurassic fossil wood of the Polish Jura
NASA Astrophysics Data System (ADS)
Smolarek, Justyna; Marynowski, Leszek
2013-09-01
Aromatic hydrocarbons are present in the fossil wood samples in relatively small amounts. In almost all of the tested samples the dominating aromatic hydrocarbon is perylene and its methyl and dimethyl derivatives. The most important biomarkers present in the aromatic fraction are dehydroabietane, siomonellite and retene, compounds characteristic for conifers. The distribution of discussed compounds is highly variable due to such early diagenetic processes affecting the wood as oxidation and the activity of microorganisms. MPI1 parameter values (methylphenanthrene index) for the majority of the samples are in the range of 0.1 to 0.5, which results in the highly variable values of Rc (converted value of vitrinite reflectance) ranging from 0.45 to 0.70%. Such values suggest that MPI1 parameter is not useful as maturity parameter in case of Middle Jurassic ore-bearing clays, even if measured strictly on terrestrial organic matter (OM). As a result of weathering processes (oxidation) the distribution of aromatic hydrocarbons changes. In the oxidized samples the amount of aromatic hydrocarbons, both polycyclic as well as aromatic biomarkers decreases.
Sabbah, Dima A; Saada, Musaab; Khalaf, Reema Abu; Bardaweel, Sanaa; Sweidan, Kamal; Al-Qirim, Tariq; Al-Zughier, Amani; Halim, Heba Abdel; Sheikha, Ghassan Abu
2015-08-15
The oncogenic potential of phosphatidylinositol 3-kinase (PI3Kα) has made it an attractive target for anticancer drug design. In this work, we describe our efforts to optimize the lead PI3Kα inhibitor 2-hydroxy-1,2-diphenylethanone (benzoin). A series of 2-oxo-1,2-diphenylethyl benzoate analogs were identified as potential PI3Kα inhibitors. Docking studies confirmed that the aromatic interaction is mediating ligand/protein complex formation and identified Lys802 and Val851 as H-bonding key residues. Our biological data in human colon carcinoma HCT116 showed that the structure analogs inhibited cell proliferation and induced apoptosis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Carroll, Richard T; Dluzen, Dean E; Stinnett, Hilary; Awale, Prabha S; Funk, Max O; Geldenhuys, Werner J
2011-08-15
The neuroprotective activity of pioglitazone and rosiglitazone in the MPTP parkinsonian mouse prompted us to evaluate a set of thiazolidinedione (TZD) type compounds for monoamine oxidase A and B inhibition activity. These compounds were able to inhibit MAO-B over several log units of magnitude (82 nM to 600 μM). Initial structure-activity relationship studies identified key areas to modify the aromatic substituted TZD compounds. Primarily, substitutions on the aromatic group and the TZD nitrogen were key areas where activity was enhanced within this group of compounds. Copyright © 2011 Elsevier Ltd. All rights reserved.
Xu, Ming; Cao, Jiashun; Li, Chao; Tu, Yong; Wu, Haisuo; Liu, Weijing
2018-01-01
The combined biological processes of branched water-adjustment, chemical precipitation, hydrolysis acidification, secondary sedimentation, Anoxic/Oxic and activated carbon treatment were used for chemical industrial wastewater treatment in the Taihu Lake Basin. Full-scale treatment resulted in effluent chemical oxygen demand, total nitrogen, NH 3 -N and total phosphorus of 35.1, 5.20, 3.10 and 0.15 mg/L, respectively, with a total removal efficiency of 91.1%, 67.1%, 70.5% and 89.3%, respectively. In this process, short-circuited organic carbon from brewery wastewater was beneficial for denitrification and second-sulfate reduction. The concentration of effluent fluoride was 6.22 mg/L, which also met the primary standard. Gas Chromatography-Mass Spectrometry analysis revealed that many types of refractory compounds were present in the inflow. Microbial community analysis performed in the summer by PCR-denaturing gradient gel electrophoresis and MiSeq demonstrated that certain special functional bacteria, such as denitrificans, phosphorus-accumulating bacteria, sulfate- and perhafnate-reducing bacteria, aromatic compound-degrading bacteria and organic fluoride-degrading bacteria, present in the bio-tanks were responsible for the acceptable specific biological pollutant reduction achieved.
Wang, Miaomiao; Meng, Yingjie; Ma, Defang; Wang, Yan; Li, Fengli; Xu, Xing; Xia, Chufan; Gao, Baoyu
2017-05-01
This study investigated the N-nitrosodimethylamine (NDMA) formation potential of various dissolved organic matter (DOM) fractions in biologically treated municipal wastewater by UF fractionation, XAD-8 resin adsorption isolation, and excitation and emission matrix (EEM) fluorescence spectroscopy. Removal of various NDMA precursor fractions was also analyzed to evaluate the efficiency of traditional water treatment processes (coagulation, adsorption, and coagulation-adsorption). Results showed that NDMA were mainly formed by low molecular weight (MW) fractions (<30 kDa) and hydrophilic fractions (HiS) in biologically treated municipal wastewater. Integrated coagulation-adsorption treatments showed the highest reduction capacity for NDMA formation potential (57%), followed by isolated adsorption treatment (50%) and isolated coagulation treatment (28%). The powdered activated carbon (PAC) adsorption process could reduce the high MW precursors (>30 kDa) by 48%, which was higher than other treatments. In contrast, the highest uptake (66%) of low MW precursors (<30 kDa) was achieved by the coagulation-adsorption process. All treatments preferentially removed the hydrophobic acids (HoA) fraction compared to other fractions. Coagulation could remove more fulvic acid-like substances and adsorption could remove more microbial by-products and aromatic proteins.
Arendt, Philipp; Pollier, Jacob; Callewaert, Nico; Goossens, Alain
2016-07-01
With tens of thousands of characterized members, terpenoids constitute the largest class of natural compounds that are synthesized by all living organisms. Several terpenoids play primary roles in the maintenance of cell membrane fluidity, as pigments or as phytohormones, but most of them function as specialized metabolites that are involved in plant resistance to herbivores or plant-environment interactions. Terpenoids are an essential component of human nutrition, and many are economically important pharmaceuticals, aromatics and potential next-generation biofuels. Because of the often low abundance in their natural source, as well as the demand for novel terpenoid structures with new or improved bioactivities, terpenoid biosynthesis has become a prime target for metabolic engineering and synthetic biology projects. In this review we focus on the creation of new-to-nature or tailor-made plant-derived terpenoids in photosynthetic organisms, in particular by means of combinatorial biosynthesis and the activation of silent metabolism. We reflect on the characteristics of different potential photosynthetic host organisms and recent advances in synthetic biology and discuss their utility for the (heterologous) production of (novel) terpenoids. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Site Investigation Report Groups 3,5, and 6 Fort Devens, Massachusetts. Volume 2 of 2: Appendices
1996-01-01
Invertebrates: A Synoptic Review" U.S. Fish and Wildlife Service Biological Report 85 (1.6), 60 pp. Eisler , R., 1987 . "Mercury Hazards to Fish, Wildlife, and...Invertebrates: A Synoptic Review" U.S. Fish and Wildlife Service Biological Report 85 (1.10), 90 pp. Eisler , R., 1987 . "Polycyclic Aromatic...1983). [f] From Eisler ( 1987 ). [g] Value from Hansch and Leo (1979). [h] Plant value from Eisler (1988). [i] Mammal value from USEPA (1985). [j
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Holly M.; Scott, Richard P.; Holmes, Darrell
Currently there is a lack of inexpensive, easy-to-use technology to evaluate human exposure to environmental chemicals, including polycyclic aromatic hydrocarbons (PAHs). This is the first study in which silicone wristbands were deployed alongside other PAH exposure assessment methodologies. Wristbands were used within an established Columbia Center for Children’s Environmental Health birth cohort and compared to two traditional personal PAH exposure assessment methods: biological sampling with urine and active air monitoring with samplers (i.e. polyurethane foam (PUF) and filter) housed in backpacks. All samplers were deployed simultaneously on 22 pregnant women for 48-hours. Each woman provided one spot urine sample atmore » the end of the 48-hour period. Sixty-two and 20 PAHs were quantified in the wristbands and PUF/filter, respectively; and eight hydroxy-PAH (OH-PAH) metabolites were quantified in the urine. PAHs in the PUF/filter and OH-PAHs correlate significantly for two of the eight comparisons (rs=0.53 and p=0.01; rs=0.44 and p=0.04). PAHs in the wristband and OH-PAHs correlate significantly for four of the eight comparisons; 1-OH-phenanthrene and 1-OH-pyrene strongly correlate with the parent PAHs in the wristband (rs=0.76 and p=<0.0001; rs=0.66 and p=0.0009). These results suggest wristbands are more closely associated with OH-PAHs in urine than active personal air monitoring methods.« less
Maletínská, Lenka; Spolcová, Andrea; Maixnerová, Jana; Blechová, Miroslava; Zelezná, Blanka
2011-09-01
Prolactin-releasing peptide (PrRP)-induced secretion of prolactin is not currently considered a primary function of PrRP, but the development of late-onset obesity in both PrRP and PrRP receptor knock-out mice indicates the unique anorexigenic properties of PrRP. In our recent study, we showed comparable potencies of peptides PrRP31 and PrRP20 in binding, intracellular signaling and prolactin release in pituitary RC-4B/C cells, and anorexigenic effect after central administration in fasted mice. In the present study, eight analogs of PrRP20 with C-terminal Phe amide modified with a bulky side chain or a halogenated aromatic ring revealed high binding potency, activation of mitogen-activated protein kinase/extracellular-regulated kinase (MAPK/ERK1/2) and cAMP response element-binding protein (CREB) and prolactin release in RC-4B/C cells. In particular, [PheNO(2)(31)]PrRP20, [1-Nal(31)]PrRP20, [2-Nal(31)]PrRP20 and [Tyr(31)]PrRP20 showed not only in vitro effects comparable or higher than those of PrRP20, but also a very significant and long-lasting anorexigenic effect after central administration in fasted mice. The design of potent and long-lasting PrRP analogs with selective anorexigenic properties promises to contribute to the study of food intake disorders. Copyright © 2011 Elsevier Inc. All rights reserved.
Bontpart, Thibaut; Marlin, Thérèse; Vialet, Sandrine; Guiraud, Jean-Luc; Pinasseau, Lucie; Meudec, Emmanuelle; Sommerer, Nicolas; Cheynier, Véronique; Terrier, Nancy
2016-05-01
In plants, the shikimate pathway provides aromatic amino acids that are used to generate numerous secondary metabolites, including phenolic compounds. In this pathway, shikimate dehydrogenases (SDH) 'classically' catalyse the reversible dehydrogenation of 3-dehydroshikimate to shikimate. The capacity of SDH to produce gallic acid from shikimate pathway metabolites has not been studied in depth. In grapevine berries, gallic acid mainly accumulates as galloylated flavan-3-ols. The four grapevine SDH proteins have been produced in Escherichia coli In vitro, VvSDH1 exhibited the highest 'classical' SDH activity. Two genes, VvSDH3 and VvSDH4, mainly expressed in immature berry tissues in which galloylated flavan-3-ols are accumulated, encoded enzymes with lower 'classical' activity but were able to produce gallic acid in vitro The over-expression of VvSDH3 in hairy-roots increased the content of aromatic amino acids and hydroxycinnamates, but had little or no effect on molecules more distant from the shikimate pathway (stilbenoids and flavan-3-ols). In parallel, the contents of gallic acid, β-glucogallin, and galloylated flavan-3-ols were increased, attesting to the influence of this gene on gallic acid metabolism. Phylogenetic analysis from dicotyledon SDHs opens the way for the examination of genes from other plants which accumulate gallic acid-based metabolites. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Metabolism of 6-nitrochrysene by intestinal microflora
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manning, B.W.; Campbell, W.L.; Franklin, W.
1988-01-01
Since bacterial nitroreduction may play a critical role in the activation of nitropolycyclic aromatic hydrocarbons, we have used batch and semicontinuous culture systems to determine the ability of intestinal microflora to metabolize the carcinogen 6-nitrochrysene (6-NC). 6-NC was metabolized by the intestinal microflora present in the semicontinuous culture system to 6-aminochrysene (6-AC), N-formyl-6-aminochrysene (6-FAC), and 6-nitrosochrysene (6-NOC). These metabolites were isolated and identified by high-performance liquid chromatography, mass spectrometry, and UV-visible spectrophotometry and compared with authentic compounds. Almost all of the 6-NC was metabolized after 10 days. Nitroreduction of 6-NC to 6-AC was rapid; the 6-AC concentration reached a maximummore » at 48 h. The ratio of the formation of 6-AC to 6-FAC to 6-NOC at 48 h was 93.4:6.3:0.3. Interestingly, compared with results in the semicontinuous culture system, the only metabolite detected in the batch studies was 6-AC. The rate of nitroreduction differed among human, rat, and mouse intestinal microflora, with human intestinal microflora metabolizing 6-NC to the greatest extent. Since 6-AC has been shown to be carcinogenic in mice and since nitroso derivatives of other nitropolycyclic aromatic hydrocarbons are biologically active, our results suggest that the intestinal microflora has the enzymatic capacity to generate genotoxic compounds and may play an important role in the carcinogenicity of 6-NC.« less
Helmich, Kate E.; Pereira, Jose Henrique; Gall, Daniel L.; ...
2015-12-04
Here, lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, wemore » present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.« less
Gottardi, Manuela; Grün, Peter; Bode, Helge B; Hoffmann, Thomas; Schwab, Wilfried; Oreb, Mislav; Boles, Eckhard
2017-12-01
Trans-cinnamic acid (tCA) and hydrocinnamyl alcohol (HcinOH) are valuable aromatic compounds with applications in the flavour, fragrance and cosmetic industry. They can be produced with recombinant yeasts from sugars via phenylalanine after expression of a phenylalanine ammonia lyase (PAL) and an aryl carboxylic acid reductase. Here, we show that in Saccharomyces cerevisiae a PAL enzyme from the bacterium Photorhabdus luminescens was superior to a previously used plant PAL enzyme for the production of tCA. Moreover, after expression of a UDP-glucose:cinnamate glucosyltransferase (FaGT2) from Fragaria x ananassa, tCA could be converted to cinnamoyl-D-glucose which is expected to be less toxic to the yeast cells. Production of tCA and HcinOH from glucose could be increased by eliminating feedback-regulated steps of aromatic amino acid biosynthesis and diminishing the decarboxylation step of the competing Ehrlich pathway. Finally, an unknown by-product resulting from further metabolisation of a carboligation product of cinnamaldehyde (cinALD) with activated acetaldehyde, mediated by pyruvate decarboxylases, could be identified as cinnamyl methyl ketone providing a new route for the biosynthesis of precursors, such as (2S,3R) 5-phenylpent-4-ene-2,3-diol, necessary for the chemical synthesis of specific biologically active drugs such as daunomycin. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Epidemiological studies have suggested that fine particulate matter (<2.5 um) is correlated with daily mortality and morbidity in urban areas. At present, no plausible biological or chemical mechanism explains these correlations. Thus, a more complete understanding of the compo...
Cabrera, José; Hellmuth, Tina; Peters, René
2010-06-18
An operationally simple method is described to form densely substituted diastereomerically pure trans-configured and potentially biologically interesting 5,6-dihydropyridone derivatives as 3:1 adducts of ketenes formed in situ from acyl bromides and aromatic imines.
USDA-ARS?s Scientific Manuscript database
Microbial inhibitors arise from lignin, hemicellulose, and degraded sugar during pretreatment of lignocellulosic biomass. The fungus Coniochaeta ligniaria NRRL30616 has native ability to metabolize a number of these compounds, including furan and aromatic aldehydes known to act as inhibitors toward...
NASA Astrophysics Data System (ADS)
Xiao, Qing; Jackson, Jeffrey J.; Basak, Ashok; Bowler, Joseph M.; Miller, Brian G.; Zakarian, Armen
2013-05-01
The tatanans are members of a novel class of complex sesquilignan natural products recently isolated from the rhizomes of Acorus tatarinowii Schott plants. Tatanans A, B and C have previously been reported to have potent glucokinase-activating properties that exceed the in vitro activity of known synthetic antidiabetic agents. Here, using a series of sequential [3,3]-sigmatropic rearrangements, we report the total synthesis of tatanan A in 13 steps and 13% overall yield. We also complete a concise enantioselective total synthesis of more complex, atropisomeric tatanans B and C via a distinct convergent strategy based on a palladium-catalysed diastereotopic aromatic group differentiation (12 steps, 4% and 8% overall yield, respectively). A plausible biosynthetic relationship between acyclic tatanan A and spirocyclic tatanans B and C is proposed and probed experimentally. With sufficient quantities of the natural products in hand, we undertake a detailed functional characterization of the biological activities of tatanans A-C. Contrary to previous reports, our assays utilizing pure recombinant human enzyme demonstrate that tatanans do not function as allosteric activators of glucokinase.
Synthesis of marmycin A and investigation into its cellular activity
NASA Astrophysics Data System (ADS)
Cañeque, Tatiana; Gomes, Filipe; Mai, Trang Thi; Maestri, Giovanni; Malacria, Max; Rodriguez, Raphaël
2015-09-01
Anthracyclines such as doxorubicin are used extensively in the treatment of cancers. Anthraquinone-related angucyclines also exhibit antiproliferative properties and have been proposed to operate via similar mechanisms, including direct genome targeting. Here, we report the chemical synthesis of marmycin A and the study of its cellular activity. The aromatic core was constructed by means of a one-pot multistep reaction comprising a regioselective Diels-Alder cycloaddition, and the complex sugar backbone was introduced through a copper-catalysed Ullmann cross-coupling, followed by a challenging Friedel-Crafts cyclization. Remarkably, fluorescence microscopy revealed that marmycin A does not target the nucleus but instead accumulates in lysosomes, thereby promoting cell death independently of genome targeting. Furthermore, a synthetic dimer of marmycin A and the lysosome-targeting agent artesunate exhibited a synergistic activity against the invasive MDA-MB-231 cancer cell line. These findings shed light on the elusive pathways through which anthraquinone derivatives act in cells, pointing towards unanticipated biological and therapeutic applications.
Reactivity of 9-aminoacridine drug quinacrine with glutathione limits its antiprion activity.
Šafařík, Martin; Moško, Tibor; Zawada, Zbigniew; Šafaříková, Eva; Dračínský, Martin; Holada, Karel; Šebestík, Jaroslav
2017-06-01
Quinacrine-the drug based on 9-aminoacridine-failed in clinical trials for prion diseases, whereas it was active in in vitro studies. We hypothesize that aromatic nucleophilic substitution at C9 could be contributing factor responsible for this failure because of the transfer of acridine moiety from quinacrine to abundant glutathione. Here, we described the semi-large-scale synthesis of the acridinylated glutathione and the consequences of its formation on biological and biophysical activities. The acridinylated glutathione is one order of magnitude weaker prion protein binder than the parent quinacrine. Moreover, according to log D pH 7.4 , the glutathione conjugate is two orders of magnitude more hydrophilic than quinacrine. Its higher hydrophilicity and higher dsDNA binding potency will significantly decrease its bioavailability in membrane-like environment. The glutathione deactivates quinacrine not only directly but also decreases its bioavailability. Furthermore, the conjugate can spontaneously decompose to practically insoluble acridone, which is precipitated out from the living systems. © 2016 John Wiley & Sons A/S.
Isoxazole-type derivatives related to combretastatin A-4, synthesis and biological evaluation.
Kaffy, Julia; Pontikis, Renée; Carrez, Danièle; Croisy, Alain; Monneret, Claude; Florent, Jean-Claude
2006-06-15
Novel combretastatin analogues bearing various five-membered heterocycles with consecutive oxygen and nitrogen atoms, in place of the olefinic bridge of CA4, have been synthesized (isoxazole, isoxazoline, oxadiazole, etc). These compounds have been evaluated for cytotoxicity and their ability to inhibit the tubulin assembly. On the basis of the relative position of the aromatic A- and B-rings on the heterocyclic moiety, they could be split in two classes, the alpha,gamma- or alpha,beta-diaryl heterocyclic derivatives. In the first series, the 3,5-diaryloxadiazole 9a displayed comparable antitubulin activity to that of CA4, but was devoid of cytotoxic effects. Among the alpha,beta-diaryl heterocyclic derivatives, the 4,5-diarylisoxazole 35 exhibited greater antitubulin activity than that of CA4 (0.75 vs 1.2 microM), but modest antiproliferative activity. These data showed that minor alteration in the chemical structure of the heterocyclic ring and its relative orientation with regard to the two phenyl rings of CA4 could dramatically influence the tubulin binding properties.
The use of white-rot fungi as active biofilters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braun-Luellemann, A.; Johannes, C.; Majcherczyk, A.
1995-12-31
White-rot fungi, growing on lignocellulosic substrates, have been successfully used as active organisms in biofilters. Filters using these fungi have a very high biological active surface area, allowing for high degrees of retention, a comparatively low pressure drop, and a high physical stability. The unspecific action of the extracellular enzymes of the white-rot fungi allows for the degradation of a wide variety of substances by the same organism. Degradation of several compounds in the gas phase by the white-rot fungi Trametes versicolor, Pleurotus ostreatus, Bjerkandera adusta, and Phanerochaete chrysosporium was tested. Among the aromatic solvents, styrene was the compound thatmore » was most readily degraded, followed by ethylbenzene, xylenes, and toluene. Tetrahydrofuran and dichloromethane were also degraded, whereas dioxane could not be attacked by fungi under the conditions used. Acrylonitrile and aniline were degraded very well, whereas pyridine was resistant to degradation. The process for removing styrene is now in the scaling-up stage.« less
Akocak, Suleyman; Lolak, Nabih; Vullo, Daniela; Durgun, Mustafa; Supuran, Claudiu T
2017-12-01
A series of 20 histamine Schiff base was synthesised by reaction of histamine, a well known carbonic anhydrase (CA, E.C 4.2.2.1.) activator pharmacophore, with substituted aldehydes. The obtained histamine Schiff bases were assayed as activators of five selected human (h) CA isozymes, the cytosolic hCA I, hCA II, and hCA VII, the membrane-anchored hCA IV and transmembrane hCA IX. Some of these compounds showed efficient activity (in the nanomolar range) against the cytosolic isoform hCA VII, which is a key CA enzyme involved in brain metabolism. Moderate activity was observed against hCA I and hCA IV (in the nanomolar to low micromolar range). The structure-activity relationship for activation of these isoforms with the new histamine Schiff bases is discussed in detail based on the nature of the aliphatic, aromatic, or heterocyclic moiety present in the aldehyde fragment of the molecule, which may participate in diverse interactions with amino acid residues at the entrance of the active site, where activators bind, and which is the most variable part among the different CA isoforms.
Co-aromatization of olefin and methane over Ag-Ga/ZSM-5 catalyst at low temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Peng; Gatip, Richard; Yung, Matthew
The massive exploitation of shale gas in the past decade has boosted the production of natural gas and reduced its price dramatically. The methane activation and following conversion into more valuable fuels and chemicals have thus become more and more attractive, while the introduction of hydrocarbons to enhance the methane activation at mild conditions represents a promising approach. In the present work, the co-aromatization of methane with propylene has been studied at 400 °C. The presence of methane would increase the toluene to benzene ratio as well as the average carbon number of the formed liquid aromatic products compared tomore » its propylene alone counterpart. Among the gas products, the formations of C 3H 8, C 4H 8 and C 4H 10 also get promoted when methane is present. The incorporation of methane into the product molecules is also directly evidenced by the 1H, 2D and 13C NMR spectroscopy of the liquid products obtained from the reaction between propylene (or styrene) and isotope labelled methane. Hydrogen from methane would contribute a large portion of the hydrogen in the product molecules, while the benzylic and aromatic hydrogen sites are favored compared with those on the alkyl side chains. The activation of methane is also observed in the DRIFT spectra when deuterium enriched methane is engaged as the methane source and evidenced by the escalated exothermic feature when olefin aromatization takes place under methane environment. The excellent catalytic performance of Ag-Ga/ZSM-5 might be because of the better dispersion of Ag and Ga on the ZSM-5 surface and moderate amount of strong Brosted and Lewis surface acid sites. All the observations suggest that methane might be activated nonoxidatively and converted into aromatics if suitable catalyst is charged under the assistance of co-existing olefin. In conclusion, the reported synergetic effect could potentially lead to the more economic utilization of abundant natural gas and petrochemical intermediates.« less
Co-aromatization of olefin and methane over Ag-Ga/ZSM-5 catalyst at low temperature
He, Peng; Gatip, Richard; Yung, Matthew; ...
2017-04-22
The massive exploitation of shale gas in the past decade has boosted the production of natural gas and reduced its price dramatically. The methane activation and following conversion into more valuable fuels and chemicals have thus become more and more attractive, while the introduction of hydrocarbons to enhance the methane activation at mild conditions represents a promising approach. In the present work, the co-aromatization of methane with propylene has been studied at 400 °C. The presence of methane would increase the toluene to benzene ratio as well as the average carbon number of the formed liquid aromatic products compared tomore » its propylene alone counterpart. Among the gas products, the formations of C 3H 8, C 4H 8 and C 4H 10 also get promoted when methane is present. The incorporation of methane into the product molecules is also directly evidenced by the 1H, 2D and 13C NMR spectroscopy of the liquid products obtained from the reaction between propylene (or styrene) and isotope labelled methane. Hydrogen from methane would contribute a large portion of the hydrogen in the product molecules, while the benzylic and aromatic hydrogen sites are favored compared with those on the alkyl side chains. The activation of methane is also observed in the DRIFT spectra when deuterium enriched methane is engaged as the methane source and evidenced by the escalated exothermic feature when olefin aromatization takes place under methane environment. The excellent catalytic performance of Ag-Ga/ZSM-5 might be because of the better dispersion of Ag and Ga on the ZSM-5 surface and moderate amount of strong Brosted and Lewis surface acid sites. All the observations suggest that methane might be activated nonoxidatively and converted into aromatics if suitable catalyst is charged under the assistance of co-existing olefin. In conclusion, the reported synergetic effect could potentially lead to the more economic utilization of abundant natural gas and petrochemical intermediates.« less
The Use of Hammett Constants to Understand the Non-Covalent Binding of Aromatics
Lewis, Michael; Bagwill, Christina; Hardebeck, Laura K. E.; Wireduaah, Selina
2012-01-01
Non-covalent interactions of aromatics are important in a wide range of chemical and biological applications. The past two decades have seen numerous reports of arene-arene binding being understood in terms Hammett substituent constants, and similar analyses have recently been extended to cation-arene and anion-arene binding. It is not immediately clear why electrostatic Hammett parameters should work so well in predicting the binding for all three interactions, given that different intermolecular forces dominate each interaction. This review explores such anomalies, and summarizes how Hammett substituent constants have been employed to understand the non-covalent binding in arene-arene, cation-arene and anion-arene interactions. PMID:24688634
Calabriso, Nadia; Berland, Helge; Maiorano, Gabriele; Gerardi, Carmela; Carluccio, Maria Annunziata; Andersen, Øyvind M.
2018-01-01
Anthocyanins, the naturally occurring pigments responsible for most red to blue colours of flowers, fruits and vegetables, have also attracted interest because of their potential health effects. With the aim of contributing to major insights into their structure–activity relationship (SAR), we have evaluated the radical scavenging and biological activities of selected purified anthocyanin samples (PASs) from various anthocyanin-rich plant materials: two fruits (mahaleb cherry and blackcurrant) and two vegetables (black carrot and “Sun Black” tomato), differing in anthocyanin content (ranging from 4.9 to 38.5 mg/g DW) and molecular structure of the predominant anthocyanins. PASs from the abovementioned plant materials have been evaluated for their antioxidant capacity using Trolox Equivalent Antioxidant Capacity (TEAC) and Oxygen Radical Absorbance Capacity (ORAC) assays. In human endothelial cells, we analysed the anti-inflammatory activity of different PASs by measuring their effects on the expression of endothelial adhesion molecules VCAM-1 and ICAM-1. We demonstrated that all the different PASs showed biological activity. They exhibited antioxidant capacity of different magnitude, higher for samples containing non-acylated anthocyanins (typical for fruits) compared to samples containing more complex anthocyanins acylated with cinnamic acid derivatives (typical for vegetables), even though this order was slightly reversed when ORAC assay values were expressed on a molar basis. Concordantly, PASs containing non-acylated anthocyanins reduced the expression of endothelial inflammatory antigens more than samples with aromatic acylated anthocyanins, suggesting the potential beneficial effect of structurally diverse anthocyanins in cardiovascular protection. PMID:29316619
Presence and potential significance of aromatic-ketone groups in aquatic humic substances
Leenheer, J.A.; Wilson, M.A.; Malcolm, R.L.
1987-01-01
Aquatic humic- and fulvic-acid standards of the International Humic Substances Society were characterized, with emphasis on carbonyl-group nature and content, by carbon-13 nuclear-magnetic-resonance spectroscopy, proton nuclear-magnetic-resonance spectroscopy, and infrared spectroscopy. After comparing spectral results of underivatized humic and fulvic acids with spectral results of chemically modified derivatives, that allow improved observation of the carbonyl group, the data clearly indicated that aromatic ketone groups comprised the majority of the carbonyl-group content. About one ketone group per monocyclic aromatic ring was determined for both humic and fulvic acids. Aromatic-ketone groups were hypothesized to form by photolytic rearrangements and oxidation of phenolic ester and hydrocarbon precursors; these groups have potential significance regarding haloform formation in water, reactivity resulting from active hydrogen of the methyl and methylene adjacent to the ketone groups, and formation of hemiketal and lactol structures. Aromatic-ketone groups also may be the point of attachment between aliphatic and aromatic moieties of aquatic humic-substance structure. ?? 1987.
Essential oil composition of stems and fruits of Caralluma europaea N.E.Br. (Apocynaceae).
Zito, Pietro; Sajeva, Maurizio; Bruno, Maurizio; Maggio, Antonella; Rosselli, Sergio; Formisano, Carmen; Senatore, Felice
2010-01-27
The essential oil of the stems and fruits of Caralluma europaea (Guss.) N.E.Br. (Apocynaceae) from Lampedusa Island has been obtained by hydrodistillation and its composition analyzed. The analyses allowed the identification and quantification of 74 volatile compounds, of which 16 were aromatic and 58 non-aromatic. Stems and fruits contained 1.4% and 2.7% of aromatic compounds respectively, while non-aromatic were 88.3% and 88.8%. Non-aromatic hydrocarbons were the most abundant compounds in both organs, followed by fatty acids. Data showed differences in the profiles between stems and fruits which shared only eighteen compounds; stems accounted for 38 compounds while fruits for 53. Fruits showed a higher diversity especially in aromatic compounds with twelve versus four in stems. Among the volatiles identified in stems and fruits of C. europaea 26 are present in other taxa of Apocynaceae, 52 are semiochemicals for many insects, and 21 have antimicrobial activity. The possible ecological role of the volatiles found is briefly discussed.
Kasiotis, Konstantinos M; Emmanouil, Christina; Anastasiadou, Pelagia; Papadi-Psyllou, Asimina; Papadopoulos, Antonis; Okay, Oya; Machera, Kyriaki
2015-01-01
Persistent chemicals and emerging pollutants are continuously detected in marine waters and biota. Out of these, polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCs) are significant contaminants with decades of presence in the marine environment. The Mediterranean Sea is an ecosystem directly affected by a variety of anthropogenic activities including industry, municipal, touristic, commercial and agricultural. The Mediterranean mussel (Mytilus galloprovincialis) is a filter feeder, which presents wide distribution. In this regard, the specific organism was used as a biological indicator for the monitoring and evaluation of pollution in the studied areas with focus on the mentioned chemical groups. Pristine Turkish sites with minimum effect from anthropogenic activities, in contrast with Greek sites which were subjected to heavy industrial and shipping activity, were selected. A gas chromatographic tandem mass spectrometric method (GC-MS/MS) was developed and validated to monitor 34 compounds (16 EPA priority PAHs and 18 OCs). Analyses of mussel samples in 2011 from sites with the limited anthropogenic pollution shores have shown the occurrence of 11 pollutants (6 PAHs, 5 OCs), while in the samples from sites with intensive activity and expected pollution, 12 PAHs and 6 OCs were detected. Biochemical and biological responses studied only in mussels samples from the sites with the highest contamination showed a situation that was under strong seasonal influence. The intensity of the response was also influenced by deployment duration. Noteworthy correlations were detected among biochemical/biological effects and between mussel body burden and these effects. Continuous monitoring of priority pollutants of East Mediterranean Sea is vital both for ecological and human risk assessment purposes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Goodale, B. C.; La Du, J.; Tilton, S. C.; Sullivan, C. M.; Bisson, W. H.; Waters, K. M.; Tanguay, R. L.
2015-01-01
Polycyclic aromatic hydrocarbons (PAHs) are priority environmental contaminants that exhibit mutagenic, carcinogenic, proinflammatory, and teratogenic properties. Oxygen-substituted PAHs (OPAHs) are formed during combustion processes and via phototoxidation and biological degradation of parent (unsubstituted) PAHs. Despite their prevalence both in contaminated industrial sites and in urban air, OPAH mechanisms of action in biological systems are relatively understudied. Like parent PAHs, OPAHs exert structure-dependent mutagenic activities and activation of the aryl hydrocarbon receptor (AHR) and cytochrome p450 metabolic pathway. Four-ring OPAHs 1,9-benz-10-anthrone (BEZO) and benz(a)anthracene-7,12-dione (7,12-B[a]AQ) cause morphological aberrations and induce markers of oxidative stress in developing zebrafish with similar potency, but only 7,12-B[a]AQ induces robust Cyp1a protein expression. We investigated the role of the AHR in mediating the toxicity of BEZO and 7,12-B[a]AQ, and found that knockdown of AHR2 rescued developmental effects caused by both compounds. Using RNA-seq and molecular docking, we identified transcriptional responses that precede developmental toxicity induced via differential interaction with AHR2. Redox-homeostasis genes were affected similarly by these OPAHs, while 7,12-B[a]AQ preferentially activated phase 1 metabolism and BEZO uniquely decreased visual system genes. Analysis of biological functions and upstream regulators suggests that BEZO is a weak AHR agonist, but interacts with other transcriptional regulators to cause developmental toxicity in an AHR-dependent manner. Identifying ligand-dependent AHR interactions and signaling pathways is essential for understanding toxicity of this class of environmentally relevant compounds. PMID:26141390
Husain, Asif; Ahmad, Aftab; Khan, Shah Alam; Asif, Mohd; Bhutani, Rubina; Al-Abbasi, Fahad A.
2015-01-01
The aim of this study was to design and synthesize pharmaceutical agents containing imidazolidine heterocyclic ring in the hope of developing potent, safe and orally active anti-inflammatory agents. A number of substituted-imidazolidine derivatives (3a–k) were synthesized starting from ethylene diamine and aromatic aldehydes. The imidazolidine derivatives (3a–k) were investigated for their anticipated anti-inflammatory, and analgesic activity in Wistar albino rats and Swiss albino mice, respectively. Bioactivity score, molecular and pharmacokinetic properties of the imidazolidine derivatives were calculated by online computer software programs viz. Molinspiration and Osiris property explorer. The results of biological testing indicated that among the synthesized compounds only three imidazolidine derivatives namely 4-[1,3-Bis(2,6-dichlorobenzyl)-2-imidazolidinyl]phenyl-diethylamine (3g), 4-[1,3-Bis(3-hydroxy-4-methoxybenzyl)-2-imidazolidinyl]phenyl-diethylamine (3i) and 4-(1,3-Bis(4-methoxybenzyl)-4-methylimidazolidin-2-yl)-phenyl-diethylamine (3j) possess promising anti-inflammatory and analgesic actions. Additionally these derivatives displayed superior GI safety profile (low severity index) with respect to the positive control, Indomethacin. All synthesized compounds showed promising bioactivity score for drug targets by Molinspiration software. Almost all the compounds were predicted to have very low toxicity risk by Osiris online software. Compound number (3i) emerged as a potential candidate for further research as it obeyed Lipinski’s rule of five for drug likeness, exhibited promising biological activity in-vivo and showed no risk of toxicity in computer aided screening. PMID:26903774
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarkson, Sonya M.; Giannone, Richard J.; Kridelbaugh, Donna M.
The production of biofuels from lignocellulose yields a substantial lignin by-product stream that currently has few applications. Biological conversion of lignin-derived compounds into chemicals and fuels has the potential to improve the economics of lignocellulose-derived biofuels, but few microbes are able both to catabolize lignin-derived aromatic compounds and to generate valuable products. WhileEscherichia colihas been engineered to produce a variety of fuels and chemicals, it is incapable of catabolizing most aromatic compounds. Therefore, we engineeredE. colito catabolize protocatechuate, a common intermediate in lignin degradation, as the sole source of carbon and energy via heterologous expression of a nine-gene pathway fromPseudomonasmore » putidaKT2440. Then, we used experimental evolution to select for mutations that increased growth with protocatechuate more than 2-fold. Increasing the strength of a single ribosome binding site in the heterologous pathway was sufficient to recapitulate the increased growth. After optimization of the core pathway, we extended the pathway to enable catabolism of a second model compound, 4-hydroxybenzoate. These engineered strains will be useful platforms to discover, characterize, and optimize pathways for conversions of lignin-derived aromatics. IMPORTANCELignin is a challenging substrate for microbial catabolism due to its polymeric and heterogeneous chemical structure. Therefore, engineering microbes for improved catabolism of lignin-derived aromatic compounds will require the assembly of an entire network of catabolic reactions, including pathways from genetically intractable strains. By constructing defined pathways for aromatic compound degradation in a model host would allow rapid identification, characterization, and optimization of novel pathways. Finally, we constructed and optimized one such pathway inE. colito enable catabolism of a model aromatic compound, protocatechuate, and then extended the pathway to a related compound, 4-hydroxybenzoate. This optimized strain can now be used as the basis for the characterization of novel pathways.« less
Clarkson, Sonya M; Giannone, Richard J; Kridelbaugh, Donna M; Elkins, James G; Guss, Adam M; Michener, Joshua K
2017-09-15
The production of biofuels from lignocellulose yields a substantial lignin by-product stream that currently has few applications. Biological conversion of lignin-derived compounds into chemicals and fuels has the potential to improve the economics of lignocellulose-derived biofuels, but few microbes are able both to catabolize lignin-derived aromatic compounds and to generate valuable products. While Escherichia coli has been engineered to produce a variety of fuels and chemicals, it is incapable of catabolizing most aromatic compounds. Therefore, we engineered E. coli to catabolize protocatechuate, a common intermediate in lignin degradation, as the sole source of carbon and energy via heterologous expression of a nine-gene pathway from Pseudomonas putida KT2440. We next used experimental evolution to select for mutations that increased growth with protocatechuate more than 2-fold. Increasing the strength of a single ribosome binding site in the heterologous pathway was sufficient to recapitulate the increased growth. After optimization of the core pathway, we extended the pathway to enable catabolism of a second model compound, 4-hydroxybenzoate. These engineered strains will be useful platforms to discover, characterize, and optimize pathways for conversions of lignin-derived aromatics. IMPORTANCE Lignin is a challenging substrate for microbial catabolism due to its polymeric and heterogeneous chemical structure. Therefore, engineering microbes for improved catabolism of lignin-derived aromatic compounds will require the assembly of an entire network of catabolic reactions, including pathways from genetically intractable strains. Constructing defined pathways for aromatic compound degradation in a model host would allow rapid identification, characterization, and optimization of novel pathways. We constructed and optimized one such pathway in E. coli to enable catabolism of a model aromatic compound, protocatechuate, and then extended the pathway to a related compound, 4-hydroxybenzoate. This optimized strain can now be used as the basis for the characterization of novel pathways. Copyright © 2017 American Society for Microbiology.
Dixon, Holly M; Scott, Richard P; Holmes, Darrell; Calero, Lehyla; Kincl, Laurel D; Waters, Katrina M; Camann, David E; Calafat, Antonia M; Herbstman, Julie B; Anderson, Kim A
2018-05-01
Currently there is a lack of inexpensive, easy-to-use technology to evaluate human exposure to environmental chemicals, including polycyclic aromatic hydrocarbons (PAHs). This is the first study in which silicone wristbands were deployed alongside two traditional personal PAH exposure assessment methods: active air monitoring with samplers (i.e., polyurethane foam (PUF) and filter) housed in backpacks, and biological sampling with urine. We demonstrate that wristbands worn for 48 h in a non-occupational setting recover semivolatile PAHs, and we compare levels of PAHs in wristbands to PAHs in PUFs-filters and to hydroxy-PAH (OH-PAH) biomarkers in urine. We deployed all samplers simultaneously for 48 h on 22 pregnant women in an established urban birth cohort. Each woman provided one spot urine sample at the end of the 48-h period. Wristbands recovered PAHs with similar detection frequencies to PUFs-filters. Of the 62 PAHs tested for in the 22 wristbands, 51 PAHs were detected in at least one wristband. In this cohort of pregnant women, we found more significant correlations between OH-PAHs and PAHs in wristbands than between OH-PAHs and PAHs in PUFs-filters. Only two comparisons between PAHs in PUFs-filters and OH-PAHs correlated significantly (r s = 0.53 and p = 0.01; r s = 0.44 and p = 0.04), whereas six comparisons between PAHs in wristbands and OH-PAHs correlated significantly (r s = 0.44 to 0.76 and p = 0.04 to <0.0001). These results support the utility of wristbands as a biologically relevant exposure assessment tool which can be easily integrated into environmental health studies. Graphical abstract PAHs detected in samples collected from urban pregnant women.
Pandyarajan, Vijay; Smith, Brian J; Phillips, Nelson B; Whittaker, Linda; Cox, Gabriella P; Wickramasinghe, Nalinda; Menting, John G; Wan, Zhu-li; Whittaker, Jonathan; Ismail-Beigi, Faramarz; Lawrence, Michael C; Weiss, Michael A
2014-12-12
Crystallographic studies of insulin bound to fragments of the insulin receptor have recently defined the topography of the primary hormone-receptor interface. Here, we have investigated the role of Phe(B24), an invariant aromatic anchor at this interface and site of a human mutation causing diabetes mellitus. An extensive set of B24 substitutions has been constructed and tested for effects on receptor binding. Although aromaticity has long been considered a key requirement at this position, Met(B24) was found to confer essentially native affinity and bioactivity. Molecular modeling suggests that this linear side chain can serve as an alternative hydrophobic anchor at the hormone-receptor interface. These findings motivated further substitution of Phe(B24) by cyclohexanylalanine (Cha), which contains a nonplanar aliphatic ring. Contrary to expectations, [Cha(B24)]insulin likewise exhibited high activity. Furthermore, its resistance to fibrillation and the rapid rate of hexamer disassembly, properties of potential therapeutic advantage, were enhanced. The crystal structure of the Cha(B24) analog, determined as an R6 zinc-stabilized hexamer at a resolution of 1.5 Å, closely resembles that of wild-type insulin. The nonplanar aliphatic ring exhibits two chair conformations with partial occupancies, each recapitulating the role of Phe(B24) at the dimer interface. Together, these studies have defined structural requirements of an anchor residue within the B24-binding pocket of the insulin receptor; similar molecular principles are likely to pertain to insulin-related growth factors. Our results highlight in particular the utility of nonaromatic side chains as probes of the B24 pocket and suggest that the nonstandard Cha side chain may have therapeutic utility. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Poerschmann, Juergen; Koschorreck, Matthias; Górecki, Tadeusz
2017-02-01
Natural neutralization of acidic mining lakes is often limited by organic matter. The knowledge of the sources and degradability of organic matter is crucial for understanding alkalinity generation in these lakes. Sediments collected at different depths (surface sediment layer from 0 to 1 cm and deep sediment layer from 4 to 5cm) from an acidic mining lake were studied in order to characterize sedimentary organic matter based on neutral signature markers. Samples were exhaustively extracted, subjected to pre-chromatographic derivatizations and analyzed by GC/MS. Herein, molecular distributions of diagnostic alkanes/alkenes, terpenes/terpenoids, polycyclic aromatic hydrocarbons, aliphatic alcohols and ketones, sterols, and hopanes/hopanoids were addressed. Characterization of the contribution of natural vs. anthropogenic sources to the sedimentary organic matter in these extreme environments was then possible based on these distributions. With the exception of polycyclic aromatic hydrocarbons, combined concentrations across all marker classes proved higher in the surface sediment layer as compared to those in the deep sediment layer. Alkane and aliphatic alcohol distributions pointed to predominantly allochthonous over autochthonous contribution to sedimentary organic matter. Sterol patterns were dominated by phytosterols of terrestrial plants including stigmasterol and β-sitosterol. Hopanoid markers with the ββ-biohopanoid "biological" configuration were more abundant in the surface sediment layer, which pointed to higher bacterial activity. The pattern of polycyclic aromatic hydrocarbons pointed to prevailing anthropogenic input. Pyrolytic makers were likely to due to atmospheric deposition from a nearby former coal combustion facility. The combined analysis of the array of biomarkers provided new insights into the sources and transformations of organic matter in lake sediments. Copyright © 2016 Elsevier B.V. All rights reserved.
Soler, Albert; García-Hernández, Jorge; Zornoza, Andrés; Alonso, José Luis
2018-01-01
Currently, municipal and industrial wastewater treatment plants (WWTPs) are mainly focusing on reduction of biological oxygen demand and on the removal of nutrients. However, there are microorganisms that interfere with the process. In this environment, there is a large diversity of microorganisms that have not been studied in detail and that could provide real and practical solutions to the foaming problems. Among such microorganisms, Gram-positive actinomycete bacteria are of special interest because they are known for producing secondary metabolites as well as chemically diverse compounds and for their capacity to degrade recalcitrant pollutants. Three different media were chosen to isolate actinomycetes from 28 WWTPs in Spain. A total of 189 activated sludge samples were collected; 126 strains were isolated and identified to belong to 1 suborder, i.e. Corynebacterineae, and 7 genera, i.e. Corynebacterium, Dietzia, Gordonia, Mycobacterium, Rhodococcus, Tsukamurella and Williamsia. Furthermore, 71 strains were capable of biodegrading at least 1 aromatic product, and that 27 of them amplified for catA gene. The results of this research help us understand the complexity of the foam-forming microbial populations in Spain and it shows that WWTPs can be a good source of microorganisms that can degrade phenol or naphthalene.
Liquid-crystalline aromatic-aliphatic copolyester bioresorbable polymers.
de Oca, Horacio Montes; Wilson, Joanne E; Penrose, Andrew; Langton, David M; Dagger, Anthony C; Anderson, Melissa; Farrar, David F; Lovell, Christopher S; Ries, Michael E; Ward, Ian M; Wilson, Andrew D; Cowling, Stephen J; Saez, Isabel M; Goodby, John W
2010-10-01
The synthesis and characterisation of a series of liquid-crystalline aromatic-aliphatic copolyesters are presented. Differential scanning calorimetry showed these polymers have a glass transition temperature in the range 72 degrees C-116 degrees C. Polarised optical microscopy showed each polymer exhibits a nematic mesophase on heating to the molten state at temperatures below 165 degrees C. Melt processing is demonstrated by the production of injection moulded and compression moulded specimens with Young's modulus of 5.7 +/- 0.3 GPa and 2.3 +/- 0.3 GPa, respectively. Wide-angle X-ray scattering data showed molecular orientation is responsible for the increase of mechanical properties along the injection direction. Degradation studies in the temperature range 37 degrees C-80 degrees C are presented for one polymer of this series and a kinetic constant of 0.002 days(-1) is obtained at 37 degrees C assuming a first order reaction. The activation energy (83.4 kJ mol(-1)) is obtained following the Arrhenius analysis of degradation, showing degradation of this material is less temperature sensitive compared with other commercially available biodegradable polyesters. In vitro and in vivo biocompatibility data are presented and it is shown the unique combination of degradative, mechanical and biological properties of these polymers may represent in the future an alternative for medical device manufacturers. Copyright 2010 Elsevier Ltd. All rights reserved.
Polyphenylquinoxalines Via Aromatic Nucleophilic Displacement
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M.; Connell, John W.
1991-01-01
Process for synthesis of polyphenylquinoxalines (PPQ's) involves nucleophilic displacement reactions of di(hydroxyphenyl) quinoxaline monomers with activated aromatic dihalides. New process costs less than other processes for synthesis of PPQ's. Facilitates synthesis of PPQ's of new and varied molecular structures. Useful as adhesives, coatings, films, membranes, and matrices for composites.
Kaĭdalin, V S; Kamchatnikov, A G; Sentiabrev, N N; Katuntsev, V P
2007-01-01
The work had a purpose to study benefits of aromatic blends of tonic and relaxing essences and functional music on some of the psychophysiological properties of the human functional state and motor activeity. Participants were 30 sprinters (18-22 y.o. males) having the first-class and master ranks. The psychophysiological indices of the athletes' functional state were evaluated with the use of the "CAH" and Spilberger situational anxiety tests, calculated Cardeu vegetative index, time for simple motor reaction and reaction to a moving object. Motor activity was evaluated by top running speed determined with a photo-electronic time-keeper and by duration of pedaling on bicycle ergometer at maximal power. The running step parameters were recorded with electropodography. It was shown that the positive effect of the aromatic essence blends and functional music on motor activity developed fairly rapidly but did not last long. The article discusses features and possible ways the aromatic blends and music effect human organism.
Bussy, Ugo; Chung-Davidson, Yu-Wen; Li, Ke; Li, Weiming
2014-11-01
Electrochemistry combined with (liquid chromatography) high resolution mass spectrometry was used to simulate the general reductive metabolism of three biologically important nitro aromatic molecules: 3-trifluoromethyl-4-nitrophenol (TFM), niclosamide, and nilutamide. TFM is a pesticide used in the Laurential Great Lakes while niclosamide and nilutamide are used in cancer therapy. At first, a flow-through electrochemical cell was directly connected to a high resolution mass spectrometer to evaluate the ability of electrochemistry to produce the main reduction metabolites of nitro aromatic, nitroso, hydroxylamine, and amine functional groups. Electrochemical experiments were then carried out at a constant potential of -2.5 V before analysis of the reduction products by LC-HRMS, which confirmed the presence of the nitroso, hydroxylamine, and amine species as well as dimers. Dimer identification illustrates the reactivity of the nitroso species with amine and hydroxylamine species. To investigate xenobiotic metabolism, the reactivity of nitroso species to biomolecules was also examined. Binding of the nitroso metabolite to glutathione was demonstrated by the observation of adducts by LC-ESI(+)-HRMS and the characteristics of their MSMS fragmentation. In conclusion, electrochemistry produces the main reductive metabolites of nitro aromatics and supports the observation of nitroso reactivity through dimer or glutathione adduct formation.
Mei, Meng; Zhai, Chao; Li, Xinzhi; Zhou, Yu; Peng, Wenfang; Ma, Lixin; Wang, Qinhong; Iverson, Brent L; Zhang, Guimin; Yi, Li
2017-12-15
An endoplasmic reticulum (ER) retention sequence (ERS) is a characteristic short sequence that mediates protein retention in the ER of eukaryotic cells. However, little is known about the detailed molecular mechanism involved in ERS-mediated protein ER retention. Using a new surface display-based fluorescence technique that effectively quantifies ERS-promoted protein ER retention within Saccharomyces cerevisiae cells, we performed comprehensive ERS analyses. We found that the length, type of amino acid residue, and additional residues at positions -5 and -6 of the C-terminal HDEL motif all determined the retention of ERS in the yeast ER. Moreover, the biochemical results guided by structure simulation revealed that aromatic residues (Phe-54, Trp-56, and other aromatic residues facing the ER lumen) in both the ERS (at positions -6 and -4) and its receptor, Erd2, jointly determined their interaction with each other. Our studies also revealed that this aromatic residue interaction might lead to the discriminative recognition of HDEL or KDEL as ERS in yeast or human cells, respectively. Our findings expand the understanding of ERS-mediated residence of proteins in the ER and may guide future research into protein folding, modification, and translocation affected by ER retention. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Screening of some Greek aromatic plants for antioxidant activity.
Couladis, Maria; Tzakou, Olga; Verykokidou, Evmorfia; Harvala, Catherine
2003-02-01
The role of antioxidants in preventing oxygen radical and hydrogen peroxide induced cytotoxicity and tissue damage in various human diseases is increasingly recognized. In this study the in vitro antioxidant activity of the ethanol extracts obtained from 21 aromatic plants belonging to the Lamiaceae family was investigated. Of the extracts tested, those of Salvia ringens, Salvia pomifera, Stachys spruneri, Origanum dictamnus, Phlomis lanata, Ballota pseudodictamnus, Ballota acetabulosa, Teucrium polium, Calamintha glandulosa and Micromeria graeca exhibited the same activity as alpha-tocopherol. Copyright 2003 John Wiley & Sons, Ltd.
Johnson, Christopher W.; Salvachua, Davinia; Khanna, Payal; ...
2016-04-22
The conversion of biomass-derived sugars and aromatic molecules to cis,cis-muconic acid (referred to hereafter as muconic acid or muconate) has been of recent interest owing to its facile conversion to adipic acid, an important commodity chemical. Metabolic routes to produce muconate from both sugars and many lignin-derived aromatic compounds require the use of a decarboxylase to convert protocatechuate (PCA, 3,4-dihydroxybenzoate) to catechol (1,2-dihydroxybenzene), two central aromatic intermediates in this pathway. Several studies have identified the PCA decarboxylase as a metabolic bottleneck, causing an accumulation of PCA that subsequently reduces muconate production. A recent study showed that activity of the PCAmore » decarboxylase is enhanced by co-expression of two genetically associated proteins, one of which likely produces a flavin-derived cofactor utilized by the decarboxylase. Using entirely genome-integrated gene expression, we have engineered Pseudomonas putida KT2440-derived strains to produce muconate from either aromatic molecules or sugars and demonstrate in both cases that co-expression of these decarboxylase associated proteins reduces PCA accumulation and enhances muconate production relative to strains expressing the PCA decarboxylase alone. In bioreactor experiments, co-expression increased the specific productivity (mg/g cells/h) of muconate from the aromatic lignin monomer p-coumarate by 50% and resulted in a titer of >15 g/L. In strains engineered to produce muconate from glucose, co-expression more than tripled the titer, yield, productivity, and specific productivity, with the best strain producing 4.92+/-0.48 g/L muconate. Furthermore, this study demonstrates that overcoming the PCA decarboxylase bottleneck can increase muconate yields from biomass-derived sugars and aromatic molecules in industrially relevant strains and cultivation conditions.« less
From Biomass-Derived Furans to Aromatics with Ethanol over Zeolite.
Teixeira, Ivo F; Lo, Benedict T W; Kostetskyy, Pavlo; Stamatakis, Michail; Ye, Lin; Tang, Chiu C; Mpourmpakis, Giannis; Tsang, Shik Chi Edman
2016-10-10
We report a novel catalytic conversion of biomass-derived furans and alcohols to aromatics over zeolite catalysts. Aromatics are formed via Diels-Alder cycloaddition with ethylene, which is produced in situ from ethanol dehydration. The use of liquid ethanol instead of gaseous ethylene, as the source of dienophile in this one-pot synthesis, makes the aromatics production much simpler and renewable, circumventing the use of ethylene at high pressure. More importantly, both our experiments and theoretical studies demonstrate that the use of ethanol instead of ethylene, results in significantly higher rates and higher selectivity to aromatics, due to lower activation barriers over the solid acid sites. Synchrotron-diffraction experiments and proton-affinity calculations clearly suggest that a preferred protonation of ethanol over the furan is a key step facilitating the Diels-Alder and dehydration reactions in the acid sites of the zeolite. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Upadhyay, Kuldip D; Dodia, Narsinh M; Khunt, Rupesh C; Chaniara, Ravi S; Shah, Anamik K
2018-03-08
A series of pyrano[3,2- c ]quinoline based structural analogues was synthesized using one-pot multicomponent condensation between 2,4-dihydroxy-1-methylquinoline, malononitrile, and diverse un(substituted) aromatic aldehydes. The synthesized compounds were evaluated for their anti-inflammatory and cytotoxicity activity. Initially, all the compounds were evaluated for the percent inhibition of cytokine release, and cytotoxicity activity and 50% inhibitory concentrations (IC 50 ) were also determined. Based on the primary results, it was further studied for their ability to inhibit TNF-α production in the human peripheral blood mononuclear cells (hPBMC) assay. The screening results revealed that compound 4c , 4f , 4i , and 4j were found most active candidates of the series against both anti-inflammatory and anticancer activity. The structure-activity relationship is discussed and suggested that 3-substitution on the aryl ring at C4 position of the pyrano[3,2- c ]quinolone structural motif seems to be an important position for both TNF-α and IL-6 inhibition and anticancer activity as well. However, structural diversity with electron withdrawing, electron donating, sterically hindered, and heteroaryl substitution sincerely affected both the inflammation and anticancer activities.
Rajgopal, Arun; Rebhun, John F.; Burns, Charlie R.; Scholten, Jeffrey D.; Balles, John A.
2015-01-01
Abstract Lippia sidoides is an aromatic shrub that grows wild in the northeastern region of Brazil. In local traditional medicine, the aerial portions of this species are used as anti-infectives, antiseptics, spasmolytics, sedatives, hypotensives, and anti-inflammatory agents. In this research, we evaluate the potential immunological properties of Lippia extract through in vitro analysis of its ability to modulate intracellular cyclic adenosine monophosphate (cAMP) levels and interleukin-10 (IL-10) production. These results show that Lippia extract increases intracellular cAMP through the inhibition of phosphodiesterase activity. They also demonstrate that Lippia extract increases IL-10 production in THP-1 monocytes through both an increase in intracellular cAMP and the activation of p38 MAPK. These results suggest that the Lippia-mediated inhibition of phosphodiesterase activity and the subsequent increase in intracellular cAMP may explain some of the biological activities associated with L. sidoides. In addition, the anti-inflammatory activity of L. sidoides may also be due, in part, to its ability to induce IL-10 production through the inhibition of cyclic nucleotide-dependent phosphodiesterase activity and by its activation of the p38 MAPK pathway. PMID:25599252
Rajgopal, Arun; Rebhun, John F; Burns, Charlie R; Scholten, Jeffrey D; Balles, John A; Fast, David J
2015-03-01
Lippia sidoides is an aromatic shrub that grows wild in the northeastern region of Brazil. In local traditional medicine, the aerial portions of this species are used as anti-infectives, antiseptics, spasmolytics, sedatives, hypotensives, and anti-inflammatory agents. In this research, we evaluate the potential immunological properties of Lippia extract through in vitro analysis of its ability to modulate intracellular cyclic adenosine monophosphate (cAMP) levels and interleukin-10 (IL-10) production. These results show that Lippia extract increases intracellular cAMP through the inhibition of phosphodiesterase activity. They also demonstrate that Lippia extract increases IL-10 production in THP-1 monocytes through both an increase in intracellular cAMP and the activation of p38 MAPK. These results suggest that the Lippia-mediated inhibition of phosphodiesterase activity and the subsequent increase in intracellular cAMP may explain some of the biological activities associated with L. sidoides. In addition, the anti-inflammatory activity of L. sidoides may also be due, in part, to its ability to induce IL-10 production through the inhibition of cyclic nucleotide-dependent phosphodiesterase activity and by its activation of the p38 MAPK pathway.
NASA Astrophysics Data System (ADS)
Khalafu, Sharifah Habibah Syed; Mustapha, Wan Aida Wan; Lim, Seng Joe; Maskat, Mohamad Yusof
2016-11-01
Fucoidan is a biologically active polysaccharide that were made up of complex mixture of fucose, sulfate and uronic acid. This study was conducted to identify the volatile compositions of crude fucoidan and deodorized fucoidans extracted from brown seaweed Sargassum sp. (Fsar). The volatile compositions was also compared with a standard commercial fucoidan (Fysk). Fucoidan was extracted from Sargassum sp. originated in coastal area of Indonesia, by using a low pH acid extraction method. Approximately 20 mL of 1% freshly extracted fucoidan was then subjected to deodorization process by using three different method i.e., by treating it with 10 g activated carbon (Fac), 0.4 g ion exchange resin, Amberlite 67 (Fresin) and 2 mL of 1% calcium carbonate (FCaCO3) and incubated for 12 hrs before further analysis. Forty-six volatile compounds were successfully identified in all of the five samples by using Headspace-Solid Phase Microextraction (HS-SPME) and analysed by using Gas Chromatography Mass Spectrometer (GCMS). In Fsar, 72% of the total volatile constituents were identified as aromatic hydrocarbons, 23% hydrocarbons and 5% alcohols. In Fysk, all compounds detected are in group hydrocarbons. In Fsar, all of the compounds identified were classified as odor active compounds which had a contribution to unpleasant odor in fucoidan. After deodorization, 72% of aromatic hydrocarbons detected in Fsar were reported to be absent in all deodorized fucoidans. Both Fresin and FCaCO3 showed a reduction in peak area percentages of phenol, 2,4-bis (1,1-dimethylethyl)- from Fsar (1.30%) to 0.79 and 1.07% respectively. Meanwhile in Fac, no presence of phenol, 2,4-bis (1,1-dimethylethyl) was reported. These findings are essential to propel the advancement of research in deodorization technologies of marine products, especially fucoidans.
Polycyclic aromatic hydrocarbons and PAH-related DNA adducts.
Ewa, Błaszczyk; Danuta, Mielżyńska-Švach
2017-08-01
Investigations on the impact of chemicals on the environment and human health have led to the development of an exposome concept. The exposome refers to the totality of exposures received by a person during life, including exposures to life-style factors, from the prenatal period to death. The exposure to genotoxic chemicals and their reactive metabolites can induce chemical modifications of DNA, such as, for example, DNA adducts, which have been extensively studied and which play a key role in chemically induced carcinogenesis. Development of different methods for the identification of DNA adducts has led to adopting DNA adductomic approaches. The ability to simultaneously detect multiple PAH-derived DNA adducts may allow for the improved assessment of exposure, and offer a mechanistic insight into the carcinogenic process following exposure to PAH mixtures. The major advantage of measuring chemical-specific DNA adducts is the assessment of a biologically effective dose. This review provides information about the occurrence of the polycyclic aromatic hydrocarbons (PAHs) and their influence on human exposure and biological effects, including PAH-derived DNA adduct formation and repair processes. Selected methods used for determination of DNA adducts have been presented.
De Novo Genome Project for the Aromatic Degrader Rhodococcus pyridinivorans Strain AK37
Kriszt, Balázs; Táncsics, András; Cserháti, Mátyás; Tóth, Ákos; Nagy, István; Horváth, Balázs; Nagy, István; Tamura, Tomohiro; Szoboszlay, Sándor
2012-01-01
Here, we present the complete genome sequence of Rhodococcus pyridinivorans AK37 strain NCAIM PB1376, which was isolated from an oil-polluted site in Hungary. R. pyridinivorans AK37 is an aerobic, nonsporulating, nonmotile, Gram-positive bacterium with remarkable aromatic-decomposing activity. PMID:22328750
Discovering Chemical Aromaticity Using Fragrant Plants
ERIC Educational Resources Information Center
Schneider, Tanya L.
2010-01-01
Introductory organic chemistry is often perceived as inaccessible by students. This article describes a method used to link organic chemistry to everyday experience, asking students to explore whether fragrant molecules are also aromatic in the chemical sense. Students were engaged in this activity, excited about their results, and performed well…
SOLAR RADIATION DOSE AND PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS: A CASE STUDY
The toxicity of polycyclic aromatic hydrocarbons increases by as much as three orders of magnitude in the presence of solar radiation. The risk of this photoactive toxicity is thus based on both tissue concentrations of potentially photo activated compounds and the levels of subs...
Abstract
Trends of polycyclic aromatic hydrocarbons (PAHs) for 1992-1996 (cold season) and their mutagenic activity were investigated in organic extracts from the Santiago. Chile. inhalable particles (PM10). The highest PAH concentrations were observed in 1992 and decline...
Experimental Determination of Activation Energy of Nucleophilic Aromatic Substitution on Porphyrins
ERIC Educational Resources Information Center
Rizvi, Waqar; Khwaja, Emaad; Siddiqui, Saim; Bhupathiraju, N. V. S. Dinesh K.; Drain, Charles Michael
2018-01-01
A physical organic chemistry experiment is described for second-year college students. Students performed nucleophilic aromatic substitution (NAS) reactions on 5,10,15,20-tetrakis(2,3,4,5,6-pentafluorophenyl)porphyrin (TPPF[subscript 20]) using three different nucleophiles. Substitution occurs preferentially at the 4-position ("para")…
USDA-ARS?s Scientific Manuscript database
In this investigation we examined the essential oils of three aromatic plants; Zanthoxylum armatum, Juniperus communis, and, Dysphania ambrosioides, which are used by the local population of the western Himalayan region for medicinal purposes. These plants were studied for their antifungal, larvicid...
Chemistry of St. John's Wort: Hypericin and Hyperforin
NASA Astrophysics Data System (ADS)
Vollmer, John J.; Rosenson, Jon
2004-10-01
St. John's wort is a common plant that has been used medicinally for over 20 centuries. This herb is currently used by millions of people, primarily as natural antidepressant; yet, its efficacy is still under constant debate. St. John's wort contains a large aromatic molecule, hypericin, twisted by steric interactions into the shape of a propeller. For use as antidepressant, St. John's wort is standardized to the content of hypericin, but this molecule was recently found not to be the active ingredient. A totally different bicyclic molecule with complex substitution pattern, hyperforin, was then studied as the causative agent. Both molecules are strongly active in biological systems. Hypericin has shown antiviral activity and is a potent natural photosensitizer that has been used in photodynamic therapy against cancer and against HIV in stored blood. Hyperforin was found to activate a particular receptor in the liver that induces the production of an enzyme used for the metabolism of medications. This effect causes more rapid breakdown of many prescription medications and can interfere with their effectiveness. This finding should prompt a reevaluation of regular use of St. John's wort.
Alexa, Ersilia; Radulov, Isidora; Obistioiu, Diana; Sumalan, Renata Maria; Morar, Adriana
2018-01-01
The present study aimed to investigate the phytochemical composition of Mentha × piperita L. (MP) and Lavandula angustifolia Mill. (LA) extracts in terms of hydroxycinnamic acid (HCAs) content, in particular, caffeic (CA), p-cumaric (CU), ferulic (FE), and rosmarinic (RS) acids using LC-MS. Also, the in vitro antimicrobial effect against Staphylococcus aureus and the antiproliferative activity against two cancerous cell lines (A375 and MDA-MB-231) using the MTT assay were tested. The extracts were prepared using aromatic water which resulted from the extraction of oils from plants as extraction medium, with/without acid. The results showed that RS and FE represent the majority of HCAs compounds; the highest content of FE is found in LA (7.47 mg·g–1d.m.), and the maximum content of RS in MP (6.36 mg·g–1d.m.). Regarding the antimicrobial effect against Staphylococcus aureus, the two extracts showed a simulative role on the growth rate of Staphyloccocus aureus, but a slightly inhibitory effect (69.12%) can be attributed to the acidic environment. In terms of biological activity against MDA-MB-231 breast carcinoma cell line, and A375 human melanoma cell line, at the highest employed concentration, 150 μg·mL–1, the tested extracts present a weak antiproliferative effect. PMID:29552454
Phosphonate-anchored monolayers for antibody binding to magnetic nanoparticles.
Benbenishty-Shamir, Helly; Gilert, Roni; Gotman, Irena; Gutmanas, Elazar Y; Sukenik, Chaim N
2011-10-04
Targeted delivery of magnetic iron oxide nanoparticles (IONPs) to a specific tissue can be achieved by conjugation with particular biological ligands on an appropriately functionalized IONP surface. To take best advantage of the unique magnetic properties of IONPs and to maximize their blood half-life, thin, strongly bonded, functionalized coatings are required. The work reported herein demonstrates the successful application of phosphonate-anchored self-assembled monolayers (SAMs) as ultrathin coatings for such particles. It also describes a new chemical approach to the anchoring of antibodies on the surface of SAM-coated IONPs (using nucleophilic aromatic substitution). This anchoring strategy results in stable, nonhydrolyzable, covalent attachment and allows the reactivity of the particles toward antibody binding to be activated in situ, such that prior to the activation the modified surface is stable for long-term storage. While the SAMs do not have the well-packed crystallinity of other such monolayers, their structure was studied using smooth model substrates based on an iron oxide layer on a double-side polished silicon wafer. In this way, atomic force microscopy, ellipsometry, and contact angle goniometry (tools that could not be applied to the nanoparticles' surfaces) could contribute to the determination of their monomolecular thickness and uniformity. Finally, the successful conjugation of IgG antibodies to the SAM-coated IONPs such that the antibodies retain their biological activity is verified by their complexation to a secondary fluorescent antibody. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Fang, Minfeng
Despite the aggressive development and deployment of new renewable and nuclear technologies, petroleum-derived transportation fuels---gasoline, diesel and jet fuels---will continue to dominate the markets for decades. Environmental legislation imposes severe limits on the tolerable proportion of aromatics, sulfur and nitrogen contents in transportation fuels, which is difficult to achieve with current refining technologies. Catalytic hydrogenation plays an important role in the production of cleaner fuels, both as a direct means to reduce the aromatics and as a key step in the hydrodenitrogenation (HDN) and hydrodesulfurization (HDS) processes. However, conventional catalysts require drastic conditions and/or are easily poisoned by S or N aromatics. Therefore, there is still a need for new efficient catalysts for hydrogenation reactions relevant to the production of cleaner fossil fuels. Our catalyst design involves metallic nanoparticles intimately associated with a basic support, with the aim of creating a nanostructure capable of promoting the heterolytic activation of hydrogen and ionic hydrogenation mechanisms, as a strategy to avoid catalyst poisoning and enhance catalytic activity. We have designed and prepared a new nanostructured catalytic material composed of RuNPs immobilized on the basic polymer P4VPy. We have demonstrated that the Ru/P4VPy catalyst can promote heterolytic hydrogen activation and a unique surface ionic hydrogenation mechanism for the efficient hydrogenation of N-aromatics. This is the first time these ionic hydrogenation pathways have been demonstrated on solid surfaces. For the RuNPs surfaces without basic sites in close proximity, the conventional homolytic H2 splitting is otherwise involved. Using the mechanistic concepts from Ru/P4VPy, we have designed and prepared the Ru/MgO catalyst, with the aim to improve the catalytic efficiency for the hydrogenation of heteroatom aromatics operating by the ionic hydrogenation mechanism. The Ru/MgO catalyst significantly improves the catalytic efficiency for hydrogenation of a variety of N-/S-heteroaromatics and mono-/polycyclic aromatic hydrocarbons representative of components of petroleum-derived fuels. The catalyst is superior to the few other known supported noble metal catalysts for these reactions. Mechanistic studies also point to the ionic hydrogenation mechanism on the Ru/MgO surfaces. In addition, the Ru/MgO catalyst is highly recyclable and long-lived.
A credit-card library approach for disrupting protein-protein interactions.
Xu, Yang; Shi, Jin; Yamamoto, Noboru; Moss, Jason A; Vogt, Peter K; Janda, Kim D
2006-04-15
Protein-protein interfaces are prominent in many therapeutically important targets. Using small organic molecules to disrupt protein-protein interactions is a current challenge in chemical biology. An important example of protein-protein interactions is provided by the Myc protein, which is frequently deregulated in human cancers. Myc belongs to the family of basic helix-loop-helix leucine zipper (bHLH-ZIP) transcription factors. It is biologically active only as heterodimer with the bHLH-ZIP protein Max. Herein, we report a new strategy for the disruption of protein-protein interactions that has been corroborated through the design and synthesis of a small parallel library composed of 'credit-card' compounds. These compounds are derived from a planar, aromatic scaffold and functionalized with four points of diversity. From a 285 membered library, several hits were obtained that disrupted the c-Myc-Max interaction and cellular functions of c-Myc. The IC50 values determined for this small focused library for the disruption of Myc-Max dimerization are quite potent, especially since small molecule antagonists of protein-protein interactions are notoriously difficult to find. Furthermore, several of the compounds were active at the cellular level as shown by their biological effects on Myc action in chicken embryo fibroblast assays. In light of our findings, this approach is considered a valuable addition to the armamentarium of new molecules being developed to interact with protein-protein interfaces. Finally, this strategy for disrupting protein-protein interactions should prove applicable to other families of proteins.
Mu, Jingli; Jin, Fei; Ma, Xindong; Lin, Zhongsheng; Wang, Juying
2014-11-01
The authors assessed the bioavailability and chronic toxicity of water-accommodated fractions of crude oil (WAFs) and 2 dispersants plus dispersed crude oil (chemical dispersant + crude oil [CE-WAF] and biological dispersant + crude oil [BE-WAF]) on the early life stages of marine medaka, Oryzias melastigma. The results showed that the addition of the 2 dispersants caused a 3- and 4-fold increase in concentrations of summed priority polycyclic aromatic hydrocarbons (PAHs) and high-molecular-weight PAHs with 3 or more benzene rings. The chemical and biological dispersants increased the bioavailability (as measured by ethoxyresorufin-O-dethylase activity) of crude oil 6-fold and 3-fold, respectively. Based on nominal concentrations, chronic toxicity (as measured by deformity) in WAFs exhibited a 10-fold increase in CE-WAF and a 3-fold increase in BE-WAF, respectively. When total petroleum hydrocarbon was measured, the differences between WAF and CE-WAF treatments disappeared, and CE-WAF was approximately 10 times more toxic than BE-WAF. Compared with the chemical dispersant, the biological dispersant possibly modified the toxicity of oil hydrocarbons because of the increase in the proportion of 2- and 3-ringed PAHs in water. The chemical and biological dispersants enhanced short-term bioaccumulation and toxicity, through different mechanisms. These properties should be considered in addition to their efficacy in degrading oil when oil spill management strategies are selected. © 2014 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarvis, Ian W.H., E-mail: Ian.Jarvis@ki.se; Bergvall, Christoffer, E-mail: Christoffer.Bergvall@anchem.su.se; Bottai, Matteo, E-mail: Matteo.Bottai@ki.se
2013-02-01
Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are present in air particulate matter (PM) and have been associated with many adverse human health effects including cancer and respiratory disease. However, due to their complexity, the risk of exposure to mixtures is difficult to estimate. In the present study the effects of binary mixtures of benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) and complex mixtures of PAHs in urban air PM extracts on DNA damage signaling was investigated. Applying a statistical model to the data we observed a more than additive response for binary mixtures of BP and DBP on activation of DNAmore » damage signaling. Persistent activation of checkpoint kinase 1 (Chk1) was observed at significantly lower BP equivalent concentrations in air PM extracts than BP alone. Activation of DNA damage signaling was also more persistent in air PM fractions containing PAHs with more than four aromatic rings suggesting larger PAHs contribute a greater risk to human health. Altogether our data suggests that human health risk assessment based on additivity such as toxicity equivalency factor scales may significantly underestimate the risk of exposure to complex mixtures of PAHs. The data confirms our previous findings with PAH-contaminated soil (Niziolek-Kierecka et al., 2012) and suggests a possible role for Chk1 Ser317 phosphorylation as a biological marker for future analyses of complex mixtures of PAHs. -- Highlights: ► Benzo[a]pyrene (BP), dibenzo[a,l]pyrene (DBP) and air PM PAH extracts were compared. ► Binary mixture of BP and DBP induced a more than additive DNA damage response. ► Air PM PAH extracts were more potent than toxicity equivalency factor estimates. ► Larger PAHs (> 4 rings) contribute more to the genotoxicity of PAHs in air PM. ► Chk1 is a sensitive marker for persistent activation of DNA damage signaling from PAH mixtures.« less
Wang, Bin-Bin; Liu, Xue-Ting; Chen, Jian-Meng; Peng, Dang-Cong; He, Feng
2018-02-01
Characteristics of extracellular polymeric substances (EPS) in activated sludge strongly depend on wastewater substrates. Proteinaceous substrates (ProS) present in heterogeneous polymeric form are intrinsic and important parts of wastewater substrates for microorganisms in activated sludge systems. However, correlations between ProS and characteristics of EPS are scarce. This study systematically explored the impacts of monomeric (Mono-), low polymeric (LoP-) and high polymeric (HiP-) ProS on compositions and functional groups of EPS in activated sludge. The results showed that the change of polymerization degree of ProS significantly altered the composition of EPS. Compared to EPS Mono-ProS , the proportion of proteins in EPS LoP-ProS and EPS HiP-ProS increased by 12.8% and 27.7%, respectively, while that of polysaccharides decreased by 22.9% and 63.6%, respectively. Moreover, the proportion of humic compounds in EPS LoP-ProS and EPS HiP-ProS were ∼6 and ∼16-fold higher than that in EPS Mono-ProS , respectively. The accumulation of humic compounds in EPS increased the unsaturation degree of EPS molecules, and thereby reduced the energy requirement for electrons transition of amide bonds and aromatic groups. Size exclusion chromatography (SEC) analyses detected more molecular clusters in EPS HiP-ProS , indicating more complex composition of EPS in HiP-ProS fed activated sludge. Spectroscopic characterization revealed the dominance of hydrocarbon, protein, polysaccharide and aromatic associated bonds in all three EPS. Nevertheless, with the increase of polymerization degree of ProS, the protein associated bonds (such as CONH, CO, NC, NH) increased, while the polysaccharide associated bonds (such as COC, COH, OCOH) decreased. This paper paves a path to understand the role of ProS in affecting the production and characteristics of EPS in biological wastewater treatment systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Muehlebach, Michel; Cederbaum, Fredrik; Cornes, Derek; Friedmann, Adrian A; Glock, Jutta; Hall, Gavin; Indolese, Adriano F; Kloer, Daniel P; Le Goupil, Gael; Maetzke, Thomas; Meier, Hans; Schneider, Rudolf; Stoller, André; Szczepanski, Henry; Wendeborn, Sebastian; Widmer, Hansjuerg
2011-12-01
Pinoxaden is a new cereal herbicide that provides outstanding levels of post-emergence activity against a broad spectrum of grass weed species for worldwide selective use in both wheat and barley. Factors influencing activity and tolerance to pinoxaden were in part linked to distinct structural parts of the active ingredient. Three complementary contributions that decisively impact upon the herbicidal potency against grasses were identified: a preferred 2,6-diethyl-4-methyl aromatic substitution pattern, a dione area suitable for proherbicide formation and beneficial adjuvant effects. The uptake and translocation pattern of pinoxaden when coapplied with its tailored adjuvant were analysed by autoradiography, indicating extensive and rapid penetration, followed by effective distribution throughout the plant. Crop injury reduction on incorporation of the [1,4,5]oxadiazepane ring into the aryldione template was reinforced with safener technology. Comparative studies on the behaviour of pinoxaden applied either alone or in combination with the safener cloquintocet-mexyl demonstrated that addition of the safener resulted in significant enhancement of metabolic degradation in wheat and barley, providing excellent crop tolerance and a substantial selectivity margin without adverse effects on weed control. The biological potential of pinoxaden and its active principle pinoxaden dione in terms of grass weed control and tolerance in cereals was fully exploited by inclusion of the safener cloquintocet-mexyl in the formulation in combination with a specific and tailor-made tank-mix adjuvant based on methylated rape seed oil. Copyright © 2011 Society of Chemical Industry.
Polyphenylquinoxalines via Aromatic Nucleophilic Displacement
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M.; Connell, John W.
1988-01-01
Polyphenylquinoxalines are produced by an aromatic nucleophilic displacement reaction involving an activated aromatic dihalide with an appropriate quinoxaline monomer. Polyphenylquinoxalines are high temperature thermoplastics used as adhesives, coatings, films and composite matrices. The novelty of this invention is threefold: (1) some of the quinoxaline monomers are new compositions of matter; (2) the phenylquinoxaline polymers which are the end products of the invention are new compositions of matter; and (3) the method of forming the polymers is novel, replacing a more costly prior art process, which is also limited in the kinds of products prepared therefrom.
Polycyclic aromatic hydrocarbon-DNA adducts in Beluga whales from the Arctic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathieu, A.; Payne, J.F.; Fancey, L.L.
1997-09-01
The Arctic is still relatively pristine in nature, but it is also vulnerable to pollution because contaminants originating from midlatitudes are transported to the Arctic by atmospheric processes, ocean currents, and river. Recognition of this fact of Arctic vulnerability has resulted in a Declaration on the Protection of the Arctic Environment by eight Arctic countries. A manifest aim of this declaration is to develop an Arctic Monitoring and Assessment Program. We report here on the presence of measurable levels of polycyclic aromatic hydrocarbon-DNA adducts, including relatively high levels in Arctic beluga (Delphinapterus leucas). These results lend support to the valuemore » of developing biological assessment programs for Arctic wildlife. 15 refs., 1 tab.« less
Catalytic oxidation of o-aminophenols and aromatic amines by mushroom tyrosinase.
Muñoz-Muñoz, Jose Luis; Garcia-Molina, Francisco; Garcia-Ruiz, Pedro Antonio; Varon, Ramon; Tudela, Jose; Rodriguez-Lopez, Jose N; Garcia-Canovas, Francisco
2011-12-01
The kinetics of tyrosinase acting on o-aminophenols and aromatic amines as substrates was studied. The catalytic constants of aromatic monoamines and o-diamines were both low, these results are consistent with our previous mechanism in which the slow step is the transfer of a proton by a hydroxyl to the peroxide in oxy-tyrosinase (Fenoll et al., Biochem. J. 380 (2004) 643-650). In the case of o-aminophenols, the hydroxyl group indirectly cooperates in the transfer of the proton and consequently the catalytic constants in the action of tyrosinase on these compounds are higher. In the case of aromatic monoamines, the Michaelis constants are of the same order of magnitude than for monophenols, which suggests that the monophenols bind better (higher binding constant) to the enzyme to facilitate the π-π interactions between the aromatic ring and a possible histidine of the active site. In the case of aromatic o-diamines, both the catalytic and Michaelis constants are low, the values of the catalytic constants being lower than those of the corresponding o-diphenols. The values of the Michaelis constants of the aromatic o-diamines are slightly lower than those of their corresponding o-diphenols, confirming that the aromatic o-diamines bind less well (lower binding constant) to the enzyme. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yung, Matthew M.; Stanton, Alexander R.; Iisa, Kristiina
Metal-impregnated (Ni or Ga) ZSM-5 catalysts were studied for biomass pyrolysis vapor upgrading to produce hydrocarbons using three reactors constituting a 100 000x change in the amount of catalyst used in experiments. Catalysts were screened for pyrolysis vapor phase upgrading activity in two small-scale reactors: (i) a Pyroprobe with a 10 mg catalyst in a fixed bed and (ii) a fixed-bed reactor with 500 mg of catalyst. The best performing catalysts were then validated with a larger scale fluidized-bed reactor (using ~1 kg of catalyst) that produced measurable quantities of bio-oil for analysis and evaluation of mass balances. Despite somemore » inherent differences across the reactor systems (such as residence time, reactor type, analytical techniques, mode of catalyst and biomass feed) there was good agreement of reaction results for production of aromatic hydrocarbons, light gases, and coke deposition. Relative to ZSM-5, Ni or Ga addition to ZSM-5 increased production of fully deoxygenated aromatic hydrocarbons and light gases. In the fluidized bed reactor, Ga/ZSM-5 slightly enhanced carbon efficiency to condensed oil, which includes oxygenates in addition to aromatic hydrocarbons, and reduced oil oxygen content compared to ZSM-5. Ni/ZSM-5, while giving the highest yield of fully deoxygenated aromatic hydrocarbons, gave lower overall carbon efficiency to oil but with the lowest oxygen content. Reaction product analysis coupled with fresh and spent catalyst characterization indicated that the improved performance of Ni/ZSM-5 is related to decreasing deactivation by coking, which keeps the active acid sites accessible for the deoxygenation and aromatization reactions that produce fully deoxygenated aromatic hydrocarbons. The addition of Ga enhances the dehydrogenation activity of the catalyst, which leads to enhanced olefin formation and higher fully deoxygenated aromatic hydrocarbon yields compared to unmodified ZSM-5. Catalyst characterization by ammonia temperature programmed desorption, surface area measurements, and postreaction temperature-programmed oxidation (TPO) also showed that the metal-modified zeolites retained a greater percentage of their initial acidity and surface area, which was consistent between the reactor scales. These results demonstrate that the trends observed with smaller (milligram to gram) catalyst reactors are applicable to larger, more industrially relevant (kg) scales to help guide catalyst research toward application.« less
Phthalocyanines as Molecular Scaffolds to Block Disease-Associated Protein Aggregation.
Valiente-Gabioud, Ariel A; Miotto, Marco C; Chesta, María E; Lombardo, Verónica; Binolfi, Andres; Fernández, Claudio O
2016-05-17
The aggregation of proteins into toxic conformations plays a critical role in the development of different neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Creutzfled-Jakob's disease (CJD). These disorders share a common pathological mechanism that involves the formation of aggregated protein species including toxic oligomers and amyloid fibrils. The aggregation of alpha-synuclein (αS) in PD and the amyloid beta peptide (Aβ) and tau protein in AD results in neuronal death and disease onset. In the case of CJD, the misfolding of the physiological prion protein (PrP) induces a chain reaction that results in accumulation of particles that elicit brain damage. Currently, there is no preventive therapy for these diseases and the available therapeutic approaches are based on the treatment of the symptoms rather than the underlying causes of the disease. Accordingly, the aggregation pathway of these proteins represents a useful target for therapeutic intervention. Therefore, understanding the mechanism of amyloid formation and its inhibition is of high clinical importance. The design of small molecules that efficiently inhibit the aggregation process and/or neutralize its associated toxicity constitutes a promising tool for the development of therapeutic strategies against these disorders. In this accounts, we discuss current knowledge on the anti-amyloid activity of phthalocyanines and their potential use as drug candidates in neurodegeneration. These tetrapyrrolic compounds modulate the amyloid assembly of αS, tau, Aβ, and the PrP in vitro, and protect cells from the toxic effects of amyloid aggregates. In addition, in scrapie-infected mice, these compounds showed important prophylactic antiscrapie properties. The structural basis for the inhibitory effect of phthalocyanines on amyloid filament assembly relies on specific π-π interactions between the aromatic ring system of these molecules and aromatic residues in the amyloidogenic proteins. Analysis of the structure-activity relationship in phthalocyanines revealed that their anti-amyloid activity is highly dependent on the type of metal ion coordinated to the tetrapyrrolic system but is not sensitive to the number of peripheral charged substituents. The tendency of phthalocyanines to oligomerize (self-association) via aromatic-aromatic stacking interactions correlates precisely with their binding capabilities to target proteins and, more importantly, determines their efficiency as anti-amyloid agents. The ability to block different types of disease-associated protein aggregation raises the possibility that these cyclic tetrapyrrole compounds have a common mechanism of action to impair the formation of a variety of pathological aggregates. Because the structural and molecular basis for the anti-amyloid effects of these molecules is starting to emerge, combined efforts from the fields of structural, cellular, and animal biology will result critical for the rational design and discovery of new drugs for the treatment of amyloid related neurological disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Richard F.; Anderson, Jack W.
2005-07-01
The relationships among cytochrome P450 induction in marine wildlife species, levels of fluorescent aromatic compounds (FAC) in their bile, the chemical composition of the inducing compounds, the significance of the exposure pathway, and any resulting injury, as a consequence of exposure to crude oil following a spill, are reviewed. Fish collected after oil spills often show increases in cytochrome P450 system activity, cytochrome P4501A (CYP1A) and bile fluorescent aromatic compounds (FAC), that are correlated with exposure to polycyclic aromatic hydrocarbons (PAH) in the oil. There is also some evidence for increases in bile FAC and induction of cytochrome P450 inmore » marine birds and mammals after oil spills. However, when observed, increases in these exposure indicators are transitory and generally decrease to background levels within one year after the exposure. Laboratory studies have shown induction of cytochrome P450 systems occurs after exposure of fish to crude oil in water, sediment or food. Most of the PAH found in crude oil (dominantly 2- and 3-ring PAH) are not strong inducers of cytochrome P450. Exposure to the 4-ring chrysenes or the photooxidized products of the PAH may account for the cytochrome P450 responses in fish collected from oil-spill sites. The contribution of non-spill background PAH, particularly combustion-derived (pyrogenic) PAH, to bile FAC and cytochrome P450 system responses can be confounding and needs to be considered when evaluating oil spill effects. The ubiquity of pyrogenic PAH makes it important to fully characterize all sources of PAH, including PAH from natural resources, e.g. retene, in oil spill studies. In addition, such parameters as species, sex, age, ambient temperature and season need to be taken into account. While increases in fish bile FAC and cytochrome P450 system responses, can together, be sensitive general indicators of PAH exposure after an oil spill, there is little unequivocal evidence to suggest a linkage to higher order biological effects, e.g. toxicity, lesions, reproductive failure.« less
NASA Astrophysics Data System (ADS)
Gazit, Ehud
2013-03-01
The formation of ordered amyloid fibrils is the hallmark of several diseases of unrelated origin. In spite of grave clinical consequence, the mechanism of amyloid formation is not fully understood. We have suggested, based on experimental and bioinformatic analysis, that aromatic interactions may provide energetic contribution as well as order and directionality in the molecular-recognition and self-association processes that lead to the formation of these assemblies. This is in line with the well-known central role of aromatic-stacking interactions in self-assembly processes. Our works on the mechanism of aromatic peptide self-assembly, lead to the discovery that the diphenylalanine recognition motif self-assembles into peptide nanotubes with a remarkable persistence length. Other aromatic homodipeptides could self-assemble in nano-spheres, nano-plates, nano-fibrils and hydrogels with nano-scale order. We demonstrated that the peptide nanostructures have unique chemical, physical and mechanical properties including ultra-rigidity as aramides, semi-conductive, piezoelectric and non-linear optic properties. We also demonstrated the ability to use these peptide nanostructures as casting mold for the fabrication of metallic nano-wires and coaxial nano-cables. The application of the nanostructures was demonstrated in various fields including electrochemical biosensors, tissue engineering, and molecular imaging. Finally, we had developed ways for depositing of the peptide nanostructures and their organization. We had use inkjet technology as well as vapour deposition methods to coat surface and from the peptide ``nano-forests''. We recently demonstrated that even a single phenylalanine amino-acid can form well-ordered fibrilar assemblies.
Mutagenicity of an aged gasworks soil during bioslurry treatment
Lemieux, Christine L; Lynes, Krista D; White, Paul A; Lundstedt, Staffan; Öberg, Lars; Lambert, Iain B
2009-01-01
This study investigated changes in the mutagenic activity of organic fractions from soil contaminated with polycyclic aromatic hydrocarbons (PAHs) during pilot-scale bioslurry remediation. Slurry samples were previously analyzed for changes in PAH and polycyclic aromatic compound content, and this study examined the correspondence between the chemical and toxicological metrics. Nonpolar neutral and semipolar aromatic fractions of samples obtained on days 0, 3, 7, 24, and 29 of treatment were assayed for mutagenicity using the Salmonella mutation assay. Most samples elicited a significant positive response on Salmonella strains TA98, YG1041, and YG1042 with and without S9 metabolic activation; however, TA100 failed to detect mutagenicity in any sample. Changes in the mutagenic activity of the fractions across treatment time and metabolic activation conditions suggests a pattern of formation and transformation of mutagenic compounds that may include a wide range of PAH derivatives such as aromatic amines, oxygenated PAHs, and S-heterocyclic compounds. The prior chemical analyses documented the formation of oxygenated PAHs during the treatment (e.g., 4-oxapyrene-5-one), and the mutagenicity analyses showed high corresponding activity in the semipolar fraction with and without metabolic activation. However, it could not be verified that these specific compounds were the underlying cause of the observed changes in mutagenic activity. The results highlight the need for concurrent chemical and toxicological profiling of contaminated sites undergoing remediation to ensure elimination of priority contaminants as well as a reduction in toxicological hazard. Moreover, the results imply that remediation efficacy and utility be evaluated using both chemical and toxicological metrics. Environ. Mol. Mutagen. 2009. © 2009 Wiley-Liss, Inc. PMID:19274766
Real-time monitors and low-volume air samplers were used to measure the potential human exposure to airborne polycyclic aromatic hydrocarbon (PAH) concentrations during various flight-related and ground-support activities of C-130H aircraft at an Air National Guard base. Three...
Polybenzimidazoles Via Aromatic Nucleophilic Displacement
NASA Technical Reports Server (NTRS)
Connell, John W.; Hergenrother, Paul M.; Smith, Joseph G.
1994-01-01
Soluble polybenzimidazoles (PBI's) synthesized by nucleophilic displacement reaction of di(hydroxyphenyl)-benzimidazole monomers with activated aromatic difluoride compounds in presence of anhydrous potassium carbonate. These polymers exhibit good thermal, thermo-oxidative, and chemical stability, and high mechanical properties. Using benzimidazole monomers, more economical, and new PBI's processed more easily than commercial PBI, without loss of desirable physical properties.
Estuaries of the southeastern United States not only serve an important nursery function but also are common repositories of polycyclic aromatic hydrocarbons (PAHs) derived from upland activities. Thus, these habitats may be at risk for PAHphototoxicity. To better characterize ...
As part of the Southern California Particle Center and Supersite (SCPCS) activities, we measured, during all seasons, particle size distributions of 12 priority pollutant polycyclic aromatic hydrocarbons (PAHs), concurrently with elemental carbon (EC), organic carbon (OC), sul...
Polycyclic aromatic hydrocarbons are a large class of anthropogenic chemicals found in the environment. Some class members are potent animal carcinogens while other similar class members show little carcinogenic activity. When considering a series of in vitro studies of the int...
Baldrian, Petr; in der Wiesche, Carsten; Gabriel, Jiří; Nerud, František; Zadražil, František
2000-01-01
The white-rot fungus Pleurotus ostreatus was able to degrade the polycyclic aromatic hydrocarbons (PAHs) benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, and benzo[ghi]perylene in nonsterile soil both in the presence and in the absence of cadmium and mercury. During 15 weeks of incubation, recovery of individual compounds was 16 to 69% in soil without additional metal. While soil microflora contributed mostly to degradation of pyrene (82%) and benzo[a]anthracene (41%), the fungus enhanced the disappearance of less-soluble polycyclic aromatic compounds containing five or six aromatic rings. Although the heavy metals in the soil affected the activity of ligninolytic enzymes produced by the fungus (laccase and Mn-dependent peroxidase), no decrease in PAH degradation was found in soil containing Cd or Hg at 10 to 100 ppm. In the presence of cadmium at 500 ppm in soil, degradation of PAHs by soil microflora was not affected whereas the contribution of fungus was negligible, probably due to the absence of Mn-dependent peroxidase activity. In the presence of Hg at 50 to 100 ppm or Cd at 100 to 500 ppm, the extent of soil colonization by the fungus was limited. PMID:10831426
Pati, Sarah G; Kohler, Hans-Peter E; Pabis, Anna; Paneth, Piotr; Parales, Rebecca E; Hofstetter, Thomas B
2016-07-05
Compound-specific isotope analysis (CSIA) is a promising approach for tracking biotransformation of organic pollutants, but isotope fractionation associated with aromatic oxygenations is only poorly understood. We investigated the dioxygenation of a series of nitroaromatic compounds to the corresponding catechols by two enzymes, namely, nitrobenzene and 2-nitrotoluene dioxygenase (NBDO and 2NTDO) to elucidate the enzyme- and substrate-specificity of C and H isotope fractionation. While the apparent (13)C- and (2)H-kinetic isotope effects of nitrobenzene, nitrotoluene isomers, 2,6-dinitrotoluene, and naphthalene dioxygenation by NBDO varied considerably, the correlation of C and H isotope fractionation revealed a common mechanism for nitrobenzene and nitrotoluenes. Similar observations were made for the dioxygenation of these substrates by 2NTDO. Evaluation of reaction kinetics, isotope effects, and commitment-to-catalysis based on experiment and theory showed that rates of dioxygenation are determined by the enzymatic O2 activation and aromatic C oxygenation. The contribution of enzymatic O2 activation to the reaction rate varies for different nitroaromatic substrates of NBDO and 2NTDO. Because aromatic dioxygenation by nonheme iron dioxygenases is frequently the initial step of biodegradation, O2 activation kinetics may also have been responsible for the minor isotope fractionation reported for the oxygenation of other aromatic contaminants.
Correia, Hugo D; Marangon, Jacopo; Brondino, Carlos D; Moura, Jose J G; Romão, Maria J; González, Pablo J; Santos-Silva, Teresa
2015-03-01
Desulfovibrio gigas aldehyde oxidoreductase (DgAOR) is a mononuclear molybdenum-containing enzyme from the xanthine oxidase (XO) family, a group of enzymes capable of catalyzing the oxidative hydroxylation of aldehydes and heterocyclic compounds. The kinetic studies reported in this work showed that DgAOR catalyzes the oxidative hydroxylation of aromatic aldehydes, but not heterocyclic compounds. NMR spectroscopy studies using (13)C-labeled benzaldehyde confirmed that DgAOR catalyzes the conversion of aldehydes to the respective carboxylic acids. Steady-state kinetics in solution showed that high concentrations of the aromatic aldehydes produce substrate inhibition and in the case of 3-phenyl propionaldehyde a suicide substrate behavior. Hydroxyl-substituted aromatic aldehydes present none of these behaviors but the kinetic parameters are largely affected by the position of the OH group. High-resolution crystallographic structures obtained from single crystals of active-DgAOR soaked with benzaldehyde showed that the side chains of Phe425 and Tyr535 are important for the stabilization of the substrate in the active site. On the other hand, the X-ray data of DgAOR soaked with trans-cinnamaldehyde showed a cinnamic acid molecule in the substrate channel. The X-ray data of DgAOR soaked with 3-phenyl propionaldehyde showed clearly how high substrate concentrations inactivate the enzyme by binding covalently at the surface of the enzyme and blocking the substrate channel. The different reactivity of DgAOR versus aldehyde oxidase and XO towards aromatic aldehydes and N-heterocyclic compounds is explained on the basis of the present kinetic and structural data.
Biodegradation of Aromatic Compounds by Escherichia coli
Díaz, Eduardo; Ferrández, Abel; Prieto, María A.; García, José L.
2001-01-01
Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications. PMID:11729263
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, G.; Padro, C.L.; Resasco, D.E.
The n-hexane aromatization has been studied on Pt/KL, Pt/Mg(Al)O, and Pt/SiO{sub 2} catalysts at 773 K using sulfur-free and 0.6 ppm sulfur containing feedstocks. Examination of the product distribution as a function of conversion suggests that the formation of benzene is preceded by the formation of hexenes. In contrast with previous reports, it has been found that the Pt/KL catalyst exhibits much higher aromatization activity than the Pt/Mg(Al)O catalyst. On Pt/KL the main product is benzene, with hexenes and lighter compounds as the principal by-products. By contrast, on the Pt/Mg(Al)O, the main products were hexenes. Since hexenes are primary productsmore » and benzene is a secondary product, the exceptional aromatization activity of Pt/KL is explained in terms of its ability to convert hexene into benzene. In the presence of sulfur, the Pt/KL exhibits a rapid loss in n-hexane conversion and benzene selectivity. Under these conditions, the sulfided Pt/KL catalyst presents a catalytic behavior typical of Pt/Mg(Al)O and Pt/SiO{sub 2}, generating larger amounts of hexenes. The observed results are consistent with the hypothesis that the most important role of the zeolite is to inhibit bimolecular interactions that lead to coke formation. The formation of coke has the net effect of selectively deactivating aromatization sites which require a large ensemble of atoms to constitute the active site but not affecting the dehydrogenation activity which is less ensemble-sensitive. Therefore, those particles that are not protected against coking inside the channels of the zeolite rapidly become unselective. In support of this hypothesis, the hydrogenolysis reaction which also requires a large ensemble of atoms, decreases in parallel with the aromatization reaction. The high sensitivity of Pt/KL to sulfur may be due to a combination of effects which may involve growth of metal particles outside the zeolite which would become unselective and partial poisoning of the particles inside the zeolite, causing a similar selective deactivation.« less
Albers, P.H.; Kennish, Michael J.
2002-01-01
Polycyclic aromatic hydrocarbons (PAHs) are aromatic hydrocarbons with two to seven fused carbon (benzene) rings that can have substituted groups attached. Shallow coastal, estuarine, lake, and river environments receive PAHs from treated wastewater, stormwater runoff, petroleum spills and natural seeps, recreational and commercial boats, natural fires, volcanoes, and atmospheric deposition of combustion products. Abiotic degradation of PAHs is caused by photooxidation, photolysis in water, and chemical oxidation. Many aquatic microbes, plants, and animals can metabolize and excrete ingested PAHs; accumulation is associated with poor metabolic capabilities, high lipid content, and activity patterns or distributions that coincide with high concentrations of PAHs. Resistance to biological transformation increases with increasing number of carbon rings. Four- to seven-ring PAHs are the most difficult to metabolize and the most likely to accumulate in sediments. Disturbance by boating activity of sediments, shorelines, and the surface microlayer of water causes water column re-entry of recently deposited or concentrated PAHs. Residence time for PAHs in undisturbed sediment exceeds several decades. Toxicity of PAHs causes lethal and sublethal effects in plants and animals, whereas some substituted PAHs and metabolites of some PAHs cause mutations, developmental malformations, tumors, and cancer. Environmental concentrations of PAHs in water are usually several orders of magnitude below levels that are acutely toxic, but concentrations can be much higher in sediment. The best evidence for a link between environmental PAHs and induction of cancerous neoplasms is for demersal fish in areas with high concentrations of PAHs in the sediment.
Yamashita, Ayako; Norton, Emily B; Kaplan, Joshua A; Niu, Chuan; Loganzo, Frank; Hernandez, Richard; Beyer, Carl F; Annable, Tami; Musto, Sylvia; Discafani, Carolyn; Zask, Arie; Ayral-Kaloustian, Semiramis
2004-11-01
Analogs of hemiasterlin (1) and HTI-286 (2), which contain various aromatic rings in the A segment, were synthesized as potential inhibitors of tubulin polymerization. The structure-activity relationships related to stereo- and regio-chemical effects of substituents on the aromatic ring in the A segment were studied. Analogs, which carry a meta-substituted phenyl ring in the A segment show comparable activity for inhibition of tubulin polymerization to 2, as well as in the cell proliferation assay using KB cells containing P-glycoprotein, compared to those of 1 and 2.
Studies of defined mixtures of carcinogenic polycyclic aromatic hydrocarbons (PAH) have shown three major categories of interactions: antagonism, synergism, and additivity depending on the biological model, tissue, route of exposure, and specific PAH. To understand the bases of t...
James M. Lazorchak; Michael B. Griffith; Marc Mills; Joseph Schubauer-Berigan; Frank McCormick; Richard Brenner; Craig Zeller
2015-01-01
The US Environmental Protection Agency (USEPA) develops methods and tools for evaluating risk management strategies for sediments contaminated with polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and other legacy pollutants. Monitored natural recovery is a risk management alternative that relies on existing physical, chemical, and biological...
Culka, Martin; Huwiler, Simona G; Boll, Matthias; Ullmann, G Matthias
2017-10-18
Aromatic compounds are environmental pollutants with toxic and carcinogenic properties. Despite the stability of aromatic rings, bacteria are able to degrade the aromatic compounds into simple metabolites and use them as growth substrates under oxic or even under anoxic conditions. In anaerobic microorganisms, most monocyclic aromatic growth substrates are converted to the central intermediate benzoyl-coenzyme A, which is enzymatically reduced to cyclohexa-1,5-dienoyl-CoA. The strictly anaerobic bacterium Geobacter metallireducens uses the class II benzoyl-CoA reductase complex for this reaction. The catalytic BamB subunit of this complex harbors an active site tungsten-bis-pyranopterin cofactor with the metal being coordinated by five protein/cofactor-derived sulfur atoms and a sixth, so far unknown, ligand. Although BamB has been biochemically and structurally characterized, its mechanism still remains elusive. Here we use continuum electrostatic and QM/MM calculations to model benzoyl-CoA reduction by BamB. We aim to elucidate the identity of the sixth ligand of the active-site tungsten ion together with the interplay of the electron and proton transfer events during the aromatic ring reduction. On the basis of our calculations, we propose that benzoyl-CoA reduction is initiated by a hydrogen atom transfer from a W(IV) species with an aqua ligand, yielding W(V)-[OH - ] and a substrate radical intermediate. In the next step, a proton-assisted second electron transfer takes place with a conserved active-site histidine serving as the second proton donor. Interestingly, our calculations suggest that the electron for the second reduction step is taken from the pyranopterin cofactors rather than from the tungsten ion. The resulting cationic radical, which is distributed over both pyranopterins, is stabilized by conserved anionic amino acid residues. The stepwise mechanism of the reduction shows similarities to the Birch reduction known from organic chemistry. However, the strict coupling of protons and electrons allows the reaction to proceed under milder conditions.
The feasibility of coherent energy transfer in microtubules.
Craddock, Travis John Adrian; Friesen, Douglas; Mane, Jonathan; Hameroff, Stuart; Tuszynski, Jack A
2014-11-06
It was once purported that biological systems were far too 'warm and wet' to support quantum phenomena mainly owing to thermal effects disrupting quantum coherence. However, recent experimental results and theoretical analyses have shown that thermal energy may assist, rather than disrupt, quantum coherent transport, especially in the 'dry' hydrophobic interiors of biomolecules. Specifically, evidence has been accumulating for the necessary involvement of quantum coherent energy transfer between uniquely arranged chromophores in light harvesting photosynthetic complexes. The 'tubulin' subunit proteins, which comprise microtubules, also possess a distinct architecture of chromophores, namely aromatic amino acids, including tryptophan. The geometry and dipolar properties of these aromatics are similar to those found in photosynthetic units indicating that tubulin may support coherent energy transfer. Tubulin aggregated into microtubule geometric lattices may support such energy transfer, which could be important for biological signalling and communication essential to living processes. Here, we perform a computational investigation of energy transfer between chromophoric amino acids in tubulin via dipole excitations coupled to the surrounding thermal environment. We present the spatial structure and energetic properties of the tryptophan residues in the microtubule constituent protein tubulin. Plausibility arguments for the conditions favouring a quantum mechanism of signal propagation along a microtubule are provided. Overall, we find that coherent energy transfer in tubulin and microtubules is biologically feasible. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Fostinelli, Jacopo; Madeo, Egidio; Toraldo, Emanuele; Sarnico, Michela; Luzzana, Giorgio; Tomasi, Cesare; De Palma, Giuseppe
2018-06-09
We performed a cross-sectional study with the main aim of evaluating occupational exposure to polycyclic aromatic hydrocarbons (PAHs) in workers involved in the pavement construction of a new highway in Northern Italy, where modified bitumen was used as binder for Hot Mix Asphalt. We applied a combined approach of air and biological monitoring. Both the aerosol and vapour phases of bitumen were collected applying the NIOSH 5506 method. The 16 PAHs listed as high priority by EPA were determined by HPLC-UV. End-of-shift urine samples were collected from 144 workers to determine 1-hydroxypyrene (1-OHP) and 2-naphthol (2-NAP) concentrations after enzyme digestion and HPLC-UV analysis. Socio-demographic and lifestyle information was collected by a questionnaire. Paving workers were actually exposed to PAHs, including carcinogenic compounds, that were measurable only in the aerosol phase. Higher exposure as well as dose levels were measured for the paver group. Biological monitoring confirmed that 1-OHP was less affected by smoking habits as compared to 2-NAP and showed a higher association with occupational exposure. Carcinogenic PAH compounds were detectable only in the aerosol phase and this must be taken into account in the adoption of preventive measures. Biomonitoring supported the superiority of 1-OHP as compared to 2-NAP in assessing the internal dose in such workers. Copyright © 2018. Published by Elsevier B.V.
Menz, Jakob; Toolaram, Anju Priya; Rastogi, Tushar; Leder, Christoph; Olsson, Oliver; Kümmerer, Klaus; Schneider, Mandy
2017-01-01
Transformation products (TPs) emerging from incomplete degradation of micropollutants in aquatic systems can retain the biological activity of the parent compound, or may even possess new unexpected toxic properties. The chemical identities of these substances remain largely unknown, and consequently, the risks caused by their presence in the water cycle cannot be assessed thoroughly. In this study, a combined approach for the proactive identification of hazardous elements in the chemical structures of TPs, comprising analytical, bioanalytical and computational methods, was assessed by the example of the pharmaceutically active micropollutant propranolol (PPL). PPL was photo-transformed using ultraviolet (UV) irradiation and 115 newly formed TPs were monitored in the reaction mixtures by LC-MS analysis. The reaction mixtures were screened for emerging effects using a battery of in vitro bioassays and the occurrence of cytotoxic and mutagenic activities in bacteria was found to be significantly correlated with the occurrence of specific TPs during the treatment process. The follow-up analysis of structure-activity-relationships further illustrated that only small chemical transformations, such as the hydroxylation or the oxidative opening of an aromatic ring system, could substantially alter the biological effects of micropollutants in aquatic systems. In conclusion, more efforts should be made to prevent the occurrence and transformation of micropollutants in the water cycle and to identify the principal degradation pathways leading to their toxicological activation. With regard to the latter, the judicious combination of bioanalytical and computational tools represents an appealing approach that should be developed further. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodale, B. C.; Geisel School of Medicine at Dartmouth, Hanover, NH; La Du, J.
Polycyclic aromatic hydrocarbons (PAHs) are priority environmental contaminants that exhibit mutagenic, carcinogenic, proinflammatory, and teratogenic properties. Oxygen-substituted PAHs (OPAHs) are formed during combustion processes and via phototoxidation and biological degradation of parent (unsubstituted) PAHs. Despite their prevalence both in contaminated industrial sites and in urban air, OPAH mechanisms of action in biological systems are relatively understudied. Like parent PAHs, OPAHs exert structure-dependent mutagenic activities and activation of the aryl hydrocarbon receptor (AHR) and cytochrome p450 metabolic pathway. Four-ring OPAHs 1,9-benz-10-anthrone (BEZO) and benz(a)anthracene-7,12-dione (7,12-B[a]AQ) cause morphological aberrations and induce markers of oxidative stress in developing zebrafish with similar potency, butmore » only 7,12-B[a]AQ induces robust Cyp1a protein expression. We investigated the role of the AHR in mediating the toxicity of BEZO and 7,12-B[a]AQ, and found that knockdown of AHR2 rescued developmental effects caused by both compounds. Using RNA-seq and molecular docking, we identified transcriptional responses that precede developmental toxicity induced via differential interaction with AHR2. Redox-homeostasis genes were affected similarly by these OPAHs, while 7,12-B[a]AQ preferentially activated phase 1 metabolism and BEZO uniquely decreased visual system genes. Analysis of biological functions and upstream regulators suggests that BEZO is a weak AHR agonist, but interacts with other transcriptional regulators to cause developmental toxicity in an AHR-dependent manner. Furthermore, identifying ligand-dependent AHR interactions and signaling pathways is essential for understanding toxicity of this class of environmentally relevant compounds.« less
Goodale, B. C.; Geisel School of Medicine at Dartmouth, Hanover, NH; La Du, J.; ...
2015-07-03
Polycyclic aromatic hydrocarbons (PAHs) are priority environmental contaminants that exhibit mutagenic, carcinogenic, proinflammatory, and teratogenic properties. Oxygen-substituted PAHs (OPAHs) are formed during combustion processes and via phototoxidation and biological degradation of parent (unsubstituted) PAHs. Despite their prevalence both in contaminated industrial sites and in urban air, OPAH mechanisms of action in biological systems are relatively understudied. Like parent PAHs, OPAHs exert structure-dependent mutagenic activities and activation of the aryl hydrocarbon receptor (AHR) and cytochrome p450 metabolic pathway. Four-ring OPAHs 1,9-benz-10-anthrone (BEZO) and benz(a)anthracene-7,12-dione (7,12-B[a]AQ) cause morphological aberrations and induce markers of oxidative stress in developing zebrafish with similar potency, butmore » only 7,12-B[a]AQ induces robust Cyp1a protein expression. We investigated the role of the AHR in mediating the toxicity of BEZO and 7,12-B[a]AQ, and found that knockdown of AHR2 rescued developmental effects caused by both compounds. Using RNA-seq and molecular docking, we identified transcriptional responses that precede developmental toxicity induced via differential interaction with AHR2. Redox-homeostasis genes were affected similarly by these OPAHs, while 7,12-B[a]AQ preferentially activated phase 1 metabolism and BEZO uniquely decreased visual system genes. Analysis of biological functions and upstream regulators suggests that BEZO is a weak AHR agonist, but interacts with other transcriptional regulators to cause developmental toxicity in an AHR-dependent manner. Furthermore, identifying ligand-dependent AHR interactions and signaling pathways is essential for understanding toxicity of this class of environmentally relevant compounds.« less
Goodale, B C; La Du, J; Tilton, S C; Sullivan, C M; Bisson, W H; Waters, K M; Tanguay, R L
2015-10-01
Polycyclic aromatic hydrocarbons (PAHs) are priority environmental contaminants that exhibit mutagenic, carcinogenic, proinflammatory, and teratogenic properties. Oxygen-substituted PAHs (OPAHs) are formed during combustion processes and via phototoxidation and biological degradation of parent (unsubstituted) PAHs. Despite their prevalence both in contaminated industrial sites and in urban air, OPAH mechanisms of action in biological systems are relatively understudied. Like parent PAHs, OPAHs exert structure-dependent mutagenic activities and activation of the aryl hydrocarbon receptor (AHR) and cytochrome p450 metabolic pathway. Four-ring OPAHs 1,9-benz-10-anthrone (BEZO) and benz(a)anthracene-7,12-dione (7,12-B[a]AQ) cause morphological aberrations and induce markers of oxidative stress in developing zebrafish with similar potency, but only 7,12-B[a]AQ induces robust Cyp1a protein expression. We investigated the role of the AHR in mediating the toxicity of BEZO and 7,12-B[a]AQ, and found that knockdown of AHR2 rescued developmental effects caused by both compounds. Using RNA-seq and molecular docking, we identified transcriptional responses that precede developmental toxicity induced via differential interaction with AHR2. Redox-homeostasis genes were affected similarly by these OPAHs, while 7,12-B[a]AQ preferentially activated phase 1 metabolism and BEZO uniquely decreased visual system genes. Analysis of biological functions and upstream regulators suggests that BEZO is a weak AHR agonist, but interacts with other transcriptional regulators to cause developmental toxicity in an AHR-dependent manner. Identifying ligand-dependent AHR interactions and signaling pathways is essential for understanding toxicity of this class of environmentally relevant compounds. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Holder, Geoff; Makin, Hugh L. J.; Bradlow, H. Leon
Biologists use the word ‘estrogen' when referring to molecules which have the ability to induce uterine growth or vaginal cornification in the immature or ovariectomized rodent. The word estrogen was derived from two Greek words - oistros meaning frenzy and gennein - to beget. Chemists and biochemists, however, often restrict their use of this term to molecules that contain a characteristic 18-carbon steroid nucleus with an aromatic (phenolic) A-ring, both those that are biologically active estrogens and those without biologic activity but which are of intrinsic interest, such as the estrogen conjugates. This chapter is concerned only with these steroid compounds. The structure and inter-relationship of some common estrogens are given in Fig. 8.1. In addition to the biological estrogens, there are a wide variety of both natural and synthetic compounds which have estrogenic activity when measured by one or another parameter. While many of the assay procedures described in this review are applicable to these compounds, their application to non C18-steroids will not be discussed here. Methodology for these non-steroidal compounds can be found in reviews by Wang et al. (2002), Wu et al. (2004), Muir (2006), and Delmonte and Rader (2006). While not wishing to downgrade the importance of previous work in the estrogen field, the authors have taken a deliberate decision to exclude most publications prior to 1975, not because these do not have value but simply because space is not unlimited and readers of the present chapter might be expected to be seeking information about methodology which is less than 30 years old. Readers seeking pre-1975 information in this area can find it in Oakey and Holder (1995).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, J.S.; Evans, P.; Politzer, P.
1990-01-01
An ab initio STO-5G computational analysis of the electrostatic potentials of four structural analogs of the highly toxic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and four related aromatic systems (benzo(a)pyrene, benz(a)anthracene and two isomeric benzoflavones) was carried out. The systems, to varying degrees, induce aryl hydrocarbon hydroxylase activity and are believed to interact with the same cytosolic receptor in initiating their biochemical responses. It was found that a high degree of activity appears to require negative potentials that are non-overlapping above all or most of the lateral regions, with an observed optimum range of magnitudes. In systems with central oxygens, it is required thatmore » the negative oxygen potentials be small and weak; however, oxygen negative regions in the molecule are not necessary for high activity. The observed differences between the potential patterns of the four aromatic systems and those of TCDD and its active analogs may reflect an inherent dissimilarity in the nature of their interactions with the cytosolic receptor.« less
Polycyclic aromatic hydrocarbon degradation by biosurfactant-producing Pseudomonas sp. IR1.
Kumara, Manoj; Leon, Vladimir; De Sisto Materano, Angela; Ilzins, Olaf A; Galindo-Castro, Ivan; Fuenmayor, Sergio L
2006-01-01
We characterized a newly isolated bacterium, designated as IR1, with respect to its ability to degrade polycyclic aromatic hydrocarbons (PAHs) and to produce biosurfactants. Isolated IR1 was identified as Pseudomonas putida by analysis of 16S rRNA sequences (99.6% homology). It was capable of utilizing two-, three- and four-ring PAHs but not hexadecane and octadecane as a sole carbon and energy source. PCR and DNA hybridization studies showed that enzymes involved in PAH metabolism were related to the naphthalene dioxygenase pathway. Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by IR1 during growth on both water miscible and immiscible substrates. The biosurfactants lowered the surface tension of medium from 54.9 dN cm(-1) to 35.4 dN cm(-1) and formed a stable and compact emulsion with an emulsifying activity of 74% with diesel oil, when grown on dextrose. These findings indicate that this isolate may be useful for bioremediation of sites contaminated with aromatic hydrocarbons.
Zheng, Dong; Yuan, Xiang-Ai; Ma, Haibo; Li, Xiaoxiong; Wang, Xizhang; Liu, Ziteng
2018-01-01
Cresol is a prototype molecule in understanding intermolecular interactions in material and biological systems, because it offers different binding sites with various solvents and protonation states under different pH values. It is found that the UV/Vis absorption spectra of o-cresol in aromatic solvents (benzene, toluene) are characterized by a sharp peak, unlike the broad double-peaks in 11 non-aromatic solvents. Both molecular dynamics simulations and electronic structure calculations revealed the formation of intermolecular π-complexation between o-cresol and aromatic solvents. The thermal movements of solvent and solute molecules render the conformations of o-cresol changing between trans and cis isomers. The π-interaction makes the cis configuration a dominant isomer, hence leading to the single keen-edged UV/Vis absorption peak at approximately 283 nm. The free conformation changes between trans and cis in aqueous solution rationalize the broader absorption peaks in the range of 260–280 nm. The pH dependence of the UV/Vis absorption spectra in aqueous solutions is also rationalized by different protonation states of o-cresol. The explicit solvent model with long-ranged interactions is vital to describe the effects of π-complexation and electrostatic interaction on the UV/Vis absorption spectra of o-cresol in toluene and alkaline aqueous (pH > 10.3) solutions, respectively. PMID:29657794
Zheng, Dong; Yuan, Xiang-Ai; Ma, Haibo; Li, Xiaoxiong; Wang, Xizhang; Liu, Ziteng; Ma, Jing
2018-03-01
Cresol is a prototype molecule in understanding intermolecular interactions in material and biological systems, because it offers different binding sites with various solvents and protonation states under different pH values. It is found that the UV/Vis absorption spectra of o -cresol in aromatic solvents (benzene, toluene) are characterized by a sharp peak, unlike the broad double-peaks in 11 non-aromatic solvents. Both molecular dynamics simulations and electronic structure calculations revealed the formation of intermolecular π-complexation between o -cresol and aromatic solvents. The thermal movements of solvent and solute molecules render the conformations of o -cresol changing between trans and cis isomers. The π-interaction makes the cis configuration a dominant isomer, hence leading to the single keen-edged UV/Vis absorption peak at approximately 283 nm. The free conformation changes between trans and cis in aqueous solution rationalize the broader absorption peaks in the range of 260-280 nm. The pH dependence of the UV/Vis absorption spectra in aqueous solutions is also rationalized by different protonation states of o -cresol. The explicit solvent model with long-ranged interactions is vital to describe the effects of π-complexation and electrostatic interaction on the UV/Vis absorption spectra of o -cresol in toluene and alkaline aqueous (pH > 10.3) solutions, respectively.
Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide.
Salter-Blanc, Alexandra J; Bylaska, Eric J; Lyon, Molly A; Ness, Stuart C; Tratnyek, Paul G
2016-05-17
New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. In this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett σ constants (σ(-)), pKas of the amines, and energies of the highest occupied molecular orbital (EHOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (Eox)]. The selection of calculated descriptors (pKa, EHOMO, and Eox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to EHOMO (calculated with a modest level of theory).
Adsorption of aromatic hydrocarbons and ozone at environmental aqueous surfaces.
Vácha, Robert; Cwiklik, Lukasz; Rezác, Jan; Hobza, Pavel; Jungwirth, Pavel; Valsaraj, Kalliat; Bahr, Stephan; Kempter, Volker
2008-06-05
Adsorption of environmentally important aromatic molecules on a water surface is studied by means of classical and ab initio molecular dynamics simulations and by reflection-absorption infrared spectroscopy. Both techniques show strong activity and orientational preference of these molecules at the surface. Benzene and naphthalene, which bind weakly to water surface with a significant contribution of dispersion interactions, prefer to lie flat on water but retain a large degree of orientational flexibility. Pyridine is more rigid at the surface. It is tilted with the nitrogen end having strong hydrogen bonding interactions with water molecules. The degree of adsorption and orientation of aromatic molecules on aqueous droplets has atmospheric implications for heterogeneous ozonolysis, for which the Langmuir-Hinshelwood kinetics mechanism is discussed. At higher coverages of aromatic molecules the incoming ozone almost does not come into contact with the underlying aqueous phase. This may rationalize the experimental insensitivity of the ozonolysis on the chemical nature of the substrate on which the aromatic molecules adsorb.
Pseudomonads biodegradation of aromatic compounds in oil sands process-affected water.
Zhang, Yanyan; McPhedran, Kerry N; Gamal El-Din, Mohamed
2015-07-15
Aromatic naphthenic acids (NAs) have been shown to be more toxic than the classical NAs found in oil sands process-affected water (OSPW). To reduce this toxicity, Pseudomonas fluorescens and Pseudomonas putida were used to determine their ability to biodegrade aromatic compounds including treatments considering the impacts of external carbon and iron addition. Results showed that with added carbon P. fluorescens and P. putida have the capability of biodegrading these aromatics. In the presence of external carbon, gene expression of a functional PAH-ring hydroxylating dioxygenase (PAH-RHDα) was determined through reverse transcription real-time PCR, suggesting active degradation of OSPW aromatic compounds. Although no significant classical NAs removal was observed during this process, toxicity was reduced by 49.3% under optimal conditions. OSPW toxicity was eliminated with the combination of ozonation at a dose of 80 mg/L followed by biodegradation, indicating that it is a promising combined OSPW treatment approach for the safe discharge to the aquatic environment. Copyright © 2015 Elsevier B.V. All rights reserved.
Halawa, Ahmed H; El-Gilil, Shimaa Mohamed Abd; Bedair, Ahmed H; Shaaban, Mohamed; Frese, Marcel; Sewald, Norbert; Eliwa, Essam M; El-Agrody, Ahmed M
2017-10-26
A new series of heterocyclic Schiff bases 2-9 containing indole moiety were synthesized by facile and efficient condensation of indole-3/2/5-carboxaldehyde (1a/1b/1c) with different aromatic and heterocyclic primary amines using conventional and/or microwave irradiation methods. The structures of the obtained compounds were assigned by sophisticated spectroscopic and spectrometric techniques (1D-NMR, 2D-NMR and MS). The synthesized compounds were screened for their cytotoxicity and antibacterial activities. In vitro cytotoxicity screening revealed that compound 5 exhibited moderate activity against KB-3-1 cell line (IC50=57.7 μM) while 5-indolylimino derivative 7 indicated close to the activity (IC50=19.6 μM) in comparison with the positive control (+)-Griseofulvin (IC50=19.2 μM), while the tested compounds 5, 6b, 7 and 9 revealed good or moderate antibacterial activity. In addition, molecular docking study of Schiff bases 2-9 was performed by Molecular Operating Environment (MOE 2014.09) program on the matrix metalloproteinase-8 (MMP-8) (Protein Data Bank (PDB) ID: 1MNC) in an attempt to explore their mode of action as anticancer drugs.
Yusuf, Mohammad; Khan, Riaz A; Khan, Maria; Ahmed, Bahar
2013-05-01
New imines, derived from aromatic aldehyde, chalcones and 5-amino-1,3,4-thiadiazole-2-thiol exhibited promising anti-convulsant activity which is explained through chemo-biological interactions at receptor site producing the inhibition of human Carbonic Anhydrase-II enzyme (hCA-II) through the proposed pharmacophore model at molecular levels as basis for pharmacological activity. The compounds 5-{1-(4-Chlorophenyl)-3-[4-(methoxy-phenyl)-prop-2-en-1-ylidene]amino}-1,3,4-thiadiazole-2-thiol (2b), 5-{[1-(4-chloro-phenyl)]-3-[4-(dimethyl-amino-phenyl)-prop-2-en-1-ylidene]amino}-1,3,4-thiadiazole-2-thiol (2c) and 5-{[1-(4-chloro-phenyl)]-3-[(4-amino-phenyl)-prop-2-en-1-ylidene]amino}-1,3,4-thiadiazole-2-thiol (2f) showed 100% activity in comparison with standard Acetazolamide, a known anti-convulsant drug. The compounds 2c, 2f also passed the Rotarod and Ethanol Potentiation tests which further confirmed them to be safe in motor coordination activity and safe from generating neurological toxicity. © 2013 John Wiley & Sons A/S.
Chemical recalcitrance of biochar and wildfire charcoal: how similar are they?
NASA Astrophysics Data System (ADS)
Santin, Cristina; Doerr, Stefan H.; Merino, Agustin
2016-04-01
The enhanced chemical resistance to biological degradation of pyrogenic materials, either produced during wildfires (charcoal) or by man (biochar), makes them long-term carbon sinks once incorporated in soils. In spite of their fundamental similarities, studies comparing the chemical recalcitrance of biochar and wildfire charcoal are scarce because analogous materials for accurate comparison are not easily available. Using solid-state 13C cross polarization-magic angle spinning nuclear magnetic resonance spectroscopy we characterized the chemical recalcitrance of pyrogenic materials generated from the same unburnt feedstooks (litter and dead wood from Pinus banksiana): (a) charcoal from a high-intensity wildfire and (b) biochar obtained by slow pyrolysis [3 treatments: 2 h at 350, 500 and 650°C]. For quantification, the spectra were divided into four regions representing different chemical environments of the 13C nucleus: alkyl C (0-45 ppm), O-alkyl C (45-110 ppm), olefinic and aromatic C(110-160 ppm), and carbonyl C (160-210 ppm). As an indicator of chemical recalcitrance, the degree of aromaticity (%) was calculated as follow: aromatic-C ∗ 100 / (alkyl C+ O alkyl-C + aromatic-C). The pyrogenic materials derived from wood show higher degrees of aromaticity (68 to 88%) than pyrogenic material derived from litter (40 to 88%). When comparing biochar and wildfire charcoal, biochars produced at 500 and 650°C always have higher degrees of aromaticity than wildfire charcoals, irrespective of the original feedstock. Wildfire charcoals always show a more heterogeneous chemical composition, with alkyl and O-alkyl compounds present even in charcoal generated at very high temperatures (temperatures up to 950 °C were recorded on the litter surface during the wildfire). However, biochars produced at 500 and 650 °C are mostly aromatic, and only the biochars produced at 350 °C show partial contribution of alkyl-C compounds. Our results suggest that biochar-type pyrogenic materials have in general a higher chemical recalcitrance than wildfire charcoal and, thus, we advice caution when transfer knowledge between the biochar and the wildfire charcoal research communities.
NASA Astrophysics Data System (ADS)
Asharani, I. V.; Thirumalai, D.; Sivakumar, A.
2017-11-01
Polyethylene glycol (PEG) core dendrimer encapsulated silver nanoparticles (AgNPs) were synthesized through normal chemical reduction method, where dendrimer acts as reducing and stabilizing agent. The encapsulated AgNPs were well characterized using TEM, DLS and XPS techniques. The synthesized AgNPs showed excellent catalytic activity towards the reduction of aromatic nitro compounds with sodium borohydride as reducing agent and the results substantiate that dendrimer encapsulated AgNPs can be an effective catalyst for the substituted nitro aromatic reduction reactions. Also the kinetics of different nitro compounds reductions was studied and presented.
Nguyen, Ngoc-Lan Thi; Vo, Hong-Thom; Duus, Fritz; Luu, Thi Xuan Thi
2017-09-04
The sulfinylation reaction of aromatic and hetero-aromatic compounds with sulfinic esters as electrophiles has been investigated in different ionic liquids and by means of different Lewis acid salts in order to get moderate to good yields of asymmetrical sulfoxides. Mixtures of 1-butyl-3-methylimidazolium chloride and aluminum chloride were found to be the most efficient and recyclable reaction framework. Ultrasound sonication appeared to be the most useful and green activation method to afford the sulfoxides in yields better than or equivalent to those obtained under the longer-lasting conventional stirring conditions.
Silva, Nuno; Alves, Sofia; Gonçalves, Alexandre; Amaral, Joana S; Poeta, Patrícia
2013-12-01
The antimicrobial activity of essential oils extracted from a variety of aromatic plants, often used in the Portuguese gastronomy was studied in vitro by the agar diffusion method. The essential oils of thyme, oregano, rosemary, verbena, basil, peppermint, pennyroyal and mint were tested against Gram-positive (Listeria monocytogenes, Clostridium perfringens, Bacillus cereus, Staphylococcus aureus, Enterococcus faecium, Enterococcus faecalis, and Staphylococcus epidermidis) and Gram-negative strains (Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa). For most essential oils examined, S. aureus, was the most susceptible bacteria, while P. aeruginosa showed, in general, least susceptibility. Among the eight essential oils evaluated, thyme, oregano and pennyroyal oils showed the greatest antimicrobial activity, followed by rosemary, peppermint and verbena, while basil and mint showed the weakest antimicrobial activity. Most of the essential oils considered in this study exhibited a significant inhibitory effect. Thyme oil showed a promising inhibitory activity even at low concentration, thus revealing its potential as a natural preservative in food products against several causal agents of foodborne diseases and food spoilage. In general, the results demonstrate that, besides flavoring the food, the use of aromatic herbs in gastronomy can also contribute to a bacteriostatic effect against pathogens.
Fazal, Farhan; Mane, Prajwal P; Rai, Manoj P; Thilakchand, Karadka R; Bhat, Harshith P; Kamble, Prathibha S; Palatty, Princy L; Baliga, Manjeshwar Shrinath
2014-08-26
Since antiquity, Piper betel. Linn, commonly known as betel vine, has been used as a religious, recreational and medicinal plant in Southeast Asia. The leaves, which are the most commonly used plant part, are pungent with aromatic flavor and are widely consumed as a mouth freshener. It is carminative, stimulant, astringent and is effective against parasitic worms. Experimental studies have shown that it possess diverse biological and pharmacological effects, which includes antibacterial, antifungal, larvicidal, antiprotozal, anticaries, gastroprotective effects, free radical scavenging, antioxidant, anti-inflammatory hepatoprotective, immunomodulatory, antiulcer and chemopreventive activities. The active principles hydroxychavicol, allylpyrocatechol and eugenol with their plethora of pharmacological properties may also have the potential to develop as bioactive lead molecule. In this review, an attempt is made to summarize the religious, traditional uses, phytochemical composition and experimentally validated pharmacological properties of Piper betel. Emphasis is also placed on aspects warranting detail studies for it to be of pharmaceutical/clinical use to humans.
Dong, Naiwei; Liu, Xin; Zhao, Tong; Wang, Lei; Li, Huimin; Zhang, Shuqian; Li, Xia; Bai, Xue; Zhang, Yong; Yang, Baofeng
2018-05-29
Apoptosis is an important biological phenomenon, which affects many diseases, such as cancer and Alzheimer's disease. In the present study, we observed that chalcone 9X, an aromatic ketone, induced apoptosis of human hepatic and lung cancer cells and inhibited cancer cell migration and invasion. This compound strongly suppressed the growth of tumor in a mouse model of xenograft tumors. The anticancer activity of chalcone 9X was equivalent to 5-fluorouracil (5-FU) as a positive control agent, whereas the toxic effect of chalcone 9X in non-cancer cells was weaker than 5-FU. Molecular docking results showed that chalcone 9X could act on the active sites of pro-apoptotic proteins capspases-3 and -8 to induce apoptotic death of cancer cells. Our findings suggest that chalcone 9X might be considered a candidate compound of novel anticancer drug in the future. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Harer, Sunil L; Bhatia, Manish S
2014-10-01
The imidazopyridine moiety is important pharmacophore that has proven to be useful for a number of biologically relevant targets, also reported to display antibacterial, antifungal, antiviral properties. Riboflavin biosynthesis involving catalytic step of Lumazine synthase is absent in animals and human, but present in microorganism, one of marked advantage of this study. Still, this path is not exploited as antiinfective target. Here, we proposed different interactions between [1H,3H] imidazo[4,5-b] pyridine test ligands and target protein Lumazine synthase (protein Data Bank 2C92), one-step synthesis of title compounds and further evaluation of them for in vitro antimicrobial activity. Active pocket of the target protein involved in the interaction with the test ligands molecules was found using Biopredicta tools in VLifeMDS 4.3 Suite. In-silico docking suggests H-bonding, hydrophobic interaction, charge interaction, aromatic interaction, and Vanderwaal forces responsible for stabilizing enzyme-inhibitor complex. Disc diffusion assay method was used for in vitro antimicrobial screening. Investigation of possible interaction between test ligands and target lumazine synthase of Mycobacterium tuberculosis suggested 1i and 2f as best fit candidates showing hydrogen bonding, hydrophobic, aromatic and Vanderwaal's forces. Among all derivatives 1g, 1j, 1k, 1l, 2a, 2c, 2d, 2e, 2h, and 2j exhibited potent activities against bacteria and fungi compared to the standard Ciprofloxacin and Fluconazole, respectively. The superiority of 1H imidazo [4,5-b] pyridine compounds having R' = Cl >No2 > NH2 at the phenyl/aliphatic moiety resident on the imidazopyridine, whereas leading 3H imidazo[4,5-b] pyridine compounds containing R/Ar = Cl > No2 > NH2> OCH3 substituents on the 2(nd) position of imidazole.
Harer, Sunil L.; Bhatia, Manish S.
2014-01-01
Purpose: The imidazopyridine moiety is important pharmacophore that has proven to be useful for a number of biologically relevant targets, also reported to display antibacterial, antifungal, antiviral properties. Riboflavin biosynthesis involving catalytic step of Lumazine synthase is absent in animals and human, but present in microorganism, one of marked advantage of this study. Still, this path is not exploited as antiinfective target. Here, we proposed different interactions between [1H,3H] imidazo[4,5-b] pyridine test ligands and target protein Lumazine synthase (protein Data Bank 2C92), one-step synthesis of title compounds and further evaluation of them for in vitro antimicrobial activity. Materials and Methods: Active pocket of the target protein involved in the interaction with the test ligands molecules was found using Biopredicta tools in VLifeMDS 4.3 Suite. In-silico docking suggests H-bonding, hydrophobic interaction, charge interaction, aromatic interaction, and Vanderwaal forces responsible for stabilizing enzyme-inhibitor complex. Disc diffusion assay method was used for in vitro antimicrobial screening. Results and Discussion: Investigation of possible interaction between test ligands and target lumazine synthase of Mycobacterium tuberculosis suggested 1i and 2f as best fit candidates showing hydrogen bonding, hydrophobic, aromatic and Vanderwaal's forces. Among all derivatives 1g, 1j, 1k, 1l, 2a, 2c, 2d, 2e, 2h, and 2j exhibited potent activities against bacteria and fungi compared to the standard Ciprofloxacin and Fluconazole, respectively. The superiority of 1H imidazo [4,5-b] pyridine compounds having R’ = Cl >No2 > NH2 at the phenyl/aliphatic moiety resident on the imidazopyridine, whereas leading 3H imidazo[4,5-b] pyridine compounds containing R/Ar = Cl > No2 > NH2> OCH3 substituents on the 2nd position of imidazole. PMID:25400412
Pérez-Areales, Francisco Javier; Betari, Nibal; Viayna, Antonio; Pont, Caterina; Espargaró, Alba; Bartolini, Manuela; De Simone, Angela; Rinaldi Alvarenga, José Fernando; Pérez, Belén; Sabate, Raimon; Lamuela-Raventós, Rosa Maria; Andrisano, Vincenza; Luque, Francisco Javier; Muñoz-Torrero, Diego
2017-06-01
Simultaneous modulation of several key targets of the pathological network of Alzheimer's disease (AD) is being increasingly pursued as a promising option to fill the critical gap of efficacious drugs against this condition. A short series of compounds purported to hit multiple targets of relevance in AD has been designed, on the basis of their distinct basicities estimated from high-level quantum mechanical computations, synthesized, and subjected to assays of inhibition of cholinesterases, BACE-1, and Aβ42 and tau aggregation, of antioxidant activity, and of brain permeation. Using, as a template, a lead rhein-huprine hybrid with an interesting multitarget profile, we have developed second-generation compounds, designed by the modification of the huprine aromatic ring. Replacement by [1,8]-naphthyridine or thieno[3,2-e]pyridine systems resulted in decreased, although still potent, acetylcholinesterase or BACE-1 inhibitory activities, which are more balanced relative to their Aβ42 and tau antiaggregating and antioxidant activities. Second-generation naphthyridine- and thienopyridine-based rhein-huprine hybrids emerge as interesting brain permeable compounds that hit several crucial pathogenic factors of AD.
Xiong, Xiao-Feng; Poulsen, Mette H; Hussein, Rama A; Nørager, Niels G; Strømgaard, Kristian
2014-12-01
The spider polyamine toxins Joro spider toxin-3 (JSTX-3) and Nephila polyamine toxins-1 and -8 (NPTX-1 and NPTX-8) are isolated from the venom of the orb-weaver spider Nephila clavata (Joro spider). They share a high degree of structural resemblance, their aromatic head groups being the only difference, and were recently found to be very potent open-channel blockers of ionotropic glutamate (iGlu) receptors. In this study we designed and synthesized a collection of 24 analogues of these toxins using a recently developed solid-phase synthetic methodology. Systematic variation in two regions of the toxins and subsequent evaluation of biological activity at AMPA and NMDA subtypes of iGlu receptors provided succinct information on structure-activity relationships. In particular, one set of analogues were found to display exquisite selectivity and potency for AMPA receptors relative to the natural products. Thus, this systematic SAR study has provided new pharmacological tools for studies of iGlu receptors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hou, Mengna; Dang, Leping; Liu, Tiankuo; Guo, Yun; Wang, Zhanzhong
2017-08-09
Nanoscale microemulsions have been utilized as delivery carriers for nutraceuticals and active biological drugs. Herein, we designed and synthesized a novel oil in water (O/W) fluorescent microemulsion based on isoamyl acetate, polyoxyethylene castor oil EL (CrEL), and water. The microemulsion emitted bright blue fluorescence, thus exhibiting its potential for active drug detection with label-free strategy. The microemulsion exhibited excitation-dependent emission and distinct red shift with longer excitation wavelengths. Lifetime and quantum yield of fluorescent microemulsion were 2.831 ns and 5.0%, respectively. An excellent fluorescent stability of the microemulsion was confirmed by altering pH, ionic strength, temperature, and time. Moreover, we proposed a probable mechanism of fluorochromic phenomenon, in connection with the aromatic ring structure of polyoxyethylene ether substituent in CrEL. Based on our findings, we concluded that this new fluorescent microemulsion is a promising drug carrier that can facilitate active drug detection with a label-free strategy. Although further research is required to understand the exact mechanism behind its fluorescence property, this work provided valuable guidance to develop new biosensors based on fluorescent microemulsion.
Manzo, Alessandra; Musso, Loana; Panseri, Sara; Iriti, Marcello; Dallavalle, Sabrina; Catalano, Enrico; Scarì, Giorgio; Giorgi, Annamaria
2016-07-01
This research aimed at improving knowledge as to the chemical composition and the antibacterial and anti-cancer activities of the essential oil of Waldheimia glabra, a wild plant from the Himalayan Mountains. The results obtained by GC-MS showed that spathulenol, 9-tetradecenol, thujopsene, α-thujone, santolina alcohol and terpinen-4-ol were the main constituents of Waldheimia glabra essential oil. These results were confirmed by HS-SPME GC-MS analysis that also reported high amounts of artemisia alcohol and camphor. Disc diffusion assay suggested a mild antibacterial activity against both Escherichia coli and Staphylococcus aureus. Finally, a dose-response correlation was observed between Waldhemia glabra essential oil concentration and viability of human breast adenocarcinoma cells MDA-MB-231 and MCF-7. Together with the GC-MS method, HS-SPME GC-MS proved to be a reliable technique to characterise the chemical composition of essential oil obtained from aromatic plants. Further studies will focus on W. glabra phytochemicals and their biological activity, in order to support traditional uses of the plant. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Hamurcu, Fatma; Mamaş, Serhat; Ozdemir, Ummuhan Ozmen; Gündüzalp, Ayla Balaban; Senturk, Ozan Sanlı
2016-08-01
The aromatic/five-membered heteroaromatic butanesulfonylhydrazone derivatives; 5-bromosalicylaldehydebutanesulfonylhydrazone(1), 2-hydroxy-1-naphthaldehydebutane sulfonylhydrazone(2), indole-3-carboxaldehydebutanesulfonylhydrazone (3), 2-acetylfuran- carboxyaldehydebutanesulfonylhydrazone(4), 2-acetylthiophenecarboxyaldehydebutane- sulfonylhydrazone(5) and 2-acetyl-5-chlorothiophenecarboxyaldehydebutanesulfonyl hydrazone (6) were synthesized by the reaction of butane sulfonic acid hydrazide with aldehydes/ketones and characterized by using elemental analysis, 1H NMR, 13C NMR and FT-IR technique. Their geometric parameters and electronic properties consist of global reactivity descriptors were also determined by theoretical methods. The electrochemical behavior of the butanesulfonylhydrazones were investigated by using cyclic voltammetry (CV), controlled potential electrolysis and chronoamperometry (CA) techniques. The number of electrons transferred (n), diffusion coefficient (D) and standard heterogeneous rate constants (ks) were determined by electrochemical methods.
Sgorbini, Barbara; Bicchi, Carlo; Cagliero, Cecilia; Cordero, Chiara; Liberto, Erica; Rubiolo, Patrizia
2015-01-09
Herbs and spices are used worldwide as food flavoring, thus determination of their identity, origin, and quality is mandatory for safe human consumption. An analysis strategy based on separative (HS-SPME-GC-MS) and non-separative (HS-SPME-MS) approaches is proposed for the volatile fraction of herbs and spices, for quality control and to quantify the aromatic markers with a single analysis directly on the plant material as such. Eight-to-ten lots of each of the following herbs/spices were considered: cloves (Syzygium aromaticum (L.) Merr. & Perry), American peppertree (Schinus molle L.), black pepper and white pepper (Piper nigrum L.), rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.) and thyme (Thymus vulgaris L.). Homogeneity, origin, and chemotypes of the investigated lots of each herb/spice were defined by fingerprinting, through statistical elaboration with principal component analysis (PCA). Characterizing aromatic markers were directly quantified on the solid matrix through multiple headspace extraction-HS-SPME (MHS-SPME). Reliable results were obtained with both separative and non-separative methods (where the latter were applicable); the two were in full agreement, RSD% ranging from 1.8 to 7.7% for eugenol in cloves, 2.2-18.4% for carvacrol+thymol in thyme, and 3.1-16.8% for thujones in sage. Copyright © 2014 Elsevier B.V. All rights reserved.
Atomistic molecular dynamics simulations of bioactive engrailed 1 interference peptides (EN1-iPeps).
Gandhi, Neha S; Blancafort, Pilar; Mancera, Ricardo L
2018-04-27
The neural-specific transcription factor Engrailed 1 - is overexpressed in basal-like breast tumours. Synthetic interference peptides - comprising a cell-penetrating peptide/nuclear localisation sequence and the Engrailed 1-specific sequence from the N-terminus have been engineered to produce a strong apoptotic response in tumour cells overexpressing EN1, with no toxicity to normal or non Engrailed 1-expressing cells. Here scaled molecular dynamics simulations were used to study the conformational dynamics of these interference peptides in aqueous solution to characterise their structure and dynamics. Transitions from disordered to α-helical conformation, stabilised by hydrogen bonds and proline-aromatic interactions, were observed throughout the simulations. The backbone of the wild-type peptide folds to a similar conformation as that found in ternary complexes of anterior Hox proteins with conserved hexapeptide motifs important for recognition of pre-B-cell leukemia Homeobox 1, indicating that the motif may possess an intrinsic preference for helical structure. The predicted NMR chemical shifts of these peptides are consistent with the Hox hexapeptides in solution and Engrailed 2 NMR data. These findings highlight the importance of aromatic residues in determining the structure of Engrailed 1 interference peptides, shedding light on the rational design strategy of molecules that could be adopted to inhibit other transcription factors overexpressed in other cancer types, potentially including other transcription factor families that require highly conserved and cooperative protein-protein partnerships for biological activity.
Nasher, Essam; Heng, Lee Yook; Zakaria, Zuriati; Surif, Salmijah
2013-01-01
Tourism-related activities such as the heavy use of boats for transportation are a significant source of petroleum hydrocarbons that may harm the ecosystem of Langkawi Island. The contamination and toxicity levels of polycyclic aromatic hydrocarbon (PAH) in the sediments of Langkawi were evaluated using sediment quality guidelines (SQGs) and toxic equivalent factors. Ten samples were collected from jetties and fish farms around the island in December 2010. A gas chromatography/flame ionization detector (GC/FID) was used to analyse the 18 PAHs. The concentration of total PAHs was found to range from 869 ± 00 to 1637 ± 20 ng g−1 with a mean concentration of 1167.00 ± 24 ng g−1, lower than the SQG effects range-low (3442 ng g−1). The results indicated that PAHs may not cause acute biological damage. Diagnostic ratios and principal component analysis suggested that the PAHs were likely to originate from pyrogenic and petrogenic sources. The toxic equivalent concentrations of the PAHs ranged from 76.3 to 177 ng TEQ/g d.w., which is lower compared to similar studies. The results of mean effects range-median quotient of the PAHs were lower than 0.1, which indicate an 11% probability of toxicity effect. Hence, the sampling sites were determined to be the low-priority sites. PMID:24163633
Nasher, Essam; Heng, Lee Yook; Zakaria, Zuriati; Surif, Salmijah
2013-01-01
Tourism-related activities such as the heavy use of boats for transportation are a significant source of petroleum hydrocarbons that may harm the ecosystem of Langkawi Island. The contamination and toxicity levels of polycyclic aromatic hydrocarbon (PAH) in the sediments of Langkawi were evaluated using sediment quality guidelines (SQGs) and toxic equivalent factors. Ten samples were collected from jetties and fish farms around the island in December 2010. A gas chromatography/flame ionization detector (GC/FID) was used to analyse the 18 PAHs. The concentration of total PAHs was found to range from 869 ± 00 to 1637 ± 20 ng g⁻¹ with a mean concentration of 1167.00 ± 24 ng g⁻¹, lower than the SQG effects range-low (3442 ng g⁻¹). The results indicated that PAHs may not cause acute biological damage. Diagnostic ratios and principal component analysis suggested that the PAHs were likely to originate from pyrogenic and petrogenic sources. The toxic equivalent concentrations of the PAHs ranged from 76.3 to 177 ng TEQ/g d.w., which is lower compared to similar studies. The results of mean effects range-median quotient of the PAHs were lower than 0.1, which indicate an 11% probability of toxicity effect. Hence, the sampling sites were determined to be the low-priority sites.
Catalytic co-aromatization of ethanol and methane
Wang, Aiguo; He, Peng; Yung, Matthew; ...
2016-06-06
This study demonstrates the technical feasibility of simultaneously converting ethanol and methane into liquid hydrocarbons at mild reaction conditions (400 °C and 1 atm) over silver and/or zinc modified zeolite catalysts. After GC-MS analysis, it is worth noting that aromatics are the major compounds contained in the liquid product collected from the run when 1%Ag/ZSM-5, particularly after H 2 pretreatment, is charged. Compared to the performance exhibited from the run with pure HZSM-5 support engaged, Ag addition into the HZSM-5 framework favors aromatics formation, which might be closely associated with better Ag dispersion and more abundance of strong surface acidicmore » sites where aromatization might take place while Zn loading exerts a detrimental effect on the production of aromatics but promotes the ether generation possibly through dehydration reaction. Referred to that from its N 2 counterpart, the increased aromatics formation of the collected liquid product when methane is present indicates that methane existence might facilitate ethanol aromatization. Moreover, combined with the increased carbon number in the formed aromatics from CH 4 run when H 2 run is referred and zero liquid formation from CH 4-alone test as well as more prominent endothermic feature of methane run and more importantly the notably increased 13C signals in 13C NMR spectra of the liquid product collected during ethanol conversion under 13CH 4 environment, all the observations suggest that methane might be activated nonoxidatively and converted into higher hydrocarbons, preferentially into aromatics if suitable catalyst is charged under the assistance of co-existing oxygenated hydrocarbon. Lastly, the reported synergetic effect could potentially lead to the more economic utilization of abundant natural gas and cellulosic ethanol.« less
Qian, Chao-Dong; Fu, Yu-Hang; Jiang, Fu-Sheng; Xu, Zheng-Hong; Cheng, Dong-Qing; Ding, Bin; Gao, Cheng-Xian; Ding, Zhi-Shan
2014-11-30
Studies on endophytes, a relatively under-explored group of microorganisms, are currently popular amongst biologists and natural product researchers. A fungal strain (ME4-2) was isolated from flower samples of mistletoe (Viscum coloratum) during a screening program for endophytes. As limited information on floral endophytes is available, the aim of the present study is to characterise fungal endophytes using their secondary metabolites. ME4-2 grew well in both natural and basic synthetic media but produced no conidia. Sequence analysis of its internal transcribed spacer rDNA demonstrated that ME4-2 forms a distinct branch within the genus Lasiodiplodia and is closely related to L. pseudotheobromae. This floral endophyte was thus identified as Lasiodiplodia sp. based on its molecular biological characteristics. Five aromatic compounds, including cyclo-(Trp-Ala), indole-3-carboxylic acid (ICA), indole-3-carbaldehyde, mellein and 2-phenylethanol, were found in the culture. The structures of these compounds were determined using spectroscopic methods combined with gas chromatography. To the best of our knowledge, our work is the first to report isolation of these aromatic metabolites from a floral endophyte. Interestingly, ICA, a major secondary metabolite produced by ME4-2, seemed to be biosynthesized via an unusual pathway. Furthermore, our results indicate that the fungus ME4-2 is a potent producer of 2-phenylethanol, which is a common component of floral essential oils. This study introduces a fungal strain producing several important aromatic metabolites with pharmaceutical or food applications and suggests that endophytic fungi isolated from plant flowers are promising natural sources of aromatic compounds.
Shakhatreh, Muhamad Ali K; Al-Smadi, Mousa L; Khabour, Omar F; Shuaibu, Fatima A; Hussein, Emad I; Alzoubi, Karem H
2016-01-01
Several applications of chalcones and their derivatives encouraged researchers to increase their synthesis as an alternative for the treatment of pathogenic bacterial and fungal infections. In the present study, chalcone derivatives were synthesized through cross aldol condensation reaction between 4-( N , N -dimethylamino)benzaldehyde and multiarm aromatic ketones. The multiarm aromatic ketones were synthesized through nucleophilic substitution reaction between 4-hydroxy acetophenone and benzyl bromides. The benzyl bromides, multiarm aromatic ketones, and corresponding chalcone derivatives were evaluated for their activities against eleven clinical pathogenic Gram-positive, Gram-negative bacteria, and three pathogenic fungi by the disk diffusion method. The minimum inhibitory concentration was determined by the microbroth dilution technique. The results of the present study demonstrated that benzyl bromide derivatives have strong antibacterial and antifungal properties as compared to synthetic chalcone derivatives and ketones. Benzyl bromides (1a and 1c) showed high ester activity against Gram-positive bacteria and fungi but moderate activity against Gram-negative bacteria. Therefore, these compounds may be considered as good antibacterial and antifungal drug discovery. However, substituted ketones (2a-b) as well as chalcone derivatives (3a-c) showed no activity against all the tested strains except for ketone (2c), which showed moderate activity against Candida albicans .
Shakhatreh, Muhamad Ali K; Al-Smadi, Mousa L; Khabour, Omar F; Shuaibu, Fatima A; Hussein, Emad I; Alzoubi, Karem H
2016-01-01
Several applications of chalcones and their derivatives encouraged researchers to increase their synthesis as an alternative for the treatment of pathogenic bacterial and fungal infections. In the present study, chalcone derivatives were synthesized through cross aldol condensation reaction between 4-(N,N-dimethylamino)benzaldehyde and multiarm aromatic ketones. The multiarm aromatic ketones were synthesized through nucleophilic substitution reaction between 4-hydroxy acetophenone and benzyl bromides. The benzyl bromides, multiarm aromatic ketones, and corresponding chalcone derivatives were evaluated for their activities against eleven clinical pathogenic Gram-positive, Gram-negative bacteria, and three pathogenic fungi by the disk diffusion method. The minimum inhibitory concentration was determined by the microbroth dilution technique. The results of the present study demonstrated that benzyl bromide derivatives have strong antibacterial and antifungal properties as compared to synthetic chalcone derivatives and ketones. Benzyl bromides (1a and 1c) showed high ester activity against Gram-positive bacteria and fungi but moderate activity against Gram-negative bacteria. Therefore, these compounds may be considered as good antibacterial and antifungal drug discovery. However, substituted ketones (2a–b) as well as chalcone derivatives (3a–c) showed no activity against all the tested strains except for ketone (2c), which showed moderate activity against Candida albicans. PMID:27877017
Reduction of aromatic and heterocyclic aromatic N-hydroxylamines by human cytochrome P450 2S1.
Wang, Kai; Guengerich, F Peter
2013-06-17
Many aromatic amines and heterocyclic aromatic amines (HAAs) are known carcinogens for animals, and there is also strong evidence of some in human cancer. The activation of these compounds, including some arylamine drugs, involves N-hydroxylation, usually by cytochrome P450 enzymes (P450) in Family 1 (1A2, 1A1, and 1B1). We previously demonstrated that the bioactivation product of the anticancer agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203), an N-hydroxylamine, can be reduced by P450 2S1 to its amine precursor under anaerobic conditions and, to a lesser extent, under aerobic conditions [Wang, K., and Guengerich, F. P. (2012) Chem. Res. Toxicol. 25, 1740-1751]. In the study presented here, we tested the hypothesis that P450 2S1 is involved in the reductive biotransformation of known carcinogenic aromatic amines and HAAs. The N-hydroxylamines of 4-aminobiphenyl (4-ABP), 2-naphthylamine (2-NA), and 2-aminofluorene (2-AF) were synthesized and found to be reduced by P450 2S1 under both anaerobic and aerobic conditions. The formation of amines due to P450 2S1 reduction also occurred under aerobic conditions but was less apparent because the competitive disproportionation reactions (of the N-hydroxylamines) also yielded amines. Further, some nitroso and nitro derivatives of the arylamines could also be reduced by P450 2S1. None of the amines tested were oxidized by P450 2S1. These results suggest that P450 2S1 may be involved in the reductive detoxication of several of the activated products of carcinogenic aromatic amines and HAAs.
Reduction of Aromatic and Heterocyclic Aromatic N-Hydroxylamines by Human Cytochrome P450 2S1
Wang, Kai; Guengerich, F. Peter
2013-01-01
Many aromatic amines and heterocyclic aromatic amines (HAAs) are known carcinogens for animals and there is also strong evidence for some in human cancer. The activation of these compounds, including some arylamine drugs, involves N-hydroxylation, usually by cytochrome P450 enzymes (P450) in Family 1 (1A2, 1A1, and 1B1). We previously demonstrated that the bioactivation product of the anti-cancer agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203), an N-hydroxylamine, can be reduced by P450 2S1 to its amine precursor under anaerobic conditions and, to a lesser extent, under aerobic conditions (Wang, K., and Guengerich, F. P. (2012) Chem. Res. Toxicol. 25, 1740–1751). In the present study, we tested the hypothesis that P450 2S1 is involved in the reductive biotransformation of known carcinogenic aromatic amines and HAAs. The N-hydroxylamines of 4-aminobiphenyl (4-ABP), 2-naphthylamine (2-NA), and 2-aminofluorene (2-AF) were synthesized and found to be reduced by P450 2S1 under both anaerobic and aerobic conditions. The formation of amines due to P450 2S1 reduction also occurred under aerobic conditions but was less apparent because the competitive disproportionation reactions (of the N-hydroxylamines) also yielded amines. Further, some nitroso and nitro derivatives of the arylamines could also be reduced by P450 2S1. None of the amines tested were oxidized by P450 2S1. These results suggest that P450 2S1 may be involved in the reductive detoxication of several of the activated products of carcinogenic aromatic amines and HAAs. PMID:23682735
Prusinowska, Renata; Śmigielski, Krzysztof; Stobiecka, Agnieszka; Kunicka-Styczyńska, Alina
2016-01-01
It was shown that the method for obtaining hydrolates from lavender (Lavandula angustifolia) influences the content of active compounds and the aromatic, antimicrobial and antioxidant properties of the hydrolates. The content of volatile organic compounds ranged from 9.12 to 97.23 mg/100 mL of hydrolate. Lavender hydrolate variants showed low antimicrobial activity (from 0% to 0.05%). The radical scavenging activity of DPPH was from 3.6 ± 0.5% to 3.8 ± 0.6% and oxygen radical absorbance capacity (ORAC(FL)) results were from 0 to 266 μM Trolox equivalent, depending on the hydrolate variant.
Sulfur-containing polycyclic aromatic hydrocarbons (thia-PAHs or thiaarenes) are common constituents of air pollution and cigarette smoke, yet little is known of the biological significance of exposure to these compounds. Some are mutagenic and carcinogenic, but only a few have ...
Amezcua-Allieri, M A; Ávila-Chávez, M A; Trejo, A; Meléndez-Estrada, J
2012-03-01
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic substances which are resistant to environmental degradation due to their highly hydrophobic nature. Soils contaminated with PAHs pose potential risks to human and ecological health, therefore concern over their adverse effects have resulted in extensive studies on their removal from contaminated soils. The main purpose of this study was to compare experimental results of PAHs removal, from a natural certified soil polluted with PAHs, by biological methods (using bioaugmentation and biostimulation in a solid-state culture) with those from supercritical fluid extraction (SFE), using supercritical ethane as solvent. The comparison of results between the two methods showed that maximal removal of naphthalene, acenaphthene, fluorene, and chrysene was performed using bioremediation; however, for the rest of the PAHs considered (fluoranthene, pyrene, and benz(a)anthracene) SFE resulted more efficient. Although bioremediation achieved higher removal ratios for certain hydrocarbons and takes advantage of the increased rate of natural biological processes, it takes longer time (i.e. 36 d vs. half an hour) than SFE and it is best for 2-3 PAHs rings. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bio-Based Aromatic Epoxy Monomers for Thermoset Materials.
Ng, Feifei; Couture, Guillaume; Philippe, Coralie; Boutevin, Bernard; Caillol, Sylvain
2017-01-18
The synthesis of polymers from renewable resources is a burning issue that is actively investigated. Polyepoxide networks constitute a major class of thermosetting polymers and are extensively used as coatings, electronic materials, adhesives. Owing to their outstanding mechanical and electrical properties, chemical resistance, adhesion, and minimal shrinkage after curing, they are used in structural applications as well. Most of these thermosets are industrially manufactured from bisphenol A (BPA), a substance that was initially synthesized as a chemical estrogen. The awareness on BPA toxicity combined with the limited availability and volatile cost of fossil resources and the non-recyclability of thermosets implies necessary changes in the field of epoxy networks. Thus, substitution of BPA has witnessed an increasing number of studies both from the academic and industrial sides. This review proposes to give an overview of the reported aromatic multifunctional epoxide building blocks synthesized from biomass or from molecules that could be obtained from transformed biomass. After a reminder of the main glycidylation routes and mechanisms and the recent knowledge on BPA toxicity and legal issues, this review will provide a brief description of the main natural sources of aromatic molecules. The different epoxy prepolymers will then be organized from simple, mono-aromatic di-epoxy, to mono-aromatic poly-epoxy, to di-aromatic di-epoxy compounds, and finally to derivatives possessing numerous aromatic rings and epoxy groups.
Tailoring ZSM-5 Zeolites for the Fast Pyrolysis of Biomass to Aromatic Hydrocarbons.
Hoff, Thomas C; Gardner, David W; Thilakaratne, Rajeeva; Wang, Kaige; Hansen, Thomas W; Brown, Robert C; Tessonnier, Jean-Philippe
2016-06-22
The production of aromatic hydrocarbons from cellulose by zeolite-catalyzed fast pyrolysis involves a complex reaction network sensitive to the zeolite structure, crystallinity, elemental composition, porosity, and acidity. The interplay of these parameters under the reaction conditions represents a major roadblock that has hampered significant improvement in catalyst design for over a decade. Here, we studied commercial and laboratory-synthesized ZSM-5 zeolites and combined data from 10 complementary characterization techniques in an attempt to identify parameters common to high-performance catalysts. Crystallinity and framework aluminum site accessibility were found to be critical to achieve high aromatic yields. These findings enabled us to synthesize a ZSM-5 catalyst with enhanced activity, which offers the highest aromatic hydrocarbon yield reported to date. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Qureshi, Farah; Khuhawar, Muhammad Yar; Jahangir, Taj Muhammad; Channar, Abdul Hamid
2016-01-01
Five new linear Schiff base polymers having azomethine structures, ether linkages and extended aliphatic chain lengths with flexible spacers were synthesized by polycondensation of dialdehyde (monomer) with aliphatic and aromatic diamines. The formation yields of monomer and polymers were obtained within 75-92%. The polymers with flexible spacers of n-hexane were somewhat soluble in acetone, chloroform, THF, DMF and DMSO on heating. The monomer and polymers were characterized by melting point, elemental microanalysis, FT-IR, (1)HNMR, UV-Vis spectroscopy, thermogravimetry (TG), differential thermal analysis (DTA), fluorescence emission, scanning electron microscopy (SEM) and viscosities and thermodynamic parameters measurements of their dilute solutions. The studies supported formation of the monomer and polymers and on the basis of these studies their structures have been assigned. The synthesized polymers were tested for their antibacterial and antifungal activities.
Solanas, Concepción; de la Torre, Beatriz G; Fernández-Reyes, María; Santiveri, Clara M; Jiménez, M Angeles; Rivas, Luis; Jiménez, Ana I; Andreu, David; Cativiela, Carlos
2009-02-12
Analogues of the cationic antimicrobial peptide gramicidin S (GS), cyclo(Val-Orn-Leu-D-Phe-Pro)2, with d-Phe residues replaced by different (restricted mobility, mostly) surrogates have been synthesized and used in SAR studies against several pathogenic bacteria. While all D-Phe substitutions are shown by NMR to preserve the overall beta-sheet conformation, they entail subtle structural alterations that lead to significant modifications in biological activity. In particular, the analogue incorporating D-Tic (1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) shows a modest but significant increase in therapeutic index, mostly due to a sharp decrease in hemolytic effect. The fact that NMR data show a shortened distance between the D-Tic aromatic ring and the Orn delta-amino group may help explain the improved antibiotic profile of this analogue.
Therapeutic index of gramicidin S is strongly modulated by d-phenylalanine analogues at the β-turn
Solanas, Concepción; de la Torre, Beatriz G.; Fernández-Reyes, María; Santiveri, Clara M.; Jiménez, M. Ángeles; Rivas, Luis; Jiménez, Ana I.; Andreu, David; Cativiela, Carlos
2009-01-01
Analogues of the cationic antimicrobial peptide gramicidin S (GS), cyclo(Val-Orn-Leu-d-Phe-Pro)2, with d-Phe residues replaced by different (restricted mobility, mostly) surrogates have been synthesized and used in SAR studies against several pathogenic bacteria. While all d-Phe substitutions are shown by NMR to preserve the overall β-sheet conformation, they entail subtle structural alterations that lead to significant modifications in biological activity. In particular, the analogue incorporating d-Tic (1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) shows a modest but significant increase in therapeutic index, mostly due to a sharp decrease in hemolytic effect. The fact that NMR data show a shortened distance between the d-Tic aromatic ring and the Orn δ-amino group may help explain the improved antibiotic profile of this analogue. PMID:19132829
Bioactive Compounds in Some Culinary Aromatic Herbs and Their Effects on Human Health.
Guiné, Raquel P F; Gonçalves, Fernando J
2016-01-01
Culinary herbs are herbaceous (leafy) plants that add flavour and colour to all types of meals. There is a wide variety of herbs that are used for culinary purposes worldwide, which are also recognized for their beneficial health effects, and thus have also been used in folk medicine. Besides their nutritional value herbs are rich in many phytochemical components with bioactive effects, thus improving human health. The aim of the present work was to make a general overview of some of these herbs, including their gastronomic usage, their chemical composition in bioactive components and their reported health effects. This work showed that the health effects are very diverse and differ according to the herb in question. However, some of the most frequently citted biological activities include antioxidant, antimicrobial, and antiviral effects.
Safranal: From an Aromatic Natural Product to a Rewarding Pharmacological Agent
Rezaee, Ramin; Hosseinzadeh, Hossein
2013-01-01
Safranal, the main component of Crocus sativus essential oil, is thought to be the main cause of saffron unique odor. It is now about eighty years that this compound has been discovered and since then different scientific experiments have been done investigating its biological-pharmacological activities. Safranal effects in CNS have been more attractive to scientists and an escalating number of papers have been published regarding its neuropsychological effects. These promising properties of safranal propose its presence as a therapeutic agent in future, although there is a great need for further clinical trials and toxicological studies. In this review article, according to Scopus ®, Thomson Reuters Web of Knowledge®, Scientific Information Database (SID) ® and Pubmed ® all papers published until July 2012 were thoroughly discussed and a brief note of each study was prepared. PMID:23638289
The anti-inflammatory activity of dillapiole and some semisynthetic analogues.
Parise-Filho, Roberto; Pastrello, Michelli; Pereira Camerlingo, Carla Emygdio; Silva, Gisele Juni; Agostinho, Leonardo Aguiar; de Souza, Thaís; Motter Magri, Fátima Maria; Ribeiro, Roberto Rodrigues; Brandt, Carlos Alberto; Polli, Michelle Carneiro
2011-11-01
Piper aduncum L. (Piperaceae) produces an essential oil (dillapiole) with great exploitative potential and it has proven effects against traditional cultures of phytopathogens, such as fungi, bacteria and mollusks, as well as analgesic action with low levels of toxicity. This study investigated the in vivo anti-inflammatory activity of dillapiole. Furthermore, in order to elucidate its structure-anti-inflammatory activity relationship (SAR), semisynthetic analogues were proposed by using the molecular simplification strategy. Dillapiole and safrole were isolated and purified using column chromatography. The semisynthetic analogues were obtained by using simple organic reactions, such as catalytic reduction and isomerization. All the analogues were purified by column chromatography and characterized by (1)H and (13)C NMR. The anti-inflammatory activities of dillapiole and its analogues were studied in carrageenan-induced rat paw edema model. Dillapiole and di-hydrodillapiole significantly (p<0.05) inhibited rat paw edema. All the other substances tested, including safrole, were less powerful inhibitors with activities inferior to that of indomethacin. These findings showed that dillapiole and di-hydrodillapiole have moderate anti-phlogistic properties, indicating that they can be used as prototypes for newer anti-inflammatory compounds. Structure-activity relationship studies revealed that the benzodioxole ring is important for biological activity as well as the alkyl groups in the side chain and the methoxy groups in the aromatic ring.
USDA-ARS?s Scientific Manuscript database
Furanocoumarins (FCs) are a class of aromatic compounds in grapefruit that inhibit human intestinal cytochrome P450 3A4 (CYP3A4). Since fungi metabolize polycyclic aromatic hydrocarbons, we hypothesized that certain fungi might also metabolize FCs into forms that may be inactive as CYP3A4 inhibitors...
New Synthesis Of Poly(1,3,4-Oxadiazoles)
NASA Technical Reports Server (NTRS)
Connell, John W.; Hergenrother, Paul M.; Wolf, Peter
1992-01-01
Synthesis via aromatic nucleophilic displacement yields new high-molecular-weight polymers. Polymers exhibited good mechanical and thermal properties. Synthetic route provided high-molecular-weight POX of new chemical structure, potentially more economical. Availability of large variety of activated aromatic dihalides, facilitates variation of chemical structures. Exhibit properties making them useful as films. Also useful in coatings, adhesives, moldings, and composites.
NASA Astrophysics Data System (ADS)
Arshad, Nasima; Perveen, Fouzia; Saeed, Aamer; Channar, Pervaiz Ali; Farooqi, Shahid Iqbal; Larik, Fayaz Ali; Ismail, Hammad; Mirza, Bushra
2017-07-01
Acid catalyzed condensation of isoniazid with a number of suitably substituted aromatic and heterocyclic aldehydes was carried out in dry ethanol to afford the title (E)-N‧-(substituted benzylidene/methylene) isonicotinohydrazides (SF 1 - SF 4) in good yields. These compounds were characterized and further investigated for their binding with ds.DNA using UV- spectroscopy and molecular docking and for antitumor and antimicrobial potentials. A good correlation was found among spectroscopic, theoretical and biological results. UV- spectra in the presence of DNA concentrations and their data interpretation in terms binding constant "Kb" and free energy change (ΔG) provided evidences for the significant and spontaneous binding of the compounds with DNA. Molecular docking studies and structural analysis further supported the UV-findings and indicated that the modes of interactions between bromo- (SF 1) and flouro- (SF 4) substituted isonicotinohydrazides is intercalation while methoxy- (SF 2) and hydroxy- (SF 3) substituted isonicotinohydrazides interact with DNA helix via groove binding. SF 1 exhibited comparatively higher Kb value (UV-; 8.07 × 103 M-1, docking; 8.11 × 103 M-1) which inferred that the respective compound muddles to DNA most powerfully. SF 1 has shown the lowest IC50 (345.3 μg/mL) value among all the compounds indicating its comparatively highest activity towards tumor inhibition. None of the compound has shown perceptible antibacterial and antifungal activities.
The genus Artemisia: a comprehensive review.
Bora, Kundan Singh; Sharma, Anupam
2011-01-01
Medicinal plants are nature's gift to human beings to make disease free healthy life, and play a vital role to preserve our health. They are believed to be much safer and proven elixir in the treatment of various ailments. The genus Artemisia (Astraceae) consists of about 500 species, occurring throughout the world. The present review comprises the ethnopharmacological, phytochemical and therapeutic potential of various species of Artemisia. The aim of this this review is to bring together most of the available scientific research conducted on the genus Artemisia, which is currently scattered across various publications. Through this review the authors hope to attract the attention of natural product researchers throughout the world to focus on the unexplored potential of Artemisia species. This review has been compiled using references from major databases such as Chemical Abstracts, Medicinal and Aromatic Plants Abstracts, ScienceDirect, SciFinder, PubMed, King's American Dispensatory, Henriette's Herbal Homepage, Dr. Duke's Phytochemical and Ethnobotanical Databases. An exhaustive survey of literature revealed that the different species of Artemisia have a vast range of biological activities including antimalarial, cytotoxic, antihepatotoxic, antibacterial, antifungal and antioxidant activity. Some very important drug leads have been discovered from this genus, notably artemisinin, the well known antimalarial drug isolated from the Chinese herb Artemisia annua. Terpenoids, flavonoids, coumarins, caffeoylquinic acids, sterols and acetylenes constitute major classes of phytoconstituents of the genus. Various species of Artemisia seems to hold great potential for in-depth investigation for various biological activities, especially their effects on the central nervous and cardiovascular systems.
Organocatalytic asymmetric arylation of indoles enabled by azo groups
NASA Astrophysics Data System (ADS)
Qi, Liang-Wen; Mao, Jian-Hui; Zhang, Jian; Tan, Bin
2018-01-01
Arylation is a fundamental reaction that can be mostly fulfilled by electrophilic aromatic substitution and transition-metal-catalysed aryl functionalization. Although the azo group has been used as a directing group for many transformations via transition-metal-catalysed aryl carbon-hydrogen (C-H) bond activation, there remain significant unmet challenges in organocatalytic arylation. Here, we show that the azo group can effectively act as both a directing and activating group for organocatalytic asymmetric arylation of indoles via formal nucleophilic aromatic substitution of azobenzene derivatives. Thus, a wide range of axially chiral arylindoles have been achieved in good yields with excellent enantioselectivities by utilizing chiral phosphoric acid as catalyst. Furthermore, highly enantioenriched pyrroloindoles bearing two contiguous quaternary chiral centres have also been obtained via a cascade enantioselective formal nucleophilic aromatic substitution-cyclization process. This strategy should be useful in other related research fields and will open new avenues for organocatalytic asymmetric aryl functionalization.
Organocatalytic asymmetric arylation of indoles enabled by azo groups.
Qi, Liang-Wen; Mao, Jian-Hui; Zhang, Jian; Tan, Bin
2018-01-01
Arylation is a fundamental reaction that can be mostly fulfilled by electrophilic aromatic substitution and transition-metal-catalysed aryl functionalization. Although the azo group has been used as a directing group for many transformations via transition-metal-catalysed aryl carbon-hydrogen (C-H) bond activation, there remain significant unmet challenges in organocatalytic arylation. Here, we show that the azo group can effectively act as both a directing and activating group for organocatalytic asymmetric arylation of indoles via formal nucleophilic aromatic substitution of azobenzene derivatives. Thus, a wide range of axially chiral arylindoles have been achieved in good yields with excellent enantioselectivities by utilizing chiral phosphoric acid as catalyst. Furthermore, highly enantioenriched pyrroloindoles bearing two contiguous quaternary chiral centres have also been obtained via a cascade enantioselective formal nucleophilic aromatic substitution-cyclization process. This strategy should be useful in other related research fields and will open new avenues for organocatalytic asymmetric aryl functionalization.
Fu, Jie; Lee, Wan-Ning; Coleman, Clark; Meyer, Melissa; Carter, Jason; Nowack, Kirk; Huang, Ching-Hua
2017-01-01
A pilot study employing two parallel trains of two-stage biofiltration, i.e., a sand/anthracite (SA) biofilter followed by a biologically-active granular activated carbon (GAC) contactor, was conducted to test the efficiency, feasibility and stability of biofiltration for removing natural organic matter (NOM) after coagulation in a drinking water treatment plant. Results showed the biofiltration process could effectively remove turbidity (<0.1 NTU in all effluents) and NOM (>24% of dissolved organic carbon (DOC), >57% of UV 254 , and >44% of SUVA 254 ), where the SA biofilters showed a strong capacity for turbidity removal, while the GAC contactors played the dominant role in NOM removal. The vertical profile of water quality in the GAC contactors indicated the middle-upper portion was the critical zone for the removal of NOM, where relatively higher adsorption and enhanced biological removal were afforded. Fluorescence excitation-emission matrix (EEM) analysis of NOM showed that the GAC contactors effectively decreased the content of humic-like component, while protein-like component was refractory for the biofiltration process. Nutrients (NH 4 -N and PO 4 -P) supplementation applied upstream of one of the two-stage biofiltration trains (called engineered biofiltration) stimulated the growth of microorganisms, and showed a modest effect on promoting the biological removal of small non-aromatic compositions in NOM. Redundancy analysis (RDA) indicated influent UV 254 was the most explanatory water quality parameter for GAC contactors' treatment performance, and a high load of UV 254 would result in significantly reduced removals of UV 254 and SUVA 254 . Copyright © 2016 Elsevier Ltd. All rights reserved.
Yung, Matthew M.; Stanton, Alexander R.; Iisa, Kristiina; ...
2016-10-07
Metal-impregnated (Ni or Ga) ZSM-5 catalysts were studied for biomass pyrolysis vapor upgrading to produce hydrocarbons using three reactors constituting a 100 000x change in the amount of catalyst used in experiments. Catalysts were screened for pyrolysis vapor phase upgrading activity in two small-scale reactors: (i) a Pyroprobe with a 10 mg catalyst in a fixed bed and (ii) a fixed-bed reactor with 500 mg of catalyst. The best performing catalysts were then validated with a larger scale fluidized-bed reactor (using ~1 kg of catalyst) that produced measurable quantities of bio-oil for analysis and evaluation of mass balances. Despite somemore » inherent differences across the reactor systems (such as residence time, reactor type, analytical techniques, mode of catalyst and biomass feed) there was good agreement of reaction results for production of aromatic hydrocarbons, light gases, and coke deposition. Relative to ZSM-5, Ni or Ga addition to ZSM-5 increased production of fully deoxygenated aromatic hydrocarbons and light gases. In the fluidized bed reactor, Ga/ZSM-5 slightly enhanced carbon efficiency to condensed oil, which includes oxygenates in addition to aromatic hydrocarbons, and reduced oil oxygen content compared to ZSM-5. Ni/ZSM-5, while giving the highest yield of fully deoxygenated aromatic hydrocarbons, gave lower overall carbon efficiency to oil but with the lowest oxygen content. Reaction product analysis coupled with fresh and spent catalyst characterization indicated that the improved performance of Ni/ZSM-5 is related to decreasing deactivation by coking, which keeps the active acid sites accessible for the deoxygenation and aromatization reactions that produce fully deoxygenated aromatic hydrocarbons. The addition of Ga enhances the dehydrogenation activity of the catalyst, which leads to enhanced olefin formation and higher fully deoxygenated aromatic hydrocarbon yields compared to unmodified ZSM-5. Catalyst characterization by ammonia temperature programmed desorption, surface area measurements, and postreaction temperature-programmed oxidation (TPO) also showed that the metal-modified zeolites retained a greater percentage of their initial acidity and surface area, which was consistent between the reactor scales. These results demonstrate that the trends observed with smaller (milligram to gram) catalyst reactors are applicable to larger, more industrially relevant (kg) scales to help guide catalyst research toward application.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isoda, Takaaki; Nagao, Shinichi; Ma, Xiaoliang
1995-12-31
It has been revealed that significant desulfurization of refractory 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene (4,6-DMDBT) is very essential to achive the low sulfur level of gas oil requested by the current regulation. Their direct desulfurization through the interaction of their sulfur atom with the catalyst surface is sterically hindered by its neighbouring methyl groups. The substrate is found kinetically to be hydrogenated at one of its phenyl rings prior to the desulfurization in order to reduce the steric hindrance through non-planaring configuration (2-4). NiMo / Al{sub 2}O{sub 3} was reported to be superior to CoMo / Al{sub 2}O{sub 3} in the deepmore » desulufurization, because of its higher hydrogenation activity. However, such a hydrogenation route suffers severe inhibition by aromatic species in their dominant presence, because 4,6-DMDBT must compete with the aromatic species to the hydrogenation sites on the catalysts. The aromatic species up to 30 wt % in the gas oil was that completely stop the desulfurization of the particular substrate. The catalyst for the selective hydrogenation of 4,6-DMDBT in the dominant aromatic partners is most wanted to achive its extensive desulfurization in the gas oil, although there have been reported activities of various transition metal sulfides for HDS of dibenzothiophene, and hydrogenation of aromatic hydrocarbons.« less
Gonzalez, J; Marchand-Geneste, N; Giraudel, J L; Shimada, T
2012-01-01
To obtain chemical clues on the process of bioactivation by cytochromes P450 1A1 and 1B1, some QSAR studies were carried out based on cellular experiments of the metabolic activation of polycyclic aromatic hydrocarbons and heterocyclic aromatic compounds by those enzymes. Firstly, the 3D structures of cytochromes 1A1 and 1B1 were built using homology modelling with a cytochrome 1A2 template. Using these structures, 32 ligands including heterocyclic aromatic compounds, polycyclic aromatic hydrocarbons and corresponding diols, were docked with LigandFit and CDOCKER algorithms. Binding mode analysis highlighted the importance of hydrophobic interactions and the hydrogen bonding network between cytochrome amino acids and docked molecules. Finally, for each enzyme, multilinear regression and artificial neural network QSAR models were developed and compared. These statistical models highlighted the importance of electronic, structural and energetic descriptors in metabolic activation process, and could be used for virtual screening of ligand databases. In the case of P450 1A1, the best model was obtained with artificial neural network analysis and gave an r (2) of 0.66 and an external prediction [Formula: see text] of 0.73. Concerning P450 1B1, artificial neural network analysis gave a much more robust model, associated with an r (2) value of 0.73 and an external prediction [Formula: see text] of 0.59.
Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide
Salter-Blanc, Alexandra J.; Bylaska, Eric J.; Lyon, Molly A.; ...
2016-04-13
New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO 2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. Here in this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammettmore » $$\\sigma$$ constants ($$\\sigma^-$$), pK as of the amines, and energies of the highest occupied molecular orbital (E HOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (E ox)]. The selection of calculated descriptors (pK a), E HOMO, and E ox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO 2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to E HOMO (calculated with a modest level of theory).« less
Dötterl, Stefan; David, Anja; Boland, Wilhelm; Silberbauer-Gottsberger, Ilse; Gottsberger, Gerhard
2012-12-01
Many plants attract their pollinators with floral scents, and these olfactory signals are especially important at night, when visual signals become inefficient. Dynastid scarab beetles are a speciose group of night-active pollinators, and several plants pollinated by these insects have methoxylated aromatic compounds in their scents. However, there is a large gap in our knowledge regarding the compounds responsible for beetle attraction. We used chemical analytical analyses to determine temporal patterns of scent emission and the composition of scent released from inflorescences of Philodendron selloum. The attractiveness of the main components in the scent to the dynastid scarab beetle Erioscelis emarginata, the exclusive pollinator of this plant, was assessed in field biotests. The amount of scent increased rapidly in the evening, and large amounts of scent were released during the activity time of the beetle pollinators. Inflorescences emitted a high number of compounds of different biosynthetic origin, among them both uncommon and also widespread flower scents. Methoxylated aromatic compounds dominated the scent, and 4-methoxystyrene, the most abundant compound, attracted E. emarginata beetles. Other compounds, such as (Z)-jasmone and possibly also the methoxylated aromatic compound 3,4-dimethoxystyrene increased the attractiveness of 4-methoxystyrene. Methoxylated aromatics, which are known from other dynastid pollinated plants as well, are important signals in many scarab beetles in a different context (e.g., pheromones), thus suggesting that these plants exploit pre-existing preferences of the beetles for attracting this group of insects as pollinators.
Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salter-Blanc, Alexandra J.; Bylaska, Eric J.; Lyon, Molly A.
New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO 2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. Here in this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammettmore » $$\\sigma$$ constants ($$\\sigma^-$$), pK as of the amines, and energies of the highest occupied molecular orbital (E HOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (E ox)]. The selection of calculated descriptors (pK a), E HOMO, and E ox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO 2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to E HOMO (calculated with a modest level of theory).« less
Szaefer, Hanna; Krajka-Kuźniak, Violetta; Ignatowicz, Ewa; Adamska, Teresa; Baer-Dubowska, Wanda
2011-03-01
Chokeberry is a rich source of procyanidins known to have several types of biological activity including anticarcinogenic potential in experimental models. In this study we examined the effect of chokeberry juice on the hepatic and mammary gland carcinogen metabolizing enzyme expression altered by the polycyclic aromatic hydrocarbon, 7,12-dimethylbenz[a]anthracene (DMBA). Sprague-Dawley rats were gavaged with chokeberry juice (8 ml/kg b.w.) for 28 consecutive days. DMBA was administered i.p. on the 27th and the 28th days. Pretreatment with chokeberry juice reduced the activity of CYP1A1 and increased that of CYP2B involved in metabolic activation/detoxication of DMBA in rat liver, as well as expression and activity of phase II enzymes. Chokeberry juice had no effect on these parameters in the mammary gland and DMBA induced DNA damage in rat blood cells. These results together with our earlier observations indicate that metabolic alterations induced by chokeberry feeding are tissue specific and depend on the class of carcinogen. Copyright © 2011 Elsevier B.V. All rights reserved.
Singh, G; Kapoor, I P S; Singh, Pratibha; de Heluani, Carola S; de Lampasona, Marina P; Catalan, Cesar A N
2010-04-01
The phytoconstituents of essential oil and ethanol oleoresin of fresh and dry rhizomes of turmeric (Curcuma longa Linn.) were analyzed by GC-MS. The major constituents were aromatic-turmerone (24.4%), alpha-turmerone (20.5%) and beta-turmerone (11.1%) in fresh rhizome and aromatic-turmerone (21.4%), alpha-santalene (7.2%) and aromatic-curcumene (6.6%) in dry rhizome oil. Whereas, in oleoresins, the major components were alpha-turmerone (53.4%), beta-turmerone (18.1%) and aromatic-turmerone (6.2%) in fresh and aromatic-turmerone (9.6%), alpha-santalene (7.8%) and alpha-turmerone (6.5%) in dry rhizome. Results showed that alpha-turmerone, a major component in fresh rhizomes is only minor one in dry rhizomes. Also, the content of beta-turmerone in dry rhizomes is less than a half amount found in fresh rhizomes. The antioxidant properties have been assessed by various lipid peroxidation assays as well as DPPH radical scavenging and metal chelating methods. The essential oil and ethanol oleoresin of fresh rhizomes have higher antioxidant properties as compared dry ones. 2010 Elsevier Ltd. All rights reserved.
Huang, Yili; Zeng, Yanhua; Yu, Zhiliang; Zhang, Jing; Feng, Hao; Lin, Xiuchun
2013-11-01
Phylogenetic overlaps between aromatics-degrading bacteria and acyl-homoserine-lactone (AHL) or autoinducer (AI) based quorum-sensing (QS) bacteria were evident in literatures; however, the diversity of bacteria with both activities had never been finely described. In-silico searching in NCBI genome database revealed that more than 11% of investigated population harbored both aromatic ring-hydroxylating-dioxygenase (RHD) gene and AHL/AI-synthetase gene. These bacteria were distributed in 10 orders, 15 families, 42 genus and 78 species. Horizontal transfers of both genes were common among them. Using enrichment and culture dependent method, 6 Sphingomonadales and 4 Rhizobiales with phenanthrene- or pyrene-degrading ability and AHL-production were isolated from marine, wetland and soil samples. Thin-layer-chromatography and gas-chromatography-mass-spectrum revealed that these Sphingomonads produced various AHL molecules. This is the first report of highly diverse bacteria that harbored both aromatics-degrading and QS systems. QS regulation may have broad impacts on aromatics biodegradation, and would be a new angle for developing bioremediation technology. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chandrasekhar, K; Venkata Mohan, S
2012-04-01
Remediation of real-field petroleum sludge was studied under self-induced electrogenic microenvironment with the function of variable organic loads (OLs) in bio-electrochemical treatment (BET) systems. Operation under various OLs documented marked influence on both electrogenic activity and remediation efficiency. Both total petroleum hydrocarbons (TPH) and its aromatic fraction documented higher removal with OL4 operation followed by OL3, OL2, OL1 and control. Self-induced biopotential and associated multiple bio-electrocatalytic reactions during BET operation facilitated biotransformation of higher ring aromatics (5-6) to lower ring aromatic (2-3) compounds. Asphaltenes and NSO fractions showed negligible removal during BET operation. Higher electrogenic activity was recorded at OL1 (343mV; 53.11mW/m(2), 100Ω) compared to other three OLs operation. Bioaugmentation to anodic microflora with anaerobic culture documented enhanced electrogenic activity at OL4 operation. Voltammetric profiles, Tafel analysis and VFA generation were in agreement with the observed power generation and degradation efficiency. Copyright © 2012 Elsevier Ltd. All rights reserved.
Jiang, Rui; Sun, Liwei; Wang, Yanbing; Liu, Jianzeng; Liu, Xiaodan; Feng, Hao; Zhao, Daqing
2014-06-01
Panax ginseng C.A.Meyer is one of the most valuable traditional Chinese medicines. In this study, the essential oil of ginseng leaves (EOGL), collected using hydrodistillation and analyzed by GC/MS, contained a complex mixture of aliphatic (69.0%), terpenoid (21.5%) and aromatic compounds (2.4%). Among 54 components identified, the major ones were palmitic acid (36.1%), beta-farnesene (15.4%), linoleic acid (9.8%) and phytol (5.6%). In the cytotoxicity study, EOGL exhibited obvious cytotoxic activities against different cancer cell lines, including Hela, A549, ZR-75-1, HT-29, SGC7901 and B16 cells. Furthermore, Annexin V-FITC/PI staining assay indicated that EOGL can induce late apoptosis of ZR-75-1 cells, and the percentage of apoptotic cells increased in a concentration-dependent manner (0.9% to 5.6% and 67.4%). In addition to this, we also found that EOGL exhibited weak DPPH radical scavenging (12.0 +/- 0.4 mg/mL) and ABTS radical scavenging activities (1.6 +/- 0.1 mg/mL), and showed antibacterial activity against the Gram-positive bacteria, Staphylococcus aureus and Bacillus subtilis, and the Gram-negative bacterium, Escherichia coli. The data suggest that EOGL, which possesses important biological activities, especially significant anticancer activity, could be a potential medicinal resource.
Site-selective arene C-H amination via photoredox catalysis.
Romero, Nathan A; Margrey, Kaila A; Tay, Nicholas E; Nicewicz, David A
2015-09-18
Over the past several decades, organometallic cross-coupling chemistry has developed into one of the most reliable approaches to assemble complex aromatic compounds from preoxidized starting materials. More recently, transition metal-catalyzed carbon-hydrogen activation has circumvented the need for preoxidized starting materials, but this approach is limited by a lack of practical amination protocols. Here, we present a blueprint for aromatic carbon-hydrogen functionalization via photoredox catalysis and describe the utility of this strategy for arene amination. An organic photoredox-based catalyst system, consisting of an acridinium photooxidant and a nitroxyl radical, promotes site-selective amination of a variety of simple and complex aromatics with heteroaromatic azoles of interest in pharmaceutical research. We also describe the atom-economical use of ammonia to form anilines, without the need for prefunctionalization of the aromatic component. Copyright © 2015, American Association for the Advancement of Science.
Close, Adam J; Jones, Rhiannon N; Ocasio, Cory A; Kemmitt, Paul; Roe, S Mark; Spencer, John
2016-09-21
Nitration of three regioisomers of bromo-fluorobenzaldehyde proceeds regioselectively, notably with H2SO4/HNO3 at 0 °C. The thereby synthesized tetrasubstituted aromatics, endowed with orthogonal substituents, can be elaborated via Pd-catalysed coupling, reduction and reductive amination reactions. As a test-case, these compounds were converted into EGFR inhibitors related to Gefitinib, whose activity was rationalised by docking studies.
Xu, Di; Zhou, Zhi-Ming; Dai, Li; Tang, Li-Wei; Zhang, Jun
2015-05-01
Newly developed ferrocene-oxazoline-phosphine ligands containing quaternary ammonium ionic groups exhibited excellent catalytic performance for the ruthenium-catalyzed hydrogenation of aromatic ketonic substrates to give chiral secondary alcohols with high levels of conversions and enantioselectivities. Simple manipulation process, water tolerance, high activity and good recyclable property make this catalysis practical and appealing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Weininger, Ulrich; Respondek, Michal; Akke, Mikael
2012-09-01
Protein dynamics on the millisecond time scale commonly reflect conformational transitions between distinct functional states. NMR relaxation dispersion experiments have provided important insights into biologically relevant dynamics with site-specific resolution, primarily targeting the protein backbone and methyl-bearing side chains. Aromatic side chains represent attractive probes of protein dynamics because they are over-represented in protein binding interfaces, play critical roles in enzyme catalysis, and form an important part of the core. Here we introduce a method to characterize millisecond conformational exchange of aromatic side chains in selectively (13)C labeled proteins by means of longitudinal- and transverse-relaxation optimized CPMG relaxation dispersion. By monitoring (13)C relaxation in a spin-state selective manner, significant sensitivity enhancement can be achieved in terms of both signal intensity and the relative exchange contribution to transverse relaxation. Further signal enhancement results from optimizing the longitudinal relaxation recovery of the covalently attached (1)H spins. We validated the L-TROSY-CPMG experiment by measuring fast folding-unfolding kinetics of the small protein CspB under native conditions. The determined unfolding rate matches perfectly with previous results from stopped-flow kinetics. The CPMG-derived chemical shift differences between the folded and unfolded states are in excellent agreement with those obtained by urea-dependent chemical shift analysis. The present method enables characterization of conformational exchange involving aromatic side chains and should serve as a valuable complement to methods developed for other types of protein side chains.
Jiang, Jiasong; Guiza Beltran, Daisy; Schacht, Andrew; Wright, Stephen; Zhang, Limei; Du, Liangcheng
2018-04-20
Myxin is a well-known antibiotic that had been used for decades. It belongs to the phenazine natural products that exhibit various biological activities, which are often dictated by the decorating groups on the heteroaromatic three-ring system. The three rings of myxin carry a number of decorations, including an unusual aromatic N5, N10-dioxide. We previously showed that phenazine 1,6-dicarboxylic acid (PDC) is the direct precursor of myxin, and two redox enzymes (LaPhzS and LaPhzNO1) catalyze the decarboxylative hydroxylation and aromatic N-oxidations of PDC to produce iodinin (1.6-dihydroxy- N5, N10-dioxide phenazine). In this work, we identified the LaPhzM gene from Lysobacter antibioticus OH13 and demonstrated that LaPhzM encodes a SAM-dependent O-methyltransferase converting iodinin to myxin. The results further showed that LaPhzM is responsible for both monomethoxy and dimethoxy formation in all phenazine compounds isolated from strain OH13. LaPhzM exhibits relaxed substrate selectivity, catalyzing O-methylation of phenazines with non-, mono-, or di- N-oxide. In addition, we demonstrated a one-pot biosynthesis of myxin by in vitro reconstitution of the three phenazine-ring decorating enzymes. Finally, we determined the X-ray crystal structure of LaPhzM with a bound cofactor at 1.4 Å resolution. The structure provided molecular insights into the activity and selectivity of the first characterized phenazine O-methyltransferase. These results will facilitate future exploitation of the thousands of phenazines as new antibiotics through metabolic engineering and chemoenzymatic syntheses.
2013-01-01
Background High quality RNA is a primary requisite for numerous molecular biological applications but is difficult to isolate from several plants rich in polysaccharides, polyphenolics and other secondary metabolites. These compounds either bind with nucleic acids or often co-precipitate at the final step and many times cannot be removed by conventional methods and kits. Addition of vinyl-pyrollidone polymers in extraction buffer efficiently removes polyphenolics to some extent, but, it failed in case of Azadirachta indica and several other medicinal and aromatic plants. Findings Here we report the use of adsorption property of activated charcoal (0.03%–0.1%) in RNA isolation procedures to remove complex secondary metabolites and polyphenolics to yield good quality RNA from Azadirachta indica. We tested and validated our modified RNA isolation method across 21 different plants including Andrographis paniculata, Aloe vera, Rosa damascena, Pelargonium graveolens, Phyllanthus amarus etc. from 13 other different families, many of which are considered as tough system for isolating RNA. The A260/280 ratio of the extracted RNA ranged between 1.8-2.0 and distinct 28S and 18S ribosomal RNA bands were observed in denaturing agarose gel electrophoresis. Analysis using Agilent 2100 Bioanalyzer revealed intact total RNA yield with very good RNA Integrity Number. Conclusions The RNA isolated by our modified method was found to be of high quality and amenable for sensitive downstream molecular applications like subtractive library construction and RT-PCR. This modified RNA isolation procedure would aid and accelerate the biotechnological studies in complex medicinal and aromatic plants which are extremely rich in secondary metabolic compounds. PMID:23537338
Zhu, Benzhan; Shen, Chen; Gao, Huiying; Zhu, Liya; Shao, Jie; Mao, Li
2017-12-01
The ubiquitous distribution of halogenated aromatic compounds (XAr) coupled with their carcinogenicity has raised public concerns on their potential risks to both human health and the ecosystem. Recently, advanced oxidation processes (AOPs) have been considered as an "environmentally-friendly" technology for the remediation and destruction of such recalcitrant and highly toxic XAr. During our study on the mechanism of metal-independent production of hydroxyl radicals (OH) by halogenated quinones and H 2 O 2 , we found, unexpectedly, that an unprecedented OH-dependent two-step intrinsic chemiluminescene (CL) can be produced by H 2 O 2 and tetrachloro-p-benzoquinone, the major carcinogenic metabolite of the widely used wood preservative pentachlorophenol. Further investigations showed that, in all OH-generating systems, CL can also be produced not only by pentachlorophenol and all other halogenated phenols, but also by all XAr tested. A systematic structure-activity relationship study for all 19 chlorophenolic congeners showed that the CL increased with an increasing number of Cl-substitution in general. More importantly, a relatively good correlation was observed between the formation of quinoid/semiquinone radical intermediates and CL generation. Based on these results, we propose that OH-dependent formation of quinoid intermediates and electronically excited carbonyl species is responsible for this unusual CL production; and a rapid, sensitive, simple, and effective CL method was developed not only to detect and quantify trace amount of XAr, but also to provide useful information for predicting the toxicity or monitoring real-time degradation kinetics of XAr. These findings may have broad chemical, environmental and biological implications for future studies on halogenated aromatic persistent organic pollutants. Copyright © 2017. Published by Elsevier B.V.
Sáez-Jiménez, Verónica; Baratto, Maria Camilla; Pogni, Rebecca; Rencoret, Jorge; Gutiérrez, Ana; Santos, José Ignacio; Martínez, Angel T; Ruiz-Dueñas, Francisco Javier
2015-09-18
Versatile peroxidase (VP) is a high redox-potential peroxidase of biotechnological interest that is able to oxidize phenolic and non-phenolic aromatics, Mn(2+), and different dyes. The ability of VP from Pleurotus eryngii to oxidize water-soluble lignins (softwood and hardwood lignosulfonates) is demonstrated here by a combination of directed mutagenesis and spectroscopic techniques, among others. In addition, direct electron transfer between the peroxidase and the lignin macromolecule was kinetically characterized using stopped-flow spectrophotometry. VP variants were used to show that this reaction strongly depends on the presence of a solvent-exposed tryptophan residue (Trp-164). Moreover, the tryptophanyl radical detected by EPR spectroscopy of H2O2-activated VP (being absent from the W164S variant) was identified as catalytically active because it was reduced during lignosulfonate oxidation, resulting in the appearance of a lignin radical. The decrease of lignin fluorescence (excitation at 355 nm/emission at 400 nm) during VP treatment under steady-state conditions was accompanied by a decrease of the lignin (aromatic nuclei and side chains) signals in one-dimensional and two-dimensional NMR spectra, confirming the ligninolytic capabilities of the enzyme. Simultaneously, size-exclusion chromatography showed an increase of the molecular mass of the modified residual lignin, especially for the (low molecular mass) hardwood lignosulfonate, revealing that the oxidation products tend to recondense during the VP treatment. Finally, mutagenesis of selected residues neighboring Trp-164 resulted in improved apparent second-order rate constants for lignosulfonate reactions, revealing that changes in its protein environment (modifying the net negative charge and/or substrate accessibility/binding) can modulate the reactivity of the catalytic tryptophan. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Vacuum distillation residue upgrading by an indigenous bacillus cereus
2013-01-01
Background Biological processing of heavy fractions of crude oils offers less severe process conditions and higher selectivity for refining. Biochemical Processes are expected to be low demand energy processes and certainly ecofriendly. Results A strain of biosurfactant producing bacterium was isolated from an oil contaminated soil at Tehran refinery distillation unit. Based on selected phenotypic and genotypic characteristic including morphology, biochemical proprety, and 16 SrRNA sequencing identified as a novel strain of Bacillus cereus (JQ178332). This bacterium endures a wide range of pH, salinity and temperature. This specific strain utilizes both paraffin and anthracene as samples of aliphatic and polycyclic aromatic hydrocarbons. The ability of this bacterium to acquire all its energy and chemical requirements from Vacuum Distillation Residue (VR), as a net sample of problematic hydrocarbons in refineries, was studied. SARA test ASTM D4124-01 revealed 65.5% decrease in asphaltenic, 22.1% in aliphatics and 30.3% in Aromatics content of the VR in MSM medium. Further results with 0.9% saline showed 55% decrease in asphaltene content and 2.1% Aromatics respectively. Conclusion Remarkable abilities of this microorganism propose its application in an ecofriendly technology to upgrade heavy crude oils. PMID:24499629
Vacuum distillation residue upgrading by an indigenous Bacillus cereus.
Tabatabaee, Mitra Sadat; Mazaheri Assadi, Mahnaz
2013-07-16
Biological processing of heavy fractions of crude oils offers less severe process conditions and higher selectivity for refining. Biochemical Processes are expected to be low demand energy processes and certainly ecofriendly. A strain of biosurfactant producing bacterium was isolated from an oil contaminated soil at Tehran refinery distillation unit. Based on selected phenotypic and genotypic characteristic including morphology, biochemical proprety, and 16 SrRNA sequencing identified as a novel strain of Bacillus cereus (JQ178332). This bacterium endures a wide range of pH, salinity and temperature. This specific strain utilizes both paraffin and anthracene as samples of aliphatic and polycyclic aromatic hydrocarbons. The ability of this bacterium to acquire all its energy and chemical requirements from Vacuum Distillation Residue (VR), as a net sample of problematic hydrocarbons in refineries, was studied. SARA test ASTM D4124-01 revealed 65.5% decrease in asphaltenic, 22.1% in aliphatics and 30.3% in Aromatics content of the VR in MSM medium. Further results with 0.9% saline showed 55% decrease in asphaltene content and 2.1% Aromatics respectively. Remarkable abilities of this microorganism propose its application in an ecofriendly technology to upgrade heavy crude oils.
Beyond the benzene dimer: an investigation of the additivity of pi-pi interactions.
Tauer, Tony P; Sherrill, C David
2005-11-24
The benzene dimer is the simplest prototype of pi-pi interactions and has been used to understand the fundamental physics of these interactions as they are observed in more complex systems. In biological systems, however, aromatic rings are rarely found in isolated pairs; thus, it is important to understand whether aromatic pairs remain a good model of pi-pi interactions in clusters. In this study, ab initio methods are used to compute the binding energies of several benzene trimers and tetramers, most of them in 1D stacked configurations. The two-body terms change only slightly relative to the dimer, and except for the cyclic trimer, the three- and four-body terms are negligible. This indicates that aromatic clusters do not feature any large nonadditive effects in their binding energies, and polarization effects in benzene clusters do not greatly change the binding that would be anticipated from unperturbed benzene-benzene interactions, at least for the 1D stacked systems considered. Three-body effects are larger for the cyclic trimer, but for all systems considered, the computed binding energies are within 10% of what would be estimated from benzene dimer energies at the same geometries.
Effect of ozone on the performance of a hybrid ceramic membrane-biological activated carbon process.
Guo, Jianning; Hu, Jiangyong; Tao, Yi; Zhu, Jia; Zhang, Xihui
2014-04-01
Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid processes was evaluated with the removal efficiencies of turbidity, ammonia and organic matter. The results indicated that more than 99% of particle count was removed by both hybrid processes and ozonation had no significant effect on its removal. BAC filtration greatly improved the removal of ammonia. Increasing the dissolved oxygen to 30.0 mg/L could lead to a removal of ammonia with concentrations as high as 7.80 mg/L and 8.69 mg/L for Processes A and B, respectively. The average removal efficiencies of total organic carbon and ultraviolet absorbance at 254 nm (UV254, a parameter indicating organic matter with aromatic structure) were 49% and 52% for Process A, 51% and 48% for Process B, respectively. Some organic matter was oxidized by ozone and this resulted in reduced membrane fouling and increased membrane flux by 25%-30%. However, pre-ozonation altered the components of the raw water and affected the microorganisms in the BAC, which may impact the removals of organic matter and nitrite negatively. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Tan, Yiwen; Lin, Tao; Jiang, Fuchun; Dong, Jian; Chen, Wei; Zhou, Dongju
2017-08-01
Dichloroacetonitrile (DCAN) is one of nitrogenous disinfection by-products (N-DBPs) with strong cytotoxicity and genotoxicity. In this study, the formation potential (FP) of DCAN was investigated in the samples of six important water sources located in the Yangtze River Delta. The highest formation concentration of DCAN was 9.05 μg/L in the water sample taken from Taihu Lake with the lowest SUVA value. After the NOM fractionation, the conversion rate of hydrophilic fraction to DCAN was found the highest. Subsequently, a waterworks using Taihu Lake as water source was chosen to research the FP variations of DCAN in the treatment process and backwash water. The results showed that, compared to the conventional treatment process, O/biological activated carbon (BAC) process increased the removal efficiency of DCAN from 21.89% to 50.58% by removing aromatic protein and soluble biological by-products as main precursors of DCAN. The DCAN FP in the effluent of BAC filters using old granular activated carbon was higher than that in the influent and the DCAN FP of its backwash water was lower than that in raw water. In the backwash water of sand filters, the DCAN FP higher than raw water required the recycle ratio less than 5% to avoid the accumulation of DCAN. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Energetics of complex formation of the DNA hairpin structure d(GCGAAGC) with aromatic ligands].
Kostiukov, V V
2011-01-01
The energy contributions of various physical interactions to the total Gibbs energy of complex formation of the biologically important DNA hairpin d(GCGAAGC) with aromatic antitumor antibiotics daunomycin and novantron and the mutagens ethidium and proflavine have been calculated. It has been shown that the relatively small value of the total energy of binding of the ligands to the hairpin is the sum of components great in absolute value and different in sign. The contributions of van der Waals interactions and both intra- and intermolecular hydrogen bonds and bonds with aqueous environment have been studied. According to the calculations, the hydrophobic and van der Waals components are energetically favorable in complex formation of the ligands with the DNA pairpin d(GCGAAGC), whereas the electrostatic (with consideration of hydrogen bonds) and entropic components are unfavorable.
Gagné-Boulet, Mathieu; Moussa, Hanane; Lacroix, Jacques; Côté, Marie-France; Masson, Jean-Yves; Fortin, Sébastien
2015-10-20
DNA double strand-breaks (DSBs) are the most deleterious lesions that can affect the genome of living beings and are lethal if not quickly and properly repaired. Recently, we discovered a new family of anticancer agents designated as N-phenyl ureidobenzenesulfonates (PUB-SOs) that are blocking the cells cycle progression in S-phase and inducing DNA DSBs. Previously, we have studied the effect of several modifications on the molecular scaffold of PUB-SOs on their cytocidal properties. However, the effect of the nature and the position of substituents on the aromatic ring B is still poorly studied. In this study, we report the preparation and the biological evaluation of 45 new PUB-SO derivatives substituted by alkyl, alkoxy, halogen and nitro groups at different positions on the aromatic ring B. All PUB-SOs were active in the submicromolar to low micromolar range (0.24-20 μM). The cell cycle progression analysis showed that PUB-SOs substituted at position 2 by alkyl, halogen or nitro groups or substituted at position 4 by a hydroxyl group arrest the cell cycle progression in S-phase. Interestingly, all others PUB-SOs substituted at positions 3 and 4 arrested the cell cycle in G2/M-phase. PUB-SOs arresting the cell cycle progression in S-phase also induced the phosphorylation of H2AX (γH2AX) which is indicating the generation of DNA DSBs. We evidenced that few modifications on the ring B of PUB-SOs scaffold lead to cytocidal derivatives arresting the cell cycle in S-phase and inducing γH2AX and DSBs. In addition, this study shows that these new anticancer agents are promising and could be used as alternative to circumvent some of the biopharmaceutical complications that might be encountered during the development of PUB-SOs. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Koczyk, Grzegorz; Dawidziuk, Adam; Popiel, Delfina
2015-11-03
In recent years, the influx of newly sequenced fungal genomes has enabled sampling of secondary metabolite biosynthesis on an unprecedented scale. However, explanations of extant diversity which take into account both large-scale phylogeny reconstructions and knowledge gained from multiple genome projects are still lacking. We analyzed the evolutionary sources of genetic diversity in aromatic polyketide biosynthesis in over 100 model fungal genomes. By reconciling the history of over 400 nonreducing polyketide synthases (NR-PKSs) with corresponding species history, we demonstrate that extant fungal NR-PKSs are clades of distant siblings, originating from a burst of duplications in early Pezizomycotina and thinned by extensive losses. The capability of higher fungi to biosynthesize the simplest precursor molecule (orsellinic acid) is highlighted as an ancestral trait underlying biosynthesis of aromatic compounds. This base activity was modified during early evolution of filamentous fungi, toward divergent reaction schemes associated with biosynthesis of, for example, aflatoxins and fusarubins (C4-C9 cyclization) or various anthraquinone derivatives (C6-C11 cyclization). The functional plasticity is further shown to have been supplemented by modularization of domain architecture into discrete pieces (conserved splice junctions within product template domain), as well as tight linkage of key accessory enzyme families and divergence in employed transcriptional factors. Although the majority of discord between species and gene history is explained by ancient duplications, this landscape has been altered by more recent duplications, as well as multiple horizontal gene transfers. The 25 detected transfers include previously undescribed events leading to emergence of, for example, fusarubin biosynthesis in Fusarium genus. Both the underlying data and the results of present analysis (including alternative scenarios revealed by sampling multiple reconciliation optima) are maintained as a freely available web-based resource: http://cropnet.pl/metasites/sekmet/nrpks_2014. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Spectrum of the Reductive Dehalogenation Activity of Desulfitobacterium frappieri PCP-1
Dennie, D.; Gladu, I.; Lépine, F.; Villemur, R.; Bisaillon, J.-G.; Beaudet, R.
1998-01-01
Desulfitobacterium frappieri PCP-1 was induced for ortho- and para-dechlorinating activities by different chlorophenols. Dehalogenation rates ranging from 25 to 1,158 nmol/min/mg of cell protein were observed according to the chlorophenol tested and the position of the chlorine removed. D. frappieri shows a broad substrate specificity; in addition to tetrachloroethylene and pentachloropyridine, strain PCP-1 can dehalogenate at ortho, meta, and para positions a large variety of aromatic molecules with substituted hydroxyl or amino groups. Reactions of O demethylation and reduction of nitro to amino substituents on aromatic molecules were also observed. PMID:9797330
Tough, high performance, addition-type thermoplastic polymers
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor)
1992-01-01
A tough, high performance polyimide is provided by reacting a triple bond conjugated with an aromatic ring in a bisethynyl compound with the active double bond in a compound containing a double bond activated toward the formation of a Diels-Adler type adduct, especially a bismaleimide, a biscitraconimide, or a benzoquinone, or mixtures thereof. Addition curing of this product produces a high linear polymeric structure and heat treating the highly linear polymeric structure produces a thermally stable aromatic addition-type thermoplastic polyimide, which finds utility in the preparation of molding compounds, adhesive compositions, and polymer matrix composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dairou, Julien; Petit, Emile; Ragunathan, Nilusha
2009-05-01
Bronchial epithelial cells express xenobiotic-metabolizing enzymes (XMEs) that are involved in the biotransformation of inhaled toxic compounds. The activities of these XMEs in the lung may modulate respiratory toxicity and have been linked to several diseases of the airways. Arylamine N-acetyltransferases (NAT) are conjugating XMEs that play a key role in the biotransformation of aromatic amine pollutants such as the tobacco-smoke carcinogens 4-aminobiphenyl (4-ABP) and {beta}-naphthylamine ({beta}-NA). We show here that functional human NAT1 or its murine counterpart Nat2 are present in different lung epithelial cells i.e. Clara cells, type II alveolar cells and bronchial epithelial cells, thus indicating thatmore » inhaled aromatic amines may undergo NAT-dependent biotransformation in lung epithelium. Exposure of these cells to pathophysiologically relevant amounts of oxidants known to contribute to lung dysfunction, such as H{sub 2}O{sub 2} or peroxynitrite, was found to impair the NAT1/Nat2-dependent cellular biotransformation of aromatic amines. Genetic and non genetic impairment of intracellular NAT enzyme activities has been suggested to compromise the important detoxification pathway of aromatic amine N-acetylation and subsequently to contribute to an exacerbation of untoward effects of these pollutants on health. Our study suggests that oxidative/nitroxidative stress in lung epithelial cells, due to air pollution and/or inflammation, could contribute to local and/or systemic dysfunctions through the alteration of the functions of pulmonary NAT enzymes.« less
NASA Astrophysics Data System (ADS)
Zahlan, A. B.
2010-01-01
Preface; List of participants; Part I. Spin-orbit Coupling and Intersystem Crossing: 1. Spin-orbit interactions in organic molecules; 2. Singlet-triplet transitions in organic molecules; 3. Triplet decay and intersystem crossing in aromatic hydrocarbons; 4. Statistical aspects of resonance energy transfer; Discussion; Part II. Magnetic Resonance and Magnetic Interactions: 5. Magnetic resonance spectra of organic molecules in triplet states in single crystals; 6. Magnetic interactions related to phosphorescence; 7. ESR investigations of naphthalene-d8:Naphthalene-h8 mixed crystals; 8. Biradicals and polyradicals in the nitroxide series; 9. Changes induced in the phosphorescent radiation of aromatic molecules by paramagnetic resonance in their metastable triplet states; 10. Paramagnetic resonance of the triplet state of tetramethylpyrazine; 11. On magnetic dipole contributions to the intrinsic S0 = T1 transition in simple aromatics; Discussion; Part III. Photochemistry: 12. The kinetics of energy transfer from the triplet state in rigid solutions; 13. Triplet states in gas-phase photochemistry; 14. Biphotonic photochemistry, involving the triplet state: polarisation of the effective T-T transition and solvent effects; 15. Direct and sensitised photo-oxidation of aromatic hydrocarbons in boric acid glass; Discussion; Part IV. Radiationless Transitions: 16. Radiationless transitions in gaseous benzene; 17. Low-lying excited triplet states and intersystem crossing in aromatic hydrocarbons; 18. De-excitation rates of triplet states in condensed media; 19. Lifetimes of the triplet state of aromatic hydrocarbons in the vapour phase; Discussion; Part V. Triplet Excitons: 20. Some comments on the properties of triplet excitons in molecular crystals; 21. Exact treatment of coherent and incoherent triplet exciton migration; 22. Magnetic susceptibility of a system of triplet excitons: Würster's Blue Perchlorate; 23. A study of triplet excitons in anthracene crystals under laser excitation; 24. The electronic states in crystaline anthracene; Discussion; Part VI. Delayed Fluorescent and Phosphorescence: 25. Delayed fluorescence of solutions; 26. The kinetics of the excited states of anthracene and phenanthrene vapor; 27. Optical investigations of the triplet states of naphthalene in different crystalline environments; 28. Excitation of the triplet states of organic molecules; 29. The delayed luminescence and triplet quantum yields of pyrene solutions; 30. Triplet state studies of some polyphenyls in rigid glasses; 31. Decay time of delayed fluorescence of anthracene as a function of temperature (2-30ºK); 32. Energy transfer between benzene and biacetyl and the lifetime of triplet benzene in the gas phase; 33. Charge transfer triplet state of molecular complexes. 34. Flash-photolytic detection of triplet acridine formed by energy transfer from biacetyl; 35. Extinction coefficients of triplet-triplet transitions between 3000 and 8800 A in anthracene; 36. Anthracene triplet-triplet annihilation rate constant; Discussion; Part VII. Triplet State Related to Biology: 37. ESR and optical studies of some triplet states of biological interest; 38. The triplet state of DNA; 39. Some characteristics of the triplet states of the nucleic bases; Discussion; Indexes.
2012-01-01
Background The endocannabinoid system is involved in many physiological and pathological processes. Two receptors (cannabinoid receptor type 1 (CB1) and type 2 (CB2)) are known so far. Many unwanted psychotic side effects of inhibitors of this system can be addressed to the interaction with CB1. While CB1 is one of the most abundant neuroreceptors, CB2 is expressed in the brain only at very low levels. Thus, highly potent and selective compounds for CB2 are desired. N-aryl-((hetero)aromatic)-oxadiazolyl-propionamides represent a promising class of such selective ligands for the human CB2. Here, a library of various derivatives is studied for suitable routes for labelling with 18F. Such 18F-labelled compounds can then be employed as CB2-selective radiotracers for molecular imaging studies employing positron emission tomography (PET). Results By varying the N-arylamide substructure, we explored the binding pocket of the human CB2 receptor and identified 9-ethyl-9H-carbazole amide as the group with optimal size. Radioligand replacement experiments revealed that the modification of the (hetero)aromatic moiety in 3-position of the 1,2,4-oxadiazoles shows only moderate impact on affinity to CB2 but high impact on selectivity towards CB2 with respect to CB1. Further, we could show by autoradiography studies that the most promising compounds bind selectively on CB2 receptors in mouse spleen tissue. Molecular docking studies based on a novel three-dimensional structural model of the human CB2 receptor in its activated form indicate that the compounds bind with the N-arylamide substructure in the binding pocket. 18F labelling at the (hetero)aromatic moiety at the opposite site of the compounds via radiochemistry was carried out. Conclusions The synthesized CB2-selective compounds have high affinity towards CB2 and good selectivity against CB1. The introduction of labelling groups at the (hetero)aromatic moiety shows only moderate impact on CB2 affinity, indicating the introduction of potential labelling groups at this position as a promising approach to develop CB2-selective ligands suitable for molecular imaging with PET. The high affinity for human CB2 and selectivity against human CB1 of the herein presented compounds renders them as suitable candidates for molecular imaging studies. PMID:23067874
NASA Astrophysics Data System (ADS)
Okunev, R. V.; Smirnova, E. V.; Sharipova, A. R.; Gilmutdinova, I. M.; Giniyatullin, K. G.
2018-01-01
The biological decomposition of benzo[a]pyrene in the concentrations exceeding the MAC (maximum permissible concentration) level in soils by 2, 5 and 10 times was studied in laboratory conditions. The gray forest soil samples were contaminated with benzo[a]pyrene and incubated in optimum for bacterial growth soil moisture for 30 and 60 days. The residual amount of contaminant was monitored by HPLC after extraction with acetone-cyclohexane (2:1). Soil microbial activity was evaluated by measuring basal respiration (BR) and substrate-induced respiration (SID) rates of the soil by gas chromatography. The results of the experiment showed that in 60 days the amount of benzo[a]pyrene in contaminated soils decreased; however, this time was not enough for complete decomposition of pollutant. In this case, benzo[a]pyrene has a negative effect on the BR and SIR rates. Soil contamination affected the BR rate only at high doses (10 MPC), whereas the SIR was a more sensitive indicator of the toxic effect of the pollutant and significantly reacts already at concentrations at the level of 2 MPC. The combination of PAHs isolated from biochar has a strong negative effect on the values of BR and SIR.
Levashov, P. A.; Matolygina, D. A.; Ovchinnikova, E. D.; Atroshenko, D. L.; Savin, S. S.; Belogurova, N. G.; Smirnov, S. A.; Tishkov, V. I.; Levashov, A. V.
2017-01-01
The bacteriolytic activity of interleukin-2 and chicken egg lysozyme in the presence of various substances has been studied. Glycine and lysine do not affect the activity of interleukin-2 but increase that of lysozyme, showing a bell-shape concentration dependence peaking at 1.5 mM glycine and 18 mM lysine. Arginine and glutamate activate both interleukin-2 and lysozyme with a concentration dependence of the saturation type. Aromatic amino acids have almost no effect on the activity of both interleukin-2 and lysozyme. Aromatic amines, tryptamine, and tyramine activate interleukin-2 but inhibit lysozyme. Peptide antibiotics affect interleukin and lysozyme similarly and exhibit maximum activity in the micromolar range of antibiotics. Taurine has no effect on the activity of interleukin-2 and lysozyme. Mildronate showed no influence on lysozyme, but it activated interleukin-2 with the activity maximum at 3 mM. EDTA activates both interleukin-2 and lysozyme at concentrations above 0.15 mM. PMID:28740730
Ahumedo, Maicol; Drosos, Juan Carlos; Vivas-Reyes, Ricardo
2014-05-01
Molecular docking methods were applied to simulate the coupling of a set of nineteen acyl homoserine lactone analogs into the binding site of the transcriptional receptor LasR. The best pose of each ligand was explored and a qualitative analysis of the possible interactions present in the complex was performed. From the results of the protein-ligand complex analysis, it was found that residues Tyr-64 and Tyr-47 are involved in important interactions, which mainly determine the antagonistic activity of the AHL analogues considered for this study. The effect of different substituents on the aromatic ring, the common structure to all ligands, was also evaluated focusing on how the interaction with the two previously mentioned tyrosine residues was affected. Electrostatic potential map calculations based on the electron density and the van der Waals radii were performed on all ligands to graphically aid in the explanation of the variation of charge density on their structures when the substituent on the aromatic ring is changed through the elements of the halogen group series. A quantitative approach was also considered and for that purpose the ONIOM method was performed to estimate the energy change in the different ligand-receptor complex regions. Those energy values were tested for their relationship with the corresponding IC50 in order to establish if there is any correlation between energy changes in the selected regions and the biological activity. The results obtained using the two approaches may contribute to the field of quorum sensing active molecules; the docking analysis revealed the role of some binding site residues involved in the formation of a halogen bridge with ligands. These interactions have been demonstrated to be responsible for the interruption of the signal propagation needed for the quorum sensing circuit. Using the other approach, the structure-activity relationship (SAR) analysis, it was possible to establish which structural characteristics and chemical requirements are necessary to classify a compound as a possible agonist or antagonist against the LasR binding site.
AL-Ani, Issam; Zimmermann, Stefan; Reichling, Jürgen
2018-01-01
Background: Propolis consists of a complex mixture of resinous substances collected by honeybees from different plant sources. The objective of this study was to investigate the chemical composition, biological activities, and synergistic properties with antibiotics of propolis samples collected from various geographic origins (Germany, Ireland, and Czech Republic). Methods: The chemical composition of the propolis was analyzed by Gas Liquid Chromatography-Mass Spectrometry (GLC-MS) and High-performance liquid chromatography (HPLC). The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were evaluated by the standard broth microdilution method, while synergistic interactions were assessed by checkerboard dilution and time-kill curve assays. Results: HPLC and GLC-MS analyses revealed that ethanol extract of propolis (EEP) and water extracts of propolis (WEP) contained more than 100 different phytochemicals. The most abundant compounds were aromatic alcohols, aromatic acids, cinnamic acid and its esters, fatty acids, and flavanone (chrysin). Czech propolis showed the highest phenolic content (129.83 ± 5.9 mg CAE/g) followed by Irish propolis and German propolis. Furthermore, Irish propolis exhibited the highest value of total flavonoid content (2.86 ± 0.2 mg QE/g) and antioxidant activity (IC50 = 26.45 µg/mL). All propolis samples showed moderate antibacterial effect against Gram-positive microorganisms with MIC ranging from 0.08 mg/mL to 2.5 mg/mL. Moreover, EEP exhibited moderate activity against Gram-negative bacteria with MIC between 0.6 mg/mL to 5 mg/mL. In addition, EEP displayed moderate antifungal activity (MIC values between 0.6–2.5 mg/mL). The results obtained from time kill-kinetic assay and checkerboard dilution test of two-drug combinations between EEP and antibiotics such as vancomycin, oxacillin, and levofloxacin indicate mainly synergistic interactions against drug-resistant microbial pathogens including MRSA and VRE. Conclusions: The propolis extract synergistically enhanced the efficacy of antibiotics, especially those acting on cell wall synthesis (vancomycin and oxacillin) against drug-resistant microorganisms. PMID:29301368
Biomonitoring at the UK Health and Safety Laboratory.
Cocker, J; Jones, K; Morton, J; Mason, H J
2007-05-01
The UK Health and Safety Laboratory (HSL) provides research and analytical support to the Health and Safety Executive, other Government Departments and employers. In the area of biomonitoring HSL conducts research studies and provides an analytical service for regular surveillance of worker exposure to hazardous substances. This paper gives brief examples of how data from such studies can be used to develop biological monitoring guidance values for isocyanates, polycyclic aromatic hydrocarbons and hexavalent chromium. In addition, a study of occupational exposure to copper chrome arsenic wood preservatives is briefly described to show how biological monitoring can be used for post-approval surveillance of a biocide.
Surface enhanced Raman spectroscopy in the presence of hydroquinone assisted by gold nanorods
NASA Astrophysics Data System (ADS)
Cabrera Alonso, R.; Guevara, Edgar; Ramírez Elías, Miguel G.; González, Francisco Javier
2017-08-01
Hydroquinone is an aromatic organic molecule found in skin lightening creams for dermatological melasma treatment. The absorbance of this substance at high concentrations can be the cause of skin diseases. Nowadays most of the methods used for medical diagnosis for dermatological diseases consist on invasive methods such as biopsies. In recent years non-invasive techniques based on the properties of light and the interaction with biological samples have come to a new way for medical diagnosis. By means of Raman spectroscopy is of great interest the detection of hydroquinone for future medical applications. Due to the low Raman signal that the biological samples present, it is necessary to make use of nanotechnology. Making biosensors (SERS substrates) that allow us to amplify the electromagnetic field for the biological Raman signals.
A rapid identification system for metallothionein proteins using expert system
Praveen, Bhoopathi; Vincent, Savariar; Murty, Upadhyayula Suryanarayana; Krishna, Amirapu Radha; Jamil, Kaiser
2005-01-01
Metallothioneins (MT) are low molecular weight proteins mostly rich in cysteine residues with high metal content. Generally, MT proteins are responsible for regulating the intracellular supply of biologically essential metal ions and they protect cells from the deleterious effects of non-essential polarizable transition and post-transition metal ions. Due to their biological importance, proper characterization of MT is necessary. Here we describe a computer program (ID3 algorithm, a part of Artificial Intelligence) developed using available data for the rapid identification of MT. Tissue samples contains several low molecular weight proteins with different physical, chemical and biological characteristics. The described software solution proposes to categorize MT proteins without aromatic amino acids and high metal content. The proposed solution can be expanded to other types of proteins with specific known characteristics. PMID:17597844
Guan, Chaoting; Jiang, Jin; Pang, Suyan; Luo, Congwei; Yang, Yi; Ma, Jun; Yu, Jing; Zhao, Xi
2018-06-04
Our recent study has demonstrated that iodide (I - ) can be easily and almost entirely oxidized to hypoiodous acid (HOI) but not to iodate by nonradical activation of peroxydisulfate (PDS) in the presence of a commercial carbon nanotube (CNT). In this work, the oxidation kinetics of phenolic compounds by the PDS/CNT system in the presence of I - were examined and potential formation of iodinated aromatic products was explored. Experimental results suggested that I - enhanced the transformation of six selected substituted phenols, primarily attributed to the generation of HOI that was considerably reactive toward these phenolic compounds. More significant enhancement was obtained at higher I - concentrations or lower pH values, while the change of PDS or CNT dosages exhibited a slight impact on the enhancing effect of I - . Product analyses with liquid chromatography tandem mass spectrometry clearly revealed the production of iodinated aromatic products when p-hydroxybenzoic acid (p-HBA, a model phenol) was treated by the PDS/CNT/I - system in both synthetic and real waters. Their formation pathways probably involved the substitution of HOI on aromatic ring of p-HBA, as well as the generation of iodinated p-HBA phenoxyl radicals and subsequent coupling of these radicals. Given the considerable toxicity and harmful effects of these iodinated aromatic products, particular attention should be paid when the novel PDS/CNT oxidation technology is applied for treatment of phenolic contaminants in iodide-containing waters. Copyright © 2018 Elsevier Ltd. All rights reserved.