Sample records for biologically active cell

  1. SU-G-TeP3-07: On the Development of Mechano-Biological Assessment of Leukemia Cells Using Optical Tweezers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brost, E; Brooks, J; Piepenburg, J

    Purpose: Patients with BCR-ABL (Ph +ve) acute lymphoblastic leukemia are at very high risk of relapse and mortality. In line with the NIH mission to understand the physical and biological processes, we seek to report mechano-biological method to assessment and distinguish treated/untreated leukemia cells. Methods: BCR-ABL leukemia cell populations and silica microspheres were trapped in a 100x magnification optical trapping system (λ=660 nm, 70 mW). Light refracted through the trapped sample was collected in the back focal plane by a quadrant detector to measure the positions of individual cells. The sample was driven at a known frequency and amplitude withmore » a flexure translation stage, and the target’s response was recorded. The measured response was calibrated using the known driving parameters, and information about cell movements due to mechano-biological effects was extracted. Two leukemia cell populations were tested: a control group and a group treated with 2 Gy. Results: The mechano-biological movements of 10 microspheres, control cells, and treated cells were tracked over a ∼30 minute window at 1 minute intervals. The microsphere population did not see significant change in mechano-biological movements over the testing interval and remained constant. The control cell population saw a two-fold rise in activity that peaked around 1200 seconds, then dropped off sharply. The treated cell population saw a two-fold rise in activity that peaked at 400 seconds, and dropped off slowly. Conclusion: The investigated technique allows for direct measurement the movements of a trapped object due to mechano-biological effects such as thermal and extracellular motion. When testing microspheres, the mechano-biological activity remained constant over time due to the lack of biological factors. In both the control and treated cell populations, the mechano-biological activity was increased, possibly due to mitochondrial activation. This extra activity decreased over time, possibly due to cellular damage from trapping radiation.« less

  2. Analyzing cell fate control by cytokines through continuous single cell biochemistry.

    PubMed

    Rieger, Michael A; Schroeder, Timm

    2009-10-01

    Cytokines are important regulators of cell fates with high clinical and commercial relevance. However, despite decades of intense academic and industrial research, it proved surprisingly difficult to describe the biological functions of cytokines in a precise and comprehensive manner. The exact analysis of cytokine biology is complicated by the fact that individual cytokines control many different cell fates and activate a multitude of intracellular signaling pathways. Moreover, although activating different molecular programs, different cytokines can be redundant in their biological effects. In addition, cytokines with different biological effects can activate overlapping signaling pathways. This prospect article will outline the necessity of continuous single cell biochemistry to unravel the biological functions of molecular cytokine signaling. It focuses on potentials and limitations of recent technical developments in fluorescent time-lapse imaging and single cell tracking allowing constant long-term observation of molecules and behavior of single cells. (c) 2009 Wiley-Liss, Inc.

  3. Stabilities and Biological Activities of Vanadium Drugs: What is the Nature of the Active Species?

    PubMed

    Levina, Aviva; Lay, Peter A

    2017-07-18

    Diverse biological activities of vanadium(V) drugs mainly arise from their abilities to inhibit phosphatase enzymes and to alter cell signaling. Initial interest focused on anti-diabetic activities but has shifted to anti-cancer and anti-parasitic drugs. V-based anti-diabetics are pro-drugs that release active components (e.g., H 2 VO 4 - ) in biological media. By contrast, V anti-cancer drugs are generally assumed to enter cells intact; however, speciation studies indicate that nearly all drugs are likely to react in cell culture media during in vitro assays and the same would apply in vivo. The biological activities are due to V V and/or V IV reaction products with cell culture media, or the release of ligands (e.g., aromatic diimines, 8-hydroxyquinolines or thiosemicarbazones) that bind to essential metal ions in the media. Careful consideration of the stability and speciation of V complexes in cell culture media and in biological fluids is essential to design targeted V-based anti-cancer therapies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Biological Activity of Polynesian Calophyllum inophyllum Oil Extract on Human Skin Cells.

    PubMed

    Ansel, Jean-Luc; Lupo, Elise; Mijouin, Lily; Guillot, Samuel; Butaud, Jean-François; Ho, Raimana; Lecellier, Gaël; Raharivelomanana, Phila; Pichon, Chantal

    2016-07-01

    Oil from the nuts of Calophyllum inophyllum, locally called "Tamanu oil" in French Polynesia, was traditionally used for wound healing and to cure various skin problems and ailments. The skin-active effect of "Tamanu oil emulsion" was investigated on human skin cells (keratinocytes and dermal fibroblasts) and showed cell proliferation, glycosaminoglycan and collagen production, and wound healing activity. Transcriptomic analysis of the treated cells revealed gene expression modulation including genes involved in the metabolic process implied in O-glycan biosynthesis, cell adhesion, and cell proliferation. The presence of neoflavonoids as bioactive constituents in Tamanu oil emulsion may contribute to these biological activities. Altogether, consistent data related to targeted histological and cellular functions brought new highlights on the mechanisms involved in these biological processes induced by Tamanu oil effects in skin cells. Georg Thieme Verlag KG Stuttgart · New York.

  5. Validation of biological activity testing procedure of recombinant human interleukin-7.

    PubMed

    Lutsenko, T N; Kovalenko, M V; Galkin, O Yu

    2017-01-01

    Validation procedure for method of monitoring the biological activity of reсombinant human interleukin-7 has been developed and conducted according to the requirements of national and international recommendations. This method is based on the ability of recombinant human interleukin-7 to induce proliferation of T lymphocytes. It has been shown that to control the biological activity of recombinant human interleukin-7 peripheral blood mononuclear cells (PBMCs) derived from blood or cell lines can be used. Validation charac­teristics that should be determined depend on the method, type of product or object test/measurement and biological test systems used in research. The validation procedure for the method of control of biological activity of recombinant human interleukin-7 in peripheral blood mononuclear cells showed satisfactory results on all parameters tested such as specificity, accuracy, precision and linearity.

  6. An integrated cell-free metabolic platform for protein production and synthetic biology

    PubMed Central

    Jewett, Michael C; Calhoun, Kara A; Voloshin, Alexei; Wuu, Jessica J; Swartz, James R

    2008-01-01

    Cell-free systems offer a unique platform for expanding the capabilities of natural biological systems for useful purposes, i.e. synthetic biology. They reduce complexity, remove structural barriers, and do not require the maintenance of cell viability. Cell-free systems, however, have been limited by their inability to co-activate multiple biochemical networks in a single integrated platform. Here, we report the assessment of biochemical reactions in an Escherichia coli cell-free platform designed to activate natural metabolism, the Cytomim system. We reveal that central catabolism, oxidative phosphorylation, and protein synthesis can be co-activated in a single reaction system. Never before have these complex systems been shown to be simultaneously activated without living cells. The Cytomim system therefore promises to provide the metabolic foundation for diverse ab initio cell-free synthetic biology projects. In addition, we describe an improved Cytomim system with enhanced protein synthesis yields (up to 1200 mg/l in 2 h) and lower costs to facilitate production of protein therapeutics and biochemicals that are difficult to make in vivo because of their toxicity, complexity, or unusual cofactor requirements. PMID:18854819

  7. Synthesis and biological activity of chloroethyl pyrimidine nucleosides.

    PubMed

    Colombeau, Ludovic; Teste, Karine; Hadj-Bouazza, Amel; Chaleix, Vincent; Zerrouki, Rachida; Kraemer, Michel; Catherine, Odile Sainte

    2008-02-01

    The synthesis and biological activity of chloroethyl pyrimidine nucleosides is presented. One of these new nucleosides analogues significantly inhibited cell proliferation, migration and invasion as tested in vitro on the A431 vulvar epidermal carcinoma cell line.

  8. Specificity and mechanism of action of alpha-helical membrane-active peptides interacting with model and biological membranes by single-molecule force spectroscopy.

    PubMed

    Sun, Shiyu; Zhao, Guangxu; Huang, Yibing; Cai, Mingjun; Shan, Yuping; Wang, Hongda; Chen, Yuxin

    2016-07-01

    In this study, to systematically investigate the targeting specificity of membrane-active peptides on different types of cell membranes, we evaluated the effects of peptides on different large unilamellar vesicles mimicking prokaryotic, normal eukaryotic, and cancer cell membranes by single-molecule force spectroscopy and spectrum technology. We revealed that cationic membrane-active peptides can exclusively target negatively charged prokaryotic and cancer cell model membranes rather than normal eukaryotic cell model membranes. Using Acholeplasma laidlawii, 3T3-L1, and HeLa cells to represent prokaryotic cells, normal eukaryotic cells, and cancer cells in atomic force microscopy experiments, respectively, we further studied that the single-molecule targeting interaction between peptides and biological membranes. Antimicrobial and anticancer activities of peptides exhibited strong correlations with the interaction probability determined by single-molecule force spectroscopy, which illustrates strong correlations of peptide biological activities and peptide hydrophobicity and charge. Peptide specificity significantly depends on the lipid compositions of different cell membranes, which validates the de novo design of peptide therapeutics against bacteria and cancers.

  9. Biological atomism and cell theory.

    PubMed

    Nicholson, Daniel J

    2010-09-01

    Biological atomism postulates that all life is composed of elementary and indivisible vital units. The activity of a living organism is thus conceived as the result of the activities and interactions of its elementary constituents, each of which individually already exhibits all the attributes proper to life. This paper surveys some of the key episodes in the history of biological atomism, and situates cell theory within this tradition. The atomistic foundations of cell theory are subsequently dissected and discussed, together with the theory's conceptual development and eventual consolidation. This paper then examines the major criticisms that have been waged against cell theory, and argues that these too can be interpreted through the prism of biological atomism as attempts to relocate the true biological atom away from the cell to a level of organization above or below it. Overall, biological atomism provides a useful perspective through which to examine the history and philosophy of cell theory, and it also opens up a new way of thinking about the epistemic decomposition of living organisms that significantly departs from the physicochemical reductionism of mechanistic biology. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. How chemistry supports cell biology: the chemical toolbox at your service.

    PubMed

    Wijdeven, Ruud H; Neefjes, Jacques; Ovaa, Huib

    2014-12-01

    Chemical biology is a young and rapidly developing scientific field. In this field, chemistry is inspired by biology to create various tools to monitor and modulate biochemical and cell biological processes. Chemical contributions such as small-molecule inhibitors and activity-based probes (ABPs) can provide new and unique insights into previously unexplored cellular processes. This review provides an overview of recent breakthroughs in chemical biology that are likely to have a significant impact on cell biology. We also discuss the application of several chemical tools in cell biology research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Synthesis and biological activity of mustard derivatives of thymine.

    PubMed

    Hadj-Bouazza, Amel; Teste, Karine; Colombeau, Ludovic; Chaleix, Vincent; Zerrouki, Rachida; Kraemer, Michel; Sainte Catherine, Odile

    2008-05-01

    The synthesis and biological activity of a novel DNA cross-linking antitumor agent is presented. The new alkylating agent significantly inhibited cell proliferation, migration and invasion as tested in vitro on the A431 vulvar epidermal carcinoma cell line.

  12. Re-evaluation of Sepharose-insulin as a tool for the study of insulin action.

    PubMed Central

    Kolb, H J; Renner, R; Hepp, K D; Weiss, L; Wieland, O H

    1975-01-01

    The biological activity of Sepharose-insulin in different assays in vitro, e.g., stimulation of glucose oxidation, lipogenesis, and antilipolysis and activation of pyruvate dehydrogenase (EC 1.2.4.1) activity, has been investigated. According to amino acid analysis, between 270 and 330 mug (6.9-8.2 U) of insulin were coupled per ml of packed beads. Related to the total insulin content, 0.2-0.7% of the insulin was biologically active. Comparable biological activity was observed with isolated fat cells and fat pad pieces. After incubation with tissue or cells, Sepharose-insulin particles were separated by centrifugation from the medium. The clear supernatant was assayed for biologically and immunologically reactive insulin and contained soluble insulin activity. A quantitative evaluation of the soluble biological and immunological insulin activity in the supernatant accounted for the total insulin activity of Sepharose-insulin. PMID:1054501

  13. The Biological Activities of Sesterterpenoid-Type Ophiobolins.

    PubMed

    Tian, Wei; Deng, Zixin; Hong, Kui

    2017-07-18

    Ophiobolins (Ophs) are a group of tricarbocyclic sesterterpenoids whose structures contain a tricyclic 5-8-5 carbotricyclic skeleton. Thus far, 49 natural Ophs have been reported and assigned into A-W subgroups in order of discovery. While these sesterterpenoids were first characterized as highly effective phytotoxins, later investigations demonstrated that they display a broad spectrum of biological and pharmacological characteristics such as phytotoxic, antimicrobial, nematocidal, cytotoxic, anti-influenza and inflammation-promoting activities. These bioactive molecules are promising drug candidates due to the developments of their anti-proliferative activities against a vast number of cancer cell lines, multidrug resistance (MDR) cells and cancer stem cells (CSCs). Despite numerous studies on the biological functions of Ophs, their pharmacological mechanism still requires further research. This review summarizes the chemical structures, sources, and biological activities of the oph family and discusses its mechanisms and structure-activity relationship to lay the foundation for the future developments and applications of these promising molecules.

  14. Novel chlorinated dibenzofurans isolated from the cellular slime mold, Polysphondylium filamentosum, and their biological activities.

    PubMed

    Kikuchi, Haruhisa; Kubohara, Yuzuru; Nguyen, Van Hai; Katou, Yasuhiro; Oshima, Yoshiteru

    2013-08-01

    Cellular slime molds are expected to have the huge potential for producing secondary metabolites including polyketides, and we have studied the diversity of secondary metabolites of cellular slime molds for their potential utilization as new biological resources for natural product chemistry. From the methanol extract of fruiting bodies of Polysphondylium filamentosum, we obtained new chlorinated benzofurans Pf-1 (4) and Pf-2 (5) which display multiple biological activities; these include stalk cell differentiation-inducing activity in the well-studied cellular slime mold, Dictyostelium discoideum, and inhibitory activities on cell proliferation in mammalian cells and gene expression in Drosophila melanogaster. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Biosynthesis and biological action of pineal allopregnanolone

    PubMed Central

    Tsutsui, Kazuyoshi; Haraguchi, Shogo

    2014-01-01

    The pineal gland transduces photoperiodic changes to the neuroendocrine system by rhythmic secretion of melatonin. We recently provided new evidence that the pineal gland is a major neurosteroidogenic organ and actively produces a variety of neurosteroids de novo from cholesterol in birds. Notably, allopregnanolone is a major pineal neurosteroid that is far more actively produced in the pineal gland than the brain and secreted by the pineal gland in juvenile birds. Subsequently, we have demonstrated the biological action of pineal allopregnanolone on Purkinje cells in the cerebellum during development in juvenile birds. Pinealectomy (Px) induces apoptosis of Purkinje cells, whereas allopregnanolone administration to Px chicks prevents cell death. Furthermore, Px increases the number of Purkinje cells that express active caspase-3, a crucial mediator of apoptosis, and allopregnanolone administration to Px chicks decreases the number of Purkinje cells expressing active caspase-3. It thus appears that pineal allopregnanolone prevents cell death of Purkinje cells by suppressing the activity of caspase-3 during development. This paper highlights new aspects of the biosynthesis and biological action of pineal allopregnanolone. PMID:24834027

  16. Evaluation of the effects of a plasma activated medium on cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohades, S.; Laroussi, M., E-mail: mlarouss@odu.edu; Sears, J.

    2015-12-15

    The interaction of low temperature plasma with liquids is a relevant topic of study to the field of plasma medicine. This is because cells and tissues are normally surrounded or covered by biological fluids. Therefore, the chemistry induced by the plasma in the aqueous state becomes crucial and usually dictates the biological outcomes. This process became even more important after the discovery that plasma activated media can be useful in killing various cancer cell lines. Here, we report on the measurements of concentrations of hydrogen peroxide, a species known to have strong biological effects, produced by application of plasma tomore » a minimum essential culture medium. The activated medium is then used to treat SCaBER cancer cells. Results indicate that the plasma activated medium can kill the cancer cells in a dose dependent manner, retain its killing effect for several hours, and is as effective as apoptosis inducing drugs.« less

  17. Shape control and compartmentalization in active colloidal cells

    PubMed Central

    Spellings, Matthew; Engel, Michael; Klotsa, Daphne; Sabrina, Syeda; Drews, Aaron M.; Nguyen, Nguyen H. P.; Bishop, Kyle J. M.; Glotzer, Sharon C.

    2015-01-01

    Small autonomous machines like biological cells or soft robots can convert energy input into control of function and form. It is desired that this behavior emerges spontaneously and can be easily switched over time. For this purpose we introduce an active matter system that is loosely inspired by biology and which we term an active colloidal cell. The active colloidal cell consists of a boundary and a fluid interior, both of which are built from identical rotating spinners whose activity creates convective flows. Similarly to biological cell motility, which is driven by cytoskeletal components spread throughout the entire volume of the cell, active colloidal cells are characterized by highly distributed energy conversion. We demonstrate that we can control the shape of the active colloidal cell and drive compartmentalization by varying the details of the boundary (hard vs. flexible) and the character of the spinners (passive vs. active). We report buckling of the boundary controlled by the pattern of boundary activity, as well as formation of core–shell and inverted Janus phase-separated configurations within the active cell interior. As the cell size is increased, the inverted Janus configuration spontaneously breaks its mirror symmetry. The result is a bubble–crescent configuration, which alternates between two degenerate states over time and exhibits collective migration of the fluid along the boundary. Our results are obtained using microscopic, non–momentum-conserving Langevin dynamics simulations and verified via a phase-field continuum model coupled to a Navier–Stokes equation. PMID:26253763

  18. Shape control and compartmentalization in active colloidal cells.

    PubMed

    Spellings, Matthew; Engel, Michael; Klotsa, Daphne; Sabrina, Syeda; Drews, Aaron M; Nguyen, Nguyen H P; Bishop, Kyle J M; Glotzer, Sharon C

    2015-08-25

    Small autonomous machines like biological cells or soft robots can convert energy input into control of function and form. It is desired that this behavior emerges spontaneously and can be easily switched over time. For this purpose we introduce an active matter system that is loosely inspired by biology and which we term an active colloidal cell. The active colloidal cell consists of a boundary and a fluid interior, both of which are built from identical rotating spinners whose activity creates convective flows. Similarly to biological cell motility, which is driven by cytoskeletal components spread throughout the entire volume of the cell, active colloidal cells are characterized by highly distributed energy conversion. We demonstrate that we can control the shape of the active colloidal cell and drive compartmentalization by varying the details of the boundary (hard vs. flexible) and the character of the spinners (passive vs. active). We report buckling of the boundary controlled by the pattern of boundary activity, as well as formation of core-shell and inverted Janus phase-separated configurations within the active cell interior. As the cell size is increased, the inverted Janus configuration spontaneously breaks its mirror symmetry. The result is a bubble-crescent configuration, which alternates between two degenerate states over time and exhibits collective migration of the fluid along the boundary. Our results are obtained using microscopic, non-momentum-conserving Langevin dynamics simulations and verified via a phase-field continuum model coupled to a Navier-Stokes equation.

  19. Shape control and compartmentalization in active colloidal cells

    DOE PAGES

    Spellings, Matthew; Engel, Michael; Klotsa, Daphne; ...

    2015-08-07

    Small autonomous machines like biological cells or soft robots can convert energy input into control of function and form. It is desired that this behavior emerges spontaneously and can be easily switched over time. For this purpose, in this paper we introduce an active matter system that is loosely inspired by biology and which we term an active colloidal cell. The active colloidal cell consists of a boundary and a fluid interior, both of which are built from identical rotating spinners whose activity creates convective flows. Similarly to biological cell motility, which is driven by cytoskeletal components spread throughout themore » entire volume of the cell, active colloidal cells are characterized by highly distributed energy conversion. We demonstrate that we can control the shape of the active colloidal cell and drive compartmentalization by varying the details of the boundary (hard vs. flexible) and the character of the spinners (passive vs. active). We report buckling of the boundary controlled by the pattern of boundary activity, as well as formation of core–shell and inverted Janus phase-separated configurations within the active cell interior. As the cell size is increased, the inverted Janus configuration spontaneously breaks its mirror symmetry. The result is a bubble–crescent configuration, which alternates between two degenerate states over time and exhibits collective migration of the fluid along the boundary. Finally, our results are obtained using microscopic, non–momentum-conserving Langevin dynamics simulations and verified via a phase-field continuum model coupled to a Navier–Stokes equation.« less

  20. Biological shielding test of hot cells with high active source 60Co (300 TBq)

    NASA Astrophysics Data System (ADS)

    Švrčula, P.; Zoul, D.; Zimina, M.; Petříčková, A.; Adamíková, T.; Schulc, M.; Srba, O.

    2017-11-01

    This article describes a method for testing of the efficiency of the biological shielding of the hot cell facility, which were constructed as a part of the project SUSEN. Ten hot cells and one semi-hot cell are present in the facility Radiochemistry II. The shielding is made from steel plates. In order to demonstrate sufficient efficiency of the biological shielding of the hot cells and a correspondence between measured and contractual values at selected points. The test was done using sealed high activity 60Co sources. The results are also used as a proof of the optimization of radiation protection for the workplace of this type. The results confirm significant optimization of radiation protection at the workplace. The dose received by a staff do not exceed one tens of annual limit during active service. Obtained results fulfill general requirements of radiation protection and will be used for further active service of hot cells facility.

  1. Molecular mechanism of biological and therapeutical effect of low-intensity laser irradiation

    NASA Astrophysics Data System (ADS)

    Mostovnikov, Vasili A.; Mostovnikova, Galina R.; Plavski, Vitali Y.; Plavskaja, Ljudmila G.; Morozova, Raisa P.

    1995-05-01

    The investigations carried out in our group on biological systems of various organization level (enzyme molecules in solution, human and animal cell cultures), allowed us to conclude, that the light-induced changes of spatial structure of cells components form the basis of biological activity (and as a consequence therapeutic effect) of various wavelength low-intensity laser emission. Photophysical mechanism of these changes lies in the reorientation of highregulated anisotropic parts (domains) with the liquid-crystalline type of ordering of the cell components due to the interaction between the electric field and the light induced integral electric dipole of the domain. The mechanism of such reorientation is well established in physics of liquid crystals of nematic type and is known as light induced analogue of Frederix's effect. The following results enable us to draw the conclusion about the determining role of the orientations effects on the biological activity mechanism of low-intensity laser radiation: (i) the possibility of reversible modification of spatial structure and enzyme molecules functional activity under the influence of laser radiation outside the band of their own or admixture absorption; (ii) the dependence of biological effect of laser radiation on the functional activity of cells vs. polarization degree of the light with the maximum photobiological effects observed for linear-polarized radiation; (iii) the equivalence of a static magnetic field and low-intensity laser radiation in action on functional activity of the cells and the lowering of the laser field intensity for the achieving the difinite changes of the cell functional activity in the presence of static magnetic field.

  2. Water at Biological Phase Boundaries: Its Role in Interfacial Activation of Enzymes and Metabolic Pathways.

    PubMed

    Damodaran, Srinivasan

    2015-01-01

    Many life-sustaining activities in living cells occur at the membrane-water interface. The pertinent questions that we need to ask are, what are the evolutionary reasons in biology for choosing the membrane-water interface as the site for performing and/or controlling crucial biological reactions, and what is the key physical principle that is very singular to the membrane-water interface that biology exploits for regulating metabolic processes in cells? In this chapter, a hypothesis is developed, which espouses that cells control activities of membrane-bound enzymes through manipulation of the thermodynamic activity of water in the lipid-water interfacial region. The hypothesis is based on the fact that the surface pressure of a lipid monolayer is a direct measure of the thermodynamic activity of water at the lipid-water interface. Accordingly, the surface pressure-dependent activation or inactivation of interfacial enzymes is directly related to changes in the thermodynamic activity of interfacial water. Extension of this argument suggests that cells may manipulate conformations (and activities) of membrane-bound enzymes by manipulating the (re)activity of interfacial water at various locations in the membrane by localized compression or expansion of the interface. In this respect, cells may use the membrane-bound hormone receptors, lipid phase transition, and local variations in membrane lipid composition as effectors of local compression and/or expansion of membrane, and thereby local water activity. Several experimental data in the literature will be reexamined in the light of this hypothesis.

  3. Cell-Selective Biological Activity of Rhodium Metalloinsertors Correlates with Subcellular Localization

    PubMed Central

    Komor, Alexis C.; Schneider, Curtis J.; Weidmann, Alyson G.; Barton, Jacqueline K.

    2013-01-01

    Deficiencies in the mismatch repair (MMR) pathway are associated with several types of cancers, as well as resistance to commonly used chemotherapeutics. Rhodium metalloinsertors have been found to bind DNA mismatches with high affinity and specificity in vitro, and also exhibit cell-selective cytotoxicity, targeting MMR-deficient cells over MMR-proficient cells. Ten distinct metalloinsertors with varying lipophilicities have been synthesized and their mismatch binding affinities and biological activities determined. Although DNA photocleavage experiments demonstrate that their binding affinities are quite similar, their cell-selective antiproliferative and cytotoxic activities vary significantly. Inductively coupled plasma mass spectrometry (ICP-MS) experiments have uncovered a relationship between the subcellular distribution of these metalloinsertors and their biological activities. Specifically, we find that all of our metalloinsertors localize in the nucleus at sufficient concentrations for binding to DNA mismatches. However, the metalloinsertors with high rhodium localization in the mitochondria show toxicity that is not selective for MMR-deficient cells, whereas metalloinsertors with less mitochondrial rhodium show activity that is highly selective for MMR-deficient versus proficient cells. This work supports the notion that specific targeting of the metalloinsertors to nuclear DNA gives rise to their cell-selective cytotoxic and antiproliferative activities. The selectivity in cellular targeting depends upon binding to mismatches in genomic DNA. PMID:23137296

  4. Mast cells: potential positive and negative roles in tumor biology.

    PubMed

    Marichal, Thomas; Tsai, Mindy; Galli, Stephen J

    2013-11-01

    Mast cells are immune cells that reside in virtually all vascularized tissues. Upon activation by diverse mechanisms, mast cells can secrete a broad array of biologically active products that either are stored in the cytoplasmic granules of the cells (e.g., histamine, heparin, various proteases) or are produced de novo upon cell stimulation (e.g., prostaglandins, leukotrienes, cytokines, chemokines, and growth factors). Mast cells are best known for their effector functions during anaphylaxis and acute IgE-associated allergic reactions, but they also have been implicated in a wide variety of processes that maintain health or contribute to disease. There has been particular interest in the possible roles of mast cells in tumor biology. In vitro studies have shown that mast cells have the potential to influence many aspects of tumor biology, including tumor development, tumor-induced angiogenesis, and tissue remodeling, and the shaping of adaptive immune responses to tumors. Yet, the actual contributions of mast cells to tumor biology in vivo remain controversial. Here, we review some basic features of mast cell biology with a special emphasis on those relevant to their potential roles in tumors. We discuss how using in vivo tumor models in combination with models in which mast cell function can be modulated has implicated mast cells in the regulation of host responses to tumors. Finally, we summarize data from studies of human tumors that suggest either beneficial or detrimental roles for mast cells in tumors. ©2013 AACR.

  5. Inhibition of Survivin Influences the Biological Activities of Canine Histiocytic Sarcoma Cell Lines

    PubMed Central

    Hoshino, Yuki; Hosoya, Kenji; Okumura, Masahiro

    2013-01-01

    Canine histiocytic sarcoma (CHS) is an aggressive malignant neoplasm that originates from histiocytic lineage cells, including dendritic cells and macrophages, and is characterized by progressive local infiltration and a very high metastatic potential. Survivin is as an apoptotic inhibitory factor that has major functions in cell proliferation, including inhibition of apoptosis and regulation of cell division, and is expressed in most types of human and canine malignant neoplasms, including melanoma and osteosarcoma. To investigate whether survivin was expressed at high levels in CHS and whether its expression was correlated with the aggressive biological behavior of CHS, we assessed relation between survivin expression and CHS progression, as well as the effects of survivin inhibition on the biological activities of CHS cells. We comparatively analyzed the expression of 6 selected anti-apoptotic genes, including survivin, in specimens from 30 dogs with histiocytic sarcoma and performed annexin V staining to evaluate apoptosis, methylthiazole tetrazolium assays to assess cell viability and chemosensitivity, and latex bead assays to measure changes in phagocytic activities in 4 CHS cell lines and normal canine fibroblasts transfected with survivin siRNA. Survivin gene expression levels in 30 specimens were significantly higher than those of the other 6 genes. After transfection with survivin siRNA, apoptosis, cell growth inhibition, enhanced chemosensitivity, and weakened phagocytic activities were observed in all CHS cell lines. In contrast, normal canine fibroblasts were not significantly affected by survivin knockdown. These results suggested that survivin expression may mediate the aggressive biological activities of CHS and that survivin may be an effective therapeutic target for the treatment of CHS. PMID:24260303

  6. A brief history of the Japan Society for Cell Biology.

    PubMed

    Tashiro, Y; Okigaki, T

    2001-02-01

    The Japan Society for Cell Biology (JSCB) was first founded in 1950 as the Japan Society for Cellular Chemistry under the vigorous leadership of Seizo Katsunuma, in collaboration with Shigeyasu Amano and Satimaru Seno. The Society was provisionally named as above simply because cell biology had not yet been coined at that time in Japan, although in prospect and reality the Society was in fact for the purpose of pursuing cell biology. Later in 1964, the Society was properly renamed as the Japan Society for Cell Biology. After this renaming, the JSCB made great efforts to adapt itself to the rapid progress being made in cell biology. For this purpose the Society's constitution was created in 1966 and revised in 1969. According to the revised constitution, the President, Executive Committee and Councils were to be determined by ballot vote. The style of the annual meetings was gradually modified to incorporate general oral and poster presentations in addition to Symposia (1969-1974). The publication of annual periodicals in Japanese called Symposia of the Japan Society for Cellular Chemistry (1951-1967) and later Symposia of the Japan Society for Cell Biology (1968-1974) was replaced by a new international journal called Cell Structure and Function initiated in 1975. This reformation made it possible for the Society to participate in the Science Council of Japan in 1975 and finally in 1993 to acquire its own study section of Cell Biology with grants-in-aid from the Ministry of Education and Science, Japan. The JSCB hosted the 3rd International Congress on Cell Biology (ICCB) in 1984 and the 3rd Asian-Pacific Organization for Cell Biology (APOCB) Congress in 1998, thus contributing to the international advancement of cell biology. Now the membership of JSCB stands at approximately 1,800 and the number of presentations per meeting is 300 to 400 annually. Although a good number of interesting and important findings in cell biology have been reported from Japan, the general academic activity of the JSCB is far less than one might expect. This is simply due the fact that academic activity in the field of cell biology in Japan is divided among several other related societies such as the Japan Society for Molecular Biology and the Japan Society for Developmental Biology, among others.

  7. The quest for a new modelling framework in mathematical biology. Comment on "On the interplay between mathematics and biology: Hallmarks towards a new systems biology" by N. Bellomo et al.

    NASA Astrophysics Data System (ADS)

    Eftimie, Raluca

    2015-03-01

    One of the main unsolved problems of modern physics is finding a "theory of everything" - a theory that can explain, with the help of mathematics, all physical aspects of the universe. While the laws of physics could explain some aspects of the biology of living systems (e.g., the phenomenological interpretation of movement of cells and animals), there are other aspects specific to biology that cannot be captured by physics models. For example, it is generally accepted that the evolution of a cell-based system is influenced by the activation state of cells (e.g., only activated and functional immune cells can fight diseases); on the other hand, the evolution of an animal-based system can be influenced by the psychological state (e.g., distress) of animals. Therefore, the last 10-20 years have seen also a quest for a "theory of everything"-approach extended to biology, with researchers trying to propose mathematical modelling frameworks that can explain various biological phenomena ranging from ecology to developmental biology and medicine [1,2,6]. The basic idea behind this approach can be found in a few reviews on ecology and cell biology [6,7,9-11], where researchers suggested that due to the parallel between the micro-scale dynamics and the emerging macro-scale phenomena in both cell biology and in ecology, many mathematical methods used for ecological processes could be adapted to cancer modelling [7,9] or to modelling in immunology [11]. However, this approach generally involved the use of different models to describe different biological aspects (e.g., models for cell and animal movement, models for competition between cells or animals, etc.).

  8. History of the Department of Cell Biology at Yale School of Medicine, 1813-2010

    PubMed Central

    Lentz, Thomas L.

    2011-01-01

    The Department of Cell Biology at the Yale University School of Medicine was established in 1983. It was preceded by the Section of Cell Biology, which was formed in 1973 when George E. Palade and collaborators came to Yale from the Rockefeller University. Cell Biology at Yale had its origins in the Department of Anatomy that existed from the beginning of classes at the Medical Institution of Yale College in 1813. This article reviews the history of the Department of Anatomy at Yale and its evolution into Cell Biology that began with the introduction of histology into the curriculum in the 1860s. The formation and development of the Section and Department of Cell Biology in the second half of the 20th century to the present time are described. Biographies and research activities of the chairs and key faculty in anatomy and cell biology are provided. PMID:21698037

  9. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2014-05-27

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  10. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2014-10-28

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  11. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2015-04-14

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  12. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2013-10-01

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  13. Serotonin (5-HT) released by activated white blood cells in a biological fuel cell provide a potential energy source for electricity generation.

    PubMed

    Justin, Gusphyl A; Sun, Mingui; Zhang, Yingze; Cui, X Tracy; Sclabassi, Robert

    2006-01-01

    Previous studies by our group have demonstrated the ability of white blood cells to generate small electrical currents, on the order of 1-3 microA/cm(2), when placed at the anode compartment of a proton exchange membrane (PEM) biological fuel cell. In this research study, an electrochemical technique is used to further investigate the electron transfer ability of activated white blood cells at interfacing electrodes in an attempt to elucidate the mechanism of electron transfer in the original biological fuel cell experiments. Cyclic voltammograms were obtained for human white blood cells using a three-electrode system. The working and counter electrodes were made from carbon felt and platinum, respectively, while the reference was a saturated calomel electrode (SCE). Oxidation peaks were observed at an average potential of 363 mV vs. SCE for the PMA/ionomycin activated white blood cells in glucose solution. However a corresponding reduction peak was not observed, suggesting irreversibility of the redox reaction. The cyclic voltammograms recorded for the white blood cells bear very close similarities to those of the neurotransmitter serotonin (5-HT). Serotonin released by white blood cells into the extracellular environment may be irreversibly oxidized at the working electrode in the cyclic voltammetry experiments and at the PEM biological fuel cell anode in our earlier electrochemical cell studies.

  14. Beyond the hydrophobic effect: Critical function of water at biological phase boundaries--A hypothesis.

    PubMed

    Damodaran, Srinivasan

    2015-07-01

    Many life-sustaining processes in living cells occur at the membrane-water interface. The pertinent questions that need to be asked are what is the evolutionary reason for biology to choose the membrane-water interface as the site for performing and/or controlling crucial biological reactions and what is the key physical principle that is singular to the membrane-water interface that biology exploits for regulating metabolic processes in cells? In this review, a hypothesis is developed, which espouses that cells control activities of membrane-bound enzymes and receptor activated processes via manipulating the thermodynamic activity of water at the membrane-water interfacial region. In support of this hypothesis, first we establish that the surface pressure of a lipid monolayer is a direct measure of a reduction in the thermodynamic activity of interfacial water. Second, we show that the surface pressure-dependent activation/inactivation of interfacial enzymes is fundamentally related to their dependence on interfacial water activity. We extend this argument to infer that cells might manipulate activities of membrane-associated biological processes via manipulating the activity of interfacial water via localized compression or expansion of the interface. In this paper, we critically analyze literature data on mechano-activation of large pore ion channels in Escherichia coli spheroplasts and G-proteins in reconstituted lipid vesicles, and show that these pressure-induced activation processes are fundamentally and quantitatively related to changes in the thermodynamic state of interfacial water, caused by mechanical stretching of the bilayer. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Biological capacitance studies of anodes in microbial fuel cells using electrochemical impedance spectroscopy.

    PubMed

    Lu, Zhihao; Girguis, Peter; Liang, Peng; Shi, Haifeng; Huang, Guangtuan; Cai, Lankun; Zhang, Lehua

    2015-07-01

    It is known that cell potential increases while anode resistance decreases during the start-up of microbial fuel cells (MFCs). Biological capacitance, defined as the apparent capacitance attributed to biological activity including biofilm production, plays a role in this phenomenon. In this research, electrochemical impedance spectroscopy was employed to study anode capacitance and resistance during the start-up period of MFCs so that the role of biological capacitance was revealed in electricity generation by MFCs. It was observed that the anode capacitance ranged from 3.29 to 120 mF which increased by 16.8% to 18-20 times over 10-12 days. Notably, lowering the temperature and arresting biological activity via fixation by 4% para formaldehyde resulted in the decrease of biological capacitance by 16.9 and 62.6%, indicating a negative correlation between anode capacitance and anode resistance of MFCs. Thus, biological capacitance of anode should play an important role in power generation by MFCs. We suggest that MFCs are not only biological reactors and/or electrochemical cells, but also biological capacitors, extending the vision on mechanism exploration of electron transfer, reactor structure design and electrode materials development of MFCs.

  16. Biology of teeth and implants: Host factors - pathology, regeneration, and the role of stem cells.

    PubMed

    Eggert, F-Michael; Levin, Liran

    2018-01-01

    In chronic periodontitis and peri-implantitis, cells of the innate and adaptive immune systems are involved directly in the lesions within the tissues of the patient. Absence of a periodontal ligament around implants does not prevent a biologic process similar to that of periodontitis from affecting osseointegration. Our first focus is on factors in the biology of individuals that are responsible for the susceptibility of such individuals to chronic periodontitis and to peri-implantitis. Genetic factors are of significant importance in susceptibility to these diseases. Genetic factors of the host affect the composition of the oral microbiome in the same manner that they influence other microbiomes, such as those of the intestines and of the lungs. Our second focus is on the central role of stem cells in tissue regeneration, in the functioning of innate and adaptive immune systems, and in metabolism of bone. Epithelial cell rests of Malassez (ERM) are stem cells of epithelial origin that maintain the periodontal ligament as well as the cementum and alveolar bone associated with the ligament. The tissue niche within which ERM are found extends into the supracrestal areas of collagen fiber-containing tissues of the gingivae above the bony alveolar crest. Maintenance and regeneration of all periodontal tissues involves the activity of a variety of stem cells. The success of dental implants indicates that important groups of stem cells in the periodontium are active to enable that biologic success. Successful replantation of avulsed teeth and auto-transplantation of teeth is comparable to placing dental implants, and so must also involve periodontal stem cells. Biology of teeth and biology of implants represents the biology of the various stem cells that inhabit specialized niches within the periodontal tissues. Diverse biologic processes must function together successfully to maintain periodontal health. Osseointegration of dental implants does not involve formation of cementum or collagen fibers inserted into cementum - indicating that some stem cells are not active around dental implants or their niches are not available. Investigation of these similarities and differences between teeth and implants will help to develop a better understanding of the biology and physiologic functioning of the periodontium.

  17. Discovering some novel 7-chloroquinolines carrying a biologically active benzenesulfonamide moiety as a new class of anticancer agents.

    PubMed

    Al-Dosari, Mohammed Salem; Ghorab, Mostafa Mohamed; Al-Said, Mansour Sulaiman; Nissan, Yassin Mohammed

    2013-01-01

    Based on the reported anticancer activity of quinolines, a new series of 7-chloroquinoline derivatives bearing the biologically active benzenesulfonamide moiety 2-17 and 19-25 were synthesized starting with 4,7-dichloroquinolne 1. Compound 17 was the most active compound with IC(50) value 64.41, 75.05 and 30.71 µM compared with Doxorubicin as reference drug with IC(50) values 82.53, 88.32 and 73.72 µM on breast cancer cells, skin cancer cells and neuroblastoma, respectively. All the synthesized compounds were evaluated for their in vitro anticancer activity on breast cancer cells, skin cancer cells and neuroblastoma cells. Most of the synthesized compounds showed moderate activity. In order to suggest the mechanism of action for their cytotoxic activity, molecular docking for all synthesized compounds was done on the active site of phosphoinositide kinase (PI3K) and good results were obtained.

  18. Phenformin inhibits cell proliferation and induces cell apoptosis and autophagy in cholangiocarcinoma.

    PubMed

    Hu, Shuyang; Ouyang, Qing; Cheng, Qingbao; Wang, Jinghan; Feng, Feiling; Qiao, Liang; Gan, Wei; Shi, Yang; Wu, Demin; Jiang, Xiaoqing

    2018-04-01

    Cholangiocarcinoma (CCA) is an aggressive malignant tumor and the prognosis of patients with advanced stage disease remains poor. Therefore, the identification of novel treatment agents for CCA is required. In the present study, the biological effects of the diabetes therapeutic agent, phenformin, in CCA cell lines was investigated. Cell Counting Kit‑8 cell viability, cellular clone formation and subcutaneous tumor formation assays were performed, which revealed that phenformin inhibited CCA cell proliferation and growth both in vitro and in vivo. In addition, phenformin induced CCA cell apoptosis and autophagy. Phenformin partly activated the liver kinase B1 (LKB1)/5' AMP‑activated protein kinase signaling pathway to exert its biological effects on CCA cell lines, as demonstrated by knockdown of LKB1, which reversed these effects. In conclusion, the present study demonstrated the biological effects of phenformin in CCA and suggested that phenformin may be a potential novel agent for CCA treatment.

  19. [THE PHYSICAL CHEMICAL, BIOLOGICAL BASICS OF CELLS ABSORPTION OF UNESTERIFIED FATTY ACIDS; ALBUMIN, CAVEOLIN, CLATHRIN AND LIPID-BINDING PROTEINS OF CYTOPLASM (THE LECTURE)].

    PubMed

    Titov, V N; Shoibonov, B B

    2016-03-01

    From aposition of phylogenetic theory of general pathology, obesity and metabolic syndrome are pathology of fatty cells. However, the first is a pathology of phylogenetically early visceral fatty cells of omentum. They supply with substratum of energy realization of biologic function of trophology, homeostasis, endoecology and adaptation. The visceral fatty cells of omentum have no receptors to insulin and synthesize adaptively insulin and they are not characterized by biologic reaction of proliferation. The obesity is a pathology of late in phylogenesis subcutaneous adpocytes. They are insulin-dependent and supply with substratum of energy realization of one biologic function of locomotion--movement at the expense of constriction of cross-striated miocytes. The adipocytes in terms of adaptation synthesize humoral mediator adponectin and actively implement biologic function of proliferation. Under both aphysiologic conditions increases passive by gradient of concentration, absorption by cells albumin-unbound free fatty acids in unionized form in micellae's composition. The passive aphysiologic absorption of free fatty acids by cells which under intracellular compartmentalization don't oxidize mitochondria results in synthesis, accumulation of triglycerides in cytoplasm of cells which don't implement it physiologically. The aphysiologic absorption of free fatty acids by cells, their etherification in triglyceride, in particular, in phylogenetically late β-cells of islets and either late cardiomyocytes which fatty acids don't synthesize de novo results in development of aphysiologic processes and disorder of function. From position of biology, these cells in vivo are subjected to loss similar to apoptosis. The formation of corpuscles of apoptosis compromise biologic function of endoecology activating biologic reaction of inflammation.

  20. Single cell multiplexed assay for proteolytic activity using droplet microfluidics.

    PubMed

    Ng, Ee Xien; Miller, Miles A; Jing, Tengyang; Chen, Chia-Hung

    2016-07-15

    Cellular enzymes interact in a post-translationally regulated fashion to govern individual cell behaviors, yet current platform technologies are limited in their ability to measure multiple enzyme activities simultaneously in single cells. Here, we developed multi-color Förster resonance energy transfer (FRET)-based enzymatic substrates and use them in a microfluidics platform to simultaneously measure multiple specific protease activities from water-in-oil droplets that contain single cells. By integrating the microfluidic platform with a computational analytical method, Proteolytic Activity Matrix Analysis (PrAMA), we are able to infer six different protease activity signals from individual cells in a high throughput manner (~100 cells/experimental run). We characterized protease activity profiles at single cell resolution for several cancer cell lines including breast cancer cell line MDA-MB-231, lung cancer cell line PC-9, and leukemia cell line K-562 using both live-cell and in-situ cell lysis assay formats, with special focus on metalloproteinases important in metastasis. The ability to measure multiple proteases secreted from or expressed in individual cells allows us to characterize cell heterogeneity and has potential applications including systems biology, pharmacology, cancer diagnosis and stem cell biology. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Muscle Satellite Cells: Exploring the Basic Biology to Rule Them.

    PubMed

    Almeida, Camila F; Fernandes, Stephanie A; Ribeiro Junior, Antonio F; Keith Okamoto, Oswaldo; Vainzof, Mariz

    2016-01-01

    Adult skeletal muscle is a postmitotic tissue with an enormous capacity to regenerate upon injury. This is accomplished by resident stem cells, named satellite cells, which were identified more than 50 years ago. Since their discovery, many researchers have been concentrating efforts to answer questions about their origin and role in muscle development, the way they contribute to muscle regeneration, and their potential to cell-based therapies. Satellite cells are maintained in a quiescent state and upon requirement are activated, proliferating, and fusing with other cells to form or repair myofibers. In addition, they are able to self-renew and replenish the stem pool. Every phase of satellite cell activity is highly regulated and orchestrated by many molecules and signaling pathways; the elucidation of players and mechanisms involved in satellite cell biology is of extreme importance, being the first step to expose the crucial points that could be modulated to extract the optimal response from these cells in therapeutic strategies. Here, we review the basic aspects about satellite cells biology and briefly discuss recent findings about therapeutic attempts, trying to raise questions about how basic biology could provide a solid scaffold to more successful use of these cells in clinics.

  2. The Effect of Hypoxia on Mesenchymal Stem Cell Biology

    PubMed Central

    Ejtehadifar, Mostafa; Shamsasenjan, Karim; Movassaghpour, Aliakbar; Akbarzadehlaleh, Parvin; Dehdilani, Nima; Abbasi, Parvaneh; Molaeipour, Zahra; Saleh, Mahshid

    2015-01-01

    Although physiological and pathological role of hypoxia have been appreciated in mammalians for decades however the cellular biology of hypoxia more clarified in the past 20 years. Discovery of the transcription factor hypoxia-inducible factor (HIF)-1, in the 1990s opened a new window to investigate the mechanisms behind hypoxia. In different cellular contexts HIF-1 activation show variable results by impacting various aspects of cell biology such as cell cycle, apoptosis, differentiation and etc. Mesenchymal stem cells (MSC) are unique cells which take important role in tissue regeneration. They are characterized by self-renewal capacity, multilineage potential, and immunosuppressive property. Like so many kind of cells, hypoxia induces different responses in MSCs by HIF- 1 activation. The activation of this molecule changes the growth, multiplication, differentiation and gene expression profile of MSCs in their niche by a complex of signals. This article briefly discusses the most important effects of hypoxia in growth kinetics, signalling pathways, cytokine secretion profile and expression of chemokine receptors in different conditions. PMID:26236651

  3. [Piezoelectric property of novel biological piezoelectric ceramic HALNK and its effect on the functional expression of rat osteoblast cells].

    PubMed

    Wang, Peng; Zhang, Jin-Chao; Zhang, Xiao-Zhou; Liu, Zhi-Qin; Chen, Que-Ting; Sun, Jing; Chen, Zhi-Qing

    2009-09-01

    To test the Piezoelectric property of novel biological piezoelectric ceramic HALNK and its effect on the proliferation and differentiation of rat osteoblast cells. The biological piezoelectric ceramic HALNK1/9 and HALNK5/5 were prepared by mixing Hydroxyapatite (HA) with lithium sodium potassium niobate (LNK) piezoelectric ceramic at a ratio of 1/9 and 5/5 (wt/wt), respectively. After poling treatment, the piezoelectric constants were measured. The osteoblast cells were then seeded on the surfaces of HALNK. The proliferation and differentiation activities of the osteoblast cells were evaluated by MTT assays, ALP activities and scanning electron microscopy examinations. Cells grown on the surfaces of HALNK showed normal morphology, and had better proliferation and differentiation activities than the control. The growth of osteoblastic cells on the surface of HALNK1/9 was significantly better than others. The surface of HALNK 1/9 possesses better piezoelectric property and osteogenesis potential than HALNK5/5.

  4. A study on biological activity of marine fungi from different habitats in coastal regions.

    PubMed

    Zhou, Songlin; Wang, Min; Feng, Qi; Lin, Yingying; Zhao, Huange

    2016-01-01

    In recent years, marine fungi have become an important source of active marine natural products. Former researches are limited in habitats selection of fungi with bioactive compounds. In this paper were to measure antibacterial and antitumor cell activity for secondary metabolites of marine fungi, which were isolated from different habitats in coastal regions. 195 strains of marine fungi were isolated and purified from three different habitats. They biologically active experiment results showed that fungi isolation from the mangrove habitats had stronger antibacterial activity than others, and the stains isolated from the estuarial habitats had the least antibacterial activity. However, the strains separated from beach habitats strongly inhibited tumor cell proliferation in vitro, and fungi of mangrove forest habitats had the weakest activity of inhibiting tumor. Meanwhile, 195 fungal strains belonged to 46 families, 84 genera, 142 species and also showed 137 different types of activity combinations by analyzing the inhibitory activity of the metabolites fungi for 4 strains of pathogenic bacteria and B-16 cells. The study investigated the biological activity of marine fungi isolated from different habitats in Haikou coastal regions. The results help us to understand bioactive metabolites of marine fungi from different habitats, and how to selected biological activity fungi from various marine habitats effectively.

  5. Investigating the Relationship between Instructors' Use of Active-Learning Strategies and Students' Conceptual Understanding and Affective Changes in Introductory Biology: A Comparison of Two Active-Learning Environments.

    PubMed

    Cleveland, Lacy M; Olimpo, Jeffrey T; DeChenne-Peters, Sue Ellen

    2017-01-01

    In response to calls for reform in undergraduate biology education, we conducted research examining how varying active-learning strategies impacted students' conceptual understanding, attitudes, and motivation in two sections of a large-lecture introductory cell and molecular biology course. Using a quasi-experimental design, we collected quantitative data to compare participants' conceptual understanding, attitudes, and motivation in the biological sciences across two contexts that employed different active-learning strategies and that were facilitated by unique instructors. Students participated in either graphic organizer/worksheet activities or clicker-based case studies. After controlling for demographic and presemester affective differences, we found that students in both active-learning environments displayed similar and significant learning gains. In terms of attitudinal and motivational data, significant differences were observed for two attitudinal measures. Specifically, those students who had participated in graphic organizer/worksheet activities demonstrated more expert-like attitudes related to their enjoyment of biology and ability to make real-world connections. However, all motivational and most attitudinal data were not significantly different between the students in the two learning environments. These data reinforce the notion that active learning is associated with conceptual change and suggests that more research is needed to examine the differential effects of varying active-learning strategies on students' attitudes and motivation in the domain. © 2017 L. M. Cleveland et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Black pepper (Piper nigrum) essential oil demonstrates tissue remodeling and metabolism modulating potential in human cells.

    PubMed

    Han, Xuesheng; Beaumont, Cody; Rodriguez, Damian; Bahr, Tyler

    2018-05-17

    Very few studies have investigated the biological activities of black pepper essential oil (BPEO) in human cells. Therefore, in the current study, we examined the biological activities of BPEO in cytokine-stimulated human dermal fibroblasts by analyzing the levels of 17 important protein biomarkers pertinent to inflammation and tissue remodeling. BPEO exhibited significant antiproliferative activity in these skin cells and significantly inhibited the production of Collagen I, Collagen III, and plasminogen activator inhibitor 1. In addition, we studied the effect of BPEO on the regulation of genome-wide expression and found that BPEO diversely modulated global gene expression. Further analysis showed that BPEO affected many important genes and signaling pathways closely related to metabolism, inflammation, tissue remodeling, and cancer signaling. This study is the first to provide evidence of the biological activities of BPEO in human dermal fibroblasts. The data suggest that BPEO possesses promising potential to modulate the biological processes of tissue remodeling, wound healing, and metabolism. Although further research is required, BPEO appears to be a good therapeutic candidate for a variety of health conditions including wound care and metabolic diseases. Research into the biological and pharmacological mechanisms of action of BPEO and its major active constituents is recommended. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Profiling Bioactivity of the ToxCast Chemical Library Using BioMAP Primary Human Cell Systems

    EPA Science Inventory

    The complexity of human biology has made prediction of health effects as a consequence of exposure to environmental chemicals especially challenging. Complex cell systems, such as the Biologically Multiplexed Activity Profiling (BioMAP) primary, human, cell-based disease models, ...

  8. Glycan Engineering for Cell and Developmental Biology.

    PubMed

    Griffin, Matthew E; Hsieh-Wilson, Linda C

    2016-01-21

    Cell-surface glycans are a diverse class of macromolecules that participate in many key biological processes, including cell-cell communication, development, and disease progression. Thus, the ability to modulate the structures of glycans on cell surfaces provides a powerful means not only to understand fundamental processes but also to direct activity and elicit desired cellular responses. Here, we describe methods to sculpt glycans on cell surfaces and highlight recent successes in which artificially engineered glycans have been employed to control biological outcomes such as the immune response and stem cell fate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Synthesis and Biological Evaluation of Analogues of AKT (Protein Kinase B) Inhibitor-IV

    PubMed Central

    Sun, Qi; Wu, Runzhi; Cai, Sutang; Lin, Yuan; Sellers, Llewlyn; Sakamoto, Kaori; He, Biao; Peterson, Blake R.

    2011-01-01

    Inhibitors of the PI3-kinase/AKT (protein kinase B) pathway are under investigation as anticancer and antiviral agents. The benzimidazole derivative AKT inhibitor-IV (ChemBridge 5233705) affects this pathway and exhibits potent anticancer and antiviral activity. To probe its biological activity, we synthesized AKT inhibitor-IV and 21 analogues using a novel six-step route based on ZrCl4-catalyzed cyclization of 1,2-arylenediamines with α,β-unsaturated aldehydes. We examined effects on viability of HeLa carcinoma cells, viability of normal human cells (NHBE), replication of recombinant parainfluenza virus 5 (PIV5) in HeLa cells, and replication of the intracellular bacterium Mycobacterium fortuitum in HeLa cells. Replacement of the benzimidazole N-ethyl substitutent of AKT inhibitor-IV with N-hexyl and N-dodecyl groups enhanced antiviral activity and cytotoxicity against the cancer cell line, but these compounds showed substantially lower toxicity (from 6-fold to >20-fold) against NHBE cells, and no effect on M. fortuitum, suggesting inhibition of one or more host protein(s) required for proliferation of cancer cells and PIV5. The key structural elements identified here may facilitate identification of targets of this highly biologically active scaffold. PMID:21319800

  10. Expression and fast preparation of biologically active recombinant human coagulation factor VII in CHO-K1 cells.

    PubMed

    Xiao, W; Li, C Q; Xiao, X P; Lin, F Z

    2013-12-16

    Human coagulation factor VII (FVII) plays an important role in the blood coagulation process and exists in micro amounts in human plasma; therefore, any attempt at the large-scale production of FVII in significant quantities is challenging. The purpose of this study was to express and obtain biologically active recombinant FVII (rFVII) from Chinese hamster ovary K1 (CHO-K1) cells. The full-length FVII cDNA was isolated from a HepG2 cell line and then subcloned in pcDNA3.1 to construct an expression vector, pcDNA-FVII. CHO-K1 cells were transfected with 1 µg pcDNA-FVII. The cell line that stably expressed secretory FVII was screened using 900 µg/mL G418. The FVII copy number in CHO-K1 cells was detected by quantitative polymerase chain reaction (qPCR). The rFVII was purified in ligand affinity chromatography medium. The purified protein was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis. The biological activity of the purified FVII protein was determined by a prothrombin time assay. Three cell lines that permanently expressed rFVII were screened. The qPCR results demonstrated that each CHO-K1 cell harbored two FVII DNA copies. The SDS-PAGE and Western blot analysis showed that the purified protein was about 50 kDa. The purity of the target protein was 95%. The prothrombin time assay indicated that the FVII-specific activity of rFVII was 2573 ± 75 IU/mg. This method enabled the fast preparation of high-purity rFVII from CHO-K1 cells, and the purified protein had good biological activity.

  11. The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress.

    PubMed

    Secchi, Francesca; Pagliarani, Chiara; Zwieniecki, Maciej A

    2017-06-01

    Xylem parenchyma cells [vessel associated cells (VACs)] constitute a significant fraction of the xylem in woody plants. These cells are often closely connected with xylem vessels or tracheids via simple pores (remnants of plasmodesmata fields). The close contact and biological activity of VACs during times of severe water stress and recovery from stress suggest that they are involved in the maintenance of xylem transport capacity and responsible for the restoration of vessel/tracheid functionality following embolism events. As recovery from embolism requires the transport of water across xylem parenchyma cell membranes, an understanding of stem-specific aquaporin expression patterns, localization and activity is a crucial part of any biological model dealing with embolism recovery processes in woody plants. In this review, we provide a short overview of xylem parenchyma cell biology with a special focus on aquaporins. In particular we address their distributions and activity during the development of drought stress, during the formation of embolism and the subsequent recovery from stress that may result in refilling. Complemented by the current biological model of parenchyma cell function during recovery from stress, this overview highlights recent breakthroughs on the unique ability of long-lived perennial plants to undergo cycles of embolism-recovery related to drought/rewetting or freeze/thaw events. © 2016 John Wiley & Sons Ltd.

  12. The development of peptide-based interfacial biomaterials for generating biological functionality on the surface of bioinert materials.

    PubMed

    Meyers, Steven R; Khoo, Xiaojuan; Huang, Xin; Walsh, Elisabeth B; Grinstaff, Mark W; Kenan, Daniel J

    2009-01-01

    Biomaterials used in implants have traditionally been selected based on their mechanical properties, chemical stability, and biocompatibility. However, the durability and clinical efficacy of implantable biomedical devices remain limited in part due to the absence of appropriate biological interactions at the implant interface and the lack of integration into adjacent tissues. Herein, we describe a robust peptide-based coating technology capable of modifying the surface of existing biomaterials and medical devices through the non-covalent binding of modular biofunctional peptides. These peptides contain at least one material binding sequence and at least one biologically active sequence and thus are termed, "Interfacial Biomaterials" (IFBMs). IFBMs can simultaneously bind the biomaterial surface while endowing it with desired biological functionalities at the interface between the material and biological realms. We demonstrate the capabilities of model IFBMs to convert native polystyrene, a bioinert surface, into a bioactive surface that can support a range of cell activities. We further distinguish between simple cell attachment with insufficient integrin interactions, which in some cases can adversely impact downstream biology, versus biologically appropriate adhesion, cell spreading, and cell survival mediated by IFBMs. Moreover, we show that we can use the coating technology to create spatially resolved patterns of fluorophores and cells on substrates and that these patterns retain their borders in culture.

  13. Signal focusing through active transport

    NASA Astrophysics Data System (ADS)

    Godec, Aljaž; Metzler, Ralf

    2015-07-01

    The accuracy of molecular signaling in biological cells and novel diagnostic devices is ultimately limited by the counting noise floor imposed by the thermal diffusion. Motivated by the fact that messenger RNA and vesicle-engulfed signaling molecules transiently bind to molecular motors and are actively transported in biological cells, we show here that the random active delivery of signaling particles to within a typical diffusion distance to the receptor generically reduces the correlation time of the counting noise. Considering a variety of signaling particle sizes from mRNA to vesicles and cell sizes from prokaryotic to eukaryotic cells, we show that the conditions for active focusing—faster and more precise signaling—are indeed compatible with observations in living cells. Our results improve the understanding of molecular cellular signaling and novel diagnostic devices.

  14. Biophysical principles of regulatory action of low-intensity laser irradiation

    NASA Astrophysics Data System (ADS)

    Mostovnikov, Vasili A.; Mostovnikova, Galina R.; Plavski, Vitali Y.; Plavskaja, Ljudmila G.

    1996-01-01

    The investigations carried out in our group on biological systems of various organization level (enzyme molecules in solution, human and animal cell cultures), allowed us to conclude, that the light-induced changes of spatial structure of cells components form the basis of biological activity (and as a consequence therapeutic effect) of various wavelength low-intensity laser emission. Photophysical mechanism of these changes lies in the reorientation of highregulated anisotropic parts (domains) with the liquid-crystalline type of ordering of the cell components due to the interaction between the electric field and the light induced integral electric dipole of the domain. The mechanism of such reorientation is well established in physics of liquid crystals of nematic type and is known as light induced analogue of Frederix's effect. The following results enable us to draw the conclusion about the determining role of the orientations effects on the biological activity mechanism of low-intensity laser radiation: (1) the possibility of reversible modification of spatial structure and enzyme molecules functional activity under the influence of laser radiation outside the band of their own or admixture absorption; (2) the dependence of biological effect of laser radiation on the functional activity of cells vs. polarization degree of the light with the maximum photobiological effects observed for linear-polarized radiation; (3) the equivalence of a static magnetic field and low-intensity laser radiation in action on functional activity of the cells and the lowering of the laser field intensity for the achieving the definite changes of the cell functional activity in the presence of static magnetic field.

  15. Parallel single-cell analysis of active caspase-3/7 in apoptotic and non-apoptotic cells.

    PubMed

    Ledvina, Vojtěch; Janečková, Eva; Matalová, Eva; Klepárník, Karel

    2017-01-01

    Analysing the chemical content of individual cells has already been proven to reveal unique information on various biological processes. Single-cell analysis provides more accurate and reliable results for biology and medicine than analyses of extracts from cell populations, where a natural heterogeneity is averaged. To meet the requirements in the research of important biologically active molecules, such as caspases, we have developed a miniaturized device for simultaneous analyses of individual cells. A stainless steel body with a carousel holder enables high-sensitivity parallel detections in eight microvials. The holder is mounted in front of a photomultiplier tube with cooled photocathode working in photon counting mode. The detection of active caspase-3/7, central effector caspases in apoptosis, in single cells is based on the bioluminescence chemistry commercially available as Caspase-Glo ® 3/7 reagent developed by Promega. Individual cells were captured from a culture medium under microscope and transferred by micromanipulator into detection microvial filled with the reagent. As a result of testing, the limits of detection and quantification were determined to be 0.27/0.86 of active caspase-3/7 content in an average apoptotic cell and 0.46/2.92 for non-apoptotic cells. Application potential of this technology in laboratory diagnostics and related medical research is discussed. Graphical abstract Miniaturized device for simultaneous analyses of individual cells.

  16. Synthesis, characterization and deepening in the comprehension of the biological action mechanisms of a new nickel complex with antiproliferative activity.

    PubMed

    Buschini, Annamaria; Pinelli, Silvana; Pellacani, Claudia; Giordani, Federica; Ferrari, Marisa Belicchi; Bisceglie, Franco; Giannetto, Marco; Pelosi, Giorgio; Tarasconi, Pieralberto

    2009-05-01

    Thiosemicarbazones are versatile organic compounds that present considerable pharmaceutical interest because of a wide range of properties. In our laboratory we synthesised some new metal-complexes with thiosemicarbazones derived from natural aldehydes which showed peculiar biological activities. In particular, a nickel complex [Ni(S-tcitr)(2)] (S-tcitr=S-citronellalthiosemicarbazonate) was observed to induce an antiproliferative effect on U937, a human histiocytic lymphoma cell line, at low concentrations (IC(50)=14.4microM). Therefore, we decided to study the interactions of this molecule with various cellular components and to characterise the induced apoptotic pathway. Results showed that [Ni(S-tcitr)(2)] causes programmed cell death via down-regulation of Bcl-2, alteration of mitochondrial membrane potential and caspase-3 activity, regardless of p53 function. The metal complex is not active on G(0) cells (i.e. fresh leukocytes) but is able to induce perturbation of the cell cycle on stimulated lymphocytes and U937 cells, in which a G(2)/M block was detected. It reaches the nucleus where it induces, at low concentrations (2.5-5.0microM), DNA damage, which could be partially ascribed to oxidative stress. [Ni(S-tcitr)(2)] is moreover able to strongly reduce the telomerase activity. Although the biological target of this metal complex is still unknown, the reported data suggest that [Ni(S-tcitr)(2)] could be a good model for the synthesis of new metal thiosemicarbazones with specific biological activity.

  17. Mammalian synthetic biology for studying the cell

    PubMed Central

    Mathur, Melina; Xiang, Joy S.

    2017-01-01

    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. PMID:27932576

  18. Liposomal Packaging Generates Wnt Protein with In Vivo Biological Activity

    PubMed Central

    Zhao, Ludan; Kim, Jae-Beom; ten Berge, Derk; Ponnusamy, Karthik; Carre, A. Lyonel; Dudek, Henryk; Zachlederova, Marie; McElhaney, Michael; Brunton, Shirley; Gunzner, Janet; Callow, Marinella; Polakis, Paul; Costa, Mike; Zhang, Xiaoyan M.; Helms, Jill A.; Nusse, Roel

    2008-01-01

    Wnt signals exercise strong cell-biological and regenerative effects of considerable therapeutic value. There are, however, no specific Wnt agonists and no method for in vivo delivery of purified Wnt proteins. Wnts contain lipid adducts that are required for activity and we exploited this lipophilicity by packaging purified Wnt3a protein into lipid vesicles. Rather than being encapsulated, Wnts are tethered to the liposomal surface, where they enhance and sustain Wnt signaling in vitro. Molecules that effectively antagonize soluble Wnt3a protein but are ineffective against the Wnt3a signal presented by a cell in a paracrine or autocrine manner are also unable to block liposomal Wnt3a activity, suggesting that liposomal packaging mimics the biological state of active Wnts. When delivered subcutaneously, Wnt3a liposomes induce hair follicle neogenesis, demonstrating their robust biological activity in a regenerative context. PMID:18698373

  19. Liposomal packaging generates Wnt protein with in vivo biological activity.

    PubMed

    Morrell, Nathan T; Leucht, Philipp; Zhao, Ludan; Kim, Jae-Beom; ten Berge, Derk; Ponnusamy, Karthik; Carre, A Lyonel; Dudek, Henryk; Zachlederova, Marie; McElhaney, Michael; Brunton, Shirley; Gunzner, Janet; Callow, Marinella; Polakis, Paul; Costa, Mike; Zhang, Xiaoyan M; Helms, Jill A; Nusse, Roel

    2008-08-13

    Wnt signals exercise strong cell-biological and regenerative effects of considerable therapeutic value. There are, however, no specific Wnt agonists and no method for in vivo delivery of purified Wnt proteins. Wnts contain lipid adducts that are required for activity and we exploited this lipophilicity by packaging purified Wnt3a protein into lipid vesicles. Rather than being encapsulated, Wnts are tethered to the liposomal surface, where they enhance and sustain Wnt signaling in vitro. Molecules that effectively antagonize soluble Wnt3a protein but are ineffective against the Wnt3a signal presented by a cell in a paracrine or autocrine manner are also unable to block liposomal Wnt3a activity, suggesting that liposomal packaging mimics the biological state of active Wnts. When delivered subcutaneously, Wnt3a liposomes induce hair follicle neogenesis, demonstrating their robust biological activity in a regenerative context.

  20. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation

    PubMed Central

    2016-01-01

    Over the past decade, numerous advances have been made in the role and regulation of inflammasomes during pathogenic and sterile insults. An inflammasome complex comprises a sensor, an adaptor, and a zymogen procaspase-1. The functional output of inflammasome activation includes secretion of cytokines, IL-1β and IL-18, and induction of an inflammatory form of cell death called pyroptosis. Recent studies have highlighted the intersection of this inflammatory response with fundamental cellular processes. Novel modulators and functions of inflammasome activation conventionally associated with the maintenance of homeostatic biological functions have been uncovered. In this review, we discuss the biological processes involved in the activation and regulation of the inflammasome. PMID:27325789

  1. Expression and Purification of Recombinant Human Basic Fibroblast Growth Factor Fusion Proteins and Their Uses in Human Stem Cell Culture.

    PubMed

    Imsoonthornruksa, Sumeth; Pruksananonda, Kamthorn; Parnpai, Rangsun; Rungsiwiwut, Ruttachuk; Ketudat-Cairns, Mariena

    2015-01-01

    To reduce the cost of cytokines and growth factors in stem cell research, a simple method for the production of soluble and biological active human basic fibroblast growth factor (hbFGF) fusion protein in Escherichia coli was established. Under optimal conditions, approximately 60-80 mg of >95% pure hbFGF fusion proteins (Trx-6xHis-hbFGF and 6xHis-hbFGF) were obtained from 1 liter of culture broth. The purified hbFGF proteins, both with and without the fusion tags, were biologically active, which was confirmed by their ability to stimulate proliferation of NIH3T3 cells. The fusion proteins also have the ability to support several culture passages of undifferentiated human embryonic stem cells and induce pluripotent stem cells. This paper describes a low-cost and uncomplicated method for the production and purification of biologically active hbFGF fusion proteins. © 2015 S. Karger AG, Basel.

  2. Quinic acid is a biologically active component of the Uncaria tomentosa extract C-Med 100.

    PubMed

    Akesson, Christina; Lindgren, Hanna; Pero, Ronald W; Leanderson, Tomas; Ivars, Fredrik

    2005-01-01

    We have previously reported that the C-Med 100 extract of the plant Uncaria tomentosa induces prolonged lymphocyte half life and hence increased spleen cell number in mice receiving the extract in their drinking water. Further, the extract induces cell proliferation arrest and inhibits activation of the transcriptional regulator nuclear factor kappaB (NF-kappaB) in vitro. We now report that mice exposed to quinic acid (QA), a component of this extract, had significantly increased number of spleen cells, thus recapitulating the in vivo biological effect of C-Med 100 exposure. Commercially supplied QA (H(+) form) did not, however, inhibit cell proliferation in vitro, while the ammonia-treated QA (QAA) was a potent inhibitor. Both QA and QAA inhibited NF-kappaB activity in exposed cells at similar concentrations. Thus, our present data identify QA as a candidate component for both in vivo and in vitro biological effects of the C-Med 100 extract.

  3. A Remarkably Simple Class of Imidazolium-Based Lipids and Their Biological Properties.

    PubMed

    Wang, Da; Richter, Christian; Rühling, Andreas; Drücker, Patrick; Siegmund, Daniel; Metzler-Nolte, Nils; Glorius, Frank; Galla, Hans-Joachim

    2015-10-19

    A series of imidazolium salts bearing two alkyl chains in the backbone of the imidazolium core were synthesized, resembling the structure of lipids. Their antibacterial activity and cytotoxicity were evaluated using Gram-positive and Gram-negative bacteria and eukaryotic cell lines including tumor cells. It is shown that the length of alkyl chains in the backbone is vital for the antibiofilm activities of these lipid-mimicking components. In addition to their biological activity, their surface activity and their membrane interactions are shown by film balance and quartz crystal microbalance (QCM) measurements. The structure-activity relationship indicates that the distinctive chemical structure contributes considerably to the biological activities of this novel class of lipids. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Biology and flow cytometry of proangiogenic hematopoietic progenitors cells.

    PubMed

    Rose, Jonathan A; Erzurum, Serpil; Asosingh, Kewal

    2015-01-01

    During development, hematopoiesis and neovascularization are closely linked to each other via a common bipotent stem cell called the hemangioblast that gives rise to both hematopoietic cells and endothelial cells. In postnatal life, this functional connection between the vasculature and hematopoiesis is maintained by a subset of hematopoietic progenitor cells endowed with the capacity to differentiate into potent proangiogenic cells. These proangiogenic hematopoietic progenitors comprise a specific subset of bone marrow (BM)-derived cells that homes to sites of neovascularization and possess potent paracrine angiogenic activity. There is emerging evidence that this subpopulation of hematopoietic progenitors plays a critical role in vascular health and disease. Their angiogenic activity is distinct from putative "endothelial progenitor cells" that become structural cells of the endothelium by differentiation into endothelial cells. Proangiogenic hematopoietic progenitor cell research requires multidisciplinary expertise in flow cytometry, hematology, and vascular biology. This review provides a comprehensive overview of proangiogenic hematopoietic progenitor cell biology and flow cytometric methods to detect these cells in the peripheral blood circulation and BM. © 2014 International Society for Advancement of Cytometry.

  5. Structure and biological activities of eumenine mastoparan-AF (EMP-AF), a new mast cell degranulating peptide in the venom of the solitary wasp (Anterhynchium flavomarginatum micado).

    PubMed

    Konno, K; Hisada, M; Naoki, H; Itagaki, Y; Kawai, N; Miwa, A; Yasuhara, T; Morimoto, Y; Nakata, Y

    2000-11-01

    A new mast cell degranulating peptide, eumenine mastoparan-AF (EMP-AF), was isolated from the venom of the solitary wasp Anterhynchium flavomarginatum micado, the most common eumenine wasp found in Japan. The structure was analyzed by FAB-MS/MS together with Edman degradation, which was corroborated by solid-phase synthesis. The sequence of EMP-AF, Ile-Asn-Leu-Leu-Lys-Ile-Ala-Lys-Gly-Ile-Ile-Lys-Ser-Leu-NH(2), was similar to that of mastoparan, a mast cell degranulating peptide from a hornet venom; tetradecapeptide with C-terminus amidated and rich in hydrophobic and basic amino acids. In fact, EMP-AF exhibited similar activity to mastoparan in stimulating degranulation from rat peritoneal mast cells and RBL-2H3 cells. It also showed significant hemolytic activity in human erythrocytes. Therefore, this is the first example that a mast cell degranulating peptide is found in the solitary wasp venom. Besides the degranulation and hemolytic activity, EMP-AF also affects on neuromuscular transmission in the lobster walking leg preparation. Three analogs EMP-AF-1 approximately 3 were snythesized and biologically tested together with EMP-AF, resulting in the importance of the C-terminal amide structure for biological activities.

  6. Inhibitory activity of synthesized acetylated Procyanidin B1 analogs against HeLa S3 cells proliferation.

    PubMed

    Okamoto, Syuhei; Ishihara, Sayaka; Okamoto, Taisuke; Doi, Syoma; Harui, Kota; Higashino, Yusuke; Kawasaki, Takashi; Nakajima, Noriyuki; Saito, Akiko

    2014-02-04

    Proanthocyanidins, also known as condensed tannins and/or oligomeric flavonoids, occur in many edible plants and have various interesting biological activities. Previously, we reported a synthetic method for the preparation of various procyanidins in pure form and described their biological activities. Here, we describe the synthesis of procyanidin B1 acetylated analogs and discuss their inhibition activities against HeLa S3 cell proliferation. Surprisingly, the lower-unit acetylated procyanidin B1 strongly inhibited the proliferation of HeLa S3 cells. This molecule showed much stronger inhibitory activity than did epigallocatechin-3-O-gallate (EGCG), green tea polyphenol, and dimeric compounds that included EGCG as a unit. This result suggests that the phenolic hydroxyl groups of the upper-units in flavan-3-ols are important for their inhibitory activity against cancer cell proliferation and that a hydrophobic lower unit dimer enhances this activity.

  7. Particle complexation of mitochondrial iron produces superoxide generation and activates MAP kinases, NF-kappa B, nrf-2 in human respiratory epithelial cell

    EPA Science Inventory

    The biological effect of particles is associated with a disruption in cell iron homeostasis. We tested the postulate that complexation of cell iron by silica (Si02) results in both an oxidative stress and biological effect. BEAS-2B cells were exposed to either media or 100 ug/ml....

  8. Multiway modeling and analysis in stem cell systems biology

    PubMed Central

    2008-01-01

    Background Systems biology refers to multidisciplinary approaches designed to uncover emergent properties of biological systems. Stem cells are an attractive target for this analysis, due to their broad therapeutic potential. A central theme of systems biology is the use of computational modeling to reconstruct complex systems from a wealth of reductionist, molecular data (e.g., gene/protein expression, signal transduction activity, metabolic activity, etc.). A number of deterministic, probabilistic, and statistical learning models are used to understand sophisticated cellular behaviors such as protein expression during cellular differentiation and the activity of signaling networks. However, many of these models are bimodal i.e., they only consider row-column relationships. In contrast, multiway modeling techniques (also known as tensor models) can analyze multimodal data, which capture much more information about complex behaviors such as cell differentiation. In particular, tensors can be very powerful tools for modeling the dynamic activity of biological networks over time. Here, we review the application of systems biology to stem cells and illustrate application of tensor analysis to model collagen-induced osteogenic differentiation of human mesenchymal stem cells. Results We applied Tucker1, Tucker3, and Parallel Factor Analysis (PARAFAC) models to identify protein/gene expression patterns during extracellular matrix-induced osteogenic differentiation of human mesenchymal stem cells. In one case, we organized our data into a tensor of type protein/gene locus link × gene ontology category × osteogenic stimulant, and found that our cells expressed two distinct, stimulus-dependent sets of functionally related genes as they underwent osteogenic differentiation. In a second case, we organized DNA microarray data in a three-way tensor of gene IDs × osteogenic stimulus × replicates, and found that application of tensile strain to a collagen I substrate accelerated the osteogenic differentiation induced by a static collagen I substrate. Conclusion Our results suggest gene- and protein-level models whereby stem cells undergo transdifferentiation to osteoblasts, and lay the foundation for mechanistic, hypothesis-driven studies. Our analysis methods are applicable to a wide range of stem cell differentiation models. PMID:18625054

  9. Improving protein delivery of fibroblast growth factor-2 from bacterial inclusion bodies used as cell culture substrates.

    PubMed

    Seras-Franzoso, Joaquin; Peebo, Karl; García-Fruitós, Elena; Vázquez, Esther; Rinas, Ursula; Villaverde, Antonio

    2014-03-01

    Bacterial inclusion bodies (IBs) have recently been used to generate biocompatible cell culture interfaces, with diverse effects on cultured cells such as cell adhesion enhancement, stimulation of cell growth or induction of mesenchymal stem cell differentiation. Additionally, novel applications of IBs as sustained protein delivery systems with potential applications in regenerative medicine have been successfully explored. In this scenario, with IBs gaining significance in the biomedical field, the fine tuning of this functional biomaterial is crucial. In this work, the effect of temperature on fibroblast growth factor-2 (FGF-2) IB production and performance has been evaluated. FGF-2 was overexpressed in Escherichia coli at 25 and 37 °C, producing IBs with differences in size, particle structure and biological activity. Cell culture topographies made with FGF-2 IBs biofabricated at 25 °C showed higher levels of biological activity as well as a looser supramolecular structure, enabling a higher protein release from the particles. In addition, the controlled use of FGF-2 protein particles enabled the generation of functional topographies with multiple biological activities being effective on diverse cell types. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Predicting lymph node output efficiency using systems biology

    PubMed Central

    Gong, Chang; Mattila, Joshua T.; Miller, Mark; Flynn, JoAnne L.; Linderman, Jennifer J.; Kirschner, D.

    2013-01-01

    Dendritic cells (DCs) capture pathogens and foreign antigen (Ag) in peripheral tissues and migrate to secondary lymphoid tissues, such as lymph nodes (LNs), where they present processed Ag as MHC-bound peptide (pMHC) to naïve T cells. Interactions between DCs and T cells result, over periods of hours, in activation, clonal expansion and differentiation of antigen-specific T cells, leading to primed cells that can now participate in immune responses. Two-photon microscopy (2PM) has been widely adopted to analyze lymphocyte dynamics and can serve as a powerful in vivo assay for cell trafficking and activation over short length and time scales. Linking biological phenomena between vastly different spatiotemporal scales can be achieved using a systems biology approach. We developed a 3D agent-based cellular model of a LN that allows for the simultaneous in silico simulation of T cell trafficking, activation and production of effector cells under different antigen (Ag) conditions. The model anatomy is based on in situ analysis of LN sections (from primates and mice) and cell dynamics based on quantitative measurements from 2PM imaging of mice. Our simulations make three important predictions. First, T cell encounters by DCs and T cell receptor (TCR) repertoire scanning are more efficient in a 3D model compared with 2D, suggesting that a 3D model is needed to analyze LN function. Second, LNs are able to produce primed CD4+T cells at the same efficiency over broad ranges of cognate frequencies (from 10−5 to 10−2). Third, reducing the time that naïve T cells are required to bind DCs before becoming activated will increase the rate at which effector cells are produced. This 3D model provides a robust platform to study how T cell trafficking and activation dynamics relate to the efficiency of T cell priming and clonal expansion. We envision that this systems biology approach will provide novel insights for guiding vaccine development and understanding immune responses to infection. PMID:23816876

  11. Mammalian synthetic biology for studying the cell.

    PubMed

    Mathur, Melina; Xiang, Joy S; Smolke, Christina D

    2017-01-02

    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. © 2017 Mathur et al.

  12. The development of peptide-based interfacial biomaterials for generating biological functionality on the surface of bioinert materials

    PubMed Central

    Meyers, Steven R.; Khoo, Xiaojuan; Huang, Xin; Walsh, Elisabeth B.; Grinstaff, Mark W.; Kenan, Daniel J.

    2013-01-01

    Biomaterials used in implants have traditionally been selected based on their mechanical properties, chemical stability, and biocompatibility. However, the durability and clinical efficacy of implantable biomedical devices remains limited in part due to the absence of appropriate biological interactions at the implant interface and the lack of integration into adjacent tissues. Herein, we describe a robust peptide-based coating technology capable of modifying the surface of existing biomaterials and medical devices through the non-covalent binding of modular biofunctional peptides. These peptides contain at least one material binding sequence and at least one biologically active sequence and thus are termed, “Interfacial Biomaterials” (IFBMs). IFBMs can simultaneously bind the biomaterial surface while endowing it with desired biological functionalities at the interface between the material and biological realms. We demonstrate the capabilities of model IFBMs to convert native polystyrene, a bioinert surface, into a bioactive surface that can support a range of cell activities. We further distinguish between simple cell attachment with insufficient integrin interactions, which in some cases can adversely impact downstream biology, versus biologically appropriate adhesion, cell spreading, and cell survival mediated by IFBMs. Moreover, we show that we can use the coating technology to create spatially resolved patterns of fluorophores and cells on substrates and that these patterns retain their borders in culture. PMID:18929406

  13. Overexpression of miR-9 in mast cells is associated with invasive behavior and spontaneous metastasis

    PubMed Central

    2014-01-01

    Background While microRNA (miRNA) expression is known to be altered in a variety of human malignancies contributing to cancer development and progression, the potential role of miRNA dysregulation in malignant mast cell disease has not been previously explored. The purpose of this study was to investigate the potential contribution of miRNA dysregulation to the biology of canine mast cell tumors (MCTs), a well-established spontaneous model of malignant mast cell disease. Methods We evaluated the miRNA expression profiles from biologically low-grade and biologically high-grade primary canine MCTs using real-time PCR-based TaqMan Low Density miRNA Arrays and performed real-time PCR to evaluate miR-9 expression in primary canine MCTs, malignant mast cell lines, and normal bone marrow-derived mast cells (BMMCs). Mouse mast cell lines and BMMCs were transduced with empty or pre-miR-9 expressing lentiviral constructs and cell proliferation, caspase 3/7 activity, and invasion were assessed. Transcriptional profiling of cells overexpressing miR-9 was performed using Affymetrix GeneChip Mouse Gene 2.0 ST arrays and real-time PCR was performed to validate changes in mRNA expression. Results Our data demonstrate that unique miRNA expression profiles correlate with the biological behavior of primary canine MCTs and that miR-9 expression is increased in biologically high grade canine MCTs and malignant cell lines compared to biologically low grade tumors and normal canine BMMCs. In transformed mouse malignant mast cell lines expressing either wild-type (C57) or activating (P815) KIT mutations and mouse BMMCs, miR-9 overexpression significantly enhanced invasion but had no effect on cell proliferation or apoptosis. Transcriptional profiling of normal mouse BMMCs and P815 cells possessing enforced miR-9 expression demonstrated dysregulation of several genes, including upregulation of CMA1, a protease involved in activation of matrix metalloproteases and extracellular matrix remodeling. Conclusions Our findings demonstrate that unique miRNA expression profiles correlate with the biological behavior of canine MCTs. Furthermore, dysregulation of miR-9 is associated with MCT metastasis potentially through the induction of an invasive phenotype, identifying a potentially novel pathway for therapeutic intervention. PMID:24517413

  14. Investigating the Relationship between Instructors' Use of Active-Learning Strategies and Students' Conceptual Understanding and Affective Changes in Introductory Biology: A Comparison of Two Active-Learning Environments

    ERIC Educational Resources Information Center

    Cleveland, Lacy M.; Olimpo, Jeffrey T.; DeChenne-Peters, Sue Ellen

    2017-01-01

    In response to calls for reform in undergraduate biology education, we conducted research examining how varying active-learning strategies impacted students' conceptual understanding, attitudes, and motivation in two sections of a large-lecture introductory cell and molecular biology course. Using a quasi-experimental design, we collected…

  15. Mechanochemical cell biology.

    PubMed

    Cross, R A; McAinsh, A D; Straube, A

    2011-12-01

    Eukaryotic systems self-organise by using molecular railways to shuttle specific sets of molecular components to specific locations. In this way, cells are enabled to become larger, more complex and more varied, subtle and effective in their activities. Because of the fundamental importance of molecular railways in eukaryotic systems, understanding how these railways work is an important research goal. Mechanochemical cell biology is a newly circumscribed subject area that concerns itself with the molecular and cell biological mechanisms of motorised directional transport in living systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. STATs: An Old Story, Yet Mesmerizing.

    PubMed

    Abroun, Saeid; Saki, Najmaldin; Ahmadvand, Mohammad; Asghari, Farahnaz; Salari, Fatemeh; Rahim, Fakher

    2015-01-01

    Signal transducers and activators of transcription (STATs) are cytoplasmic transcription factors that have a key role in cell fate. STATs, a protein family comprised of seven members, are proteins which are latent cytoplasmic transcription factors that convey signals from the cell surface to the nucleus through activation by cytokines and growth factors. The signaling pathways have diverse biological functions that include roles in cell differentiation, proliferation, development, apoptosis, and inflammation which place them at the center of a very active area of research. In this review we explain Janus kinase (JAK)/STAT signaling and focus on STAT3, which is transient from cytoplasm to nucleus after phosphorylation. This procedure controls fundamental biological processes by regulating nuclear genes controlling cell proliferation, survival, and development. In some hematopoietic disorders and cancers, overexpression and activation of STAT3 result in high proliferation, suppression of cell differentiation and inhibition of cell maturation. This article focuses on STAT3 and its role in malignancy, in addition to the role of microRNAs (miRNAs) on STAT3 activation in certain cancers.

  17. Tissue-based water quality biosensors for detecting chemical warfare agents

    DOEpatents

    Greenbaum, Elias [Oak Ridge, TN; Sanders, Charlene A [Knoxville, TN

    2003-05-27

    A water quality sensor for detecting the presence of at least one chemical or biological warfare agent includes: a cell; apparatus for introducing water into the cell and discharging water from the cell adapted for analyzing photosynthetic activity of naturally occurring, free-living, indigenous photosynthetic organisms in water; a fluorometer for measuring photosynthetic activity of naturally occurring, free-living, indigenous photosynthetic organisms drawn into the cell; and an electronics package that analyzes raw data from the fluorometer and emits a signal indicating the presence of at least one chemical or biological warfare agent in the water.

  18. Preclinical anti-cancer activity and multiple mechanisms of action of a cationic silver complex bearing N-heterocyclic carbene ligands.

    PubMed

    Allison, Simon J; Sadiq, Maria; Baronou, Efstathia; Cooper, Patricia A; Dunnill, Chris; Georgopoulos, Nikolaos T; Latif, Ayşe; Shepherd, Samantha; Shnyder, Steve D; Stratford, Ian J; Wheelhouse, Richard T; Willans, Charlotte E; Phillips, Roger M

    2017-09-10

    Organometallic complexes offer the prospect of targeting multiple pathways that are important in cancer biology. Here, the preclinical activity and mechanism(s) of action of a silver-bis(N-heterocyclic carbine) complex (Ag8) were evaluated. Ag8 induced DNA damage via several mechanisms including topoisomerase I/II and thioredoxin reductase inhibition and induction of reactive oxygen species. DNA damage induction was consistent with cytotoxicity observed against proliferating cells and Ag8 induced cell death by apoptosis. Ag8 also inhibited DNA repair enzyme PARP1, showed preferential activity against cisplatin resistant A2780 cells and potentiated the activity of temozolomide. Ag8 was substantially less active against non-proliferating non-cancer cells and selectively inhibited glycolysis in cancer cells. Ag8 also induced significant anti-tumour effects against cells implanted intraperitoneally in hollow fibres but lacked activity against hollow fibres implanted subcutaneously. Thus, Ag8 targets multiple pathways of importance in cancer biology, is less active against non-cancer cells and shows activity in vivo in a loco-regional setting. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  19. Context-dependent role of IL-18 in cancer biology and counter-regulation by IL-18BP.

    PubMed

    Fabbi, Marina; Carbotti, Grazia; Ferrini, Silvano

    2015-04-01

    IL-18 is a proinflammatory and immune regulatory cytokine, member of the IL-1 family. IL-18 was initially identified as an IFN-γ-inducing factor in T and NK cells, involved in Th1 responses. IL-18 is produced as an inactive precursor (pro-IL-18) that is enzymatically processed into a mature form by Casp1. Different cells, such as macrophages, DCs, microglial cells, synovial fibroblasts, and epithelial cells, express pro-IL-18, and the production of bioactive IL-18 is mainly regulated at the processing level. PAMP or DAMP molecules activate inflammasomes, which trigger Casp1 activation and IL-18 conversion. The natural inhibitor IL-18BP , whose production is enhanced by IFN-γ and IL-27, further regulates IL-18 activity in the extracellular environment. Inflammasomes and IL-18 represent double-edged swords in cancer, as their activation may promote tumor development and progression or oppositely, enhance anti-tumor immunity and limit tumor growth. IL-18 has shown anti-tumor activity in different preclinical models of cancer immunotherapy through the activation of NK and/or T cell responses and has been tested in clinical studies in cancer patients. However, the dual role of IL-18 in different experimental tumor models and human cancers raises critical issues on its therapeutic use in cancer. This review will summarize the biology of the IL-18/IL-18R/IL-18BP system and will address the role of IL-18 and its inhibitor, IL-18BP, in cancer biology and immunotherapy. © Society for Leukocyte Biology.

  20. Chemical Composition and Bioactivity of Essential Oil from Blepharocalyx salicifolius

    PubMed Central

    Furtado, Fabiana Barcelos; Borges, Bruna Cristina; Teixeira, Thaise Lara; de Almeida Junior, Luiz Domingues; Alves, Fernanda Cristina Bérgamo; da Silva, Claudio Vieira

    2018-01-01

    Natural products represent a source of biologically active molecules that have an important role in drug discovery. The aromatic plant Blepharocalyx salicifolius has a diverse chemical constitution but the biological activities of its essential oils have not been thoroughly investigated. The aims of this paper were to evaluate in vitro cytotoxic, antifungal and antibacterial activities of an essential oil from leaves of B. salicifolius and to identify its main chemical constituents. The essential oil was extracted by steam distillation, chemical composition was determined by gas chromatography/mass spectrometry, and biological activities were performed by a microdilution broth method. The yield of essential oil was 0.86% (w/w), and the main constituents identified were bicyclogermacrene (17.50%), globulol (14.13%), viridiflorol (8.83%), γ-eudesmol (7.89%) and α-eudesmol (6.88%). The essential oil was cytotoxic against the MDA-MB-231 (46.60 μg·mL−1) breast cancer cell line, being more selective for this cell type compared to the normal breast cell line MCF-10A (314.44 μg·mL−1). Flow cytometry and cytotoxicity results showed that this oil does not act by inducing cell death, but rather by impairment of cellular metabolism specifically of the cancer cells. Furthermore, it presented antifungal activity against Paracoccidioides brasiliensis (156.25 μg·mL−1) but was inactive against other fungi and bacteria. Essential oil from B. salicifolius showed promising biological activities and is therefore a source of molecules to be exploited in medicine or by the pharmaceutical industry. PMID:29300307

  1. Tracing the pH dependent activation of autophagy in cancer cells by silicon nanowire-based impedance biosensor.

    PubMed

    Alikhani, Alireza; Gharooni, Milad; Abiri, Hamed; Farokhmanesh, Fatemeh; Abdolahad, Mohammad

    2018-05-30

    Monitoring the pH dependent behavior of normal and cancer cells by impedimetric biosensor based on Silicon Nanowires (SiNWs) was introduced to diagnose the invasive cancer cells. Autophagy as a biologically activated process in invasive cancer cells during acidosis, protect them from apoptosis in lower pH which presented in our work. As the autophagy is the only activated pathways which can maintain cellular proliferation in acidic media, responses of SiNW-ECIS in acidified cells could be correlated to the probability of autophagy activation in normal or cancer cells. In contrast, cell survival pathway wasn't activated in low-grade cancer cells which resulted in their acidosis. The measured electrical resistance of MCF10, MCF7, and MDA-MB468 cell lines, by SiNW sensor, in normal and acidic media were matched by the biological analyses of their vital functions. Invasive cancer cells exhibited increased electrical resistance in pH 6.5 meanwhile the two other types of the breast cells exhibited sharp (MCF10) and moderate (MCF7) decrease in their resistance. This procedure would be a new trend in microenvironment based cancer investigation. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Lipo-chitin oligosaccharides, plant symbiosis signalling molecules that modulate mammalian angiogenesis in vitro.

    PubMed

    Djordjevic, Michael A; Bezos, Anna; Susanti; Marmuse, Laurence; Driguez, Hugues; Samain, Eric; Vauzeilles, Boris; Beau, Jean-Marie; Kordbacheh, Farzaneh; Rolfe, Barry G; Schwörer, Ralf; Daines, Alison M; Gresshoff, Peter M; Parish, Christopher R

    2014-01-01

    Lipochitin oligosaccharides (LCOs) are signaling molecules required by ecologically and agronomically important bacteria and fungi to establish symbioses with diverse land plants. In plants, oligo-chitins and LCOs can differentially interact with different lysin motif (LysM) receptors and affect innate immunity responses or symbiosis-related pathways. In animals, oligo-chitins also induce innate immunity and other physiological responses but LCO recognition has not been demonstrated. Here LCO and LCO-like compounds are shown to be biologically active in mammals in a structure dependent way through the modulation of angiogenesis, a tightly-regulated process involving the induction and growth of new blood vessels from existing vessels. The testing of 24 LCO, LCO-like or oligo-chitin compounds resulted in structure-dependent effects on angiogenesis in vitro leading to promotion, or inhibition or nil effects. Like plants, the mammalian LCO biological activity depended upon the presence and type of terminal substitutions. Un-substituted oligo-chitins of similar chain lengths were unable to modulate angiogenesis indicating that mammalian cells, like plant cells, can distinguish between LCOs and un-substituted oligo-chitins. The cellular mode-of-action of the biologically active LCOs in mammals was determined. The stimulation or inhibition of endothelial cell adhesion to vitronectin or fibronectin correlated with their pro- or anti-angiogenic activity. Importantly, novel and more easily synthesised LCO-like disaccharide molecules were also biologically active and de-acetylated chitobiose was shown to be the primary structural basis of recognition. Given this, simpler chitin disaccharides derivatives based on the structure of biologically active LCOs were synthesised and purified and these showed biological activity in mammalian cells. Since important chronic disease states are linked to either insufficient or excessive angiogenesis, LCO and LCO-like molecules may have the potential to be a new, carbohydrate-based class of therapeutics for modulating angiogenesis.

  3. Roadmap on semiconductor-cell biointerfaces

    NASA Astrophysics Data System (ADS)

    Tian, Bozhi; Xu, Shuai; Rogers, John A.; Cestellos-Blanco, Stefano; Yang, Peidong; Carvalho-de-Souza, João L.; Bezanilla, Francisco; Liu, Jia; Bao, Zhenan; Hjort, Martin; Cao, Yuhong; Melosh, Nicholas; Lanzani, Guglielmo; Benfenati, Fabio; Galli, Giulia; Gygi, Francois; Kautz, Rylan; Gorodetsky, Alon A.; Kim, Samuel S.; Lu, Timothy K.; Anikeeva, Polina; Cifra, Michal; Krivosudský, Ondrej; Havelka, Daniel; Jiang, Yuanwen

    2018-05-01

    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world.

  4. Biologically active and biomimetic dual gelatin scaffolds for tissue engineering.

    PubMed

    Sánchez, P; Pedraz, J L; Orive, G

    2017-05-01

    We have designed, developed and optimized Genipin cross-linked 3D gelatin scaffolds that were biologically active and biomimetic, show a dual activity both for growth factor and cell delivery. Type B gelatin powder was dissolved in DI water. 100mg of genipin was dissolved in 10ml of DI water. Three genipin concentrations were prepared: 0.1%, 0.2% and 0.3% (w/v). Solutions were mixed at 40°C and under stirring and then left crosslinking for 72h. Scaffolds were obtained by punching 8 mm-cylinders into ethanol 70% solution for 10min and then freeze-drying. Scaffolds were biologically, biomechanically and morphologically evaluated. Cell adhesion and morphology of D1-Mesenchymal stem cells (MSCs) and L-929 fibroblast was studied. Vascular endothelial grwoth factor (VEGF) and Sonic hedgehog (SHH) were used as model proteins. Swelling ratio increased and younǵs module decreased along with the concentration of genipin. All scaffolds were biocompatible according to the toxicity test. MSC and L-929 cell adhesion improved in 0.2% of genipin, obtaining better results with MSCs. VEGF and SHH were released from the gels. This preliminary study suggest that the biologically active and dual gelatin scaffolds may be used for tissue engineering approaches like bone regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The potential of a dielectrophoresis activated cell sorter (DACS) as a next generation cell sorter

    NASA Astrophysics Data System (ADS)

    Lee, Dongkyu; Hwang, Bohyun; Kim, Byungkyu

    2016-12-01

    Originally introduced by H. A. Pohl in 1951, dielectrophoretic (DEP) force has been used as a striking tool for biological particle manipulation (or separation) for the last few decades. In particular, dielectrophoresis activated cell sorters (DACSes) have been developed for applications in various biomedical fields. These applications include cell replacement therapy, drug screening and medical diagnostics. Since a DACS does not require a specific bio-marker, it is able to function as a biological particle sorting tool with numerous configurations for various cells [e.g. red blood cells (RBCs), white blood cells (WBCs), circulating tumor cells, leukemia cells, breast cancer cells, bacterial cells, yeast cells and sperm cells]. This article explores current DACS capabilities worldwide, and it also looks at recent developments intended to overcome particular limitations. First, the basic theories are reviewed. Then, representative DACSes based on DEP trapping, traveling wave DEP systems, DEP field-flow fractionation and DEP barriers are introduced, and the strong and weak points of each DACS are discussed. Finally, for the purposes of commercialization, prerequisites regarding throughput, efficiency and recovery rates are discussed in detail through comparisons with commercial cell sorters (e.g. fluorescent activated and magnetic activated cell sorters).

  6. New developments in mast cell biology

    PubMed Central

    Kalesnikoff, Janet; Galli, Stephen J.

    2010-01-01

    Mast cells can function as effector and immunoregulatory cells in IgE-associated allergic disorders, as well as in certain innate and adaptive immune responses. This review will focus on exciting new developments in the field of mast cell biology published within the last year. It will highlight advances in the understanding of FcεRI-mediated signaling and mast cell activation events, as well as in the use of genetic models to study mast cell function in vivo. Finally, we will discuss newly identified roles of mast cells or individual mast cell products, such as proteases and IL-10, in host defense, cardiovascular disease and tumor biology, and in settings in which mast cells have anti-inflammatory or immunosuppressive functions. PMID:18936782

  7. Actual Proliferating Index and p53 protein expression as prognostic marker in odontogenic cysts.

    PubMed

    Gadbail, A R; Chaudhary, M; Patil, S; Gawande, M

    2009-10-01

    The purpose of this study was to evaluate the biological aggressiveness of odontogenic keratocyst/keratocystic odontogenic tumour (KCOT), radicular cyst (RC) and dentigerous cyst (DC) by observing the actual proliferative activity of epithelium, and p53 protein expression. The actual proliferative activity was measured by Ki-67 Labelling Index and argyrophilic nucleolar organizing regions (AgNOR) count per nucleus. The p53 protein expression was also evaluated. Ki-67 positive cells were observed higher in suprabasal cell layers of KCOT with uniform distribution, a few of them were predominantly observed in basal cell layer in RC and DC. The AgNOR count was significantly higher in suprabasal cell layers of KCOT. The actual proliferative activity was noted to be higher in suprabasal cell layers of KCOT. The p53 immunolabelling was dense and scattered in basal and suprabasal cell layers in KCOT. The weakly stained p53 positive cells were observed diffusely distributed in KCOT, whereas they were mainly seen in basal cell layer of RC and DC. The quantitative and qualitative differences of the proliferative activity and the p53 protein expression in sporadic KCOT may be associated with intrinsic growth potential that could play a role in its development and explain locally aggressive biological behaviour. AgNOR count and p53 protein detection in odontogenic lesions can be of great consequence to predict the biological behaviour and prognosis.

  8. Could LogP be a principal determinant of biological activity in 18-crown-6 ethers? Synthesis of biologically active adamantane-substituted diaza-crowns.

    PubMed

    Supek, Fran; Ramljak, Tatjana Šumanovac; Marjanović, Marko; Buljubašić, Maja; Kragol, Goran; Ilić, Nataša; Smuc, Tomislav; Zahradka, Davor; Mlinarić-Majerski, Kata; Kralj, Marijeta

    2011-08-01

    18-crown-6 ethers are known to exert their biological activity by transporting K(+) ions across cell membranes. Using non-linear Support Vector Machines regression, we searched for structural features that influence antiproliferative activity in a diverse set of 19 known oxa-, monoaza- and diaza-18-crown-6 ethers. Here, we show that the logP of the molecule is the most important molecular descriptor, among ∼1300 tested descriptors, in determining biological potency (R(2)(cv) = 0.704). The optimal logP was at 5.5 (Ghose-Crippen ALOGP estimate) while both higher and lower values were detrimental to biological potency. After controlling for logP, we found that the antiproliferative activity of the molecule was generally not affected by side chain length, molecular symmetry, or presence of side chain amide links. To validate this QSAR model, we synthesized six novel, highly lipophilic diaza-18-crown-6 derivatives with adamantane moieties attached to the side arms. These compounds have near-optimal logP values and consequently exhibit strong growth inhibition in various human cancer cell lines and a bacterial system. The bioactivities of different diaza-18-crown-6 analogs in Bacillus subtilis and cancer cells were correlated, suggesting conserved molecular features may be mediating the cytotoxic response. We conclude that relying primarily on the logP is a sensible strategy in preparing future 18-crown-6 analogs with optimized biological activity. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  9. Endophytic Actinobacteria from the Brazilian Medicinal Plant Lychnophora ericoides Mart. and the Biological Potential of Their Secondary Metabolites.

    PubMed

    Conti, Raphael; Chagas, Fernanda Oliveira; Caraballo-Rodriguez, Andrés Mauricio; Melo, Weilan Gomes da Paixão; do Nascimento, Andréa Mendes; Cavalcanti, Bruno Coêlho; de Moraes, Manoel Odorico; Pessoa, Cláudia; Costa-Lotufo, Letícia Veras; Krogh, Renata; Andricopulo, Adriano Defini; Lopes, Norberto Peporine; Pupo, Mônica Tallarico

    2016-06-01

    Endophytic actinobacteria from the Brazilian medicinal plant Lychnophora ericoides were isolated for the first time, and the biological potential of their secondary metabolites was evaluated. A phylogenic analysis of isolated actinobacteria was accomplished with 16S rRNA gene sequencing, and the predominance of the genus Streptomyces was observed. All strains were cultured on solid rice medium, and ethanol extracts were evaluated with antimicrobial and cytotoxic assays against cancer cell lines. As a result, 92% of the extracts showed a high or moderate activity against at least one pathogenic microbial strain or cancer cell line. Based on the biological and chemical analyses of crude extracts, three endophytic strains were selected for further investigation of their chemical profiles. Sixteen compounds were isolated, and 3-hydroxy-4-methoxybenzamide (9) and 2,3-dihydro-2,2-dimethyl-4(1H)-quinazolinone (15) are reported as natural products for the first time in this study. The biological activity of the pure compounds was also assessed. Compound 15 displayed potent cytotoxic activity against all four tested cancer cell lines. Nocardamine (2) was only moderately active against two cancer cell lines but showed strong activity against Trypanosoma cruzi. Our results show that endophytic actinobacteria from L. ericoides are a promising source of bioactive compounds. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  10. Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells

    PubMed Central

    2010-01-01

    Background In recent years bacterial inclusion bodies (IBs) were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry. To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process. To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. Results In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared. During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation. During sonication proteins are released (lost) from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity. High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. Conclusions The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells. PMID:20831775

  11. Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells.

    PubMed

    Peternel, Spela; Komel, Radovan

    2010-09-10

    In recent years bacterial inclusion bodies (IBs) were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry.To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process.To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared.During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation.During sonication proteins are released (lost) from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity.High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells.

  12. Particle retention by respiratory epithelial cells is associated with persistent biological effect

    EPA Science Inventory

    The biological effect of particles on respiratory epithelial cells involves, in part, the generation of an oxidative stress and a consequent cascade of reactions culminating in inflammatory mediator release. Whether there is either an immediate, transitory activation or a persist...

  13. Purified high molecular weight synthetic Aβ(1-42) and biological Aβ oligomers are equipotent in rapidly inducing MTT formazan exocytosis.

    PubMed

    Weidner, Adam M; Housley, Molly; Murphy, M Paul; Levine, Harry

    2011-06-15

    Synthetic soluble Aβ oligomers are often used as a surrogate for biologic material in a number of model systems. We compared the activity of Aβ oligomers (synthetic and cell culture media derived) on the human SH-SY5Y neuroblastoma and C2C12 mouse myoblast cell lines in a novel, modified MTT assay. Separating oligomers from monomeric peptide by size exclusion chromatography produced effects at peptide concentrations approaching physiologic levels (10-100 nM). Purified oligomers, but not monomers or fibrils, elicited an increase of a detergent-insoluble form of MTT formazan within 2h as opposed to a control toxin (H(2)O(2)). This effect was comparable for biological and synthetic peptide in both cell types. Monomeric Aβ attenuated the effect of soluble oligomers. This study suggests that the activities of biological and synthetic oligomers are indistinguishable during early stages of Aβ oligomer-cell interaction. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Non-equilibrium thermodynamics in cells.

    PubMed

    Jülicher, Frank; Grill, Stephan W; Salbreux, Guillaume

    2018-03-15

    We review the general hydrodynamic theory of active soft materials that is motivated in partic- ular by biological matter. We present basic concepts of irreversible thermodynamics of spatially extended multicomponent active systems. Starting from the rate of entropy production, we iden- tify conjugate thermodynamic fluxes and forces and present generic constitutive equations of polar active fluids and active gels. We also discuss angular momentum conservation which plays a role in the the physics of active chiral gels. The irreversible thermodynamics of active gels provides a general framework to discuss the physics that underlies a wide variety of biological processes in cells and in multicellular tissues. © 2018 IOP Publishing Ltd.

  15. Efficient, non-toxic anion transport by synthetic carriers in cells and epithelia

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Valkenier, Hennie; Judd, Luke W.; Brotherhood, Peter R.; Hussain, Sabir; Cooper, James A.; Jurček, Ondřej; Sparkes, Hazel A.; Sheppard, David N.; Davis, Anthony P.

    2016-01-01

    Transmembrane anion transporters (anionophores) have potential for new modes of biological activity, including therapeutic applications. In particular they might replace the activity of defective anion channels in conditions such as cystic fibrosis. However, data on the biological effects of anionophores are scarce, and it remains uncertain whether such molecules are fundamentally toxic. Here, we report a biological study of an extensive series of powerful anion carriers. Fifteen anionophores were assayed in single cells by monitoring anion transport in real time through fluorescence emission from halide-sensitive yellow fluorescent protein. A bis-(p-nitrophenyl)ureidodecalin shows especially promising activity, including deliverability, potency and persistence. Electrophysiological tests show strong effects in epithelia, close to those of natural anion channels. Toxicity assays yield negative results in three cell lines, suggesting that promotion of anion transport may not be deleterious to cells. We therefore conclude that synthetic anion carriers are realistic candidates for further investigation as treatments for cystic fibrosis.

  16. Purification and biological characterization of soluble, recombinant mouse IFNβ expressed in insect cells.

    PubMed

    Stifter, Sebastian A; Gould, Jodee A; Mangan, Niamh E; Reid, Hugh H; Rossjohn, Jamie; Hertzog, Paul J; de Weerd, Nicole A

    2014-02-01

    Interferon β (IFNβ) is a member of the type I interferon family of cytokines widely recognised for their anti-viral, anti-proliferative and immunomodulatory properties. Recombinant, biologically active forms of this cytokine are used clinically for the treatment of multiple sclerosis and in laboratories to study the role of this cytokine in health and disease. Established methods for expression of IFNβ utilise either bacterial systems from which the insoluble recombinant proteins must be refolded, or mammalian expression systems in which large volumes of cell culture are required for recovery of acceptable yields. Utilising the baculovirus expression system and Trichoplusia ni (Cabbage Looper) BTI-TN-5B1-4 cell line, we report a reproducible method for production and purification of milligram/litre quantities of biologically active murine IFNβ. Due to the design of our construct and the eukaryotic nature of insect cells, the resulting soluble protein is secreted allowing purification of the Histidine-tagged natively-folded protein from the culture supernatant. The IFNβ purification method described is a two-step process employing immobilised metal-ion affinity chromatography (IMAC) and reverse-phase high performance liquid chromatography (RP-HPLC) that results in production of significantly more purified IFNβ than any other reported eukaryotic-based expression system. Recombinant murine IFNβ produced by this method was natively folded and demonstrated hallmark type I interferon biological effects including antiviral and anti-proliferative activities, and induced genes characteristic of IFNβ activity in vivo. Recombinant IFNβ also had specific activity levels exceeding that of the commercially available equivalent. Together, our findings provide a method for production of highly pure, biologically active murine IFNβ. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Active matter at the interface between materials science and cell biology

    NASA Astrophysics Data System (ADS)

    Needleman, Daniel; Dogic, Zvonimir

    2017-09-01

    The remarkable processes that characterize living organisms, such as motility, self-healing and reproduction, are fuelled by a continuous injection of energy at the microscale. The field of active matter focuses on understanding how the collective behaviours of internally driven components can give rise to these biological phenomena, while also striving to produce synthetic materials composed of active energy-consuming components. The synergistic approach of studying active matter in both living cells and reconstituted systems assembled from biochemical building blocks has the potential to transform our understanding of both cell biology and materials science. This methodology can provide insight into the fundamental principles that govern the dynamical behaviours of self-organizing subcellular structures, and can lead to the design of artificial materials and machines that operate away from equilibrium and can thus attain life-like properties. In this Review, we focus on active materials made of cytoskeletal components, highlighting the role of active stresses and how they drive self-organization of both cellular structures and macroscale materials, which are machines powered by nanomachines.

  18. Biologically active LIL proteins built with minimal chemical diversity

    PubMed Central

    Heim, Erin N.; Marston, Jez L.; Federman, Ross S.; Edwards, Anne P. B.; Karabadzhak, Alexander G.; Petti, Lisa M.; Engelman, Donald M.; DiMaio, Daniel

    2015-01-01

    We have constructed 26-amino acid transmembrane proteins that specifically transform cells but consist of only two different amino acids. Most proteins are long polymers of amino acids with 20 or more chemically distinct side-chains. The artificial transmembrane proteins reported here are the simplest known proteins with specific biological activity, consisting solely of an initiating methionine followed by specific sequences of leucines and isoleucines, two hydrophobic amino acids that differ only by the position of a methyl group. We designate these proteins containing leucine (L) and isoleucine (I) as LIL proteins. These proteins functionally interact with the transmembrane domain of the platelet-derived growth factor β-receptor and specifically activate the receptor to transform cells. Complete mutagenesis of these proteins identified individual amino acids required for activity, and a protein consisting solely of leucines, except for a single isoleucine at a particular position, transformed cells. These surprisingly simple proteins define the minimal chemical diversity sufficient to construct proteins with specific biological activity and change our view of what can constitute an active protein in a cellular context. PMID:26261320

  19. Racing of the biological pacemaker.

    PubMed

    Yu, Han-Gang

    2009-01-01

    Over the past decade, rapid progress in the molecular studies of cardiac ion channels and stem cells biology has led to efforts to create a biological pacemaker to supplement the widely-used electronic pacemaker. We will review the main concepts of cardiac pacemaker activities in different heart regions and the approaches to design a working biological pacemaker. We will focus on how to use the gene- and cell-based approaches to meet the requirements of a working biological pacemaker. Possible future development and precautions for creation of an effective biological pacemaker superior to the electronic counterpart are also discussed along with recent patents.

  20. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    The Neural Development Section (NDS) headed by Dr. Lino Tessarollo has an open postdoctoral fellow position. The candidate should have a background in neurobiology and basic expertise in molecular biology, cell biology, immunoistochemistry and biochemistry.  Experience in confocal analysis is desired. The NDS study the biology of neurotrophin and Trk receptors function by using both in vitro and in vivo approaches. Our group makes extensive use of engineered mouse models and cell culture models. The current research emphasis is on understanding the molecular mechanisms by which activated trk receptor function. Specifically, we are dissecting the molecular mechanism responsible for modulating Trk receptors activity, including their interaction with specific scaffold proteins and proteins leading to de-activation of Trk signaling. Moreover, we are attempting to identify new signaling pathways activated by truncated Trk receptors.

  1. Anti-proliferation activity of terpenoids isolated from Euphorbia kansui in human cancer cells and their structure-activity relationship.

    PubMed

    Hou, Jin-Jun; Shen, Yao; Yang, Zhou; Fang, Lin; Cai, Lu-Ying; Yao, Shuai; Long, Hua-Li; Wu, Wan-Ying; Guo, De-An

    2017-10-01

    Euphorbia kansui is a commonly used traditional Chinese medicine for the treatment of edema, pleural effusion, and asthma, etc. According to the previous researches, terpenoids in E. kansui possess various biological activities, e.g., anti-virus, anti-allergy, antitumor effects. In this work, twenty five terpenoids were isolated from E. kansui, including thirteen ingenane- and eight jatrophane-type diterpenoids (with two new compounds, kansuinin P and Q) and four triterpenoids. Eighteen of them were analyzed by MTS assay for in vitro anticancer activity in five human cancer cell lines. Structure-activity relationship for 12 ingenane-type diterpenoids in colorectal cancer Colo205 cells were preliminary studied. Significant anti-proliferation activities were observed in human melanoma cells breast cancer MDA-MB-435 cells and Colo205 cells. More than half of the isolated ingenane-type diterpenoids showed inhibitory activities in MDA-MB-435 cells. Eight ingenane- and one jatrophane-type diterpenoids possessed much lower IC 50 values in MDA-MB-435 cells than positive control staurosporine. Preliminary structure-activity relationship analysis showed that substituent on position 20 was important for the activity of ingenane-type diterpenoids in Colo205 cells and substituent on position 3 contributed more significant biological activity of the compounds than that on position 5 in both MDA-MB-435 and Colo205 cells. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  2. Activation of human herpesvirus replication by apoptosis.

    PubMed

    Prasad, Alka; Remick, Jill; Zeichner, Steven L

    2013-10-01

    A central feature of herpesvirus biology is the ability of herpesviruses to remain latent within host cells. Classically, exposure to inducing agents, like activating cytokines or phorbol esters that stimulate host cell signal transduction events, and epigenetic agents (e.g., butyrate) was thought to end latency. We recently showed that Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus-8 [HHV-8]) has another, alternative emergency escape replication pathway that is triggered when KSHV's host cell undergoes apoptosis, characterized by the lack of a requirement for the replication and transcription activator (RTA) protein, accelerated late gene kinetics, and production of virus with decreased infectivity. Caspase-3 is necessary and sufficient to initiate the alternative replication program. HSV-1 was also recently shown to initiate replication in response to host cell apoptosis. These observations suggested that an alternative apoptosis-triggered replication program might be a general feature of herpesvirus biology and that apoptosis-initiated herpesvirus replication may have clinical implications, particularly for herpesviruses that almost universally infect humans. To explore whether an alternative apoptosis-initiated replication program is a common feature of herpesvirus biology, we studied cell lines latently infected with Epstein-Barr virus/HHV-4, HHV-6A, HHV-6B, HHV-7, and KSHV. We found that apoptosis triggers replication for each HHV studied, with caspase-3 being necessary and sufficient for HHV replication. An alternative apoptosis-initiated replication program appears to be a common feature of HHV biology. We also found that commonly used cytotoxic chemotherapeutic agents activate HHV replication, which suggests that treatments that promote apoptosis may lead to activation of latent herpesviruses, with potential clinical significance.

  3. Activation of Human Herpesvirus Replication by Apoptosis

    PubMed Central

    Prasad, Alka; Remick, Jill

    2013-01-01

    A central feature of herpesvirus biology is the ability of herpesviruses to remain latent within host cells. Classically, exposure to inducing agents, like activating cytokines or phorbol esters that stimulate host cell signal transduction events, and epigenetic agents (e.g., butyrate) was thought to end latency. We recently showed that Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus-8 [HHV-8]) has another, alternative emergency escape replication pathway that is triggered when KSHV's host cell undergoes apoptosis, characterized by the lack of a requirement for the replication and transcription activator (RTA) protein, accelerated late gene kinetics, and production of virus with decreased infectivity. Caspase-3 is necessary and sufficient to initiate the alternative replication program. HSV-1 was also recently shown to initiate replication in response to host cell apoptosis. These observations suggested that an alternative apoptosis-triggered replication program might be a general feature of herpesvirus biology and that apoptosis-initiated herpesvirus replication may have clinical implications, particularly for herpesviruses that almost universally infect humans. To explore whether an alternative apoptosis-initiated replication program is a common feature of herpesvirus biology, we studied cell lines latently infected with Epstein-Barr virus/HHV-4, HHV-6A, HHV-6B, HHV-7, and KSHV. We found that apoptosis triggers replication for each HHV studied, with caspase-3 being necessary and sufficient for HHV replication. An alternative apoptosis-initiated replication program appears to be a common feature of HHV biology. We also found that commonly used cytotoxic chemotherapeutic agents activate HHV replication, which suggests that treatments that promote apoptosis may lead to activation of latent herpesviruses, with potential clinical significance. PMID:23885073

  4. In vitro interactions between splenocytes and dansylamide dye-embedded nanoparticles detected by flow cytometry

    PubMed Central

    Nyland, Jennifer F.; Bai, Jennifer J. K.; Katz, Howard E.; Silbergeld, Ellen K.

    2009-01-01

    Engineered nanoparticles (NPs) possess a range of biological activity. In vitro methods for assessing toxicity and efficacy would be enhanced by simultaneous quantitative information on the behavior of NPs in culture systems and signals of cell response. We have developed a method for visualizing NPs within cells using standard flow cytometric techniques and uniquely designed spherical siloxane NPs with an embedded (covalently bound) dansylamide dye. This method allowed NP visualization without obscuring detection of relevant biomarkers of cell subtype, activation state, and other events relevant to assessing bioactivity. We determined that NPs penetrated cells and induced a range of biological signals consistent with activation and costimulation. These results indicate that NPs may affect cell function at concentrations below those inducing cytotoxicity or apoptosis and demonstrate a novel method to image both localization of NPs and cell-level effects. PMID:19523425

  5. Protective effect of biological response modifiers on murine cytomegalovirus infection.

    PubMed Central

    Ebihara, K; Minamishima, Y

    1984-01-01

    Pretreatment with two biological response modifiers (BRM), OK-432 and PS-K, protected mice from lethal infection by murine cytomegalovirus (MCMV). This was evidenced by an increase in 50% lethal doses and a decrease in titers of infectious viruses replicated in the liver and spleen. Spleen cells from the BRM-treated mice augmented the natural killer (NK) cell activity and suppressed the replication of MCMV in vitro. During MCMV infection, the NK cell activity of the spleen cells was maintained at a high level in the BRM-treated mice, whereas it was severely impaired in untreated mice. The BRM-induced protection was nullified by concomitant administration of antiasialo GM1 antibody. Interferon was neither induced by BRM treatment nor enhanced in BRM-pretreated and MCMV-infected mice. Thus, the protective effect of OK-432 and PS-K seems to be based on activation of NK cells and prevention of MCMV-induced inhibition of the NK cell activity. PMID:6202880

  6. Laser apparatus and method for microscopic and spectroscopic analysis and processing of biological cells

    DOEpatents

    Gourley, Paul L.; Gourley, Mark F.

    1997-01-01

    An apparatus and method for microscopic and spectroscopic analysis and processing of biological cells. The apparatus comprises a laser having an analysis region within the laser cavity for containing one or more biological cells to be analyzed. The presence of a cell within the analysis region in superposition with an activated portion of a gain medium of the laser acts to encode information about the cell upon the laser beam, the cell information being recoverable by an analysis means that preferably includes an array photodetector such as a CCD camera and a spectrometer. The apparatus and method may be used to analyze biomedical cells including blood cells and the like, and may include processing means for manipulating, sorting, or eradicating cells after analysis thereof.

  7. Laser apparatus and method for microscopic and spectroscopic analysis and processing of biological cells

    DOEpatents

    Gourley, P.L.; Gourley, M.F.

    1997-03-04

    An apparatus and method are disclosed for microscopic and spectroscopic analysis and processing of biological cells. The apparatus comprises a laser having an analysis region within the laser cavity for containing one or more biological cells to be analyzed. The presence of a cell within the analysis region in superposition with an activated portion of a gain medium of the laser acts to encode information about the cell upon the laser beam, the cell information being recoverable by an analysis means that preferably includes an array photodetector such as a CCD camera and a spectrometer. The apparatus and method may be used to analyze biomedical cells including blood cells and the like, and may include processing means for manipulating, sorting, or eradicating cells after analysis. 20 figs.

  8. Interaction of Herbal Compounds with Biological Targets: A Case Study with Berberine

    PubMed Central

    Chen, Xiao-Wu; Di, Yuan Ming; Zhang, Jian; Zhou, Zhi-Wei; Li, Chun Guang; Zhou, Shu-Feng

    2012-01-01

    Berberine is one of the main alkaloids found in the Chinese herb Huang lian (Rhizoma Coptidis), which has been reported to have multiple pharmacological activities. This study aimed to analyze the molecular targets of berberine based on literature data followed by a pathway analysis using the PANTHER program. PANTHER analysis of berberine targets showed that the most classes of molecular functions include receptor binding, kinase activity, protein binding, transcription activity, DNA binding, and kinase regulator activity. Based on the biological process classification of in vitro berberine targets, those targets related to signal transduction, intracellular signalling cascade, cell surface receptor-linked signal transduction, cell motion, cell cycle control, immunity system process, and protein metabolic process are most frequently involved. In addition, berberine was found to interact with a mixture of biological pathways, such as Alzheimer's disease-presenilin and -secretase pathways, angiogenesis, apoptosis signalling pathway, FAS signalling pathway, Hungtington disease, inflammation mediated by chemokine and cytokine signalling pathways, interleukin signalling pathway, and p53 pathways. We also explored the possible mechanism of action for the anti-diabetic effect of berberine. Further studies are warranted to elucidate the mechanisms of action of berberine using systems biology approach. PMID:23213296

  9. Why Do We Keep Catching the Common Cold?

    ERIC Educational Resources Information Center

    Gillen, Alan L.; Mayor, Heather D.

    1995-01-01

    Describes activities for biology teachers that will stimulate discussions on virus structure, cell biology, rhino viruses, and new trends in treating the common cold. Provides opportunity for inquiry and problem solving in exercises that emphasize an understanding of how common cold viruses might pack inside nasal epithelial cells. (14 references)…

  10. The Art of Interpreting Epigenetic Activity | Center for Cancer Research

    Cancer.gov

    Even though all the cells of the human body share a common genomic blueprint, epigenetic activity such as DNA methylation, introduces molecular diversity that results in functionally and biologically different cellular constituents. In cancers, this ability of epigenetic activity to introduce molecular diversity is emerging as a powerful classifier of biological aggressiveness.

  11. Light Activated Cell Migration in Synthetic Extracellular Matrices

    PubMed Central

    Guo, Qiongyu; Wang, Xiaobo; Tibbitt, Mark W.; Anseth, Kristi S.; Montell, Denise J.; Elisseeff, Jennifer H.

    2012-01-01

    Synthetic extracellular matrices provide a framework in which cells can be exposed to defined physical and biological cues. However no method exists to manipulate single cells within these matrices. It is desirable to develop such methods in order to understand fundamental principles of cell migration and define conditions that support or inhibit cell movement within these matrices. Here, we present a strategy for manipulating individual mammalian stem cells in defined synthetic hydrogels through selective optical activation of Rac, which is an intracellular signaling protein that plays a key role in cell migration. Photoactivated cell migration in synthetic hydrogels depended on mechanical and biological cues in the biomaterial. Real-time hydrogel photodegradation was employed to create geometrically defined channels and spaces in which cells could be photoactivated to migrate. Cell migration speed was significantly higher in the photo-etched channels and cells could easily change direction of movement compared to the bulk hydrogels. PMID:22889487

  12. Herbal infusions of black seed and wheat germ oil: Their chemical profiles, in vitro bio-investigations and effective formulations as Phyto-Nanoemulsions.

    PubMed

    Gumus, Z Pinar; Guler, Emine; Demir, Bilal; Barlas, F Baris; Yavuz, Murat; Colpankan, Dilara; Senisik, A Murat; Teksoz, Serap; Unak, Perihan; Coskunol, Hakan; Timur, Suna

    2015-09-01

    The reported studies related to black seed oil (BSO) and wheat germ oil (WGO) have illustrated that they have a wide range of biological activities. Therefore, enhancing the amount of bio-active compounds that caused higher cell based anti-oxidative effect as well as cell proliferation, etc. in seed oils, infusion of crude plant material has been gained importance as a traditional technique. Herein, we accomplished the infusion of Calendula flowers that also contains many phyto-constituents into BSO and WGO. After the infusion of oils, the change of phytochemical amount was investigated and evaluated according to the oils by chromatography, radical scavenging activity. Subsequently, for investigating the biological impact upon live cells, cytotoxicity, cell-based antioxidant capacity, wound healing and radioprotective activity were tested with monkey kidney fibroblast like cells (Vero) and HaCaT keratinocytes. In vitro cell based experiments (wound healing and radioprotective activity) confirmed that Calendula infused BSO and WGO have greater bio-activity when compared to those plain forms. The herbal oils prepared with an effective extraction technique were incorporated into nanoemulsion systems which will be then called as 'Phyto-Nanoemulsion'. After herbal oil biomolecules were encapsulated into nanoemulsion based delivery systems, the designed formulations were investigated in terms of biological activities. In conclusion, these preparations could be a good candidate as a part of dermal cosmetic products or food supplements which have the therapeutic efficiency, especially after radio- or chemotherapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Isolation, characterization and propagation of mitotically active germ cells from adult mouse and human ovaries

    PubMed Central

    Woods, Dori C; Tilly, Jonathan L

    2017-01-01

    Accruing evidence indicates that production of new oocytes (oogenesis) and their enclosure by somatic cells (folliculogenesis) are processes not limited to the perinatal period in mammals. Endpoints ranging from oocyte counts to genetic lineage tracing and transplantation experiments support a paradigm shift in reproductive biology involving active renewal of oocyte-containing follicles during postnatal life. The recent purification of mitotically active oocyte progenitor cells, termed female germline stem cells (fGSCs) or oogonial stem cells (OSCs), from mouse and human ovaries opens up new avenues for research into the biology and clinical utility of these cells. Here we detail methods for the isolation of mouse and human OSCs from adult ovarian tissue, cultivation of the cells after purification, and characterization of the cells before and after ex vivo expansion. The latter methods include analysis of germ cell–specific markers and in vitro oogenesis, as well as the use of intraovarian transplantation to test the oocyte-forming potential of OSCs in vivo. PMID:23598447

  14. Development of novel therapeutic drugs in humans from plant antimicrobial peptides.

    PubMed

    da Rocha Pitta, Maira Galdino; da Rocha Pitta, Marina Galdino; Galdino, Suely Lins

    2010-05-01

    All living organisms, ranging from microorganisms to plants and mammals, have evolved mechanisms to actively defend themselves against pathogen attack. A wide range of biological activities have been attributed to plant antimicrobial peptides (AMPs) including growth inhibitory effects on a broad range of fungi, Gram-positive and Gram-negative bacteria, viruses, neoplasic cells and parasitic protozoa. Classes of AMPs, their mechanisms of action, biological activity, and cytotoxicity towards host cells are discussed. A particular focus regards AMP candidates with potential for use in defense against biological warfare agents. This field is young, but provides additional stimulus to consideration of these molecules as a new class of therapeutic agents and promises to revolutionize treatment of many infectious diseases.

  15. Biomimetic approaches to modulate cellular adhesion in biomaterials: A review.

    PubMed

    Rahmany, Maria B; Van Dyke, Mark

    2013-03-01

    Natural extracellular matrix (ECM) proteins possess critical biological characteristics that provide a platform for cellular adhesion and activation of highly regulated signaling pathways. However, ECM-based biomaterials can have several limitations, including poor mechanical properties and risk of immunogenicity. Synthetic biomaterials alleviate the risks associated with natural biomaterials but often lack the robust biological activity necessary to direct cell function beyond initial adhesion. A thorough understanding of receptor-mediated cellular adhesion to the ECM and subsequent signaling activation has facilitated development of techniques that functionalize inert biomaterials to provide a biologically active surface. Here we review a range of approaches used to modify biomaterial surfaces for optimal receptor-mediated cell interactions, as well as provide insights into specific mechanisms of downstream signaling activation. In addition to a brief overview of integrin receptor-mediated cell function, so-called "biomimetic" techniques reviewed here include (i) surface modification of biomaterials with bioadhesive ECM macromolecules or specific binding motifs, (ii) nanoscale patterning of the materials and (iii) the use of "natural-like" biomaterials. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Activation of respiratory epithelial cells by wood smoke particles persists beyond immediate exposure.

    EPA Science Inventory

    The biological effect of particles on epithelial cells involves, in part, oxidant generation and a cascade of reactions culminating in inflammatory mediator release. Whether there is an immediate short-lived activation or continued persistent response of the cells to the particle...

  17. STATs: An Old Story, Yet Mesmerizing

    PubMed Central

    Abroun, Saeid; Saki, Najmaldin; Ahmadvand, Mohammad; Asghari, Farahnaz; Salari, Fatemeh; Rahim, Fakher

    2015-01-01

    Signal transducers and activators of transcription (STATs) are cytoplasmic transcription factors that have a key role in cell fate. STATs, a protein family comprised of seven members, are proteins which are latent cytoplasmic transcription factors that convey signals from the cell surface to the nucleus through activation by cytokines and growth factors. The signaling pathways have diverse biological functions that include roles in cell differentiation, proliferation, development, apoptosis, and inflammation which place them at the center of a very active area of research. In this review we explain Janus kinase (JAK)/STAT signaling and focus on STAT3, which is transient from cytoplasm to nucleus after phosphorylation. This procedure controls fundamental biological processes by regulating nuclear genes controlling cell proliferation, survival, and development. In some hematopoietic disorders and cancers, overexpression and activation of STAT3 result in high proliferation, suppression of cell differentiation and inhibition of cell maturation. This article focuses on STAT3 and its role in malignancy, in addition to the role of microRNAs (miRNAs) on STAT3 activation in certain cancers. PMID:26464811

  18. Using the mixed media according to internet-based on the instructional multimedia for developing students' learning achievements in biology course on foundational cell issue of secondary students at the 10th grade level in Rangsit University demonstration school

    NASA Astrophysics Data System (ADS)

    Kangloan, Pichet; Chayaburakul, Kanokporn; Santiboon, Toansakul

    2018-01-01

    The aims of this research study were 1) to develop students' learning achievements in biology course on foundational cell issue, 2) to examine students' satisfactions of their learning activities through the mixed media according to internet-based multi-instruction in biology on foundational cell issue at the 10th grade level were used in the first semester in the academic year 2014, which a sample size of 17 students in Rangsit University Demonstration School with cluster random sampling was selected. Students' learning administrations were instructed with the 3-instructional lesson plans according to the 5-Step Ladder Learning Management Plan (LLMP) namely; the maintaining lesson plan on the equilibrium of cell issue, a lesson plan for learning how to communicate between cell and cell division. Students' learning achievements were assessed with the 30-item Assessment of Learning Biology Test (ALBT), students' perceptions of their satisfactions were satisfied with the 20-item Questionnaire on Students Satisfaction (QSS), and students' learning activities were assessed with the Mixed Media Internet-Based Instruction (MMIBI) on foundational cell issue was designed. The results of this research study have found that: statistically significant of students' post-learning achievements were higher than their pre-learning outcomes and indicated that the differences were significant at the .05 level. Students' performances of their satisfaction to their perceptions toward biology class with the mixed media according to internet-based multi instruction in biology on foundational cell issue were the highest level and evidence of average mean score as 4.59.

  19. Retro-inverso forms of gastrin5-12 are as biologically active as glycine-extended gastrin in vitro but not in vivo.

    PubMed

    Marshall, Kathryn M; Laval, Marie; Sims, Ioulia; Shulkes, Arthur; Baldwin, Graham S

    2015-12-01

    Non-amidated gastrin peptides such as glycine-extended gastrin (Ggly) are biologically active in vitro and in vivo and have been implicated in the development of gastric and colonic cancers. Previous studies have shown that the truncated form of Ggly, the octapeptide LE5AY, was still biologically active in vitro, and that activity was dependent on ferric ion binding but independent of binding to the cholecystokinin 2 (CCK2) receptor. The present work was aimed at creating more stable gastrin-derived 'super agonists' using retro-inverso technology. The truncated LE5AY peptide was synthesized using end protecting groups in three forms with l-amino acids (GL), d-amino acids (GD) or retro-inverso (reverse order with d-amino acids; GRI). All of these peptides bound ferric ions with a 2:1 (Fe: peptide) ratio. As predicted, Ggly, GL and GRI were biologically active in vitro and increased cell proliferation in mouse gastric epithelial (IMGE-5) and human colorectal cancer (DLD-1) cell lines, and increased cell migration in DLD-1 cells. These activities were likely via the same mechanism as Ggly since no CCK1 or CCK2 binding was identified, and GD remained inactive in all assays. Surprisingly, unlike Ggly, GL and GRI were not active in vivo. While Ggly stimulated colonic crypt height and proliferation rates in gastrin knockout mice, GL and GRI did not. The apparent lack of activity may be due to rapid clearance of these smaller peptides. Nevertheless further work designing and testing retro-inverso gastrins is warranted, as it may lead to the generation of super agonists that could potentially be used to treat patients with gastrointestinal disorders with reduced mucosal function. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Cardiac c-Kit Biology Revealed by Inducible Transgenesis.

    PubMed

    Gude, Natalie A; Firouzi, Fareheh; Broughton, Kathleen M; Ilves, Kelli; Nguyen, Kristine P; Payne, Christina R; Sacchi, Veronica; Monsanto, Megan M; Casillas, Alexandria R; Khalafalla, Farid G; Wang, Bingyan J; Ebeid, David E; Alvarez, Roberto; Dembitsky, Walter P; Bailey, Barbara A; van Berlo, Jop; Sussman, Mark A

    2018-06-22

    Biological significance of c-Kit as a cardiac stem cell marker and role(s) of c-Kit+ cells in myocardial development or response to pathological injury remain unresolved because of varied and discrepant findings. Alternative experimental models are required to contextualize and reconcile discordant published observations of cardiac c-Kit myocardial biology and provide meaningful insights regarding clinical relevance of c-Kit signaling for translational cell therapy. The main objectives of this study are as follows: demonstrating c-Kit myocardial biology through combined studies of both human and murine cardiac cells; advancing understanding of c-Kit myocardial biology through creation and characterization of a novel, inducible transgenic c-Kit reporter mouse model that overcomes limitations inherent to knock-in reporter models; and providing perspective to reconcile disparate viewpoints on c-Kit biology in the myocardium. In vitro studies confirm a critical role for c-Kit signaling in both cardiomyocytes and cardiac stem cells. Activation of c-Kit receptor promotes cell survival and proliferation in stem cells and cardiomyocytes of either human or murine origin. For creation of the mouse model, the cloned mouse c-Kit promoter drives Histone2B-EGFP (enhanced green fluorescent protein; H2BEGFP) expression in a doxycycline-inducible transgenic reporter line. The combination of c-Kit transgenesis coupled to H2BEGFP readout provides sensitive, specific, inducible, and persistent tracking of c-Kit promoter activation. Tagging efficiency for EGFP+/c-Kit+ cells is similar between our transgenic versus a c-Kit knock-in mouse line, but frequency of c-Kit+ cells in cardiac tissue from the knock-in model is 55% lower than that from our transgenic line. The c-Kit transgenic reporter model reveals intimate association of c-Kit expression with adult myocardial biology. Both cardiac stem cells and a subpopulation of cardiomyocytes express c-Kit in uninjured adult heart, upregulating c-Kit expression in response to pathological stress. c-Kit myocardial biology is more complex and varied than previously appreciated or documented, demonstrating validity in multiple points of coexisting yet heretofore seemingly irreconcilable published findings. © 2018 American Heart Association, Inc.

  1. A monolithic glass chip for active single-cell sorting based on mechanical phenotyping.

    PubMed

    Faigle, Christoph; Lautenschläger, Franziska; Whyte, Graeme; Homewood, Philip; Martín-Badosa, Estela; Guck, Jochen

    2015-03-07

    The mechanical properties of biological cells have long been considered as inherent markers of biological function and disease. However, the screening and active sorting of heterogeneous populations based on serial single-cell mechanical measurements has not been demonstrated. Here we present a novel monolithic glass chip for combined fluorescence detection and mechanical phenotyping using an optical stretcher. A new design and manufacturing process, involving the bonding of two asymmetrically etched glass plates, combines exact optical fiber alignment, low laser damage threshold and high imaging quality with the possibility of several microfluidic inlet and outlet channels. We show the utility of such a custom-built optical stretcher glass chip by measuring and sorting single cells in a heterogeneous population based on their different mechanical properties and verify sorting accuracy by simultaneous fluorescence detection. This offers new possibilities of exact characterization and sorting of small populations based on rheological properties for biological and biomedical applications.

  2. Interplay of migratory and division forces as a generic mechanism for stem cell patterns

    NASA Astrophysics Data System (ADS)

    Hannezo, Edouard; Coucke, Alice; Joanny, Jean-François

    2016-02-01

    In many adult tissues, stem cells and differentiated cells are not homogeneously distributed: stem cells are arranged in periodic "niches," and differentiated cells are constantly produced and migrate out of these niches. In this article, we provide a general theoretical framework to study mixtures of dividing and actively migrating particles, which we apply to biological tissues. We show in particular that the interplay between the stresses arising from active cell migration and stem cell division give rise to robust stem cell patterns. The instability of the tissue leads to spatial patterns which are either steady or oscillating in time. The wavelength of the instability has an order of magnitude consistent with the biological observations. We also discuss the implications of these results for future in vitro and in vivo experiments.

  3. Comparative Phytochemical Analysis of Essential Oils from Different Biological Parts of Artemisia herba alba and Their Cytotoxic Effect on Cancer Cells.

    PubMed

    Tilaoui, Mounir; Ait Mouse, Hassan; Jaafari, Abdeslam; Zyad, Abdelmajid

    2015-01-01

    Carrying out the chemical composition and antiproliferative effects against cancer cells from different biological parts of Artemisia herba alba. Essential oils were studied by gas chromatography coupled to mass spectrometry (GC-MS) and their antitumoral activity was tested against P815 mastocytoma and BSR kidney carcinoma cell lines; also, in order to evaluate the effect on normal human cells, oils were tested against peripheral blood mononuclear cells PBMCs. Essential oils from leaves and aerial parts (mixture of capitulum and leaves) were mainly composed by oxygenated sesquiterpenes 39.89% and 46.15% respectively; capitulum oil contained essentially monoterpenes (22.86%) and monocyclic monoterpenes (21.48%); esters constituted the major fraction (62.8%) of stem oil. Essential oils of different biological parts studied demonstrated a differential antiproliferative activity against P815 and BSR cancer cells; P815 cells are the most sensitive to the cytotoxic effect. Leaves and capitulum essential oils are more active than aerial parts. Interestingly, no cytotoxic effect of these essential oils was observed on peripheral blood mononuclear cells. Our results showed that the chemical composition variability of essential oils depends on the nature of botanical parts of Artemisia herba alba. Furthermore, we have demonstrated that the differential cytotoxic effect depends not only on the essential oils concentration, but also on the target cells and the botanical parts of essential oils used.

  4. Geographic, seasonal, and precipitation chemistry influence on the abundance and activity of biological ice nucleators in rain and snow

    PubMed Central

    Christner, Brent C.; Cai, Rongman; Morris, Cindy E.; McCarter, Kevin S.; Foreman, Christine M.; Skidmore, Mark L.; Montross, Scott N.; Sands, David C.

    2008-01-01

    Biological ice nucleators (IN) function as catalysts for freezing at relatively warm temperatures (warmer than −10 °C). We examined the concentration (per volume of liquid) and nature of IN in precipitation collected from Montana and Louisiana, the Alps and Pyrenees (France), Ross Island (Antarctica), and Yukon (Canada). The temperature of detectable ice-nucleating activity for more than half of the samples was ≥ −5 °C based on immersion freezing testing. Digestion of the samples with lysozyme (i.e., to hydrolyze bacterial cell walls) led to reductions in the frequency of freezing (0–100%); heat treatment greatly reduced (95% average) or completely eliminated ice nucleation at the measured conditions in every sample. These behaviors were consistent with the activity being bacterial and/or proteinaceous in origin. Statistical analysis revealed seasonal similarities between warm-temperature ice-nucleating activities in snow samples collected over 7 months in Montana. Multiple regression was used to construct models with biogeochemical data [major ions, total organic carbon (TOC), particle, and cell concentration] that were accurate in predicting the concentration of microbial cells and biological IN in precipitation based on the concentration of TOC, Ca2+, and NH4+, or TOC, cells, Ca2+, NH4+, K+, PO43−, SO42−, Cl−, and HCO3−. Our results indicate that biological IN are ubiquitous in precipitation and that for some geographic locations the activity and concentration of these particles is related to the season and precipitation chemistry. Thus, our research suggests that biological IN are widespread in the atmosphere and may affect meteorological processes that lead to precipitation. PMID:19028877

  5. Ion-driven photoluminescence modulation of quasi-two-dimensional MoS2 nanoflakes for applications in biological systems.

    PubMed

    Ou, Jian Zhen; Chrimes, Adam F; Wang, Yichao; Tang, Shi-yang; Strano, Michael S; Kalantar-zadeh, Kourosh

    2014-02-12

    Quasi-two-dimensional (quasi-2D) molybdenum disulfide (MoS2) is a photoluminescence (PL) material with unique properties. The recent demonstration of its PL, controlled by the intercalation of positive ions, can lead to many opportunities for employing this quasi-2D material in ion-related biological applications. Here, we present two representative models of biological systems that incorporate the ion-controlled PL of quasi-2D MoS2 nanoflakes. The ion exchange behaviors of these two models are investigated to reveal enzymatic activities and cell viabilities. While the ion intercalation of MoS2 in enzymatic activities is enabled via an external applied voltage, the intercalation of ions in cell viability investigations occurs in the presence of the intrinsic cell membrane potential.

  6. Introductory Biology Labs... They Just Aren't Sexy Enough!

    ERIC Educational Resources Information Center

    Cotner, Sehoya; Gallup, Gordon G., Jr.

    2011-01-01

    The typical introductory biology curriculum includes the nature of science, evolution and genetics. Laboratory activities are designed to engage students in typical subject areas ranging from cell biology and physiology, to ecology and evolution. There are few, if any, laboratory classes exploring the biology and evolution of human sexual…

  7. Micro/nano-fabrication technologies for cell biology.

    PubMed

    Qian, Tongcheng; Wang, Yingxiao

    2010-10-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities.

  8. Micro/nano-fabrication technologies for cell biology

    PubMed Central

    Qian, Tongcheng

    2012-01-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities. PMID:20490938

  9. The Cell Cycle: An Activity Using Paper Plates to Represent Time Spent in Phases of the Cell Cycle

    ERIC Educational Resources Information Center

    Scherer, Yvette D.

    2014-01-01

    In this activity, students are given the opportunity to combine skills in math and geometry for a biology lesson in the cell cycle. Students utilize the data they collect and analyze from an online onion-root-tip activity to create a paper-plate time clock representing a 24-hour cell cycle. By dividing the paper plate into appropriate phases of…

  10. Biological activities of human mannose-binding lectin bound to two different ligand sugar structures, Lewis A and Lewis B antigens and high-mannose type oligosaccharides.

    PubMed

    Muto, S; Takada, T; Matsumoto, K

    2001-07-02

    The biological activities of mannose-binding lectin (MBL) which binds to different ligands on mammalian cells were examined using two types of Colo205 cells, a human colon adenocarcinoma cell line: one naturally expressing Lewis A and Lewis B antigens as ligands for MBL (NT-Colo205), and the other modified to express high-mannose type oligosaccharides by treatment with benzyl-2-acetamide-2-deoxy-alpha-galactopyranoside and 1-deoxymannojirimycin (Bz+dMM-Colo205). Although the final lysis was not observed, the deposition of C4 and C3 was observed on both types of Colo205 cells after treatment with MBL and complements as a result of complement activation by MBL. MBL bound to Bz+dMM-Colo205 could also activate human peripheral blood leukocytes and induce superoxide production; however, MBL bound to NT-Colo205 could not. This may be explained by the lower affinity of MBL to Lewis A and Lewis B antigens than to high-mannose type oligosaccharides under physiological conditions, since MBL bound to NT-Colo205 was more easily released from the cell surface than that bound to Bz+dMM-Colo205 at 37 degrees C. These findings suggest that the difference in the affinity of MBL to its ligands could influence the expression of some biological activities of MBL.

  11. Nano-zymography Using Laser-Scanning Confocal Microscopy Unmasks Proteolytic Activity of Cell-Derived Microparticles

    PubMed Central

    Briens, Aurélien; Gauberti, Maxime; Parcq, Jérôme; Montaner, Joan; Vivien, Denis; Martinez de Lizarrondo, Sara

    2016-01-01

    Cell-derived microparticles (MPs) are nano-sized vesicles released by activated cells in the extracellular milieu. They act as vectors of biological activity by carrying membrane-anchored and cytoplasmic constituents of the parental cells. Although detection and characterization of cell-derived MPs may be of high diagnostic and prognostic values in a number of human diseases, reliable measurement of their size, number and biological activity still remains challenging using currently available methods. In the present study, we developed a protocol to directly image and functionally characterize MPs using high-resolution laser-scanning confocal microscopy. Once trapped on annexin-V coated micro-wells, we developed several assays using fluorescent reporters to measure their size, detect membrane antigens and evaluate proteolytic activity (nano-zymography). In particular, we demonstrated the applicability and specificity of this method to detect antigens and proteolytic activities of tissue-type plasminogen activator (tPA), urokinase and plasmin at the surface of engineered MPs from transfected cell-lines. Furthermore, we were able to identify a subset of tPA-bearing fibrinolytic MPs using plasma samples from a cohort of ischemic stroke patients who received thrombolytic therapy and in an experimental model of thrombin-induced ischemic stroke in mice. Overall, this method is promising for functional characterization of cell-derived MPs. PMID:27022410

  12. Nano-zymography Using Laser-Scanning Confocal Microscopy Unmasks Proteolytic Activity of Cell-Derived Microparticles.

    PubMed

    Briens, Aurélien; Gauberti, Maxime; Parcq, Jérôme; Montaner, Joan; Vivien, Denis; Martinez de Lizarrondo, Sara

    2016-01-01

    Cell-derived microparticles (MPs) are nano-sized vesicles released by activated cells in the extracellular milieu. They act as vectors of biological activity by carrying membrane-anchored and cytoplasmic constituents of the parental cells. Although detection and characterization of cell-derived MPs may be of high diagnostic and prognostic values in a number of human diseases, reliable measurement of their size, number and biological activity still remains challenging using currently available methods. In the present study, we developed a protocol to directly image and functionally characterize MPs using high-resolution laser-scanning confocal microscopy. Once trapped on annexin-V coated micro-wells, we developed several assays using fluorescent reporters to measure their size, detect membrane antigens and evaluate proteolytic activity (nano-zymography). In particular, we demonstrated the applicability and specificity of this method to detect antigens and proteolytic activities of tissue-type plasminogen activator (tPA), urokinase and plasmin at the surface of engineered MPs from transfected cell-lines. Furthermore, we were able to identify a subset of tPA-bearing fibrinolytic MPs using plasma samples from a cohort of ischemic stroke patients who received thrombolytic therapy and in an experimental model of thrombin-induced ischemic stroke in mice. Overall, this method is promising for functional characterization of cell-derived MPs.

  13. Effects of atrazine on estrogen receptor α- and G protein-coupled receptor 30-mediated signaling and proliferation in cancer cells and cancer-associated fibroblasts.

    PubMed

    Albanito, Lidia; Lappano, Rosamaria; Madeo, Antonio; Chimento, Adele; Prossnitz, Eric R; Cappello, Anna Rita; Dolce, Vincenza; Abonante, Sergio; Pezzi, Vincenzo; Maggiolini, Marcello

    2015-05-01

    The pesticide atrazine does not bind to or activate the classical estrogen receptor (ER), but it up-regulates the aromatase activity in estrogen-sensitive tumor cells. The G protein estrogen receptor (GPR30/GPER) has been reported to be involved in certain biological responses to endogenous estrogens and environmental compounds exerting estrogen-like activity. We aimed to evaluate the potential of atrazine to trigger GPER-mediated signaling in cancer cells and cancer-associated fibroblasts (CAFs). Using gene reporter assays in diverse types of cancer cells, we found that atrazine did not transactivate endogenous ERα or chimeric proteins that encode the ERα and ERβ hormone binding domains. Conversely, atrazine was able to bind to GPER to induce ERK activation and the expression of estrogen target genes, which, interestingly, appeared to rely on both GPER and ERα expression. As a biological counterpart, atrazine stimulated the proliferation of ovarian cancer cells that depend on GPER and ERα, as evidenced by gene silencing experiments and the use of specific signaling inhibitors. Of note, through GPER, atrazine elicited ERK phosphorylation, gene expression, and migration in CAFs, thus extending its stimulatory role to these main players of the tumor microenvironment. Our results suggest a novel mechanism through which atrazine may exert relevant biological effects in cancer cells and CAFs. On the basis of our data, atrazine should be included among the environmental contaminants that may elicit estrogenic activity through GPER-mediated signaling.

  14. Sechium edule (Jacq.) Swartz, a New Cultivar with Antiproliferative Potential in a Human Cervical Cancer HeLa Cell Line.

    PubMed

    Salazar-Aguilar, Sandra; Ruiz-Posadas, Lucero Del Mar; Cadena-Iñiguez, Jorge; Soto-Hernández, Marcos; Santiago-Osorio, Edelmiro; Aguiñiga-Sánchez, Itzen; Rivera-Martínez, Ana Rocío; Aguirre-Medina, Juan Francisco

    2017-07-25

    The Sechium edule Perla Negra cultivar is a recently-obtained biological material whose progenitors are S. edule var. nigrum minor and S. edule var. amarus silvestrys, the latter of which has been reported to have antiproliferative activity against the HeLa P-388 and L-929 cancer cell lines. The present study aimed to determine if the methanolic extract of the fruit of the Perla Negra cultivar had the same biological activity. The methanolic extract was phytochemically characterized by thin layer chromatography (TLC) and column chromatography (CC), identifying the terpenes and flavonoids. The compounds identified via high performance liquid chromatography (HPLC) were Cucurbitacins B, D, E, and I for the terpene fractions, and Rutin, Phlorizidin, Myricetin, Quercetin, Naringenin, Phloretin, Apigenin, and Galangin for the flavonoid fractions). Biological activity was evaluated with different concentrations of the methanolic extract in the HeLa cell line and normal lymphocytes. The methanolic extract inhibited the proliferation of HeLa cells (IC 50 1.85 µg·mL -1 ), but the lymphocytes were affected by the extract (IC 50 30.04 µg·mL -1 ). Some fractions, and the pool of all of them, showed inhibition higher than 80% at a concentration of 2.11 µg·mL -1 . Therefore, the biological effect shown by the methanolic extract of the Perla Negra has some specificity in inhibiting tumor cells and not normal cells; an unusual feature among molecules investigated as potential biomedical agents.

  15. Sechium edule (Jacq.) Swartz, a New Cultivar with Antiproliferative Potential in a Human Cervical Cancer HeLa Cell Line

    PubMed Central

    Salazar-Aguilar, Sandra; Ruiz-Posadas, Lucero del Mar; Cadena-Iñiguez, Jorge; Santiago-Osorio, Edelmiro; Aguiñiga-Sánchez, Itzen; Rivera-Martínez, Ana Rocío; Aguirre-Medina, Juan Francisco

    2017-01-01

    The Sechium edule Perla Negra cultivar is a recently-obtained biological material whose progenitors are S. edule var. nigrum minor and S. edule var. amarus silvestrys, the latter of which has been reported to have antiproliferative activity against the HeLa P-388 and L-929 cancer cell lines. The present study aimed to determine if the methanolic extract of the fruit of the Perla Negra cultivar had the same biological activity. The methanolic extract was phytochemically characterized by thin layer chromatography (TLC) and column chromatography (CC), identifying the terpenes and flavonoids. The compounds identified via high performance liquid chromatography (HPLC) were Cucurbitacins B, D, E, and I for the terpene fractions, and Rutin, Phlorizidin, Myricetin, Quercetin, Naringenin, Phloretin, Apigenin, and Galangin for the flavonoid fractions). Biological activity was evaluated with different concentrations of the methanolic extract in the HeLa cell line and normal lymphocytes. The methanolic extract inhibited the proliferation of HeLa cells (IC50 1.85 µg·mL−1), but the lymphocytes were affected by the extract (IC50 30.04 µg·mL−1). Some fractions, and the pool of all of them, showed inhibition higher than 80% at a concentration of 2.11 µg·mL−1. Therefore, the biological effect shown by the methanolic extract of the Perla Negra has some specificity in inhibiting tumor cells and not normal cells; an unusual feature among molecules investigated as potential biomedical agents. PMID:28757593

  16. High-content adhesion assay to address limited cell samples†

    PubMed Central

    Warrick, Jay W.; Young, Edmond W. K.; Schmuck, Eric G.; Saupe, Kurt W.

    2013-01-01

    Cell adhesion is a broad topic in cell biology that involves physical interactions between cells and other cells or the surrounding extracellular matrix, and is implicated in major research areas including cancer, development, tissue engineering, and regenerative medicine. While current methods have contributed significantly to our understanding of cell adhesion, these methods are unsuitable for tackling many biological questions requiring intermediate numbers of cells (102–105), including small animal biopsies, clinical samples, and rare cell isolates. To overcome this fundamental limitation, we developed a new assay to quantify the adhesion of ~102–103 cells at a time on engineered substrates, and examined the adhesion strength and population heterogeneity via distribution-based modeling. We validated the platform by testing adhesion strength of cancer cells from three different cancer types (breast, prostate, and multiple myeloma) on both IL-1β activated and non-activated endothelial monolayers, and observed significantly increased adhesion for each cancer cell type upon endothelial activation, while identifying and quantifying distinct subpopulations of cell-substrate interactions. We then applied the assay to characterize adhesion of primary bone marrow stromal cells to different cardiac fibroblast-derived matrix substrates to demonstrate the ability to study limited cell populations in the context of cardiac cell-based therapies. Overall, these results demonstrate the sensitivity and robustness of the assay as well as its ability to enable extraction of high content, functional data from limited and potentially rare primary samples. We anticipate this method will enable a new class of biological studies with potential impact in basic and translational research. PMID:23426645

  17. Preparation of Gc protein-derived macrophage activating factor (GcMAF) and its structural characterization and biological activities.

    PubMed

    Mohamad, Saharuddin Bin; Nagasawa, Hideko; Uto, Yoshihiro; Hori, Hitoshi

    2002-01-01

    Gc protein has been reported to be a precursor of Gc protein-derived macrophage activation factor (GcMAF) in the inflammation-primed macrophage activation cascade. An inducible beta-galactosidase of B cells and neuraminidase of T cells convert Gc protein to GcMAF. Gc protein from human serum was purified using 25(OH)D3 affinity column chromatography and modified to GcMAF using immobilized glycosidases (beta-galactosidase and neuraminidase) The sugar moiety structure of GcMAF was characterized by lectin blotting by Helix pomatia agglutinin. The biological activities of GcMAF were evaluated by a superoxide generation assay and a phagocytosis assay. We successfully purified Gc protein from human serum. GcMAF was detected by lectin blotting and showed a high biological activity. Our results support the importance of the terminal N-acetylgalactosamine moiety in the GcMAF-mediated macrophage activation cascade, and the existence of constitutive GcMAF in human serum. These preliminary data are important for designing small molecular GcMAF mimics.

  18. Application of a phenotypic drug discovery strategy to identify biological and chemical starting points for inhibition of TSLP production in lung epithelial cells

    PubMed Central

    Orellana, Adelina; García-González, Vicente; López, Rosa; Pascual-Guiral, Sonia; Lozoya, Estrella; Díaz, Julia; Casals, Daniel; Barrena, Antolín; Paris, Stephane; Andrés, Miriam; Segarra, Victor; Vilella, Dolors; Malhotra, Rajneesh; Eastwood, Paul; Planagumà, Anna; Miralpeix, Montserrat

    2018-01-01

    Thymic stromal lymphopoietin (TSLP) is a cytokine released by human lung epithelium in response to external insult. Considered as a master switch in T helper 2 lymphocyte (Th2) mediated responses, TSLP is believed to play a key role in allergic diseases including asthma. The aim of this study was to use a phenotypic approach to identify new biological and chemical starting points for inhibition of TSLP production in human bronchial epithelial cells (NHBE), with the objective of reducing Th2-mediated airway inflammation. To this end, a phenotypic screen was performed using poly I:C / IL-4 stimulated NHBE cells interrogated with a 44,974 compound library. As a result, 85 hits which downregulated TSLP protein and mRNA levels were identified and a representative subset of 7 hits was selected for further characterization. These molecules inhibited the activity of several members of the MAPK, PI3K and tyrosine kinase families and some of them have been reported as modulators of cellular phenotypic endpoints like cell-cell contacts, microtubule polymerization and caspase activation. Characterization of the biological profile of the hits suggested that mTOR could be a key activity involved in the regulation of TSLP production in NHBE cells. Among other targeted kinases, inhibition of p38 MAPK and JAK kinases showed different degrees of correlation with TSLP downregulation, while Syk kinase did not seem to be related. Overall, inhibition of TSLP production by the selected hits, rather than resulting from inhibition of single isolated targets, appeared to be due to a combination of activities with different levels of relevance. Finally, a hit expansion exercise yielded additional active compounds that could be amenable to further optimization, providing an opportunity to dissociate TSLP inhibition from other non-desired activities. This study illustrates the potential of phenotypic drug discovery to complement target based approaches by providing new chemistry and biology leads. PMID:29320511

  19. Effectiveness and Student Perceptions of an Active Learning Activity Using a Headline News Story to Enhance In-Class Learning of Cell Cycle Regulation

    ERIC Educational Resources Information Center

    Dirks-Naylor, Amie J.

    2016-01-01

    An active learning activity was used to engage students and enhance in-class learning of cell cycle regulation in a PharmD level integrated biological sciences course. The aim of the present study was to determine the effectiveness and perception of the in-class activity. After completion of a lecture on the topic of cell cycle regulation,…

  20. Enhanced reaction kinetics in biological cells

    NASA Astrophysics Data System (ADS)

    Loverdo, C.; Bénichou, O.; Moreau, M.; Voituriez, R.

    2008-02-01

    The cell cytoskeleton is a striking example of an `active' medium driven out-of-equilibrium by ATP hydrolysis. Such activity has been shown to have a spectacular impact on the mechanical and rheological properties of the cellular medium, as well as on its transport properties: a generic tracer particle freely diffuses as in a standard equilibrium medium, but also intermittently binds with random interaction times to motor proteins, which perform active ballistic excursions along cytoskeletal filaments. Here, we propose an analytical model of transport-limited reactions in active media, and show quantitatively how active transport can enhance reactivity for large enough tracers such as vesicles. We derive analytically the average interaction time with motor proteins that optimizes the reaction rate, and reveal remarkable universal features of the optimal configuration. We discuss why active transport may be beneficial in various biological examples: cell cytoskeleton, membranes and lamellipodia, and tubular structures such as axons.

  1. Models Role within Active Learning in Biology. A Case Study

    ERIC Educational Resources Information Center

    Pop-Pacurar, Irina; Tirla, Felicia-Doina

    2009-01-01

    In order to integrate ideas and information creatively, to motivate students and activate their thinking, we have used in Biology classes a series of active methods, among which the methods of critical thinking, which had very good results. Still, in the case of some intuitive, abstract, more difficult topics, such as the cell structure,…

  2. Activated Raf-1 causes growth arrest in human small cell lung cancer cells.

    PubMed Central

    Ravi, R K; Weber, E; McMahon, M; Williams, J R; Baylin, S; Mal, A; Harter, M L; Dillehay, L E; Claudio, P P; Giordano, A; Nelkin, B D; Mabry, M

    1998-01-01

    Small cell lung cancer (SCLC) accounts for 25% of all lung cancers, and is almost uniformly fatal. Unlike other lung cancers, ras mutations have not been reported in SCLC, suggesting that activation of ras-associated signal transduction pathways such as the raf-MEK mitogen-activated protein kinases (MAPK) are associated with biological consequences that are unique from other cancers. The biological effects of raf activation in small cell lung cancer cells was determined by transfecting NCI-H209 or NCI-H510 SCLC cells with a gene encoding a fusion protein consisting of an oncogenic form of human Raf-1 and the hormone binding domain of the estrogen receptor (DeltaRaf-1:ER), which can be activated with estradiol. DeltaRaf-1:ER activation resulted in phosphorylation of MAPK. Activation of this pathway caused a dramatic loss of soft agar cloning ability, suppression of growth capacity, associated with cell accumulation in G1 and G2, and S phase depletion. Raf activation in these SCLC cells was accompanied by a marked induction of the cyclin-dependent kinase (cdk) inhibitor p27(kip1), and a decrease in cdk2 protein kinase activities. Each of these events can be inhibited by pretreatment with the MEK inhibitor PD098059. These data demonstrate that MAPK activation by DeltaRaf-1:ER can activate growth inhibitory pathways leading to cell cycle arrest. These data suggest that raf/MEK/ MAPK pathway activation, rather than inhibition, may be a therapeutic target in SCLC and other neuroendocrine tumors. PMID:9421477

  3. Apoptosis: a four-week laboratory investigation for advanced molecular and cellular biology students.

    PubMed

    DiBartolomeis, Susan M; Moné, James P

    2003-01-01

    Over the past decade, apoptosis has emerged as an important field of study central to ongoing research in many diverse fields, from developmental biology to cancer research. Apoptosis proceeds by a highly coordinated series of events that includes enzyme activation, DNA fragmentation, and alterations in plasma membrane permeability. The detection of each of these phenotypic changes is accessible to advanced undergraduate cell and molecular biology students. We describe a 4-week laboratory sequence that integrates cell culture, fluorescence microscopy, DNA isolation and analysis, and western blotting (immunoblotting) to follow apoptosis in cultured human cells. Students working in teams chemically induce apoptosis, and harvest, process, and analyze cells, using their data to determine the order of events during apoptosis. We, as instructors, expose the students to an environment closely simulating what they would encounter in an active cell or molecular biology research laboratory by having students coordinate and perform multiple tasks simultaneously and by having them experience experimental design using current literature, data interpretation, and analysis to answer a single question. Students are assessed by examination of laboratory notebooks for completeness of experimental protocols and analysis of results and for completion of an assignment that includes questions pertaining to data interpretation and apoptosis.

  4. Biology 23. Unit One -- The Cell: Structure and Physiology.

    ERIC Educational Resources Information Center

    Nederland Independent School District, TX.

    GRADES OR AGES: Not given. SUBJECT MATTER: Biology, the structure and physiology of the cell. ORGANIZATION AND PHYSICAL APPEARANCE: There are four sections: a) objectives for the unit, b) bibliography, c) activities, and d) evaluation. The guide is directed to the student rather than the teacher. The guide is mimeographed and stapled, with no…

  5. Jasmonic and salicylic acids enhanced phytochemical production and biological activities in cell suspension cultures of spine gourd (Momordica dioica Roxb).

    PubMed

    Chung, Ill-Min; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Thiruvengadam, Muthu

    2017-03-01

    In vitro cell suspension culture was established for the production of commercially valuable phytochemicals in Momordica dioica. The influence of elicitors in jasmonic acid (JA) and salicylic acid (SA) increased their effect on phytochemical production and biomass accumulation in M. dioica. The results indicate that compared with non-elicited cultures, JA- and SA-elicited cell suspension cultures had significantly enhanced phenolic, flavonoid, and carotenoid production, as well as antioxidant, antimicrobial, and antiproliferative activities. Furthermore, elicited cultures produced 22 phenolic compounds, such as flavonols, hydroxycinnamic acids, and hydroxybenzoic acids. Greater biomass production, phytochemical accumulation, and biological activity occurred in JA- than in SA-elicited cell cultures. This study is the first to successfully establish M. dioica cell suspension cultures for the production of phenolic compounds and carotenoids, as well as for biomass accumulation.

  6. A Petiveria alliacea standardized fraction induces breast adenocarcinoma cell death by modulating glycolytic metabolism.

    PubMed

    Hernández, John Fredy; Urueña, Claudia Patricia; Cifuentes, Maria Claudia; Sandoval, Tito Alejandro; Pombo, Luis Miguel; Castañeda, Diana; Asea, Alexzander; Fiorentino, Susana

    2014-05-14

    Folk medicine uses aqueous and alcoholic extracts from Petiveria alliacea (Phytolaccaceae) in leukemia and breast cancer treatment in the Caribbean, Central and South America. Herein, we validated the biological activity of a Petiveria alliacea fraction using a metastatic breast adenocarcinoma model (4T1). Petiveria alliacea fraction biological activity was determined estimating cell proliferation, cell colony growth capacity and apoptosis (caspase-3 activity, DNA fragmentation and mitochondrial membrane potential) in 4T1 cells. Petiveria alliacea was used at IC₅₀ concentration (29 µg/mL) and 2 dilutions below, doxorubicin at 0.27 µg/mL (positive control) and dibenzyl disulfide at 2.93 µg/mL (IC50 fraction marker compound). Proteomic estimations were analyzed by LC-MS-MS. Protein level expression was confirmed by RT-PCR. Glucose and lactate levels were measured by enzymatic assays. LD50 was established in BALB/c mice and antitumoral activity evaluated in mice transplanted with GFP-tagged 4T1 cells. Mice were treated with Petiveria alliacea fraction via I.P (182 mg/kg corresponding to 1/8 of LD₅₀ and 2 dilutions below). Petiveria alliacea fraction in vitro induces 4T1 cells apoptosis, caspase-3 activation, DNA fragmentation without mitochondria membrane depolarization, and decreases cell colony growth capacity. Also, changes in glycolytic enzymes expression cause a decrease in glucose uptake and lactate production. Fraction also promotes breast primary tumor regression in BALB/c mice transplanted with GFP-tagged 4T1 cells. A fraction of Petiveria alliacea leaves and stems induces in vitro cell death and in vivo tumor regression in a murine breast cancer model. Our results validate in partly, the traditional use of Petiveria alliacea in breast cancer treatment, revealing a new way of envisioning Petiveria alliacea biological activity. The fraction effect on the glycolytic pathway enzymes contributes to explain the antiproliferative and antitumor activities. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  7. Curcumin conjugated with PLGA potentiates sustainability, anti-proliferative activity and apoptosis in human colon carcinoma cells.

    PubMed

    Waghela, Bhargav N; Sharma, Anupama; Dhumale, Suhashini; Pandey, Shashibahl M; Pathak, Chandramani

    2015-01-01

    Curcumin, an ingredient of turmeric, exhibits a variety of biological activities such as anti-inflammatory, anti-atherosclerotic, anti-proliferative, anti-oxidant, anti-cancer and anti-metastatic. It is a highly pleiotropic molecule that inhibits cell proliferation and induces apoptosis in cancer cells. Despite its imperative biological activities, chemical instability, photo-instability and poor bioavailability limits its utilization as an effective therapeutic agent. Therefore, enhancing the bioavailability of curcumin may improve its therapeutic index for clinical setting. In the present study, we have conjugated curcumin with a biodegradable polymer Poly (D, L-lactic-co-glycolic acid) and evaluated its apoptotic potential in human colon carcinoma cells (HCT 116). The results show that curcumin-PLGA conjugate efficiently inhibits cell proliferation and cell survival in human colon carcinoma cells as compared to native curcumin. Additionally, curcumin conjugated with PLGA shows improved cellular uptake and exhibits controlled release at physiological pH as compared to native curcumin. The curcumin-PLGA conjugate efficiently activates the cascade of caspases and promotes intrinsic apoptotic signaling. Thus, the results suggest that conjugation potentiates the sustainability, anti-proliferative and apoptotic activity of curcumin. This approach could be a promising strategy to improve the therapeutic index of cancer therapy.

  8. Synthesis and biological activities of fluorinated chalcone derivatives.

    PubMed

    Nakamura, Chika; Kawasaki, Nobuhide; Miyataka, Hideki; Jayachandran, Ezhuthachan; Kim, In Ho; Kirk, Kenneth L; Taguchi, Takeo; Takeuchi, Yoshio; Hori, Hitoshi; Satoh, Toshio

    2002-03-01

    We have designed and synthesized new 5-lipoxygenase inhibitors, fluorinated 3,4-dihydroxychalcones, and evaluated their biological activities with respect to antiperoxidation activity and in vitro antitumor activities. All fluorinated chalcones tested showed 5-lipoxygenase inhibition on rat basophilic leukemia-1 (RBL-1) cells and inhibitory action on Fe(3+)-ADP induced NADPH-dependent lipid peroxidation in rat liver microsomes. The potencies were comparable or better to that of the lead 3,4-dihydroxychalcone. 6-Fluoro-3,4-dihydroxy-2',4'-dimethoxy chalcone (7) was the most effective compound in the in vitro assay using a human cancer cell line panel (HCC panel) consisting of 39 systems.

  9. Tissue-based standoff biosensors for detecting chemical warfare agents

    DOEpatents

    Greenbaum, Elias; Sanders, Charlene A.

    2003-11-18

    A tissue-based, deployable, standoff air quality sensor for detecting the presence of at least one chemical or biological warfare agent, includes: a cell containing entrapped photosynthetic tissue, the cell adapted for analyzing photosynthetic activity of the entrapped photosynthetic tissue; means for introducing an air sample into the cell and contacting the air sample with the entrapped photosynthetic tissue; a fluorometer in operable relationship with the cell for measuring photosynthetic activity of the entrapped photosynthetic tissue; and transmitting means for transmitting analytical data generated by the fluorometer relating to the presence of at least one chemical or biological warfare agent in the air sample, the sensor adapted for deployment into a selected area.

  10. Surface grafting of a thermoplastic polyurethane with methacrylic acid by previous plasma surface activation and by ultraviolet irradiation to reduce cell adhesion.

    PubMed

    Alves, P; Pinto, S; Kaiser, Jean-Pierre; Bruinink, Arie; de Sousa, Hermínio C; Gil, M H

    2011-02-01

    The material performance, in a biological environment, is mainly mediated by its surface properties and by the combination of chemical, physical, biological, and mechanical properties required, for a specific application. In this study, the surface of a thermoplastic polyurethane (TPU) material (Elastollan(®)1180A50) was activated either by plasma or by ultra-violet (UV) irradiation. After surface activation, methacrylic acid (MAA) was linked to the surface of TPU in order to improve its reactivity and to reduce cell adhesion. Grafted surfaces were evaluated by X-ray photoelectron spectroscopy (XPS), by atomic force microscopy (AFM) and by contact angle measurements. Blood compatibility studies and cell adhesion tests with human bone marrow cells (HBMC) were also performed. If was found that UV grafting method led to better results than the plasma activation method, since cell adhesion was reduced when methacrylic acid was grafted to the TPU surface by UV. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Chemical composition, in vitro antitumor and pro-oxidant activities of Glandora rosmarinifolia (Boraginaceae) essential oil.

    PubMed

    Poma, Paola; Labbozzetta, Manuela; Notarbartolo, Monica; Bruno, Maurizio; Maggio, Antonella; Rosselli, Sergio; Sajeva, Maurizio; Zito, Pietro

    2018-01-01

    The biological properties of essential oils have been demonstrated in the treatment of several diseases and to enhance the bioavailability of other drugs. In natural habitats the essential oils compounds may play important roles in the protection of the plants as antibacterials, antivirals, antifungals, insecticides and also against herbivores by reducing their appetite for such plants or by repelling undesirable others. We analyzed by gas-chromatography mass spectrometry the chemical composition of the essential oil of aerial parts of Glandora rosmarinifolia (Ten.) D.C. Thomas obtained by hydrodistillation and verified some biological activities on a panel of hepatocellular carcinoma cell lines (HA22T/VGH, HepG2, Hep3B) and triple negative breast cancer cell lines (SUM 149, MDA-MB-231). In the essential oil we detected 35 compounds. The results of the biological assays indicate that essential oil of G. rosmarinifolia induces cell growth inhibition at concentration-dependent way in all cell line models. This oil does not seem to possess antioxidant activity, while the cytotoxicity of G. rosmarinifolia essential oil appeared to involve, at least in part, a pro-oxidant mechanism. Our results show for the first time the antitumoral and pro-oxidant activities of G. rosmarinifolia essential oil and suggest that it may represent a resource of pharmacologically active compounds.

  12. Update and future perspectives of a thymic biological response modifier (Thymomodulin).

    PubMed

    Cazzola, P; Mazzanti, P; Kouttab, N M

    1987-01-01

    Thymomodulin (Ellem Industria Farmaceutica spa, Milan, Italy) is a calf thymus acid lysate with immunomodulating activities. It is composed of several peptides with a molecular weight range of 1-10kD. Extensive studies in animal systems showed that Thymomodulin exhibited no, or very little toxicity even when used at high doses. Studies done in vitro and in vivo demonstrated that Thymomodulin is a biologically active compound which regulates the maturation of human and murine pre T lymphocytes, as well as modulate the functions of apparently mature human and animal B and T lymphocytes. It was observed that Thymomodulin can promote myelopoiesis as demonstrated by an increase of granulocyte-macrophage colonies in agar. Although additional studies to examine its target cell lineage are required, it appears that Thymomodulin exhibits specificity toward T cells. Therefore, enhancement of other cell lineage functions by Thymomodulin may be indirect, and mainly due to its effect on T cells. Of major importance is to note that Thymomodulin is prepared in a manner which allows it to maintain its biological activity when administered orally.

  13. Thematic minireview series: cell biology of G protein signaling.

    PubMed

    Dohlman, Henrik G

    2015-03-13

    This thematic series is on the topic of cell signaling from a cell biology perspective, with a particular focus on G proteins. G protein-coupled receptors (GPCRs, also known as seven-transmembrane receptors) are typically found at the cell surface. Upon agonist binding, these receptors will activate a GTP-binding G protein at the cytoplasmic face of the plasma membrane. Additionally, there is growing evidence that G proteins can also be activated by non-receptor binding partners, and they can signal from non-plasma membrane compartments. The production of second messengers at multiple, spatially distinct locations represents a type of signal encoding that has been largely neglected. The first minireview in the series describes biosensors that are being used to monitor G protein signaling events in live cells. The second describes the implementation of antibody-based biosensors to dissect endosome signaling by G proteins and their receptors. The third describes the function of a non-receptor, cytoplasmic activator of G protein signaling, called GIV (Girdin). Collectively, the advances described in these articles provide a deeper understanding and emerging opportunities for new pharmacology. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. The lymphotoxin promoter is stimulated by HTLV-I tax activation of NF-kappa B in human T-cell lines.

    PubMed

    Paul, N L; Millet, I; Ruddle, N H

    1993-07-01

    The HTLV-I transcriptional activator tax was used to gain insight into the mechanism of lymphotoxin (LT; TNF-beta) gene induction. Tax-expressing cell lines produce LT biologic activity. An LT promoter (LT-293) CAT construct that contained an NF-kappa B site was active in the LT-producing C81-66-45 cell line, which contains defective HTLV-I but expresses tax. The observation that a mutated LT-kappa B construct (M1-CAT) was inactive in C81-66-45, confirmed the importance of NF-kappa B in LT gene expression. Tax was transfected into HTLV-I-negative human T-cell lines. Jurkat T cells stably expressing tax contained elevated levels of NF-kappa B that directly bound to the LT-kappa B site. Tax co-transfected with reporter constructs into Jurkat cells maximally activated HTLV-I-LTR-CAT and kappa B-fos-CAT and also activated LT-293 to a lesser extent. In JM T cells, tax induced LT-293 activity by two- to four-fold, though there was no induction of M1-CAT. The increase in LT-293 CAT activity mirrored the increase in LT biologic activity seen under these conditions. These studies, the first to demonstrate induction of LT promoter activity over basal levels, indicate that HTLV-I tax causes low-level activation of both endogenous LT and the LT promoter, at least in part through activation of NF-kappa B.

  15. Polarization: A Key Difference between Man-made and Natural Electromagnetic Fields, in regard to Biological Activity.

    PubMed

    Panagopoulos, Dimitris J; Johansson, Olle; Carlo, George L

    2015-10-12

    In the present study we analyze the role of polarization in the biological activity of Electromagnetic Fields (EMFs)/Electromagnetic Radiation (EMR). All types of man-made EMFs/EMR - in contrast to natural EMFs/EMR - are polarized. Polarized EMFs/EMR can have increased biological activity, due to: 1) Ability to produce constructive interference effects and amplify their intensities at many locations. 2) Ability to force all charged/polar molecules and especially free ions within and around all living cells to oscillate on parallel planes and in phase with the applied polarized field. Such ionic forced-oscillations exert additive electrostatic forces on the sensors of cell membrane electro-sensitive ion channels, resulting in their irregular gating and consequent disruption of the cell's electrochemical balance. These features render man-made EMFs/EMR more bioactive than natural non-ionizing EMFs/EMR. This explains the increasing number of biological effects discovered during the past few decades to be induced by man-made EMFs, in contrast to natural EMFs in the terrestrial environment which have always been present throughout evolution, although human exposure to the latter ones is normally of significantly higher intensities/energy and longer durations. Thus, polarization seems to be a trigger that significantly increases the probability for the initiation of biological/health effects.

  16. How Small Is a Cell?

    ERIC Educational Resources Information Center

    Rau, Gerald

    2004-01-01

    In this article, the author talks about an inquiry-based activity involving yeast, wherein students learned about cell size. The activity allows students to employ math connections and to learn experimental techniques while practicing microscope skills. The activity can be adapted for students at all levels of biology. The author presents details…

  17. Engineering artificial cells by combining HeLa-based cell-free expression and ultra-thin double emulsion template

    PubMed Central

    Ho, Kwun Yin; Murray, Victoria L.; Liu, Allen P.

    2015-01-01

    Generation of artificial cells provides the bridge needed to cover the gap between studying the complexity of biological processes in whole cells and studying these same processes in an in vitro reconstituted system. Artificial cells are defined as the encapsulation of biologically active material in a biological or synthetic membrane. Here, we describe a robust and general method to produce artificial cells for the purpose of mimicking one or more behaviors of a cell. A microfluidic double emulsion system is used to encapsulate a mammalian cell free expression system that is able to express membrane proteins into the bilayer or soluble proteins inside the vesicles. The development of a robust platform that allows the assembly of artificial cells is valuable in understanding subcellular functions and emergent behaviors in a more cell-like environment as well as for creating novel signaling pathways to achieve specific cellular behaviors. PMID:25997354

  18. Biological activities of extracts from Chenopodium ambrosioides Lineu and Kielmeyera neglecta Saddi

    PubMed Central

    2012-01-01

    Background Chenopodium ambrosioides and Kielmeyera neglecta are plants traditionally used in Brazil to treat various infectious diseases. The study of the biological activities of these plants is of great importance for the detection of biologically active compounds. Methods Extracts from these plants were extracted with hexane (Hex), dichloromethane (DCM), ethyl acetate (EtOAc) and ethanol (EtOH) and assessed for their antimicrobial properties, bioactivity against Artemia salina Leach and antifungal action on the cell wall of Neurospora crassa. Results Extracts from C. ambrosioides (Hex, DCM and EtOH) and K. neglecta (EtOAc and EtOH) showed high bioactivity against A. salina (LD50 < 1000 μg/mL), which might be associated with cytotoxic activity against cancer cells. C. ambrosioides Hex and DCM showed specific activity against yeasts, highlighting the activity of hexanic extract against Candida krusei (MIC = 100 μg/mL). By comparing the inhibitory concentration of 50% growth (IC 50%) with the growth control, extracts from K. neglecta EtOAc and EtOH have shown activities against multidrug-resistant bacteria (Enterococcus faecalis ATCC 51299 and Staphylococcus aureus ATCC 43300), with IC 50% of 12.5 μg/mL The assay carried out on N. crassa allowed defining that extracts with antifungal activity do not have action through inhibition of cell wall synthesis. Conclusions Generally speaking, extracts from C. ambrosioides and K. neglecta showed biological activities that have made the search for bioactive substances in these plants more attractive, illustrating the success of their use in the Brazilian folk medicine. PMID:22839690

  19. Physangulidine A, a withanolide from Physalis angulata, perturbs the cell cycle and induces cell death by apoptosis in prostate cancer cells.

    PubMed

    Reyes-Reyes, E Merit; Jin, Zhuang; Vaisberg, Abraham J; Hammond, Gerald B; Bates, Paula J

    2013-01-25

    Recently, our group reported the discovery of three new withanolides, physangulidines A-C, from Physalis angulata. In this study, the biological effects of physangulidine A (1), which was the most active and abundant of the three new constituents, are described. It was found that 1 significantly reduces survival in clonogenic assays for two hormone-independent prostate cancer cell lines. Flow cytometry and confocal microscopy studies in DU145 human prostate cancer cells indicated that 1 induces cell cycle arrest in the G(2)/M phase and causes defective mitosis. It was determined also that 1 produces programed cell death by apoptosis, as evidenced by biochemical markers and distinct changes in cell morphology. These results imply that the antimitotic and proapoptotic effects of 1 may contribute significantly to the biological activities and potential medicinal properties of its plant of origin.

  20. THE SIZE AND SURFACE COATING OF NANOSILVER DIFFERENTIALLY AFFECTS BIOLOGICAL ACTIVITY IN BLOOD BRAIN BARRIER (RBEC4) CELLS.

    EPA Science Inventory

    Linking the physical properties of nanoparticles with differences in their biological activity is critical for understanding their potential toxicity and mode of action. The influence of aggregate size, surface coating, and surface charge on nanosilver's (nanoAg) movement through...

  1. Biologic Activity of Porphyromonas endodontalis complex lipids

    PubMed Central

    Mirucki, Christopher S.; Abedi, Mehran; Jiang, Jin; Zhu, Qiang; Wang, Yu-Hsiung; Safavi, Kamran E.; Clark, Robert B.; Nichols, Frank C.

    2014-01-01

    Introduction Periapical infections secondary to pulpal necrosis are associated with bacterial contamination of the pulp. Porphyromonas endodontalis, a Gram-negative organism, is considered to be a pulpal pathogen. P. gingivalis is phylogenetically related to P. endodontalis and synthesizes several classes of novel complex lipids that possess biological activity, including the capacity to promote osteoclastogenesis and osteoclast activation. The purpose of this study was to extract and characterize constituent lipids of P. endodontalis, and evaluate their capacity to promote pro-inflammatory secretory responses in the macrophage cell line, RAW 264.7, as well as their capacity to promote osteoclastogenesis and inhibit osteoblast activity. Methods Constituent lipids of both organisms were fractionated by HPLC and were structurally characterized using electrospray-mass spectrometry (ESI-MS) or ESI-MS/MS. The virulence potential of P. endodontalis lipids was then compared with known biologically active lipids isolated from P. gingivalis. Results P. endodontalis total lipids were shown to promote TNF-α secretion from RAW 264.7 cells and the serine lipid fraction appeared to account for the majority of this effect. P. endodontalis lipid preparations also increased osteoclast formation from RAW 264.7 cells but osteoblast differentiation in culture was inhibited and appeared to be dependent on TLR2 expression. Conclusions These effects underscore the importance of P. endodontalis lipids in promoting inflammatory and bone cell activation processes that could lead to periapical pathology. PMID:25146013

  2. Pleiotropic biological activities of alternatively spliced TMPRSS2/ERG fusion gene transcripts

    PubMed Central

    Wang, Jianghua; Cai, Yi; Yu, Wendong; Ren, Chengxi; Spencer, David M.; Ittmann, Michael

    2008-01-01

    TMPRSS2/ERG gene fusions are found in the majority of prostate cancers; however, there is significant heterogeneity in the 5′ region of the alternatively spliced fusion gene transcripts. We have found that there is also significant heterogeneity within the coding exons as well. There is variable inclusion of a 72-bp exon and other novel alternatively spliced isoforms. To assess the biological significance of these alternatively spliced transcripts, we expressed various transcripts in primary prostatic epithelial cells and in an immortalized prostatic epithelial cell line, PNT1a. The fusion gene transcripts promoted proliferation, invasion and motility with variable activities that depended on the structure of the 5′ region encoding the TMPRSS2/ERG fusion and the presence of the 72-bp exon. Cotransfection of different isoforms further enhanced biological activity, mimicking the situation in vivo, in which multiple isoforms are expressed. Finally, knockdown of the fusion gene in VCaP cells resulted in inhibition of proliferation in vitro and tumor progression in an in vivo orthotopic mice model. Our results indicate that TMPRSS2/ERG fusion isoforms have variable biological activities promoting tumor initiation and progression and are consistent with our previous clinical observations indicating that certain TMPRSS2/ERG fusion isoforms are significantly correlated with more aggressive disease. PMID:18922926

  3. Genomewide effects of peroxisome proliferator-activated receptor gamma in macrophages and dendritic cells--revealing complexity through systems biology.

    PubMed

    Cuaranta-Monroy, Ixchelt; Kiss, Mate; Simandi, Zoltan; Nagy, Laszlo

    2015-09-01

    Systems biology approaches have become indispensable tools in biomedical and basic research. These data integrating bioinformatic methods gained prominence after high-throughput technologies became available to investigate complex cellular processes, such as transcriptional regulation and protein-protein interactions, on a scale that had not been studied before. Immunology is one of the medical fields that systems biology impacted profoundly due to the plasticity of cell types involved and the accessibility of a wide range of experimental models. In this review, we summarize the most important recent genomewide studies exploring the function of peroxisome proliferator-activated receptor γ in macrophages and dendritic cells. PPARγ ChIP-seq experiments were performed in adipocytes derived from embryonic stem cells to complement the existing data sets and to provide comparators to macrophage data. Finally, lists of regulated genes generated from such experiments were analysed with bioinformatics and system biology approaches. We show that genomewide studies utilizing high-throughput data acquisition methods made it possible to gain deeper insights into the role of PPARγ in these immune cell types. We also demonstrate that analysis and visualization of data using network-based approaches can be used to identify novel genes and functions regulated by the receptor. The example of PPARγ in macrophages and dendritic cells highlights the crucial importance of systems biology approaches in establishing novel cellular functions for long-known signaling pathways. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  4. Strategies to enhance biologically active-secondary metabolites in cell cultures of Artemisia - current trends.

    PubMed

    Ali, Mohammad; Abbasi, Bilal Haider; Ahmad, Nisar; Khan, Haji; Ali, Gul Shad

    2017-11-01

    The genus Artemisia has been utilized worldwide due to its immense potential for protection against various diseases, especially malaria. Artemisia absinthium, previously renowned for its utilization in the popular beverage absinthe, is gaining resurgence due to its extensive pharmacological activities. Like A. annua, this species exhibits strong biological activities like antimalarial, anticancer and antioxidant. Although artemisinin was found to be the major metabolite for its antimalarial effects, several flavonoids and terpenoids are considered to possess biological activities when used alone and also to synergistically boost the bioavailability of artemisinin. However, due to the limited quantities of these metabolites in wild plants, in vitro cultures were established and strategies have been adopted to enhance medicinally important secondary metabolites in these cultures. This review elaborates on the traditional medicinal uses of Artemisia species and explains current trends to establish cell cultures of A. annua and A. absinthium for enhanced production of medicinally important secondary metabolites.

  5. Mixing enhancement by biologically inspired convection in a micro-chamber using alternating current galvanotactic control of the Tetrahymena pyriformis

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Jang, Yonghee; Byun, Doyoung; Hyung Kim, Dal; Jun Kim, Min

    2013-09-01

    Recently, there has been increasing interest in the swimming behavior of microorganisms and biologically inspired micro-robots. In this study, we investigated biologically induced convection flow with living microorganism using galvanotaxis. We fabricated and evaluated our micro-mixer with motile cells. For the cell based active micro-mixers, two miscible fluids were used to measure the mixing index. Under alternating current (AC) electric fields with varying frequency, a group of motile Tetrahymena pyriformis cells generated reciprocal motion with circulating flows around their pathline, enhancing the mixing ratio.

  6. Context clues: the importance of stem cell-material interactions

    PubMed Central

    Murphy, William L.

    2014-01-01

    Understanding the processes by which stem cells give rise to de novo tissues is an active focus of stem cell biology and bioengineering disciplines. Instructive morphogenic cues surrounding the stem cell during morphogenesis create what is referred to as the stem cell microenvironment. An emerging paradigm in stem cell bioengineering involves “biologically driven assembly,” in which stem cells are encouraged to largely define their own morphogenesis processes. However, even in the case of biologically driven assembly, stem cells do not act alone. The properties of the surrounding microenvironment can be critical regulators of cell fate. Stem cell-material interactions are among the most well-characterized microenvironmental effectors of stem cell fate, and they establish a signaling “context” that can define the mode of influence for morphogenic cues. Here we describe illustrative examples of cell-material interactions that occur during in vitro stem cell studies, with an emphasis on how cell-material interactions create instructive contexts for stem cell differentiation and morphogenesis. PMID:24369691

  7. Hydrodynamic collective effects of active protein machines in solution and lipid bilayers

    PubMed Central

    Mikhailov, Alexander S.; Kapral, Raymond

    2015-01-01

    The cytoplasm and biomembranes in biological cells contain large numbers of proteins that cyclically change their shapes. They are molecular machines that can function as molecular motors or carry out various other tasks in the cell. Many enzymes also undergo conformational changes within their turnover cycles. We analyze the advection effects that nonthermal fluctuating hydrodynamic flows induced by active proteins have on other passive molecules in solution or membranes. We show that the diffusion constants of passive particles are enhanced substantially. Furthermore, when gradients of active proteins are present, a chemotaxis-like drift of passive particles takes place. In lipid bilayers, the effects are strongly nonlocal, so that active inclusions in the entire membrane contribute to local diffusion enhancement and the drift. All active proteins in a biological cell or in a membrane contribute to such effects and all passive particles, and the proteins themselves, will be subject to them. PMID:26124140

  8. Glial cell biology in the Great Lakes region.

    PubMed

    Feinstein, Douglas L; Skoff, Robert P

    2016-03-31

    We report on the tenth bi-annual Great Lakes Glial meeting, held in Traverse City, Michigan, USA, September 27-29 2015. The GLG meeting is a small conference that focuses on current research in glial cell biology. The array of functions that glial cells (astrocytes, microglia, oligodendrocytes, Schwann cells) play in health and disease is constantly increasing. Despite this diversity, GLG meetings bring together scientists with common interests, leading to a better understanding of these cells. This year's meeting included two keynote speakers who presented talks on the regulation of CNS myelination and the consequences of stress on Schwann cell biology. Twenty-two other talks were presented along with two poster sessions. Sessions covered recent findings in the areas of microglial and astrocyte activation; age-dependent changes to glial cells, Schwann cell development and pathology, and the role of stem cells in glioma and neural regeneration.

  9. Comparative Phytochemical Analysis of Essential Oils from Different Biological Parts of Artemisia herba alba and Their Cytotoxic Effect on Cancer Cells

    PubMed Central

    Tilaoui, Mounir; Ait Mouse, Hassan; Jaafari, Abdeslam; Zyad, Abdelmajid

    2015-01-01

    Purpose Carrying out the chemical composition and antiproliferative effects against cancer cells from different biological parts of Artemisia herba alba. Methods Essential oils were studied by gas chromatography coupled to mass spectrometry (GC–MS) and their antitumoral activity was tested against P815 mastocytoma and BSR kidney carcinoma cell lines; also, in order to evaluate the effect on normal human cells, oils were tested against peripheral blood mononuclear cells PBMCs. Results Essential oils from leaves and aerial parts (mixture of capitulum and leaves) were mainly composed by oxygenated sesquiterpenes 39.89% and 46.15% respectively; capitulum oil contained essentially monoterpenes (22.86%) and monocyclic monoterpenes (21.48%); esters constituted the major fraction (62.8%) of stem oil. Essential oils of different biological parts studied demonstrated a differential antiproliferative activity against P815 and BSR cancer cells; P815 cells are the most sensitive to the cytotoxic effect. Leaves and capitulum essential oils are more active than aerial parts. Interestingly, no cytotoxic effect of these essential oils was observed on peripheral blood mononuclear cells. Conclusion Our results showed that the chemical composition variability of essential oils depends on the nature of botanical parts of Artemisia herba alba. Furthermore, we have demonstrated that the differential cytotoxic effect depends not only on the essential oils concentration, but also on the target cells and the botanical parts of essential oils used. PMID:26196123

  10. Properties and applications of antimicrobial peptides in biodefense against biological warfare threat agents.

    PubMed

    Dawson, Raymond Murray; Liu, Chun-Qiang

    2008-01-01

    Recent advances in knowledge of the properties of antimicrobial peptides (AMPs) are reviewed. AMPs are typically small, positively charged, amphipathic peptides that interact electrostatically and non-stereospecifically with the bacterial cell membrane, resulting in its permeabilization and cell death. Classes of AMPs, their mechanisms of action, hemolytic activity, and cytotoxicity towards host cells are discussed. A particular focus is AMPs with potential for use in defense against biological warfare agents. Some AMPs cytotoxic to Bacillus anthracis have been described. Synthesis of these peptides in multivalent form leads to a synergistic increase in antibacterial activity. Strategies to enhance the potency, stability, and selectivity of AMPs are discussed.

  11. Isolation, Structural characterization, and antiproliferative activity of phycocolloids from the red seaweed Laurencia papillosa on MCF-7 human breast cancer cells.

    PubMed

    Ghannam, Ahmed; Murad, Hossam; Jazzara, Marie; Odeh, Adnan; Allaf, Abdul Wahab

    2018-03-01

    Hydrocolloids from seaweeds (phycocolloids) have interesting functional properties like antiproliferative activity. Marine algae consumptions are linked to law cancer incidences in countries that traditionally consume marine products. In this study, we have investigated water-soluble sulfated polysaccharides isolated from the red seaweed Laurencia papillosa and determined their chemical characteristics and biological activities on the human breast cancer cell line MCF-7. Total polysaccharides were extracted and fractionated from L. papillosa and characterized using FTIR-ATR and NMR spectrometry. In addition, their approximate molar mass was determined by GPC method. The chemical characterization of purified polysaccharides reveals the presence of sulfated polysaccharides differentially dispersed in the algal cell wall. They are the three types of carrageenan, kappa, iota and lambda carrageenans, named LP-W1, -W2 and -W3 respectively. Biological effects and cytotoxicity of the identified of the three sulfated polysaccharide fractions were evaluated in MCF-7 cell line. Our results showed a significant inhibition of MCF-7 cell viability by dose-dependent manner for cells exposed to LP-W2 and LP-W3 polysaccharides for 24h. The mechanistic of LP fractions-mediated apoptosis in MCF-7 cells was demonstrated. The biological effects of L. papillosa SPs indicate that it may be a promising candidate for breast cancer prevention and therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Part-1: Design, synthesis and biological evaluation of novel bromo-pyrimidine analogs as tyrosine kinase inhibitors.

    PubMed

    Munikrishnappa, Chandrashekar Suradhenupura; Puranik, Sangamesh B; Kumar, G V Suresh; Prasad, Y Rajendra

    2016-08-25

    A novel series of 5-bromo-pyrimidine derivatives (5a-l, 6a-h, 9a-m and 10a-d) were synthesized through multi step reactions starting from 5-bromo-2,4-dichloro pyrimidine. The newly synthesized compounds were characterized using elemental analysis and spectral data (IR, (1)H NMR, (13)C NMR and LC-MS) analysis. The titled compounds were evaluated for their in vitro cytotoxic activity against tumor cell lines panel consisted of HCT116 (human colon cancer cell line), A549 (human lung cancer cell line), K562 (human chronic myeloid leukemia cell line), U937 (human acute monocytic myeloid leukemia cell line), and L02 (human normal cell line) by using MTT assay Mosmann's method. As most of the compounds are highly potent against K562 cells, all the synthesized compounds were evaluated for Bcr/Abl tyrosine kinase inhibitory activity by using well-established ADP-Glo assay method. Dasatinib was utilized as positive control to validate in both biological evaluations. The biological activity revealed that the compounds 5c, 5e, 6g, 9e, 9f and 10c were potent Bcr/Abl kinase inhibitors among the titled compounds. Thus these compounds may be promising lead compounds to be developed as an alternative for current Dasatinib therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. microRNA regulation of T lymphocyte immunity: modulation of molecular networks responsible for T cell activation, differentiation and development

    PubMed Central

    Podshivalova, Katie; Salomon, Daniel R.

    2014-01-01

    MicroRNAs (miRNA) are a class of small non-coding RNAs that constitute an essential and evolutionarily conserved mechanism for post-transcriptional gene regulation. Multiple miRNAs have been described to play key roles in T lymphocyte development, differentiation and function. In this review we highlight the current literature regarding the differential expression of miRNAs in various models of mouse and human T cell biology and emphasize mechanistic understandings of miRNA regulation of thymocyte development, T cell activation, and differentiation into effector and memory subsets. We describe the participation of miRNAs in complex regulatory circuits shaping T cell proteomes in a context-dependent manner. It is striking that some miRNAs regulate multiple processes, while others only appear in limited functional contexts. It is also evident that the expression and function of specific miRNAs can differ between mouse and human systems. Ultimately, it is not always correct to simplify the complex events of T cell biology into a model driven by only one or two master regulator miRNAs. In reality, T cell activation and differentiation involves the expression of multiple miRNAs with many mRNA targets and thus, the true extent of miRNA regulation of T cell biology is likely far more vast than currently appreciated. PMID:24099302

  14. Heterologous expression, protein folding and antibody recognition of a neurotoxin from the Mexican coral snake Micrurus laticorallis.

    PubMed

    Clement, Herlinda; Flores, Vianey; De la Rosa, Guillermo; Zamudio, Fernando; Alagon, Alejandro; Corzo, Gerardo

    2016-01-01

    The cysteine-rich neurotoxins from elapid venoms are primarily responsible for human and animal envenomation; however, their low concentration in the venom may hamper the production of efficient elapid antivenoms. Therefore, the aim of the present study was to produce fully active elapid neurotoxic immunogens for elapid antivenom production. Cysteine-rich neurotoxins showed recombinant expression in two strains of E. coli, and were purified using affinity chromatography and reverse-phase HPLC (rpHPLC). The cDNA of the four disulfide-bridged peptide neurotoxin Mlat1 was cloned into a modified expression vector, pQE30, which was transfected into two different E. coli strains. The recombinant toxin (HisrMlat1) was found only in inclusion bodies in M15 strain cells, and in both inclusion bodies and cytoplasm in Origami strain cells. The HisrMlat1 from inclusion bodies from M15 cells was solubilized using guanidine hydrochloride, and then purified by rpHPLC. It showed various contiguous fractions having the same molecular mass, indicating that HisrMlat1 was oxidized after cell extraction forming different misfolded disulfide bridge arrangements without biological activity. In vitro folding conditions of the misfolded HisrMlat1 generated a biologically active HisrMlat1. On the other hand, the HisrMlat1 from the cytoplasm from Origami cells was already soluble, and then purified by HPLC. It showed a single fraction with neurotoxic activity; so, no folding steps were needed. The in vitro folded HisrMlat1 from M15 cells and the cytoplasmic soluble HisrMlat1from Origami cells were indistinguishable in their structure and neurotoxicity. Rabbit polyclonal antibodies raised up against biologically active HisrMlat1 recognized the native Mlat1 (nMlat1) from the whole venom of M. laticorallis. In addition, HisrMlat1 was recognized by horse polyclonal antibodies obtained from the immunization of elapid species from sub-Saharan Africa. HisrMlat1 shows increased biological activities compared to the native peptide, and may be used as an immunizing agent in combination with other toxic components such phospholipases type A2 for elapid antivenom production.

  15. Canine Adipose-Derived Stem Cells: Purinergic Characterization and Neurogenic Potential for Therapeutic Applications.

    PubMed

    Roszek, Katarzyna; Makowska, Noemi; Czarnecka, Joanna; Porowińska, Dorota; Dąbrowski, Marcin; Danielewska, Justyna; Nowak, Wiesław

    2017-01-01

    The presented results evidence that canine adipose-derived stem cells (ADSCs) represent the premature population of stem cells with great biological potential and properties. ADCS are easy to obtain and culture, able to differentiate into the neurogenic lineage as well as it is easy to control their proliferation rate with nucleotides and nucleosides or analogues. We report that in vitro cultured canine ADSCs response to adenosine- and ATP-mediated stimulation. Differences in canine ADSCs and human mesenchymal stem cells in ecto-nucleotidase activity have been observed. The ecto-nucleotidase activity changes during ADSCs in vitro transdifferentiation into neurogenic lineage are fast and simple to analyze. Therefore, the simple analysis of ecto-enzymes activity allows for verification of the stem cells quality: their stemness or initiation of the differentiation process. The biological potential of the cells isolated from canine fat, as well as the good quality control of this cell culture, make them a promising tool for both experimental and therapeutic usage. J. Cell. Biochem. 118: 58-65, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Vibrational spectroscopy for imaging single microbial cells in complex biological samples

    DOE PAGES

    Harrison, Jesse P.; Berry, David

    2017-04-13

    Here, vibrational spectroscopy is increasingly used for the rapid and non-destructive imaging of environmental and medical samples. Both Raman and Fourier-transform infrared (FT-IR) imaging have been applied to obtain detailed information on the chemical composition of biological materials, ranging from single microbial cells to tissues. Due to its compatibility with methods such as stable isotope labeling for the monitoring of cellular activities, vibrational spectroscopy also holds considerable power as a tool in microbial ecology. Chemical imaging of undisturbed biological systems (such as live cells in their native habitats) presents unique challenges due to the physical and chemical complexity of themore » samples, potential for spectral interference, and frequent need for real-time measurements. This Mini Review provides a critical synthesis of recent applications of Raman and FT-IR spectroscopy for characterizing complex biological samples, with a focus on developments in single-cell imaging. We also discuss how new spectroscopic methods could be used to overcome current limitations of singlecell analyses. Given the inherent complementarity of Raman and FT-IR spectroscopic methods, we discuss how combining these approaches could enable us to obtain new insights into biological activities either in situ or under conditions that simulate selected properties of the natural environment.« less

  17. Vibrational spectroscopy for imaging single microbial cells in complex biological samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Jesse P.; Berry, David

    Here, vibrational spectroscopy is increasingly used for the rapid and non-destructive imaging of environmental and medical samples. Both Raman and Fourier-transform infrared (FT-IR) imaging have been applied to obtain detailed information on the chemical composition of biological materials, ranging from single microbial cells to tissues. Due to its compatibility with methods such as stable isotope labeling for the monitoring of cellular activities, vibrational spectroscopy also holds considerable power as a tool in microbial ecology. Chemical imaging of undisturbed biological systems (such as live cells in their native habitats) presents unique challenges due to the physical and chemical complexity of themore » samples, potential for spectral interference, and frequent need for real-time measurements. This Mini Review provides a critical synthesis of recent applications of Raman and FT-IR spectroscopy for characterizing complex biological samples, with a focus on developments in single-cell imaging. We also discuss how new spectroscopic methods could be used to overcome current limitations of singlecell analyses. Given the inherent complementarity of Raman and FT-IR spectroscopic methods, we discuss how combining these approaches could enable us to obtain new insights into biological activities either in situ or under conditions that simulate selected properties of the natural environment.« less

  18. Insulin released from titanium discs with insulin coatings-Kinetics and biological activity.

    PubMed

    Malekzadeh, B Ö; Ransjo, M; Tengvall, P; Mladenovic, Z; Westerlund, A

    2017-10-01

    Local administration of insulin from a titanium surface has been demonstrated to increase bone formation in non-diabetic rats. The authors hypothesized that insulin was released from the titanium surface and with preserved biological activity after the release. Thus, in the present in vitro study, human recombinant insulin was immobilized onto titanium discs, and the insulin release kinetics was evaluated using Electro-chemiluminescence immunoassay. Neutral Red uptake assay and mineralization assay were used to evaluate the biological effects of the released insulin on human osteoblast-like MG-63 cells. The results confirmed that insulin was released from titanium surfaces during a six-week period. Etching the disc prior to insulin coating, thickening of the insulin coating and incubation of the discs in serum-enriched cell culture medium increased the release. However, longer storage time decreased the release of insulin. Furthermore, the released insulin had retained its biological activity, as demonstrated by the significant increase in cell number and a stimulated mineralization process, upon exposure to released insulin. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1847-1854, 2017. © 2016 Wiley Periodicals, Inc.

  19. Second generation benzofuranone ring substituted noscapine analogs: Synthesis and biological evaluation

    PubMed Central

    Mishra, Ram Chandra; Karna, Prasanthi; Gundala, Sushma Reddy; Pannu, Vaishali; Stanton, Richard A.; Gupta, Kamlesh Kumar; Robinson, Mary; Lopus, Manu; Wilson, Leslie; Henary, Maged; Aneja, Ritu

    2011-01-01

    Microtubules, composed of α/β tubulin heterodimers, represent a validated target for cancer chemotherapy. Thus, tubulin- and microtubule-binding antimitotic drugs such as taxanes and vincas are widely employed for the chemotherapeutic management of various malignancies. Although quite successful in the clinic, these drugs are associated with severe toxicity and drug resistance problems. Noscapinoids represent an emerging class of microtubule-modulating anticancer agents based upon the parent molecule noscapine, a naturally-occurring non-toxic cough-suppressant opium alkaloid. Here we report in silico molecular modeling, chemical synthesis and biological evaluation of novel analogs derived by modification at position-7 of the benzofuranone ring system of noscapine. The synthesized analogs were evaluated for their tubulin polymerization activity and their biological activity was examined by their antiproliferative potential using representative cancer cell lines from varying tissue-origin [A549 (lung), CEM (lymphoma), MIA PaCa-2 (pancreatic), MCF-7 (breast) and PC-3 (prostate)]. Cell-cycle studies were performed to explore their ability to halt the cell-cycle and induce subsequent apoptosis. The varying biological activity of these analogs that differ in the nature and bulk of substituent at position-7 was rationalized utilizing predictive in silico molecular modeling. PMID:21501599

  20. Chemical Properties of Caffeic and Ferulic Acids in Biological System: Implications in Cancer Therapy. A Review.

    PubMed

    Damasceno, Sarah S; Dantas, Bruna B; Ribeiro-Filho, Jaime; Antônio M Araújo, Demetrius; Galberto M da Costa, José

    2017-01-01

    The antioxidant properties of caffeic and ferulic acids in biological systems have been extensively demonstrated. As antioxidants, these compounds prevent the production of reactive oxygen species (ROS), which cause cell lesions that are associated with the development of several diseases, including cancer. Recent findings suggest that the chemoprotective action of these phenolic acids occurs through the following mechanisms: regulation of gene expression, chelation and / or reduction of transition metals, formation of covalent adducts and direct toxicity. The biological efficacy of these promising chemoprotective agents is strongly related with their chemical structure. Therefore, in this study, we discuss the structural characteristics of ferulic and caffeic acids that are responsible for their biological activities, as well as the mechanisms of action involved with the anti-cancer activity. Several reports indicated that the antioxidant effect of these phenylpropanoids results from reactions with free radicals with formation of stable products in the cells. The chelating effect of these compounds was also reported as an important protective mechanism against oxidative. Finally, the lipophilicity of these agents facilitates their entry into the cells, and thus, contributes to the anticancer activity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Evidence for functional heterogeneity of circulating B-type natriuretic peptide.

    PubMed

    Liang, Faquan; O'Rear, Jessica; Schellenberger, Ute; Tai, Lungkuo; Lasecki, Michael; Schreiner, George F; Apple, Fred S; Maisel, Alan S; Pollitt, N Stephen; Protter, Andrew A

    2007-03-13

    These studies describe molecular forms of circulating B-type natriuretic peptide (BNP) as well as their biological activity. Increased circulating levels of immunoreactive BNP correlate with the severity of heart failure and are considered a sensitive biomarker. However, little is known about the molecular forms of circulating BNP and their biological activity. Western blot analysis was used to characterize immunoreactive BNP species in heart failure plasma. Recombinant proBNP was assessed for reactivity in commercially available BNP assays and cell activity by cyclic guanosine monophosphate production in vascular cells. Heart failure plasma contained both low- (LMW-BNP) and high-molecular-weight (HMW-BNP) forms. The LMW-BNP migrated similarly to a 32-amino acid BNP standard, whereas HMW-BNP, when deglycosylated, was similar to deglycosylated recombinant proBNP. Recombinant proBNP and BNP were equally recognized by the Triage BNP assay (Biosite, San Diego, California). Furthermore, recombinant proBNP and BNP were both recognized by the Advia Centaur BNP test (Bayer Diagnostics, Tarrytown, New York), but only recombinant proBNP was recognized by the Elecsys NTproBNP assay (Roche Diagnostics, Indianapolis, Indiana). Recombinant proBNP exerted significantly less biological activity than BNP on human endothelial and vascular smooth muscle cells. Comparison of effective concentration (50%) values indicates that proBNP is 6- to 8-fold less potent than BNP in these human cells. This study demonstrates that proBNP, constituting a substantial portion of immunoreactive BNP in heart failure plasma, possesses significantly lower biological activity than the processed 32-amino acid hormone. These results implicate a discordance in heart failure between the high circulating levels of immunoreactive BNP and hormone activity, suggesting that some patients may be in a state of natriuretic peptide deficiency.

  2. ESR study of a biological assay on whole blood: antioxidant efficiency of various vitamins.

    PubMed

    Stocker, Pierre; Lesgards, Jean-François; Vidal, Nicolas; Chalier, Florence; Prost, Michel

    2003-04-07

    This study deals with the activity of various vitamins against the radical-mediated oxidative damage in human whole blood. We have used a biological method that allows both the evaluation of plasma and that of red blood cell resistance against the free radicals induced by 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH). Spin trapping measures using mainly 5-(diethoxyphosphoryl)-5-methyl-1-pyrolline N-oxide nitrone (DEPMPO) were carried out under several conditions to identify the free radicals implicated in this test. Only the oxygenated-centred radical generated from AAPH was found highly reactive to initiate red blood cell lysis. With DEPMPO only alkoxyl radicals were observed and no evidence was found for alkylperoxyl radicals. The antioxidant activity of several lipid- and water-soluble vitamins has been assessed by the biological assay and through two chemical methods. We have noticed high antioxidant activities for tocopherols (in the order delta>gamma>alpha) in the biological test but not through chemical methods. At 1 microM, the delta-tocopherol efficiency in inhibiting radical-induced red blood cell hemolysis was three times as high as the alpha-tocopherol efficiency. For beta-carotene no significant activity even in whole blood was shown. Highly surprising antioxidant activities were observed for acid folic and pyridoxine, compared to ascorbic acid. At 10 microM, the effectiveness of folic acid was almost three times as high as vitamin C. The biological test seems clinically more relevant than most other common assays because it can detect several classes of antioxidants.

  3. An overview on the identification of MAIT cell antigens.

    PubMed

    Kjer-Nielsen, Lars; Corbett, Alexandra J; Chen, Zhenjun; Liu, Ligong; Mak, Jeffrey Y W; Godfrey, Dale I; Rossjohn, Jamie; Fairlie, David P; McCluskey, James; Eckle, Sidonia B G

    2018-04-14

    Mucosal Associated Invariant T (MAIT) cells are restricted by the monomorphic MHC class I-like molecule, MHC-related protein-1 (MR1). Until 2012, the origin of the MAIT cell antigens (Ags) was unknown, although it was established that MAIT cells could be activated by a broad range of bacteria and yeasts, possibly suggesting a conserved Ag. Using a combination of protein chemistry, mass spectrometry, cellular biology, structural biology and chemistry, we discovered MAIT cell ligands derived from folic acid (vitamin B9) and from an intermediate in the microbial biosynthesis of riboflavin (vitamin B2). While the folate derivative 6-formylpterin (6-FP) generally inhibited MAIT cell activation, two riboflavin pathway derivatives, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU) and 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil (5-OE-RU), were potent MAIT cell agonists. Other intermediates and derivatives of riboflavin synthesis displayed weak or no MAIT cell activation. Collectively, these studies revealed that in addition to peptide and lipid-based Ags, small molecule natural product metabolites are also ligands that can activate T cells expressing αβ T cell receptors, and here we recount this discovery. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Immunostimulatory Activity of the Cytokine-Based Biologic, IRX-2, on Human Papillomavirus-Exposed Langerhans Cells

    PubMed Central

    Da Silva, Diane M.; Woodham, Andrew W.; Naylor, Paul H.; Egan, James E.; Berinstein, Neil L.

    2016-01-01

    Langerhans cells (LCs) are the antigen-presenting cells of the epithelial layer and are responsible for initiating immune responses against skin and mucosa-invading viruses. Human papillomavirus (HPV)-mediated suppression of LC function is a crucial mechanism of HPV immune evasion, which can lead to persistent infection and development of several human cancers, including cervical, anal, and head and neck cancers. The cell-derived cytokine-based biologic, IRX-2, consists of multiple well-defined cytokines and is broadly active on various immune cell subsets. In this study, we investigated primary human LC activation after exposure to HPV16, followed by treatment with IRX-2 in vitro, and evaluated their subsequent ability to induce HPV16-specific T cells. In contrast to its activity on dendritic cells, HPV16 alone is not sufficient to induce phenotypic and functional activation of LCs. However, IRX-2 induces a significant upregulation of antigen presentation and costimulatory molecules, T helper 1 (Th1)-associated cytokine release, and chemokine-directed migration of LCs pre-exposed to HPV16. Furthermore, LCs treated with IRX-2 after HPV16 exposure induced CD8+ T-cell responses against specific HLA-A*0201-binding HPV16 T-cell epitopes. The present study suggests that IRX-2 is an attractive immunomodulator for assisting the immune response in eradication of HPV-infected cells, thereby potentially preventing HPV-induced cancers. PMID:26653678

  5. Immunostimulatory Activity of the Cytokine-Based Biologic, IRX-2, on Human Papillomavirus-Exposed Langerhans Cells.

    PubMed

    Da Silva, Diane M; Woodham, Andrew W; Naylor, Paul H; Egan, James E; Berinstein, Neil L; Kast, W Martin

    2016-05-01

    Langerhans cells (LCs) are the antigen-presenting cells of the epithelial layer and are responsible for initiating immune responses against skin and mucosa-invading viruses. Human papillomavirus (HPV)-mediated suppression of LC function is a crucial mechanism of HPV immune evasion, which can lead to persistent infection and development of several human cancers, including cervical, anal, and head and neck cancers. The cell-derived cytokine-based biologic, IRX-2, consists of multiple well-defined cytokines and is broadly active on various immune cell subsets. In this study, we investigated primary human LC activation after exposure to HPV16, followed by treatment with IRX-2 in vitro, and evaluated their subsequent ability to induce HPV16-specific T cells. In contrast to its activity on dendritic cells, HPV16 alone is not sufficient to induce phenotypic and functional activation of LCs. However, IRX-2 induces a significant upregulation of antigen presentation and costimulatory molecules, T helper 1 (Th1)-associated cytokine release, and chemokine-directed migration of LCs pre-exposed to HPV16. Furthermore, LCs treated with IRX-2 after HPV16 exposure induced CD8(+) T-cell responses against specific HLA-A*0201-binding HPV16 T-cell epitopes. The present study suggests that IRX-2 is an attractive immunomodulator for assisting the immune response in eradication of HPV-infected cells, thereby potentially preventing HPV-induced cancers.

  6. New Frontiers and Challenges for Single-Cell Electrochemical Analysis.

    PubMed

    Zhang, Jingjing; Zhou, Junyu; Pan, Rongrong; Jiang, Dechen; Burgess, James D; Chen, Hong-Yuan

    2018-02-23

    Previous measurements of cell populations might obscure many important cellular differences, and new strategies for single-cell analyses are urgently needed to re-examine these fundamental biological principles for better diagnosis and treatment of diseases. Electrochemistry is a robust technique for the analysis of single living cells that has the advantages of minor interruption of cellular activity and provides the capability of high spatiotemporal resolution. The achievements of the past 30 years have revealed significant information about the exocytotic events of single cells to elucidate the mechanisms of cellular activity. Currently, the rapid developments of micro/nanofabrication and optoelectronic technologies drive the development of multifunctional electrodes and novel electrochemical approaches with higher resolution for single cells. In this Perspective, three new frontiers in this field, namely, electrochemical microscopy, intracellular analysis, and single-cell analysis in a biological system (i.e., neocortex and retina), are reviewed. The unique features and remaining challenges of these techniques are discussed.

  7. Arginine-glycine-aspartic acid-polyethylene glycol-polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture.

    PubMed

    Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong

    The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine-glycine-aspartic acid (RGD) peptide. Our studies demonstrate that RGD-polyethylene glycol (PEG)-PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT-MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system.

  8. Models to Study NK Cell Biology and Possible Clinical Application.

    PubMed

    Zamora, Anthony E; Grossenbacher, Steven K; Aguilar, Ethan G; Murphy, William J

    2015-08-03

    Natural killer (NK) cells are large granular lymphocytes of the innate immune system, responsible for direct targeting and killing of both virally infected and transformed cells. NK cells rapidly recognize and respond to abnormal cells in the absence of prior sensitization due to their wide array of germline-encoded inhibitory and activating receptors, which differs from the receptor diversity found in B and T lymphocytes that is due to the use of recombination-activation gene (RAG) enzymes. Although NK cells have traditionally been described as natural killers that provide a first line of defense prior to the induction of adaptive immunity, a more complex view of NK cells is beginning to emerge, indicating they may also function in various immunoregulatory roles and have the capacity to shape adaptive immune responses. With the growing appreciation for the diverse functions of NK cells, and recent technological advancements that allow for a more in-depth understanding of NK cell biology, we can now begin to explore new ways to manipulate NK cells to increase their clinical utility. In this overview unit, we introduce the reader to various aspects of NK cell biology by reviewing topics ranging from NK cell diversity and function, mouse models, and the roles of NK cells in health and disease, to potential clinical applications. © 2015 by John Wiley & Sons, Inc. Copyright © 2015 John Wiley & Sons, Inc.

  9. Biological activity and chemical profile of Lavatera thuringiaca L. extracts obtained by different extraction approaches.

    PubMed

    Mašković, Pavle Z; Veličković, Vesna; Đurović, Saša; Zeković, Zoran; Radojković, Marija; Cvetanović, Aleksandra; Švarc-Gajić, Jaroslava; Mitić, Milan; Vujić, Jelena

    2018-01-01

    Lavatera thuringiaca L. is herbaceous perennial plant from Malvaceae family, which is known for its biological activity and richness in polyphenolic compounds. Despite this, the information regarding the biological activity and chemical profile is still insufficient. Aim of this study was to investigate biological potential and chemical profile of Lavatera thuringiaca L., as well as influence of applied extraction technique on them. Two conventional and four non-conventional extraction techniques were applied in order to obtain extracts rich in bioactive compound. Extracts were further tested for total phenolics, flavonoids, condensed tannins, gallotannins and anthocyanins contents using spectrophotometric assays. Polyphenolic profile was established using HPLC-DAD analysis. Biological activity was investigated regarding antioxidant, cytotoxic and antibacterial activities. Four antioxidant assays were applied as well as three different cell lines for cytotoxic and fifteen bacterial strain for antibacterial activity. Results showed that subcritical water extraction (SCW) dominated over the other extraction techniques, where SCW extract exhibited the highest biological activity. Study indicates that plant Lavatera thuringiaca L. may be used as a potential source of biologically compounds. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Structures and properties of naturally occurring polyether antibiotics.

    PubMed

    Rutkowski, Jacek; Brzezinski, Bogumil

    2013-01-01

    Polyether ionophores represent a large group of natural, biologically active substances produced by Streptomyces spp. They are lipid soluble and able to transport metal cations across cell membranes. Several of polyether ionophores are widely used as growth promoters in veterinary. Polyether antibiotics show a broad spectrum of bioactivity ranging from antibacterial, antifungal, antiparasitic, antiviral, and tumour cell cytotoxicity. Recently, it has been shown that some of these compounds are able to selectively kill cancer stem cells and multidrug-resistant cancer cells. Thus, they are recognized as new potential anticancer drugs. The biological activity of polyether ionophores is strictly connected with their molecular structure; therefore, the purpose of this paper is to present an overview of their formula, molecular structure, and properties.

  11. Structures and Properties of Naturally Occurring Polyether Antibiotics

    PubMed Central

    Rutkowski, Jacek; Brzezinski, Bogumil

    2013-01-01

    Polyether ionophores represent a large group of natural, biologically active substances produced by Streptomyces spp. They are lipid soluble and able to transport metal cations across cell membranes. Several of polyether ionophores are widely used as growth promoters in veterinary. Polyether antibiotics show a broad spectrum of bioactivity ranging from antibacterial, antifungal, antiparasitic, antiviral, and tumour cell cytotoxicity. Recently, it has been shown that some of these compounds are able to selectively kill cancer stem cells and multidrug-resistant cancer cells. Thus, they are recognized as new potential anticancer drugs. The biological activity of polyether ionophores is strictly connected with their molecular structure; therefore, the purpose of this paper is to present an overview of their formula, molecular structure, and properties. PMID:23586016

  12. Direct measurement of catalase activity in living cells and tissue biopsies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scaglione, Christine N.; Xu, Qijin; Ramanujan, V. Krishnan, E-mail: Ramanujanv@csmc.edu

    Spatiotemporal regulation of enzyme-substrate interactions governs the decision-making steps in biological systems. Enzymes, being functional units of every living cell, contribute to the macromolecular stability of cell survival, proliferation and hence are vital windows to unraveling the biological complexity. Experimental measurements capturing this dynamics of enzyme-substrate interactions in real time add value to this understanding. Furthermore these measurements, upon validation in realistic biological specimens such as clinical biopsies – can further improve our capability in disease diagnostics and treatment monitoring. Towards this direction, we describe here a novel, high-sensitive measurement system for measuring diffusion-limited enzyme-substrate kinetics in real time. Usingmore » catalase (enzyme) and hydrogen peroxide (substrate) as the example pair, we demonstrate that this system is capable of direct measurement of catalase activity in vitro and the measured kinetics follows the classical Michaelis-Menten reaction kinetics. We further demonstrate the system performance by measuring catalase activity in living cells and in very small amounts of liver biopsies (down to 1 μg total protein). Catalase-specific enzyme activity is demonstrated by genetic and pharmacological tools. Finally we show the clinically-relevant diagnostic capability of our system by comparing the catalase activities in liver biopsies from young and old mouse (liver and serum) samples. We discuss the potential applicability of this system in clinical diagnostics as well as in intraoperative surgical settings. - Highlights: • A novel, direct measurement of Catalase enzyme activity via, oxygen sensing method. • Steady-stateprofiles of Catalase activity follow the Michaelis-Menten Kinetics. • Catalase-specific activity demonstrated using genetic and pharmacological tools. • Overcomes limitations of spectroscopic methods and indirect calorimetric approaches. • Clear demonstration of the applicability in cancer cells and aging animal tissues.« less

  13. Extremely Low-Frequency Electromagnetic Fields Cause G1 Phase Arrest through the Activation of the ATM-Chk2-p21 Pathway

    PubMed Central

    Huang, Chao-Ying; Chang, Cheng-Wei; Chen, Chaang-Ray; Chuang, Chun-Yu; Chiang, Chi-Shiun; Shu, Wun-Yi; Fan, Tai-Ching; Hsu, Ian C.

    2014-01-01

    In daily life, humans are exposed to the extremely low-frequency electromagnetic fields (ELF-EMFs) generated by electric appliances, and public concern is increasing regarding the biological effects of such exposure. Numerous studies have yielded inconsistent results regarding the biological effects of ELF-EMF exposure. Here we show that ELF-EMFs activate the ATM-Chk2-p21 pathway in HaCaT cells, inhibiting cell proliferation. To present well-founded results, we comprehensively evaluated the biological effects of ELF-EMFs at the transcriptional, protein, and cellular levels. Human HaCaT cells from an immortalized epidermal keratinocyte cell line were exposed to a 1.5 mT, 60 Hz ELF-EMF for 144 h. The ELF-EMF could cause G1 arrest and decrease colony formation. Protein expression experiments revealed that ELF-EMFs induced the activation of the ATM/Chk2 signaling cascades. In addition, the p21 protein, a regulator of cell cycle progression at G1 and G2/M, exhibited a higher level of expression in exposed HaCaT cells compared with the expression of sham-exposed cells. The ELF-EMF-induced G1 arrest was diminished when the CHK2 gene expression (which encodes checkpoint kinase 2; Chk2) was suppressed by specific small interfering RNA (siRNA). These findings indicate that ELF-EMFs activate the ATM-Chk2-p21 pathway in HaCaT cells, resulting in cell cycle arrest at the G1 phase. Based on the precise control of the ELF-EMF exposure and rigorous sham-exposure experiments, all transcriptional, protein, and cellular level experiments consistently supported the conclusion. This is the first study to confirm that a specific pathway is triggered by ELF-EMF exposure. PMID:25111195

  14. Efficacy of a Meiosis Learning Module Developed for the Virtual Cell Animation Collection

    ERIC Educational Resources Information Center

    Goff, Eric E.; Reindl, Katie M.; Johnson, Christina; McClean, Phillip; Offerdahl, Erika G.; Schroeder, Noah L.; White, Alan R.

    2017-01-01

    Recent reports calling for change in undergraduate biology education have resulted in the redesign of many introductory biology courses. Reports on one common change to course structure, the active-learning environment, have placed an emphasis on student preparation, noting that the positive outcomes of active learning in the classroom depend…

  15. Generation and Biological Activities of Oxidized Phospholipids

    PubMed Central

    Oskolkova, Olga V.; Birukov, Konstantin G.; Levonen, Anna-Liisa; Binder, Christoph J.; Stöckl, Johannes

    2010-01-01

    Abstract Glycerophospholipids represent a common class of lipids critically important for integrity of cellular membranes. Oxidation of esterified unsaturated fatty acids dramatically changes biological activities of phospholipids. Apart from impairment of their structural function, oxidation makes oxidized phospholipids (OxPLs) markers of “modified-self” type that are recognized by soluble and cell-associated receptors of innate immunity, including scavenger receptors, natural (germ line-encoded) antibodies, and C-reactive protein, thus directing removal of senescent and apoptotic cells or oxidized lipoproteins. In addition, OxPLs acquire novel biological activities not characteristic of their unoxidized precursors, including the ability to regulate innate and adaptive immune responses. Effects of OxPLs described in vitro and in vivo suggest their potential relevance in different pathologies, including atherosclerosis, acute inflammation, lung injury, and many other conditions. This review summarizes current knowledge on the mechanisms of formation, structures, and biological activities of OxPLs. Furthermore, potential applications of OxPLs as disease biomarkers, as well as experimental therapies targeting OxPLs, are described, providing a broad overview of an emerging class of lipid mediators. Antioxid. Redox Signal. 12, 1009–1059. PMID:19686040

  16. Advances and issues in mantle cell lymphoma research: report of the 2014 Mantle Cell Lymphoma Consortium Workshop.

    PubMed

    Kahl, Brad S; Gordon, Leo I; Dreyling, Martin; Gascoyne, Randy D; Sotomayor, Eduardo M

    2015-01-01

    Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin lymphoma characterized by the t(11;14) chromosomal translocation and cyclin D1 over-expression. A biologically and clinically heterogeneous lymphoma, MCL, remains clinically challenging, with no proven curative therapy and no established standard of care. However, there have been considerable advances in the last several years in the treatment and understanding of MCL with the FDA approval of lenalidomide and ibrutinib, the development of other potentially active novel agents and the identification of recurrent mutations through new genomic sequencing approaches that may contribute to the biology of MCL and to therapeutic resistance. At the Lymphoma Research Foundation's 11th MCL Workshop, researchers gathered to discuss recent studies and current issues related to the biology of MCL, novel therapeutic targets and new treatment strategies. The presentations are summarized in this manuscript, which is intended to highlight areas of active investigation and identify topics for future research.

  17. Understanding the intersections between metabolism and cancer biology

    PubMed Central

    Heiden, Matthew G. Vander; DeBerardinis, Ralph J.

    2017-01-01

    Transformed cells adapt metabolism to support tumor initiation and progression. Specific metabolic activities can participate directly in the process of transformation or support the biological processes that enable tumor growth. Exploiting cancer metabolism for clinical benefit requires defining the pathways that are limiting for cancer progression and understanding the context specificity of metabolic preferences and liabilities in malignant cells. Progress towards answering these questions is providing new insight into cancer biology and can guide the more effective targeting of metabolism to help patients. PMID:28187287

  18. Formononetin, a phyto-oestrogen, and its metabolites up-regulate interleukin-4 production in activated T cells via increased AP-1 DNA binding activity

    PubMed Central

    Park, Jin; Kim, Seung H; Cho, Daeho; Kim, Tae S

    2005-01-01

    Phyto-oestrogens are polyphenolic non-steroidal plant compounds with oestrogen-like biological activity. Phyto-oestrogens have many biological effects including oestrogen agonist/antagonist properties. However, the effect of phyto-oestrogens on allergic responses remains unclear. In this study we investigated whether formononetin, a phyto-oestrogen, and its metabolites, daidzein and equol, affect production of interleukin-4 (IL-4), a pro-inflammatory cytokine closely associated with allergic immune response, in primary CD4+ T cells and EL4 T lymphoma cells. Formononetin, daidzein and equol significantly enhanced IL-4 production from both CD4+ T cells and EL4 cells in a dose-dependent manner. Formononetin, daidzein and equol also enhanced IL-4 gene promoter activity in EL4 cells transiently transfected with IL-4 gene promoter constructs, but this effect was impaired in EL4 cells transfected with an IL-4 promoter construct deleted of P4 site carrying nuclear factor of activated T cells (NF-AT) and activator protein-1 (AP-1) binding sites. In addition, formononetin, daidzein and equol increased AP-1 DNA binding activities while did not affect NF-AT DNA binding activities. The enhancing effects on IL-4 production and AP-1 DNA binding activities were abrogated by specific inhibitors for phosphatidylinositol-3-kinase (PI3K), protein kinase C (PKC) and p38 mitogen-activated protein kinase (MAPK), indicating that formononetin, daidzein and equol might enhance IL-4 production by increased activation of AP-1 through the PI3-K/PKC/p38 MAPK signalling pathway. These results suggest that phyto-oestrogens and some of their metabolites may increase allergic responses via the enhancement of IL-4 production in T cells. PMID:16108819

  19. Conformationally Constrained Analogues of Diacylglycerol. 29. Cells Sort Diacylglycerol-Lactone Chemical Zip Codes to Produce Diverse and Selective Biological Activities

    PubMed Central

    Duan, Dehui; Sigano, Dina M.; Kelley, James A.; Lai, Christopher C.; Lewin, Nancy E.; Kedei, Noemi; Peach, Megan L.; Lee, Jeewoo; Abeyweera, Thushara P.; Rotenberg, Susan A.; Kim, Hee; Kim, Young Ho; Kazzouli, Saïd El; Chung, Jae-Uk; Young, Howard A.; Young, Matthew R.; Baker, Alyson; Colburn, Nancy H.; Haimovitz-Friedman, Adriana; Truman, Jean-Philip; Parrish, Damon A.; Deschamps, Jeffrey R.; Perry, Nicholas A.; Surawski, Robert J.; Blumberg, Peter M.; Marquez, Victor E.

    2008-01-01

    Diacylglycerol-lactone (DAG-lactone) libraries generated by a solid-phase approach using IRORI technology produced a variety of unique biological activities. Subtle differences in chemical diversity in two areas of the molecule, the combination of which generates what we have termed “chemical zip codes”, are able to transform a relatively small chemical space into a larger universe of biological activities, as membrane-containing organelles within the cell appear to be able to decode these “chemical zip codes”. It is postulated that after binding to protein kinase C (PKC) isozymes or other non-kinase target proteins that contain diacylglycerol responsive, membrane interacting domains (C1 domains), the resulting complexes are directed to diverse intracellular sites where different sets of substrates are accessed. Multiple cellular bioassays show that DAG-lactones, which bind in vitro to PKCα to varying degrees, expand their biological repertoire into a larger domain, eliciting distinct cellular responses. PMID:18698758

  20. Tumor-specific delivery of biologics by a novel T-cell line HOZOT

    PubMed Central

    Onishi, Teppei; Tazawa, Hiroshi; Hashimoto, Yuuri; Takeuchi, Makoto; Otani, Takeshi; Nakamura, Shuji; Sakurai, Fuminori; Mizuguchi, Hiroyuki; Kishimoto, Hiroyuki; Umeda, Yuzo; Shirakawa, Yasuhiro; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi

    2016-01-01

    “Cell-in-cell” denotes an invasive phenotype in which one cell actively internalizes in another. The novel human T-cell line HOZOT, established from human umbilical cord blood, was shown to penetrate a variety of human cancer cells but not normal cells. Oncolytic viruses are emerging as biological therapies for human cancers; however, efficient viral delivery is limited by a lack of tumor-specific homing and presence of pre-existing or therapy-induced neutralizing antibodies. Here, we report a new, intriguing approach using HOZOT cells to transmit biologics such as oncolytic viruses into human cancer cells by cell-in-cell invasion. HOZOT cells were successfully loaded via human CD46 antigen with an attenuated adenovirus containing the fiber protein of adenovirus serotype 35 (OBP-401/F35), in which the telomerase promoter regulates viral replication. OBP-401/F35–loaded HOZOT cells were efficiently internalized into human cancer cells and exhibited tumor-specific killing by release of viruses, even in the presence of anti-viral neutralizing antibodies. Moreover, intraperitoneal administration of HOZOT cells loaded with OBP-401/F35 significantly suppressed peritoneally disseminated tumor growth in mice. This unique cell-in-cell property provides a platform for selective delivery of biologics into human cancer cells, which has important implications for the treatment of human cancers. PMID:27901098

  1. Satellite Cells and the Muscle Stem Cell Niche

    PubMed Central

    Yin, Hang; Price, Feodor

    2013-01-01

    Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration. PMID:23303905

  2. Transport of biologically active material in laser cutting.

    PubMed

    Frenz, M; Mathezloic, F; Stoffel, M H; Zweig, A D; Romano, V; Weber, H P

    1988-01-01

    The transport of biologically active material during laser cutting with CO2 and Er lasers is demonstrated. This transport mechanism removes particles from the surface of gelatin, agar, and liver samples into the depth of the laser-formed craters. The transport phenomenon is explained by a contraction and condensation of enclosed hot water vapor. We show by cultivating transported bacteria in agar that biological particles can survive the shock of the transport. Determination of the numbers of active cells evidences a more pronounced activity of the cultivated bacteria after impact with an Er laser than with a CO2 laser.

  3. Novel Carbonyl Analogues of Tamoxifen: Design, Synthesis, and Biological Evaluation

    NASA Astrophysics Data System (ADS)

    Kasiotis, Konstantinos M.; Lambrinidis, George; Fokialakis, Nikolas; Tzanetou, Evangelia N.; Mikros, Emmanuel; Haroutounian, Serkos A.

    2017-09-01

    Aim of this work was to provide tamoxifen analogues with enhanced estrogen receptor binding affinity. Hence, several derivatives were prepared using an efficient triarylethylenes synthetic protocol. The novel compounds bioactivity was evaluated through the determination of their receptor binding affinity and their agonist/antagonist activity against breast cancer tissue using a MCF-7 cell-based assay. Phenyl esters 6a,b and 8a,b exhibited binding affinity to both ERα and ERβ higher than 4-hydroxytamoxifen while compounds 13 and 14 have shown cellular antiestrogenic activity similar to 4-hydroxytamoxifen and the known estrogen receptor inhibitor ICI182,780. Theoretical calculations and molecular modelling were applied to investigate, support and explain the biological profile of the new compounds. The relevant data indicated an agreement between calculations and demonstrated biological activity allowing to extract useful structure-activity relationships. Results herein underline that modifications of tamoxifen structure still provide molecules with substantial activity, as portrayed in the inhibition of MCF-7 cells proliferation.

  4. Platelets as Cellular Effectors of Inflammation in Vascular Diseases

    PubMed Central

    Rondina, Matthew T.; Weyrich, Andrew S.; Zimmerman, Guy A.

    2013-01-01

    Platelets are chief effector cells in hemostasis. In addition, they are multifaceted inflammatory cells with functions that span the continuum from innate immune responses to adaptive immunity. Activated platelets have key “thromboinflammatory” activities in a variety of vascular disorders and vasculopathies. Recently-identified inflammatory and immune activities provide insights into the biology of these versatile blood cells that are directly relevant to human vascular diseases. PMID:23704217

  5. Tissue matrix arrays for high throughput screening and systems analysis of cell function

    PubMed Central

    Beachley, Vince Z.; Wolf, Matthew T.; Sadtler, Kaitlyn; Manda, Srikanth S.; Jacobs, Heather; Blatchley, Michael; Bader, Joel S.; Pandey, Akhilesh; Pardoll, Drew; Elisseeff, Jennifer H.

    2015-01-01

    Cell and protein arrays have demonstrated remarkable utility in the high-throughput evaluation of biological responses; however, they lack the complexity of native tissue and organs. Here, we describe tissue extracellular matrix (ECM) arrays for screening biological outputs and systems analysis. We spotted processed tissue ECM particles as two-dimensional arrays or incorporated them with cells to generate three-dimensional cell-matrix microtissue arrays. We then investigated the response of human stem, cancer, and immune cells to tissue ECM arrays originating from 11 different tissues, and validated the 2D and 3D arrays as representative of the in vivo microenvironment through quantitative analysis of tissue-specific cellular responses, including matrix production, adhesion and proliferation, and morphological changes following culture. The biological outputs correlated with tissue proteomics, and network analysis identified several proteins linked to cell function. Our methodology enables broad screening of ECMs to connect tissue-specific composition with biological activity, providing a new resource for biomaterials research and translation. PMID:26480475

  6. Cancer metabolism in space and time: Beyond the Warburg effect.

    PubMed

    Danhier, Pierre; Bański, Piotr; Payen, Valéry L; Grasso, Debora; Ippolito, Luigi; Sonveaux, Pierre; Porporato, Paolo E

    2017-08-01

    Altered metabolism in cancer cells is pivotal for tumor growth, most notably by providing energy, reducing equivalents and building blocks while several metabolites exert a signaling function promoting tumor growth and progression. A cancer tissue cannot be simply reduced to a bulk of proliferating cells. Tumors are indeed complex and dynamic structures where single cells can heterogeneously perform various biological activities with different metabolic requirements. Because tumors are composed of different types of cells with metabolic activities affected by different spatial and temporal contexts, it is important to address metabolism taking into account cellular and biological heterogeneity. In this review, we describe this heterogeneity also in metabolic fluxes, thus showing the relative contribution of different metabolic activities to tumor progression according to the cellular context. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Oxidative stress-mediated HMGB1 biology

    PubMed Central

    Yu, Yan; Tang, Daolin; Kang, Rui

    2015-01-01

    High mobility group box 1 (HMGB1) is a widely-expressed and highly-abundant protein that acts as an extracellular signal upon active secretion by immune cells or passive release by dead, dying, and injured cells. Both intracellular and extracellular HMGB1 play pivotal roles in regulation of the cellular response to stress. Targeting the translocation, release, and activity of HMGB1 can limit inflammation and reduce tissue damage during infection and sterile inflammation. Although the mechanisms contributing to HMGB1 biology are still under investigation, it appears that oxidative stress is a central regulator of HMGB1's translocation, release, and activity in inflammation and cell death (e.g., necrosis, apoptosis, autophagic cell death, pyroptosis, and NETosis). Thus, targeting HMGB1 with antioxidant compounds may be an attractive therapeutic strategy for inflammation-associated diseases such as sepsis, ischemia and reperfusion injury, arthritis, diabetes, and cancer. PMID:25904867

  8. Curcumin Conjugated with PLGA Potentiates Sustainability, Anti-Proliferative Activity and Apoptosis in Human Colon Carcinoma Cells

    PubMed Central

    Waghela, Bhargav N.; Sharma, Anupama; Dhumale, Suhashini; Pandey, Shashibahl M.; Pathak, Chandramani

    2015-01-01

    Curcumin, an ingredient of turmeric, exhibits a variety of biological activities such as anti-inflammatory, anti-atherosclerotic, anti-proliferative, anti-oxidant, anti-cancer and anti-metastatic. It is a highly pleiotropic molecule that inhibits cell proliferation and induces apoptosis in cancer cells. Despite its imperative biological activities, chemical instability, photo-instability and poor bioavailability limits its utilization as an effective therapeutic agent. Therefore, enhancing the bioavailability of curcumin may improve its therapeutic index for clinical setting. In the present study, we have conjugated curcumin with a biodegradable polymer Poly (D, L-lactic-co-glycolic acid) and evaluated its apoptotic potential in human colon carcinoma cells (HCT 116). The results show that curcumin-PLGA conjugate efficiently inhibits cell proliferation and cell survival in human colon carcinoma cells as compared to native curcumin. Additionally, curcumin conjugated with PLGA shows improved cellular uptake and exhibits controlled release at physiological pH as compared to native curcumin. The curcumin-PLGA conjugate efficiently activates the cascade of caspases and promotes intrinsic apoptotic signaling. Thus, the results suggest that conjugation potentiates the sustainability, anti-proliferative and apoptotic activity of curcumin. This approach could be a promising strategy to improve the therapeutic index of cancer therapy. PMID:25692854

  9. Direct measurement of catalase activity in living cells and tissue biopsies.

    PubMed

    Scaglione, Christine N; Xu, Qijin; Ramanujan, V Krishnan

    2016-01-29

    Spatiotemporal regulation of enzyme-substrate interactions governs the decision-making steps in biological systems. Enzymes, being functional units of every living cell, contribute to the macromolecular stability of cell survival, proliferation and hence are vital windows to unraveling the biological complexity. Experimental measurements capturing this dynamics of enzyme-substrate interactions in real time add value to this understanding. Furthermore these measurements, upon validation in realistic biological specimens such as clinical biopsies - can further improve our capability in disease diagnostics and treatment monitoring. Towards this direction, we describe here a novel, high-sensitive measurement system for measuring diffusion-limited enzyme-substrate kinetics in real time. Using catalase (enzyme) and hydrogen peroxide (substrate) as the example pair, we demonstrate that this system is capable of direct measurement of catalase activity in vitro and the measured kinetics follows the classical Michaelis-Menten reaction kinetics. We further demonstrate the system performance by measuring catalase activity in living cells and in very small amounts of liver biopsies (down to 1 μg total protein). Catalase-specific enzyme activity is demonstrated by genetic and pharmacological tools. Finally we show the clinically-relevant diagnostic capability of our system by comparing the catalase activities in liver biopsies from young and old mouse (liver and serum) samples. We discuss the potential applicability of this system in clinical diagnostics as well as in intraoperative surgical settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Direct Measurement of Catalase Activity in Living Cells and Tissue Biopsies

    PubMed Central

    Scaglione, Christine N; Xu, Qijin; Ramanujan, V. Krishnan

    2016-01-01

    Spatiotemporal regulation of enzyme-substrate interactions governs the decision-making steps in biological systems. Enzymes, being functional units of every living cell, contribute to the macromolecular stability of cell survival, proliferation and hence are vital windows to unraveling the biological complexity. Experimental measurements capturing this dynamics of enzyme-substrate interactions in real time add value to this understanding. Furthermore these measurements, upon validation in realistic biological specimens such as clinical biopsies – can further improve our capability in disease diagnostics and treatment monitoring. Towards this direction, we describe here a novel, high-sensitive measurement system for measuring diffusion-limited enzyme-substrate kinetics in real time. Using catalase (enzyme) and hydrogen peroxide (substrate) as the example pair, we demonstrate that this system is capable of direct measurement of catalase activity in vitro and the measured kinetics follows the classical Michaelis-Menten reaction kinetics. We further demonstrate the system performance by measuring catalase activity in living cells and in very small amounts of liver biopsies (down to 1μg total protein). Catalase-specific enzyme activity is demonstrated by genetic and pharamacological tools. Finally we show the clinically-relevant diagnostic capability of our system by comparing the catalase activities in liver biopsies from young and old mouse (liver and serum) samples. We discuss the potential applicability of this system in clinical diagnostics as well as in intraoperative surgical settings. PMID:26772884

  11. GPER (GPR30): A Nongenomic Receptor (GPCR) for Steroid Hormones with Implications for Cardiovascular Disease and Cancer.

    PubMed

    Feldman, Ross D; Limbird, Lee E

    2017-01-06

    Although the rapid effects of steroids, such as estrogen and aldosterone, were postulated originally to be nongenomic, it is now appreciated that activation of such signaling pathways via a steroid-acting G protein-coupled receptor, the G protein estrogen receptor (GPER), has important transcription-dependent outcomes in the regulation of cell growth and programmed cell death secondary to GPER-regulated second-messenger pathways. GPER is expressed ubiquitously and has diverse biological effects, including regulation of endocrine, immune, neuronal, and cardiovascular functions. Perhaps the most biologically important consequences of GPER activation are the regulation of cell growth, migration, and apoptotic cell death. These cell growth regulatory effects, important in cancer biology, are also relevant in the regulation of cardiac and vascular hypertrophy and in the response to ischemia. This review provides a summary of relevant findings of the impact of GPER regulation by either estradiol or aldosterone in in vitro model systems and extends those findings to in vivo studies of direct clinical relevance for development of GPER-directed agents for treatment of cancer and cardiovascular diseases associated with cellular proliferation.

  12. Regulation of osteogenesis by micro/nano hierarchical titanium surfaces through a Rock-Wnt5a feedback loop.

    PubMed

    Yu, Yonglin; Shen, Xinkun; Liu, Junjie; Hu, Yan; Ran, Qichun; Mu, Caiyun; Cai, Kaiyong

    2018-05-28

    Titanium substrates with micro/nano hierarchical features could positively mediate the osteogenesis of a titanium implant; nevertheless, the underlying molecular mechanism needs to be further revealed. In this work, we fabricated a micro/nano hierarchically structured Ti (MNT) sample and attempted to evaluate its topography-mediated biological effects and potential molecular mechanisms in vitro. The results proved that MNT could not only affect cell morphology and osteogenic differentiation, but also regulate ROCK activity cell biological functions of osteoblasts involved in ROCK activation, β-catenin accumulation, and high-Wnt5a expression in respect to topographical features. Moreover, blockade of ROCK activation resulted in significant inhibition of cell differentiation and Wnt5a expression. Furthermore, the anti-Wnt5a significantly down-regulated ROCK activity. In short, these results indicate the important role of ROCK-Wnt5a feedback loop in regulating cell differentiation by topographies. Copyright © 2018. Published by Elsevier B.V.

  13. Detection of protease activity in cells and animals.

    PubMed

    Verdoes, Martijn; Verhelst, Steven H L

    2016-01-01

    Proteases are involved in a wide variety of biologically and medically important events. They are entangled in a complex network of processes that regulate their activity, which makes their study intriguing, but challenging. For comprehensive understanding of protease biology and effective drug discovery, it is therefore essential to study proteases in models that are close to their complex native environments such as live cells or whole organisms. Protease activity can be detected by reporter substrates and activity-based probes, but not all of these reagents are suitable for intracellular or in vivo use. This review focuses on the detection of proteases in cells and in vivo. We summarize the use of probes and substrates as molecular tools, discuss strategies to deliver these tools inside cells, and describe sophisticated read-out techniques such as mass spectrometry and various imaging applications. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Design, synthesis and biological evaluation of 1H-1,2,3-Triazole-Linked-1H‑Dibenzo[b,h]xanthenes as Inductors of ROS-Mediated Apoptosis in the Breast Cancer Cell Line MCF-7.

    PubMed

    Bortolot, Carolina S; da S M Forezi, Luana; Marra, Roberta K F; Reis, Marcelo I P; Sa, Barbara V F E; Filho, Ricardo Imbroisi; Ghasemishahrestani, Zeinab; Sola-Penna, Mauro; Zancan, Patricia; Ferreira, Vitor F; de C da Silva, Fernando

    2018-05-23

    Low molecular weight 1,2,3-triazoles and naphthoquinones are endowed with various types of biological activity, such as against cancer, HIV and bacteria. However, in some cases, the conjugation of these two nuclei considerably increases their biological activities Objective: In this work, we decided to study the synthesis and screening of bis-naphthoquinones and xanthenes tethered to 1,2,3-triazoles against cancer cell lines, specifically the human breast cancer cell line MCF-7. Starting from lawsone and aryl-1H-1,2,3-triazole-4-carbaldehydes (10a-h) several new 7-(1-aryl-1H-1,2,3-triazol-4-yl)-6H-dibenzo[b,h]xanthene-5,6,8,13(7H)-tetraones (12a-h) and 3,3'-((1-aryl-1H-1,2,3-triazol-4-yl)methylene)bis(2-hydroxynaphthalene-1,4-diones) 11a-h were synthesized and evaluated for their cytotoxic activities using the human breast cancer cell line MCF-7 and the non-tumor cell line MCF10A as control. We performed test of cell viability, cell proliferation, intracellular ATP content and cell cytometry to determine reactive oxygen species (ROS) formation. Based on these results, we found that compound 12a promote ROS production, interfering with energy metabolism, cell viability and proliferation, and thus promoting an whole cell damage. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. 6-Shogaol induces cell cycle arrest and apoptosis in human hepatoma cells through pleiotropic mechanisms.

    PubMed

    Wu, Jung-Ju; Omar, Hany A; Lee, Ying-Ray; Teng, Yen-Ni; Chen, Pin-Shern; Chen, Yu-Chung; Huang, Hsiao-Shan; Lee, Kuan-Han; Hung, Jui-Hsiang

    2015-09-05

    Shogaols are a group of the active constituents of ginger that have been identified to have various biological activities. The aim of the current study was to investigate the antitumor activity of 6-shogaol in hepatocellular carcinoma (HCC) and the possible involvement of reactive oxygen species as a putative mechanism of action. HCC cell lines, HepG2 and Huh-7, were used to study the in vitro anti-cancer activity of 6-shogaol via the application of various molecular biology techniques. Results showed that 6-shogaol effectively inhibited the cell viability, caused cell cycle arrest at G2/M phase and induced apoptosis in HCC cells as indicated by MTT assay, DAPI nuclear staining, annexin V assay, cell cycle analysis, and activation of caspase-3. Western blot analysis revealed the ability of 6-shogaol to target cancer survival signaling pathways mediated by mitogen-activated protein kinase (MAPK), 5' AMP-activated protein kinase (AMPK) and Akt. In addition, 6-Shogaol induced alteration of cyclin proteins expression and caused cleavage of protein kinase C delta. Furthermore, 6-Shogaol was able to induce the production of reactive oxygen species and endoplasmic reticulum (ER) stress-associated proteins and the consequent activation of autophagy in HepG2 cells. Taken together, the current study highlights evidences that 6-shogaol induces apoptosis, modulates cyclins expression and targets cancer survival signaling pathways in HCC cell lines, at least in part, via the production of reactive oxygen species. These findings support 6-shogaol's clinical promise as a potential candidate for HCC therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Nothing in Evolution Makes Sense Except in the Light of Genomics: Read-Write Genome Evolution as an Active Biological Process.

    PubMed

    Shapiro, James A

    2016-06-08

    The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess "Read-Write Genomes" they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification.

  17. Nothing in Evolution Makes Sense Except in the Light of Genomics: Read–Write Genome Evolution as an Active Biological Process

    PubMed Central

    Shapiro, James A.

    2016-01-01

    The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess “Read–Write Genomes” they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification. PMID:27338490

  18. Neuroprotective effects of phloretin and its glycosylated derivative on rotenone-induced toxicity in human SH-SY5Y neuronal-like cells.

    PubMed

    Barreca, Davide; Currò, Monica; Bellocco, Ersilia; Ficarra, Silvana; Laganà, Giuseppina; Tellone, Ester; Laura Giunta, Maria; Visalli, Giuseppa; Caccamo, Daniela; Galtieri, Antonio; Ientile, Riccardo

    2017-07-08

    Phloretin and phlorizin are the two strong natural antioxidants whose biological and pharmacological applications are rapidly growing in different human pathological conditions. The neuroprotective activity of the two flavonoids has been analyzed on cell culture of neuroblastoma cells. The neuroprotective activity of the two flavonoids has been analyzed on cell culture of neuroblastoma cells and evaluated by testing cell vitality, mitochondrial transmembrane potential and ROS production, antioxidant enzymes detection, activation of caspase 3, DNA damage, protein carbonylation, lipid peroxidation, and superoxide anion scavenging activity. Incubation of cells with rotenone caused cell death and significant increase in intracellular reactive oxygen species, activation of caspase 3, and variation in mitochondrial transmembrane potential. Although, rotenone exposure caused a significant increase of antioxidant enzymes, high levels of lipid peroxidation were also observed. Phloretin or phlorizin, at micromolar concentration, reduced rotenone-induced cell death by scavenging ability against superoxide anion radical, one of the main effectors of rotenone toxicity at level of mitochondrial respiratory chain complex I. Under our experimental conditions, a reduction of the intracellular ROS levels with consequent normalization of the aforementioned antioxidant enzymes occurred. Concomitantly, we observed the inhibition of caspase 3 activity and DNA damage. This study shows the promising neuroprotective ability of the two dihydrochalcones able to protect human differentiated neuroblastoma cells (commonly used as model of Parkinson's disease) from injury induced by rotenone, actively scavenging ROS, normalizing mitochondrial transmembrane potential and consequently avoiding energy depletion. © 2017 BioFactors, 43(4):549-557, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  19. Developing an active artificial hair cell using nonlinear feedback control

    NASA Astrophysics Data System (ADS)

    Joyce, Bryan S.; Tarazaga, Pablo A.

    2015-09-01

    The hair cells in the mammalian cochlea convert sound-induced vibrations into electrical signals. These cells have inspired a variety of artificial hair cells (AHCs) to serve as biologically inspired sound, fluid flow, and acceleration sensors and could one day replace damaged hair cells in humans. Most of these AHCs rely on passive transduction of stimulus while it is known that the biological cochlea employs active processes to amplify sound-induced vibrations and improve sound detection. In this work, an active AHC mimics the active, nonlinear behavior of the cochlea. The AHC consists of a piezoelectric bimorph beam subjected to a base excitation. A feedback control law is used to reduce the linear damping of the beam and introduce a cubic damping term which gives the AHC the desired nonlinear behavior. Model and experimental results show the AHC amplifies the response due to small base accelerations, has a higher frequency sensitivity than the passive system, and exhibits a compressive nonlinearity like that of the mammalian cochlea. This bio-inspired accelerometer could lead to new sensors with lower thresholds of detection, improved frequency sensitivities, and wider dynamic ranges.

  20. Seeing the forest and trees: whole-body and whole-brain imaging for circadian biology.

    PubMed

    Ode, K L; Ueda, H R

    2015-09-01

    Recent advances in methods for making mammalian organs translucent have made possible whole-body fluorescent imaging with single-cell resolution. Because organ-clearing methods can be used to image the heterogeneous nature of cell populations, they are powerful tools to investigate the hierarchical organization of the cellular circadian clock, and how the clock synchronizes a variety of physiological activities. In particular, methods compatible with genetically encoded fluorescent reporters have the potential to detect circadian activity in different brain regions and the circadian-phase distribution across the whole body. In this review, we summarize the current methods and strategy for making organs translucent (removal of lipids, decolourization of haemoglobin and adjusting the refractive index of the specimen). We then discuss possible applications to circadian biology. For example, the coupling of circadian rhythms among different brain regions, brain activity in sleep-wake cycles and the role of migrating cells such as immune cells and cancer cells in chronopharmacology. © 2015 John Wiley & Sons Ltd.

  1. Silver Nanoparticle Impregnated Bio-Based Activated Carbon with Enhanced Antimicrobial Activity

    NASA Astrophysics Data System (ADS)

    Selvakumar, R.; Suriyaraj, S. P.; Jayavignesh, V.; Swaminathan, K.

    2013-08-01

    The present study involves the production of silver nanoparticles using a novel yeast strain Saccharomyces cerevisiae BU-MBT CY-1 isolated from coconut cell sap. The biological reduction of silver nitrate by the isolate was deducted at various time intervals. The yeast cells after biological silver reduction were harvested and subjected to carbonization at 400°C for 1 h and its properties were analyzed using Fourier transform infra-red spectroscopy, X-ray diffraction, scanning electron microscope attached with energy dispersive spectroscopy and transmission electron microscopy. The average size of the silver nanoparticles present on the surface of the carbonized silver containing yeast cells (CSY) was 19 ± 9 nm. The carbonized control yeast cells (CCY) did not contain any particles on its surface. The carbonized silver nanoparticles containing yeast cells (CSY) were made into bioactive emulsion and tested for its efficacy against various pathogenic Gram positive and Gram negative bacteria. The antimicrobial activity studies indicated that CSY bioactive nanoemulsion was effective against Gram negative organisms than Gram positive organism.

  2. Non-plaque-forming virions of Modified Vaccinia virus Ankara express viral genes.

    PubMed

    Lülf, Anna-Theresa; Freudenstein, Astrid; Marr, Lisa; Sutter, Gerd; Volz, Asisa

    2016-12-01

    In cell culture infections with vaccinia virus the number of counted virus particles is substantially higher than the number of plaques obtained by titration. We found that standard vaccine preparations of recombinant Modified Vaccinia virus Ankara produce only about 20-30% plaque-forming virions in fully permissive cell cultures. To evaluate the biological activity of the non-plaque-forming particles, we generated recombinant viruses expressing fluorescent reporter proteins under transcriptional control of specific viral early and late promoters. Live cell imaging and automated counting by fluorescent microscopy indicated that virtually all virus particles can enter cells and switch on viral gene expression. Although most of the non-plaque-forming infections are arrested at the level of viral early gene expression, we detected activation of late viral transcription in 10-20% of single infected cells. Thus, non-plaque-forming particles are biologically active, and likely contribute to the immunogenicity of vaccinia virus vaccines. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Novel optical methodologies in studying mechanical signal transduction in mammalian cells

    NASA Technical Reports Server (NTRS)

    Stamatas, G. N.; McIntire, L. V.

    1999-01-01

    For the last 3 decades evidence has been accumulating that some types of mammalian cells respond to their mechanically active environment by altering their morphology, growth rate, and metabolism. The study of such responses is very important in understanding, physiological and pathological conditions ranging from bone formation to atherosclerosis. Obtaining this knowledge has been the goal for an active research area in bioengineering termed cell mechanotransduction. The advancement of optical methodologies used in cell biology research has given the tools to elucidate cellular mechanisms that would otherwise be impossible to visualize. Combined with molecular biology techniques, they give engineers invaluable tools in understanding the chemical pathways involved in mechanotransduction. Herein we briefly review the current knowledge on mechanical signal transduction in mammalian cells, focusing on the application of novel optical techniques in the ongoing research.

  4. Comparative Study of the Biological Activity of Allantoin and Aqueous Extract of the Comfrey Root.

    PubMed

    Savić, Vesna Lj; Nikolić, Vesna D; Arsić, Ivana A; Stanojević, Ljiljana P; Najman, Stevo J; Stojanović, Sanja; Mladenović-Ranisavljević, Ivana I

    2015-08-01

    This study investigates the biological activity of pure allantoin (PA) and aqueous extract of the comfrey (Symphytum officinale L.) root (AECR) standardized to the allantoin content. Cell viability and proliferation of epithelial (MDCK) and fibroblastic (L929) cell line were studied by using MTT test. Anti-irritant potential was determined by measuring electrical capacitance, erythema index (EI) and transepidermal water loss of artificially irritated skin of young healthy volunteers, 3 and 7 days after application of creams and gels with PA or AECR. Pure allantoin showed mild inhibitory effect on proliferation of both cell lines at concentrations 40 and 100 µg/ml, but more pronounced on MDCK cells. Aqueous extract of the comfrey root effect on cell proliferation in concentrations higher than 40 µg/ml was significantly stimulatory for L929 but inhibitory for MDCK cells. Pharmaceutical preparations that contained AECR showed better anti-irritant potential compared with PA. Creams showed better effect on hydration and EI compared with the gels that contained the same components. Our results indicate that the biological activity of the comfrey root extract cannot be attributed only to allantoin but is also likely the result of the interaction of different compounds present in AECR. Topical preparations that contain comfrey extract may have a great application in the treatment of skin irritation. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Ergosterol Peroxide Isolated from Ganoderma lucidum Abolishes MicroRNA miR-378-Mediated Tumor Cells on Chemoresistance

    PubMed Central

    Li, Xiang-Min; Yang, Weining; Jiao, Chun-Wei; Fang, Ling; Li, Sen-Zhu; Pan, Hong-Hui; Yee, Albert J.; Lee, Daniel Y.; Li, Chong; Zhang, Zhi; Guo, Jun; Yang, Burton B.

    2012-01-01

    Due to an altered expression of oncogenic factors and tumor suppressors, aggressive cancer cells have an intrinsic or acquired resistance to chemotherapeutic agents. This typically contributes to cancer recurrence after chemotherapy. microRNAs are short non-coding RNAs that are involved in both cell self-renewal and cancer development. Here we report that tumor cells transfected with miR-378 acquired properties of aggressive cancer cells. Overexpression of miR-378 enhanced both cell survival and colony formation, and contributed to multiple drug resistance. Higher concentrations of chemotherapeutic drugs were needed to induce death of miR-378-transfected cells than to induce death of control cells. We found that the biologically active component isolated from Ganoderma lucidum could overcome the drug-resistance conferred by miR-378. We purified and identified the biologically active component of Ganoderma lucidum as ergosterol peroxide. We demonstrated that ergosterol peroxide produced greater activity in inducing death of miR-378 cells than the GFP cells. Lower concentrations of ergosterol peroxide were needed to induce death of the miR-378-transfected cells than in the control cells. With further clinical development, ergosterol peroxide represents a promising new reagent that can overcome the drug-resistance of tumor cells. PMID:22952996

  6. Biologic activity of porphyromonas endodontalis complex lipids.

    PubMed

    Mirucki, Christopher S; Abedi, Mehran; Jiang, Jin; Zhu, Qiang; Wang, Yu-Hsiung; Safavi, Kamran E; Clark, Robert B; Nichols, Frank C

    2014-09-01

    Periapical infections secondary to pulpal necrosis are associated with bacterial contamination of the pulp. Porphyromonas endodontalis, a gram-negative organism, is considered to be a pulpal pathogen. P. gingivalis is phylogenetically related to P. endodontalis and synthesizes several classes of novel complex lipids that possess biological activity, including the capacity to promote osteoclastogenesis and osteoclast activation. The purpose of this study was to extract and characterize constituent lipids of P. endodontalis and evaluate their capacity to promote proinflammatory secretory responses in the macrophage cell line, RAW 264.7, as well as their capacity to promote osteoclastogenesis and inhibit osteoblast activity. Constituent lipids of both organisms were fractionated by high-performance liquid chromatography and were structurally characterized using electrospray mass spectrometry or electrospray-mass spectrometry/mass spectrometry. The virulence potential of P. endodontalis lipids was then compared with known biologically active lipids isolated from P. gingivalis. P. endodontalis total lipids were shown to promote tumor necrosis factor alpha secretion from RAW 264.7 cells, and the serine lipid fraction appeared to account for the majority of this effect. P. endodontalis lipid preparations also increased osteoclast formation from RAW 264.7 cells, but osteoblast differentiation in culture was inhibited and appeared to be dependent on Toll-like receptor 2 expression. These effects underscore the importance of P. endodontalis lipids in promoting inflammatory and bone cell activation processes that could lead to periapical pathology. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yen-Wei; Drury, Jeanie L.; Moussi, Joelle

    Monosodium titanates (MST) are a relatively novel form of particulate titanium dioxide that have been proposed for biological use as metal sorbents or delivery agents, most recently calcium (II). In these roles, the toxicity of the titanate or its metal complex is crucial to its biological utility. The aim of this study was to determine the cytotoxicity of MST and MST-calcium complexes with MC3T3 osteoblast-like cells; MST-Ca(II) complexes could be useful to promote bone formation in various hard tissue applications. MC3T3 cells were exposed to native MST or MST-Ca(II) complexes for 24–72 h. A CellTiter-Blue ® assay was employed tomore » assess the metabolic activity of the cells. The results showed that MST and MST-Ca(II) suppressed MC3T3 metabolic activity significantly in a dose-, time-, and cell-density-dependent fashion. MST-Ca(II) suppressed MC3T3 metabolism in a statistically identical manner as native MST at all concentrations. We concluded that MST and MST-Ca(II) are significantly cytotoxic to MC3T3 cells through a mechanism yet unknown; this is a potential problem to the biological utility of these complexes.« less

  8. PREFACE: 9th International Fröhlich's Symposium: Electrodynamic Activity of Living Cells (Including Microtubule Coherent Modes and Cancer Cell Physics)

    NASA Astrophysics Data System (ADS)

    Cifra, Michal; Pokorný, Jirí; Kucera, Ondrej

    2011-12-01

    This volume contains papers presented at the International Fröhlich's Symposium entitled 'Electrodynamic Activity of Living Cells' (1-3 July 2011, Prague, Czech Republic). The Symposium was the 9th meeting devoted to physical processes in living matter organized in Prague since 1987. The hypothesis of oscillation systems in living cells featured by non-linear interaction between elastic and electrical polarization fields, non-linear interactions between the system and the heat bath leading to energy downconversion along the frequency scale, energy condensation in the lowest frequency mode and creation of a coherent state was formulated by H Fröhlich, founder of the theory of dielectric materials. He assumed that biological activity is based not only on biochemical but also on biophysical mechanisms and that their disturbances form basic links along the cancer transformation pathway. Fröhlich outlined general ideas of non-linear physical processes in biological systems. The downconversion and the elastic-polarization interactions should be connected in a unified theory and the solution based on comprehensive non-linear characteristics. Biochemical and genetic research of biological systems are highly developed and have disclosed a variety of cellular and subcellular structures, chemical reactions, molecular information transfer, and genetic code sequences - including their pathological development. Nevertheless, the cancer problem is still a big challenge. Warburg's discovery of suppressed oxidative metabolism in mitochondria in cancer cells suggested the essential role of physical mechanisms (but his discovery has remained without impact on cancer research and on the study of physical properties of biological systems for a long time). Mitochondria, the power plants of the cell, have several areas of activity-oxidative energy production is connected with the formation of a strong static electric field around them, water ordering, and liberation of non-utilized energy to their surroundings. Mitochondrial function connected with water ordering and excitation of oscillations in microtubules may play a central role in biological activity, in particular in transport, organization, interactions, and information transfer. Mitochondrial disfunction results in disturbances of the generated electrodynamic field with bad consequences in biological activity and the creation of pathological states. A special issue of the biological activity concerns the brain function (consciousness is not yet adequately understood). Experimental investigation using nanotechnology would supply yet unknown data and parameters of physical mechanisms in living systems. Extremely weak biological signals have to be separated from technical noise under conditions of possible non-linear mutual interactions. Some authors questioned the validity of the Fröhlich hypothesis. Foster and Baish (J. Biol. Phys. 26 2000, 255) neglected water ordering and concluded that strong damping by water viscosity effects prevents the formation of a coherent state. Reimers et al (PNAS 106 2009, 4219) and McKemmish et al (Phys. Rev. E 80 2009, 021912-1) omitted non-linear elastic-electrical polarization interactions and analyzed a linearized model of downconversion with strong damping that cannot represent the Fröhlich system. Fröhlich assumed a high quality non-linear system with energy supply. Some methods used for analysis of linear systems (for instance the method of superposition) are not valid in non-linear systems. For this reason also experimental analysis based on subtraction of the noise from the measured signal spectrum is not a simple question. There is another special issue concerning biological activity. The living state and in particular consciousness are very often connected with an idea of a non-material and non-measurable entity entering the biological system from outside. There is a splendid harmony and order in nature. Science should disclose measurable mechanisms of the harmony and order. But human knowledge about the electrodynamic and electromagnetic fields in biological systems is still at a low level. The Symposium continued in the series of international scientific meetings devoted to physical processes in living cells organized in Prague. The first meeting was entitled 'Biophysical Aspects of Cancer' (6-9 July 1987). On this occasion the Anglo-German physicist H Fröhlich presented a lecture 'Coherence in Biology'. The next meeting which was devoted to the Fröhlich coherent systems, information transfer, and neural activity was in 1993. The role of the Fröhlich coherence in the neural activity was included in the meeting 'Biophysical Aspects of Coherence' in 1995 too. The subsequent symposia were entitled 'Electromagnetic Fields in Biological Systems' (1998), 'Electromagnetic Aspects of Selforganization in Biology' (2000), 'Endogenous Physical Fields in Biology' (2002), 'Coherence and Electromagnetic Fields in Biological Systems' (2005), and 'Biophysical Aspects of Cancer - Electromagnetic Mechanisms' (2008). In 2008 a novel project for research of convergence of physics and oncology was triggered in the USA by the National Cancer Institute and the Institute of Public Health. This volume contains the a large number of the papers presented at the Symposium. The ideas presented at the Symposium might have impact on the future research of physical processes and mechanisms in biological systems. Experimental research may provide a background for understanding the neglected part of biological activity and reveal the physical mechanisms of the cancer transformation pathway. The Symposium and this volume were prepared by a scientific team whose members were M Cifra, D Havelka, A Jandová, F Jelínek, O Kucera, M Nedbalová, and F Šrobár. Jirí Pokorný A list of committees, sponsors, the list of talks and some photographs from the conference can be found in the PDF file.

  9. Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study.

    PubMed

    Rónavári, Andrea; Kovács, Dávid; Igaz, Nóra; Vágvölgyi, Csaba; Boros, Imre Miklós; Kónya, Zoltán; Pfeiffer, Ilona; Kiricsi, Mónika

    2017-01-01

    Due to obvious disadvantages of the classical chemical methods, green synthesis of metallic nanoparticles has attracted tremendous attention in recent years. Numerous environmentally benign synthesis methods have been developed yielding nanoparticles via low-cost, eco-friendly, and simple approaches. In this study, our aim was to determine the suitability of coffee and green tea extracts in green synthesis of silver nanoparticles as well as to compare the performance of the obtained materials in different biological systems. We successfully produced silver nanoparticles (C-AgNP and GT-AgNP) using coffee and green tea extracts; moreover, based on our comprehensive screening, we delineated major differences in the biological activity of C-AgNPs and GT-AgNPs. Our results indicate that although GT-AgNPs exhibited excellent antimicrobial activity against all the examined microbial pathogens, these particles were also highly toxic to mammalian cells, which limits their potential applications. On the contrary, C-AgNPs manifested substantial inhibitory action on the tested microbes but were nontoxic to human and mouse cells, indicating an outstanding capacity to discriminate between potential pathogens and mammalian cells. These results clearly show that the various green materials used for stabilization and for reduction of metal ions have a defining role in determining and fine-tuning the biological activity of the obtained nanoparticles.

  10. Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study

    PubMed Central

    Rónavári, Andrea; Kovács, Dávid; Igaz, Nóra; Vágvölgyi, Csaba; Boros, Imre Miklós; Kónya, Zoltán; Pfeiffer, Ilona; Kiricsi, Mónika

    2017-01-01

    Due to obvious disadvantages of the classical chemical methods, green synthesis of metallic nanoparticles has attracted tremendous attention in recent years. Numerous environmentally benign synthesis methods have been developed yielding nanoparticles via low-cost, eco-friendly, and simple approaches. In this study, our aim was to determine the suitability of coffee and green tea extracts in green synthesis of silver nanoparticles as well as to compare the performance of the obtained materials in different biological systems. We successfully produced silver nanoparticles (C-AgNP and GT-AgNP) using coffee and green tea extracts; moreover, based on our comprehensive screening, we delineated major differences in the biological activity of C-AgNPs and GT-AgNPs. Our results indicate that although GT-AgNPs exhibited excellent antimicrobial activity against all the examined microbial pathogens, these particles were also highly toxic to mammalian cells, which limits their potential applications. On the contrary, C-AgNPs manifested substantial inhibitory action on the tested microbes but were nontoxic to human and mouse cells, indicating an outstanding capacity to discriminate between potential pathogens and mammalian cells. These results clearly show that the various green materials used for stabilization and for reduction of metal ions have a defining role in determining and fine-tuning the biological activity of the obtained nanoparticles. PMID:28184158

  11. Human Embryonic Kidney 293 Cells: A Vehicle for Biopharmaceutical Manufacturing, Structural Biology, and Electrophysiology.

    PubMed

    Hu, Jianwen; Han, Jizhong; Li, Haoran; Zhang, Xian; Liu, Lan Lan; Chen, Fei; Zeng, Bin

    2018-01-01

    Mammalian cells, e.g., CHO, BHK, HEK293, HT-1080, and NS0 cells, represent important manufacturing platforms in bioengineering. They are widely used for the production of recombinant therapeutic proteins, vaccines, anticancer agents, and other clinically relevant drugs. HEK293 (human embryonic kidney 293) cells and their derived cell lines provide an attractive heterologous system for the development of recombinant proteins or adenovirus productions, not least due to their human-like posttranslational modification of protein molecules to provide the desired biological activity. Secondly, they also exhibit high transfection efficiency yielding high-quality recombinant proteins. They are easy to maintain and express with high fidelity membrane proteins, such as ion channels and transporters, and thus are attractive for structural biology and electrophysiology studies. In this article, we review the literature on HEK293 cells regarding their origins but also stress their advancements into the different cell lines engineered and discuss some significant aspects which make them versatile systems for biopharmaceutical manufacturing, drug screening, structural biology research, and electrophysiology applications. © 2018 S. Karger AG, Basel.

  12. Functional roles of cell surface peptidases in reproductive organs

    PubMed Central

    2004-01-01

    A number of biologically active peptides have been proposed to regulate function and differentiation of reproductive organs in an autocrine and/or paracrine fashion. Regulation of the local concentrations of these peptides is one of the important factors influencing their physiological effects on target cells. Membrane‐bound cell surface peptidases can activate or inactivate biologically active peptides before peptide factors access their receptors on the cell surface. Aminopeptidase A (EC 3.4.11.7), placental leucine aminopeptidase (EC 3.4.11.3), aminopeptidase‐N/CD13 (EC 3.4.11.2), dipeptidyl peptidases IV/CD26 (EC.3.4.14.5), carboxypeptidase‐M (EC 3.4.17.12), neutral endopeptidase/CD10 (EC 3.4.24.11) and endothelin converting enzyme‐1 (EC 3.4.23) are differentially expressed on the ovary, endometrium and placenta. The inhibition of enzyme activity affects steroid hormone production by granulosa and thecal cells, decidualization of endometrium and migration of extravillous trophoblasts. These findings suggest that membrane‐bound cell surface peptidases are local regulators for cellular growth and differentiation in reproductive organs by controlling extracellular concentration of peptide factors. (Reprod Med Biol 2004; 3: 165 –176) PMID:29662383

  13. New analogs of the CART peptide with anorexigenic potency: the importance of individual disulfide bridges.

    PubMed

    Blechová, Miroslava; Nagelová, Veronika; Záková, Lenka; Demianová, Zuzana; Zelezná, Blanka; Maletínská, Lenka

    2013-01-01

    The CART (cocaine- and amphetamine-regulated transcript) peptide is an anorexigenic neuropeptide that acts in the hypothalamus. The receptor and the mechanism of action of this peptide are still unknown. In our previous study, we showed that the CART peptide binds specifically to PC12 rat pheochromocytoma cells in both the native and differentiated into neuronal phenotype. Two biologically active forms, CART(55-102) and CART(61-102), with equal biological activity, contain three disulfide bridges. To clarify the importance of each of these disulfide bridges in maintaining the biological activity of CART(61-102), an Ala scan at particular S-S bridges forming cysteines was performed, and analogs with only one or two disulfide bridges were synthesized. In this study, a stabilized CART(61-102) analog with norleucine instead of methionine at position 67 was also prepared and was found to bind to PC12 cells with an anorexigenic potency similar to that of CART(61-102). The binding study revealed that out of all analogs tested, [Ala(68,86)]CART(61-102), which contains two disulfide bridges (positions 74-94 and 88-101), preserved a high affinity to both native PC12 cells and those that had been differentiated into neurons. In food intake and behavioral tests with mice after intracerebroventricular administration, this analog showed strong and long-lasting anorexigenic potency. Therefore, the disulfide bridge between cysteines 68 and 86 in CART(61-102) can be omitted without a loss of biological activity, but the preservation of two other disulfide bridges and the full-length peptide are essential for biological activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Time-dependent effects of ultraviolet and nonthermal atmospheric pressure plasma on the biological activity of titanium

    NASA Astrophysics Data System (ADS)

    Choi, Sung-Hwan; Jeong, Won-Seok; Cha, Jung-Yul; Lee, Jae-Hoon; Yu, Hyung-Seog; Choi, Eun-Ha; Kim, Kwang-Mahn; Hwang, Chung-Ju

    2016-09-01

    Here, we evaluated time-dependent changes in the effects of ultraviolet (UV) and nonthermal atmospheric pressure plasma (NTAPPJ) on the biological activity of titanium compared with that of untreated titanium. Grade IV machined surface titanium discs (12-mm diameter) were used immediately and stored up to 28 days after 15-min UV or 10-min NTAPPJ treatment. Changes of surface characteristics over time were evaluated using scanning electron microscopy, surface profiling, contact angle analysis, X-ray photoelectron spectroscopy, and surface zeta-potential. Changes in biological activity over time were as determined by analysing bovine serum albumin adsorption, MC3T3-E1 early adhesion and morphometry, and alkaline phosphatase (ALP) activity between groups. We found no differences in the effects of treatment on titanium between UV or NTAPPJ over time; both treatments resulted in changes from negatively charged hydrophobic (bioinert) to positively charged hydrophilic (bioactive) surfaces, allowing enhancement of albumin adsorption, osteoblastic cell attachment, and cytoskeleton development. Although this effect may not be prolonged for promotion of cell adhesion until 4 weeks, the effects were sufficient to maintain ALP activity after 7 days of incubation. This positive effect of UV and NTAPPJ treatment can enhance the biological activity of titanium over time.

  15. T Lymphocyte Activation Threshold and Membrane Reorganization Perturbations in Unique Culture Model

    NASA Technical Reports Server (NTRS)

    Adams, C. L.; Sams, C. F.

    2000-01-01

    Quantitative activation thresholds and cellular membrane reorganization are mechanisms by which resting T cells modulate their response to activating stimuli. Here we demonstrate perturbations of these cellular processes in a unique culture system that non-invasively inhibits T lymphocyte activation. During clinorotation, the T cell activation threshold is increased 5-fold. This increased threshold involves a mechanism independent of TCR triggering. Recruitment of lipid rafts to the activation site is impaired during clinorotation but does occur with increased stimulation. This study describes a situation in which an individual cell senses a change in its physical environment and alters its cell biological behavior.

  16. Biological Effects of Space Radiation and Development of Effective Countermeasures

    PubMed Central

    Kennedy, Ann R.

    2014-01-01

    As part of a program to assess the adverse biological effects expected from astronaut exposure to space radiation, numerous different biological effects relating to astronaut health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronaut vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation. PMID:25258703

  17. Biological effects of space radiation and development of effective countermeasures

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann R.

    2014-04-01

    As part of a program to assess the adverse biological effects expected from astronauts' exposure to space radiation, numerous different biological effects relating to astronauts' health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronauts' vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation.

  18. Synthesis and biological evaluation of several dephosphonated analogues of CMP-Neu5Ac as inhibitors of GM3-synthase.

    PubMed

    Rota, Paola; Cirillo, Federica; Piccoli, Marco; Gregorio, Antonio; Tettamanti, Guido; Allevi, Pietro; Anastasia, Luigi

    2015-10-05

    Previous studies demonstrated that reducing the GM3 content in myoblasts increased the cell resistance to hypoxic stress, suggesting that a pharmacological inhibition of the GM3 synthesis could be instrumental for the development of new treatments for ischemic diseases. Herein, the synthesis of several dephosphonated CMP-Neu5Ac congeners and their anti-GM3-synthase activity is reported. Biological activity testes revealed that some inhibitors almost completely blocked the GM3-synthase activity in vitro and reduced the GM3 content in living embryonic kidney 293A cells, eventually activating the epidermal growth factor receptor (EGFR) signaling cascade. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Biological activities of aqueous extract from Cinnamomum porrectum

    NASA Astrophysics Data System (ADS)

    Farah, H. Siti; Nazlina, I.; Yaacob, W. A.

    2013-11-01

    A study was carried out to evaluate biological activities of an extract obtained from Cinnamomum porrectum under reflux using water. Aqueous extract of Cinnamomum porrectum was tested for antibacterial activity against six Gram-positive and eight Gram-negative bacteria as well as MRSA. The results confirmed that the aqueous extract of Cinnamomum porrectum was bactericidal. Cytotoxic tests on Vero cell culture revealed that Cinnamomum porrectum was non-toxic which IC50 value higher than 0.02 mg/mL. Antiviral activity was tested based on the above IC50 values together with the measured EC50 values to obtain Therapeutic Index. The result showed that Cinnamomum porrectum has the ability to inhibit viral replication of HSV-1 in Vero cells.

  20. Antifungal plant defensins: increased insight in their mode of action as a basis for their use to combat fungal infections.

    PubMed

    Cools, Tanne L; Struyfs, Caroline; Cammue, Bruno Pa; Thevissen, Karin

    2017-04-01

    Plant defensins are small, cationic peptides with a highly conserved 3D structure. They have been studied extensively in the past decades. Various biological activities have been attributed to plant defensins, such as anti-insect and antimicrobial activities, but they are also known to affect ion channels and display antitumor activity. This review focuses on the structure, biological activity and antifungal mode of action of some well-characterized plant defensins, with particular attention to their fungal membrane target(s), their induced cell death mechanisms as well as their antibiofilm activity. As plant defensins are, in general, not toxic to human cells, show in vivo efficacy and have low frequencies of resistance occurrence, they are of particular interest in the fight against fungal infections.

  1. Strawberry tannins inhibit IL-8 secretion in a cell model of gastric inflammation.

    PubMed

    Fumagalli, Marco; Sangiovanni, Enrico; Vrhovsek, Urska; Piazza, Stefano; Colombo, Elisa; Gasperotti, Mattia; Mattivi, Fulvio; De Fabiani, Emma; Dell'Agli, Mario

    2016-09-01

    In the present study we chemically profiled tannin-enriched extracts from strawberries and tested their biological properties in a cell model of gastric inflammation. The chemical and biological features of strawberry tannins after in vitro simulated gastric digestion were investigated as well. The anti-inflammatory activities of pure strawberry tannins were assayed to get mechanistic insights. Tannin-enriched extracts from strawberries inhibit IL-8 secretion in TNFα-treated human gastric epithelial cells by dampening the NF-κB signaling. In vitro simulated gastric digestion slightly affected the chemical composition and the biological properties of strawberry tannins. By using pure compounds, we found that casuarictin may act as a pure NF-κB inhibitor while agrimoniin inhibits IL-8 secretion also acting on other biological targets; in our system procyanidin B1 prevents the TNFα-induced effects without interfering with the NF-κB pathway. We conclude that strawberry tannins, even after in vitro simulated gastric digestion, exert anti-inflammatory activities at nutritionally relevant concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Introduction to Modern Methods in Light Microscopy.

    PubMed

    Ryan, Joel; Gerhold, Abby R; Boudreau, Vincent; Smith, Lydia; Maddox, Paul S

    2017-01-01

    For centuries, light microscopy has been a key method in biological research, from the early work of Robert Hooke describing biological organisms as cells, to the latest in live-cell and single-molecule systems. Here, we introduce some of the key concepts related to the development and implementation of modern microscopy techniques. We briefly discuss the basics of optics in the microscope, super-resolution imaging, quantitative image analysis, live-cell imaging, and provide an outlook on active research areas pertaining to light microscopy.

  3. Antimicrobial and biological activity of leachate from light curable pulp capping materials.

    PubMed

    Arias-Moliz, Maria Teresa; Farrugia, Cher; Lung, Christie Y K; Wismayer, Pierre Schembri; Camilleri, Josette

    2017-09-01

    Characterization of a number of pulp capping materials and assessment of the leachate for elemental composition, antimicrobial activity and cell proliferation and expression. Three experimental light curable pulp-capping materials, Theracal and Biodentine were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The elemental composition of the leachate formed after 24h was assessed by inductively coupled plasma (ICP). The antimicrobial activity of the leachate was determined by the minimum inhibitory concentration (MIC) against multispecies suspensions of Streptococcus mutans ATCC 25175, Streptococcus gordonii ATCC 33478 and Streptococcus sobrinus ATCC 33399. Cell proliferation and cell metabolic function over the material leachate was assessed by an indirect contact test using 3-(4,5 dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The hydration behavior of the test materials varied with Biodentine being the most reactive and releasing the highest amount of calcium ions in solution. All materials tested except the unfilled resin exhibited depletion of phosphate ions from the solution indicating interaction of the materials with the media. Regardless the different material characteristics, there was a similar antimicrobial activity and cellular activity. All the materials exhibited no antimicrobial activity and were initially cytotoxic with cell metabolic function improving after 3days. The development of light curable tricalcium silicate-based pulp capping materials is important to improve the bonding to the final resin restoration. Testing of both antimicrobial activity and biological behavior is critical for material development. The experimental light curable materials exhibited promising biological properties but require further development to enhance the antimicrobial characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Interleukin 2 secretion by T cells for detection of biologically active Staphylococcal enterotoxin type E

    USDA-ARS?s Scientific Manuscript database

    Staphylococcus aureus is a significant worldwide source of clinical infections and foodborne illnesses acting through the synthesis of a group of enterotoxins (SEs) which cause gastroenteritis and also function as superantigens that activate T cells resulting in massive cytokine production yielding ...

  5. Microscopy Images as Interactive Tools in Cell Modeling and Cell Biology Education

    PubMed Central

    Araújo-Jorge, Tania C.; Cardona, Tania S.; Mendes, Cláudia L. S.; Henriques-Pons, Andrea; Meirelles, Rosane M. S.; Coutinho, Cláudia M. L. M.; Aguiar, Luiz Edmundo V.; Meirelles, Maria de Nazareth L.; de Castro, Solange L.; Barbosa, Helene S.; Luz, Mauricio R. M. P.

    2004-01-01

    The advent of genomics, proteomics, and microarray technology has brought much excitement to science, both in teaching and in learning. The public is eager to know about the processes of life. In the present context of the explosive growth of scientific information, a major challenge of modern cell biology is to popularize basic concepts of structures and functions of living cells, to introduce people to the scientific method, to stimulate inquiry, and to analyze and synthesize concepts and paradigms. In this essay we present our experience in mixing science and education in Brazil. For two decades we have developed activities for the science education of teachers and undergraduate students, using microscopy images generated by our work as cell biologists. We describe open-air outreach education activities, games, cell modeling, and other practical and innovative activities presented in public squares and favelas. Especially in developing countries, science education is important, since it may lead to an improvement in quality of life while advancing understanding of traditional scientific ideas. We show that teaching and research can be mutually beneficial rather than competing pursuits in advancing these goals. PMID:15257338

  6. Enhanced Production of Anthraquinones and Phenolic Compounds and Biological Activities in the Cell Suspension Cultures of Polygonum multiflorum

    PubMed Central

    Thiruvengadam, Muthu; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Lee, Taek-Jun; Kim, Seung-Hyun; Chung, Ill-Min

    2016-01-01

    Anthraquinones (AQs) and phenolic compounds are important phytochemicals that are biosynthesized in cell suspension cultures of Polygonum multiflorum. We wanted to optimize the effects of plant growth regulators (PGRs), media, sucrose, l-glutamine, jasmonic acid (JA), and salicylic acid (SA) for the production of phytochemicals and biomass accumulation in a cell suspension culture of P. multiflorum. The medium containing Murashige and Skoog (MS) salts and 4% sucrose supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid, 0.5 mg/L thidiazuron, and 100 µM l-glutamine at 28 days of cell suspension culture was suitable for biomass accumulation and AQ production. Maximum biomass accumulation (12.5 and 12.35 g fresh mass (FM); 3 and 2.93 g dry mass (DM)) and AQ production (emodin 295.20 and 282 mg/g DM; physcion 421.55 and 410.25 mg/g DM) were observed using 100 µM JA and SA, respectively. JA- and SA-elicited cell cultures showed several-fold higher biomass accumulation and AQ production than the control cell cultures. Furthermore, the cell suspension cultures effectively produced 23 phenolic compounds, such as flavonols and hydroxycinnamic and hydroxybenzoic acid derivatives. PGR-, JA-, and SA-elicited cell cultures produced a higher amount of AQs and phenolic compounds. Because of these metabolic changes, the antioxidant, antimicrobial, and anticancer activities were high in the PGR-, JA-, and SA-elicited cell cultures. The results showed that the elicitors (JA and SA) induced the enhancement of biomass accumulation and phytochemical (AQs and phenolic compounds) production as well as biological activities in the cell suspension cultures of P. multiflorum. This optimized protocol can be developed for large-scale biomass accumulation and production of phytochemicals (AQs and phenolic compounds) from cell suspension cultures, and the phytochemicals can be used for various biological activities. PMID:27854330

  7. Study of cell killing effect on S180 by ultrasound activating protoporphyrin IX.

    PubMed

    Wang, Xiao Bing; Liu, Quan Hong; Wang, Pan; Tang, Wei; Hao, Qiao

    2008-04-01

    The present study was initiated to investigate the potential biological mechanism of cell killing effect on isolate sarcoma 180 (S180) cells induced by ultrasound activating protoporphyrin IX (PPIX). S180 cells were exposed to ultrasound for 30s duration, at a frequency of 2.2 MHz and an acoustic power of 3 W/cm(2) in the presence of 120 microM PPIX. The viability of cells was evaluated using trypan blue staining. The generation of oxygen free radicals in cell suspensions was detected immediately after treatment using a reactive oxygen detection kit. A copper reagent colorimetry method was used to measure the level of FFAs released into cell suspensions by the process of cell damage induced by ultrasound and PPIX treatment. Oxidative stress was assessed by measuring the activities of key antioxidant enzymes (i.e., SOD, CAT, GSH-PX) in S180 tumor cells. Treatment with ultrasound and PPIX together increased the cell damage rate to 50.91%, while treatment with ultrasound alone gave a cell damage rate to 24.24%, and PPIX alone kept this rate unchanged. Colorimetry and enzymatic chemical methods showed that the level of FFAs in cell suspension increased significantly after the treatment, while the activity of all the above enzymes decreased in tumor cells at different levels, and were associated with the generation of oxygen free radicals in cell suspension after treatment. The results indicate that oxygen free radicals may play an important role in improving the membrane lipid peroxidation, degrading membrane phospholipids to release FFAs, and decreasing the activities of the key antioxidant enzymes in cells. This biological mechanism might be involved in mediating the effects on S180 cells and resulting in the cell damage seen with SDT.

  8. Expression of single-chain Fv gene specific for gamma-seminoprotein by RTS and its biological activity identification.

    PubMed

    Han, Yuedong; Haun, Yi; Deng, Jinlan; Gao, Feng; Pan, Bifeng; Cui, Daxiang

    2006-01-01

    Fabricating a single-chain variable fragment specific for human seminoprotein is very important in antibody-directed enzyme prodrug therapy and NMR imaging for prostate cancer. Here a single-chain Fv specific for gamma-seminoprotein was expressed by RTS. Its activity and the efficiency of entry into prostate cancer cells are investigated by immunoprecipitation and Western blotting and immunofluorescent staining, as well as entry of conjugated magnetic beads into cells. Results showed that ScFv peptides specific for gamma-seminoprotein were successfully prepared, which can bind with the prostate cells specifically and can bring magnetic beads into prostate cancer cells within 15 min, the amount of magnetic beads inside prostate cancer cells increased as the culture time prolonged. ScFv-conjugated magnetic beads did not enter into control cells. In conclusion, the ScFv peptide against human gamma-seminoprotein with biological activity was successfully fabricated, which can take magnetic beads to prostate cancer cells specifically and not to the control cells. This ScFv peptide against human gamma-seminoprotein should be useful in improving the detection and therapy of prostate cancer at early stages and NMR imaging.

  9. Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and Therapeutic Applications

    PubMed Central

    Yoon, Bo Kyeong; Jackman, Joshua A.; Valle-González, Elba R.

    2018-01-01

    Antimicrobial lipids such as fatty acids and monoglycerides are promising antibacterial agents that destabilize bacterial cell membranes, causing a wide range of direct and indirect inhibitory effects. The goal of this review is to introduce the latest experimental approaches for characterizing how antimicrobial lipids destabilize phospholipid membranes within the broader scope of introducing current knowledge about the biological activities of antimicrobial lipids, testing strategies, and applications for treating bacterial infections. To this end, a general background on antimicrobial lipids, including structural classification, is provided along with a detailed description of their targeting spectrum and currently understood antibacterial mechanisms. Building on this knowledge, different experimental approaches to characterize antimicrobial lipids are presented, including cell-based biological and model membrane-based biophysical measurement techniques. Particular emphasis is placed on drawing out how biological and biophysical approaches complement one another and can yield mechanistic insights into how the physicochemical properties of antimicrobial lipids influence molecular self-assembly and concentration-dependent interactions with model phospholipid and bacterial cell membranes. Examples of possible therapeutic applications are briefly introduced to highlight the potential significance of antimicrobial lipids for human health and medicine, and to motivate the importance of employing orthogonal measurement strategies to characterize the activity profile of antimicrobial lipids. PMID:29642500

  10. Physico-chemical and Biological Evaluation of Flavonols: Fisetin, Quercetin and Kaempferol Alone and Incorporated in beta Cyclodextrins.

    PubMed

    Corina, Danciu; Bojin, Florina; Ambrus, Rita; Muntean, Delia; Soica, Codruta; Paunescu, Virgil; Cristea, Mirabela; Pinzaru, Iulia; Dehelean, Cristina

    2017-01-01

    Fisetin,quercetin and kaempferol are among the important representatives of flavonols, biological active phytocomounds, with low water solubility. To evaluate the antimicrobial effect, respectively the antiproliferative and pro apoptotic activity on the B164A5 murine melanoma cell line of pure flavonols and their beta cyclodextrins complexes. Incorporation of fisetin, quercetin and kaempferol in beta cyclodextrins was proved by scanning electron microscopy (SEM), differencial scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). Pure compounds and their complexes were tested for antiproliferative (MTT) and pro-apoptotic activity (Annexin V-PI) on the B164A5 murine melanoma cell line and for the antimicrobial properties (Disk Diffusion Method) on the selected strains. The phytocompounds presented in a different manner in vitro chemopreventive activity against B164A5 murine melanoma cell line and weak antimicrobial effect. The three flavonols: fisetin, quercetin and kaempferol were successfully incorporated in beta-cyclodextrin (BCD) and hydroxylpropyl-beta-cyclodextrin (HPBCD). Incorporation in beta cyclodextrins had a mix effect on the biological activity conducing to decrease, increase or consistent effect compared to pure phytocompound, depending on the screened process and on the chosen combination. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. COMPUTER PREDICTION OF BIOLOGICAL ACTIVITY OF DIMETHYL-N-(BENZOYL)AMIDOPHOSPHATE AND DIMETHYL-N-(PHENYLSULFONYL)AMIDOPHOSPHATE, EVALUATION OF THEIR CYTOTOXIC ACTIVITY AGAINST LEUKEMIC CELLS IN VITRO.

    PubMed

    Grynyuk, I I; Prylutska, S V; Kariaka, N S; Sliva, T Yu; Moroz, O V; Franskevych, D V; Amirkhanov, V M; Matyshevska, O P; Slobodyanik, M S

    2015-01-01

    Structural analogues of β-diketones--dimethyl-N-(benzoyl)amidophosphate (HCP) and dimethyl-N-(phenylsulfonyl)amidophosphate (HSP) were synthesized and identified by the methods of IR, 1H and 31P NMR spectroscopy. Screening of biological activity and calculation of physicochemical parameters of HCP and HSP compounds were done with the use of PASS and ACD/Labs computer programs. A wide range of biological activity of synthesized compounds, antitumor activity in particular, has been found. Calculations of the bioavailability criteria indicate that the investigated compounds have no deviations from Lipinski's rules. HCP compound is characterized by a high lipophilicity at physiological pH as compared to HSP. It was found that cytotoxic effect of the studied compounds on the leukemic L1210 cells was of time- and dose-dependent character. HCP is characterized by more pronounced and early cytotoxic effects as compared to HSP. It was shown that 2.5 mM HCP increased ROS production 3 times in the early period of incubation, and decreased cell viability by 40% after 48 h, and by 66%--after 72 h. Based on the computer calculation and undertaken research, HCP was selected for target chemical modifications and enhancement of its antitumor effect.

  12. Multiphysics of bone remodeling: A 2D mesoscale activation simulation.

    PubMed

    Spingarn, C; Wagner, D; Rémond, Y; George, D

    2017-01-01

    In this work, we present an evolutive trabecular model for bone remodeling based on a boundary detection algorithm accounting for both biology and applied mechanical forces, known to be an important factor in bone evolution. A finite element (FE) numerical model using the Abaqus/Standard® software was used with a UMAT subroutine to solve the governing coupled mechanical-biological non-linear differential equations of the bone evolution model. The simulations present cell activation on a simplified trabeculae configuration organization with trabecular thickness of 200µm. For this activation process, the results confirm that the trabeculae are mainly oriented in the active direction of the principal mechanical stresses and according to the principal applied mechanical load directions. The trabeculae surface activation is clearly identified and can provide understanding of the different bone cell activations in more complex geometries and load conditions.

  13. Enzyme-Activated Fluorogenic Probes for Live-Cell and in Vivo Imaging.

    PubMed

    Chyan, Wen; Raines, Ronald T

    2018-06-20

    Fluorogenic probes, small-molecule sensors that unmask brilliant fluorescence upon exposure to specific stimuli, are powerful tools for chemical biology. Those probes that respond to enzymatic activity illuminate the complex dynamics of biological processes at a level of spatiotemporal detail and sensitivity unmatched by other techniques. Here, we review recent advances in enzyme-activated fluorogenic probes for biological imaging. We organize our survey by enzyme classification, with emphasis on fluorophore masking strategies, modes of enzymatic activation, and the breadth of current and future applications. Key challenges such as probe selectivity and spectroscopic requirements are described alongside of therapeutic, diagnostic, and theranostic opportunities.

  14. Inhibition of angiogenic attributes by decursin in endothelial cells and ex vivo rat aortic ring angiogenesis model.

    PubMed

    Bhat, Tariq A; Moon, Jung S; Lee, Sookyeon; Yim, Dongsool; Singh, Rana P

    2011-11-01

    The present study was undertaken to observe the inhibition of angiogenesis by decursin. It was the first time to show that decursin offered strong anti-angiogenic activities under the biologically relevant growth (with serum) conditions. Decursin significantly inhibited human umbilical vein endothelial cell (HUVEC) proliferation concomitant with G1 phase cell cycle arrest. Decursin also inhibited HUVEC-capillary tube formation and invasion/migration in a dose-dependant manner which was associated with the suppression of matrix metalloproteinase (MMP) -2 and -9 activities. Decursin suppressed angiogenesis in ex vivo rat aortic ring angiogenesis model where it significantly inhibited blood capillary-network sprouting from rat aortic sections. Taken together, these findings suggested anti-angiogenic activity of decursin in biologically relevant condition, and warrants further pre-clinical studies for its potential clinical usefulness.

  15. Cytotoxicity of Titanate-Calcium Complexes to MC3T3 Osteoblast-Like Cells

    DOE PAGES

    Chen, Yen-Wei; Drury, Jeanie L.; Moussi, Joelle; ...

    2016-11-30

    Monosodium titanates (MST) are a relatively novel form of particulate titanium dioxide that have been proposed for biological use as metal sorbents or delivery agents, most recently calcium (II). In these roles, the toxicity of the titanate or its metal complex is crucial to its biological utility. The aim of this study was to determine the cytotoxicity of MST and MST-calcium complexes with MC3T3 osteoblast-like cells; MST-Ca(II) complexes could be useful to promote bone formation in various hard tissue applications. MC3T3 cells were exposed to native MST or MST-Ca(II) complexes for 24–72 h. A CellTiter-Blue ® assay was employed tomore » assess the metabolic activity of the cells. The results showed that MST and MST-Ca(II) suppressed MC3T3 metabolic activity significantly in a dose-, time-, and cell-density-dependent fashion. MST-Ca(II) suppressed MC3T3 metabolism in a statistically identical manner as native MST at all concentrations. We concluded that MST and MST-Ca(II) are significantly cytotoxic to MC3T3 cells through a mechanism yet unknown; this is a potential problem to the biological utility of these complexes.« less

  16. Cytotoxicity of Titanate-Calcium Complexes to MC3T3 Osteoblast-Like Cells

    PubMed Central

    Drury, Jeanie L.; Moussi, Joelle; Taylor-Pashow, Kathryn M. L.

    2016-01-01

    Monosodium titanates (MST) are a relatively novel form of particulate titanium dioxide that have been proposed for biological use as metal sorbents or delivery agents, most recently calcium (II). In these roles, the toxicity of the titanate or its metal complex is crucial to its biological utility. The aim of this study was to determine the cytotoxicity of MST and MST-calcium complexes with MC3T3 osteoblast-like cells; MST-Ca(II) complexes could be useful to promote bone formation in various hard tissue applications. MC3T3 cells were exposed to native MST or MST-Ca(II) complexes for 24–72 h. A CellTiter-Blue® assay was employed to assess the metabolic activity of the cells. The results showed that MST and MST-Ca(II) suppressed MC3T3 metabolic activity significantly in a dose-, time-, and cell-density-dependent fashion. MST-Ca(II) suppressed MC3T3 metabolism in a statistically identical manner as native MST at all concentrations. We concluded that MST and MST-Ca(II) are significantly cytotoxic to MC3T3 cells through a mechanism yet unknown; this is a potential problem to the biological utility of these complexes. PMID:28044136

  17. Field Markup Language: biological field representation in XML.

    PubMed

    Chang, David; Lovell, Nigel H; Dokos, Socrates

    2007-01-01

    With an ever increasing number of biological models available on the internet, a standardized modeling framework is required to allow information to be accessed or visualized. Based on the Physiome Modeling Framework, the Field Markup Language (FML) is being developed to describe and exchange field information for biological models. In this paper, we describe the basic features of FML, its supporting application framework and its ability to incorporate CellML models to construct tissue-scale biological models. As a typical application example, we present a spatially-heterogeneous cardiac pacemaker model which utilizes both FML and CellML to describe and solve the underlying equations of electrical activation and propagation.

  18. Milk Inhibits the Biological Activity of Ricin

    PubMed Central

    Rasooly, Reuven; He, Xiaohua; Friedman, Mendel

    2012-01-01

    Ricin is a highly toxic protein produced by the castor plant Ricinus communis. The toxin is relatively easy to isolate and can be used as a biological weapon. There is great interest in identifying effective inhibitors for ricin. In this study, we demonstrated by three independent assays that a component of reconstituted powdered milk has a high binding affinity to ricin. We discovered that milk can competitively bind to and reduce the amount of toxin available to asialofetuin type II, which is used as a model to study the binding of ricin to galactose cell-surface receptors. Milk also removes ricin bound to the microtiter plate. In parallel experiments, we demonstrated by activity assay and by immuno-PCR that milk can bind competitively to 1 ng/ml ricin, reducing the amount of toxin uptake by the cells, and thus inhibit the biological activity of ricin. The inhibitory effect of milk on ricin activity in Vero cells was at the same level as by anti-ricin antibodies. We also found that (a) milk did not inhibit ricin at concentrations of 10 or 100 ng/ml; (b) autoclaving 10 and 100 ng/ml ricin in DMEM at 121 °C for 30 min completely abolished activity; and (c) milk did not affect the activity of another ribosome inactivating protein, Shiga toxin type 2 (Stx2), produced by pathogenic Escherichia coli O157:H7. Unlike ricin, which is internalized into the cells via a galactose-binding site, Stx2 is internalized through the cell surface receptor glycolipid globotriasylceramides Gb3 and Gb4. These observations suggest that ricin toxicity may possibly be reduced at room temperature by a widely consumed natural liquid food. PMID:22733821

  19. A novel small molecule, Rosline, inhibits growth and induces caspase-dependent apoptosis in human lung cancer cells A549 through a reactive oxygen species-dependent mechanism.

    PubMed

    Zhao, Ting; Feng, Yang; Jin, Wenling; Pan, Hui; Li, Haizhou; Zhao, Yang

    2016-06-01

    Chemical screening using synthetic small molecule libraries has provided a huge amount of novel active molecules. It generates lead compound for drug development and brings focus on molecules for mechanistic investigations on many otherwise intangible biological processes. In this study, using non-small cell lung cancer cell A549 to screen against a structurally novel and diverse synthetic small molecule library of 2,400 compounds, we identified a molecule named rosline that has strong anti-proliferation activity on A549 cells with a 50% cell growth inhibitory concentration (IC50 ) of 2.87 ± 0.39 µM. We showed that rosline treatment increased the number of Annexin V-positive staining cell, as well as G2/M arrest in their cell cycle progression. Further, we have demonstrated that rosline induces a decrease of mitochondrial membrane potential (Δφm ) and an increase of caspases 3/7 and 9 activities in A549 cells, although having no effect on the activity of caspase 8. Moreover, we found that rosline could induce the production of reactive oxygen species (ROS) and inhibit the phosphorylation of signaling molecule Akt in A549 cells. Alternatively, an antioxidant N-acetyl-L-cysteine (NAC) significantly attenuated rosline's effects on the mitochondrial membrane potential, caspases 3/7 and 9 activities, cell viabilities and the phosphorylation of Akt. Our results demonstrated that ROS played an important role in the apoptosis of A549 cells induced by rosline. © 2016 International Federation for Cell Biology.

  20. Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy.

    PubMed

    Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Yaqoob, Zahid; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S

    2009-11-26

    Quantitative chemical analysis has served as a useful tool for understanding cellular metabolisms in biology. Among many physical properties used in chemical analysis, refractive index in particular has provided molecular concentration that is an important indicator for biological activities. In this report, we present a method of extracting full-field refractive index maps of live cells in their native states. We first record full-field optical thickness maps of living cells by Hilbert phase microscopy and then acquire physical thickness maps of the same cells using a custom-built confocal reflectance microscope. Full-field and axially averaged refractive index maps are acquired from the ratio of optical thickness to physical thickness. The accuracy of the axially averaged index measurement is 0.002. This approach can provide novel biological assays of label-free living cells in situ.

  1. Live Cell Refractometry Using Hilbert Phase Microscopy and Confocal Reflectance Microscopy†

    PubMed Central

    Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Yaqoob, Zahid; Badizadegan, Kamran; Dasari, Ramachandra R.; Feld, Michael S.

    2010-01-01

    Quantitative chemical analysis has served as a useful tool for understanding cellular metabolisms in biology. Among many physical properties used in chemical analysis, refractive index in particular has provided molecular concentration that is an important indicator for biological activities. In this report, we present a method of extracting full-field refractive index maps of live cells in their native states. We first record full-field optical thickness maps of living cells by Hilbert phase microscopy and then acquire physical thickness maps of the same cells using a custom-built confocal reflectance microscope. Full-field and axially averaged refractive index maps are acquired from the ratio of optical thickness to physical thickness. The accuracy of the axially averaged index measurement is 0.002. This approach can provide novel biological assays of label-free living cells in situ. PMID:19803506

  2. Nonlinear Rheology in a Model Biological Tissue

    NASA Astrophysics Data System (ADS)

    Matoz-Fernandez, D. A.; Agoritsas, Elisabeth; Barrat, Jean-Louis; Bertin, Eric; Martens, Kirsten

    2017-04-01

    The rheological response of dense active matter is a topic of fundamental importance for many processes in nature such as the mechanics of biological tissues. One prominent way to probe mechanical properties of tissues is to study their response to externally applied forces. Using a particle-based model featuring random apoptosis and environment-dependent division rates, we evidence a crossover from linear flow to a shear-thinning regime with an increasing shear rate. To rationalize this nonlinear flow we derive a theoretical mean-field scenario that accounts for the interplay of mechanical and active noise in local stresses. These noises are, respectively, generated by the elastic response of the cell matrix to cell rearrangements and by the internal activity.

  3. Molecular Mechanisms of UV-Induced Apoptosis and Its Effects on Skin Residential Cells: The Implication in UV-Based Phototherapy

    PubMed Central

    Lee, Chih-Hung; Wu, Shi-Bei; Hong, Chien-Hui; Yu, Hsin-Su; Wei, Yau-Huei

    2013-01-01

    The human skin is an integral system that acts as a physical and immunological barrier to outside pathogens, toxicants, and harmful irradiations. Environmental ultraviolet rays (UV) from the sun might potentially play a more active role in regulating several important biological responses in the context of global warming. UV rays first encounter the uppermost epidermal keratinocytes causing apoptosis. The molecular mechanisms of UV-induced apoptosis of keratinocytes include direct DNA damage (intrinsic), clustering of death receptors on the cell surface (extrinsic), and generation of ROS. When apoptotic keratinocytes are processed by adjacent immature Langerhans cells (LCs), the inappropriately activated Langerhans cells could result in immunosuppression. Furthermore, UV can deplete LCs in the epidermis and impair their migratory capacity, leading to their accumulation in the dermis. Intriguingly, receptor activator of NF-κB (RANK) activation of LCs by UV can induce the pro-survival and anti-apoptotic signals due to the upregulation of Bcl-xL, leading to the generation of regulatory T cells. Meanwhile, a physiological dosage of UV can also enhance melanocyte survival and melanogenesis. Analogous to its effect in keratinocytes, a therapeutic dosage of UV can induce cell cycle arrest, activate antioxidant and DNA repair enzymes, and induce apoptosis through translocation of the Bcl-2 family proteins in melanocytes to ensure genomic integrity and survival of melanocytes. Furthermore, UV can elicit the synthesis of vitamin D, an important molecule in calcium homeostasis of various types of skin cells contributing to DNA repair and immunomodulation. Taken together, the above-mentioned effects of UV on apoptosis and its related biological effects such as proliferation inhibition, melanin synthesis, and immunomodulations on skin residential cells have provided an integrated biochemical and molecular biological basis for phototherapy that has been widely used in the treatment of many dermatological diseases. PMID:23519108

  4. Optical Control of Living Cells Electrical Activity by Conjugated Polymers.

    PubMed

    Martino, Nicola; Bossio, Caterina; Vaquero Morata, Susana; Lanzani, Guglielmo; Antognazza, Maria Rosa

    2016-01-28

    Hybrid interfaces between organic semiconductors and living tissues represent a new tool for in-vitro and in-vivo applications. In particular, conjugated polymers display several optimal properties as substrates for biological systems, such as good biocompatibility, excellent mechanical properties, cheap and easy processing technology, and possibility of deposition on light, thin and flexible substrates. These materials have been employed for cellular interfaces like neural probes, transistors for excitation and recording of neural activity, biosensors and actuators for drug release. Recent experiments have also demonstrated the possibility to use conjugated polymers for all-optical modulation of the electrical activity of cells. Several in-vitro study cases have been reported, including primary neuronal networks, astrocytes and secondary line cells. Moreover, signal photo-transduction mediated by organic polymers has been shown to restore light sensitivity in degenerated retinas, suggesting that these devices may be used for artificial retinal prosthesis in the future. All in all, light sensitive conjugated polymers represent a new approach for optical modulation of cellular activity. In this work, all the steps required to fabricate a bio-polymer interface for optical excitation of living cells are described. The function of the active interface is to transduce the light stimulus into a modulation of the cell membrane potential. As a study case, useful for in-vitro studies, a polythiophene thin film is used as the functional, light absorbing layer, and Human Embryonic Kidney (HEK-293) cells are employed as the biological component of the interface. Practical examples of successful control of the cell membrane potential upon stimulation with light pulses of different duration are provided. In particular, it is shown that both depolarizing and hyperpolarizing effects on the cell membrane can be achieved depending on the duration of the light stimulus. The reported protocol is of general validity and can be straightforwardly extended to other biological preparations.

  5. Total synthesis and structure-activity investigation of the marine natural product neopeltolide.

    PubMed

    Custar, Daniel W; Zabawa, Thomas P; Hines, John; Crews, Craig M; Scheidt, Karl A

    2009-09-02

    The total synthesis and biological evaluation of neopeltolide and analogs are reported. The key bond-forming step utilizes a Lewis acid-catalyzed intramolecular macrocyclization that installs the tetrahydropyran ring and macrocycle simultaneously. Independent of each other, neither the macrolide nor the oxazole side chain substituents of neopeltolide can inhibit the growth of cancer cell lines. The biological data of the analogs indicate that alterations to either the ester side chain or the stereochemistry of the macrolide result in a loss of biological activity.

  6. Signal transduction networks and the biology of plant cells.

    PubMed

    Chrispeels, M J; Holuigue, L; Latorre, R; Luan, S; Orellana, A; Peña-Cortes, H; Raikhel, N V; Ronald, P C; Trewavas, A

    1999-01-01

    The development of plant transformation in the mid-1980s and of many new tools for cell biology, molecular genetics, and biochemistry has resulted in enormous progress in plant biology in the past decade. With the completion of the genome sequence of Arabidopsis thaliana just around the corner, we can expect even faster progress in the next decade. The interface between cell biology and signal transduction is emerging as a new and important field of research. In the past we thought of cell biology strictly in terms of organelles and their biogenesis and function, and researchers focused on questions such as, how do proteins enter chloroplasts? or, what is the structure of the macromolecules of the cell wall and how are these molecules secreted? Signal transduction dealt primarily with the perception of light (photomorphogenesis) or hormones and with the effect such signals have on enhancing the activity of specific genes. Now we see that the fields of cell biology and signal transduction are merging because signals pass between organelles and a single signal transduction pathway usually involves multiple organelles or cellular structures. Here are some examples to illustrate this new paradigm. How does abscisic acid (ABA) regulate stomatal closure? This pathway involves not only ABA receptors whose location is not yet known, but cation and anion channels in the plasma membrane, changes in the cytoskeleton, movement of water through water channels in the tonoplast and the plasma membrane, proteins with a farnesyl tail that can be located either in the cytosol or attached to a membrane, and probably unidentified ion channels in the tonoplast. In addition there are highly localized calcium oscillations in the cytoplasm resulting from the release of calcium stored in various compartments. The activities of all these cellular structures need to be coordinated during ABA-induced stomatal closure. For another example of the interplay between the proteins of signal transduction pathways and cytoplasmic structures, consider how plants mount defense responses against pathogens. Elicitors produced by pathogens bind to receptors on the plant plasma membrane or in the cytosol and eventually activate a large number of genes. This results in the coordination of activities at the plasma membrane (production of reactive oxygen species), in the cytoskeleton, localized calcium oscillations, and the modulation of protein kinases and protein phosphatases whose locations remain to be determined. The movement of transcription factors into the nucleus to activate the defense genes requires their release from cytosolic anchors and passage through the nuclear pore complexes of the nuclear envelope. This review does not cover all the recent progress in plant signal transduction and cell biology; it is confined to the topics that were discussed at a recent (November 1998) workshop held in Santiago at which lecturers from Chile, the USA and the UK presented recent results from their laboratories.

  7. Digital Assays Part II: Digital Protein and Cell Assays.

    PubMed

    Basu, Amar S

    2017-08-01

    A digital assay is one in which the sample is partitioned into many containers such that each partition contains a discrete number of biological entities (0, 1, 2, 3, . . .). A powerful technique in the biologist's toolkit, digital assays bring a new level of precision in quantifying nucleic acids, measuring proteins and their enzymatic activity, and probing single-cell genotype and phenotype. Where part I of this review focused on the fundamentals of partitioning and digital PCR, part II turns its attention to digital protein and cell assays. Digital enzyme assays measure the kinetics of single proteins with enzymatic activity. Digital enzyme-linked immunoassays (ELISAs) quantify antigenic proteins with 2 to 3 log lower detection limit than conventional ELISA, making them well suited for low-abundance biomarkers. Digital cell assays probe single-cell genotype and phenotype, including gene expression, intracellular and surface proteins, metabolic activity, cytotoxicity, and transcriptomes (scRNA-seq). These methods exploit partitioning to 1) isolate single cells or proteins, 2) detect their activity via enzymatic amplification, and 3) tag them individually by coencapsulating them with molecular barcodes. When scaled, digital assays reveal stochastic differences between proteins or cells within a population, a key to understanding biological heterogeneity. This review is intended to give a broad perspective to scientists interested in adopting digital assays into their workflows.

  8. Mesenchymal Stromal Cells Express GARP/LRRC32 on Their Surface: Effects on Their Biology and Immunomodulatory Capacity

    PubMed Central

    Carrillo-Galvez, Ana Belén; Cobo, Marién; Cuevas-Ocaña, Sara; Gutiérrez-Guerrero, Alejandra; Sánchez-Gilabert, Almudena; Bongarzone, Pierpaolo; García-Pérez, Angélica; Muñoz, Pilar; Benabdellah, Karim; Toscano, Miguel G; Martín, Francisco; Anderson, Per

    2015-01-01

    Mesenchymal stromal cells (MSCs) represent a promising tool for therapy in regenerative medicine, transplantation, and autoimmune disease due to their trophic and immunomodulatory activities. However, we are still far from understanding the mechanisms of action of MSCs in these processes. Transforming growth factor (TGF)-β1 is a pleiotropic cytokine involved in MSC migration, differentiation, and immunomodulation. Recently, glycoprotein A repetitions predominant (GARP) was shown to bind latency-associated peptide (LAP)/TGF-β1 to the cell surface of activated Foxp3+ regulatory T cells (Tregs) and megakaryocytes/platelets. In this manuscript, we show that human and mouse MSCs express GARP which presents LAP/TGF-β1 on their cell surface. Silencing GARP expression in MSCs increased their secretion and activation of TGF-β1 and reduced their proliferative capacity in a TGF-β1-independent manner. Importantly, we showed that GARP expression on MSCs contributed to their ability to inhibit T-cell responses in vitro. In summary, we have found that GARP is an essential molecule for MSC biology, regulating their immunomodulatory and proliferative activities. We envision GARP as a new target for improving the therapeutic efficacy of MSCs and also as a novel MSC marker. Stem Cells 2015;33:183–195 PMID:25182959

  9. Sensitive and quantitative detection of botulinum neurotoxin in neurons derived from mouse embryonic stem cells.

    PubMed

    Pellett, Sabine; Du, Zhong-wei; Pier, Christina L; Tepp, William H; Zhang, Su-chun; Johnson, Eric A

    2011-01-07

    Botulinum neurotoxins (BoNTs), the most poisonous protein toxins known, represent a serious bioterrorism threat but are also used as a unique and important bio-pharmaceutical to treat an increasing myriad of neurological disorders. The only currently accepted detection method by the United States Food and Drug Administration for biological activity of BoNTs and for potency determination of pharmaceutical preparations is the mouse bioassay (MBA). Recent advances have indicated that cell-based assays using primary neuronal cells can provide an equally sensitive and robust detection platform as the MBA to reliably and quantitatively detect biologically active BoNTs. This study reports for the first time a BoNT detection assay using mouse embryonic stem cells to produce a neuronal cell culture. The data presented indicate that this assay can reliably detect BoNT/A with a similar sensitivity as the MBA. Published by Elsevier Inc.

  10. Generation of ligand-based pharmacophore model and virtual screening for identification of novel tubulin inhibitors with potent anticancer activity.

    PubMed

    Chiang, Yi-Kun; Kuo, Ching-Chuan; Wu, Yu-Shan; Chen, Chung-Tong; Coumar, Mohane Selvaraj; Wu, Jian-Sung; Hsieh, Hsing-Pang; Chang, Chi-Yen; Jseng, Huan-Yi; Wu, Ming-Hsine; Leou, Jiun-Shyang; Song, Jen-Shin; Chang, Jang-Yang; Lyu, Ping-Chiang; Chao, Yu-Sheng; Wu, Su-Ying

    2009-07-23

    A pharmacophore model, Hypo1, was built on the basis of 21 training-set indole compounds with varying levels of antiproliferative activity. Hypo1 possessed important chemical features required for the inhibitors and demonstrated good predictive ability for biological activity, with high correlation coefficients of 0.96 and 0.89 for the training-set and test-set compounds, respectively. Further utilization of the Hypo1 pharmacophore model to screen chemical database in silico led to the identification of four compounds with antiproliferative activity. Among these four compounds, 43 showed potent antiproliferative activity against various cancer cell lines with the strongest inhibition on the proliferation of KB cells (IC(50) = 187 nM). Further biological characterization revealed that 43 effectively inhibited tubulin polymerization and significantly induced cell cycle arrest in G(2)-M phase. In addition, 43 also showed the in vivo-like anticancer effects. To our knowledge, 43 is the most potent antiproliferative compound with antitubulin activity discovered by computer-aided drug design. The chemical novelty of 43 and its anticancer activities make this compound worthy of further lead optimization.

  11. In Vitro Biologic Activities of the Antimicrobials Triclocarban, Its Analogs, and Triclosan in Bioassay Screens: Receptor-Based Bioassay Screens

    PubMed Central

    Ahn, Ki Chang; Zhao, Bin; Chen, Jiangang; Cherednichenko, Gennady; Sanmarti, Enio; Denison, Michael S.; Lasley, Bill; Pessah, Isaac N.; Kültz, Dietmar; Chang, Daniel P.Y.; Gee, Shirley J.; Hammock, Bruce D.

    2008-01-01

    Background Concerns have been raised about the biological and toxicologic effects of the antimicrobials triclocarban (TCC) and triclosan (TCS) in personal care products. Few studies have evaluated their biological activities in mammalian cells to assess their potential for adverse effects. Objectives In this study, we assessed the activity of TCC, its analogs, and TCS in in vitro nuclear-receptor–responsive and calcium signaling bioassays. Materials and methods We determined the biological activities of the compounds in in vitro, cell-based, and nuclear-receptor–responsive bioassays for receptors for aryl hydrocarbon (AhR), estrogen (ER), androgen (AR), and ryanodine (RyR1). Results Some carbanilide compounds, including TCC (1–10 μM), enhanced estradiol (E2)-dependent or testosterone-dependent activation of ER- and AR-responsive gene expression up to 2.5-fold but exhibited little or no agonistic activity alone. Some carbanilides and TCS exhibited weak agonistic and/or antagonistic activity in the AhR-responsive bioassay. TCS exhibited antagonistic activity in both ER- and AR-responsive bioassays. TCS (0.1–10 μM) significantly enhanced the binding of [3H]ryanodine to RyR1 and caused elevation of resting cytosolic [Ca2+] in primary skeletal myotubes, but carbanilides had no effect. Conclusions Carbanilides, including TCC, enhanced hormone-dependent induction of ER- and AR-dependent gene expression but had little agonist activity, suggesting a new mechanism of action of endocrine-disrupting compounds. TCS, structurally similar to noncoplanar ortho-substituted poly-chlorinated biphenyls, exhibited weak AhR activity but interacted with RyR1 and stimulated Ca2+ mobilization. These observations have potential implications for human and animal health. Further investigations are needed into the biological and toxicologic effects of TCC, its analogs, and TCS. PMID:18795164

  12. Morphofunctional reaction of bacteria treated with antimicrobial peptides derived from farm animal platelets.

    PubMed

    Vasilchenko, Alexey S; Dymova, Veronica V; Kartashova, Olga L; Sycheva, Maria V

    2015-03-01

    Classical microbiological approach and atomic force microscopy were used to evaluate the mechanisms of biological activity of antimicrobial peptides (AMPs) derived from platelets of farm animals. It is established that AMPs inhibit both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) microorganisms. Differences revealed in the biological activity of AMP preparations obtained from the organisms of various species can be reduced to quantitative differences. While qualitative changes of bacterial cells were substantially similar, changes in the integrity of cell walls resulted in disintegration of the bacterial outer and/or cytoplasmic membranes.

  13. Synthesis and Biological Evaluation of Neopeltolide and Analogs

    PubMed Central

    Cui, Yubo; Balachandran, Raghavan

    2012-01-01

    The synthesis of neopeltolide analogs that contain variations in the oxazole-containing side chain and in the macrolide core are reported along with the GI50 values for these compounds against MCF7, HCT-116, and p53 knockout HCT-116 cell lines. Although biological activity is sensitive to changes in the macrocycle and the side chain, several analogs displayed GI50 values of <25 nM. Neopeltolide and several of the more potent analogs were significantly less potent against p53 knockout cells, suggesting that p53 plays an auxiliary role in the activity of these compounds. PMID:22329423

  14. Interleukin 21 - its potential role in the therapy of B-cell lymphomas.

    PubMed

    Bhatt, Shruti; Sarosiek, Kristopher A; Lossos, Izidore S

    2017-01-01

    Interleukin-21 (IL-21), a member of IL-2 cytokine family, has pleotropic biological effects on lymphoid and myeloid cells. During the past 15 years, since the discovery of IL-21, great advances have been made regarding its biological activity and the mechanisms controlling IL-21-mediated cellular responses, especially in hematological malignancies. Preclinical studies have shown that IL-21R is expressed on healthy and neoplastic B-cells and exogenous IL-21 can induce direct apoptosis of IL-21R expressing B-cell non-Hodgkin lymphomas (NHL), making it a potentially attractive anti-lymphoma therapy. However, in some hematological malignancies such as multiple myeloma, Hodgkin lymphoma and Burkitt lymphoma, IL-21 can induce proliferation of neoplastic B-cells. In NHL, the underlying mechanism of cell death was found to be different between the various subtypes, including activation of different JAK/STAT signal transduction pathways or other factors. Immunomodulatory effects of IL-21 have also been reported to contribute to its anti-tumor effects as described by earlier studies in solid tumors and B-cell associated malignancies. These effects are predominantly mediated by IL-21's ability to activate cytolytic activities by NK-cells and CD4 + /CD8 + T-cells. In this review, we provide an overview of IL-21's effects in NHL, results from clinical trials utilizing IL-21, and propose how IL-21 can be therapeutically exploited for treating these lymphomas.

  15. Fluorescein diacetate (FDA) and its analogue as substrates for Pi-class glutathione S-transferase (GSTP1) and their biological application.

    PubMed

    Fujikawa, Yuuta; Nampo, Taiki; Mori, Masaya; Kikkawa, Manami; Inoue, Hideshi

    2018-03-01

    Pi class glutathione S-transferase (GSTP1) is highly expressed in various cancerous cells and pre-neoplastic legions, where it is involved in apoptotic resistance or metabolism of several anti-tumour chemotherapeutics. Therefore, GSTP1 is a marker of malignant and pre-malignant cells and is a promising target for visualization and drug development. Here we demonstrate that fluorescein diacetate (FDA), a fluorescent probe used for vital staining, is a fluorescently activated by esterolytic activity of human GSTP1 (hGSTP1) selectively among various cytosolic GSTs. Fluorescence activation of FDA susceptible to GST inhibitors was observed in MCF7 cells exogenously overexpressing hGSTP1, but not in cells overexpressing hGSTA1 or hGSTM1. Inhibitor-sensitive fluorescence activation was also observed in several cancer cell lines endogenously expressing GSTP1, suggesting that GSTP1 is involved in FDA esterolysis in these cells. Among the FDA derivatives examined, FOMe-Ac, the acetyl ester of fluorescein O-methyl ether, was found to be a potential reporter for GSH-dependent GSTP1 activity as well as for carboxylesterase activity. Since GSTP1 is highly expressed in various types of cancer cells compared to their normal counterparts, improving the fluorogenic substrates to be more selective to the esterolysis activity of GSTP1 rather than carboxylesterases should lead to development of tools for detecting GSTP1-overexpressing cancer cells and investigating the biological functions of GSTP1. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Simultaneous Detection of Metalloprotease Activities in Complex Biological Samples Using the PrAMA (Proteolytic Activity Matrix Assay) Method.

    PubMed

    Conrad, Catharina; Miller, Miles A; Bartsch, Jörg W; Schlomann, Uwe; Lauffenburger, Douglas A

    2017-01-01

    Proteolytic Activity Matrix Analysis (PrAMA) is a method for simultaneously determining the activities of specific Matrix Metalloproteinases (MMPs) and A Disintegrin and Metalloproteinases (ADAMs) in complex biological samples. In mixtures of unknown proteases, PrAMA infers selective metalloproteinase activities by using a panel of moderately specific FRET-based polypeptide protease substrates in parallel, typically monitored by a plate-reader in a 96-well format. Fluorescence measurements are then quantitatively compared to a standard table of catalytic efficiencies measured from purified mixtures of individual metalloproteinases and FRET substrates. Computational inference of specific activities is performed with an easily used Matlab program, which is provided herein. Thus, we describe PrAMA as a combined experimental and mathematical approach to determine real-time metalloproteinase activities, which has previously been applied to live-cell cultures, cellular lysates, cell culture supernatants, and body fluids from patients.

  17. Production of feline leukemia inhibitory factor with biological activity in Escherichia coli.

    PubMed

    Kanegi, R; Hatoya, S; Tsujimoto, Y; Takenaka, S; Nishimura, T; Wijewardana, V; Sugiura, K; Takahashi, M; Kawate, N; Tamada, H; Inaba, T

    2016-07-15

    Leukemia inhibitory factor (LIF) is a cytokine which is essential for oocyte and embryo development, embryonic stem cell, and induced pluripotent stem cell maintenance. Leukemia inhibitory factor improves the maturation of oocytes in the human and the mouse. However, feline LIF (fLIF) cloning and effects on oocytes during IVM have not been reported. Thus, we cloned complete cDNA of fLIF and examined its biological activity and effects on oocytes during IVM in the domestic cat. The aminoacid sequence of fLIF revealed a homology of 81% or 92% with that of mouse or human. The fLIF produced by pCold TF DNA in Escherichia coli was readily soluble and after purification showed bioactivity in maintaining the undifferentiated state of mouse embryonic stem cells and enhancing the proliferation of human erythrocyte leukemia cells. Furthermore, 10- and 100-ng/mL fLIF induced cumulus expansion with or without FSH and EGF (P < 0.05). The rate of metaphase II oocytes was also improved with 100-ng/mL fLIF (P < 0.05). We therefore confirmed the successful production for the first time of biologically active fLIF and revealed its effects on oocytes during IVM in the domestic cat. Feline LIF will further improve reproduction and stem cell research in the feline family. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Biocompatibility of modified ultra-high-molecular-weight polyethylene

    NASA Astrophysics Data System (ADS)

    Novotná, Z.; Lacmanová, V.; Rimpelová, S.; Juřik, P.; Polívková, M.; Å vorčik, V.

    2016-09-01

    Ultra-high-molecular-weight polyethylene (UHMWPE, PE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore this material is being used in human orthopedic implants such as total joint replacements. Surface modification of this material relates to changes of its surface hydrophilicity, energy, microstructure, roughness, and morphology, all influencing its biological response. In our recent work, PE was treated by an Ar+ plasma discharge and then grafted with biologically active polyethylene glycol in order to enhance adhesion and proliferation of mouse fibroblast (L929). The surface properties of pristine PE and its grafted counterparts were studied by goniometry (surface wettability). Furthermore, Atomic Force Microscopy was used to determine the surface morphology and roughness. The biological response of the L929 cell lines seeded on untreated and plasma treated PE matrices was quantified in terms of the cell adhesion, density, and metabolic activity. Plasma treatment leads to the ablation of the polymer surface layers. Plasma treatment and subsequent poly(ethylene glycol) grafting lead to dramatic changes in the polymer surface morphology and roughness. Biological tests, performed in vitro, show increased adhesion and proliferation of cells on modified polymers. Grafting with poly(ethylene glycol) increases cell proliferation compared to plasma treatment.

  19. Platelets and cancer: a casual or causal relationship: revisited

    PubMed Central

    Menter, David G.; Tucker, Stephanie C.; Kopetz, Scott; Sood, Anil K.; Crissman, John D.; Honn, Kenneth V.

    2014-01-01

    Human platelets arise as subcellular fragments of megakaryocytes in bone marrow. The physiologic demand, presence of disease such as cancer, or drug effects can regulate the production circulating platelets. Platelet biology is essential to hemostasis, vascular integrity, angiogenesis, inflammation, innate immunity, wound healing, and cancer biology. The most critical biological platelet response is serving as “First Responders” during the wounding process. The exposure of extracellular matrix proteins and intracellular components occurs after wounding. Numerous platelet receptors recognize matrix proteins that trigger platelet activation, adhesion, aggregation, and stabilization. Once activated, platelets change shape and degranulate to release growth factors and bioactive lipids into the blood stream. This cyclic process recruits and aggregates platelets along with thrombogenesis. This process facilitates wound closure or can recognize circulating pathologic bodies. Cancer cell entry into the blood stream triggers platelet-mediated recognition and is amplified by cell surface receptors, cellular products, extracellular factors, and immune cells. In some cases, these interactions suppress immune recognition and elimination of cancer cells or promote arrest at the endothelium, or entrapment in the microvasculature, and survival. This supports survival and spread of cancer cells and the establishment of secondary lesions to serve as important targets for prevention and therapy. PMID:24696047

  20. Cyto-molecular Tuning of Quantum Dots

    NASA Astrophysics Data System (ADS)

    Lee, Bong; Suresh, Sindhuja; Ekpenyong, Andrew

    Quantum dots (QDs) are semiconductor nanoparticles composed of groups II-VI or III-V elements, with physical dimensions smaller than the exciton Bohr radius, and between 1-10 nm. Their applications and promising myriad applications in photovoltaic cells, biomedical imaging, targeted drug delivery, quantum computing, etc, have led to much research on their interactions with other systems. For biological systems, research has focused on biocompatibility and cytotoxicity of QDs in the context of imaging/therapy. However, there is a paucity of work on how biological systems might be used to tune QDs. Here, we hypothesize that the photo-electronic properties of QDs can be tuned by biological macromolecules following controlled changes in cellular activities. Using CdSe/ZnS core-shell QDs, we perform spectroscopic analysis of optically excited colloidal QDs with and without promyelocytic HL60 cells. Preliminary results show shifts in the emission spectra of the colloidal dispersions with and without cells. We will present results for activated HL60-derived cells where specific macromolecules produced by these cells perturb the electric dipole moments of the excited QDs and the associated electric fields, in ways that constitute what we describe as cyto-molecular tuning. Startup funds from the College of Arts and Sciences, Creighton University (to AEE).

  1. Curcumin in Cell Death Processes: A Challenge for CAM of Age-Related Pathologies

    PubMed Central

    Salvioli, S.; Sikora, E.; Cooper, E. L.

    2007-01-01

    Curcumin, the yellow pigment from the rhizoma of Curcuma longa, is a widely studied phytochemical which has a variety of biological activities: anti-inflammatory and anti-oxidative. In this review we discuss the biological mechanisms and possible clinical effects of curcumin treatment on cancer therapy, and neurodegenerative diseases such as Alzheimer's Disease, with particular attention to the cell death processes induced by curcumin. Since oxidative stress and inflammation are major determinants of the aging process, we also argue that curcumin can have a more general effect that slows down the rate of aging. Finally, the effects of curcumin can be described as xenohormetic, since it activates a sort of stress response in mammalian cells. PMID:17549234

  2. The pancreatic stellate cell: a star on the rise in pancreatic diseases

    PubMed Central

    Omary, M. Bishr; Lugea, Aurelia; Lowe, Anson W.; Pandol, Stephen J.

    2007-01-01

    Pancreatic stellate cells (PaSCs) are myofibroblast-like cells found in the areas of the pancreas that have exocrine function. PaSCs are regulated by autocrine and paracrine stimuli and share many features with their hepatic counterparts, studies of which have helped further our understanding of PaSC biology. Activation of PaSCs induces them to proliferate, to migrate to sites of tissue damage, to contract and possibly phagocytose, and to synthesize ECM components to promote tissue repair. Sustained activation of PaSCs has an increasingly appreciated role in the fibrosis that is associated with chronic pancreatitis and with pancreatic cancer. Therefore, understanding the biology of PaSCs offers potential therapeutic targets for the treatment and prevention of these diseases. PMID:17200706

  3. Coming Out in Class: Challenges and Benefits of Active Learning in a Biology Classroom for LGBTQIA Students.

    PubMed

    Cooper, Katelyn M; Brownell, Sara E

    As we transition our undergraduate biology classrooms from traditional lectures to active learning, the dynamics among students become more important. These dynamics can be influenced by student social identities. One social identity that has been unexamined in the context of undergraduate biology is the spectrum of lesbian, gay, bisexual, transgender, queer, intersex, and asexual (LGBTQIA) identities. In this exploratory interview study, we probed the experiences and perceptions of seven students who identify as part of the LGBTQIA community. We found that students do not always experience the undergraduate biology classroom to be a welcoming or accepting place for their identities. In contrast to traditional lectures, active-learning classes increase the relevance of their LGBTQIA identities due to the increased interactions among students during group work. Finally, working with other students in active-learning classrooms can present challenges and opportunities for students considering their LGBTQIA identity. These findings indicate that these students' LGBTQIA identities are affecting their experience in the classroom and that there may be specific instructional practices that can mitigate some of the possible obstacles. We hope that this work can stimulate discussions about how to broadly make our active-learning biology classes more inclusive of this specific population of students. © 2016 K. M. Cooper and S. E. Brownell. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Efficacy of a Meiosis Learning Module Developed for the Virtual Cell Animation Collection.

    PubMed

    Goff, Eric E; Reindl, Katie M; Johnson, Christina; McClean, Phillip; Offerdahl, Erika G; Schroeder, Noah L; White, Alan R

    2017-01-01

    Recent reports calling for change in undergraduate biology education have resulted in the redesign of many introductory biology courses. Reports on one common change to course structure, the active-learning environment, have placed an emphasis on student preparation, noting that the positive outcomes of active learning in the classroom depend greatly on how well the student prepares before class. As a possible preparatory resource, we test the efficacy of a learning module developed for the Virtual Cell Animation Collection. This module presents the concepts of meiosis in an interactive, dynamic environment that has previously been shown to facilitate learning in introductory biology students. Participants ( n = 534) were enrolled in an introductory biology course and were presented the concepts of meiosis in one of two treatments: the interactive-learning module or a traditional lecture session. Analysis of student achievement shows that students who viewed the learning module as their only means of conceptual presentation scored significantly higher ( d = 0.40, p < 0.001) than students who only attended a traditional lecture on the topic. Our results show the animation-based learning module effectively conveyed meiosis conceptual understanding, which suggests that it may facilitate student learning outside the classroom. Moreover, these results have implications for instructors seeking to expand their arsenal of tools for "flipping" undergraduate biology courses. © 2017 E. E. Goff et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Cysteine Cathepsins in the Secretory Vesicle Produce Active Peptides: Cathepsin L Generates Peptide Neurotransmitters and Cathepsin B Produces Beta-Amyloid of Alzheimer’s Disease

    PubMed Central

    Hook, Vivian; Funkelstein, Lydiane; Wegrzyn, Jill; Bark, Steven; Kindy, Mark; Hook, Gregory

    2011-01-01

    Recent new findings indicate significant biological roles of cysteine cathepsin proteases in secretory vesicles for production of biologically active peptides. Notably, cathepsin L in secretory vesicles has been demonstrated as a key protease for proteolytic processing of proneuropeptides (and prohormones) into active neuropeptides that are released to mediate cell-cell communication in the nervous system for neurotransmission. Moreover, cathepsin B in secretory vesicles has been recently identified as a β-secretase for production of neurotoxic β-amyloid (Aβ) peptides that accumulate in Alzheimer’s disease (AD), participating as a notable factor in the severe memory loss in AD. These secretory vesicle functions of cathepsins L and B for production of biologically active peptides contrasts with the well-known role of cathepsin proteases in lysosomes for the degradation of proteins to result in their inactivation. The unique secretory vesicle proteome indicates proteins of distinct functional categories that provide the intravesicular environment for support of cysteine cathepsin function. Features of the secretory vesicle protein systems insure optimized intravesicular conditions that support the proteolytic activity of cathepsins. These new findings of recently discovered biological roles of cathepsins L and B indicate their significance in human health and disease. PMID:21925292

  6. A revisionist history of adult marrow stem cell biology or 'they forgot about the discard'.

    PubMed

    Quesenberry, P; Goldberg, L

    2017-08-01

    The adult marrow hematopoietic stem cell biology has largely been based on studies of highly purified stem cells. This is unfortunate because during the stem cell purification the great bulk of stem cells are discarded. These cells are actively proliferating. The final purified stem cell is dormant and not representative of the whole stem cell compartment. Thus, a large number of studies on the cellular characteristics, regulators and molecular details of stem cells have been carried on out of non-represented cells. Niche studies have largely pursued using these purified stem cells and these are largely un-interpretable. Other considerations include the distinction between baseline and transplant stem cells and the modulation of stem cell phenotype by extracellular vesicles, to cite a non-inclusive list. Work needs to proceed on characterizing the true stem cell population.

  7. Biological effects due to weak magnetic field on plants

    NASA Astrophysics Data System (ADS)

    Belyavskaya, N. A.

    2004-01-01

    Throughout the evolution process, Earth's magnetic field (MF, about 50 μT) was a natural component of the environment for living organisms. Biological objects, flying on planned long-term interplanetary missions, would experience much weaker magnetic fields, since galactic MF is known to be 0.1-1 nT. However, the role of weak magnetic fields and their influence on functioning of biological organisms are still insufficiently understood, and is actively studied. Numerous experiments with seedlings of different plant species placed in weak magnetic field have shown that the growth of their primary roots is inhibited during early germination stages in comparison with control. The proliferative activity and cell reproduction in meristem of plant roots are reduced in weak magnetic field. Cell reproductive cycle slows down due to the expansion of G 1 phase in many plant species (and of G 2 phase in flax and lentil roots), while other phases of cell cycle remain relatively stabile. In plant cells exposed to weak magnetic field, the functional activity of genome at early pre-replicate period is shown to decrease. Weak magnetic field causes intensification of protein synthesis and disintegration in plant roots. At ultrastructural level, changes in distribution of condensed chromatin and nucleolus compactization in nuclei, noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids in meristem cells were observed in pea roots exposed to weak magnetic field. Mitochondria were found to be very sensitive to weak magnetic field: their size and relative volume in cells increase, matrix becomes electron-transparent, and cristae reduce. Cytochemical studies indicate that cells of plant roots exposed to weak magnetic field show Ca 2+ over-saturation in all organelles and in cytoplasm unlike the control ones. The data presented suggest that prolonged exposures of plants to weak magnetic field may cause different biological effects at the cellular, tissue and organ levels. They may be functionally related to systems that regulate plant metabolism including the intracellular Ca 2+ homeostasis. However, our understanding of very complex fundamental mechanisms and sites of interactions between weak magnetic fields and biological systems is still incomplete and still deserve strong research efforts.

  8. Novel urea and bis-urea primaquine derivatives with hydroxyphenyl or halogenphenyl substituents: Synthesis and biological evaluation.

    PubMed

    Perković, I; Antunović, M; Marijanović, I; Pavić, K; Ester, K; Kralj, M; Vlainić, J; Kosalec, I; Schols, D; Hadjipavlou-Litina, D; Pontiki, E; Zorc, B

    2016-11-29

    A series of novel compounds 3a-j and 6a-j with primaquine and hydroxyl or halogen substituted benzene moieties bridged by urea or bis-urea functionalities were designed, synthesized and evaluated for biological activity. The title compounds were prepared using benzotriazole as the synthon, through several synthetic steps. 3-[3,5-Bis(trifluoromethyl)phenyl]-1-{4-[(6-methoxyquinolin-8-yl)amino]pentyl}urea (3j) was the most active urea and 1-[({4-[(6-methoxyquinolin-8-yl)amino]pentyl}carbamoyl)amino]-3-[3-(trifluoromethyl)phenyl]urea (6h) the most active bis-urea derivative in antiproliferative screening in vitro against eight tested cancer cell lines. Urea derivatives 3a-g with hydroxy group or one halogen atom showed moderate antiproliferative effects against all the tested cell lines, but stronger activity against breast carcinoma MCF-7 cell line, while trifluoromethyl derivatives 3h-j showed antiproliferative effects against all the tested cell lines in low micromolar range. Finally, bis-ureas with hydroxy and fluoro substituents 6a-d showed extreme selectivity and chloro or bromo derivatives 6e-g high selectivity against MCF-7 cells (IC 50 0.1-2.6 μM). p-Fluoro derivative 6d, namely 3-(4-fluorophenyl)-1-[({4-[(6-methoxyquinolin-8-yl)amino]pentyl}carbamoyl)amino]urea, is the most promising compound. Further biological experiments showed that 6d affected cell cycle and induced cell death of MCF-7 cell line. Due to its high activity against MCF-7 cell line (IC 50 0.31 μM), extreme selectivity and full agreement with the Lipinski's and Gelovani's rules for prospective small molecular drugs, 6d may be considered as a lead compound in development of breast carcinoma drugs. Urea 3b and almost all bis-ureas showed high antioxidant activity in DPPH assay, but urea derivatives were more active in lipid peroxidation test. Only few compounds exhibited weak inhibition of soybean lipoxygenase. Compound 3j exhibited the strongest antimicrobial activity in susceptibility assay in vitro (MIC = 1.6-12.5 μg ml -1 ). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Living Nanomachines

    NASA Astrophysics Data System (ADS)

    Carlier, M.-F.; Helfer, E.; Wade, R.; Haraux, F.

    The living cell is a kind of factory on the microscopic scale, in which an assembly of modular machines carries out, in a spatially and temporally coordinated way, a whole range of activities internal to the cell, including the synthesis of substances essential to its survival, intracellular traffic, waste disposal, and cell division, but also activities related to intercellular communication and exchanges with the outside world, i.e., the ability of the cell to change shape, to move within a tissue, or to organise its own defence against attack by pathogens, injury, and so on. These nanomachines are made up of macromolecular assemblies with varying degrees of complexity, forged by evolution, within which work is done as a result of changes in interactions between proteins, or between proteins and nucleic acids, or between proteins and membrane components. All these cell components measure a few nanometers across, so the mechanical activity of these nanomachines all happens on the nanometric scale. The directional nature of the work carried out by biological nanomachines is associated with a dissipation of energy. As examples of protein assemblies, one could mention the proteasome, which is responsible for the degradation of proteins, and linear molecular motors such as actomyosin, responsible for muscle contraction, the dynein-microtubule system, responsible for flagellar motility, and the kinesin-microtubule system, responsible for transport of vesicles, which transform chemical energy into motion. Nucleic acid-protein assemblies include the ribosome, responsible for synthesising proteins, polymerases, helicases, elongation factors, and the machinery of DNA replication and repair; the mitotic spindle is an integrated system involving several of these activities which drive chromosome segregation. The machinery coupling membranes and proteins includes systems involved in the energy metabolism, such as the ATP synthase rotary motor, signalling cascades, endocytosis and phagocytosis complexes, and also dynamic membrane-cytoskeleton complexes which generate protrusion forces involved in cell adhesion and migration. The ideas of molecular recognition and controlled interfaces between biological components provide the underlying mechanisms for biological machinery and networks [1]. Many proteins illustrate this principle by their modular organisation into domains. The juxtaposition of catalytic domains of known function and domains of interaction with different partners leads to the emergence of new biological functions. It can also create threshold mechanisms, or biological switches, by triggering the activity of a given domain only when several partners interact with the regulatory domains. Many of these interaction domains are well understood. They exist inside different proteins, in particular, in cell signaling networks, and could potentially be used as building blocks in the construction of new proteins.

  10. Nonequilibrium phase transition in a self-activated biological network.

    PubMed

    Berry, Hugues

    2003-03-01

    We present a lattice model for a two-dimensional network of self-activated biological structures with a diffusive activating agent. The model retains basic and simple properties shared by biological systems at various observation scales, so that the structures can consist of individuals, tissues, cells, or enzymes. Upon activation, a structure emits a new mobile activator and remains in a transient refractory state before it can be activated again. Varying the activation probability, the system undergoes a nonequilibrium second-order phase transition from an active state, where activators are present, to an absorbing, activator-free state, where each structure remains in the deactivated state. We study the phase transition using Monte Carlo simulations and evaluate the critical exponents. As they do not seem to correspond to known values, the results suggest the possibility of a separate universality class.

  11. The anti-tumor effect and biological activities of the extract JMM6 from the stem-barks of the Chinese Juglans mandshurica Maxim on human hepatoma cell line BEL-7402.

    PubMed

    Zhang, Yongli; Cui, Yuqiang; Zhu, Jiayong; Li, Hongzhi; Mao, Jianwen; Jin, Xiaobao; Wang, Xiangsheng; Du, Yifan; Lu, Jiazheng

    2013-01-01

    Juglans mandshurica Maxim is a traditional herbal medicines in China, and its anti-tumor bioactivities are of research interest. Bioassay-guided fractionation method was employed to isolate anti-tumor compounds from the stem barks of the Juglans mandshurica Maxim. The anti-tumor effect and biological activities of the extracted compound JMM6 were studied in BEL-7402 cells by MTT, Cell cycle analysis, Hoechst 33342 staining, Annexin V-FITC/PI assay and Detection of mitochondrial membrane potential (ΔΨm). After treatment with the JMM6, the growth of BEL-7402 cells was inhibited and cells displayed typical morphological apoptotic characteristics. Further investigations revealed that treatment with JMM6 mainly caused G2/M cell cycle arrest and induced apoptosis in BEL-7402 cells. To evaluate the alteration of mitochondria in JMM6 induced apoptosis. The data showed that JMM6 decreased significantly the ΔΨm, causing the depolarization of the mitochondrial membrane. Our results show that the JMM6 will have a potential advantage of anti-tumor, less harmful to normal cells. This paper not only summarized the JMM6 pick-up technology from Juglans mandshurica Maxim and biological characteristic, but also may provide further evidence to exploit the potential medicine compounds from the stem-barks of the Chinese Juglans mandshurica Maxim.

  12. 75 FR 39667 - Availability for Non-Exclusive or Partially Exclusive Licensing of a U.S. Patent Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ..., which issued on December 15, 2009, entitled ``Use of Shigella Invaplex to Transport Functional Proteins... Functional Proteins and Transcriptionally Active Nucleic Acids Across Mammalian Cell Membranes In Vitro and... functional proteins and biologically active nucleic acids, across eukaryotic cell membranes. Brenda S. Bowen...

  13. ASBESTOS-INDUCED ACTIVATION OF SIGNALING PATHWAYS IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Title: Asbestos-Induced Activation of Signaling Pathways in Human
    Bronchial Epithelial Cells

    X. Wang, MD 1, J. M. Samet, PhD 2 and A. J. Ghio, MD 2. 1 Center for
    Environmental Medicine, Asthma and Lung Biology, University of North
    Carolina, Chapel Hill, NC, Uni...

  14. ACTIVATION OF AP-1 IN UROTSA CELLS BY METHYLATED ARSENICALS

    EPA Science Inventory

    ACTIVATION OF AP-1 IN UROTSA CELLS BY METHYLATED TRIVALENT ARSENICALS. Z Drobna1, I Jaspers2, D J Thomas3 and M Styblo1. 1Department of Pediatrics; 2Center for Environmental Medicine and Lung Biology, University of North Carolina at Chapel Hill, NC, USA; 3US EPA, RTP, NC, USA.

  15. Gold nanoparticles synthesis and biological activity estimation in vitro and in vivo.

    PubMed

    Rieznichenko, L S; Dybkova, S M; Gruzina, T G; Ulberg, Z R; Todor, I N; Lukyanova, N Yu; Shpyleva, S I; Chekhun, V F

    2012-01-01

    The aim of the work was the synthesis of gold nanoparticles (GNP) of different sizes and the estimation of their biological activity in vitro and in vivo. Water dispersions of gold nanoparticles of different sizes have been synthesized by Davis method and characterized by laser-correlation spectroscopy and transmission electron microscopy methods. The GNP interaction with tumor cells has been visualized by confocal microscopy method. The enzyme activity was determined by standard biochemical methods. GNP distribution and content in organs and tissues have been determined via atomic-absorption spectrometry method; genotoxic influence has been estimated by "Comet-assay" method. The GNP size-dependent accumulation in cultured U937 tumor cells and their ability to modulate U937 cell membrane Na(+),K(+)-АТР-ase activity value has been revealed in vitro. Using in vivo model of Guerin carcinoma it has been shown that GNP possess high affinity to tumor cells. Our results indicate the perspectives of use of the synthesized GNP water dispersions for cancer diagnostics and treatment. It's necessary to take into account a size-dependent biosafety level of nanoparticles.

  16. Inhibition of biological activity of staphylococcal enterotoxin A (SEA) by apple juice and apple polyphenols.

    PubMed

    Rasooly, Reuven; Do, Paula M; Friedman, Mendel

    2010-05-12

    The foodborne pathogen Staphylococcus aureus produces the virulent staphylococcal enterotoxin A (SEA), a single-chain protein that consists of 233 amino acid residues with a molecular weight of 27 078 Da. SEA is a superantigen that is reported to contribute to animal (mastitis) and human (emesis, diarrhea, atopic dermatitis, arthritis, and toxic shock) syndromes. Changes of the native structural integrity may inactivate the toxin by preventing molecular interaction with cell membrane receptor sites of their host cells. In the present study, we evaluated the ability of one commercial and two freshly prepared apple juices and a commercial apple polyphenol preparation (Apple Poly) to inhibit the biological activity of SEA. Dilutions of freshly prepared apple juices and Apple Poly inhibited the biological activity of SEA without any significant cytotoxic effect on the spleen cells. Additional studies with antibody-coated immunomagnetic beads bearing specific antibodies against the toxin revealed that SEA added to apple juice appears to be largely irreversibly bound to the juice constituents. The results suggest that food-compatible and safe anti-toxin phenolic compounds can be used to inactivate SEA in vitro and possibly also in vivo, even after induction of T-cell proliferation by long-term exposure to SEA. The significance of the results for microbial food safety and human health is discussed.

  17. Mitogenic Effects of Phosphatidylcholine Nanoparticles on MCF-7 Breast Cancer Cells

    PubMed Central

    Gándola, Yamila B.; Pérez, Sebastián E.; Irene, Pablo E.; Sotelo, Ana I.; Miquet, Johanna G.; Corradi, Gerardo R.; Carlucci, Adriana M.; Gonzalez, Lorena

    2014-01-01

    Lecithins, mainly composed of the phospholipids phosphatidylcholines (PC), have many different uses in the pharmaceutical and clinical field. PC are involved in structural and biological functions as membrane trafficking processes and cellular signaling. Considering the increasing applications of lecithin-based nanosystems for the delivery of therapeutic agents, the aim of the present work was to determine the effects of phosphatidylcholine nanoparticles over breast cancer cellular proliferation and signaling. PC dispersions at 0.01 and 0.1% (w/v) prepared in buffer pH 7.0 and 5.0 were studied in the MCF-7 breast cancer cell line. Neutral 0.1% PC-derived nanoparticles induced the activation of the MEK-ERK1/2 pathway, increased cell viability and induced a 1.2 fold raise in proliferation. These biological effects correlated with the increase of epidermal growth factor receptor (EGFR) content and its altered cellular localization. Results suggest that nanoparticles derived from PC dispersion prepared in buffer pH 7.0 may induce physicochemical changes in the plasma membrane of cancer cells which may affect EGFR cellular localization and/or activity, increasing activation of the MEK-ERK1/2 pathway and inducing proliferation. Results from the present study suggest that possible biological effects of delivery systems based on lecithin nanoparticles should be taken into account in pharmaceutical formulation design. PMID:24772432

  18. Design, synthesis and biological evaluation of hybrids of β-carboline and salicylic acid as potential anticancer and apoptosis inducing agents

    PubMed Central

    Xu, Qi-Bing; Chen, Xiang-Fan; Feng, Jiao; Miao, Jie-Fei; Liu, Ji; Liu, Feng-Tao; Niu, Bi-Xi; Cai, Jin-Yang; Huang, Chao; Zhang, Yanan; Ling, Yong

    2016-01-01

    A novel series of hybrids (7a-l, 8a-l) from β-carboline and salicylic acid (SA) were designed and synthesized, and their in vitro biological activities were evaluated. Most of the hybrids displayed potent antiproliferative activity against five cancer cell lines in vitro, showing potencies superior to 5-FU and harmine. In particular, compound 8h selectively inhibited proliferation of liver cancer SMMC-7721 cells but not normal liver LO2 cells, and displayed greater inhibitory selectivity than intermediate 5h and SA. 8h also induced cancer cell apoptosis in an Annexin V-FITC/propidium iodide flow cytometry assay, and triggered the mitochondrial/caspase apoptosis by decreasing mitochondrial membrane potential which was associated with up-regulation of Bax, down-regulation of Bcl-2 and activation levels of the caspase cascade in a concentration-dependent manner. Our findings suggest that the β-carboline/SA hybrids may hold greater promise as therapeutic agents for the intervention of human cancers. PMID:27824091

  19. Intracellular Retention of ABL Kinase Inhibitors Determines Commitment to Apoptosis in CML Cells

    PubMed Central

    Dziadosz, Marek; Schnöder, Tina; Heidel, Florian; Schemionek, Mirle; Melo, Junia V.; Kindler, Thomas; Müller-Tidow, Carsten; Koschmieder, Steffen; Fischer, Thomas

    2012-01-01

    Clinical development of imatinib in CML established continuous target inhibition as a paradigm for successful tyrosine kinase inhibitor (TKI) therapy. However, recent reports suggested that transient potent target inhibition of BCR-ABL by high-dose TKI (HD-TKI) pulse-exposure is sufficient to irreversibly commit cells to apoptosis. Here, we report a novel mechanism of prolonged intracellular TKI activity upon HD-TKI pulse-exposure (imatinib, dasatinib) in BCR-ABL-positive cells. Comprehensive mechanistic exploration revealed dramatic intracellular accumulation of TKIs which closely correlated with induction of apoptosis. Cells were rescued from apoptosis upon HD-TKI pulse either by repetitive drug wash-out or by overexpression of ABC-family drug transporters. Inhibition of ABCB1 restored sensitivity to HD-TKI pulse-exposure. Thus, our data provide evidence that intracellular drug retention crucially determines biological activity of imatinib and dasatinib. These studies may refine our current thinking on critical requirements of TKI dose and duration of target inhibition for biological activity of TKIs. PMID:22815843

  20. Oxaphosphinanes: new therapeutic perspectives for glioblastoma.

    PubMed

    Clarion, Ludovic; Jacquard, Carine; Sainte-Catherine, Odile; Loiseau, Séverine; Filippini, Damien; Hirlemann, Marie-Hélène; Volle, Jean-Noël; Virieux, David; Lecouvey, Marc; Pirat, Jean-Luc; Bakalara, Norbert

    2012-03-08

    This paper reports the design and the synthesis of a new family of compounds, the phostines, belonging to the [1,2]oxaphosphinane family. Twenty-six compounds have been screened for their antiproliferative activity against a large panel of NCI cancer cell lines. Because of its easy synthesis and low EC(50) value (500 nM against the C6 rat glioma cell line), compound 3.1a was selected for further biological study. Moreover, the specific biological effect of 3.1a on the glioblastoma phylogenetic cluster from the NCI is dependent on its stereochemistry. Within that cluster, 3.1a has a higher antiproliferative activity than Temozolomide and is more potent than paclitaxel for the SF295 and SNB75 cell lines. In constrast with paclitaxel and vincristine, 3.1a is devoid of astrocyte toxicity. The original activity spectrum of 3.1a on the NCI cancer cell line panel allows the development of this family for use in association with existing drugs, opening new therapeutic perspectives.

  1. Analysis of synthetic and biological microparticles on several flow cytometric platforms***

    EPA Science Inventory

    Biological microparticles (MPs) are potentially important biomarkers for thrombosis, cancer, glomerulonephritis and other disease states. These MPs are generally accepted to be membrane vesicles extruded following cellular activation. While human blood cells range from 10-15 micr...

  2. Increased sensitivity of African American triple negative breast cancer cells to nitric oxide-induced mitochondria-mediated apoptosis.

    PubMed

    Martinez, Luis; Thames, Easter; Kim, Jinna; Chaudhuri, Gautam; Singh, Rajan; Pervin, Shehla

    2016-07-29

    Breast cancer is a complex heterogeneous disease where many distinct subtypes are found. Younger African American (AA) women often present themselves with aggressive form of breast cancer with unique biology which is very difficult to treat. Better understanding the biology of AA breast tumors could lead to development of effective treatment strategies. Our previous studies indicate that AA but not Caucasian (CA) triple negative (TN) breast cancer cells were sensitive to nitrosative stress-induced cell death. In this study, we elucidate possible mechanisms that contribute to nitric oxide (NO)-induced apoptosis in AA TN breast cancer cells. Breast cancer cells were treated with various concentrations of long-acting NO donor, DETA-NONOate and cell viability was determined by trypan blue exclusion assay. Apoptosis was determined by TUNEL and caspase 3 activity as well as changes in mitochondrial membrane potential. Caspase 3 and Bax cleavage, levels of Cu/Zn superoxide dismutase (SOD) and Mn SOD was assessed by immunoblot analysis. Inhibition of Bax cleavage by Calpain inhibitor, and levels of reactive oxygen species (ROS) as well as SOD activity was measured in NO-induced apoptosis. In vitro and in vivo effect of NO treatment on mammary cancer stem cells (MCSCs) was assessed. NO induced mitocondria-mediated apoptosis in all AA but not in CA TN breast cancer cells. We found significant TUNEL-positive cells, cleavage of Bax and caspase-3 activation as well as depolarization mitochondrial membrane potential only in AA TN breast cancer cells exposed to NO. Inhibition of Bax cleavage and quenching of ROS partially inhibited NO-induced apoptosis in AA TN cells. Increase in ROS coincided with reduction in SOD activity in AA TN breast cancer cells. Furthermore, NO treatment of AA TN breast cancer cells dramatically reduced aldehyde dehydrogenase1 (ALDH1) expressing MCSCs and xenograft formation but not in breast cancer cells from CA origin. Ethnic differences in breast tumors dictate a need for tailoring treatment options more suited to the unique biology of the disease.

  3. New pharmacological strategies in rheumatic diseases.

    PubMed

    Schiotis, R E; Buzoianu, A D; Mureșanu, D F; Suciu, S

    2016-01-01

    Targeting the pathogenic pathway of chronic inflammation represents an unmet challenge for controlling disease activity, preventing functional disability, and maintaining an adequate quality of life in patients with rheumatic diseases. Abatacept, a novel molecule that inhibits co-stimulation signal, induces an inhibitory effect on the T-cells. This will further interfere with the activity of several cell lines, leading to the normalization of the immune response. In the latest years, abatacept has been extensively investigated in studies of rheumatoid arthritis for which it was recently approved as a second line biologic treatment in Romania. This review presents the clinical efficacy of abatacept in several rheumatic diseases and highlights the safety profile of this biological agent. Abbreviations : ACR = American College of Rheumatology, ADR = Adverse drug reaction, APC = antigen presenting cell, ApS = psoriatic arthritis, CRP = C reactive protein, CTLA-4 = Cytotoxic T-Cell Lymphocyte Antigen-4, DAS = Disease activity score, DMARDs = Disease modifying antirheumatic drugs, EMA = European Medicine Agency, EULAR = European League Against Rheumatism, FDA = Food and Drugs Administration, HBV = Hepatitis B virus, JIA = Juvenile Idiopathic Arthritis, LDA = low disease activity (LDA), MRI = magnetic resonance imaging (MRI), MTX = methotrexate, RA = rheumatoid arthritis, RCT = randomized controlled trial, SS = Sjogren's syndrome, TCR = T cell receptor.

  4. mTOR Activation by PI3K/Akt and ERK Signaling in Short ELF-EMF Exposed Human Keratinocytes

    PubMed Central

    Patruno, Antonia; Pesce, Mirko; Grilli, Alfredo; Speranza, Lorenza; Franceschelli, Sara; De Lutiis, Maria Anna; Vianale, Giovina; Costantini, Erica; Amerio, Paolo; Muraro, Raffaella; Felaco, Mario; Reale, Marcella

    2015-01-01

    Several reports suggest that ELF-EMF exposures interact with biological processes including promotion of cell proliferation. However, the molecular mechanisms by which ELF-EMF controls cell growth are not completely understood. The present study aimed to investigate the effect of ELF-EMF on keratinocytes proliferation and molecular mechanisms involved. Effect of ELF-EMF (50 Hz, 1 mT) on HaCaT cell cycle and cells growth and viability was monitored by FACS analysis and BrdU assay. Gene expression profile by microarray and qRT-PCR validation was performed in HaCaT cells exposed or not to ELF-EMF. mTOR, Akt and MAPKs expressions were evaluated by Western blot analysis. In HaCaT cells, short ELF-EMF exposure modulates distinct patterns of gene expression involved in cell proliferation and in the cell cycle. mTOR activation resulted the main molecular target of ELF-EMF on HaCaT cells. Our data showed the increase of the canonical pathway of mTOR regulation (PI3K/Akt) and activation of ERK signaling pathways. Our results indicate that ELF-EMF selectively modulated the expression of multiple genes related to pivotal biological processes and functions that play a key role in physio-pathological mechanisms such as wound healing. PMID:26431550

  5. "Active" drops as phantom models for living cells: a mesoscopic particle-based approach.

    PubMed

    Dallavalle, Marco; Lugli, Francesca; Rapino, Stefania; Zerbetto, Francesco

    2016-04-21

    Drops and biological cells share some morphological features and visco-elastic properties. The modelling of drops by mesoscopic non-atomistic models has been carried out to a high degree of success in recent years. We extend such treatment and discuss a simple, drop-like model to describe the interactions of the outer layer of cells with the surfaces of materials. Cells are treated as active mechanical objects that are able to generate adhesion forces. They appear with their true size and are made of "parcels of fluids" or beads. The beads are described by (very) few quantities/parameters related to fundamental chemical forces such as hydrophilicity and lipophilicity that represent an average of the properties of a patch of material or an area of the cell(s) surface. The investigation of adhesion dynamics, motion of individual cells, and the collective behavior of clusters of cells on materials is possible. In the simulations, the drops become active soft matter objects and different from regular droplets they do not fuse when in contact, their trajectories are not Brownian, and they can be forced "to secrete" molecules, to name some of the properties targeted by the modeling. The behavior that emerges from the simulations allows ascribing some cell properties to their mechanics, which are related to their biological features.

  6. Improved Student Learning through a Faculty Learning Community: How Faculty Collaboration Transformed a Large-Enrollment Course from Lecture to Student Centered.

    PubMed

    Elliott, Emily R; Reason, Robert D; Coffman, Clark R; Gangloff, Eric J; Raker, Jeffrey R; Powell-Coffman, Jo Anne; Ogilvie, Craig A

    2016-01-01

    Undergraduate introductory biology courses are changing based on our growing understanding of how students learn and rapid scientific advancement in the biological sciences. At Iowa State University, faculty instructors are transforming a second-semester large-enrollment introductory biology course to include active learning within the lecture setting. To support this change, we set up a faculty learning community (FLC) in which instructors develop new pedagogies, adapt active-learning strategies to large courses, discuss challenges and progress, critique and revise classroom interventions, and share materials. We present data on how the collaborative work of the FLC led to increased implementation of active-learning strategies and a concurrent improvement in student learning. Interestingly, student learning gains correlate with the percentage of classroom time spent in active-learning modes. Furthermore, student attitudes toward learning biology are weakly positively correlated with these learning gains. At our institution, the FLC framework serves as an agent of iterative emergent change, resulting in the creation of a more student-centered course that better supports learning. © 2016 E. R. Elliott et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Oximidine III, a new antitumor antibiotic against transformed cells from Pseudomonas sp. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activity.

    PubMed

    Hayakawa, Yoichi; Tomikawa, Taijiro; Shin-ya, Kazuo; Arao, Nakako; Nagai, Koji; Suzuki, Ken-ichi

    2003-11-01

    Our screening for antitumor antibiotics against transformed cells resulted in the isolation of a new active metabolite, oximidine III, from Pseudomonas sp. QN05727. This substance selectively inhibited the growth of rat 3Y1 fibroblasts transformed with various oncogenes. In ras- or src-transformed cells, oximidine III arrested the cell cycle at G1 phase and increased the expression of p21WAF1.

  8. Live-cell imaging of cell signaling using genetically encoded fluorescent reporters.

    PubMed

    Ni, Qiang; Mehta, Sohum; Zhang, Jin

    2018-01-01

    Synergistic advances in fluorescent protein engineering and live-cell imaging techniques in recent years have fueled the concurrent development and application of genetically encoded fluorescent reporters that are tailored for tracking signaling dynamics in living systems over multiple length and time scales. These biosensors are uniquely suited for this challenging task, owing to their specificity, sensitivity, and versatility, as well as to the noninvasive and nondestructive nature of fluorescence and the power of genetic encoding. Over the past 10 years, a growing number of fluorescent reporters have been developed for tracking a wide range of biological signals in living cells and animals, including second messenger and metabolite dynamics, enzyme activation and activity, and cell cycle progression and neuronal activity. Many of these biosensors are gaining wide use and are proving to be indispensable for unraveling the complex biological functions of individual signaling molecules in their native environment, the living cell, shedding new light on the structural and molecular underpinnings of cell signaling. In this review, we highlight recent advances in protein engineering that are likely to help expand and improve the design and application of these valuable tools. We then turn our focus to specific examples of live-cell imaging using genetically encoded fluorescent reporters as an important platform for advancing our understanding of G protein-coupled receptor signaling and neuronal activity. © 2017 Federation of European Biochemical Societies.

  9. Isolation of biologically-active exosomes from human plasma.

    PubMed

    Muller, Laurent; Hong, Chang-Sook; Stolz, Donna B; Watkins, Simon C; Whiteside, Theresa L

    2014-09-01

    Effects of exosomes present in human plasma on immune cells have not been examined in detail. Immunological studies with plasma-derived exosomes require their isolation by procedures involving ultracentrifugation. These procedures were largely developed using supernatants of cultured cells. To test biologic activities of plasma-derived exosomes, methods are necessary that ensure adequate recovery of exosome fractions free of contaminating larger vesicles, cell fragments and protein/nucleic acid aggregates. Here, an optimized method for exosome isolation from human plasma/serum specimens of normal controls (NC) or cancer patients and its advantages and pitfalls are described. To remove undesirable plasma-contaminating components, ultrafiltration of differentially-centrifuged plasma/serum followed by size-exclusion chromatography prior to ultracentrifugation facilitated the removal of contaminants. Plasma or serum was equally acceptable as a source of exosomes based on the recovered protein levels (in μg protein/mL plasma) and TEM image quality. Centrifugation on sucrose density gradients led to large exosome losses. Fresh plasma was the best source of morphologically-intact exosomes, while the use of frozen/thawed plasma decreased exosome purity but not their biologic activity. Treatments of frozen plasma with DNAse, RNAse or hyaluronidase did not improve exosome purity and are not recommended. Cancer patients' plasma consistently yielded more isolated exosomes than did NCs' plasma. Cancer patients' exosomes also mediated higher immune suppression as evidenced by decreased CD69 expression on responder CD4+ T effector cells. Thus, the described procedure yields biologically-active, morphologically-intact exosomes that have reasonably good purity without large protein losses and can be used for immunological, biomarker and other studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Different design of enzyme-triggered CO-releasing molecules (ET-CORMs) reveals quantitative differences in biological activities in terms of toxicity and inflammation.

    PubMed

    Stamellou, E; Storz, D; Botov, S; Ntasis, E; Wedel, J; Sollazzo, S; Krämer, B K; van Son, W; Seelen, M; Schmalz, H G; Schmidt, A; Hafner, M; Yard, B A

    2014-01-01

    Acyloxydiene-Fe(CO)3 complexes can act as enzyme-triggered CO-releasing molecules (ET-CORMs). Their biological activity strongly depends on the mother compound from which they are derived, i.e. cyclohexenone or cyclohexanedione, and on the position of the ester functionality they harbour. The present study addresses if the latter characteristic affects CO release, if cytotoxicity of ET-CORMs is mediated through iron release or inhibition of cell respiration and to what extent cyclohexenone and cyclohexanedione derived ET-CORMs differ in their ability to counteract TNF-α mediated inflammation. Irrespective of the formulation (DMSO or cyclodextrin), toxicity in HUVEC was significantly higher for ET-CORMs bearing the ester functionality at the outer (rac-4), as compared to the inner (rac-1) position of the cyclohexenone moiety. This was paralleled by an increased CO release from the former ET-CORM. Toxicity was not mediated via iron as EC50 values for rac-4 were significantly lower than for FeCl2 or FeCl3 and were not influenced by iron chelation. ATP depletion preceded toxicity suggesting impaired cell respiration as putative cause for cell death. In long-term HUVEC cultures inhibition of VCAM-1 expression by rac-1 waned in time, while for the cyclohexanedione derived rac-8 inhibition seems to increase. NFκB was inhibited by both rac-1 and rac-8 independent of IκBα degradation. Both ET-CORMs activated Nrf-2 and consequently induced the expression of HO-1. This study further provides a rational framework for designing acyloxydiene-Fe(CO)3 complexes as ET-CORMs with differential CO release and biological activities. We also provide a better understanding of how these complexes affect cell-biology in mechanistic terms.

  11. Activity ranking of synthetic analogs targeting vascular endothelial growth factor receptor 2 by an integrated cell membrane chromatography system.

    PubMed

    Wang, Dongyao; Lv, Diya; Chen, Xiaofei; Liu, Yue; Ding, Xuan; Jia, Dan; Chen, Langdong; Zhu, Zhenyu; Cao, Yan; Chai, Yifeng

    2015-12-01

    Evaluating the biological activities of small molecules represents an important part of the drug discovery process. Cell membrane chromatography (CMC) is a well-developed biological chromatographic technique. In this study, we have developed combined SMMC-7721/CMC and HepG2/CMC with high-performance liquid chromatography and time-of-flight mass spectrometry to establish an integrated screening platform. These systems was subsequently validated and used for evaluating the activity of quinazoline compounds, which were designed and synthesized to target vascular endothelial growth factor receptor 2. The inhibitory activities of these compounds towards this receptor were also tested using a classical caliper mobility shift assay. The results revealed a significant correlation between these two methods (R(2) = 0.9565 or 0.9420) for evaluating the activities of these compounds. Compared with traditional methods of evaluating the activities analogous compounds, this integrated cell membrane chromatography screening system took less time and was more cost effective, indicating that it could be used as a practical method in drug discovery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hydrodynamic theory of active matter

    NASA Astrophysics Data System (ADS)

    Jülicher, Frank; Grill, Stephan W.; Salbreux, Guillaume

    2018-07-01

    We review the general hydrodynamic theory of active soft materials that is motivated in particular by biological matter. We present basic concepts of irreversible thermodynamics of spatially extended multicomponent active systems. Starting from the rate of entropy production, we identify conjugate thermodynamic fluxes and forces and present generic constitutive equations of polar active fluids and active gels. We also discuss angular momentum conservation which plays a role in the the physics of active chiral gels. The irreversible thermodynamics of active gels provides a general framework to discuss the physics that underlies a wide variety of biological processes in cells and in multicellular tissues.

  13. Active matter, then and now.

    PubMed

    Keller, Evelyn Fox

    2016-09-01

    Historically, living was divided from dead, inert matter by its autonomous activity. Today, a number of materials not themselves alive are characterized as having inherent activity, and this activity has become the subject of a hot new field of physics, "Active Matter", or "Soft matter become alive." For active matter scientists, the relation of physics to biology is guaranteed in one direction by the assertion that the cell is a material, and hence its study can be considered a branch of material science, and in the other direction, by the claim that the physical dynamics of this material IS what brings the cell to life, and therefore its study is a proper branch of biology. I will examine these claims in relation to the concerns of nineteenth century scientists on the one hand, and on the other, in relation to future prospects of the division between animate and inanimate.

  14. Interleukin-18: a regulator of cancer and autoimmune diseases.

    PubMed

    Esmailbeig, Maryam; Ghaderi, Abbas

    2017-11-01

    Interleukin (IL)-18, structurally similar to IL-1β, is a member of IL-1 superfamily of cytokines. This cytokine, which is expressed by many human lymphoid and nonlymphoid cells, has an important role in inflammatory processes. The main function of IL-18 is mediated through induction of interferon-γ (IFN-γ) secretion from T helper (Th1) cells. This cytokine synergistically with IL-12 contributes to Th1 differentiation and, therefore, is important in host defense mechanisms against intracellular bacteria, viruses, and fungi. Recent evidences showing the involvement of IL-18 in Th2 differentiation and ultimately IgE production from B cells have shed a new insight on the dual effects of IL-18 on Th1 and Th2 inflammatory responses. IL-18 in combination with IL-12 can activate cytotoxic T cells (CTLs), as well as natural killer (NK) cells, to produce IFN-γ and, therefore, may contribute to tumor immunity. The biological activity of IL-18 is not limited to these cells, but it also plays a role in development of Th17 cell responses. IL-18 synergistically with IL-23 can induce IL-17 secretion from Th17 cells. The diverse biological activity of IL-18 on T-cell subsets and other immune cells has made this cytokine a good target for investigating its role in various inflammatory-based diseases. Lately, the discovery of IL-18 binding protein (IL-18BP), a physiological inhibitor of IL-18 and a hallmark of IL-18 biology, made this cytokine an attractive target for studying its pros and cons in the treatment of various diseases. In recent years, the biology, genetics, and pathological role of IL-18 have been studied in a number of diseases. In this article, we aimed to present an updated review on these aspects regarding the contribution of IL-18 to important diseases such as cancer, autoimmunity, and inflammatory-mediated conditions including allergic diseases, metabolic syndrome, and atherosclerosis. Emerging data indicating prognostic, diagnostic, and therapeutic features of IL-18 and its related molecules will also be discussed.

  15. Extraction, Characterization, Stability and Biological Activity of Flavonoids Isolated from Chamomile Flowers

    PubMed Central

    Srivastava, Janmejai K; Gupta, Sanjay

    2009-01-01

    Dried flowers of Chamomile (Matricaria chamomilla) are largely used for their medicinal properties. In the present study, we examined the pharmacological properties of aqueous and methanolic fraction isolated from two varieties of German chamomile. HPLC-MS analysis of chamomile extract confirmed apigenin-7-O-glucoside as the major constituent of chamomile; some minor glycoside components were observed along with essential oils. These glucosides are highly stable in solution at different temperature range and their degradation occurs after long-term storage and extraction conditions at different pH and solvent. Methanolic fraction isolated from chamomile flowers demonstrated higher biologic response in inhibiting cell growth and causing induction of apoptosis in various human cancer cell lines compared to aqueous chamomile fraction. Apigenin glucosides inhibited cancer cell growth through deconjugation of glycosides that occurs in the cellular compartment to produce aglycone, apigenin. Taken together, the pharmacological profile of chamomile extract was dependent upon extraction process, storage conditions which affected the biological activity. PMID:20098626

  16. In vitro study of biological activities of anthocyanin-rich berry extracts on porcine intestinal epithelial cells.

    PubMed

    Kšonžeková, Petra; Mariychuk, Ruslan; Eliašová, Adriana; Mudroňová, Dagmar; Csank, Tomáš; Király, Ján; Marcinčáková, Dana; Pistl, Juraj; Tkáčiková, L'udmila

    2016-03-15

    Anthocyanins, compounds that represent the major group of flavonoids in berries, are one of the most powerful natural antioxidants. The aim of this study was to evaluate biological activities and comparison of anthocyanin-rich extracts prepared from chokeberry (Aronia melanocarpa), elderberry (Sambucus nigra), bilberry (Vaccinium myrtillus) and blueberry (V. corymbosum) on the porcine intestinal epithelial IPEC-1 cell line. The IC50 values calculated in the antioxidant cell-based dichlorofluorescein assay (DCF assay) were 1.129 mg L(-1) for chokeberry, 1.081 mg L(-1) for elderberry, 2.561 mg L(-1) for bilberry and 2.965 mg L(-1) for blueberry, respectively. We found a significant negative correlation (P < 0.001) between cyanidin glycosides content and IC50 values. Moreover, extracts rich in cyanidin glycosides stimulated proliferation of IPEC-1 cells and did not have cytotoxic effect on cells at an equivalent in vivo concentration. We found that the chokeberry and elderberry extracts rich in cyanidin glycosides possess better antioxidant and anticytotoxic activities in comparison to blueberry or bilberry extracts with complex anthocyanin profiles. © 2015 Society of Chemical Industry.

  17. G-CSF/anti-G-CSF antibody complexes drive the potent recovery and expansion of CD11b+Gr-1+ myeloid cells without compromising CD8+ T cell immune responses

    PubMed Central

    2013-01-01

    Background Administration of recombinant G-CSF following cytoreductive therapy enhances the recovery of myeloid cells, minimizing the risk of opportunistic infection. Free G-CSF, however, is expensive, exhibits a short half-life, and has poor biological activity in vivo. Methods We evaluated whether the biological activity of G-CSF could be improved by pre-association with anti-G-CSF mAb prior to injection into mice. Results We find that the efficacy of G-CSF therapy can be enhanced more than 100-fold by pre-association of G-CSF with an anti-G-CSF monoclonal antibody (mAb). Compared with G-CSF alone, administration of G-CSF/anti-G-CSF mAb complexes induced the potent expansion of CD11b+Gr-1+ myeloid cells in mice with or without concomitant cytoreductive treatment including radiation or chemotherapy. Despite driving the dramatic expansion of myeloid cells, in vivo antigen-specific CD8+ T cell immune responses were not compromised. Furthermore, injection of G-CSF/anti-G-CSF mAb complexes heightened protective immunity to bacterial infection. As a measure of clinical value, we also found that antibody complexes improved G-CSF biological activity much more significantly than pegylation. Conclusions Our findings provide the first evidence that antibody cytokine complexes can effectively expand myeloid cells, and furthermore, that G-CSF/anti-G-CSF mAb complexes may provide an improved method for the administration of recombinant G-CSF. PMID:24279871

  18. An introduction to the molecular basics of aryl hydrocarbon receptor biology.

    PubMed

    Abel, Josef; Haarmann-Stemmann, Thomas

    2010-11-01

    Depending on their chemical structure and properties, environmental chemicals and other xenobiotics that enter the cell can affect cellular function by either nonselective binding to cellular macromolecules or by interference with cellular receptors, which would initiate a more defined cell biological response. One of these intracellular chemosensor molecules is the aryl hydrocarbon receptor (AhR), a transcription factor of the bHLH/PAS family that is known to mediate the biochemical and toxic effects of dioxins, polyaromatic hydrocarbons and related compounds. Numerous investigations have revealed that the AhR is not only a master regulator of drug metabolism activated by anthropogenic chemicals, but is also triggered by natural and endogenous ligands and can influence cell biological endpoints such as growth and differentiation. Cutting-edge research has identified new intriguing functions of the AhR, such as during proteasomal degradation of steroid hormone receptors, the cellular UVB stress response and the differentiation of certain T-cell subsets. In this review we provide both a survey of the fundamental basics of AhR biology and an insight into new functional aspects of AhR signaling to further stimulate research on this intriguing transcription factor at the interface between toxicology, cell biology and immunology.

  19. Intersections of lung progenitor cells, lung disease and lung cancer.

    PubMed

    Kim, Carla F

    2017-06-30

    The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials. Copyright ©ERS 2017.

  20. Biological properties of mud extracts derived from various spa resorts.

    PubMed

    Spilioti, Eliana; Vargiami, Margarita; Letsiou, Sophia; Gardikis, Konstantinos; Sygouni, Varvara; Koutsoukos, Petros; Chinou, Ioanna; Kassi, Eva; Moutsatsou, Paraskevi

    2017-08-01

    Spa resorts are known for thousands of years for their healing properties and have been empirically used for the treatment of many inflammatory conditions. Mud is one of the most often used natural materials for preventive, healing and cosmetic reasons and although it has been used since the antiquity, little light has been shed on its physical, chemical and biological properties. In this study we examined the effect of mud extracts on the expression of adhesion molecules (CAMs) by endothelial cells as well as their effects on monocyte adhesion to activated endothelial cells. Most of mud extracts inhibited the expression of VCAM-1 by endothelial cells and reduced monocyte adhesion to activated endothelial cells, indicating a potent anti-inflammatory activity. Furthermore, the mud extracts were tested for their antimicrobial activity; however, most of them appeared inactive against S. aureus and S. epidermidis. One of the mud extracts (showing the best stabilization features) increased significantly the expression of genes involved in cell protection, longevity and hydration of human keratinocytes, such as, collagen 6A1, forkhead box O3, sirtuin-1, superoxide dismutase 1 and aquaporin-3. The present study reveals that mud exerts important beneficial effects including anti-inflammatory and anti-aging activity as well as moisturizing effects, implicating important cosmeceutical applications.

  1. Biological responses to PDGF-BB versus PDGF-DD in human mesangial cells.

    PubMed

    van Roeyen, C R C; Ostendorf, T; Denecke, B; Bokemeyer, D; Behrmann, I; Strutz, F; Lichenstein, H S; LaRochelle, W J; Pena, C E; Chaudhuri, A; Floege, J

    2006-04-01

    Platelet-derived growth factor (PDGF)-BB and PDGF-DD mediate mesangial cell proliferation in vitro and in vivo. While PDGF-BB is a ligand for the PDGF alpha- and beta-receptor chains, PDGF-DD binds more selectively to the beta-chain, suggesting potential differences in the biological activities. Signal transduction and regulation of gene expression induced by PDGF-BB and -DD were compared in primary human mesangial cells (HMCs), which expressed PDGF alpha- and beta-receptor subunits. The growth factor concentrations used were chosen based on their equipotency in inducing HMCs proliferation and binding to the betabeta-receptor. Both growth factors, albeit at different concentrations induced phosphorylation and activation of extracellular signal-regulated kinase 1 (ERK1) and ERK2. In addition, PDGFs led to the phosphorylation and activation of signal transducers and activators of transcription 1 (STAT1) and STAT3. HMCs proliferation induced by either PDGF-BB or -DD could be blocked by signal transduction inhibitors of the mitogen-activated protein kinase-, Janus kinase (JAK)/STAT-, or phosphatidyl-inositol 3-kinase pathways. Using a gene chip array and subsequent verification by real-time reverse transcriptase (RT)-polymerase chain reaction, we found that in HMC genes for matrix metalloproteinase 13 (MMP-13) and MMP-14 and, to a low extent, cytochrome B5 and cathepsin L were exclusively regulated by PDGF-BB, whereas no exclusive gene regulation was detected by PDGF-DD. However, at the protein level, both MMP-13 and -14 were equally induced by PDGF-BB and -DD. PDGF-BB and -DD effect similar biological responses in HMCs albeit at different potencies. Rare apparently differential gene regulation did not result in different protein expression, suggesting that in HMCs both PDGFs exert their biological activity almost exclusively via the PDGF beta-receptor.

  2. Comparative analysis of biological activities of Der p I-derived peptides on Fc epsilon receptor-bearing cells from Dermatophagoides pteronyssinus-sensitive patients.

    PubMed Central

    Jeannin, P; Pestel, J; Bossus, M; Lassalle, P; Tartar, A; Tonnel, A B

    1993-01-01

    The ability of four uncoupled synthetic peptides (p52-71, p117-133, p176-187, p188-199) derived from Der p I, a major allergen from the house dust mite Dermatophagoides pteronyssinus (Dpt) to stimulate Fc epsilon R+ cells from Dpt-sensitive patients was comparatively analysed. Each free peptide may specifically stimulate basophils (Fc epsilon RI+ cells) and platelets (Fc epsilon RII+ cells) from patients with significant levels of anti-Der p I IgE antibodies; p52-71 and p117-133 appear the best cell stimulation inducers. Both concentration-dependent biological activities of Der p I-peptide on Fc epsilon R+ cells are enhanced by coupling peptide to a carrier (as human serum albumin). Interestingly each Der p I-sensitive patient tested presents an individual pattern of response to peptide. Thus, from our results it appears that different Der p I sequences could be involved in the immune response to Der p I. PMID:7682161

  3. Comparative analysis of biological activities of Der p I-derived peptides on Fc epsilon receptor-bearing cells from Dermatophagoides pteronyssinus-sensitive patients.

    PubMed

    Jeannin, P; Pestel, J; Bossus, M; Lassalle, P; Tartar, A; Tonnel, A B

    1993-04-01

    The ability of four uncoupled synthetic peptides (p52-71, p117-133, p176-187, p188-199) derived from Der p I, a major allergen from the house dust mite Dermatophagoides pteronyssinus (Dpt) to stimulate Fc epsilon R+ cells from Dpt-sensitive patients was comparatively analysed. Each free peptide may specifically stimulate basophils (Fc epsilon RI+ cells) and platelets (Fc epsilon RII+ cells) from patients with significant levels of anti-Der p I IgE antibodies; p52-71 and p117-133 appear the best cell stimulation inducers. Both concentration-dependent biological activities of Der p I-peptide on Fc epsilon R+ cells are enhanced by coupling peptide to a carrier (as human serum albumin). Interestingly each Der p I-sensitive patient tested presents an individual pattern of response to peptide. Thus, from our results it appears that different Der p I sequences could be involved in the immune response to Der p I.

  4. Biological effects of a nano red elemental selenium.

    PubMed

    Zhang, J S; Gao, X Y; Zhang, L D; Bao, Y P

    2001-01-01

    A novel selenium form, nano red elemental selenium (Nano-Se) was prepared by adding bovine serum albumin to the redox system of selenite and glutathione. Nano-Se has a 7-fold lower acute toxicity than sodium selenite in mice (LD(50) 113 and 15 mg Se/kg body weight respectively). In Se-deficient rat, both Nano-Se and selenite can increase tissue selenium and GPx activity. The biological activities of Nano-Se and selenite were compared in terms of cell proliferation, enzyme induction and protection against free racial-mediated damage in human hepatoma HepG2 cells. Nano-Se and selenite are similarly cell growth inhibited and stimulated synthesis of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase (TR). When HepG2 cells were co-treated with selenium and glutathione, Nano-Se showed less pro-oxidative effects than selenite, as measured by cell growth. These results demonstrate that Nano-Se has a similar bioavailability in the rat and antioxidant effects on cells.

  5. Quantitative FRET imaging of leptin receptor oligomerization kinetics in single cells.

    PubMed

    Biener, Eva; Charlier, Madia; Ramanujan, V Krishnan; Daniel, Nathalie; Eisenberg, Avital; Bjørbaek, Christian; Herman, Brian; Gertler, Arieh; Djiane, Jean

    2005-12-01

    Leptin, an adipocyte-secreted hormone, signals through activation of its membrane-embedded receptor (LEPR). To study the leptin-induced events occurring in short (LEPRa) and long (LEPRb) LEPRs in the cell membrane, by FRET (fluorescence resonance energy transfer) methodology, the respective receptors, tagged at their C-terminal with CFP (cyan fluorescent protein) or YFP (yellow fluorescent protein), were prepared. The constructs encoding mLEPRa (mouse LEPRa)-YFP and mLEPRa-CFP, mLEPRb-YFP and mLEPRb-CFP were tested for biological activity in transiently transfected CHO cells (Chinese-hamster ovary cells) and HEK-293T cells (human embryonic kidney 293 T cells) for activation of STAT3 (signal transduction and activators of transcription 3)-mediated LUC (luciferase) activity and binding of radiolabelled leptin. All four constructs were biologically active and were as potent as their untagged counterparts. The localization pattern of the fused protein appeared to be confined almost entirely to the cell membrane. The leptin-dependent interaction between various types of receptors in fixed cells were studied by measuring FRET, using fluorescence lifetime imaging microscopy and acceptor photobleaching methods. Both methods yielded similar results, indicating that (1) leptin receptors expressed in the cell membrane exist mostly as preformed LEPRa/LEPRa or LEPRb/LEPRb homo-oligomers but not as LEPRb/LEPRa hetero-oligomers; (2) the appearance of transient leptin-induced FRET in cells transfected with LEPRb/LEPRb reflects both a conformational change that leads to closer interaction in the cytosolic part and a higher FRET signal, as well as de novo homo-oligomerization; (3) in LEPRa/LEPRa, exposure to leptin does not lead to any increase in FRET signalling as the proximity of CFP and YFP fluorophores in space already gives maximal FRET efficiency of the preoligomerized receptors.

  6. Leukemia inhibitory factor: part of a large ingathering family.

    PubMed

    Taupin, J L; Pitard, V; Dechanet, J; Miossec, V; Gualde, N; Moreau, J F

    1998-01-01

    Leukemia Inhibitory Factor (LIF) has a wide variety of biological activities. It regulates the differentiation of embryonic stem cells, neural cells, osteoblasts, adipocytes, hepatocytes and kidney epithelial cells. It also triggers the proliferation of myoblasts, primordial germ cells and some endothelial cells. Many of these biological functions parallel those of interleukin-6, Oncostatin M, ciliary neurotrophic factor, interleukin-11 and cardiotrophin-1. These structurally related cytokines also share subunits of their receptors which could partially explain the redundancy in this system of soluble mediators. In vivo LIF proves important in regulating the inflammatory response by fine tuning of the delicate balance of at least four systems in the body, namely the immune, the hematopoietic, the nervous and the endocrine systems. Although we are far from its therapeutic applications, the fast increasing knowledge in this field may bring new insights for the understanding of the cytokine biology in general.

  7. An easily accessible sulfated saccharide mimetic inhibits in vitro human tumor cell adhesion and angiogenesis of vascular endothelial cells

    PubMed Central

    Marano, Grazia; Gronewold, Claas; Frank, Martin; Merling, Anette; Kliem, Christian; Sauer, Sandra; Wiessler, Manfred; Frei, Eva

    2012-01-01

    Summary Oligosaccharides aberrantly expressed on tumor cells influence processes such as cell adhesion and modulation of the cell’s microenvironment resulting in an increased malignancy. Schmidt’s imidate strategy offers an effective method to synthesize libraries of various oligosaccharide mimetics. With the aim to perturb interactions of tumor cells with extracellular matrix proteins and host cells, molecules with 3,4-bis(hydroxymethyl)furan as core structure were synthesized and screened in biological assays for their abilities to interfere in cell adhesion and other steps of the metastatic cascade, such as tumor-induced angiogenesis. The most active compound, (4-{[(β-D-galactopyranosyl)oxy]methyl}furan-3-yl)methyl hydrogen sulfate (GSF), inhibited the activation of matrix-metalloproteinase-2 (MMP-2) as well as migration of the human melanoma cells of the lines WM-115 and WM-266-4 in a two-dimensional migration assay. GSF inhibited completely the adhesion of WM-115 cells to the extracellular matrix (ECM) proteins, fibrinogen and fibronectin. In an in vitro angiogenesis assay with human endothelial cells, GSF very effectively inhibited endothelial tubule formation and sprouting of blood vessels, as well as the adhesion of endothelial cells to ECM proteins. GSF was not cytotoxic at biologically active concentrations; neither were 3,4-bis{[(β-D-galactopyranosyl)oxy]methyl}furan (BGF) nor methyl β-D-galactopyranoside nor 3,4-bis(hydroxymethyl)furan, which were used as controls, eliciting comparable biological activity. In silico modeling experiments, in which binding of GSF to the extracellular domain of the integrin αvβ3 was determined, revealed specific docking of GSF to the same binding site as the natural peptidic ligands of this integrin. The sulfate in the molecule coordinated with one manganese ion in the binding site. These studies show that this chemically easily accessible molecule GSF, synthesized in three steps from 3,4-bis(hydroxymethyl)furan and benzoylated galactose imidate, is nontoxic and antagonizes cell physiological processes in vitro that are important for the dissemination and growth of tumor cells in vivo. PMID:23015827

  8. Mesenchymal stromal cells express GARP/LRRC32 on their surface: effects on their biology and immunomodulatory capacity.

    PubMed

    Carrillo-Galvez, Ana Belén; Cobo, Marién; Cuevas-Ocaña, Sara; Gutiérrez-Guerrero, Alejandra; Sánchez-Gilabert, Almudena; Bongarzone, Pierpaolo; García-Pérez, Angélica; Muñoz, Pilar; Benabdellah, Karim; Toscano, Miguel G; Martín, Francisco; Anderson, Per

    2015-01-01

    Mesenchymal stromal cells (MSCs) represent a promising tool for therapy in regenerative medicine, transplantation, and autoimmune disease due to their trophic and immunomodulatory activities. However, we are still far from understanding the mechanisms of action of MSCs in these processes. Transforming growth factor (TGF)-β1 is a pleiotropic cytokine involved in MSC migration, differentiation, and immunomodulation. Recently, glycoprotein A repetitions predominant (GARP) was shown to bind latency-associated peptide (LAP)/TGF-β1 to the cell surface of activated Foxp3(+) regulatory T cells (Tregs) and megakaryocytes/platelets. In this manuscript, we show that human and mouse MSCs express GARP which presents LAP/TGF-β1 on their cell surface. Silencing GARP expression in MSCs increased their secretion and activation of TGF-β1 and reduced their proliferative capacity in a TGF-β1-independent manner. Importantly, we showed that GARP expression on MSCs contributed to their ability to inhibit T-cell responses in vitro. In summary, we have found that GARP is an essential molecule for MSC biology, regulating their immunomodulatory and proliferative activities. We envision GARP as a new target for improving the therapeutic efficacy of MSCs and also as a novel MSC marker. © 2014 AlphaMed Press.

  9. Petiveria alliacea extracts uses multiple mechanisms to inhibit growth of human and mouse tumoral cells.

    PubMed

    Urueña, Claudia; Cifuentes, Claudia; Castañeda, Diana; Arango, Amparo; Kaur, Punit; Asea, Alexzander; Fiorentino, Susana

    2008-11-18

    There is ethnopharmacological evidence that Petiveria alliacea can have antitumor activity; however, the mechanism of its cytotoxic activity is not well understood. We assessed multiple in vitro biological activities of an ethyl acetate soluble plant fraction over several tumor cell lines. Tumor cell lines were evaluated using the following tests: trypan blue exclusion test, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide], flow cytometry, cytoskeleton organization analysis, cell cycle, mitochondria membrane depolarization, clonogenicity test, DNA fragmentation test and differential protein expression by HPLC-Chip/MS analysis. F4 fraction characterization was made by HPLC-MS. Petiveria alliacea fraction characterized by de-replication was found to alter actin cytoskeleton organization, induce G2 cell cycle arrest and cause apoptotic cell death in a mitochondria independent way. In addition, we found down regulation of cytoskeleton, chaperone, signal transduction proteins, and proteins involved in metabolic pathways. Finally up regulation of proteins involved in translation and intracellular degradation was also observed. The results of this study indicate that Petiveria alliacea exerts multiple biological activities in vitro consistent with cytotoxicity. Further studies in animal models are needed but Petiveria alliacea appears to be a good candidate to be used as an antitumor agent.

  10. Petiveria alliacea extracts uses multiple mechanisms to inhibit growth of human and mouse tumoral cells

    PubMed Central

    Urueña, Claudia; Cifuentes, Claudia; Castañeda, Diana; Arango, Amparo; Kaur, Punit; Asea, Alexzander; Fiorentino, Susana

    2008-01-01

    Background There is ethnopharmacological evidence that Petiveria alliacea can have antitumor activity; however, the mechanism of its cytotoxic activity is not well understood. We assessed multiple in vitro biological activities of an ethyl acetate soluble plant fraction over several tumor cell lines. Methods Tumor cell lines were evaluated using the following tests: trypan blue exclusion test, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide], flow cytometry, cytoskeleton organization analysis, cell cycle, mitochondria membrane depolarization, clonogenicity test, DNA fragmentation test and differential protein expression by HPLC-Chip/MS analysis. F4 fraction characterization was made by HPLC-MS. Results Petiveria alliacea fraction characterized by de-replication was found to alter actin cytoskeleton organization, induce G2 cell cycle arrest and cause apoptotic cell death in a mitochondria independent way. In addition, we found down regulation of cytoskeleton, chaperone, signal transduction proteins, and proteins involved in metabolic pathways. Finally up regulation of proteins involved in translation and intracellular degradation was also observed. Conclusion The results of this study indicate that Petiveria alliacea exerts multiple biological activities in vitro consistent with cytotoxicity. Further studies in animal models are needed but Petiveria alliacea appears to be a good candidate to be used as an antitumor agent. PMID:19017389

  11. The use of the tyrosine phosphatase antagonist orthovanadate in the study of a cell proliferation inhibitor

    NASA Technical Reports Server (NTRS)

    Enebo, D. J.; Hanek, G.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Incubation of murine fibroblasts with orthovanadate, a global tyrosine phosphatase inhibitor, was shown to confer a "pseudo-transformed" phenotype with regard to cell morphology and growth characteristics. This alteration was manifested by both an increasing refractile appearance of the cells, consistent with many transformed cell lines, as well as an increase in maximum cell density was attained. Despite the abrogation of cellular tyrosine phosphatase activity, orthovanadate-treated cells remained sensitive to the biological activity of a naturally occurring sialoglycopeptide (SGP) cell surface proliferation inhibitor. The results indicated that tyrosine phosphatase activity, inhibited by orthovanadate, was not involved in the signal transduction pathway of the SGP.

  12. PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance.

    PubMed

    van Oers, Johanna M M; Roa, Sergio; Werling, Uwe; Liu, Yiyong; Genschel, Jochen; Hou, Harry; Sellers, Rani S; Modrich, Paul; Scharff, Matthew D; Edelmann, Winfried

    2010-07-27

    The DNA mismatch repair protein PMS2 was recently found to encode a novel endonuclease activity. To determine the biological functions of this activity in mammals, we generated endonuclease-deficient Pms2E702K knock-in mice. Pms2EK/EK mice displayed increased genomic mutation rates and a strong cancer predisposition. In addition, class switch recombination, but not somatic hypermutation, was impaired in Pms2EK/EK B cells, indicating a specific role in Ig diversity. In contrast to Pms2-/- mice, Pms2EK/EK male mice were fertile, indicating that this activity is dispensable in spermatogenesis. Therefore, the PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance and tumor suppression.

  13. Cyberspace and Real-World Behavioral Relationships: Towards the Applications of Interest Search Queries to Identify Individuals At-Risk for Suicide

    DTIC Science & Technology

    2012-06-14

    weight fat loss effects diet standard nutrition lose nfpa protein Topic 214: menu restaurant engineering restaurants jones wings seat wild buffalo...Selection ................................................................................... 30 3.5 Raw Data File Format...text mining to descriptions of biological activity and the target of the biological activity (i.e., gene, protein , cell, or microorganism) to predict

  14. Time scale of diffusion in molecular and cellular biology

    NASA Astrophysics Data System (ADS)

    Holcman, D.; Schuss, Z.

    2014-05-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.

  15. Comparative physicochemical and biological characterization of NIST Interim Reference Material PM2.5 and SRM 1648 in human A549 and mouse RAW264.7 cells.

    PubMed

    Mitkus, Robert J; Powell, Jan L; Zeisler, Rolf; Squibb, Katherine S

    2013-12-01

    The epidemiological association between exposure to fine particulate matter (PM2.5) and adverse health effects is well-known. Here we report the size distribution, metals content, endotoxin content, and biological activity of National Institute of Standards and Technology (NIST) Interim Reference Material (RM) PM2.5. Biological activity was measured in vitro by effects on cell viability and the release of four inflammatory immune mediators, from human A549 alveolar epithelial cells or murine RAW264.7 monocytes. A dose range covering three orders of magnitude (1-1000μg/mL) was tested, and biological activity was compared to an existing Standard Reference Material (SRM) for urban PM (NIST SRM 1648). Robust release of IL-8 and MCP-1 from A549 cells was observed in response to IRM PM2.5 exposures. Significant TNF-α, but not IL-6, secretion from RAW264.7 cells was observed in response to both IRM PM2.5 and SRM 1648 particle types. Cytokine or chemokine release at high doses often occurred in the presence of cytotoxicity, likely as a result of externalization of preformed mediator. Our results are consistent with a local cytotoxic and pro-inflammatory mechanism of response to exposure to inhaled ambient PM2.5 and reinforce the continued relevance of in vitro assays for mechanistic research in PM toxicology. Our study furthers the goal of developing reference samples of environmentally relevant particulate matter of various sizes that can be used for hypothesis testing by multiple investigators. Published by Elsevier Ltd.

  16. Women in cell biology: a seat at the table and a place at the podium

    PubMed Central

    Masur, Sandra Kazahn

    2013-01-01

    The Women in Cell Biology (WICB) committee of the American Society for Cell Biology (ASCB) was started in the 1970s in response to the documented underrepresentation of women in academia in general and cell biology in particular. By coincidence or causal relationship, I am happy to say that since WICB became a standing ASCB committee, women have been well represented in ASCB's leadership and as symposium speakers at the annual meeting. However, the need to provide opportunities and information useful to women in developing their careers in cell biology is still vital, given the continuing bias women face in the larger scientific arena. With its emphasis on mentoring, many of WICB's activities benefit the development of both men and women cell biologists. The WICB “Career Column” in the monthly ASCB Newsletter is a source of accessible wisdom. At the annual ASCB meeting, WICB organizes the career discussion and mentoring roundtables, childcare awards, Mentoring Theater, career-related panel and workshop, and career recognition awards. Finally, the WICB Speaker Referral Service provides a list of outstanding women whom organizers of scientific meetings, scientific review panels, and university symposia/lecture series can reach out to when facing the proverbial dilemma, “I just don't know any women who are experts.” PMID:23307103

  17. Critical elements in the development of cell therapy potency assays for ischemic conditions.

    PubMed

    Porat, Yael; Abraham, Eytan; Karnieli, Ohad; Nahum, Sagi; Woda, Juliana; Zylberberg, Claudia

    2015-07-01

    A successful potency assay for a cell therapy product (CTP) used in the treatment of ischemic conditions should quantitatively measure relevant biological properties that predict therapeutic activity. This is especially challenging because of numerous degrees of complexity stemming from factors that include a multifactorial complex mechanism of action, cell source, inherent cell characteristics, culture method, administration mode and the in vivo conditions to which the cells are exposed. The expected biological function of a CTP encompasses complex interactions that range from a biochemical, metabolic or immunological activity to structural replacement of damaged tissue or organ. Therefore, the requirements for full characterization of the active substance with respect to biological function could be taxing. Moreover, the specific mechanism of action is often difficult to pinpoint to a specific molecular entity; rather, it is more dependent on the functionality of the cellular components acting in a in a multifactorial fashion. In the case of ischemic conditions, the cell therapy mechanism of action can vary from angiogenesis, vasculogenesis and arteriogenesis that may activate different pathways and clinical outcomes. The CTP cellular attributes with relation to the suggested mechanism of action can be used for the development of quantitative and reproducible analytical potency assays. CTPs selected and released on the basis of such potency assays should have the highest probability of providing meaningful clinical benefit for patients. This White Paper will discuss and give examples for key elements in the development of a potency assay for treatment of ischemic disorders treated by the use of CTPs. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  18. Characteristics, chemical compositions and biological activities of propolis from Al-Bahah, Saudi Arabia

    PubMed Central

    Elnakady, Yasser A.; Rushdi, Ahmed I.; Franke, Raimo; Abutaha, Nael; Ebaid, Hossam; Baabbad, Mohannad; Omar, Mohamed O. M.; Al Ghamdi, Ahmad A.

    2017-01-01

    Propolis has been used to treat several diseases since ancient times, and is an important source of bioactive natural compounds and drug derivatives. These properties have kept the interest of investigators around the world, leading to the investigation of the chemical and biological properties and application of propolis. In this report, the chemical constituents that are responsible for the anticancer activities of propolis were analyzed. The propolis was sourced from Al-Baha in the southern part of the Kingdom of Saudi Arabia. Standard protocols for chemical fractionation and bioactivity-guided chemical analysis were used to identify the bio-active ethyl acetate fraction. The extraction was performed in methanol and then analyzed by gas chromatography-mass spectrometry (GC-MS). The major compounds are triterpenoids, with a relative concentration of 74.0%; steroids, with a relative concentration of 9.8%; and diterpenoids, with a relative concentration of 7.9%. The biological activity was characterized using different approaches and cell-based assays. Propolis was found to inhibit the proliferation of cancer cells in a concentration-dependent manner through apoptosis. Immunofluorescence staining with anti-α-tubulin antibodies and cell cycle analysis indicated that tubulin and/or microtubules are the cellular targets of the L-acetate fraction. This study demonstrates the importance of Saudi propolis as anti-cancer drug candidates. PMID:28165013

  19. Redox State of Cytochromes in Frozen Yeast Cells Probed by Resonance Raman Spectroscopy.

    PubMed

    Okotrub, Konstantin A; Surovtsev, Nikolay V

    2015-12-01

    Cryopreservation is a well-established technique used for the long-term storage of biological materials whose biological activity is effectively stopped under low temperatures (suspended animation). Since most biological methods do not work in a low-temperature frozen environment, the mechanism and details of the depression of cellular activity in the frozen state remain largely uncharacterized. In this work, we propose, to our knowledge, a new approach to study the downregulation of the redox activity of cytochromes b and c in freezing yeast cells in a contactless, label-free manner. Our approach is based on cytochrome photobleaching effects observed in the resonance Raman spectra of live cells. Photoinduced and native redox reactions that contributed to the photobleaching rate were studied over a wide temperature range (from -173 to +25 °C). We found that ice formation influences both the rate of cytochrome redox reactions and the balance between the reduced and oxidized cytochromes. We demonstrate that the temperature dependence of native redox reaction rates can be well described by the thermal activation law with an apparent energy of 32.5 kJ/mol, showing that the redox reaction rate is ∼10(15) times slower at liquid nitrogen temperature than at room temperature. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Characteristics, chemical compositions and biological activities of propolis from Al-Bahah, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Elnakady, Yasser A.; Rushdi, Ahmed I.; Franke, Raimo; Abutaha, Nael; Ebaid, Hossam; Baabbad, Mohannad; Omar, Mohamed O. M.; Al Ghamdi, Ahmad A.

    2017-02-01

    Propolis has been used to treat several diseases since ancient times, and is an important source of bioactive natural compounds and drug derivatives. These properties have kept the interest of investigators around the world, leading to the investigation of the chemical and biological properties and application of propolis. In this report, the chemical constituents that are responsible for the anticancer activities of propolis were analyzed. The propolis was sourced from Al-Baha in the southern part of the Kingdom of Saudi Arabia. Standard protocols for chemical fractionation and bioactivity-guided chemical analysis were used to identify the bio-active ethyl acetate fraction. The extraction was performed in methanol and then analyzed by gas chromatography-mass spectrometry (GC-MS). The major compounds are triterpenoids, with a relative concentration of 74.0%; steroids, with a relative concentration of 9.8%; and diterpenoids, with a relative concentration of 7.9%. The biological activity was characterized using different approaches and cell-based assays. Propolis was found to inhibit the proliferation of cancer cells in a concentration-dependent manner through apoptosis. Immunofluorescence staining with anti-α-tubulin antibodies and cell cycle analysis indicated that tubulin and/or microtubules are the cellular targets of the L-acetate fraction. This study demonstrates the importance of Saudi propolis as anti-cancer drug candidates.

  1. PTEN: Multiple Functions in Human Malignant Tumors.

    PubMed

    Milella, Michele; Falcone, Italia; Conciatori, Fabiana; Cesta Incani, Ursula; Del Curatolo, Anais; Inzerilli, Nicola; Nuzzo, Carmen M A; Vaccaro, Vanja; Vari, Sabrina; Cognetti, Francesco; Ciuffreda, Ludovica

    2015-01-01

    PTEN is the most important negative regulator of the PI3K signaling pathway. In addition to its canonical, PI3K inhibition-dependent functions, PTEN can also function as a tumor suppressor in a PI3K-independent manner. Indeed, the PTEN network regulates a broad spectrum of biological functions, modulating the flow of information from membrane-bound growth factor receptors to nuclear transcription factors, occurring in concert with other tumor suppressors and oncogenic signaling pathways. PTEN acts through its lipid and protein phosphatase activity and other non-enzymatic mechanisms. Studies conducted over the past 10 years have expanded our understanding of the biological role of PTEN, showing that in addition to its ability to regulate proliferation and cell survival, it also plays an intriguing role in regulating genomic stability, cell migration, stem cell self-renewal, and tumor microenvironment. Changes in PTEN protein levels, location, and enzymatic activity through various molecular mechanisms can generate a continuum of functional PTEN levels in inherited syndromes, sporadic cancers, and other diseases. PTEN activity can indeed, be modulated by mutations, epigenetic silencing, transcriptional repression, aberrant protein localization, and post-translational modifications. This review will discuss our current understanding of the biological role of PTEN, how PTEN expression and activity are regulated, and the consequences of PTEN dysregulation in human malignant tumors.

  2. PTEN: Multiple Functions in Human Malignant Tumors

    PubMed Central

    Milella, Michele; Falcone, Italia; Conciatori, Fabiana; Cesta Incani, Ursula; Del Curatolo, Anais; Inzerilli, Nicola; Nuzzo, Carmen M. A.; Vaccaro, Vanja; Vari, Sabrina; Cognetti, Francesco; Ciuffreda, Ludovica

    2015-01-01

    PTEN is the most important negative regulator of the PI3K signaling pathway. In addition to its canonical, PI3K inhibition-dependent functions, PTEN can also function as a tumor suppressor in a PI3K-independent manner. Indeed, the PTEN network regulates a broad spectrum of biological functions, modulating the flow of information from membrane-bound growth factor receptors to nuclear transcription factors, occurring in concert with other tumor suppressors and oncogenic signaling pathways. PTEN acts through its lipid and protein phosphatase activity and other non-enzymatic mechanisms. Studies conducted over the past 10 years have expanded our understanding of the biological role of PTEN, showing that in addition to its ability to regulate proliferation and cell survival, it also plays an intriguing role in regulating genomic stability, cell migration, stem cell self-renewal, and tumor microenvironment. Changes in PTEN protein levels, location, and enzymatic activity through various molecular mechanisms can generate a continuum of functional PTEN levels in inherited syndromes, sporadic cancers, and other diseases. PTEN activity can indeed, be modulated by mutations, epigenetic silencing, transcriptional repression, aberrant protein localization, and post-translational modifications. This review will discuss our current understanding of the biological role of PTEN, how PTEN expression and activity are regulated, and the consequences of PTEN dysregulation in human malignant tumors. PMID:25763354

  3. Beller Lectureship Talk: Active response of biological cells to mechanical stress

    NASA Astrophysics Data System (ADS)

    Safran, Samuel

    2009-03-01

    Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. We present a simple and generic theoretical model for the active response of biological cells to mechanical stress. The theory includes cell activity and mechanical forces as well as random forces as factors that determine the polarizability that relates cell orientation to stress. This allows us to explain the puzzling observation of parallel (or sometimes random) alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency and compare the theory with recent experiments. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material distinguishes cells whose activity is controlled by stress from those controlled by strain. We have extended the theory to generalize the treatment of elastic inclusions in solids to ''living'' inclusions (cells) whose active polarizability, analogous to the polarizability of non-living matter, results in the feedback of cellular forces that develop in response to matrix stresses. We use this to explain recent observations of the non-monotonic dependence of stress-fiber polarization in stem cells on matrix rigidity. These findings provide a mechanical correlate for the existence of an optimal substrate elasticity for cell differentiation and function. [3pt] *In collaboration with R. De (Brown University), Y. Biton (Weizmann Institute), and A. Zemel (Hebrew University) and the experimental groups: Max Planck Institute, Stuttgart: S. Jungbauer, R. Kemkemer, J. Spatz; University of Pennsylvania: A. Brown, D. Discher, F. Rehfeldt.

  4. Enhancement of antigen-specific CD4 + and CD8 + T cell responses using a self-assembled biologic nanolipoprotein particle vaccine

    DOE PAGES

    Weilhammer, Dina; Dunkle, Alexis D.; Blanchette, Craig D.; ...

    2017-02-14

    To address the need for vaccine platforms that induce robust cell-mediated immunity, we investigated the potential of utilizing self-assembling biologic nanolipoprotein particles (NLPs) as an antigen and adjuvant delivery system to induce antigen-specific murine T cell responses. Here, we utilized OT-I and OT-II TCR-transgenic mice to investigate the effects of NLP-mediated delivery of the model antigen ovalbumin (OVA) on T cell activation. Delivery of OVA with the TLR4 agonist monophosphoryl lipid A (MPLA) in the context of NLPs significantly enhanced the activation of both CD4 + and CD8 + T cells in vitro compared to co-administration of free OVA andmore » MPLA. Upon intranasal immunization of mice harboring TCR-transgenic cells, NLPs enhanced the adjuvant effects of MPLA and the in vivo delivery of OVA, leading to significantly increased expansion of CD4 + and CD8 + T cells in lung-draining lymph nodes. Therefore, NLPs are a promising vaccine platform for inducing T cell responses following intranasal administration.« less

  5. Enhancement of antigen-specific CD4 + and CD8 + T cell responses using a self-assembled biologic nanolipoprotein particle vaccine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weilhammer, Dina; Dunkle, Alexis D.; Blanchette, Craig D.

    To address the need for vaccine platforms that induce robust cell-mediated immunity, we investigated the potential of utilizing self-assembling biologic nanolipoprotein particles (NLPs) as an antigen and adjuvant delivery system to induce antigen-specific murine T cell responses. Here, we utilized OT-I and OT-II TCR-transgenic mice to investigate the effects of NLP-mediated delivery of the model antigen ovalbumin (OVA) on T cell activation. Delivery of OVA with the TLR4 agonist monophosphoryl lipid A (MPLA) in the context of NLPs significantly enhanced the activation of both CD4 + and CD8 + T cells in vitro compared to co-administration of free OVA andmore » MPLA. Upon intranasal immunization of mice harboring TCR-transgenic cells, NLPs enhanced the adjuvant effects of MPLA and the in vivo delivery of OVA, leading to significantly increased expansion of CD4 + and CD8 + T cells in lung-draining lymph nodes. Therefore, NLPs are a promising vaccine platform for inducing T cell responses following intranasal administration.« less

  6. Can stem cells really regenerate the human heart? Use your noggin, dickkopf! Lessons from developmental biology.

    PubMed

    Sommer, Paula

    2013-06-01

    The human heart is the first organ to develop and its development is fairly well characterised. In theory, the heart has the capacity to regenerate, as its cardiomyocytes may be capable of cell division and the adult heart contains a cardiac stem cell niche, presumably capable of differentiating into cardiomyocytes and other cardiac-associated cell types. However, as with most other organs, these mechanisms are not activated upon serious injury. Several experimental options to induce regeneration of the damaged heart tissue are available: activate the endogenous cardiomyocytes to divide, coax the endogenous population of stem cells to divide and differentiate, or add exogenous cell-based therapy to replace the lost cardiac tissue. This review is a summary of the recent research into all these avenues, discussing the reasons for the limited successes of clinical trials using stem cells after cardiac injury and explaining new advances in basic science. It concludes with a reiteration that chances of successful regeneration would be improved by understanding and implementing the basics of heart development and stem cell biology.

  7. Benzoin Schiff Bases: Design, Synthesis, and Biological Evaluation as Potential Antitumor Agents.

    PubMed

    Sabbah, Dima A; Al-Tarawneh, Fatima; Talib, Wamidh H; Sweidan, Kamal; Bardaweel, Sanaa K; Al-Shalabi, Eveen; Zhong, Haizhen A; Abu Sheikha, Ghassan; Abu Khalaf, Reema; Mubarak, Mohammad S

    2018-04-12

    Phosphoinositide 3-kinase α (PI3Kα) is an attractive target for anticancer drug design. Target compounds were designed to probe the significance of alcohol and imine moieties tailored on a benzoin scaffold to better understand the structure activity relation (SAR) and improve their biological activity as anticancer compounds. Chemical synthesis of the targeted compounds, biological evaluation tests against human colon adenocarcinoma (HCT-116), breast adenocarcinoma (MCF-7), and breast carcinoma (T47D) cell lines, as well as Glide docking studies were employed in this investigation. A new series of 1,2-diphenylimino ethanol was successfully synthesized and characterized by means of FT-IR, HRMS, NMR, and by elemental analysis. Biological screening revealed that the newly synthesized compounds inhibit PI3Kα activity in human colon adenocarcinoma (HCT-116), breast adenocarcinoma (MCF-7), and breast carcinoma (T47D) cell lines. Results additionally showed that these compounds exhibit selective antiproliferative activity, induce apoptosis, and suppress the VEGF production. Compounds 2b, 2d, and 2g displayed promising inhibitory activity in HCT-116 suggesting that hydrophobic and/or hydrogen bond-acceptor mediate(s) ligand-receptor interaction on o- and m-positions. Furthermore, compounds 2g, 2i, 2j, and 2h, bearing hydrophobic moiety on m- and p-position, exerted high antiproliferative activity in T47D and MCF-7 cells, whereas compound 2e showed selectivity against T47D and MCF-7. Molecular docking studies against PI3Kα and caspase-3 demonstrated a strong correlation between the predicted binding affinity (ΔGobsd) and IC50 values of prepared compounds for the caspase-3 model, implying that the cellulous inhibitory activity was caspase-3-dependent. Moreover, Glide docking against PI3Kα identified Ser774, Lys802, E849, V851, and Asp933 as key binding residues. The series exerted a potential PI3Kα inhibitory activity in human carcinoma cell lines expressing PI3Kα. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Proteases Revisited: Roles and Therapeutic Implications in Fibrosis

    PubMed Central

    Kryczka, Jakub

    2017-01-01

    Proteases target many substrates, triggering changes in distinct biological processes correlated with cell migration, EMT/EndMT and fibrosis. Extracellular protease activity, demonstrated by secreted and membrane-bound protease forms, leads to ECM degradation, activation of other proteases (i.e., proteolysis of nonactive zymogens), decomposition of cell-cell junctions, release of sequestered growth factors (TGF-β and VEGF), activation of signal proteins and receptors, degradation of inflammatory inhibitors or inflammation-related proteins, and changes in cell mechanosensing and motility. Intracellular proteases, mainly caspases and cathepsins, modulate lysosome activity and signal transduction pathways. Herein, we discuss the current knowledge on the multidimensional impact of proteases on the development of fibrosis. PMID:28642633

  9. Biomimetic carriers mimicking leukocyte plasma membrane to increase tumor vasculature permeability

    NASA Astrophysics Data System (ADS)

    Palomba, R.; Parodi, A.; Evangelopoulos, M.; Acciardo, S.; Corbo, C.; De Rosa, E.; Yazdi, I. K.; Scaria, S.; Molinaro, R.; Furman, N. E. Toledano; You, J.; Ferrari, M.; Salvatore, F.; Tasciotti, E.

    2016-10-01

    Recent advances in the field of nanomedicine have demonstrated that biomimicry can further improve targeting properties of current nanotechnologies while simultaneously enable carriers with a biological identity to better interact with the biological environment. Immune cells for example employ membrane proteins to target inflamed vasculature, locally increase vascular permeability, and extravasate across inflamed endothelium. Inspired by the physiology of immune cells, we recently developed a procedure to transfer leukocyte membranes onto nanoporous silicon particles (NPS), yielding Leukolike Vectors (LLV). LLV are composed of a surface coating containing multiple receptors that are critical in the cross-talk with the endothelium, mediating cellular accumulation in the tumor microenvironment while decreasing vascular barrier function. We previously demonstrated that lymphocyte function-associated antigen (LFA-1) transferred onto LLV was able to trigger the clustering of intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Herein, we provide a more comprehensive analysis of the working mechanism of LLV in vitro in activating this pathway and in vivo in enhancing vascular permeability. Our results suggest the biological activity of the leukocyte membrane can be retained upon transplant onto NPS and is critical in providing the particles with complex biological functions towards tumor vasculature.

  10. Evolutionary origin and functional divergence of totipotent cell homeobox genes in eutherian mammals.

    PubMed

    Maeso, Ignacio; Dunwell, Thomas L; Wyatt, Chris D R; Marlétaz, Ferdinand; Vető, Borbála; Bernal, Juan A; Quah, Shan; Irimia, Manuel; Holland, Peter W H

    2016-06-13

    A central goal of evolutionary biology is to link genomic change to phenotypic evolution. The origin of new transcription factors is a special case of genomic evolution since it brings opportunities for novel regulatory interactions and potentially the emergence of new biological properties. We demonstrate that a group of four homeobox gene families (Argfx, Leutx, Dprx, Tprx), plus a gene newly described here (Pargfx), arose by tandem gene duplication from the retinal-expressed Crx gene, followed by asymmetric sequence evolution. We show these genes arose as part of repeated gene gain and loss events on a dynamic chromosomal region in the stem lineage of placental mammals, on the forerunner of human chromosome 19. The human orthologues of these genes are expressed specifically in early embryo totipotent cells, peaking from 8-cell to morula, prior to cell fate restrictions; cow orthologues have similar expression. To examine biological roles, we used ectopic gene expression in cultured human cells followed by high-throughput RNA-seq and uncovered extensive transcriptional remodelling driven by three of the genes. Comparison to transcriptional profiles of early human embryos suggest roles in activating and repressing a set of developmentally-important genes that spike at 8-cell to morula, rather than a general role in genome activation. We conclude that a dynamic chromosome region spawned a set of evolutionarily new homeobox genes, the ETCHbox genes, specifically in eutherian mammals. After these genes diverged from the parental Crx gene, we argue they were recruited for roles in the preimplantation embryo including activation of genes at the 8-cell stage and repression after morula. We propose these new homeobox gene roles permitted fine-tuning of cell fate decisions necessary for specification and function of embryonic and extra-embryonic tissues utilised in mammalian development and pregnancy.

  11. Bacterial glucuronidase as general marker for oncolytic virotherapy or other biological therapies

    PubMed Central

    2011-01-01

    Background Oncolytic viral tumor therapy is an emerging field in the fight against cancer with rising numbers of clinical trials and the first clinically approved product (Adenovirus for the treatment of Head and Neck Cancer in China) in this field. Yet, until recently no general (bio)marker or reporter gene was described that could be used to evaluate successful tumor colonization and/or transgene expression in other biological therapies. Methods Here, a bacterial glucuronidase (GusA) encoded by biological therapeutics (e.g. oncolytic viruses) was used as reporter system. Results Using fluorogenic probes that were specifically activated by glucuronidase we could show 1) preferential activation in tumors, 2) renal excretion of the activated fluorescent compounds and 3) reproducible detection of GusA in the serum of oncolytic vaccinia virus treated, tumor bearing mice in several tumor models. Time course studies revealed that reliable differentiation between tumor bearing and healthy mice can be done as early as 9 days post injection of the virus. Regarding the sensitivity of the newly developed assay system, we could show that a single infected tumor cell could be reliably detected in this assay. Conclusion GusA therefore has the potential to be used as a general marker in the preclinical and clinical evaluation of (novel) biological therapies as well as being useful for the detection of rare cells such as circulating tumor cells. PMID:21989091

  12. What do Cells Really Look Like? An Inquiry into Students' Difficulties in Visualising a 3-D Biological Cell and Lessons for Pedagogy

    NASA Astrophysics Data System (ADS)

    Vijapurkar, Jyotsna; Kawalkar, Aisha; Nambiar, Priya

    2014-04-01

    In our explorations of students' concepts in an inquiry science classroom with grade 6 students from urban schools in India, we uncovered a variety of problems in their understanding of biological cells as structural and functional units of living organisms. In particular, we found not only that they visualised the cell as a two-dimensional (2-D) structure, instead of a closed three-dimensional (3-D) functional unit, but that they had a strong resistance to changing their 2-D conception to a 3-D one. Based on analyses of students' oral as well as written descriptions of cells in the classroom, and of models they made of the cell, we were able to identify the causes of students' difficulties in correctly visualising the cell. These insights helped us design a pedagogy involving guided discussions and activities that challenges students' 2-D conceptions of the cell. The activities entail very simple, low-cost, easily doable techniques to help students visualise the cell and to understand that it would not be able to function if its structure were 2-D. We also present the results of our investigations of conceptions of grade 7 students and biology undergraduates, revealing that the incorrect 2-D mental model can persist right up to the college level if it is not explicitly addressed. The classroom interactions described in this study illustrate how students' ideas can be probed and addressed in the classroom using pedagogical action research.

  13. Relevance of HCN2-expressing human mesenchymal stem cells for the generation of biological pacemakers.

    PubMed

    Bruzauskaite, Ieva; Bironaite, Daiva; Bagdonas, Edvardas; Skeberdis, Vytenis Arvydas; Denkovskij, Jaroslav; Tamulevicius, Tomas; Uvarovas, Valentinas; Bernotiene, Eiva

    2016-04-30

    The transfection of human mesenchymal stem cells (hMSCs) with the hyperpolarization-activated cyclic nucleotide-gated ion channel 2 (HCN2) gene has been demonstrated to provide biological pacing in dogs with complete heart block. The mechanism appears to be the generation of the ion current (If) by the HCN2-expressing hMSCs. However, it is not clear how the transfection process and/or the HCN2 gene affect the growth functions of the hMSCs. Therefore, we investigated survival, proliferation, cell cycle, and growth on a Kapton® scaffold of HCN2-expressing hMSCs. hMSCs were isolated from the bone marrow of healthy volunteers applying a selective cell adhesion procedure and were identified by their expression of specific surface markers. Cells from passages 2-3 were transfected by electroporation using commercial transfection kits and a pIRES2-EGFP vector carrying the pacemaker gene, mouse HCN2 (mHCN2). Transfection efficiency was confirmed by enhanced green fluorescent protein (EGFP) fluorescence, quantitative real-time polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). After hMSCs were transfected, their viability, proliferation, If generation, apoptosis, cell cycle, and expression of transcription factors were measured and compared with non-transfected cells and cells transfected with pIRES2-EGFP vector alone. Intracellular mHCN2 expression after transfection increased from 22.14 to 62.66 ng/mg protein (p < 0.05). Transfection efficiency was 45 ± 5 %. The viability of mHCN2-transfected cells was 82 ± 5 %; they grew stably for more than 3 weeks and induced If current. mHCN2-transfected cells had low mitotic activity (10.4 ± 1.24 % in G2/M and 83.6 ± 2.5 % in G1 phases) as compared with non-transfected cells (52-53 % in G2/M and 31-35 % in G1 phases). Transfected cells showed increased activation of nine cell cycle-regulating transcription factors: the most prominent upregulation was of AMP-dependent transcription factor ATF3 (7.11-fold, p = 0.00056) which regulates the G1 phase. mHCN2-expressing hMSCs were attached and made anchorage-dependent connection with other cells without transmigration through a 12.7-μm thick Kapton® HN film with micromachined 1-3 μm diameter pores. mHCN2-expressing hMSCs preserved the major cell functions required for the generation of biological pacemakers: high viability, functional activity, but low proliferation rate through the arrest of cell cycle in the G1 phase. mHCN2-expressing hMSCs attached and grew on a Kapton® scaffold without transmigration, confirming the relevance of these cells for the generation of biological pacemakers.

  14. [Current and prospective biologics and small molecules in the treatment of inflammatory bowel diseases].

    PubMed

    Buc, Milan

    2018-01-01

    Crohns disease (CD) and ulcerative colitis (UC) belong to chronic inflammatory bowel diseases, which are induced by autoimmune processes. While CD is characterized by over-activity of Th1, ILC1, and MAIT cells, UC is mediated by exaggerated activities of Th2 and ILC2 cells and cytokines they produce. Knowledge of the pathogenesis enabled a rational therapy based mostly on biologics and small molecules. TNF is the principal proinflammatory cytokine in both diseases. Anti-TNF monoclonal antibodies, mostly infliximab or adalimumab were therefore introduced to their treatment. Approximately 50-70 % of CD and more than 33 % of UC patients respond to primary treatment only, which resulted in the development of other biologics and small molecules. Out of them, monoclonal antibodies targeting adhesive molecules (vedolizumab, etrolizumab) and p40 chains shared by IL12 and IL23 (ustekinumab) have been already in clinical practice. There are also other small molecules in clinical trials: mongersen, tafacitinib, and ozanimod. Mongersen supports immunosuppressive activity of TGFβ; it has been tried for the treatment of CD. Tofacitinib inhibits activity of JAK kinases; it was shown to be effective in UC management. Ozanimod interferes with migrations of activated T cells to the site of inflammation and is a promising drug for the UC treatment.Key words: Crohns disease - mongersen - monoclonal antibodies - ozanimod - tofacitinib - ulcerative colitis.

  15. Selenium Metabolism in Cancer Cells: The Combined Application of XAS and XFM Techniques to the Problem of Selenium Speciation in Biological Systems

    PubMed Central

    Weekley, Claire M.; Aitken, Jade B.; Finney, Lydia; Vogt, Stefan; Witting, Paul K.; Harris, Hugh H.

    2013-01-01

    Determining the speciation of selenium in vivo is crucial to understanding the biological activity of this essential element, which is a popular dietary supplement due to its anti-cancer properties. Hyphenated techniques that combine separation and detection methods are traditionally and effectively used in selenium speciation analysis, but require extensive sample preparation that may affect speciation. Synchrotron-based X-ray absorption and fluorescence techniques offer an alternative approach to selenium speciation analysis that requires minimal sample preparation. We present a brief summary of some key HPLC-ICP-MS and ESI-MS/MS studies of the speciation of selenium in cells and rat tissues. We review the results of a top-down approach to selenium speciation in human lung cancer cells that aims to link the speciation and distribution of selenium to its biological activity using a combination of X-ray absorption spectroscopy (XAS) and X-ray fluorescence microscopy (XFM). The results of this approach highlight the distinct fates of selenomethionine, methylselenocysteine and selenite in terms of their speciation and distribution within cells: organic selenium metabolites were widely distributed throughout the cells, whereas inorganic selenium metabolites were compartmentalized and associated with copper. New data from the XFM mapping of electrophoretically-separated cell lysates show the distribution of selenium in the proteins of selenomethionine-treated cells. Future applications of this top-down approach are discussed. PMID:23698165

  16. Modifications of the chemical structure of phenolics differentially affect physiological activities in pulvinar cells of Mimosa pudica L. II. Influence of various molecular properties in relation to membrane transport.

    PubMed

    Rocher, Françoise; Roblin, Gabriel; Chollet, Jean-François

    2017-03-01

    Early prediction of compound absorption by cells is of considerable importance in the building of an integrated scheme describing the impact of a compound on intracellular biological processes. In this scope, we study the structure-activity relationships of several benzoic acid-related phenolics which are involved in many plant biological phenomena (growth, flowering, allelopathy, defense processes). Using the partial least squares (PLS) regression method, the impact of molecular descriptors that have been shown to play an important role concerning the uptake of pharmacologically active compounds by animal cells was analyzed in terms of the modification of membrane potential, variations in proton flux, and inhibition of the osmocontractile reaction of pulvinar cells of Mimosa pudica leaves. The hydrogen bond donors (HBD) and hydrogen bond acceptors (HBA), polar surface area (PSA), halogen ratio (Hal ratio), number of rotatable bonds (FRB), molar volume (MV), molecular weight (MW), and molar refractivity (MR) were considered in addition to two physicochemical properties (logD and the amount of non-dissociated form in relation to pKa). HBD + HBA and PSA predominantly impacted the three biological processes compared to the other descriptors. The coefficient of determination in the quantitative structure-activity relationship (QSAR) models indicated that a major part of the observed seismonasty inhibition and proton flux modification can be explained by the impact of these descriptors, whereas this was not the case for membrane potential variations. These results indicate that the transmembrane transport of the compounds is a predominant component. An increasing number of implicated descriptors as the biological processes become more complex may reflect their impacts on an increasing number of sites in the cell. The determination of the most efficient effectors may lead to a practical use to improve drugs in the control of microbial attacks on plants.

  17. Comparable Immune Function Inhibition by the Infliximab Biosimilar CT-P13: Implications for Treatment of Inflammatory Bowel Disease.

    PubMed

    Lim, Ki Jung; Lee, So Jung; Kim, Sunghwan; Lee, Su Yeon; Lee, Min Seob; Park, Yoon A; Choi, Eun Jin; Lee, Eun Beom; Jun, Hwang Keun; Cho, Jong Moon; Lee, SooYoung; Kwon, Ki Sung; Lim, Byung Pil; Jeon, Myung-Shin; Shin, Eui Cheol; Choi, Yong Sung; Fudim, Ella; Picard, Orit; Yavzori, Miri; Ben-Horin, Shomron; Chang, Shin Jae

    2017-05-01

    CT-P13 is the first biosimilar monoclonal antibody to infliximab, and was recently approved in the European Union, Japan, Korea, and USA for all six indications of infliximab. However, studies directly assessing the biologic activity of CT-P13 versus inflximab in the context of inflammatory bowel disease [IBD] are still scanty. In the present study, we aimed to compare the biological activities of CT-P13 and infliximab with specific focus on intestinal cells so as to gain insight into the potential biosimilarity of these two agents for treatment of IBD. CT-P13 and infliximab were investigated and compared by in vitro experiments for their neutralisation ability of soluble tumour necrosis factor alpha [sTNFα] and membrane-bound tumour necrosis factor alpha [mTNFα], suppression of cytokine release by reverse signalling, induction of regulatory macrophages and wound healing, and antibody-dependent cell cytotoxicity [ADCC]. CT-P13 showed similar biological activities to infliximab as gauged by neutralisation of soluble TNFα, as well as blockade of apoptosis and suppression of pro-inflammatory cytokines in intestinal Caco-2 cells. Infliximab and CT-P13 equally induced apoptosis and outside-to-inside signals through transmembrane TNFα [tmTNFα]. Moreover, regulatory macrophage induction and ensuing wound healing were similarly exerted by CT-P13 and infliximab. However, neither CT-P13 nor infliximab exerted any significant ADCC of ex vivo-stimulated peripheral blood monocytes or lamina propria mononuclear cells from IBD patients. These findings indicate that CT-P13 and infliximab exert highly similar biological activities in intestinal cells, and further support a mechanistic comparability of these two drugs in the treatment of IBD. Copyright © 2016 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

  18. Poly β-cyclodextrin/TPdye nanomicelle-based two-photon nanoprobe for caspase-3 activation imaging in live cells and tissues.

    PubMed

    Yan, Huijuan; He, Leiliang; Zhao, Wenjie; Li, Jishan; Xiao, Yue; Yang, Ronghua; Tan, Weihong

    2014-11-18

    Two-photon excitation (TPE) with near-infrared (NIR) photons as the excitation source has important advantages over conventional one-photon excitation (OPE) in the field of biomedical imaging. β-cyclodextrin polymer (βCDP)-based two-photon absorption (TPA) fluorescent nanomicelle exhibits desirable two-photon-sensitized fluorescence properties, high photostability, high cell-permeability and excellent biocompatibility. By combination of the nanostructured two-photon dye (TPdye)/βCDP nanomicelle with the TPE technique, herein we have designed a TPdye/βCDP nanomicelle-based TPA fluorescent nanoconjugate for enzymatic activity assay in biological fluids, live cells and tissues. This sensing system is composed of a trans-4-[p-(N,N-diethylamino)styryl]-N-methylpyridinium iodide (DEASPI)/βCDP nanomicelle as TPA fluorophore and carrier vehicle for delivery of a specific peptide sequence to live cell through fast endocytosis, and an adamantine (Ad)-GRRRDEVDK-BHQ2 (black hole quencher 2) peptide (denoted as Ad-DEVD-BHQ2) anchored on the DEASPI/βCDP nanomicelle's surface to form TPA DEASPI/βCDP@Ad-DEVD-BHQ2 nanoconjugate by the βCD/Ad host-guest inclusion strategy. Successful in vitro and in vivo enzymatic activities assay of caspase-3 was demonstrated with this sensing strategy. Our results reveal that this DEASPI/βCDP@Ad-DEVD-BHQ2 nanoconjugate not only is a robust, sensitive and selective sensor for quantitative assay of caspase-3 in the complex biological environment but also can be efficiently delivered into live cells as well as tissues and act as a "signal-on" fluorescent biosensor for specific, high-contrast imaging of enzymatic activities. This DEASPI/βCDP@Ad-DEVD-BHQ2 nanoconjugate provides a new opportunity to screen enzyme inhibitors and evaluate the apoptosis-associated disease progression. Moreover, our design also provides a methodology model scheme for development of future TPdye/βCDP nanomicelle-based two-photon fluorescent probes for in vitro or in vivo determination of biological or biologically relevant species.

  19. Molecular systems biology of ErbB1 signaling: bridging the gap through multiscale modeling and high-performance computing.

    PubMed

    Shih, Andrew J; Purvis, Jeremy; Radhakrishnan, Ravi

    2008-12-01

    The complexity in intracellular signaling mechanisms relevant for the conquest of many diseases resides at different levels of organization with scales ranging from the subatomic realm relevant to catalytic functions of enzymes to the mesoscopic realm relevant to the cooperative association of molecular assemblies and membrane processes. Consequently, the challenge of representing and quantifying functional or dysfunctional modules within the networks remains due to the current limitations in our understanding of mesoscopic biology, i.e., how the components assemble into functional molecular ensembles. A multiscale approach is necessary to treat a hierarchy of interactions ranging from molecular (nm, ns) to signaling (microm, ms) length and time scales, which necessitates the development and application of specialized modeling tools. Complementary to multiscale experimentation (encompassing structural biology, mechanistic enzymology, cell biology, and single molecule studies) multiscale modeling offers a powerful and quantitative alternative for the study of functional intracellular signaling modules. Here, we describe the application of a multiscale approach to signaling mediated by the ErbB1 receptor which constitutes a network hub for the cell's proliferative, migratory, and survival programs. Through our multiscale model, we mechanistically describe how point-mutations in the ErbB1 receptor can profoundly alter signaling characteristics leading to the onset of oncogenic transformations. Specifically, we describe how the point mutations induce cascading fragility mechanisms at the molecular scale as well as at the scale of the signaling network to preferentially activate the survival factor Akt. We provide a quantitative explanation for how the hallmark of preferential Akt activation in cell-lines harboring the constitutively active mutant ErbB1 receptors causes these cell-lines to be addicted to ErbB1-mediated generation of survival signals. Consequently, inhibition of ErbB1 activity leads to a remarkable therapeutic response in the addicted cell lines.

  20. Modeling of cytometry data in logarithmic space: When is a bimodal distribution not bimodal?

    PubMed

    Erez, Amir; Vogel, Robert; Mugler, Andrew; Belmonte, Andrew; Altan-Bonnet, Grégoire

    2018-02-16

    Recent efforts in systems immunology lead researchers to build quantitative models of cell activation and differentiation. One goal is to account for the distributions of proteins from single-cell measurements by flow cytometry or mass cytometry as readout of biological regulation. In that context, large cell-to-cell variability is often observed in biological quantities. We show here that these readouts, viewed in logarithmic scale may result in two easily-distinguishable modes, while the underlying distribution (in linear scale) is unimodal. We introduce a simple mathematical test to highlight this mismatch. We then dissect the flow of influence of cell-to-cell variability proposing a graphical model which motivates higher-dimensional analysis of the data. Finally we show how acquiring additional biological information can be used to reduce uncertainty introduced by cell-to-cell variability, helping to clarify whether the data is uni- or bimodal. This communication has cautionary implications for manual and automatic gating strategies, as well as clustering and modeling of single-cell measurements. © 2018 International Society for Advancement of Cytometry. © 2018 International Society for Advancement of Cytometry.

  1. Investigating biological activity spectrum for novel quinoline analogues.

    PubMed

    Musiol, Robert; Jampilek, Josef; Kralova, Katarina; Richardson, Des R; Kalinowski, Danuta; Podeszwa, Barbara; Finster, Jacek; Niedbala, Halina; Palka, Anna; Polanski, Jaroslaw

    2007-02-01

    The lack of the wide spectrum of biological data is an important obstacle preventing the efficient molecular design. Quinoline derivatives are known to exhibit a variety of biological effects. In the current publication, we tested a series of novel quinoline analogues for their photosynthesis-inhibiting activity (the inhibition of photosynthetic electron transport in spinach chloroplasts (Spinacia oleracea L.) and the reduction of chlorophyll content in Chlorella vulgaris Beij.). Moreover, antiproliferative activity was measured using SK-N-MC neuroepithelioma cell line. We described the structure-activity relationships (SAR) between the chemical structure and biological effects of the synthesized compounds. We also measured the lipophilicity of the novel compounds by means of the RP-HPLC and illustrate the relationships between the RP-HPLC retention parameter logK (the logarithm of capacity factor K) and logP data calculated by available programs.

  2. Design, synthesis and biological evaluation of arylcinnamide hybrid derivatives as novel anticancer agents

    PubMed Central

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Salvador, Maria Kimatrai; Chayah, Mariem; Camacho, M. Encarnacion; Prencipe, Filippo; Hamel, Ernest; Consolaro, Francesca; Basso, Giuseppe; Viola, Giampietro

    2014-01-01

    The combination of two pharmacophores into a single molecule represents one of the methods that can be adopted for the synthesis of new anticancer molecules. A series of novel antiproliferative agents designed by a pharmacophore hybridization approach, combining the arylcinnamide skeleton and an α-bromoacryloyl moiety, was synthesized and evaluated for its antiproliferative activity against a panel of seven human cancer cell lines. In addition, the new derivatives were also active on multidrug-resistant cell lines over-expressing P-glycoprotein. The biological effects of various substituents on the N-phenyl ring of the benzamide portion were also described. In order to study the possible mechanism of action, we observed that 4p slightly increased the Reactive Oxygen Species (ROS) production in HeLa cells, but, more importantly, a remarkable decrease of intracellular reduced glutathione content was detected in treated cells compared with controls. These results were confirmed by the observation that only thiol-containing antioxidants were able to significantly protect the cells from induced cell death. Altogether our results indicate that the new derivatives are endowed with good anticancer activity in vitro, and their properties may result in the development of new cancer therapeutic strategies. PMID:24858544

  3. Total Synthesis and Structure-Activity Investigation of the Marine Natural Product Neopeltolide

    PubMed Central

    Custar, Daniel W.; Zabawa, Thomas P.; Hines, John; Crews, Craig M.; Scheidt, Karl A.

    2009-01-01

    The total synthesis and biological evaluation of neopeltolide and analogs are reported. The key bond-forming step utilizes a Lewis acid-catalyzed intramolecular macrocyclization that installs the tetrahydropyran ring and macrocycle simultaneously. Independent of each other, neither the macrolide nor the oxazole side chain substituents of neopeltolide can inhibit the growth of cancer cell lines. The biological data of the analogs indicate that alterations to either the ester side chain or the stereochemistry of the macrolide result in a loss of biological activity. PMID:19663512

  4. Hydrogen Peroxide Activated Quinone Methide Precursors with Enhanced DNA Cross-Linking Capability and Cytotoxicity towards Cancer Cells

    PubMed Central

    Wang, Yibin; Fan, Heli; Balakrishnan, Kumudha; Lin, Zechao; Cao, Sheng; Chen, Wenbing; Fan, Yukai; Guthrie, Quibria A.; Sun, Huabing; Teske, Kelly A.; Gandhi, Varsha; Arnold, Leggy A.; Peng, Xiaohua

    2017-01-01

    Quinone methide (QM) formation induced by endogenously generated H2O2 is attractive for biological and biomedical applications. To overcome current limitations due to low biological activity of H2O2-activated QM precursors, we are introducing herein several new arylboronates with electron donating substituents at different positions of benzene ring and/or different neutral leaving groups. The reaction rate of the arylboronate esters with H2O2 and subsequent bisquinone methides formation and DNA cross-linking was accelerated with the application of Br as a leaving group instead of acetoxy groups. Additionally, a donating group placed meta to the nascent exo-methylene group of the quinone methide greatly improves H2O2-induced DNA interstrand cross-link formation as well as enhances the cellular activity. Multiple donating groups decrease the stability and DNA cross-linking capability, which lead to low cellular activity. A cell-based screen demonstrated that compounds 2a and 5a with a OMe or OH group dramatically inhibited the growth of various tissue-derived cancer cells while normal cells were less affected. Induction of H2AX phosphorylation by these compounds in CLL lymphocytes provide evidence for a correlation between cell death and DNA damage. The compounds presented herein showed potent anticancer activities and selectivity, which represent a novel scaffold for anticancer drug development. PMID:28388522

  5. Super-resolution binding activated localization microscopy through reversible change of DNA conformation.

    PubMed

    Szczurek, Aleksander; Birk, Udo; Knecht, Hans; Dobrucki, Jurek; Mai, Sabine; Cremer, Christoph

    2018-01-01

    Methods of super-resolving light microscopy (SRM) have found an exponentially growing range of applications in cell biology, including nuclear structure analyses. Recent developments have proven that Single Molecule Localization Microscopy (SMLM), a type of SRM, is particularly useful for enhanced spatial analysis of the cell nucleus due to its highest resolving capability combined with very specific fluorescent labeling. In this commentary we offer a brief review of the latest methodological development in the field of SMLM of chromatin designated DNA Structure Fluctuation Assisted Binding Activated Localization Microscopy (abbreviated as fBALM) as well as its potential future applications in biology and medicine.

  6. Super-resolution binding activated localization microscopy through reversible change of DNA conformation

    PubMed Central

    Knecht, Hans; Dobrucki, Jurek; Mai, Sabine

    2018-01-01

    ABSTRACT Methods of super-resolving light microscopy (SRM) have found an exponentially growing range of applications in cell biology, including nuclear structure analyses. Recent developments have proven that Single Molecule Localization Microscopy (SMLM), a type of SRM, is particularly useful for enhanced spatial analysis of the cell nucleus due to its highest resolving capability combined with very specific fluorescent labeling. In this commentary we offer a brief review of the latest methodological development in the field of SMLM of chromatin designated DNA Structure Fluctuation Assisted Binding Activated Localization Microscopy (abbreviated as fBALM) as well as its potential future applications in biology and medicine. PMID:29297245

  7. The role of EMMPRIN in T cell biology and immunological diseases.

    PubMed

    Hahn, Jennifer Nancy; Kaushik, Deepak Kumar; Yong, V Wee

    2015-07-01

    EMMPRIN (CD147), originally described as an inducer of the expression of MMPs, has gained attention in its involvement in various immunologic diseases, such that anti-EMMPRIN antibodies are considered as potential therapeutic medications. Given that MMPs are involved in the pathogenesis of various disease states, it is relevant that targeting an upstream inducer would make for an effective therapeutic strategy. Additionally, EMMPRIN is now appreciated to have multiple roles apart from MMP induction, including in cellular functions, such as migration, adhesion, invasion, energy metabolism, as well as T cell activation and proliferation. Here, we review what is known about EMMPRIN in numerous immunologic/inflammatory disease conditions with a particular focus on its complex roles in T cell biology. © Society for Leukocyte Biology.

  8. Corrosion resistance and biological activity of TiO2 implant coatings produced in oxygen-rich environments.

    PubMed

    Zhang, Rui; Wan, Yi; Ai, Xing; Liu, Zhanqiang; Zhang, Dong

    2017-01-01

    The physical and chemical properties of bio-titanium alloy implant surfaces play an important role in their corrosion resistance and biological activity. New turning and turning-rolling processes are presented, employing an oxygen-rich environment in order to obtain titanium dioxide layers that can both protect implants from corrosion and also promote cell adhesion. The surface topographies, surface roughnesses and chemical compositions of the sample surfaces were obtained using scanning electron microscopy, a white light interferometer, and the Auger electron spectroscopy, respectively. The corrosion resistance of the samples in a simulated body fluid was determined using electrochemical testing. Biological activity on the samples was also analyzed, using a vitro cell culture system. The results show that compared with titanium oxide layers formed using a turning process in air, the thickness of the titanium oxide layers formed using turning and turning-rolling processes in an oxygen-rich environment increased by 4.6 and 7.3 times, respectively. Using an oxygen-rich atmosphere in the rolling process greatly improves the corrosion resistance of the resulting samples in a simulated body fluid. On samples produced using the turning-rolling process, cells spread quickly and exhibited the best adhesion characteristics.

  9. Applications of biological pores in nanomedicine, sensing, and nanoelectronics

    PubMed Central

    Majd, Sheereen; Yusko, Erik C; Billeh, Yazan N; Macrae, Michael X; Yang, Jerry; Mayer, Michael

    2011-01-01

    Biological protein pores and pore-forming peptides can generate a pathway for the flux of ions and other charged or polar molecules across cellular membranes. In nature, these nanopores have diverse and essential functions that range from maintaining cell homeostasis and participating in cell signaling to activating or killing cells. The combination of the nanoscale dimensions and sophisticated – often regulated – functionality of these biological pores make them particularly attractive for the growing field of nanobiotechnology. Applications range from single-molecule sensing to drug delivery and targeted killing of malignant cells. Potential future applications may include the use of nanopores for single strand DNA sequencing and for generating bio-inspired, and possibly, biocompatible visual detection systems and batteries. This article reviews the current state of applications of pore-forming peptides and proteins in nanomedicine, sensing, and nanoelectronics. PMID:20561776

  10. CHEMICALLY ACTIVATED LUCIFASE GENE EXPRESSION (CALUX) CELL BIOASSAY ANALYSIS FOR THE ESTIMATION OF DIOXIN-LIKE ACTIVITIY: CRITICAL PARAMETERS OF THE CALUX PROCEDURE THAT IMPACT ASSAY RESULTS

    EPA Science Inventory

    The Chemically Activated Luciferase gene expression (CALUX) in vitro cell bioassay is an emerging bioanalytical tool that is increasingly being used for the screening and relative quantification of dioxins and dioxin-like compounds. Since CALUX analyses provide a biological respo...

  11. Intracellular Fluid Mechanics: Coupling Cytoplasmic Flow with Active Cytoskeletal Gel

    NASA Astrophysics Data System (ADS)

    Mogilner, Alex; Manhart, Angelika

    2018-01-01

    The cell is a mechanical machine, and continuum mechanics of the fluid cytoplasm and the viscoelastic deforming cytoskeleton play key roles in cell physiology. We review mathematical models of intracellular fluid mechanics, from cytoplasmic fluid flows, to the flow of a viscous active cytoskeletal gel, to models of two-phase poroviscous flows, to poroelastic models. We discuss application of these models to cell biological phenomena, such as organelle positioning, blebbing, and cell motility. We also discuss challenges of understanding fluid mechanics on the cellular scale.

  12. Successful synthesis of active human coagulation factor VII by co-expression of mammalian gamma-glutamyl carboxylase and modification of vit.K cycle in Drosophila Schneider S2 cells.

    PubMed

    Nagahashi, Kotomi; Umemura, Kazuo; Kanayama, Naohiro; Iwaki, Takayuki

    2017-04-01

    Mammalian gamma-glutamyl carboxylase and reduced vitamin K are indispensable for synthesis of mature mammalian vitamin K dependent proteins including some of blood coagulation factors (factors II, VII, IX, and X). It was well known that Drosophila melanogaster expressed gamma-glutamyl carboxylase and possessed a vit.K cycle although native substrates for them have not been identified yet. Despite the potential capability of gamma carboxylation in D. melanogaster derived cells such as S2 cells, Drosophila gamma-glutamyl carboxylase failed to gamma carboxylate a peptide fused to the human coagulation factor IX propeptide. Thus, it had been believed that the Drosophila system was not adequate to synthesize mammalian vit.K dependent proteins. Indeed, we previously attempted to synthesize biologically active factor VII in S2 cells although we were not able to obtain it. However, recently, a successful transient expression of biologically active human factor IX from S2 cells was reported. In the present study, several expression vectors which enable expressing mammalian GGCX, VKORC1, and/or PDIA2 along with F7 were developed. S2 cells transfected with pMKA85, pMAK86, and pMAK219 successfully synthesized active FVII. Thus, mammalian GGCX was indispensable to synthesize active FVII while mammalian VKORC1 and PDIA2 were not critical but supportive factors for S2 cells.

  13. Polarization: A Key Difference between Man-made and Natural Electromagnetic Fields, in regard to Biological Activity

    PubMed Central

    Panagopoulos, Dimitris J.; Johansson, Olle; Carlo, George L.

    2015-01-01

    In the present study we analyze the role of polarization in the biological activity of Electromagnetic Fields (EMFs)/Electromagnetic Radiation (EMR). All types of man-made EMFs/EMR - in contrast to natural EMFs/EMR - are polarized. Polarized EMFs/EMR can have increased biological activity, due to: 1) Ability to produce constructive interference effects and amplify their intensities at many locations. 2) Ability to force all charged/polar molecules and especially free ions within and around all living cells to oscillate on parallel planes and in phase with the applied polarized field. Such ionic forced-oscillations exert additive electrostatic forces on the sensors of cell membrane electro-sensitive ion channels, resulting in their irregular gating and consequent disruption of the cell’s electrochemical balance. These features render man-made EMFs/EMR more bioactive than natural non-ionizing EMFs/EMR. This explains the increasing number of biological effects discovered during the past few decades to be induced by man-made EMFs, in contrast to natural EMFs in the terrestrial environment which have always been present throughout evolution, although human exposure to the latter ones is normally of significantly higher intensities/energy and longer durations. Thus, polarization seems to be a trigger that significantly increases the probability for the initiation of biological/health effects. PMID:26456585

  14. Polarization: A Key Difference between Man-made and Natural Electromagnetic Fields, in regard to Biological Activity

    NASA Astrophysics Data System (ADS)

    Panagopoulos, Dimitris J.; Johansson, Olle; Carlo, George L.

    2015-10-01

    In the present study we analyze the role of polarization in the biological activity of Electromagnetic Fields (EMFs)/Electromagnetic Radiation (EMR). All types of man-made EMFs/EMR - in contrast to natural EMFs/EMR - are polarized. Polarized EMFs/EMR can have increased biological activity, due to: 1) Ability to produce constructive interference effects and amplify their intensities at many locations. 2) Ability to force all charged/polar molecules and especially free ions within and around all living cells to oscillate on parallel planes and in phase with the applied polarized field. Such ionic forced-oscillations exert additive electrostatic forces on the sensors of cell membrane electro-sensitive ion channels, resulting in their irregular gating and consequent disruption of the cell’s electrochemical balance. These features render man-made EMFs/EMR more bioactive than natural non-ionizing EMFs/EMR. This explains the increasing number of biological effects discovered during the past few decades to be induced by man-made EMFs, in contrast to natural EMFs in the terrestrial environment which have always been present throughout evolution, although human exposure to the latter ones is normally of significantly higher intensities/energy and longer durations. Thus, polarization seems to be a trigger that significantly increases the probability for the initiation of biological/health effects.

  15. Use of Primary Human Cell Systems for Creating Predictive Toxicology Profiles

    EPA Science Inventory

    Use of cellular regulatory networks to detect and distinguish effects of compounds with a broad range of on- and off-target mechanisms and biological processes provides an opportunity to understand toxicity mechanisms of action. Here we use the Biologically Multiplexed Activity P...

  16. Cell-based composite materials with programmed structures and functions

    DOEpatents

    None

    2016-03-01

    The present invention is directed to the use of silicic acid to transform biological materials, including cellular architecture into inorganic materials to provide biocomposites (nanomaterials) with stabilized structure and function. In the present invention, there has been discovered a means to stabilize the structure and function of biological materials, including cells, biomolecules, peptides, proteins (especially including enzymes), lipids, lipid vesicles, polysaccharides, cytoskeletal filaments, tissue and organs with silicic acid such that these materials may be used as biocomposites. In many instances, these materials retain their original biological activity and may be used in harsh conditions which would otherwise destroy the integrity of the biological material. In certain instances, these biomaterials may be storage stable for long periods of time and reconstituted after storage to return the biological material back to its original form. In addition, by exposing an entire cell to form CSCs, the CSCs may function to provide a unique system to study enzymes or a cascade of enzymes which are otherwise unavailable.

  17. Cell-based composite materials with programmed structures and functions

    DOEpatents

    Kaehr, Bryan J.; Brinker, C. Jeffrey; Townson, Jason L.

    2018-05-15

    The present invention is directed to the use of silicic acid to transform biological materials, including cellular architecture into inorganic materials to provide biocomposites (nanomaterials) with stabilized structure and function. In the present invention, there has been discovered a means to stabilize the structure and function of biological materials, including cells, biomolecules, peptides, proteins (especially including enzymes), lipids, lipid vesicles, polysaccharides, cytoskeletal filaments, tissue and organs with silicic acid such that these materials may be used as biocomposites. In many instances, these materials retain their original biological activity and may be used in harsh conditions which would otherwise destroy the integrity of the biological material. In certain instances, these biomaterials may be storage stable for long periods of time and reconstituted after storage to return the biological material back to its original form. In addition, by exposing an entire cell to form CSCs, the CSCs may function to provide a unique system to study enzymes or a cascade of enzymes which are otherwise unavailable.

  18. Membrane Transfer from Mononuclear Cells to Polymorphonuclear Neutrophils Transduces Cell Survival and Activation Signals in the Recipient Cells via Anti-Extrinsic Apoptotic and MAP Kinase Signaling Pathways.

    PubMed

    Li, Ko-Jen; Wu, Cheng-Han; Shen, Chieh-Yu; Kuo, Yu-Min; Yu, Chia-Li; Hsieh, Song-Chou

    2016-01-01

    The biological significance of membrane transfer (trogocytosis) between polymorphonuclear neutrophils (PMNs) and mononuclear cells (MNCs) remains unclear. We investigated the biological/immunological effects and molecular basis of trogocytosis among various immune cells in healthy individuals and patients with active systemic lupus erythematosus (SLE). By flow cytometry, we determined that molecules in the immunological synapse, including HLA class-I and-II, CD11b and LFA-1, along with CXCR1, are exchanged among autologous PMNs, CD4+ T cells, and U937 cells (monocytes) after cell-cell contact. Small interfering RNA knockdown of the integrin adhesion molecule CD11a in U937 unexpectedly enhanced the level of total membrane transfer from U937 to PMN cells. Functionally, phagocytosis and IL-8 production by PMNs were enhanced after co-culture with T cells. Total membrane transfer from CD4+ T to PMNs delayed PMN apoptosis by suppressing the extrinsic apoptotic molecules, BAX, MYC and caspase 8. This enhancement of activities of PMNs by T cells was found to be mediated via p38- and P44/42-Akt-MAP kinase pathways and inhibited by the actin-polymerization inhibitor, latrunculin B, the clathrin inhibitor, Pitstop-2, and human immunoglobulin G, but not by the caveolin inhibitor, methyl-β-cyclodextrin. In addition, membrane transfer from PMNs enhanced IL-2 production by recipient anti-CD3/anti-CD28 activated MNCs, and this was suppressed by inhibitors of mitogen-activated protein kinase (PD98059) and protein kinase C (Rottlerin). Of clinical significance, decreased total membrane transfer from PMNs to MNCs in patients with active SLE suppressed mononuclear IL-2 production. In conclusion, membrane transfer from MNCs to PMNs, mainly at the immunological synapse, transduces survival and activation signals to enhance PMN functions and is dependent on actin polymerization, clathrin activation, and Fcγ receptors, while membrane transfer from PMNs to MNCs depends on MAP kinase and PKC signaling. Defective membrane transfer from PMNs to MNCs in patients with active systemic lupus erythematous suppressed activated mononuclear IL-2 production.

  19. Imaging and Force Recognition of Single Molecular Behaviors Using Atomic Force Microscopy

    PubMed Central

    Li, Mi; Dang, Dan; Liu, Lianqing; Xi, Ning; Wang, Yuechao

    2017-01-01

    The advent of atomic force microscopy (AFM) has provided a powerful tool for investigating the behaviors of single native biological molecules under physiological conditions. AFM can not only image the conformational changes of single biological molecules at work with sub-nanometer resolution, but also sense the specific interactions of individual molecular pair with piconewton force sensitivity. In the past decade, the performance of AFM has been greatly improved, which makes it widely used in biology to address diverse biomedical issues. Characterizing the behaviors of single molecules by AFM provides considerable novel insights into the underlying mechanisms guiding life activities, contributing much to cell and molecular biology. In this article, we review the recent developments of AFM studies in single-molecule assay. The related techniques involved in AFM single-molecule assay were firstly presented, and then the progress in several aspects (including molecular imaging, molecular mechanics, molecular recognition, and molecular activities on cell surface) was summarized. The challenges and future directions were also discussed. PMID:28117741

  20. Pituitary adenylate cyclase-activating polypeptide: a novel peptide with protean implications.

    PubMed

    Pisegna, Joseph R; Oh, David S

    2007-02-01

    The purpose of this review is to highlight the importance of pituitary adenylate cyclase-activating polypeptide in physiological processes and to describe how this peptide is becoming increasingly recognized as having a major role in the body. Since its discovery in 1989, investigators have sought to determine the site of biological activity and the function of pituitary adenylate cyclase-activating polypeptide in maintaining homeostasis. Since its discovery, pituitary adenylate cyclase-activating polypeptide appears to play an important role in the regulation of processes within the central nervous system and gastrointestinal tract, as well in reproductive biology. Pituitary adenylate cyclase-activating polypeptide has been shown to regulate tumor cell growth and to regulate immune function through its effects on T lympocytes. These discoveries suggest the importance of pituitary adenylate cyclase-activating polypeptide in neuronal development, neuronal function, gastrointestinal tract function and reproduction. Future studies will examine more closely the role of pituitary adenylate cyclase-activating polypeptide in regulation of malignantly transformed cells, as well as in regulation of immune function.

  1. Novel coumarins and related copper complexes with biological activity: DNA binding, molecular docking and in vitro antiproliferative activity.

    PubMed

    Pivetta, Tiziana; Valletta, Elisa; Ferino, Giulio; Isaia, Francesco; Pani, Alessandra; Vascellari, Sarah; Castellano, Carlo; Demartin, Francesco; Cabiddu, Maria Grazia; Cadoni, Enzo

    2017-12-01

    Coumarins show biological activity and are widely exploited for their therapeutic effects. Although a great number of coumarins substituted by heterocyclic moieties have been prepared, few studies have been carried out on coumarins containing pyridine heterocycle, which is known to modulate their physiological activities. We prepared and characterized three novel 3-(pyridin-2-yl)coumarins and their corresponding copper(II) complexes. We extended our investigations also to three known similar coumarins, since no data about their biochemical activity was previously been reported. The antiproliferative activity of the studied compounds was tested against human derived tumor cell lines and one human normal cell line. The DNA binding constants were determined and docking studies with DNA carried out. Selected Quantitative Structure-Activity Relationship (QSAR) descriptors were calculated in order to relate a set of structural and topological descriptors of the studied compounds to their DNA interaction and cytotoxic activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Capsiate Inhibits DNFB-Induced Atopic Dermatitis in NC/Nga Mice through Mast Cell and CD4+ T-Cell Inactivation.

    PubMed

    Lee, Ji H; Lee, Yun S; Lee, Eun-Jung; Lee, Ji H; Kim, Tae-Yoon

    2015-08-01

    Capsaicin has many biological effects, such as antioxidant, anticancer, and antiangiogenic effects, but it is rarely used because of its high pungency. Capsiate, a nonpungent capsaicin analog, also has multiple biological effects, similar to those of capsaicin, but does not cause irritation. However, the effect of capsiate on allergic responses and immune cells has not been well studied. In this study, we investigated the effect of capsiate on atopic dermatitis, mouse CD4+ T cells, and mast cell activation. Capsiate inhibited DNFB-induced atopic dermatitis in NC/Nga mice. Topical treatment with capsiate suppressed serum IgE levels and cytokine and chemokine expression in the skin of DNFB-treated NC/Nga mice. In addition, it suppressed the activation of CD4+ T cells and mast cells, which are implicated in allergic diseases. Capsiate inhibited the differentiation of naïve CD4+ T cells into T helper type 1 (Th1), Th2, and Th17 cells. Treatment with capsiate inhibited the expression of pro-inflammatory cytokines and degranulation from activated bone marrow-derived mast cells through the inhibition of extracellular signal-regulated kinase signal pathways. Consistent with these results, treatment with capsiate inhibited passive cutaneous anaphylaxis. Taken together, our results suggest that capsiate might be a good candidate molecule for the treatment of allergic diseases such as atopic dermatitis.

  3. Platelet-Rich Plasma Peptides: Key for Regeneration

    PubMed Central

    Sánchez-González, Dolores Javier; Méndez-Bolaina, Enrique; Trejo-Bahena, Nayeli Isabel

    2012-01-01

    Platelet-derived Growth Factors (GFs) are biologically active peptides that enhance tissue repair mechanisms such as angiogenesis, extracellular matrix remodeling, and cellular effects as stem cells recruitment, chemotaxis, cell proliferation, and differentiation. Platelet-rich plasma (PRP) is used in a variety of clinical applications, based on the premise that higher GF content should promote better healing. Platelet derivatives represent a promising therapeutic modality, offering opportunities for treatment of wounds, ulcers, soft-tissue injuries, and various other applications in cell therapy. PRP can be combined with cell-based therapies such as adipose-derived stem cells, regenerative cell therapy, and transfer factors therapy. This paper describes the biological background of the platelet-derived substances and their potential use in regenerative medicine. PMID:22518192

  4. Moonlighting proteins in cancer.

    PubMed

    Min, Kyung-Won; Lee, Seong-Ho; Baek, Seung Joon

    2016-01-01

    Since the 1980s, growing evidence suggested that the cellular localization of proteins determined their activity and biological functions. In a classical view, a protein is characterized by the single cellular compartment where it primarily resides and functions. It is now believed that when proteins appear in different subcellular locations, the cells surpass the expected activity of proteins given the same genomic information to fulfill complex biological behavior. Many proteins are recognized for having the potential to exist in multiple locations in cells. Dysregulation of translocation may cause cancer or contribute to poorer cancer prognosis. Thus, quantitative and comprehensive assessment of dynamic proteins and associated protein movements could be a promising indicator in determining cancer prognosis and efficiency of cancer treatment and therapy. This review will summarize these so-called moonlighting proteins, in terms of a coupled intracellular cancer signaling pathway. Determination of the detailed biological intracellular and extracellular transit and regulatory activity of moonlighting proteins permits a better understanding of cancer and identification of potential means of molecular intervention. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Chemical synthesis of biologically active tat trans-activating protein of human immunodeficiency virus type 1.

    PubMed Central

    Chun, R; Glabe, C G; Fan, H

    1990-01-01

    Full-length (86-residue) polypeptide corresponding to the human immunodeficiency virus type 1 tat trans-activating protein was chemically synthesized on a semiautomated apparatus, using an Fmoc amino acid continuous-flow strategy. The bulk material was relatively homogeneous, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing, and it showed trans-activating activity when scrape loaded into cells containing a human immunodeficiency virus long terminal repeat-chloramphenicol acetyl-transferase reporter plasmid. Reverse-phase high-pressure liquid chromatography yielded a rather broad elution profile, and assays across the column for biological activity indicated a sharper peak. Thus, high-pressure liquid chromatography provided for enrichment of biological activity. Fast atom bombardment-mass spectrometry of tryptic digests of synthetic tat identified several of the predicted tryptic peptides, consistent with accurate chemical synthesis. Images PMID:2186178

  6. Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block

    PubMed Central

    Hu, Yu-Feng; Dawkins, James Frederick; Cho, Hee Cheol; Marbán, Eduardo; Cingolani, Eugenio

    2016-01-01

    Somatic reprogramming by reexpression of the embryonic transcription factor T-box 18 (TBX18) converts cardiomyocytes into pacemaker cells. We hypothesized that this could be a viable therapeutic avenue for pacemaker-dependent patients afflicted with device-related complications, and therefore tested whether adenoviral TBX18 gene transfer could create biological pacemaker activity in vivo in a large-animal model of complete heart block. Biological pacemaker activity, originating from the intramyocardial injection site, was evident in TBX18-transduced animals starting at day 2 and persisted for the duration of the study (14 days) with minimal backup electronic pacemaker use. Relative to controls transduced with a reporter gene, TBX18-transduced animals exhibited enhanced autonomic responses and physiologically superior chronotropic support of physical activity. Induced sinoatrial node cells could be identified by their distinctive morphology at the site of injection in TBX18-transduced animals, but not in controls. No local or systemic safety concerns arose. Thus, minimally invasive TBX18 gene transfer creates physiologically relevant pacemaker activity in complete heart block, providing evidence for therapeutic somatic reprogramming in a clinically relevant disease model. PMID:25031269

  7. Comparative study of different procedures for the separation of peripheral blood mononuclear cells in cytokine-induced killer cell immunotherapy for hepatocarcinoma.

    PubMed

    Liu, Hui; Li, Jianyu; Wang, Fengmei; Gao, Yingtang; Luo, Ying; Wang, Peng; Li, Chenglong; Zhu, Zhengyan

    2015-04-01

    Cytokine-induced killer (CIK) cell immunotherapy exhibits significant advantages in the clinical treatment of tumors. This study was designed to compare the biological characteristics of autologous CIK cells from patients with hepatocarcinoma following different procedures for the separation of peripheral blood mononuclear cells (PBMCs). Forty-four hepatocarcinoma patients were enrolled and distributed into two groups. PBMCs were isolated either using a blood cell separator (apheresis method) or Ficoll lymphocyte separation medium (Ficoll method). The total amount, collection efficacy, and cell status of PBMCs in the two groups were determined. According to the number and status of collected PBMCs, different cultivation procedures were used for their amplification and activation and the proliferation ability, phenotype, and killing activity of CIK cells in the two groups were evaluated. Our results indicated that the number of collected PBMCs in the apheresis group was far more than that in the Ficoll group. However, the isolation rate was lower, and more cellular debris was observed in the apheresis group, which may be the cause of some untoward effects. Following in vitro culture, the enrichment time of CIK cells was longer in the Ficoll group, and the percentages of CD3(+)CD4(+) (Th) and CD4(+)CD25(+) (Treg) cells were higher. In the apheresis group, the percentages of CD3(-)CD56(+) (NK) and CD3(+)CD56(+) (NKT) cells were higher, and the CIK cells exhibited a higher cytolytic activity against HepG2 hepatoma cells. In conclusion, different procedures for PBMCs separation can influence the biological activities of CIK cells, and the apheresis method is more effective at enhancing the antitumor efficacy of CIK cells. However, significant attention should be paid to the possibility of adverse reactions in apheresis donors.

  8. Immobilization of Heparan Sulfate on Electrospun Meshes to Support Embryonic Stem Cell Culture and Differentiation*

    PubMed Central

    Meade, Kate A.; White, Kathryn J.; Pickford, Claire E.; Holley, Rebecca J.; Marson, Andrew; Tillotson, Donna; van Kuppevelt, Toin H.; Whittle, Jason D.; Day, Anthony J.; Merry, Catherine L. R.

    2013-01-01

    As our understanding of what guides the behavior of multi- and pluripotent stem cells deepens, so too does our ability to utilize certain cues to manipulate their behavior and maximize their therapeutic potential. Engineered, biologically functionalized materials have the capacity to influence stem cell behavior through a powerful combination of biological, mechanical, and topographical cues. Here, we present the development of a novel electrospun scaffold, functionalized with glycosaminoglycans (GAGs) ionically immobilized onto the fiber surface. Bound GAGs retained the ability to interact with GAG-binding molecules and, crucially, presented GAG sulfation motifs fundamental to mediating stem cell behavior. Bound GAG proved to be biologically active, rescuing the neural differentiation capacity of heparan sulfate-deficient mouse embryonic stem cells and functioning in concert with FGF4 to facilitate the formation of extensive neural processes across the scaffold surface. The combination of GAGs with electrospun scaffolds creates a biomaterial with potent applicability for the propagation and effective differentiation of pluripotent stem cells. PMID:23235146

  9. Do lipids shape the eukaryotic cell cycle?

    PubMed

    Furse, Samuel; Shearman, Gemma C

    2018-01-01

    Successful passage through the cell cycle presents a number of structural challenges to the cell. Inceptive studies carried out in the last five years have produced clear evidence of modulations in the lipid profile (sometimes referred to as the lipidome) of eukaryotes as a function of the cell cycle. This mounting body of evidence indicates that lipids play key roles in the structural transformations seen across the cycle. The accumulation of this evidence coincides with a revolution in our understanding of how lipid composition regulates a plethora of biological processes ranging from protein activity through to cellular signalling and membrane compartmentalisation. In this review, we discuss evidence from biological, chemical and physical studies of the lipid fraction across the cell cycle that demonstrate that lipids are well-developed cellular components at the heart of the biological machinery responsible for managing progress through the cell cycle. Furthermore, we discuss the mechanisms by which this careful control is exercised. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  10. Immobilization of heparan sulfate on electrospun meshes to support embryonic stem cell culture and differentiation.

    PubMed

    Meade, Kate A; White, Kathryn J; Pickford, Claire E; Holley, Rebecca J; Marson, Andrew; Tillotson, Donna; van Kuppevelt, Toin H; Whittle, Jason D; Day, Anthony J; Merry, Catherine L R

    2013-02-22

    As our understanding of what guides the behavior of multi- and pluripotent stem cells deepens, so too does our ability to utilize certain cues to manipulate their behavior and maximize their therapeutic potential. Engineered, biologically functionalized materials have the capacity to influence stem cell behavior through a powerful combination of biological, mechanical, and topographical cues. Here, we present the development of a novel electrospun scaffold, functionalized with glycosaminoglycans (GAGs) ionically immobilized onto the fiber surface. Bound GAGs retained the ability to interact with GAG-binding molecules and, crucially, presented GAG sulfation motifs fundamental to mediating stem cell behavior. Bound GAG proved to be biologically active, rescuing the neural differentiation capacity of heparan sulfate-deficient mouse embryonic stem cells and functioning in concert with FGF4 to facilitate the formation of extensive neural processes across the scaffold surface. The combination of GAGs with electrospun scaffolds creates a biomaterial with potent applicability for the propagation and effective differentiation of pluripotent stem cells.

  11. Neuropeptide Substance P and the Immune Response

    PubMed Central

    Tehrani, Mohsen; Grace, Peter M.; Pothoulakis, Charalabos; Dana, Reza

    2016-01-01

    Substance P is a peptide mainly secreted by neurons and is involved in many biological processes, including nociception and inflammation. Animal models have provided insights into the biology of this peptide and offered compelling evidence for the importance of substance P in cell-to-cell communication by either paracrine or endocrine signaling. Substance P mediates interactions between neurons and immune cells, with nerve-derived substance P modulating immune cell proliferation rates and cytokine production. Intriguingly, some immune cells have also been found to secrete substance P, which hints at an integral role of substance P in the immune response. These communications play important functional roles in immunity including mobilization, proliferation and modulation of activity of immune cells. This Review summarizes current knowledge of substance P and its receptors, as well as its physiological and pathological roles. We focus on recent developments in the immuno-biology of substance P and we discuss the clinical implications of its ability to modulate the immune response. PMID:27314883

  12. Exosomal microRNA Signatures in the Diagnosis and Prognosis of Ovarian Cancer

    DTIC Science & Technology

    2012-04-01

    released exosomes modulate lymphocyte functions by mimicking “activation induced cell death” (AICD).27,28 Lymphoid cells appear to release exosomes... advantage of defining concentration. The disadvantage of SPA and DLS is that they are unable to determine the phenotype of the vesicles. Since biological...related apoptosis- inducing ligand-carrying microvesicles during activation- induced death of human T cells . J. Immunol. 167:6736-6744. 18. Raposo, G., D

  13. Computational protein design-the next generation tool to expand synthetic biology applications.

    PubMed

    Gainza-Cirauqui, Pablo; Correia, Bruno Emanuel

    2018-05-02

    One powerful approach to engineer synthetic biology pathways is the assembly of proteins sourced from one or more natural organisms. However, synthetic pathways often require custom functions or biophysical properties not displayed by natural proteins, limitations that could be overcome through modern protein engineering techniques. Structure-based computational protein design is a powerful tool to engineer new functional capabilities in proteins, and it is beginning to have a profound impact in synthetic biology. Here, we review efforts to increase the capabilities of synthetic biology using computational protein design. We focus primarily on computationally designed proteins not only validated in vitro, but also shown to modulate different activities in living cells. Efforts made to validate computational designs in cells can illustrate both the challenges and opportunities in the intersection of protein design and synthetic biology. We also highlight protein design approaches, which although not validated as conveyors of new cellular function in situ, may have rapid and innovative applications in synthetic biology. We foresee that in the near-future, computational protein design will vastly expand the functional capabilities of synthetic cells. Copyright © 2018. Published by Elsevier Ltd.

  14. A Microcosm of the Biomedical Research Experience for Upper-level Undergraduates

    PubMed Central

    2008-01-01

    The skill set required of biomedical researchers continues to grow and evolve as biology matures as a natural science. Science necessitates creative yet critical thinking, persuasive communication skills, purposeful use of time, and adeptness at the laboratory bench. Teaching these skills can be effectively accomplished in an inquiry-based, active-learning environment at a primarily undergraduate institution. Cell Biology Techniques, an upper-level cell biology laboratory course at St. John Fisher College, features two independent projects that take advantage of the biology of the nematode Caenorhabditis elegans, a premier yet simple model organism. First, students perform a miniature epigenetic screen for novel phenotypes using RNA interference. The results of this screen combined with literature research direct students toward a singe gene that they attempt to subclone in the second project. The biology of the chosen gene/protein also becomes an individualized focal point with respect to the content of the laboratory. Progress toward course goals is evaluated using written, oral, and group-produced assignments, including a concept map. Pre- and postassessment indicates a significant increase in the understanding of broad concepts in cell biological research. PMID:18519612

  15. Structural characterization and evaluation of antioxidant, anticancer and hypoglycemic activity of radiation degraded oat (Avena sativa) β- glucan

    NASA Astrophysics Data System (ADS)

    Hussain, Peerzada R.; Rather, Sarver A.; Suradkar, Prashant P.

    2018-03-01

    Oat β-D-glucan after extraction was degraded at doses of 3, 6, 9, 12 and 15 kGy. The average molecular weight decreased to 45 kDa at dose of 15 kGy from an initial value of 200 kDa in native sample. XRD analysis revealed no significant change in diffraction pattern of irradiated samples when compared with control, except a decrease in intensity of x-ray diffraction. The results of the antioxidant activity revealed decrease in EC50 values and corresponding increase in antioxidant activity of radiation degraded oat β-D-glucan. Results of the anticancer studies indicated that cytotoxicity of gamma irradiated oat β-D-glucan in cancer cell lines was highest against colo-205 and MCF7 cancer cells compared to T47D cell and no cytotoxicity was observed in normal cell lines at all concentrations used. Evaluation of hypoglycemic activity showed highest inhibition in α-glucosidase activity compared to α-amylase activity due to gamma irradiation of oat β-D-glucan. Comparison of the EC50 values of known standards and gamma irradiated oat beta-glucan samples indicates that radiation treatment significantly modified the biological activity of the beta-glucan samples. Therefore, it is suggested that gamma irradiation can be used for producing low molecular weight oat β-D-glucan; which can help in modifying the biological activities.

  16. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1984

    1984-01-01

    Describes mushroom growing as a school project, a method for illustrating need for carbon dioxide in photosynthesis, construction of a simple phytoplankton sampler, cell division activity using playing cards, blood separation activity, measurement of adaptation and selection pressures, computations in field ecology, and an activity demonstrating…

  17. The biological response to laser-aided direct metal-coated Titanium alloy (Ti6Al4V)

    PubMed Central

    Shin, T.; Lim, D.; Kim, Y. S.; Kim, S. C.; Jo, W. L.

    2018-01-01

    Objectives Laser-engineered net shaping (LENS) of coated surfaces can overcome the limitations of conventional coating technologies. We compared the in vitro biological response with a titanium plasma spray (TPS)-coated titanium alloy (Ti6Al4V) surface with that of a Ti6Al4V surface coated with titanium using direct metal fabrication (DMF) with 3D printing technologies. Methods The in vitro ability of human osteoblasts to adhere to TPS-coated Ti6Al4V was compared with DMF-coating. Scanning electron microscopy (SEM) was used to assess the structure and morphology of the surfaces. Biological and morphological responses to human osteoblast cell lines were then examined by measuring cell proliferation, alkaline phosphatase activity, actin filaments, and RUNX2 gene expression. Results Morphological assessment of the cells after six hours of incubation using SEM showed that the TPS- and DMF-coated surfaces were largely covered with lamellipodia from the osteoblasts. Cell adhesion appeared similar in both groups. The differences in the rates of cell proliferation and alkaline phosphatase activities were not statistically significant. Conclusions The DMF coating applied using metal 3D printing is similar to the TPS coating, which is the most common coating process used for bone ingrowth. The DMF method provided an acceptable surface structure and a viable biological surface. Moreover, this method is automatable and less complex than plasma spraying. Cite this article: T. Shin, D. Lim, Y. S. Kim, S. C. Kim, W. L. Jo, Y. W. Lim. The biological response to laser-aided direct metal-coated Titanium alloy (Ti6Al4V). Bone Joint Res 2018;7:357–361. DOI: 10.1302/2046-3758.75.BJR-2017-0222.R1. PMID:29922456

  18. The bantam microRNA acts through Numb to exert cell growth control and feedback regulation of Notch in tumor-forming stem cells in the Drosophila brain.

    PubMed

    Wu, Yen-Chi; Lee, Kyu-Sun; Song, Yan; Gehrke, Stephan; Lu, Bingwei

    2017-05-01

    Notch (N) signaling is central to the self-renewal of neural stem cells (NSCs) and other tissue stem cells. Its deregulation compromises tissue homeostasis and contributes to tumorigenesis and other diseases. How N regulates stem cell behavior in health and disease is not well understood. Here we show that N regulates bantam (ban) microRNA to impact cell growth, a process key to NSC maintenance and particularly relied upon by tumor-forming cancer stem cells. Notch signaling directly regulates ban expression at the transcriptional level, and ban in turn feedback regulates N activity through negative regulation of the Notch inhibitor Numb. This feedback regulatory mechanism helps maintain the robustness of N signaling activity and NSC fate. Moreover, we show that a Numb-Myc axis mediates the effects of ban on nucleolar and cellular growth independently or downstream of N. Our results highlight intricate transcriptional as well as translational control mechanisms and feedback regulation in the N signaling network, with important implications for NSC biology and cancer biology.

  19. Evaluation of the Efficacy of the Plasma Pencil Against Cancer Cells

    NASA Astrophysics Data System (ADS)

    Mohades, Soheila; Barekzi, Nazir; Razavi, Hamid; Laroussi, Mounir

    2014-10-01

    The plasma pencil generates low temperature and atmospheric pressure plasma. To generate the plasma, high voltage pulses with short width (from nanosecond to microsecond) are applied to a noble gas. The working gas can be helium, argon or a mixture of these with air or oxygen. Generating plasma with helium provides a tolerable temperature for biological cells and tissues. Diagnostic measurements on the plasma plume has revealed the presence of active agents such as reactive oxygen species (ROS) and nitrogen reactive species (RNS), which are known to have biological implications. Recently, low temperature plasma has drawn attention to its potential in cancer therapy. In our lab, the plasma pencil has been used to treat leukemia, prostate and epithelial cancer cells. The cancer cell line used here is the SCaBER (ATCC®HTB3™) cell line originating from a human bladder cancer. The results indicate that specific species induce the molecular mechanisms associated with cell death. The death of cells after plasma treatment will be studied using assays, such as DNA laddering and Caspase-3 activation, to elucidate the mechanism of the apoptotic or necrotic pathways.

  20. Targeted Disruption of Orchestration between Stroma and Tumor Cells in Pancreatic Cancer: Molecular Basis and Therapeutic Implications

    PubMed Central

    Kong, Xiangyu; Li, Lei; Li, Zhaoshen; Xie, Keping

    2012-01-01

    Pancreatic cancer is one of the most lethal malignancies, with a prominent desmoplastic reaction as the defining hallmark of the disease. The past several decades have seen dramatic progress in understanding of pancreatic cancer pathogenesis, including the identification of precursor lesions, sequential transformation from normal pancreas to invasive pancreatic cancer and corresponding signature genetic events, and the biological impact of those alterations on malignant behaviors. However, the current therapeutic strategies for epithelial tumor cells, which have exhibited potent antitumor activity in cell culture and animal models, have failed to have significant effects in the clinic. The desmoplastic stroma surrounding pancreatic cancer cells, which accounts for about 90% of a tumor’s mass, clearly is not a passive scaffold for cancer cells but an active contributor to carcinogenesis. Improved understanding of the dynamic interaction between cancer cells and their stroma will be important to designing new, effective therapeutic strategies for pancreatic cancer. This review focuses on the origination of stromal molecular and cellular components in pancreatic tumors, their biological effects on pancreatic cancer cells, and the orchestration between these two components. PMID:22749856

  1. Provision Of Carbon Nanotube Bucky Paper Cages For Immune Shielding Of Cells, Tissues, and Medical Devices

    NASA Technical Reports Server (NTRS)

    Loftus, David J. (Inventor)

    2006-01-01

    System and method for enclosing cells and/or tissue, for purposes of growth, cell differentiation, suppression of cell differentiation, biological processing and/or transplantation of cells and tissues (biological inserts), and for secretion, sensing and monitoring of selected chemical substances and activation of gene expression of biological inserts implanted into a human body. Selected cells and/or tissue are enveloped in a "cage" that is primarily carbon nanotube Bucky paper, with a selected thickness and porosity. Optionally, selected functional groups, proteins and/or peptides are attached to the carbon nanotube cage, or included within the cage, to enhance the growth and/or differentiation of the cells and/or tissue, to select for certain cellular sub-populations, to optimize certain functions of the cells and/or tissue and/or to optimize the passage of chemicals across the cage surface(s). A cage system is also used as an immuns shield and to control operation of a nano-device or macroscopic device, located within the cage, to provide or transform a selected chemical and/or a selected signal.

  2. Engineering Concepts in Stem Cell Research.

    PubMed

    Narayanan, Karthikeyan; Mishra, Sachin; Singh, Satnam; Pei, Ming; Gulyas, Balazs; Padmanabhan, Parasuraman

    2017-12-01

    The field of regenerative medicine integrates advancements made in stem cells, molecular biology, engineering, and clinical methodologies. Stem cells serve as a fundamental ingredient for therapeutic application in regenerative medicine. Apart from stem cells, engineering concepts have equally contributed to the success of stem cell based applications in improving human health. The purpose of various engineering methodologies is to develop regenerative and preventive medicine to combat various diseases and deformities. Explosion of stem cell discoveries and their implementation in clinical setting warrants new engineering concepts and new biomaterials. Biomaterials, microfluidics, and nanotechnology are the major engineering concepts used for the implementation of stem cells in regenerative medicine. Many of these engineering technologies target the specific niche of the cell for better functional capability. Controlling the niche is the key for various developmental activities leading to organogenesis and tissue homeostasis. Biomimetic understanding not only helped to improve the design of the matrices or scaffolds by incorporating suitable biological and physical components, but also ultimately aided adoption of designs that helped these materials/devices have better function. Adoption of engineering concepts in stem cell research improved overall achievement, however, several important issues such as long-term effects with respect to systems biology needs to be addressed. Here, in this review the authors will highlight some interesting breakthroughs in stem cell biology that use engineering methodologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Inactivated probiotic Bacillus coagulans GBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro

    PubMed Central

    Jensen, Gitte S; Cash, Howard A; Farmer, Sean; Keller, David

    2017-01-01

    Objective The aim of this study was to document the immune activating and anti-inflammatory effects of inactivated probiotic Bacillus coagulans GBI-30, 6086 (Staimune™) cells on human immune cells in vitro. Methods In vitro cultures of human peripheral blood mononuclear cells (PBMC) from healthy blood donors were treated with inactivated B. coagulans GBI-30, 6086 cells for 24 hours. After incubation, the PBMC were stained with fluorochrome-labeled monoclonal antibodies for CD3, CD56, and CD69 to monitor cellular activation by flow cytometry. The culture supernatants were tested for cytokine profile using a 27-plex Luminex array, including pro- and anti-inflammatory cytokines, chemokines, and growth factors. Results Inactivated B. coagulans GBI-30, 6086 cells induced the CD69 early activation marker on CD3+ CD56− T lymphocytes, CD3+ CD56+ NKT cells, CD3−CD56+ NK cells, and also some cells within the CD3−CD56− non-T non-NK cell subset. Culture supernatants showed robust increases in the immune-activating cytokines IL-1β, IL-6, IL-17A, and TNF-α. IFN-γ levels were increased, along with three chemokines, MCP-1, MIP-1α, and MIP-1β. The two anti-inflammatory cytokines IL-1ra and IL-10 showed increases, as well as the G-CSF growth factor involved in repair and stem cell biology. In contrast, GM-CSF levels showed a mild decrease, showing a highly selective growth factor response. Conclusion The inactivated B. coagulans GBI-30, 6086 cells activated human immune cells and altered the production of both immune activating and anti-inflammatory cytokines and chemokines. Of special importance is the novel demonstration of a selective upregulation of the G-CSF growth factor involved in postinjury and postinflammation repair and regeneration. This suggests that important immunogenic cell wall components, such as lipoteichoic acid, are undamaged after the inactivation and retain the complex beneficial biological activities previously demonstrated for the cell walls from live B. coagulans GBI-30, 6086 (GanedenBC30) probiotic bacteria. PMID:28848360

  4. Inactivated probiotic Bacillus coagulans GBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro.

    PubMed

    Jensen, Gitte S; Cash, Howard A; Farmer, Sean; Keller, David

    2017-01-01

    The aim of this study was to document the immune activating and anti-inflammatory effects of inactivated probiotic Bacillus coagulans GBI-30, 6086 (Staimune™) cells on human immune cells in vitro. In vitro cultures of human peripheral blood mononuclear cells (PBMC) from healthy blood donors were treated with inactivated B. coagulans GBI-30, 6086 cells for 24 hours. After incubation, the PBMC were stained with fluorochrome-labeled monoclonal antibodies for CD3, CD56, and CD69 to monitor cellular activation by flow cytometry. The culture supernatants were tested for cytokine profile using a 27-plex Luminex array, including pro- and anti-inflammatory cytokines, chemokines, and growth factors. Inactivated B. coagulans GBI-30, 6086 cells induced the CD69 early activation marker on CD3 + CD56 - T lymphocytes, CD3 + CD56 + NKT cells, CD3 - CD56 + NK cells, and also some cells within the CD3 - CD56 - non-T non-NK cell subset. Culture supernatants showed robust increases in the immune-activating cytokines IL-1β, IL-6, IL-17A, and TNF-α. IFN-γ levels were increased, along with three chemokines, MCP-1, MIP-1α, and MIP-1β. The two anti-inflammatory cytokines IL-1ra and IL-10 showed increases, as well as the G-CSF growth factor involved in repair and stem cell biology. In contrast, GM-CSF levels showed a mild decrease, showing a highly selective growth factor response. The inactivated B. coagulans GBI-30, 6086 cells activated human immune cells and altered the production of both immune activating and anti-inflammatory cytokines and chemokines. Of special importance is the novel demonstration of a selective upregulation of the G-CSF growth factor involved in postinjury and postinflammation repair and regeneration. This suggests that important immunogenic cell wall components, such as lipoteichoic acid, are undamaged after the inactivation and retain the complex beneficial biological activities previously demonstrated for the cell walls from live B. coagulans GBI-30, 6086 (GanedenBC30) probiotic bacteria.

  5. Single cell biology beyond the era of antibodies: relevance, challenges, and promises in biomedical research.

    PubMed

    Abraham, Parvin; Maliekal, Tessy Thomas

    2017-04-01

    Research of the past two decades has proved the relevance of single cell biology in basic research and translational medicine. Successful detection and isolation of specific subsets is the key to understand their functional heterogeneity. Antibodies are conventionally used for this purpose, but their relevance in certain contexts is limited. In this review, we discuss some of these contexts, posing bottle neck for different fields of biology including biomedical research. With the advancement of chemistry, several methods have been introduced to overcome these problems. Even though microfluidics and microraft array are newer techniques exploited for single cell biology, fluorescence-activated cell sorting (FACS) remains the gold standard technique for isolation of cells for many biomedical applications, like stem cell therapy. Here, we present a comprehensive and comparative account of some of the probes that are useful in FACS. Further, we illustrate how these techniques could be applied in biomedical research. It is postulated that intracellular molecular markers like nucleostemin (GNL3), alkaline phosphatase (ALPL) and HIRA can be used for improving the outcome of cardiac as well as bone regeneration. Another field that could utilize intracellular markers is diagnostics, and we propose the use of specific peptide nucleic acid probes (PNPs) against certain miRNAs for cancer surgical margin prediction. The newer techniques for single cell biology, based on intracellular molecules, will immensely enhance the repertoire of possible markers for the isolation of cell types useful in biomedical research.

  6. Synthesis and molecular docking of some novel anticancer sulfonamides carrying a biologically active pyrrole and pyrrolopyrimidine moieties.

    PubMed

    Ghorab, Mostafa M; Alsaid, Mansour S; Nissan, Yassin M

    2014-01-01

    Abstract: A novel series of pyrroles and pyrrolopyrimdines carrying a biologically active sulfonamide moiety have been synthesized. The structures were confirmed by elemental analyses and spectral data. All the target compounds were subjected to in vitro cytotoxic screening on breast cancer cell line (MCF-7). Most of the synthesized compounds showed good activity as cytotoxic agents with better IC50 than doxorubicin as a reference drug. In order to suggest a mechanism of action for their activity, molecular docking on the active site of human c-Src was performed for all synthesized compounds.

  7. Processing of natural and recombinant CXCR3-targeting chemokines and implications for biological activity.

    PubMed

    Hensbergen, P J; van der Raaij-Helmer, E M; Dijkman, R; van der Schors, R C; Werner-Felmayer, G; Boorsma, D M; Scheper, R J; Willemze, R; Tensen, C P

    2001-09-01

    Chemokines comprise a class of peptides with chemotactic activity towards leukocytes. The potency of different chemokines for the same receptor often varies as a result of differences in primary structure. In addition, post-translational modifications have been shown to affect the effectiveness of chemokines. Although in several studies, natural CXCR3-targeting chemokines have been isolated, detailed information about the proteins and their possible modifications is lacking. Using a combination of liquid chromatography and mass spectrometry we studied the protein profile of CXCR3-targeting chemokines expressed by interferon-gamma-stimulated human keratinocytes. The biological implications of one of the identified modifications was studied in more detail using calcium mobilization and chemotaxis assays. We found that the primary structure of human CXCL10 is different from the generally accepted sequence. In addition we identified a C-terminally truncated CXCL10, lacking the last four amino acids. Native CXCL11 was primarily found in its intact mature form but we also found a mass corresponding to an N-terminally truncated human CXCL11, lacking the first two amino acids FP, indicating that this chemokine is a substrate for dipeptidylpeptidase IV. Interestingly, this same truncation was found when we expressed human CXCL11 in Drosophila S2 cells. The biological activity of this truncated form of CXCL11 was greatly reduced, both in calcium mobilization (using CXCR3 expressing CHO cells) as well as its chemotactic activity for CXCR3-expressing T-cells. It is concluded that detailed information on chemokines at the protein level is important to characterize the exact profile of these chemotactic peptides as modifications can severely alter their biological activity.

  8. AMPK/FIS1-Mediated Mitophagy Is Required for Self-Renewal of Human AML Stem Cells.

    PubMed

    Pei, Shanshan; Minhajuddin, Mohammad; Adane, Biniam; Khan, Nabilah; Stevens, Brett M; Mack, Stephen C; Lai, Sisi; Rich, Jeremy N; Inguva, Anagha; Shannon, Kevin M; Kim, Hyunmin; Tan, Aik-Choon; Myers, Jason R; Ashton, John M; Neff, Tobias; Pollyea, Daniel A; Smith, Clayton A; Jordan, Craig T

    2018-06-06

    Leukemia stem cells (LSCs) are thought to drive the genesis of acute myeloid leukemia (AML) as well as relapse following chemotherapy. Because of their unique biology, developing effective methods to eradicate LSCs has been a significant challenge. In the present study, we demonstrate that intrinsic overexpression of the mitochondrial dynamics regulator FIS1 mediates mitophagy activity that is essential for primitive AML cells. Depletion of FIS1 attenuates mitophagy and leads to inactivation of GSK3, myeloid differentiation, cell cycle arrest, and a profound loss of LSC self-renewal potential. Further, we report that the central metabolic stress regulator AMPK is also intrinsically activated in LSC populations and is upstream of FIS1. Inhibition of AMPK signaling recapitulates the biological effect of FIS1 loss. These data suggest a model in which LSCs co-opt AMPK/FIS1-mediated mitophagy as a means to maintain stem cell properties that may be otherwise compromised by the stresses induced by oncogenic transformation. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Molecular biology of breast cancer stem cells: potential clinical applications.

    PubMed

    Nguyen, Nam P; Almeida, Fabio S; Chi, Alex; Nguyen, Ly M; Cohen, Deirdre; Karlsson, Ulf; Vinh-Hung, Vincent

    2010-10-01

    Breast cancer stem cells (CSC) have been postulated recently as responsible for failure of breast cancer treatment. The purpose of this study is to review breast CSCs molecular biology with respect to their mechanism of resistance to conventional therapy, and to develop treatment strategies that may improve survival of breast cancer patients. A literature search has identified in vitro and in vivo studies of breast CSCs. Breast CSCs overexpress breast cancer resistance protein (BCRP) which allows cancer cells to transport actively chemotherapy agents out of the cells. Radioresistance is modulated through activation of Wnt signaling pathway and overexpression of genes coding for glutathione. Lapatinib can selectively target HER-2 positive breast CSCs and improves disease-free survival in these patients. Metformin may target basal type breast CSCs. Parthenolide and oncolytic viruses are promising targeting agents for breast CSCs. Future clinical trials for breast cancer should include anti-cancer stem cells targeting agents in addition to conventional chemotherapy. Hypofractionation radiotherapy may be indicated for residual disease post chemotherapy. 2010 Elsevier Ltd. All rights reserved.

  10. Identification and super-resolution imaging of ligand-activated receptor dimers in live cells

    NASA Astrophysics Data System (ADS)

    Winckler, Pascale; Lartigue, Lydia; Giannone, Gregory; de Giorgi, Francesca; Ichas, François; Sibarita, Jean-Baptiste; Lounis, Brahim; Cognet, Laurent

    2013-08-01

    Molecular interactions are key to many chemical and biological processes like protein function. In many signaling processes they occur in sub-cellular areas displaying nanoscale organizations and involving molecular assemblies. The nanometric dimensions and the dynamic nature of the interactions make their investigations complex in live cells. While super-resolution fluorescence microscopies offer live-cell molecular imaging with sub-wavelength resolutions, they lack specificity for distinguishing interacting molecule populations. Here we combine super-resolution microscopy and single-molecule Förster Resonance Energy Transfer (FRET) to identify dimers of receptors induced by ligand binding and provide super-resolved images of their membrane distribution in live cells. By developing a two-color universal-Point-Accumulation-In-the-Nanoscale-Topography (uPAINT) method, dimers of epidermal growth factor receptors (EGFR) activated by EGF are studied at ultra-high densities, revealing preferential cell-edge sub-localization. This methodology which is specifically devoted to the study of molecules in interaction, may find other applications in biological systems where understanding of molecular organization is crucial.

  11. A novel anti-EMMPRIN function-blocking antibody reduces T cell proliferation and neurotoxicity: relevance to multiple sclerosis

    PubMed Central

    2012-01-01

    Background Extracellular matrix metalloproteinase inducer (EMMPRIN; CD147, basigin) is an inducer of the expression of several matrix metalloproteinases (MMPs). We reported previously that blocking EMMPRIN activity reduced neuroinflammation and severity of disease in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). Methods To improve upon EMMPRIN blockade, and to help unravel the biological functions of EMMPRIN in inflammatory disorders, we have developed several anti-EMMPRIN monoclonal antibodies. Results Of these monoclonal antibodies, a particular one, clone 10, was efficient in binding mouse and human cells using several methods of detection. The specificity of clone 10 was demonstrated by its lack of staining of EMMPRIN-null embryos compared to heterozygous and wild-type mouse samples. Functionally, human T cells activated with anti-CD3 and anti-CD28 elevated their expression of EMMPRIN and the treatment of these T cells with clone 10 resulted in decreased proliferation and matrix metalloproteinase- 9 (MMP-9) production. Activated human T cells were toxic to human neurons in culture and clone 10 pretreatment reduced T cell cytotoxicity correspondent with decrease of granzyme B levels within T cells. In vivo, EAE mice treated with clone 10 had a markedly reduced disease score compared to mice treated with IgM isotype control. Conclusions We have produced a novel anti-EMMPRIN monoclonal antibody that blocks several aspects of T cell activity, thus highlighting the multiple roles of EMMPRIN in T cell biology. Moreover, clone 10 reduces EAE scores in mice compared to controls, and has activity on human cells, potentially allowing for the testing of anti-EMMPRIN treatment not only in EAE, but conceivably also in MS. PMID:22480370

  12. A novel anti-EMMPRIN function-blocking antibody reduces T cell proliferation and neurotoxicity: relevance to multiple sclerosis.

    PubMed

    Agrawal, Smriti M; Silva, Claudia; Wang, Janet; Tong, Jade Pui-Wai; Yong, V Wee

    2012-04-05

    Extracellular matrix metalloproteinase inducer (EMMPRIN; CD147, basigin) is an inducer of the expression of several matrix metalloproteinases (MMPs). We reported previously that blocking EMMPRIN activity reduced neuroinflammation and severity of disease in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). To improve upon EMMPRIN blockade, and to help unravel the biological functions of EMMPRIN in inflammatory disorders, we have developed several anti-EMMPRIN monoclonal antibodies. Of these monoclonal antibodies, a particular one, clone 10, was efficient in binding mouse and human cells using several methods of detection. The specificity of clone 10 was demonstrated by its lack of staining of EMMPRIN-null embryos compared to heterozygous and wild-type mouse samples. Functionally, human T cells activated with anti-CD3 and anti-CD28 elevated their expression of EMMPRIN and the treatment of these T cells with clone 10 resulted in decreased proliferation and matrix metalloproteinase- 9 (MMP-9) production. Activated human T cells were toxic to human neurons in culture and clone 10 pretreatment reduced T cell cytotoxicity correspondent with decrease of granzyme B levels within T cells. In vivo, EAE mice treated with clone 10 had a markedly reduced disease score compared to mice treated with IgM isotype control. We have produced a novel anti-EMMPRIN monoclonal antibody that blocks several aspects of T cell activity, thus highlighting the multiple roles of EMMPRIN in T cell biology. Moreover, clone 10 reduces EAE scores in mice compared to controls, and has activity on human cells, potentially allowing for the testing of anti-EMMPRIN treatment not only in EAE, but conceivably also in MS.

  13. UV fluorescence excitation spectroscopy as a non-invasive predictor of epidermal proliferation and clinical performance of cosmetic formulations

    NASA Astrophysics Data System (ADS)

    Maidhof, Robert; Liebel, Frank; Hwang, Cheng; Ruvolo, Eduardo; Lyga, John

    2017-02-01

    The epidermis is the outermost layer of skin and is composed of cells primarily containing keratin. It consists of about ten layers of living cells (keratinocytes) and ten layers of dead cells (corneocytes). These cells are continually shed from the outside and replaced from the inside in a process called desquamation which is controlled by two biological events - proliferation and differentiation. One method to non-invasively study biological changes in the skin is using fluorescence excitation spectroscopy. Several characteristic excitation-emission peaks occur in skin that have been related to the epidermal and dermal composition. The magnitude of the peak that occurs at 295nm excitation (F295) has been linked to changes in skin proliferation, cell turnover, epidermal thickening, and skin aging. We hypothesize that changes in this fluorescent signal could be used to assess the potential activity of cosmetic anti-aging compounds to deliver a benefit to skin. Previous work with retinol and glycolic acid, two commonly used actives that effect epidermal proliferation and exfoliation, has demonstrated an increase in F295 (attributed to tryptophan excitation fluorescence). In this study we present the results of a placebo controlled study that aims to correlate changes in F295 with biological performance (epidermal thickening and Ki67 expression).

  14. Hormesis and adaptive cellular control systems

    EPA Science Inventory

    Hormetic dose response occurs for many endpoints associated with exposures of biological organisms to environmental stressors. Cell-based U- or inverted U-shaped responses may derive from common processes involved in activation of adaptive responses required to protect cells from...

  15. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology. Volume 22, Number 3, 1994.

    DTIC Science & Technology

    1994-05-01

    culture, microorganisms, enzymes, drugs, receptors, sorbents, immunosorbents and other biologically active molecules. (2) Artificial cells, microcapsules ...recombinant hemoglobin, and others. Chemistry, methods, in-vitro studies, in-vivo evaluations and clinical results. (4) Microencapsulation and other

  16. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology. Volume 22 Number 2, 1994.

    DTIC Science & Technology

    1994-05-01

    culture, microorganisms, enzymes, drugs, receptors, sorbents, immunosorbents and other biologically active molecules. (2) Artificial cells, microcapsules ...recombinant hemoglobin, and others. Chemistry, methods, in-vitro studies, in-vivo evaluations and clinical results. (4) Microencapsulation and other

  17. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, Volume 22 Number 4, 1994.

    DTIC Science & Technology

    1994-01-01

    culture, microorganisms, enzymes, drugs, receptors, sorbents, immunosorbents and other biologically active molecules. (2) Artificial cells, microcapsules ...recombinant hemoglobin, and others. Chemistry, methods, in-vitro studies, in-vivo evaluations and clinical results. (4) Microencapsulation and other

  18. PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance

    PubMed Central

    van Oers, Johanna M. M.; Roa, Sergio; Werling, Uwe; Liu, Yiyong; Genschel, Jochen; Sellers, Rani S.; Modrich, Paul; Scharff, Matthew D.; Edelmann, Winfried

    2010-01-01

    The DNA mismatch repair protein PMS2 was recently found to encode a novel endonuclease activity. To determine the biological functions of this activity in mammals, we generated endonuclease-deficient Pms2E702K knock-in mice. Pms2EK/EK mice displayed increased genomic mutation rates and a strong cancer predisposition. In addition, class switch recombination, but not somatic hypermutation, was impaired in Pms2EK/EK B cells, indicating a specific role in Ig diversity. In contrast to Pms2−/− mice, Pms2EK/EK male mice were fertile, indicating that this activity is dispensable in spermatogenesis. Therefore, the PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance and tumor suppression. PMID:20624957

  19. Relationship between sugar chain structure and biological activity of recombinant human erythropoietin produced in Chinese hamster ovary cells.

    PubMed Central

    Takeuchi, M; Inoue, N; Strickland, T W; Kubota, M; Wada, M; Shimizu, R; Hoshi, S; Kozutsumi, H; Takasaki, S; Kobata, A

    1989-01-01

    Two forms of erythropoietin, EPO-bi and EPO-tetra, with different biological activities were isolated from the culture medium of a recombinant Chinese hamster ovary cell line, B8-300, into which the human erythropoietin gene had been introduced. EPO-bi, an unusual form, showed only one-seventh the in vivo activity and 3 times higher in vitro activity of the previously described recombinant human EPO (standard EPO). In contrast, EPO-tetra showed both in vivo and in vitro activities comparable to those of the standard EPO. EPO-bi, EPO-tetra, and the standard EPO had the same amino acid composition and immunoreactivity. However, structural analyses of their N-linked sugar chains revealed that EPO-bi contains the biantennary complex type as the major sugar chain, while EPO-tetra and the standard EPO contain the tetraantennary complex type as the major sugar chain. From examination of various preparations of recombinant human EPO, we found a positive correlation between the in vivo activity of EPO and the ratio of tetraantennary to biantennary oligosaccharides. These results suggest that higher branching of the N-linked sugar chains is essential for effective expression of in vivo biological activity of EPO. PMID:2813359

  20. EBV-driven B-cell lymphoproliferative disorders: from biology, classification and differential diagnosis to clinical management

    PubMed Central

    Ok, Chi Young; Li, Ling; Young, Ken H

    2015-01-01

    Epstein–Barr virus (EBV) is a ubiquitous herpesvirus, affecting >90% of the adult population. EBV targets B-lymphocytes and achieves latent infection in a circular episomal form. Different latency patterns are recognized based on latent gene expression pattern. Latent membrane protein-1 (LMP-1) mimics CD40 and, when self-aggregated, provides a proliferation signal via activating the nuclear factor-kappa B, Janus kinase/signal transducer and activator of transcription, phosphoinositide 3-kinase/Akt (PI3K/Akt) and mitogen-activated protein kinase pathways to promote cellular proliferation. LMP-1 also induces BCL-2 to escape from apoptosis and gives a signal for cell cycle progression by enhancing cyclin-dependent kinase 2 and phosphorylation of retinoblastoma (Rb) protein and by inhibiting p16 and p27. LMP-2A blocks the surface immunoglobulin-mediated lytic cycle reactivation. It also activates the Ras/PI3K/Akt pathway and induces Bcl-xL expression to promote B-cell survival. Recent studies have shown that ebv-microRNAs can provide extra signals for cellular proliferation, cell cycle progression and anti-apoptosis. EBV is well known for association with various types of B-lymphocyte, T-lymphocyte, epithelial cell and mesenchymal cell neoplasms. B-cell lymphoproliferative disorders encompass a broad spectrum of diseases, from benign to malignant. Here we review our current understanding of EBV-induced lymphomagenesis and focus on biology, diagnosis and management of EBV-associated B-cell lymphoproliferative disorders. PMID:25613729

  1. Enhanced heterologous expression of biologically active human granulocyte colony stimulating factor in transgenic tobacco BY-2 cells by localization to endoplasmic reticulum.

    PubMed

    Nair, Nisha R; Chidambareswaren, M; Manjula, S

    2014-09-01

    Tobacco Bright Yellow-2 (BY-2) cells, one of the best characterized cell lines is an attractive expression system for heterologous protein expression. However, the expression of foreign proteins is currently hampered by their low yield, which is partially the result of proteolytic degradation. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine. Recombinant hG-CSF is successfully being used for the treatment of chemotherapy-induced neutropenia in cancer patients. Here, we describe a simple strategy for producing biologically active hG-CSF in tobacco BY-2 cells, localized in the apoplast of BY-2 cells, as well as targeted to the endoplasmic reticulum (ER). ER targeting significantly enhanced recombinant production which scaled to 17.89 mg/l from 4.19 mg/l when expressed in the apoplasts. Southern blotting confirmed the stable integration of hG-CSF in the BY-2 nuclear genome, and the expression of hG-CSF was analysed by Western blotting. Total soluble protein containing hG-CSF isolated from positive calli showed proliferative potential when tested on HL-60 cell lines by MTT assay. We also report the potential of a Fluorescence-activated cell sorting approach for an efficient sorting of the hG-CSF-expressing cell lines, which will enable the generation of homogenous high-producing cell lines.

  2. Antitumor immune activity by chemokine CX3CL1 in an orthotopic implantation of lung cancer model in vivo.

    PubMed

    Kee, Ji-Ye; Arita, Yoshihisa; Shinohara, Kanna; Ohashi, Yasukata; Sakurai, Hiroaki; Saiki, Ikuo; Koizumi, Keiichi

    2013-01-01

    Due to their chemoattractant properties stimulating the accumulation of infiltrating immune cells in tumors, chemokines are known to have antitumor effects. Fractalkine, a unique CX3C chemokine, is expressed in activated endothelial cells, while its receptor, CX3CR1, is expressed in cytolytic immune cells, such as natural killer cells, monocytes and some CD8 + T cells. The biological properties of cancer cells are affected by the implantation organ and differences in immune systems, requiring cancer implantation in orthotopic organs in an in vivo experiment. To develop new therapy strategies for lung cancer, an animal model reflecting the clinical features of lung cancer was previously established. This study aimed to determine whether CX3CL1-induced biological functions should be used for immune cell-based gene therapy of lung cancer in the orthotopic implantation model. An orthotopic intrapulmonary implantation of CX3CL1-stable expression in mouse lung cancer (LLC-CX3CL1) was performed to analyze growth. Results showed a significant decrease in tumor growth in the lung compared to the control cells (LLC-mock). Furthermore, the antitumor effects of CX3CL1 were derived from natural killer cell activities in the depletion experiment in vivo . Therefore, CX3CL1 has the potential of a useful therapeutic target in lung cancer.

  3. Comparison of hematological alterations and markers of B-cell activation in workers exposed to benzene, formaldehyde and trichloroethylene

    PubMed Central

    Bassig, Bryan A.; Zhang, Luoping; Vermeulen, Roel; Tang, Xiaojiang; Li, Guilan; Hu, Wei; Guo, Weihong; Purdue, Mark P.; Yin, Songnian; Rappaport, Stephen M.; Shen, Min; Ji, Zhiying; Qiu, Chuangyi; Ge, Yichen; Hosgood, H.Dean; Reiss, Boris; Wu, Banghua; Xie, Yuxuan; Li, Laiyu; Yue, Fei; Freeman, Laura E.Beane; Blair, Aaron; Hayes, Richard B.; Huang, Hanlin; Smith, Martyn T.; Rothman, Nathaniel; Lan, Qing

    2016-01-01

    Benzene, formaldehyde (FA) and trichloroethylene (TCE) are ubiquitous chemicals in workplaces and the general environment. Benzene is an established myeloid leukemogen and probable lymphomagen. FA is classified as a myeloid leukemogen but has not been associated with non-Hodgkin lymphoma (NHL), whereas TCE has been associated with NHL but not myeloid leukemia. Epidemiologic associations between FA and myeloid leukemia, and between benzene, TCE and NHL are, however, still debated. Previously, we showed that these chemicals are associated with hematotoxicity in cross-sectional studies of factory workers in China, which included extensive personal monitoring and biological sample collection. Here, we compare and contrast patterns of hematotoxicity, monosomy 7 in myeloid progenitor cells (MPCs), and B-cell activation biomarkers across these studies to further evaluate possible mechanisms of action and consistency of effects with observed hematologic cancer risks. Workers exposed to benzene or FA, but not TCE, showed declines in cell types derived from MPCs, including granulocytes and platelets. Alterations in lymphoid cell types, including B cells and CD4+ T cells, and B-cell activation markers were apparent in workers exposed to benzene or TCE. Given that alterations in myeloid and lymphoid cell types are associated with hematological malignancies, our data provide biologic insight into the epidemiological evidence linking benzene and FA exposure with myeloid leukemia risk, and TCE and benzene exposure with NHL risk. PMID:27207665

  4. Bypassing Protein Corona Issue on Active Targeting: Zwitterionic Coatings Dictate Specific Interactions of Targeting Moieties and Cell Receptors.

    PubMed

    Safavi-Sohi, Reihaneh; Maghari, Shokoofeh; Raoufi, Mohammad; Jalali, Seyed Amir; Hajipour, Mohammad J; Ghassempour, Alireza; Mahmoudi, Morteza

    2016-09-07

    Surface functionalization strategies for targeting nanoparticles (NP) to specific organs, cells, or organelles, is the foundation for new applications of nanomedicine to drug delivery and biomedical imaging. Interaction of NPs with biological media leads to the formation of a biomolecular layer at the surface of NPs so-called as "protein corona". This corona layer can shield active molecules at the surface of NPs and cause mistargeting or unintended scavenging by the liver, kidney, or spleen. To overcome this corona issue, we have designed biotin-cysteine conjugated silica NPs (biotin was employed as a targeting molecule and cysteine was used as a zwitterionic ligand) to inhibit corona-induced mistargeting and thus significantly enhance the active targeting capability of NPs in complex biological media. To probe the targeting yield of our engineered NPs, we employed both modified silicon wafer substrates with streptavidin (i.e., biotin receptor) to simulate a target and a cell-based model platform using tumor cell lines that overexpress biotin receptors. In both cases, after incubation with human plasma (thus forming a protein corona), cellular uptake/substrate attachment of the targeted NPs with zwitterionic coatings were significantly higher than the same NPs without zwitterionic coating. Our results demonstrated that NPs with a zwitterionic surface can considerably facilitate targeting yield of NPs and provide a promising new type of nanocarriers in biological applications.

  5. Glucotoxicity promotes aberrant activation and mislocalization of Ras-related C3 botulinum toxin substrate 1 [Rac1] and metabolic dysfunction in pancreatic islet β-cells: reversal of such metabolic defects by metformin.

    PubMed

    Baidwan, Sartaj; Chekuri, Anil; Hynds, DiAnna L; Kowluru, Anjaneyulu

    2017-11-01

    Emerging evidence suggests that long-term exposure of insulin-secreting pancreatic β-cells to hyperglycemic (HG; glucotoxic) conditions promotes oxidative stress, which, in turn, leads to stress kinase activation, mitochondrial dysfunction, loss of nuclear structure and integrity and cell apoptosis. Original observations from our laboratory have proposed that Rac1 plays a key regulatory role in the generation of oxidative stress and downstream signaling events culminating in the onset of dysfunction of pancreatic β-cells under the duress of metabolic stress. However, precise molecular and cellular mechanisms underlying the metabolic roles of hyperactive Rac1 remain less understood. Using pharmacological and molecular biological approaches, we now report mistargetting of biologically-active Rac1 [GTP-bound conformation] to the nuclear compartment in clonal INS-1 cells, normal rat islets and human islets under HG conditions. Our findings also suggest that such a signaling step is independent of post-translational prenylation of Rac1. Evidence is also presented to highlight novel roles for sustained activation of Rac1 in HG-induced expression of Cluster of Differentiation 36 [CD36], a fatty acid transporter protein, which is implicated in cell apoptosis. Finally, our findings suggest that metformin, a biguanide anti-diabetic drug, at a clinically relevant concentration, prevents β-cell defects [Rac1 activation, nuclear association, CD36 expression, stress kinase and caspase-3 activation, and loss in metabolic viability] under the duress of glucotoxicity. Potential implications of these findings in the context of novel and direct regulation of islet β-cell function by metformin are discussed.

  6. Using 1H2O MR to measure and map sodium pump activity in vivo

    NASA Astrophysics Data System (ADS)

    Springer, Charles S.

    2018-06-01

    The cell plasma membrane Na+,K+-ATPase [NKA] is one of biology's most [if not the most] significant enzymes. By actively transporting Na+ out [and K+ in], it maintains the vital trans-membrane ion concentration gradients and the membrane potential. The forward NKA reaction is shown in the Graphical Abstract [which is elaborated in the text]. Crucially, NKA does not operate in isolation. There are other transporters that conduct K+ back out of [II, Graphical Abstract] and Na+ back into [III, Graphical Abstract] the cell. Thus, NKA must function continually. Principal routes for ATP replenishment include mitochondrial oxidative phosphorylation, glycolysis, and creatine kinase [CrK] activity. However, it has never been possible to measure, let alone map, this integrated, cellular homeostatic NKA activity in vivo. Active trans-membrane water cycling [AWC] promises a way to do this with 1H2O MR. In the Graphical Abstract, the AWC system is characterized by active contributions to the unidirectional rate constants for steady-state water efflux and influx, respectively, kio(a) and koi(a). The discovery, validation, and initial exploration of active water cycling are reviewed here. Promising applications in cancer, cardiological, and neurological MRI are covered. This initial work employed paramagnetic Gd(III) chelate contrast agents [CAs]. However, the significant problems associated with in vivo CA use are also reviewed. A new analysis of water diffusion-weighted MRI [DWI] is presented. Preliminary results suggest a non-invasive way to measure the cell number density [ρ (cells/μL)], the mean cell volume [V (pL)], and the cellular NKA metabolic rate [cMRNKA (fmol(ATP)/s/cell)] with high spatial resolution. These crucial cell biology properties have not before been accessible in vivo. Furthermore, initial findings indicate their absolute values can be determined.

  7. Extract from the Zooxanthellate Jellyfish Cotylorhiza tuberculata Modulates Gap Junction Intercellular Communication in Human Cell Cultures

    PubMed Central

    Leone, Antonella; Lecci, Raffaella Marina; Durante, Miriana; Piraino, Stefano

    2013-01-01

    On a global scale, jellyfish populations in coastal marine ecosystems exhibit increasing trends of abundance. High-density outbreaks may directly or indirectly affect human economical and recreational activities, as well as public health. As the interest in biology of marine jellyfish grows, a number of jellyfish metabolites with healthy potential, such as anticancer or antioxidant activities, is increasingly reported. In this study, the Mediterranean “fried egg jellyfish” Cotylorhiza tuberculata (Macri, 1778) has been targeted in the search forputative valuable bioactive compounds. A medusa extract was obtained, fractionated, characterized by HPLC, GC-MS and SDS-PAGE and assayed for its biological activity on breast cancer cells (MCF-7) and human epidermal keratinocytes (HEKa). The composition of the jellyfish extract included photosynthetic pigments, valuable ω-3 and ω-6 fatty acids, and polypeptides derived either from jellyfish tissues and their algal symbionts. Extract fractions showed antioxidant activity and the ability to affect cell viability and intercellular communication mediated by gap junctions (GJIC) differentially in MCF-7and HEKa cells. A significantly higher cytotoxicity and GJIC enhancement in MCF-7 compared to HEKa cells was recorded. A putative action mechanism for the anticancer bioactivity through the modulation of GJIC has been hypothesized and its nutraceutical and pharmaceutical potential was discussed. PMID:23697954

  8. Extract from the zooxanthellate jellyfish Cotylorhiza tuberculata modulates gap junction intercellular communication in human cell cultures.

    PubMed

    Leone, Antonella; Lecci, Raffaella Marina; Durante, Miriana; Piraino, Stefano

    2013-05-22

    On a global scale, jellyfish populations in coastal marine ecosystems exhibit increasing trends of abundance. High-density outbreaks may directly or indirectly affect human economical and recreational activities, as well as public health. As the interest in biology of marine jellyfish grows, a number of jellyfish metabolites with healthy potential, such as anticancer or antioxidant activities, is increasingly reported. In this study, the Mediterranean "fried egg jellyfish" Cotylorhiza tuberculata (Macri, 1778) has been targeted in the search forputative valuable bioactive compounds. A medusa extract was obtained, fractionated, characterized by HPLC, GC-MS and SDS-PAGE and assayed for its biological activity on breast cancer cells (MCF-7) and human epidermal keratinocytes (HEKa). The composition of the jellyfish extract included photosynthetic pigments, valuable ω-3 and ω-6 fatty acids, and polypeptides derived either from jellyfish tissues and their algal symbionts. Extract fractions showed antioxidant activity and the ability to affect cell viability and intercellular communication mediated by gap junctions (GJIC) differentially in MCF-7 and HEKa cells. A significantly higher cytotoxicity and GJIC enhancement in MCF-7 compared to HEKa cells was recorded. A putative action mechanism for the anticancer bioactivity through the modulation of GJIC has been hypothesized and its nutraceutical and pharmaceutical potential was discussed.

  9. Biologic Activity of Autologous, Granulocyte-Macrophage Colony Stimulating Factor Secreting Alveolar Soft Parts Sarcoma and Clear Cell Sarcoma Vaccines

    PubMed Central

    Goldberg, John; Fisher, David E.; Demetri, George D.; Neuberg, Donna; Allsop, Stephen A.; Fonseca, Catia; Nakazaki, Yukoh; Nemer, David; Raut, Chandrajit P.; George, Suzanne; Morgan, Jeffrey A.; Wagner, Andrew J.; Freeman, Gordon J.; Ritz, Jerome; Lezcano, Cecilia; Mihm, Martin; Canning, Christine; Hodi, F. Stephen; Dranoff, Glenn

    2015-01-01

    Purpose Alveolar soft parts sarcoma (ASPS) and clear cell sarcoma (CCS) are rare mesenchymal malignancies driven by chromosomal translocations that activate members of the microphthalmia transcription factor (MITF) family. However, in contrast to malignant melanoma, little is known about their immunogenicity. To learn more about the host response to ASPS and CCS, we conducted a phase I clinical trial of vaccination with irradiated, autologous sarcoma cells engineered by adenoviral mediated gene transfer to secrete granulocyte-macrophage colony stimulating factor (GM-CSF). Experimental Design Metastatic tumors from ASPS and CCS patients were resected, processed to single cell suspensions, transduced with a replication defective adenoviral vector encoding GM-CSF, and irradiated. Immunizations were administered subcutaneously and intradermally weekly times three and then every other week. Results Vaccines were successfully manufactured for 11 of the 12 enrolled patients. Eleven subjects received from 3 to 13 immunizations. Toxicities were restricted to grade 1–2 skin reactions at inoculation sites. Vaccination elicited local dendritic cell infiltrates and stimulated T cell mediated delayed type-hypersensitivity reactions to irradiated, autologous tumor cells. Antibody responses to tissue-type plasminogen activator (tTPA) and angiopoietins-1/2 were detected. Tumor biopsies showed programmed death-1 (PD-1) positive CD8+ T cells in association with PD ligand-1 (PD-L1) expressing sarcoma cells. No tumor regressions were observed. Conclusions Vaccination with irradiated, GM-CSF secreting autologous sarcoma cell vaccines is feasible, safe, and biologically active. Concurrent targeting of angiogenic cytokines and antagonism of the PD-1 negative regulatory pathway might intensify immune-mediated tumor destruction. PMID:25805798

  10. Cell-Specific Production and Antimicrobial Activity of Naphthoquinones in Roots of Lithospermum erythrorhizon1

    PubMed Central

    Brigham, Lindy A.; Michaels, Paula J.; Flores, Hector E.

    1999-01-01

    Pigmented naphthoquinone derivatives of shikonin are produced at specific times and in specific cells of Lithospermum erythrorhizon roots. Normal pigment development is limited to root hairs and root border cells in hairy roots grown on “noninducing” medium, whereas induction of additional pigment production by abiotic (CuSO4) or biotic (fungal elicitor) factors increases the amount of total pigment, changes the ratios of derivatives produced, and initiates production of pigment de novo in epidermal cells. When the biological activity of these compounds was tested against soil-borne bacteria and fungi, a wide range of sensitivity was recorded. Acetyl-shikonin and β-hydroxyisovaleryl-shikonin, the two most abundant derivatives in both Agrobacterium rhizogenes-transformed “hairy-root” cultures and greenhouse-grown plant roots, were the most biologically active of the seven compounds tested. Hyphae of the pathogenic fungi Rhizoctonia solani, Pythium aphanidermatum, and Nectria hematococca induced localized pigment production upon contact with the roots. Challenge by R. solani crude elicitor increased shikonin derivative production 30-fold. We have studied the regulation of this suite of related, differentially produced, differentially active compounds to understand their role(s) in plant defense at the cellular level in the rhizosphere. PMID:9952436

  11. Functional evaluation of synthetic flavonoids and chalcones for potential antiviral and anticancer properties.

    PubMed

    Mateeva, Nelly; Eyunni, Suresh V K; Redda, Kinfe K; Ononuju, Ucheze; Hansberry, Tony D; Aikens, Cecilia; Nag, Anita

    2017-06-01

    Flavonoids, stilbenes, and chalcones are plant secondary metabolites that often possess diverse biological activities including anti-inflammatory, anti-cancer, and anti-viral activities. The wide range of bioactivities poses a challenge to identify their targets. Here, we studied a set of synthetically generated flavonoids and chalcones to evaluate for their biological activity, and compared similarly substituted flavonoids and chalcones. Substituted chalcones, but not flavonoids, showed inhibition of viral translation without significantly affecting viral replication in cells infected with hepatitis C virus (HCV). We suggest that the chalcones used in this study inhibit mammalian target of rapamycin (mTOR) pathway by ablating phosphorylation of ribosomal protein 6 (rps6), and also the kinase necessary for phosphorylating rps6 in Huh7.5 cells (pS6K1). In addition, selected chalcones showed inhibition of growth in Ishikawa, MCF7, and MDA-MB-231 cells resulting an IC 50 of 1-6µg/mL. When similarly substituted flavonoids were used against the same set of cancer cells, we did not observe any inhibitory effect. Together, we report that chalcones show potential for anti-viral and anti-cancer activities compared to similarly substituted flavonoids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Synthesis and biological evaluation of kresoxim-methyl analogues as novel inhibitors of hypoxia-inducible factor (HIF)-1 accumulation in cancer cells.

    PubMed

    Lee, Sanghyuck; Kwon, Oh Seok; Lee, Chang-Soo; Won, Misun; Ban, Hyun Seung; Ra, Choon Sup

    2017-07-01

    We designed and synthesized strobilurin analogues as hypoxia-inducible factor (HIF) inhibitors based on the molecular structure of kresoxim-methyl. Biological evaluation in human colorectal cancer HCT116 cells showed that most of the synthesized kresoxim-methyl analogues possessed moderate to potent inhibitory activity against hypoxia-induced HIF-1 transcriptional activation. Three candidates, compounds 11b, 11c, and 11d were identified as potent inhibitors against HIF-1 activation with IC 50 values of 0.60-0.94µM. Under hypoxic condition, compounds 11b, 11c, and 11d increased the intracellular oxygen contents, thereby attenuating the hypoxia-induced accumulation of HIF-1α protein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Expression of recombinant myostatin propeptide pPIC9K-Msp plasmid in Pichia pastoris.

    PubMed

    Du, W; Xia, J; Zhang, Y; Liu, M J; Li, H B; Yan, X M; Zhang, J S; Li, N; Zhou, Z Y; Xie, W Z

    2015-12-28

    Myostatin propeptide can inhibit the biological activity of myostatin protein and promote muscle growth. To express myostatin propeptide in vitro with a higher biological activity, we performed codon optimization on the sheep myostatin propeptide gene sequence, and mutated aspartic acid-76 to alanine based on the codon usage bias of Pichia pastoris and the enhanced biological activity of myostatin propeptide mutant. Modified myostatin propeptide gene was cloned into the pPIC9K plasmid to form the recombinant plasmid pPIC9K-Msp. Recombinant plasmid pPIC9K-Msp was transformed into Pichia pastoris GS115 by electrotransformation. Transformed cells were screened, and methanol was used to induce expression. SDS-PAGE and western blotting were used to verify the successful expression of myostatin propeptide with biological activity in Pichia pastoris, providing the basis for characterization of this protein.

  14. Biological activity of neosergeolide and isobrucein B (and two semi-synthetic derivatives) isolated from the Amazonian medicinal plant Picrolemma sprucei (Simaroubaceae).

    PubMed

    Silva, Ellen C C; Cavalcanti, Bruno C; Amorim, Rodrigo C N; Lucena, Jorcilene F; Quadros, Dulcimar S; Tadei, Wanderli P; Montenegro, Raquel C; Costa-Lotufo, Letícia V; Pessoa, Cláudia; Moraes, Manoel O; Nunomura, Rita C S; Nunomura, Sergio M; Melo, Marcia R S; Andrade-Neto, Valter F de; Silva, Luiz Francisco R; Vieira, Pedro Paulo R; Pohlit, Adrian M

    2009-02-01

    In the present study, in vitro techniques were used to investigate a range of biological activities of known natural quassinoids isobrucein B (1) and neosergeolide (2), known semi-synthetic derivative 1,12-diacetylisobrucein B (3), and a new semi-synthetic derivative, 12-acetylneosergeolide (4). These compounds were evaluated for general toxicity toward the brine shrimp species Artemia franciscana, cytotoxicity toward human tumour cells, larvicidal activity toward the dengue fever mosquito vector Aedes aegypti, haemolytic activity in mouse erythrocytes and antimalarial activity against the human malaria parasite Plasmodium falciparum. Compounds 1 and 2 exhibited the greatest cytotoxicity against all the tumor cells tested (IC50 = 5-27 microg/L) and against multidrug-resistant P. falciparum K1 strain (IC50 = 1.0-4.0 g/L) and 3 was only cytotoxic toward the leukaemia HL-60 strain (IC50 = 11.8 microg/L). Quassinoids 1 and 2 (LC50 = 3.2-4.4 mg/L) displayed greater lethality than derivative 4 (LC50 = 75.0 mg/L) toward A. aegypti larvae, while derivative 3 was inactive. These results suggest a novel application for these natural quassinoids as larvicides. The toxicity toward A. franciscana could be correlated with the activity in several biological models, a finding that is in agreement with the literature. Importantly, none of the studied compounds exhibited in vitro haemolytic activity, suggesting specificity of the observed cytotoxic effects. This study reveals the biological potential of quassinoids 1 and 2 and to a lesser extent their semi-synthetic derivatives for their in vitro antimalarial and cytotoxic activities.

  15. Analysis of Radiation Transport Due to Activated Coolant in the ITER Neutral Beam Injection Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Royston, Katherine; Wilson, Stephen C.; Risner, Joel M.

    Detailed spatial distributions of the biological dose rate due to a variety of sources are required for the design of the ITER tokamak facility to ensure that all radiological zoning limits are met. During operation, water in the Integrated loop of Blanket, Edge-localized mode and vertical stabilization coils, and Divertor (IBED) cooling system will be activated by plasma neutrons and will flow out of the bioshield through a complex system of pipes and heat exchangers. This paper discusses the methods used to characterize the biological dose rate outside the tokamak complex due to 16N gamma radiation emitted by the activatedmore » coolant in the Neutral Beam Injection (NBI) cell of the tokamak building. Activated coolant will enter the NBI cell through the IBED Primary Heat Transfer System (PHTS), and the NBI PHTS will also become activated due to radiation streaming through the NBI system. To properly characterize these gamma sources, the production of 16N, the decay of 16N, and the flow of activated water through the coolant loops were modeled. The impact of conservative approximations on the solution was also examined. Once the source due to activated coolant was calculated, the resulting biological dose rate outside the north wall of the NBI cell was determined through the use of sophisticated variance reduction techniques. The AutomateD VAriaNce reducTion Generator (ADVANTG) software implements methods developed specifically to provide highly effective variance reduction for complex radiation transport simulations such as those encountered with ITER. Using ADVANTG with the Monte Carlo N-particle (MCNP) radiation transport code, radiation responses were calculated on a fine spatial mesh with a high degree of statistical accuracy. In conclusion, advanced visualization tools were also developed and used to determine pipe cell connectivity, to facilitate model checking, and to post-process the transport simulation results.« less

  16. Analysis of Radiation Transport Due to Activated Coolant in the ITER Neutral Beam Injection Cell

    DOE PAGES

    Royston, Katherine; Wilson, Stephen C.; Risner, Joel M.; ...

    2017-07-26

    Detailed spatial distributions of the biological dose rate due to a variety of sources are required for the design of the ITER tokamak facility to ensure that all radiological zoning limits are met. During operation, water in the Integrated loop of Blanket, Edge-localized mode and vertical stabilization coils, and Divertor (IBED) cooling system will be activated by plasma neutrons and will flow out of the bioshield through a complex system of pipes and heat exchangers. This paper discusses the methods used to characterize the biological dose rate outside the tokamak complex due to 16N gamma radiation emitted by the activatedmore » coolant in the Neutral Beam Injection (NBI) cell of the tokamak building. Activated coolant will enter the NBI cell through the IBED Primary Heat Transfer System (PHTS), and the NBI PHTS will also become activated due to radiation streaming through the NBI system. To properly characterize these gamma sources, the production of 16N, the decay of 16N, and the flow of activated water through the coolant loops were modeled. The impact of conservative approximations on the solution was also examined. Once the source due to activated coolant was calculated, the resulting biological dose rate outside the north wall of the NBI cell was determined through the use of sophisticated variance reduction techniques. The AutomateD VAriaNce reducTion Generator (ADVANTG) software implements methods developed specifically to provide highly effective variance reduction for complex radiation transport simulations such as those encountered with ITER. Using ADVANTG with the Monte Carlo N-particle (MCNP) radiation transport code, radiation responses were calculated on a fine spatial mesh with a high degree of statistical accuracy. In conclusion, advanced visualization tools were also developed and used to determine pipe cell connectivity, to facilitate model checking, and to post-process the transport simulation results.« less

  17. Dark proteins: effect of inclusion body formation on quantification of protein expression.

    PubMed

    Iafolla, Marco A J; Mazumder, Mostafizur; Sardana, Vandit; Velauthapillai, Tharsan; Pannu, Karanbir; McMillen, David R

    2008-09-01

    Plasmid-borne gene expression systems have found wide application in the emerging fields of systems biology and synthetic biology, where plasmids are used to implement simple network architectures, either to test systems biology hypotheses about issues such as gene expression noise or as a means of exerting artificial control over a cell's dynamics. In both these cases, fluorescent proteins are commonly applied as a means of monitoring the expression of genes in the living cell, and efforts have been made to quantify protein expression levels through fluorescence intensity calibration and by monitoring the partitioning of proteins among the two daughter cells after division; such quantification is important in formulating the predictive models desired in systems and synthetic biology research. A potential pitfall of using plasmid-based gene expression systems is that the high protein levels associated with expression from plasmids can lead to the formation of inclusion bodies, insoluble aggregates of misfolded, nonfunctional proteins that will not generate fluorescence output; proteins caught in these inclusion bodies are thus "dark" to fluorescence-based detection methods. If significant numbers of proteins are incorporated into inclusion bodies rather than becoming biologically active, quantitative results obtained by fluorescent measurements will be skewed; we investigate this phenomenon here. We have created two plasmid constructs with differing average copy numbers, both incorporating an unregulated promoter (P(LtetO-1) in the absence of TetR) expressing the GFP derivative enhanced green fluorescent protein (EGFP), and inserted them into Escherichia coli bacterial cells (a common model organism for work on the dynamics of prokaryotic gene expression). We extracted the inclusion bodies, denatured them, and refolded them to render them active, obtaining a measurement of the average number of EGFP per cell locked into these aggregates; at the same time, we used calibrated fluorescent intensity measurements to determine the average number of active EGFP present per cell. Both measurements were carried out as a function of cellular doubling time, over a range of 45-75 min. We found that the ratio of inclusion body EGFP to active EGFP varied strongly as a function of the cellular growth rate, and that the number of "dark" proteins in the aggregates could in fact be substantial, reaching ratios as high as approximately five proteins locked into inclusion bodies for every active protein (at the fastest growth rate), and dropping to ratios well below 1 (for the slowest growth rate). Our results suggest that efforts to compare computational models to protein numbers derived from fluorescence measurements should take inclusion body loss into account, especially when working with rapidly growing cells. 2008 Wiley-Liss, Inc.

  18. A potent anti-HB-EGF monoclonal antibody inhibits cancer cell proliferation and multiple angiogenic activities of HB-EGF.

    PubMed

    Sato, Shuji; Drake, Andrew W; Tsuji, Isamu; Fan, Jinhong

    2012-01-01

    Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the epidermal growth factor family and has a variety of physiological and pathological functions. Modulation of HB-EGF activity might have a therapeutic potential in the oncology area. We explored the therapeutic possibilities by characterizing the in vitro biological activity of anti-HB-EGF monoclonal antibody Y-142. EGF receptor (EGFR) ligand and species specificities of Y-142 were tested. Neutralizing activities of Y-142 against HB-EGF were evaluated in EGFR and ERBB4 signaling. Biological activities of Y-142 were assessed in cancer cell proliferation and angiogenesis assays and compared with the anti-EGFR antibody cetuximab, the HB-EGF inhibitor CRM197, and the anti-vascular endothelial growth factor (VEGF) antibody bevacizumab. The binding epitope was determined with alanine scanning. Y-142 recognized HB-EGF as well as the EGFR ligand amphiregulin, and bound specifically to human HB-EGF, but not to rodent HB-EGF. In addition, Y-142 neutralized HB-EGF-induced phosphorylation of EGFR and ERBB4, and blocked their downstream ERK1/2 and AKT signaling. We also found that Y-142 inhibited HB-EGF-induced cancer cell proliferation, endothelial cell proliferation, tube formation, and VEGF production more effectively than cetuximab and CRM197 and that Y-142 was superior to bevacizumab in the inhibition of HB-EGF-induced tube formation. Six amino acids in the EGF-like domain were identified as the Y-142 binding epitope. Among the six amino acids, the combination of F115 and Y123 determined the amphiregulin cross-reactivity and that F115 accounted for the species selectivity. Furthermore, it was suggested that the potent neutralizing activity of Y-142 was derived from its recognition of R142 and Y123 and its high affinity to HB-EGF. Y-142 has a potent HB-EGF neutralizing activity that modulates multiple biological activities of HB-EGF including cancer cell proliferation and angiogenic activities. Y-142 may have a potential to be developed into a therapeutic agent for the treatment of HB-EGF-dependent cancers.

  19. Gene Transfer in Eukaryotic Cells Using Activated Dendrimers

    NASA Astrophysics Data System (ADS)

    Dennig, Jörg

    Gene transfer into eukaryotic cells plays an important role in cell biology. Over the last 30 years a number of transfection methods have been developed to mediate gene transfer into eukaryotic cells. Classical methods include co-precipitation of DNA with calcium phosphate, charge-dependent precipitation of DNA with DEAE-dextran, electroporation of nucleic acids, and formation of transfection complexes between DNA and cationic liposomes. Gene transfer technologies based on activated PAMAM-dendrimers provide another class of transfection reagents. PAMAM-dendrimers are highly branched, spherical molecules. Activation of newly synthesized dendrimers involves hydrolytic removal of some of the branches, and results in a molecule with a higher degree of flexibility. Activated dendrimers assemble DNA into compact structures via charge interactions. Activated dendrimer - DNA complexes bind to the cell membrane of eukaryotic cells, and are transported into the cell by non-specific endocytosis. A structural model of the activated dendrimer - DNA complex and a potential mechanism for its uptake into cells will be discussed.

  20. Structure-activity relationships of neoechinulin A analogues with cytoprotection against peroxynitrite-induced PC12 cell death.

    PubMed

    Kimoto, Kuniaki; Aoki, Toshiaki; Shibata, Yasushi; Kamisuki, Shinji; Sugawara, Fumio; Kuramochi, Kouji; Nakazaki, Atsuo; Kobayashi, Susumu; Kuroiwa, Kenji; Watanabe, Nobuo; Arai, Takao

    2007-10-01

    Neoechinulin A, an alkaloid from Eurotium rubrum Hiji025, protected neuronal PC12 cells against cell death induced by peroxynitrite derived from SIN-1 (3-(4-morpholinyl)sydnonimine hydrochloride). In this study, we investigated the structure-activity relationships of neoechinulin A and a set of its analogues by using assays to measure anti-nitration and antioxidant activities and cytoprotection against SIN-1-induced PC12 cell death. The presence of the diketopiperazine ring was essential for both the antioxidant and anti-nitration activities of neoechinulin A derivatives. Nevertheless, a derivative lacking the diketopiperazine ring could still protect PC12 cells against SIN-1 cytotoxicity. An acyclic analogue completely lost the cytoprotective effect while retaining its antioxidant/anti-nitration activities. Pre-incubation of the cells with neoechinulin A for at least 12 hours was essential for the cells to gain SIN-1 resistance. These results suggest that neoechinulin A endows the cells with cytoprotection through a biological effect different from the apparent antioxidant/anti-nitration activities.

  1. Tumor necrosis factor (TNF) biology and cell death.

    PubMed

    Bertazza, Loris; Mocellin, Simone

    2008-01-01

    Tumor necrosis factor (TNF) was the first cytokine to be used in humans for cancer therapy. However, its role in the treatment of cancer patients is debated. Most uncertainties in this field stem from the knowledge that the pathways directly activated or indirectly affected upon TNF engagement with its receptors can ultimately lead to very different outcomes in terms of cell survival. In this article, we summarize the fundamental molecular biology aspects of this cytokine. Such a basis is a prerequisite to critically approach the sometimes conflicting preclinical and clinical findings regarding the relationship between TNF, tumor biology and anticancer therapy. Although the last decade has witnessed remarkable advances in this field, we still do not know in detail how cells choose between life and death after TNF stimulation. Understanding this mechanism will not only shed new light on the physiological significance of TNF-driven programmed cell death but also help investigators maximize the anticancer potential of this cytokine.

  2. Applications of biological pores in nanomedicine, sensing, and nanoelectronics.

    PubMed

    Majd, Sheereen; Yusko, Erik C; Billeh, Yazan N; Macrae, Michael X; Yang, Jerry; Mayer, Michael

    2010-08-01

    Biological protein pores and pore-forming peptides can generate a pathway for the flux of ions and other charged or polar molecules across cellular membranes. In nature, these nanopores have diverse and essential functions that range from maintaining cell homeostasis and participating in cell signaling to activating or killing cells. The combination of the nanoscale dimensions and sophisticated - often regulated - functionality of these biological pores make them particularly attractive for the growing field of nanobiotechnology. Applications range from single-molecule sensing to drug delivery and targeted killing of malignant cells. Potential future applications may include the use of nanopores for single strand DNA sequencing and for generating bio-inspired, and possibly, biocompatible visual detection systems and batteries. This article reviews the current state of applications of pore-forming peptides and proteins in nanomedicine, sensing, and nanoelectronics. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Synergetic topography and chemistry cues guiding osteogenic differentiation in bone marrow stromal cells through ERK1/2 and p38 MAPK signaling pathway.

    PubMed

    Zhang, Xinran; Li, Haotian; Lin, Chucheng; Ning, Congqin; Lin, Kaili

    2018-01-30

    Both the topographic surface and chemical composition modification can enhance rapid osteogenic differentiation and bone formation. Till now, the synergetic effects of topography and chemistry cues guiding biological responses have been rarely reported. Herein, the ordered micro-patterned topography and classically essential trace element of strontium (Sr) ion doping were selected to imitate topography and chemistry cues, respectively. The ordered micro-patterned topography on Sr ion-doped bioceramics was successfully duplicated using the nylon sieve as the template. Biological response results revealed that the micro-patterned topography design or Sr doping could promote cell attachment, ALP activity, and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Most importantly, the samples both with micro-patterned topography and Sr doping showed the highest promotion effects, and could synergistically activate the ERK1/2 and p38 MAPK signaling pathways. The results suggested that the grafts with both specific topography and chemistry cues have synergetic effects on osteogenic activity of BMSCs and provide an effective approach to design functional bone grafts and cell culture substrates.

  4. IL-9 expression by human eosinophils: regulation by IL-1beta and TNF-alpha.

    PubMed

    Gounni, A S; Nutku, E; Koussih, L; Aris, F; Louahed, J; Levitt, R C; Nicolaides, N C; Hamid, Q

    2000-09-01

    IL-9 is a pleiotropic cytokine that exhibits biologic activity on cells of diverse hemopoietic lineage. IL-9 stimulates the proliferation of activated T cells, enhances the production of IgE from B cells, and promotes the proliferation and differentiation of mast cells and hematopoietic progenitors. In this study we evaluated the expression of IL-9 messenger (m)RNA and protein by human peripheral blood eosinophils. We also investigated the role of IL-1beta and TNF-alpha in the release of IL-9 from human peripheral blood eosinophils. RT-PCR, in situ hybridization, and immunocytochemistry were used to investigate the presence of IL-9 mRNA and protein in human peripheral blood eosinophils from asthmatic patients and normal control subjects. Furthermore, biologic assay was used to investigate the release of IL-9 protein from IL-1beta- or TNF-alpha-stimulated eosinophils in vitro. RT-PCR analysis showed the presence of IL-9 mRNA in human peripheral blood eosinophil RNA preparations from subjects with atopic asthma, as well as in the eosinophil-differentiated HL-60 cell line. By using in situ hybridization, a significant difference (P <.01) in IL-9 mRNA expression was detected in human peripheral blood eosinophils freshly isolated from asthmatic subjects compared with those isolated from normal control subjects. Furthermore, the percentage of IL-9 immunoreactive eosinophils from asthmatic patients was increased compared with that found in normal control subjects (P <.01). We also demonstrate that cultured human peripheral blood eosinophils from asthmatic subjects synthesize and release IL-9 protein, which is upregulated on stimulation with TNF-alpha and IL-1beta. Human eosinophils express biologically active IL-9, which suggests that these cells may influence the recruitment and activation of effector cells linked to the pathogenesis of allergic disease. These observations provide further evidence for the role of eosinophils in regulating airway immune responses.

  5. Nanoelectronics Meets Biology: From Novel Nanoscale Devices for Live Cell Recording to 3D Innervated Tissues†

    PubMed Central

    Duan, Xiaojie; Lieber, Charles M.

    2013-01-01

    High spatio-temporal resolution interfacing between electrical sensors and biological systems, from single live cells to tissues, is crucial for many areas, including fundamental biophysical studies as well as medical monitoring and intervention. This focused review summarizes recent progresses in the development and application of novel nanoscale devices for intracellular electrical recordings of action potentials, and the effort of merging electronic and biological systems seamlessly in three dimension using macroporous nanoelectronic scaffolds. The uniqueness of these nanoscale devices for minimally invasive, large scale, high spatial resolution, and three dimensional neural activity mapping will be highlighted. PMID:23946279

  6. Registered Report: COT drives resistance to RAF inhibition through MAP kinase pathway reactivation.

    PubMed

    Sharma, Vidhu; Young, Lisa; Cavadas, Miguel; Owen, Kate

    2016-03-21

    The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (Errington et al., 2014). This Registered Report describes the proposed replication plan of key experiments from "COT drives resistance to RAF inhibition through MAPK pathway reactivation" by Johannessen and colleagues, published in Nature in 2010 (Johannessen et al., 2010). The key experiments to be replicated are those reported in Figures 3B, 3D-E, 3I, and 4E-F. In Figures 3B, D-E, RPMI-7951 and OUMS023 cells were reported to exhibit robust ERK/MEK activity concomitant with reduced growth sensitivity in the presence of the BRAF inhibitor PLX4720. MAP3K8 (COT/TPL2) directly regulated MEK/ERK phosphorylation, as the treatment of RPMI-7951 cells with a MAP3K8 kinase inhibitor resulted in a dose-dependent suppression of MEK/ERK activity (Figure 3I). In contrast, MAP3K8-deficient A375 cells remained sensitive to BRAF inhibition, exhibiting reduced growth and MEK/ERK activity during inhibitor treatment. To determine if RAF and MEK inhibitors together can overcome single-agent resistance, MAP3K8-expressing A375 cells treated with PLX4720 along with MEK inhibitors significantly inhibited both cell viability and ERK activation compared to treatment with PLX4720 alone, as reported in Figures 4E-F. The Reproducibility Project: Cancer Biology is collaboration between the Center for Open Science and Science Exchange and the results of the replications will be published in eLife.

  7. Occurrence and biological activity of palmitoleic acid isomers in phagocytic cells.

    PubMed

    Astudillo, Alma M; Meana, Clara; Guijas, Carlos; Pereira, Laura; Lebrero, Patricia; Balboa, María A; Balsinde, Jesús

    2018-02-01

    Recent studies have highlighted the role of palmitoleic acid [16:1 n-7 ( cis -9-hexadecenoic acid)] as a lipid hormone that coordinates cross-talk between liver and adipose tissue and exerts anti-inflammatory protective effects on hepatic steatosis and insulin signaling in murine models of metabolic disease. More recently, a 16:1 n-7 isomer, cis -7-hexadecenoic acid (16:1 n-9 ), that also possesses marked anti-inflammatory effects, has been described in human circulating monocytes and monocyte-derived macrophages. By using gas chromatographic/mass spectrometric analyses of dimethyl disulfide derivatives of fatty acyl methyl esters, we describe in this study the presence of a third 16:1 isomer, sapienic acid [16:1 n-10 (6- cis -hexadecenoic acid)], in phagocytic cells. Cellular levels of 16:1 n-10 appear to depend not only on the cellular content of linoleic acid, but also on the expression level of fatty acid desaturase 2, thus revealing a complex regulation both at the enzyme level, via fatty acid substrate competition, and directly at the gene level. However, unlike 16:1 n-7 and 16:1 n-9 , 16:1 n-10 levels are not regulated by the activation state of the cell. Moreover, while 16:1 n-7 and 16:1 n-9 manifest strong anti-inflammatory activity when added to the cells at low concentrations (10 μM), notably higher concentrations of 16:1 n-10 are required to observe a comparable effect. Collectively, these results suggest the presence in phagocytic cells of an unexpected variety of 16:1 isomers, which can be distinguished on the basis of their biological activity and cellular regulation. Copyright © 2018 by the American Society for Biochemistry and Molecular Biology, Inc.

  8. Biological Properties and Characterization of ASL50 Protein from Aged Allium sativum Bulbs.

    PubMed

    Kumar, Suresh; Jitendra, Kumar; Singh, Kusum; Kapoor, Vaishali; Sinha, Mou; Xess, Immaculata; Das, Satya N; Sharma, Sujata; Singh, Tej P; Dey, Sharmistha

    2015-08-01

    Allium sativum is well known for its medicinal properties. The A. sativum lectin 50 (ASL50, 50 kDa) was isolated from aged A. sativum bulbs and purified by gel filtration chromatography on Sephacryl S-200 column. Agar well diffusion assay were used to evaluate the antimicrobial activity of ASL50 against Candida species and bacteria then minimal inhibitory concentration (MIC) was determined. The lipid A binding to ASL50 was determined by surface plasmon resonance (SPR) technology with varying concentrations. Electron microscopic studies were done to see the mode of action of ASL50 on microbes. It exerted antimicrobial activity against clinical Candida isolates with a MIC of 10-40 μg/ml and clinical Pseudomonas aeruginosa isolates with a MIC of 10-80 μg/ml. The electron microscopic study illustrates that it disrupts the cell membrane of the bacteria and cell wall of fungi. It exhibited antiproliferative activity on oral carcinoma KB cells with an IC50 of 36 μg/ml after treatment for 48 h and induces the apoptosis of cancer cells by inducing 2.5-fold higher caspase enzyme activity than untreated cells. However, it has no cytotoxic effects towards HEK 293 cells as well as human erythrocytes even at higher concentration of ASL50. Biological properties of ASL50 may have its therapeutic significance in aiding infection and cancer treatments.

  9. Reviewing primary Sjögren's syndrome: beyond the dryness - From pathophysiology to diagnosis and treatment.

    PubMed

    Both, Tim; Dalm, Virgil A S H; van Hagen, P Martin; van Daele, Paul L A

    2017-01-01

    Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease, characterized by lymphocytic infiltration of the secretory glands. This process leads to sicca syndrome, which is the combination of dryness of the eyes, oral cavity, pharynx, larynx and/or vagina. Extraglandular manifestations may also be prevalent in patients with pSS, including cutaneous, musculoskeletal, pulmonary, renal, hematological and neurological involvement. The pathogenesis of pSS is currently not well understood, but increased activation of B cells followed by immune complex formation and autoantibody production are thought to play important roles. pSS is diagnosed using the American-European consensus group (AECG) classification criteria which include subjective symptoms and objective tests such as histopathology and serology. The treatment of pSS warrants an organ based approach, for which local treatment (teardrops, moistures) and systemic therapy (including non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, disease-modifying antirheumatic drugs (DMARDS) and biologicals) can be considered. Biologicals used in the treatment of pSS mainly affect the total numbers of B cells (B cell depletion (Rituximab)) or target proteins required for B cell proliferation and/or activation (e.g. B cell activating factor (BAFF)) resulting in decreased B cell activity. The aim of this review is to provide physicians a general overview concerning the pathogenesis, diagnosis and management of pSS patients.

  10. Highly biological active antibiofilm, anticancer and osteoblast adhesion efficacy from MWCNT/PPy/Pd nanocomposite

    NASA Astrophysics Data System (ADS)

    Murugesan, Balaji; Sonamuthu, Jegatheeswaran; Samayanan, Selvam; Arumugam, Sangili; Mahalingam, Sundrarajan

    2018-03-01

    Multifunctional biologically active materials have approached for antibiofilm, anticancer and osteoblast adhesion activities with significant biomedical applications, owing to this MWCNT modified with polypyrrole (PPy) matrix with the incorporation of palladium nanoparticles (NPs). The synthesized composite displays a tube-shaped morphology with highly dispersed crystalline Pd NPs, which are established through XRD, SEM, TEM and SAED studies. The pyridinic-N(∼402.7), pyrrolic sbnd N (∼400.8) peak in XPS spectra evidenced the interaction of PPy with Pd and MWCNT. Polymer stretching frequencies in FTIR and Raman spectroscopy proves successful formation of PPy and the Pd-N (1609 cm-1) interaction. In the stability aspect, it is up to 58.73% mass withstood at 800 °C in TGA analysis. The composite exhibits an efficient Anti-biofilm against a set of bacterial stain with planktonic cell growth. In vitro cytotoxicity of Vero and HeLa cell line assess the composites toxicity and anticancer activity up to 100 μg. The outcome of cell adhesions showed that human osteosarcoma cells (HOS) can adhere and to develop on the MWCNT/PPy/Pd composites. Furthermore, the proliferation of cells on MWCNT/PPy/Pd composites was also proved the biocompatibility of the composites against HOS cells. These results suggest that Pd-doped MWCNT/PPy composites are promising materials for biomedical applications.

  11. Generation of Viable Cell and Biomaterial Patterns by Laser Transfer

    NASA Astrophysics Data System (ADS)

    Ringeisen, Bradley

    2001-03-01

    In order to fabricate and interface biological systems for next generation applications such as biosensors, protein recognition microarrays, and engineered tissues, it is imperative to have a method of accurately and rapidly depositing different active biomaterials in patterns or layered structures. Ideally, the biomaterial structures would also be compatible with many different substrates including technologically relevant platforms such as electronic circuits or various detection devices. We have developed a novel laser-based technique, termed matrix assisted pulsed laser evaporation direct write (MAPLE DW), that is able to direct write patterns and three-dimensional structures of numerous biologically active species ranging from proteins and antibodies to living cells. Specifically, we have shown that MAPLE DW is capable of forming mesoscopic patterns of living prokaryotic cells (E. coli bacteria), living mammalian cells (Chinese hamster ovaries), active proteins (biotinylated bovine serum albumin, horse radish peroxidase), and antibodies specific to a variety of classes of cancer related proteins including intracellular and extracellular matrix proteins, signaling proteins, cell cycle proteins, growth factors, and growth factor receptors. In addition, patterns of viable cells and active biomolecules were deposited on different substrates including metals, semiconductors, nutrient agar, and functionalized glass slides. We will present an explanation of the laser-based transfer mechanism as well as results from our recent efforts to fabricate protein recognition microarrays and tissue-based microfluidic networks.

  12. Ursolic acid suppresses leptin-induced cell proliferation in rat vascular smooth muscle cells.

    PubMed

    Yu, Ya-Mei; Tsai, Chiang-Chin; Tzeng, Yu-Wen; Chang, Weng-Cheng; Chiang, Su-Yin; Lee, Ming-Fen

    2017-07-01

    Accumulating lines of evidence indicate that high leptin levels are associated with adverse cardiovascular health in obese individuals. Proatherogenic effects of leptin include endothelial cell activation and vascular smooth muscle cell proliferation and migration. Ursolic acid (UA) has been reported to exhibit multiple biological effects including antioxidant and anti-inflammatory properties. In this study, we investigated the effect of UA on leptin-induced biological responses in rat vascular smooth muscle cells (VSMCs). A-10 VSMCs were treated with leptin in the presence or absence of UA. Intracellular reactive oxygen species (ROS) was probed by 2',7'-dichlorofluorescein diacetate. The expression of extracellular signal-regulated kinase (ERK)1/2, phospho-(ERK)1/2, nuclear factor-kappa B (NF-κB) p65 and p50, and matrix metalloproteinase-2 (MMP2) was determined by Western blotting. Immunocytochemistry and confocal laser scanning microscopy were also used for the detection of NF-κB. The secretion of MMP2 was detected by gelatin zymography. UA exhibited antioxidant activities in vitro. In rat VSMCs, UA effectively inhibited cell growth and the activity of MMP2 induced by leptin. These suppressive effects appeared by decreasing the activation of (ERK)1/2, the nuclear expression and translocation of NF-κB, and the production of ROS. UA appeared to inhibit leptin-induced atherosclerosis, which may prevent the development of obesity-induced cardiovascular diseases.

  13. Arborvitae (Thuja plicata) essential oil significantly inhibited critical inflammation- and tissue remodeling-related proteins and genes in human dermal fibroblasts.

    PubMed

    Han, Xuesheng; Parker, Tory L

    2017-06-01

    Arborvitae ( Thuja plicata ) essential oil (AEO) is becoming increasingly popular in skincare, although its biological activity in human skin cells has not been investigated. Therefore, we sought to study AEO's effect on 17 important protein biomarkers that are closely related to inflammation and tissue remodeling by using a pre-inflamed human dermal fibroblast culture model. AEO significantly inhibited the expression of vascular cell adhesion molecule 1 (VCAM-1), intracellular cell adhesion molecule 1 (ICAM-1), interferon gamma-induced protein 10 (IP-10), interferon-inducible T-cell chemoattractant (I-TAC), monokine induced by interferon gamma (MIG), and macrophage colony-stimulating factor (M-CSF). It also showed significant antiproliferative activity and robustly inhibited collagen-I, collagen-III, plasminogen activator inhibitor-1 (PAI-1), and tissue inhibitor of metalloproteinase 1 and 2 (TIMP-1 and TIMP-2). The inhibitory effect of AEO on increased production of these protein biomarkers suggests it has anti-inflammatory property. We then studied the effect of AEO on the genome-wide expression of 21,224 genes in the same cell culture. AEO significantly and diversely modulated global gene expression. Ingenuity pathway analysis (IPA) showed that AEO robustly affected numerous critical genes and signaling pathways closely involved in inflammatory and tissue remodeling processes. The findings of this study provide the first evidence of the biological activity and beneficial action of AEO in human skin cells.

  14. NF-κB transcriptional activity is modulated by FK506-binding proteins FKBP51 and FKBP52: a role for peptidyl-prolyl isomerase activity.

    PubMed

    Erlejman, Alejandra G; De Leo, Sonia A; Mazaira, Gisela I; Molinari, Alejandro M; Camisay, María Fernanda; Fontana, Vanina; Cox, Marc B; Piwien-Pilipuk, Graciela; Galigniana, Mario D

    2014-09-19

    Hsp90 binding immunophilins FKBP51 and FKBP52 modulate steroid receptor trafficking and hormone-dependent biological responses. With the purpose to expand this model to other nuclear factors that are also subject to nuclear-cytoplasmic shuttling, we analyzed whether these immunophilins modulate NF-κB signaling. It is demonstrated that FKBP51 impairs both the nuclear translocation rate of NF-κB and its transcriptional activity. The inhibitory action of FKBP51 requires neither the peptidylprolyl-isomerase activity of the immunophilin nor its association with Hsp90. The TPR domain of FKBP51 is essential. On the other hand, FKBP52 favors the nuclear retention time of RelA, its association to a DNA consensus binding sequence, and NF-κB transcriptional activity, the latter effect being strongly dependent on the peptidylprolyl-isomerase activity and also on the TPR domain of FKBP52, but its interaction with Hsp90 is not required. In unstimulated cells, FKBP51 forms endogenous complexes with cytoplasmic RelA. Upon cell stimulation with phorbol ester, the NF-κB soluble complex exchanges FKBP51 for FKBP52, and the NF-κB biological effect is triggered. Importantly, FKBP52 is functionally recruited to the promoter region of NF-κB target genes, whereas FKBP51 is released. Competition assays demonstrated that both immunophilins antagonize one another, and binding assays with purified proteins suggest that the association of RelA and immunophilins could be direct. These observations suggest that the biological action of NF-κB in different cell types could be positively regulated by a high FKBP52/FKBP51 expression ratio by favoring NF-κB nuclear retention, recruitment to the promoter regions of target genes, and transcriptional activity. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Aromatase inhibitors in human lung cancer therapy.

    PubMed

    Weinberg, Olga K; Marquez-Garban, Diana C; Fishbein, Michael C; Goodglick, Lee; Garban, Hermes J; Dubinett, Steven M; Pietras, Richard J

    2005-12-15

    Lung cancer is the most common cancer in the world. It is a highly lethal disease in women and men, and new treatments are urgently needed. Previous studies implicated a role of estrogens and estrogen receptors in lung cancer progression, and this steroidal growth-stimulatory pathway may be promoted by tumor expression and activity of aromatase, an estrogen synthase. We found expression of aromatase transcripts and protein in human non-small cell lung cancer (NSCLC) cells using reverse transcription-PCR and Western immunoblots, respectively. Aromatase staining by immunohistochemistry was detected in 86% of archival NSCLC tumor specimens from the clinic. Further, biological activity of aromatase was determined in NSCLC tumors using radiolabeled substrate assays as well as measure of estradiol product using ELISA. Significant activity of aromatase occurred in human NSCLC tumors, with enhanced levels in tumor cells compared with that in nearby normal cells. Lung tumor aromatase activity was inhibited by anastrozole, an aromatase inhibitor, and treatment of tumor cells in vitro with anastrozole led to significant suppression of tumor cell growth. Similarly, among ovariectomized nude mice with A549 lung tumor xenografts, administration of anastrozole by p.o. gavage for 21 days elicited pronounced inhibition of tumor growth in vivo. These findings show that aromatase is present and biologically active in human NSCLCs and that tumor growth can be down-regulated by specific inhibition of aromatase. This work may lead to development of new treatment options for patients afflicted with NSCLC.

  16. Biological Activation of Inert Ceramics: Recent Advances Using Tailored Self-Assembled Monolayers on Implant Ceramic Surfaces

    PubMed Central

    Böke, Frederik; Schickle, Karolina; Fischer, Horst

    2014-01-01

    High-strength ceramics as materials for medical implants have a long, research-intensive history. Yet, especially on applications where the ceramic components are in direct contact with the surrounding tissue, an unresolved issue is its inherent property of biological inertness. To combat this, several strategies have been investigated over the last couple of years. One promising approach investigates the technique of Self-Assembled Monolayers (SAM) and subsequent chemical functionalization to create a biologically active tissue-facing surface layer. Implementation of this would have a beneficial impact on several fields in modern implant medicine such as hip and knee arthroplasty, dental applications and related fields. This review aims to give a summarizing overview of the latest advances in this recently emerging field, along with thorough introductions of the underlying mechanism of SAMs and surface cell attachment mechanics on the cell side. PMID:28788687

  17. A zinc-dependent epitope on the molecule of thymulin, a thymic hormone.

    PubMed Central

    Dardenne, M; Savino, W; Berrih, S; Bach, J F

    1985-01-01

    Thymulin is a nonapeptide hormone produced by thymic epithelial cells. Its biological activity is strictly dependent on the presence of the metal zinc in the molecule. Antithymulin monoclonal antibodies have been produced against either the synthetic (AS1) or the natural intraepithelial (AE1) molecule. These monoclonal antibodies were screened for their abilities to inhibit the zinc-dependent biological activity of the hormone and were shown to bind to thymic epithelial cells. By using biological and immunofluorescence assays, the two antibodies were shown to recognize exclusively the zinc-coupled thymulin molecule. Other antithymulin antibodies screened by RIA or ELISA (using a zinc-deprived substrate) recognized a zinc-independent epitope on the thymulin molecule. These data indicate the existence of a zinc-specific conformation on the thymulin molecule. They are in agreement with NMR studies showing that the zinc-containing hormone has a unique structure. Images PMID:2413455

  18. Acenaphthenequinone thiosemicarbazone and its transition metal complexes: synthesis, structure, and biological activity.

    PubMed

    Rodriguez-Argüelles, M C; Belicchi Ferrari, M; Gasparri Fava, G; Pelizzi, C; Pelosi, G; Albertini, R; Bonati, A; Dall'Aglio, P P; Lunghi, P; Pinelli, S

    1997-04-01

    The reaction of iron, nickel, copper, and zinc chlorides or acetates with acenaphthenequinone thiosemicarbazone, Haqtsc leads to the formation of novel complexes that have been characterized by spectroscopic studies (NMR, IR) and biological properties. The crystal structures of the free ligand Haqtsc 1 and of the compound [Ni(aqtsc)2].DMF 2, have also been determined by X-ray methods from diffractometer data. In 1, the conformation of the two nonequivalent molecules is governed by intramolecular hydrogen bonds, while an intermolecular hydrogen bond is responsible for dimer-like groups formation. In 2, the coordination geometry about nickel is distorted octahedral, and the two ligand molecules are terdentate monodeprotonated. Biological studies have shown that, for the first time at least up the used doses, a free ligand is active both in the inhibition of cell proliferation and in the induced differentiation on Friend erythroleukemia cells (FLC).

  19. Potential Theranostics Application of Bio-Synthesized Silver Nanoparticles (4-in-1 System)

    PubMed Central

    Mukherjee, Sudip; Chowdhury, Debabrata; Kotcherlakota, Rajesh; Patra, Sujata; B, Vinothkumar; Bhadra, Manika Pal; Sreedhar, Bojja; Patra, Chitta Ranjan

    2014-01-01

    In this report, we have designed a simple and efficient green chemistry approach for the synthesis of colloidal silver nanoparticles (b-AgNPs) that is formed by the reduction of silver nitrate (AgNO3) solution using Olax scandens leaf extract. The colloidal b-AgNPs, characterized by various physico-chemical techniques exhibit multifunctional biological activities (4-in-1 system). Firstly, bio-synthesized silver nanoparticles (b-AgNPs) shows enhanced antibacterial activity compared to chemically synthesize silver nanoparticles (c-AgNPs). Secondly, b-AgNPs show anti-cancer activities to different cancer cells (A549: human lung cancer cell lines, B16: mouse melanoma cell line & MCF7: human breast cancer cells) (anti-cancer). Thirdly, these nanoparticles are biocompatible to rat cardiomyoblast normal cell line (H9C2), human umbilical vein endothelial cells (HUVEC) and Chinese hamster ovary cells (CHO) which indicates the future application of b-AgNPs as drug delivery vehicle. Finally, the bio-synthesized AgNPs show bright red fluorescence inside the cells that could be utilized to detect the localization of drug molecules inside the cancer cells (a diagnostic approach). All results together demonstrate the multifunctional biological activities of bio-synthesized AgNPs (4-in-1 system) that could be applied as (i) anti-bacterial & (ii) anti-cancer agent, (iii) drug delivery vehicle, and (iv) imaging facilitator. To the best of our knowledge, there is not a single report of biosynthesized AgNPs that demonstrates the versatile applications (4-in-1 system) towards various biomedical applications. Additionally, a plausible mechanistic approach has been explored for the synthesis of b-AgNPs and its anti-bacterial as well as anti-cancer activity. We strongly believe that bio-synthesized AgNPs will open a new direction towards various biomedical applications in near future. PMID:24505239

  20. Design, synthesis, and biological evaluation of novel EF24 and EF31 analogs as potential IκB kinase β inhibitors for the treatment of pancreatic cancer.

    PubMed

    Xie, Xuemeng; Tu, Jinfu; You, Heyi; Hu, Bingren

    2017-01-01

    Given the important role that inhibitory kappa B (IκB) kinase β (IKKβ) plays in pancreatic cancer (PC) development and progression, inhibitors targeting IKKβ are believed to be increasingly popular as novel anti-PC therapies. Two synthetic molecules, named EF24 and EF31 , exhibited favorable potential in terms of inhibition of both IKKβ activity and PC cell proliferation. Aiming to enhance their cellular efficacy and to analyze their structure-activity relationship, four series of EF24 and EF31 analogs were designed and synthesized. Through kinase activity and vitality screening of cancer cells, D6 displayed excellent inhibition of both IKKβ activity and PC cell proliferation. Additionally, multiple biological evaluations showed that D6 was directly bound to IKKβ and significantly suppressed the activation of the IKKβ/nuclear factor κB pathway induced by tumor necrosis factor-α, as well as effectively inducing cancer cell apoptosis. Moreover, molecular docking and molecular dynamics simulation analysis indicated that the dominant force between D6 and IKKβ comprised hydrophobic interactions. In conclusion, D6 may be a promising therapeutic agent for PC treatment and it also provides a structural lead for the design of novel IKKβ inhibitors.

  1. Design, synthesis, and biological evaluation of novel EF24 and EF31 analogs as potential IκB kinase β inhibitors for the treatment of pancreatic cancer

    PubMed Central

    Xie, Xuemeng; Tu, Jinfu; You, Heyi; Hu, Bingren

    2017-01-01

    Given the important role that inhibitory kappa B (IκB) kinase β (IKKβ) plays in pancreatic cancer (PC) development and progression, inhibitors targeting IKKβ are believed to be increasingly popular as novel anti-PC therapies. Two synthetic molecules, named EF24 and EF31, exhibited favorable potential in terms of inhibition of both IKKβ activity and PC cell proliferation. Aiming to enhance their cellular efficacy and to analyze their structure–activity relationship, four series of EF24 and EF31 analogs were designed and synthesized. Through kinase activity and vitality screening of cancer cells, D6 displayed excellent inhibition of both IKKβ activity and PC cell proliferation. Additionally, multiple biological evaluations showed that D6 was directly bound to IKKβ and significantly suppressed the activation of the IKKβ/nuclear factor κB pathway induced by tumor necrosis factor-α, as well as effectively inducing cancer cell apoptosis. Moreover, molecular docking and molecular dynamics simulation analysis indicated that the dominant force between D6 and IKKβ comprised hydrophobic interactions. In conclusion, D6 may be a promising therapeutic agent for PC treatment and it also provides a structural lead for the design of novel IKKβ inhibitors. PMID:28553074

  2. Modulating the Biologic Activity of Mesenteric Lymph after Traumatic Shock Decreases Systemic Inflammation and End Organ Injury.

    PubMed

    Langness, Simone; Costantini, Todd W; Morishita, Koji; Eliceiri, Brian P; Coimbra, Raul

    2016-01-01

    Trauma/hemorrhagic shock (T/HS) causes the release of pro-inflammatory mediators into the mesenteric lymph (ML), triggering a systemic inflammatory response and acute lung injury (ALI). Direct and pharmacologic vagal nerve stimulation prevents gut barrier failure and alters the biologic activity of ML after injury. We hypothesize that treatment with a pharmacologic vagal agonist after T/HS would attenuate the biologic activity of ML and prevent ALI. ML was collected from male Sprague-Dawley rats after T/HS, trauma-sham shock (T/SS) or T/HS with administration of the pharmacologic vagal agonist CPSI-121. ML samples from each experimental group were injected into naïve mice to assess biologic activity. Blood samples were analyzed for changes in STAT3 phosphorylation (pSTAT3). Lung injury was characterized by histology, permeability and immune cell recruitment. T/HS lymph injected in naïve mice caused a systemic inflammatory response characterized by hypotension and increased circulating monocyte pSTAT3 activity. Injection of T/HS lymph also resulted in ALI, confirmed by histology, lung permeability and increased recruitment of pulmonary macrophages and neutrophils to lung parenchyma. CPSI-121 attenuated T/HS lymph-induced systemic inflammatory response and ALI with stable hemodynamics and similar monocyte pSTAT3 levels, lung histology, lung permeability and lung immune cell recruitment compared to animals injected with lymph from T/SS. Treatment with CPSI-121 after T/HS attenuated the biologic activity of the ML and decreased ALI. Given the superior clinical feasibility of utilizing a pharmacologic approach to vagal nerve stimulation, CPSI-121 is a potential treatment strategy to limit end organ dysfunction after injury.

  3. Proteolytic activation of the protease-activated receptor (PAR)-2 by the glycosylphosphatidylinositol-anchored serine protease testisin.

    PubMed

    Driesbaugh, Kathryn H; Buzza, Marguerite S; Martin, Erik W; Conway, Gregory D; Kao, Joseph P Y; Antalis, Toni M

    2015-02-06

    Protease-activated receptors (PARs) are a family of seven-transmembrane, G-protein-coupled receptors that are activated by multiple serine proteases through specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. The majority of PAR-activating proteases described to date are soluble proteases that are active during injury, coagulation, and inflammation. Less investigation, however, has focused on the potential for membrane-anchored serine proteases to regulate PAR activation. Testisin is a unique trypsin-like serine protease that is tethered to the extracellular membrane of cells through a glycophosphatidylinositol (GPI) anchor. Here, we show that the N-terminal domain of PAR-2 is a substrate for testisin and that proteolytic cleavage of PAR-2 by recombinant testisin activates downstream signaling pathways, including intracellular Ca(2+) mobilization and ERK1/2 phosphorylation. When testisin and PAR-2 are co-expressed in HeLa cells, GPI-anchored testisin specifically releases the PAR-2 tethered ligand. Conversely, knockdown of endogenous testisin in NCI/ADR-Res ovarian tumor cells reduces PAR-2 N-terminal proteolytic cleavage. The cleavage of PAR-2 by testisin induces activation of the intracellular serum-response element and NFκB signaling pathways and the induction of IL-8 and IL-6 cytokine gene expression. Furthermore, the activation of PAR-2 by testisin results in the loss and internalization of PAR-2 from the cell surface. This study reveals a new biological substrate for testisin and is the first demonstration of the activation of a PAR by a serine protease GPI-linked to the cell surface. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Is Peer Interaction Necessary for Optimal Active Learning?

    PubMed

    Linton, Debra L; Farmer, Jan Keith; Peterson, Ernie

    2014-01-01

    Meta-analyses of active-learning research consistently show that active-learning techniques result in greater student performance than traditional lecture-based courses. However, some individual studies show no effect of active-learning interventions. This may be due to inexperienced implementation of active learning. To minimize the effect of inexperience, we should try to provide more explicit implementation recommendations based on research into the key components of effective active learning. We investigated the optimal implementation of active-learning exercises within a "lecture" course. Two sections of nonmajors biology were taught by the same instructor, in the same semester, using the same instructional materials and assessments. Students in one section completed in-class active-learning exercises in cooperative groups, while students in the other section completed the same activities individually. Performance on low-level, multiple-choice assessments was not significantly different between sections. However, students who worked in cooperative groups on the in-class activities significantly outperformed students who completed the activities individually on the higher-level, extended-response questions. Our results provide additional evidence that group processing of activities should be the recommended mode of implementation for in-class active-learning exercises. © 2014 D. L. Linton et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Silencing of long non-coding RNA CCAT2 depressed malignancy of oral squamous cell carcinoma via Wnt/β-catenin pathway.

    PubMed

    Ma, Yuji; Hu, Xuanhao; Shang, Chao; Zhong, Ming; Guo, Yan

    2017-07-01

    Oral squamous cell carcinoma is a common and lethal malignancy affecting the head and neck region. CCAT2 (colon cancer-associated transcript 2) gene is affiliated with long non-coding RNAs, which are often found to have important regulatory roles in cancers. This study aims to assess the expression and clinical significance of CCAT2 gene, identify its malignant biological behaviors, and explore the possible mechanisms in oral squamous cell carcinoma. CCAT2 expression was detected by quantitative real-time polymerase chain reaction, and its relationship with clinical factors was assayed using the Kaplan-Meier survival curve. The biological behaviors of CCAT2 and its potential mechanisms in oral squamous cell carcinoma were explored by the combined use of CCAT2 knockdown technology and the Wnt/β-catenin pathway agonist lithium chloride (LiCl). Our results showed that CCAT2 functioning as a potential oncogene was upregulated in oral squamous cell carcinoma. CCAT2 with high expression level was correlated with poor differentiation, higher T stage, and clinical stage, which made CCAT2 to be a prognostic biomarker in oral squamous cell carcinoma. LiCl-activated Wnt/β-catenin signaling pathway could partly restore the CCAT2-mediated malignant biological behaviors of oral squamous cell carcinoma cells by suppressing β-catenin, CCND1, and MYC and activating glycogen synthase kinase 3 beta expression. These findings might assist in the discovery of novel potential diagnostic and therapeutic target for oral squamous cell carcinoma, thereby improve the effects of clinical treatment in patients.

  6. Selective inhibitors of zinc-dependent histone deacetylases. Therapeutic targets relevant to cancer.

    PubMed

    Kollar, Jakub; Frecer, Vladimir

    2015-01-01

    Histone deacetylases (HDACs), which act on acetylated histones and/or other non-histone protein substrates, represent validated epigenetic targets for the treatment of cancer and other human diseases. The inhibition of HDAC activity was shown to induce cell cycle arrest, differentiation, apoptosis as well as a decrease in proliferation, angiogenesis, migration, and cell resistance to chemotherapy. Targeting single HDAC isoforms with selective inhibitors will help to reveal the role of individual HDACs in cancer development or uncover further biological consequences of protein acetylation. This review focuses on conventional zinc-containing HDACs. In its first part, the biological role of individual HDACs in various types of cancer is summarized. In the second part, promising HDAC inhibitors showing activity both in enzymatic and cell-based assays are surveyed with an emphasis on the inhibitors selective to the individual HDACs.

  7. Proteome profile and biological activity of caprine, bovine and human milk fat globules.

    PubMed

    Spertino, Stefano; Cipriani, Valentina; De Angelis, Chiara; Giuffrida, Maria Gabriella; Marsano, Francesco; Cavaletto, Maria

    2012-04-01

    Upon combining bidimensional electrophoresis with monodimensional separation, a more comprehensive analysis of the milk fat globule membrane has been obtained. The proteomic profile of caprine milk fat globules revealed the presence of butyrophilin, lactadherin and perilipin as the major proteins, they were also associated to bovine and human milk fat globule membranes. Xanthine dehydrogenase/oxidase has been detected only in monodimensional gels. Biological activity of milk fat globules has been evaluated in Caco2-cells, as a representative model of the intestinal barrier. The increase of cell viability was indicative of a potential nutraceutical role for the whole milk fat globule, suggesting a possible employment in milk formula preparation.

  8. A new aggregation-induced emission fluorescent probe for rapid detection of nitroreductase and its application in living cells

    NASA Astrophysics Data System (ADS)

    Xu, Gaoping; Tang, Yonghe; Ma, Yanyan; Xu, An; Lin, Weiying

    2018-01-01

    The biological activity of nitroreductase (NTR) is closely related to biological hypoxia status in organisms. The development of effective methods for monitoring the activity of NTR is of great significance for medical diagnosis and tumor research. Toward this goal, we have developed a new aggregation-induced emission (AIE) fluorescence NTR probe TPE-HY used the tetraphenylethene as the fluorophore, and used the nitro group as the NTR recognition site. The probe TPE-HY has many excellent properties, including rapid response, AIE characteristics, high sensitivity and selectivity, and low cytotoxicity. Importantly, the probe TPE-HY is successfully applied to monitor endogenous NTR in living HeLa cells.

  9. Isolation and biological evaluation of jatrophane diterpenoids from Euphorbia dendroides.

    PubMed

    Aljancić, Ivana S; Pesić, Milica; Milosavljević, Slobodan M; Todorović, Nina M; Jadranin, Milka; Milosavljević, Goran; Povrenović, Dragan; Banković, Jasna; Tanić, Nikola; Marković, Ivanka D; Ruzdijić, Sabera; Vajs, Vlatka E; Tesević, Vele V

    2011-07-22

    From the Montenegrin spurge Euphorbia dendroides, seven new diterpenoids [jatrophanes (1-6) and a tigliane (7)] were isolated and their structures elucidated by spectroscopic techniques. The biological activity of the new compounds was studied against four human cancer cell lines. The most effective jatrophane-type compound (2) and its structurally closely related derivative (1) were evaluated for their interactions with paclitaxel and doxorubicin using a multi-drug-resistant cancer cell line. Both compounds exerted a strong reversal potential resulting from inhibition of P-glycoprotein transport.

  10. Use of the short-term inflammatory response in the mouse peritoneal cavity to assess the biological activity of leached vitreous fibers.

    PubMed Central

    Donaldson, K; Addison, J; Miller, B G; Cullen, R T; Davis, J M

    1994-01-01

    We used a special-purpose glass microfiber sample, Johns-Manville Code 100/475, to study the effects of various acid and alkali treatments on biological activity as assessed by inflammation in the mouse peritoneal cavity, the leaching of Si, and the phase contrast optical microscopy (PCOM) fiber number. We used mild and medium treatments with oxalic acid and Tris buffer and harsh treatment with concentrated HCl and NaOH. Mild oxalic acid and Tris treatment for 2 weeks had no effect on any of the end-points, but prolonging the mild oxalic acid treatment time to 2 months reduced the biological activity and the fiber number. Medium oxalic acid treatment reduced the biological activity and the fiber number and caused a loss of Si. Medium Tris alkali treatment reduced the PCOM-countable fibers and the biological activity but did not cause a substantial loss of Si. Harsh treatment with strong HCl did not affect the fiber number or cause leaching but the biological activity was reduced; strong NaOH reduced the fiber number and biological activity, and caused marked leaching of Si. The medium oxalic acid conditions (pH 1.4) were more acid than those found in lung cells but produced the same effects (reduction in fiber number and biological activity) as the more physiological mild treatment (pH 4.0), when prolonged. This study suggests that medium oxalic acid treatment can be used as a short-term assay to compare loss of Si, reduction in fiber number, and change in biological activity of vitreous fibers.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7882922

  11. "Discovering the Cell": An Educational Game about Cell and Molecular Biology

    ERIC Educational Resources Information Center

    Spiegel, Carolina N.; Alves, Gutemberg G.; Cardona, Tania da S.; Melim, Leandra M. C.; Luz, Mauricio R. M. P.; Araujo-Jorge, Tania C.; Henriques-Pons, Andrea

    2008-01-01

    The role of games within education becomes clearer as students become more active and are able to take decisions, solve problems and react to the results of those decisions. The educational board game "Discovering the Cell" ("Celula Adentro"), is based on problem-solving learning. This investigative game attempts to stimulate…

  12. In the absence of its cytosolic domain, the CD28 molecule still contributes to T cell activation

    PubMed Central

    Morin, Stéphanie; Giroux, Valentin; Favre, Cédric; Bechah, Yassina; Auphan-Anezin, Nathalie; Roncagalli, Romain; Mège, Jean-Louis; Olive, Daniel; Malissen, Marie; Nunes, Jacques

    2015-01-01

    The CD28 costimulatory receptor has a pivotal role in T cell biology as this molecule amplifies T cell receptor (TCR) signals to provide an efficient immune T cell response. There is a large debate about how CD28 mediates these signals. Here, we designed a CD28 gene targeted knock-in mouse strain lacking the cytoplasmic tail of CD28. As is the case in CD28-deficient (CD28 knock-out) mice, regulatory T cell homeostasis and T cell activation are altered in these CD28 knock-in mice. Unexpectedly, the presence of a CD28 molecule deprived of its cytoplasmic tail could partially induce some early activation events in T cells such as signaling events or expression of early activation markers. These results unravel a new mechanism of T cell costimulation by CD28, independent of its cytoplasmic tail. PMID:25725801

  13. Peptide mimic for influenza vaccination using nonnatural combinatorial chemistry

    PubMed Central

    Miles, John J.; Tan, Mai Ping; Dolton, Garry; Galloway, Sarah A.E.; Laugel, Bruno; Makinde, Julia; Matthews, Katherine K.; Watkins, Thomas S.; Wong, Yide; Clark, Richard J.; Pentier, Johanne M.; Attaf, Meriem; Lissina, Anya; Ager, Ann; Gallimore, Awen; Gras, Stephanie; Rossjohn, Jamie; Burrows, Scott R.; Cole, David K.; Price, David A.

    2018-01-01

    Polypeptide vaccines effectively activate human T cells but suffer from poor biological stability, which confines both transport logistics and in vivo therapeutic activity. Synthetic biology has the potential to address these limitations through the generation of highly stable antigenic “mimics” using subunits that do not exist in the natural world. We developed a platform based on D–amino acid combinatorial chemistry and used this platform to reverse engineer a fully artificial CD8+ T cell agonist that mirrored the immunogenicity profile of a native epitope blueprint from influenza virus. This nonnatural peptide was highly stable in human serum and gastric acid, reflecting an intrinsic resistance to physical and enzymatic degradation. In vitro, the synthetic agonist stimulated and expanded an archetypal repertoire of polyfunctional human influenza virus–specific CD8+ T cells. In vivo, specific responses were elicited in naive humanized mice by subcutaneous vaccination, conferring protection from subsequent lethal influenza challenge. Moreover, the synthetic agonist was immunogenic after oral administration. This proof-of-concept study highlights the power of synthetic biology to expand the horizons of vaccine design and therapeutic delivery. PMID:29528337

  14. Multilayered co-electrospun scaffold containing silver sulfadiazine as a prophylactic against osteomyelitis: Characterization and biological in vitro evaluations

    NASA Astrophysics Data System (ADS)

    Heo, Min; Lee, Sang Jin; Heo, Dong Nyoung; Lee, Donghyun; Lim, Ho-Nam; Moon, Ji-Hoi; Kwon, Il Keun

    2018-02-01

    Bone related-bacterial diseases including wound infections and osteomyelitis (OM) still remain a serious problem. In this study, a hybrid co-electrospun membrane consisting of gelatin (GE) and Poly(D,L-lactide-co-glycolide) (PLGA) fibrous sheets containing different concentrations (0, 0.1, 0.5, and 1 wt%) of silver sulfadiazine (AgSD) was designed to provide for improved antimicrobial effect and biocompatibility. Well-defined products were characterized by physicochemical analyses. For biological in vitro assessments, mouse osteoblastic MC3T3-E1 cells were cultured on the scaffolds. This test was done in order to assay for cytotoxicity by measuring cell proliferation. Antibacterial activity against gram-negative Pseudomonas aeruginosa (P. aeruginosa), gram-positive Staphylococcus aureus (S. aureus), and Methicillin-resistant Staphylococcus aureus (MRSA) was also tested. These biological tests showed that GE/PLGA-AgSD scaffolds had good cell viability, as well as effective antimicrobial activity. These remarkable results suggest that GE/PLGA-AgSD scaffolds possess great potential for the treatment of OM and can find many uses in the field of bone tissue engineering.

  15. Recommendations for the validation of cell-based assays used for the detection of neutralizing antibody immune responses elicited against biological therapeutics.

    PubMed

    Gupta, Shalini; Devanarayan, Viswanath; Finco, Deborah; Gunn, George R; Kirshner, Susan; Richards, Susan; Rup, Bonita; Song, An; Subramanyam, Meena

    2011-07-15

    The administration of biological therapeutics may result in the development of anti-drug antibodies (ADAs) in treated subjects. In some cases, ADA responses may result in the loss of therapeutic efficacy due to the formation of neutralizing ADAs (NAbs). An important characteristic of anti-drug NAbs is their direct inhibitory effect on the pharmacological activity of the therapeutic. Neutralizing antibody responses are of particular concern for biologic products with an endogenous homolog whose activity can be potentially dampened or completely inhibited by the NAbs leading to an autoimmune-type deficiency syndrome. Therefore, it is important that ADAs are detected and characterized appropriately using sensitive and reliable methods. The design, development and optimization of cell-based assays used for detection of NAbs have been published previously by Gupta et al. 2007 [1]. This paper provides recommendations on best practices for the validation of cell-based NAb assay and suggested validation parameters based on the experience of the authors. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Protein B61 as a new growth factor: expression of B61 and up-regulation of its receptor epithelial cell kinase during melanoma progression.

    PubMed

    Easty, D J; Guthrie, B A; Maung, K; Farr, C J; Lindberg, R A; Toso, R J; Herlyn, M; Bennett, D C

    1995-06-15

    Epithelial cell kinase (ECK) is a receptor protein tyrosine kinase, the role of which in melanoma biology is unclear. Here we studied the role of ECK during melanoma progression. ECK mRNA was overexpressed in virtually all melanoma lines tested, and levels were significantly higher in cell lines from distant metastases than primary melanomas; melanocytes were negative. Gene amplification was not detected in melanomas. Levels of ECK protein corresponded well with mRNA levels. B61 or LERK-1, recently identified as an ECK ligand, stimulated the growth of ECK-expressing melanoma cell lines, its first identified biological activity. Melanoma chemotaxis and chemoinvasion were not affected by B61. Growth of normal melanocytes was not affected. mRNA for B61 was detected in both melanoma cell lines and normal melanocytes. B61 was also identified by Western blotting and ECK binding activity with the use of a BIAcore binding assay in melanoma cell-conditioned media. These results suggest that B61 is an autocrine growth factor for melanomas but not normal melanocytes.

  17. CRISPR/Cas9 Genome Editing: A Promising Tool for Therapeutic Applications of Induced Pluripotent Stem Cells.

    PubMed

    Zhang, Yanli; Sastre, Danuta; Wang, Feng

    2018-01-01

    Induced pluripotent stem cells hold tremendous potential for biological and therapeutic applications. The development of efficient technologies for targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. The revolutionary technology for genome editing known as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9) system is recently recognized as a powerful tool for editing DNA at specific loci. The ease of use of the CRISPR-Cas9 technology will allow us to improve our understanding of genomic variation in disease processes via cellular and animal models. More recently, this system was modified to repress (CRISPR interference, CRISPRi) or activate (CRISPR activation, CRISPRa) gene expression without alterations in the DNA, which amplified the scope of applications of CRISPR systems for stem cell biology. Here, we highlight latest advances of CRISPR-associated applications in human pluripotent stem cells. The challenges and future prospects of CRISPR-based systems for human research are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Dysregulated cellular functions and cell stress pathways provide critical cues for activating and targeting natural killer cells to transformed and infected cells.

    PubMed

    Raulet, David H; Marcus, Assaf; Coscoy, Laurent

    2017-11-01

    Natural killer (NK) cells recognize and kill cancer cells and infected cells by engaging cell surface ligands that are induced preferentially or exclusively on these cells. These ligands are recognized by activating receptors on NK cells, such as NKG2D. In addition to activation by cell surface ligands, the acquisition of optimal effector activity by NK cells is driven in vivo by cytokines and other signals. This review addresses a developing theme in NK cell biology: that NK-activating ligands on cells, and the provision of cytokines and other signals that drive high effector function in NK cells, are driven by abnormalities that arise from transformation or the infected state. The pathways include genomic damage, which causes self DNA to be exposed in the cytosol of affected cells, where it activates the DNA sensor cGAS. The resulting signaling induces NKG2D ligands and also mobilizes NK cell activation. Other key pathways that regulate NKG2D ligands include PI-3 kinase activation, histone acetylation, and the integrated stress response. This review summarizes the roles of these pathways and their relevance in both viral infections and cancer. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Controllability and observability of Boolean networks arising from biology

    NASA Astrophysics Data System (ADS)

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  20. Quantitative Structure-Cytotoxicity Relationship of Cinnamic Acid Phenetyl Esters.

    PubMed

    Uesawa, Yoshihiro; Sakagami, Hiroshi; Okudaira, Noriyuki; Toda, Kazuhiro; Takao, Koichi; Kagaya, Hajime; Sugita, Yoshiaki

    2018-02-01

    Many phenolic acid phenethyl esters possess diverse biological effects including antioxidant, cytoprotective, anti-inflammation and anti-tumor activities. However, most previous antitumor studies have not considered the cytotoxicity against normal cells. Ten cinnamic acid phenetyl esters were subjected to quantitative structure-activity relationship (QSAR) analysis, based on their cytotoxicity and tumor-specificity, in order to find their new biological activities. Cytotoxicity against four human oral squamous cell carcinoma cell lines and three oral normal mesenchymal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor specificity (TS) was evaluated by the ratio of the mean 50% cytotoxic concentration (CC 50 ) against normal oral cells to that against human oral squamous cell carcinoma cell lines. Potency-selectivity expression (PSE) value was calculated by dividing the TS value by CC 50 against tumor cells. Apoptosis markers were detected by western blot analysis. Physicochemical, structural and quantum-chemical parameters were calculated based on the conformations optimized by force-field minimization. Western blot analysis demonstrated that [ 9 ] stimulated the cleavage of caspase-3, suggesting the induction of apoptosis. QSAR analysis demonstrated that TS values were correlated with shape, size and ionization potential. Chemical modification of the lead compound may be a potential choice for designing a new type of anticancer drugs. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. Type I collagen aging impairs discoidin domain receptor 2-mediated tumor cell growth suppression

    PubMed Central

    Saby, Charles; Buache, Emilie; Brassart-Pasco, Sylvie; El Btaouri, Hassan; Courageot, Marie-Pierre; Van Gulick, Laurence; Garnotel, Roselyne; Jeannesson, Pierre; Morjani, Hamid

    2016-01-01

    Tumor cells are confronted to a type I collagen rich environment which regulates cell proliferation and invasion. Biological aging has been associated with structural changes of type I collagen. Here, we address the effect of collagen aging on cell proliferation in a three-dimensional context (3D). We provide evidence for an inhibitory effect of adult collagen, but not of the old one, on proliferation of human fibrosarcoma HT-1080 cells. This effect involves both the activation of the tyrosine kinase Discoidin Domain Receptor 2 (DDR2) and the tyrosine phosphatase SHP-2. DDR2 and SHP-2 were less activated in old collagen. DDR2 inhibition decreased SHP-2 phosphorylation in adult collagen and increased cell proliferation to a level similar to that observed in old collagen. In the presence of old collagen, a high level of JAK2 and ERK1/2 phosphorylation was observed while expression of the cell cycle negative regulator p21CIP1 was decreased. Inhibition of DDR2 kinase function also led to an increase in ERK1/2 phosphorylation and a decrease in p21CIP1 expression. Similar signaling profile was observed when DDR2 was inhibited in adult collagen. Altogether, these data suggest that biological collagen aging could increase tumor cell proliferation by reducingthe activation of the key matrix sensor DDR2. PMID:27121132

  2. Ubiquitin ligase CHIP functions as an oncogene and activates the AKT signaling pathway in prostate cancer.

    PubMed

    Cheng, Li; Zang, Jin; Dai, Han-Jue; Li, Feng; Guo, Feng

    2018-07-01

    Carboxyl terminus of Hsc-70-interacting protein (CHIP) is an E3 ubiquitin ligase that induces the ubiquitination and degradation of numerous tumor-associated proteins and serves as a suppressor or promoter in tumor progression. To date, the molecular mechanism of CHIP in prostate cancer remains unknown. Therefore, the present study investigated the biological function of CHIP in prostate cancer cells and obtained evidence that CHIP expression is upregulated in prostate cancer tissues. The CHIP vector was introduced into DU145 cancer cells and the cell biological behaviour was examined through a series of experiments, including cell growth, cell apoptosis and migration and invasion assays. The results indicated that the overexpression of CHIP in DU145 prostatic cancer cells promoted cell proliferation through activation of the protein kinase B (AKT) signaling pathway, which subsequently increased cyclin D1 protein levels and decreased p21 and p27 protein levels. The overexpression of CHIP significantly increased the migration and invasion of the DU145 cells, which is possible due to activation of the AKT signaling pathway and upregulation of vimentin. The expression level of CHIP was observed to be increased in human prostate cancer tissues compared with the adjacent normal tissue. Furthermore, the CHIP expression level exhibited a positively association with the Gleason score of the patents. These findings indicate that CHIP functions as an oncogene in prostate cancer.

  3. DYNAMICS OF EXTRACELLULAR SIGNAL-REGULATED KINASE (ERK) ACTIVATION IN DEVELOPING CEREBELLAR GRANULE CELLS (CGC): A SYSTEMS BIOLOGY-ORIENTED STUDY

    EPA Science Inventory

    The objective of this study was to 1) characterize the dynamics of ERK activation in response to BDNF and NMDA; 2) use computational models to promote understanding of the signaling network underlying ERK activation.

  4. Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach

    PubMed Central

    Weiss, Jason T.; Dawson, John C.; Macleod, Kenneth G.; Rybski, Witold; Fraser, Craig; Torres-Sánchez, Carmen; Patton, E. Elizabeth; Bradley, Mark; Carragher, Neil O.; Unciti-Broceta, Asier

    2014-01-01

    A bioorthogonal organometallic reaction is a biocompatible transformation undergone by a synthetic material exclusively through the mediation of a non-biotic metal source; a selective process used to label biomolecules and activate probes in biological environs. Here we report the in vitro bioorthogonal generation of 5-fluorouracil from a biologically inert precursor by heterogeneous Pd0 catalysis. Although independently harmless, combined treatment of 5-fluoro-1-propargyl-uracil and Pd0-functionalized resins exhibits comparable antiproliferative properties to the unmodified drug in colorectal and pancreatic cancer cells. Live-cell imaging and immunoassay studies demonstrate that the cytotoxic activity of the prodrug/Pd0-resin combination is due to the in situ generation of 5-fluorouracil. Pd0-resins can be carefully implanted in the yolk sac of zebrafish embryos and display excellent biocompatibility and local catalytic activity. The in vitro efficacy shown by this masking/activation strategy underlines its potential to develop a bioorthogonally activated prodrug approach and supports further in vivo investigations. PMID:24522696

  5. Full activation of RNaseL in animal cells requires binding of 2-5A within ankyrin repeats 6 to 9 of this interferon-inducible enzyme.

    PubMed

    Díaz-Guerra, M; Rivas, C; Esteban, M

    1999-02-01

    To define protein domains important for activation of the interferon (IFN)-induced enzyme 2-5A-dependent RNaseL, we have generated vaccinia virus (VV) recombinants able to express in cultured cells truncated forms of this protein and compared their biologic activities with those producing the wild-type enzyme, with and without coexpression of 2-5A synthetase. Our results show that full activation of RNaseL requires binding of 2-5A oligonucleotides within amino acid positions 212-339, corresponding to ankyrin repeats 6 to 9. The protein kinase and ribonuclease domains of RNaseL, amino acids 340-741, are sufficient for a constitutively active enzyme that is unresponsive to excess 2-5A. These results demonstrate in vivo the importance of the ankyrin domains in the biologic function of RNaseL. We suggest that ankyrin repeats act as key modulators of RNaseL activity.

  6. Chemical composition analysis and in vitro biological activities of ten essential oils in human skin cells.

    PubMed

    Han, Xuesheng; Beaumont, Cody; Stevens, Nicole

    2017-12-01

    Research on the biological effects of essential oils on human skin cells is scarce. In the current study, we primarily explored the biological activities of 10 essential oils (nine single and one blend) in a pre-inflamed human dermal fibroblast system that simulated chronic inflammation. We measured levels of proteins critical for inflammation, immune responses, and tissue-remodeling processes. The nine single oils were distilled from Citrus bergamia (bergamot), Coriandrum sativum (cilantro), Pelargonium graveolens (geranium), Helichrysum italicum (helichrysum), Pogostemon cablin (patchouli), Citrus aurantium (petitgrain), Santalum album (sandalwood), Nardostachys jatamansi (spikenard), and Cananga odorata (ylang ylang). The essential oil blend (commercial name Immortelle) is composed of oils from frankincense, Hawaiian sandalwood, lavender, myrrh, helichrysum, and rose. All the studied oils were significantly anti-proliferative against these cells. Furthermore, bergamot, cilantro, and spikenard essential oils primarily inhibited protein molecules related to inflammation, immune responses, and tissue-remodeling processes, suggesting they have anti-inflammatory and wound healing properties. Helichrysum and ylang ylang essential oils, as well as Immortelle primarily inhibited tissue remodeling-related proteins, suggesting a wound healing property. The data are consistent with the results of existing studies examining these oils in other models and suggest that the studied oils may be promising therapeutic candidates. Further research into their biological mechanisms of action is recommended. The differential effects of these essential oils suggest that they exert activities by different mechanisms or pathways, warranting further investigation. The chemical composition of these oils was analyzed using gas chromatography-mass spectrometry.

  7. The Hippo signaling pathway in stem cell biology and cancer

    PubMed Central

    Mo, Jung-Soon; Park, Hyun Woo; Guan, Kun-Liang

    2014-01-01

    The Hippo signaling pathway, consisting of a highly conserved kinase cascade (MST and Lats) and downstream transcription coactivators (YAP and TAZ), plays a key role in tissue homeostasis and organ size control by regulating tissue-specific stem cells. Moreover, this pathway plays a prominent role in tissue repair and regeneration. Dysregulation of the Hippo pathway is associated with cancer development. Recent studies have revealed a complex network of upstream inputs, including cell density, mechanical sensation, and G-protein-coupled receptor (GPCR) signaling, that modulate Hippo pathway activity. This review focuses on the role of the Hippo pathway in stem cell biology and its potential implications in tissue homeostasis and cancer. PMID:24825474

  8. Phenolic Composition and Antioxidant and Antiproliferative Activities of the Extracts of Twelve Common Bean (Phaseolus vulgaris L.) Endemic Ecotypes of Southern Italy before and after Cooking.

    PubMed

    Ombra, Maria Neve; d'Acierno, Antonio; Nazzaro, Filomena; Riccardi, Riccardo; Spigno, Patrizia; Zaccardelli, Massimo; Pane, Catello; Maione, Mena; Fratianni, Florinda

    2016-01-01

    Beans are important dietary components with versatile health benefits. We analysed the extracts of twelve ecotypes of Phaseolus vulgaris in order to determine their phenolic profiles, antioxidant activity, and the in vitro antiproliferative activity. Ultra-performance liquid chromatography with diode array detector (UPLC-DAD) admitted us to detect and quantify some known polyphenols, such as gallic acid, chlorogenic acid, epicatechin, myricetin, formononetin, caffeic acid, and kaempferol. The antioxidant activity (AA) ranged from 1.568 ± 0.041 to 66.572 ± 3.197 mg necessary to inhibit the activity of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical by 50% (EC 50 ). The extracts, except those obtained from the nonpigmented samples, were capable of inhibiting the proliferation of the human epithelial colorectal adenocarcinoma (Caco-2) cells, human breast cancer cells MCF-7, and A549 NSCLC cell line. Cultivars differed in composition and concentration of polyphenols including anthocyanins; cooking affected the antioxidant activity only marginally. Qualitative and quantitative differences in phenolic composition between the groups of beans influenced the biological activities; on the other hand, we did not find significant differences on the biological activities within the same variety, before and after cooking.

  9. Endotoxin activity of Moraxella osloensis against the grey garden slug, Deroceras reticulatum.

    PubMed

    Tan, Li; Grewal, Parwinder S

    2002-08-01

    Moraxella osloensis is a gram-negative bacterium associated with Phasmarhabditis hermaphrodita, a slug-parasitic nematode that has prospects for biological control of mollusk pests, especially the grey garden slug, Deroceras reticulatum. This bacterium-feeding nematode acts as a vector that transports M. osloensis into the shell cavity of the slug, and the bacterium is the killing agent in the nematode-bacterium complex. We discovered that M. osloensis produces an endotoxin(s), which is tolerant to heat and protease treatments and kills the slug after injection into the shell cavity. Washed or broken cells treated with penicillin and streptomycin from 3-day M. osloensis cultures were more pathogenic than similar cells from 2-day M. osloensis cultures. However, heat and protease treatments and 2 days of storage at 22 degrees C increased the endotoxin activity of the young broken cells but not the endotoxin activity of the young washed cells treated with the antibiotics. This suggests that there may be a proteinaceous substance(s) that is structurally associated with the endotoxin(s) and masks its toxicity in the young bacterial cells. Moreover, 2 days of storage of the young washed bacterial cells at 22 degrees C enhanced their endotoxin activity if they were not treated with the antibiotics. Furthermore, purified lipopolysaccharide (LPS) from the 3-day M. osloensis cultures was toxic to slugs, with an estimated 50% lethal dose of 48 microg per slug, thus demonstrating that the LPS of M. osloensis is an endotoxin that is active against D. reticulatum. This appears to be the first report of a biological toxin that is active against mollusks.

  10. Homeobox NKX2-3 promotes marginal-zone lymphomagenesis by activating B-cell receptor signalling and shaping lymphocyte dynamics

    PubMed Central

    Robles, Eloy F.; Mena-Varas, Maria; Barrio, Laura; Merino-Cortes, Sara V.; Balogh, Péter; Du, Ming-Qing; Akasaka, Takashi; Parker, Anton; Roa, Sergio; Panizo, Carlos; Martin-Guerrero, Idoia; Siebert, Reiner; Segura, Victor; Agirre, Xabier; Macri-Pellizeri, Laura; Aldaz, Beatriz; Vilas-Zornoza, Amaia; Zhang, Shaowei; Moody, Sarah; Calasanz, Maria Jose; Tousseyn, Thomas; Broccardo, Cyril; Brousset, Pierre; Campos-Sanchez, Elena; Cobaleda, Cesar; Sanchez-Garcia, Isidro; Fernandez-Luna, Jose Luis; Garcia-Muñoz, Ricardo; Pena, Esther; Bellosillo, Beatriz; Salar, Antonio; Baptista, Maria Joao; Hernandez-Rivas, Jesús Maria; Gonzalez, Marcos; Terol, Maria Jose; Climent, Joan; Ferrandez, Antonio; Sagaert, Xavier; Melnick, Ari M.; Prosper, Felipe; Oscier, David G.; Carrasco, Yolanda R.; Dyer, Martin J. S.; Martinez-Climent, Jose A.

    2016-01-01

    NKX2 homeobox family proteins have a role in cancer development. Here we show that NKX2-3 is overexpressed in tumour cells from a subset of patients with marginal-zone lymphomas, but not with other B-cell malignancies. While Nkx2-3-deficient mice exhibit the absence of marginal-zone B cells, transgenic mice with expression of NKX2-3 in B cells show marginal-zone expansion that leads to the development of tumours, faithfully recapitulating the principal clinical and biological features of human marginal-zone lymphomas. NKX2-3 induces B-cell receptor signalling by phosphorylating Lyn/Syk kinases, which in turn activate multiple integrins (LFA-1, VLA-4), adhesion molecules (ICAM-1, MadCAM-1) and the chemokine receptor CXCR4. These molecules enhance migration, polarization and homing of B cells to splenic and extranodal tissues, eventually driving malignant transformation through triggering NF-κB and PI3K-AKT pathways. This study implicates oncogenic NKX2-3 in lymphomagenesis, and provides a valid experimental mouse model for studying the biology and therapy of human marginal-zone B-cell lymphomas. PMID:27297662

  11. Synthesis and structure-activity relationships of constrained heterocyclic analogues of combretastatin A4.

    PubMed

    Arthuis, Martin; Pontikis, Renée; Chabot, Guy G; Seguin, Johanne; Quentin, Lionel; Bourg, Stéphane; Morin-Allory, Luc; Florent, Jean-Claude

    2011-09-05

    A series of combretastatin A4 (CA4) analogues with a lactam or lactone ring fused to the trimethoxyphenyl or the B-phenyl moiety were synthesized in an efficient and stereoselective manner by using a domino Heck-Suzuki-Miyaura coupling reaction. The vascular-disrupting potential of these conformationally restricted CA4 analogues was assessed by various in vitro assays: inhibition of tubulin polymerization, modification of endothelial cell morphology, and disruption of endothelial cell cords. Compounds were also evaluated for their growth inhibitory effects against murine and human tumor cells. B-ring-constrained derivatives that contain an oxindole ring (in contrast to compounds with a benzofuranone ring) as well as analogues bearing a six-membered lactone core fused to the trimethoxyphenyl ring are endowed with significant biological activity. The most potent compound of this series (oxindole 9 b) is of particular interest, as it combines chemical stability and a biological activity profile characteristic of a vascular-disrupting agent. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. CAK-Cyclin-dependent Activating Kinase: a key kinase in cell cycle control and a target for drugs?

    PubMed

    Lolli, Graziano; Johnson, Louise N

    2005-04-01

    The Cyclin-dependent kinase (CDK) Activating Kinase (CAK) is responsible for the activating phosphorylation of CDK1, CDK2, CDK4 and CDK6 and regulation of the cell cycle. The kinase is composed of three subunits: CDK7, Cyclin H and MAT1 (ménage a trois). Together with six other subunits, CAK is also part of the general transcription factor TFIIH where it is involved in promoter clearance and progression of transcription from the preinitiation to the initiation stage. CAK is required for cell cycle progression, which suggests that CDK7 could be a target for cancer therapy. However its role in transcription and its ubiquitous presence raise sensible concerns about possible toxicity of its inhibitors. The recently determined structure of CDK7 allows the design of inhibitors with differential specificity for the different CDKs. We review the role of CAK in different biological processes and evaluate the biological evidence for CDK7 as a possible pharmacological target.

  13. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems

    PubMed Central

    Lü, Jian-Ming; Lin, Peter H; Yao, Qizhi; Chen, Changyi

    2010-01-01

    Abstract Free radicals derived from oxygen, nitrogen and sulphur molecules in the biological system are highly active to react with other molecules due to their unpaired electrons. These radicals are important part of groups of molecules called reactive oxygen/nitrogen species (ROS/RNS), which are produced during cellular metabolism and functional activities and have important roles in cell signalling, apoptosis, gene expression and ion transportation. However, excessive ROS attack bases in nucleic acids, amino acid side chains in proteins and double bonds in unsaturated fatty acids, and cause oxidative stress, which can damage DNA, RNA, proteins and lipids resulting in an increased risk for cardiovascular disease, cancer, autism and other diseases. Intracellular antioxidant enzymes and intake of dietary antioxidants may help to maintain an adequate antioxidant status in the body. In the past decades, new molecular techniques, cell cultures and animal models have been established to study the effects and mechanisms of antioxidants on ROS. The chemical and molecular approaches have been used to study the mechanism and kinetics of antioxidants and to identify new potent antioxidants. Antioxidants can decrease the oxidative damage directly via reacting with free radicals or indirectly by inhibiting the activity or expression of free radical generating enzymes or enhancing the activity or expression of intracellular antioxidant enzymes. The new chemical and cell-free biological system has been applied in dissecting the molecular action of antioxidants. This review focuses on the research approaches that have been used to study oxidative stress and antioxidants in lipid peroxidation, DNA damage, protein modification as well as enzyme activity, with emphasis on the chemical and cell-free biological system. PMID:19754673

  14. Human embryonic and induced pluripotent stem cell-derived cardiomyocytes exhibit beat rate variability and power-law behavior.

    PubMed

    Mandel, Yael; Weissman, Amir; Schick, Revital; Barad, Lili; Novak, Atara; Meiry, Gideon; Goldberg, Stanislav; Lorber, Avraham; Rosen, Michael R; Itskovitz-Eldor, Joseph; Binah, Ofer

    2012-02-21

    The sinoatrial node is the main impulse-generating tissue in the heart. Atrioventricular conduction block and arrhythmias caused by sinoatrial node dysfunction are clinically important and generally treated with electronic pacemakers. Although an excellent solution, electronic pacemakers incorporate limitations that have stimulated research on biological pacing. To assess the suitability of potential biological pacemakers, we tested the hypothesis that the spontaneous electric activity of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) exhibit beat rate variability and power-law behavior comparable to those of human sinoatrial node. We recorded extracellular electrograms from hESC-CMs and iPSC-CMs under stable conditions for up to 15 days. The beat rate time series of the spontaneous activity were examined in terms of their power spectral density and additional methods derived from nonlinear dynamics. The major findings were that the mean beat rate of hESC-CMs and iPSC-CMs was stable throughout the 15-day follow-up period and was similar in both cell types, that hESC-CMs and iPSC-CMs exhibited intrinsic beat rate variability and fractal behavior, and that isoproterenol increased and carbamylcholine decreased the beating rate in both hESC-CMs and iPSC-CMs. This is the first study demonstrating that hESC-CMs and iPSC-CMs exhibit beat rate variability and power-law behavior as in humans, thus supporting the potential capability of these cell sources to serve as biological pacemakers. Our ability to generate sinoatrial-compatible spontaneous cardiomyocytes from the patient's own hair (via keratinocyte-derived iPSCs), thus eliminating the critical need for immunosuppression, renders these myocytes an attractive cell source as biological pacemakers.

  15. Sulfur, selenium and tellurium pseudopeptides: synthesis and biological evaluation.

    PubMed

    Shaaban, Saad; Sasse, Florenz; Burkholz, Torsten; Jacob, Claus

    2014-07-15

    A new series of sulfur, selenium and tellurium peptidomimetic compounds was prepared employing the Passerini and Ugi isocyanide based multicomponent reactions (IMCRs). These reactions were clearly superior to conventional methods traditionally used for organoselenium and organotellurium synthesis, such as classical nucleophilic substitution and coupling methods. From the biological point of view, these compounds are of considerable interest because of suspected anticancer and antimicrobial activities. While the sulfur and selenium containing compounds generally did not show either anticancer or antimicrobial activities, their tellurium based counterparts frequently exhibited antimicrobial activity and were also cytotoxic. Some of the compounds synthesized even showed selective activity against certain cancer cells in cell culture. These compounds induced a cell cycle delay in the G0/G1 phase. At closer inspection, the ER and the actin cytoskeleton appeared to be the primary cellular targets of these tellurium compounds, in line with some of our previous studies. As most of these peptidomimetic compounds also comply with Lipinski's Rule of Five, they promise good bioavailability, which needs to be studied as part of future investigations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. A liver full of JNK: signaling in regulation of cell function and disease pathogenesis, and clinical approaches.

    PubMed

    Seki, Ekihiro; Brenner, David A; Karin, Michael

    2012-08-01

    c-Jun-N-terminal kinase (JNK) is a mitogen-activated protein kinase family member that is activated by diverse stimuli, including cytokines (such as tumor necrosis factor and interleukin-1), reactive oxygen species (ROS), pathogens, toxins, drugs, endoplasmic reticulum stress, free fatty acids, and metabolic changes. Upon activation, JNK induces multiple biologic events through the transcription factor activator protein-1 and transcription-independent control of effector molecules. JNK isozymes regulate cell death and survival, differentiation, proliferation, ROS accumulation, metabolism, insulin signaling, and carcinogenesis in the liver. The biologic functions of JNK are isoform, cell type, and context dependent. Recent studies using genetically engineered mice showed that loss or hyperactivation of the JNK pathway contributes to the development of inflammation, fibrosis, cancer growth, and metabolic diseases that include obesity, hepatic steatosis, and insulin resistance. We review the functions and pathways of JNK in liver physiology and pathology and discuss findings from preclinical studies with JNK inhibitors. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  17. Valproate inhibits MAP kinase signalling and cell cycle progression in S. cerevisiae.

    PubMed

    Desfossés-Baron, Kristelle; Hammond-Martel, Ian; Simoneau, Antoine; Sellam, Adnane; Roberts, Stephen; Wurtele, Hugo

    2016-10-26

    The mechanism of action of valproate (VPA), a widely prescribed short chain fatty acid with anticonvulsant and anticancer properties, remains poorly understood. Here, the yeast Saccharomyces cerevisiae was used as model to investigate the biological consequences of VPA exposure. We found that low pH strongly potentiates VPA-induced growth inhibition. Transcriptional profiling revealed that under these conditions, VPA modulates the expression of genes involved in diverse cellular processes including protein folding, cell wall organisation, sexual reproduction, and cell cycle progression. We further investigated the impact of VPA on selected processes and found that this drug: i) activates markers of the unfolded protein stress response such as Hac1 mRNA splicing; ii) modulates the cell wall integrity pathway by inhibiting the activation of the Slt2 MAP kinase, and synergizes with cell wall stressors such as micafungin and calcofluor white in preventing yeast growth; iii) prevents activation of the Kss1 and Fus3 MAP kinases of the mating pheromone pathway, which in turn abolishes cellular responses to alpha factor; and iv) blocks cell cycle progression and DNA replication. Overall, our data identify heretofore unknown biological responses to VPA in budding yeast, and highlight the broad spectrum of cellular pathways influenced by this chemical in eukaryotes.

  18. Exosomes and cardiovascular cell-cell communication.

    PubMed

    Poe, Adam J; Knowlton, Anne A

    2018-05-15

    Exosomes have become an important player in intercellular signaling. These lipid microvesicles can stably transfer miRNA, protein, and other molecules between cells and circulate throughout the body. Exosomes are released by almost all cell types and are present in most if not all biological fluids. The biologically active cargo carried by exosomes can alter the phenotype of recipient cells. Exosomes increasingly are recognized as having an important role in the progression and treatment of cardiac disease states. Injured cardiac cells can release exosomes with important pathological effects on surrounding tissue, in addition to effecting other organs. But of equal interest is the possible benefit(s) conferred by exosomes released from stem cells for use in treatment and possible repair of cardiac damage. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  19. Generation of structurally novel short carotenoids and study of their biological activity

    PubMed Central

    Kim, Se H.; Kim, Moon S.; Lee, Bun Y.; Lee, Pyung C.

    2016-01-01

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-α-tocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid 4,4′-diapotorulene on rat bone marrow mesenchymal stem cells. Our results demonstrate that a series of structurally novel carotenoids possessing biologically beneficial properties can be synthesized in E. coli. PMID:26902326

  20. Generation of structurally novel short carotenoids and study of their biological activity.

    PubMed

    Kim, Se H; Kim, Moon S; Lee, Bun Y; Lee, Pyung C

    2016-02-23

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-α-tocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid 4,4'-diapotorulene on rat bone marrow mesenchymal stem cells. Our results demonstrate that a series of structurally novel carotenoids possessing biologically beneficial properties can be synthesized in E. coli.

Top