Biologically important compounds in synfuels processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, B R; Ho, C; Griest, W H
1980-01-01
Crude products, by-products and wastes from synfuel processes contain a broad spectrum of chemical compounds - many of which are active in biological systems. Discerning which compound classes are most important is necessary in order to establish effective control over release or exposure. Polycyclic aromatic hydrocarbons (PAH), multialkylated PAH, primary aromatic amines and N-heterocyclic PAH are significant contributors to the overall mutagenic activities of a large number of materials examined. Ames test data show that the basic, primary aromatic amine fraction is the most active. PAHs, multialkylated PAHs and N-heterocyclic PAHs are all components of the neutral fraction. In nearlymore » all cases, the neutral fractions contribute the largest portion of the mutagenic activity, while the basic primary aromatic amine fractions have the highest specific activity. Neutral fractions are usually the largest (wt %) whereas the total basic fractions are small by comparison; thus, the overall greater contribution of the neutral fraction to the mutagenic activity of most samples. Biologically active constituents are isolated in preparative scale amounts from complex mixtures utilizing combinations of liquid-liquid extraction and various liquid chromatographic column-eluant combinations. Fractions are characterized using a combination of spectroscopic techniques and gas chromatography/mass spectrometry.« less
Bagalwa, Jean-Jacques M; Voutquenne-Nazabadioko, Laurence; Sayagh, Charlotte; Bashwira, Augustin S
2010-10-01
The evaluation of the biocidal activity of the fruit of Solanum sisymbriifolium involving non target organisms such as aquatic insects, fish and snails lead to the isolation of the steroidal alkaloids, solamargine and β-solamarine, from the active fractions. The fractions A3 and C, with biological activity against fish, snail and aquatic insect and larvae, are able to affect the good functioning of ecosystem found on alimentary chain. The fraction B seems to be less toxic to fish and aquatic insect and larvae. The fraction B could thus be used as molluscicide in the future. Copyright © 2010 Elsevier B.V. All rights reserved.
In Vivo Anticonvulsant Activity of Extracts and Protopine from the Fumaria schleicheri Herb
Prokopenko, Yuliya; Tsyvunin, Vadim; Shtrygol’, Sergey; Georgiyants, Victoriya
2015-01-01
The present study aimed to investigate the role of several biologically active compounds from Fumaria schleicheri Soy.-Will. in anticonvulsant models. The flavonoid fraction, alkaloid fraction, individual alkaloid protopine, and polysaccharide-protein complex were isolated from the Fumaria schleicheri herb and studied along with Fumaria schleicheri dry extract in mice with pentylenetetrazole-induced seizures. According to empirical results, the expressed anticonvulsant effect of Fumaria schleicheri dry extract depends on the synergism of biologically active compounds in herbal medicine, although some individual substances (mostly protopine and the protein-polysaccharide fraction) have shown moderate anti-seizure activity. PMID:28117320
In Vivo Anticonvulsant Activity of Extracts and Protopine from the Fumaria schleicheri Herb.
Prokopenko, Yuliya; Tsyvunin, Vadim; Shtrygol', Sergey; Georgiyants, Victoriya
2015-12-06
The present study aimed to investigate the role of several biologically active compounds from Fumaria schleicheri Soy.-Will. in anticonvulsant models. The flavonoid fraction, alkaloid fraction, individual alkaloid protopine, and polysaccharide-protein complex were isolated from the Fumaria schleicheri herb and studied along with Fumaria schleicheri dry extract in mice with pentylenetetrazole-induced seizures. According to empirical results, the expressed anticonvulsant effect of Fumaria schleicheri dry extract depends on the synergism of biologically active compounds in herbal medicine, although some individual substances (mostly protopine and the protein-polysaccharide fraction) have shown moderate anti-seizure activity.
Braünlich, Paula Marie; Inngjerdingen, Kari Tvete; Inngjerdingen, Marit; Johnson, Quinton; Paulsen, Berit Smestad; Mabusela, Wilfred
2018-01-01
Artemisia afra (Jacq. Ex. Willd), is an indigenous plant in South Africa and other parts of the African continent, where it is used as traditional medicine mostly for respiratory conditions. The objective of this study was to investigate the structural features of the polysaccharides from the leaves of this plant, as well as the biological activities of the polysaccharide fractions against the complement assay. Leaves of Artemisia afra were extracted sequentially with organic solvents (dichloromethane and methanol), 50% aqueous ethanol, and water at 50 and 100°C respectively. The polysaccharide extracts were fractionated by ion exchange chromatography and the resulting fractions were tested for biological activity against the complement fixation assay. Active fractions were further fractionated using gel filtration. Monosaccharide compositions and linkage analyses were determined for the relevant fractions. Polysaccharides were shown to be of the pectin type, and largely contain arabinogalactan, rhamnogalacturonan and homogalacturonan structural features. The presence of arabinogalactan type II features as suggested by methylation analysis was further confirmed by the ready precipitation of the relevant polysaccharides with the Yariv reagent. An unusual feature of some of these polysaccharides was the presence of relatively high levels of xylose as one of its monosaccharide constituents. Purified polysaccharide fractions were shown to possess higher biological activity than the selected standard in the complement assay. Digestion of these polysaccharides with an endo-polygalacturonase enzyme resulted in polymers with lower molecular weights as expected, but still with biological activity which exceeded that of the standard. Thus on the basis of these studies it may be suggested that immunomodulating properties probably contribute significantly to the health-promoting effects of this medicinal plant. Copyright © 2017 Elsevier B.V. All rights reserved.
Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua
2017-07-24
The hydrophilic (HPI) fraction of effluent organic matter, which has protein and carbohydrate contents, has a high propensity to foul low-pressure membranes. Biological activated carbon (BAC) filtration was examined as a pre-treatment for reducing the fouling of a microfiltration (MF) membrane (0.1 µm PVDF) by the HPI organic fraction extracted from a biologically treated secondary effluent (BTSE). Although the BAC removed less dissolved organic carbon, carbohydrate and protein from the HPI fraction than the granular activated carbon treatment which was used for comparison, it led to better improvement in permeate flux. This was shown to be due to the removal/breakdown of the HPI fraction resulting in less deposition of these organics on the membrane, many components of which are high molecular weight biopolymers (such as protein and carbohydrate molecules) through biodegradation and adsorption of those molecules on the biofilm and activated carbon. This study established the potential of BAC pre-treatment for reducing the HPI fouling of the membrane and thus improving the performance for the MF of BTSE for water reclamation.
Bae, Gi-Sang; Kim, Min-Sun; Park, Kyoung-Chel; Koo, Bon Soon; Jo, Il-Joo; Choi, Sun Bok; Lee, Dong-Sung; Kim, Youn-Chul; Kim, Tae-Hyeon; Seo, Sang-Wan; Shin, Yong Kook; Song, Ho-Joon; Park, Sung-Joo
2012-01-01
AIM: To determine if the fraction of Nardostachys jatamansi (NJ) has the potential to ameliorate the severity of acute pancreatitis (AP). METHODS: Mice were administered the biologically active fraction of NJ, i.e., the 4th fraction (NJ4), intraperitoneally, and then injected with the stable cholecystokinin analogue cerulein hourly for 6 h. Six hours after the last cerulein injection, the pancreas, lung, and blood were harvested for morphological examination, measurement of cytokine expression, and examination of neutrophil infiltration. RESULTS: NJ4 administration attenuated the severity of AP and lung injury associated with AP. It also reduced cytokine production and neutrophil infiltration and resulted in the in vivo up-regulation of heme oxygenase-1 (HO-1). Furthermore, NJ4 and its biologically active fraction, NJ4-2 inhibited the cerulein-induced death of acinar cells by inducing HO-1 in isolated pancreatic acinar cells. CONCLUSION: These results suggest that NJ4 may be a candidate fraction offering protection in AP and NJ4 might ameliorate the severity of pancreatitis by inducing HO-1 expression. PMID:22783046
NPCARE: database of natural products and fractional extracts for cancer regulation.
Choi, Hwanho; Cho, Sun Young; Pak, Ho Jeong; Kim, Youngsoo; Choi, Jung-Yun; Lee, Yoon Jae; Gong, Byung Hee; Kang, Yeon Seok; Han, Taehoon; Choi, Geunbae; Cho, Yeeun; Lee, Soomin; Ryoo, Dekwoo; Park, Hwangseo
2017-01-01
Natural products have increasingly attracted much attention as a valuable resource for the development of anticancer medicines due to the structural novelty and good bioavailability. This necessitates a comprehensive database for the natural products and the fractional extracts whose anticancer activities have been verified. NPCARE (http://silver.sejong.ac.kr/npcare) is a publicly accessible online database of natural products and fractional extracts for cancer regulation. At NPCARE, one can explore 6578 natural compounds and 2566 fractional extracts isolated from 1952 distinct biological species including plants, marine organisms, fungi, and bacteria whose anticancer activities were validated with 1107 cell lines for 34 cancer types. Each entry in NPCARE is annotated with the cancer type, genus and species names of the biological resource, the cell line used for demonstrating the anticancer activity, PubChem ID, and a wealth of information about the target gene or protein. Besides the augmentation of plant entries up to 743 genus and 197 families, NPCARE is further enriched with the natural products and the fractional extracts of diverse non-traditional biological resources. NPCARE is anticipated to serve as a dominant gateway for the discovery of new anticancer medicines due to the inclusion of a large number of the fractional extracts as well as the natural compounds isolated from a variety of biological resources.
Exploring the biological activities of Echeveria leucotricha.
Martínez Ruiz, María G; Gómez-Velasco, Anaximandro; Juárez, Zaida N; Hernández, Luis R; Bach, Horacio
2013-01-01
Echeveria leucotricha J. A. Purpus (Crassulaceae) was evaluated for its potential antibacterial, antifungal, antiparasitic, cytotoxic and anti-inflammatory bioactivities. Aerial parts were extracted with hexane, methanol and chloroform, and fractionated accordingly. Biological activity was assessed in vitro against five Gram-positive and four Gram-negative bacteria, four human pathogenic fungi and the protozoan Leishmania donovani. Extracts and fractions showing bioactivities were further investigated for their cytotoxic activities on macrophages. Results show that several extracts and fractions exhibited significant antibacterial, antifungal, and antiparasitic activities, but no anti-inflammatory activity was recorded. Here, we report for the first time, and to the best of our knowledge, these bioactivities, which suggest that this plant can be used in the traditional Mexican medicine.
Bioassay of plant growth from soils varying in active C and N fractions
USDA-ARS?s Scientific Manuscript database
Biologically active soil C and N fractions are important attributes of healthy soil. As a bioassay, we hypothesized that active soil C and N fractions would relate with plant dry matter production from unamended soil. Four replicate soil samples from 22 tall fescue fields in North Carolina and Virgi...
USDA-ARS?s Scientific Manuscript database
Cover crops are a key component of conservation cropping systems. They can also be a key component of integrated crop-livestock systems by offering high-quality forage during short periods between cash crops. The impact of cattle grazing on biologically active soil C and N fractions has not receiv...
Zhang, Guo; Cao, Zhi-ping; Hu, Chan-juan
2011-07-01
Soil organic carbon is of heterogeneity in components. The active components are sensitive to agricultural management, while the inert components play an important role in carbon fixation. Soil organic carbon fractionation mainly includes physical, chemical, and biological fractionations. Physical fractionation is to separate the organic carbon into active and inert components based on the density, particle size, and its spatial distribution; chemical fractionation is to separate the organic carbon into various components based on the solubility, hydrolizability, and chemical reactivity of organic carbon in a variety of extracting agents. In chemical fractionation, the dissolved organic carbon is bio-available, including organic acids, phenols, and carbohydrates, and the acid-hydrolyzed organic carbon can be divided into active and inert organic carbons. Simulated enzymatic oxidation by using KMnO4 can separate organic carbon into active and non-active carbon. Biological fractionation can differentiate microbial biomass carbon and potential mineralizable carbon. Under different farmland management practices, the chemical composition and pool capacity of soil organic carbon fractions will have different variations, giving different effects on soil quality. To identify the qualitative or quantitative relationships between soil organic carbon components and carbon deposition, we should strengthen the standardization study of various fractionation methods, explore the integrated application of different fractionation methods, and sum up the most appropriate organic carbon fractionation method or the appropriate combined fractionation methods for different farmland management practices.
Biological effects of novel bovine milk fractions.
Lönnerdal, Bo
2011-01-01
Novel dairy fractions have been isolated and are now commercially available. Several of them have been shown to have biological activities in various test systems. α-Lactalbumin was first isolated to provide a good source of tryptophan, often the first limiting amino acid in infant formulas, but has then been shown to be digested into smaller peptides with antimicrobial and prebiotic activities, immunostimulatory effect and acting as enhancers of mineral absorption. Lactoferrin bioactivities include antibacterial and antiviral effects, regulation of immune function, stimulation of intestinal proliferation and differentiation and facilitating iron absorption, but these activities may have been limited due to earlier contamination with LPS. Lactoferrin free of lipopolysaccharide may prove to be more effective with regard to exerting these activities. Osteopontin is a heavily phosphorylated and glycosylated protein that modulates immune function and stimulates Th1/Th2 switching, and, possibly, also affects bone mineralization and growth. Biological activities of lactoferrin may be facilitated by osteopontin. Milk fat globule membranes are a fraction that has previously been excluded from infant formulas, but components of this fraction have been shown to exhibit antimicrobial activities and to prevent infection. Further clinical studies are needed on infants fed formulas with these components incorporated. Copyright © 2011 S. Karger AG, Basel.
de Moraes Sa, Joao Carlos; Potma Goncalves, Daniel Ruiz; Ferreira, Lucimara Aparecida; ...
2017-08-31
Soil organic carbon (SOC) is a strong indicator of soil health. Development of efficient soil quality indicators is crucial to better understand the impact of land management strategies on the recovery of degraded ecosystems. We hypothesized that SOC fractions and biological attributes can compose strong soil quality indicators to assess an ecosystem recovery following disturbance. Thus, the objective of this study was to evaluate the use of soil biological activity and SOC fractions to study the impact of different land use systems and ecological successions in ecosystem recovery. We selected six land use systems: tobacco (Nicotiana tabacum) cultivation; pastureland; reforestedmore » land with Eucalyptus sp.; and natural ecological successions with 10, 20 and 35 years of vegetation regeneration, respectively. We collected disturbed and undisturbed soil samples in triplicate at 0–5, 5–10, 10–20 and 20–40 cm depth intervals. Several fractionation approaches were used to determine SOC pools: hot water extractable organic carbon, permanganate oxidized organic carbon, particulate organic carbon, mineral associated organic carbon and total SOC. The activity of the enzyme arylsulfatase was used to represent soil biological attributes. We calculated three indices to represent the soil quality: carbon management index, soil resilience index and biological activity index. Our results suggest that the SOC fractions and the enzyme activity followed the increase of vegetation complexity of the ecological succession stages. The labile SOC pool, in addition to enzyme activity, was the most sensitive variable to assess land use changes. The biomass-C input was considered to be the main reason of SOC increase, and the gains of labile SOC fractions were directly related to the increase of SOC stocks. Both, biological and carbon management indices were efficient tools to characterize the impact of studied management systems. Also, we found that assessment of deeper soil layers (20–40 cm) was extremely important as incomplete inferences might be reached while evaluating only surface soil layers (0–20 cm). Here, we conclude that the carbon management and biological indices captured the stage of soil degradation and the influence of vegetation diversity in the soil resilience restoration, providing an advance in monitoring strategies that can be reproducible in any environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Moraes Sa, Joao Carlos; Potma Goncalves, Daniel Ruiz; Ferreira, Lucimara Aparecida
Soil organic carbon (SOC) is a strong indicator of soil health. Development of efficient soil quality indicators is crucial to better understand the impact of land management strategies on the recovery of degraded ecosystems. We hypothesized that SOC fractions and biological attributes can compose strong soil quality indicators to assess an ecosystem recovery following disturbance. Thus, the objective of this study was to evaluate the use of soil biological activity and SOC fractions to study the impact of different land use systems and ecological successions in ecosystem recovery. We selected six land use systems: tobacco (Nicotiana tabacum) cultivation; pastureland; reforestedmore » land with Eucalyptus sp.; and natural ecological successions with 10, 20 and 35 years of vegetation regeneration, respectively. We collected disturbed and undisturbed soil samples in triplicate at 0–5, 5–10, 10–20 and 20–40 cm depth intervals. Several fractionation approaches were used to determine SOC pools: hot water extractable organic carbon, permanganate oxidized organic carbon, particulate organic carbon, mineral associated organic carbon and total SOC. The activity of the enzyme arylsulfatase was used to represent soil biological attributes. We calculated three indices to represent the soil quality: carbon management index, soil resilience index and biological activity index. Our results suggest that the SOC fractions and the enzyme activity followed the increase of vegetation complexity of the ecological succession stages. The labile SOC pool, in addition to enzyme activity, was the most sensitive variable to assess land use changes. The biomass-C input was considered to be the main reason of SOC increase, and the gains of labile SOC fractions were directly related to the increase of SOC stocks. Both, biological and carbon management indices were efficient tools to characterize the impact of studied management systems. Also, we found that assessment of deeper soil layers (20–40 cm) was extremely important as incomplete inferences might be reached while evaluating only surface soil layers (0–20 cm). Here, we conclude that the carbon management and biological indices captured the stage of soil degradation and the influence of vegetation diversity in the soil resilience restoration, providing an advance in monitoring strategies that can be reproducible in any environment.« less
Hernández, John Fredy; Urueña, Claudia Patricia; Cifuentes, Maria Claudia; Sandoval, Tito Alejandro; Pombo, Luis Miguel; Castañeda, Diana; Asea, Alexzander; Fiorentino, Susana
2014-05-14
Folk medicine uses aqueous and alcoholic extracts from Petiveria alliacea (Phytolaccaceae) in leukemia and breast cancer treatment in the Caribbean, Central and South America. Herein, we validated the biological activity of a Petiveria alliacea fraction using a metastatic breast adenocarcinoma model (4T1). Petiveria alliacea fraction biological activity was determined estimating cell proliferation, cell colony growth capacity and apoptosis (caspase-3 activity, DNA fragmentation and mitochondrial membrane potential) in 4T1 cells. Petiveria alliacea was used at IC₅₀ concentration (29 µg/mL) and 2 dilutions below, doxorubicin at 0.27 µg/mL (positive control) and dibenzyl disulfide at 2.93 µg/mL (IC50 fraction marker compound). Proteomic estimations were analyzed by LC-MS-MS. Protein level expression was confirmed by RT-PCR. Glucose and lactate levels were measured by enzymatic assays. LD50 was established in BALB/c mice and antitumoral activity evaluated in mice transplanted with GFP-tagged 4T1 cells. Mice were treated with Petiveria alliacea fraction via I.P (182 mg/kg corresponding to 1/8 of LD₅₀ and 2 dilutions below). Petiveria alliacea fraction in vitro induces 4T1 cells apoptosis, caspase-3 activation, DNA fragmentation without mitochondria membrane depolarization, and decreases cell colony growth capacity. Also, changes in glycolytic enzymes expression cause a decrease in glucose uptake and lactate production. Fraction also promotes breast primary tumor regression in BALB/c mice transplanted with GFP-tagged 4T1 cells. A fraction of Petiveria alliacea leaves and stems induces in vitro cell death and in vivo tumor regression in a murine breast cancer model. Our results validate in partly, the traditional use of Petiveria alliacea in breast cancer treatment, revealing a new way of envisioning Petiveria alliacea biological activity. The fraction effect on the glycolytic pathway enzymes contributes to explain the antiproliferative and antitumor activities. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Gordeev, Konstantin; Shinkarev, Sergey; Ilyin, Leonid; Bouville, André; Hoshi, Masaharu; Luckyanov, Nickolas; Simon, Steven L
2006-02-01
A methodology to assess internal exposure to thyroid from radioiodines for the residents living in settlements located in the vicinity of the Semipalatinsk Nuclear Test Site is described that is the result of many years of research, primarily at the Moscow Institute of Biophysics. This methodology introduces two important concepts. First, the biologically active fraction, is defined as the fraction of the total activity on fallout particles with diameter less than 50 microns. That fraction is retained by vegetation and will ultimately result in contamination of dairy products. Second, the relative distance is derived as a dimensionless quantity from information on test yield, maximum height of cloud, and average wind velocity and describes how the biologically active fraction is distributed with distance from the site of the explosion. The parameter is derived in such a way that at locations with equal values of relative distance, the biologically active fraction will be the same for any test. The estimates of internal exposure to thyroid for the residents of Dolon and Kanonerka villages, for which the external exposure were assessed and given in a companion paper (Gordeev et al. 2006) in this conference, are presented. The main sources of uncertainty in the estimates are identified.
Colloidal transport through trap arrays controlled by active microswimmers
NASA Astrophysics Data System (ADS)
Yang, Wen; Misko, Vyacheslav R.; Marchesoni, Fabio; Nori, Franco
2018-07-01
We investigate the dynamics of a binary mixture consisting of active and passive colloidal particles diffusing in a 2D array of truncated harmonic wells, or traps. We explore the possibility of using a small fraction of active particles to manipulate a much larger fraction of passive particles, for instance, to confine them in or extract them from the traps. The results of our study have potential application in biology and medical sciences, for example, to remove dead cells or undesired contaminants from biological systems by means of self-propelled nano-robots.
Motohashi, Noboru; Wakabayashi, Hidetsugu; Kurihara, Teruo; Takada, Yuko; Maruyama, Shichiro; Sakagami, Hiroshi; Nakashima, Hideki; Tani, Satoru; Shirataki, Yoshiaki; Kawase, Masami; Wolfard, Kristina; Molnár, Joseph
2003-04-01
The vegetable, Anastasia Red, Capsicum annuum L. var. angulosum Mill. (Solanaceae) was successively extracted with hexane, acetone, methanol and 70% methanol, and the extracts were further separated into a total of 21 fractions by silica gel or octadecylsilane (ODS) column chromatography. The biological activities of extracts and fractions were determined. These extracts showed relatively higher cytotoxic activity against two human oral tumor cell lines (HSC-2, HSG) than against normal human gingival fibroblasts (HGF), suggesting a tumor-specific cytotoxic activity. The cytotoxic activity of these extracts was enhanced by fractionation on silica gel [H2, A2, M1-M3] or ODS column chromatography [70M]. Several fractions [H2, H4, H5, A1, A2, A3, A5, A6, A7, M2] reversed the multidrug resistance (MDR) phenotype with L5178 mouse lymphoma T cells, more efficiently than (+/-)-verapamil. The extracts and fractions did not show any detectable anti-human immunodeficiency virus (HIV) or anti-Helicobacter pylori activity. Thus, this study suggests the effective and selective antitumor potential of 'Anastasia Red' of sweet pepper for further phytochemical and biological investigation. Copyright 2003 John Wiley & Sons, Ltd.
Should soil testing services measure soil biological activity
USDA-ARS?s Scientific Manuscript database
Health of agricultural soils depends largely on conservation management to promote soil organic C accumulation. Total soil organic C changes slowly, but active fractions are more dynamic. A key indicator of healthy soil is potential biological activity, which could be measured rapidly with soil te...
Garg, S; Talwar, G P; Upadhyay, S N
1998-04-01
A novel approach for immunocontraception by intervention of local cell mediated immunity in the reproductive system by using single intrauterine application of neem oil has been described earlier. The reversible block in fertility was reported to last for 107-180 days in female Wistar rats (Upadhyay et al., 1990. Antifertility effects of neem oil by single intrauterine administration: A novel method of contraception. Proceedings Of The Royal Society Of London B 242, 175-180) and 7-11 months in monkeys (Upadhyay et al., 1994. Long term contraceptive effects of intrauterine neem treatment (IUNT) in bonnet monkeys: An alternative to intrauterine contraceptive devices. Contraception 49, 161-167). The present study, describes the identification and characterization of the biologically active fraction from neem seeds (Azadirachta indica A. Juss. Family Meliaceae), responsible for the above activity in adult female Wistar rats. Initial studies with the mechanically extracted oil and solvent extracts of neem seeds have revealed that the antifertility activity was present in constituents of low to intermediate polarity. A hexane extract of neem seeds was reported to be biologically active (Garg et al., 1994. Comparison of extraction procedures on the immunocontraceptive activity of neem seed extracts. Journal of Ethnopharmacology 22, 87-92). Subsequently, hexane extract was sequentially fractionated through the last active fraction using various separation techniques and tested for antifertility activity at each step. Preparative HPLC was used for isolating individual components of the active fraction in quantities, sufficient for characterization. An analytical HPLC method was developed for standardization of the fraction. The active fraction was identified to be a mixture of six components, which comprises of saturated, mono and di-unsaturated free fatty acids and their methyl esters. Dose response study was performed with the last active fractions. The antifertility activity with the active fraction was reversible in nature and it was completely active until 5% concentration. There was no systemic toxic effect following the administration of the active fraction. This study, for the first time, proposes an active fraction from neem seeds, responsible for long term and reversible blocking of fertility after a single intrauterine administration with high efficacy.
Physical and Biological Carbon Isotope Fractionation in Methane During Gas-Push-Pull-Tests
NASA Astrophysics Data System (ADS)
Gonzalez-Gil, G.; Schroth, M. H.; Gomez, K.; Zeyer, J.
2005-12-01
Stable isotope analyses have become a common tool to assess microbially-mediated processes in subsurface environments. We investigated if stable carbon isotope analysis can be used as a tool to complement gas push-pull tests (GPPTs), a novel technique that was recently developed and tested for the in-situ quantification of CH4 oxidation in soils. During a GPPT a gas mixture containing CH4, O2 and nonreactive tracer gases is injected into the soil, where CH4 is oxidized by indigenous microorganisms. Thereafter, a blend of injected gas mixture and soil air is extracted from the same location, and CH4 oxidation is quantified from an analysis of extracted CH4 and tracer gases. To assess the magnitude of physical isotope fractionation due to molecular diffusion during GPPTs, we conducted laboratory experiments in the absence of microbial activity in a 1m-high, 1m-diameter tank filled with dry sand. During the GPPTs' extraction phase, the isotopic composition of methane was analyzed. Results indicated strong carbon isotope fractionation (>20 per mil) during GPPTs. To assess the combined effect of physical and biological isotope fractionation, numerical simulations of GPPTs were conducted in which microbial CH4 isotope fractionation was simulated using first-order rate constants and microbial kinetic isotope fractionation factors previously reported for methane oxidation in landfill environments. Results of these simulations indicated that for small CH4 oxidation rates, overall isotope fractionation in CH4 is dominated by physical fractionation. Conversely, for high CH4 oxidation rates, overall fractionation is dominated by biological fractionation. Thus, CH4 isotope fractionation data alone from a single GPPT cannot be used to assess microbial CH4 oxidation. However, biological fractionation may be quantified if physical fractionation due to diffusion is known. This can be achieved by conducting two sequential GPPTs, with microbial activity being inhibited in the second test.
Ma, Dehua; Chen, Lujun; Liu, Rui
2017-10-01
Environmental antiandrogenic (AA) contaminants in effluents from wastewater treatment plants have the potential for negative impacts on wildlife and human health. The aim of our study was to identify chemical contaminants with likely AA activity in the biological effluents and evaluate the removal of these antiandrogens (AAs) during advanced treatment comprising adsorption onto granular activated carbon (GAC). In this study, profiling of AA contaminants in biological effluents and tertiary effluents was conducted using effect-directed analysis (EDA) including high performance liquid chromatography (HPLC) fractionation, a recombinant yeast screen containing androgen receptor (YAS), in combination with mass spectrometry analyses. Analysis of a wastewater secondary effluent from a membrane bioreactor revealed complex profiles of AA activity comprising 14 HPLC fractions and simpler profiles of GAC effluents with only 2 to 4 moderately polar HPLC fractions depending on GAC treatment conditions. Gas chromatography-mass spectrometry and ultra-high performance liquid chromatography-nanospray mass spectrometry analyses of AA fractions in the secondary effluent resulted in detection of over 10 chemical contaminants, which showed inhibition of YAS activity and were potential AAs. The putative AAs included biocides, food additives, flame retardants, pharmaceuticals and industrial contaminants. To our knowledge, it is the first time that the AA properties of N-ethyl-2-isopropyl-5-methylcyclohexanecarboxamide (WS3), cetirizine, and oxcarbazepine are reported. The EDA used in this study was proven to be a powerful tool to identify novel chemical structures with AA activity in the complex aquatic environment. The adsorption process to GAC of all the identified antiandrogens, except WS3 and triclosan, fit well with the pseudo-second order kinetics models. Adsorption to GAC could further remove most of the AAs identified in the biological effluents with high efficiencies. Copyright © 2017 Elsevier B.V. All rights reserved.
Segneanu, Adina-Elena; Grozescu, Ioan; Cziple, Florentina; Berki, Daniel; Damian, Daniel; Niculite, Cristina Mariana; Florea, Alexandru; Leabu, Mircea
2015-12-11
There is a strong drive worldwide to discover and exploit the therapeutic potential of a large variety of plants. In this work, an alcoholic extract of Helleborus purpurascens (family Ranunculaceae) was investigated for the identification of amino acids and peptides with putative antiproliferative effects. In our work, a separation strategy was developed using solvents of different polarity in order to obtain active compounds. Biochemical components were characterized through spectroscopic (mass spectroscopy) and chromatographic techniques (RP-HPLC and GC-MS). The biological activity of the obtained fractions was investigated in terms of their antiproliferative effects on HeLa cells. Through this study, we report an efficient separation of bioactive compounds (amino acids and peptides) from a plant extract dependent on solvent polarity, affording fractions with unaffected antiproliferative activities. Moreover, the two biologically tested fractions exerted a major antiproliferative effect, thereby suggesting potential anticancer therapeutic activity.
Tuominen, Anu
2013-11-01
Geranium sylvaticum is a common herbaceous plant in Fennoscandia, which has a unique phenolic composition. Ellagitannins, proanthocyanidins, galloylglucoses, gallotannins, galloyl quinic acids and flavonoids possess variable distribution in its different organs. These phenolic compounds are thought to have an important role in plant-herbivore interactions. The aim of this study was to quantify these different water-soluble phenolic compounds and measure the biological activity of the eight organs of G. sylvaticum. Compounds were characterized and quantified using HPLC-DAD/MS, in addition, total proanthocyanidins were determined by BuOH-HCl assay and total phenolics by the Folin-Ciocalteau method. Two in vitro biological activity measurements were used: the prooxidant activity was measured by the browning assay and antioxidant activity by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Organ extracts were fractionated using column chromatography on Sephadex LH-20 and the activities of fractions was similarly measured to evaluate which polyphenol groups contributed the most to the biological activity of each organ. The data on the activity of fractions were examined by multivariate data analysis. The water-soluble extracts of leaves and pistils, which contained over 30% of the dry weight as ellagitannins, showed the highest pro-oxidant activity among the organ extracts. Fraction analysis revealed that flavonoids and galloyl quinic acids also exhibited high pro-oxidant activity. In contrast, the most antioxidant active organ extracts were those of the main roots and hairy roots that contained high amounts of proanthocyanidins in addition to ellagitannins. Analysis of the fractions showed that especially ellagitannins and galloyl quinic acids have high antioxidant activity. We conclude that G. sylvaticum allocates a significant amount of tannins in those plant parts that are important to the fitness of the plant and susceptible to natural enemies, i.e. pistil and leaf tannins protect against insect herbivores and root tannins against soil pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.
Buszewska-Forajta, Magdalena; Siluk, Danuta; Struck-Lewicka, Wiktoria; Raczak-Gutknecht, Joanna; Markuszewski, Michał J; Kaliszan, Roman
2014-02-01
In recent years biologically active compounds isolated from insects call special interest of drug researchers. According to some Polish etnopharmacological observations, secretion from the grasshopper's abdomen (Orthoptera family) is believed to speed up the process of wound healing. In the present work we focused on determination of main components of the lipid fraction of material from grasshopper abdomen using GC-MS/MS. Samples were qualitatively analyzed using gas chromatography coupled with mass spectrometry. Both liquid-liquid extraction and solid-phase extraction pretreatment methods were used to concentrate and fractionate the compounds from the insect. In the derivatized fractions ca. 350 compounds were identified, including substances of known biological activity. The potential agents affecting wound healing have been indicated. A set of compounds characteristic for all the studied Chorthippus spp., have been identified. Data analysis revealed different lipidomic profiles of grasshoppers depending on the insects origin and collection area. Copyright © 2013 Elsevier B.V. All rights reserved.
Mounteer, A H; Souza, L C; Silva, C M
2007-02-01
Increasingly stringent effluent quality limits for bleached kraft pulp mills pose a great challenge to mill wastewater system managers since these limits can require levels of chemical oxygen demand (COD) removal efficiency rarely reported for biological treatment of these types of effluents. The present study was therefore undertaken to better understand the nature of recalcitrant COD in bleached kraft pulp effluents that persists through the biological treatment system. Bleaching effluents from a Brazilian eucalypt bleached kraft pulp mill were collected and treated in a bench-scale sequencing batch reactor. Organic matter in raw and treated effluents was characterized before and after separation into low and high molecular mass fractions. Biological treatment removed 71% of the COD, with 83% removal of the low molecular mass COD but only 36% removal of the high molecular mass COD. Microorganisms capable of degrading the recalcitrant COD were isolated from enrichment cultures of the original activated sludge fed on fractions of the bleaching effluent that presented low biodegradabilities. Use of a microbial consortium composed of ten of these isolates to treat the biologically treated effluent removed a further 12% of the effluent COD, all from the high molecular mass fraction. Results of this research indicate that microorganisms with potential for degrading recalcitrant COD are present in activated sludge, but that these are not metabolically active during normal activated sludge treatment of mill effluents. The use of biological selectors in the treatment system to promote growth of such microorganisms may enhance removal of recalcitrant organic matter.
Moreno-Félix, Carolina; Wilson-Sánchez, Griselda; Cruz-Ramírez, Susana-Gabriela; Velázquez-Contreras, Carlos; Plascencia-Jatomea, Maribel; Acosta, Ana; Machi-Lara, Lorena; Aldana-Madrid, María-Lourdes; Ezquerra-Brauer, Josafat-Marina; Rocha-Alonzo, Fernando; Burgos-Hernández, Armando
2013-01-01
Fractions from an organic extract from fresh octopus (Paraoctopus limaculatus) were studied for biological activities such as antimutagenic and antiproliferative properties using Salmonella tester strains TA98 and TA100 with metabolic activation (S9) and a cancer cell line (B-cell lymphoma), respectively. A chloroform extract obtained from octopus tentacles was sequentially fractionated using thin layer chromatography (TLC), and each fraction was tested for antimutagenic and antiproliferative activities. Organic extract reduced the number of revertants caused by aflatoxin B1 showing a dose-response type of relationship. Sequential TLC fractionation of the active extracts produced several antimutagenic and/or antiproliferative fractions. Based on the results obtained, the isolated fractions obtained from octopus contain compounds with chemoprotective properties that reduce the mutagenicity of AFB1 and proliferation of cancer cell lines. PMID:23401709
Pinto-Ibieta, F; Serrano, A; Jeison, D; Borja, R; Fermoso, F G
2016-07-01
Due to the low trace metals concentration in the Olive Mill Solid Waste (OMSW), a proposed strategy to improve its biomethanization is the supplementation of key metals to enhance the microorganism activity. Among essential trace metals, cobalt has been reported to have a crucial role in anaerobic degradation. This study evaluates the effect of cobalt supplementation to OMSW, focusing on the connection between fractionation of cobalt in the system and the biological response. The highest biological responses was found in a range from 0.018 to 0.035mg/L of dissolved cobalt (0.24-0.65mg total cobalt/L), reaching improvements up to 23% and 30% in the methane production rate and the methane yield coefficient, respectively. It was found that the dissolved cobalt fraction is more accurately related with the biological response than the total cobalt. The total cobalt is distorted by the contribution of dissolved and non-dissolved inert fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Antispasmodic activity of fractions and cynaropicrin from Cynara scolymus on guinea-pig ileum.
Emendörfer, Fernanda; Emendörfer, Fabiane; Bellato, Fernanda; Noldin, Vânia Floriani; Cechinel-Filho, Valdir; Yunes, Rosendo Augusto; Delle Monache, Franco; Cardozo, Alcíbia Maia
2005-05-01
This study describes the antispasmodic activity of some fractions and cynaropicrin, a sesquiterpene lactone from Cynara scolymus, cultivated in Brazil, against guinea-pig ileum contracted by acetylcholine. The dichloromethane fraction showed the most promising biological effects, with an IC(50) of 0.93 (0.49-1.77) mg/ml. Its main active component, the sesquiterpene lactone cynaropicrin, exhibited potent activity, with IC(50) of 0.065 (0.049-0.086) mg/ml, being about 14-fold more active than dichloromethane fraction and having similar potency to that of papaverine, a well-known antispasmodic agent. The results confirm the popular use of artichoke for the treatment of gastrointestinal disturbances, and encourage new studies on this compound, in order to obtain new antispasmodic agents.
Inoue, N; Farfan, C; Gonzales, G F
2016-10-01
Lepidium meyenii, known as maca, is a popular nutraceutical food which is grown over 4,000 m above sea level in the Peruvian central highlands. Maca contains alkaloids, but there are no studies on their biological effects. The butanol fraction obtained from methanol extract of maca hypocotyls contains alkaloids. The effects of butanol/aqueous fractions partitioned from methanol extract of yellow and black maca were examined. Total phenolic content (TPC) and antioxidant capacity by 2,2'-diphenyl-1-picrylhydrazyl were used to evaluate maca fractions in vitro. Daily sperm production and sperm count in epididymis and vas deferens in mice were determined as biological effect of maca extracts in vivo. Yellow maca (21.7%±0.69) had better antioxidant capacity than black maca (18.2% ± 0.12; p < .01). Antioxidant activity was better in the methanolic fraction than in the aqueous fraction of yellow or black maca. TPC is higher in the aqueous fraction than in the methanolic extract of yellow or black maca. Black maca administration resulted in higher concentration of sperm count in epididymis and vas deferens compared to yellow maca. A higher biological effect was observed in methanolic extract and in aqueous extract than in the butanol fraction of maca. In conclusion, better biological effect was observed in the methanolic extract of maca than in its partitioned fractions. © 2016 Blackwell Verlag GmbH.
Baskar, K; Ignacimuthu, S; Jayakumar, M
2015-02-01
Laboratory experiments were conducted to find out the efficacy of different crude extracts and fractions of Couroupita guianensis (Lecythidaceae) against Spodoptera litura (Fabricius). Results revealed that hexane, chloroform and ethyl acetate extracts of C. guianensis showed larvicidal and pupicidal activities against S. litura. Maximum larvicidal activity (68.66%) was observed in hexane extract at 5.0% concentration followed by chloroform and ethyl acetate extracts, and least LC50 value of 2.64% was observed in hexane extract. A 100% pupicidal activity was observed in hexane extract. Based on the efficacy of crude extracts, the effective crude extract (hexane extract) was further fractionated and subjected to screening for biological activities against S. litura. Among the eight fractions isolated from the hexane extract, fraction 8 showed maximum antifeedant activity (81. 8%) and larvicidal activity (76.9%) at 1000-ppm concentration; this fraction showed least LC50 value of 375.92 ppm for larvicidal activity. Cent per cent pupicidal activity was recorded. Reduced midgut and hemolymph protein contents were observed at 1000 ppm of fraction 8. Histopathological studies revealed that fraction 8 severely damaged the midgut cells of S. litura. This fraction could be used to develop botanical formulation to control agricultural pests.
Srivastava, Janmejai K; Gupta, Sanjay
2009-01-01
Dried flowers of Chamomile (Matricaria chamomilla) are largely used for their medicinal properties. In the present study, we examined the pharmacological properties of aqueous and methanolic fraction isolated from two varieties of German chamomile. HPLC-MS analysis of chamomile extract confirmed apigenin-7-O-glucoside as the major constituent of chamomile; some minor glycoside components were observed along with essential oils. These glucosides are highly stable in solution at different temperature range and their degradation occurs after long-term storage and extraction conditions at different pH and solvent. Methanolic fraction isolated from chamomile flowers demonstrated higher biologic response in inhibiting cell growth and causing induction of apoptosis in various human cancer cell lines compared to aqueous chamomile fraction. Apigenin glucosides inhibited cancer cell growth through deconjugation of glycosides that occurs in the cellular compartment to produce aglycone, apigenin. Taken together, the pharmacological profile of chamomile extract was dependent upon extraction process, storage conditions which affected the biological activity. PMID:20098626
[BIOLOGICAL ACTIVITY OF ANTIMICROBIAL PEPTIDES FROM CHICKENS THROMBOCYTES].
Sycheva, M V; Vasilchenko, A S; Rogozhin, E A; Pashkova, T M; Popova, L P; Kartashova, O L
2016-01-01
Isolation and study of biological activity of antimicrobial peptides from chickens thrombocytes. Peptides from chickens thrombocytes, obtained by reverse-phase high-performance liquid chromatography method with stepped and linear gradients of concentration increase of the organic solvent were used in the study. Their antimicrobial activity was determined by microtitration method in broth; mechanism of biological effect--by using fluorescent spectroscopy method with DNA-tropic dyes. Individual fractions of peptides were isolated from chickens thrombocytes, that possess antimicrobial activity against Staphylococcus aureus P209 and Escherichia coli K12. A disruption of integrity of barrier structures of microorganisms under the effect of thrombocyte antimicrobial peptides and predominance of cells with damaged membrane in the population of E. coli was established. The data obtained on antimicrobial activity and mechanism of bactericidal effect of the peptide fractions from chickens thrombocytes isolated for the first time expand the understanding of functional properties of chickens thrombocytes and open a perspective for their further study with the aim of use as antimicrobial means.
Collino, Federica; Pomatto, Margherita; Bruno, Stefania; Lindoso, Rafael Soares; Tapparo, Marta; Sicheng, Wen; Quesenberry, Peter; Camussi, Giovanni
2017-04-01
Several studies have suggested that extracellular vesicles (EVs) released from mesenchymal stem cells (MSCs) may mediate MSC paracrine action on kidney regeneration. This activity has been, at least in part, ascribed to the transfer of proteins/transcription factors and different RNA species. Information on the RNA/protein content of different MSC EV subpopulations and the correlation with their biological activity is currently incomplete. The aim of this study was to evaluate the molecular composition and the functional properties on renal target cells of MSC EV sub-populations separated by gradient floatation. The results demonstrated heterogeneity in quantity and composition of MSC EVs. Two peaks of diameter were observed (90-110 and 170-190 nm). The distribution of exosomal markers and miRNAs evaluated in the twelve gradient fractions showed an enrichment in fractions with a flotation density of 1.08-1.14 g/mL. Based on this observation, we evaluated the biological activity on renal cell proliferation and apoptosis resistance of low (CF1), medium (CF2) and high (CF3) floatation density fractions. EVs derived from all fractions, were internalized by renal cells, CF1 and CF2 but not CF3 fraction stimulated significant cell proliferation. CF2 also inhibited apoptosis on renal tubular cells submitted to ischemia-reperfusion injury. Comparative miRNomic and proteomic profiles reveal a cluster of miRNAs and proteins common to all three fractions and an enrichment of selected molecules related to renal regeneration in CF2 fraction. In conclusion, the CF2 fraction enriched in exosomal markers was the most active on renal tubular cell proliferation and protection from apoptosis.
Wang, Miaomiao; Meng, Yingjie; Ma, Defang; Wang, Yan; Li, Fengli; Xu, Xing; Xia, Chufan; Gao, Baoyu
2017-05-01
This study investigated the N-nitrosodimethylamine (NDMA) formation potential of various dissolved organic matter (DOM) fractions in biologically treated municipal wastewater by UF fractionation, XAD-8 resin adsorption isolation, and excitation and emission matrix (EEM) fluorescence spectroscopy. Removal of various NDMA precursor fractions was also analyzed to evaluate the efficiency of traditional water treatment processes (coagulation, adsorption, and coagulation-adsorption). Results showed that NDMA were mainly formed by low molecular weight (MW) fractions (<30 kDa) and hydrophilic fractions (HiS) in biologically treated municipal wastewater. Integrated coagulation-adsorption treatments showed the highest reduction capacity for NDMA formation potential (57%), followed by isolated adsorption treatment (50%) and isolated coagulation treatment (28%). The powdered activated carbon (PAC) adsorption process could reduce the high MW precursors (>30 kDa) by 48%, which was higher than other treatments. In contrast, the highest uptake (66%) of low MW precursors (<30 kDa) was achieved by the coagulation-adsorption process. All treatments preferentially removed the hydrophobic acids (HoA) fraction compared to other fractions. Coagulation could remove more fulvic acid-like substances and adsorption could remove more microbial by-products and aromatic proteins.
Characterization and biological activities of humic substances from mumie.
Schepetkin, Igor A; Khlebnikov, Andrei I; Ah, Shin Young; Woo, Sang B; Jeong, Choon-Soo; Klubachuk, Olesya N; Kwon, Byoung S
2003-08-27
Mumie, a semihard black resin formed by long-term humification, is believed to have therapeutic properties. Although mumie has been used in folk medicine since ancient times, there is little information available concerning the physicochemical properties of its constituents and the mechanisms of its therapeutic efficacy. For this study crude mumie was fractionated into fulvic acid (FA), humic acid (HA), humin, hymatomelanic acid, and two low molecular weight fractions (LMW1 and LMW2). The FA fraction was divided into five subfractions, FA1-FA5. The mumie fractions were characterized by IR, UV-vis, and fluorescence spectroscopy. Total carbohydrate content in the fractions was analyzed using the phenol reaction method. The relative content of polar groups and nonpolar hydrocarbon fragments in the mumie fractions correlated well with solubility in an aqueous medium. Biological characterization was performed using only the FA fractions. FA1 and FA2 enhanced the production of reactive oxygen species (ROS) and nitric oxide in murine peritoneal macrophages, as determined with the use of 2',7'-dichlorofluorescin diacetate and Griess reagent, respectively. The enchancement of ROS and nitric oxide production correlated with the level of total carbohydrates in the fractions. Murine splenic lymphocytes treated with FA1 showed a dose-dependent increase in [(3)H]thymidine uptake. These findings suggest that FA derived from mumie has immunomodulatory activity.
Picot, Laurent; Ravallec, Rozenn; Fouchereau-Péron, Martine; Vandanjon, Laurent; Jaouen, Pascal; Chaplain-Derouiniot, Maryse; Guérard, Fabienne; Chabeaud, Aurélie; Legal, Yves; Alvarez, Oscar Martinez; Bergé, Jean-Pascal; Piot, Jean-Marie; Batista, Irineu; Pires, Carla; Thorkelsson, Gudjon; Delannoy, Charles; Jakobsen, Greta; Johansson, Inez; Bourseau, Patrick
2010-08-30
Numerous studies have demonstrated that in vitro controlled enzymatic hydrolysis of fish and shellfish proteins leads to bioactive peptides. Ultrafiltration (UF) and/or nanofiltration (NF) can be used to refine hydrolysates and also to fractionate them in order to obtain a peptide population enriched in selected sizes. This study was designed to highlight the impact of controlled UF and NF on the stability of biological activities of an industrial fish protein hydrolysate (FPH) and to understand whether fractionation could improve its content in bioactive peptides. The starting fish protein hydrolysate exhibited a balanced amino acid composition, a reproducible molecular weight (MW) profile, and a low sodium chloride content, allowing the study of its biological activity. Successive fractionation on UF and NF membranes allowed concentration of peptides of selected sizes, without, however, carrying out sharp separations, some MW classes being found in several fractions. Peptides containing Pro, Hyp, Asp and Glu were concentrated in the UF and NF retentates compared to the unfractionated hydrolysate and UF permeate, respectively. Gastrin/cholecystokinin-like peptides were present in the starting FPH, UF and NF fractions, but fractionation did not increase their concentration. In contrast, quantification of calcitonin gene-related peptide (CGRP)-like peptides demonstrated an increase in CGRP-like activities in the UF permeate, relative to the starting FPH. The starting hydrolysate also showed a potent antioxidant and radical scavenging activity, and a moderate angiotensin-converting enzyme (ACE)-1 inhibitory activity, which were not increased by UF and NF fractionation. Fractionation of an FPH using membrane separation, with a molecular weight cut-off adapted to the peptide composition, may provide an effective means to concentrate CGRP-like peptides and peptides enriched in selected amino acids. The peptide size distribution observed after UF and NF fractionation demonstrates that it is misleading to characterize the fractions obtained by membrane filtration according to the MW cut-off of the membrane only, as is currently done in the literature. Copyright (c) 2010 Society of Chemical Industry.
Purity assessment of condensed tannin fractions by nuclear magnetic resonance (NMR) spectroscopy
USDA-ARS?s Scientific Manuscript database
Unambiguous investigation of condensed tannin (CT) structure-activity relationships in biological systems requires the use of highly enriched CT fractions of defined chemical purity. Purification of CTs from Sorghum bicolor, Trifolium repens, Theobroma cacao, Lespedeza cuneata, Lotus pedunculatus, a...
A Review on the Medicinal Plant Dalbergia odorifera Species: Phytochemistry and Biological Activity
2017-01-01
The crucial medicinal plant Dalbergia odorifera T. Chen species belongs to genus Dalbergia, with interesting secondary metabolites, consisting of main classes of flavonoid, phenol, and sesquiterpene derivatives, as well as several arylbenzofurans, quinones, and fatty acids. Biological studies were carried out on extracts, fractions, and compounds from this species involved in cytotoxic assays; antibacterial, antioxidative, anti-inflammatory, antithrombotic, antiplatelet, antiosteosarcoma, antiosteoporosis, antiangiogenesis, and prostaglandin biosynthetic enzyme inhibition activities; vasorelaxant activities; alpha-glucosidase inhibitory activities; and many other effects. In terms of the valuable resources for natural new drugs development, D. odorifera species are widely used as medicinal drugs in many countries for treatment of cardiovascular diseases, cancer, diabetes, blood disorders, ischemia, swelling, necrosis, or rheumatic pain. Although natural products from this plant have been increasingly playing an important role in drug discovery programs, there is no supportive evidence to provide a general insight into phytochemical studies on D. odorifera species and biological activities of extracts, fractions, and isolated compounds. To a certain extent, this review deals with an overview of almost naturally occurring compounds from this species, along with extensive coverage of their biological evaluations. PMID:29348771
Herrera-Chalé, Francisco; Ruiz-Ruiz, Jorge Carlos; Betancur-Ancona, David; Segura-Campos, Maira Rubi
2016-02-01
A Mucuna pruriens protein concentrate was hydrolyzed with a digestive (pepsin-pancreatin) enzymatic system. The soluble portion of the hydrolysate was fractionated by ultrafiltration and the ultrafiltered peptide fraction (PF) with lower molecular weight was purified by reversed-phase high-performance liquid chromatography. The PF obtained were evaluated by testing the biological activity in vitro. Fractions showed that the ability to inhibit the angiotensin-converting enzyme had IC50 values that ranged from 2.7 to 6.2 μg/mL. Trolox equivalent antioxidant capacity values ranged from 132.20 to 507.43 mM/mg. The inhibition of human platelet aggregation ranged from 1.59% to 11.11%, and the inhibition of cholesterol micellar solubility ranged from 0.24% to 0.47%. Hydrophobicity, size, and amino acid sequence could be factors in determining the biological activity of peptides contained in fractions. This is the first report that M. pruriens peptides act as antihypertensives, antioxidants, and inhibitors for human platelet aggregation and cholesterol micellar solubility in vitro.
Stable carbon isotope fractionation in the search for life on early Mars
NASA Technical Reports Server (NTRS)
Rothschild, L. J.; Desmarais, D.
1989-01-01
The utility of measurements of C-13/C-12 ratios in organic vs inorganic deposits for searching for signs of life on early Mars is considered. It is suggested that three assumptions are necessary. First, if there was life on Mars, it caused the fractionation of carbon isotopes in analogy with past biological activity on earth. Second, the fractionation would be detectable. Third, if a fractionation would be observed, there exist no abiotic explanations for the observed fractionation pattern.
Ong, Thida; McClintock, Dana E.; Kallet, Richard H.; Ware, Lorraine B.; Matthay, Michael A.; Liu, Kathleen D.
2014-01-01
Objective To test the hypothesis that the concentration of angiopoietin-2 relative to angiopoietin-1 (Ang-2/Ang-1) may be a useful biologic marker of mortality in acute lung injury (ALI) patients. We also tested the association of Ang-2/Ang-1 with physiologic and biologic markers of activated endothelium. Design Prospective observational cohort study. Setting Intensive care units in a tertiary care university hospital and a university-affiliated city hospital. Patients Fifty-six mechanically ventilated patients with ALI. Interventions Baseline plasma samples and pulmonary dead space fraction measurements were collected within 48 hours of ALI diagnosis. Measurements and Main Results Plasma levels of Ang-1 and Ang-2 and of biomarkers of endothelial activation were measured by ELISA. Baseline Ang-2/Ang-1 was significantly higher in patients who died [median 58 (IQR 17–117) vs. 14 (IQR 6–35), p=0.01]. In a multivariable analysis stratified by dead space fraction, Ang-2/Ang-1 was an independent predictor of death with an adjusted odds ratio of 4.3 (95% CI 1.3–13.5, p=0.01) in those with an elevated pulmonary dead space fraction (p=0.03 for interaction between pulmonary dead space fraction and Ang-2/Ang-1). Moderate to weak correlation was found with biologic markers of endothelial activation. Conclusions The ratio of Ang-2/Ang-1 may be a prognostic biomarker of endothelial activation in ALI patients and, along with pulmonary dead space fraction, may be useful for risk stratification of ALI patients, particularly in identifying subgroups for future research and therapeutic trials. PMID:20581666
Elnakady, Yasser A.; Rushdi, Ahmed I.; Franke, Raimo; Abutaha, Nael; Ebaid, Hossam; Baabbad, Mohannad; Omar, Mohamed O. M.; Al Ghamdi, Ahmad A.
2017-01-01
Propolis has been used to treat several diseases since ancient times, and is an important source of bioactive natural compounds and drug derivatives. These properties have kept the interest of investigators around the world, leading to the investigation of the chemical and biological properties and application of propolis. In this report, the chemical constituents that are responsible for the anticancer activities of propolis were analyzed. The propolis was sourced from Al-Baha in the southern part of the Kingdom of Saudi Arabia. Standard protocols for chemical fractionation and bioactivity-guided chemical analysis were used to identify the bio-active ethyl acetate fraction. The extraction was performed in methanol and then analyzed by gas chromatography-mass spectrometry (GC-MS). The major compounds are triterpenoids, with a relative concentration of 74.0%; steroids, with a relative concentration of 9.8%; and diterpenoids, with a relative concentration of 7.9%. The biological activity was characterized using different approaches and cell-based assays. Propolis was found to inhibit the proliferation of cancer cells in a concentration-dependent manner through apoptosis. Immunofluorescence staining with anti-α-tubulin antibodies and cell cycle analysis indicated that tubulin and/or microtubules are the cellular targets of the L-acetate fraction. This study demonstrates the importance of Saudi propolis as anti-cancer drug candidates. PMID:28165013
NASA Astrophysics Data System (ADS)
Elnakady, Yasser A.; Rushdi, Ahmed I.; Franke, Raimo; Abutaha, Nael; Ebaid, Hossam; Baabbad, Mohannad; Omar, Mohamed O. M.; Al Ghamdi, Ahmad A.
2017-02-01
Propolis has been used to treat several diseases since ancient times, and is an important source of bioactive natural compounds and drug derivatives. These properties have kept the interest of investigators around the world, leading to the investigation of the chemical and biological properties and application of propolis. In this report, the chemical constituents that are responsible for the anticancer activities of propolis were analyzed. The propolis was sourced from Al-Baha in the southern part of the Kingdom of Saudi Arabia. Standard protocols for chemical fractionation and bioactivity-guided chemical analysis were used to identify the bio-active ethyl acetate fraction. The extraction was performed in methanol and then analyzed by gas chromatography-mass spectrometry (GC-MS). The major compounds are triterpenoids, with a relative concentration of 74.0%; steroids, with a relative concentration of 9.8%; and diterpenoids, with a relative concentration of 7.9%. The biological activity was characterized using different approaches and cell-based assays. Propolis was found to inhibit the proliferation of cancer cells in a concentration-dependent manner through apoptosis. Immunofluorescence staining with anti-α-tubulin antibodies and cell cycle analysis indicated that tubulin and/or microtubules are the cellular targets of the L-acetate fraction. This study demonstrates the importance of Saudi propolis as anti-cancer drug candidates.
Di, Xiaxia; Oskarsson, Jon T; Omarsdottir, Sesselja; Freysdottir, Jona; Hardardottir, Ingibjorg
2017-12-01
Halichondria (Halichondriidae) marine sponges contain components possessing various biological activities, but immunomodulation is not among the ones reported. This study evaluated the immunomodulatory effects of fractions/compounds from Halichondria sitiens Schmidt. Crude dichloromethane/methanol extracts of H. sitiens were subjected to various chromatographic techniques to obtain fractions/compounds with immunomodulatory activity, using bioassay-guided isolation. The effects of the fractions/compounds were determined by measuring secretion of cytokines and expression of surface molecules by dendritic cells (DCs) and their ability to stimulate and modify cytokine secretion by allogeneic CD4 + T cells. The bioactive fractions were chemically analyzed to identify the immunomodulatory constituents by 1D, 2D NMR, and HRMS data. Several lipophilic fractions from H. sitiens at 10 μg/mL decreased secretion of the pro-inflammatory cytokines IL-12p40 and IL-6 by the DCs, with maximum inhibition being 64% and 25%, respectively. In addition, fractions B3b3F and B3b3J decreased the ability of DCs to induce T cell secretion of IFN-γ. Fraction B3b3 induced morphological changes in DCs, characterized by extreme elongation of dendrites and cell clustering. Chemical screening revealed the presence of glycerides and some minor unknown constituents in the biologically active fractions. One new glyceride, 2,3-dihydroxypropyl 2-methylhexadecanoate (1), was isolated from one fraction and two known compounds, 3-[(1-methoxyhexadecyl)oxy]propane-1,2-diol (2) and monoheptadecanoin (3), were identified in another, but none of them had immunomodulatory activity. These results demonstrate that several lipophilic fractions from H. sitiens have anti-inflammatory effects on DCs and decrease their ability to induce a Th1 type immune response.
Forest, Valérie; Pailleux, Mélanie; Pourchez, Jérémie; Boudard, Delphine; Tomatis, Maura; Fubini, Bice; Sennour, Mohamed; Hochepied, Jean-François; Grosseau, Philippe; Cottier, Michèle
2014-08-01
Boehmite (γ-AlOOH) nanoparticles (NPs) are used in a wide range of industrial applications. However, little is known about their potential toxicity. This study aimed at a better understanding of the relationship between the physico-chemical properties of these NPs and their in vitro biological activity. After an extensive physico-chemical characterization, the cytotoxicity, pro-inflammatory response and oxidative stress induced by a bulk industrial powder and its ultrafine fraction were assessed using RAW264.7 macrophages. Although the bulk powder did not trigger a significant biological activity, pro-inflammatory response was highly enhanced with the ultrafine fraction. This observation was confirmed with boehmite NPs synthesized at the laboratory scale, with well-defined and tightly controlled physico-chemical features: toxicity was increased when NPs were dispersed. In conclusion, the agglomerates size of boehmite NPs has a major impact on their toxicity, highlighting the need to study not only raw industrial powders containing NPs but also the ultrafine fractions representative of respirable particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Later, D.W.; Pelroy, R.A.; Wilson, B.W.
1984-05-01
Representative process materials were obtained from the EDS pilot plant for chemical and biological analyses. These materials were characterized for biological activity and chemical composition using a microbial mutagenicity assay and chromatographic and mass spectrometric analytical techniques. The two highest boiling distillation cuts, as well as process solvent (PS) obtained from the bottoms recycle mode operation, were tested for initiation of mouse skin tumorigenicity. All three materials were active; the crude 800/sup 0 +/F cut was substantially more potent than the crude bottoms recycle PS or 750 to 800/sup 0/F distillate cut. Results from chemical analyses showed the EDS materials,more » in general, to be more highly alkylated and have higher hydroaromatic content than analogous SRC II process materials (no in-line process hydrogenation) used for comparison. In the microbial mutagenicity assays the N-PAC fractions showed greater activity than did the aliphatic hydrocarbon, hydroxy-PAH, or PAH fractions, although mutagenicity was detected in certain PAH fractions by a modified version of the standard microbial mutagenicity assay. Mutagenic activities for the EDS materials were lower, overall, than those for the corresponding materials from the SRC II process. The EDS materials produced under different operational modes had distinguishable differences in both their chemical constituency and biological activity. The primary differences between the EDS materials studied here and their SRC II counterparts used for comparison are most likely attributable to the incorporation of catalytic hydrogenation in the EDS process. 27 references, 28 figures, 27 tables.« less
Anjum, Tehmina; Bajwa, Rukhsana
2010-11-01
Plants are rich source of biologically active allelochemicals. However, natural product discovery is not an easy task. Many problems encountered during this laborious practice can be overcome through the modification of preliminary trials. Bioassay-directed isolation of active plant compounds can increase efficiency by eliminating many of the problems encountered. This strategy avoids unnecessary compounds, concentrating on potential components and thus reducing the cost and time required. In this study, a crude aqueous extract of sunflower leaves was fractionated through high performance liquid chromatography. The isolated fractions were checked against Chenopodium album and Rumex dentatus. The fraction found active against two selected weeds was re-fractionated, and the active components were checked for their composition. Thin layer chromatography isolated a range of phenolics, whereas the presence of bioactive terpenoids was confirmed through mass spectroscopy and nuclear magnetic resonance spectroscopy.
Di Ilio, Vincenzo; Pasquariello, Nicoletta; van der Esch, Andrew S; Cristofaro, Massimo; Scarsella, Gianfranco; Risuleo, Gianfranco
2006-07-01
Neem oil is a natural product obtained from the seeds of the tree Azadirachta indica. Its composition is very complex and the oil exhibits a number of biological activities. The most studied component is the terpenoid azadirachtin which is used for its insecticidal and putative antimicrobial properties. In this report we investigate the biological activity of partially purified components of the oil obtained from A. indica. We show that the semi-purified fractions have moderate to strong cytotoxicity. However, this is not attributable to azadirachtin but to other active compounds present in the mixture. Each fraction was further purified by appropriate extraction procedures and we observed a differential cytotoxicity in the various sub-fractions. This led us to investigate the mode of cell death. After treatment with the oil fractions we observed positivity to TUNEL staining and extensive internucleosomal DNA degradation both indicating apoptotic death. The anti-proliferative properties of the neem oil-derived compounds were also assayed by evaluation of the nuclear PCNA levels (Proliferating Cell Nuclear Antigen). PCNA is significantly reduced in cells treated with a specific fraction of neem oil. Finally, our results strongly suggest a possible involvement of the mitochondrial pathway in the apoptotic death.
Anti-inflammatory, Analgesic and Antiulcer properties of Porphyra vietnamensis.
Bhatia, Saurabh; Sharma, Kiran; Sharma, Ajay; Nagpal, Kalpana; Bera, Tanmoy
2015-01-01
Aim of the present work was to investigate the anti-inflammatory, analgesic and antiulcer effects of red seaweed Porphyra vietnamensis (P. vietnamenis). Aqueous (POR) and alcoholic (PE) fractions were successfully isolated from P. vietnamenis. Further biological investigations were performed using a classic test of paw edema induced by carrageenan, writhing induced by acetic acid, hot plate method and naproxen induced gastro-duodenal ulcer. Among the fractions POR showed better activity. POR and PE significantly (p < 0.05) reduced carrageenan induced paw edema in a dose dependent manner. In the writhing test POR significantly (p < 0.05) reduced abdominal writhes than PE. In hot plate method POR showed better analgesic activity than PE. POR showed comparable ulcers reducing potential (p<0.01) to that of omeprazole, and has more ulcer reducing potential then PE. The results of this study demonstrated that P. vietnamenis aqueous fraction possesses biological activity that is close to the standards taken for the treatment of peripheral painful or/and inflammatory and ulcer conditions.
Anti-inflammatory, Analgesic and Antiulcer properties of Porphyra vietnamensis
Bhatia, Saurabh; Sharma, Kiran; Sharma, Ajay; Nagpal, Kalpana; Bera, Tanmoy
2015-01-01
Objectives: Aim of the present work was to investigate the anti-inflammatory, analgesic and antiulcer effects of red seaweed Porphyra vietnamensis (P. vietnamenis). Materials and Methods: Aqueous (POR) and alcoholic (PE) fractions were successfully isolated from P. vietnamenis. Further biological investigations were performed using a classic test of paw edema induced by carrageenan, writhing induced by acetic acid, hot plate method and naproxen induced gastro-duodenal ulcer. Results: Among the fractions POR showed better activity. POR and PE significantly (p < 0.05) reduced carrageenan induced paw edema in a dose dependent manner. In the writhing test POR significantly (p < 0.05) reduced abdominal writhes than PE. In hot plate method POR showed better analgesic activity than PE. POR showed comparable ulcers reducing potential (p<0.01) to that of omeprazole, and has more ulcer reducing potential then PE. Conclusions: The results of this study demonstrated that P. vietnamenis aqueous fraction possesses biological activity that is close to the standards taken for the treatment of peripheral painful or/and inflammatory and ulcer conditions. PMID:25767759
Eid, Hoda M; Ouchfoun, Meriem; Saleem, Ammar; Guerrero-Analco, Jose A; Walshe-Roussel, Brendan; Musallam, Lina; Rapinski, Michel; Cuerrier, Alain; Martineau, Louis C; Arnason, John T; Haddad, Pierre S
2016-02-03
Rhododendron groenlandicum (Oeder) Kron & Judd (Labrador tea) was identified as an antidiabetic plant through an ethnobotanical study carried out with the close collaboration of Cree nations of northern Quebec in Canada. In a previous study the plant showed glitazone-like activity in a 3T3-L1 adipogenesis bioassay. The current study sought to identify the active compounds responsible for this potential antidiabetic activity using bioassay guided fractionation based upon an in vitro assay that measures the increase of triglycerides content in 3T3-L1 adipocyte. Isolation and identification of the crude extract's active constituents was carried out. The 80% ethanol extract was fractionated using silica gel column chromatography. Preparative HPLC was then used to isolate the constituents. The identity of the isolated compounds was confirmed by UV and mass spectrometry. Nine chemically distinct fractions were obtained and the adipogenic activity was found in fraction 5 (RGE-5). Quercetins, (+)-catechin and (-)-epicatechin were detected and isolated from this fraction. While (+)-catechin and (-)-epicatechin stimulated adipogenesis (238±26% and 187±21% relative to vehicle control respectively) at concentrations equivalent to their concentrations in the active fraction RGE-5, none afforded biological activity similar to RGE-5 or the plant's crude extract when used alone. When cells were incubated with a mixture of the two compounds, the adipogenic activity was close to that of the crude extract (280.7±27.8 vs 311± 30%). Results demonstrate that the mixture of (+)-catechin and (-)-epicatechin is responsible for the adipogenic activity of Labrador tea. This brings further evidence for the antidiabetic potential of R. groenlandicum and provides new opportunities to profile active principles in biological fluids or in traditional preparations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Fractionation and Characterization of Biologically-active Polysaccharides from Artemisia tripartita
Xie, Gang; Schepetkin, Igor A.; Siemsen, Daniel W.; Kirpotina, Liliya N.; Wiley, James A.; Quinn, Mark T.
2008-01-01
The leaves of Artemisia species have been traditionally used for prevention and treatment of a number of diseases. In this study, five polysaccharide fractions (designated A-I to A-V) were isolated from the leaves of Artemisia tripartita Rydb. by the sequential use of hot-water extraction, ethanol precipitation, ultra-filtration, and chromatography. The homogeneity and average molecular weight of each fraction were determined by high performance size-exclusion chromatography. Sugar composition analysis revealed that Artemisia polysaccharides consisted primarily of xylose, glucose, arabinose, galactose, and galactosamine. Moreover, all fractions contained at least 3.4% sulfate, and fractions A-II through A-V contained an arabinogalactan type II structure. All fractions exhibited macrophage-activating activity, enhancing production of intracellular reactive oxygen species and release of nitric oxide, interleukin 6, interleukin 10, tumor necrosis factor α, and monocyte chemotactic protein-1. In addition, all fractions exhibited scavenging activity for reactive oxygen species generated enzymatically or produced extracellularly by human neutrophils. Finally, fractions A-I and A-V exhibited complement-fixing activity. Taken together, our results provide a molecular basis to explain at least part of the beneficial therapeutic effects of Artemisia extracts, and suggest the possibility of using Artemisia polysaccharides as an immunotherapeutic adjuvant. PMID:18325553
Grassineau, N V; Nisbet, E G; Bickle, M J; Fowler, C M; Lowry, D; Mattey, D P; Abell, P; Martin, A
2001-01-01
Sulphur and carbon isotopic analyses on small samples of kerogens and sulphide minerals from biogenic and non-biogenic sediments of the 2.7 x 10(9) years(Ga)-old Belingwe Greenstone Belt (Zimbabwe) imply that a complex biological sulphur cycle was in operation. Sulphur isotopic compositions display a wider range of biological fractionation than hitherto reported from the Archaean. Carbon isotopic values in kerogen record fractionations characteristic of rubisco activity methanogenesis and methylotrophy and possibly anoxygenic photosynthesis. Carbon and sulphur isotopic fractionations have been interpreted in terms of metabolic processes in 2.7 Ga prokaryote mat communities, and indicate the operation of a diverse array of metabolic processes. The results are consistent with models of early molecular evolution derived from ribosomal RNA. PMID:11209879
Intracellular Cadmium Isotope Fractionation
NASA Astrophysics Data System (ADS)
Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.
2011-12-01
Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.
Zayed, Ahmed; Muffler, Kai; Hahn, Thomas; Rupp, Steffen; Finkelmeier, Doris; Burger-Kentischer, Anke; Ulber, Roland
2016-01-01
A comparative study concerning the physicochemical, monomeric composition and biological characters among different fucoidan fractions is presented. Common purification techniques for fucoidan usually involve many steps. During these steps, the important structural features might be affected and consequently alter its biological activities. Three purified fractions were derived from Fucus vesiculosus water extract which, afterwards, were purified by a recently-developed dye affinity chromatography protocol. This protocol is based on dye-sulfated polysaccharide interactions. The first two fractions were obtained from crude precipitated fucoidan at different pH values of the adsorption phase: pH 1 and 6. This procedure resulted in fucoidan_1 and 6 fractions. The other, third, fraction: fucoidan_M, however, was obtained from a buffered crude extract at pH 1, eliminating the ethanol precipitation step. All of the three fractions were then further evaluated. Results revealed that fucoidan_M showed the highest sulfur content (S%), 12.11%, with the lowest average molecular weight, 48 kDa. Fucose, galactose, and uronic acid/glucose dimers were detected in all fractions, although, xylose was only detected in fucoidan_1 and 6. In a concentration of 10 µg·mL−1, Fucoidan_6 showed the highest heparin-like anticoagulant activity and could prolong the APTT and TT significantly to 66.03 ± 2.93 and 75.36 ± 1.37 s, respectively. In addition, fucoidan_M demonstrated the highest potency against HSV-1 with an IC50 of 2.41 µg·mL−1. The technique proved to be a candidate for fucoidan purifaction from its crude extract removing the precipitation step from common purification protocols and produced different fucoidan qualities resulted from the different incubation conditions with the immobilized thiazine toluidine blue O dye. PMID:27092514
New acyclic secondary metabolites from the biologically active fraction of Albizia lebbeck flowers.
Al-Massarani, Shaza M; El Gamal, Ali A; Abd El Halim, Mohamed F; Al-Said, Mansour S; Abdel-Kader, Maged S; Basudan, Omer A; Alqasoumi, Saleh I
2017-01-01
The total extract of Albizia lebbeck flowers was examined in vivo for its possible hepatoprotective activity in comparison with the standard drug silymarin at two doses. The higher dose expressed promising activity especially in reducing the levels of AST, ALT and bilirubin. Fractionation via liquid-liquid partition and reexamination of the fractions revealed that the n -butanol fraction was the best in improving liver biochemical parameters followed by the n -hexane fraction. However, serum lipid parameters were best improved with CHCl 3 fraction. The promising biological activity results initiated an intensive chromatographic purification of A. lebbeck flowers fractions. Two compounds were identified from natural source for the first time, the acyclic farnesyl sesquiterpene glycoside1-O-[6-O- α -l-arabinopyranosyl- β -d-glucopyranoside]-(2 E ,6 E -)-farnesol ( 6 ) and the squalene derivative 2,3-dihydroxy-2,3-dihydrosqualene ( 9 ), in addition to eight compounds reported here for the first time from the genus Albizia ; two benzyl glycosides, benzyl 1-O- β -d-glucopyranoside ( 1 ) and benzyl 6-O- α -l-arabinopyranosyl β -d-glucopyranoside ( 2 ); three acyclic monoterpene glycosides, linalyl β -d-glucopyranoside ( 3 ) and linalyl 6-O- α -l-arabinopyranosyl- β -d-glucopyranoside ( 4 ); (2 E )-3,7-dimethylocta-2,6-dienoate-6-O- α -l arabinopyranosyl- β -d-glucopyranoside ( 5 ), two oligoglycosides, n -hexyl- α -l arabinopyranosyl-(1 → 6)- β -d-glucopyranoside (creoside) ( 7 ) and n -octyl α -l-arabinopyranosyl-(1 → 6)- β -d-glucopyranoside (rhodiooctanoside) ( 8 ); and ethyl fructofuranoside ( 10 ). The structures of the isolated compounds were elucidated based on extensive examination of their spectroscopic 1D and 2D-NMR, MS, UV, and IR data. It is worth mentioning that, some of the isolated linalol glycoside derivatives were reported as aroma precursors.
Chen, Pao-Huei; Weng, Yih-Ming; Lin, Shu-Mei; Yu, Zer-Ran; Wang, Be-Jen
2017-10-01
Cold water extract of P. citrinopileatus (CWEPC) was fractioned into 4 fractions, PC-I (<1 kDa), PC-II (1-3.5 kDa), PC-III (3.5-10 kDa), and PC-IV (>10 kDa), by ultrafiltration. The antioxidant activities, the inhibition of pancreatic α-amylase, intestinal α-glucosidase, and hypertension-linked angiotensin converting enzyme (ACE), as well as the contents of polysaccharides, protein, and phenolic compounds of 4 fractions were determined. The results showed that lower MW fractions exerted a higher antioxidant activity, which was correlated to phenolic contents. The high molecular fraction (PC-IV) exhibited significantly higher inhibitory activity on α-amylase, α-glucosidase, and ACE compared to CWEPC and the other 3 lower MW fractions (<10 kDa), which was more related to protein contents. The inhibition capability of CWEPC and PC-IV on α-amylase activity was 1/13.4 to 1/2.7 relative to that of acarbose, respectively. Kinetic data revealed that PC-IV fraction followed a noncompetitive inhibition pattern on α-glucosidase activity. The study demonstrated that various MW fractions and types of components contribute to different biological functions of P. citrinopileatus and it is protein constituents but not peptides responsible for the hypoglycemic potential of CWEPC. © 2017 Institute of Food Technologists®.
Activity of Pure Streptovaricins and Fractionated Streptovaricin Complex Against Friend Virus
Horoszewicz, Julius S.; Rinehart, Kenneth L.; Leong, Susan S.; Carter, William A.
1975-01-01
Chromatographic fractionation of streptovaricin complex yields two stable components enriched (4- to 16-fold) in activity directed against the polycythemic strain of Friend virus; both components apparently contain no streptovaricins. When compared with their unfractionated parent streptovaricin complex, eight individual intact streptovaricins (A through G and J) show at least a 30-fold reduction in antiviral activity. These results further support the conclusion that the diversified biological properties of streptovaricin complex probably reside in different molecular structures. PMID:237470
Oh, Seung-Min; Chung, Kyu-Hyuck
2006-03-01
A bioassay-directed chemical analysis which consists of mammalian cell bioassays (comet assay, CBMN assay and EROD-microbioassay) in conjunction with analytical measurements was performed to identify the most biologically active compounds of the diesel exhaust particulate matters (DEPs) on mutagenic activity. These bioassay systems were suitable to estimate the mammalian genotoxic potentials of pollutants present in low concentrations in limited environmental samples, as is the case with DEPEs. The results from mutagenic assay showed that the aromatic and slightly polar fraction of DEPs induced chromosomal damage and DNA breakage in a non-cytotoxic dose. It was also revealed that indirect-acting mutagens may mainly contribute to the mutagenic effect of aromatic fraction via the enzyme metabolism system. In the aromatic fraction, several indirect-acting mutagenic PAHs such as dibenzo(a,h)anthracene, chrysene, and 1,2-benzanthracene were detected by GC-MS and the complex mixture effect of this fraction was quantified in terms of its biological-TCDD equivalent concentration (bio-TEQ) which was 32.82 bio-TEQ ng/g-DEPs by EROD-microbioassay. Conclusively, we confirmed that indirect-acting mutagens contained in aromatic fraction may be important causatives of the genotoxicity of extracts of DEPs by integrating the results obtained from a mammalian cell bioassay-directed fractionation.
Su, Chun-Han; Lu, Tzy-Ming; Lai, Min-Nan; Ng, Lean-Teik
2013-01-01
This study examined the inhibitory effects of Grifola frondosa (GF), a medicinal mushroom popularly consumed in traditional medicine and health food, on digestive enzymes related to type 2 diabetes; chemical profiles and inhibitory kinetics of its bioactive fractions were also analyzed. Results showed that all GF extracts showed weak anti-α-amylase activity; however, strong anti-α-glucosidase activity was noted on GF n-hexane extract (GF-H). Further fractionation confirmed that compared with acarbose (a commercial α-glucosidase inhibitor), the nonpolar fraction of GF possessed a stronger anti-α-glucosidase activity but a weaker anti-α-amylase activity. These activities were not derived from ergosterol and ergosterol peroxide, two major compounds of this fraction. The inhibitory kinetics of GF-H on α-glucosidase was competitive inhibition. GF-H was as good as acarbose in inhibiting the starch digestion in vitro. Oleic acid and linoleic acid could be the major active constituents that have contributed to the potency of GF in inhibiting α-glucosidase activity. © 2013 International Union of Biochemistry and Molecular Biology, Inc.
Biological Activity and Phytochemical Study of Scutellaria platystegia.
Madani Mousavi, Seyedeh Neda; Delazar, Abbas; Nazemiyeh, Hossein; Khodaie, Laleh
2015-01-01
This study aimed to determine biological activity and phytochemical study of Scutellaria platystegia (family Labiatae). Methanolic (MeOH) extract of aerial parts of S. platystegia and SPE fractions of methanolic extract (specially 20% and 40% methanolic fractions), growing in East-Azarbaijan province of Iran were found to have radical scavenging activity by DPPH (2, 2-diphenyl -1- pycryl hydrazyl) assay. Dichloromethane (DCM) extract of this plant exhibited animalarial activity by cell free method providing IC50 at 1.1876 mg/mL. Crude extracts did not exhibit any toxicity assessed by brine shrimp lethality assay. Phytochemical study of methanolic extract by using reverse phase HPLC method and NMR instrument for isolation and identification of pure compounds respectively, yielded 2-(4- hydroxy phenyl) ethyl-O-β-D- glucopyranoside from 10% and apigenin 7-O-glucoside, verbascoside and martynoside from 40% SPE fraction. Occurance of verbascoside and martynoside as biochemical markers appeared to be widespread in this genus. Antioxidant and antimalarial activity of MeOH and DCM extracts, respectively, as well as no general toxicity of them could provide a basis for further in-vitro and in-vivo studies and clinical trials to develop new therapeutical alternatives.
NASA Astrophysics Data System (ADS)
Wacha, K.; Papanicolaou, T.; Hatfield, J.; Cambardella, C.; Abban, B. K.; Wilson, C. G.; Filley, T. R.; Hou, T.; Dold, C.
2017-12-01
The abundance and distribution of surface soil size fractions has been shown to be reflective of changes in management practices and landscape position. Soil size fractions exist in both un-aggregated and aggregated forms that differ in textural and biological composition, which can impact soil hydrology and aggregation processes. Soils with higher stocks of soil organic matter (SOM) promote higher biological activity, infiltration, and soil structure due to stronger, more resilient aggregates. Within ag-systems, intensive cultivation and steep gradients can negatively impact the formation/stability of aggregates and amplify erosion processes, which redistributes material along downslope flowpathways to varying degrees, based on the amount of available surface cover during a rainfall event. The innate variability in SOM composition found amongst the size fractions combined with these highly active flowpathways, produces a symphony of interactive biogeochemical and hydrologic processes, which promote spatial landscape heterogeneity. Due to this intricacy, accurately assessing changes in SOM stocks within high energy ag-systems is extremely challenging, and could greatly impact soil carbon budgets at the hillslope and greater spatial scales. To address this, in part, we utilize a systematic approach that isolates the role of management in building aggregate resilience to hydrologic forcing. Soil samples were collected from farm fields with varying slopes (1-20%) and management conditions, and then isolated into seven aggregate size fractions. Each aggregate fraction was tested for resilience to raindrop impact with corresponding SOM composition and biological activity. Rainfall simulations were conducted on plots under representative management and gradient to capture the dynamicity of the size fractions being transported during an applied rainfall event. Results found that small macroaggregate fractions were most indicative of changes in management, and erosion rates from plots were inversely proportional to SOM enrichment. These experiments not only promote our fundamental understanding on the dynamics of surface soil and SOM redistribution but also can provide guidance into best management practices that promote aggregate stability, decrease soil loss, and enhance soil health.
Biological activity of the non-microbial fraction of kefir: antagonism against intestinal pathogens.
Iraporda, Carolina; Abatemarco Júnior, Mário; Neumann, Elisabeth; Nunes, Álvaro Cantini; Nicoli, Jacques R; Abraham, Analía G; Garrote, Graciela L
2017-08-01
Kefir is a fermented milk obtained by the activity of kefir grains which are composed of lactic and acetic acid bacteria, and yeasts. Many beneficial health effects have been associated with kefir consumption such as stimulation of the immune system and inhibition of pathogenic microorganisms. The biological activity of kefir may be attributed to the presence of a complex microbiota as well as the microbial metabolites that are released during fermentation. The aim of this work was to characterise the non-microbial fraction of kefir and to study its antagonism against Escherichia coli, Salmonella spp. and Bacillus cereus. During milk fermentation there was a production of organic acids, mainly lactic and acetic acid, with a consequent decrease in pH and lactose content. The non-microbial fraction of kefir added to nutrient broth at concentrations above 75% v/v induced a complete inhibition of pathogenic growth that could be ascribed to the presence of un-dissociated lactic acid. In vitro assays using an intestinal epithelial cell model indicated that pre-incubation of cells with the non-microbial fraction of kefir did not modify the association/invasion of Salmonella whereas pre-incubation of Salmonella with this fraction under conditions that did not affect their viability significantly decreased the pathogen's ability to invade epithelial cells. Lactate exerted a protective effect against Salmonella in a mouse model, demonstrating the relevance of metabolites present in the non-microbial fraction of kefir produced during milk fermentation.
Botić, Tanja; Kralj-Kunčič, Marjetka; Sepčić, Kristina; Batista, Urška; Zalar, Polona; Knez, Željko; Gunde-Cimerman, Nina
2014-01-01
We report on the screening for biological activities of organic extracts from seven strains that represent four varieties of the fungus Aureobasidium pullulans, that is A. pullulans var. melanogenum, A. pullulans var. pullulans, A. pullulans var. subglaciale and A. pullulans var. namibiae. We monitored haemolysis, cytotoxicity, antioxidant capacity and growth inhibition against three bacterial species. The haemolytic activity of A. pullulans var. pullulans EXF-150 strain was due to five different haemolytically active fractions. Extracts from all of the other varieties contained at least one haemolytically active fraction. Short-term exposure of cell lines to these haemolytically active organic extracts resulted in more than 95% cytotoxicity. Strong antioxidant capacity, corresponding to 163.88 μg ascorbic acid equivalent per gram of total solid, was measured in the organic extract of the strain EXF-3382, obtained from A. pullulans var. melanogenum, isolated from the deep sea. Organic extracts from selected varieties of A. pullulans exhibited weak antibacterial activities.
Salazar-Aguilar, Sandra; Ruiz-Posadas, Lucero Del Mar; Cadena-Iñiguez, Jorge; Soto-Hernández, Marcos; Santiago-Osorio, Edelmiro; Aguiñiga-Sánchez, Itzen; Rivera-Martínez, Ana Rocío; Aguirre-Medina, Juan Francisco
2017-07-25
The Sechium edule Perla Negra cultivar is a recently-obtained biological material whose progenitors are S. edule var. nigrum minor and S. edule var. amarus silvestrys, the latter of which has been reported to have antiproliferative activity against the HeLa P-388 and L-929 cancer cell lines. The present study aimed to determine if the methanolic extract of the fruit of the Perla Negra cultivar had the same biological activity. The methanolic extract was phytochemically characterized by thin layer chromatography (TLC) and column chromatography (CC), identifying the terpenes and flavonoids. The compounds identified via high performance liquid chromatography (HPLC) were Cucurbitacins B, D, E, and I for the terpene fractions, and Rutin, Phlorizidin, Myricetin, Quercetin, Naringenin, Phloretin, Apigenin, and Galangin for the flavonoid fractions). Biological activity was evaluated with different concentrations of the methanolic extract in the HeLa cell line and normal lymphocytes. The methanolic extract inhibited the proliferation of HeLa cells (IC 50 1.85 µg·mL -1 ), but the lymphocytes were affected by the extract (IC 50 30.04 µg·mL -1 ). Some fractions, and the pool of all of them, showed inhibition higher than 80% at a concentration of 2.11 µg·mL -1 . Therefore, the biological effect shown by the methanolic extract of the Perla Negra has some specificity in inhibiting tumor cells and not normal cells; an unusual feature among molecules investigated as potential biomedical agents.
Salazar-Aguilar, Sandra; Ruiz-Posadas, Lucero del Mar; Cadena-Iñiguez, Jorge; Santiago-Osorio, Edelmiro; Aguiñiga-Sánchez, Itzen; Rivera-Martínez, Ana Rocío; Aguirre-Medina, Juan Francisco
2017-01-01
The Sechium edule Perla Negra cultivar is a recently-obtained biological material whose progenitors are S. edule var. nigrum minor and S. edule var. amarus silvestrys, the latter of which has been reported to have antiproliferative activity against the HeLa P-388 and L-929 cancer cell lines. The present study aimed to determine if the methanolic extract of the fruit of the Perla Negra cultivar had the same biological activity. The methanolic extract was phytochemically characterized by thin layer chromatography (TLC) and column chromatography (CC), identifying the terpenes and flavonoids. The compounds identified via high performance liquid chromatography (HPLC) were Cucurbitacins B, D, E, and I for the terpene fractions, and Rutin, Phlorizidin, Myricetin, Quercetin, Naringenin, Phloretin, Apigenin, and Galangin for the flavonoid fractions). Biological activity was evaluated with different concentrations of the methanolic extract in the HeLa cell line and normal lymphocytes. The methanolic extract inhibited the proliferation of HeLa cells (IC50 1.85 µg·mL−1), but the lymphocytes were affected by the extract (IC50 30.04 µg·mL−1). Some fractions, and the pool of all of them, showed inhibition higher than 80% at a concentration of 2.11 µg·mL−1. Therefore, the biological effect shown by the methanolic extract of the Perla Negra has some specificity in inhibiting tumor cells and not normal cells; an unusual feature among molecules investigated as potential biomedical agents. PMID:28757593
Ivanov, Ivan; Petkova, Nadezhda; Tumbarski, Julian; Dincheva, Ivayla; Badjakov, Ilian; Denev, Panteley; Pavlov, Atanas
2018-01-26
A comparative investigation of n-hexane soluble compounds from aerial parts of dandelion (Taraxacum officinale Weber ex F.H. Wigg.) collected during different vegetative stages was carried out. The GC-MS analysis of the n-hexane (unpolar) fraction showed the presence of 30 biologically active compounds. Phytol [14.7% of total ion current (TIC)], lupeol (14.5% of TIC), taraxasteryl acetate (11.4% of TIC), β-sitosterol (10.3% of TIC), α-amyrin (9.0% of TIC), β-amyrin (8.3% of TIC), and cycloartenol acetate (5.8% of TIC) were identified as the major components in n-hexane fraction. The unpolar fraction exhibited promising antioxidant activity - 46.7 mmol Trolox equivalents/g extract (determined by 1,1-diphenyl-2-picrylhydrazyl method). This fraction demonstrated insignificant antimicrobial activity and can be used in cosmetic and pharmaceutical industries.
Anti-tumour potential of a gallic acid-containing phenolic fraction from Oenothera biennis.
Pellegrina, Chiara Dalla; Padovani, Giorgia; Mainente, Federica; Zoccatelli, Gianni; Bissoli, Gaetano; Mosconi, Silvia; Veneri, Gianluca; Peruffo, Angelo; Andrighetto, Giancarlo; Rizzi, Corrado; Chignola, Roberto
2005-08-08
A phenolic fraction purified form defatted seeds of Oenothera biennis promoted selective apoptosis of human and mouse bone marrow-derived cell lines following first-order kinetics through a caspase-dependent pathway. In non-leukemia tumour cell lines, such as human colon carcinoma CaCo(2) cells and mouse fibrosarcoma WEHI164 cells, this fraction inhibited (3)H-thymidine incorporation but not cell death or cell cycle arrest. Human peripheral blood mononuclear cells showed low sensitivity to treatment. Single bolus injection of the phenolic fraction could delay the growth of established myeloma tumours in syngeneic animals. HPLC and mass spectrometry analysis revealed that the fraction contains gallic acid. However, the biological activity of the fraction differs from the activity of this phenol and hence it should be attributed to other co-purified molecules which remain still unidentified.
ERIC Educational Resources Information Center
Emry, Randall; Curtright, Robert D.; Wright, Jonathan; Markwell, John
2000-01-01
Introduces electrophoresis activities developed for chemistry and biology courses in which students identify the food, drug, and cosmetic identity of the food dyes used in the coating of candies. (YDS)
Komori, Yumiko; Hifumi, Toru; Yamamoto, Akihiko; Sakai, Atsushi; Sawabe, Kyoko; Nikai, Toshiaki
2017-01-01
Rhabdophis lateralis, a colubrid snake distributed throughout the continent of Asia, has recently undergone taxonomic revisions. Previously, Rhabdophis lateralis was classified as a subspecies of R. tigrinus (Yamakagashi) until 2012, when several genetic differences were discovered which classified this snake as its own species. To elucidate the toxicity of venom from this poorly studied colubrid, various biological activities were compared between the venom from the two snake species. The components of their venom were compared by the elution profiles of reversed-phase HPLC and SDS-PAGE, and gel filtrated fractions were tested for effects on blood coagulation. Proteolytic activities of these fractions were also assayed by using synthetic substrates, fibrinogen, and matrix proteins. Similar to the R. tigrinus venom, the higher molecular weight fraction of R. lateralis venom contained a prothrombin activator. Both prothrombin time (PT) and activated partial thromboplastin time (APTT) of human plasma were shortened by the addition of R. lateralis and R. tigrinus venom. The thrombin formation was estimated by the uses of SDS-PAGE and chromogenic substrates. These venom fractions also possessed very specific proteinase activity on human fibrinogen, but the substrates for matrix metalloproteinase, such as collagen and laminin, were not hydrolyzed. However, there were some notable differences in reactivity to synthetic substrates for matrix metalloproteinase, and R. tigrinus venom possessed relatively higher activity. Our chemical investigation indicates that the components included in both venoms resemble each other closely. However, the ratio of components and proteolytic activity of some ingredients are slightly different, indicating differences between two closely-related snakes. PMID:29149042
Larvicidal Activity of Centaurea bruguierana ssp. belangerana Against Anopheles stephensi Larvae.
Khanavi, Mahnaz; Rajabi, Afsaneh; Behzad, Masoud; Hadjiakhoondi, Abbas; Vatandoost, Hassan; Abaee, Mohammad Reza
2011-01-01
In this study, the total 80% of MeOH extract and also petroleum ether, CHCl3, EtOAc, n-BuOH, and the remaining MeOH fractions obtained by solvent-solvent fractionation of the whole flowering samples of Centaurea bruguierana (DC.) Hand.-Mzt. ssp. belangerana (DC.) Bornm. (Asteraceae), namely "Baad-Avard", collected from Borazjan in Bushehr Province (Bushehr, Iran) were investigated for larvicidal activity against malaria vector, Anopheles stephensi Liston, according to WHO methods. The mortality rate of total extract and petroleum ether fraction in concentration of 40 ppm were 28% and 86% respectively and the other fractions were inactive. The probit regression analysis for the dose-response to petroleum ether fraction treatment of larvae exhibited the LC50 and LC90 values of 15.7 ppm and 48.3 ppm, respectively. As results showed, the larvicidal activity of the petroleum ether fraction would be due to the nonpolar compounds in the plant which further isolation and purification would obtain the more active compounds in lower concentrations useful for preparation of biological insecticides.
Larvicidal Activity of Centaurea bruguierana ssp. belangerana Against Anopheles stephensi Larvae
Khanavi, Mahnaz; Rajabi, Afsaneh; Behzad, Masoud; Hadjiakhoondi, Abbas; Vatandoost, Hassan; Abaee, Mohammad Reza
2011-01-01
In this study, the total 80% of MeOH extract and also petroleum ether, CHCl3, EtOAc, n-BuOH, and the remaining MeOH fractions obtained by solvent-solvent fractionation of the whole flowering samples of Centaurea bruguierana (DC.) Hand.-Mzt. ssp. belangerana (DC.) Bornm. (Asteraceae), namely “Baad-Avard”, collected from Borazjan in Bushehr Province (Bushehr, Iran) were investigated for larvicidal activity against malaria vector, Anopheles stephensi Liston, according to WHO methods. The mortality rate of total extract and petroleum ether fraction in concentration of 40 ppm were 28% and 86% respectively and the other fractions were inactive. The probit regression analysis for the dose-response to petroleum ether fraction treatment of larvae exhibited the LC50 and LC90 values of 15.7 ppm and 48.3 ppm, respectively. As results showed, the larvicidal activity of the petroleum ether fraction would be due to the nonpolar compounds in the plant which further isolation and purification would obtain the more active compounds in lower concentrations useful for preparation of biological insecticides. PMID:24250419
Method for the isolation of biologically active monomeric immunoglobulin A from a plasma fraction.
Leibl, H; Tomasits, R; Wolf, H M; Eibl, M M; Mannhalter, J W
1996-04-12
A purification method for immunoglobulin A (IgA) yielding monomeric IgA with a purity of over 97% has been developed. This procedure uses ethanol-precipitated plasma (Cohn fraction III precipitate) as the starting material and includes heparin-Sepharose adsorption, dextran sulfate and ammonium sulfate precipitation, hydroxyapatite chromatography, batch adsorption by an anion-exchange matrix and gel permeation. Additional protein G Sepharose treatment leads to an IgA preparation of greater than 99% purity. The isolated IgA presented with an IgA subclass distribution, equivalent to IgA in unfractionated plasma, and was biologically active, as was shown by its ability to down-modulate Haemophilus influenzae-b-induced IL-6 secretion of human monocytes.
Khanavi, Mahnaz; Gheidarloo, Razieh; Sadati, Nargess; Ardekani, Mohammad Reza Shams; Nabavi, Seyed Mohammad Bagher; Tavajohi, Shohreh; Ostad, Seyed Nasser
2012-01-01
Context: Marine algae produce different secondary metabolites with a wide range of biological activities. Many studies have been achieved on the screening of biological effects of marine organisms and a lot of active compounds were isolated and characterized. Aims: In an attempt to find cytotoxic compound of hexane fraction, isolation, identification, and cytotoxicity of active compound of this fraction were performed. Materials and Methods: In this study, total methanolic (70%) extract and partition fractions of hexane, chloroform (CHCl3), ethyl acetate (EtOAc), and MeOH–H2O of Sargassum angustifolium, Chondria dasyphylla, and Ulva flexuosa, collected from coastlines of the Persian Gulf in south of Iran, were studied against colon carcinoma (HT-29), colorectal adenocarcinoma (Caco-2), breast ductal carcinoma (T47D), and Swiss mouse embryo fibroblast (NIH 3T3) cell lines by MTT assay. Statistical Analysis Used: IC50 (median growth inhibitory concentration) values were calculated by Sigmaplot (10) software. Results: Hexane fraction of Chondria dasyphylla (IC50 82.26 ± 4.09 μg/ml) and MeOH-H2O fraction of Ulva flexuosa (IC50 116.92 ± 8.58 μg/ml) showed cytotoxic activity against proliferation of T47D cells. Hexane fraction of Sargassum angustifolium was also observed for cytotoxicity against T47D and HT-29 cell lines (IC50 166.42 ± 26.7 and 190.24 ± 52.8 μg/ml), respectively. An investigation of a component from the hexane fraction of Sargassum angustifolium yielded a steroidal metabolite, fucosterol, with cytotoxicity in T47D and HT29 (IC50 27.94 ± 9.3 and 70.41 ± 7.5 μg/ml). Conclusions: These results indicated that fucosterol, the most abundant phytosterol in brown algae, is responsible for cytotoxic effect of this extract against breast and colon carcinoma cell lines. PMID:22438665
Klungsupya, Prapaipat; Suthepakul, Nava; Muangman, Thanchanok; Rerk-Am, Ubon; Thongdon-A, Jeerayu
2015-01-01
Lansium domesticum Corr. or “long-kong” is one of the most popular fruits in Thailand. Its peel (skin, SK) and seeds (SD) become waste unless recycled or applied for use. This study was undertaken to determine the bioactivity and phytochemical components of L. domesticum (LD) skin and seed extracts. Following various extraction and fractionation procedures, 12 fractions were obtained. All fractions were tested for antioxidant capacity against O2−• and OH•. It was found that the peel of L. domesticum fruits exhibited higher O2−• and OH• scavenging activity than seeds. High potential antioxidant activity was found in two fractions of 50% ethanol extract of peel followed by ethyl acetate (EA) fractionation (LDSK50-EA) and its aqueous phase (LDSK50-H2O). Therefore, these two active fractions were selected for further studies on their antioxidative activity against DNA damage by hydrogen peroxide (H2O2) in human TK6 cells using comet assay. The comet results revealed DNA-protective activity of both LDSK50-EA and LDSK50-H2O fractions when TK6 human lymphoblast cells were pre-treated at 25, 50, 100, and 200 μg/mL for 24 h prior to H2O2 exposure. The phytochemical analysis illustrated the presence of phenolic substances, mainly scopoletin, rutin, and chlorogenic acid, in these two active fractions. This study generates new information on the biological activity of L. domesticum. It will promote and strengthen the utilization of L. domesticum by-products. PMID:26287238
NASA Astrophysics Data System (ADS)
Liu, Yalong; Wang, Ping; Ding, Yuanjun; Lu, Haifei; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Filley, Timothy; Zhang, Xuhui; Zheng, Jinwei; Pan, Genxing
2016-12-01
While soil organic carbon (SOC) accumulation and stabilization has been increasingly the focus of ecosystem properties, how it could be linked to soil biological activity enhancement has been poorly assessed. In this study, topsoil samples were collected from a series of rice soils shifted from salt marshes for 0, 50, 100, 300 and 700 years from a coastal area of eastern China. Soil aggregates were fractioned into different sizes of coarse sand (200-2000 µm), fine sand (20-200 µm), silt (2-20 µm) and clay (< 2 µm), using separation with a low-energy dispersion protocol. Soil properties were determined to investigate niche specialization of different soil particle fractions in response to long-term rice cultivation, including recalcitrant and labile organic carbon, microbial diversity of bacterial, archaeal and fungal communities, soil respiration and enzyme activity. The results showed that the mass proportion both of coarse-sand (2000-200 µm) and clay (< 2 µm) fractions increased with prolonged rice cultivation, but the aggregate size fractions were dominated by fine-sand (200-20 µm) and silt (20-2 µm) fractions across the chronosequence. SOC was highly enriched in coarse-sand fractions (40-60 g kg-1) and moderately in clay fractions (20-25 g kg-1), but was depleted in silt fractions (˜ 10 g kg-1). The recalcitrant carbon pool was higher (33-40 % of SOC) in both coarse-sand and clay fractions than in fine-sand and silt fractions (20-29 % of SOC). However, the ratio of labile organic carbon (LOC) to SOC showed a weakly decreasing trend with decreasing size of aggregate fractions. Total soil DNA (deoxyribonucleic acid) content in the size fractions followed a similar trend to that of SOC. Despite the largely similar diversity between the fractions, 16S ribosomal gene abundance of bacteria and of archaeal were concentrated in both coarse-sand and clay fractions. Being the highest generally in coarse-sand fractions, 18S rRNA gene abundance of fungi decreased sharply but the diversity gently, with decreasing size of the aggregate fractions. The soil respiration quotient (ratio of respired CO2-C to SOC) was the highest in the silt fraction, followed by the fine-sand fraction, but the lowest in coarse-sand and clay fractions in the rice soils cultivated over 100 years, whereas the microbial metabolic quotient was lower in coarse-sand-sized fractions than in other fractions. Soil respiration was higher in the silt fraction than in other fractions for the rice soils. For the size fractions other than the clay fraction, enzyme activity was increased with prolonged rice cultivation, whereas soil respiration appeared to have a decreasing trend. Only in the coarse-sand fraction was both microbial gene abundance and enzyme activity well correlated to SOC and LOC content, although the chemical stability and respiratory of SOC were similar between coarse-sand and clay fractions. Thus, biological activity was generally promoted with LOC accumulation in the coarse-sand-sized macroaggregates of the rice soils, positively responding to prolonged rice cultivation management. The finding here provides a mechanistic understanding of soil organic carbon turnover and microbial community succession at fine scale of soil aggregates that have evolved along with anthropogenic activity of rice cultivation in the field.
Segura-Campos, Maira R.; Peralta-González, Fanny; Castellanos-Ruelas, Arturo; Chel-Guerrero, Luis A.; Betancur-Ancona, David A.
2013-01-01
Hypertension is one of the most common worldwide diseases in humans. Angiotensin I-converting enzyme (ACE) plays an important role in regulating blood pressure and hypertension. An evaluation was done on the effect of Alcalase hydrolysis of defatted Jatropha curcas kernel meal on ACE inhibitory activity in the resulting hydrolysate and its purified fractions. Alcalase exhibited broad specificity and produced a protein hydrolysate with a 21.35% degree of hydrolysis and 34.87% ACE inhibition. Ultrafiltration of the hydrolysate produced peptide fractions with increased biological activity (24.46–61.41%). Hydrophobic residues contributed substantially to the peptides' inhibitory potency. The 5–10 and <1 kDa fractions were selected for further fractionation by gel filtration chromatography. ACE inhibitory activity (%) ranged from 22.66 to 45.96% with the 5–10 kDa ultrafiltered fraction and from 36.91 to 55.83% with the <1 kDa ultrafiltered fraction. The highest ACE inhibitory activity was observed in F2 (IC50 = 6.7 μg/mL) from the 5–10 kDa fraction and F1 (IC50 = 4.78 μg/mL) from the <1 kDa fraction. ACE inhibitory fractions from Jatropha kernel have potential applications in alternative hypertension therapies, adding a new application for the Jatropha plant protein fraction and improving the financial viability and sustainability of a Jatropha-based biodiesel industry. PMID:24224169
Bonilla, Federico; Minahk, Carlos; Ajmat, María Teresa; Toranzo, Graciela Sánchez; Bühler, Marta Inés
2014-11-01
Egg activation, which includes cortical granule exocytosis, resumption and completion of meiosis and pronuclear formation culminates in the first mitotic cleavage. However, the mechanism through which the fertilizing sperm induces this phenomenon is still controversial. We investigated the effect of the microinjection of homologous sperm soluble fractions obtained by fast protein liquid chromatography (FPLC) from reacted sperm (without acrosome) and non-reacted sperm on the activation of Rhinella arenarum oocytes matured in vitro. The FPLC-purified sperm fraction obtained from reacted or non-reacted sperm is able to induce oocyte activation when it is microinjected. This fraction has a 24 kDa protein and showed phospholipase C (PLC) activity in vitro, which was inhibited by D-609 but not by n-butanol or neomycin, suggesting that it is a PLC that is specific for phosphatidylcholine (PC-PLC). The assays conducted using inhibitors of inositol triphosphate (IP3) and ryanodine receptors (RyRs) indicate that the fraction with biological activity would act mainly through the cADPr (cyclic ADP ribose) pathway. Moreover, protein kinase C (PKC) inhibition blocks the activation produced by the same fraction. Immunocytochemical studies indicate that this PC-PLC can be found throughout the sperm head.
Miller, L.G.; Kalin, Robert M.; McCauley, S.E.; Hamilton, John T.G.; Harper, D.B.; Millet, D.B.; Oremland, R.S.; Goldstein, Allen H.
2001-01-01
The largest biological fractionations of stable carbon isotopes observed in nature occur during production of methane by methanogenic archaea. These fractionations result in substantial (as much as ???70???) shifts in ??13C relative to the initial substrate. We now report that a stable carbon isotopic fractionation of comparable magnitude (up to 70???) occurs during oxidation of methyl halides by methylotrophic bacteria. We have demonstrated biological fractionation with whole Cells of three methylotrophs (strain IMB-1, strain CC495, and strain MB2) and, to a lesser extent, with the purified cobalamin-dependent methyltransferase enzyme obtained from strain CC495. Thus, the genetic similarities recently reported between methylotrophs, and methanogens with respect to their pathways for C1-unit metabolism are also reflected in the carbon isotopic fractionations achieved by these organisms. We found that only part of the observed fractionation of carbon isotopes could be accounted for by the activity of the corrinoid methyltransferase enzyme, suggesting fractionation by enzymes further along the degradation pathway. These observations are of potential biogeochemical significance in the application of stable carbon isotope ratios to constrain the tropospheric budgets for the ozone-depleting halocarbons, methyl bromide and methyl chloride.
[Biologically active compounds from the aqueous extract of Urtica dioica].
Wagner, H; Willer, F; Kreher, B
1989-10-01
From the water extract of the roots of Urtica dioica (stinging nettle) a polysaccharide fraction was isolated which revealed activity in the carrageenan rat paw edema model and lymphocyte transformation test. Ion exchange chromatography and gel filtration of this fraction afforded 4 different polysaccharides, one of which reduced dose dependent hemolysis in the classical pathway of the complement test. The Urtica dioica lectin (UDA) was reisolated and found to stimulate the proliferation of human lymphocytes.
NASA Astrophysics Data System (ADS)
Wei, G.; Wang, Z.; Li, J.; Deng, W.; Chen, X.; Ma, J.; Zeng, T.
2017-12-01
Molybdenum can actively involve in many biological processes on coral reefs, and its isotope fractionation in coral skeleton is possibly linked to some biological activities. We have performed a 3-days' time-series observation in a time interval of 4 hours on both Mo concentrations and δ98/85Mo of the seawater of the Luhuitou Reef in Sanya of Southern Hainan Islands in the northern South China Sea. Both Mo concentrations and δ98/85Mo show in pace diurnal variations with temperature, pH, dissolved oxygen (DO) contents, dissolved inorganic carbon (DIC) contents and its δ13C. High Mo concentrations and low δ98/85Mo generally occur during day time, and low Mo concentrations and high δ98/85Mo occur at night, suggesting that respiration of coral dominated at night tends to uptake more Mo from seawater. A further analysis on the Mo isotopic compositions of 6 different coral species on the Luhuitou Reef indicates that different coral species has different δ98/85Mo values in their skeleton. The lowest δ98/85Mo value occurs in Fungia of 0.34 ‰, and the highest occurs in Acropora sp of 1.91 ‰. These are all lower than that of the seawater, 2.04 ‰, suggesting a specie-depended Mo fractionation on coral skeleton. Meanwhile, we measured a 32-year time series of both Mo concentrations and δ98/85Mo of a Porites coral from the Great Barrier Reefs of Australia in annual resolution. The Mo concentrations vary from 12.5 to 78.0 ng/g, with an average of 21.4 ± 0.02 ng/g, and the δ98/95Mo values change from 0.46 to 1.83‰, with an average of 1.34 ± 0.09‰. A significant negative correlation occurs between the δ98/95Mo and the Mo concentration, and a positive correlation occurs between the δ98/95Mo and the seawater surface temperature. All these suggest that Mo isotope fractionation in coral skeleton is associated with biological activities of coral, such as respiration, and the δ98/95Mo values may be used to indicate changes in the related biological activities.
Giesy, John P.; Paine, Donald
1977-01-01
Naturally occurring organics were extracted from water collected from Skinface Pond near Aiken, S.C. Organics were separated into four nominal diameter size fractions (I, >0.0183; II, 0.0183 to 0.0032; III, 0.0032 to 0.0009; IV, <0.0009 μm) by membrane ultrafiltration and introduced into Scenedesmus obliquus and Aeromonas hydrophila cultures to determine their effects on 241Am availability for uptake. Effects on 241Am uptake were determined in actively growing S. obliquus cultures after 96 h of growth and in dense cultures of nongrowing cells after 4 h. Uptake by A. hydrophila was determined after 4 and 24 h in actively growing cultures. All organic fractions stimulated S. obliquus growth, with the most pronounced effects due to larger organic fractions, whereas no apparent growth stimulation of A. hydrophila was observed for any organic fraction. For both long-term and short-term studies, cellular 241Am concentration (picocuries/cell) increased with increasing 241Am concentration for S. obliquus and A. hydrophila. Fraction IV increased 241Am uptake by both S. obliquus and A. hydrophila during 4-h incubations. During 96-h incubations fraction I was flocculated and cosedimented, with S. obliquus and A. hydrophila cells causing an apparent increase in 241Am uptake. Fractions II and III reduced apparent 241Am uptake by S. obliquus as a result of biological dilution caused by increased algal growth due to the organics. Fraction IV caused a reduction in 241Am uptake by S. obliquus not attributable to biological dilution. Organics increased 241Am uptake by A. hydrophila during 4- and 24-h incubations. A. hydrophila also caused flocculation of fraction I during 96-h incubations. PMID:16345193
NASA Astrophysics Data System (ADS)
Gong, He; Fan, Yubo; Zhang, Ming
2008-04-01
The objective of this paper is to identify the effects of mechanical disuse and basic multi-cellular unit (BMU) activation threshold on the form of trabecular bone during menopause. A bone adaptation model with mechanical- biological factors at BMU level was integrated with finite element analysis to simulate the changes of trabecular bone structure during menopause. Mechanical disuse and changes in the BMU activation threshold were applied to the model for the period from 4 years before to 4 years after menopause. The changes in bone volume fraction, trabecular thickness and fractal dimension of the trabecular structures were used to quantify the changes of trabecular bone in three different cases associated with mechanical disuse and BMU activation threshold. It was found that the changes in the simulated bone volume fraction were highly correlated and consistent with clinical data, and that the trabecular thickness reduced significantly during menopause and was highly linearly correlated with the bone volume fraction, and that the change trend of fractal dimension of the simulated trabecular structure was in correspondence with clinical observations. The numerical simulation in this paper may help to better understand the relationship between the bone morphology and the mechanical, as well as biological environment; and can provide a quantitative computational model and methodology for the numerical simulation of the bone structural morphological changes caused by the mechanical environment, and/or the biological environment.
Ghannam, Ahmed; Murad, Hossam; Jazzara, Marie; Odeh, Adnan; Allaf, Abdul Wahab
2018-03-01
Hydrocolloids from seaweeds (phycocolloids) have interesting functional properties like antiproliferative activity. Marine algae consumptions are linked to law cancer incidences in countries that traditionally consume marine products. In this study, we have investigated water-soluble sulfated polysaccharides isolated from the red seaweed Laurencia papillosa and determined their chemical characteristics and biological activities on the human breast cancer cell line MCF-7. Total polysaccharides were extracted and fractionated from L. papillosa and characterized using FTIR-ATR and NMR spectrometry. In addition, their approximate molar mass was determined by GPC method. The chemical characterization of purified polysaccharides reveals the presence of sulfated polysaccharides differentially dispersed in the algal cell wall. They are the three types of carrageenan, kappa, iota and lambda carrageenans, named LP-W1, -W2 and -W3 respectively. Biological effects and cytotoxicity of the identified of the three sulfated polysaccharide fractions were evaluated in MCF-7 cell line. Our results showed a significant inhibition of MCF-7 cell viability by dose-dependent manner for cells exposed to LP-W2 and LP-W3 polysaccharides for 24h. The mechanistic of LP fractions-mediated apoptosis in MCF-7 cells was demonstrated. The biological effects of L. papillosa SPs indicate that it may be a promising candidate for breast cancer prevention and therapy. Copyright © 2017 Elsevier B.V. All rights reserved.
Caetano da Silva, Sandro Donizete; Mendes de Souza, Maria Gorete; Oliveira Cardoso, Miguel Jorge; da Silva Moraes, Thais; Ambrósio, Sérgio Ricardo; Sola Veneziani, Rodrigo Cássio; Martins, Carlos Henrique G
2014-12-01
Endodontic infections have a polymicrobial nature, but anaerobic bacteria prevail among the infectious microbes. Considering that it is easy to eliminate planktonic bacteria, biofilm-forming bacteria still challenge clinicians during the fight against endodontic diseases. The chemical constituents of the oleoresin of Pinus elliottii, a plant belonging to the family Pinaceae, stand out in the search for biologically active compounds based on natural products with potential application in the treatment of endodontic infections. Indeed, plant oleoresins are an abundant natural source of diterpenes that display significant and well-defined biological activities as well as potential antimicrobial action. In this context, this study aimed to (1) evaluate the in vitro antibacterial activity of the oleoresin, fractions, and subfractions of P. elliottii as well as the action of dehydroabietic acid against 11 anaerobic bacteria that cause endodontic infection in both their planktonic and biofilm forms and (2) assess the in vitro antibiofilm activity of dehydroabietic acid against the same group of bacteria. The broth microdilution technique helped to determine the minimum inhibitory concentration (MIC) of the oleoresin and fractions. This same technique aided determination of the MIC values of nine subfractions of Fraction 1, the most active fraction. The MIC, minimum bactericidal concentration, and antibiofilm activity of dehydroabietic acid against the tested anaerobic bacteria were also examined. The oleoresin and fractions, especially fraction PE1, afforded promising MIC values, which ranged from 0.4 to 50 μg/mL. Concerning the nine evaluated subfractions, PE1.3 and PE1.4 furnished the most noteworthy MIC values, between 6.2 and 100 μg/mL. Dehydroabietic acid displayed antibacterial activity, with MIC values lying from 6.2 to 50 μg/mL, as well as bactericidal effect for all the investigated bacteria, except for Prevotella nigrescens. Assessment of the antibiofilm activity revealed significant results--MICB50 lay between 7.8 and 62.5 μg/mL, and dehydroabietic acid prevented all the evaluated bacteria from forming a biofilm. Hence, the chemical constituents of P. elliottii are promising biomolecules to develop novel therapeutic strategies to fight against endodontic infections. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhou, Ling; Tang, Yu-Ping; Gao, Lu; Fan, Xin-Sheng; Liu, Chun-Mei; Wu, De-Kang
2009-10-09
San-ao decoction (SAD), comprising Herba Ephedrae, Radix et Rhizoma Glycyrrhizae and Seneb Armeniacae Amarum, is one of the most popular traditional Chinese medicine (TCM) formulae for asthma. Peroxisome proliferator-activated receptors (PPARs) areey regulators of lipid and glucose metabolism and have become important therapeutic targets for various deseases, PPARgamma activation might exhibit anti-inflammatory properties in different chronic inflammatory processes. The EtOAc fraction of SAD showed a significant effect on PPARgamma activation. A simple and rapid method has been established for separation and characterization of the main compounds in the PPARgamma-activating fraction of SAD by ultra-fast HPLC coupled with quadropole time-of-flight mass pectrometry (UPLC-Q-TOF/MS). A total of 10 compounds were identified in the activating fraction of SAD, including amygdalin (1), liquiritin (2), 6'-acetyliquiritin (3), liquiritigenin (4), isoliquiritigenin (5), formononetin (6), licoisoflavanone (7), glycycoumarin (8), glycyrol (9) and uercetin (10). The results also characterized formononetin as a predominant component in this fraction. The dose-effect relationship comparison study of formononetin and the EtOAc fraction of SAD by adding formononetin was performed, the results suggested that formononetin was the major component of the EtOAc fraction of SAD responsible for activating PPARgamma, and the method will possibly be applied to study the complex biological active constituents of other TCMs.
Glycosyltransferases in the Golgi membranes of onion stem
Powell, Janet T.; Brew, Keith
1974-01-01
Cell fractions consisting largely of Golgi membranes were prepared from the meristematic region of the onion. Several enzyme activities were found to be localized in these fractions: inosine diphosphatase, galactosyltransferases and glucosyltransferases. The fractions catalysed the transfer of [14C]galactose from UDP-galactose to endogenous and cell-sap acceptors, to N-acetylglucosamine and to ovalbumin. In the presence of bovine α-lactalbumin, transfer to glucose (lactose synthesis) was catalysed. [14C]Glucose was transferred from UDP-glucose to endogenous and cell-sap acceptors, to cellobiose and to fructose (sucrose synthesis). All these activities were latent, being potentiated by detergents (Triton X-100 or sodium deoxycholate). The characteristics of some of these enzyme activities are described and their biological significance is discussed. ImagesPLATE 1 PMID:4374190
Strandell, M; Zakrisson, S; Alsberg, T; Westerholm, R; Winquist, L; Rannug, U
1994-01-01
Extracts of gasoline and diesel vehicle exhaust and ambient air particles were fractionated into five fractions according to polarity on a silica gel column. Two medium polar fractions showing high genotoxic activity in the Ames test were further subfractionated, using normal-phase high-performance liquid chromatography. Chemical analyses were performed by means of gas chromatography combined with mass spectrometry and flame ionization and detection. The crude extracts, fractions, and subfractions were assayed with the Ames test, with and without S9, and the most abundant compounds in the subfractions are reported. PMID:7529708
2012-01-01
Background Enhancement of tumor cell sensitivity may help facilitate a reduction in drug dosage using conventional chemotherapies. Consequently, it is worthwhile to search for adjuvants with the potential of increasing chemotherapeutic drug effectiveness and improving patient quality of life. Natural products are a very good source of such adjuvants. Methods The biological activity of a fraction enriched in hydrolysable polyphenols (P2Et) obtained from Caesalpinia spinosa was evaluated using the hematopoietic cell line K562. This fraction was tested alone or in combination with the conventional chemotherapeutic drugs doxorubicin, vincristine, etoposide, camptothecin and taxol. The parameters evaluated were mitochondrial depolarization, caspase 3 activation, chromatin condensation and clonogenic activity. Results We found that the P2Et fraction induced mitochondrial depolarization, activated caspase 3, induced chromatin condensation and decreased the clonogenic capacity of the K562 cell line. When the P2Et fraction was used in combination with chemotherapeutic drugs at sub-lethal concentrations, a fourfold reduction in doxorubicin inhibitory concentration 50 (IC50) was seen in the K562 cell line. This finding suggested that P2Et fraction activity is specific for the molecular target of doxorubicin. Conclusions Our results suggest that a natural fraction extracted from Caesalpinia spinosa in combination with conventional chemotherapy in combination with natural products on leukemia cells may increase therapeutic effectiveness in relation to leukemia. PMID:22490328
Larvicidal activity of extracts from Quercus lusitania var. infectoria galls (Oliv.).
Redwane, A; Lazrek, H B; Bouallam, S; Markouk, M; Amarouch, H; Jana, M
2002-02-01
The present study indicates the efficacy of extracts and fractions of Quercus lusitania var. infectoria galls (Oliv.) as larvicidal agents and their possible use in biological control of Culex pipiens, the urban nuisance mosquito. Extracts and fractions were tested against second and fourth instar larvae. The LC(50) values of gallotannins were 335 and 373 ppm, respectively for the 2nd and 4th instar period. The most interesting value of LC(50) (24 h) is obtained with the fraction F(2) (60 ppm).
Konaté, Kiessoun; Hilou, Adama; Mavoungou, Jacques François; Lepengué, Alexis Nicaise; Souza, Alain; Barro, Nicolas; Datté, Jacques Y; M'batchi, Bertrand; Nacoulma, Odile Germaine
2012-02-24
The increased resistance of microorganisms to the currently used antimicrobials has lead to the evaluation of other agents that might have antimicrobial activity. Medicinal plants are sources of phytochemicals which are able to initiate different biological activities including antimicrobials In vitro antibacterial (MIC, MBC and time-kill studies) of polyphenol-rich fractions from Sida alba L. (Malvaceae) was assessed using ten bacteria strains (Gram-negative and Gram-positive). All test bacteria were susceptible to the polyphenol-rich fractions. Time-kill results showed that after 5 h exposition there was no viable microorganism in the initial inoculum and the effect of polyphenol-rich fractions was faster on Enterococcus faecalis (Gram-positive bacterium) comparatively to the other bacteria strains. The data analysis indicates that the tested of polyphenol-rich fractions has significant effects when compared with the standard antibiotic. These results therefore justify the traditional use of sida alba L., alone or in combination with other herbs to treat bacterial infections.
García-Arredondo, Alejandro; Rojas-Molina, Alejandra; Ibarra-Alvarado, César; Lazcano-Pérez, Fernando; Arreguín-Espinosa, Roberto; Sánchez-Rodríguez, Judith
2016-01-01
Scleractinian corals (stony corals) are the most abundant reef-forming cnidarians found in coral reefs throughout the world. Despite their abundance and ecological importance, information about the diversity of their toxins and their biological activities is very scarce. In this study, the chemical composition and the biological activities of the aqueous extracts of Pseudodiploria strigosa , Porites astreoides and Siderastrea siderea , three scleractinian corals from the Mexican Caribbean, have been assessed for the first time. Toxicity of the extracts was assessed in crickets; the presence of cytolysins was detected by the hemolysis assay; the vasoconstrictor activity was determined by the isolated rat aortic ring assay; the nociceptive activity was evaluated by the formalin test. The presence of phospholipases A 2 (PLA 2 ), serine proteases, and hyaluronidases was determined by enzymatic methods. Low-molecular-weight fractions were obtained by gel filtration chromatography and ultrafiltration. Extracts from the three species were toxic to crickets, induced hemolysis in human and rat erythrocytes, produced vasoconstriction on isolated rat aortic rings, and presented phospholipase A 2 and serine-protease activity. Despite the fact that these corals are not considered to be harmless to humans, the extracts generated significant nociceptive responses. The matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry analysis of the low-molecular-weight fractions revealed the presence of peptides within a mass range of 3000 to 6000 Da. These fractions were toxic to crickets and two of them induced a transitory vasoconstrictor effect on isolated rat aortic rings. This study suggests that scleractinian corals produce low-molecular-weight peptides that are lethal to crickets and induce vasoconstriction.
Li, Tingting; Yang, Yan; Liu, Yanfang; Zhou, Shuai; Yan, Meng Qiu; Wu, Di; Zhang, Jingsong; Tang, Chuanhong
2015-11-01
Nine polysaccharide fractions were obtained from the fruiting bodies, submerged mycelia, and solid state fermented products of Phellinus baumii using different concentrations of ethanol precipitation. The chemical characteristics and in vitro immunological activities of the nine polysaccharide fractions were compared and studied. Results indicated that the fractions precipitated with 50% ethanol had higher yields of polysaccharides and submerged mycelia contributed to high extraction yields of polysaccharides and possessed higher polysaccharide contents. HPSEC-MALLS-RI analysis showed that the molecular weight (Mw) of polysaccharide fractions from these three materials decreased with the increasing of precipitated ethanol concentration. The Mw of fruiting body polysaccharide fractions ranged from 1.98×10(4)Da to 1.89×10(6)Da. Large-molecular-weight polysaccharides (from 2.11×10(6)Da to 2.01×10(7)Da) were found in submerged mycelia. Some lower-molecular-weight polysaccharide components were found in solid fermented products. Different culture methods contributed to significant differences in monosaccharide components and molar ratios. The 50% ethanol precipitated fractions exhibited more complexity on monosaccharide compositions comparing with fractions precipitated with 30% and 70% ethanol. Polysaccharide fractions derived from submerged mycelia exhibited higher macrophages stimulation activities. Submerged culture was found to be a suitable method to prepare active polysaccharides because of its short culture span and reasonable cost. Copyright © 2015 Elsevier B.V. All rights reserved.
López-Saiz, Carmen-María; Velázquez, Carlos; Hernández, Javier; Cinco-Moroyoqui, Francisco-Javier; Plascencia-Jatomea, Maribel; Robles-Sánchez, Maribel; Machi-Lara, Lorena; Burgos-Hernández, Armando
2014-01-01
Shrimp is one of the most popular seafood items worldwide, and has been reported as a source of chemopreventive compounds. In this study, shrimp lipids were separated by solvent partition and further fractionated by semi-preparative RP-HPLC and finally by open column chromatography in order to obtain isolated antiproliferative compounds. Antiproliferative activity was assessed by inhibition of M12.C3.F6 murine cell growth using the MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay. The methanolic fraction showed the highest antiproliferative activity; this fraction was separated into 15 different sub-fractions (M1–M15). Fractions M8, M9, M10, M12, and M13 were antiproliferative at 100 µg/mL and they were further tested at lower concentrations. Fractions M12 and M13 exerted the highest growth inhibition with an IC50 of 19.5 ± 8.6 and 34.9 ± 7.3 µg/mL, respectively. Fraction M12 was further fractionated in three sub-fractions M12a, M12b, and M12c. Fraction M12a was identified as di-ethyl-hexyl-phthalate, fraction M12b as a triglyceride substituted by at least two fatty acids (predominantly oleic acid accompanied with eicosapentaenoic acid) and fraction M12c as another triglyceride substituted with eicosapentaenoic acid and saturated fatty acids. Bioactive triglyceride contained in M12c exerted the highest antiproliferative activity with an IC50 of 11.33 ± 5.6 µg/mL. Biological activity in shrimp had been previously attributed to astaxanthin; this study demonstrated that polyunsaturated fatty acids are the main compounds responsible for antiproliferative activity. PMID:25526568
NASA Astrophysics Data System (ADS)
Alvarez-Romero, Marta; Papa, Stefania; Verstraeten, Arne; Curcio, Elena; Cools, Nathalie; Lozano-Garcia, Beatriz; Parras-Alcántara, Luis; Coppola, Elio
2016-04-01
This research reports the preliminary results of a study based on the SOC (Soil Organic Carbon) fractionation in a pine forest soil (Pinus nigra). Hyperskeletic Albic Podzol soil (P113005, World Reference Base, 2014), described by the following sequence O-Ah-E-Bh-Bs-Cg, was investigated at Zoniën, Belgium. Total (TOC) and extractable (TEC) soil contents were determined by Italian official method of soil analysis. Different soil C fractions were also determined: Humic Acid Carbon (HAC) and Fulvic Acid Carbon (FAC). Not Humic Carbon (NHC) and Humin Carbon (Huc) fractions were obtained by difference. Along the mineral soil profile, therefore, were also tested some enzymatic activities, such as cellulase, xylanase, laccase and peroxidase, involved in the degradation of the main organic substance components, and dehydrogenase activity, like soil microbial biomass index. The results shows a differential TEC fractions distribution in the soil profile along three fronts of progress: (i) An E leaching horizon of TEC; Bh horizon (humic) of humic acids preferential accumulation, morphologically and analytically recognizable, in which humic are more insoluble that fulvic acids, and predominate over the latter; (ii) horizon Bs (spodic) in which fulvic acids are more soluble that humic acid, and predominate in their turn. All enzyme activities appear to be highest in the most superficial part of the mineral profile and decrease towards the deeper layers with different patterns. It is known that the enzymes production in a soil profile reflects the organic substrates availability, which in turn influences the density and the composition of the microbial population. The deeper soil horizons contain microbial communities adapted and specialized to their environment and, therefore, different from those present on the surface The results suggest that the fractionation technique of TEC is appropriate to interpret the podsolisation phenomenon that is the preferential distribution of the different fractions of the SOC. It can form the base study for evaluation of changes in some biological activity along soil profile.
Özbilgin, Serkan; Acıkara, Özlem Bahadır; Akkol, Esra Küpeli; Süntar, Ipek; Keleş, Hikmet; İşcan, Gülçin Saltan
2018-06-16
The latex and the aerial parts of Euphorbia characias L. (Euphorbiaceae) have been used as medicinal plant to treat wounds and warts in traditional medicine. The effect of the plant extract was tested in vivo and in vitro with experimental models to find scientific evidence for traditional use in wound healing. Potentially active wound-healer compounds were isolated from the active fraction using fractionation procedures under the guidance of biological assay and the possible role of the compounds in the wound healing process was also determined. N-hexane, ethyl acetate, and methanol extracts were successively prepared from the aerial parts of E. characias subsp. wulfenii. The extracts were tested with linear incision, circular excision wound models and the hydroxyproline assay method to assess the wound-healing activity. The inhibition of the increase in capillary permeability induced by acetic acid, an acute inflammation model, was used to assay the anti-inflammatory activity. Different chromatographic separation techniques on sephadex and silica gel columns, and bioassay guided assay techniques have been used to isolate the active compounds of the plant. Moreover, hyaluronidase, collagenase and elastase enzymes inhibitory effect of active principle were investigated in vitro to find out the mechanism of action. The methanol (MeOH-ex) extract of the aerial parts of E. characias subsp. wulfenii showed significant wound healing activity (linear incision wound model: 43.04%; circular excision wound model 65.24%) and anti-inflammatory activity (34.74%). The methanol extract was separated into its fractions by column chromatography for isolation of efficient compounds. Biological activity of the fractions were assessed and further isolation and purification processes have been carried out in the active fraction. Isolation studies were carried out from the MeOH-ex fraction to obtain active constituents and their structures were elucidated to be quercetin-3-O-rhamnoside (quercitrin), quercetin-3-O-galactoside (hyperoside), and quercetin-3-O-arabinoside (guaijaverin). Further in vitro and in vivo assays showed that quercetin derivatives were responsible for the wound-healing eactivity of the plant, and also found to be significant anti-elastase and anti-collagenase activities. The amounts of three compounds, isolated from active fraction, were determined by using high performance liquid chromatography. Calibration equation was calculated with dilutions, prepared from pure substances, and assay was performed in total extract, prepared from E. characias subsp. wulfenii. It was detected that the plant had 1.22% quercitrin, 0.35% hyperoside, and 0.11% guaijaverin. The validation of the analytical method was performed by linearity, precision, limit of detection, and limit of quantification parameters. Present study supported the traditional use of the aerial parts E. characias subsp. wulfenii as wound healer and quercetin derivatives were isolated as active components from the active fraction by using bioassay-guided fractionation technique. Copyright © 2018. Published by Elsevier B.V.
Baxter, Ryan M; Macdonald, Daniel W; Kurtz, Steven M; Steinbeck, Marla J
2013-06-05
Wear, oxidation, and particularly rim impingement damage of ultra-high molecular weight polyethylene total disc replacement components have been observed following surgical revision. However, neither in vitro testing nor retrieval-based evidence has shown the effect(s) of impingement on the characteristics of polyethylene wear debris. Thus, we sought to determine (1) differences in polyethylene particle size, shape, number, or biological activity that correspond to mild or severe rim impingement and (2) in an analysis of all total disc replacements, regardless of impingement classification, whether there are correlations between the extent of regional damage and the characteristics of polyethylene wear debris. The extent of dome and rim damage was characterized for eleven retrieved polyethylene cores obtained at revision surgery after an average duration of implantation of 9.7 years (range, 4.6 to 16.1 years). Polyethylene wear debris was isolated from periprosthetic tissues with use of nitric acid and was imaged with use of environmental scanning electron microscopy. Subsequently, particle size, shape, number, biological activity, and chronic inflammation scores were determined. Grouping of particles by size ranges that represented high biological relevance (<0.1 to 1-μm particles), intermediate biological relevance (1 to 10-μm particles), and low biological relevance (>10-μm particles) revealed an increased volume fraction of particles in the <0.1 to 1-μm and 1 to 10-μm size ranges in the mild-impingement cohort as compared with the severe-impingement cohort. The increased volume fractions resulted in a higher specific biological activity per unit particle volume in the mild-impingement cohort than in the severe-impingement cohort. However, functional biological activity, which is normalized by particle volume (mm3/g of tissue), was significantly higher in the severe-impingement cohort. This increase was due to a larger volume of particles in all three size ranges. In both cohorts, the functional biological activity correlated with the chronic inflammatory response, and the extent of rim penetration positively correlated with increasing particle size, number, and functional biological activity. The results of this study suggest that severe rim impingement increases the production of biologically relevant particles from motion-preserving lumbar total disc replacement components. Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence.
Baxter, Ryan M.; MacDonald, Daniel W.; Kurtz, Steven M.; Steinbeck, Marla J.
2013-01-01
Background: Wear, oxidation, and particularly rim impingement damage of ultra-high molecular weight polyethylene total disc replacement components have been observed following surgical revision. However, neither in vitro testing nor retrieval-based evidence has shown the effect(s) of impingement on the characteristics of polyethylene wear debris. Thus, we sought to determine (1) differences in polyethylene particle size, shape, number, or biological activity that correspond to mild or severe rim impingement and (2) in an analysis of all total disc replacements, regardless of impingement classification, whether there are correlations between the extent of regional damage and the characteristics of polyethylene wear debris. Methods: The extent of dome and rim damage was characterized for eleven retrieved polyethylene cores obtained at revision surgery after an average duration of implantation of 9.7 years (range, 4.6 to 16.1 years). Polyethylene wear debris was isolated from periprosthetic tissues with use of nitric acid and was imaged with use of environmental scanning electron microscopy. Subsequently, particle size, shape, number, biological activity, and chronic inflammation scores were determined. Results: Grouping of particles by size ranges that represented high biological relevance (<0.1 to 1-μm particles), intermediate biological relevance (1 to 10-μm particles), and low biological relevance (>10-μm particles) revealed an increased volume fraction of particles in the <0.1 to 1-μm and 1 to 10-μm size ranges in the mild-impingement cohort as compared with the severe-impingement cohort. The increased volume fractions resulted in a higher specific biological activity per unit particle volume in the mild-impingement cohort than in the severe-impingement cohort. However, functional biological activity, which is normalized by particle volume (mm3/g of tissue), was significantly higher in the severe-impingement cohort. This increase was due to a larger volume of particles in all three size ranges. In both cohorts, the functional biological activity correlated with the chronic inflammatory response, and the extent of rim penetration positively correlated with increasing particle size, number, and functional biological activity. Conclusions: The results of this study suggest that severe rim impingement increases the production of biologically relevant particles from motion-preserving lumbar total disc replacement components. Level of Evidence: Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence. PMID:23780545
Purification of a myotoxin from the toadfish Thalassophryne maculosa (Günter) venom.
Sosa-Rosales, J I; D'Suze, G; Salazar, V; Fox, J; Sevcik, C
2005-02-01
Venom was milked by gently pressing the base of the opercular and dorsal fin spines. Three fractions were obtained by molecular exclusion high pressure liquid chromatography (HPLC) (Protein Pak 125SW, Millipore Corporation) column, but only the last one with 22.7 min retention time (rt) was biological active (TmPP-22.7). This fraction was rechromatographed on reversed phase HPLC chlorobutylsilane columns (C4, Vydac) nine fractions were obtained, but only one (TmC4-47.2) with 47.2 min rt was biologically active. MALD-TOF mass analysis was carried out on two samples of TmC-47.2 and the results were 15,161.36 and 15,154.70 a.m.u., respectively. Raw venom (1040 microg/ml) depolarised frog (Hyla crepitans) muscle irreversibly from -85 (-88, -81) mV (n=20, median and its 95% CI) to -18 (-24, -15) mV (n=24). The biological activity in TmPP-22.7 (38 microg/ml), which depolarised muscle fibres from -79 (-82, -76) mV (n=20) to -63 (-69 -57) mV (n=24). The depolarising fraction was TmC4-47.2 (50 microg/ml) which depolarised muscles from -87 (91, -82) mV (n=33) to -63 (-76 -51) mV (n=53); the depolarising effect at this concentration was completely reversed on washing with normal saline for 2 h. Muscles treated with 1 microM tetrodotoxin (TTX) were depolarised from -80 (-85, -72) mV (n=49) to -44 (-56, -31) mV (n=44) when 100 microg/ml TmC4-47.2 were applied with TTX; washing 130 min with 1 microM TTX repolarised to -59 (-69, -50) mV (n=25). We also present evidence that TmC4-47.2 induces myonecrosis in mice.
Analytical methods in environmental effects-directed investigations of effluents.
Hewitt, L Mark; Marvin, Chris H
2005-05-01
Effluent discharges are released into aquatic environments as complex mixtures for which there is commonly either no knowledge of the toxic components or a lack of understanding of how known toxicants interact with other effluent components. Effects-directed investigations consist of chemical extraction and iterative fractionation steps directed by a biological endpoint that is designed to permit the identification or characterization of the chemical classes or compounds in a complex mixture responsible for the observed biological activity. Our review of the literature on effects-directed analyses of effluents for non-mutagenic as well as mutagenic endpoints showed that common extraction and concentration methods have been used. Since the mid-1980s, the methods have evolved from the use of XAD resins to C18 solid-phase extraction (SPE). Blue cotton, blue rayon, and blue chitin have been used specifically for investigations of mutagenic activity where polycyclic compounds were involved or suspected. After isolation, subsequent fractionations have been accomplished using SPE or a high-pressure liquid chromatography (HPLC) system commonly fitted with a C18 reverse-phase column. Substances in active fractions are characterized by gas chromatography/mass spectrometry (GC-MS) and/or other spectrometric techniques for identification. LC-MS methods have been developed for difficult-to-analyze polar substances identified from effects-directed studies, but the potential for LC-MS to identify unknown polar compounds has yet to be fully realized. Salmonella-based assays (some miniaturized) have been coupled with fractionation methods for most studies aimed at identifying mutagenic fractions and chemical classes in mixtures. Effects-directed investigations of mutagens have focused mostly on drinking water and sewage, whereas extensive investigations of non-mutagenic effects have also included runoff, pesticides, and pulp mill effluents. The success of effects-directed investigations should be based on a realistic initial objective of each project. Identification of chemical classes associated with the measured biological endpoint is frequently achievable; however, confirmation of individual compounds is much more difficult and not always a necessary goal of effects-directed chemical analysis.
Bioassay-guided fractionation of a hepatoprotective and antioxidant extract of pea by-product.
Seida, Ahmed A; El Tanbouly, Nebal D; Islam, Wafaa T; Eid, Hanaa H; El Maraghy, Shohda A; El Senousy, Amira S
2015-01-01
The hepatoprotective and antioxidant activities of the hydroalcoholic extract (PE) of pea (Pisum sativum L.) by-product were evaluated, using CCl4-induced oxidative stress and hepatic damage in rats. These activities were assessed via measuring alanine aminotransferase (ALT), aspartate aminotransferase (AST), total protein and albumin, malondialdehyde (MDA), reduced glutathione (GSH), protein thiols (PSH), nitrite/nitrate levels, glutathione-peroxidase (GSH-Px), glutathione-S-transferase (GST) activities, as well as, histopathological evaluation. PE revealed significant hepatoprotective and antioxidant activities mostly found in n-butanol fraction. Chromatographic fractionation of this active fraction led to the isolation of five flavonoid glycosides namely, quercetin-3-O-sophorotrioside (1), quercetin-3-O-rutinoside (2), quercetin-3-O-(6″″-O-E sinapoyl)-sophorotrioside (3), quercetin-3-O-(6″″-O-E feruloyl)-sophorotrioside (4) and quercetin-3-O-β-D-glucopyranoside (5). The isolated compounds were quantified in PE, using a validated HPLC method and the nutritional composition of pea by-product was also investigated. Our results suggest that pea by-product contained biologically active constituents which can be utilised to obtain high value added products for nutraceutical use.
Chemical and biological evaluation of Ranunculus muricatus.
Khan, Farhat Ali; Zahoor, Muhammad; Khan, Ezzat
2016-03-01
Ranunculus muricatus is commonly known as spiny fruit buttercup and is used in the treatment of intermittent fevers, gout and asthma. Qualitative analysis of phytochemicals of Ranunculus muricatus indicated the presence of saponins, tannins, phenols, flavonoids and alkaloids. Saponins were present in high amount as compared with other chemicals. Inorganic and heavy metals constituents were determined. Heavy metals estimation in the sample showed that iron was present in high amount followed by zinc even then the concentration of these metals is below acceptable limit. The physical parameters, antioxidant and antimicrobial activities of the extracts were determined. Acetone extract fraction showed optimal antioxidant activity as compared to ethanol and chloroform fractions of the candidate plant. The antimicrobial and antifungal activities of the crude extract and extract fractions were determined by well agar diffusion method. Highest zone of inhibitions were observed for crude extract followed by acetone extract fraction against Micrococcus luteus. Antifungal activities were high for crude extracts against Candida Albican. Findings of this study show that Ranunculus muricatus has a good medicinal impact.
Lipid-lowering and antioxidant activities of Jiang-Zhi-Ning in Traditional Chinese Medicine.
Chen, Jianxin; Zhao, Huihui; Yang, Ying; Liu, Bing; Ni, Jian; Wang, Wei
2011-04-12
Jiang-Zhi-Ning (JZN) is composed of four Chinese herbs, i.e., Fleeceflower Root, Fructus Crataegi, Folium Nelumbinis and Semen Cassiae. It was used to strengthen blood circulation of coronary artery, arrhythmia and hyperlipidemia. The main objective of this paper is to evaluate lipid-lowering and antioxidant activities of extract and effective fraction of JZN by using in vitro experiments on hyperlipidemic rats. Moreover, in vivo experiments on cells were performed to investigate lipid-lowering and antioxidant activities of effective fraction and active constituents of JZN. Wistar rats with high fat diet-induced hyperlipidemia were used as in vitro models to study biological effects of lipid-lowering and antioxidant activities of extract and effective fraction of JZN. Serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), Coronary Index and Atherogenic Index were investigated to evaluate lipid-lowering effects of extract and effective fraction of JZN. Serum total nitric oxide synthase (NOS), nitric oxide (NO), endothelin-1 (ET-1), malondialdehyde (MDA), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) were detected to measure antioxidant effects of extract and effective fraction of JZN. Furthermore, oxidized low-density lipoprotein (Ox-LDL) injured human umbilical vein endothelial cell (HUVEC) model was employed as in vivo experiment to study lipid-lowering and antioxidant effects of effective fraction and active constituents of JZN. NO, ET-1, MDA SOD and T-AOC in HUVECs or culture media were investigated to evaluate antioxidant activity of effective fraction and active constituents of JZN. Using human hepatoma cell line Bel-7402, reverse transcription polymerase chain reaction (RT-PCR) technology was performed to investigate cholesterol metabolism effects of effective fraction and active constituents of JZN. Expressions of low density lipoprotein receptor (LDL-R), 3-hydroxy-3-methyl-HMG-coenzyme A reductase (HMG-CoAR), and cholesterol 7α-hydroxylase (CYP7A1) mRNA of the liver cells were investigated to evaluate JZN on associated receptor and enzymes of cholesterol metabolism. High-performance liquid chromatography (HPLC) and spectrophotometry were used to study the impact of effective fraction and active constituents of JZN on synthesis and translation of cholesterol during the process of metabolism by measuring inside and extracellular contents of total bile acid (TBA) of Bel-7402. Extract and effective fraction of JZN significantly reduced contents of TC, TG and LDL-C, CRI and AI in hyperlipidemic rats as well as significantly increased contents of HDL-C in the rats. Moreover, they significantly enhanced the activity of NOS and increased contents of NO. They also caused significant reductions in contents of ET-1 and MDA as well as significant increase in SOD activity and T-AOC in the hyperlipidemic rats. Several indicators were found to be concentration-dependent. As far as in vivo experiments to investigate biological activities of effective fraction and active constituents of JZN were concerned, it was found that they restored and enhanced the vitality of HUVECs with a concentration-dependent manner as well as content of NO in the culture media of HUVEC. They caused reductions in the contents of ET-1 in the culture media of HUVEC and contents of MDA in HUVECs. They also caused an increase in the vitality of SOD and T-AOC in HUVECs. Furthermore, they enhanced LDL-RmRNA expression, with a concentration-dependent manner. Low and medium concentrations of effective fraction and active constituents of JZN could inhibit expression of HMG-CoAR mRNA. High concentration counterpart could enhance expression of the HMG-CoAR mRNA. They enhanced expression of CYP7A1 mRNA in a concentration-dependent manner. Finally, they caused reductions in the contents of cholesterol in Bel-7402. They also increased intercellular content of total bile acid as well as lowered extracellular contents of TBA in the cells in a concentration-dependent manner. We demonstrated for the first time lipid-lowering and antioxidant activities of extract and effective fractions as well as active constituents of JZN. Active constituents of JZN had the same biological effects with effective fraction and extract of JZN. Therefore, this study supports its ethnopharmacological use in Traditional Chinese Medicine to manage hyperlipidemia and paves a basis for establishing quality control method of Chinese medicine. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Ramphao, M C; Wentzel, M C; Ekama, G A; Alexander, W V
2006-01-01
Installing membranes for solid-liquid separation into biological nutrient removal (BNR) activated sludge (AS) systems makes a profound difference not only to the design of the membrane bio-reactor (MBR) BNR system itself, but also to the design approach for the whole wastewater treatment plant (WWTP). In multi-zone BNR systems with membranes in the aerobic reactor and fixed volumes for the anaerobic, anoxic and aerobic zones (i.e. fixed volume fractions), the mass fractions can be controlled (within a range) with the inter-reactor recycle ratios. This zone mass fraction flexibility is a significant advantage of MBR BNR systems over BNR systems with secondary settling tanks (SSTs), because it allows changing the mass fractions to optimise biological N and P removal in conformity with influent wastewater characteristics and the effluent N and P concentrations required. For PWWF/ADWF ratios (fq) in the upper range (fq approximately 2.0), aerobic mass fractions in the lower range (f(maer) < 0.60) and high (usually raw) wastewater strengths, the indicated mode of operation of MBR BNR systems is as extended aeration WWTPs (no primary settling and long sludge age). However, the volume reduction compared with equivalent BNR systems with SSTs will not be large (40-60%), but the cost of the membranes can be offset against sludge thickening and stabilisation costs. Moving from a flow unbalanced raw wastewater system to a flow balanced (fq = 1) low (usually settled) wastewater strength system can double the ADWF capacity of the biological reactor, but the design approach of the WWTP changes away from extended aeration to include primary sludge stabilisation. The cost of primary sludge treatment then has to be offset against the savings of the increased WWTP capacity.
Comparison of Antioxidant Activities of Melanin Fractions from Chestnut Shell.
Yao, Zeng-Yu; Qi, Jian-Hua
2016-04-22
Chestnut shell melanin can be used as a colorant and antioxidant, and fractionated into three fractions (Fr. 1, Fr. 2, and Fr. 3) with different physicochemical properties. Antioxidant activities of the fractions were comparatively evaluated for the first time. The fractions exhibited different antioxidative potential in different evaluation systems. Fr. 1, which is only soluble in alkaline water, had the strongest peroxidation inhibition and superoxide anion scavenging activity; Fr. 2, which is soluble in alkaline water and hydrophilic organic solvents but insoluble in neutral and acidic water, had the greatest power to chelate ferrous ions; and Fr. 3, which is soluble both in hydrophilic organic solvents and in water at any pH conditions, had the greatest hydroxyl (·OH) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH·) radicals scavenging abilities, reducing power, and phenolic content. The pigment fractions were superior to butylated hydroxytolune (BHT) in ·OH and DPPH· scavenging and to ethylene diamine tetraacetic acid (EDTA) in the Fe(2+)-chelation. They were inferior to BHT in peroxidation inhibition and O₂·(-) scavenging and reducing power. However, BHT is a synthetic antioxidant and cannot play the colorant role. The melanin fractions might be used as effective biological antioxidant colorants.
Pieroni, Laís Goyos; de Rezende, Fernanda Mendes; Ximenes, Valdecir Farias; Dokkedal, Anne Lígia
2011-11-10
Miconia is one of the largest genus of the Melastomataceae, with approximately 1,000 species. Studies aiming to describe the diverse biological activities of the Miconia species have shown promising results, such as analgesic, antimicrobial and trypanocidal properties. M. albicans leaves were dried, powdered and extracted to afford chloroformic and methanolic extracts. Total phenolic contents in the methanolic extract were determined according to modified Folin-Ciocalteu method. The antioxidant activity was measured using AAPH and DPPH radical assays. Chemical analysis was performed with the n-butanol fraction of the methanolic extract and the chloroformic extract, using different chromatographic techniques (CC, HPLC). The structural elucidation of compounds was performed using 500 MHz NMR and HPLC methods. The methanolic extract showed a high level of total phenolic contents; the results with antioxidant assays showed that the methanolic extract, the n-butanolic fraction and the isolated flavonoids from M. albicans had a significant scavenging capacity against AAPH and DPPH. Quercetin, quercetin-3-O-glucoside, rutin, 3-(E)-p-coumaroyl-α-amyrin was isolated from the n-butanolic fraction and α-amyrin, epi-betulinic acid, ursolic acid, epi-ursolic acid from the chloroformic extract. The results presented in this study demonstrate that M. albicans is a promising species in the search for biologically active compounds.
Urueña, Claudia; Cifuentes, Claudia; Castañeda, Diana; Arango, Amparo; Kaur, Punit; Asea, Alexzander; Fiorentino, Susana
2008-11-18
There is ethnopharmacological evidence that Petiveria alliacea can have antitumor activity; however, the mechanism of its cytotoxic activity is not well understood. We assessed multiple in vitro biological activities of an ethyl acetate soluble plant fraction over several tumor cell lines. Tumor cell lines were evaluated using the following tests: trypan blue exclusion test, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide], flow cytometry, cytoskeleton organization analysis, cell cycle, mitochondria membrane depolarization, clonogenicity test, DNA fragmentation test and differential protein expression by HPLC-Chip/MS analysis. F4 fraction characterization was made by HPLC-MS. Petiveria alliacea fraction characterized by de-replication was found to alter actin cytoskeleton organization, induce G2 cell cycle arrest and cause apoptotic cell death in a mitochondria independent way. In addition, we found down regulation of cytoskeleton, chaperone, signal transduction proteins, and proteins involved in metabolic pathways. Finally up regulation of proteins involved in translation and intracellular degradation was also observed. The results of this study indicate that Petiveria alliacea exerts multiple biological activities in vitro consistent with cytotoxicity. Further studies in animal models are needed but Petiveria alliacea appears to be a good candidate to be used as an antitumor agent.
Urueña, Claudia; Cifuentes, Claudia; Castañeda, Diana; Arango, Amparo; Kaur, Punit; Asea, Alexzander; Fiorentino, Susana
2008-01-01
Background There is ethnopharmacological evidence that Petiveria alliacea can have antitumor activity; however, the mechanism of its cytotoxic activity is not well understood. We assessed multiple in vitro biological activities of an ethyl acetate soluble plant fraction over several tumor cell lines. Methods Tumor cell lines were evaluated using the following tests: trypan blue exclusion test, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide], flow cytometry, cytoskeleton organization analysis, cell cycle, mitochondria membrane depolarization, clonogenicity test, DNA fragmentation test and differential protein expression by HPLC-Chip/MS analysis. F4 fraction characterization was made by HPLC-MS. Results Petiveria alliacea fraction characterized by de-replication was found to alter actin cytoskeleton organization, induce G2 cell cycle arrest and cause apoptotic cell death in a mitochondria independent way. In addition, we found down regulation of cytoskeleton, chaperone, signal transduction proteins, and proteins involved in metabolic pathways. Finally up regulation of proteins involved in translation and intracellular degradation was also observed. Conclusion The results of this study indicate that Petiveria alliacea exerts multiple biological activities in vitro consistent with cytotoxicity. Further studies in animal models are needed but Petiveria alliacea appears to be a good candidate to be used as an antitumor agent. PMID:19017389
Zohar, I.; Shaviv, A.; Young, M.; Kendall, C.; Silva, S.; Paytan, A.
2010-01-01
Transformations of phosphate (Pi) in different soil fractions were tracked using the stable isotopic composition of oxygen in phosphate (??18Op) and Pi concentrations. Clay soil from Israel was treated with either reclaimed waste water (secondary, low grade) or with fresh water amended with a chemical fertilizer of a known isotopic signature. Changes of ??18Op and Pi within different soil fractions, during a month of incubation, elucidate biogeochemical processes in the soil, revealing the biological and the chemical transformation impacting the various P pools. P in the soil solution is affected primarily by enzymatic activity that yields isotopic equilibrium with the water molecules in the soil solution. The dissolved P interacts rapidly with the loosely bound P (extracted by bicarbonate). The oxides and mineral P fractions (extracted by NaOH and HCl, respectively), which are considered as relatively stable pools of P, also exhibited isotopic alterations in the first two weeks after P application, likely related to the activity of microbial populations associated with soil surfaces. Specifically, isotopic depletion which could result from organic P mineralization was followed by isotopic enrichment which could result from preferential biological uptake of depleted P from the mineralized pool. Similar transformations were observed in both soils although transformations related to biological activity were more pronounced in the soil treated with reclaimed waste water compared to the fertilizer treated soil. ?? 2010 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Bundke, U.; Nillius, B.; Bingemer, H.; Curtius, J.
2012-04-01
We have designed the BIO-IN detector as part of the ice nucleus counter FINCH (Fast Ice Nuclei CHamber counter) to distinguish activated Ice Nuclei (IN) ice crystals from water droplets (CCN) (Bundke et al. 2008) and their fraction of biological origin (Bundke 2010). The modified BIO-IN sensor illuminates an aerosol stream with a 405 nm laser, replacing a 365nm LED of the original BIO IN design. Particles will scatter the light and those of biological origin will show intrinsic fluorescence emissions by excitation of mainly Riboflavin, also known as vitamin B2. The incident laser light is circularly polarized by introducing a quarter-wave-plate. The circular depolarization ratio (p44/p11) of the scattering matrix is measured in the backward direction by two photomultipliers at 110° scattering angle using a combination of quarter-wave-plate and a beam splitting cube to analyze the two circular polarization components. The detection limit was lowered towards particle size of about 400nm diameter (non activated particles). It is now possible to calculate the activated fraction of IN of biological origin with respect to all biological particles measured with one detector. The performance of the sensor will be demonstrated showing the circular- depolarization properties of different test aerosol, dust samples, volcanic ashes as well as different biological particles. Measurements on the mountain Puy de Dôme of IN number concentration of ambient air, as well as measurements at the AIDA facility in Karlsruhe of the IN activation curves from different bacteria are shown. Acknowledgements: This work was supported by the German Research Foundation, Grant: BU 1432/3-2 BU 1432/4-1
R M Machado, Gabriella da; Pippi, Bruna; Dalla Lana, Daiane Flores; Amaral, Ana Paula S; Teixeira, Mário Lettieri; Souza, Kellen C B de; Fuentefria, Alexandre M
2016-11-01
The increased incidence of non-albicans Candida (NAC) resistant to fluconazole (FLZ) makes it necessary to use new therapeutic alternatives. Acca sellowiana (O.berg) Burret (Myrtaceae) is a guava with several proven biological activities. The interaction with fluconazole can be a feasible alternative to overcome this resistance. This study evaluates the in vitro antifungal activity of fractions obtained from the lyophilized aqueous extract of the leaves of A. sellowiana against resistant strains of NAC. The antifungal activity of the fractions was evaluated at 500 μg/mL by microdilution method. Checkerboard assay was performed to determine the effect of the combination of the F2 fraction and antifungal at concentrations: MIC/4, MIC/2, MIC, MIC × 2 and MIC × 4. Candida glabrata showed the lowest MIC values (500-3.90 μg/mL) and the F2 active fraction was the most effective. The association of F2 with FLZ showed a strong synergistic effect (FICI ≤ 0.5) against 100% of C. glabrata resistant isolates. Moreover, the F2 active fraction has demonstrated that probably acts in the cell wall of these yeasts. There was no observed acute dermal toxicity of lyophilized aqueous extract of leaves of A. sellowiana on pig ear skin cells. The interaction between substances present in the F2 active fraction is possibly responsible for the antifungal activity presented by this fraction. This study is unprecedented and suggests that the combination of F2 active fraction and FLZ might be used as an alternative treatment for mucocutaneus infections caused by C. glabrata resistant.
Biologic Activity of Porphyromonas endodontalis complex lipids
Mirucki, Christopher S.; Abedi, Mehran; Jiang, Jin; Zhu, Qiang; Wang, Yu-Hsiung; Safavi, Kamran E.; Clark, Robert B.; Nichols, Frank C.
2014-01-01
Introduction Periapical infections secondary to pulpal necrosis are associated with bacterial contamination of the pulp. Porphyromonas endodontalis, a Gram-negative organism, is considered to be a pulpal pathogen. P. gingivalis is phylogenetically related to P. endodontalis and synthesizes several classes of novel complex lipids that possess biological activity, including the capacity to promote osteoclastogenesis and osteoclast activation. The purpose of this study was to extract and characterize constituent lipids of P. endodontalis, and evaluate their capacity to promote pro-inflammatory secretory responses in the macrophage cell line, RAW 264.7, as well as their capacity to promote osteoclastogenesis and inhibit osteoblast activity. Methods Constituent lipids of both organisms were fractionated by HPLC and were structurally characterized using electrospray-mass spectrometry (ESI-MS) or ESI-MS/MS. The virulence potential of P. endodontalis lipids was then compared with known biologically active lipids isolated from P. gingivalis. Results P. endodontalis total lipids were shown to promote TNF-α secretion from RAW 264.7 cells and the serine lipid fraction appeared to account for the majority of this effect. P. endodontalis lipid preparations also increased osteoclast formation from RAW 264.7 cells but osteoblast differentiation in culture was inhibited and appeared to be dependent on TLR2 expression. Conclusions These effects underscore the importance of P. endodontalis lipids in promoting inflammatory and bone cell activation processes that could lead to periapical pathology. PMID:25146013
Performance of biological magnetic powdered activated carbon for drinking water purification.
Lompe, Kim Maren; Menard, David; Barbeau, Benoit
2016-06-01
Combining the high adsorption capacity of powdered activated carbon (PAC) with magnetic properties of iron oxide nanoparticles (NPs) leads to a promising composite material, magnetic PAC or MPAC, which can be separated from water using magnetic separators. We propose MPAC as an alternative adsorbent in the biological hybrid membrane process and demonstrate that PAC covered with magnetic NPs is suitable as growth support for heterotrophic and nitrifying bacteria. MPAC with mass fractions of 0; 23; 38 and 54% maghemite was colonized in small bioreactors for over 90 days. Although the bacterial community composition (16s rRNA analysis) was different on MPAC compared to PAC, NPs neither inhibited dissolved organic carbon and ammonia biological removals nor contributed to significant adsorption of these compounds. The same amount of active heterotrophic biomass (48 μg C/cm(3)) developed on MPAC with a mass fraction of 54% NPs as on the non-magnetic PAC control. While X-ray diffraction confirmed that size and type of iron oxides did not change over the study period, a loss in magnetization between 10% and 34% was recorded. Copyright © 2016 Elsevier Ltd. All rights reserved.
Maury, Wendy; Price, Jason P; Brindley, Melinda A; Oh, ChoonSeok; Neighbors, Jeffrey D; Wiemer, David F; Wills, Nickolas; Carpenter, Susan; Hauck, Cathy; Murphy, Patricia; Widrlechner, Mark P; Delate, Kathleen; Kumar, Ganesh; Kraus, George A; Rizshsky, Ludmila; Nikolau, Basil
2009-01-01
Background Light-dependent activities against enveloped viruses in St. John's Wort (Hypericum perforatum) extracts have been extensively studied. In contrast, light-independent antiviral activity from this species has not been investigated. Results Here, we identify the light-independent inhibition of human immunodeficiency virus-1 (HIV-1) by highly purified fractions of chloroform extracts of H. perforatum. Both cytotoxicity and antiviral activity were evident in initial chloroform extracts, but bioassay-guided fractionation produced fractions that inhibited HIV-1 with little to no cytotoxicity. Separation of these two biological activities has not been reported for constituents responsible for the light-dependent antiviral activities. Antiviral activity was associated with more polar subfractions. GC/MS analysis of the two most active subfractions identified 3-hydroxy lauric acid as predominant in one fraction and 3-hydroxy myristic acid as predominant in the other. Synthetic 3-hydroxy lauric acid inhibited HIV infectivity without cytotoxicity, suggesting that this modified fatty acid is likely responsible for observed antiviral activity present in that fraction. As production of 3-hydroxy fatty acids by plants remains controversial, H. perforatum seedlings were grown sterilely and evaluated for presence of 3-hydroxy fatty acids by GC/MS. Small quantities of some 3-hydroxy fatty acids were detected in sterile plants, whereas different 3-hydroxy fatty acids were detected in our chloroform extracts or field-grown material. Conclusion Through bioguided fractionation, we have identified that 3-hydroxy lauric acid found in field grown Hypericum perforatum has anti-HIV activity. This novel anti-HIV activity can be potentially developed into inexpensive therapies, expanding the current arsenal of anti-retroviral agents. PMID:19594941
Phytochemical Characterization of an Adaptogenic Preparation from Rhodiola heterodonta
Grace, Mary H.; Yousef, Gad G.; Kurmukov, Anvar G.; Raskin, Ilya; Lila, Mary Ann
2013-01-01
The phytochemical constituents of a biologically active, standardized, 80% ethanol extract of Rhodiola heterodonta were characterized. The extract was fractionated over a Sephadex LH-20 column to afford two main fractions representing two classes of secondary metabolites: phenylethanoids and proanthocyanidins. This fractionation facilitated the identification and quantification of individual compounds in the fractions and sub-fractions using HPLC, and LC-MS. The major compounds in the phenylethanoid fraction were heterodontoside, tyrosol methyl ether, salidroside, viridoside, mongrhoside, tyrosol, and the cyanogenic glucoside rhodiocyanoside A. These seven compounds comprised 17.4% of the EtOH extract. Proanthocyanidins ranged from oligomers to polymers based on epigallocatechin and gallate units. The main identified oligomeric compounds in the proanthocyanidin fraction were epigallocatechin gallate, epigallocatechin-epigallocatechin-3-O-gallate and 3-O-galloylepigallocatechin-epigallocatechin-3-O-gallate, which constituted 1.75% of the ethanol extract. Tyrosol methyl ether, mongrhoside, and the two proanthocyanidin dimers were reported for the first time from this species in this study. Intraperitoneal injection of the 80% ethanol extract increased survival time of mice under hypoxia by 192%, as an indication of adaptogenic activity. PMID:19768982
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tambone, Fulvia, E-mail: fulvia.tambone@unimi.it; Terruzzi, Laura; Scaglia, Barbara
Highlights: • Anaerobic digestion leads to the production of a biologically stable digestate. • Solid–liquid separation produces a solid fraction having high fertilizer value. • Composting process shows low biological activity due to high biological stability of digestate. • Solid digestate fraction can be composted in a short time or used directly as organic fertilizer. - Abstract: The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops andmore » agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO{sub 2} kg V S{sup −1} h{sup −1}. Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS {sup 13}C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins)« less
Deharo, Eric; Ginsburg, Hagai
2011-03-15
In the search for antimalarials from ethnobotanical origin, plant extracts are chemically fractionated and biological tests guide the isolation of pure active compounds. To establish the responsibility of isolated active compound(s) to the whole antiplasmodial activity of a crude extract, the literature in this field was scanned and results were analysed quantitatively to find the contribution of the pure compound to the activity of the whole extract. It was found that, generally, the activity of isolated molecules could not account on their own for the activity of the crude extract. It is suggested that future research should take into account the "drugs beside the drug", looking for those products (otherwise discarded along the fractionation process) able to boost the activity of isolated active compounds.
2012-01-01
Background The increased resistance of microorganisms to the currently used antimicrobials has lead to the evaluation of other agents that might have antimicrobial activity. Medicinal plants are sources of phytochemicals which are able to initiate different biological activities including antimicrobials Materials and methods In vitro antibacterial (MIC, MBC and time-kill studies) of polyphenol-rich fractions from Sida alba L. (Malvaceae) was assessed using ten bacteria strains (Gram-negative and Gram-positive). Results All test bacteria were susceptible to the polyphenol-rich fractions. Time-kill results showed that after 5 h exposition there was no viable microorganism in the initial inoculum and the effect of polyphenol-rich fractions was faster on Enterococcus faecalis (Gram-positive bacterium) comparatively to the other bacteria strains. Conclusion The data analysis indicates that the tested of polyphenol-rich fractions has significant effects when compared with the standard antibiotic. These results therefore justify the traditional use of sida alba L., alone or in combination with other herbs to treat bacterial infections. PMID:22364123
Preza, Ana M; Jaramillo, María E; Puebla, Ana M; Mateos, Juan C; Hernández, Rodolfo; Lugo, Eugenia
2010-10-20
Recently, proteins and peptides have become an added value to foodstuffs due to new knowledge about its structural analyses as related to antioxidant and anticancer activity. Our goal was to evaluate if protein fractions from cacao seeds show antitumor activity on lymphoma murine L5178Y model. The antioxidant activity of these fractions was also evaluated with the aim of finding a correlation with the antitumor activity. Differential extraction of proteins from unfermented and semi-fermented-dry cacao seeds was performed and characterized by SDS-PAGE and FPLC size-exclusion chromatography. Antitumor activity was evaluated against murine lymphoma L5178Y in BALB/c mice (6 × 104 cells i.p.), with a treatment oral dose of 25 mg/kg/day of each protein fraction, over a period of 15 days. Antioxidant activity was evaluated by the ABTS+ and ORAC-FL assays. Albumin, globulin and glutelin fractions from both cacao seed type were obtained by differential solubility extraction. Glutelins were the predominant fraction. In the albumin fraction, polypeptides of 42.3 and 8.5 kDa were found in native conditions, presumably in the form of two peptide chains of 21.5 kDa each one. The globulin fraction presented polypeptides of 86 and 57 kDa in unfermented cacao seed that produced the specific-cacao aroma precursors, and after fermentation the polypeptides were of 45 and 39 kDa. The glutelin fraction presented proteins >200 kDa and globulins components <100 KDa in lesser proportion. Regarding the semifermented-dry cacao seed, it was observed that the albumin fraction showed antitumoral activity, since it caused significant decreases (p < 0.05) in the ascetic fluid volume and packed cell volume, inhibiting cell growth in 59.98 ± 13.6% at 60% of the population; while the greatest antioxidant capacity due to free radical scavenging capacity was showed by the albumin and glutelin fraction in both methods assayed. This study is the first report on the biological activity of semifermented-dry cacao protein fractions with their identification, supporting the traditional use of the plant. The albumin fraction showed antitumor and free radical scavenging capacity, however both activities were not correlated. The protein fractions could be considered as source of potential antitumor peptides.
2010-01-01
Background Recently, proteins and peptides have become an added value to foodstuffs due to new knowledge about its structural analyses as related to antioxidant and anticancer activity. Our goal was to evaluate if protein fractions from cacao seeds show antitumor activity on lymphoma murine L5178Y model. The antioxidant activity of these fractions was also evaluated with the aim of finding a correlation with the antitumor activity. Methods Differential extraction of proteins from unfermented and semi-fermented-dry cacao seeds was performed and characterized by SDS-PAGE and FPLC size-exclusion chromatography. Antitumor activity was evaluated against murine lymphoma L5178Y in BALB/c mice (6 × 104 cells i.p.), with a treatment oral dose of 25 mg/kg/day of each protein fraction, over a period of 15 days. Antioxidant activity was evaluated by the ABTS+ and ORAC-FL assays. Results Albumin, globulin and glutelin fractions from both cacao seed type were obtained by differential solubility extraction. Glutelins were the predominant fraction. In the albumin fraction, polypeptides of 42.3 and 8.5 kDa were found in native conditions, presumably in the form of two peptide chains of 21.5 kDa each one. The globulin fraction presented polypeptides of 86 and 57 kDa in unfermented cacao seed that produced the specific-cacao aroma precursors, and after fermentation the polypeptides were of 45 and 39 kDa. The glutelin fraction presented proteins >200 kDa and globulins components <100 KDa in lesser proportion. Regarding the semifermented-dry cacao seed, it was observed that the albumin fraction showed antitumoral activity, since it caused significant decreases (p < 0.05) in the ascetic fluid volume and packed cell volume, inhibiting cell growth in 59.98 ± 13.6% at 60% of the population; while the greatest antioxidant capacity due to free radical scavenging capacity was showed by the albumin and glutelin fraction in both methods assayed. Conclusion This study is the first report on the biological activity of semifermented-dry cacao protein fractions with their identification, supporting the traditional use of the plant. The albumin fraction showed antitumor and free radical scavenging capacity, however both activities were not correlated. The protein fractions could be considered as source of potential antitumor peptides. PMID:20961452
Hu, Ting; He, Xiao-Wei; Jiang, Jian-Guo
2014-08-27
Ilex latifolia Thunb., widely distributed in China, has been used as a functional food and drunk for a long time. This study was aimed to identify the bioactive constituents with antioxidant, antitumor, and anti-inflammatory properties. I. latifolia was extracted with 95% ethanol and then partitioned into four fractions: petroleum ether fraction, ethyl acetate fraction, n-butanol fraction, and water fraction. Results showed that the ethyl acetate fraction was found to have significant ferric reducing antioxidant power activity, DPPH radical scavenging activity, and oxygen radical absorbance capacity, cytotoxicity against human cervix carcinoma HeLa cells, and inhibitory effect on NO production in macrophage RAW 264.7 cells. Five compounds were isolated from the ethyl acetate fraction, and they were identified as ethyl caffeate (1), ursolic acid (2), chlorogenic acid (3), 3,4-di-O-caffeoylquinic acid methyl ester (4), and 3,5-di-O-caffeoylquinic acid methyl ester (5), the last two of which were isolated for the first time from I. latifolia. Compounds 4 and 5 exhibited cytotoxicity actions against tumor cell line. Compound 3 showed the strongest anti-inflammatory activity of all the compounds. The results obtained in this work might contribute to the understanding of biological activities of I. latifolia and further investigation on its potential application values for food and drug.
Identification of Ina proteins from Fusarium acuminatum
NASA Astrophysics Data System (ADS)
Scheel, Jan Frederik; Kunert, Anna Theresa; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine
2015-04-01
Freezing of water above -36° C is based on ice nucleation activity (INA) mediated by ice nucleators (IN) which can be of various origins. Beside mineral IN, biological particles are a potentially important source of atmospheric IN. The best-known biological IN are common plant-associated bacteria. The IN activity of these bacteria is induced by a surface protein on the outer cell membrane, which is fully characterized. In contrast, much less is known about the nature of fungal IN. The fungal genus Fusarium is widely spread throughout the earth. It belongs to the Ascomycota and is one of the most severe fungal pathogens. It can affect a variety of organisms from plants to animals including humans. INA of Fusarium was already described about 30 years ago and INA of Fusarium as well as other fungal genera is assumed to be mediated by proteins or at least to contain a proteinaceous compound. Although many efforts were made the precise INA machinery of Fusarium and other fungal species including the proteins and their corresponding genes remain unidentified. In this study preparations from living fungal samples of F. acuminatum were fractionated by liquid chromatography and IN active fractions were identified by freezing assays. SDS-page and de novo sequencing by mass spectrometry were used to identify the primary structure of the protein. Preliminary results show that the INA protein of F. acuminatum is contained in the early size exclusion chromatography fractions indicating a high molecular size. Moreover we could identify a single protein band from IN active fractions at 130-145 kDa corresponding to sizes of IN proteins from bacterial species. To our knowledge this is for the first time an isolation of a single protein from in vivo samples, which can be assigned as IN active from Fusarium.
Graça, V C; Dias, Maria Inês; Barros, Lillian; Calhelha, Ricardo C; Santos, P F; Ferreira, Isabel C F R
2018-04-25
Geranium molle L., commonly known as Dove's-foot Crane's-bill or Dovesfoot Geranium, is an herbaceous plant belonging to the Geraniaceae family. Contrary to many other Geranium species, the bioactivity and the phytochemical composition of G. molle seem not to have attracted attention until a recent study from our group regarding the bioactivity of several aqueous and organic extracts of the plant. In particular, we assessed the cytotoxic activity of these extracts against several human tumor cell lines (breast, lung, cervical and hepatocellular carcinomas) and a non-tumor porcine liver primary cell line, inspired by an ethnopharmacological report describing the traditional use of this medicinal plant in some regions of Northeast Portugal for the treatment of cancer. Following this preliminary evaluation, the most active extracts (acetone and methanol) were fractionated by column chromatography and the resulting fractions were evaluated for their antioxidant activity and cytotoxicity against the same cell lines. The bio-guided fractionation of the extracts resulted in several fractions exhibiting improved bioactivity in comparison with the corresponding crude extracts. The fractions obtained from the acetone extract consistently displayed the lowest EC50 and GI50 values and presented the highest content of total phenolic compounds. The phytochemical composition of the most bioactive fractions of the acetone and methanol extracts was also determined and about thirty compounds, mainly flavonoids and phenolic acids, could be identified for the first time in G. molle.
Odeyemi, Samuel Wale; Afolayan, Anthony Jiede
2018-01-01
Background: Bulbine abyssinica has been reported to possess a variety of pharmacological activities traditionally. Previous work suggested its antidiabetic properties, but information on the antidiabetic compounds is still lacking. Objective: The present research exertion was aimed to isolate and identify biologically active polyphenols from B. abyssinica leaves and to evaluate their efficacy on carbohydrate digesting enzymes. Materials and Methods: Fractionation of the polyphenolic contents from the methanolic extract of B. abyssinica leaves was executed by the silica gel column chromatography to yield different fractions. The antioxidant activities of these fractions were carried out against 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazyl radicals, and ferric ion-reducing antioxidant power (FRAP). In vitro antidiabetic experimentation was performed by evaluating the α-amylase and α-glucosidase inhibitory capacity. The isolated polyphenols were then identified using liquid chromatography and mass spectroscopy (LC/MS). Results: Out of the eight polyphenolic fractions (BAL 1–8), BAL-4 has the highest inhibitory activity against ABTS radicals whereas BAL-6 showed potent ferric ion-reducing capacity. BAL-5 was the most effective fraction with antidiabetic activity with IC50of 140.0 and 68.58 ± 3.2 μg/ml for α-amylase and α-glucosidase inhibitory activities, respectively. All the fractions competitively inhibited α-amylase, BAL-5 and BAL-6 also inhibited α-glucosidase competitively, while BAL-4 and BAL-1 exhibited noncompetitive and near competitive inhibitions against α-glucosidase, respectively. The LC/MS analysis revealed the presence of carvone in all the fractions. Conclusions: The present study demonstrates the antioxidant and antidiabetic activities of the isolated polyphenols from B. abyssinica. SUMMARY Polyphenols were successfully isolated and identified from Bulbine abyssinica leavesThe isolated polyphenols are biologically active with high antioxidant as well as inhibitor of carbohydrate-digesting enzymesB. abyssinica can be a good source of amylase and glucosidase inhibitorsB. abyssinica can be used as complementary or alternative therapeutic agents especially for the treatment of diabetesCarvone, quercetin, and psoralen could be the compounds responsible for the α-amylase and α-glucosidase inhibitory activities. Abbreviations Used: ABTS: 2,2'-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid), DPPH: 2,2-diphenyl-1-picrylhydrazyl, FRAP: Ferric ion-reducing antioxidant power, LC/MS: Liquid chromatography and mass spectroscopy, AGEs: Advanced glycation end products, TLC: Thin-layer chromatography, MeOH: Methanol, PNP-G: ρ-Nitrophenyl-α-D-Glucoside, R2: Coefficient of determination, mgQE: Milligram quercetin equivalent, mgTAE: Milligram tannic acid equivalent, mgCE: Milligram catechin equivalent, g: Gram PMID:29568191
Khattab, Rafat Afifi; Elbandy, Mohamed; Lawrence, Andrew; Paget, Tim; Rae-Rho, Jung; Binnaser, Yaser S; Ali, Imran
2018-01-01
Secondary metabolism in marine organisms produces a diversity of biologically important natural compounds that are not present in terrestrial species. Sea cucumbers belong to the invertebrate Echinodermata and are famous for their nutraceutical, medical and food values. They are known for possession triterpenoid glycosides (saponins) with various ecological roles. The current work aimed to separate, identify and test various biological activities (antibacterial, antifungal, antileishmanial and anticancer properties) of saponins produced by the holothurian Pearsonothuria graeffei from the Red Sea, Egypt. The structures were identified by 1D and 2D NMR (1H, 13C, TOCSY, COSY, HSQC, HMBC, and ROESY) experiments and acid hydrolysis. The crude and purified fractions was analyzed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS)/MS to identify saponins and characterize their molecular structures. Partially purified fraction, mainly containing compounds 1 and 2, was screened for its antifungal activity against three clinical isolates of Candida albicans (Candida 580 (1), Candida 581(2) and Candida MEO47228. Antileishmanial activity against Leishmania major and toxicity on colon cell-line were also evaluated. Two lanostane type sulfated triterpene monoglycosides were isolated from the Holothurian Pearsonothuria graeffei from the Red Sea, Egypt. Holothurin A (1) and echinoside A (2) triterpene saponins were separated by reversed phase semi-preparative HPLC. LC50 values (µg/mL); calculated for the fraction containing saponins 1 and 2 as major constituents; against Candida albicans, Leishmania major and colon cell-line were 10, 20 and 0.50, respectively. Consequently, this study demonstrated the potential use of sea cucumber Pearsonothuria graeffei not only as appreciated functional food or nutraceuticals but also as the source of functional ingredients for pharmaceutical products with antifungal, antileishmanial and anticancer properties. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Kremb, Stephan; Müller, Constanze; Schmitt-Kopplin, Philippe; Voolstra, Christian R.
2017-01-01
Marine algae represent an important source of novel natural products. While their bioactive potential has been studied to some extent, limited information is available on marine algae from the Red Sea. This study aimed at the broad discovery of new bioactivities from a collection of twelve macroalgal species from the Central Red Sea. We used imaging-based High-Content Screening (HCS) with a diverse spectrum of cellular markers for detailed cytological profiling of fractionated algal extracts. The cytological profiles for 3 out of 60 algal fractions clustered closely to reference inhibitors and showed strong inhibitory activities on the HIV-1 reverse transcriptase in a single-enzyme biochemical assay, validating the suggested biological target. Subsequent chemical profiling of the active fractions of two brown algal species by ultra-high resolution mass spectrometry (FT-ICR-MS) revealed possible candidate molecules. A database query of these molecules led us to groups of compounds with structural similarities, which are suggested to be responsible for the observed activity. Our work demonstrates the versatility and power of cytological profiling for the bioprospecting of unknown biological resources and highlights Red Sea algae as a source of bioactives that may serve as a starting point for further studies. PMID:28335513
Kremb, Stephan; Müller, Constanze; Schmitt-Kopplin, Philippe; Voolstra, Christian R
2017-03-20
Marine algae represent an important source of novel natural products. While their bioactive potential has been studied to some extent, limited information is available on marine algae from the Red Sea. This study aimed at the broad discovery of new bioactivities from a collection of twelve macroalgal species from the Central Red Sea. We used imaging-based High-Content Screening (HCS) with a diverse spectrum of cellular markers for detailed cytological profiling of fractionated algal extracts. The cytological profiles for 3 out of 60 algal fractions clustered closely to reference inhibitors and showed strong inhibitory activities on the HIV-1 reverse transcriptase in a single-enzyme biochemical assay, validating the suggested biological target. Subsequent chemical profiling of the active fractions of two brown algal species by ultra-high resolution mass spectrometry (FT-ICR-MS) revealed possible candidate molecules. A database query of these molecules led us to groups of compounds with structural similarities, which are suggested to be responsible for the observed activity. Our work demonstrates the versatility and power of cytological profiling for the bioprospecting of unknown biological resources and highlights Red Sea algae as a source of bioactives that may serve as a starting point for further studies.
Joubert, Elizabeth; Winterton, Paula; Britz, Trevor J; Gelderblom, Wentzel C A
2005-12-28
Unfermented rooibos tea is known to contain higher levels of total polyphenols and flavonoids than its fermented counterpart, making it the obvious choice for the preparation of flavonoid-enriched fractions. Evaluation of aqueous extracts and crude polyphenolic fractions of unfermented and fermented rooibos showed anti- and/or pro-oxidant activities, using a linoleic acid-Tween-buffer emulsion for lipid peroxidation and the deoxyribose degradation assay, based on a Fenton reaction model system containing FeCl3-EDTA and H2O2 for the generation of hydroxyl radicals. Except for the ethyl acetate fraction, with the highest total polyphenol (TP) content and offering the least protection presumably due to pro-oxidant activity, the inhibition of lipid peroxidation by the samples correlated moderately with their TP content in a linear relationship (r = 0.896, P < 0.01). Using the deoxyribose degradation assay, the pro-oxidant activity of the aqueous extracts and their crude polymeric fractions (0.1 mg/mL in the reaction mixture) was linear with respect to their dihydrochalcone (aspalathin and nothofagin) (r = 0.977, P = 0.023) and flavonoid (r = 0.971, P = 0.029) content. Pro-oxidant activity was demonstrated for pure aspalathin. Using the same assay, but with ascorbate added to regenerate Fe3+ to Fe2+, the aqueous extract and crude polymeric fraction of fermented rooibos displayed hydroxyl radical scavenging activity. Fermentation (i.e., oxidation) of rooibos decreased the pro-oxidant activity of aqueous extracts, which was contributed to a decrease in their dihydrochalcone content. The in vitro pro-oxidant activity displayed by flavonoid-enriched fractions of rooibos demonstrates that one must be aware of the potential adverse biological properties of potent antioxidant extracts utilized as dietary supplements.
Nishibori, Naoyoshi; Kishibuchi, Reina; Morita, Kyoji
2017-05-04
Soy pulp, called "okara" in Japanese, is known as a by-product of the production of bean curd (tofu), and expected to contain a variety of biologically active substances derived from soybean. However, the biological activities of okara ingredients have not yet been fully understood, and the effectiveness of okara as a functional food seems necessary to be further evaluated. Then the effect of okara extract on angiotensin I-converting enzyme (ACE) activity was examined in vitro, and the extract was shown to cause the inhibition of ACE activity in a manner depending on its concentration. Kinetic analysis indicated that this enzyme inhibition was accompanied by an increase in the Km value without any change in Vmax. Further studies suggested that putative inhibitory substances contained in the extract might be heat stable and dialyzable, and recovered mostly in the peptide fraction obtained by a spin-column separation and a high performance liquid chromatography (HPLC) fractionation. Therefore, the extract was speculated to contain small-size peptides responsible for the inhibitory effect of okara extract on ACE activity, and could be expected to improve the hypertensive conditions by reducing the production of hypertensive peptide.
NASA Astrophysics Data System (ADS)
Djioleu, Angele Mezindjou
The effect of compounds produced during biomass pretreatment on cellulolytic enzyme was investigated. Liquid prehydrolyzates were prepared by pretreating switchgrass using 24 combinations of temperature, time, and sulfuric acid concentration based on a full factorial design. Temperature was varied from 140°C to 180°C; time ranged from 10 to 40 min; and the sulfuric acid concentrations were 0.5% or 1% (v/v). Identified products in the prehydrolyzates included xylose, glucose, hydroxymethylfurfural (HMF), furfural, acetic acid, formic acid, and phenolic compounds at concentration ranging from 0 to 21.4 g/L. Pretreatment conditions significantly affected the concentrations of compounds detected in prehydrolyzates. When assayed in the presence of switchgrass prehydrolyzates against model substrates, activities of cellulase, betaglucosidase, and exoglucanase, were significantly reduced by at least 16%, 31.8%, and 57.8%, respectively, as compared to the control. A strong positive correlation between inhibition of betaglucosidase and concentration of glucose, acetic acid, and furans in prehydrolyzate was established. Exoglucanase inhibition correlated with the presence of phenolic compounds and acetic acid. The prehydrolyzate, prepared at 160°C, 30 min, and 1% acid, was fractionated by centrifugal partition chromatography (CPC) into six fractions; the inhibition effect of these fractions on betaglucosidase and exoglucanase was determined. The initial hydrolysis rate of cellobiose by betaglucosidase was significantly reduced by the CPC sugar-rich fraction; however, exoglucanase was deactivated by the CPC phenolic-rich fraction. Finally, biological activities of water-extracted compounds from sweetgum bark and their effect on cellulase was investigated. It was determined that 12% of solid content of the bark extract could be accounted by phenolic compounds with gallic acid identified as the most concentrated phytochemical. Sweetgum bark extract inhibited Staphylococcus aureus growth and copper-induced peroxidation of human low-density lipoprotein, confirming antimicrobial and antioxidant activities of the extract. On the other hand, bark extract inhibited cellulase cocktail activity by reducing cellulose hydrolysis by 82.32% after 48 h of incubation. Overall, phenolic compounds generated from biomass fractionation are important players in cellulolytic enzyme inhibition; removal of biomass extractives prior to pretreatment could reduce inhibitory compounds in prehydrolyzate while generating phytochemicals with societal benefits.
Biologic activity of porphyromonas endodontalis complex lipids.
Mirucki, Christopher S; Abedi, Mehran; Jiang, Jin; Zhu, Qiang; Wang, Yu-Hsiung; Safavi, Kamran E; Clark, Robert B; Nichols, Frank C
2014-09-01
Periapical infections secondary to pulpal necrosis are associated with bacterial contamination of the pulp. Porphyromonas endodontalis, a gram-negative organism, is considered to be a pulpal pathogen. P. gingivalis is phylogenetically related to P. endodontalis and synthesizes several classes of novel complex lipids that possess biological activity, including the capacity to promote osteoclastogenesis and osteoclast activation. The purpose of this study was to extract and characterize constituent lipids of P. endodontalis and evaluate their capacity to promote proinflammatory secretory responses in the macrophage cell line, RAW 264.7, as well as their capacity to promote osteoclastogenesis and inhibit osteoblast activity. Constituent lipids of both organisms were fractionated by high-performance liquid chromatography and were structurally characterized using electrospray mass spectrometry or electrospray-mass spectrometry/mass spectrometry. The virulence potential of P. endodontalis lipids was then compared with known biologically active lipids isolated from P. gingivalis. P. endodontalis total lipids were shown to promote tumor necrosis factor alpha secretion from RAW 264.7 cells, and the serine lipid fraction appeared to account for the majority of this effect. P. endodontalis lipid preparations also increased osteoclast formation from RAW 264.7 cells, but osteoblast differentiation in culture was inhibited and appeared to be dependent on Toll-like receptor 2 expression. These effects underscore the importance of P. endodontalis lipids in promoting inflammatory and bone cell activation processes that could lead to periapical pathology. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Xue, Shuang; Jin, Wujisiguleng; Zhang, Zhaohong; Liu, Hong
2017-07-01
The reductions of dissolved organic matter (DOM) and disinfection byproduct precursors in four full-scale wastewater treatment plants (WWTPs) (Liaoning Province, China) where different biological treatment processes were employed in winter were investigated. The total removal efficiencies of dissolved organic carbon (DOC), ultraviolet light at 254 nm (UV-254), trihalomethane formation potential (THMFP), and haloacetic acid formation potential (HAAFP) were in the range of 70.3-76.0%, 49.6-57.3%, 54.4-65.0%, and 53.7-63.8% in the four WWTPs, respectively. The biological treatment was the predominant process responsible for the removal of DOC, THMFP, and HAAFP in WWTPs. Differences in the reduction of UV-254 were not significant (p > 0.05) among biochemical reaction pool, secondary sedimentation tank, and disinfection tank. Biological aerated filter and suspended carrier activated sludge processes achieved higher DOM removal than the conventional active sludge and anaerobic-anoxic-oxic processes. Hydrophobic neutral and hydrophilic fraction were removed to a higher degree through biological treatment than the other three DOM fractions. HAAFP removal was more efficient than THMFP reduction during biological treatment. During primary treatment, fluorescent materials in secondary sedimentation tanks were preferentially removed, as compared to the bulk DOM. Humic-like fluorescent compounds were not readily eliminated during biological treatment. The fluorescent materials were more susceptible to chlorine than nonfluorescent compounds. Copyright © 2017. Published by Elsevier Ltd.
Pig Brain Mitochondria as a Biological Model for Study of Mitochondrial Respiration.
Fišar, Z; Hroudová, J
2016-01-01
Oxidative phosphorylation is a key process of intracellular energy transfer by which mitochondria produce ATP. Isolated mitochondria serve as a biological model for understanding the mitochondrial respiration control, effects of various biologically active substances, and pathophysiology of mitochondrial diseases. The aim of our study was to evaluate pig brain mitochondria as a proper biological model for investigation of activity of the mitochondrial electron transport chain. Oxygen consumption rates of isolated pig brain mitochondria were measured using high-resolution respirometry. Mitochondrial respiration of crude mitochondrial fraction, mitochondria purified in sucrose gradient, and mitochondria purified in Percoll gradient were assayed as a function of storage time. Oxygen flux and various mitochondrial respiratory control ratios were not changed within two days of mitochondria storage on ice. Leak respiration was found higher and Complex I-linked respiration lower in purified mitochondria compared to the crude mitochondrial fraction. Damage to both outer and inner mitochondrial membrane caused by the isolation procedure was the greatest after purification in a sucrose gradient. We confirmed that pig brain mitochondria can serve as a biological model for investigation of mitochondrial respiration. The advantage of this biological model is the stability of respiratory parameters for more than 48 h and the possibility to isolate large amounts of mitochondria from specific brain areas without the need to kill laboratory animals. We suggest the use of high-resolution respirometry of pig brain mitochondria for research of the neuroprotective effects and/or mitochondrial toxicity of new medical drugs.
Flores-Ocelotl, María R; Rosas-Murrieta, Nora H; Moreno, Diego A; Vallejo-Ruiz, Verónica; Reyes-Leyva, Julio; Domínguez, Fabiola; Santos-López, Gerardo
2018-03-16
Urtica dioica, Taraxacum officinale, Calea integrifolia and Caesalpinia pulcherrima are widely used all over the world for treatment of different illnesses. In Mexico, these plants are traditionally used to alleviate or counteract rheumatism and inflammatory muscle diseases. In the present study we evaluated the activity of aqueous and methanolic extracts of these four plants, on the replication of dengue virus serotype 2 (DENV2). Extraction process was carried out in a Soxtherm® system at 60, 85 and 120 °C; a chemical fractionation in silica gel chromatography was performed and compounds present in the active fractions were identified by HPLC-DAD-ESI/MSn. The cytotoxic concentration and the inhibitory effect of extracts or fractions on the DENV2 replication were analyzed in the BHK-21 cell line (plaque forming assay). The half maximal inhibitory concentration (IC 50 ) and the selectivity index (SI) were calculated for the extracts and fractions. The methanolic extracts at 60 °C of T. officinale and U. dioica showed the higher inhibitory effects on DENV2 replication. After the chemical fractionation, the higher activity fraction was found for U. dioica and T. officinale, presenting IC 50 values of 165.7 ± 3.85 and 126.1 ± 2.80 μg/ml, respectively; SI values were 5.59 and 6.01 for each fraction. The compounds present in T. officinale, were luteolin and caffeoylquinic acids derivatives and quercertin diclycosides. The compounds in the active fraction of U. dioica, were, chlorogenic acid, quercertin derivatives and flavonol glycosides (quercetin and kaempferol). Two fractions from U. dioica and T. officinale methanolic extracts with anti-dengue activity were found. The compounds present in both fractions were identified, several recognized molecules have demonstrated activity against other viral species. Subsequent biological analysis of the molecules, alone or in combination, contained in the extracts will be carried out to develop therapeutics against DENV2.
Ronchi, Silas Nascimento; Brasil, Girlandia Alexandre; do Nascimento, Andrews Marques; de Lima, Ewelyne Miranda; Scherer, Rodrigo; Costa, Helber B; Romão, Wanderson; Boëchat, Giovanna Assis Pereira; Lenz, Dominik; Fronza, Marcio; Bissoli, Nazaré Souza; Endringer, Denise Coutinho; de Andrade, Tadeu Uggere
2015-10-01
The aim of this study was to investigate the antihypertensive effect of leaves Mangifera indica L. using in vitro and in vivo assays. The ethanol extract of leaves of M. indica was fractionated to dichloromethanic, n-butyl alcohol and aqueous fractions. The chemical composition of ethanolic extract and dichloromethanic fraction were evaluated by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Antioxidant activity was evaluated in the DPPH scavenging activity assay. Angiotensin-converting enzyme (ACE) inhibitory activity was investigated using in vitro and in vivo assays. The chronic antihypertensive assay was performed in spontaneously hypertensive rats (SHRs) and Wistar rats treated with enalapril (10 mg/kg), dichloromethanic fraction (100 mg/kg; twice a day) or vehicle control for 30 days. The baroreflex sensitivity was evaluated through the use of sodium nitroprusside and phenylephrine. Cardiac hypertrophy was evaluated by morphometric analysis. The dichloromethanic fraction exhibited the highest flavonoid, total phenolic content and high antioxidant activity. Dichloromethanic fraction elicited ACE inhibitory activity in vitro (99 ± 8%) similar to captopril. LC-MS/MS analysis revealed the presence of ferulic acid (48.3 ± 0.04 µg/g) caffeic acid (159.8 ± 0.02 µg/g), gallic acid (142.5 ± 0.03 µg/g), apigenin (11.0 ± 0.01 µg/g) and quercetin (203.3 ± 0.05 µg/g). The chronic antihypertensive effects elicited by dichloromethanic fraction were similar to those of enalapril, and the baroreflex sensitivity was normalized in SHR. Plasma ACE activity and cardiac hypertrophy were comparable with animals treated with enalapril. Dichloromethanic fraction of M. indica presented an antihypertensive effect, most likely by ACE inhibition, with benefits in baroreflex sensitivity and cardiac hypertrophy. Altogether, the results of the present study suggest that the dichloromethanic fraction of M. indica leaves may have potential as a promoting antihypertensive agent. © The Author(s), 2015.
In vitro radical scavenging activity of two Columbian Magnoliaceae
NASA Astrophysics Data System (ADS)
Puertas M., Miguel A.; Mesa v., Ana M.; Sáez v., Jairo A.
2005-08-01
The recent interest in the conservation of the tropical forest is due, at least in part, to the potential economic and health benefits that can be exploited from several plants. This report shows the in vitro antioxidant activity of some fractions isolated from leaves of two Columbian Magnoliaceae, Talauma hernandezii G. Lozano-C and Dugandiodendron yarumalense Lozano. The activity was determined using the radical monocation 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS·+) and the stable free radical 2-2-diphenyl-1-picrylhydrazyl (DPPH·), as part of general biological screening of these plants. The antioxidant capacity obtained from fractions was similar to those of α-tocopherol, tert-butylated hydroxyanisole (BHA), and ascorbic acid. The most active scavenger extract was the fraction 7 (TAA = 48.6 mmol Trolox/kg extract and IC50 ≤ 0.01 kg extract/mmol DPPH); and the least active was the fraction 1 (TAA = 11.23 mmol Trolox/kg extract and IC50 = 0.21 kg extract/mmol DPPH) all of them isolated from D. yarumalense. These results suggest that these plants can be attractive as source of antioxidant compounds with the ability to reduce radicals like ATBS and DPPH.
Determining the Localization of Carbohydrate Active Enzymes Within Gram-Negative Bacteria.
McLean, Richard; Inglis, G Douglas; Mosimann, Steven C; Uwiera, Richard R E; Abbott, D Wade
2017-01-01
Investigating the subcellular location of secreted proteins is valuable for illuminating their biological function. Although several bioinformatics programs currently exist to predict the destination of a trafficked protein using its signal peptide sequence, these programs have limited accuracy and often require experimental validation. Here, we present a systematic method to fractionate gram-negative cells and characterize the subcellular localization of secreted carbohydrate active enzymes (CAZymes). This method involves four parallel approaches that reveal the relative abundance of protein within the cytoplasm, periplasm, outer membrane, and extracellular environment. Cytoplasmic and periplasmic proteins are fractionated by lysis and osmotic shock, respectively. Outer membrane bound proteins are determined by comparing cells before and after exoproteolytic digestion. Extracellularly secreted proteins are collected from the media and concentrated. These four different fractionations can then be probed for the presence and quantity of target proteins using immunochemical methods such as Western blots and ELISAs, or enzyme activity assays.
Shrimp Lipids: A Source of Cancer Chemopreventive Compounds
López-Saiz, Carmen-María; Suárez-Jiménez, Guadalupe-Miroslava; Plascencia-Jatomea, Maribel; Burgos-Hernández, Armando
2013-01-01
Shrimp is one of the most popular seafoods worldwide, and its lipids have been studied for biological activity in both, muscle and exoskeleton. Free fatty acids, triglycerides, carotenoids, and other lipids integrate this fraction, and some of these compounds have been reported with cancer chemopreventive activities. Carotenoids and polyunsaturated fatty acids have been extensively studied for chemopreventive properties, in both in vivo and in vitro studies. Their mechanisms of action depend on the lipid chemical structure and include antioxidant, anti-proliferative, anti-mutagenic, and anti-inflammatory activities, among others. The purpose of this review is to lay groundwork for future research about the properties of the lipid fraction of shrimp. PMID:24135910
Antimicrobial and antiparasitic activities of three algae from the northwest coast of Algeria.
Ghania, Aissaoui; Nabila, Belyagoubi-Benhammou; Larbi, Belyagoubi; Elisabeth, Mouray; Philippe, Grellier; Mariem, Benmahdjoub; Khadidja, Kerzabi-Kanoun; Wacila, Benguedda-Rahal; Fawzia, Atik-Bekkara
2017-11-22
The objective of this study was to investigate the biological activities of Algerian algae, Sargassum vulgare, Cladostephus hirsutus and Rissoella verruculosa. Antimicrobial activity of the crude extracts and their fractions was assessed using the disc diffusion assay, the minimum inhibitory concentration and the minimum bactericidal concentration. Antiparasitic activity was studied in vitro against the blood stream forms of Trypanosoma brucei brucei and the intraerythrocytic stages of Plasmodium falciparum. Ethyl acetate (EA) fractions of the three tested algae showed more potent antimicrobial activity against S. aureus (7-14.5 mm) and B. cereus (7-10.75 mm), MIC values ranged from 0.9375 to 7.5 mg mL -1 and MBC values > 15 mg mL -1 . Concerning the antiparasitic activity, EA factions of S. vulgare (IC 50 = 9.3 μg mL -1 ) and R. verruculosa (IC 50 = 11.0 μg mL -1 ) were found to be more effective against T. brucei brucei, whereas the three EA fractions were little active against P. falciparum.
Analysis of the biological activity of antilymphocyte serum
Perper, R. J.; Monovich, R. E.; Van Gorder, T. J.
1971-01-01
Two IgG subfractions of horse antilymphocyte serum (ALS) were obtained by DEAE Sephadex chromatography. Although the fractions did not differ antigenically, they differed on amino acid and carbohydrate analysis, and in electrophoretic mobility. As demonstrated by binding studies, only the most positively charged population of IgG molecules (fraction 1) obtained from anti-lymphocyte serum had specificity for the small lymphocyte; 50 per cent of the molecules in this population bound specifically to lymphocytes in vitro. As determined by an in vitro correlate of immunosuppressive potency (rosette inhibition), fraction 1 (F1) IgG from ALS contained approximately 4 times the specific activity of fraction 2 (F2). F1 was significantly more effective in prolonging skin graft survival than F2, whereas F2 contained the major component of the non-specific anti-inflammatory activity of serum. The anti-inflammatory effect was mediated by anticomplement activity. F2 was found to be an effective inhibitor of the immunosuppressive activity of F1 both in vivo and in vitro. Quantitative studies indicated that 1 part of F2 could maximally inhibit 4 parts of F1. The percentage of F2 present in serum IgG was inversely related to the skin graft survival elicited by the serum, which indicated that F2 was active as an inhibitor when tested as purified fraction as well as in unfractionated serum. Following immunization when F1 gained immunosuppressive potency, it lost non-specific anti-inflammatory activity. These observations indicated that not only was there a quantitative, as well as a qualitative concentration of immunosuppressive antibodies in F1, but also that this activity was controlled by the concentration of F2. This report, therefore, describes an IgG control mechanism which can limit the expression of antibody induced biological activity. It is suggested that in ALS the immunosuppressive antibody molecules possess a greater net positive charge than the remaining population, and that this is due to the degree of the negative charge on the immunizing antigen. Using DEAE Sephadex chromatography, these populations could be separated into two differently charged populations of molecules, only one of which had significant immunosuppressive capability. This increase in activity resulted from the increase of specific molecules, the loss of non-specific molecules, and was manifest upon the removal of an IgG inhibitor. ImagesFIG. 1FIG. 2 PMID:4943146
Korotta-Gamage, Shashika Madushi; Sathasivan, Arumugam
2017-01-01
The use of biologically activated carbon (BAC) in drinking water purification is reviewed. In the past BAC is seen mostly as a polishing treatment. However, BAC has the potential to provide solution to recent challenges faced by water utilities arising from change in natural organic matter (NOM) composition in drinking water sources - increased NOM concentration with a larger fraction of hydrophilic compounds and ever increasing trace level organic pollutants. Hydrophilic NOM is not removed by traditional coagulation process and causes bacterial regrowth and increases disinfection by-products (DBPs) formation during disinfection. BAC can offer many advantages by removing hydrophilic fraction and many toxic and endocrine compounds which are not otherwise removed. BAC can also aid the other downstream processes if used as a pre-treatment. Major drawback of BAC was longer empty bed contact time (EBCT) required for an effective NOM removal. This critical review analyses the strategies that have been adopted to enhance the biological activity of the carbon by operational means and summarises the surface modification methods. To maximize the benefit of the BAC, a rethink of current treatment plant configuration is proposed. If the process can be expedited and adopted appropriately, BAC can solve many of the current problems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cordeiro, Thuany de Moura; Borghetti, Fabian; Caldas Oliveira, Sarah C.; Bastos, Izabela Marques Dourado; de Santana, Jaime Martins; Grellier, Philippe; Charneau, Sébastien
2017-01-01
Background: The rapid spread of drug-resistant strains of protozoan parasites required the urgent need for new effective drugs. Natural products offer a variety of chemical structures, which make them a valuable source of lead compounds for the development of such new drugs. Cerrado is the second largest biome in Brazil and has the richest flora of all the world savannahs. We selected Qualea grandiflora, a plant species known for its proprieties in folk medicine and its antibacterial activity. Objective: However, its antiprotozoal activity was not yet explored. Materials and Methods: We investigated the activities of fractions from the ethyl acetate extract of Q. grandiflora leaves against human life forms of Plasmodium falciparum, Trypanosoma cruzi, and Trypanosoma brucei gambiense, and for its cytotoxicity upon the rat L6-myoblast cell line. Ten fractions were produced by ethyl acetate:hexane chromatography. Results and Conclusion: The fractions showed no cytotoxicity against L-6 cells (IC50 > 100 μg/mL) and no hemolysis propriety. Three fractions had a moderate activity against P. falciparum, anyone was active against T. cruzi but four fractions demonstrated a high activity against bloodstream forms of T. brucei gambiense (8.0< IC50 <15 μg/mL). Identification and characterization of the active compounds are currently under investigation. SUMMARY Qualea grandiflora is an endemic tree of the Brazilian Cerrado, which presents medicinal propertiesTen fractions of the ethyl acetate extract of Q. grandiflora leaves were assessed against Plasmodium falciparum, Trypanosoma Cruzi, and Trypanosoma brucei gambienseNo fraction showed relevant cytotoxicity and hemolysis activityAll the fractions presented antiplasmodial and trypanocidal activitiesThree fractions with moderate antiplasmodial activity (49< IC50 <56 μg/mL)Four fractions with high activity against bloodstream forms of T. brucei gambiense (8.0< IC50 <15 μg/mL). Abbreviations used: CQ: Chloroquine, DMSO: Dimethyl sulfoxide, HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, HMI: Modified Iscove's medium, IC50: Concentration inhibiting 50% of parasite growth, IC90: Concentration inhibiting 90% of parasite growth, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, RPMI: Roswell Park Memorial Institute, SD: Standard deviation, SI: Ratio of cytotoxicity to biological activity − TC50/IC50, TC50: Concentration causing 50% of cell growth inhibition, TC90: Concentration causing 90% of cell growth inhibition, TLC: Thin-layer chromatography PMID:29200731
Cordeiro, Thuany de Moura; Borghetti, Fabian; Caldas Oliveira, Sarah C; Bastos, Izabela Marques Dourado; de Santana, Jaime Martins; Grellier, Philippe; Charneau, Sébastien
2017-01-01
The rapid spread of drug-resistant strains of protozoan parasites required the urgent need for new effective drugs. Natural products offer a variety of chemical structures, which make them a valuable source of lead compounds for the development of such new drugs. Cerrado is the second largest biome in Brazil and has the richest flora of all the world savannahs. We selected Qualea grandiflora , a plant species known for its proprieties in folk medicine and its antibacterial activity. However, its antiprotozoal activity was not yet explored. We investigated the activities of fractions from the ethyl acetate extract of Q. grandiflora leaves against human life forms of Plasmodium falciparum , Trypanosoma cruzi , and Trypanosoma brucei gambiense , and for its cytotoxicity upon the rat L6-myoblast cell line. Ten fractions were produced by ethyl acetate:hexane chromatography. The fractions showed no cytotoxicity against L-6 cells (IC 50 > 100 μg/mL) and no hemolysis propriety. Three fractions had a moderate activity against P. falciparum , anyone was active against T. cruzi but four fractions demonstrated a high activity against bloodstream forms of T. brucei gambiense (8.0< IC 50 <15 μg/mL). Identification and characterization of the active compounds are currently under investigation. Qualea grandiflora is an endemic tree of the Brazilian Cerrado, which presents medicinal propertiesTen fractions of the ethyl acetate extract of Q. grandiflora leaves were assessed against Plasmodium falciparum , Trypanosoma Cruzi , and Trypanosoma brucei gambiense No fraction showed relevant cytotoxicity and hemolysis activityAll the fractions presented antiplasmodial and trypanocidal activitiesThree fractions with moderate antiplasmodial activity (49< IC 50 <56 μg/mL)Four fractions with high activity against bloodstream forms of T. brucei gambiense (8.0< IC 50 <15 μg/mL). Abbreviations used: CQ: Chloroquine, DMSO: Dimethyl sulfoxide, HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, HMI: Modified Iscove's medium, IC 50 : Concentration inhibiting 50% of parasite growth, IC 90 : Concentration inhibiting 90% of parasite growth, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, RPMI: Roswell Park Memorial Institute, SD: Standard deviation, SI: Ratio of cytotoxicity to biological activity - TC 50 /IC 50 , TC 50 : Concentration causing 50% of cell growth inhibition, TC 90 : Concentration causing 90% of cell growth inhibition, TLC: Thin-layer chromatography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, T K; Epler, J L; Guerin, M R
1980-01-01
In order to determine the long range health effects such as carcinogenicity/mutagenicity/teratogenicity/toxicity, associated with the newly emerging energy technologies, we have utilized the Ames Salmonella assay to evaluate mutagenic properties of synthetic fuels. Coupling with class fractionation was necessary. Organic extraction and liquid/liquid partitioning was used to separate acidic and basic fraction. The neutral material was separated using Sephadex LH-20 gel filtration into saturated and aromatic fractions of various ring sizes. The alkaline fraction was subfractionated eluting with benzene and ethanol on a basic alumina column and then with isopropanol and acetone using a Sephadex LH-20 gel column. The frameshiftmore » strain TA-98 was utilized along with Aroclor-induced rat liver homogenate (S-9 mix) for the mutagenicity assay. The natural crude oils were slightly mutagenic, the polynucleararomatics constituting the activity, while the coal-derived fuels indicated mutagenicity associated with alkaline constituents as well as polyaromatics. Hydrotreated coal (H-coal, HDT) or Shale (Paraho-Shale oil, HDT) derived fuels were not mutagenic. Ninety percent of the mutagenic activity in alkaline fraction was recovered in the acetone subfraction. High resolution spectroscopy of this fraction indicates polycyclic aromatic primary amines along with azaarenes as organic constituents responsible for the mutagenic activity associated with shale- and coal-derived fuels.« less
Badr, Sherif E A; Shaaban, Mohamed; Elkholy, Yehya M; Helal, Maher H; Hamza, Akila S; Masoud, Mohamed S; El Safty, Mounir M
2011-09-01
The chemical composition and biological activity of three parts (rind, flesh and seeds) of pumpkin fruits (Cucurbita pepo L.) cultivated in Egypt were studied. Chemical analysis of fibre, protein, β-carotene, carbohydrates, minerals and fatty acids present in the rind, flesh, seeds and defatted seeds meal was conducted. Chemical, GC-MS and biological assays of organic extracts of the main fruit parts, rind and flesh established their unique constituents. Chromatographic purification of the extracts afforded triglyceride fatty acid mixture (1), tetrahydro-thiophene (2), linoleic acid (3), calotropoleanly ester (4), cholesterol (5) and 13(18)-oleanen-3-ol (6). GC-MS analysis of the extract's unpolar fraction revealed the existence of dodecane and tetradecane. Structures of the isolated compounds (1-6) were confirmed by NMR and EI-MS spectrometry. Antimicrobial, antiviral and antitumour activities of the fruit parts were discussed. The promising combined extract of rind and flesh was biologically studied for microbial and cytotoxic activities in comparison with the whole isolated components.
Brusotti, Gloria; Ibrahim, Mohammed Farhad; Dentamaro, Alessandra; Gilardoni, Gianluca; Tosi, Solveig; Grisoli, Pietro; Dacarro, Cesare; Guglielminetti, Maria Lidia; Hussain, Faiq Hama Saeed; Caccialanza, Gabriele; Vidari, Giovanni
2013-02-01
The volatile fractions isolated from Prangos peucedanifolia FENZL leaves and flowers were investigated for their phytochemical composition and biological properties. Flower and leaf hydrodistillation afforded 3.14 and 0.49 g of yellowish oils in 1.25 and 0.41% yields, respectively, from dry vegetable materials. According to the GC-FID and GC/MS analyses, 36 (99.35% of the total oil composition) and 26 compounds (89.12%) were identified in the two oils, respectively. The major constituents in the flower volatile fraction were β-pinene (35.58%), α-pinene (22.13%), and β-phellandrene (12.54%), while m-cresol (50.38%) was the main constituent of the leaf volatile fraction. The antimicrobial activity was evaluated against several bacterial and fungal strains, on the basis of the minimum inhibitory concentration (MIC) by the micro- and macrodilution methods. The two volatile fractions showed moderate antifungal and antibacterial activities, especially against Trichophyton rubrum (MIC of 2×10(3) μg/ml), Streptococcus mutans, Streptococcus pyogenes, and Staphylococcus aureus (MIC≤1.9×10(3) μg/ml for all). Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.
Machado, Fabio Bahls; Yamamoto, Rafael Eidi; Zanoli, Karine; Nocchi, Samara Requena; Novello, Cláudio Roberto; Schuquel, Ivânia Teresinha Albrecht; Sakuragui, Cássia Mônica; Luftmann, Heinrich; Ueda-Nakamura, Tânia; Nakamura, Celso Vataru; de Mello, João Carlos Palazzo
2012-02-14
Arctium lappa L. (Asteraceae) is used in folk medicine around the World, and shows several kinds of biological activity, particularly in vitro antitumor activity in different cell lines. This study evaluated the antiproliferative activity of the crude extract, semipurified fractions, and isolated compounds from the leaves of A. lappa, through bioassay-guided testing in Caco-2 cells. The crude extract was obtained with a 50% hydroethanolic extract and then partitioned with hexane, ethyl acetate, and n-butanol. The ethyl-acetate fraction (EAF) showed antiproliferative activity. This fraction was subjected to sequential column chromatography over silica gel to afford onopordopicrin (1), mixtures of 1 with dehydromelitensin-8-(4'-hydroxymethacrylate) (2), a mixture of 2 with dehydromelitensin (3), mixture of 1 with melitensin (4), dehydrovomifoliol (5), and loliolide (6). The compounds were identified by spectroscopic methods (NMR, MS) and comparison with literature data. This is the first description of compounds 2-5 from this species. The compounds tested in Caco-2 cells showed the following CC(50) (µg/mL) values: 1: 19.7 ± 3.4, 1 with 2: 24.6 ± 1.5, 2 with 3: 27 ± 11.7, 1 with 4: 42 ± 13.1, 6 30 ± 6.2; compound 5 showed no activity.
Cardoso, Catarina; Charnikhova, Tatsiana; Jamil, Muhammad; Delaux, Pierre-Marc; Verstappen, Francel; Amini, Maryam; Lauressergues, Dominique; Ruyter-Spira, Carolien; Bouwmeester, Harro
2014-01-01
Strigolactones (SLs) trigger germination of parasitic plant seeds and hyphal branching of symbiotic arbuscular mycorrhizal (AM) fungi. There is extensive structural variation in SLs and plants usually produce blends of different SLs. The structural variation among natural SLs has been shown to impact their biological activity as hyphal branching and parasitic plant seed germination stimulants. In this study, rice root exudates were fractioned by HPLC. The resulting fractions were analyzed by MRM-LC-MS to investigate the presence of SLs and tested using bioassays to assess their Striga hermonthica seed germination and Gigaspora rosea hyphal branching stimulatory activities. A substantial number of active fractions were revealed often with very different effect on seed germination and hyphal branching. Fractions containing (−)−orobanchol and ent-2'-epi-5-deoxystrigol contributed little to the induction of S. hermonthica seed germination but strongly stimulated AM fungal hyphal branching. Three SLs in one fraction, putative methoxy-5-deoxystrigol isomers, had moderate seed germination and hyphal branching inducing activity. Two fractions contained strong germination stimulants but displayed only modest hyphal branching activity. We provide evidence that these stimulants are likely SLs although no SL-representative masses could be detected using MRM-LC-MS. Our results show that seed germination and hyphal branching are induced to very different extents by the various SLs (or other stimulants) present in rice root exudates. We propose that the development of rice varieties with different SL composition is a promising strategy to reduce parasitic plant infestation while maintaining symbiosis with AM fungi. PMID:25126953
Miura, Kazutoyo; Zhou, Hong; Moretz, Samuel E.; Diouf, Ababacar; Thera, Mahamadou A; Dolo, Amagana; Doumbo, Ogobara; Malkin, Elissa; Diemert, David; Miller, Louis H.; Mullen, Gregory E.D.; Long, Carole A.
2009-01-01
Vaccines represent a significant potential means of decreasing global morbidity and mortality due to malaria. Clinical trials in the U.S. with Plasmodium falciparum Apical Membrane Antigen 1 (AMA1) showed that the vaccine induced biologically active antibodies judged by an in vitro parasite Growth Inhibition Assay (GIA). However, the same vaccine in Malian adults did not increase biological activity although it elevated ELISA titers. As GIA has been used to evaluate the biological activity of antibodies induced by blood-stage malarial vaccine candidates, we explored this discrepancy in this study. We affinity purified AMA1-specific antibodies from both US vaccinees and from non-vaccinated individuals living in a malaria-endemic area of Mali, and performed ELISA and GIA. Both AMA1-specifc antibodies induced by vaccination (US) and by natural infection (Mali) have comparable biological activity in GIA when the ELISA titer is normalized. However, a fraction of Malians’ IgG which did not bind to AMA1 protein (Mali-non-AMA1 IgG) reduced the biological activity of the AMA1 antibodies from US vaccinees; in contrast, US-non-AMA1 IgGs did not show a reduction of the biological activity. Further investigation revealed that the reduction was due to malaria-specific IgGs in the Mali-non-AMA1 IgGs. The fact that both US- and Mali-AMA1-specific antibodies showed comparable biological activity supports further development of AMA1-based vaccines. However, the reduction of biological activity of AMA1-specific antibody by other malaria-specific IgGs likely explains the limited effect on growth-inhibitory activity of antibodies induced by AMA1 vaccination in Malian adults and may complicate efforts to develop a blood-stage malaria vaccine. PMID:19050299
Mass fractionation processes of transition metal isotopes
NASA Astrophysics Data System (ADS)
Zhu, X. K.; Guo, Y.; Williams, R. J. P.; O'Nions, R. K.; Matthews, A.; Belshaw, N. S.; Canters, G. W.; de Waal, E. C.; Weser, U.; Burgess, B. K.; Salvato, B.
2002-06-01
Recent advances in mass spectrometry make it possible to utilise isotope variations of transition metals to address some important issues in solar system and biological sciences. Realisation of the potential offered by these new isotope systems however requires an adequate understanding of the factors controlling their isotope fractionation. Here we show the results of a broadly based study on copper and iron isotope fractionation during various inorganic and biological processes. These results demonstrate that: (1) naturally occurring inorganic processes can fractionate Fe isotope to a detectable level even at temperature ˜1000°C, which challenges the previous view that Fe isotope variations in natural system are unique biosignatures; (2) multiple-step equilibrium processes at low temperatures may cause large mass fractionation of transition metal isotopes even when the fractionation per single step is small; (3) oxidation-reduction is an importation controlling factor of isotope fractionation of transition metal elements with multiple valences, which opens a wide range of applications of these new isotope systems, ranging from metal-silicate fractionation in the solar system to uptake pathways of these elements in biological systems; (4) organisms incorporate lighter isotopes of transition metals preferentially, and transition metal isotope fractionation occurs stepwise along their pathways within biological systems during their uptake.
Hrubik, Jelena; Glisic, Branka; Tubic, Aleksandra; Ivancev-Tumbas, Ivana; Kovacevic, Radmila; Samardzija, Dragana; Andric, Nebojsa; Kaisarevic, Sonja
2016-05-01
Absence of a municipal wastewater (WW) treatment plant results in the untreated WW discharge into the recipient. The present study investigated toxic effects and chemical composition of water extracts and fractions from untreated WW and recipient Danube River (DR). Samples were prepared by solid-phase extraction and silica gel fractionation and screened for EROD activity and cytotoxicity using aquatic models, comprising of fish liver cells (PLHC-1) and a model of the early development of zebrafish embryos, while rat (H4IIE) and human (HepG2) hepatoma cells served as mammalian models. Polar fraction caused cytotoxicity and increased the EROD activity in PLHC-1 cells, and increased mortality and developmental abnormalities in developing zebrafish embryos. In H4IIE, polar fraction induced inhibition of cell growth and increased EROD activity, whereas HepG2 exerted low or no response to the exposure. Non-polar and medium-polar fractions were ineffective. Tentative identification by GC/MS showed that WW is characterized by the hydrocarbons, alkylphenols, plasticizers, and a certain number of benzene derivatives and organic acids. In DR, smaller number of organic compounds was identified and toxicity was less pronounced than in WW treatments. The present study revealed the potent toxic effect of polar fraction of untreated WW, with biological responses varying in sensitivity across organisms. Obtained results confirmed that fraction- and species-specific toxicity should be considered when assessing health risk of environmental pollution. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hanif, Muhammad Asif; Nawaz, Haq; Naz, Saima; Mukhtar, Rubina; Rashid, Nosheen; Bhatti, Ijaz Ahmad; Saleem, Muhammad
2017-07-01
In this study, Raman spectroscopy along with Principal Component Analysis (PCA) is used for the characterization of pure essential oil (pure EO) isolated from the leaves of the Hemp (Cannabis sativa L.,) as well as its different fractions obtained by fractional distillation process. Raman spectra of pure Hemp essential oil and its different fractions show characteristic key bands of main volatile terpenes and terpenoids, which significantly differentiate them from each other. These bands provide information about the chemical composition of sample under investigation and hence can be used as Raman spectral markers for the qualitative monitoring of the pure EO and different fractions containing different active compounds. PCA differentiates the Raman spectral data into different clusters and loadings of the PCA further confirm the biological origin of the different fractions of the essential oil.
Mellows, Ben; Mitchell, Robert; Antonioli, Manuela; Kretz, Oliver; Chambers, David; Zeuner, Marie-Theres; Denecke, Bernd; Musante, Luca; Ramachandra, Durrgah L; Debacq-Chainiaux, Florence; Holthofer, Harry; Joch, Barbara; Ray, Steve; Widera, Darius; David, Anna L; Huber, Tobias B; Dengjel, Joern; De Coppi, Paolo; Patel, Ketan
2017-09-15
The secretome of human amniotic fluid stem cells (AFSCs) has great potential as a therapeutic agent in regenerative medicine. However, it must be produced in a clinically compliant manner before it can be used in humans. In this study, we developed a means of producing a biologically active secretome from AFSCs that is free of all exogenous molecules. We demonstrate that the full secretome is capable of promoting stem cell proliferation, migration, and protection of cells against senescence. Furthermore, it has significant anti-inflammatory properties. Most importantly, we show that it promotes tissue regeneration in a model of muscle damage. We then demonstrate that the secretome contains extracellular vesicles (EVs) that harbor much, but not all, of the biological activity of the whole secretome. Proteomic characterization of the EV and free secretome fraction shows the presence of numerous molecules specific to each fraction that could be key regulators of tissue regeneration. Intriguingly, we show that the EVs only contain miRNA and not mRNA. This suggests that tissue regeneration in the host is mediated by the action of EVs modifying existing, rather than imposing new, signaling pathways. The EVs harbor significant anti-inflammatory activity as well as promote angiogenesis, the latter may be the mechanistic explanation for their ability to promote muscle regeneration after cardiotoxin injury.
NASA Astrophysics Data System (ADS)
Mínguez, Pablo; Gustafsson, Johan; Flux, Glenn; Sjögreen Gleisner, Katarina
2016-03-01
In this work, the biologically effective dose (BED) is investigated for fractionated molecular radiotherapy (MRT). A formula for the Lea-Catcheside G-factor is derived which takes the possibility of combinations of sub-lethal damage due to radiation from different administrations of activity into account. In contrast to the previous formula, the new G-factor has an explicit dependence on the time interval between administrations. The BED of tumour and liver is analysed in MRT of neuroblastoma with 131I-mIBG, following a common two-administration protocol with a mass-based activity prescription. A BED analysis is also made for modified schedules, when due to local regulations there is a maximum permitted activity for each administration. Modifications include both the simplistic approach of delivering this maximum permitted activity in each of the two administrations, and also the introduction of additional administrations while maintaining the protocol-prescribed total activity. For the cases studied with additional (i.e. more than two) administrations, BED of tumour and liver decreases at most 12% and 29%, respectively. The decrease in BED of the tumour is however modest compared to the two-administration schedule using the maximum permitted activity, where the decrease compared to the original schedule is 47%.
Tona, L; Kambu, K; Ngimbi, N; Mesia, K; Penge, O; Lusakibanza, M; Cimanga, K; De Bruyne, T; Apers, S; Totte, J; Pieters, L; Vlietinck, A J
2000-03-01
Three major extracts from some traditional preparations, based on medicinal plants, used as antidiarrhoeal agents were investigated for their putative antiamoebic and spasmolytic activities in vitro. Results indicated that both biological activities are concentrated in the polyphenolic fraction, and not in the saponin or alkaloid containing fractions. The most active polyphenolic extracts were those from Euphorbia hirta whole plant, leaves of Alchornea cordifolia, Crossopteryx febrifuga, Nauclea latifolia, Psidium guajava, Tithonia diversifolia, stem bark of Harungana madagascariensis, Mangifera indica, Maprounea africana and Psidium guajava, inhibiting Entamoeba histolytica growth with MAC < 10 micrograms/ml. The same extracts, at a concentration of 80 micrograms/ml in an organ bath, also exhibited more than 70% inhibition of acetylcholine and/or KCl solution-induced contractions on isolated guinea-pig ileum.
Siritientong, Tippawan; Bonani, Walter; Motta, Antonella; Migliaresi, Claudio; Aramwit, Pornanong
2016-01-01
Sericin was extracted from three strains of Thai Bombyx mori silk cocoons (white shell Chul1/1, greenish shell Chul3/2, and yellow shell Chul4/2) by a high-pressure and high-temperature technique. The characteristics of sericin extracted from different fractions (15, 45, and 60 min extraction process) were compared. No differences in amino acid composition were observed among the three fractions. For all silk strains, sericin extracted from a 15-min process presented the highest molecular weight. The biological potential of the different sericin samples as a bioadditive for 3T3 fibroblast cells was assessed. When comparing sericin extracted from three silk strains, sericin fractions extracted from Chul4/2 improved cell proliferation, while sericin from Chul 1/1 activated Type I collagen production to the highest extent. This study allows the natural variability of sericin obtained from different sources and extraction conditions to be addressed and provides clues for the selection of sericin sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, Justin I.; Brown, Matthew F.; Reilly, Usa
The synthesis and biological activity of a new series of LpxC inhibitors represented by pyridone methylsulfone hydroxamate 2a is presented. Members of this series have improved solubility and free fraction when compared to compounds in the previously described biphenyl methylsulfone hydroxamate series, and they maintain superior Gram-negative antibacterial activity to comparator agents.
Thirumurugan, D; Vijayakumar, R
2015-05-01
Forty marine actinobacteria were isolated from the sediments of east coast (Bay of Bengal) region of Tamilnadu, India. Morphologically distinct colonies were primarily tested against fish pathogenic bacteria such as Vibrio cholerae, V. parahaemolyticus, V. alginolyticus, Pseudomonas fluorescens and Aeromonas hydrophila by cross-streak plate method. The secondary metabolites produced by the highly potential strain cultured on starch casein broth were extracted separately with various solvents such as alcohol, ethyl acetate, methanol, petroleum ether and chloroform. The antibacterial assay of the bioactive compounds was tested against the fish pathogenic bacteria by well diffusion method. Of the various solvents used, the ethyl acetate extract of the isolate had good antibacterial activity. The potential strain was identified as Streptomyces labedae by phenotypic, 16S rRNA gene sequence and phylogenetic analysis. Purification of the biologically active compounds by column chromatography led to isolation of 27 fractions. The biologically active fraction was re-chromatographed on a silica gel column to obtain a single active compound, namely N-isopentyltridecanamide. The structure of the compounds was elucidated on the basis of ultra violet, Fourier transform infrared and nuclear magnetic resonance spectra.
Identification of multifunctional peptides from human milk.
Mandal, Santi M; Bharti, Rashmi; Porto, William F; Gauri, Samiran S; Mandal, Mahitosh; Franco, Octavio L; Ghosh, Ananta K
2014-06-01
Pharmaceutical industries have renewed interest in screening multifunctional bioactive peptides as a marketable product in health care applications. In this context, several animal and plant peptides with potential bioactivity have been reported. Milk proteins and peptides have received much attention as a source of health-enhancing components to be incorporated into nutraceuticals and functional foods. By using this source, 24 peptides have been fractionated and purified from human milk using RP-HPLC. Multifunctional roles including antimicrobial, antioxidant and growth stimulating activity have been evaluated in all 24 fractions. Nevertheless, only four fractions show multiple combined activities among them. Using a proteomic approach, two of these four peptides have been identified as lactoferrin derived peptide and kappa casein short chain peptide. Lactoferrin derived peptide (f8) is arginine-rich and kappa casein derived (f12) peptide is proline-rich. Both peptides (f8 and f12) showed antimicrobial activities against both Gram-positive and Gram-negative bacteria. Fraction 8 (f8) exhibits growth stimulating activity in 3T3 cell line and f12 shows higher free radical scavenging activity in comparison to other fractions. Finally, both peptides were in silico evaluated and some insights into their mechanism of action were provided. Thus, results indicate that these identified peptides have multiple biological activities which are valuable for the quick development of the neonate and may be considered as potential biotechnological products for nutraceutical industry. Copyright © 2014 Elsevier Inc. All rights reserved.
Garlic compounds modulate macrophage and T-lymphocyte functions.
Lau, B H; Yamasaki, T; Gridley, D S
1991-06-01
Organosulfur compounds of garlic have been shown to inhibit growth of animal tumors and to modulate the activity of diverse chemical carcinogens. There is also evidence that garlic may modulate antitumor immunity. In this study, we determined the effects of an aqueous garlic extract and a protein fraction isolated from the extract on the chemiluminescent oxidative burst of the murine J774 macrophage cell line and thioglycollate-elicited peritoneal macrophages obtained from BALB/c mice. T-lymphocyte activity was determined using mouse splenocytes incubated with phytohemagglutinin, labeled with [3H]-thymidine and assayed for lymphoproliferation. Significant dose-related augmentation of oxidative burst was observed with garlic extract and the protein fraction. The protein fraction also enhanced the T-lymphocyte blastogenesis. The data suggest that garlic compounds may serve as biological response modifiers by augmenting macrophage and T-lymphocyte functions.
Performance and emissions characteristics of aqueous alcohol fumes in a DI diesel engine
NASA Technical Reports Server (NTRS)
Heisey, J. B.; Lestz, S. S.
1981-01-01
A single cylinder DI Diesel engine was fumigated with ethanol and methanol in amounts up to 55% of the total fuel energy. The effects of aqueous alcohol fumigation on engine thermal efficiency, combustion intensity and gaseous exhaust emissions were determined. Assessment of changes in the biological activity of raw particulate and its soluble organic fraction were also made using the Salmonella typhimurium test. Alcohol fumigation improved thermal efficiency slightly at moderate and heavy loads, but increased ignition delay at all operating conditions. Carbon monoxide and unburned hydrocarbon emission generally increased with alcohol fumigation and showed no dependence on alcohol type or quality. Oxide of nitrogen emission showed a strong dependence on alcohol quality; relative emission levels decreased with increasing water content of the fumigant. Particulate mass loading rates were lower for ethanol fueled conditions. However, the biological activity of both the raw particulate and its soluble organic fraction was enhanced by ethanol fumigation at most operating conditions.
Ngan, Dai Hue; Hoai, Ho Thi Cam; Huong, Le Mai; Hansen, Poul Erik; Vang, Ole
2008-01-01
Five crude extracts were made from leaves and stems of Jasminum subtriplinerve Blume (Oleaceae) and investigated for antimicrobial, antioxidant and cytotoxic activities. The extractions were done with petroleum ether, ethyl acetate, ethanol, methanol or water. All extracts exhibited anti-bacterial activity except the water fraction. On the other hand, all extracts exhibit antioxidant activity except the petroleum ether fraction using the DPPH radical scavenging assay. Only the petroleum ether fraction showed a cytotoxicity activity against tested cell-lines, Hep-G2 and RD with IC(50) values of 19.2 and 20 microg mL(-1), respectively. From the petroleum ether and ethyl acetate extracts, two triterpenes namely 3beta-acetyl-oleanolic acid and lup-20-en-3beta-ol and a sterol, stigmast-5-en-3beta-ol were isolated. The structure of those compounds were elucidated by spectrometric methods IR, MS, 1D-NMR, 2D-NMR and simulated ACD/NMR spectra. The data presented here indicate that J. subtriplinerve do contain compounds with interesting biological activity.
Lis, Bernadetta; Jędrejek, Dariusz; Stochmal, Anna; Olas, Beata
2018-05-01
Aerial parts and roots of Taraxacum officinale (dandelion) have been found to be rich sources of polyphenols, including cinnamic acid derivatives, flavonoids and triterpenoids, which exert different biological activities, such as anti-inflammatory, anticancer and antimicrobial. Additionally, the whole plant is recognized as safe and well tolerated by humans, with no reported adverse effects. Nowadays, dandelion is a commonly available dietary supplement and a component of pharmaceutical preparations used for the treatment of bladder, liver, and spleen. Nevertheless, the effect of dandelion on blood platelets and plasma - components of hemostasis involved in the functioning of a cardiovascular system and linked with various cardiovascular diseases, has not been studied yet. Thus, the main objective of our in vitro experiments was to examine the anti-platelet and antioxidant properties of four standardized dandelion phenolic fractions, i.e. leaves 50% and 85% methanol fractions, and petals 50% and 85% methanol fractions, in blood platelets. Additionally, aforementioned plant preparations were investigated for hemostatic activity in plasma, using three selected hemostatic parameters: the activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT). None of the studied dandelion fractions, caused the damage of human blood platelets, at the whole tested range. The inhibition of lipid peroxidation in platelets treated with H 2 O 2 /Fe (the donor of OH) was observed for two fractions: leaves and petals 50% fractions, both at the dose 50 μg/mL. Analysis of the effect on the coagulation activity of human plasma demonstrated that three fractions: petals 50% fraction, and leaves and petals 85% fractions, significantly prolonged the thrombin time, at the whole tested range. On the contrary, none of the fractions changed the APTT and the PT. The obtained results demonstrate that dandelion preparations, based on aerial parts, especially rich in hydroxycinnamic acid derivatives (leaves and petals 50% fractions) are promising plant materials exerting both antioxidant and anticoagulant activities of the hemostatic system that is beneficial in the prevention and treatment of cardiovascular diseases. Published by Elsevier Ltd.
Basri, Aida Maryam; Taha, Hussein; Ahmad, Norhayati
2017-01-01
The rhizomes of Alpinia officinarum Hance have been used conventionally for the treatment of various ailments, triggering a wide interest from the scientific research community on this ethnomedicinal plant. This review summarizes the phytochemical and pharmacological properties of the extracts and fractions from A. officinarum, a plant species of the Zingiberaceae family. Different parts of the plant – leaves, roots, rhizomes, and aerial parts – have been extracted in various solvents – methanol, ethanol, ethyl acetate, hexane, dichloromethane, aqueous, chloroform, and petroleum ether, using various techniques – Soxhlet extraction, maceration, ultrasonication, and soaking, whereas fractionation of the plant extracts involves the solvent–solvent partition method. The extracts, fractions, and isolated compounds have been studied for their biological activities – antioxidant, antibacterial, anti-inflammatory, anticancer, antiproliferative, inhibition of enzymes, as well as the inhibition of nitric oxide production. More findings on A. officinarum are certainly important to further develop potential bioactive drug compounds. PMID:28503054
NASA Astrophysics Data System (ADS)
Cho, Myoung Lae; Lee, Dong-Jin; Lee, Hyi-Seung; Lee, Yeon-Ju; You, Sang Guan
2013-12-01
The nitric oxide inhibitory (NOI) and antioxidant (ABTS and DPPH radical scavenging effects with reducing power) activities of the ethanol (EtOH) extracts and solvent partitioned fractions from Scytosiphon lomentaria, Chorda filum, Agarum cribrosum, and Desmarestia viridis were investigated, and the correlation between biological activity and total phenolic (TP) and phlorotannin (TPT) content was determined by PCA analysis. The yield of EtOH extracts from four brown seaweeds ranged from 2.6 to 6.6% with the highest yield from D. viridis, and the predominant compounds in their solvent partitioned fractions had medium and/or less polarity. The TP and TPT content of the EtOH extracts were in the ranges of 25.0-44.1 mg GAE/g sample and 0.2-4.6 mg PG/g sample, respectively, which were mostly included in the organic solvent partitioned fractions. Strong NOI activity was observed in the EtOH extracts and their solvent partitioned fractions from D. viridis and C. filum. In addition, the EtOH extract and its solvent partitioned fractions of D. viridis exhibited little cytotoxicity to Raw 264.7 cells. The most potent ABTS and DPPH radical scavenging capacity was shown in the EtOH extracts and their solvent partitioned fractions from S. lomentaria and C. filum, and both also exhibited strong reducing ability. In the PCA analysis the content of TPT had a good correlation with DPPH ( r = 0.62), ABTS ( r = 0.69) and reducing power ( r = 0.65), however, an unfair correlation was observed between the contents of TP and TPT and NOI, suggesting that the phlorotannins might be responsible for the DPPH and ABTS radical scavenging activities.
Gimbert, Frédéric; Geffard, Alain; Guédron, Stéphane; Dominik, Janusz; Ferrari, Benoit J D
2016-02-01
Along with the growing body of evidence that total internal concentration is not a good indicator of toxicity, the Critical Body Residue (CBR) approach recently evolved into the Tissue Residue Approach (TRA) which considers the biologically active portion of metal that is available to contribute to the toxicity at sites of toxic action. For that purpose, we examined total mercury (Hg) bioaccumulation and subcellular fractionation kinetics in fourth stage larvae of the midge Chironomus riparius during a four-day laboratory exposure to Hg-spiked sediments and water. The debris (including exoskeleton, gut contents and cellular debris), granule and organelle fractions accounted only for about 10% of the Hg taken up, whereas Hg concentrations in the entire cytosolic fraction rapidly increased to approach steady-state. Within this fraction, Hg compartmentalization to metallothionein-like proteins (MTLP) and heat-sensitive proteins (HSP), consisting mostly of enzymes, was assessed in a comparative manner by two methodologies based on heat-treatment and centrifugation (HT&C method) or size exclusion chromatography separation (SECS method). The low Hg recoveries obtained with the HT&C method prevented accurate analysis of the cytosolic Hg fractionation by this approach. According to the SECS methodology, the Hg-bound MTLP fraction increased linearly over the exposure duration and sequestered a third of the Hg flux entering the cytosol. In contrast, the HSP fraction progressively saturated leading to Hg excretion and physiological impairments. This work highlights several methodological and biological aspects to improve our understanding of Hg toxicological bioavailability in aquatic invertebrates. Copyright © 2015 Elsevier B.V. All rights reserved.
Anti-inflammatory activity of different agave plants and the compound cantalasaponin-1.
Monterrosas-Brisson, Nayeli; Ocampo, Martha L Arenas; Jiménez-Ferrer, Enrique; Jiménez-Aparicio, Antonio R; Zamilpa, Alejandro; Gonzalez-Cortazar, Manases; Tortoriello, Jaime; Herrera-Ruiz, Maribel
2013-07-10
Species of the agave genus, such as Agave tequilana, Agave angustifolia and Agave americana are used in Mexican traditional medicine to treat inflammation-associated conditions. These plants' leaves contain saponin compounds which show anti-inflammatory properties in different models. The goal of this investigation was to evaluate the anti-inflammatory capacity of these plants, identify which is the most active, and isolate the active compound by a bio-directed fractionation using the ear edema induced in mice with 12-O-tetradecanoylphorbol-13-acetate (TPA) technique. A dose of 6 mg/ear of acetone extract from the three agave species induced anti-inflammatory effects, however, the one from A. americana proved to be the most active. Different fractions of this species showed biological activity. Finally the F5 fraction at 2.0 mg/ear induced an inhibition of 85.6%. We identified one compound in this fraction as (25R)-5α-spirostan-3β,6α,23α-triol-3,6-di-O-β-D-glucopyranoside (cantalasaponin-1) through 1H- and 13C-NMR spectral analysis and two dimensional experiments like DEPT NMR, COSY, HSQC and HMBC. This steroidal glycoside showed a dose dependent effect of up to 90% of ear edema inhibition at the highest dose of 1.5 mg/ear.
Meira, Nicole Anzanelo; Klein, Luiz Carlos; Rocha, Lilian W; Quintal, Zhelmy Martin; Monache, Franco Delle; Cechinel Filho, Valdir; Quintão, Nara Lins Meira
2014-02-03
Chrysophyllum cainito, popularly known as "star apple", caimito, "abiu-roxo" or "abiu-do-Pará", is a tree of about 25m in height. Besides its culinary use, it is also used in folk medicine for the treatment of diabetes mellitus and several inflammatory diseases. The crude methanolic extract (CME) was submitted to phytochemical studies for obtaining fractions and isolated compounds. They were monitored by thin-layer-chromatography (TLC). The biological activity was evaluated in mice using the carrageenan-induced mechanical hypersensitivity and paw oedema. Biochemical assays, such as myeloperoxidase (MPO) and activity and cytokines levels quantification, were carried out to analyse the involvement of neutrophil migration and IL-1β and TNFα production. Some adverse effects were investigated using the open-field and rota-rod tests, and it was also measured the rectal temperature. This study demonstrates, for the first time, the anti-hypersensitivity and anti-inflammatory effects of CME, fractions and two isolated triterpenes obtained from the leaves of Chrysophyllum cainito on carrageenan-induced hypersensitivity and paw-oedema. The mice treated with CME or chloroform fraction (CHCl3) presented reduction in mechanical hypersensitivity. The effect of the CME seemed to be partially related to the anti-inflammatory activity, as the paw-oedema and MPO activity were also significantly inhibited. The isolated compound Lup-20(29)-en-3β-O-hexanoate demonstrated more reduction of the hypersensitivity than 3β-Lup-20(29)-en-3-yl acetate, suggesting that this molecule might be partially responsible for the biological effects obtained with CME and CHCl3 fractions. Finally, animals treated with CME and CHCl3 did not present changes in locomotor activity, motor performance or body temperature. Our data demonstrates, for the first time, that the crude extract, fractions and pure compounds obtained from the Chrysophyllum cainito leaves possess important anti-hypersensitive properties against inflammatory pain in mice. The mechanisms through which Chrysophyllum cainito exerts its anti-hypersensitive actions are still unclear, and require further investigation; however, this could well constitute a new and attractive alternative for the management of persistent inflammatory and neuropathic pain in humans. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Chandran, Sanjana; Sakthivel, Meenakumari; Thirumavalavan, Munusamy; Thota, Jagadeshwar Reddy; Mariappanadar, Vairamani; Raman, Pachaiappan
2017-09-01
The objective of the present study was to identify the proteome pattern, isolate and study the functions of selective proteins from Ferula asafoetida root exudate using chromatographic techniques. The root exudate proteins were fractionated using ion-exchange and gel filtration chromatography. A range of bioactive protein fractions were then separated in sufficient quantity which is the focus of this study. Based on studies, here we report three main proteins with molecular weights 14kDa, 27kDa, and 39kDa. The biological and pharmacological activities of both purified and unpurified proteins obtained were extensively studied to understand their significance. The study revelaed that 27kDa protein interestingly stabilized trypsin activity in 24h of time and retained about 64% of the enzyme activity. Analyses confirmed 40°C and pH 8.0 are the optimum temperature and pH respectively. The 39kDa protein remarkably increased the activity of chymotrypsin and the 14kDa protein showed anti-bacterial activity against Pseudomonas aeruginosa. Invariably all of the three purified proteins showed enhanced anti-oxidant activity. In conclusion, results here obtained suggested that the primary metabolites (proteins) in asafoetida are mainly responsible for its versatile biological and pharmacological activities. Copyright © 2017 Elsevier B.V. All rights reserved.
Kondeti, Vinay Kumar; Badri, Kameswara Rao; Maddirala, Dilip Rajasekhar; Thur, Sampath Kumar Mekala; Fatima, Shaik Sameena; Kasetti, Ramesh Babu; Rao, Chippada Appa
2010-05-01
The present study was designed to investigate the effect of bark of Pterocarpus santalinus, an ethnomedicinal plant, on blood glucose, plasma insulin, serum lipids and the activities of hepatic glucose metabolizing enzymes in streptozotocin-induced diabetic rats. Streptozotocin-induced diabetic rats were treated (acute/short-term and long-term) with ethyl acetate:methanol fractions of ethanolic extract of the bark of P. santalinus. Fasting blood glucose, HbA(1C), plasma insulin and protein were estimated before and after the treatment, along with hepatic glycogen, and activities of hexokinase, glucose-6-phosphatase, fructose-1,6-bisphosphatase and glucose-6-phosphate dehydrogenase. Further anti-hyperlipidemic activity was studied by measuring the levels of serum lipids and lipoproteins. Phytochemical analysis of active fraction showed the presence of flavonoids, glycosides and phenols. Biological testing of the active fraction demonstrated a significant antidiabetic activity by reducing the elevated blood glucose levels and glycosylated hemoglobin, improving hyperlipidemia and restoring the insulin levels in treated experimental induced diabetic rats. Further elucidation of mechanism of action showed improvement in the hepatic carbohydrate metabolizing enzymes after the treatment. Our present investigation suggests that active fraction of ethanolic extract of bark of P. santalinus decreases streptozotocin induced hyperglycemia by increasing glycolysis and decreasing gluconeogenesis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Use of radiation protraction to escalate biologically effective dose to the treatment target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuperman, V. Y.; Spradlin, G. S.; Department of Mathematics, Embry-Riddle University, Daytona Beach, Florida 32114
2011-12-15
Purpose: The aim of this study is to evaluate how simultaneously increasing fraction time and dose per fraction affect biologically effective dose for the target (BED{sub tar}) while biologically effective dose for the normal tissue (BED{sub nt}) is fixed. Methods: In this investigation, BED{sub tar} and BED{sub nt} were studied by assuming mono-exponential repair of sublethal damage with tissue dependent repair half-time. Results: Our results demonstrate that under certain conditions simultaneously increasing fraction time and dose per fraction result in increased BED{sub tar} while BED{sub nt} is fixed. The dependence of biologically effective dose on fraction time is influenced bymore » the dose rate. In this investigation we analytically determined time-varying dose rate R-tilde which minimizes BED. Changes in BED with fraction time were compared for constant dose rate and for R-tilde. Conclusions: A number of recent experimental and theoretical studies have demonstrated that slow delivery of radiation (known as radiation protraction) leads to reduced therapeutic effect because of increased repair of sublethal damage. In contrast, our analysis shows that under certain conditions simultaneously increasing fraction time and dose per fraction are radiobiologically advantageous.« less
Biologically active traditional medicinal herbs from Balochistan, Pakistan.
Zaidi, Mudassir A; Crow, Sidney A
2005-01-04
The biological activities of the following four important medicinal plants of Balochistan, Pakistan were checked; Grewia erythraea Schwein f. (Tiliaceae), Hymenocrater sessilifolius Fisch. and C.A. Mey (Lamiaceae), Vincetoxicum stocksii Ali and Khatoon (Asclepiadaceae) and Zygophyllum fabago L. (Zygophyllaceae). The methanolic extracts were fractionated into hexane, ethyl acetate, chloroform, butanol and water. The antifungal and antibacterial activities of these plants were determined against 12 fungal and 12 bacterial strains by agar well diffusion and disk diffusion assays. The extract of Zygophyllum fabago was found to be highly effective against Candida albicans and Escherichia coli. The extract of Vincetoxicum stocksii was also found to be significantly active against Candida albicans, Bacillus subtilis and Bacillus cereus. Extracts of Hymenocrater sessilifolius and Grewia erythraea showed good activity only against Pseudomonas aeruginosa.
Perry, J E; Ishii-Ohba, H; Stalvey, J R
1991-06-01
Key to the production of biologically active steroids is the enzyme 3 beta-hydroxysteroid dehydrogenase-isomerase. Some controversy has arisen concerning the subcellular distribution of this enzyme within steroidogenic cells. The distribution of 3 beta-hydroxysteroid dehydrogenase-isomerase was assessed in subcellular fractions obtained from homogenates of rat, bovine, and mouse adrenal glands in two ways. The activity of 3 beta-hydroxysteroid dehydrogenase-isomerase was quantitated by measuring the conversion of radiolabeled pregnenolone to radiolabeled progesterone in an aliquot of each of the fractions obtained. The presence of the enzyme was assessed by performing Western analyses on aliquots of each of the fractions obtained with the use of a specific polyclonal antiserum against 3 beta-hydroxysteroid dehydrogenase-isomerase, the characterization of which is described. In control experiments, the degree of contamination of the fractions was determined by assessing the presence of known subcellular fraction markers with Western analysis. In the bovine and mouse adrenal glands, 3 beta-hydroxysteroid dehydrogenase-isomerase appears to be localized solely in the microsomal fraction, while in the rat, 3 beta-hydroxysteroid dehydrogenase-isomerase appears to have dual subcellular distribution: the microsomes and the inner mitochondrial membrane. We conclude that there is a species difference in the subcellular distribution of this important steroidogenic enzyme and that this species difference may be related to the steroidogenic pathway preferred in that species.
Fernandes-Silva, Caroline C; Lima, Carolina A; Negri, Giuseppina; Salatino, Maria L F; Salatino, Antonio; Mayworm, Marco A S
2015-12-01
Propolis is a resinous material produced by honeybees, containing mainly beeswax and plant material. Despite the wide spectrum of biological activity of propolis, to our knowledge no studies have been carried out about phytotoxic properties of Brazilian propolis and its constituents. The aims of this study were to analyze the chemical composition and to evaluate the phytotoxic activity of the volatile fraction of a sample of Brazilian green propolis. Main constituents are the phenylpropanoid 3-prenylcinnamic acid allyl ester (26.3%) and the sesquiterpene spathulenol (23.4%). Several other sesquiterpenes and phenylpropanoids, in addition to linalool and α-terpineol (monoterpenes), were also detected. The activity of solutions of the volatile fraction at 1.0, 0.5 and 0.1% was tested on lettuce seeds and seedlings. The solution at 1% inhibited completely the seed germination and solutions at 0.1 and 0.5% reduced the germination rate index. The solution at 0.5% reduced the growth of the hypocotyl-radicle axis and the development of the cotyledon leaf. The chemical composition of the volatile fraction of this Brazilian green propolis is different from those previously described, and these results may contribute to a better understanding about the chemical variations in propolis. The volatile fraction of Brazilian green propolis influences both germination of seed lettuce and the growth of its seedlings, showing an phytotoxic potential. © 2014 Society of Chemical Industry.
GanedenBC30 cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro.
Jensen, Gitte S; Benson, Kathleen F; Carter, Steve G; Endres, John R
2010-03-24
This study was performed to evaluate anti-inflammatory and immune modulating properties of the probiotic, spore-forming bacterial strain: Bacillus coagulans: GBI-30, (PTA-6086, GanedenBC30TM). In addition, cell wall and metabolite fractions were assayed separately to address whether biological effects were due to cell wall components only, or whether secreted compounds from live bacteria had additional biological properties. The spores were heat-activated, and bacterial cultures were grown. The culture supernatant was harvested as a source of metabolites (MTB), and the bacteria were used to isolate cell wall fragments (CW). Both of these fractions were compared in a series of in vitro assays. Both MTB and CW inhibited spontaneous and oxidative stress-induced ROS formation in human PMN cells and increased the phagocytic activity of PMN cells in response to bacteria-like carboxylated fluorospheres. Both fractions supported random PMN and f-MLP-directed PMN cell migration, indicating a support of immune surveillance and antibacterial defense mechanisms. In contrast, low doses of both fractions inhibited PMN cell migration towards the inflammatory mediators IL-8 and LTB4. The anti-inflammatory activity was strongest for CW, where the PMN migration towards IL-8 was inhibited down to dilutions of 1010.Both MTB and CW induced the expression of the CD69 activation marker on human CD3- CD56+ NK cells, and enhanced the expression of CD107a when exposed to K562 tumor cells in vitro.The fractions directly modulated cytokine production, inducing production of the Th2 cytokines IL-4, IL-6, and IL-10, and inhibiting production of IL-2.Both fractions further modulated mitogen-induced cytokine production in the following manner: Both fractions enhanced the PHA-induced production of IL-6 and reduced the PHA-induced production of TNF-alpha. Both fractions enhanced the PWM-induced production of TNF-alpha and IFN-gamma. In addition, MTB also enhanced both the PHA- and the PWM-induced expression of IL-10. The data suggest that consumption of GanedenBC30TM may introduce both cell wall components and metabolites that modulate inflammatory processes in the gut. Both the cell wall and the supernatant possess strong immune modulating properties in vitro. The anti-inflammatory effects, combined with direct induction of IL-10, are of interest with respect to possible treatment of inflammatory bowel diseases as well as in support of a healthy immune system.
GanedenBC30™ cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro
2010-01-01
Background This study was performed to evaluate anti-inflammatory and immune modulating properties of the probiotic, spore-forming bacterial strain: Bacillus coagulans: GBI-30, (PTA-6086, GanedenBC30TM). In addition, cell wall and metabolite fractions were assayed separately to address whether biological effects were due to cell wall components only, or whether secreted compounds from live bacteria had additional biological properties. The spores were heat-activated, and bacterial cultures were grown. The culture supernatant was harvested as a source of metabolites (MTB), and the bacteria were used to isolate cell wall fragments (CW). Both of these fractions were compared in a series of in vitro assays. Results Both MTB and CW inhibited spontaneous and oxidative stress-induced ROS formation in human PMN cells and increased the phagocytic activity of PMN cells in response to bacteria-like carboxylated fluorospheres. Both fractions supported random PMN and f-MLP-directed PMN cell migration, indicating a support of immune surveillance and antibacterial defense mechanisms. In contrast, low doses of both fractions inhibited PMN cell migration towards the inflammatory mediators IL-8 and LTB4. The anti-inflammatory activity was strongest for CW, where the PMN migration towards IL-8 was inhibited down to dilutions of 1010. Both MTB and CW induced the expression of the CD69 activation marker on human CD3- CD56+ NK cells, and enhanced the expression of CD107a when exposed to K562 tumor cells in vitro. The fractions directly modulated cytokine production, inducing production of the Th2 cytokines IL-4, IL-6, and IL-10, and inhibiting production of IL-2. Both fractions further modulated mitogen-induced cytokine production in the following manner: Both fractions enhanced the PHA-induced production of IL-6 and reduced the PHA-induced production of TNF-alpha. Both fractions enhanced the PWM-induced production of TNF-alpha and IFN-gamma. In addition, MTB also enhanced both the PHA- and the PWM-induced expression of IL-10. Conclusion The data suggest that consumption of GanedenBC30TM may introduce both cell wall components and metabolites that modulate inflammatory processes in the gut. Both the cell wall and the supernatant possess strong immune modulating properties in vitro. The anti-inflammatory effects, combined with direct induction of IL-10, are of interest with respect to possible treatment of inflammatory bowel diseases as well as in support of a healthy immune system. PMID:20331905
Isotope analyses of the lake sediments in the Plitvice Lakes, Croatia
NASA Astrophysics Data System (ADS)
Horvatinčić, Nada; Sironić, Andreja; Barešić, Jadranka; Bronić, Ines Krajcar; Nikolov, Jovana; Todorović, Nataša; Hansman, Jan; Krmar, Miodrag
2014-10-01
The analyses of radioactive isotopes 14C, 137Cs and 210Pb, and stable isotope 13C were performed in the sediment cores, top 40 cm, taken in 2011 from karst lakes Prošće and Kozjak in the Plitvice Lakes National Park, central Croatia. Frozen sediment cores were cut into 1 cm thick layers and dried. 14C activity in both carbonate and organic fractions was measured using accelerator mass spectrometry technique with graphite synthesis. 137Cs, 210Pb, 214Pb and 214Bi were measured by low level gamma spectrometry method on ORTECHPGe detector with the efficiency of 32%. Distribution of 14C activity from both lakes showed increase of the 14C activity in the top 10-12 cm in both carbonate and organic fractions as a response to thermonuclear bomb-produced 14C in the atmosphere in the sixties of the 20th century. Anthropogenically produced 137Cs was also observed in sediment profiles. Sedimentation rates for both lake sediments were estimated based on the unsupported 210Pb activity. Different 14C activity of the carbonate fraction (63-80 pMC, percent of modern carbon) and organic fraction (82-93 pMC) is the result of geochemical and biological processes of the sediment precipitation in the lake waters. This is also confirmed by the δ 13 C values of both fractions. Carbon isotope composition, a 14 C and δ 13 C, was compared with the lake sediments from the same lakes collected in 1989 and 2003.
NASA Astrophysics Data System (ADS)
Muserere, Simon Takawira; Hoko, Zvikomborero; Nhapi, Innocent
Varying conditions are required for different species of microorganisms for the complex biological processes taking place within the activated sludge treatment system. It is against the requirement to manage this complex dynamic system that computer simulators were developed to aid in optimising activated sludge treatment processes. These computer simulators require calibration with quality data input that include wastewater fractionation among others. Thus, this research fractionated raw sewage, at Firle Sewage Treatment Works (STW), for calibration of the BioWin simulation model. Firle STW is a 3-stage activated sludge system. Wastewater characteristics of importance for activated sludge process design can be grouped into carbonaceous, nitrogenous and phosphorus compounds. Division of the substrates and compounds into their constituent fractions is called fractionation and is a valuable tool for process assessment. Fractionation can be carried out using bioassay methods or much simpler physico-chemical methods. The bioassay methods require considerable experience with experimental activated sludge systems and associated measurement techniques while the physico-chemical methods are straight forward. Plant raw wastewater fractionation was carried out through two 14-day campaign periods, the first being from 3 to 16 July 2013 and the second was from 1 to 14 October 2013. According to the Zimbabwean Environmental Management Act, and based on the sensitivity of its catchment, Firle STW effluent discharge regulatory standards in mg/L are COD (<60), TN (<10), ammonia (<0.2), and TP (<1). On the other hand Firle STW Unit 4 effluent quality results based on City of Harare records in mg/L during the period of study were COD (90 ± 35), TN (9.0 ± 3.0), ammonia (0.2 ± 0.4) and TP (3.0 ± 1.0). The raw sewage parameter concentrations measured during the study in mg/L and fractions for raw sewage respectively were as follows total COD (680 ± 37), slowly biodegradable COD (456 ± 23), (0.7), readily biodegradable COD (131 ± 11), (0.2), soluble unbiodegradable COD (40 ± 3), (0.06), particulate unbiodegradable COD (53 ± 3) (0.08), total TKN (40 ± 4) mg/L, ammonia (28 ± 6), (0.68), organically bound nitrogen (12 ± 2), (0.32), TP (15 ± 1.4), orthophosphates (9.6 ± 1.4), (0.64), and organically bound TP (5.4 ± 1.4), (0.36), soluble unbiodegradable TP (0.4 ± 0), (0.03), particulate unbiodegradable TP (0.05 ± 0), (0.003). Thus, wastewater at Firle STW was found to be highly biodegradable suggesting optimisation of biological nutrient removal process will generally achieve effluent regulatory standards compliance. Thus, opportunities for plant optimisation do exist of which modelling with the use of a simulator is recommended to achieve recommended effluent standards in addition to reduction of operating costs.
Method of measurement in biological systems
Turteltaub, K.W.; Vogel, J.S.; Felton, J.S.; Gledhill, B.L.: Davis, J.C.; Stanker, L.H.
1993-05-11
A method is disclosed of quantifying molecules in biological substances, comprising: selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere; preparing a long-lived radioisotope labeled reactive chemical specie; administering the chemical specie to the biological host in doses sufficiently low to avoid significant overt damage to the biological system; allowing a period of time to elapse sufficient for dissemination and interaction of the chemical specie with the host throughout the biological system of the host; isolating a reacted fraction of the biological substance from the host in a manner sufficient to avoid contamination of the substance from extraneous sources; converting the fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation; and measuring the radioisotope concentration in the material by means of direct isotopic counting.
Gothai, Sivapragasam; Muniandy, Katyakyini; Zarin, Mazni Abu; Sean, Tan Woan; Kumar, S. Suresh; Munusamy, Murugan A.; Fakurazi, Sharida; Arulselvan, Palanisamy
2017-01-01
Background: Moringa oleifera (MO), commonly known as the drumstick tree, is used in folklore medicine for the treatment of skin disease. Objective: The objective of this study is to evaluate the ethyl acetate (EtOAc) fraction of MO leaves for in vitro antibacterial, antioxidant, and wound healing activities and conduct gas chromatography-mass spectrometry (GC-MS) analysis. Materials and Methods: Antibacterial activity was evaluated against six Gram-positive bacteria and 10 Gram-negative bacteria by disc diffusion method. Free radical scavenging activity was assessed by 1, 1-diphenyl-2-picryl hydrazyl (DPPH) radical hydrogen peroxide scavenging and total phenolic content (TPC). Wound healing efficiency was studied using cell viability, proliferation, and scratch assays in diabetic human dermal fibroblast (HDF-D) cells. Results: The EtOAc fraction showed moderate activity against all bacterial strains tested, and the maximum inhibition zone was observed against Streptococcus pyogenes (30 mm in diameter). The fraction showed higher sensitivity to Gram-positive strains than Gram-negative strains. In the quantitative analysis of antioxidant content, the EtOAc fraction was found to have a TPC of 65.81 ± 0.01. The DPPH scavenging activity and the hydrogen peroxide assay were correlated with the TPC value, with IC50 values of 18.21 ± 0.06 and 59.22 ± 0.04, respectively. The wound healing experiment revealed a significant enhancement of cell proliferation and migration of HDF-D cells. GC-MS analysis confirmed the presence of 17 bioactive constituents that may be the principal factors in the significant antibacterial, antioxidant, and wound healing activity. Conclusion: The EtOAc fraction of MO leaves possesses remarkable wound healing properties, which can be attributed to the antibacterial and antioxidant activities of the fraction. SUMMARY Moringa oleifera (MO) leaf ethyl acetate (EtOAc) fraction possesses antibacterial activities toward Gram-positive bacteria such as Streptococcus pyogenes, Streptococcus faecalis, Bacillus subtilis, Bacillus cereus and Staphylococcus aureus, and Gram-negative bacteria such as Proteus mirabilis and Salmonella typhimuriumMO leaf EtOAc fraction contained the phenolic content of 65.81 ± 0.01 and flavonoid content of 37.1 ± 0.03, respectively. In addition, the fraction contained 17 bioactive constituents associated with the antibacterial, antioxidant, and wound healing properties that were identified using gas chromatography-mass spectrometry analysisMO leaf EtOAc fraction supports wound closure rate about 80% for treatments when compared with control group. Abbreviations used: MO: Moringa oleifera; EtOAc: Ethyl acetate; GC-MS: Gas Chromatography-Mass Spectrometry; HDF-D: Diabetic Human Dermal Fibroblast cells. PMID:29142400
Gothai, Sivapragasam; Muniandy, Katyakyini; Zarin, Mazni Abu; Sean, Tan Woan; Kumar, S Suresh; Munusamy, Murugan A; Fakurazi, Sharida; Arulselvan, Palanisamy
2017-10-01
Moringa oleifera (MO), commonly known as the drumstick tree, is used in folklore medicine for the treatment of skin disease. The objective of this study is to evaluate the ethyl acetate (EtOAc) fraction of MO leaves for in vitro antibacterial, antioxidant, and wound healing activities and conduct gas chromatography-mass spectrometry (GC-MS) analysis. Antibacterial activity was evaluated against six Gram-positive bacteria and 10 Gram-negative bacteria by disc diffusion method. Free radical scavenging activity was assessed by 1, 1-diphenyl-2-picryl hydrazyl (DPPH) radical hydrogen peroxide scavenging and total phenolic content (TPC). Wound healing efficiency was studied using cell viability, proliferation, and scratch assays in diabetic human dermal fibroblast (HDF-D) cells. The EtOAc fraction showed moderate activity against all bacterial strains tested, and the maximum inhibition zone was observed against Streptococcus pyogenes (30 mm in diameter). The fraction showed higher sensitivity to Gram-positive strains than Gram-negative strains. In the quantitative analysis of antioxidant content, the EtOAc fraction was found to have a TPC of 65.81 ± 0.01. The DPPH scavenging activity and the hydrogen peroxide assay were correlated with the TPC value, with IC 50 values of 18.21 ± 0.06 and 59.22 ± 0.04, respectively. The wound healing experiment revealed a significant enhancement of cell proliferation and migration of HDF-D cells. GC-MS analysis confirmed the presence of 17 bioactive constituents that may be the principal factors in the significant antibacterial, antioxidant, and wound healing activity. The EtOAc fraction of MO leaves possesses remarkable wound healing properties, which can be attributed to the antibacterial and antioxidant activities of the fraction. Moringa oleifera (MO) leaf ethyl acetate (EtOAc) fraction possesses antibacterial activities toward Gram-positive bacteria such as Streptococcus pyogenes , Streptococcus faecalis , Bacillus subtilis , Bacillus cereus and Staphylococcus aureus , and Gram-negative bacteria such as Proteus mirabilis and Salmonella typhimurium MO leaf EtOAc fraction contained the phenolic content of 65.81 ± 0.01 and flavonoid content of 37.1 ± 0.03, respectively. In addition, the fraction contained 17 bioactive constituents associated with the antibacterial, antioxidant, and wound healing properties that were identified using gas chromatography-mass spectrometry analysisMO leaf EtOAc fraction supports wound closure rate about 80% for treatments when compared with control group. Abbreviations used: MO: Moringa oleifera ; EtOAc: Ethyl acetate; GC-MS: Gas Chromatography-Mass Spectrometry; HDF-D: Diabetic Human Dermal Fibroblast cells.
Swertfeger, Debi K; Li, Hailong; Rebholz, Sandra; Zhu, Xiaoting; Shah, Amy S; Davidson, W Sean; Lu, Long J
2017-04-01
HDL has been shown to possess a variety of cardio-protective functions, including removal of excess cholesterol from the periphery, and inhibition of lipoprotein oxidation. It has been proposed that various HDL subparticles exist, each with distinct protein and lipid compositions, which may be responsible for HDL's many functions. We hypothesized that HDL functions will co-migrate with the operational lipoprotein subspecies when separated by gel filtration chromatography. Plasma from 10 healthy male donors was fractionated and the protein composition of the phospholipid containing fractions was analyzed by mass spectrometry (MS). Each fraction was evaluated for its proteomic content as well as its ability to promote cholesterol efflux and protect low density lipoprotein (LDL) from free radical oxidation. For each function, several peaks of activity were identified across the plasma size gradient. Neither cholesterol efflux or LDL antioxidation activity correlated strongly with any single protein across the fractions. However, we identified multiple proteins that had strong correlations (r values >0.7, p < 0.01) with individual peaks of activity. These proteins fell into diverse functional categories, including those traditionally associated with lipid metabolism, as well as alternative complement cascade, innate immunity and clotting cascades and immunoglobulins. Additionally, the phospholipid and cholesterol concentration of the fractions correlated strongly with cholesterol efflux ( r = 0.95 and 0.82 respectively), whereas the total protein content of the fractions correlated best with antioxidant activity across all fractions ( r = 0.746). Furthermore, two previously postulated subspecies (apoA-I, apoA-II and apoC-1; as well as apoA-I, apoC-I and apoJ) were found to have strong correlations with both cholesterol efflux and antioxidation activity. Up till now, very little has been known about how lipoprotein composition mediates functions like cholesterol efflux and antioxidation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Antioxidant and antimicrobial properties of polyphenolic fractions from selected Moroccan red wines.
Tenore, Gian Carlo; Basile, Adriana; Novellino, Ettore
2011-01-01
The present study is the first effort to a comprehensive evaluation of the antioxidant and antimicrobial activities of fractionated red wines from Morocco. The results obtained revealed that the wine samples were characterized by a higher phytochemical concentration than the same variety of wines with a different geographical origin and other more consumed red wines, confirming what was reported in a previous authors' work. The most phenolic-rich fractions were the ones containing phenolic acids and quercetin glucoronides from Syrah and Merlot wine samples while Cabernet Sauvignon exhibited the highest monomeric anthocyanin content. The antioxidant activity of wine extracts was tested by ferric reducing antioxidant power and 1,1-diphenyl-2-picrilhydrazyl assays. Samples revealed a higher reducing capacity than radical scavenging property and a good correlation between antioxidant activity and polyphenolic content values. As regards the antimicrobial properties, each fraction exhibited activity against a broad spectrum of food-borne microorganisms, revealing not only a moderate to high natural preserving capacity, but also potentially beneficial influence on human health. In consideration of the scarcity of data regarding composition and biological properties of Moroccan red wines, the present study may represent a valuable reference for wine consumers and producers. © 2011 Institute of Food Technologists®
Investigations of biological processes in Austrian MBT plants.
Tintner, J; Smidt, E; Böhm, K; Binner, E
2010-10-01
Mechanical biological treatment (MBT) of municipal solid waste (MSW) has become an important technology in waste management during the last decade. The paper compiles investigations of mechanical biological processes in Austrian MBT plants. Samples from all plants representing different stages of degradation were included in this study. The range of the relevant parameters characterizing the materials and their behavior, e.g. total organic carbon, total nitrogen, respiration activity and gas generation sum, was determined. The evolution of total carbon and nitrogen containing compounds was compared and related to process operation. The respiration activity decreases in most of the plants by about 90% of the initial values whereas the ammonium release is still ongoing at the end of the biological treatment. If the biogenic waste fraction is not separated, it favors humification in MBT materials that is not observed to such extent in MSW. The amount of organic carbon is about 15% dry matter at the end of the biological treatment. (c) 2010 Elsevier Ltd. All rights reserved.
Anti-Mayaro virus activity of Cassia australis extracts (Fabaceae, Leguminosae).
Spindola, Kassia C W; Simas, Naomi K; Salles, Tiago S; de Meneses, Marcelo D F; Sato, Alice; Ferreira, Davis; Romão, Wanderson; Kuster, Ricardo M
2014-11-27
The arthropod-borne Mayaro virus (MAYV) causes 'Mayaro fever', a disease of medical significance, primarily affecting individuals in permanent contact with forested areas in tropical South America. Studies showed that the virus could also be transmitted by the mosquito Aedes aegypti. Recently, MAYV has attracted attention due to its likely urbanization. To date, there are no drugs that can treat this illness. Fractions and compounds were obtained by chromatography from leaf extracts of C. australis and chemically identified as flavonoids and condensed tannins using spectroscopic and spectrometric techniques (UV, NMR, and ESI-FT-ICR MS). Cytotoxicity of EtOAc, n-BuOH and EtOAc-Pp fractions were measured by the dye-uptake assay while their antiviral activity was evaluated by a virus yield inhibition assay. Larvicidal activity was measured by the procedures recommended by the WHO expert committee for determining acute toxicity. The following group of substances was identified from EtOAc, n-BuOH and EtOAc-Pp fractions: flavones, flavonols, and their glycosides and condensed tannins. EtOAc and n-BuOH fractions inhibited MAYV production, respectively, by more than 70% and 85% at 25 μg/mL. EtOAc-Pp fraction inhibited MAYV production by more than 90% at 10 μg/mL, displaying a stronger antiviral effect than the licensed antiviral ribavirin. This fraction had an excellent antiviral effect (IC90 = 4.7 ± 0.3 μg/mL), while EtOAc and n-BuOH fractions were less active (IC90 = 89.1 ± 4.4 μg/mL and IC90 = 40.9 ± 5.7 μg/mL, respectively). C. australis can be used as a source of compounds with anti-Mayaro virus activity. This is the first report on the biological activity of C. australis.
Boudjeko, Thaddée; Megnekou, Rosette; Woguia, Alice Louise; Kegne, Francine Mediesse; Ngomoyogoli, Judith Emery Kanemoto; Tchapoum, Christiane Danielle Nounga; Koum, Olga
2015-12-09
Many plant polysaccharides have shown high antioxidant and immunostimulating properties and can be explored as novel molecules with biological properties that can potentially improve immune function. The objective of this work was to characterize soluble and cell wall polysaccharides isolated from the stem bark of Allanblackia floribunda and Chromolaena odorata leaves and to evaluate their antioxidant and immunomodulatory properties. Three polysaccharide fractions: soluble polysaccharides (PoS), pectins (Pec) and hemicelluloses (Hem) were extracted from A. floribunda stem bark and C. odorata leaves. These samples were analysed for their proteins, phenolic compounds and total sugar contents. The monosaccharide composition was determined by gas chromatography and arabinogalactan proteins content in PoS was evaluated by rocket electrophoresis. The in vitro antioxidant activities were evaluated by 1, 1-diphenyl-2-picryl hydrazyl (DPPH) and 2,2'-azino-bis-3-éthylbenzylthiazoline-6-sulphonic acid (ABTS) radical scavenging assays and ferrous ions chelating activity. Immunomodulatory activities were performed on the peripheral blood mononuclear cells (PBMCs) using proliferation and enzyme linked immunospot (ELISPOT) method to determine the production of an interferon-gamma. The characterization of the various fractions showed varied metabolites in each plant. In PoS fractions, Ara and Gal were the major monosaccharides found, indicating that arabinogalactans are the primary macromolecules. Hem fractions contained predominantly Xyl and GalA for A. floribunda and Xyl (upto 80 %) for and C. odorata. A. floribunda Hem fraction and C. odorata PoS fraction showed significant DPPH and ABTS radical scavenging activities and immunostimulatory activity via stimulation of PBMC and production of IFN-γ in a dose-dependent manner. The results obtained from this study support the ethnomedicinal use of the stem bark of A. floribunda and leaves of C. odorata. Further research is necessary to have supporting evidence that the antioxidative and immunomodulative activities of these fractions are really connected to the polysaccharides and not polyphenols.
Peculiar surface behavior of some ionic liquids based on active pharmaceutical ingredients
NASA Astrophysics Data System (ADS)
Restolho, José; Mata, José Luis; Saramago, Benilde
2011-02-01
The ionic liquids based on biologically active cations and anions, commonly designated by ionic liquids based on active pharmaceutical ingredients (ILs-APIs), are interesting compounds for use in pharmaceutical applications. Lidocaine docusate, ranitidine docusate, and didecyldimethylammonium ibuprofen are examples of promising ILs-APIs that were recently synthesized. They were submitted to biological testing and calorimetric measurements, but nothing is known about their surface properties. In this work, we measured the surface tension and the contact angles on both hydrophilic and hydrophobic surfaces in a temperature range as wide as possible. Based on the wettability data, the polarity fractions were estimated using the Fowkes theory. The peculiar surface behavior observed was tentatively attributed to the presence of mesophases.
de Morais, Sandra Ribeiro; Oliveira, Thiago Levi Silva; de Oliveira, Lanussy Porfiro; Tresvenzol, Leonice Manrique Faustino; da Conceição, Edemilson Cardoso; Rezende, Maria Helena; Fiuza, Tatiana de Sousa; Costa, Elson Alves; Ferri, Pedro Henrique; de Paula, José Realino
2016-01-01
Lippia sidoides (Verbenaceae) is used in Brazilian folk medicine as an antiseptic, and it is usually applied topically on skin, mucous membranes, mouth, and throat, or used for vaginal washings. To analyze the chemical composition of the essential oil from L. sidoides collected in São Gonçalo do Abaeté, Minas Gerais and grown in Hidrolândia, Goiás; to evaluate the antimicrobial activity of the essential oil, crude ethanol extract, and hexane, dichloromethane, ethyl-acetate, and aqueous fractions (AFs); to study the antinociceptive, anti-inflammatory, and central nervous system activities of the crude ethanol extract. The essential oils were obtained by hydro-distillation using a Clevenger-type apparatus and analyzed by GC/MS. The antimicrobial activity in vitro was performed by broth microdilution method. The pharmacological tests were performed using female Swiss albino mice. The major components of the essential oil were isoborneol (14.66%), bornyl acetate (11.86%), α -humulene (11.23%), α -fenchene (9.32%), and 1.8-cineole (7.05%), supporting the existence of two chemotypes of this species. The hexane fraction (HF) had good antifungal activity against Cryptococcus sp. ATCC D (MIC = 31.25 μg/mL) and Cryptococcus gatti L48 (MIC = 62.5 μg/mL). In the pharmacological tests, the crude ethanol extract presented antinociceptive and anti-inflammatory activities. Given that the ethanol extract of L. sidoides is included in the Formulary of Phytotherapeutic Agents of the Brazilian Pharmacopeia as an anti-inflammatory for oral cavities, the present work provides scientific evidence to back this use and highlight the importance of selecting the appropriate chemotype on the basis of the expected biological response. The major components of the essential oil of L. sidoides were isoborneol bornyl acetate, α -humulene, α -fenchene, and 1.8-cineole. The HF had good antifungal activity against Cryptococcus sp. ATCC D and C. gatti L4.The crude ethanol extract of L. sidoides presented antinociceptive and anti-inflammatory activities.The present work provides scientific evidence of the importance of selecting the appropriate chemotype on the basis of the expected biological response. Abbreviations used: UFG: Universidade Federal de Goiás; HF: hexane fraction; DF: dichloromethane fraction; EAF: ethyl acetate fraction; AF: aqueous fraction; MeOH: methanol; MIC: minimum inhibitory concentration; ATCC: American Type Culture Collection; MH: Müller Hinton; DMSO: dimethyl sulfoxide; RPMI: Roswell Park Memorial Institute; NaCl: sodium chloride; μL: microliters; mL: milliliters; μg: microgram; kg: kilogram; h: hour; min: minute; cm: centimeter; COBEA: Brazilian College of Animal Experiments; p.o.:, oral; i.p.: intraperitoneal; s.c.: subcutaneous; SEM: standard error of the mean; RI: retention indices.
Lemieszek, Marta Kinga; Cardoso, Claudia; Ferreira Milheiro Nunes, Fernando Hermínio; Ramos Novo Amorim de Barros, Ana Isabel; Marques, Guilhermina; Pożarowski, Piotr; Rzeski, Wojciech
2013-04-25
The use of biologically active compounds isolated from edible mushrooms against cancer raises global interest. Anticancer properties are mainly attributed to biopolymers including mainly polysaccharides, polysaccharopeptides, polysaccharide proteins, glycoproteins and proteins. In spite of the fact that Boletus edulis is one of the widely occurring and most consumed edible mushrooms, antitumor biopolymers isolated from it have not been exactly defined and studied so far. The present study is an attempt to extend this knowledge on molecular mechanisms of their anticancer action. The mushroom biopolymers (polysaccharides and glycoproteins) were extracted with hot water and purified by anion-exchange chromatography. The antiproliferative activity in human colon adenocarcinoma cells (LS180) was screened by means of MTT and BrdU assays. At the same time fractions' cytotoxicity was examined on the human colon epithelial cells (CCD 841 CoTr) by means of the LDH assay. Flow cytometry and Western blotting were applied to cell cycle analysis and protein expression involved in anticancer activity of the selected biopolymer fraction. In vitro studies have shown that fractions isolated from Boletus edulis were not toxic against normal colon epithelial cells and in the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells. The best results were obtained in the case of the fraction designated as BE3. The tested compound inhibited cancer cell proliferation which was accompanied by cell cycle arrest in the G0/G1-phase. Growth inhibition was associated with modulation of the p16/cyclin D1/CDK4-6/pRb pathway, an aberration of which is a critical step in the development of many human cancers including colon cancer. Our results indicate that a biopolymer BE3 from Boletus edulis possesses anticancer potential and may provide a new therapeutic/preventive option in colon cancer chemoprevention.
Leone, Antonella; Lecci, Raffaella Marina; Durante, Miriana; Piraino, Stefano
2013-01-01
On a global scale, jellyfish populations in coastal marine ecosystems exhibit increasing trends of abundance. High-density outbreaks may directly or indirectly affect human economical and recreational activities, as well as public health. As the interest in biology of marine jellyfish grows, a number of jellyfish metabolites with healthy potential, such as anticancer or antioxidant activities, is increasingly reported. In this study, the Mediterranean “fried egg jellyfish” Cotylorhiza tuberculata (Macri, 1778) has been targeted in the search forputative valuable bioactive compounds. A medusa extract was obtained, fractionated, characterized by HPLC, GC-MS and SDS-PAGE and assayed for its biological activity on breast cancer cells (MCF-7) and human epidermal keratinocytes (HEKa). The composition of the jellyfish extract included photosynthetic pigments, valuable ω-3 and ω-6 fatty acids, and polypeptides derived either from jellyfish tissues and their algal symbionts. Extract fractions showed antioxidant activity and the ability to affect cell viability and intercellular communication mediated by gap junctions (GJIC) differentially in MCF-7and HEKa cells. A significantly higher cytotoxicity and GJIC enhancement in MCF-7 compared to HEKa cells was recorded. A putative action mechanism for the anticancer bioactivity through the modulation of GJIC has been hypothesized and its nutraceutical and pharmaceutical potential was discussed. PMID:23697954
Leone, Antonella; Lecci, Raffaella Marina; Durante, Miriana; Piraino, Stefano
2013-05-22
On a global scale, jellyfish populations in coastal marine ecosystems exhibit increasing trends of abundance. High-density outbreaks may directly or indirectly affect human economical and recreational activities, as well as public health. As the interest in biology of marine jellyfish grows, a number of jellyfish metabolites with healthy potential, such as anticancer or antioxidant activities, is increasingly reported. In this study, the Mediterranean "fried egg jellyfish" Cotylorhiza tuberculata (Macri, 1778) has been targeted in the search forputative valuable bioactive compounds. A medusa extract was obtained, fractionated, characterized by HPLC, GC-MS and SDS-PAGE and assayed for its biological activity on breast cancer cells (MCF-7) and human epidermal keratinocytes (HEKa). The composition of the jellyfish extract included photosynthetic pigments, valuable ω-3 and ω-6 fatty acids, and polypeptides derived either from jellyfish tissues and their algal symbionts. Extract fractions showed antioxidant activity and the ability to affect cell viability and intercellular communication mediated by gap junctions (GJIC) differentially in MCF-7 and HEKa cells. A significantly higher cytotoxicity and GJIC enhancement in MCF-7 compared to HEKa cells was recorded. A putative action mechanism for the anticancer bioactivity through the modulation of GJIC has been hypothesized and its nutraceutical and pharmaceutical potential was discussed.
Frankenberger, Larissa; Mora, Tamara D; de Siqueira, Carolina D; Filippin-Monteiro, Fabiola B; de Moraes, Milene H; Biavatti, Maique W; Steindel, Mario; Sandjo, Louis P
2018-05-29
The resin of Cola nitida is used in western Cameroon as incense for spiritual protection and during ritual ceremonies. This plant secretion has never been investigated although previous chemical and biological studies on other resins have drawn many attentions. The resin fractions which revealed inhibitory effect on nitric oxide (NO) and tumour necrosis factor alpha (TNF-α) released by lipopolysaccharide (LPS)-activated J774 macrophage as well as on intracellular forms of Leishmania amazonensis and Trypanosoma cruzi amastigote were chemically characterised. Moreover, their antiparasitic activities were compared to those of semi-synthetic triterpenes. The anti-inflammatory activity was evaluated by measuring the nitrite production and the TNF-α concentration in the supernatants of LPS-activated macrophages by antigen capture enzyme-linked immunosorbent assay. Moreover, the antiparasitic assay was performed by infecting the host cells (THP-1) in a ratio parasite/cell 10:1 (L. amazonensis) and 2:1 (T. cruzi) and then exposed to the samples. The resin was separated in vacuo by liquid chromatography because of its sticky behaviour and the chemical profiles of the obtained fractions (F1-F4) were established by dereplication based on UPLC-ESI-MS 2 data while semi-synthetic triterpenes were prepared from α-amyrin by oxidation reactions. Fractions F1-F4 inhibited NO and TNF-α almost similarly. However, only F1, F3 and F4 showed promising antiparasitic activities while F2 was moderately active against both parasites. Hence, F1-F4 were exclusively composed of pentacyclic triterpenes bearing oleanane and ursane skeletons. Semi-synthetic compounds revealed no to moderate antiparasitic activity compared to the fractions. Although it will be difficult to prove the interaction resin-spirit, interesting bioactivities were found in the resin fractions. Copyright © 2018 John Wiley & Sons, Ltd.
Ferri, Maura; Graen-Heedfeld, Jürgen; Bretz, Karlheinz; Guillon, Fabien; Michelini, Elisa; Calabretta, Maria Maddalena; Lamborghini, Matteo; Gruarin, Nicolò; Roda, Aldo; Kraft, Axel
2017-01-01
Recently, the isolation of new health-related bioactive molecules derived from agro-food industrial by-products by means of environment-friendly extraction processes has become of particular interest. In the present study, a protein by-product from the rice starch industry was hydrolysed with five commercial proteolytic enzymes, avoiding the use of solvents or chemicals. The digestion processes were optimised, and the digestates were separated in fractions with four different molecular weight ranges by using a cross-flow membrane filtration technique. Total hydrolysates and fractions were tested in vitro for a wide range of biological activities. For the first time rice-derived peptides were assayed for anti-tyrosinase, anti-inflammatory, cytotoxicity and irritation capacities. Antioxidant and anti-hypertensive activities were also evaluated. Protamex, Alcalase and Neutrase treatments produced peptide fractions with valuable bioactivities without resulting cytotoxic or irritant. Highest levels of bioactivity were detected in Protamex-derived samples, followed by samples treated with Alcalase. Based on the present results, a future direct exploitation of isolated peptide fractions in the nutraceutical, functional food and cosmetic industrial fields may be foreseen. PMID:28125712
Kellogg, Joshua J; Todd, Daniel A; Egan, Joseph M; Raja, Huzefa A; Oberlies, Nicholas H; Kvalheim, Olav M; Cech, Nadja B
2016-02-26
A central challenge of natural products research is assigning bioactive compounds from complex mixtures. The gold standard approach to address this challenge, bioassay-guided fractionation, is often biased toward abundant, rather than bioactive, mixture components. This study evaluated the combination of bioassay-guided fractionation with untargeted metabolite profiling to improve active component identification early in the fractionation process. Key to this methodology was statistical modeling of the integrated biological and chemical data sets (biochemometric analysis). Three data analysis approaches for biochemometric analysis were compared, namely, partial least-squares loading vectors, S-plots, and the selectivity ratio. Extracts from the endophytic fungi Alternaria sp. and Pyrenochaeta sp. with antimicrobial activity against Staphylococcus aureus served as test cases. Biochemometric analysis incorporating the selectivity ratio performed best in identifying bioactive ions from these extracts early in the fractionation process, yielding altersetin (3, MIC 0.23 μg/mL) and macrosphelide A (4, MIC 75 μg/mL) as antibacterial constituents from Alternaria sp. and Pyrenochaeta sp., respectively. This study demonstrates the potential of biochemometrics coupled with bioassay-guided fractionation to identify bioactive mixture components. A benefit of this approach is the ability to integrate multiple stages of fractionation and bioassay data into a single analysis.
2018-01-01
Effect-directed analysis (EDA) is a commonly used approach for effect-based identification of endocrine disruptive chemicals in complex (environmental) mixtures. However, for routine toxicity assessment of, for example, water samples, current EDA approaches are considered time-consuming and laborious. We achieved faster EDA and identification by downscaling of sensitive cell-based hormone reporter gene assays and increasing fractionation resolution to allow testing of smaller fractions with reduced complexity. The high-resolution EDA approach is demonstrated by analysis of four environmental passive sampler extracts. Downscaling of the assays to a 384-well format allowed analysis of 64 fractions in triplicate (or 192 fractions without technical replicates) without affecting sensitivity compared to the standard 96-well format. Through a parallel exposure method, agonistic and antagonistic androgen and estrogen receptor activity could be measured in a single experiment following a single fractionation. From 16 selected candidate compounds, identified through nontargeted analysis, 13 could be confirmed chemically and 10 were found to be biologically active, of which the most potent nonsteroidal estrogens were identified as oxybenzone and piperine. The increased fractionation resolution and the higher throughput that downscaling provides allow for future application in routine high-resolution screening of large numbers of samples in order to accelerate identification of (emerging) endocrine disruptors. PMID:29547277
Ushakova, Natalia A.; Preobrazhenskaya, Marina E.; Piccoli, Antonio; Totani, Licia; Ustyuzhanina, Nadezhda E.; Bilan, Maria I.; Usov, Anatolii I.; Grachev, Alexey A.; Morozevich, Galina E.; Berman, Albert E.; Sanderson, Craig J.; Kelly, Maeve; Di Gregorio, Patrizia; Rossi, Cosmo; Tinari, Nicola; Iacobelli, Stefano; Rabinovich, Gabriel A.; Nifantiev, Nikolay E.
2011-01-01
Sulfated polysaccharides from Laminaria saccharina (new name: Saccharina latissima) brown seaweed show promising activity for the treatment of inflammation, thrombosis, and cancer; yet the molecular mechanisms underlying these properties remain poorly understood. The aim of this work was to characterize, using in vitro and in vivo strategies, the anti-inflammatory, anti-coagulant, anti-angiogenic, and anti-tumor activities of two main sulfated polysaccharide fractions obtained from L. saccharina: a) L.s.-1.0 fraction mainly consisting of O-sulfated mannoglucuronofucans and b) L.s.-1.25 fraction mainly composed of sulfated fucans. Both fractions inhibited leukocyte recruitment in a model of inflammation in rats, although L.s.-1.25 appeared to be more active than L.s.-1.0. Also, these fractions inhibited neutrophil adhesion to platelets under flow. Only fraction L.s.-1.25, but not L.s.-1.0, displayed anticoagulant activity as measured by the activated partial thromboplastin time. Investigation of these fractions in angiogenesis settings revealed that only L.s.-1.25 strongly inhibited fetal bovine serum (FBS) induced in vitro tubulogenesis. This effect correlated with a reduction in plasminogen activator inhibitor-1 (PAI-1) levels in L.s.-1.25-treated endothelial cells. Furthermore, only parent sulfated polysaccharides from L. saccharina (L.s.-P) and its fraction L.s.-1.25 were powerful inhibitors of basic fibroblast growth factor (bFGF) induced pathways. Consistently, the L.s.-1.25 fraction as well as L.s.-P successfully interfered with fibroblast binding to human bFGF. The incorporation of L.s.-P or L.s.-1.25, but not L.s.-1.0 into Matrigel plugs containing melanoma cells induced a significant reduction in hemoglobin content as well in the frequency of tumor-associated blood vessels. Moreover, i.p. administrations of L.s.-1.25, as well as L.s.-P, but not L.s.-1.0, resulted in a significant reduction of tumor growth when inoculated into syngeneic mice. Finally, L.s.-1.25 markedly inhibited breast cancer cell adhesion to human platelet-coated surfaces. Thus, sulfated fucans are mainly responsible for the anti-inflammatory, anticoagulant, antiangiogenic, and antitumor activities of sulfated polysaccharides from L. saccharina brown seaweed. PMID:21387013
Tabakaeva, O V; Kalenik, T K; Tabakaev, A V
2015-01-01
Products of technological and biotechnological modification (acid and enzymatic hydrolyzates and hydrothermal extracts) of the holothurian Cucumariajaponica from the Far East region are the complex multicomponent systems containing biologically active agents of a sea origin that has to provide them biological activity. The research objective consisted in quantitative studying of anti-radical properties of acid, enzymatic hydrolyzates and hydrothermal extracts from soft fabrics of a holothurian from the Far East region (Cucumaria japonica) and their influence on oxidation of lipids in fat emulsion products. The reaction with stable free 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical was used as a model system. Radical relating activity of hydrolyzates and extracts from Cucumaria japonica varied over a wide range from 48 to 78%. The maximum radical binding activity was noted for acid hydrolyzates. The activity of the hydrolyzate from a nimbus and feelers of Cucumaria japonica was comparable with activity of ionol. It has been defined that levels of manifestation of anti-radical activity depended on a way of technological and biotechnological processing of raw materials. Studying of fractional composition of melanoidins of hydrolyzates and extracts from Cucumaria japonica established that they can be divided into fractions--with molecular masses about 10,000 and 1000 Da. The maximum content of melanoidins has been defined in fraction weighing about 1000 Da. Introduction of acid, enzymatic hydrolyzates and hydrothermal extracts from Cucumaria japonica in the composition of oil-fat emulsion systems allowed to slow down processes of lipid oxidation and triglyceride hydrolysis in mayonnaise. Introduction of hydrolyzates and hydrothermal extracts from Cucumaria japonica in an oil-fat emulsion product allowed to reduce peroxide value by 22-45%, acid value by 12-35% on the 90th days of storage. Acid hydrolysates of Cucumaria Japonica most significantly reduce the rate of oxidation and hydrolysis.
Taylor, A; Oyedeji, O O; Aremu, O; Oyemitan, I; Gwebu, E T; Oyedeji, A O; Nkeh-Chungag, B N
2016-01-01
Determination of the active fraction and compounds of the dichloromethanol extract of Schinus molle seeds and evaluation of their biological effects. Dried seeds of Schinus molle were sequentially extracted in hexane, acetyl acetate and dichloromethane. The dichloromethane extract was separated into two fractions (1 and 2) by column chromatography. Fraction 2 was further separated into its two constituent compounds which were characterized as belonging to the lanosteroid group of compounds. Both factions were tested for their analgesic, anti-inflammatory and sedative effects. The two fractions significantly increased (p<0.05) the tail flick latency though fraction 2 provided better and more long lasting protection against thermal pain. On the other hand, the anti-inflammatory effect of ibuprofen, though inferior to the anti-inflammatory effect of fraction 2 was better than the effects of fraction 1. Fraction 2 significantly (p<0.01) reduced rat paw oedema compared to the saline treatment group throughout the experiments while fraction 2 compared to fraction 1 showed significantly (p<0.01) greater inflammatory effects. On the other hand both fractions lacked significant sedative effects. Given that fraction 2 had only two constituent compounds (isomasticadienonic and Masticatrienonate), one or both of these compounds should be contributing to the observed analgesic and anti-inflammatory effects.
Monção, Nayana Bruna Nery; Araújo, Bruno Quirino; Silva, Jurandy do Nascimento; Lima, Daisy Jereissati Barbosa; Ferreira, Paulo Michel Pinheiro; Airoldi, Flavia Pereira da Silva; Pessoa, Cláudia; Citó, Antonia Maria das Graças Lopes
2015-03-05
Mimosa caesalpiniifolia is a native plant of the Brazilian northeast, and few studies have investigated its chemical composition and biological significance. This work describes the identification of the first chemical constituents in the ethanolic extract and fractions of M. caesalpiniifolia stem bark based on NMR, GC-qMS and HRMS analyses, as well as an assessment of their cytotoxic activity. GC-qMS analysis showed fatty acid derivatives, triterpenes and steroid substances and confirmed the identity of the chemical compounds isolated from the hexane fraction. Metabolite biodiversity in M. caesalpiniifolia stem bark revealed the differentiated accumulation of pentacyclic triterpenic acids, with a high content of betulinic acid and minor amounts of 3-oxo and 3β-acetoxy derivatives. Bioactive analysis based on total phenolic and flavonoid content showed a high amount of these compounds in the ethanolic extract, and ESI-(-)-LTQ-Orbitrap-MS identified caffeoyl hexose at high intensity, as well as the presence of phenolic acids and flavonoids. Furthermore, the evaluation of the ethanolic extract and fractions, including betulinic acid, against colon (HCT-116), ovarian (OVCAR-8) and glioblastoma (SF-295) tumour cell lines showed that the crude extract, hexane and dichloromethane fractions possessed moderate to high inhibitory activity, which may be related to the abundance of betulinic acid. The phytochemical and biological study of M. caesalpiniifolia stem bark thus revealed a new alternative source of antitumour compounds, possibly made effective by the presence of betulinic acid and by chemical co-synergism with other compounds.
Screening for fractions of Oxytropis falcata Bunge with antibacterial activity.
Jiang, H; Hu, J R; Zhan, W Q; Liu, X
2009-01-01
Preliminary studies with the four extracts of Oxytropis falcate Bunge exhibited that the chloroform and ethyl acetate extracts showed stronger antibacterial activities against the nine tested Gram-positive and Gram-negative bacteria. The HPLC-scanned and bioassay-guided fractionation led to the isolation and identification of the main flavonoid compounds, i.e. rhamnocitrin, kaempferol, rhamnetin, 2',4'-dihydroxychalcone and 2',4',beta-trihydroxy-dihydrochalcon. Except 2',4',beta-trihydroxy-dihydrochalcon, four other compounds had good antibacterial activities. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of the four compounds ranged between 125 and 515 microg mL(-1). Staphylococcus aureus was the most susceptible to these compounds, with MIC and MBC values from 125 to 130 microg mL(-1). This is the first report of antibacterial activity in O. falcate Bunge. In this study, evidence to evaluate the biological functions of O. falcate Bunge is provided, which promote the rational use of this herb.
Antioxidant activities of crude phlorotannins from Sargassum hemiphyllum.
Zhao, Zhi-Li; Yang, Xiao-Qing; Gong, Zhong-Qing; Pan, Ming-Zhu; Han, Ya-Li; Liu, Yi
2016-06-01
Brown algae are well known as a source of biologically active compounds, especially those having antioxidant activities, such as phlorotannins. In this study we examined the antioxidant activities of crude phlorotannins extracts (CPEs) obtained from Sargassum hemiphyllum (SH) and fractionated according to the molecular weights. When CPEs were administrated at a dose of 30 mg/kg to Kunming mice pre-treated with carbon tetrachloride (CCl4), the levels of oxidative stress indicators in the liver, kidney and brain were significantly reduced in vivo. All the components of various molecular weight fractions of CPEs exhibited greater scavenging capacities in clearing hydroxyl free radical and superoxide anion than the positive controls gallic acid, vitamin C and vitamin E. Particularly, the components greater than 30 kD obtained from ethyl acetate phase showed the highest antioxidant capacities. These results indicated that SH is a potential source for extracting phlorotannins, the algal antioxidant compounds.
Averina, E S; Müller, R H; Popov, D V; Radnaeva, L D
2011-05-01
At the turn of the millennium, a new generation of lipid nanoparticles for pharmacology was developed, nanostructured lipid carriers (NLC). The features of NLC structure which allow the inclusion of natural biologically active lipids in the NLC matrix open a wide prospect for the creation of high performance drug carriers. In this study NLC formulations were developed based on natural lipids from the Siberia region (Russia): fish oil from Lake Baikal fish; polyunsaturated fatty acid fractions and monounsaturated and saturated fatty acid fractions from fish oil and Siberian pine seed oil. Formulation parameters of NLC such as as type of surfactant and storage conditions were evaluated. The data obtained indicated high physical stability of NLC formulated on the basis of pure fish oil stabilized by Tween 80 and NLC formulated on the basis of free fatty acids stabilized by Poloxamer 188. The good chemical stability of the lipid matrix and the high concentrations of the biologically active polyunsaturated fatty acids in the NLC developed open wide prospects for their use in pharmaceutics and cosmetics.
Xavier, Jadriane de Almeida; Valentim, Iara Barros; Camatari, Fabiana O S; de Almeida, Alberto M M; Goulart, Henrique Fonseca; Ferro, Jamylle Nunes de Souza; Barreto, Emiliano de Oliveira; Cavalcanti, Bruno Coelho; Bottoli, Carla B G; Goulart, Marília Oliveira Fonseca
2017-12-01
Propolis has promising biological activities. Propolis samples from the Northeast of Bahia, Brazil - sample A from Ribeira do Pombal and B, from Tucano - were investigated, with new information regarding their biological activities. This paper describes the chemical profile, antioxidant, anti-glycation and cytotoxic activities of these propolis samples. Ethanol extracts of these propolis samples (EEP) and their fractions were analyzed to determine total phenolic content (TPC); antioxidant capacity through DPPH • , FRAP and lipid peroxidation; anti-glycation activity, by an in vitro glucose (10 mg/mL) bovine serum albumine (1 mg/mL) assay, during 7 d; cytotoxic activity on cancer (SF295, HCT-116, OVCAR-8, MDA-MB435, MX-1, MCF7, HL60, JURKAT, MOLT-4, K562, PC3, DU145) and normal cell lines (V79) at 0.04-25 μg/mL concentrations, for 72 h. The determination of primary phenols by ultra high-pressure liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) and volatile organic compounds content by gas chromatography-mass spectrometry (GC-MS) were also performed. The EEP polar fractions exhibited up to 90% protection against lipid peroxidation. The IC 50 value for anti-glycation activity of EEP was between 16.5 and 19.2 μg/mL, close to aminoguanidine (IC 50 = 7.7 μg/mL). The use of UHPLC-MS/MS and GC-MS allowed the identification of 12 bioactive phenols in the EEP and 24 volatile compounds, all already reported. The samples present good antioxidant/anti-glycation/cytotoxic activities and a plethora of biologically active compounds. These results suggest a potential role of propolis in targeting ageing and diseases associated with oxidative and carbonylic stress, aggregating value to them.
Repellent effect of sweet basil compounds on Ixodes ricinus ticks.
Del Fabbro, Simone; Nazzi, Francesco
2008-08-01
Diseases transmitted by ticks are causing increasing concern in Europe and all around the world. Repellents are an effective measure for reducing the risk of tick bite; products based on natural compounds represent an interesting alternative to common synthetic repellents. In this study the repellency of sweet basil (Ocimum basilicum L.) was tested against the tick Ixodes ricinus L., by using a laboratory bioassay. A bioassay-assisted fractionation allowed the identification of a compound involved in the biological activity. Eugenol appeared to be as repellent as DEET at two tested doses. Linalool, which was identified in the active fraction too, failed to give any response. Repellency of eugenol was proved also in the presence of human skin odour using a convenient and practical bioassay.
Method of measurement in biological systems
Turteltaub, K.W.; Vogel, J.S.; Felton, J.S.; Gledhill, B.L.; Davis, J.C.
1994-12-27
Disclosed is a method of quantifying molecules in biological substances comprising: a. selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere, b. preparing a long-lived radioisotope labeled reactive chemical specie, c. administering the chemical specie to the biological host in doses sufficiently low to avoid significant overt damage to the biological system, d. allowing a period of time to elapse sufficient for dissemination and interaction of the chemical specie with the host throughout the biological system of the host, e. isolating a reacted fraction of the biological substance from the host in a manner sufficient to avoid contamination of the substance from extraneous sources, f. converting the fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation, and, g. measuring the radioisotope concentration in the material by means of direct isotopic counting. 5 figures.
Method of measurement in biological systems
Turteltaub, Kenneth W.; Vogel, John S.; Felton, James S.; Gledhill, Barton L.; Davis, Jay C.; Stanker, Larry H.
1993-05-11
Disclosed is a method of quantifying molecules in biological substances, comprising: a. selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere, b. preparing a long-lived radioisotope labeled reactive chemical specie, c. administering said chemical specie to said biological host in doses sufficiently low to avoid significant overt damage to the biological system thereof, d. allowing a period of time to elapse sufficient for dissemination and interaction of said chemical specie with said host throughout said biological system of said host, e. isolating a reacted fraction of the biological substance from said host in a manner sufficient to avoid contamination of said substance from extraneous sources, f. converting said fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation, and, g. measuring the radioisotope concentration in said material by means of direct isotopic counting.
Method of measurement in biological systems
Turteltaub, Kenneth W.; Vogel, John S.; Felton, James S.; Gledhill, Barton L.; Davis, Jay C.
1994-01-01
Disclosed is a method of quantifying molecules in biological substances comprising: a. selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere, b. preparing a long-lived radioisotope labeled reactive chemical specie, c. administering said chemical specie to said biological host in doses sufficiently low to avoid significant overt damage to the biological system thereof, d. allowing a period of time to elapse sufficient for dissemination and interaction of said chemical specie with said host throughout said biological system of said host, e. isolating a reacted fraction of the biological substance from said host in a manner sufficient to avoid contamination of said substance from extraneous sources, f. converting said fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation, and, g. measuring the radioisotope concentration in said material by means of direct isotopic counting.
Jurgilas, P B; Neves-Ferreira, A G; Domont, G B; Moussatché, H; Perales, J
1999-01-01
An antibothropic fraction (ABF) from Didelphis marsupialis (opossum) serum, which is responsible for the neutralization of Bothrops jararaca venom was isolated by Perales et al. [Perales, J., Moussatché, H., Marangoni, S., Oliveira, B. and Domont, G. B. (1994). Isolation and partial characterization of an antibothropic complex from the serum of South American Didelphidae. Toxicon 32, 1237-1249]. The aim of this work was to verify the presence of this factor in opossum's milk, which could represent an additional protection for the neonatal opossum against bothropic venoms. An active milk fraction was isolated and showed similar physicochemical, structural, antigenic and biological properties when compared to ABF, indicating that they are probably the same protein.
Kabir, S
1995-02-01
Jackfruit extracts contain a protein termed jacalin which possesses diverse biological properties. A detailed analysis of its charge properties has been lacking. The present investigation was initiated to study isoelectric properties of jacalin in detail and to isolate a single isoform of jacalin. Jacalin was isolated from jackfruit extracts by affinity chromatography on immunoglobulin-A immobilised to Sepharose 4B. Various techniques such as ion-exchange chromatography, isoelectric focusing (IEF) on polyacrylamide gels and preparative liquid IEF with the Rotofor cell were used. When analysed by IEF on thin layer polyacrylamide gels, jacalin was resolved into 35 bands over a pH range of 5.0-8.5. Upon SDS-PAGE in the second dimension all these charge species gave rise to only two-bands at 12 and 15.4 kDa. The lectin was mostly eluted with 50 and 100 mM sodium chloride when jackfruit extracts were fractionated on an anion-exchange column of DEAE-cellulose. In a single 6 hour run by preparative IEF with the Rotofor cell in the pH range of 3-9.5, it has been possible to isolate pure jacalin fractions containing fewer number of charged isomers. A single jacalin isoform was isolated by subjecting a Rotofor fraction containing fewer charged species to preparative IEF on thin layer polyacrylamide gel and eluting the band of interest from the gel. The isolated jacalin isoform was biologically active as it agglutinated erythrocytes. The study reveals the complexity of jacalin as it exists as multiple charge isomers over a broad pH range. By performing preparative IEF in solution as well as in thin layer polyacrylamide gels, it was possible to isolate a single jacalin isoform with the retention of biological activity.
Female Sex Pheromone in Trails of the Minute Pirate Bug, Orius minutus (L).
Maeda, Taro; Fujiwara-Tsujii, Nao; Yasui, Hiroe; Matsuyama, Shigeru
2016-05-01
Orius minutus (L.) (Heteroptera: Anthocoridae) is a natural enemy of agricultural pests such as thrips, aphids, and various newly hatched insect juveniles. In this study, we conducted 1) behavioral assays for evidence of contact sex pheromone activity in trails of O. minutus, and 2) chemical analysis to identify the essential chemical components of the trails. Males showed arrestment to trails of mature virgin females but not to trails from either conspecific nymphs or immature females. Females also showed arrestment to trails from conspecific males, although the response was weaker than that exhibited by males. The activity of female trails lasted for at least 46 h after deposition. Males showed a response irrespective of mating experience. Following confirmation that a contact sex pheromone was present in the trails of female O. minutus, we used a bioassay-driven approach to isolate the active chemicals. After fractionation on silica gel, the n-hexane fraction was found to be biologically active to males. A major compound in the active fraction was (Z)-9-nonacosene; this compound was found only in trail extracts of mature virgin females. Synthetic (Z)-9-nonacosene arrested O. minutus males, indicating that it is the major active component of the contact sex pheromone in the trails of female O. minutus.
Duangnin, Natthachai; Phitak, Thanyaluck; Pothacharoen, Peraphan; Kongtawelert, Prachya
2017-03-01
To investigate the biological effects of the Mucuna pruriens (M. pruriens) seed extracts that lacked l-DOPA, which was formerly reported as the active ingredient, on erectile dysfunction (ED) both in vitro and in vivo. Seed of M. pruriens plant that cultivated in Mae Taeng District, Chiang Mai Province, Thailand, was collected. Component of its seeds were extracted and isolated into 2 fractions using methanol, polar and nonpolar. Each fraction was investigated for phytochemicals using gas chromatography and mass spectroscopy and was screened for biological activity in vitro using three different cell lines. The most biological active fraction was used to treat both streptozotocin (STZ)-induced diabetes mellitus-erectile dysfunction (DM-ED) male Wistar rats and normal rats (n = 6 per groups) to compare the effect on sexual behavior parameters, including number of intromission, mounting and ejaculation, with that of rats given Sildenafil by individually pairing with their female counterparts. Penile tissues and serums were collected to determine histological structure, related gene expression and biomolecules. The phytochemicals of the polar fraction were possibly catechol and its derivatives plus polyphenols, whereas the nonpolar fraction consisted of lipid derivatives. l-DOPA was not detected in either of the extracts. The polar fraction was able to up-regulate the expression of ED-related genes including eNOS and nNOS in vitro which subsequently promotes nitric oxide production and maintains intracellular cyclic guanosine monophosphate levels. When administrated to DM-ED rats, the polar extract significantly improved all sexual behavior parameters in DM-ED rats compared to untreated group (18.3 ± 1.8 to 10.8 ± 2.9 for intromission, 9.8 ± 2.2 to 5.7 ± 1.3 for mounting, and 1.8 ± 0.6 to 0.2 ± 0.4 for ejaculation). That effect might due to the ability of the extract to stimulate the expression of eNOS and nNOS which results in nitric oxide production and subsequently maintains cyclic guanosine monophosphate levels in penile tissue. Moreover, this extract may also prevent penile tissue deterioration due to diabetes. The polar extract of M. pruriens seed can be used for ED therapy, especially in patients with metabolic diseases including diabetes. The action of the extract might be due to catechol and its derivatives and polyphenols. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Ishijima, Y; Kawamura, T; Kimura, A; Kohno, A; Okada, T; Tsuji, T; Watanabe, Y
2011-01-01
Kakkon-to, a traditional herbal medicine (Kampo formula), has been used historically in China and Japan for the treatment of infectious diseases such as influenza and the common cold. However, the biological mechanism of its therapeutic action has not yet been elucidated. In this study, we investigated the immunological function of Kakkon-to and found that the high molecular weight fraction of the extract activated macrophages in vitro. This fraction was found to be composed primarily of saccharides and in vitro intensively stimulated mouse peritoneal macrophages that produce Th1 inflammatory cytokines such as tumor necrosis factor α (TNFalpha), interleukin-1beta (IL-1beta), interferon-gamma (IFN-gamma), and interleukin-6 (IL-6). The fraction did not activate macrophages from C3H/HeJ lacking Toll-like receptor 4 (TLR4) or MyD88-deficient mice, indicating that macrophage activation by the fraction was mediated by TLR4. The route of administration of the fraction into mice regulated the kinetics of TNFalpha production in immune organs. Intravenous administration induced TNFalpha production in the four target organs of spleen, liver, lung, and Peyers patch; however, the most abundant production occurred in the liver and peaked at 30-60 min post administration. Peritoneal administration induced similar kinetics but the most abundant production occurred in the spleen. In contrast, oral administration induced TNFalpha production in the liver, lung, and Peyers patch, but not in the spleen. Although liver and lung are TNFalpha-abundant organs, production peaks in these organs occurred later than in Peyers patch. We also found that the fraction induced antibody production as an adjuvant against a specific antigen ovalbumin (OVA) when administered simultaneously and subcutaneously in a dose-dependent manner. Interestingly, the fraction induced IgG-class antibody in response to low doses of the antigen, which induced only IgM-class antibody when administered alone, suggesting that the fraction induces a class switch of immunoglobulin as an adjuvant in vivo. The high molecular weight fraction of Kakkon-to extract could be applicable as a potent immunostimulating drug and adjuvant.
The isotopic effects of electron transfer: an explanation for Fe isotope fractionation in nature
NASA Astrophysics Data System (ADS)
Kavner, A.; Shahar, A.; Bonet, F.; Simon, J. I.; Young, E.
2004-12-01
Recent developments in mass spectrometry techniques have created opportunities to examine the partitioning behavior of stable isotopes of transition metals with a focus on application to iron isotopes. Iron oxidizing and reducing bacteria have been shown to cause isotope fractionations similar in magnitude to those observed in sedimentary environments and it is believed that biological activity is responsible for the most significant Fe isotope fractionation in natural settings. Debate over the use of Fe isotopes as a biological marker resulted from subsequent measurements of fractionations in a variety of abiotic systems. The accumulated evidence, in both biotic and abiotic systems, points to a connection between redox processes and Fe isotope fractionation, however the exact mechanism for isotope fractionation is not yet well understood. Here, we present both a newly-developed theory based on chemical kinetics and preliminary experimental results that quantitatively delineate the relationship between driving force in a charge transfer reaction and resulting Fe isotope fractionation. The theory, based on R. Marcus's chemical kinetics theory for electron transfer (Ann. Rev. Phys. Chem. 15 (1964), 155), predicts that fractionation increases linearly with driving force with a proportionality related to two factors: the difference between isotopic equilibrium exchange of products and reactants, and the reorganization energy along the reaction coordinate. The theoretical predictions were confirmed by measurements of isotopic fractionation associated with electroplating iron metal from a ferrous chloride solution. Isotope fractionation of Fe electroplated under potentiostatic conditions was measured as a function of applied electrochemical potential. As plating voltage was varied from -50 mV to -2.0 V, the isotopic signature of the electroplated iron became depleted in heavy Fe, with δ 56Fe values ranging from -0.106(±0.01) to -2.290(±±0.006)‰ , and corresponding δ 57Fe values of -0.145(±.011) and -3.354(±.019)‰ . The slope of the line created by plotting δ 56Fe vs δ 57Fe is equal to 0.6723(±.0032), consistent with fractionation due to a kinetic process involving unsolvated iron atoms. This study demonstrates that there is a voltage-dependent isotope fractionation associated with the reduction of iron. The magnitude of fractionation is similar to observations of Fe reduction by certain bacteria, suggesting that electrochemical processes may be responsible for observed biogeochemical signatures. Charge transfer is a fundamental physicochemical process involving Fe as well as other transition metals with multiple isotopes. Partitioning of isotopes among elements with varying redox states holds promise as a tool in a wide range of the Earth and environmental sciences, biology, and industry.
Palmatine inhibits growth and invasion in prostate cancer cell: Potential role for rpS6/NFκB/FLIP.
Hambright, Heather G; Batth, Izhar Singh; Xie, Jianping; Ghosh, Rita; Kumar, Addanki Pratap
2015-10-01
Novel agents are desperately needed for improving the quality of life and 5-year survival to more than 30% for metastatic castrate-resistant prostate cancer. Previously we showed that Nexrutine, Phellodendron amurense bark extract, inhibits prostate tumor growth in vitro and in vivo. Subsequently using biochemical fractionation we identified butanol fraction contributes to the observed biological activities. We report here that palmatine, which is present in the butanol fraction, selectively inhibits growth of prostate cancer cells without significant effect on non-tumorigenic prostate epithelial cells. By screening receptor tyrosine kinases in a protein kinase array, we identified ribosomal protein S6, a downstream target of p70S6K and the Akt/mTOR signaling cascade as a potential target. We further show that palmatine treatment is associated with decreased activation of NFκB and its downstream target gene FLIP. These events led to inhibition of invasion. Similar results were obtained using parent extract Nexrutine (Nx) suggesting that palmatine either in the purified form or as one of the components in Nx is a potent cytotoxic agent with tumor invasion inhibitory properties. Synergistic inhibition of rpS6/NFκB/FLIP axis with palmatine may have therapeutic potential for the treatment of prostate cancer and possibly other malignancies with their constitutive activation. These data support a biological link between rpS6/NFκB/FLIP in mediating palmatine-induced inhibitory effects and warrants additional preclinical studies to test its therapeutic efficacy. © 2014 Wiley Periodicals, Inc.
The essential oil of turpentine and its major volatile fraction (alpha- and beta-pinenes): a review.
Mercier, Beatrice; Prost, Josiane; Prost, Michel
2009-01-01
This paper provides a summary review of the major biological features concerning the essential oil of turpentine, its origin and use in traditional and modern medicine. More precisely, the safety of this volatile fraction to human health, and the medical, biological and environmental effects of the two major compounds of this fraction (alpha- and beta-pinenes) have been discussed.
Figueirôa, Evellyne de Oliveira; de Melo, Cristiane Moutinho Lagos; Neves, Juliana Kelle de Andrade Lemoine; da Silva, Nicácio Henrique; Pereira, Valéria Rêgo Alves; Correia, Maria Tereza dos Santos
2013-01-01
An increasing number of biological activities presented by medicinal plants has been investigated over the years, and they are used in the search for new substances with lower side effects. Eugenia uniflora L. and Eugenia malaccensis L. (Myrtaceae) have many folk uses in various countries. This current study was designed to quantify the polyphenols and flavonoids contents and evaluate the immunomodulatory, antioxidant, and cytotoxic potentials of fractions from E. uniflora L. and E. malaccensis L. It was observed that the polyphenol content was higher in ethyl acetate fractions. These fractions have high antioxidant potential. E. malaccensis L. seeds showed the largest DPPH radical scavenger capacity (EC50 = 22.62). The fractions of E. malaccensis L. leaves showed lower antioxidant capacity. The samples did not alter the profile of proinflammatory cytokines and nitric oxide release. The results indicate that species of the family Myrtaceae are rich in compounds with antioxidant capacity, which can help reduce the inflammatory response. PMID:24089599
Leachable transition metals are considered to be important mediators in the biological effects of ambient particulate matter (PM) and model particles such as oil-fly ashes (OFA). We determined metal driven Fenton activity in 10 OFA in the presence of hydrogen peroxide using elect...
USDA-ARS?s Scientific Manuscript database
Unambiguous investigation of condensed tannin (CT) structure-activity relationships in biological systems requires well-characterized, high-purity CTs. Sephadex LH-20 and Toyopearl HW-50F resins were compared for separating CTs from acetone/water extracts, and column fractions analyzed for flavan-3-...
Sajjadi, Seyed Ebrahim; Ghanadian, Seyed Mustafa; Rabbani, Mohammad; Tahmasbi, Fateme
2017-01-01
Stachys lavandulifolia Vahl is an herbaceous wild plant native to Iran which is traditionally used in Iranian folk medicine as a mild sedative tea for reducing anxiety and for treatment of gastrointestinal disorders. Our previous study on ethyl acetate extract of S. lavandulifolia proved anti-anxiolytic activity and so the present study was designed to determine chemical components of this biologically active fraction. The extract was prepared using maceration method. Column chromatography and medium pressure liquid chromatography (MPLC) was used respectively to separate the fractions. Finally, some evaluated fractions were used for high pressure liquid (HPLC) and peak shaving recycle technique to achieve more purification. Separated compounds were determined using NMR analysis and mass spectroscopy. Six compounds have been isolated from ethylacetate extract of aerial parts of S. lavandulifolia including four flavonoids (apigenin, kumatakenin, penduletin and 4', 7-dihyroxy- 3, 5, 6-trimethoxy flavon), a labdan diterpenoid (labda-13-en-8, 15-diol), and an iridoid.
Polysaccharides from Arctium lappa L.: Chemical structure and biological activity.
Carlotto, Juliane; de Souza, Lauro M; Baggio, Cristiane H; Werner, Maria Fernanda de P; Maria-Ferreira, Daniele; Sassaki, Guilherme L; Iacomini, Marcello; Cipriani, Thales R
2016-10-01
The plant Arctium lappa L. is popularly used to relieve symptoms of inflammatory disorders. A crude polysaccharide fraction (SAA) resulting of aqueous extraction of A. lappa leaves showed a dose dependent anti-edematogenic activity on carrageenan-induced paw edema, which persisted for up to 48h. Sequential fractionation by ultrafiltration at 50kDa and 30kDa cut-off membranes yielded three fractions, namely RF50, RF30, and EF30. All these maintained the anti-edematogenic effect, but RF30 showed a more potent action, inhibiting 57% of the paw edema at a dose of 4.9mg/kg. The polysaccharide RF30 contained galacturonic acid, galactose, arabinose, rhamnose, glucose, and mannose in a 7:4:2:1:2:1 ratio and had a Mw of 91,000g/mol. Methylation analysis and NMR spectroscopy indicated that RF30 is mainly constituted by a type I rhamnogalacturonan branched by side chains of types I and II arabinogalactans, and arabinan. Copyright © 2016 Elsevier B.V. All rights reserved.
Diaconeasa, Zoriţa; Leopold, Loredana; Rugină, Dumitriţa; Ayvaz, Huseyin; Socaciu, Carmen
2015-01-01
The present study was aimed at evaluating the antiproliferative potential of anthocyanin-rich fractions (ARFs) obtained from two commercially available juices (blueberry and blackcurrant juices) on three tumor cell lines; B16F10 (murine melanoma), A2780 (ovarian cancer) and HeLa (cervical cancer). Individual anthocyanin determination, identification and quantification were done using HPLC-MS. Antioxidant activity of the juices was determined through different mechanism methods such as DPPH and ORAC. For biological testing, the juices were purified through C18 cartridges in order to obtain fractions rich in anthocyanins. The major anthocyanins identified were glycosylated cyanidin derivatives. The antiproliferative activity of the fractions was tested using the MTT assay. The antiproliferative potential of ARF was found to be associated with those bioactive molecules, anthocyanins due to their antioxidant potential. The results obtained indicated that both blueberry and blackcurrants are rich sources of antioxidants including anthocyanins and therefore these fruits are highly recommended for daily consumption to prevent numerous degenerative diseases. PMID:25622252
Mankodi, Ami; Bishop, Courtney A; Auh, Sungyoung; Newbould, Rexford D; Fischbeck, Kenneth H; Janiczek, Robert L
2016-10-01
The purpose of this study was to explore the use of iterative decomposition of water and fat with echo asymmetry and least-squares estimation Carr-Purcell-Meiboom-Gill (IDEAL-CPMG) to simultaneously measure skeletal muscle apparent fat fraction and water T 2 (T 2,w ) in patients with Duchenne muscular dystrophy (DMD). In twenty healthy volunteer boys and thirteen subjects with DMD, thigh muscle apparent fat fraction was measured by Dixon and IDEAL-CPMG, with the IDEAL-CPMG also providing T 2,w as a measure of muscle inflammatory activity. A subset of subjects with DMD was followed up during a 48-week clinical study. The study was in compliance with the Patient Privacy Act and approved by the Institutional Review Board. Apparent fat fraction in the thigh muscles of subjects with DMD was significantly increased compared to healthy volunteer boys (p <0.001). There was a strong correlation between Dixon and IDEAL-CPMG apparent fat fraction. Muscle T 2,w measured by IDEAL-CPMG was independent of changes in apparent fat fraction. Muscle T 2,w was higher in the biceps femoris and vastus lateralis muscles of subjects with DMD (p <0.05). There was a strong correlation (p <0.004) between apparent fat fraction in all thigh muscles and six-minute walk distance (6MWD) in subjects with DMD. IDEAL-CPMG allowed independent and simultaneous quantification of skeletal muscle fatty degeneration and disease activity in DMD. IDEAL-CPMG apparent fat fraction and T 2,w may be useful as biomarkers in clinical trials of DMD as the technique disentangles two competing biological processes. Published by Elsevier B.V.
Ronpirin, Chalinee; Pattarachotanant, Nattaporn; Tencomnao, Tewin
2016-01-01
This study was aimed at investigating the antioxidant activity of Mangifera indica Linn., Cocos nucifera Linn., and Averrhoa carambola Linn. and their biological effect on human keratinocytes affected by the ultraviolet B (UVB), a major cause of cell damage and skin cancer through induction of DNA damage, production of reactive oxygen species (ROS), and apoptosis. The richest antioxidant activity was found in ethanol fraction of M. indica (21.32 ± 0.66 mg QE/g dry weight), while the lowest one was found in aqueous fractions of M. indica and C. nucifera (1.76 ± 2.10 and 1.65 ± 0.38 mg QE/g dry weight, respectively). Ethanol and aqueous fractions of A. carambola (250 µg/mL) significantly reduced the number of apoptotic cells. The expression of cleaved caspase 3 in UVB-treated group was significantly greater than that in untreated group. Both fractions of A. carambola (50, 100, and 250 µg/mL) significantly decreased the expression of cleaved caspase 3. Regarding the induction of DNA repair, ethanol (100 and 250 µg/mL) and aqueous (50, 100 and 250 µg/mL) fractions of A. carambola significantly decreased the percentage of cyclobutane pyrimidine dimers (CPD). Taken together, our results suggest that both fractions of A. carambola may be potentially developed for dermal applications.
An Experimental Implementation of Chemical Subtraction
Chen, Shao-Nong; Turner, Allison; Jaki, Birgit U.; Nikolic, Dejan; van Breemen, Richard B.; Friesen, J. Brent; Pauli, Guido F.
2008-01-01
A preparative analytical method was developed to selectively remove (“chemically subtract”) a single compound from a complex mixture, such as a natural extract or fraction, in a single step. The proof of concept is demonstrated by the removal of pure benzoic acid (BA) from cranberry (Vaccinium macrocarpon Ait.) juice fractions that exhibit anti-adhesive effects vs. uropathogenic E. coli. Chemical subtraction of BA, representing a major constituent of the fractions, eliminates the potential in vitro interference of the bacteriostatic effect of BA on the E. coli anti-adherence action measured in bioassays. Upon BA removal, the anti-adherent activity of the fraction was fully retained, 36% inhibition of adherence in the parent fraction at 100 ug/mL increased to 58% in the BA-free active fraction. The method employs countercurrent chromatography (CCC) and operates loss-free for both the subtracted and the retained portions as only liquid-liquid partitioning is involved. While the high purity (97.47% by quantitative 1H NMR) of the subtracted BA confirms the selectivity of the method, one minor impurity was determined to be scopoletin by HR-ESI-MS and (q)HNMR and represents the first coumarin reported from cranberries. A general concept for the selective removal of phytoconstituents by CCC is presented, which has potential broad applicability in the biological evaluation of medicinal plant extracts and complex pharmaceutical preparations. PMID:18234463
Houël, Emeline; Nardella, Flore; Jullian, Valérie; Valentin, Alexis; Vonthron-Sénécheau, Catherine; Villa, Pascal; Obrecht, Adeline; Kaiser, Marcel; Bourreau, Eliane; Odonne, Guillaume; Fleury, Marie; Bourdy, Geneviève; Eparvier, Véronique; Deharo, Eric; Stien, Didier
2016-07-01
Psidium acutangulum Mart. ex DC is a small tree used by the Wayana Amerindians from the Upper-Maroni in French Guiana for the treatment of malaria. In a previous study, we highlighted the in vitro antiplasmodial, antioxidant and anti-inflammatory potential of the traditional decoction of P. acutangulum aerial parts. Our goal was then to investigate on the origin of the biological activity of the traditional remedy, and eventually characterize active constituents. Liquid-liquid extractions were performed on the decoction, and the antiplasmodial activity evaluated against chloroquine-resistant FcB1 ([(3)H]-hypoxanthine bioassay) and 7G8 (pLDH bioassay) P. falciparum strains, and on a chloroquine sensitive NF54 ([(3)H]-hypoxanthine bioassay) P. falciparum strain. The ethyl acetate fraction (D) was active and underwent bioguided fractionation. All the isolated compounds were tested on P. falciparum FcB1 strain. In vitro anti-inflammatory activity (IL-1β, IL-6, IL-8, TNFα) of the ethyl acetate fraction and of an anti-Plasmodium active compound, was concurrently assessed on LPS-stimulated human PBMC and NO secretion inhibition was measured on LPS stimulated RAW murine macrophages. Cytotoxicity of the fractions and pure compounds was measured on VERO cells, L6 mammalian cells, PBMCs, and RAW cells. Fractionation of the ethyl acetate soluble fraction (IC50 ranging from 3.4 to <1µg/mL depending on the parasite strain) led to the isolation of six pure compounds: catechin and five glycosylated quercetin derivatives. These compounds have never been isolated from this plant species. Two of these compounds (wayanin and guaijaverin) were found to be moderately active against P. falciparum FcB1 in vitro (IC50 5.5 and 6.9µM respectively). We proposed the name wayanin during public meetings organized in June 2015 in the Upper-Maroni villages, in homage to the medicinal knowledge of the Wayana population. At 50µg/mL, the ethyl acetate fraction (D) significantly inhibited IL-1β secretion (-46%) and NO production (-21%), as previously observed for the decoction. The effects of D and guiajaverin (4) on the secretion of other cytokines or NO production were not significant. The confirmed antiplasmodial activity of the ethyl acetate soluble fraction of the decoction and of the isolated compounds support the previous results obtained on the P. acutangulum decoction. The antiplasmodial activity might be due to a mixture of moderately active non-toxic flavonoids. The anti-inflammatory activities were less marked for ethyl acetate fraction (D) than for the decoction. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Muthenna, Puppala; Raghu, Ganugula; Akileshwari, Chandrasekhar; Sinha, Sukesh Narayana; Suryanarayana, Palla; Reddy, Geereddy Bhanuprakash
2013-11-01
Accumulation of advanced glycation endproducts (AGE) from nonenzymatic glycation of proteins has been implicated in several diabetic complications including diabetic cataract. Previously, we have reported that extracts of dietary agents such as cinnamon have the potential to inhibit AGE formation. In this study, we have shown procyanidin-B2 as the active component of cinnamon that is involved in AGE inhibition using bioassay-guided fractionation of eye lens proteins under in vitro conditions. The data indicate that procyanidin-B2 enriched fraction scavenges dicarbonyls. Further, procyanidin-B2 fraction of cinnamon inhibited the formation of glycosylated hemoglobin in human blood under ex vivo conditions. We have also demonstrated the physiological significance of procyanidin-B2 fraction in terms of delay of diabetic cataract through inhibition of AGE in diabetic rats. These findings establish the antiglycating potential of procyanidin-B2 fraction of cinnamon which suggests a scope for controlling AGE-mediated diabetic complications by food sources that are rich in proanthocyanidins like procyanidin-B2. © 2013 International Union of Biochemistry and Molecular Biology.
Han, Xiuli; Yang, Yongqing; Wu, Yujiao; Liu, Xiaohui; Lei, Xiaoguang; Guo, Yan
2017-05-17
Plasma membrane (PM) H+-ATPase is essential for plant growth and development. Various environmental stimuli regulate its activity, a process that involves many protein cofactors. However, whether endogenous small molecules play a role in this regulation remains unknown. Here, we describe a bio-guided isolation method to identify endogenous small molecules that regulate PM H+-ATPase activity. We obtained crude extracts from Arabidopsis seedlings with or without salt treatment and then purified them into fractions based on polarity and molecular mass by repeated column chromatography. By evaluating the effect of each fraction on PM H+-ATPase activity, we found that fractions containing the endogenous, free unsaturated fatty acids oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:3) extracted from salt-treated seedlings stimulate PM H+-ATPase activity. These results were further confirmed by the addition of exogenous C18:1, C18:2, or C18:3 in the activity assay. The ssi2 mutant, with reduced levels of C18:1, C18:2, and C18:3, displayed reduced PM H+-ATPase activity. Furthermore, C18:1, C18:2, and C18:3 directly bound to the C-terminus of the PM H+-ATPase AHA2. Collectively, our results demonstrate that the binding of free unsaturated fatty acids to the C-terminus of PM H+-ATPase is required for its activation under salt stress. The bio-guided isolation model described in this study could enable the identification of new endogenous small molecules that modulate essential protein functions, as well as signal transduction, in plants. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Moirangthem, Dinesh Singh; Talukdar, Narayan Chandra; Kasoju, Naresh; Bora, Utpal
2012-04-03
Cephalotaxus spp. are known to possess various therapeutic potentials. Cephalotaxus griffithii, however, has not been evaluated for its biological potential. The reason may be the remoteness and inaccessibility of the habitat where it is distributed. The main aim of this study was to: (1) evaluate multiple biological potentials of stem bark of C. griffithii, and (2) identify solvent extract of stem bark of C. griffithii to find the one with the highest specific biological activity. Dried powder of stem bark of C. griffithii was exhaustively extracted serially by soaking in petroleum ether, acetone and methanol to fractionate the chemical constituents into individual fractions or extracts. The extracts were tested for total phenolic and flavonoid content, antioxidant (DPPH radical scavenging, superoxide radical scavenging, and reducing power models), antibacterial (disc diffusion assay on six bacterial strains), cytotoxic (MTT assay on HeLa cells), and apoptotic activity (fluorescence microscopy, DNA fragmentation assay, and flow cytometry on HeLa cells). Among the three extracts of stem bark of C. griffithii, the acetone extract contained the highest amount of total phenolics and flavonoids and showed maximum antioxidant, antibacterial, cytotoxic (IC50 of 35.5 ± 0.6 μg/ml; P < 0.05), and apoptotic (46.3 ± 3.6% sub-G0/G1 population; P < 0.05) activity, followed by the methanol and petroleum ether extracts. However, there was no significant difference observed in IC50 values (DPPH scavenging assay) of the acetone and methanol extracts and the positive control (ascorbic acid). In contrast, superoxide radical scavenging assay-based antioxidant activity (IC50) of the acetone and methanol extracts was significantly lower than the positive control (P < 0.05). Correlation analysis suggested that phenolic and flavonoid content present in stem bark of C. griffithii extracts was responsible for the high antioxidant, cytotoxic, and apoptotic activity (P < 0.05). Stem bark of C. griffithii has multiple biological effects. These results call for further chemical characterization of acetone extract of stem bark of C. griffithii for specific bioactivity.
Clement, Herlinda; Flores, Vianey; De la Rosa, Guillermo; Zamudio, Fernando; Alagon, Alejandro; Corzo, Gerardo
2016-01-01
The cysteine-rich neurotoxins from elapid venoms are primarily responsible for human and animal envenomation; however, their low concentration in the venom may hamper the production of efficient elapid antivenoms. Therefore, the aim of the present study was to produce fully active elapid neurotoxic immunogens for elapid antivenom production. Cysteine-rich neurotoxins showed recombinant expression in two strains of E. coli, and were purified using affinity chromatography and reverse-phase HPLC (rpHPLC). The cDNA of the four disulfide-bridged peptide neurotoxin Mlat1 was cloned into a modified expression vector, pQE30, which was transfected into two different E. coli strains. The recombinant toxin (HisrMlat1) was found only in inclusion bodies in M15 strain cells, and in both inclusion bodies and cytoplasm in Origami strain cells. The HisrMlat1 from inclusion bodies from M15 cells was solubilized using guanidine hydrochloride, and then purified by rpHPLC. It showed various contiguous fractions having the same molecular mass, indicating that HisrMlat1 was oxidized after cell extraction forming different misfolded disulfide bridge arrangements without biological activity. In vitro folding conditions of the misfolded HisrMlat1 generated a biologically active HisrMlat1. On the other hand, the HisrMlat1 from the cytoplasm from Origami cells was already soluble, and then purified by HPLC. It showed a single fraction with neurotoxic activity; so, no folding steps were needed. The in vitro folded HisrMlat1 from M15 cells and the cytoplasmic soluble HisrMlat1from Origami cells were indistinguishable in their structure and neurotoxicity. Rabbit polyclonal antibodies raised up against biologically active HisrMlat1 recognized the native Mlat1 (nMlat1) from the whole venom of M. laticorallis. In addition, HisrMlat1 was recognized by horse polyclonal antibodies obtained from the immunization of elapid species from sub-Saharan Africa. HisrMlat1 shows increased biological activities compared to the native peptide, and may be used as an immunizing agent in combination with other toxic components such phospholipases type A2 for elapid antivenom production.
de Morais, Sandra Ribeiro; Oliveira, Thiago Levi Silva; de Oliveira, Lanussy Porfiro; Tresvenzol, Leonice Manrique Faustino; da Conceição, Edemilson Cardoso; Rezende, Maria Helena; Fiuza, Tatiana de Sousa; Costa, Elson Alves; Ferri, Pedro Henrique; de Paula, José Realino
2016-01-01
Background: Lippia sidoides (Verbenaceae) is used in Brazilian folk medicine as an antiseptic, and it is usually applied topically on skin, mucous membranes, mouth, and throat, or used for vaginal washings. Objectives: To analyze the chemical composition of the essential oil from L. sidoides collected in São Gonçalo do Abaeté, Minas Gerais and grown in Hidrolândia, Goiás; to evaluate the antimicrobial activity of the essential oil, crude ethanol extract, and hexane, dichloromethane, ethyl-acetate, and aqueous fractions (AFs); to study the antinociceptive, anti-inflammatory, and central nervous system activities of the crude ethanol extract. Materials and methods: The essential oils were obtained by hydro-distillation using a Clevenger-type apparatus and analyzed by GC/MS. The antimicrobial activity in vitro was performed by broth microdilution method. The pharmacological tests were performed using female Swiss albino mice. Results: The major components of the essential oil were isoborneol (14.66%), bornyl acetate (11.86%), α-humulene (11.23%), α-fenchene (9.32%), and 1.8-cineole (7.05%), supporting the existence of two chemotypes of this species. The hexane fraction (HF) had good antifungal activity against Cryptococcus sp. ATCC D (MIC = 31.25 μg/mL) and Cryptococcus gatti L48 (MIC = 62.5 μg/mL). In the pharmacological tests, the crude ethanol extract presented antinociceptive and anti-inflammatory activities. Conclusion: Given that the ethanol extract of L. sidoides is included in the Formulary of Phytotherapeutic Agents of the Brazilian Pharmacopeia as an anti-inflammatory for oral cavities, the present work provides scientific evidence to back this use and highlight the importance of selecting the appropriate chemotype on the basis of the expected biological response. SUMMARY The major components of the essential oil of L. sidoides were isoborneol bornyl acetate, α-humulene, α-fenchene, and 1.8-cineole. The HF had good antifungal activity against Cryptococcus sp. ATCC D and C. gatti L4.The crude ethanol extract of L. sidoides presented antinociceptive and anti-inflammatory activities.The present work provides scientific evidence of the importance of selecting the appropriate chemotype on the basis of the expected biological response. Abbreviations used: UFG: Universidade Federal de Goiás; HF: hexane fraction; DF: dichloromethane fraction; EAF: ethyl acetate fraction; AF: aqueous fraction; MeOH: methanol; MIC: minimum inhibitory concentration; ATCC: American Type Culture Collection; MH: Müller Hinton; DMSO: dimethyl sulfoxide; RPMI: Roswell Park Memorial Institute; NaCl: sodium chloride; μL: microliters; mL: milliliters; μg: microgram; kg: kilogram; h: hour; min: minute; cm: centimeter; COBEA: Brazilian College of Animal Experiments; p.o.:, oral; i.p.: intraperitoneal; s.c.: subcutaneous; SEM: standard error of the mean; RI: retention indices. PMID:27867267
Chandrasekaran, Chinampudur V.; Sundarajan, Kannan; Edwin, Jothie R.; Gururaja, Giligar M.; Mundkinajeddu, Deepak; Agarwal, Amit
2013-01-01
Background: While curcuminoids have been reported to possess diverse biological activities, the anti-inflammatory activity of polar extracts (devoid of curcuminoids) of Curcuma longa (C. longa) has seldom been studied. In this study, we have investigated immune-stimulatory and anti-inflammatory activities of an aqueous based extract of C. longa (NR-INF-02) and its fractions in presence and absence of mitogens. Materials and Methods: Effects of NR-INF-02 (Turmacin™, Natural Remedies Pvt. Ltd., Bangalore, India) on proliferation, nitric oxide (NO), monocyte chemotactic protein-1 (MCP-1), interleukins (ILs) and prostaglandin (PGE2) levels of mouse splenocytes and mouse macrophage (RAW264.7) cells were determined. Results: NR-INF-02 increased splenocytes number in presence and absence of lipopolysaccharide (LPS) or concanavalin A. Treatment of NR-INF-02 showed a significant increase of NO, IL-2, IL-6, IL-10, IL-12, interferon (IFN) gamma, tumor necrosis factor (TNF) alpha and MCP-1 production in unstimulated mouse splenocytes and mouse macrophages. Interestingly, NR-INF-02 showed potent inhibitory effect towards release of PGE2 and IL-12 levels in LPS stimulated mouse splenocytes. Further, NR-INF-02 was fractionated into polysaccharide fraction (F1) and mother liquor (F2) to study their immune-modulatory effects. F1 was found to be more potent than F2 toward inhibiting PGE2 and IL-12 in LPS stimulated splenocytes. Conclusion: Present findings revealed the novel anti-inflammatory property of NR-INF-02 and its polysaccharide fraction by inhibiting the secretion of IL-12 and PGE2 in vitro. PMID:23798880
Capodici, Marco; Di Bella, Gaetano; Nicosia, Salvatore; Torregrossa, Michele
2015-02-01
A bench-scale MBR unit was operated, under stressing condition, with the aim of stimulating the onset of foaming in the activated sludge. Possible synergies between synthetic surfactants in the wastewater and biological surfactants (Extra-Cellular Polymeric Substances, EPSs) were investigated by changing C/N ratio. The growth of filamentous bacteria was also discussed. The MBR unit provided satisfactory overall carbon removal overall efficiencies: in particular, synthetic surfactants were removed with efficiency higher than 90% and 95% for non-ionic and ionic surfactants, respectively. Lab investigation suggested also the importance to reduce synthetic surfactants presence entering into mixed liquor: otherwise, their presence can significantly worsen the natural foaming caused by biological surfactants (EPSs) produced by bacteria. Finally, a new analytic method based on "ink test" has been proposed as a useful tool to achieve a valuation of EPSs bound fraction. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cod Fractions In Mechanical-Biological Wastewater Treatment Plant
NASA Astrophysics Data System (ADS)
Płuciennik-Koropczuk, Ewelina; Jakubaszek, Anita; Myszograj, Sylwia; Uszakiewicz, Sylwia
2017-03-01
The paper presents results of studies concerning the designation of COD fraction in the raw, mechanically treated and biologically treated wastewater. The test object was a wastewater treatment plant with the output of over 20,000 PE. The results were compared with data received in the ASM models. During investigation following fractions of COD were determined: dissolved non-biodegradable SI, dissolved easily biodegradable SS, in organic suspension slowly degradable XS and in organic suspension non-biodegradable XI. Methodology for determining the COD fraction was based on the guidelines ATV-A 131. The real percentage of each fraction in total COD in raw wastewater are different from data received in ASM models.
Incorporating Model Parameter Uncertainty into Prostate IMRT Treatment Planning
2005-04-01
HD HJ. Fractionation in radiotherapy. London: Taylor & Francis, 1987. 8. Withers HR. Biologic basis for altered fractionation schemes. Cancer 1985; 55...of combined agent regimens. Int J Radiat Biol 1990; 57: 709-722. 15. Thames HD , Jr., Withers HR, Peters LJ, Fletcher GH. Changes in early and late...Oncology, Biology, Physics 2001; 50: 551-560. 30. Turesson I, Thames HD . Repair capacity and kinetics of human skin during fractionated radiotherapy
de Morais, C B; Scopel, M; Pedrazza, G P R; da Silva, F K; Dalla Lana, D F; Tonello, M L; Miotto, S T S; Machado, M M; De Oliveira, L F S; Fuentefria, A M; Zuanazzi, J A S
2017-12-01
Intensive prophylactic use of antifungals leads to the increase of drug resistance and the need for new and more effective treatments are real. Plants from Leguminosae family are rich in flavonoids, for which numerous biological activities have been described, including antifungal effects. To screen methanolic extracts from Leguminosae species looking for alternative sources for antifungal agents (anti-dermatophyte and anti-Candida) and their innocuity. Antifungal activity was evaluated using the strains Candida albicans, C. krusei, C. glabrata, C. tropicalis, C. parapsilosis, Epidermophyton floccosum, Trichophyton mentagrophytes, T. rubrum and, Microsporum gypseum in the broth microdilution method. Later, the minimum inhibitory concentration (MIC) for Mimosa pigra, Eriosema heterophyllum, and Chamaecrista nictitans was determined. The most promising extract was fractionated and cytotoxicity and genotoxicity of the most active fraction were also assayed. Fungicide and/or fungistatic activity against dermatophyte strains were presented by 60% of the methanolic extracts assayed. M. pigra, E. heterophyllum, and C. nictitans methanolic extracts could inhibit dermatophyte strains at concentrations ranging from 1.9 to 1000μg/mL. M. pigra showed the lowest MIC values for a dichloromethane fraction (1.9μg/mL) without DNA damage at 10 and 50μg/mL and 100% of cell viability of human leukocytes. Our results indicate that methanolic extracts from Leguminosae plants are potential sources of antifungal compounds, mainly the extract and fractions from M. pigra. The dichloromethane fraction from M. pigra did not showed in vitro toxicity according to the applied assays. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Immersion freezing of birch pollen washing water
NASA Astrophysics Data System (ADS)
Augustin, S.; Wex, H.; Niedermeier, D.; Pummer, B.; Grothe, H.; Hartmann, S.; Tomsche, L.; Clauss, T.; Voigtländer, J.; Ignatius, K.; Stratmann, F.
2013-11-01
Birch pollen grains are known to be ice nucleating active biological particles. The ice nucleating activity has previously been tracked down to biological macromolecules that can be easily extracted from the pollen grains in water. In the present study, we investigated the immersion freezing behavior of these ice nucleating active (INA) macromolecules. Therefore we measured the frozen fractions of particles generated from birch pollen washing water as a function of temperature at the Leipzig Aerosol Cloud Interaction Simulator (LACIS). Two different birch pollen samples were considered, with one originating from Sweden and one from the Czech Republic. For the Czech and Swedish birch pollen samples, freezing was observed to start at -19 and -17 °C, respectively. The fraction of frozen droplets increased for both samples down to -24 °C. Further cooling did not increase the frozen fractions any more. Instead, a plateau formed at frozen fractions below 1. This fact could be used to determine the amount of INA macromolecules in the droplets examined here, which in turn allowed for the determination of nucleation rates for single INA macromolecules. The main differences between the Swedish birch pollen and the Czech birch pollen were obvious in the temperature range between -17 and -24 °C. In this range, a second plateau region could be seen for Swedish birch pollen. As we assume INA macromolecules to be the reason for the ice nucleation, we concluded that birch pollen is able to produce at least two different types of INA macromolecules. We were able to derive parameterizations for the heterogeneous nucleation rates for both INA macromolecule types, using two different methods: a simple exponential fit and the Soccer ball model. With these parameterization methods we were able to describe the ice nucleation behavior of single INA macromolecules from both the Czech and the Swedish birch pollen.
Ice Nucleating Particle Properties in the Saharan Air Layer Close to the Dust Source
NASA Astrophysics Data System (ADS)
Boose, Y.; Garcia, I. M.; Rodríguez, S.; Linke, C.; Schnaiter, M.; Nickovic, S.; Lohmann, U.; Kanji, Z. A.; Sierau, B.
2015-12-01
In August 2013 and 2014 measurements of ice nucleating particle (INP) concentrations, aerosol particle size distributions, chemistry and fluorescence were conducted at the Izaña Atmospheric Observatory located at 2373 m asl on Tenerife, west off the African shore. During summer, the observatory is frequently within the Saharan Air Layer and thus often exposed to dust. Absolute INP concentrations and activated fractions at T=-40 to -15°C and RHi=100-150 % were measured. In this study, we discuss the in-situ measured INP properties with respect to changes in the chemical composition, the biological content, the source regions as well as transport pathways and thus aging processes of the dust aerosol. For the first time, ice crystal residues were also analyzed with regard to biological content by means of their autofluorescence signal close to a major dust source region. Airborne dust samples were collected with a cyclone for additional offline analysis in the laboratory under similar conditions as in the field. Both, in-situ and offline dust samples were chemically characterized using single-particle mass spectrometry. The DREAM8 dust model extended with dust mineral fractions was run to simulate meteorological and dust aerosol conditions for ice nucleation. Results show that the background aerosol at Izaña was dominated by carbonaceous particles, which were hardly ice-active under the investigated conditions. When Saharan dust was present, INP concentrations increased by up to two orders of magnitude even at water subsaturated conditions at T≤-25°C. Differences in the ice-activated fraction were found between different dust periods which seem to be linked to variations in the aerosol chemical composition (dust mixed with changing fractions of sea salt and differences in the dust aerosol itself). Furthermore, two biomass burning events in 2014 were identified which led to very low INP concentrations under the investigated temperature and relative humidity conditions.
Pace, Eric; Jiang, Yuanyuan; Clemens, Amy; Crossman, Tennille
2018-01-01
Cyanidin-3-O-glucoside (C3G), the predominant anthocyanin in haskap berries (Lonicera caerulea L.), possesses antioxidant and many other biological activities. This study investigated the impact of temperature and pH on the degradation of the C3G-rich haskap fraction. The effect of the thermal degradation products on the viability of hepatocellular carcinoma HepG2 and breast cancer MDA-MB-231 cells was also studied in vitro. Using column chromatography, the C3G-rich fraction was isolated from acetone extracts of haskap berries. The C3G stability in these fractions was studied under elevated temperatures (70 °C and 90 °C) at three different pH values (2.5, 4, and 7) by monitoring the concentration of C3G and its major degradation products, protocatechuic acid (PCA) and phloroglucinaldehyde (PGA), using liquid chromatography mass spectrometry. Significant degradation of C3G was observed at elevated temperatures and at neutral pH. Conversely, the PCA and PGA concentration increased at higher pH and temperature. Similar to C3G, neutral pH also has a prominent effect on the degradation of PGA, which is further accelerated by heating. The C3G-rich fraction exhibited dose-dependent inhibitory effects on cell metabolic activity when the HepG2 cells were exposed for 48 h. Interestingly, PGA but not PCA exhibited cytotoxic effects against both MDA-MB-231 and HepG2 cells. The results suggest that thermal food processing of haskap could influence its biological properties due to the degradation of C3G. PMID:29382057
Pace, Eric; Jiang, Yuanyuan; Clemens, Amy; Crossman, Tennille; Rupasinghe, H P Vasantha
2018-01-27
Cyanidin-3 -O -glucoside (C3G), the predominant anthocyanin in haskap berries ( Lonicera caerulea L.), possesses antioxidant and many other biological activities. This study investigated the impact of temperature and pH on the degradation of the C3G-rich haskap fraction. The effect of the thermal degradation products on the viability of hepatocellular carcinoma HepG2 and breast cancer MDA-MB-231 cells was also studied in vitro. Using column chromatography, the C3G-rich fraction was isolated from acetone extracts of haskap berries. The C3G stability in these fractions was studied under elevated temperatures (70 °C and 90 °C) at three different pH values (2.5, 4, and 7) by monitoring the concentration of C3G and its major degradation products, protocatechuic acid (PCA) and phloroglucinaldehyde (PGA), using liquid chromatography mass spectrometry. Significant degradation of C3G was observed at elevated temperatures and at neutral pH. Conversely, the PCA and PGA concentration increased at higher pH and temperature. Similar to C3G, neutral pH also has a prominent effect on the degradation of PGA, which is further accelerated by heating. The C3G-rich fraction exhibited dose-dependent inhibitory effects on cell metabolic activity when the HepG2 cells were exposed for 48 h. Interestingly, PGA but not PCA exhibited cytotoxic effects against both MDA-MB-231 and HepG2 cells. The results suggest that thermal food processing of haskap could influence its biological properties due to the degradation of C3G.
Youssef, Diaa T A; Shaala, Lamiaa A; Mohamed, Gamal A; Badr, Jihan M; Bamanie, Faida H; Ibrahim, Sabrin R M
2014-04-01
In our search for bioactive metabolites from marine organisms, we have investigated the polar fraction of the organic extract of the Red Sea sponge Theonella swinhoei. Successive chromatographic separations and final HPLC purification of the potent antifungal fraction afforded a new bicyclic glycopeptide, theonellamide G. The structure of the peptide was determined using extensive 1D and 2D NMR and high-resolution mass spectral determinations. The absolute configuration of theonellamide G was determined by chemical degradation and 2D NMR spectroscopy. Theonellamide G showed potent antifungal activity towards wild and amphotericin B-resistant strains of Candida albicans with IC₅₀ of 4.49 and 2.0 μM, respectively. Additionally, it displayed cytotoxic activity against the human colon adenocarcinoma cell line (HCT-16) with IC₅₀ of 6.0 μM. These findings provide further insight into the chemical diversity and biological activities of this class of compounds.
Lee, Hyeong-Seon; Lee, Gyeong-Seon; Kim, Seon-Hee; Kim, Hyun-Kyung; Suk, Dong-Hee; Lee, Dong-Seok
2014-02-01
Orostachys japonicus shows various biological activities. However, the molecular mechanisms remain unknown in LPS-stimulated macrophages. Here, we investigated the anti-oxidizing effect of the dichloromethane (DCM) and hexane fractions from O. japonicus (OJD and OJH) against oxidative stress in RAW 264.7 cells stimulated by LPS. OJD and OJH significantly increased the expression of heme oxygenase-1 (HO-1) in a dose- and time-dependent manner. Additionally, it was found that the expression of HO-1 was stimulated by Nrf2 activated via degradation of Keap1. ERK and p38 inhibitors repressed HO-1 induced by OJD and OJH in LPS-stimulated cells, respectively. In conclusion, these results suggest that OJD and OJH may block oxidative damage stimulated by LPS, via increasing the expression of HO-1 and Nrf2, and MAPK signaling pathway.
Morel, Sylvie; Landreau, Anne; Nguyen, Van Hung; Derbré, Séverine; Grellier, Philippe; Pape, Patrice Le; Pagniez, Fabrice; Litaudon, Marc; Richomme, Pascal
2012-01-01
The Derris genus is known to contain flavonoid derivatives, including prenylated flavanones and isoflavonoids such as rotenoids, which are generally associated with significant biological activity. To develop an efficient preparative isolation procedure for bioactive cajaflavanone. Fast centrifugal partition chromatography (FCPC) was optimised to purify cajaflavanone from Derris ferruginea stems in a single step as compared to fractionation from the cyclohexane extract by successive conventional solid-liquid chromatography procedures. The purification yield, purity, time and solvent consumption per procedure are described. The anti-fungal, anti-bacterial, anti-leishmanial, anti-plasmodial, anti-oxidant activities and the inhibition of advanced glycation end-products (AGEs) by cajaflavanone accumulation are described. FCPC enabled cajaflavanone purification in a single separation step, yielding sufficient quantities to perform in vitro biological screening. Interestingly, cajaflavanone had an inhibitory effect on the formation of AGEs, without displaying any in vitro anti-oxidant activity. A simple and efficient procedure, in comparison with other preparative methods, for bioactive cajaflavone purification has been developed using FCPC. Copyright © 2011 John Wiley & Sons, Ltd.
Chemical variation in Piper aduncum and biological properties of its dillapiole-rich essential oil.
de Almeida, Roseli R P; Souto, Raimundo N P; Bastos, Cleber N; da Silva, Milton H L; Maia, José G S
2009-09-01
The essential oils of the specimens of Piper aduncum that occur in deforested areas of Brazilian Amazon, North Brazil, are rich in dillapiole (35-90%), a derivative of phenylpropene, to which are attributed biological properties. On the other hand, the oils of the specimens with occurrence in the Atlantic Forest, and Northeastern and Southeastern Brazil, do not contain dillapiole, but only terpene compounds such as (E)-nerolidol and linalool. One specimen existing in the Amazon was hydrodistilled. The obtained oil was fractioned on a silica chromatographic column, resulting in fractions rich in dillapiole (95.0-98.9%) utilized for analyses by GC and GC/MS, structural characterization by NMR, confirmation of their biological properties, and to obtain the isomer isodillapiole. Dillapiole showed a fungicide action against the fungus Clinipellis perniciosa (witches' broom) by inhibition of its basidiospores, in concentrations ranging from 0.6 to 1.0 ppm. The larvicide and insecticide actions of dillapiole were tested against the larvae and the adult insects of Anopheles marajoara and Aedes aegypti (malaria and dengue mosquitoes), resulting in mortality of the larvae (48 h, 100%) at a concentration of 100 ppm, and mortality of the insects (30 min, 100%) at a concentration of 600 ppm. The isomeric isodillapiole showed no significant activity in the same biological tests.
Ullah, Najeeb; Ahmad, Ijaz; Ayaz, Sultan
2014-01-01
The study was done to assess the phytochemicals (flavonoids, terpenoids, saponins, tannin, alkaloids, and phenol) in different parts (root, stem, and leaves) of Ballota nigra and correlated it to inhibition of microbes (bacteria and fungi), protozoan (Leishmania), and heavy metals toxicity evaluation. In root and stem flavonoids, terpenes and phenols were present in ethanol, chloroform, and ethyl acetate soluble fraction; these were found to be the most active inhibiting fractions against all the tested strains of bacteria, fungi, and leishmania. While in leaves flavonoids, terpenes, and phenols were present in ethanol, chloroform, and n-butanol fractions which were the most active fractions against both types of microbes and protozoan (leishmania) in in vitro study. Ethanol and chloroform fractions show maximum inhibition against Escherichia coli (17 mm). The phytochemical and biological screenings were correlated with the presence of heavy metals in selected plant Ballota nigra. Cr was found above permissible value (above 1.5 mg/kg) in all parts of the plant. Ni was above WHO limit in B. nigra root and leaves (3.35 ± 1.20 mg/kg and 5.09 ± 0.47 mg/kg, respectively). Fe was above permissible value in all parts of B. nigra (above 20 mg/kg). Cd was above permissible value in all parts of the plant (above 0.3 mg/kg). Pb was above WHO limit (above 2 mg/kg) in all parts of Ballota nigra.
Separation of gonadotropic fractions with different species specificities from tuna pituitaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ando, H.; Ishii, S.
1988-05-01
Eight different gonadotropic glycoprotein fractions were separated from the acetone-dried powder of yellow fin tuna pituitary glands by successive chromatographies on Superose 12 for gel filtration and Mono Q for anion exchange using the Pharmacia fast protein liquid chromatography system. This was preceded by preliminary separations using an ammonium sulfate precipitation method and affinity chromatography on concanavalin A-Sepharose. For biological characterization, we employed two radioreceptor assay systems, one using goby testis plasma membranes and silver carp GTH as the receptor and radioligand, respectively, and the other using testis plasma membranes of the yellow fin tuna and gonadotropin of the samemore » species, respectively. We also employed two testicular cyclic AMP accumulation bioassay methods in vitro, one with the goby testis and the other with the mackerel testis. The least acidic fraction after Mono Q was further separated into four subfractions by rechromatography with Mono Q. They were strongly active in the tuna and mackerel assays but almost inactive in the goby assays. They were referred to as tuna-type tuna gonadotropin. In contrast, the most acidic fraction obtained after the first Mono Q was active in the goby assays but almost inactive in the tuna and mackerel assays. It was referred to as goby-type tuna gonadotropin. The intermediate fractions were active on both assays and are considered to be mixtures of tuna-type and goby-type gonadotropins. The reason for the presence of gonadotropin inactive to homologous species is discussed from the evolutionary viewpoint.« less
Ullah, Najeeb; Ahmad, Ijaz; Ayaz, Sultan
2014-01-01
The study was done to assess the phytochemicals (flavonoids, terpenoids, saponins, tannin, alkaloids, and phenol) in different parts (root, stem, and leaves) of Ballota nigra and correlated it to inhibition of microbes (bacteria and fungi), protozoan (Leishmania), and heavy metals toxicity evaluation. In root and stem flavonoids, terpenes and phenols were present in ethanol, chloroform, and ethyl acetate soluble fraction; these were found to be the most active inhibiting fractions against all the tested strains of bacteria, fungi, and leishmania. While in leaves flavonoids, terpenes, and phenols were present in ethanol, chloroform, and n-butanol fractions which were the most active fractions against both types of microbes and protozoan (leishmania) in in vitro study. Ethanol and chloroform fractions show maximum inhibition against Escherichia coli (17 mm). The phytochemical and biological screenings were correlated with the presence of heavy metals in selected plant Ballota nigra. Cr was found above permissible value (above 1.5 mg/kg) in all parts of the plant. Ni was above WHO limit in B. nigra root and leaves (3.35 ± 1.20 mg/kg and 5.09 ± 0.47 mg/kg, respectively). Fe was above permissible value in all parts of B. nigra (above 20 mg/kg). Cd was above permissible value in all parts of the plant (above 0.3 mg/kg). Pb was above WHO limit (above 2 mg/kg) in all parts of Ballota nigra. PMID:25054139
Li, Ming; Mohamed, Ibrahim; Raleve, David; Chen, Wenli; Huang, Qiaoyun
2016-10-01
A field experiment was conducted to investigate the effect of chicken manure compost on the fractionation of cadmium (Cd), soil biological properties and Cd uptake by wheat in a soil affected by mining activities in Hubei province, China. Compost was applied at five levels (0, 27, 54, 108, 216 t ha(-1)), and winter wheat (Triticum aestivum L.) was chosen as an indicator plant. Results showed that the application of compost increased soil pH and the content of total phosphorus and organic matter. Soil biological properties such as microbial biomass carbon, invertase, protease, urease and catalase activities were significantly enhanced by 0.24-3.47 times after compost application. Sequential extraction indicated that compost amendments decreased the acid-extractable Cd by 8.2-37.6 %, while increased the reducible and oxidisable Cd by 9.2-39.5 and 8.2-60.4 %, respectively. The addition of 27-54 t ha(-1) compost reduced Cd content in wheat stems and seeds by 69.6-75.0 % and 10.3-18.4 %, respectively. However, only 25.5-26.5 % reductions in Cd content in wheat stems were observed in 108-216 t ha(-1) compost amendments, and no significant decrease was detected for seeds. This study suggests that although compost is a suitable organic amendment to improve soil fertility and biological activities, the addition of compost should be moderated by an appropriate rate to optimize the use of compost for the reclamation of metal-contaminated soils at field scale.
Studies on experimental pulmonary granulomas. I. Detection of lymphokines in granulomatous lesions.
Masih, N.; Majeska, J.; Yoshida, T.
1979-01-01
Granulomatous reactions were immunologically induced in guinea pigs by several procedures, including intravenous injections of Bacille Calmette Gúerin (BCG) into animals immunized with complete Freund's Adjuvant and an intravenous injection of agarose beads linked to a specific antigen (dinitrophenylated bovine serum albumin) into immune animals. The tissue extracts obtained from lungs at various stages of granuloma formation were examined for macrophage migration inhibition (MIF) activity. The activity was found in a high incidence during the early stages of the granulomatous response. In contrast, MIF activity could be detected only rarely in granulomatous spleens and not in granulomatous livers. Chemotactic factor activity and mitogenic factor activity were only sporadically detectable. The MIF activity was associated with fractions showing chemical heterogeneity. One fraction was physicochemically indistinguishable from conventional lymphocyte-derived MIF; the other was a substance of large molecular weight. These results demonstrate the presence of biologically active mediators in immune granulomas, which may be related to early events involved in the induction or enhancement of such reactions. Images Figure 2 Figure 3 Figure 1 Figure 4 PMID:377991
Considerations on the Use of Exogenous Fibrolytic Enzymes to Improve Forage Utilization
Mendoza, Germán D.; Plata-Pérez, Fernando X.
2014-01-01
Digestion of cell wall fractions of forage in the rumen is incomplete due to the complex links which limit their degradation. It is therefore necessary to find options to optimize the use of forages in ruminant production systems. One alternative is to use exogenous enzymes. Exogenous fibrolytic enzymes are of fungal or bacterial origin and increase nutrient availability from the cell wall, which consists of three fractions in different proportions depending on the species of forage: digestible, potentially digestible, and indigestible. The response to addition of exogenous enzymes varies with the type of forage; many researchers infer that there are enzyme-forage interactions but fail to explain the biological mechanism. We hypothesize that the response is related to the proportion of the potentially digestible fraction. The exogenous enzyme activity depends on several factors but if the general conditions for enzyme action are available, the potentially digestible fraction may determine the magnitude of the response. Results of experiments with exogenous fibrolytic enzymes in domestic ruminants are inconsistent. This, coupled with their high cost, has made their use unattractive to farmers. Development of cheaper products exploring other microorganisms with fibrolytic activity, such as Fomes fomentarius or Cellulomonas flavigena, is required. PMID:25379525
Schepetkin, Igor A.; Kouakou, Koffi; Yapi, Ahoua; Kirpotina, Liliya N.; Jutila, Mark A.; Quinn, Mark T.
2013-01-01
Extracts of leaves of different species of the genus Combretum have been used historically to treat a variety of medicinal problems. However, little is known about the active components conferring therapeutic properties to these extracts. In the present studies, we evaluated biochemical properties and immunomodulatory activity of polysaccharides isolated from the leaves of Combretum racemosum. Water-soluble polysaccharides from leaves of C. racemosum were extracted and fractionated by DEAE-cellulose and Diaion HP-20 to obtain a Diaion-bound fraction, designated Combretum polysaccharide-acidic bound or CP-AB, which was eluted with methanol, and an unbound fraction, designated as CP-AU. Molecular weight determination, sugar analysis, and other physical and chemical characterization of the fractions were performed. Fraction CP-AU (mol. weight 5.0 kDa) contained type II arabinogalactan and had potent immunomodulatory activity, inducing the production of interleukin (IL)-1β, -6, -10, and tumor necrosis factor-α (TNF-α) by human peripheral blood mononuclear cells (PBMC) and MonoMac-6 monocytic cells. Likewise, intraperitoneal administration of CP-AU increased in vivo serum levels of IL-6 and monocyte chemoattractant protein-1 (MCP-1) in mice. CP-AU-induced secretion of TNF-α in PBMC was prevented by Toll-like receptor 4 (TLR4) antagonist LPS-RS. Treatment with CP-AU induced phosphorylation of Akt2, Akt3, GSK-3β, HSP27, mTOR, and all p38 MAPK isoforms (α, β, δ, and γ), as well as stimulation of AP-1/NF-κB transcriptional activity. In addition, CP-AU effectively agglutinated erythrocytes from several species, including human, mouse, and rabbit. In contrast, fraction CP-AB was inactive in all biological tests, including cytokine production and hemagglutination. These data suggest that at least part of the beneficial therapeutic effects reported for the water extracts of leaves from C. racemosum are due to modulation of leukocyte functions. PMID:23380150
Discovery of Newer Therapeutic Leads for Prostate Cancer
2009-06-01
promising plant extracts and then prepare large-scale quantities of the plant extracts using supercritical fluid extraction techniques and use this...quantities of the plant extracts using supercritical fluid extraction techniques. Large scale plant collections were conducted for 14 of the top 20...material for bioassay-guided fractionation of the biologically active constituents using modern chromatography techniques. The chemical structures of
Madhuprakash, Jogi; El Gueddari, Nour Eddine; Moerschbacher, Bruno M; Podile, Appa Rao
2015-12-01
The biological activities of chitosan and its oligosaccharides are greatly influenced by properties such as the degree of polymerization (DP), degree of acetylation (DA) and pattern of acetylation (PA). Here, structurally diverse chitosan oligosaccharides from chitosan polymers (DA=35% or 61%) were generated using Serratia proteamaculans wild-type chitinase D (SpChiD) and the W114A mutant which lacks transglycosylase activity. The crude oligosaccharide mixtures and purified fractions with specific DP and DA ranges were tested for their ability to induce an oxidative burst in rice cell suspension cultures. The crude mixtures were more active when produced by the W114A mutant whereas the purified fractions were more active when produced by wild-type SpChiD. Neither hydrolysis nor transglycosylation by SpChiD was inhibited in the presence of fully-deacetylated oligosaccharides, suggesting that SpChiD could be exploited to generate oligosaccharides with defined DA and PA values. Copyright © 2015 Elsevier Ltd. All rights reserved.
Purification and stability characterization of a cell regulatory sialoglycopeptide inhibitor
NASA Technical Reports Server (NTRS)
Moos, P. J.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)
1995-01-01
Previous attempts to physically separate the cell cycle inhibitory and protease activities in preparations of a purified cell regulatory sialoglycopeptide (CeReS) inhibitor were largely unsuccessful. Gradient elution of the inhibitor preparation from a DEAE HPLC column separated the cell growth inhibitor from the protease, and the two activities have been shown to be distinct and non-overlapping. The additional purification increased the specific biological activity of the CeReS preparation by approximately two-fold. The major inhibitory fraction that eluted from the DEAE column was further analyzed by tricine-SDS-PAGE and microbore reverse phase HPLC and shown to be homogeneous in nature. Two other fractions separated by DEAE HPLC, also devoid of protease activity, were shown to be inhibitory to cell proliferation and most likely represented modified relatives of the CeReS inhibitor. The highly purified CeReS was chemically characterized for amino acid and carbohydrate composition and the role of the carbohydrate in cell proliferation inhibition, stability, and protease resistance was assessed.
NASA Astrophysics Data System (ADS)
Akram, Ghazala; Batool, Fiza
2017-10-01
The (G'/G)-expansion method is utilized for a reliable treatment of space-time fractional biological population model. The method has been applied in the sense of the Jumarie's modified Riemann-Liouville derivative. Three classes of exact traveling wave solutions, hyperbolic, trigonometric and rational solutions of the associated equation are characterized with some free parameters. A generalized fractional complex transform is applied to convert the fractional equations to ordinary differential equations which subsequently resulted in number of exact solutions. It should be mentioned that the (G'/G)-expansion method is very effective and convenient for solving nonlinear partial differential equations of fractional order whose balancing number is a negative integer.
Rackiewicz, Michal; Große-Hovest, Ludger; Alpert, Andrew J; Zarei, Mostafa; Dengjel, Jörn
2017-06-02
Hydrophobic interaction chromatography (HIC) is a robust standard analytical method to purify proteins while preserving their biological activity. It is widely used to study post-translational modifications of proteins and drug-protein interactions. In the current manuscript we employed HIC to separate proteins, followed by bottom-up LC-MS/MS experiments. We used this approach to fractionate antibody species followed by comprehensive peptide mapping as well as to study protein complexes in human cells. HIC-reversed-phase chromatography (RPC)-mass spectrometry (MS) is a powerful alternative to fractionate proteins for bottom-up proteomics experiments making use of their distinct hydrophobic properties.
Expression and Purification of Soluble STAT5b/STAT3 Proteins for SH2 Domain Binding Assay.
Asai, Akira; Takakuma, Kazuyuki
2017-01-01
When a large hydrophobic full-length protein is expressed in bacteria, it is often challenging to obtain recombinant proteins in the soluble fraction. One way to overcome this challenge is expression of deletion mutants that have improved solubility while maintaining biological activity. In this chapter, we describe a protocol for expression of truncated forms of STAT5b and STAT3 proteins that are soluble and retain SH2-mediated activity for phospho-Tyr peptide recognition.
Nars, Amaury; Lafitte, Claude; Chabaud, Mireille; Drouillard, Sophie; Mélida, Hugo; Danoun, Saïda; Le Costaouëc, Tinaig; Rey, Thomas; Benedetti, Julie; Bulone, Vincent; Barker, David George; Bono, Jean-Jacques; Dumas, Bernard; Jacquet, Christophe; Heux, Laurent; Fliegmann, Judith; Bottin, Arnaud
2013-01-01
N-acetylglucosamine-based saccharides (chitosaccharides) are components of microbial cell walls and act as molecular signals during host-microbe interactions. In the legume plant Medicago truncatula, the perception of lipochitooligosaccharide signals produced by symbiotic rhizobia and arbuscular mycorrhizal fungi involves the Nod Factor Perception (NFP) lysin motif receptor-like protein and leads to the activation of the so-called common symbiotic pathway. In rice and Arabidopsis, lysin motif receptors are involved in the perception of chitooligosaccharides released by pathogenic fungi, resulting in the activation of plant immunity. Here we report the structural characterization of atypical chitosaccharides from the oomycete pathogen Aphanomyces euteiches, and their biological activity on the host Medicago truncatula. Using a combination of biochemical and biophysical approaches, we show that these chitosaccharides are linked to β-1,6-glucans, and contain a β-(1,3;1,4)-glucan backbone whose β-1,3-linked glucose units are substituted on their C-6 carbon by either glucose or N-acetylglucosamine residues. This is the first description of this type of structural motif in eukaryotic cell walls. Glucan-chitosaccharide fractions of A. euteiches induced the expression of defense marker genes in Medicago truncatula seedlings independently from the presence of a functional Nod Factor Perception protein. Furthermore, one of the glucan-chitosaccharide fractions elicited calcium oscillations in the nucleus of root cells. In contrast to the asymmetric oscillatory calcium spiking induced by symbiotic lipochitooligosaccharides, this response depends neither on the Nod Factor Perception protein nor on the common symbiotic pathway. These findings open new perspectives in oomycete cell wall biology and elicitor recognition and signaling in legumes.
Nars, Amaury; Lafitte, Claude; Chabaud, Mireille; Drouillard, Sophie; Mélida, Hugo; Danoun, Saïda; Le Costaouëc, Tinaig; Rey, Thomas; Benedetti, Julie; Bulone, Vincent; Barker, David George; Bono, Jean-Jacques; Dumas, Bernard; Jacquet, Christophe; Heux, Laurent; Fliegmann, Judith; Bottin, Arnaud
2013-01-01
N-acetylglucosamine-based saccharides (chitosaccharides) are components of microbial cell walls and act as molecular signals during host-microbe interactions. In the legume plant Medicago truncatula, the perception of lipochitooligosaccharide signals produced by symbiotic rhizobia and arbuscular mycorrhizal fungi involves the Nod Factor Perception (NFP) lysin motif receptor-like protein and leads to the activation of the so-called common symbiotic pathway. In rice and Arabidopsis, lysin motif receptors are involved in the perception of chitooligosaccharides released by pathogenic fungi, resulting in the activation of plant immunity. Here we report the structural characterization of atypical chitosaccharides from the oomycete pathogen Aphanomyces euteiches, and their biological activity on the host Medicago truncatula. Using a combination of biochemical and biophysical approaches, we show that these chitosaccharides are linked to β-1,6-glucans, and contain a β-(1,3;1,4)-glucan backbone whose β-1,3-linked glucose units are substituted on their C-6 carbon by either glucose or N-acetylglucosamine residues. This is the first description of this type of structural motif in eukaryotic cell walls. Glucan-chitosaccharide fractions of A. euteiches induced the expression of defense marker genes in Medicago truncatula seedlings independently from the presence of a functional Nod Factor Perception protein. Furthermore, one of the glucan-chitosaccharide fractions elicited calcium oscillations in the nucleus of root cells. In contrast to the asymmetric oscillatory calcium spiking induced by symbiotic lipochitooligosaccharides, this response depends neither on the Nod Factor Perception protein nor on the common symbiotic pathway. These findings open new perspectives in oomycete cell wall biology and elicitor recognition and signaling in legumes. PMID:24086432
Integrated standardization concept for Angelica botanicals using quantitative NMR
Gödecke, Tanja; Yao, Ping; Napolitano, José G.; Nikolić, Dejan; Dietz, Birgit M.; Bolton, Judy L.; van Breemen, Richard B.; Farnsworth, Norman R.; Chen, Shao-Nong; Lankin, David C.; Pauli, Guido F.
2011-01-01
Despite numerous in vitro/vivo and phytochemical studies, the active constituents of Angelica sinensis (AS) have not been conclusively identified for the standardization to bioactive markers. Phytochemical analyses of AS extracts and fractions that demonstrate activity in a panel of in vitro bioassays, have repeatedly pointed to ligustilide as being (associated with) the active principle(s). Due to the chemical instability of ligustilide and related issues in GC/LC analyses, new methods capable of quantifying ligustilide in mixtures that do not rely on an identical reference standard are in high demand. This study demonstrates how NMR can satisfy the requirement for simultaneous, multi-target quantification and qualitative identification. First, the AS activity was concentrated into a single fraction by RP-solid-phase extraction, as confirmed by an (anti-)estrogenicity and cytotoxicity assay. Next, a quantitative 1H NMR (qHNMR) method was established and validated using standard compounds and comparing processing methods. Subsequent 1D/2D NMR and qHNMR analysis led to the identification and quantification of ligustilide and other minor components in the active fraction, and to the development of quality criteria for authentic AS preparations. The absolute and relative quantities of ligustilide, six minor alkyl phthalides, and groups of phenylpropanoids, polyynes, and poly-unsaturated fatty acids were measured by a combination of qHNMR and 2D COSY. The qNMR approach enables multi-target quality control of the bioactive fraction, and enables the integrated biological and chemical standardization of AS botanicals. This methodology can potentially be transferred to other botanicals with active principles that act synergistically, or that contain closely related and/or constituents, which have not been conclusively identified as the active principles. PMID:21907766
Kumar, Manish; Prasad, Satyendra K.; Hemalatha, Siva
2016-01-01
Objective. The whole plant of Houttuynia cordata has been reported to have potent antihyperglycemic activity. Therefore, the present study was undertaken to investigate the glucose utilization capacity of bioactive fractions of ethanol extract of Houttuynia cordata (HC) in isolated rat hemidiaphragm. Methods. All the fractions, that is, aqueous (AQ), hexane (HEX), chloroform (CHL), and ethyl acetate (EA), obtained from ethanol extract of H. cordata were subjected to phytochemical standardization use in quercetin as a marker with the help of HPTLC. Further, glucose utilization capacity by rat hemidiaphragm was evaluated in 12 different sets of in vitro experiments. In the study, different fractions from H. cordata as mentioned above were evaluated, where insulin was used as standard and quercetin as a biological standard. Results. Among all the tested fractions, AQ and EA significantly increased glucose uptake by isolated rat hemidiaphragm compared to negative control. Moreover, AQ fractions enhanced the uptake of glucose significantly (p < 0.05) and was found to be more effective than insulin. Conclusions. The augmentation in glucose uptake by hemidiaphragm in presence of AQ and EA fractions may be attributed to the presence of quercetin, which was found to be 7.1 and 3.2% w/w, respectively, in both the fractions. PMID:26925100
Kumar, Manish; Prasad, Satyendra K; Hemalatha, Siva
2016-01-01
Objective. The whole plant of Houttuynia cordata has been reported to have potent antihyperglycemic activity. Therefore, the present study was undertaken to investigate the glucose utilization capacity of bioactive fractions of ethanol extract of Houttuynia cordata (HC) in isolated rat hemidiaphragm. Methods. All the fractions, that is, aqueous (AQ), hexane (HEX), chloroform (CHL), and ethyl acetate (EA), obtained from ethanol extract of H. cordata were subjected to phytochemical standardization use in quercetin as a marker with the help of HPTLC. Further, glucose utilization capacity by rat hemidiaphragm was evaluated in 12 different sets of in vitro experiments. In the study, different fractions from H. cordata as mentioned above were evaluated, where insulin was used as standard and quercetin as a biological standard. Results. Among all the tested fractions, AQ and EA significantly increased glucose uptake by isolated rat hemidiaphragm compared to negative control. Moreover, AQ fractions enhanced the uptake of glucose significantly (p < 0.05) and was found to be more effective than insulin. Conclusions. The augmentation in glucose uptake by hemidiaphragm in presence of AQ and EA fractions may be attributed to the presence of quercetin, which was found to be 7.1 and 3.2% w/w, respectively, in both the fractions.
Miceli, Natalizia; Filocamo, Angela; Ragusa, Salvatore; Cacciola, Francesco; Dugo, Paola; Mondello, Luigi; Celano, Marilena; Maggisano, Valentina; Taviano, Maria Fernanda
2017-08-01
The present work focused on the evaluation of the antioxidant and cytotoxic activities of the phenolic-rich fraction (ItJ-EAF) obtained from cauline leaves collected in January from Isatis tinctoria L. (Brassicaceae) growing wild around Acireale (Sicily, Italy). The total phenolic, flavonoid, and condensed tannin contents of the fraction were determined spectrophotometrically, whereas the phenolic profile was assessed by HPLC-PDA/ESI-MS analysis. A total of 20 compounds were positively identified and twelve out of them were never previously reported in I. tinctoria leaves. The fraction exhibited good radical scavenging activity in DPPH test (IC 50 = 0.6657 ± 0.0024 mg/ml) and reducing power (3.87 ± 0.71 ASE/ml), whereas, it neither showed chelating activity nor was able to counteract H 2 O 2 induced oxidative stress damage in Escherichia coli. The antiproliferative effect was evaluated in vitro on two human anaplastic thyroid carcinoma cell lines (CAL-62 and 8505C) by MTT assay. At the highest tested concentration ItJ-EAF significantly reduced (80%) the growth of CAL-62 cells. No cytotoxicity against Artemia salina was observed. It can be concluded that I. tinctoria cauline leaves represent a source of phenolic compounds which could be potentially used as chemopreventive or adjuvant agents against cancer. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Antioxidant lipoxygenase inhibitors from the leaf extracts of Simmondsia chinensis.
Abdel-Mageed, Wael Mostafa; Bayoumi, Soad Abdel Latief Hassan; Salama, Awwad Abdoh Radwan; Salem-Bekhit, Mounir Mohamed; Abd-Alrahman, Sherif Hussein; Sayed, Hanaa Mohamed
2014-09-01
To isolate and identify chemical constituents with antioxidant and lipoxygenase inhibitory effects of the ethanolic extract of Simmondsia chinensis (Jojoba) leaves. The alcoholic extract was subjected to successive solvent fractionation. The antioxidant active fractions (chloroform, ethyl acetate and aqueous fractions) were subjected to a combination of different chromatographic techniques guided by the antioxidant assay with DPPH. The structures of the isolated compounds were elucidated on the basis of spectroscopic evidences and correlated with known compounds. The antioxidant activity was assessed quantitively using DPPH and β-carotene methods. The inhibitory potential against enzyme lipoxygenase was assessed on soybean lipoxygenase enzyme. Ten flavonoids and four lignans were isolated. Flavonoid aglycones showed stronger antioxidant and lipoxygenase inhibitory effects than their glycosides. Lignoid glycosides showed moderate to weak antioxidant and lipoxygenase inhibitory effects. A total of 14 compounds were isolated and identified from Simmondsia chinensis; 12 of them were isolated for the first time. This is the first report that highlights deeply on the phenolic content of jojoba and their potential biological activities and shows the importance of this plant as a good source of phenolics in particular the flavonoid content. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Konrad, Babij; Anna, Dąbrowska; Marek, Szołtysik; Marta, Pokora; Aleksandra, Zambrowicz; Józefa, Chrzanowska
2014-01-01
In the present study, whey protein concentrate (WPC-80) and β-lactoglobulin were hydrolyzed with a noncommercial serine protease isolated from Asian pumpkin ( Cucurbita ficifolia ). Hydrolysates were further fractionated by ultrafiltration using membranes with cut-offs equal 3 and 10 kDa. Peptide fractions of molecular weight lower than 3 and 3-10 kDa were further subjected to the RP-HPLC. Separated preparations were investigated for their potential as the natural inhibitors of dipeptidyl peptidase (DPP-IV), α-glucosidase and angiotensin converting enzyme (ACE). WPC-80 hydrolysate showed higher inhibitory activities against the three tested enzymes than β-lactoglobulin hydrolysate. Especially high biological activities were exhibited by peptide fractions of molecular weight lower than 3 kDa, with ACE IC50 <0.64 mg/mL and DPP-IV IC50 <0.55 mg/mL. This study suggests that peptides generated from whey proteins may support postprandial glycemia regulation and blood pressure maintenance, and could be used as functional food ingredients in the diet of patients with type 2 diabetes.
Pharmacological Basis for Traditional Use of the Lippia thymoides
Silva, Fabrício Souza; Menezes, Pedro Modesto Nascimento; de Sá, Pedro Guilherme Souza; Oliveira, André Luís de Santana; Souza, Eric Alencar Araújo; Bamberg, Vinicius Martins; de Oliveira, Henrique Ribeiro; de Oliveira, Sheilla Andrade; Araújo, Roni Evêncio e; Uetanabaro, Ana Paula Trovatti; Silva, Tânia Regina dos Santos; Almeida, Jackson Roberto Guedes da Silva; Lucchese, Angélica Maria
2015-01-01
The aim of this study was to evaluate crude extracts and fractions from leaves and stems of Lippia thymoides and to validate their use in folk medicine. In vitro antioxidant and antimicrobial activities and in vivo wound healing in rats, baker yeast-induced fever in young rats, and acute oral toxicity in mice assays were realized. The crude extracts and their dichloromethane and ethyl acetate fractions had potent radical-scavenging activity against the DPPH but were not effective in the β-carotene bleaching method. The dichloromethane fraction from the leaves extract showed the broadest spectrum of activity against S. aureus, B. cereus, and C. parapsilosis. The animals treated with crude extracts showed no difference in wound healing when compared with the negative control group. The crude extract from leaves (1200 mg/kg) has equal efficacy in reducing temperature in rats with hyperpyrexia compared to dipyrone (240 mg/kg) and is better than paracetamol (150 mg/kg). In acute toxicity test, crude extract of leaves from Lippia thymoides exhibited no mortality and behavioral changes and no adverse effects in male and female mice. This work validates the popular use of Lippia thymoides for treating the wound and fever, providing a source for biologically active substances. PMID:25892998
tRNAs promote nuclear import of HIV-1 intracellular reverse transcription complexes.
Zaitseva, Lyubov; Myers, Richard; Fassati, Ariberto
2006-10-01
Infection of non-dividing cells is a biological property of HIV-1 crucial for virus transmission and AIDS pathogenesis. This property depends on nuclear import of the intracellular reverse transcription and pre-integration complexes (RTCs/PICs). To identify cellular factors involved in nuclear import of HIV-1 RTCs, cytosolic extracts were fractionated by chromatography and import activity examined by the nuclear import assay. A near-homogeneous fraction was obtained, which was active in inducing nuclear import of purified and labeled RTCs. The active fraction contained tRNAs, mostly with defective 3' CCA ends. Such tRNAs promoted HIV-1 RTC nuclear import when synthesized in vitro. Active tRNAs were incorporated into and recovered from virus particles. Mutational analyses indicated that the anticodon loop mediated binding to the viral complex whereas the T-arm may interact with cellular factors involved in nuclear import. These tRNA species efficiently accumulated into the nucleus on their own in a energy- and temperature-dependent way. An HIV-1 mutant containing MLV gag did not incorporate tRNA species capable of inducing HIV-1 RTC nuclear import and failed to infect cell cycle-arrested cells. Here we provide evidence that at least some tRNA species can be imported into the nucleus of human cells and promote HIV-1 nuclear import.
Feng, Lei; Yin, Junyi; Nie, Shaoping; Wan, Yiqun; Xie, Mingyong
2016-10-01
The seeds of Cassia obtusifolia are widely used as a drink in Asia and an additive in food industry. Considerable amounts of water-soluble polysaccharides were found in the whole seeds, while conflicting results on structure characteristics have been reported, and few studies have been reported on physicochemical properties and immunomodulatory activities. In the present study, gradient ethanol precipitation was applied to fractionate the water-soluble polysaccharide (CP), and two sub-fractions CP-30 (30% ethanol precipitate) and CP-40 (40% ethanol precipitate) were obtained. Different rheological properties for CP-30 and CP-40 were found, indicating the differences in structure characteristics between CP-30 and CP-40. Chemical properties, including molecular weight, monosaccharide composition, and glycosidic linkage were investigated. Compared with CP-30, CP-40 had lower molecular weight and higher content of xylose. The immunomodulatory effects of CP, CP-30 and CP-40 were assessed. All of them were found to possess significant immunomodulation activities, while varied effects of them on macrophage functions were observed. The aim of the present study was to develop a simple and efficient method to purify cassia polysaccharides, and investigate their physicochemical properties and biological activities, which was meaningful for their potential use in food industry and folk medicine. Copyright © 2016. Published by Elsevier B.V.
Ronpirin, Chalinee; Pattarachotanant, Nattaporn
2016-01-01
This study was aimed at investigating the antioxidant activity of Mangifera indica Linn., Cocos nucifera Linn., and Averrhoa carambola Linn. and their biological effect on human keratinocytes affected by the ultraviolet B (UVB), a major cause of cell damage and skin cancer through induction of DNA damage, production of reactive oxygen species (ROS), and apoptosis. The richest antioxidant activity was found in ethanol fraction of M. indica (21.32 ± 0.66 mg QE/g dry weight), while the lowest one was found in aqueous fractions of M. indica and C. nucifera (1.76 ± 2.10 and 1.65 ± 0.38 mg QE/g dry weight, respectively). Ethanol and aqueous fractions of A. carambola (250 µg/mL) significantly reduced the number of apoptotic cells. The expression of cleaved caspase 3 in UVB-treated group was significantly greater than that in untreated group. Both fractions of A. carambola (50, 100, and 250 µg/mL) significantly decreased the expression of cleaved caspase 3. Regarding the induction of DNA repair, ethanol (100 and 250 µg/mL) and aqueous (50, 100 and 250 µg/mL) fractions of A. carambola significantly decreased the percentage of cyclobutane pyrimidine dimers (CPD). Taken together, our results suggest that both fractions of A. carambola may be potentially developed for dermal applications. PMID:27057195
Minaiyan, Mohsen; Zolfaghari, Behzd; Taheri, Diana; Gomarian, Mahdi
2014-01-01
Background: Acute pancreatitis (AP) refers to afflicted inflammation of pancreas with unfavorable adverse effects and developed multiple organ failures. Unfortunately, there is not a certain therapeutic method for this disease. Oxidative stress has a serious role in the pathogenesis of AP. Thus, decreasing of oxidative stress may prevent induction and progression of AP. Punica granatum L. has been extensively used in traditional medicine and possesses various active biological elements. Due to antioxidant and anti-inflammatory properties of pomegranate, it could be considered as a good candidate alternative medicine with beneficial effects on AP. In this study, we decided to study the protective effect of three fractions of pomegranate seeds on cerulein-induced AP. Methods: AP was induced in male Syrian mice by five intraperitoneal (i.p.) injection of cerulein (50 μg/kg) with 1 h intervals. Treatments with pomegranate freeze-dried powder (PFDP) and hydroalcoholic pomegranate seeds extract (PSE) at doses of 125, 250, 500 mg/kg (i.p.) were started 30 min before pancreatitis induction. Pomegranate seed oil fraction (PSOF) was orally administered (50, 100, 200 μL/kg) and continued for 10 days. Pancreatic tissue was evaluated for histopathological parameters and pancreatic myeloperoxidase (MPO) activity as well as lipase and amylase levels were measured in plasma. Results: The higher doses of three fractions (250 and 500 mg/kg for PFDP and PSE and doses of 100, 200 μL/kg for PSOF) significantly reduced amylase and lipase activity in serum (at least P < 0.01), pancreatic MPO activity (P < 0.001), edema, leukocyte infiltration and vacuolization in comparison to the control group (P < 0.05). Conclusions: These results propose that pomegranate seeds fractions can prevent and/or treat the AP. PMID:24829726
Al-Mekhlafi, Fahd A; Abutaha, Nael; Mashaly, Ashraf M A; Nasr, Fahd A; Ibrahim, Khalid E; Wadaan, Mohamed A
2017-05-01
Effects of methanol extracts of Xanthium strumarium on different cancer cell lines and on the mortality rates of Aedes caspius, Culex pipiens (Diptera: Culicidae) were investigated. Among the cell lines tested, the Jurkat cell line was the most sensitive to the methanol extract and ethyl acetate fraction, with reported LC 50 values of 50.18 and 48.73 μg/ml respectively. Conversely, methanol extracts were not that toxic to the A549 cell line though the toxicity increased on further purification. The percentage of growth inhibition was dose dependent for the methanol extract and ethyl acetate fraction. The ethyl acetate fraction showed higher toxicity to all cell lines tested when compared to the methanol extract. The results showed that methanol extracts of plant seeds caused 100% mortality of mosquito larvae at a concentration of 1000 μg/ml after 24 h of treatment. The LC 50 and LC 90 values of X. strumarium were found to be 531.07 and 905.95 μg/ml against Ae. caspius and 502.32 and 867.63 μg/ml against Cx. Pipiens, respectively. From the investigations, it was concluded that the crude extract of X. strumarium showed a weak potential for controlling the larval instars of Ae. caspius and Cx. pipiens . However, on further purification the extract lost the larvicidal activity. The ethyl acetate fraction showed higher toxicity to all cell lines tested when compared to the methanol extract. The ethyl acetate fraction investigated in this study appears to have a weak larvicidal activity but a promising cytotoxic activity. Future studies will include purification and investigation in further detail of the action of X. strumarium on Cancer Cell Lines and mosquitoes.
Hong, Chang-Sook; Funk, Sonja; Muller, Laurent; Boyiadzis, Michael; Whiteside, Theresa L
2016-01-01
Isolation from human plasma of exosomes that retain functional and morphological integrity for probing their protein, lipid and nucleic acid content is a priority for the future use of exosomes as biomarkers. A method that meets these criteria and can be scaled up for patient monitoring is thus desirable. Plasma specimens (1 mL) of patients with acute myeloid leukaemia (AML) or a head and neck squamous cell carcinoma (HNSCC) were differentially centrifuged, ultrafiltered and fractionated by size exclusion chromatography in small disposable columns (mini-SEC). Exosomes were eluted in phosphate-buffered saline and were evaluated by qNano for particle size and counts, morphology by transmission electron microscopy, protein content, molecular profiles by western blots, and for ability to modify functions of immune cells. Exosomes eluting in fractions #3-5 had a diameter ranging from 50 to 200 nm by qNano, with the fraction #4 containing the bulk of clean, unaggregated exosomes. The exosome elution profiles remained constant for repeated runs of the same plasma. Larger plasma volumes could be fractionated running multiple mini-SEC columns in parallel. Particle concentrations per millilitre of plasma in #4 fractions of AML and HNSCC were comparable and were higher (p<0.003) than those in normal controls. Isolated AML exosomes co-incubated with normal human NK cells inhibited NKG2D expression levels (p<0.004), and HNSCC exosomes suppressed activation (p<0.01) and proliferation of activated T lymphocytes (p<0.03). Mini-SEC allows for simple and reproducible isolation from human plasma of exosomes retaining structural integrity and functional activity. It enables molecular/functional analysis of the exosome content in serial specimens of human plasma for clinical applications.
Brown, Ron H; Mueller-Harvey, Irene; Zeller, Wayne E; Reinhardt, Laurie; Stringano, Elisabetta; Gea, An; Drake, Christopher; Ropiak, Honorata M; Fryganas, Christos; Ramsay, Aina; Hardcastle, Emily E
2017-09-13
Unambiguous investigation of condensed tannin (CT) structure-activity relationships in biological systems requires well-characterized, high-purity CTs. Sephadex LH-20 and Toyopearl HW-50F resins were compared for separating CTs from acetone/water extracts, and column fractions analyzed for flavan-3-ol subunits, mean degree of polymerization (mDP), and purity. Toyopearl HW-50F generated fractions with higher mDP values and better separation of procyanidins (PC) and prodelphinidins (PD) but required a prepurification step, needed more time for large scale purifications, and gave poorer recoveries. Therefore, two gradient elution schemes were developed for CT purification on Sephadex LH-20 providing 146-2000 mg/fraction. Fractions were analyzed by thiolysis and NMR spectroscopy. In general, PC/PD ratios decreased and mDP increased during elution. 1 H NMR spectroscopy served as a rapid screening tool to qualitatively determine CT enrichment and carbohydrate impurities present, guiding fractionation toward repurification or 1 H- 13 C HSQC NMR spectroscopy and thiolysis. These protocols provide options for preparing highly pure CT samples.
Nogueira, Alexsandro V; Drehmer, Daiana L; Iacomini, Marcello; Sassaki, Guilherme L; Cipriani, Thales R
2017-02-10
Low molecular weight heparin, which is generally obtained by chemical and enzymatic depolymerization of unfractionated heparin, has high bioavailability and can be subcutaneously injected. The aim of the present investigation was to fractionate bovine heparin using a physical method (ultrafiltration through a 10kDa cut-off membrane), avoiding structural modifications that can be caused by chemical or enzymatic treatments. Two fractions with different molecular weights were obtained: the first had an intermediate molecular weight (B-IMWH; Mn=9587Da) and the other had a high molecular weight (B-HMWH; 22,396Da). B-IMWH and B-HMWH have anticoagulant activity of 103 and 154IU/mg respectively, which could be inhibited by protamine. Both fractions inhibited α-thrombin and factor Xa in vitro and showed antithrombotic effect in vivo. Moreover, ex vivo aPTT assay demonstrated that B-IMWH is absorbed by subcutaneous route. The results showed that ultrafiltration can be used to obtain two bovine heparin fractions, which differ on their molecular weights, structural components, anticoagulant potency, and administration routes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enhanced cellular uptake of size-separated lipophilic silicon nanoparticles
NASA Astrophysics Data System (ADS)
Kusi-Appiah, Aubrey E.; Mastronardi, Melanie L.; Qian, Chenxi; Chen, Kenneth K.; Ghazanfari, Lida; Prommapan, Plengchart; Kübel, Christian; Ozin, Geoffrey A.; Lenhert, Steven
2017-03-01
Specific size, shape and surface chemistry influence the biological activity of nanoparticles. In the case of lipophilic nanoparticles, which are widely used in consumer products, there is evidence that particle size and formulation influences skin permeability and that lipophilic particles smaller than 6 nm can embed in lipid bilayers. Since most nanoparticle synthetic procedures result in mixtures of different particles, post-synthetic purification promises to provide insights into nanostructure-function relationships. Here we used size-selective precipitation to separate lipophilic allyl-benzyl-capped silicon nanoparticles into monodisperse fractions within the range of 1 nm to 5 nm. We measured liposomal encapsulation and cellular uptake of the monodisperse particles and found them to have generally low cytotoxicities in Hela cells. However, specific fractions showed reproducibly higher cytotoxicity than other fractions as well as the unseparated ensemble. Measurements indicate that the cytotoxicity mechanism involves oxidative stress and the differential cytotoxicity is due to enhanced cellular uptake by specific fractions. The results indicate that specific particles, with enhanced suitability for incorporation into lipophilic regions of liposomes and subsequent in vitro delivery to cells, are enriched in certain fractions.
Resin glycoside constituents of Ipomoea pes-caprae (beach morning glory).
Tao, Hongwen; Hao, Xiaojiang; Liu, Jinggen; Ding, Jian; Fang, Yuchun; Gu, Qianqun; Zhu, Weiming
2008-12-01
Eight new resin glycosides, pescapreins X-XVII (1-8), were isolated from a lipophilic fraction of an ethanol extract of the entire plant of beach morning glory, Ipomoea pes-caprae. Their structures were elucidated by spectroscopic data analysis and by chemical transformation. These compounds were evaluated biologically in terms of cancer cell line cytotoxicity, antibacterial and antifungal activity, and effects on the mu-opioid receptor.
Anitua, Eduardo; Sanchez, Mikel; Merayo-Lloves, Jesus; De la Fuente, Maria; Muruzabal, Francisco; Orive, Gorka
2011-08-01
Plasma rich in growth factors (PRGF-Endoret) technology is an autologous platelet-enriched plasma obtained from patient's own blood, which after activation with calcium chloride allows the release of a pool of biologically active proteins that influence and promote a range of biological processes including cell recruitment, and growth and differentiation. Because ocular surface wound healing is mediated by different growth factors, we decided to explore the potential of PRGF-Endoret technology in stimulating the biological processes related with fibroblast-induced tissue repair. Furthermore, the anti-fibrotic properties of this technology were also studied. Blood from healthy donors was collected, centrifuged and, whole plasma column (WP) and the plasma fraction with the highest platelet concentration (F3) were drawn off, avoiding the buffy coat. Primary human cells including keratocytes and conjunctival fibroblasts were used to perform the "in vitro" investigations. The potential of PRGF-Endoret in promoting wound healing was evaluated by means of a proliferation and migration assays. Fibroblast cells were induced to myofibroblast differentiation after the treatment with 2.5 ng/mL of TGF-β1. The capability of WP and F3 to prevent and inhibit TGF-β1-induced differentiation was evaluated. Results show that this autologous approach significantly enhances proliferation and migration of both keratocytes and conjunctival fibroblasts. In addition, plasma rich in growth factors prevents and inhibits TGF-β1-induced myofibroblast differentiation. No differences were found between WP and F3 plasma fractions. These results suggest that PRGF-Endoret could reduce scarring while stimulating wound healing in ocular surface. F3 or whole plasma column show similar biological effects in keratocytes and conjunctival fibroblast cells.
Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis
2013-01-01
Background Geopropolis is a type of propolis containing resin, wax, and soil, collected by threatened stingless bee species native to tropical countries and used in folk medicine. However, studies concerning the biological activity and chemical composition of geopropolis are scarce. In this study, we evaluated the antimicrobial and antiproliferative activity of the ethanolic extract of geopropolis (EEGP) collected by Melipona scutellaris and its bioactive fraction against important clinical microorganisms as well as their in vitro cytotoxicity and chemical profile. Methods The antimicrobial activity of EEGP and fractions was examined by determining their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against six bacteria strains as well as their ability to inhibit Streptococcus mutans biofilm adherence. Total growth inhibition (TGI) was chosen to assay the antiproliferative activity of EEGP and its bioactive fraction against normal and cancer cell lines. The chemical composition of M. scutellaris geopropolis was identified by reversed-phase high-performance liquid chromatography and gas chromatography–mass spectrometry. Results EEGP significantly inhibited the growth of Staphylococcus aureus strains and S. mutans at low concentrations, and its hexane fraction (HF) presented the highest antibacterial activity. Also, both EEGP and HF inhibited S. mutans biofilm adherence (p < 0.05) and showed selectivity against human cancer cell lines, although only HF demonstrated selectivity at low concentrations. The chemical analyses performed suggest the absence of flavonoids and the presence of benzophenones as geopropolis major compounds. Conclusions The empirical use of this unique type of geopropolis by folk medicine practitioners was confirmed in the present study, since it showed antimicrobial and antiproliferative potential against the cancer cell lines studied. It is possible that the major compounds found in this type of geopropolis are responsible for its properties. PMID:23356696
Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis.
da Cunha, Marcos Guilherme; Franchin, Marcelo; de Carvalho Galvão, Lívia Câmara; de Ruiz, Ana Lúcia Tasca Góis; de Carvalho, João Ernesto; Ikegaki, Masarahu; de Alencar, Severino Matias; Koo, Hyun; Rosalen, Pedro Luiz
2013-01-28
Geopropolis is a type of propolis containing resin, wax, and soil, collected by threatened stingless bee species native to tropical countries and used in folk medicine. However, studies concerning the biological activity and chemical composition of geopropolis are scarce. In this study, we evaluated the antimicrobial and antiproliferative activity of the ethanolic extract of geopropolis (EEGP) collected by Melipona scutellaris and its bioactive fraction against important clinical microorganisms as well as their in vitro cytotoxicity and chemical profile. The antimicrobial activity of EEGP and fractions was examined by determining their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against six bacteria strains as well as their ability to inhibit Streptococcus mutans biofilm adherence. Total growth inhibition (TGI) was chosen to assay the antiproliferative activity of EEGP and its bioactive fraction against normal and cancer cell lines. The chemical composition of M. scutellaris geopropolis was identified by reversed-phase high-performance liquid chromatography and gas chromatography-mass spectrometry. EEGP significantly inhibited the growth of Staphylococcus aureus strains and S. mutans at low concentrations, and its hexane fraction (HF) presented the highest antibacterial activity. Also, both EEGP and HF inhibited S. mutans biofilm adherence (p < 0.05) and showed selectivity against human cancer cell lines, although only HF demonstrated selectivity at low concentrations. The chemical analyses performed suggest the absence of flavonoids and the presence of benzophenones as geopropolis major compounds. The empirical use of this unique type of geopropolis by folk medicine practitioners was confirmed in the present study, since it showed antimicrobial and antiproliferative potential against the cancer cell lines studied. It is possible that the major compounds found in this type of geopropolis are responsible for its properties.
The Impact of Marine Enzymatic Activity on Sea Spray Aerosol Properties
NASA Astrophysics Data System (ADS)
Ryder, O. S.; Michaud, J. M.; Sauer, J. S.; Lee, C.; Förster, J. D.; Pöhlker, C.; Andreae, M. O.; Prather, K. A.
2016-12-01
The composition of sea spray aerosol (SSA) and the relationship between its organic fraction and biological ocean conditions is not well understood, resulting in considerable disagreement in the literature linking biological markers to SSA chemical composition. Recent work suggests that enzymatic activity in seawater may play a key role in dictating aerosol composition by changing the organic pool from which SSA is formed. Here we investigate the role of enzymatic activity on SSA spatial chemical composition, aerosol phase and morphological microstructure. In these experiments, SSA was generated using a novel mini-Marine Aerosol Reference Tank system. SSA collected onto substrates was generated from artificial salt water that had been doped with either 1) unsaturated triglycerides or 2) diatom cellular lysate, both followed by lipase. Results from analysis including morphological studies via atomic force microscopy, and chemical composition investigations both under dry and RH conditions via STXM-NEXAFS are presented.
RNA Cap Methyltransferase Activity Assay
Trotman, Jackson B.; Schoenberg, Daniel R.
2018-01-01
Methyltransferases that methylate the guanine-N7 position of the mRNA 5′ cap structure are ubiquitous among eukaryotes and commonly encoded by viruses. Here we provide a detailed protocol for the biochemical analysis of RNA cap methyltransferase activity of biological samples. This assay involves incubation of cap-methyltransferase-containing samples with a [32P]G-capped RNA substrate and S-adenosylmethionine (SAM) to produce RNAs with N7-methylated caps. The extent of cap methylation is then determined by P1 nuclease digestion, thin-layer chromatography (TLC), and phosphorimaging. The protocol described here includes additional steps for generating the [32P]G-capped RNA substrate and for preparing nuclear and cytoplasmic extracts from mammalian cells. This assay is also applicable to analyzing the cap methyltransferase activity of other biological samples, including recombinant protein preparations and fractions from analytical separations and immunoprecipitation/pulldown experiments. PMID:29644259
Method for detection of long-lived radioisotopes in small biochemical samples
Turteltaub, K.W.; Vogel, J.S.; Felton, J.S.; Gledhill, B.L.; Davis, J.C.
1994-11-22
Disclosed is a method for detection of long-lived radioisotopes in small biochemical samples, comprising: a. selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere, b. preparing a long-lived radioisotope labeled reactive chemical specie, c. administering the chemical specie to the biologist host in doses sufficiently low to avoid significant overt damage to the biological system, d. allowing a period of time to elapse sufficient for dissemination and interaction of the chemical specie with the host throughout the biological system of the host, e. isolating a reacted fraction of the biological substance from the host in a manner sufficient to avoid contamination of the substance from extraneous sources, f. converting the fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation, and, g. measuring the radioisotope concentration in the material by means of direct isotopic counting. 5 figs.
Method for detection of long-lived radioisotopes in small biochemical samples
Turteltaub, Kenneth W.; Vogel, John S.; Felton, James S.; Gledhill, Barton L.; Davis, Jay C.
1994-01-01
Disclosed is a method for detection of long-lived radioisotopes in small bio-chemical samples, comprising: a. selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere, b. preparing a long-lived radioisotope labeled reactive chemical specie, c. administering said chemical specie to said biologist host in doses sufficiently low to avoid significant overt damage to the biological system thereof, d. allowing a period of time to elapse sufficient for dissemination and interaction of said chemical specie with said host throughout said biological system of said host, e. isolating a reacted fraction of the biological substance from said host in a manner sufficient to avoid contamination of said substance from extraneous sources, f. converting said fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation, and, g. measuring the radioisotope concentration in said material by means of direct isotopic counting.
González, N J D; Borg-Karlson, A-K; Artaxo, P; Guenther, A; Krejci, R; Nozière, B; Noone, K
2014-05-01
This work presents the application of a new method to facilitate the distinction between biologically produced (primary) and atmospherically produced (secondary) organic compounds in ambient aerosols based on their chirality. The compounds chosen for this analysis were the stereomers of 2-methyltetraols, (2R,3S)- and (2S,3R)-methylerythritol, (l- and d-form, respectively), and (2S,3S)- and (2R,3R)-methylthreitol (l- and d-form), shown previously to display some enantiomeric excesses in atmospheric aerosols, thus to have at least a partial biological origin. In this work PM10 aerosol fractions were collected in a remote tropical rainforest environment near Manaus, Brazil, between June 2008 and June 2009 and analysed. Both 2-methylerythritol and 2-methylthreitol displayed a net excess of one enantiomer (either the l- or the d-form) in 60 to 72% of these samples. These net enantiomeric excesses corresponded to compounds entirely biological but accounted for only about 5% of the total 2-methyltetrol mass in all the samples. Further analysis showed that, in addition, a large mass of the racemic fractions (equal mixtures of d- and l-forms) was also biological. Estimating the contribution of secondary reactions from the isomeric ratios measured in the samples (=ratios 2-methylthreitol over 2-methylerythritol), the mass fraction of secondary methyltetrols in these samples was estimated to a maximum of 31% and their primary fraction to a minimum of 69%. Such large primary fractions could have been expected in PM10 aerosols, largely influenced by biological emissions, and would now need to be investigated in finer aerosols. This work demonstrates the effectiveness of chiral and isomeric analyses as the first direct tool to assess the primary and secondary fractions of organic aerosols.
Santos, O C S; Soares, A R; Machado, F L S; Romanos, M T V; Muricy, G; Giambiagi-deMarval, M; Laport, M S
2015-02-01
Marine bacteria are a rich source of structurally unique natural compounds, several of which have shown a wide variety of biological activities. In this study, the metabolites present in the culture supernatants of the eight sponge-associated bacteria were extracted using ethyl acetate, and all extracts showed activity against Staphylococcus aureus. Subsequently, the extracts of the Pseudomonas fluorescens H40 and H41, and Pseudomonas aeruginosa H51 were subjected to solvent partitioning, and the active fractions were submitted to chromatographic separation. Three different active fractions were obtained, one of which was identified as diketopiperazine cyclo-(L-Leu-L-Pro). This substance was bactericidal for Staph. aureus and Ps. aeruginosa and showed cytotoxic activity against HEp-2 tumour cells. Putative gene fragments coding for the type I polyketide synthase (PKS-I) and nonribosomal peptide synthetase (NRPS) domains were PCR-amplified from five and three strains, respectively. The results suggest that sponge-associated bacteria analysed in this study may represent a potential source for production of antimicrobial substances against bacterial pathogens of medical importance. © 2014 The Society for Applied Microbiology.
Tall fescue seed extraction and partial purification of ergot alkaloids
NASA Astrophysics Data System (ADS)
Bush, Lowell
2014-12-01
Many substances in the tall fescue/endophyte association (Schedonorus arundinaceus/Epichloë coenophiala) have biological activity. Of these compounds only the ergot alkaloids are known to have significant mammalian toxicity and the predominant ergot alkaloids are ergovaline and ergovalinine. Because synthetically produced ergovaline is difficult to obtain, we developed a seed extraction and partial purification protocol for ergovaline/ergovalinine that provided a biologically active product. Tall fescue seed was ground and packed into several different sized columns for liquid extraction. Smaller particle size and increased extraction time increased efficiency of extraction. Our largest column was a 114 × 52 × 61 cm (W×L×D) stainless steel tub. Approximately 150 kg of seed could be extracted in this tub. The extraction was done with 80% ethanol. When the solvent front migrated to bottom of the column, flow was stopped and seed was allowed to steep for at least 48 h. Light was excluded from the solvent from the beginning of this step to the end of the purification process. Following elution, ethanol was removed from the eluate by evaporation at room temperature. Resulting syrup was freeze-dried. About 80% recovery of alkaloids was achieved with 18-fold increase in concentration of ergovaline. Initial purification of the dried product was accomplished by extracting with hexane/water (6:1, v/v) and the hexane fraction was discarded. The aqueous fraction was extracted with chloroform, the aqueous layer discarded, after which the chloroform was removed with a resulting 20-fold increase of ergovaline. About 65% of the ergovaline was recovered from the chloroform residue for an overall recovery of 50%. The resultant partially purified ergovaline had biological activities in in vivo and in vitro bovine bioassays that approximate that of synthetic ergovaline.
Fayek, Nesrin M.; Monem, Azza R. Abdel; Mossa, Mohamed Y.; Meselhy, Meselhy R.; Shazly, Amani H.
2012-01-01
Background: Manilkara zapota (L.) Van Royen is an evergreen tree, native to the tropical Americas and introduced to Egypt as a fruiting tree in 2002. No previous study was reported on the plant cultivated in Egypt. Materials and Methods: In this study, the leaves of the plant cultivated in Egypt were subjected to phytochemical and biological investigations. The lipoidal matter was analyzed by GLC. Five compounds were isolated from the petroleum ether and ethyl acetate fractions of the alcoholic extract of the leaves by chromatographic fractionation on silica gel and sephadex, the structures of these compounds were identified using IR, UV, MS, 1H-NMR and 13C-NMR. The LD50 of the alcoholic and aqueous extracts of the leaves was determined and their antihyperglycemic, hypocholesterolemic and antioxidant activities were tested by enzymatic colorimetric methods using specific kits. Results: Unsaturated fatty acids represent 32.32 % of the total fatty acids, oleic acid (13.95%), linoleidic acid (10.18 %) and linoleic acid (5.96 %) were the major ones. The isolated compounds were identified as lupeol acetate, oleanolic acid, apigenin-7-O-α-L-rhamnoside, myricetin-3-O-α-L-rhamnoside and caffeic acid. This is the first report about isolation of these compounds from Manilkara zapota except myricetin-3-O-α-L-rhamnoside, which was previously isolated from the plant growing abroad. The LD50 recorded 80 g/Kg b. wt. for both the tested extracts, so they could be considered to be safe. They exhibited antihyperglycemic, hypocholesterolemic and antioxidant activities. Conclusion: The observed biological activities were attributed to the different chemical constituents present in the plant mainly its phenolic constituents. PMID:22518080
Yildiztekin, Fatma; Nadeem, Said; Erol, Ebru; Yildiztekin, Mahmut; Tuna, Atilla L; Ozturk, Mehmet
2016-09-01
Context We report the first ever chemical/biochemical study on Crocus mathewii Kerndorff (Iridaceae) - a Turkish endemic angiosperm. This plant has never been explored for its phytochemistry and bioactivities. Objective This study explores C. mathewii corm and aerial parts for the chemical and biological properties of hexane, ethyl acetate, methanol and water fractions of the extracts. Material and methods Plant material (20 g) was extracted by methanol (250 mL × 5, 3 days each) and fractioned into hexane, ethyl acetate, methanol and water. All fractions were subjected to β-carotene-linoleic acid, DPPH(·), ABTS(·)(+), CUPRAC, metal chelating and tyrosinase inhibition activities. Hexane fractions were submitted to GC-MS analysis. Results Ethyl acetate fractions showed excellent IC50 values in DPPH(·) (aerial 36.21 ± 0.76 and corm 33.87 ± 0.02 mg/L) and ABTS(·)(+) (aerial 33.01 ± 0.79 and bulb 27.87 ± 0.33 mg/L); higher than the IC50 of the standard α-tocopherol (DPPH 116.25 ± 1.97; ABTS 52.64 ± 0.37 mg/L), higher than BHA in DPPH (57.31 ± 0.25 mg/L), but slightly lower in ABTS (19.86 ± 2.73 mg/L). Methanol extract of aerial parts also showed higher activity than α-tocopherol in DPPH (85.56 ± 11.51 mg/L) but slightly less (72.90 ± 3.66 mg/L) than both the standards in ABTS. Linoleic (aerial 53.9%, corm 43.9%) and palmitic (aerial 22.2%, corm 18%) were found as the major fatty acids. Discussion and conclusion Some fractions of C. mathewii showed higher antioxidant activities than the standards. There is a need to explore more about this plant.
Phytochemical and biological investigations of Elaeodendron schlechteranum.
Maregesi, Sheila M; Hermans, Nina; Dhooghe, Liene; Cimanga, Kanyanga; Ferreira, Daneel; Pannecouque, Christophe; Vanden Berghe, Dirk A; Cos, Paul; Maes, Louis; Vlietinck, Arnold J; Apers, Sandra; Pieters, Luc
2010-06-16
Elaeodendron schlechteranum (Loes.) Loes. is a shrub or tree belonging to the family Celastraceae. In Tanzania, in addition to ethnopharmacological claims in treating various non-infectious diseases, the root and stem bark powder is applied on septic wounds, and the leaf paste is used for treatment of boils and carbuncles. The aim of this study was to identify the putative active constituents of the plant. Dried and powdered root bark was extracted and subjected to bioassay-guided fractionation, based on antibacterial, antiparasitic and anti-HIV activity. Isolated compounds were identified by spectroscopic methods, and evaluated for biological activity. Bioassay-guided isolation led to the identification of tingenin B (22beta-hydroxytingenone) as the main antibacterial constituent. It was active against Bacillus cereus, Staphylococcus aureus and Escherichia coli (IC(50)<0.25 microg/mL). Furthermore, antiparasitic activity was observed against Trypanosoma cruzi (IC(50)<0.25 microg/mL), Trypanosoma brucei (<0.25 microg/mL), Leishmania infantum (0.51 microg/mL), and Plasmodium falciparum (0.36 microg/mL). Tingenin B was highly cytotoxic to MRC-5 cells (CC(50) 0.45 microg/mL), indicating a poor selectivity. Two inactive triterpenes, 3beta,29-dihydroxyglutin-5-ene and cangoronine methyl ester were also obtained. Phytochemical investigation of the anti-HIV active fractions led to the isolation and identification of three phenolic compounds, namely 4'-O-methylepigallocatechin, 4'-O-methylgallocatechin, and a new procyanidin dimer, i.e. 4',4'''-di-O-methyl-prodelphinidin B(4) or 4'-O-methylgallocatechin-(4alpha-->8)-4'-O-methylepigallocatechin. However, none of these showed anti-HIV activity. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Szymanski, L. M.; Marin-Spiotta, E.; Sanford, G. R.; Jackson, R. D.; Heckman, K. A.
2015-12-01
Bioenergy crops have the potential to provide a low carbon-intensive alternative to fossil fuels. More than a century of agricultural research has shown that conventional cropping systems can reduce soil organic matter (SOM) reservoirs, which cause long-term soil nutrient loss and C release to the atmosphere. In the face of climate change and other human disruptions to biogeochemical cycles, identifying biofuel crops that can maintain or enhance soil resources is desirable for the sustainable production of bioenergy. The objective of our study was to compare the effects of four biofuel crop treatments on SOM dynamics in two agricultural soils: Mollisols at Arlington Agricultural Research Station in Wisconsin and Alfisols at Kellogg Biological Station in Michigan, USA. We used fresh soils collected in 2013 and archived soils from 2008 to measure the effects of five years of crop management. Using a one-year long laboratory soil incubation coupled with a regression model and radiocarbon measurements, we separated soils into three SOM pools and their corresponding C turnover times. We found that the active pool, or biologically available C, was more sensitive to management and is an earlier indicator of changes to soil C dynamics than bulk soil C measurements. There was no effect of treatment on the active pool size at either site; however, the percent C in the active pool decreased, regardless of crop type, in surface soils with high clay content. At depth, the response of the slow pool differed between annual and perennial cropping systems. The distribution of C among SOM fractions varied between the two soil types, with greater C content associated with the active fraction in the coarser textured-soil and greater C content associated with the slow-cycling fraction in the soils with high clay content. These results suggest that the effects of bioenergy crops on soil resources will vary geographically, with implications for the carbon-cost of biocrop production.
Konno, Sensuke
2009-07-30
Maitake D-fraction or PDF is the bioactive extract of maitake mushroom (Grifola frondosa) and its active constituent is the protein-bound polysaccharide (proteoglucan), or more specifically known as beta-glucan. PDF has been extensively studied and a number of its medicinal potentials/properties have been unveiled and demonstrated. Those include various physiological benefits ranging from immunomodulatory and antitumor activities to treatment for hypertension, diabetes, hypercholesterolemia, viral infections (hepatitis B and human immunodeficiency virus), and obesity. Particularly, two major biological activities of PDF, immunomodulatory and antitumor activities, have been the main target for scientific and clinical research. To demonstrate and confirm such biological activities, numerous studies have been performed in vitro and in vivo or in clinical settings. These studies showed that PDF was indeed capable of modulating immunologic and hematologic parameters, inhibiting or regressing the cancer cell growth, and even improving quality of life of cancer patients. Synergistic potentiation of PDF with vitamin C demonstrated in vitro is rather interesting and may have clinical implication, because such combination therapy appears to help improve the efficacy of currently ongoing cancer therapies. Recently, intravenous administration of vitamin C has been often used to increase its physiological concentration and this useful procedure may further make this combination therapy feasible. Therefore, PDF may have great potential, either being used solely or combined with other agents, for cancer therapy. Such relevant and detailed studies will be described and discussed herein with a special focus on the combination of PDF and vitamin C as a viable therapeutic option.
Personal Exposure to Particulate Matter and Endotoxin in California Dairy Workers
NASA Astrophysics Data System (ADS)
Garcia, Johnny
The average number of cows per dairy has increased over the last thirty years, with little known about how this increase may impact occupational exposure. Thirteen California dairies and 226 workers participated in this study throughout the 2008 summer months. Particulate Matter (PM) and endotoxin concentrations were quantified using ambient area based and personal air samplers. Two size fractions were collected, Total Suspended Particulate matter (TSP) and PM 2.5. Differences across dairies were evaluated by placing area based integrated air samplers in established locations on the dairies, e.g. milking parlor, drylot corral, and freestall barns. The workers occupational exposure was quantified using personal air samplers. We analyzed concentrations along with the time workers spent conducting specific job tasks during their shift to identify high exposure job tasks. Biological and chemical analytical methods were employed to ascertain endotoxin concentrations in personal and area based air samples. Recombinant factor C assays (rFC) were used to analyze biologically active endotoxin and gas chromatography coupled with mass spectrometry in tandem (GC-MS/MS) was used to quantify total endotoxin. The PM2.5 concentrations ranged from 2-116 mug/m3 for ambient area concentration and 7-495 mug/m3 for personal concentrations while TSP concentrations ranged from 74-1690 mug/m3 for area ambient concentrations and 191-4950 mug/m3 for personal concentrations. Biologically active endotoxin concentrations in the TSP size fraction from ambient area based samples ranged from 11-2095 EU/m3 and 45-2061 EU/m3 for personal samples. Total endotoxin in the TSP size fraction ranged from 75-10,166 pmol/m3 for area based samples and 34-11,689 pmol/m3 for personal samples. Drylot corrals were found to have higher sample mean concentrations when compared to other locations on the dairies for PM and endotoxin. Re-bedding, of the freestalls, was found to consistently lead to higher personal sample mean concentrations when compared to other tasks performed on dairies for both endotoxin and PM. In mixed effect regression models, regional ambient concentrations of PM 2.5 helped account for variation in PM2.5 concentration outcomes. We found that while upwind and downwind mean concentrations were not significantly different, central mean concentrations were higher than upwind concentration. Variation in TSP levels was largely explained by dairy-level characteristics such as the age of the dairy and number of animals in the drylot corrals and freestall barns. The different locations within the dairy were found to differ in mean concentrations for TSP. Biologically active and total endotoxin concentration variation was explained by meteorological data, wind speed, relative humidity, and dairy waste management practices. Personal exposure levels where found to be higher than area based concentrations for PM and endotoxin. Endotoxin characteristics differed by particle size and location within the dairy. The chain length proportion for endotoxin in the PM 2.5 size fraction was dominated by C12 and C16 in the TSP size fraction.
Chong, Isaac K W; Ho, Wing S
2013-09-01
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is known to interact with different biomolecules and was implicated in many novel cellular activities including programmed cell death, nuclear RNA transport unrelated to the commonly known carbohydrate metabolism. We reported here the purification of GAPDH from Chironomidae larvae (Insecta, Diptera) that showed different biologic activity towards heavy metals. It was inhibited by copper, cobalt nickel, iron and lead but was activated by zinc. The GAPDH was purified by ammonium sulphate fractionation and Chelating Sepharose CL-6B chromatography followed by Blue Sepharose CL-6B chromatography. The 150-kDa tetrameric GAPDH showed optimal activity at pH 8.5 and 37°C. The multiple alignment of sequence of the Chironomidae GAPDH with other known species showed 78 - 88% identity to the conserved regions of the GADPH. Bioinformatic analysis unveils substantial N-terminal sequence similarity of GAPDH of Chironomidae larvae to mammalian GADPHs. However, the GADPH of Chironomidae larvae showed different biologic activities and cytotoxicity towards heavy metals. The GAPDH enzyme would undergo adaptive molecular changes through binding at the active site leading to higher tolerance to heavy metals.
Smith, David S; Scalo, John; Wheeler, J Craig
2004-10-01
Habitable planets will be subject to intense sources of ionizing radiation and fast particles from a variety of sources--from the host star to distant explosions--on a variety of timescales. Monte Carlo calculations of high-energy irradiation suggest that the surfaces of terrestrial-like planets with thick atmospheres (column densities greater than about 100 g cm(-2)) are well protected from directly incident X-rays and gamma-rays, but we find that sizeable fractions of incident ionizing radiation from astrophysical sources can be redistributed to biologically and chemically important ultraviolet wavelengths, a significant fraction of which can reach the surface. This redistribution is mediated by secondary electrons, resulting from Compton scattering and X-ray photoabsorption, the energies of which are low enough to excite and ionize atmospheric molecules and atoms, resulting in a rich aurora-like spectrum. We calculate the fraction of energy redistributed into biologically and chemically important wavelength regions for spectra characteristic of stellar flares and supernovae using a Monte-Carlo transport code and then estimate the fraction of this energy that is transmitted from the atmospheric altitudes of redistribution to the surface for a few illustrative cases. For atmospheric models corresponding to the Archean Earth, we assume no significant ultraviolet absorbers, only Rayleigh scattering, and find that the fraction of incident ionizing radiation that is received at the surface in the form of redistributed ultraviolet in the biologically relevant 200-320 nm region (UV-C and UV-B bands) can be up to 4%. On the present-day Earth with its ultraviolet ozone shield, this fraction is found to be 0.2%. Both values are many orders of magnitude higher than the fraction of direct ionizing radiation reaching the surface. This result implies that planetary organisms will be subject to mutationally significant, if intermittent, fluences of UV-B and harder radiation even in the presence of a narrow-band ultraviolet shield like ozone. We also calculate the surficial transmitted fraction of ionizing radiation and redistributed ultraviolet radiation for two illustrative evolving Mars atmospheres whose initial surface pressures were 1 bar. We discuss the frequency with which redistributed ultraviolet flux from parent star flares exceeds the parent star ultraviolet flux at the planetary surface. We find that the redistributed ultraviolet from parent star flares is probably a fairly rare intermittent event for habitable zone planets orbiting solar-type stars except when they are young, but should completely dominate the direct steady ultraviolet radiation from the parent star for planets orbiting all stars less massive than about 0.5 solar masses. Our results suggest that coding organisms on such planets (and on the early Earth) may evolve very differently than on contemporary Earth, with diversity and evolutionary rate controlled by a stochastically varying mutation rate and frequent hypermutation episodes.
Potential Health Benefits and Metabolomics of Camel Milk by GC-MS and ICP-MS.
Ahamad, Syed Rizwan; Raish, Mohammad; Ahmad, Ajaz; Shakeel, Faiyaz
2017-02-01
None of the research reports reveals the metabolomics and elemental studies on camel milk. Recent studies showed that camel milk possesses anticancer and anti-inflammatory activity. Metabolomics and elemental studies were carried out in camel milk which showed us the pathways and composition that are responsible for the key biological role of camel milk. Camel milk was dissolved in methanol and chloroform fraction and then vortexed and centrifuged. Both the fractions were derivatized by N,O-bis-(trimethylsilyl)trifluoroacetamide (BSTFA) and TMCS after nitrogen purging and analyzed by GC-MS. Camel milk was also analyzed by ICP-MS after microwave digestion. We found that higher alkanes and fatty acids are present in the chloroform fraction and amino acids, sugars and fatty acid derivatives are present in aqueous fractions. All the heavy metals like As, Pb, Cd, Co, Cu, and Ni were in the safe limits in terms of maximum daily intake of these elements. Na, K, Mg, and Ca were also present in the safe limits in terms of maximum daily intake of these elements. These results suggested that the camel milk drinking is safe and there is no health hazard. The present data of GC-MS and ICP-MS correlate the activities related to camel milk.
Zhang, Jing-Shu; Zhang, Shu-Jing; Li, Qian; Liu, Ying-Hua; He, Ning; Zhang, Jing; Zhou, Peng-Hui; Li, Min; Guan, Tong; Liu, Jia-Ren
2015-01-01
Tocotrienols have been shown many biologic functions such as antioxidant, anti-cancer, maintaining fertility and regulating the immune system and so on. In this study, after feeding with tocotrienol-rich fraction from palm oil (TRF) for 2 weeks, Balb/c nude mice were inoculated human colon SW620 cancer cell and then continued to feed TRF for 4 weeks. At termination of experiments, xenografts were removed and determined the expression of Wnt-pathways related protein by immunohistochemistry or western blotting. Liver tissues were homogenated for determining the levels of antioxidative enzymes activity or malondialdehyde (MDA). The results showed that TRF significantly inhibited the growth of xenografts in nude mice. TRF also affected the activity of antioxidative enzymes in the liver tissue of mice. These changes were partly contributed to activation of wnt pathways or affecting their related protein. Thus, these finding suggested that the potent anticancer effect of TRF is associated with the regulation of Wnt signal pathways. PMID:25807493
Zhang, Jing-Shu; Zhang, Shu-Jing; Li, Qian; Liu, Ying-Hua; He, Ning; Zhang, Jing; Zhou, Peng-Hui; Li, Min; Guan, Tong; Liu, Jia-Ren
2015-01-01
Tocotrienols have been shown many biologic functions such as antioxidant, anti-cancer, maintaining fertility and regulating the immune system and so on. In this study, after feeding with tocotrienol-rich fraction from palm oil (TRF) for 2 weeks, Balb/c nude mice were inoculated human colon SW620 cancer cell and then continued to feed TRF for 4 weeks. At termination of experiments, xenografts were removed and determined the expression of Wnt-pathways related protein by immunohistochemistry or western blotting. Liver tissues were homogenated for determining the levels of antioxidative enzymes activity or malondialdehyde (MDA). The results showed that TRF significantly inhibited the growth of xenografts in nude mice. TRF also affected the activity of antioxidative enzymes in the liver tissue of mice. These changes were partly contributed to activation of wnt pathways or affecting their related protein. Thus, these finding suggested that the potent anticancer effect of TRF is associated with the regulation of Wnt signal pathways.
de Moura, Valéria Mourão; da Silva, Wania Cristina Rodrigues; Raposo, Juliana D A; Freitas-de-Sousa, Luciana A; Dos-Santos, Maria Cristina; de Oliveira, Ricardo Bezerra; Veras Mourão, Rosa Helena
2016-05-13
Ethnobotanical studies have shown that Plathymenia reticulata Benth. (Fabaceae) has been widely used in cases of snake envenomation, particularly in Northern Brazil. In light of this, the aim of this study was to evaluate the inhibitory potential of the condensed-tannin-rich fraction obtained from the bark of P. reticulata against the main biological activities induced by Bothrops atrox venom (BaV). The chemical composition of the aqueous extract of P. reticulata (AEPr) was first investigated by thin-layer chromatography (TLC) and the extract was then fractionated by column chromatography on Sephadex LH-20. This yielded five main fractions (Pr1, Pr2, Pr3, Pr4 and Pr5), which were analyzed by colorimetry to determine their concentrations of total phenolics, total tannins and condensed tannins and to assess their potential for blocking the phospholipase activity of BaV. The Pr5 fraction was defined as the fraction rich in condensed tannins (CTPr), and its inhibitory potential against the activities of the venom was evaluated. CTPr was evaluated in different in vivo and in vitro experimental protocols. The in vivo protocols consisted of (1) pre-incubation (venom:CTPr, w/w), (2) pre-treatment (orally administered) and (3) post-treatment (orally administered) to evaluate the effect on the hemorrhagic and edematogenic activities of BaV; in the in vitro protocol the effect on phospholipase and coagulant activity using pre-incubation in both tests was evaluated. There was statistically significant inhibition (p<0.05) of hemorrhagic activity by CTPr when the pre-incubation protocol was used [55% (1:5, w/w) and 74% (1:10, w/w)] and when pre-treatment with doses of 50 and 100mg/kg was used (19% and 13%, respectively). However, for the concentrations tested, there was no statistically significant inhibition in the group subjected to post-treatment administered orally. CTPr blocked 100% of phospholipase activity and 63.3% (1:10, w/w) of coagulant activity when it was pre-incubated with BaV. There was a statistically significant reduction (p<0.05) in edema induced by BaV in the oral protocols. Maximum inhibition was 95% (pre-treatment). Our findings indicate that CTPr could be a good source of natural inhibitors of the components of snake venom responsible for inducing local inflammation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ni, Li-Jun; Xu, Xiao-Ling; Zhang, Li-Guo; Shi, Wan-Zhong
2014-07-03
Traditional Chinese medicine (TCM) formula of Yaotongning Capsules (YTNC) is a common remedy to treat rheumatism (RA) in China and possesses diverse biological activities including anti-inflammation. However the effects of component material medicines (CMMs) in YTNC and different combinations of the CMMs on the efficacy of YTNC and the interactions of these CMMs have been being unclear due to ten CMMs and too many compounds involved in YTNC. Moreover, many TCM formulae are available for treating RA according to TCM theory. It is unknown if the YTNC prescription is better than other TCM formulae for treating RA or better efficacy could be obtained when some CMMs in YTNC are replaced by other herbs. Quantitatively investigate the in vitro effect of active fractions from the CMMs of YTNC and other eight herbs commonly used in the TCM formulae for RA treatment on anti-inflammatory activity of different combinations of the active fractions, the interactions of the active fractions to evaluate the reasonability, advantage (or disadvantage) of the YTNC prescription and to see if the prescription could be improved from the point of anti-inflammation. Twenty-six active fractions, which were categorized as alkaloids, flavonoids, saponins, volatile oils/aqueous extracts and polysaccharides were prepared to design TCM samples by combining some of the active fractions, based on the YTNC formulating principle, combination chemistry concept and the importance of the active fractions in YTNC. The anti-inflammatory activities of the samples were evaluated by their half-maximal inhibitory concentration (IC50) values that inhibiting the production of prostaglandin E2 (PGE2) in ANA-1 murine macrophages (ANA-1 cells). The cells plated in 96-well plates were classified into blank group and test sample group. Each group was stimulated with lipopolysaccharides (LPS, 1 mg/mL) for 2h. ANA-1 cells were pretreated with different concentrations of test samples prior to the addition of arachidonic acid (10 μmol/L). The supernatants were collected and measured using PGE2 ELISA Kit, and the cytotoxicity was assayed by cell counting Kit-8 (CCK8)-based test. The interactions of the active fractions in YTNC were evaluated by comparing the experimental IC50 values of the samples derived from YTNC to their corresponding additive IC50 values. The effect of each active fraction on cellular anti-inflammation-PGE2 secretion inhibition activity, and the reasonability, advantages (or disadvantages) of YTNC were evaluated based on the comparison of IC50 values of the samples. The disassembled formulae consisted of some active fractions of YTNC and the whole prescription of YTNC consisted of the all active fractions from YTNC all demonstrate cellular anti-inflammatory activity, and there were no significant differences between these formulae. The vehicle of YTNC Chinese rice wine exhibits the ability to enhance the cellular anti-inflammation of YTNC. Synergistic effect exerts in the combination of alkaloids, flavonoids and saponins of YTNC, antagonistic or additive effects occur in the other combinations of active fractions from YTNC. The anti-inflammatory activities of some TCM samples which include some active fractions from the eight selected herbs are significantly higher than the samples derived from YTNC. The flavonoids of Carthamus tinctorius, the volatile oils of Cinnamomum cassia and Angelica pubescens perform better in cellular anti-inflammation than the flavonoids and volatile oils in YTNC. The prescription of YTNC is reasonable in the view of anti-inflammation. The saponins and polysaccharides from the CMMs of YTNC have better anti-inflammatory activities than the saponins and polysaccharides from the other eight herbs. Reducing the varieties of YTNC CMMs and replacing the flavonoids and volatile oils of YTNC with the flavonoids of Carthamus tinctorius and the volatile oils of Cinnamomum cassia (or Angelica pubescens) would improve the safety and anti-inflammatory activity of YTNC. Synthetically evaluating various pharmacological activities of TCM formulae designed in the present work may lead to develop more effective and safer TCM using YTNC as prototypes. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Mohanty, Sudipta Kumar; Swamy, Mallappa Kumara; Middha, Sushil Kumar; Prakash, Lokesh; Subbanarashiman, Balasubramanya; Maniyam, Anuradha
2015-01-01
Leptadenia reticulata was reported to be used for several medicinal purposes. The present study was undertaken to evaluate anti-inflammatory, analgesic and lipid peroxidation inhibition activities of L. reticulata. The anti-inflammatory assay was performed by λ-carrageenan and formalin induced paw edema test. Pro inflammatory mediators (IL2, IL6, TNF-α) in serum of treated and control organism were analyzed by quantitative ELISA. Lipid peroxidation inhibition was measured by thiobarbituric acid reactive substances (TBARS) assay. Analysis of the most active fraction revealed the presence of one phenolic compound (p-coumaric acid), two flavonoids (rutin and quercetin) which also determined quantitatively. The ethyl acetate fraction at 600 mg/Kg significantly inhibited λ-carrageenan and formalin induced paw edema by 60.59% and 59.24% respectively. Notable reduction in percentage of writhing (76.25%), induced by acetic acid signifies the potent analgesic activity. Lower level of pro-inflammatory cytokines (IL-2, IL-6, TNF-α) in serum at the 4th hour of λ-Carrageenan injection indicated the inhibition of cyclooxigenase-2 (Cox-2), Nitric oxide (NO) and release of prostaglandin to prevent inflammation. The study also demonstrated the decrease in malonaldehyde (MDA) concentration which revealed the lipid peroxidation inhibition potential of the plant. Our finding provides evidence for potent biological activities in tested model which is supported by its characterized bioactive compounds and ethnomedicinal relevance. PMID:26330883
Virginia, Agnes; Rachmawati, Heni; Riani, Catur; Retnoningrum, Debbie S
2016-01-01
Bioactive peptides produced from enzymatic hydrolysis fibrous protein have been proven to have several biological activities. Previous study showed that the hydrolysis product of snakehead fish skin collagen with 26 kDa collagenase from Bacillus licheniformis F11.4 showed HMG-CoA (HMGR) inhibition activity. The aim of this research was to determine the ability of the hydrolysis product produced from snakehead fish skin collagen hydrolysed by 50 kDa collagenase from B. licheniformis F11.4 in inhibiting HMGR activity. Snakehead fish skin collagen was extracted using an acid method and collagenase was produced from B. licheniformis F11.4 using half-strength Luria Bertani (LB) medium containing 5% collagen. Crude collagenase was concentrated and fractionated using the DEAE Sephadex A-25 column eluted with increasing gradient concentrations of NaCl. Collagen, collagenase, and fractions were analyzed using SDS-PAGE and collagenolytic activity was analyzed by the zymography method. Collagenase with 50 kDa molecular weight presented in fraction one was used to hydrolyze the collagen. The reaction was done in 18 hours at 50°C. The hydrolysis product using 3.51 μg collagen and 9 ng collagenase showed 25.8% inhibition activity against pravastatin. This work shows for the first time that the hydrolysis product of snakehead fish skin collagen and 50 kDa collagenase from B. licheniformis F11.4 has potential as an anticholesterol agent.
NASA Astrophysics Data System (ADS)
Jaymand, Mehdi; lotfi, Mehrdad; Abbasian, Mojtaba
2018-03-01
This article evaluates physicochemical, mechanical, and biological properties of a series of novel dental nanocomposites that fabricated from multifunctional methacrylate-based dental monomers, triethyleneglycol dimethacrylate (TEGDMA) monomer, and modified silica nanoparticles (SiO2 NPs). The antibacterial activities of the monomers were investigated against lactobacillus plantarum by standard agar disk diffusion method. The cytotoxicity characteristics of the monomers and fabricated nanocomposites were evaluated by MTT and trypan blue cell viability tests, respectively against NIH3T3 cell line. In addition, the mechanical properties, as well as physicochemical characteristics including water sorption, sol fraction, and double bond conversion were also investigated. According to the results, the formulated nanocomposites have potential to apply as dental nanocomposites mainly due to their acceptable physicochemical, mechanical and biological characteristics.
Krishnappa, Kaliyamoorthy; Dhanasekaran, Shanmugam; Elumalai, Kuppusamy
2012-08-01
To investigate the potentiality of mosquitocidal activity of Gliricidia sepium (G. sepium) (Jacq.) (Leguminosae). Twenty five early third instar larvae of Anopheles stephensi (An. stephensi) were exposed to various concentrations (50-250 ppm) and the 24 h LC(50) values of the G. sepium extract was determined by probit analysis. The ovicidal activity was determined against An. stephensi to various concentrations ranging from 25-100 ppm under laboratory conditions. The eggs hatchability was assessed 48 h post treatment. The pupicidal activity was determined against An. stephensi to various concentrations ranging from 25-100 ppm. Mortality of each pupa was recorded after 24 h of exposure to the extract. Results pertaining to the experiment clearly revealed that ethanol extract showed significant larvicidal, ovicidal and pupicidal activity against the An. stephensi. Larvicidal activity of ethanol extracts of G. sepium showed maximum mortality in 250 ppm concentration (96.0±2.4)%. Furthermore, the LC(50) was found to be 121.79 and the LC(90) value was recorded to be 231.98 ppm. Ovicidal activity of ethanol extract was assessed by assessing the egg hatchability. Highest concentration of both solvent extracts exhibited 100% ovicidal activity. Similarly, pupae exposed to different concentrations of ethanol extract were found dead with 58.10% adult emergence when it was treated with 25 ppm concentration. Similarly, 18.36 (n=30; 61.20%); 21.28(70.93) and 27.33(91.10) pupal mortality was recorded from the experimental pupae treated with 50, 75 and 100 ppm concentration of extracts. Three fractions have been tested for their larvicidal activity of which the Fraction 3 showed the LC(50) and LC(90) values of 23.23 and 40.39 ppm. With regard to the ovicidal effect fraction 3 showed highest ovicidal activities than the other two fractions. Furthermore, there were no hatchability was recorded above 50 ppm (100% egg mortality) in the experimental group. Statistically significant pupicidal activity was recorded from 75 ppm concentration. From the results it can be concluded the crude extract of G. sepium is an excellent potential for controlling An. stephensi mosquito. It is apparent that, fraction 3 possess a novel and active principle which could be responsible for those biological activities. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Improved Properties and Microbiological Safety of Novel Cottage Cheese Containing Spices
Knežević, Zvonimira Medverec; Frece, Jadranka; Markov, Ksenija; Kazazić, Snježana; Mrvčić, Jasna
2015-01-01
Summary The study focuses on developing novel cottage cheese containing spices with acceptable sensory properties, increased biological value and extended shelf life. Thirty types of cheese with added fresh or dried parsley, dill, pepper, garlic and rosemary were produced. Characterisation of phenolic compounds, antioxidant capacity and antibacterial activity of spices and cheese samples were evaluated. The cheese containing fresh pepper and fresh and dried herbs showed excellent sensory properties, with the best results obtained with fresh sweet red pepper. Dry rosemary had the highest antioxidant and antibacterial activity due to high mass fractions of caffeic and rosmarinic acids as well as high mass fractions of flavones and phenolic diterpenes. The plant extracts examined in vitro and in situ effectively reduce numbers of foodborne pathogens like Salmonella typhimurium, Escherichia coli, Staphylococcus aureus and Listeria monocytogenes, and therefore have potential as natural preservatives and antioxidants. PMID:27904380
Different profiles of quercetin metabolites in rat plasma: comparison of two administration methods.
Kawai, Yoshichika; Saito, Satomi; Nishikawa, Tomomi; Ishisaka, Akari; Murota, Kaeko; Terao, Junji
2009-03-23
The bioavailability of polyphenols in human and rodents has been discussed regarding their biological activity. We found different metabolite profiles of quercetin in rat plasma between two administration procedures. A single intragastric administration (50 mg/kg) resulted in the appearance of a variety of metabolites in the plasma, whereas only a major fraction was detected by free access (1% quercetin). The methylated/non-methylated metabolites ratio was much higher in the free access group. Mass spectrometric analyses showed that the fraction from free access contained highly conjugated quercetin metabolites such as sulfo-glucuronides of quercetin and methylquercetin. The metabolite profile of human plasma after an intake of onion was similar to that with intragastric administration in rats. In vitro oxidation of human low-density lipoprotein showed that methylation of the catechol moiety of quercetin significantly attenuated the antioxidative activity. These results might provide information about the bioavailability of quercetin when conducting animal experiments.
Polesel, Fabio; Andersen, Henrik R; Trapp, Stefan; Plósz, Benedek Gy
2016-10-04
Many scientific studies present removal efficiencies for pharmaceuticals in laboratory-, pilot-, and full-scale wastewater treatment plants, based on observations that may be impacted by theoretical and methodological approaches used. In this Critical Review, we evaluated factors influencing observed removal efficiencies of three antibiotics (sulfamethoxazole, ciprofloxacin, tetracycline) in pilot- and full-scale biological treatment systems. Factors assessed include (i) retransformation to parent pharmaceuticals from e.g., conjugated metabolites and analogues, (ii) solid retention time (SRT), (iii) fractions sorbed onto solids, and (iv) dynamics in influent and effluent loading. A recently developed methodology was used, relying on the comparison of removal efficiency predictions (obtained with the Activated Sludge Model for Xenobiotics (ASM-X)) with representative measured data from literature. By applying this methodology, we demonstrated that (a) the elimination of sulfamethoxazole may be significantly underestimated when not considering retransformation from conjugated metabolites, depending on the type (urban or hospital) and size of upstream catchments; (b) operation at extended SRT may enhance antibiotic removal, as shown for sulfamethoxazole; (c) not accounting for fractions sorbed in influent and effluent solids may cause slight underestimation of ciprofloxacin removal efficiency. Using tetracycline as example substance, we ultimately evaluated implications of effluent dynamics and retransformation on environmental exposure and risk prediction.
Chemical composition and antifungal potential of Brazilian propolis against Candida spp.
Freires, I A; Queiroz, V C P P; Furletti, V F; Ikegaki, M; de Alencar, S M; Duarte, M C T; Rosalen, P L
2016-06-01
Propolis is known to have biological properties against numerous microorganisms of clinical interest. This study aimed to determine the chemical composition and antifungal activity of Brazilian propolis (types 3 and 13) against Candida spp. and their effects on the morphology of preformed and mature Candida biofilms. Samples of propolis (3 and 13) collected by Apis mellifera honeybees were obtained from different regions in Brazil. Ethanolic extracts of propolis (EEP) were prepared, fractionated and submitted to chemical analysis by GC/MS. The extracts and their hexane, dichloromethane and ethyl acetate fractions were tested for their ability to inhibit Candida spp. (C. albicans, C. dubliniensis, C. glabrata, C. kruzei, C. tropicalis and C. parapsilosis) by determination of the minimum inhibitory and fungicidal concentrations (MIC/MFC). Additionally, their effects on morphology of preformed and mature biofilms were observed by scanning electron microscopy. The phenolic compounds p-coumaric acid, caffeic acid phenethyl ester (CAPE), kaempferol and quercetin were identified in the EEP-3 and its bioactive dichloromethane fraction; and isoflavonoids such as medicarpin, vestitol and formononetin were found in the EEP-13, and triterpenes in its bioactive hexane fraction. The EEP-3 and EEP-13 and their bioactive fractions showed MIC values ranging from 0.2 to 125μg/mL and MFC values between 125 and 500μg/mL. The EEP and fractions were predominantly fungistatic agents. All extracts and fractions disrupted biofilm structures at 500μg/mL and amorphous areas with cell damage were clearly observed in preformed and mature biofilms. Propolis types 3 and 13 have strong anti-Candida activity and should be considered as promising candidates to treat oral and systemic candidiasis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Secchi, Francesca; Pagliarani, Chiara; Zwieniecki, Maciej A
2017-06-01
Xylem parenchyma cells [vessel associated cells (VACs)] constitute a significant fraction of the xylem in woody plants. These cells are often closely connected with xylem vessels or tracheids via simple pores (remnants of plasmodesmata fields). The close contact and biological activity of VACs during times of severe water stress and recovery from stress suggest that they are involved in the maintenance of xylem transport capacity and responsible for the restoration of vessel/tracheid functionality following embolism events. As recovery from embolism requires the transport of water across xylem parenchyma cell membranes, an understanding of stem-specific aquaporin expression patterns, localization and activity is a crucial part of any biological model dealing with embolism recovery processes in woody plants. In this review, we provide a short overview of xylem parenchyma cell biology with a special focus on aquaporins. In particular we address their distributions and activity during the development of drought stress, during the formation of embolism and the subsequent recovery from stress that may result in refilling. Complemented by the current biological model of parenchyma cell function during recovery from stress, this overview highlights recent breakthroughs on the unique ability of long-lived perennial plants to undergo cycles of embolism-recovery related to drought/rewetting or freeze/thaw events. © 2016 John Wiley & Sons Ltd.
Fitsiou, Eleni; Mitropoulou, Gregoria; Spyridopoulou, Katerina; Tiptiri-Kourpeti, Angeliki; Vamvakias, Manolis; Bardouki, Haido; Panayiotidis, Mihalis Ι; Galanis, Alex; Kourkoutas, Yiannis; Chlichlia, Katerina; Pappa, Aglaia
2016-08-16
Natural products, known for their medicinal properties since antiquity, are continuously being studied for their biological properties. In the present study, we analyzed the composition of the volatile preparations of essential oils of the Greek plants Ocimum basilicum (sweet basil), Mentha spicata (spearmint), Pimpinella anisum (anise) and Fortunella margarita (kumquat). GC/MS analyses revealed that the major components in the essential oil fractions, were carvone (85.4%) in spearmint, methyl chavicol (74.9%) in sweet basil, trans-anethole (88.1%) in anise, and limonene (93.8%) in kumquat. We further explored their biological potential by studying their antimicrobial, antioxidant and antiproliferative activities. Only the essential oils from spearmint and sweet basil demonstrated cytotoxicity against common foodborne bacteria, while all preparations were active against the fungi Saccharomyces cerevisiae and Aspergillus niger. Antioxidant evaluation by DPPH and ABTS radical scavenging activity assays revealed a variable degree of antioxidant potency. Finally, their antiproliferative potential was tested against a panel of human cancer cell lines and evaluated by using the sulforhodamine B (SRB) assay. All essential oil preparations exhibited a variable degree of antiproliferative activity, depending on the cancer model used, with the most potent one being sweet basil against an in vitro model of human colon carcinoma.
Abdelmalek, Baha Eddine; Sila, Assaâd; Krichen, Fatma; Karoud, Wafa; Martinez-Alvarez, Oscar; Ellouz-Chaabouni, Semia; Ayadi, Mohamed Ali; Bougatef, Ali
2015-01-01
The characteristics, biological properties, and purification of sulfated polysaccharides extracted from squid (Loligo vulgaris) skin were investigated. Their chemical and physical characteristics were determined using X-ray diffraction and infrared spectroscopic analysis. Sulfated polysaccharides from squid skin (SPSS) contained 85.06% sugar, 2.54% protein, 1.87% ash, 8.07% sulfate, and 1.72% uronic acid. The antioxidant properties of SPSS were investigated based on DPPH radical-scavenging capacity (IC50 = 19.42 mg mL(-1)), hydrogen peroxide-scavenging activity (IC50 = 0.91 mg mL(-1)), and β-carotene bleaching inhibition (IC50 = 2.79 mg mL(-1)) assays. ACE-inhibitory activity of SPSS was also investigated (IC50 = 0.14 mg mL(-1)). Further antimicrobial activity assays indicated that SPSS exhibited marked inhibitory activity against the bacterial and fungal strains tested. Those polysaccharides did not display hemolytic activity towards bovine erythrocytes. Fractionation by DEAE-cellulose column chromatography showed three major absorbance peaks. Results of this study suggest that sulfated polysaccharides from squid skin are attractive sources of polysaccharides and promising candidates for future application as dietary ingredients.
Gobas, Frank A P C; Otton, S Victoria; Tupper-Ring, Laura F; Crawford, Meara A; Clark, Kathryn E; Ikonomou, Michael G
2017-06-01
The present study applies a chemical activity-based approach to: 1) evaluate environmental concentrations of di-ethylhexyl phthalate (DEHP; n = 23 651) and its metabolite mono-ethylhexyl phthalate (MEHP; n = 1232) in 16 environmental media from 1174 studies in the United States, Canada, Europe, and Asia, and in vivo toxicity data from 934 studies in 20 species, as well as in vitro biological activity data from the US Environmental Protection Agency's Toxicity Forecaster and other sources; and 2) conduct a comprehensive environmental risk analysis. The results show that the mean chemical activities of DEHP and MEHP in abiotic environmental samples from locations around the globe are 0.001 and 10 -8 , respectively. This indicates that DEHP has reached on average 0.1% of saturation in the abiotic environment. The mean chemical activity of DEHP in biological samples is on average 100-fold lower than that in abiotic samples, likely because of biotransformation of DEHP in biota. Biological responses in both in vivo and in vitro tests occur at chemical activities between 0.01 to 1 for DEHP and between approximately 10 -6 and 10 -2 for MEHP, suggesting a greater potency of MEHP compared with DEHP. Chemical activities of both DEHP and MEHP in biota samples were less than those causing biological responses in the in vitro bioassays, without exception. A small fraction of chemical activities of DEHP in abiotic environmental samples (i.e., 4-8%) and none (0%) for MEHP were within the range of chemical activities associated with observed toxicological responses in the in vivo tests. The present study illustrates the chemical activity approach for conducting risk analyses. Environ Toxicol Chem 2017;36:1483-1492. © 2016 SETAC. © 2016 SETAC.
Purification and biological evaluation of the metabolites produced by Streptomyces sp. TK-VL_333.
Kavitha, Alapati; Prabhakar, Peddikotla; Vijayalakshmi, Muvva; Venkateswarlu, Yenamandra
2010-06-01
An Actinobacterium strain isolated from laterite soils of the Guntur region was identified as Streptomyces sp. TK-VL_333 by 16S rRNA analysis. Cultural, morphological and physiological characteristics of the strain were recorded. The secondary metabolites produced by the strain cultured on galactose-tyrosine broth were extracted and concentrated followed by defatting of the crude extract with cyclohexane to afford polar and non-polar residues. Purification of the two residues by column chromatography led to isolation of five polar and one non-polar fraction. Bioactivity- guided fractions were rechromatographed on a silica gel column to obtain four compounds, namely 1H-indole-3-carboxylic acid, 2,3-dihydroxy-5-(hydroxymethyl) benzaldehyde, 4-(4-hydroxyphenoxy) butan-2-one and acetic acid-2-hydroxy-6-(3-oxo-butyl)-phenyl ester from three active polar fractions and 8-methyl decanoic acid from one non-polar fraction. The structure of the compounds was elucidated on the basis of FT-IR, mass and NMR spectroscopy. The antimicrobial activity of the bioactive compounds produced by the strain was tested against the bacteria and fungi and expressed in terms of minimum inhibitory concentration. Antifungal activity of indole-3-carboxylic acid was further evaluated under in vitro and in vivo conditions. This is the first report of 2,3-dihydroxy-5-(hydroxymethyl) benzaldehyde, 4-(4-hydroxyphenoxy) butan-2-one, acetic acid-2-hydroxy-6-(3-oxo-butyl)-phenyl ester and 8-methyl decanoic acid from the genus Streptomyces. 2010 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Ciscato, Emily R.; Bontognali, Tomaso R. R.; Vance, Derek
2018-07-01
Nickel (Ni) is a biologically active element that displays a nutrient-like depth distribution in the modern oceans. Recent studies of Ni isotopes have highlighted the fact that, in common with many other transition metals, the Ni stable isotope composition, expressed as δ60Ni, of the dissolved phase is heavier than the inputs, at +1.3 to +1.7‰. The sedimentary outputs that control the high δ60Ni of the ocean, coupled with records for past seawater, could potentially yield new information on the past Earth system, but these are currently not well understood. Here we present the first Ni abundance and isotope data for a key output, that associated with Ni uptake into organic matter, at productive upwelling regions and elsewhere. We investigate the distribution of Ni and its isotopes in two fractions separated from the bulk sediment, an HF-digestible fraction, extracted with HF-HCl, and an organic-sulphide-rich fraction. The organic-sulphide fractions exhibit a range in δ60Ni, from +0.86 to +1.83. Systematic relationships between Ni concentrations, total organic carbon and Ni isotopes suggest that the organic-sulphide fraction originates in the photic zone, and is delivered to the sediment as a closed system, despite the possibility of transfer of Ni to sulphide within it. Authigenic Ni in the bulk sediment is dominated by the HF-digestible fraction which, in Ni-enriched sediments where the detrital correction is small, is very close to the modern deep ocean, at δ60Ni = +1.2‰. These data suggest that organic-rich sediments beneath upwelling zones, while they are an important output flux of Ni from the oceans, do not solve the isotope balance problem because their δ60Ni is almost identical to modern seawater. On the other hand, the approach adopted here involving the analysis of the two fractions, both traces the fractionation imparted by biological uptake as well as recording the δ60Ni of contemporary seawater, suggesting potential for understanding the past oceans.
Chandrashekar, Puthanapura M; Prashanth, Keelara V Harish; Venkatesh, Yeldur P
2011-02-01
Traditionally, garlic (Allium sativum) is known to be a significant immune booster. Aged garlic extract (AGE) possesses superior immunomodulatory effects than raw garlic; these effects are attributed to the transformed organosulfur compounds. AGE is also known to contain fructans; the amount of fructans in AGE represents a small fraction (0.22%) of the total fructans in raw garlic. In order to evaluate the biological activity of fructans present in AGE, both high molecular weight (>3.5 kDa; HF) and low molecular weight (<3 kDa; LF) fructans were isolated. The structures of purified HF and LF from AGE determined by (1)H NMR and (13)C NMR spectroscopy revealed that both have (2→1) β-D-fructofuranosyl bonds linked to a terminal glucose at the non-reducing end and β-D-fructofuranosyl branching on its backbone. Biological activity of fructans was assessed by immunostimulatory activity using murine lymphocytes and peritoneal exudate cells (source of macrophages). Both HF and LF displayed mitogenic activity and activation of macrophages including phagocytosis. These activities were comparable to that of known polysaccharide immunomodulators such as zymosan and mannan. This study clearly demonstrates that garlic fructans also contribute to the immunomodulatory properties of AGE, and is the first such study on the biological effects of garlic fructans. Copyright © 2010 Elsevier Ltd. All rights reserved.
Nosáľová, Gabriela; Majee, Sujay Kumar; Ghosh, Kanika; Raja, Washim; Chatterjee, Udipta Ranjan; Jureček, Ludovít; Ray, Bimalendu
2014-08-01
Traditional Indian medicines have been used in humans for thousands of years. While the link to a particular indication has been established in man, the active principle of the formulations often remains unknown. In this study, we aim to investigate the structural features and antitussive activity of fractions from Andrographis paniculata leaves. In vivo investigations of water extract (WE), and both ethanol-soluble (WES) and precipitated (WEP) fractions from WE on the citric-acid induced cough efforts and airways smooth muscle reactivity in guinea pigs were performed. Chemical, chromatographic and spectroscopic analysis revealed the existence of a highly branched pectic arabinogalactan (109kDa) in WEP and andrographolide in WES. WEP showed significant antitussive activity while the potencies of WE and WES are even higher. Neither WE nor WES significantly alter specific airway smooth muscle reactivity. Remarkably, the antitussive activity of arabinogalactan could be increased by synergistic action with andrographolide. Finally, traditional aqueous extraction method provides an arabinogalactan from A. paniculata, which stimulate biological response but without addiction. Copyright © 2014 Elsevier B.V. All rights reserved.
Bioherbicidal activity of a germacranolide sesquiterpene dilactone from Ambrosia artemisiifolia L.
Molinaro, Francesco; Monterumici, Chiara Mozzetti; Ferrero, Aldo; Tabasso, Silvia; Negre, Michèle
2016-12-01
Ambrosia artemisiifolia L. (common ragweed) is an invasive plant whose allelopathic properties have been suggested by its field behaviour and demonstrated through phytotoxicity bioassays. However, the nature of the molecules responsible for the allelopathic activity of common ragweed has not been explored. The main objective of this study was to identify the phytotoxic molecules produced by A. artemisiifolia. A preliminary investigation has indicated that a methanol extract of A. artemisiifolia completely inhibited the germination of cress and radish. Semi-preparative fractionation of the methanol extract allowed separating of phytotoxic fraction which contained a single compound. The structure of this compound was elucidated by liquid chromatography-mass spectrometry (LC-MS)/MS, high-resolution mass spectral, nuclear magnetic resonance, and Fourier transform infrared spectra as sesquiterpene lactone isabelin (C 15 H 16 O 4 ). The effect of pure isabelin was tested on four different weed species, confirming the inhibitory activity of molecule. The results indicate directions for the future studies about herbicidal specific activity of isabelin, as pure molecule or in the crude extract, as a potential candidate for biological weed control.
NASA Astrophysics Data System (ADS)
Momesso, Roberta G. R. A. P.; Moreno, Carolina S.; Rogero, Sizue O.; Rogero, José R.; Spencer, Patrick J.; Lugão, Ademar B.
2010-03-01
The polyphenol trans-resveratrol is a natural phytoalexin, which is found in red wine and in a wide variety of plant species. Resveratrol displays a wide array of biological activities, such as modulation of lipid metabolism, anti-inflammatory and antioxidant activities. This active compound immobilized in polyvinylpyrrolidone (PVP) hydrogel could be very interesting for topical administration, as a dressing form for dermatological use. However, PVP hydrogel obtained by radiation-induced crosslinking can cause undesirable hydrolysis reactions in the active compound. The aim of this work was to verify the resveratrol stability after irradiation at 0.5 and 1 kGy in the presence of ethanol, methanol or tert-butyl alcohol. The integrity of these samples was compared to unirradiated resveratrol by HPLC. The PVP hydrogel matrix was characterized by gel fraction, swelling and in vitro biocompatibility test. The results of gel fraction and swelling degree were approximately 90% and 1600%, respectively. The cytotoxicity assay showed absence of toxicity for this formulation after crosslinking and sterilization, indicating that the PVP hydrogel formulation was appropriate for resveratrol immobilization to produce a dressing for dermatological use.
21 CFR 640.90 - Plasma Protein Fraction (Human).
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Plasma Protein Fraction (Human). 640.90 Section...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.90 Plasma Protein Fraction (Human). (a) Proper name and definition. The proper name of the product shall be...
21 CFR 640.90 - Plasma Protein Fraction (Human).
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Plasma Protein Fraction (Human). 640.90 Section...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.90 Plasma Protein Fraction (Human). (a) Proper name and definition. The proper name of the product shall be...
21 CFR 640.90 - Plasma Protein Fraction (Human).
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Plasma Protein Fraction (Human). 640.90 Section 640...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.90 Plasma Protein Fraction (Human). (a) Proper name and definition. The proper name of the product shall be...
21 CFR 640.90 - Plasma Protein Fraction (Human).
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Plasma Protein Fraction (Human). 640.90 Section...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.90 Plasma Protein Fraction (Human). (a) Proper name and definition. The proper name of the product shall be...
21 CFR 640.90 - Plasma Protein Fraction (Human).
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Plasma Protein Fraction (Human). 640.90 Section...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.90 Plasma Protein Fraction (Human). (a) Proper name and definition. The proper name of the product shall be...
NASA Astrophysics Data System (ADS)
Sutherland, K. M.; Wankel, S. D.; Hansel, C. M.
2016-12-01
Manganese (Mn) oxides are a ubiquitous mineralogical component of surface Earth and Mars. Mn(III/IV) oxides are potent environmental sorbents and oxidants that play a crucial role in the fate of organic matter. The processes by which Mn(II) oxidation occurs in natural systems are poorly understood, but a number of studies have implicated microogranisms as the primary agents of Mn(II) oxidation in terrestrial and marine environments. The ability of microorganisms to oxidize Mn(II) to Mn(III/IV) oxides transcends the boundaries of biological domain, with an abundance of well-characterized prokaryotes as well as eukaryotic fungi with the ability to oxidize Mn(II) to Mn(III/IV) oxides. Biological Mn(II) oxidation proceeds directly through enzymatic activity or indirectly through the production of reactive oxygen species. Building upon earlier research suggesting that stable oxygen isotope fractionation could be used to fingerprint unique Mn(II)-oxidizing organisms or distinct oxidation pathways, here we use culture-based studies of Mn(II)-oxidizing bacteria and fungi to determine the kinetic oxygen isotope effects associated with Mn(II) oxidation. Since the oxygen molecules in Mn(III/IV) oxides are comprised of oxygen from both precursor water and molecular oxygen, we used a two-fold approach to constrain isotope fractionation with respect to each oxygen source. We used open system oxidation experiments using oxygen-18 labeled water in parallel with closed system Rayleigh distillation oxidation experiments to fully constrain isotope fractionation associated with oxygen atom incorporation during Mn(II) oxidation. Our results suggest commonalities among fractionation factors from groups of Mn(II)-oxidizing organisms that have similar oxidation mechanisms. These results suggest that stable oxygen isotopes of Mn(III/IV) oxides have the potential to distinguish between Mn(II) oxidation pathways in nature, providing a way to determine which groups of Mn(II) oxidizers may be active in present and past surface Earth environments.
Ruphin, Fatiany Pierre; Baholy, Robijaona; Emmanue, Andrianarivo; Amelie, Raharisololalao; Martin, Marie-Therese; Koto-te-Nyiwa, Ngbolua
2013-01-01
Objective To validate scientifically the traditional use of Salacia leptoclada Tul. (Celastraceae) (S. leptoclada) and to isolate and elucidate the structure of the biologically active compound. Methods Bioassay-guided fractionation of the acetonic extract of the stem barks of S. leptoclada was carried out by a combination of chromatography technique and biological experiments in viro using Plasmodium falciparum and P388 leukemia cell lines as models. The structure of the biologically active pure compound was elucidated by 1D and 2D NMR spectroscopy and mass spectrometry. Results Biological screening of S. leptoclada extracts resulted in the isolation of a pentacyclic triterpenic quinone methide. The pure compound exhibited both in vitro a cytotoxic effect on murine P388 leukemia cells with IC50 value of (0.041±0.020) µg/mL and an antiplasmodial activity against the chloroquine-resistant strain FC29 of Plasmodium falciparum with an IC50 value of (0.052±0.030) µg/mL. Despite this interesting anti-malarial property of the lead compound, the therapeutic index was weak (0.788). In the best of our knowledge, the quinone methide pentacyclic triterpenoid derivative compound is reported for the first time in S. leptoclada. Conclusions The results suggest that furthers studies involving antineoplastic activity is needed for the development of this lead compound as anticancer drug. PMID:24075342
Ruphin, Fatiany Pierre; Baholy, Robijaona; Emmanue, Andrianarivo; Amelie, Raharisololalao; Martin, Marie-Therese; Koto-te-Nyiwa, Ngbolua
2013-10-01
To validate scientifically the traditional use of Salacia leptoclada Tul. (Celastraceae) (S. leptoclada) and to isolate and elucidate the structure of the biologically active compound. Bioassay-guided fractionation of the acetonic extract of the stem barks of S. leptoclada was carried out by a combination of chromatography technique and biological experiments in viro using Plasmodium falciparum and P388 leukemia cell lines as models. The structure of the biologically active pure compound was elucidated by 1D and 2D NMR spectroscopy and mass spectrometry. Biological screening of S. leptoclada extracts resulted in the isolation of a pentacyclic triterpenic quinone methide. The pure compound exhibited both in vitro a cytotoxic effect on murine P388 leukemia cells with IC50 value of (0.041±0.020) μg/mL and an antiplasmodial activity against the chloroquine-resistant strain FC29 of Plasmodium falciparum with an IC50 value of (0.052±0.030) μg/mL. Despite this interesting anti-malarial property of the lead compound, the therapeutic index was weak (0.788). In the best of our knowledge, the quinone methide pentacyclic triterpenoid derivative compound is reported for the first time in S. leptoclada. The results suggest that furthers studies involving antineoplastic activity is needed for the development of this lead compound as anticancer drug. Copyright © 2013 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.
The physicochemical distribution of 131I in a municipal wastewater treatment plant.
Hormann, Volker; Fischer, Helmut W
2017-11-01
As a consequence of therapeutic and diagnostic treatment of patients with thyroid diseases, 131 I is introduced into the sewage system on a regular basis. This presents an opportunity to use the 131 I as a tracer to study its partitioning and transport within a wastewater treatment plant (WWTP). In the case of nuclear accidents where 131 I is one of the most prominent nuclides, an understanding of iodine partitioning and transport will be valuable for developing models that may prognosticate the activity concentrations in sludge and outflow, especially after an accidental input. In this study, samples from various locations inside a municipal WWTP were taken and for each sample, three different fractions were separated by a chemical extraction process. These fractions were analysed for their 131 I activity concentrations by gamma-ray spectroscopy. While about 30% of the radioiodine activity in the inflow is associated with organic molecules, this amounts to about 90% after biological treatment. This is caused by the accumulation of 131 I bound to organic matter in the return sludge and by a transfer of 131 I from the inorganic to the organic fractions, most likely mediated by microbial action. In the outflow, inorganic and low-molecular 131 I is dominant, but the overall activity concentration is reduced to about 50-75%. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bromelain purification through unconventional aqueous two-phase system (PEG/ammonium sulphate).
Coelho, D F; Silveira, E; Pessoa Junior, A; Tambourgi, E B
2013-02-01
This paper focuses on the feasibility of unconventional aqueous two-phase systems for bromelain purification from pineapple processing waste. The main difference in comparison with conventional systems is the integration of the liquid-liquid extraction technique with fractional precipitation, which can decrease the protein content with no loss of biological activity by removing of unwanted molecules. The analysis of the results was based on the response surface methodology and revealed that the use of the desirability optimisation methodology (DOM) was necessary to achieve higher purification factor values and greater bromelain recovery. The use of DOM yielded an 11.80-fold purification factor and 66.38 % biological activity recovery using poly(ethylene glycol) (PEG) with a molar mass of 4,000, 10.86 % PEG concentration (m/m) and 36.21 % saturation of ammonium sulphate.
Valdez-Velazquéz, L L; Romero-Gutierrez, M T; Delgado-Enciso, I; Dobrovinskaya, O; Melnikov, V; Quintero-Hernández, V; Ceballos-Magaña, S G; Gaitan-Hinojosa, M A; Coronas, F I; Puebla-Perez, A M; Zamudio, F; De la Cruz-García, I; Vázquez-Vuelvas, O F; Soriano-Hernandez, A D; Possani, L D
2016-08-01
Centruroides tecomanus is a medically important scorpion of the state of Colima (Mexico). This communication reports the identification of venom components of this scorpion with biological activity over insects/crickets (Acheta domestica), crustaceans/fresh water shrimps (Cambarellus montezumae), and mammalians/mice (Mus musculus, strain CD1). It also describes the pharmacological effects on cell lines in culture (L5178Y cells, HeLa cells, HuTu cells and Jurkat E6-1 cells), as well as on several types of bacteria (see below). The soluble venom of this scorpion was fractionated by high-performance liquid chromatography (HPLC) and collected separately in twelve independent fractions collected over 60 min run (5 min time apart each other). The HPLC components of fraction VII were lethal to all three species used for assay. The IVth fraction had a toxic effect on freshwater shrimps. In this species, fractions VI, VII and VIII were all lethal. For crickets, fractions V and VI were toxic and fraction VII was lethal. In mouse, the lethal components were found in fraction VII, whereas fraction VIII was toxic, but not lethal, at the doses assayed. The molecular weight of peptides from the various group of fractions were identified by mass spectrometry determination. Components lethal to mice showed molecular weights from 7013 to 7487 Da. Two peptides were obtained in homogeneous form and shown to be lethal to the three species of animal used for assay. The soluble venom tested on L5178Y cell line survival was shown to be cytotoxic, at 10-100 μg/mL concentration, when compared to control murine splenocytes (p = 0.007). The soluble venom applied to Hela, Hutu and Jurkat cell lines did not show cytotoxic effects at these concentrations. On the contrary, it seems to have a proliferative effect. However the HPLC fractions I, III, VI and XII do have a cytotoxic effect on Jurkat E06-1 cells in culture at 200 μg/mL concentration. The antimicrobial activity of the venom fractions on Staphylococcus aureus (gram-positive), Escherichia coli, Pseudomonas aeruginosa y Salmonella spp (gram-negative) was measured, using the liquid inhibition growth system. The four strains of bacteria used were susceptible to fractions III and IV, affecting all four bacterial strains at concentrations below 5 μg/mL. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Schidlowski, M.
1983-01-01
Preferential metabolization of isotopically light carbon and sulfur has resulted in a fractionation of the stable isotopes of these elements on a global scale, with the light species (C-12, S-32) markedly concentrated in biogenic materials. Since the biological effects are basically retained when carbon and sulfur are incorporated in sediments, the respective fractionations are propagated into the rock section of the geochemical cycle, this having consequently caused a characteristic bipartition of both elements between 'light' and 'heavy' crustal reservoirs. Preservation of the biological isotope effects in sedimentary rocks makes it possible to trace the underlying biochemical processes back over most of the geological record. According to the available evidence, biological (autotrophic) carbon fixation arose prior to 3.5(if not 3.8) billion years ago, while the emergence of dissimilatory sulfate reduction antedates the appearance of the oldest presumably bacteriogenic sulfur isotope patterns in rocks between 2.7 and 2.8 billion years old. Hence, biological control of the terrestrial carbon and sulfur cycles has been established very early in the earth's history.
NASA Astrophysics Data System (ADS)
Fichtner, Thomas; Stefan, Catalin; Goersmeyer, Nora
2015-04-01
Rate and extent of the biological degradation of organic substances during transport through the unsaturated soil zone is decisively influenced by the chemical and physical properties of the pollutants such as water solubility, toxicity and molecular structure. Furthermore microbial degradation processes are also influenced by soil-specific properties. An important parameter is the soil grain size distribution on which the pore volume and the pore size depends. Changes lead to changes in air and water circulation as well as preferred flow paths. Transport capacity of water inclusive nutrients is lower in existing bad-drainable fine pores in soils with small grain size fractions than in well-drainable coarse pores in a soil with bigger grain size fractions. Because fine pores are saturated with water for a longer time than the coarse pores and oxygen diffusion in water is ten thousand times slower than in air, oxygen is replenished much slower in soils with small grain size fractions. As a result life and growth conditions of the microorganisms are negatively affected. This leads to less biological activity, restricted degradation/mineralization of pollutants or altered microbial processes. The aim of conducted laboratory column experiments was to study the correlation between the grain size fractions respectively pore sizes, the oxygen content and the biodegradation rate of infiltrated organic substances. Therefore two columns (active + sterile control) were filled with different grain size fractions (0,063-0,125 mm, 0,2-0,63 mm and 1-2 mm) of soils. The sterile soil was inoculated with a defined amount of a special bacteria culture (sphingobium yanoikuae). A solution with organic substances glucose, oxalic acid, sinaphylic alcohol and nutrients was infiltrated from the top in intervals. The degradation of organic substances was controlled by the measurement of dissolved organic carbon in the in- and outflow of the column. The control of different pore volumes respectively pore sizes in the soil samples occurred by air pycnometer measurement and determination of soil moisture characteristic by evaporation method according to Wind/Schindler. The present study results can be useful to find a correlation between various soil types with different grain size distributions and the suitability of these soils for example for the infiltration of treated wastewater in the context of managed aquifer recharge (MAR) measures.
2013-01-01
Background Cranberry fruits possess many biological activities partly due to their various phenolic compounds; however the underlying modes of action are poorly understood. We studied the effect of cranberry fruit extracts on the gene expression of Staphylococcus aureus to identify specific cellular processes involved in the antibacterial action. Methods Transcriptional profiles of four S. aureus strains grown in broth supplemented or not with 2 mg/ml of a commercial cranberry preparation (Nutricran®90) were compared using DNA arrays to reveal gene modulations serving as markers for biological activity. Ethanol extracted pressed cakes from fresh fruits also produced various fractions and their effects on marker genes were demonstrated by qPCR. Minimal inhibitory concentrations (MICs) of the most effective cranberry fraction (FC111) were determined against multiple S. aureus strains and drug interactions with β-lactam antibiotics were also evaluated. Incorporation assays with [3H]-radiolabeled precursors were performed to evaluate the effect of FC111 on DNA, RNA, peptidoglycan (PG) and protein biosynthesis. Results Treatment of S. aureus with Nutricran®90 or FC111 revealed a transcriptional signature typical of PG-acting antibiotics (up-regulation of genes vraR/S, murZ, lytM, pbp2, sgtB, fmt). The effect of FC111 on PG was confirmed by the marked inhibition of incorporation of D-[3H]alanine. The combination of β-lactams and FC111 in checkerboard assays revealed a synergistic activity against S. aureus including strain MRSA COL, which showed a 512-fold drop of amoxicillin MIC in the presence of FC111 at MIC/8. Finally, a therapeutic proof of concept was established in a mouse mastitis model of infection. S. aureus-infected mammary glands were treated with amoxicillin, FC111 or a combination of both; only the combination significantly reduced bacterial counts from infected glands (P<0.05) compared to the untreated mice. Conclusions The cranberry fraction FC111 affects PG synthesis of S. aureus and acts in synergy with β-lactam antibiotics. Such a fraction easily obtained from poorly exploited press-cake residues, may find interesting applications in the agri-food sector and help reduce antibiotic usage in animal food production. PMID:23622254
Xiao, Hongxia; Brinkmann, Markus; Thalmann, Beat; Schiwy, Andreas; Große Brinkhaus, Sigrid; Achten, Christine; Eichbaum, Kathrin; Gembé, Carolin; Seiler, Thomas-Benjamin; Hollert, Henner
2017-03-21
Effect-directed analysis (EDA) is a powerful strategy to identify biologically active compounds in environmental samples. However, in current EDA studies, fractionation and handling procedures are laborious, consist of multiple evaporation steps, and thus bear the risk of contamination and decreased recoveries of the target compounds. The low resulting throughput has been one of the major bottlenecks of EDA. Here, we propose a high-throughput EDA (HT-EDA) work-flow combining reversed phase high-performance liquid chromatography fractionation of samples into 96-well microplates, followed by toxicity assessment in the micro-EROD bioassay with the wild-type rat hepatoma H4IIE cells, and chemical analysis of bioactive fractions. The approach was evaluated using single substances, binary mixtures, and extracts of sediment samples collected at the Three Gorges Reservoir, Yangtze River, China, as well as the rivers Rhine and Elbe, Germany. Selected bioactive fractions were analyzed by highly sensitive gas chromatography-atmospheric pressure laser ionization-time-of-flight-mass spectrometry. In addition, we optimized the work-flow by seeding previously adapted suspension-cultured H4IIE cells directly into the microplate used for fractionation, which makes any transfers of fractionated samples unnecessary. The proposed HT-EDA work-flow simplifies the procedure for wider application in ecotoxicology and environmental routine programs.
Nivelle, Laetitia; Hubert, Jane; Courot, Eric; Jeandet, Philippe; Aziz, Aziz; Nuzillard, Jean-Marc; Renault, Jean-Hugues; Clément, Christophe; Martiny, Laurent; Delmas, Dominique; Tarpin, Michel
2017-03-16
In the present study, resveratrol and various oligomeric derivatives were obtained from a 14 L bioreactor culture of elicited grapevine cell suspensions (Vitis labrusca L.). The crude ethyl acetate stilbene extract obtained from the culture medium was fractionated by centrifugal partition chromatography (CPC) using a gradient elution method and the major stilbenes contained in the fractions were subsequently identified by using a 13 C-NMR-based dereplication procedure and further 2D NMR analyses including HSQC, HMBC, and COSY. Beside δ-viniferin (2), leachianol F (4) and G (4'), four stilbenes (resveratrol (1), ε-viniferin (5), pallidol (3) and a newly characterized dimer (6)) were recovered as pure compounds in sufficient amounts to allow assessment of their biological activity on the cell growth of three different cell lines, including two human skin malignant melanoma cancer cell lines (HT-144 and SKMEL-28) and a healthy human dermal fibroblast HDF line. Among the dimers obtained in this study, the newly characterized resveratrol dimer (6) has never been described in nature and its biological potential was evaluated here for the first time. ε-viniferin as well as dimer (6) showed IC 50 values on the three tested cell lines lower than the ones exerted by resveratrol and pallidol. However, activities of the first two compounds were significantly decreased in the presence of fetal bovine serum although that of resveratrol and pallidol was not. The differential tumor activity exerted by resveratrol on healthy and cancer lines was also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yen, T.F.
1985-01-01
Degradation of Beulah std No. 3 lignite was carried out by means of cupric oxidation, modified-autoclaved-cupric oxidation, sodium dichromate oxidation, and also by biological methods. Assessment of the yield of alkaline-soluble and methanol soluble products of both cupric oxidation and modified cupric oxidation (on a moisture-free and ash-free basis) was carried out by both ion chromatography and gel permeation chromatography. Fractionation of lignite for natural-uninoculated-biological growth resulted in no growth for both benzene-methanol fraction and alkaline filtrate fraction, whereas that of alkaline geletinous fraction resulted in positive growth of unidentified white-rot fungi. Acclimation of Polyporus versicolor to lignite was attempted.more » 10 refs.« less
Chougouo, Rosine D K; Nguekeu, Yves M M; Dzoyem, Jean P; Awouafack, Maurice D; Kouamouo, Jonas; Tane, Pierre; McGaw, Lyndy J; Eloff, Jacobus N
2016-01-01
Natural products, including those derived from higher plants have, over the years, contributed greatly to the development of modern therapeutic drugs. Due to the medicinal importance in traditional practice and the diversified biology and chemistry of the constituents from Artemisia spp., the genus has been receiving growing attention. The aim of this study was to investigate the ability of the ethanol extract, four fractions (F1-F4) and five compounds namely artemisinin (1), scopoletin (2), chrysosplenetin (3), eupatin (4) and 3-O-β-d-glucopyranoside of sitosterol (5) isolated from A. annua to modulate the activity of anticholinesterase (AchE) and the production of nitric oxide (NO) in LPS-activated RAW 264.7 macrophages. At the lowest concentration tested (6.25 µg/mL), the crude extract and fraction F2 had the highest NO inhibitory activity (72.39 and 71.00 % inhibition respectively) without significant toxicity on the viability of macrophage cells (93.86 and 79.87 % of cell viability respectively). The crude extract inhibited AchE activity by 71.83 % (at 1 mg/mL) with an IC50 value of 87.43 µg/mL while F2 and F4 were the most active fractions (IC50 values of 36.75 and 28.82 µg/mL). Artemisinin (1) and chrysosplenetin (3) had the highest AChE activity with 71.67 and 80.00 % inhibition (at 0.1 mg/mL) and IC50 values of 29.34 and 27.14 µg/mL, respectively. Our results validate the traditional use of A. annua and could help to support the usefulness of this plant in the treatment of inflammatory and neurological disorders especially where nitric oxide and a cholinesterase are involved.
Ezzat, Shahira M; Choucry, Mouchira A; Kandil, Zeinab A
2016-01-01
Despite the traditional use of Bergia ammannioides Henye ex Roth. (Elatinaceae) for the treatment of wounds in India, there is a scarcity of scientific data supporting this use. The objective of this study is to assess wound-healing potentiality of the plant, to study pharmacological activities that may contribute in eliminating wound complications, and to investigate the biologically active fractions. The ethanolic extract (EtOH) of the aerial parts was fractionated to obtain n-hexane (HxFr), chloroform (ClFr), ethyl acetate (EtFr), and n-butanol (BuOH) fractions. EtOH and its fractions were formulated in strength of 5 and 10% w/w ointment and tested for wound-healing activity using the excision model. The topical anti-inflammatory, in vitro antioxidant, and antibacterial activities were evaluated. HxFr and EtFr were chemically investigated to isolate their constituents. Application of EtOH, HxFr, and EtFr (10% w/w ointments) leads to 71.77, 85.62, and 81.29% healing of the wounds with an increase in the collagen content. HxFr had the strongest anti-inflammatory (64.5% potency relative to Voltaren®) and antibacterial activity (MIC = 104 μg/ml against Staphylococcus aureus), while EtFr showed the strongest antioxidant activity against DPPH, ABTS(•+), and super oxide radical with an IC50 value of 10.25 ± 0.01, 66.09 ± 0.76, and 167.33 ± 0.91 µg/ml, respectively. β-Sitosterol, lupeol, cyclolaudenol, and cycloartenol were isolated from HxFr. Quercetin, ellagic acid, kaempferol-3-O-α-l-rhamnoside, and quercetin-3-O-α-l-rhamnoside were isolated from EtFr. Our study presents scientific evidence for the efficacy of B. ammannioides in enhancing wound healing, and the first isolation of cyclolaudenol and cycloartenol from Bergia.
Effects of Moisture Content in Solid Waste Landfills
2000-03-01
C02 + CH4 + NH3 + H2S + Heat The biological conversion of the organic fraction of the solid waste during anaerobic transformation is thought to occur...of placement (Blight, 1995: 11). In dry climates, the field capacity of the waste may never be naturally reached. Conversely , in a wet climate, the...detected in the cellulase activity (Barlaz and others, 1990: 570). Protease, amylase, and cellulase are the enzymes that degrade proteins, starches, and
Park, Ji Won; Kim, Hyun-Chul; Meyer, Anne S; Kim, Sungpyo; Maeng, Sung Kyu
2016-10-01
The influences of natural organic matter (NOM) and bacteriological characteristics on the biological stability of water were investigated in a full-scale drinking water treatment plant. We found that prechlorination decreased the hydrophobicity of the organic matter and significantly increased the high-molecular-weight (MW) dissolved organic matter, such as biopolymers and humic substances. High-MW organic matter and structurally complex compounds are known to be relatively slowly biodegradable; however, because of the prechlorination step, the indigenous bacteria could readily utilise these fractions as assimilable organic carbon. Sequential coagulation and sedimentation resulted in the substantial removal of biopolymer (74%), humic substance (33%), bacterial cells (79%), and assimilable organic carbon (67%). Rapid sand and granular activated carbon filtration induced an increase in the low-nucleic-acid content bacteria; however, these bacteria were biologically less active in relation to enzymatic activity and ATP. The granular activated carbon step was essential to securing biological stability (the ability to prevent bacterial growth) by removing the residual assimilable organic carbon that had formed during the ozone treatment. The growth potential of Escherichia coli and indigenous bacteria were found to differ in respect to NOM characteristics. In comparison with E. coli, the indigenous bacteria utilised a broader range of NOM as a carbon source. Principal component analysis demonstrated that the measured biological stability of water could differ, depending on the NOM characteristics, as well as on the bacterial inoculum selected for the analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
al-Gaby, A M
1998-10-01
The biological effects of supplementing broad bean (Vicia faba) or corn (Zea maize) meal protein with black cumin (Nigella sativa) cake protein as well as their amino acid composition were investigated. The percentage of total protein content of Nigella cake was 22.7%. Lysine is existent in abundant amounts in faba meal protein, while leucine is the most abundant in corn meal protein (chemical score = 156) and valine is higher in Nagella cake protein. compared with rats fed sole corn or faba meal protein, substitution of 25% of corn or faba meal protein with Nigella cake protein in the diet remarkably raised the growth rate of rats and resulted in significant higher levels of rat total serum lipids and triglycerides. Also, the supplemented diet caused significant increases in serum total protein and its two fractions albumin and globulin and insignificantly increase the activity of serum phosphatases and transaminases within normal ranges. The supplementation did not have any adverse nutritional effects in the levels of lipid fractions in the serum.
Camp, David; Newman, Stuart; Pham, Ngoc B; Quinn, Ronald J
2014-03-01
The Eskitis Institute for Drug Discovery is home to two unique resources, Nature Bank and the Queensland Compound Library (QCL), that differentiate it from many other academic institutes pursuing chemical biology or early phase drug discovery. Nature Bank is a comprehensive collection of plants and marine invertebrates that have been subjected to a process which aligns downstream extracts and fractions with lead- and drug-like physicochemical properties. Considerable expertise in screening natural product extracts/fractions was developed at Eskitis over the last two decades. Importantly, biodiscovery activities have been conducted from the beginning in accordance with the UN Convention on Biological Diversity (CBD) to ensure compliance with all international and national legislative requirements. The QCL is a compound management and logistics facility that was established from public funds to augment previous investments in high throughput and phenotypic screening in the region. A unique intellectual property (IP) model has been developed in the case of the QCL to stimulate applied, basic and translational research in the chemical and life sciences by industry, non-profit, and academic organizations.
NASA Astrophysics Data System (ADS)
Miller, L. G.; Baesman, S. M.; Oremland, R. S.
2014-12-01
The search for biosignatures of life on Earth includes measurement of the stable isotope fractionation of reactants and products attributed to enzymatic processes and comparison with the often smaller chemical (abiotic) fractionation. We propose that this approach might be applied to study the origin and fate of organic compounds contained in water vapor plumes emanating from Enceladus or other icy bodies, perhaps revealing information about the potential for biology occurring within a sub-surface "habitable" zone. Methanol and C2-hydrocarbons including ethylene, ethane and acetylene (C2H2) have been identified in the plumes of Enceladus. Biological degradation of acetylene proceeds by anaerobic fermentation via acetylene hydratase through acetaldehyde, with a second enzyme (acetaldehyde dismutase) forming acetate and ethanol. We found that incubation of cultures of acetylene-fermenting bacteria exhibit a kinetic isotope effect (KIE) associated with the net removal of C2H2. Consumption of acetylene by both growing and washed-cell cultures of bacteria closely related to Pelobacter acetylenicus (e.g, strain SFB93) was accompanied by a carbon isotopic fractionation of about 2 per mil (KIE = 1.8-2.7 ‰), a result we are examining with other cultures of acetylene fermenters. In addition, we are measuring the carbon isotopic composition of acetaldehyde, ethanol and acetate during fermentation to learn whether these products are fractionated sufficiently, relative to their substrate, to warrant measurement of their isotopic composition in Enceladus (or Europa) plumes to indicate enzymatic activity in liquid environments below the crust of these moons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, Daniel R., E-mail: dgomez@mdanderson.org; Gillin, Michael; Liao, Zhongxing
Background: Many patients with locally advanced non-small cell lung cancer (NSCLC) cannot undergo concurrent chemotherapy because of comorbidities or poor performance status. Hypofractionated radiation regimens, if tolerable, may provide an option to these patients for effective local control. Methods and Materials: Twenty-five patients were enrolled in a phase 1 dose-escalation trial of proton beam therapy (PBT) from September 2010 through July 2012. Eligible patients had histologically documented lung cancer, thymic tumors, carcinoid tumors, or metastatic thyroid tumors. Concurrent chemotherapy was not allowed, but concurrent treatment with biologic agents was. The dose-escalation schema comprised 15 fractions of 3 Gy(relative biological effectivenessmore » [RBE])/fraction, 3.5 Gy(RBE)/fraction, or 4 Gy(RBE)/fraction. Dose constraints were derived from biologically equivalent doses of standard fractionated treatment. Results: The median follow-up time for patients alive at the time of analysis was 13 months (range, 8-28 months). Fifteen patients received treatment to hilar or mediastinal lymph nodes. Two patients experienced dose-limiting toxicity possibly related to treatment; 1 received 3.5-Gy(RBE) fractions and experienced an in-field tracheoesophageal fistula 9 months after PBT and 1 month after bevacizumab. The other patient received 4-Gy(RBE) fractions and was hospitalized for bacterial pneumonia/radiation pneumonitis 4 months after PBT. Conclusion: Hypofractionated PBT to the thorax delivered over 3 weeks was well tolerated even with significant doses to the lungs and mediastinal structures. Phase 2/3 trials are needed to compare the efficacy of this technique with standard treatment for locally advanced NSCLC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, C; Hrycushko, B; Jiang, S
2014-06-01
Purpose: To compare the radiobiological effect on large tumors and surrounding normal tissues from single fraction SRS, multi-fractionated SRT, and multi-staged SRS treatment. Methods: An anthropomorphic head phantom with a centrally located large volume target (18.2 cm{sup 3}) was scanned using a 16 slice large bore CT simulator. Scans were imported to the Multiplan treatment planning system where a total prescription dose of 20Gy was used for a single, three staged and three fractionated treatment. Cyber Knife treatment plans were inversely optimized for the target volume to achieve at least 95% coverage of the prescription dose. For the multistage plan,more » the target was segmented into three subtargets having similar volume and shape. Staged plans for individual subtargets were generated based on a planning technique where the beam MUs of the original plan on the total target volume are changed by weighting the MUs based on projected beam lengths within each subtarget. Dose matrices for each plan were export in DICOM format and used to calculate equivalent dose distributions in 2Gy fractions using an alpha beta ratio of 10 for the target and 3 for normal tissue. Results: Singe fraction SRS, multi-stage plan and multi-fractionated SRT plans had an average 2Gy dose equivalent to the target of 62.89Gy, 37.91Gy and 33.68Gy, respectively. The normal tissue within 12Gy physical dose region had an average 2Gy dose equivalent of 29.55Gy, 16.08Gy and 13.93Gy, respectively. Conclusion: The single fraction SRS plan had the largest predicted biological effect for the target and the surrounding normal tissue. The multi-stage treatment provided for a more potent biologically effect on target compared to the multi-fraction SRT treatments with less biological normal tissue than single-fraction SRS treatment.« less
Anti-tuberculosis and cytotoxic evaluation of the seaweed Sargassum boveanum.
Akbari, Vajihe; Zafari, Saeed; Yegdaneh, Afsaneh
2018-02-01
Marine seaweeds produce a variety of compounds with different biological activities, including antituberculosis and anticancer effects. The aim of this study was to investigate anti-tuberculosis activity of Sargassum boveanum ( S. boveanum ) and cytotoxicity of different fractions of this seaweed. S. boveanum was collected from Persian Gulf. The plant was extracted by maceration with methanol-ethyl acetate solvent. The extract was evaporated and partitioned by Kupchan method to yield hexane, tricholoroethane, chloroform, and butanol partitions. The anti-tuberculosis activity of the crude extract and toxicity of the fractions were investigated using green fluorescent protein reporter microplate assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay methods, respectively. The cell survivals of HeLa cell were decreased by increasing the concentration of the extracts. The IC 50 values of hexane, tricholoroethane, chloroform, and butanol partitions were 150.3 ± 23.10, 437.0 ± 147.3, 110.4 ± 33.67, and 1025.0 ± 15.20 μg/mL, respectively. The crude extract was not active against tuberculosis. This study reveals that different partitions of S. boveanum have cytotoxic activity against the cancer cell lines.
Ice nucleation by soil dust compared to desert dust aerosols
NASA Astrophysics Data System (ADS)
Moehler, O.; Steinke, I.; Ullrich, R.; Höhler, K.; Schiebel, T.; Hoose, C.; Funk, R.
2015-12-01
A minor fraction of atmospheric aerosol particles, so-called ice-nucleating particles (INPs), initiates the formation of the ice phase in tropospheric clouds and thereby markedly influences the Earth's weather and climate systems. Whether an aerosol particle acts as an INP depends on its size, morphology and chemical compositions. The INP fraction of certain aerosol types also strongly depends on the temperature and the relative humidity. Because both desert dust and soil dust aerosols typically comprise a variety of different particles, it is difficult to assess and predict their contribution to the atmospheric INP abundance. This requires both accurate modelling of the sources and atmospheric distribution of atmospheric dust components and detailed investigations of their ice nucleation activities. The latter can be achieved in laboratory experiments and parameterized for use in weather and climate models as a function of temperature and particle surface area, a parameter called ice-nucleation active site (INAS) density. Concerning ice nucleation activity studies, the soil dust is of particular interest because it contains a significant fraction of organics and biological components, both with the potential for contributing to the atmospheric INP abundance at relatively high temperatures compared to mineral components. First laboratory ice nucleation experiments with a few soil dust samples indicated their INP fraction to be comparable or slightly enhanced to that of desert dust. We have used the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud simulation chamber to study the immersion freezing ability of four different arable soil dusts, sampled in Germany, China and Argentina. For temperatures higher than about -20°C, we found the INP fraction of aerosols generated from these samples by a dry dispersion technique to be significantly higher compared to various desert dust aerosols also investigated in AIDA experiments. In this contribution, we will summarize the experimental results, introduce related INP parameterizations for use in weather and climate models, and briefly discuss possible reasons for the discrepancy between the INP fraction of desert and soil dust aerosols.
Chen, Yumin; Brown, Peter H; Hu, Kang; Black, Richard M; Prior, Ronald L; Ou, Boxin; Chu, Yi-Fang
2011-09-01
The supercritical CO(2)-decaffeination process causes unroasted coffee beans to turn brown. Therefore, we suspected that the decaffeinated beans contained melanoidins. Decaffeinated unroasted coffee extract absorbed light at 405 nm with a specific extinction coefficient, K(mix 405 nm), of 0.02. Membrane dialysis (molecular weight cut-off, 12 to 14 kDa) increased the K(mix 405 nm) value 15 fold. Gel filtration chromatography showed that the high-MW fraction (MW > 12 kDa) had an elution profile closer to that of melanoidins of medium-roast coffee than to the corresponding fraction of unroasted coffee, indicating the presence of melanoidins in decaffeinated unroasted beans. Using murine myoblast C2C12 cells with a stably transfected nuclear factor-κB (NF-κB) luciferase reporter gene, we found that the high-MW fraction of decaffeinated unroasted beans had an NF-κB inhibitory activity of IC(50) = 499 μg/mL, more potent than that of regular-roast coffee (IC(50) = 766 μg/mL). Our results indicate that melanoidins form during the supercritical CO(2)-decaffeination process and possess biological properties distinct from those formed during the regular roasting process. We discovered the roasting effect of decaffeination process, reporting the discovery of melanoidins in green (unroasted) decaf coffee beans. Our results indicated that melanoidins form during the supercritical CO2-decaffeination process and possess biological properties distinct from those formed during the regular roasting process. Our results offer new insights into the formation of bioactive coffee components during coffee decaffeination process. © 2011 Institute of Food Technologists®
Irshad, Muhammad; Murtza, Aimen; Zafar, Muddassar; Bhatti, Khizar Hayat; Rehman, Abdul; Anwar, Zahid
2017-11-01
Biological macromolecules are primarily composed of complex polysaccharides that strengthen microbial growth for the production of industrially relevant enzymes. The presence of polysaccharides in the form of the disrupted cell wall and cell materials are among major challenges in the fruit juice industry. The breakdown of such biological macromolecules including cellulose and pectin is vital for the juices processing. In this background, pectinolytic enzymes including polygalacturonase (PG), pectin lyase (PL), and pectin methylesterase (PME) were isolated from Aspergillus ornatus, statistically optimized and purified via ammonium sulfate fractionation (ASF), dialysis, and Sephadex G-100 gel permeation chromatography. After passing through Sephadex G-100 column, PG, PL, and PME were 2.60-fold, 3.30-fold, and 4.52-fold purified with specific activities of 475.2U/mg, 557.1U/mg, and 205.7U/mg. The active PG, PL, and PME, each separately, were surface immobilized using various concentrations of chitosan and dextran polyaldehyde as a macromolecular crosslinking agent. Prior to exploit for juice clarification purposes, various parameters including pH, thermal and Michaelis-Menten kinetic constants of purified and chitosan-immobilized fractions were investigated. A considerable improvement in the pH and thermal profiles was recorded after immobilization. However, the negligible difference between the K m and V max values of purified free and chitosan-immobilized fractions revealed that the conformational flexibility of pectinolytics was retained as such. A significant color and turbidity reductions were recorded after 60min treatment with CTS-PG, followed by CTS-PME, and CTS-PL. It can be concluded that the clarification of apples, mango, peach, and apricot juices was greatly affected by CTS-PG, CTS-PME, and CTS-PL treatments rendering them as potential candidatures for food industry applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Railean-Plugaru, Viorica; Pomastowski, Pawel; Kowalkowski, Tomasz; Sprynskyy, Myroslav; Buszewski, Boguslaw
2018-04-01
Asymmetric flow field-flow fractionation coupled with use of ultraviolet-visible, multiangle light scattering (MALLS), and dynamic light scattering (DLS) detectors was used for separation and characterization of biologically synthesized silver composites in two liquid compositions. Moreover, to supplement the DLS/MALLS information, various complementary techniques such as transmission electron spectroscopy, Fourier transform infrared spectroscopy, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) were used. The hydrodynamic diameter and the radius of gyration of silver composites were slightly larger than the sizes obtained by transmission electron microscopy (TEM). Moreover, the TEM results revealed the presence of silver clusters and even several morphologies, including multitwinned. Additionally, MALDI-TOF MS examination showed that the particles have an uncommon cluster structure. It can be described as being composed of two or more silver clusters. The organic surface of the nanoparticles can modify their dispersion. We demonstrated that the variation of the silver surface coating directly influenced the migration rate of biologically synthesized silver composites. Moreover, this study proves that the fractionation mechanism of silver biocolloids relies not only on the particle size but also on the type and mass of the surface coatings. Because silver nanoparticles typically have size-dependent cytotoxicity, this behavior is particularly relevant for biomedical applications. Graphical abstract Workflow for asymmetric flow field-flow fractionation of natural biologically synthesized silver nanocomposites.
BIOLOGICAL PROPERTIES AND CHEMICAL COMPOSITION OF JATROPHA NEOPAUCIFLORA PAX
Hernández-Hernández, A. B.; Alarcón-Aguilar, F. J.; Jiménez-Estrada, M.; Hernández-Portilla, L.B.; Flores-Ortiz, C.M.; Rodríguez-Monroy, M.A.; Canales-Martínez, M
2017-01-01
Background: Ethnopharmacological relevance. Jatropha neopauciflora (Pax) is an endemic species of the Tehuacan- Cuicatlan Valley, Mexico. This species has long been used as a remedy to alleviate illnesses of bacterial, fungal and viral origin. Aim of the study. Experimentally test the traditional use of Jatropha neopauciflora in Mexican traditional medicine. Materials and methods.: The methanol extract (MeOH1), of Jatropha neopauciflora (Euphorbiaceae) was obtained by maceration. Next, the methanol (MeOH2) and hexane (H) fractions were obtained. The essential oil was obtained by hydro- distillation. The extract, fractions and essential oil were analyzed by GC-MS. The antimicrobial activity was measured by the disc diffusion agar and radial inhibition growth methods. Results: The extract and fractions showed antibacterial activity against eleven strains (five Gram-positive and six Gram- negative) and a bacteriostatic effect in the survival curves for Staphylococcus aureus and Vibrio cholerae. The extract and fractions were also shown to have antifungal activity, particularly against Trichophyton mentagrophytes (CF50 = MeOH1: 1.07 mg/mL, MeOH2: 1.32 mg/mL and H: 1.08 mg/mL). The antioxidant activity of MeOH1 (68.6 μg/mL) was higher than for MeOH2 (108.1 μg/mL). The main compounds of the essential oil were β-pinene, 1,3,8-p-menthatriene, ledene, m- menthane, linalyl acetate and 3-carene. The main compounds of MeOH1 were β-sitosterol, lupeol and pyrogallol; the main compounds of MeOH2 were β-sitosterol, spathulenol, coniferyl alcohol and lupeol; and the main compounds of H were β-sitostenone, γ-sitosterol and stigmasterol. Conclusions: This study indicates that Jatropha neopauciflora is a potential antibacterial and antifungal agent. PMID:28331913
Benelli, Giovanni; Bedini, Stefano; Cosci, Francesca; Toniolo, Chiara; Conti, Barbara; Nicoletti, Marcello
2015-01-01
Neem seed oil (NSO) of Azadirachta indica (Meliaceae) contains more than 100 determined biologically active compounds, and many formulations deriving from them showed toxicity, antifeedancy and repellence against a number of arthropod pests. However, it is widely known that botanical products can differ in their chemical composition and bioactivity, as function of the production site and production process. We used high-performance thin layer chromatography (HPTLC) to investigate differences in chemical constituents of NSOs from three production sites. HPTLC analyses showed several differences in chemical abundance and diversity among NSOs, with special reference to limonoids. Furthermore, the three NSOs and their fractions of increasing polarities [i.e. ethyl acetate (EA) fraction and butanol (BU) fraction] were evaluated for larvicidal toxicity and field oviposition deterrence against the Asian tiger mosquito, Aedes albopictus, currently the most invasive mosquito worldwide. Results from bioactivity experiments showed good toxicity of NSOs and EA fractions against A. albopictus fourth instar larvae (with LC50 values ranging from 142.28 to 209.73 ppm), while little toxicity was exerted by BU fractions. A significant effect of the production site and dosage was also found and is probably linked to differences in abundance of constituents among samples, as highlighted by HPTLC analyses. NSOs and EAs were also able to deter A. albopictus oviposition in the field (effective repellence values ranging from 98.55 to 70.10%), while little effectiveness of BU fractions was found. Concerning ovideterrent activity, no difference due to the production site was found. This is the first report concerning larvicidal toxicity of NSO against A. albopictus and ovideterrence against Culicidae in the field. The chance to use chemicals from the NSO EA fraction seems promising, since they are effective at lower doses, if compared to synthetic products currently marketed, and could be an advantageous alternative to build newer and safer mosquito control tools.
Reading the Molecular Code in Soils
NASA Astrophysics Data System (ADS)
Hess, N. J.; Tfaily, M. M.; O'Brien, S. L.; Tolic, N.; Jastrow, J. D.; Amonette, J. E.
2015-12-01
There is much that we understand about the relationship between plants, microbes, soil, and water but that understanding is incomplete at the molecular scale. With advent of high throughput genomic sequencing we are beginning to appreciate the diversity of microbial community structure and function and its response to the rhythm of plant function. Through the lens of high-resolution mass spectrometry we are getting our first glimpses of the diversity of soil and pore water organic chemistry at the molecular level. In combination, these diverse data streams are revealing traces of chemical metabolic pathways. This approach promises to reveal many exciting future discoveries, shedding light into the "black box" that exists beneath our feet. In this talk we discuss our experience with the molecular characterization of soils from native prairie to restored prairie to active corn-soybean soils from the DOE funded CSiTE project in Batavia, Illinois. We focus on how common soil separation and fractionation techniques can affect the resulting molecular soil characterization by comparing whole soils to those that have been fractionated into micro- and macro-aggregates and their corresponding silt and clay fractions. When carefully utilized and interpreted these fractionation techniques can be utilized for deepening understanding of the biotic and abiotic chemical pathways effecting the organic chemistry in the different soil fractions. In highly fractionated soils we find significant differences in organic chemistry between silt and clay separates of corresponding hierarchical aggregate fractions. However the most biologically rich information resides in the whole soil. Here we see significant gradients in soil chemistry across to active agricultural to restored to native prairie soils. These results suggest a cautionary note, namely that soil fractionation prior to molecular characterization can reveal much about the "abiotic" interactions between organic molecules and soil minerals but the much of the "biotic" story resides in the whole soil.
Suttiarporn, Panawan; Chumpolsri, Watcharapong; Mahatheeranont, Sugunya; Luangkamin, Suwaporn; Teepsawang, Somsuda; Leardkamolkarn, Vijittra
2015-01-01
Structures of some bioactive phytochemicals in bran extract of the black rice cv. Riceberry that had demonstrated anti-cancer activity in leukemic cell line were investigated. After saponification with potassium hydroxide, separation of the unsaponified fraction by reversed-phase high performance liquid chromatography (HPLC) resulted in four sub-fractions that had a certain degree of anti-proliferation against a mouse leukemic cell line (WEHI-3 cell), this being IC50 at 24 h ranging between 2.80–467.11 μg/mL. Further purification of the bioactive substances contained in these four sub-fractions was performed by normal-phase HPLC. Structural characterization by gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (NMR) resulted in, overall, the structures of seven phytosterols and four triterpenoids. Four phytosterols, 24-methylene-ergosta-5-en-3β-ol, 24-methylene-ergosta-7-en-3β-ol, fucosterol, and gramisterol, along with three triterpenoids, cycloeucalenol, lupenone, and lupeol, were found in the two sub-fractions that showed strong anti-leukemic cell proliferation (IC50 = 2.80 and 32.89 μg/mL). The other sterols and triterpenoids were campesterol, stigmasterol, β-sitosterol and 24-methylenecycloartanol. Together with the data from in vitro biological analysis, we suggest that gramisterol is a significant anti-cancer lead compound in Riceberry bran extract. PMID:25756784
Ismail, Maznah; Al-Naqeeb, Ghanya; Mamat, Wan Abd Aziz Bin; Ahmad, Zalinah
2010-03-24
Gamma-oryzanol (OR), a phytosteryl ferulate mixture extracted from rice bran oil, has a wide spectrum of biological activities in particular, it has antioxidant properties. The regulatory effect of gamma-oryzanol rich fraction (ORF) extracted and fractionated from rice bran using supercritical fluid extraction (SFE) in comparison with commercially available OR on 14 antioxidant and oxidative stress related genes was determined in rat liver. Rats were subjected to a swimming exercise program for 10 weeks to induce stress and were further treated with either ORF at 125, 250 and 500 mg/kg or OR at 100 mg/kg in emulsion forms for the last 5 weeks of the swimming program being carried out. The GenomeLab Genetic Analysis System (GeXPS) was used to study the multiplex gene expression of the selected genes. Upon comparison of RNA expression levels between the stressed and untreated group (PC) and the unstressed and untreated group (NC), seven genes were found to be down-regulated, while seven genes were up-regulated in PC group compared to NC group. Further treatment of stressed rats with ORF at different doses and OR resulted in up-regulation of 10 genes and down regulation of four genes compared to the PC group. Gamma-oryzanol rich fraction showed potential antioxidant activity greater than OR in the regulation of antioxidants and oxidative stress gene markers.
Blanch, Gracia Patricia; Flores, Gema; Caja, Maria del Mar; Ruiz del Castillo, Maria Luisa
2009-01-01
Methyl jasmonate (MJ) contains two chiral centres at C-3 and C-7 in its chemical structure, which implies that it can exist in four possible stereoisomeric forms, namely (+)-MJ, (-)-MJ, (+)-epiMJ and (-)-epiMJ. The absolute configuration of the two side chains of MJ affects the biological activity associated with this compound. To isolate pure (-)-MJ from a natural source, Jasminum polyanthum Franch., with the intention of increasing the knowledge about its biological properties, including its effect on the biosynthesis of plant metabolites. The method used was based on steam distillation extraction (SDE) as an extraction technique followed by high-performance liquid chromatography (HPLC) as a purification procedure. The HPLC flow-rate as well as the number of fractions accumulated were optimised to achieve the concentration and purity required. The employment of 0.3 mL/min as HPLC flow-rate and the accumulation of three HPLC fractions allowed the required enantiomeric purity (95%) and concentration (0.36 mg/L in each HPLC fraction) to efficiently obtain (-)-methyl jasmonate from Jasminum polyanthum Franch. to be achieved. The approach proposed may enable the properties and effect of pure (-)-MJ on plant responses to be studied. The use of a natural source to obtain (-)-MJ is presented as an alternative to the enantioselective synthesis and enantiomeric resolution from the standard racaemic mixture.
Virginia, Agnes; Rachmawati, Heni; Riani, Catur; Retnoningrum, Debbie S.
2016-01-01
Bioactive peptides produced from enzymatic hydrolysis fibrous protein have been proven to have several biological activities. Previous study showed that the hydrolysis product of snakehead fish skin collagen with 26 kDa collagenase from Bacillus licheniformis F11.4 showed HMG-CoA (HMGR) inhibition activity. The aim of this research was to determine the ability of the hydrolysis product produced from snakehead fish skin collagen hydrolysed by 50 kDa collagenase from B. licheniformis F11.4 in inhibiting HMGR activity. Snakehead fish skin collagen was extracted using an acid method and collagenase was produced from B. licheniformis F11.4 using half-strength Luria Bertani (LB) medium containing 5% collagen. Crude collagenase was concentrated and fractionated using the DEAE Sephadex A-25 column eluted with increasing gradient concentrations of NaCl. Collagen, collagenase, and fractions were analyzed using SDS-PAGE and collagenolytic activity was analyzed by the zymography method. Collagenase with 50 kDa molecular weight presented in fraction one was used to hydrolyze the collagen. The reaction was done in 18 hours at 50°C. The hydrolysis product using 3.51 μg collagen and 9 ng collagenase showed 25.8% inhibition activity against pravastatin. This work shows for the first time that the hydrolysis product of snakehead fish skin collagen and 50 kDa collagenase from B. licheniformis F11.4 has potential as an anticholesterol agent. PMID:27110500
Using volatile organic compounds to enhance atrazine biodegradation in a biobed system.
Tortella, G R; Rubilar, O; Stenström, J; Cea, M; Briceño, G; Quiroz, A; Diez, M C; Parra, L
2013-09-01
The effect of the terpenes α-pinene, eucalyptol, and limonene, individually and as mixtures, on atrazine (ATZ) biodegradation and on biological activity in a biobed biomixture was evaluated. Additionally, terpenes emitted from the biomixture were captured using solid-phase microextraction. Terpenes added individually at relatively low concentrations (50 μg kg(-1)) significantly enhanced ATZ degradation and biological activity during the first incubation days. No significant effect on ATZ degradation was found from adding the terpene mixture, and, interestingly, an inhibitory effect on phenoloxidase activity was found during the first 20 days of incubation when mixed terpenes were present at 100 μg kg(-1). Capturing terpenes demonstrated that during the first hour of incubation a significant fraction of the terpenes was volatilized. These results are the first to demonstrate the feasibility of using terpenes to enhance the degradation of a pesticide. However, successive applications of terpenes or the addition of materials that slowly release terpenes could sustain the ATZ degradation enhancement.
Ray, Jessica; Dondrup, Michael; Modha, Sejal; Steen, Ida Helene; Sandaa, Ruth-Anne; Clokie, Martha
2012-01-01
Viruses are ubiquitous in the oceans and critical components of marine microbial communities, regulating nutrient transfer to higher trophic levels or to the dissolved organic pool through lysis of host cells. Hydrothermal vent systems are oases of biological activity in the deep oceans, for which knowledge of biodiversity and its impact on global ocean biogeochemical cycling is still in its infancy. In order to gain biological insight into viral communities present in hydrothermal vent systems, we developed a method based on deep-sequencing of pulsed field gel electrophoretic bands representing key viral fractions present in seawater within and surrounding a hydrothermal plume derived from Loki's Castle vent field at the Arctic Mid-Ocean Ridge. The reduction in virus community complexity afforded by this novel approach enabled the near-complete reconstruction of a lambda-like phage genome from the virus fraction of the plume. Phylogenetic examination of distinct gene regions in this lambdoid phage genome unveiled diversity at loci encoding superinfection exclusion- and integrase-like proteins. This suggests the importance of fine-tuning lyosgenic conversion as a viral survival strategy, and provides insights into the nature of host-virus and virus-virus interactions, within hydrothermal plumes. By reducing the complexity of the viral community through targeted sequencing of prominent dsDNA viral fractions, this method has selectively mimicked virus dominance approaching that hitherto achieved only through culturing, thus enabling bioinformatic analysis to locate a lambdoid viral "needle" within the greater viral community "haystack". Such targeted analyses have great potential for accelerating the extraction of biological knowledge from diverse and poorly understood environmental viral communities.
Tosato, G; Tanner, J; Jones, K D; Revel, M; Pike, S E
1990-01-01
Autocrine growth factors are believed to be important for maintenance of an immortalized state by Epstein-Barr virus (EBV), because cell-free supernatants of EBV-immortalized cell lines promote the proliferation of autologous cells and permit their growth at low cell density. In this study, we provide evidence for the existence of two autocrine growth factor activities produced by EBV-immortalized lines distinguished by size and biological activities. Much of the autocrine growth factor activity in lymphoblastoid cell line supernatants resided in a low-molecular-weight (less than 5,000) fraction. However, up to 20 to 30% of the autocrine growth factor activity resided in the high-molecular-weight (greater than 5,000) fraction. While the nature of the low-molecular-weight growth factor activity remains undefined, the high-molecular-weight growth factor activity was identified as interleukin-6 (IL-6). Culture supernatants from six EBV-induced lymphoblastoid cell lines tested contained IL-6 activity, because they promoted proliferation in the IL-6-dependent hybridoma cell line B9. In addition, a rabbit antibody to human IL-6 neutralized the capacity of the high-molecular-weight (greater than 5,000) fraction of a lymphoblastoid cell line supernatant to promote growth both in autologous EBV-immortalized cells and in B9 cells. Similarly, this high-molecular-weight autocrine growth factor activity was neutralized by a monoclonal antibody to human IL-6. Furthermore, characteristic bands, attributable to IL-6, were visualized in supernatants of each of four EBV-induced lymphoblastoid cell lines after immunoprecipitation with a rabbit antiserum to human IL-6. Thus, in addition to its previously reported properties, IL-6 is an autocrine growth factor for EBV-immortalized B cells cultured under serum-free conditions. Images PMID:2159561
Yang, Jin; Liang, Qian; Wang, Mei; Jeffries, Cynthia; Smithson, David; Tu, Ying; Boulos, Nidal; Jacob, Melissa R; Shelat, Anang A; Wu, Yunshan; Ravu, Ranga Rao; Gilbertson, Richard; Avery, Mitchell A; Khan, Ikhlas A; Walker, Larry A; Guy, R Kiplin; Li, Xing-Cong
2014-04-25
The generation of natural product libraries containing column fractions, each with only a few small molecules, using a high-throughput, automated fractionation system, has made it possible to implement an improved dereplication strategy for selection and prioritization of leads in a natural product discovery program. Analysis of databased UPLC-MS-ELSD-PDA information of three leads from a biological screen employing the ependymoma cell line EphB2-EPD generated details on the possible structures of active compounds present. The procedure allows the rapid identification of known compounds and guides the isolation of unknown compounds of interest. Three previously known flavanone-type compounds, homoeriodictyol (1), hesperetin (2), and sterubin (3), were identified in a selected fraction derived from the leaves of Eriodictyon angustifolium. The lignan compound deoxypodophyllotoxin (8) was confirmed to be an active constituent in two lead fractions derived from the bark and leaves of Thuja occidentalis. In addition, two new but inactive labdane-type diterpenoids with an uncommon triol side chain were also identified as coexisting with deoxypodophyllotoxin in a lead fraction from the bark of T. occidentalis. Both diterpenoids were isolated in acetylated form, and their structures were determined as 14S,15-diacetoxy-13R-hydroxylabd-8(17)-en-19-oic acid (9) and 14R,15-diacetoxy-13S-hydroxylabd-8(17)-en-19-oic acid (10), respectively, by spectroscopic data interpretation and X-ray crystallography. This work demonstrates that a UPLC-MS-ELSD-PDA database produced during fractionation may be used as a powerful dereplication tool to facilitate compound identification from chromatographically tractable small-molecule natural product libraries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jeeyong; Kim, Hyun-Ji; Yi, Jae Youn, E-mail: yjy_71@kcch.re.kr
Studies have shown that γ-irradiation induces various biological responses, including oxidative stress and apoptosis, as well as cellular repair and immune system responses. However, most such studies have been performed using traditional two-dimensional cell culture systems, which are limited in their ability to faithfully represent in vivo conditions. A three-dimensional (3D) environment composed of properly interconnected and differentiated cells that allow communication and cooperation among cells via secreted molecules would be expected to more accurately reflect cellular responses. Here, we investigated γ-irradiation–induced changes in the secretome of 3D-cultured keratinocytes. An analysis of keratinocyte secretome profiles following fractionated-dose γ-irradiation revealed changes inmore » genes involved in cell adhesion, angiogenesis, and the immune system. Notably, peroxisome proliferator-activated receptor-α (PPARα) was upregulated in response to fractionated-dose γ-irradiation. This upregulation was associated with an increase in the transcription of known PPARα target genes in secretome, including angiopoietin-like protein 4, dermokine and kallikrein-related peptide 12, which were differentially regulated by fractionated-dose γ-irradiation. Collectively, our data imply a mechanism linking γ-irradiation and secretome changes, and suggest that these changes could play a significant role in the coordinated cellular responses to harmful ionizing radiation, such as those associated with radiation therapy. This extension of our understanding of γ-irradiation-induced secretome changes has the potential to improve radiation therapy strategies. - Highlights: • γ-irradiation induced changes of cell adhesion, angiogenesis, and immune system in secretome of 3D-cultured keratinocytes. • Peroxisome proliferator-activated receptor-α (PPARα) was upregulated in response to fractionated-dose γ-irradiation. • The known PPARα target genes were differentially regulated by fractionated-dose γ-irradiation.« less
Antioxidant activity of Rafflesia kerrii flower extract.
Puttipan, Rinrampai; Okonogi, Siriporn
2014-02-01
Rafflesia kerrii has been used in Thai traditional remedies for treatment of several diseases. However, scientific data particularly on biological activities of this plant is very rare. The present study explores an antioxidant activity of R. kerrii flower (RKF). Extracting solvent and extraction procedure were found to play an important role on the activity of RKF extract. The extract obtained from water-ethanol system showed higher antioxidant activity than that from water-propylene glycol system. Fractionated extraction using different solvents revealed that methanol fractionated extract (RM) possessed the highest antioxidant activity with Trolox equivalent antioxidant capacity (TEAC) and inhibitory concentration of 50% inhibition (IC50) values of approximately 39 mM/mg and 3 μg/mL, respectively. Phytochemical assays demonstrated that RM contained extremely high quantity of phenolic content with gallic antioxidant equivalent (GAE) and quercetin equivalent (QE) values of approximately 312 mg/g and 16 mg/g, respectively. Ultraviolet-visible spectroscopy (UV- VIS) and high-pressure liquid chromatography (HPLC) indicated that gallic acid was a major component. RM which was stored at 40°C, 75% RH for 4 months showed slightly significant change (p < 0.05) in phytochemical content and antioxidant activity with zero order degradation. The results of this study could be concluded that R. kerrii flower was a promising natural source of strong antioxidant compounds.
Kenny, Thomas P; Keen, Carl L; Jones, Paul; Kung, Hsing-Jien; Schmitz, Harold H; Gershwin, M Eric
2004-03-01
Flavonoids isolated from cocoa have biological activities relevant to oxidant defenses, vascular health, tumor suppression, and immune function. The intake of certain dietary flavonoids, along with other dietary substances such as tocopherols, ascorbate, and carotenoids, is epidemiologically associated with a reduced risk of cardiovascular disease. Flavonoids have also been shown to modulate tumor pathology in vitro and in animal models. We took advantage of the conserved sequences found in tyrosine kinases to study the influence of cocoa fractions and controls on gene expression. We report that the pentameric procyanidin (molecular weight of 1442 daltons) fraction isolated from cocoa was a potent inhibitor of tyrosine kinase ErbB2 expression, a receptor important in angiogenesis regulation. Consistent with this primary observation, the cocoa flavonoid fraction also suppressed human aortic endothelial cell (HAEC) growth and decreased expression of two tyrosine kinases responsive to ErbB2 modulation, namely VEGFR-2/KDR and MapK 11/p38beta2. These inhibitory effects were observed when HAECs were treated with the flavonol fraction (molecular weight 280 daltons) isolated from cocoa, which comprise the structural subunits from which the procyanidin flavonoid subclass is biosynthetically constructed. Down-regulation of ErbB2 and inhibition of HAEC growth by cocoa procyanidins may have several downstream implications, including reduced vascular endothelial growth factor (VEGF) activity and angiogenic activity associated with tumor pathology. These results suggest specific dietary flavonoids are capable of selectively inhibiting ErbB2 and therefore may offer important insight into the design of therapeutic agents that target tumors overexpressing ErbB2.
Kieliszek, Marek; Błażejak, Stanisław; Bzducha-Wróbel, Anna
2015-01-01
Selenium is an essential trace element for human health and it has been recognized as a component of several selenoproteins with crucial biological functions. It has been identified as a component of active centers of many enzymes, as well as integral part of biologically active complexes. The aim of the study was to evaluate the protein content and amino acid profile of the protein of fodder yeast Candida utilis ATCC 9950 cultured in media control and experimental enriched selenium. Protein analysis was performed using SDS-PAGE method consisting of polyacrylamide gel electrophoresis in the presence of SDS. The highest contents of soluble protein (49,5 mg/g) were found in yeast cells after 24-hour culture conducted in control (YPD) medium. In the presence of selenium there were determined small amounts of protein content. With increasing time of yeast culture (to 72 hours) the control and experimental media were reported to reduce soluble protein content. In electropherogram proteins from control cultures was observed the presence of 10 protein fractions, but in all the experimental cultures (containing 20, 30, and 40 mg/L selenium) of 14 protein fractions. On the basis of the molecular weights of proteins, it can be concluded that they were among others: selenoprotein 15 kDa and selenoprotein 18 kDa. PMID:26185592
Tan, Yiwen; Lin, Tao; Jiang, Fuchun; Dong, Jian; Chen, Wei; Zhou, Dongju
2017-08-01
Dichloroacetonitrile (DCAN) is one of nitrogenous disinfection by-products (N-DBPs) with strong cytotoxicity and genotoxicity. In this study, the formation potential (FP) of DCAN was investigated in the samples of six important water sources located in the Yangtze River Delta. The highest formation concentration of DCAN was 9.05 μg/L in the water sample taken from Taihu Lake with the lowest SUVA value. After the NOM fractionation, the conversion rate of hydrophilic fraction to DCAN was found the highest. Subsequently, a waterworks using Taihu Lake as water source was chosen to research the FP variations of DCAN in the treatment process and backwash water. The results showed that, compared to the conventional treatment process, O/biological activated carbon (BAC) process increased the removal efficiency of DCAN from 21.89% to 50.58% by removing aromatic protein and soluble biological by-products as main precursors of DCAN. The DCAN FP in the effluent of BAC filters using old granular activated carbon was higher than that in the influent and the DCAN FP of its backwash water was lower than that in raw water. In the backwash water of sand filters, the DCAN FP higher than raw water required the recycle ratio less than 5% to avoid the accumulation of DCAN. Copyright © 2017 Elsevier Ltd. All rights reserved.
STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES
Avery, Oswald T.; MacLeod, Colin M.; McCarty, Maclyn
1944-01-01
1. From Type III pneumococci a biologically active fraction has been isolated in highly purified form which in exceedingly minute amounts is capable under appropriate cultural conditions of inducing the transformation of unencapsulated R variants of Pneumococcus Type II into fully encapsulated cells of the same specific type as that of the heat-killed microorganisms from which the inducing material was recovered. 2. Methods for the isolation and purification of the active transforming material are described. 3. The data obtained by chemical, enzymatic, and serological analyses together with the results of preliminary studies by electrophoresis, ultracentrifugation, and ultraviolet spectroscopy indicate that, within the limits of the methods, the active fraction contains no demonstrable protein, unbound lipid, or serologically reactive polysaccharide and consists principally, if not solely, of a highly polymerized, viscous form of desoxyribonucleic acid. 4. Evidence is presented that the chemically induced alterations in cellular structure and function are predictable, type-specific, and transmissible in series. The various hypotheses that have been advanced concerning the nature of these changes are reviewed. PMID:19871359
NASA Astrophysics Data System (ADS)
Koch, Marguerite S.; Kletou, Demetris C.; Tursi, Rosanna
2009-08-01
Few phosphorus-depleted coastal ecosystems have been examined for their ability to hydrolyze phosphomonoesters. We examined seasonal (August 2006-April 2007) alkaline phosphatase activity in Florida Bay, a phosphorus-limited shallow estuary, using fluorescent substrate at low concentrations (≤2.0 μM). In situ dissolved inorganic and organic phosphorus levels and phosphomonoester concentrations were also determined. Water column alkaline phosphatase activity was partitioned into two particulate size fractions (>1.2 and 0.2-1.2 μm) and freely dissolved enzymes (<0.2 μm). Water column alkaline phosphatase activity was also compared to leaf and epiphyte activity of the dominant tropical seagrass Thalassia testudinum. Our results indicate: (1) potential alkaline phosphatase activity in Florida Bay is high compared to other marine ecosystems, resulting in rapid phosphomonoester turnover times (˜2 h). (2) Water column alkaline phosphatase activity dominates, and is split equally between particulate and dissolved fractions. (3) Alkaline phosphatase activity was highest during cyanobacterial blooms, but not when normalized to chl a. These results suggest that dissolved, heterotrophic and autotrophic alkaline phosphatase activity is stimulated by phytoplankton blooms. (4) The dissolved alkaline phosphatase activity is relatively constant, while the particulate activity is seasonally and spatially dynamic, typically associated with phytoplankton blooms. (5) Phosphomonoester concentrations throughout the bay are low, even though potential hydrolysis rates are high. We propose that bioavailable dissolved organic P is hydrolyzed by dissolved and microbial alkaline phosphatase enzymes in Florida Bay. High alkaline phosphatase activity in the bay is also promoted by long hydraulic residence times. This background activity is primarily driven by carbon and phosphorus limitation of microorganisms, and regeneration of enzymes associated with cell lysis. Pulses of inorganic phosphorus and labile organic phosphorus and nitrogen may stimulate autotrophs, particularly cyanobacteria, which in turn promote biological activity that increase alkaline phosphatase activity of both autotrophs and heterotrophs in the bay.
NASA Astrophysics Data System (ADS)
Vaattovaara, P.; Huttunen, P. E.; Yoon, Y. J.; Joutsensaari, J.; Lehtinen, K. E. J.; O'Dowd, C. D.; Laaksonen, A.
2006-04-01
Newly-formed nanometer-sized particles have been observed at coastal and marine environments worldwide. Interestingly, organic species have so far not been detected in those newly-formed nucleation mode particles. In this study, we applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer) method to study the possible existence of an organic fraction in recently formed coastal nucleation mode particles (d<20 nm) at the Mace Head research station. Furthermore, effects of those nucleation events to potential CCN (cloud condensation nuclei) were studied. The coastal events were typical for the Mace Head region and they occurred at low tide conditions during efficient solar radiation and high biological activity (HBA, i.e. a high mass concentration of chlorophyll a of the ocean) in spring 2002. Additionally, a PHA-UCPC (pulse height analyzer ultrafine condensation particle counter) technique was used to study the composition of newly-formed particles formed in low tide conditions during a lower biological activity (LBA, i.e. a lower mass concentration of chlorophyll a of the ocean) in October 2002. The overall results of the UFO-TDMA and the PHA-UCPC measurements indicate that those coastally/marinely formed nucleation mode particles include a remarkable fraction of secondary organic products, beside iodine oxides, which are likely to be responsible for the nucleation. During clean marine air mass conditions, the origin of those secondary organic oxidation compounds can be related to marine/coastal biota and thus a major fraction of the organics may originate from biosynthetic production of alkenes such as isoprene and their oxidation by iodine, hydroxyl radical, and ozone. During modified marine conditions, also anthropogenic secondary organic compounds may contribute to the nucleation mode organic mass, in addition to biogenic secondary organic compounds. Thus, the UFO-TDMA results suggest that the secondary organic compounds may, in addition to being significant contributors to the nucleation mode processes, accelerate the growth of freshly nucleated particles and increase their survival probability to CCN and even larger radiatively active particle sizes. The results give new insights to the coastal/marine particle formation, growth, and properties. The marine biota driven secondary organic contributions to coastal/marine particle formation and composition can be anticipated in other species specific biologically active oceans and fresh-waters areas around the world and thus, they may be significant also to the global radiative bugdet, atmosphere-biosphere feedbacks, and climate change.
Saravana Kumar, P; Duraipandiyan, V; Ignacimuthu, S
2014-09-01
Thirty-seven actinomycetes strains were isolated from soil samples collected from an agriculture field in Vengodu, Thiruvannamalai District, Tamil Nadu, India (latitude: 12° 54' 0033″, North; longitude: 79° 78' 5216″, East; elevation: 228.6/70.0 ft/m). The isolates were assessed for antagonistic activity against five Gram-positive bacteria, seven Gram-negative bacteria, and two pathogenic fungi. During the initial screening, 43% of the strains showed weak activity, 16% showed moderate activity, 5% showed good activity, and 35% showed no antagonistic activity. Among the strains tested, SCA 7 showed strong antimicrobial activity. Maximum biological activity was obtained on modified nutrient glucose agar (MNGA) medium. The mycelia of SCA 7 were extracted with methanol and tested against microbial pathogens using the disc diffusion method. The crude extract was purified partially using column chromatography and assessed for antimicrobial activity. Fraction 10 showed good activity against Staphylococcus epidermidis (31.25 μg/mL) and Malassezia pachydermatis (500 μg/mL) and the active principle (fraction 10) was identified as 2,4-bis (1,1-dimethylethyl) phenol. Based on morphological, physiological, biochemical, cultural, and molecular characteristics (16S rDNA sequencing), this strain was identified as Streptomyces sp. SCA 7. It could be used in the development of new substances for pharmaceutical or agricultural purposes. Copyright © 2014. Published by Elsevier B.V.
Gomes-Filho, Enéas; Lima, Carmen Rogélia Farias Machado; Costa, José Hélio; da Silva, Ana Cláudia Marinho; da Guia Silva Lima, Maria; de Lacerda, Claudivan Feitosa; Prisco, José Tarquinio
2008-01-01
Pitiúba cowpea [Vigna unguiculata (L.) Walp] seeds were germinated in distilled water (control treatment) or in 100 mM NaCl solution (salt treatment), and RNase was purified from different parts of the seedlings. Seedling growth was reduced by the NaCl treatment. RNase activity was low in cotyledons of quiescent seeds, but the enzyme was activated during germination and seedling establishment. Salinity reduced cotyledon RNase activity, and this effect appeared to be due to a delay in its activation. The RNases from roots, stems, and leaves were immunologically identical to that found in cotyledons. Partially purified RNase fractions from the different parts of the seedling showed some activity with DNA as substrate. However, this DNA hydrolyzing activity was much lower than that of RNA hydrolyzing activity. The DNA hydrolyzing activity was strongly inhibited by Cu(2+), Hg(2+), and Zn(2+) ions, stimulated by MgCl(2), and slowly inhibited by EDTA. This activity from the most purified fraction was inhibited by increasing concentrations of RNA in the reaction medium. It is suggested that the major biological role of this cotyledon RNase would be to hydrolyze seed storage RNA during germination and seedling establishment, and it was discussed that it might have a protective role against abiotic stress during later part of seedling establishment.
Ethnopharmacological investigation of the aerial part of Phragmites karka (Poaceae).
Sultan, Ramiz Ahmed; Kabir, Mohammad Shah Hafez; Uddin, Mir Muhammad Nasir; Uddin, Mohi; Mahmud, Zobaer Al; Raihan, Sheikh Zahir; Qais, Nazmul
2017-05-01
In this ethnopharmacological study, methanolic extract of the aerial plant parts of Phragmites karka (Family: Poaceae) and its petroleum ether and carbon tetrachloride fractions were investigated for bioactivities in Swiss-albino mice, namely, analgesic, central nervous system (CNS) depressant, hypoglycemic, and antidiarrheal activity. The cold methanolic extract of the aerial plant parts of Phragmites karka (MEPK) was first prepared, and it was then further fractionated as petroleum ether (PEFMEPK) and carbon tetrachloride (CTFMEPK) fractions. Analgesic activity was performed employing acidic acid-induced writhing test, central analgesic effect by radiant heat tail-flick method. CNS depressant activity was evaluated by phenobarbitone-induced sleeping time test. Hypoglycemic activity was tested by glucose tolerance test (GTT). Antidiarrheal activity was evaluated by castor oil-induced diarrhea method. For all in vivo tests, doses of 200 and 400 mg/kg body weight were used. In the mice model, the MEPK, PEFMEPK, and CTFMEPK fractions showed significant peripheral analgesic activity at a dose of 400 mg/kg body weight with percentage of inhibition of acetic acid-induced writhing 77.67 (p<0.001), 33.50 (p<0.001), and 40.29 (p<0.001), respectively, compared to the standard dichlofenac (60.68%, p<0.001) group. The hypoglycemic properties of MEPK, PEFMEPK, and CTFMEPK extracts were evaluated in normoglycemic mice where the reduction of blood glucose level after 30 min of glucose load were 69.85%, 78.91%, and 72.73%, respectively, and for standard glibenclamide, the reduction was 72.85%. All results were significant (p<0.05). In the case of the CNS depressant activity by phenobarbitone-induced sleeping time test, the crude ME significantly reduced sleep latency by 57.14% and increased the duration of sleep by 63.29% compared to the control, which were comparable to that of standard diazepam (65.71% and 77.62%, respectively). Among all the extract and fractions, methanolic extract showed the maximum antidiarrheal effect. The methanolic extract at 200 mg/kg dose induced a significant decrease in the total number of defecation in 4 h (69.05% of inhibition, p<0.001) and at 400 mg/kg dose showed 76.19% of inhibition (p<0.001). In light of the available literature, these findings represent the first experimental investigation of biological activities of P. karka in the perspective of their traditional use.
A novel method for isolating podocytes using magnetic activated cell sorting.
Murakami, Ayumi; Oshiro, Hisashi; Kanzaki, Seiichi; Yamaguchi, Akira; Yamanaka, Shoji; Furuya, Mitsuko; Miura, Satoshi; Kanno, Hiroshi; Nagashima, Yoji; Aoki, Ichiro; Nagahama, Kiyotaka
2010-12-01
A large body of accumulated data has now revealed that podocytes play a major role in the development of proteinuria. However, the mechanisms of podocyte injury, leading to foot process effacement and proteinuria, are still unclear partly due to the current lack of an appropriate strategy for preparing podocytes. In this study, we have developed a novel method of rapid isolation of podocytes from mice using magnetic activated cell sorting with an anti-nephrin antibody. After endothelial cell depletion using anti-CD31 antibody, nephrin-positive cells were prepared from mouse kidneys using magnetic activated cell sorting with polyclonal rabbit anti-nephrin antibody. Purity of the positively sorted cells was determined by confocal microscopy and fluorescence-activated cell sorting (FACS) analysis. Expression profiles of podocyte-specific molecules in the sorted fractions were characterized by qualitative PCR and immunoblot analysis. Nephrin-positive cells, isolated from mouse kidneys within 6 h, showed dual positivity for synaptopodin and rabbit IgG on confocal microscopy. FACS analysis revealed that the purity of the positively sorted fractions was ∼75%. The nephrin-positive cells sorted by this approach showed a significantly higher expression of podocyte-specific molecules compared with nephrin-negative fractions. These data strongly suggest that our novel method for isolating podocytes has great utility for various downstream applications such as genomic analysis, proteomics and transcriptomics to elucidate molecular profiling of podocyte biology in vivo compared with conventional methods as our approach requires only several hours to complete and no tissue culture.
Salazar, Ana M; Vivas, Jeilyn; Sánchez, Elda E; Rodríguez-Acosta, Alexis; Ibarra, Carlos; Gil, Amparo; Carvajal, Zoila; Girón, María E; Estrella, Amalid; Navarrete, Luis F; Guerrero, Belsy
2011-07-01
The coral snake Micrurus tener tener (Mtt) from the Elapidae family inhabits the southwestern United States and produces severe cases of envenomations. Although the majority of Mtt venom components are neurotoxins and phospholipase A₂s, this study demonstrated, by SDS-PAGE and molecular exclusion chromatography (MEC), that these venoms also contain high-molecular-weight proteins between 50 and 150 kDa that target the hemostatic system. The biological aspects of other Micrurus venoms were also studied, such as the LD₅₀s of Micrurus isozonus (from 0.52 to 0.61 mg/kg). A pool from these venoms presented a LD₅₀ of 0.57 mg/kg, Micrurus f. fulvius (Mff) and Mtt had LD₅₀s of 0.32 and 0.78 mg/kg, respectively. These venoms contained fibrino(geno)lytic activity, they inhibited platelet aggregation, as well as factor Xa and/or plasmin-like activities. M. isozonus venoms from different Venezuelan geographical regions inhibited ADP-induced platelet aggregation (from 50 to 68%). Micrurus tener tener venom from the United States was the most active with a 95.2% inhibitory effect. This venom showed thrombin-like activity on fibrinogen and human plasma. Fractions of Mtt showed fibrino(geno)lytic activity and inhibition on plasmin amidolytic activity. Several fractions degraded the fibrinogen Aα chains, and fractions F2 and F7 completely degraded both fibrinogen Aα and Bβ chains. To our knowledge, this is the first report on thrombin-like and fibrino(geno)lytic activity and plasmin or factor Xa inhibitors described in Micrurus venoms. Further purification and characterization of these Micrurus venom components could be of therapeutic use in the treatment of hemostatic disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hamieh, S; Beauchet, R; Lemee, L; Toufaily, J; Koubaissy, B; Hamieh, T; Pouilloux, Y; Pinard, L
2014-03-01
The bio-oil synthesis from a mixture of wastes (7wt.% straw, 38wt.% wood, and 45wt.% grass) was carried out by direct liquefaction reaction using Raney Nickel as catalyst and tetralin as solvent. The green wastes were biologically degraded during 3 months. Longer the destructuration time; higher the yield into oil is. Biological pretreatment of green wastes promotes the liquefaction process. Among the components of degraded biomass, Humin, the major fraction (60-80wt.%) that was favored by the biological treatment, yields to a bio oil extremely energetic with a HHV close to biopetroleum (40MJ kg(-1)), contrariwise, Fulvic acids (2-12wt.%), the minor fraction is refractory to liquefaction reaction. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pandey, Saurabh; Walpole, Carina; Cabot, Peter J; Shaw, Paul N; Batra, Jyotsna; Hewavitharana, Amitha K
2017-05-01
Prostate cancer (PCa) is the leading cause of cancer related deaths in men. Carica papaya is a popular tropical plant that has been traditionally used for its nutritional and medicinal properties. We investigated the anti-proliferative responses of papaya leaf juice (LJP) and its various extracts ("biological"- in vitro digested, "physical"- size exclusion, and "chemical"-solvent extraction) on a range of cell lines representing benign hyperplasia, tumorigenic and normal cells of prostate origin. Time course analysis (by 24h, 48h and 72h) of LJP (1-0.1mg/mL) before and after in vitro digestion, and of molecular weight based fractions of LJP showed anti-proliferative responses. The medium polarity fraction of LJP (0.03-0.003mg/mL) after 72h exposure showed potent growth inhibitory (IC 50 =0.02-0.07mg/mL) and cytotoxic activities on all prostate cells, with the exception of the normal (RWPE-1 and WPMY-1) cells. Flow cytometry analysis showed S phase cell cycle arrest and apoptosis as a possible mechanism for these activities. Medium polar fraction of LJP also inhibited migration and adhesion of metastatic PC-3 cells. This is the first report suggesting selective anti-proliferative and anti-metastatic attributes of LJP extract against prostatic diseases, including PCa. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Central depressant activity of butanol fraction of Securinega virosa root bark in mice.
Magaji, Mohammed Garba; Yaro, Abdullahi Hamza; Musa, Aliyu Muhammad; Anuka, Joseph Akponso; Abdu-Aguye, Ibrahim; Hussaini, Isa Marte
2012-05-07
Securinega virosa is a commonly used medicinal plant in African traditional medicine in the management of epilepsy and mental illness. Previous studies in our laboratory showed that the crude methanol root bark extract of the plant possesses significant behavioral effect in laboratory animals. In an attempt to isolate and characterize the biological principles responsible for the observed activity, this study is aimed at evaluating the central depressant activity of the butanol fraction of the methanol root bark extract of Securinega virosa. The medial lethal dose of the butanol fraction was estimated using the method of Lorke. Preliminary phytochemical screening was conducted on the butanol fraction using standard protocol. The behavioral effect of the butanol fraction (75, 150 and 300mg/kg) was evaluated using diazepam induced sleep test, hole-board test, beam walking assay, staircase test, open field test and elevated plus maze assay, all in mice. The median lethal dose of the butanol fraction was estimated to be 1256.9mg/kg. The preliminary phytochemical screening revealed the presence of tannins, saponins, alkaloids, flavonoids, cardiac glycosides, similar to those found in the crude methanol extract. The butanol fraction significantly (P<0.001) reduced the mean onset of sleep in mice and doubled the mean duration of sleep in mice at the dose of 75mg/kg. The butanol fraction and diazepam (0.5mg/kg) significantly (P<0.01-0.001) reduced the number of head dips in the hole-board test suggesting sedative effect. The sedative effect of the butanol fraction was further corroborated by its significant (P<0.01-0.001) reduction of the number of step climbed and rearing in the staircase test. The butanol fraction did not significantly increase the time taken to complete the task and number of foot slips in the beam walking assay, suggesting that it does not induce significant motor coordination deficit. Diazepam (2mg/kg), the standard agent used significantly (P<0.01) increased the number of foot slips. In the open field test, the butanol fraction significantly reduced the number of square crossed as well as the number of rearing. However, the butanol fraction did not significantly alter the behavior of mice in the elevated plus maze assay, while diazepam (0.5mg/kg) significantly (P<0.05) increased the time spent in the open arm and reduced the number of closed arm entry. The findings of this study suggest that the butanol fraction of Securinega virosa root bark contains some bioactive principles that are sedative in nature. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauthier, T.; Maftouh, M.; Picard, C.
1987-06-15
In the conditions used in the RIA procedure for circulating FGF quantitation, the tracer (/sup 125/I) (Tyr 10) FGF (1-10) was extensively degraded into two non immunoreactive peptides corresponding to a sequential removal of two amino acid residues at the NH2-terminus i.e. Pro and Ala. A FGF like immunoreactive fraction exists in serum the molecular weight of which was estimated to be 240 Kda. This fraction was also able to perform the same extensive degradation of (Tyr 10) FGF (1-10) than whole serum. The results presented raise the question of the validity of RIA for the determination of circulating FGF.more » They also present evidence that a high molecular weight serum fraction which reacts as immunoreactive FGF is an enzymatic activity responsible for biodegradation of the growth factor rather than a distinct biological entity which is related to the FGF structure.« less
The interaction between cytotrophoblasts and their derived tumor cells.
Rachmilewitz, J; Goshen, R; Elkin, M; Gonik, B; Neaman, Z; Giloh, H; Strauss, B; Komitowsky, D; de Groot, N; Hochberg, A
1995-06-01
Previous experiments demonstrated that human cytotrophoblasts and cells of the choriocarcinoma cell line JAr interact in vitro. As a result of this interaction there is an increased synthesis of CG and hPL, probably as a result of the increased CG and hPL synthesis by the cytotrophoblasts. In the present investigation we studied this interaction in greater detail and found that both cytotrophoblasts and JAr cells undergo changes in their biological properties as a result of this interaction. JAr cells and cytotrophoblasts cocultured for 72 hr were fractionated according to their size by centrifugal elutriation. The number of cells in the fraction which contain the largest cells was very significantly increased as a result of the coculture. This increase was due to an increase in the number of cells of both cell types. This fraction was the most active one in the synthesis of CG and hPL. The synthesis of DNA by the JAr nuclei in this fraction of the cocultured cells was almost completely inhibited but in the parallel fraction of the JAr cells cultivated alone the level of DNA synthesis was equal to that of all other JAr cell fractions. Heterokaryons are formed in the coculture. In these heterokaryons a factor which inhibits DNA synthesis in the cytotrophoblasts may inhibit DNA synthesis in JAr nuclei and at least be partly responsible for the inhibition of DNA synthesis observed.
Scaglia, Barbara; Nunes, Ramom Rachide; Rezende, Maria Olímpia Oliveira; Tambone, Fulvia; Adani, Fabrizio
2016-08-15
This work studied the auxin-like activity of humic acids (HA) obtained from vermicomposts produced using leather wastes plus cattle dung at different maturation stages (fresh, stable and mature). Bioassays were performed by testing HA concentrations in the range of 100-6000mgcarbonL(-1). (13)C CPMAS-NMR and GC-MS instrumental methods were used to assess the effect of biological processes and starting organic mixtures on HA composition. Not all HAs showed IAA-like activity and in general, IAA-like activity increased with the length of the vermicomposting process. The presence of leather wastes was not necessary to produce the auxin-like activity of HA, since HA extracted from a mix of cattle manure and sawdust, where no leather waste was added, showed IAA-like activity as well. CPMAS (13)CNMR revealed that HAs were similar independently of the mix used and that the humification process involved the increasing concentration of pre-existing alkali soluble fractions in the biomass. GC/MS allowed the identification of the molecules involved in IAA-like effects: carboxylic acids and amino acids. The concentration of active molecules, rather than their simple presence in HA, determined the bio-stimulating effect, and a good linear regression between auxin-like activity and active stimulating molecules concentration was found (R(2)=-0.85; p<0.01, n=6). Copyright © 2016 Elsevier B.V. All rights reserved.
The presence of food-derived collagen peptides in human body-structure and biological activity.
Sato, Kenji
2017-12-13
It has been demonstrated that the ingestion of some protein hydrolysates exerts health-promoting effects. For understanding the underlying mechanisms responsible for these effects, the identification of bioactive peptides in the target organ is crucial. For this purpose, in vitro activity-guided fractionation for peptides in the protein hydrolysate has been performed. However, the peptides in the hydrolysate may be further degraded during digestion. The concentration of the active peptides, which were identified by in vitro activity-guided fractionation, in human blood is frequently very low (nanomolar levels). In contrast, micromolar levels of food-derived collagen peptides are present in human blood. Pro-Hyp, one of the major food-derived collagen peptides, enhances the growth of fibroblasts and synthesis of hyaluronic acid. These observations partially explain the beneficial effects of collagen hydrolysate ingestion on the enhancement of wound healing and improvement in the skin condition. The recent advancement involving liquid chromatography and mass spectrometry coupled with a pre-column derivatization technique has enabled the identification of food-derived peptides at nanomolar levels in the body post-ingestion of protein hydrolysates. Thus, this technique can be used for the identification of bioactive food-derived peptides in the body.
Humic fractions of forest, pasture and maize crop soils resulting from microbial activity
Tavares, Rose Luiza Moraes; Nahas, Ely
2014-01-01
Humic substances result from the degradation of biopolymers of organic residues in the soil due to microbial activity. The objective of this study was to evaluate the influence of three different ecosystems: forest, pasture and maize crop on the formation of soil humic substances relating to their biological and chemical attributes. Microbial biomass carbon (MBC), microbial respiratory activity, nitrification potential, total organic carbon, soluble carbon, humic and fulvic acid fractions and the rate and degree of humification were determined. Organic carbon and soluble carbon contents decreased in the order: forest > pasture > maize; humic and fulvic acids decreased in the order forest > pasture=maize. The MBC and respiratory activity were not influenced by the ecosystems; however, the nitrification potential was higher in the forest than in other soils. The rate and degree of humification were higher in maize soil indicating greater humification of organic matter in this system. All attributes studied decreased significantly with increasing soil depth, with the exception of the rate and degree of humification. Significant and positive correlations were found between humic and fulvic acids contents with MBC, microbial respiration and nitrification potential, suggesting the microbial influence on the differential formation of humic substances of the different ecosystems. PMID:25477932
Sundaram, Shanthy; Anjum, Shadma; Dwivedi, Priyanka; Rai, Gyanendra Kumar
2011-08-01
Phytochemicals such as polyphenols and carotenoids are gaining importance because of their contribution to human health and their multiple biological effects such as antioxidant, antimutagenic, anticarcinogenic, and cytoprotective activities and their therapeutic properties. Banana peel is a major by-product in pulp industry and it contains various bioactive compounds like polyphenols, carotenoids, and others. In the present study, effect of ripening, solvent polarity on the content of bioactive compounds of crude banana peel and the protective effect of peel extracts of unripe, ripe, and leaky ripe banana fruit on hydrogen peroxide-induced hemolysis and their antioxidant capacity were investigated. Banana (Musa paradisica) peel at different stages of ripening (unripe, ripe, leaky ripe) were treated with 70% acetone, which were partitioned in order of polarity with water, ethyl acetate, chloroform (CHCl₃), and hexane sequentially. The antioxidant activity of the samples was evaluated by the red cell hemolysis assay, free radical scavenging (1,1-diphenyl-2-picrylhydrazyl free radical elimination) and superoxide dismutase activities. The Folin-Ciocalteu's reagent assay was used to estimate the phenolic content of extracts. The findings of this investigation suggest that the unripe banana peel sample had higher antioxidant potency than ripe and leaky ripe. Further on fractionation, ethyl acetate and water soluble fractions of unripe peel displayed high antioxidant activity than CHCl₃ and hexane fraction, respectively. A positive correlation between free radical scavenging capacity and the content of phenolic compound were found in unripe, ripe, and leaky ripe stages of banana peel.
Inhibition of HIV-1 Replication by Secondary Metabolites From Endophytic Fungi of Desert Plants
Wellensiek, Brian P.; Ramakrishnan, Rajesh; Bashyal, Bharat P.; Eason, Yvette; Gunatilaka, A. A. Leslie; Ahmad, Nafees
2013-01-01
Most antiretroviral drugs currently in use to treat an HIV-1 infection are chemically synthesized and lead to the development of viral resistance, as well as cause severe toxicities. However, a largely unexplored source for HIV-1 drug discovery is endophytic fungi that live in a symbiotic relationship with plants. These fungi produce biologically active secondary metabolites, which are natural products that are beneficial to the host. We prepared several hundred extracts from endophytic fungi of desert plants and evaluated the inhibitory effects on HIV-1 replication of those extracts that showed less than 30% cytotoxicity in T-lymphocytes. Those extracts that inhibited viral replication were fractionated in order to isolate the compounds responsible for activity. Multiple rounds of fractionation and antiviral evaluation lead to the identification of four compounds, which almost completely impede HIV-1 replication. These studies demonstrate that metabolites from endophytic fungi of desert plants can serve as a viable source for identifying potent inhibitors of HIV-1 replication. PMID:23961302
NASA Technical Reports Server (NTRS)
Nakamura, N.; Nyquist, L.E.; Reese, Y.; Shih, C-Y.; Numata, M.; Fujitani, T.; Okano, O.
2009-01-01
Significantly large mass fractionations between chlorine isotopes (Cl-35, Cl-37) have been reported for terrestrial materials including both geological samples and laboratory materials. Also, the chlorine isotopic composition can be used as a tracer for early solar system processes. Moreover, chlorine is ubiquitous on the Martian surface. Typical chlorine abundances in Gusev soils are approx.0.5 %. The global surface average chlorine abundance also is approx.0.5 %. Striking variations among outcrop rocks at Meridiani were reported with some chlorine abundances as high as approx.2%. Characterizing conditions under which chlorine isotopic fractionation may occur is clearly of interest to planetary science. Thus, we have initiated development of a chlorine isotopic analysis technique using TIMS at NASA-JSC. We present here a progress report on the current status of development at JSC and discuss the possible application of chlorine isotopic analysis to Martian meteorites in a search for fluid- and possibly biological activity on Mars.
Short-term bioassay of complex organic mixtures. Part II. Mutagenicity testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epler, J.L.; Clark, B.R.; Ho, C.
1978-01-01
The feasibility of using short-term mutagenicity assays to predict the potential biohazard of various crude and complex test materials has been examined in a coupled chemical and biological approach. The principal focus of the research has involved the preliminary chemical characterizatiion and preparation for bioassay, followed by testing in the Salmonella histidine reversion assay system. The mutagenicity tests are intended to act as predictors of profound long-range health effects such as mutagenesis and/or carcinogenesis; act as a mechanism to rapidly isolate and identify a hazardous agent in a complex mixture; and function as a measure of biological activity correlating baselinemore » data with changes in process conditions. Since complex mixtures can be fractionated and approached in these short-term assays, information reflecting on the actual compounds responsible for the biological effect may be accumulated.« less
Cajachalcone: An Antimalarial Compound from Cajanus cajan Leaf Extract
Ajaiyeoba, E. O.; Ogbole, O. O.; Abiodun, O. O.; Ashidi, J. S.; Houghton, P. J.; Wright, C. W.
2013-01-01
Cajanus cajan L, a member of the family Fabaceae, was identified from the Nigerian antimalarial ethnobotany as possessing antimalarial properties. The bioassay-guided fractionation of the crude methanol extract of C. cajan leaves was done in vitro using the multiresistant strain of Plasmodium falciparum (K1) in the parasite lactate dehydrogenase assay. Isolation of compound was achieved by a combination of chromatographic techniques, while the structure of the compound was elucidated by spectroscopy. This led to the identification of a cajachalcone, 2′,6′-dihydroxy-4-methoxy chalcone, as the biologically active constituent from the ethyl acetate fraction. Cajachalcone had an IC50 value of 2.0 μg/mL (7.4 μM) and could be a lead for anti-malarial drug discovery. PMID:23970954
Balci, N.; Shanks, Wayne C.; Mayer, B.; Mandernack, K.W.
2007-01-01
To better understand reaction pathways of pyrite oxidation and biogeochemical controls on ??18O and ??34S values of the generated sulfate in acid mine drainage (AMD) and other natural environments, we conducted a series of pyrite oxidation experiments in the laboratory. Our biological and abiotic experiments were conducted under aerobic conditions by using O2 as an oxidizing agent and under anaerobic conditions by using dissolved Fe(III)aq as an oxidant with varying ??18OH2O values in the presence and absence of Acidithiobacillus ferrooxidans. In addition, aerobic biological experiments were designed as short- and long-term experiments where the final pH was controlled at ???2.7 and 2.2, respectively. Due to the slower kinetics of abiotic sulfide oxidation, the aerobic abiotic experiments were only conducted as long term with a final pH of ???2.7. The ??34SSO4 values from both the biological and abiotic anaerobic experiments indicated a small but significant sulfur isotope fractionation (???-0.7???) in contrast to no significant fractionation observed from any of the aerobic experiments. Relative percentages of the incorporation of water-derived oxygen and dissolved oxygen (O2) to sulfate were estimated, in addition to the oxygen isotope fractionation between sulfate and water, and dissolved oxygen. As expected, during the biological and abiotic anaerobic experiments all of the sulfate oxygen was derived from water. The percentage incorporation of water-derived oxygen into sulfate during the oxidation experiments by O2 varied with longer incubation and lower pH, but not due to the presence or absence of bacteria. These percentages were estimated as 85%, 92% and 87% from the short-term biological, long-term biological and abiotic control experiments, respectively. An oxygen isotope fractionation effect between sulfate and water (??18 OSO4 s(-) H2 O) of ???3.5??? was determined for the anaerobic (biological and abiotic) experiments. This measured ??18 OSO42 - s(-) H2 O value was then used to estimate the oxygen isotope fractionation effects (??18 OSO42 - s(-) O2) between sulfate and dissolved oxygen in the aerobic experiments which were -10.0???, -10.8???, and -9.8??? for the short-term biological, long-term biological and abiotic control experiments, respectively. Based on the similarity between ??18OSO4 values in the biological and abiotic experiments, it is suggested that ??18OSO4 values cannot be used to distinguish biological and abiotic mechanisms of pyrite oxidation. The results presented here suggest that Fe(III)aq is the primary oxidant for pyrite at pH < 3, even in the presence of dissolved oxygen, and that the main oxygen source of sulfate is water-oxygen under both aerobic and anaerobic conditions. ?? 2007 Elsevier Ltd. All rights reserved.
García, Andrés Calderín; de Souza, Luiz Gilberto Ambrosio; Pereira, Marcos Gervasio; Castro, Rosane Nora; García-Mina, José María; Zonta, Everaldo; Lisboa, Francy Junior Gonçalves; Berbara, Ricardo Luis Louro
2016-01-01
Knowledge of the structure-property-function relationship of humic substances (HSs) is key for understanding their role in soil. Despite progress, studies on this topic are still under discussion. We analyzed 37 humic fractions with respect to their isotopic composition, structural characteristics, and properties responsible for stimulating plant root parameters. We showed that regardless of the source of origin of the carbon (C3 or C4), soil-extracted HSs and humic acids (HAs) are structurally similar to each other. The more labile and functionalized HS fraction is responsible for root emission, whereas the more recalcitrant and less functionalized HA fraction is related to root growth. Labile structures promote root stimulation at lower concentrations, while recalcitrant structures require higher concentrations to promote a similar stimulus. These findings show that lability and recalcitrance, which are derived properties of humic fractions, are related to the type and intensity of their bioactivity. In summary, the comparison of humic fractions allowed a better understanding of the relationship between the source of origin of plant carbon and the structure, properties, and type and intensity of the bioactivity of HSs in plants. In this study, scientific concepts are unified and the basis for the agronomic use of HSs is established. PMID:26862010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unkelbach, J; Perko, Z; Wolfgang, J
Purpose: Stereotactic body radiotherapy (SBRT) has become an established treatment option for liver cancer. For patients with large tumors, the prescription dose is often limited by constraints on the mean liver dose, leading to tumor recurrence. In this work, we demonstrate that spatiotemporal fractionation schemes, ie delivering distinct dose distributions in different fractions, may allow for a 10% increase in biologically effective dose (BED) in the tumor compared to current practice where each fraction delivers the same dose distribution. Methods: We consider rotation therapy delivered with x-ray beams. Treatment plan optimization is performed using objective functions evaluated for the cumulativemore » BED delivered at the end of treatment. This allows for simultaneously optimizing multiple distinct treatment plans for different fractions. Results: The treatment that optimally exploits fractionation effects is designed such that each fraction delivers a similar dose bath to the uninvolved liver while delivering high single fraction doses to complementary parts of the target volume. Thereby, partial hypofractionation in the tumor is achieved along with near uniform fractionation in the surrounding liver - leading to an improvement in the therapeutic ratio. The benefit of such spatiotemporal fractionation schemes depends on tumor geometry and location as well as the number of fractions. For 5-fraction treatments (allowing for 5 distinct dose distributions) an improvement in the order of 10% is observed. Conclusion: Delivering distinct dose distributions in different fractions, purely motivated by fractionation effects rather than geometric changes, may improve the therapeutic ratio. For treatment sites where the prescriptions dose is limited by mean dose constraints in the surrounding organ, such as liver cancer, this approach may facilitate biological dose escalation and improved cure rates.« less
Spatiotemporal Fractionation Schemes for Irradiating Large Cerebral Arteriovenous Malformations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unkelbach, Jan, E-mail: junkelbach@mgh.harvard.edu; Bussière, Marc R.; Chapman, Paul H.
2016-07-01
Purpose: To optimally exploit fractionation effects in the context of radiosurgery treatments of large cerebral arteriovenous malformations (AVMs). In current practice, fractionated treatments divide the dose evenly into several fractions, which generally leads to low obliteration rates. In this work, we investigate the potential benefit of delivering distinct dose distributions in different fractions. Methods and Materials: Five patients with large cerebral AVMs were reviewed and replanned for intensity modulated arc therapy delivered with conventional photon beams. Treatment plans allowing for different dose distributions in all fractions were obtained by performing treatment plan optimization based on the cumulative biologically effective dosemore » delivered at the end of treatment. Results: We show that distinct treatment plans can be designed for different fractions, such that high single-fraction doses are delivered to complementary parts of the AVM. All plans create a similar dose bath in the surrounding normal brain and thereby exploit the fractionation effect. This partial hypofractionation in the AVM along with fractionation in normal brain achieves a net improvement of the therapeutic ratio. We show that a biological dose reduction of approximately 10% in the healthy brain can be achieved compared with reference treatment schedules that deliver the same dose distribution in all fractions. Conclusions: Boosting complementary parts of the target volume in different fractions may provide a therapeutic advantage in fractionated radiosurgery treatments of large cerebral AVMs. The strategy allows for a mean dose reduction in normal brain that may be valuable for a patient population with an otherwise normal life expectancy.« less
Role of primary sedimentation on plant-wide energy recovery and carbon footprint.
Gori, Riccardo; Giaccherini, Francesca; Jiang, Lu-Man; Sobhani, Reza; Rosso, Diego
2013-01-01
The goal of this paper is to show the effect of primary sedimentation on the chemical oxygen demand (COD) and solids fractionation and consequently on the carbonaceous and energy footprints of wastewater treatment processes. Using a simple rational procedure for COD and solids fraction quantification, we quantify the effects of varying fractions on CO2 and CO2-equivalent mass flows, process energy demand and energy recovery. Then we analysed two treatment plants with similar biological nutrient removal processes in two different climatic regions and quantified the net benefit of gravity separation before biological treatment. In the cases analysed, primary settling increases the solid fraction of COD that is processed in anaerobic digestion, with an associated increase in biogas production and energy recovery, and a reduction in overall emissions of CO2 and CO2-equivalent from power importation.
Computational properties of networks of synchronous groups of spiking neurons.
Dayhoff, Judith E
2007-09-01
We demonstrate a model in which synchronously firing ensembles of neurons are networked to produce computational results. Each ensemble is a group of biological integrate-and-fire spiking neurons, with probabilistic interconnections between groups. An analogy is drawn in which each individual processing unit of an artificial neural network corresponds to a neuronal group in a biological model. The activation value of a unit in the artificial neural network corresponds to the fraction of active neurons, synchronously firing, in a biological neuronal group. Weights of the artificial neural network correspond to the product of the interconnection density between groups, the group size of the presynaptic group, and the postsynaptic potential heights in the synchronous group model. All three of these parameters can modulate connection strengths between neuronal groups in the synchronous group models. We give an example of nonlinear classification (XOR) and a function approximation example in which the capability of the artificial neural network can be captured by a neural network model with biological integrate-and-fire neurons configured as a network of synchronously firing ensembles of such neurons. We point out that the general function approximation capability proven for feedforward artificial neural networks appears to be approximated by networks of neuronal groups that fire in synchrony, where the groups comprise integrate-and-fire neurons. We discuss the advantages of this type of model for biological systems, its possible learning mechanisms, and the associated timing relationships.
Chaita, Eliza; Gikas, Evagelos; Aligiannis, Nektarios
2017-03-01
In drug discovery, bioassay-guided isolation is a well-established procedure, and still the basic approach for the discovery of natural products with desired biological properties. However, in these procedures, the most laborious and time-consuming step is the isolation of the bioactive constituents. A prior identification of the compounds that contribute to the demonstrated activity of the fractions would enable the selection of proper chromatographic techniques and lead to targeted isolation. The development of an integrated HPTLC-based methodology for the rapid tracing of the bioactive compounds during bioassay-guided processes, using multivariate statistics. Materials and Methods - The methanol extract of Morus alba was fractionated employing CPC. Subsequently, fractions were assayed for tyrosinase inhibition and analyzed with HPTLC. PLS-R algorithm was performed in order to correlate the analytical data with the biological response of the fractions and identify the compounds with the highest contribution. Two methodologies were developed for the generation of the dataset; one based on manual peak picking and the second based on chromatogram binning. Results and Discussion - Both methodologies afforded comparable results and were able to trace the bioactive constituents (e.g. oxyresveratrol, trans-dihydromorin, 2,4,3'-trihydroxydihydrostilbene). The suggested compounds were compared in terms of R f values and UV spectra with compounds isolated from M. alba using typical bioassay-guided process. Chemometric tools supported the development of a novel HPTLC-based methodology for the tracing of tyrosinase inhibitors in M. alba extract. All steps of the experimental procedure implemented techniques that afford essential key elements for application in high-throughput screening procedures for drug discovery purposes. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
de-Moraes-Moreau, R L; Haraguchi, M; Morita, H; Palermo-Neto, J
1995-06-01
Cattle losses in Brazil have been attributed to Palicourea marcgravii St. Hil., a toxic plant for cattle. The crude extract from the leaves of P. marcgravii was successively fractionated using solvents with different polarities to determine whether monofluoroacetic acid and/or some other substance present in the leaves may be responsible for the acute symptoms caused by the plant. Authentic sodium monofluoroacetate (SMFA) was used for comparison. The only P. marcgravii fraction which induced seizures and death in intoxicated rats was water soluble. The signs and symptoms induced in the animals by the crude extract and water-soluble fraction were the same as induced by SMFA and included tonic seizures and other actions on the CNS. The dose-lethality and dose-latency to the 1st seizure curves constructed for the water-soluble fraction of the leaf extract (30-100 mg/kg) and SMFA (0.6-3.0 mg/kg) were parallel. Five animals per dose were used. The potency ratio of SMFA in relation to the water-soluble fraction of the leaf extract was 53.8 (dose-lethality curve) and 64.1 (dose-latency to the 1st seizure curve). The water-soluble fraction contained a substance with hRf = 20 which was the same as that of authentic SMFA. The 19F NMR spectra of authentic SMFA and the P. marcgravii water-soluble fraction were identical. These data demonstrate the presence of SMFA in the water-soluble fraction of P. marcgravii leaves and show that monofluoroacetate is the active principle responsible for the signs and symptoms of acute intoxication.
Comprehensive characterization of atmospheric organic matter in Fresno, California fog water
Herckes, P.; Leenheer, J.A.; Collett, J.L.
2007-01-01
Fogwater collected during winter in Fresno (CA) was characterized by isolating several distinct fractions and characterizing them by infrared and nuclear magnetic resonance (NMR) spectroscopy. More than 80% of the organic matter in the fogwater was recovered and characterized. The most abundant isolated fractions were those comprised of volatile acids (24% of isolated carbon) and hydrophilic acids plus neutrals (28%). Volatile acids, including formic and acetic acid, have been previously identified as among the most abundant individual species in fogwater. Recovered hydrophobic acids exhibited some properties similar to aquatic fulvic acids. An insoluble particulate organic matter fraction contained a substantial amount of biological material, while hydrophilic and transphilic fractions also contained material suggestive of biotic origin. Together, these fractions illustrate the important contribution biological sources make to organic matter in atmospheric fog droplets. The fogwater also was notable for containing a large amount of organic nitrogen present in a variety of species, including amines, nitrate esters, peptides, and nitroso compounds. ?? 2007 American Chemical Society.
Comprehensive characterization of atmospheric organic matter in Fresno, California fog water.
Herckes, Pierre; Leenheer, Jerry A; Collett, Jeffrey L
2007-01-15
Fogwater collected during winter in Fresno (CA) was characterized by isolating several distinct fractions and characterizing them by infrared and nuclear magnetic resonance (NMR) spectroscopy. More than 80% of the organic matter in the fogwater was recovered and characterized. The most abundant isolated fractions were those comprised of volatile acids (24% of isolated carbon) and hydrophilic acids plus neutrals (28%). Volatile acids, including formic and acetic acid, have been previously identified as among the most abundant individual species in fogwater. Recovered hydrophobic acids exhibited some properties similar to aquatic fulvic acids. An insoluble particulate organic matter fraction contained a substantial amount of biological material, while hydrophilic and transphilic fractions also contained material suggestive of biotic origin. Together, these fractions illustrate the important contribution biological sources make to organic matter in atmospheric fog droplets. The fogwater also was notable for containing a large amount of organic nitrogen present in a variety of species, including amines, nitrate esters, peptides, and nitroso compounds.
Iron isotope fractionation during microbially stimulated Fe(II) oxidation and Fe(III) precipitation
Balci, N.; Bullen, T.D.; Witte-Lien, K.; Shanks, Wayne C.; Motelica, M.; Mandernack, K.W.
2006-01-01
Interpretation of the origins of iron-bearing minerals preserved in modern and ancient rocks based on measured iron isotope ratios depends on our ability to distinguish between biological and non-biological iron isotope fractionation processes. In this study, we compared 56Fe/54Fe ratios of coexisting aqueous iron (Fe(II)aq, Fe(III)aq) and iron oxyhydroxide precipitates (Fe(III)ppt) resulting from the oxidation of ferrous iron under experimental conditions at low pH (<3). Experiments were carried out using both pure cultures of Acidothiobacillus ferrooxidans and sterile controls to assess possible biological overprinting of non-biological fractionation, and both SO42- and Cl- salts as Fe(II) sources to determine possible ionic/speciation effects that may be associated with oxidation/precipitation reactions. In addition, a series of ferric iron precipitation experiments were performed at pH ranging from 1.9 to 3.5 to determine if different precipitation rates cause differences in the isotopic composition of the iron oxyhydroxides. During microbially stimulated Fe(II) oxidation in both the sulfate and chloride systems, 56Fe/54Fe ratios of residual Fe(II)aq sampled in a time series evolved along an apparent Rayleigh trend characterized by a fractionation factor ??Fe(III)aq-Fe(II)aq???1.0022. This fractionation factor was significantly less than that measured in our sterile control experiments (???1.0034) and that predicted for isotopic equilibrium between Fe(II)aq and Fe(III)aq (???1.0029), and thus might be interpreted to reflect a biological isotope effect. However, in our biological experiments the measured difference in 56Fe/54Fe ratios between Fe(III)aq, isolated as a solid by the addition of NaOH to the final solution at each time point under N2-atmosphere, and Fe(II)aq was in most cases and on average close to 2.9??? (??Fe(III)aq-Fe(II)aq ???1.0029), consistent with isotopic equilibrium between Fe(II)aq and Fe(III)aq. The ferric iron precipitation experiments revealed that 56Fe/54Fe ratios of Fe(III)aq were generally equal to or greater than those of Fe(III)ppt, and isotopic fractionation between these phases decreased with increasing precipitation rate and decreasing grain size. Considered together, the data confirm that the iron isotope variations observed in our microbial experiments are primarily controlled by non-biological equilibrium and kinetic factors, a result that aids our ability to interpret present-day iron cycling processes but further complicates our ability to use iron isotopes alone to identify biological processing in the rock record. ?? 2005 Elsevier Inc. All rights reserved.
Yildirim, Arzu Birinci; Guner, Birgul; Karakas, Fatma Pehlivan; Turker, Arzu Ucar
2017-01-01
Background: Lysimachia vulgaris L. (Yellow loosestrife) is a medicinal plant in the family Myrsinaceae. It has been used in the treatment of fever, ulcer, diarrhea and wounds in folk medicine. It has also analgesic, expectorant, astringent and anti-inflammatory activities. Two different sources of the plant (field-grown and in vitro-grown) were used to evaluate the biological activities (antibacterial, antitumor and antioxidant) of L. vulgaris. In vitro-grown plant materials were collected from L. vulgaris plants that were previously regenerated in our laboratory. Materials and Methods: Plant materials were extracted with water, ethanol and acetone. For antibacterial test, disc diffusion method and 10 different pathogenic bacteria were used. Antioxidant activity was indicated by using DPPH method. The total phenol amount by using Folin-Ciocaltaeu method and the total flavonoid amount by using aluminum chloride (AlCl3) colorimetric method were determined. Results: Generally, yellow loosestrife extracts demonstrated antibacterial activity against Gram-positive bacteria (Staphylococcus aureus, S. epidermidis and Streptococcus pyogenes). Strong antitumor activity of yellow loosestrife was observed via potato disc diffusion bioassay. Nine different phenolics were also determined and compared by using High-Performance Liquid Chromatography (HPLC). Conclusion: Future investigations should be focused on fractionation of the extracts to identify active components for biological activity. PMID:28573234
Yildirim, Arzu Birinci; Guner, Birgul; Karakas, Fatma Pehlivan; Turker, Arzu Ucar
2017-01-01
Lysimachia vulgaris L. (Yellow loosestrife) is a medicinal plant in the family Myrsinaceae. It has been used in the treatment of fever, ulcer, diarrhea and wounds in folk medicine. It has also analgesic, expectorant, astringent and anti-inflammatory activities. Two different sources of the plant (field-grown and in vitro -grown) were used to evaluate the biological activities (antibacterial, antitumor and antioxidant) of L. vulgaris. In vitro-grown plant materials were collected from L. vulgaris plants that were previously regenerated in our laboratory. Plant materials were extracted with water, ethanol and acetone. For antibacterial test, disc diffusion method and 10 different pathogenic bacteria were used. Antioxidant activity was indicated by using DPPH method. The total phenol amount by using Folin-Ciocaltaeu method and the total flavonoid amount by using aluminum chloride (AlCl 3 ) colorimetric method were determined. Generally, yellow loosestrife extracts demonstrated antibacterial activity against Gram-positive bacteria (Staphylococcus aureus, S. epidermidis and Streptococcus pyogenes) . Strong antitumor activity of yellow loosestrife was observed via potato disc diffusion bioassay. Nine different phenolics were also determined and compared by using High-Performance Liquid Chromatography (HPLC). Future investigations should be focused on fractionation of the extracts to identify active components for biological activity.
Ice nucleation of bioaerosols - a resumee
NASA Astrophysics Data System (ADS)
Pummer, Bernhard G.; Atanasova, Lea; Bauer, Heidi; Bernardi, Johannes; Chazallon, Bertrand; Druzhinina, Irina S.; Grothe, Hinrich
2013-04-01
The role of biological particles for ice nucleation (IN) is still debated. Here, we present a summary of investigation and comparison of different ice nuclei. Apart from the bacterial ice nucleation proteins in Snomax, we further investigated a broad spectrum of pollen and fungal spores in the search for ice nucleation activity. Apart from Snomax, only few samples showed vital IN activity, like Fusarium avenaceum spores and Betula pendula pollen. Chemical characterization accentuated the differences between bacterial and pollen ice nuclei. Exposure to natural stresses, like UV and NOx, led to a significant decrease in IN activity. Furthermore, the releasable fraction of the pollen material, which includes the ice nuclei, was extracted with water and dried up. These residues were investigated with Raman spectroscopy and compared with the spectra of whole pollen grains. Measurements clearly demonstrated that the aqueous fraction contained mainly saccharides, lipids and proteins, but no sporopollenin, which is the bulk material of the outer pollen wall. Fungal spores of ecologically, economically or otherwise relevant species were also investigated. Most species showed no significant IN activity at all. A few species showed a slight increase in freezing temperature, but still significantly below the activity of the most active pollen or mineral dusts. Only Fusarium avenaceum showed strong IN activity. Cultivation of Fusarium and Trichoderma (close relatives of Fusarium) at different temperatures showed changes in total protein expression, but no impact on the IN activity.
Pettit, George R; Hogan, Fiona; Xu, Jun-Ping; Tan, Rui; Nogawa, Toshihiko; Cichacz, Zbigniew; Pettit, Robin K; Du, Jiang; Ye, Qing-Hua; Cragg, Gordon M; Herald, Cherry L; Hoard, Michael S; Goswami, Animesh; Searcy, Justin; Tackett, Larry; Doubek, Dennis L; Williams, Lee; Hooper, John N A; Schmidt, Jean M; Chapuis, Jean-Charles; Tackett, Denise N; Craciunescu, Felicia
2008-03-01
Bioassay-guided fractionation of extracts of various plants, marine organisms, and microorganisms has led to the discovery of new natural sources of a number of known compounds that have significant biological activity. The isolation of interesting and valuable cancer cell growth inhibitors including majusculamide C ( 1), axinastatin 5 ( 5), bengazoles A ( 6), B ( 7), and E ( 8), manzamine A ( 10), jaspamide ( 11), and neoechinulin A ( 19) has been summarized.
Obtaining growth hormone from calf blood
NASA Technical Reports Server (NTRS)
Kalchev, L. A.; Ralchev, K. K.; Nikolov, I. T.
1979-01-01
The preparation of a growth hormone from human serum was used for the isolation of the hormone from calf serum. The preparation was biologically active - it increased the quantity of the free fatty acids released in rat plasma by 36.4 percent. Electrophoresis in Veronal buffer, ph 8.6, showed the presence of a single fraction having mobility intermediate between that of alpha and beta globulins. Gel filtration through Sephadex G 100 showed an elutriation curve identical to that obtained by the growth hormone prepared from pituitary glands.
Noufou, Ouédraogo; Anne-Emmanuelle, Hay; Claude W, Ouédraogo Jean; Richard, Sawadogo W; André, Tibiri; Marius, Lompo; Jean-baptiste, Nikiema; Jean, Koudou; Marie-Genevieve, Dijoux-Franca; Pierre, Guissou Innocent
2017-01-01
Background: Pterocarpus erinaceus Poir. belonging to Fabacae familly is used as medicinal plant in Burkina Faso’s folk medicine. Roots of P. erinaceus are used to treat ulcer, stomach ache and inflammatory diseases. The objective of the present study was to carry out phytochemical composition of methanol (MeOH) and dichloromethane (DCM) extracts from Pterocarpus erinaceus roots, to isolate pure compounds, and to evaluate their pharmacological activities. Methods: Chromatographic fractionation led to the isolation of active components of the extracts. The structures were established by NMR analysis and comparison with data from literature. The anti-inflammatory activity was evaluated using croton oil-induced edema of mice ear as well as the effect of extracts against lipoxygenase and lipid peroxidation was evaluated. 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Cupric-reducing antioxidant capacity (CUPRAC) methods were used to evaluate the antioxidant activity of the extracts. Results: Friedelin (1), 3a-hydroxyfriedelan-2-one (2), a-sophoradiol (3) and stigmasterol (4) were isolated from DCM extract and maltol-6-O-apiofuranoside-glucopyranoside (5) isolated from MeOH. DCM extract and friedelin, 3a-hydroxyfriedelan-2-one, a-sophoradiol showed a significant anti-inflammatory effect against ear edema. Friedelin (1), α-sophoradiol (3) and maltol-6-O-apiofuranoside-glucopyranoside (5) exhibited lipoxygenase inhibition. MeOH extract (100 μg/mL) inhibited lipoxygenase and lipid peroxidation activities at 45.1 ± 3% and 30.7 ± 0.5% respectively. MeOH extract, ethyl acetate fraction and butanol fraction exhibited antioxidant property with both two methods used. Conclusion: The results suggested that the extracts and compounds from roots of Pterocarpus erinaceus possessed local anti-inflammatory effect, antioxidant properties and inhibitor effect against lipoxygenase and lipid peroxidation activities. PMID:28480397
Lauro, Filomena; Giancotti, Luigino Antonio; Ilari, Sara; Dagostino, Concetta; Gliozzi, Micaela; Morabito, Chiara; Malafoglia, Valentina; Raffaeli, William; Muraca, Maurizio; Goffredo, Bianca M; Mollace, Vincenzo; Muscoli, Carolina
2016-01-01
Citrus Bergamia Risso, commonly known as Bergamot, is a fruit whose Essential Oil and Bergamot Polyphenolic Fraction have numerous medicinal properties. It is also an excellent antioxidant and in this study, for the first time, its potential effect on morphine induced tolerance in mice has been investigated. Our studies revealed that development of antinociceptive tolerance to repeated doses of morphine in mice is consistently associated with increased formation of superoxide, malondialdehyde and tyrosine-nitrated proteins in the dorsal horn of the spinal cord such as the enzyme glutamine synthase. Nitration of this protein is intimately linked to inactivation of its biological function and resulting increase of glutamate levels in the spinal cord. Administration of Bergamot Polyphenolic Fraction (5-50 mg/kg) attenuated tolerance development. This effect was accompanied by reduction of superoxide and malondialdehyde production, prevention of GS nitration, re-establishment of its activity and of glutamate levels. Our studies confirmed the main role of free radicals during the cascade of events induced by prolonged morphine treatment and the co-administration of natural derivatives antioxidant such as Bergamot Polyphenolic Fraction can be an important therapeutic approach to restore opioids analgesic efficacy.
Lauro, Filomena; Giancotti, Luigino Antonio; Ilari, Sara; Dagostino, Concetta; Gliozzi, Micaela; Morabito, Chiara; Malafoglia, Valentina; Raffaeli, William; Muraca, Maurizio; Goffredo, Bianca M.; Mollace, Vincenzo; Muscoli, Carolina
2016-01-01
Citrus Bergamia Risso, commonly known as Bergamot, is a fruit whose Essential Oil and Bergamot Polyphenolic Fraction have numerous medicinal properties. It is also an excellent antioxidant and in this study, for the first time, its potential effect on morphine induced tolerance in mice has been investigated. Our studies revealed that development of antinociceptive tolerance to repeated doses of morphine in mice is consistently associated with increased formation of superoxide, malondialdehyde and tyrosine-nitrated proteins in the dorsal horn of the spinal cord such as the enzyme glutamine synthase. Nitration of this protein is intimately linked to inactivation of its biological function and resulting increase of glutamate levels in the spinal cord. Administration of Bergamot Polyphenolic Fraction (5–50 mg/kg) attenuated tolerance development. This effect was accompanied by reduction of superoxide and malondialdehyde production, prevention of GS nitration, re-establishment of its activity and of glutamate levels. Our studies confirmed the main role of free radicals during the cascade of events induced by prolonged morphine treatment and the co-administration of natural derivatives antioxidant such as Bergamot Polyphenolic Fraction can be an important therapeutic approach to restore opioids analgesic efficacy. PMID:27227548
Phenylalanine ammonia-lyase. Induction and purification from yeast and clearance in mammals.
Fritz, R R; Hodgins, D S; Abell, C W
1976-08-10
Yeast phenylalanine ammonia-lyase (EC 4.3.1.5) catalyzes the deamination of L-phenylalanine to form trans-cinnamic acid and tyrosine to trans-coumaric acid. Maximal enzyme activity in Rhodotorula glutinis (2 units/g, wet weight, of yeast) was induced in late-log phase (12 to 14 hours) of growth in a culture medium containing 1.0% malt extract, 0.1% yeast extract, and 0.1% L-phenylalanine. A highly purified enzyme was obtained by fractionation with ammonium sulfate and sodium citrate followed by chromatography on DEAE-cellulose and Sephadex G-200. The active preparation yielded a major component on three different polyacrylamide gel electrophoretic systems. Antisera to phenylalanine ammonia-lyase was raised in rabbits and detected by double immunodiffusion. The antigen-antibody complex was enzymatically active in vitro. The biological half-life of the enzyme was approximately 21 hours in several mammalian species (mice without and with BW10232 adenocarcinoma and B16 melanoma, rats, and monkeys) after a single injection; however, upon repeated administration, phenylalanine ammonia-lyase had a much shorter biological half-life. The onset of rapid clearance occurred earlier in tumor-bearing than in nontumor-bearing mice indicating a direct or indirect influence by the tumor on the biological half-life of phenylalanine ammonia-lyase.
Preparation, characterization, and biological properties of β-glucans
Rahar, Sandeep; Swami, Gaurav; Nagpal, Navneet; Nagpal, Manisha A.; Singh, Gagan Shah
2011-01-01
β-Glucans are soluble fibers with physiological functions, such as, interference with absorption of sugars and reduction of serum lipid levels. β-glucans are found in different species, such as, Rhynchelytrum repens, Lentinus edodes, Grifola frondosa, Tremella mesenterica, Tremella aurantia, Zea may, Agaricus blazei, Phellinus baummi, Saccharomyces cerevisae (yeast), and Agaricus blazei murell (mushroom). Analysis of the fractions reveals the presence of arabinose, glucose, xylose, and traces of rhamnose and galactose. The presence of β-glucan in these fractions is confirmed by hydrolyzing the polymers with endo-β-glucanase from Bacillus subtilis, followed by high-performance liquid chromatography (HPLC) analysis of the characteristic oligosaccharides produced. The 4 M KOH fractions from different tissues are subjected to gel permeation chromatography on Sepharose 4B, with separation of polysaccharides, with different degrees of polymerization, the highest molecular mass (above 2000 kDa) being found in young leaves. The molecular mass of the leaf blade polymers is similar (250 kDa) to that of the maize coleoptiles β-glucan used for comparison. The 4 M KOH fraction injected into rats with streptozotocin-induced diabetes has shown hypoglycemic activity, reducing blood sugar to normal levels for approximately 24 hours. This performance is better than that obtained with pure β-glucan from barley, which decreases blood sugar levels for about four hours. These results suggest that the activity of β-glucans is responsible for the use of this plant extract as a hypoglycemic drug in folk medicine. PMID:22171300
2010-01-01
Background Gamma-oryzanol (OR), a phytosteryl ferulate mixture extracted from rice bran oil, has a wide spectrum of biological activities in particular, it has antioxidant properties. Methods The regulatory effect of gamma-oryzanol rich fraction (ORF) extracted and fractionated from rice bran using supercritical fluid extraction (SFE) in comparison with commercially available OR on 14 antioxidant and oxidative stress related genes was determined in rat liver. Rats were subjected to a swimming exercise program for 10 weeks to induce stress and were further treated with either ORF at 125, 250 and 500 mg/kg or OR at 100 mg/kg in emulsion forms for the last 5 weeks of the swimming program being carried out. The GenomeLab Genetic Analysis System (GeXPS) was used to study the multiplex gene expression of the selected genes. Results Upon comparison of RNA expression levels between the stressed and untreated group (PC) and the unstressed and untreated group (NC), seven genes were found to be down-regulated, while seven genes were up-regulated in PC group compared to NC group. Further treatment of stressed rats with ORF at different doses and OR resulted in up-regulation of 10 genes and down regulation of four genes compared to the PC group. Conclusions Gamma-oryzanol rich fraction showed potential antioxidant activity greater than OR in the regulation of antioxidants and oxidative stress gene markers. PMID:20331906
Effectiveness of Brucella abortus lipopolysaccharide as an adjuvant for tuberculin PPD.
Jamalan, Mostafa; Ardestani, Susan Kaboudanian; Zeinali, Majid; Mosaveri, Nader; Mohammad Taheri, Mohammad
2011-01-01
Bacterial lipopolysaccharide (LPS) has T-helper 1 (Th1) immunostimulatory activities but because of toxicity and pyrogenicity cannot be used as an adjuvant. Brucella abortus LPS has less toxicity and no pyrogenic properties in comparison to other bacterial LPS. In the current study, the immunostimulatory properties of B. abortus LPS were evaluated for its adjuvant activity. Tuberculin purified protein derivative (PPD) from Mycobacterium tuberculosis was extracted and after anion-exchange chromatography on Q-sepharose column, two fractions (17 and 23), which dominantly contained 30- and 70-kDa antigens, were collected for immunological studies. BALB/c mice were immunized with four different antigen preparations (BCG, PPD, 17th and 23rd PPD fractions) along with complete Freund's adjuvant or B. abortus LPS. The T-cell immune response of mice was assessed by measurement of Th1-type cytokine (IFN-γ) and Th2-type cytokines (IL-5 and IL-10) levels. Also, the humoral immunity was evaluated by measuring the specific IgG levels. Our results showed that immunization of mice with 17th PPD fraction along with B. abortus LPS can induce a Th1-type cytokine response characterized with a high IFN-γ/IL-5 ratio, while immunization with PPD or 23rd PPD fraction along with the same adjuvant resulted to a mixed Th1/Th2-type cytokine response. Copyright © 2010 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
Matias, Edinardo Fagner Ferreira; Alves, Erivânia Ferreira; Santos, Beatriz Sousa; Sobral de Souza, Celestina Elba; de Alencar Ferreira, João Victor; Santos de Lavor, Anne Karyzia Lima; Figueredo, Fernando Gomes; Ferreira de Lima, Luciene; Vieira Dos Santos, Francisco Antônio; Neves Peixoto, Flórido Sampaio; Viana Colares, Aracélio; Augusti Boligon, Aline; Saraiva, Rogério de Aquino; Athayde, Margareth Linde; da Rocha, João Batista Teixeira; Alencar Menezes, Irwin Rose; Douglas Melo Coutinho, Henrique; da Costa, José Galberto Martins
2013-01-01
Knowledge of medicinal plants is often the only therapeutic resource of many communities and ethnic groups. "Erva-baleeira", Cordia verbenacea DC., is one of the species of plants currently exploited for the purpose of producing a phytotherapeutic product extracted from its leaves. In Brazil, its major distribution is in the region of the Atlantic Forest and similar vegetation. The crude extract is utilized in popular cultures in the form of hydroalcoholic, decoctions and infusions, mainly as antimicrobial, anti-inflammatory and analgesic agents. The aim of the present study was to establish a chemical and comparative profile of the experimental antibacterial activity and resistance modifying activity with ethnopharmacological reports. Phytochemical prospecting and HPLC analysis of the extract and fractions were in agreement with the literature with regard to the presence of secondary metabolites (tannins and flavonoids). The extract and fraction tested did not show clinically relevant antibacterial activity, but a synergistic effect was observed when combined with antibiotic, potentiating the antibacterial effect of aminoglycosides. We conclude that tests of antibacterial activity and modulating the resistance presented in this work results confirm the ethnobotanical and ethnopharmacological information, serving as a parameter in the search for new alternatives for the treatment of diseases.
De Ita-Pérez, Dalia; Vázquez-Martínez, Olivia; Villalobos-Leal, Mónica
2014-01-01
Daytime restricted feeding (DRF) is an experimental protocol that influences the circadian timing system and underlies the expression of a biological clock known as the food entrained oscillator (FEO). Liver is the organ that reacts most rapidly to food restriction by adjusting the functional relationship between the molecular circadian clock and the metabolic networks. γ-Aminobutyric acid (GABA) is a signaling molecule in the liver, and able to modulate the cell cycle and apoptosis. This study was aimed at characterizing the expression and activity of the mostly mitochondrial enzyme GABA transaminase (GABA-T) during DRF/FEO expression. We found that DRF promotes a sustained increase of GABA-T in the liver homogenate and mitochondrial fraction throughout the entire day-night cycle. The higher amount of GABA-T promoted by DRF was not associated to changes in GABA-T mRNA or GABA-T activity. The GABA-T activity in the mitochondrial fraction even tended to decrease during the light period. We concluded that DRF influences the daily variations of GABA-T mRNA levels, stability, and catalytic activity of GABA-T. These data suggest that the liver GABAergic system responds to a metabolic challenge such as DRF and the concomitant appearance of the FEO. PMID:24809054
De Ita-Pérez, Dalia; Méndez, Isabel; Vázquez-Martínez, Olivia; Villalobos-Leal, Mónica; Díaz-Muñoz, Mauricio
2014-01-01
Daytime restricted feeding (DRF) is an experimental protocol that influences the circadian timing system and underlies the expression of a biological clock known as the food entrained oscillator (FEO). Liver is the organ that reacts most rapidly to food restriction by adjusting the functional relationship between the molecular circadian clock and the metabolic networks. γ-Aminobutyric acid (GABA) is a signaling molecule in the liver, and able to modulate the cell cycle and apoptosis. This study was aimed at characterizing the expression and activity of the mostly mitochondrial enzyme GABA transaminase (GABA-T) during DRF/FEO expression. We found that DRF promotes a sustained increase of GABA-T in the liver homogenate and mitochondrial fraction throughout the entire day-night cycle. The higher amount of GABA-T promoted by DRF was not associated to changes in GABA-T mRNA or GABA-T activity. The GABA-T activity in the mitochondrial fraction even tended to decrease during the light period. We concluded that DRF influences the daily variations of GABA-T mRNA levels, stability, and catalytic activity of GABA-T. These data suggest that the liver GABAergic system responds to a metabolic challenge such as DRF and the concomitant appearance of the FEO.
NASA Astrophysics Data System (ADS)
Marassi, Valentina; Di Cristo, Luisana; Smith, Stephen G. J.; Ortelli, Simona; Blosi, Magda; Costa, Anna L.; Reschiglian, Pierluigi; Volkov, Yuri; Prina-Mello, Adriele
2018-01-01
Silver nanoparticle-based antimicrobials can promote a long lasting bactericidal effect without detrimental toxic side effects. However, there is not a clear and complete protocol to define and relate the properties of the particles (size, shape, surface charge, ionic content) with their specific activity. In this paper, we propose an effective multi-step approach for the identification of a `purpose-specific active applicability window' to maximize the antimicrobial activity of medical devices containing silver nanoparticles (Ag NPs) (such as surface coaters), minimizing any consequent risk for human health (safety by design strategy). The antimicrobial activity and the cellular toxicity of four types of Ag NPs, differing in their coating composition and concentration have been quantified. Through the implementation of flow-field flow fractionation, Ag NPs have been characterized in terms of metal release, size and shape. The particles are fractionated in the process while being left unmodified, allowing for the identification of biological particle-specific contribution. Toxicity and inflammatory response in vitro have been assessed on human skin models, while antimicrobial activity has been monitored with both non-pathogenic and pathogenic Escherichia coli. The main benefit associated with such approach is the comprehensive assessment of the maximal effectiveness of candidate nanomaterials, while simultaneously indexing their properties against their safety.
Matias, Edinardo Fagner Ferreira; Alves, Erivânia Ferreira; Santos, Beatriz Sousa; Sobral de Souza, Celestina Elba; de Alencar Ferreira, João Victor; Santos de Lavor, Anne Karyzia Lima; Figueredo, Fernando Gomes; Ferreira de Lima, Luciene; Vieira dos Santos, Francisco Antônio; Neves Peixoto, Flórido Sampaio; Viana Colares, Aracélio; Augusti Boligon, Aline; Saraiva, Rogério de Aquino; Athayde, Margareth Linde; da Rocha, João Batista Teixeira; Alencar Menezes, Irwin Rose; Douglas Melo Coutinho, Henrique; da Costa, José Galberto Martins
2013-01-01
Knowledge of medicinal plants is often the only therapeutic resource of many communities and ethnic groups. “Erva-baleeira”, Cordia verbenacea DC., is one of the species of plants currently exploited for the purpose of producing a phytotherapeutic product extracted from its leaves. In Brazil, its major distribution is in the region of the Atlantic Forest and similar vegetation. The crude extract is utilized in popular cultures in the form of hydroalcoholic, decoctions and infusions, mainly as antimicrobial, anti-inflammatory and analgesic agents. The aim of the present study was to establish a chemical and comparative profile of the experimental antibacterial activity and resistance modifying activity with ethnopharmacological reports. Phytochemical prospecting and HPLC analysis of the extract and fractions were in agreement with the literature with regard to the presence of secondary metabolites (tannins and flavonoids). The extract and fraction tested did not show clinically relevant antibacterial activity, but a synergistic effect was observed when combined with antibiotic, potentiating the antibacterial effect of aminoglycosides. We conclude that tests of antibacterial activity and modulating the resistance presented in this work results confirm the ethnobotanical and ethnopharmacological information, serving as a parameter in the search for new alternatives for the treatment of diseases. PMID:23818919
Marassi, Valentina; Di Cristo, Luisana; Smith, Stephen G J; Ortelli, Simona; Blosi, Magda; Costa, Anna L; Reschiglian, Pierluigi; Volkov, Yuri; Prina-Mello, Adriele
2018-01-01
Silver nanoparticle-based antimicrobials can promote a long lasting bactericidal effect without detrimental toxic side effects. However, there is not a clear and complete protocol to define and relate the properties of the particles (size, shape, surface charge, ionic content) with their specific activity. In this paper, we propose an effective multi-step approach for the identification of a 'purpose-specific active applicability window' to maximize the antimicrobial activity of medical devices containing silver nanoparticles (Ag NPs) (such as surface coaters), minimizing any consequent risk for human health (safety by design strategy). The antimicrobial activity and the cellular toxicity of four types of Ag NPs, differing in their coating composition and concentration have been quantified. Through the implementation of flow-field flow fractionation, Ag NPs have been characterized in terms of metal release, size and shape. The particles are fractionated in the process while being left unmodified, allowing for the identification of biological particle-specific contribution. Toxicity and inflammatory response in vitro have been assessed on human skin models, while antimicrobial activity has been monitored with both non-pathogenic and pathogenic Escherichia coli . The main benefit associated with such approach is the comprehensive assessment of the maximal effectiveness of candidate nanomaterials, while simultaneously indexing their properties against their safety.
Marassi, Valentina; Di Cristo, Luisana; Smith, Stephen G. J.; Ortelli, Simona; Blosi, Magda; Costa, Anna L.; Reschiglian, Pierluigi; Volkov, Yuri
2018-01-01
Silver nanoparticle-based antimicrobials can promote a long lasting bactericidal effect without detrimental toxic side effects. However, there is not a clear and complete protocol to define and relate the properties of the particles (size, shape, surface charge, ionic content) with their specific activity. In this paper, we propose an effective multi-step approach for the identification of a ‘purpose-specific active applicability window’ to maximize the antimicrobial activity of medical devices containing silver nanoparticles (Ag NPs) (such as surface coaters), minimizing any consequent risk for human health (safety by design strategy). The antimicrobial activity and the cellular toxicity of four types of Ag NPs, differing in their coating composition and concentration have been quantified. Through the implementation of flow-field flow fractionation, Ag NPs have been characterized in terms of metal release, size and shape. The particles are fractionated in the process while being left unmodified, allowing for the identification of biological particle-specific contribution. Toxicity and inflammatory response in vitro have been assessed on human skin models, while antimicrobial activity has been monitored with both non-pathogenic and pathogenic Escherichia coli. The main benefit associated with such approach is the comprehensive assessment of the maximal effectiveness of candidate nanomaterials, while simultaneously indexing their properties against their safety. PMID:29410826
NASA Astrophysics Data System (ADS)
Nucciotti, V.; Stringari, C.; Sacconi, L.; Vanzi, F.; Linari, M.; Piazzesi, G.; Lombardi, V.; Pavone, F. S.
2009-02-01
Recently, the use of Second Harmonic Generation (SHG) for imaging biological samples has been explored with regard to intrinsic SHG in highly ordered biological samples. As shown by fractional extraction of proteins, myosin is the source of SHG signal in skeletal muscle. SHG is highly dependent on symmetries and provides selective information on the structural order and orientation of the emitting proteins and the dynamics of myosin molecules responsible for the mechano-chemical transduction during contraction. We characterise the polarization-dependence of SHG intensity in three different physiological states: resting, rigor and isometric tetanic contraction in a sarcomere length range between 2.0 μm and 4.0 μm. The orientation of motor domains of the myosin molecules is dependent on their physiological states and modulate the SHG signal. We can discriminate the orientation of the emitting dipoles in four different molecular conformations of myosin heads in intact fibers during isometric contraction, in resting and rigor. We estimate the contribution of the myosin motor domain to the total second order bulk susceptibility from its molecular structure and its functional conformation. We demonstrate that SHG is sensitive to the fraction of ordered myosin heads by disrupting the order of myosin heads in rigor with an ATP analog. We estimate the fraction of myosin motors generating the isometric force in the active muscle fiber from the dependence of the SHG modulation on the degree of overlap between actin and myosin filaments during an isometric contraction.
Discovery and characterization of natural products that act as pheromones in fish.
Li, Ke; Buchinger, Tyler J; Li, Weiming
2018-06-20
Covering: up to 2018 Fish use a diverse collection of molecules to communicate with conspecifics. Since Karlson and Lüscher termed these molecules 'pheromones', chemists and biologists have joined efforts to characterize their structures and functions. In particular, the understanding of insect pheromones developed at a rapid pace, set, in part, by the use of bioassay-guided fractionation and natural product chemistry. Research on vertebrate pheromones, however, has progressed more slowly. Initially, biologists characterized fish pheromones by screening commercially available compounds suspected to act as pheromones based upon their physiological function. Such biology-driven screening has proven a productive approach to studying pheromones in fish. However, the many functions of fish pheromones and diverse metabolites that fish release make predicting pheromone identity difficult and necessitate approaches led by chemistry. Indeed, the few cases in which pheromone identification was led by natural product chemistry indicated novel or otherwise unpredicted compounds act as pheromones. Here, we provide a brief review of the approaches to identifying pheromones, placing particular emphasis on the promise of using natural product chemistry together with assays of biological activity. Several case studies illustrate bioassay-guided fractionation as an approach to pheromone identification in fish and the unexpected diversity of pheromone structures discovered by natural product chemistry. With recent advances in natural product chemistry, bioassay-guided fractionation is likely to unveil an even broader collection of pheromone structures and enable research that spans across disciplines.
Characteristics of highly cross-linked polyethylene wear debris in vivo
Baxter, Ryan M.; MacDonald, Daniel W.; Kurtz, Steven M.; Steinbeck, Marla J.
2014-01-01
Despite the widespread implementation of highly cross-linked polyethylene (HXLPE) liners to reduce the clinical incidence of osteolysis, it is not known if the improved wear resistance will outweigh the inflammatory potential of HXLPE wear debris generated in vivo. Thus, we asked: What are the differences in size, shape, number, and biological activity of polyethylene wear particles obtained from primary total hip arthroplasty revision surgery of conventional polyethylene (CPE) versus remelted or annealed HXLPE liners? Pseudocapsular tissue samples were collected from revision surgery of CPE and HXLPE (annealed and remelted) liners, and digested using nitric acid. The isolated polyethylene wear particles were evaluated using scanning electron microscopy. Tissues from both HXLPE cohorts contained an increased percentage of submicron particles compared to the CPE cohort. However, the total number of particles was lower for both HXLPE cohorts, as a result there was no significant difference in the volume fraction distribution and specific biological activity (SBA; the relative biological activity per unit volume) between cohorts. In contrast, based on the decreased size and number of HXLPE wear debris there was a significant decrease in total particle volume (mm3/g of tissue). Accordingly, when the SBA was normalized by total particle volume (mm3/gm tissue) or by component wear volume rate (mm3/year), functional biological activity of the HXLPE wear debris was significantly decreased compared to the CPE cohort. Indications for this study are that the osteolytic potential of wear debris generated by HXLPE liners in vivo is significantly reduced by improvements in polyethylene wear resistance. PMID:23436587
[BIOLOGICAL ACTIVITY OF ANTIMICROBIAL PEPTIDES OF ENTEROCOCCUS FAECIUM].
Vasilchenko, A S; Rogozhin, E A; Valyshev, A V
2015-01-01
Isolate bacteriocins from Enterococcus faecium metabolites and characterize their effect on cells of Gram positive (Listeria monocytogenes) and Gram negative (Escherichia coli) bacteria. Methods of solid-phase extraction, ion-exchange and reversed phase chromatography were applied for isolation of bacteriocins from cultural medium of bacteria MALDI time-of-flight mass-spectrometry was used for characterization of the obtained preparations. The mechanism of biological effect of peptides was evaluated using DNA-tropic dyes (SYTO 9 and PI) with subsequent registration of fluorescence spectra: Atomic-force microscopy (AFM) was used for characterization of morpho-functional reaction of target cells. Peptide fractions with mass of 1.0 - 3.0 kDa were isolated from enterococci metabolites, that inhibit the growth of indicator microorganisms. E. faecium strain exoproducts were shown to increase membrane permeability during interaction with L. monocytogenes, that results in subsequent detectable disturbance of normal cell morphology of listeria. Alterations of E. coli surface during the effect of purified peptide fraction was detected using AFM. The studies carried out have revealed the effect of bacteriocins of enterococci on microorganisms with various types of cell wall composition and have confirmed the importance of bacterial barrier structure permeability disturbance in the mechanism of antimicrobial effect of enterocins.
Chai, Tsun-Thai; Khoo, Chee-Siong; Tee, Chong-Siang; Wong, Fai-Chu
2016-01-01
Alternanthera sessilis is a medicinal herb which is consumed as vegetable and used as traditional remedies of various ailments in Asia and Africa. This study aimed to investigate the antiglucosidase and antioxidant activity of solvent fractions of A. sessilis leaf and callus. Leaf and callus methanol extracts were fractionated to produce hexane, chloroform, ethyl acetate, butanol, and water fractions. Antiglucosidase and 1,1-diphenyl-2-picrylhydrazyl scavenging activities as well as total phenolic (TP), total flavonoid (TF), and total coumarin (TC) contents were evaluated. Lineweaver-Burk plot analysis was performed on leaf and callus fractions with the strongest antiglucosidase activity. Leaf ethyl acetate fraction (LEF) had the strongest antiglucosidase (EC 50 0.55 mg/mL) and radical scavenging (EC 50 10.81 μg/mL) activity among leaf fractions. Callus ethyl acetate fraction (CEF) and chloroform fraction had the highest antiglucosidase (EC 50 0.25 mg/mL) and radical scavenging (EC 50 34.12 μg/mL) activity, respectively, among callus fractions. LEF and CEF were identified as noncompetitive and competitive α-glucosidase inhibitors, respectively. LEF and CEF had greater antiglucosidase activity than acarbose. Leaf fractions had higher phytochemical contents than callus fractions. LEF had the highest TP, TF, and TC contents. Antiglucosidase and antioxidant activities of leaf fractions correlated with phytochemical contents. LEF had potent antiglucosidase activity and concurrent antioxidant activity. CEF had the highest antiglucosidase activity among all fractions. Callus culture is a promising tool for enhancing production of potent α-glucosidase inhibitors. Leaf ethyl acetate fraction (LEF) had the strongest antiglucosidase (EC 50 0.55 mg/mL) and radical scavenging (EC 50 10.81 μg/mL) activity among leaf fractionsCallus ethyl acetate fraction (CEF) and chloroform fraction had the highest antiglucosidase (EC 50 0.25 mg/mL) and radical scavenging (EC 50 34.12 μg/mL) activity, respectively, among callus fractionsLEF and CEF were identified as noncompetitive and competitive á-glucosidase inhibitors, respectivelyAntiglucosidase and antioxidant activities of leaf fractions correlated with phytochemical contents. Abbreviations used: LHF: Leaf hexane fraction, LCF: Leaf chloroform fraction, LEF: Leaf ethyl acetate fraction, LBF: Leaf butanol fraction, LWF: Leaf water fraction, CHF: Callus hexane fraction, CCF: Callus chloroform fraction, CEF: Callus ethyl acetate fraction, CBF: Callus butanol fraction, CWF: Callus water fraction, TP: Total phenolic, TF: Total flavonoid, TC: Total coumarin.
Kennedy, Jonathan; Baker, Paul; Piper, Clare; Cotter, Paul D; Walsh, Marcella; Mooij, Marlies J; Bourke, Marie B; Rea, Mary C; O'Connor, Paula M; Ross, R Paul; Hill, Colin; O'Gara, Fergal; Marchesi, Julian R; Dobson, Alan D W
2009-01-01
Samples of the marine sponge Haliclona simulans were collected from Irish coastal waters, and bacteria were isolated from these samples. Phylogenetic analyses of the cultured isolates showed that four different bacterial phyla were represented; Bacteriodetes, Actinobacteria, Proteobacteria, and Firmicutes. The sponge bacterial isolates were assayed for the production of antimicrobial substances, and biological activities against Gram-positive and Gram-negative bacteria and fungi were demonstrated, with 50% of isolates showing antimicrobial activity against at least one of the test strains. Further testing showed that the antimicrobial activities extended to the important pathogens Pseudomonas aeruginosa, Clostridium difficile, multi-drug-resistant Staphylococcus aureus, and pathogenic yeast strains. The Actinomycetes were numerically the most abundant producers of antimicrobial activities, although activities were also noted from Bacilli and Pseudovibrio isolates. Surveys for the presence of potential antibiotic encoding polyketide synthase and nonribosomal peptide synthetase genes also revealed that genes for the biosynthesis of these secondary metabolites were present in most bacterial phyla but were particularly prevalent among the Actinobacteria and Proteobacteria. This study demonstrates that the culturable fraction of bacteria from the sponge H. simulans is diverse and appears to possess much potential as a source for the discovery of new medically relevant biological active agents.
Soares, Deivid C.; Portella, Nathalya A.; Ramos, Mônica Freiman de S.; Siani, Antonio C.; Saraiva, Elvira M.
2013-01-01
This study investigated the leishmanicidal activity against Leishmania amazonensis of four commercial oils from Copaifera spp. named as C1, C2, C3, and C4, the sesquiterpene and diterpene pools obtained from distilling C4, and isolated β-caryophyllene (CAR). Copaiba oils chemical compositions were analyzed by gas chromatography and correlated with biological activities. Diterpenes-rich oils C2 and C3 showed antipromastigote activity. Sesquiterpenes-rich C1 and C4, and isolated CAR presented a dose-dependent activity against intracellular amastigotes, with IC50s of 2.9 µg/mL, 2.3 µg/mL, and 1.3 µg/mL (6.4 µM), respectively. Based on the highest antiamastigote activity and the low toxicity to the host cells, C4 was steamdistillated to separate pools of sesquiterpenes and diterpenes. Both pools were less active against L. amazonensis and more toxic for the macrophages than the whole C4 oil. The leishmanicidal activity of C3 and C4 oils, as well as C4 fractions and CAR, appears to be independent of nitric oxide production by macrophages. This study pointed out β-caryophyllene as an effective antileishmanial compound and also to its role as potential chemical marker in copaiba oils or fractions derived thereof, aiming further development of this rainforest raw material for leishmaniasis therapy. PMID:23864897
Sampson, Kimberly; Zaitseva, Jelena; Stauffer, Maria; Vande Berg, Brian; Guo, Rong; Tomso, Daniel; McNulty, Brian; Desai, Nalini; Balasubramanian, Deepa
2017-01-01
Western corn rootworm (WCR), Diabrotica virgifera virgifera, is one of the most significant pests of corn in the United States. Although transgenic solutions exist, increasing resistance concerns make the discovery of novel solutions essential. In order to find a novel protein with high activity and a new mode of action, a large microbial collection was surveyed for toxicity to WCR using in vitro bioassays. Cultures of strain ATX2024, identified as Chromobacterium piscinae, had very high activity against WCR larvae. The biological activity from the strain was purified using chromatographic techniques and fractions were tested against WCR larvae. Proteins in the final active fraction were identified by mass spectrometry and N-terminal sequencing and matched to the genome of ATX2024. A novel 58.9kDa protein, identified by this approach, was expressed in a recombinant expression system and found to have specific activity against WCR. Transgenic corn events containing this gene showed good protection against root damage by WCR, with average scores ranging between 0.01 and 0.04 on the Iowa State node injury scale. Sequence analysis did not reveal homology to any known insecticidal toxin, suggesting that this protein may act in a novel way to control WCR. The new WCR active protein is named GNIP1Aa, for Gram Negative Insecticidal Protein. Copyright © 2016 Elsevier Inc. All rights reserved.
A novel methodology to investigate isotopic biosignatures
NASA Astrophysics Data System (ADS)
Horner, T. J.; Lee, R. B. Y.; Henderson, G. M.; Rickaby, R. E. M.
2012-04-01
An enduring goal of trace metal isotopic studies of Earth History is to find isotopic 'fingerprints' of life or of life's individual physiochemical processes. Generally, such signatures are sought by relating an isotopic effect observed in controlled laboratory conditions or a well-characterized environment to a more complex system or the geological record. However, such an approach is ultimately limited because life exerts numerous isotopic fractionations on any one element so it is hard to dissect the resultant net fractionation into its individual components. Further, different organisms, often with the same apparent cellular function, can express different isotopic fractionation factors. We have used a novel method to investigate the isotopic fractionation associated with a single physiological process-enzyme specific isotopic fractionation. We selected Cd isotopes since only one biological use of Cd is known, CdCA (a Cd/Zn carbonic anhydrase from the coastal diatom T. Weissflogii). Thus, our investigation can also inform the long standing mystery as to why this generally toxic element appears to have a nutrient-like dissolved isotopic and concentration profile in the oceans. We used the pET-15b plasmid to insert the CdCA gene into the E. coli genome. There is no known biochemical function for Cd in E. coli, making it an ideal vector for studying distinct physiological processes within a single organism. The uptake of Cd and associated isotopic fractionation was determined for both normal cells and those expressing CdCA. It was found that whole cells always exhibited a preference for the light isotopes of Cd, regardless of the expression of CdCA; adsorption of Cd to cell surfaces was not seen to cause isotopic fractionation. However, the cleaning procedure employed exerted a strong control on the observed isotopic composition of cells. Using existing protein purification techniques, we measured the Cd isotopic composition of different subcellular fractions of E. coli (e.g. membranes, cytosol, etc.), including the catalytic metal atoms within CdCA. These experiments allow isotopic exchange reactions to be observed in biological systems at an unparalleled resolution, demonstrating that isotopic fractionation can occur, in vivo, on length scales as small as a few Å. We will explore future applications of this technique using the marine geochemistry of Cd as a case study. This experimental approach has great promise for studying the individual isotopic biosignatures of other biochemical reactions, in particular those which may have been active during early Earth History.
Zunjar, Vishwanath; Dash, Ranjeet Prasad; Jivrajani, Mehul; Trivedi, Bhavna; Nivsarkar, Manish
2016-04-02
The decoction of Carica papaya Linn. leaves is used in folklore medicine in certain parts of Malaysia and Indonesia for the treatment of different types of thrombocytopenia associated with diseases and drugs. There are several scientific studies carried out on humans and animal models to confirm the efficacy of decoction of papaya leave for the treatment of disease induced and drug induced thrombocytopenia, however very little is known about the bio-active compounds responsible for the observed activity. The aim of present study was to identify the active phytochemical component of Carica papaya Linn. leaves decoction responsible for anti-thrombocytopenic activity in busulfan-induced thrombocytopenic rats. Antithrombocytopenic activity was assessed on busulfan induced thrombocytopenic Wistar rats. The antithrombocytopenic activity of different bio-guided fractions was evaluated by monitoring blood platelet count. Bioactive compound carpaine was isolated and purified by chromatographic methods and confirmed by spectroscopic methods (LC-MS and 1D/2D-1H/13C NMR) and the structure was confirmed by single crystal X-ray diffraction. Quantification of carpaine was carried out by LC-MS/MS equipped with XTerra(®) MS C18 column and ESI-MS detector using 90:10 CH3CN:CH3COONH4 (6mM) under isocratic conditions and detected with multiple reaction monitoring (MRM) in positive ion mode. Two different phytochemical groups were isolated from decoction of Carica papaya leaves: phenolics, and alkaloids. Out of these, only alkaloid fraction showed good biological activity. Carpaine was isolated from the alkaloid fraction and exhibited potent activity in sustaining platelet counts upto 555.50±85.17×10(9)/L with no acute toxicity. This study scientifically validates the popular usage of decoction of Carica papaya leaves and it also proves that alkaloids particularly carpaine present in the leaves to be responsible for the antithrombocytopenic activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Burmann, Fabian; Keim, Maximilian F.; Oelmann, Yvonne; Teiber, Holger; Marks, Michael A. W.; Markl, Gregor
2013-12-01
Pyromorphite (Pb5[PO4]3Cl) is an abundant mineral in oxidized zones of lead-bearing ore deposits and due to its very low solubility product effectively binds Pb during supergene alteration of galena (PbS). The capacity of a soil or near-surface fluid to immobilize dissolved Pb depends critically on the availability of phosphate in this soil or fluid. Potential phosphorus sources in soil include (i) release during biological processes, i.e. leaching from litter/lysis of microbial cells (after intracellular enzyme activity) in soil and hydrolysis from soil organic matter by extracellular enzymes and (ii) inorganic phosphate from the dissolution of apatite in the adjacent basement rocks. Intracellular enzyme activity in plants/microorganisms associated with kinetic fractionation produces an oxygen isotope composition distinctly different from inorganic processes in soil. This study presents the first oxygen isotope data for phosphate (δ18OP) in pyromorphite and a comprehensive data set for apatite from crystalline rocks. We investigated 38 pyromorphites from 26 localities in the Schwarzwald (Southwest Germany) and five samples from localities outside the Schwarzwald in addition to 12 apatite separates from gneissic and granitic host rocks. Pyromorphites had δ18OP values between +10‰ and +19‰, comparable to literature data on δ18OP in the readily available P fraction in soil (resin-extractable P) from which minerals potentially precipitate in soils. δ18OP values below the range of equilibrium isotope fractionation can be attributed either to apatites that formed geochemically (δ18OP of apatites:+6‰ to +9‰) or less likely to biological processes (extracellular enzyme activity). However, for most of our samples isotopic equilibrium with ambient water was indicated, which suggests biological activity. Therefore, we conclude that the majority of pyromorphites in oxidized zones of ore bodies formed from biologically cycled phosphate. This study highlights that biological activity and Pb mobilization are intimately connected: in humid regions with high biological activity in soil, Pb might be precipitated rapidly due to biologically-released phosphate, whereas Pb will be released to the environment from ore deposits or mine dumps much more easily in arid regions with low biological activity, because pyromorphite cannot form due to limited supply of phosphorus. Phosphate from magmatic, metamorphic or sedimentary rocks: The most important phosphate-bearing mineral in such rocks is apatite (Ca5[(PO4)3(F,Cl,OH)]). In magmatic and metamorphic rocks it generally occurs as fluorapatite (Piccoli and Candela, 2002; Filippelli, 2008), whereas sedimentary rocks may also contain considerable amounts of carbonate-fluorapatite. Phosphorites are present in the geological record since the Lower Proterozoic (Cook and McElhinny, 1979; Shemesh et al., 1983). Alteration with low-pH fluids can dissolve apatite and thereby release geochemical phosphate (Filippelli, 2008). Low pH values may be attained by dissolution of atmospheric CO2 or by reaction with sulfides present in the rocks or in adjacent ore deposits. Phosphate of organic origin, such as from plants, animals or microorganisms: Phosphorus is required in most biological systems, as it is an essential element in major organic molecules such as adenosine triphosphate in the energy cycle, or in phospholipids, which form cell walls (Bucher, 2007; Filippelli, 2008). Organisms take up phosphorus as dissolved inorganic phosphate and cycle it through metabolic processes (intracellular enzyme activity). Once entering the soil, the organic material is decomposed by extracellular enzyme activity (hydrolysis of ester bonds) and phosphate is being released (Bünemann et al., 2011). Phosphate of anthropogenic origin: Since phosphate is a limiting factor in organism growth, it is an important ingredient of fertilizers in the agricultural industry. Also, phosphate can be found as ingredients in detergents, toothpaste and as a release of waste water treatment plants (Young et al., 2009). Anthropogenic effects will not be discussed further in the following. On this basis, we consider three different cases of pyromorphite formation as illustrated on the conceptual scheme of Fig. 1. Case 1: Pyromorphite grown recently (within the last hundreds of years) on rock surfaces in former mines. Both, phosphate released geochemically from igneous rocks and phosphate released biologically during leaching from litter/lysis of microbial cells and soil organic matter decomposition are possible sources. Case 2: Pyromorphite formation on mine dumps, below vegetation (recent, during tens to hundreds of years). Based on the specific setting of these samples investigated here (they were found exclusively below a large fern; see more details in the section on sample description), biologically-mediated P release provides the phosphate for pyromorphite growth. Case 3: Pyromorphite growth in the oxidized zones of ore bodies prior to human interference. Most samples of our study belong to this case.Phosphorus generally forms very strong covalent bonds (Huminicki and Hawthorne, 2002) and there is only negligible exchange of oxygen isotopes between phosphate and ambient water under most near-surface conditions without biological activity (Winter et al., 1940; Longinelli, 1965). The only important exchange of oxygen isotopes between phosphate and ambient water involves biological activity and the oxygen isotope composition of phosphate (δ18OP) may be modified by different enzymatic/cellular processes. Once phosphate is taken up by organisms, intracellular pyrophosphatase mediates internal P cycling. This is associated with a temperature-dependent equilibrium isotope fractionation due to the reversible exchange of O atoms between the phosphate molecule and cell water. As a result the δ18OP is equilibrated with the ambient water, and the equilibrium temperature can be calculated following the revised empirical equation from Longinelli and Nuti (1973) presented by Puceat et al. (2010): T(°C)=118.7-4.22[(δ18OP+(22.6-δ18ONBS120c))-δ18OW] where T is the temperature of the ambient water, δ18OP is the oxygen isotope composition of the phosphate at equilibrium conditions, δ18ONBS120c is the oxygen isotope composition of reference material NBS120c according to Vennemann et al. (2002) and δ18OW is the oxygen isotope composition of the ambient water. Knowledge of the δ18OP of ambient water and its temperature renders it possible to calculate a theoretical equilibrium value for δ18OP. If phosphate is again released from organisms into the soil, it will reflect the δ18OP of the cell-internal P cycling. In addition, extracellular enzymes are released in soil if the demand for P requires the hydrolysis of organic P in soil (McGill and Cole, 1981). Extracellular enzymes also transfer O atoms from water to phosphate and thus, change δ18OP. The associated isotopic fractionation factors vary between -10‰ (enzyme: 5‧-nucleotidase) and -30‰ (enzyme: alkaline phosphatase; Liang and Blake, 2006, 2009). All recent publications on δ18OP of phosphate in the readily available P fraction in soil (resin P) showed δ18OP values in the range calculated for isotopic equilibrium fractionation irrespective of environmental conditions (parent material, climate, biome). At most 20% down to 0% of the measured δ18OP fell outside the calculated isotopic equilibrium range (Angert et al., 2011, 2012; Tamburini et al., 2012). We therefore infer a dominant role of intracellular enzyme activity for δ18OP values in resin P in soil.Theoretical calculations by Lecuyer et al. (1999) imply that oxygen isotope exchange between phosphate and water can also occur in the absence of biological activity. An extrapolation of their equations to temperatures of 10 °C shows, however, that it takes more than 6000 years to exchange 10% of the phosphate oxygen (Colman et al., 2005). Traditionally, the oxygen isotope composition of phosphate has been used as a tool for determining paleotemperatures (e.g., Longinelli, 1984), but recent studies suggested to test its suitability for tracing phosphate sources in aquatic systems (Gruau et al., 2005; Elsbury et al., 2009; Young et al., 2009). Most of these studies deal with short-term ecological cycles and therefore the inorganic exchange of oxygen is negligible. However, this effect has to be considered for processes that happen in geological timescales.Due to the low phosphate concentrations in natural waters (Blake et al., 2005) and the low solubility product of pyromorphite, it is reasonable to assume almost all phosphate to precipitate as pyromorphite without any fractionation. Accordingly, the δ18OP of pyromorphite reflects the oxygen isotope composition of the dissolved phosphate in the water from which it precipitated and records the source, if this phosphate was not modified during fluid transport.Different phosphate reservoirs differ in their oxygen-isotope composition and with more and more data available it is possible to discriminate between different sources. Data for phosphates in aquatic systems are provided by Young et al. (2009): Phosphates of anthropogenic origin (fertilizers and the corresponding processing stages, detergents and toothpaste) show δ18OP values between +13.3‰ and +22.3‰, for phosphates from organic sources (vegetation leachate and animal waste) values between +14.2‰ and +23.1‰ are reported and a range between +8.4‰ and +14.2‰ is covered by phosphates of waste water treatment plants. For terrestrial ecosystems, Tamburini et al. (2012) reported δ18OP values between +4.5‰ and +31.4‰ with most data falling in the range of +12.4‰ to +31.4‰ for phosphate in plants (N = 11). Microbial phosphate in soil covered a range of +11‰ to +19‰. Resin-extractable P in soil as the readily available P fraction in soil from which P-containing minerals would precipitate, showed a range of 14.5-20.0‰ (Angert et al., 2011, 2012; Weiner et al., 2011; Tamburini et al., 2012). Additionally, Tamburini et al., 2012 reported values for apatite, most likely from the metamorphosed granitic bedrock, to be about +7‰. This is consistent with theoretical considerations by Shemesh et al. (1983) and with data from a gabbro (+4.1‰) and a tonalite (+6.7‰) reported by Taylor and Epstein (1962). Mizota et al. (1992) analyzed δ18OP of apatites from carbonatites, volcanic ashes and hydrothermal vugs covering a range of +0.2 to +12.2‰ (N = 10), whereas phosphate from phosphorites have higher values of up to +20‰ (e.g., Shemesh et al. (1983).This study investigates the oxygen isotope composition of phosphate in pyromorphite and in apatite from crystalline rocks. To evaluate possible phosphate sources, the results will be checked for isotopic equilibrium with different ambient waters and possible phosphate sources will be discussed.
Nitrogen Effects on Organic Dynamics and Soil Communities in Forest and Agricultural Systems
NASA Astrophysics Data System (ADS)
Grandy, S.; Neff, J.; Sinsabaugh, B.; Wickings, K.
2008-12-01
Human activities have doubled the global flux of biologically available N to terrestrial ecosystems but the effects of N on soil organic matter dynamics and soil communities remain difficult to predict. We examined soil organic matter chemistry and enzyme kinetics in three soil fractions (>250, 63-250, and <63 μm) following six years of simulated atmospheric N deposition in two forest ecosystems with contrasting litter biochemistry (sugar maple/basswood and black oak/white oak). Ambient and simulated atmospheric N deposition (80 kg nitrate-N/ha/y) were studied in three replicate stands in each ecosystem type. Using pyrolysis-gas chromatography/mass spectroscopy, we found striking, ecosystem-specific effects of N deposition on carbohydrate abundance. Furfural, the dominant pyrolysis product of polysaccharides, was significantly decreased by simulated N deposition in the sugar maple/basswood system (15.87 versus 4.99%) but increased by N in the black oak/white oak system (8.83 versus 24.01%). There were ca. 3-fold increases in the ratio of total lignin derivatives to total polysaccharides in the >250 μm fraction of the sugar maple/basswood system but there were no changes in other size classes or in the black oak/white oak system. We also measured significant increases in the ratio of lignin derivatives to N-bearing compounds in the 63-250 and >250 μm fractions in both ecosystems but not in the <63 μm fraction. We compare these results to a study looking at changes in enzyme activities and soil communities along a N fertilizer gradient in a corn-based cropping system. Our results demonstrate that changes in soil organic matter chemistry resulting from atmospheric N deposition or fertilization are directly linked to variation in enzyme responses to increased N availability across ecosystems and soil size fractions.
Boswellia carterii liquisolid systems with promoted anti-inflammatory activity.
Mostafa, Dina Mahmoud; Ammar, Nagwa Mohammed; Abd El-Alim, Sameh Hosam; Kassem, Ahmed Alaa; Hussein, Rehab Ali; Awad, Gamal; El-Awdan, Sally Abdul-Wanees
2015-01-01
Boswellia carterii (BC) Birdwood oleogum resin is an ancient remedy of inflammation processes known since Ancient Egyptian time. Of boswellic acids, 3-acetyl-11-keto-β-boswellic acid (AKBA) is the most potent anti-inflammatory active principle. Liquisolid systems of the biologically active fraction of BC oleogum resin were prepared for improving dissolution properties using low dose oral delivery to achieve enhanced anti-inflammatory activity, in comparison with the standard oral anti-inflammatory; Indomethacin. AKBA was assayed, employing an accurate and sensitive HPLC method. Detection was carried out at 210 nm using UV/Vis detector. A solubility study for the bioactive fraction was conducted. Microcrystalline cellulose and Aeroperl®300 Pharma were used as carrier and coating materials. Angle of slide, liquid load factor and Carr's flow index were estimated. Six systems were prepared using polyethylene glycol 400, solvent and two drug loading concentrations; 20 and 40 %. For each concentration, three carrier: coat ratios were dispensed; 20:1, 10:1, and 5:1. Dissolution study was performed and two systems were selected for characterization and in vivo evaluation by investigating upper GIT ulcerogenic effect and anti-inflammatory efficacy in rats. Results indicate absence of ulcers and significantly higher and prolonged anti-inflammatory efficacy for formulations F1 and F2, with carrier: coat ratio, 5:1 and drug loads of 20 and 40 %, respectively, compared with standard oral indomethacin. We conclude higher efficacy of BC bioactive fraction liquisolids compared with Indomethacin with greater safety on GIT, longer duration of action and hence better patient compliance.
Aqueous and organic extracts of Trigonella foenum-graecum L. inhibit the mycelia growth of fungi.
Haouala, R; Hawala, S; El-Ayeb, A; Khanfir, R; Boughanmi, N
2008-01-01
Aqueous extracts from various plant parts of fenugreek (3%) (aerial parts: leaves and stems (LS), roots (R), ground seeds (GS) and not ground seeds (NGS)) and petroleum ether, ethyl acetate and methanolic fractions of the aerial parts were assayed to determine their antifungal potential against Botrytis cinerea, Fusarium graminearum, Alternaria sp., Pythium aphanidermatum, and Rhizoctinia solani. All fenugreek plant parts showed antifungal potential and the magnitude of their inhibitory effects was species and plant parts dependent. R extract was shown less toxic (30.38%), whereas NGS extract expressed the strongest inhibition, with an average of 71.44%, followed by GS (58.56%) and LS (57.1%). Screening indicated that P. aphanidermatum was the most resistant species, with an average inhibition of 34.5%. F. graminearum, Alternaria sp. and R. solani were the most sensitive species, and were similarly inhibited (63.5%). The stability test indicated that the aqueous extracts of all plant parts lost approximately 50% of their relative activity after one month of storage at 4 degrees C, whilst they lost 60%-90% of their activity when stored at ambient temperature for one month. The antifungal activity resided mainly in the methanol fraction and the minimum inhibitory concentration (MIC) of methanol fraction witch caused total inhibition of R. solani and Alternaria sp. was 60 microg/ml. Results of current study suggested that the constituents of Trigonella foenum-graecum have potential against harmful pathogenic fungi. Therefore, fenugreek could be an important source of biologically active compounds useful for developing better new antifungal drugs.
Cho, J Y; Park, J; Kim, P S; Yoo, E S; Baik, K U; Park, M H
2001-02-01
Two lignans were isolated from the heartwood of Pterocarpus santalinus by activity-guided fractionation and investigated for their biological properties and molecular mechanism of action. On the basis of their spectroscopic data, these compounds were identified as savinin (1) and calocedrin (2), dibenzyl butyrolactone-type lignan compounds having an alpha-arylidene gamma-lactone structure. These lignans significantly inhibited tumor necrosis factor (TNF)-a production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and T cell proliferation elicited by concanavalin (Con A), without displaying cytotoxicity. The molecular inhibitory mechanism of compound 1 was confirmed to be mediated by the non-polar butyrolactone ring, according to a structure-relationship study with structurally related and unrelated compounds, such as arctigenin (a dibenzyl butyrolactone type lignan), eudesmin (a furofuran type lignan), isolariciresinol (a dibenzylbutane type lignan), and cynaropicrin (a sesquiterpene lactone). The results suggest that savinin may act as an active principle in the reported biological activities of P. santalinus, such as antiinflammatory effect, by mediation of the butyrolactone ring as a valuable pharmacophore.
Order or chaos in Boolean gene networks depends on the mean fraction of canalizing functions
NASA Astrophysics Data System (ADS)
Karlsson, Fredrik; Hörnquist, Michael
2007-10-01
We explore the connection between order/chaos in Boolean networks and the naturally occurring fraction of canalizing functions in such systems. This fraction turns out to give a very clear indication of whether the system possesses ordered or chaotic dynamics, as measured by Derrida plots, and also the degree of order when we compare different networks with the same number of vertices and edges. By studying also a wide distribution of indegrees in a network, we show that the mean probability of canalizing functions is a more reliable indicator of the type of dynamics for a finite network than the classical result on stability relating the bias to the mean indegree. Finally, we compare by direct simulations two biologically derived networks with networks of similar sizes but with power-law and Poisson distributions of indegrees, respectively. The biologically motivated networks are not more ordered than the latter, and in one case the biological network is even chaotic while the others are not.
Effects of Charged Particles on Human Tumor Cells
Held, Kathryn D.; Kawamura, Hidemasa; Kaminuma, Takuya; Paz, Athena Evalour S.; Yoshida, Yukari; Liu, Qi; Willers, Henning; Takahashi, Akihisa
2016-01-01
The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects, including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors, and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors, such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of relative biological effectiveness (RBE) for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions, and importance of fractionation, including use of hypofractionation, with charged particles. PMID:26904502
Nannoni, Francesco; Protano, Giuseppe
2016-10-15
A biogeochemistry field study was conducted in the Siena urban area (Italy) with the main objective of establishing the relationship between available amounts of heavy metals in soil assessed by a chemical method (soil fractionation) and bioavailability assessed by a biological method (bioaccumulation in earthworm tissues). The total content of traffic-related (Cd, Cu, Pb, Sb, Zn) and geogenic (Co, Cr, Ni, U) heavy metals in uncontaminated and contaminated soils and their concentrations in soil fractions and earthworms were used for this purpose. The bioavailability of heavy metals assessed by earthworms did not always match the availability defined by soil fractionation. Earthworms were a good indicator to assess the bioavailability of Pb and Sb in soil, while due to physiological mechanisms of regulation and excretion, Cd, Cu and Zn tissue levels in these invertebrates gave misleading estimates of their bioavailable pool. No relationship was identified between chemical and biological availability for the geogenic heavy metals, characterized by a narrow range of total contents in soil. The study highlighted that chemical and biological methods should be combined to provide more complete information about heavy element bioavailability in soils. Copyright © 2016 Elsevier B.V. All rights reserved.
Incorporation of C-Kaurene into the Gibberellin of a Higher Plant (Pharbitis nil Chois).
Barendse, G W; Kok, N J
1971-10-01
Enzymic formation of (14)C-kaurene from 2-(14)C-mevalonate was carried out with a cell-free system of Cucurbita pepo L. It was shown that either heating of the enzyme system or the addition of the growth retardants (2-chloroethyl)-trimethylammonium chloride and 2'-isopropyl-4' (trimethylammonium chloride)-5'-methylphenyl piperidine-1-carboxylate prevented the synthesis of (14)C-kaurene. Experiments in which (14)C-kaurene was applied to seedlings of Pharbitis nil revealed that the kaurene is converted to at least two compounds present in the acidic ethyl acetate fraction, containing free gibberellins, as well as in the second acidic ethyl acetate fraction, containing the released bound gibberellins. One of the compounds cochromatographed with gibberellic acid; the other compound is possibly a break-down product of gibberellic acid with no biological activity.
Mouse lung inflammation after instillation of particulate matter collected from a working dairy barn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wegesser, Teresa C.; Last, Jerold A.
Coarse and fine particulate matter (PM{sub 2.5-10} and PM{sub 2.5}, respectively) are regulated ambient air pollutants thought to have major adverse health effects in exposed humans. The role of endotoxin and other bioaerosol components in the toxicity of PM from ambient air is controversial. This study evaluated the inflammatory lung response in mice instilled intratracheally with PM{sub 2.5-10} and PM{sub 2.5} emitted from a working dairy barn, a source presumed to have elevated concentrations of endotoxin. PM{sub 2.5-10} was more pro-inflammatory on an equal weight basis than was PM{sub 2.5}; both fractions elicited a predominantly neutrophilic response. The inflammatory responsemore » was reversible, with a peak response to PM{sub 2.5-10} observed at 24 h after instillation, and a return to control values by 72 h after instillation. The major active pro-inflammatory component in whole PM{sub 2.5-10}, but not in whole PM{sub 2.5}, is heat-labile, consistent with it being endotoxin. A heat treatment protocol for the gradual inactivation of biological materials in the PM fractions over a measurable time course was developed and optimized in this study using pure lipopolysaccharide (LPS) as a model system. The time course of heat inactivation of pure LPS and of endotoxin activity in PM{sub 2.5-10} as measured by Limulus bioassay is identical. The active material in both PM{sub 2.5-10} and PM{sub 2.5} remained in the insoluble fraction when the whole PM samples were extracted with physiological saline solution. Histological analysis of lung sections from mice instilled with PM{sub 2.5-10} or PM{sub 2.5} showed evidence of inflammation consistent with the cellular responses observed in lung lavage fluid. The major pro-inflammatory components present in endotoxin-rich PM were found in the insoluble fraction of PM{sub 2.5-10}; however, in contrast with PM{sub 2.5-10} isolated from ambient air in the Central Valley of California, the active components in the insoluble fraction were heat-labile.« less
Piergiorge, Rafael Mina; de Miranda, Antonio Basílio; Catanho, Marcos
2017-01-01
Abstract Since enzymes catalyze almost all chemical reactions that occur in living organisms, it is crucial that genes encoding such activities are correctly identified and functionally characterized. Several studies suggest that the fraction of enzymatic activities in which multiple events of independent origin have taken place during evolution is substantial. However, this topic is still poorly explored, and a comprehensive investigation of the occurrence, distribution, and implications of these events has not been done so far. Fundamental questions, such as how analogous enzymes originate, why so many events of independent origin have apparently occurred during evolution, and what are the reasons for the coexistence in the same organism of distinct enzymatic forms catalyzing the same reaction, remain unanswered. Also, several isofunctional enzymes are still not recognized as nonhomologous, even with substantial evidence indicating different evolutionary histories. In this work, we begin to investigate the biological significance of the cooccurrence of nonhomologous isofunctional enzymes in human metabolism, characterizing functional analogous enzymes identified in metabolic pathways annotated in the human genome. Our hypothesis is that the coexistence of multiple enzymatic forms might not be interpreted as functional redundancy. Instead, these enzymatic forms may be implicated in distinct (and probably relevant) biological roles. PMID:28854631
High-throughput screening and mechanism-based evaluation of estrogenic botanical extracts
Overk, Cassia R.; Yao, Ping; Chen, Shaonong; Deng, Shixing; Imai, Ayano; Main, Matthew; Schinkovitz, Andreas; Farnsworth, Norman R.; Pauli, Guido F.; Bolton, Judy L.
2009-01-01
Symptoms associated with menopause can greatly affect the quality of life for women. Botanical dietary supplements have been viewed by the public as safe and effective despite a lack of evidence indicating a urgent necessity to standardize these supplements chemically and biologically. Seventeen plants were evaluated for estrogenic biological activity using standard assays: competitive estrogen receptor (ER) binding assay for both alpha and beta subtypes, transient transfection of the estrogen response element luciferase plasmid into MCF-7 cells expressing either ER alpha or ER beta, and the Ishikawa alkaline phosphatase induction assay for both estrogenic and antiestrogenic activities. Based on the combination of data pooled from these assays, the following was determined: a) a high rate of false positive activity for the competitive binding assays, b) some extracts had estrogenic activity despite a lack of ability to bind the ER, c) one extract exhibited selective estrogen receptor modulator (SERM) activity, and d) several extracts show additive/synergistic activity. Taken together, these data indicate a need to reprioritize the order in which the bioassays are performed for maximal efficiency of programs involving bioassay-guided fractionation. In addition, possible explanations for the conflicts in the literature over the estrogenicity of Cimicifuga racemosa (black cohosh) are suggested. PMID:18473738
NASA Astrophysics Data System (ADS)
Rachmawaty, Farida Juliantina; Julianto, Tatang Shabur; Tamhid, Hady Anshory
2018-04-01
This research aims to identify the antimycobacterial activity of fraction of red betel vine leaves ethanol extract (methanol fraction, ethyl acetate, and chloroform) toward M. tuberculosis. Red betel vine leaves ethanol extract was made with maceration method using ethanol solvent 70%. Resulted extract was then fractionated using Liquid Vacuum Chromatography (LVC) with methanol, ethyl acetate, and chloroform solvent. Each fractionation was exposed to M. tuberculosis with serial dilution method. Controls of fraction, media, bacteria, and isoniazid as standard drug were included in this research. The group of compound from the most active fraction was then identified. The research found that the best fraction for antimycobacterial activity toward M. tuberculosisis chloroform fraction. The compound group of chloroform fraction was then identified. The fraction contains flavonoid, tannin, alkaloid, and terpenoid. The fraction of methanol, ethyl acetate, and chloroform from red betel vine leaves has antimycobacterial activity toward M. tuberculosis. Chloroform fraction has the best antimycobacterial activity and it contains flavonoid, tannin, alkaloid, and terpenoid.
Karnjanapratum, Supatra; You, SangGuan
2011-03-01
We investigated water-soluble sulfated polysaccharides isolated from Monostroma nitidum using ion-exchange chromatography to determine their molecular characteristics and biological activities. The crude and fractionated polysaccharides (F(1), F(2), and F(3)) consisted mostly of carbohydrates (58.3-91.9%), uronic acids (0-21.8%) and sulfates (1.8-17.7%) as well as varying amounts of proteins (1.6-9.4%). Their monosaccharide levels were significantly different including rhamnose (0-95.7%) and glucose (0-98.6%) content with small amounts of xylose (0.8-4.3%). These polysaccharides contained one or two subfractions with average molecular weights (M(w)) ranging from 94.4 to 1387×10(3) g/mol. The in vitro inhibitory activity (≤75%) of the polysaccharides on a human cancer cell line (AGS) suggested that the polysaccharides had direct cytotoxic effects on the cancer cells. In addition, these hetero-polysaccharides (from the crude and F(1) and F(2) fractions) stimulated a macrophage cell line, Raw 264.7 cells, inducing considerable NO and PGE(2), production, which suggested that they could be strong immunomodulators. Copyright © 2010 Elsevier B.V. All rights reserved.
Multiple biological complex of alkaline extract of the leaves of Sasa senanensis Rehder.
Sakagami, Hiroshi; Zhou, Li; Kawano, Michiyo; Thet, May Maw; Tanaka, Shoji; Machino, Mamoru; Amano, Shigeru; Kuroshita, Reina; Watanabe, Shigeru; Chu, Qing; Wang, Qin-Tao; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Sekine, Keisuke; Shirataki, Yoshiaki; Zhang, Chang-Hao; Uesawa, Yoshihiro; Mohri, Kiminori; Kitajima, Madoka; Oizumi, Hiroshi; Oizumi, Takaaki
2010-01-01
Previous studies have shown anti-inflammatory potential of alkaline extract of the leaves of Sasa senanensis Rehder (SE). The aim of the present study was to clarity the molecular entity of SE, using various fractionation methods. SE inhibited the production of nitric oxide (NO), but not tumour necrosis factor-α by lipopolysaccharide (LPS)-stimulated mouse macrophage-like cells. Lignin carbohydrate complex prepared from SE inhibited the NO production to a comparable extent with SE, whereas chlorophyllin was more active. On successive extraction with organic solvents, nearly 90% of SE components, including chlorophyllin, were recovered from the aqueous layer. Anti-HIV activity of SE was comparable with that of lignin-carbohydrate complex, and much higher than that of chlorophyllin and n-butanol extract fractions. The CYP3A inhibitory activity of SE was significantly lower than that of grapefruit juice and chlorophyllin. Oral administration of SE slightly reduced the number of oral bacteria. When SE was applied to HPLC, nearly 70% of SE components were eluted as a single peak. These data suggest that multiple components of SE may be associated with each other in the native state or after extraction with alkaline solution.
NASA Astrophysics Data System (ADS)
Planchon, Frédéric; Poulain, Céline; Langlet, Denis; Paulet, Yves-Marie; André, Luc
2013-11-01
We estimate the magnesium stable isotopic composition (δ26Mg) of the major compartments involved in the biomineralisation process of euryhaline bivalve, the manila clam Ruditapes philippinarum. Our aim is to identify the fractionation processes associated with Mg uptake and its cycling/transport in the bivalve organism, in order to better assess the controlling factors of the Mg isotopic records in bivalve shells. δ26Mg were determined in seawater, in hemolymph, extrapallial fluid (EPF), soft tissues and aragonitic shell of adult clams collected along the Auray River estuary (Gulf of Morbihan, France) at two sites showing contrasted salinity regimes. The large overall δ26Mg variations (4.16‰) demonstrate that significant mass-dependent Mg isotopic fractionations occur during Mg transfer from seawater to the aragonitic shell. Soft tissues span a range of fractionation factors relative to seawater (Δ26Mgsoft tissue-seawater) of 0.42 ± 0.12‰ to 0.76 ± 0.12‰, and show evidence for biological isotopic fractionation of Mg. Hemolymph and EPF are on average isotopically close to seawater (Δ26Mghemolymph-seawater = -0.20 ± 0.27‰; 2 sd; n = 5 and Δ26MgEPF-seawater = -0.23 ± 0.25‰; 2 sd; n = 5) indicating (1) a predominant seawater origin for Mg in the intercellular medium and (2) a relatively passive transfer route through the bivalve organism into the calcifying fluid. The lightest isotopic composition is found in shell, with δ26Mg ranging from -1.89 ± 0.07‰ to -4.22 ± 0.06‰. This range is the largest in the dataset and is proposed to result from a combination of abiotic and biologically-driven fractionation processes. Abiotic control includes fractionation during precipitation of aragonite and accounts for Δ26Mgaragonite-seawater ≈ 1000 ln αaragonite-seawater = -1.13 ± 0.28‰ at 20 °C based on literature data. Deviations from inorganic precipitate (expressed as Δ26MgPhysiol) appear particularly variable in the clam shell, ranging from 0.03‰ to -2.20‰, which indicates that bivalve shell formation can proceed either under fractionation similar to inorganically-precipitated aragonite or under variable physiological influences. These physiological isotopic effects may be consistent with a regulation of dissolved Mg content in hemolymph and/or EPF due to Mg incorporation into soft tissue and/or Mg fixation by organic macromolecules. Using closed- and open-system models we estimate that Δ26MgPhysiol can be satisfactorily resolved with a remaining Mg fraction in hemolymph and/or EPF of 74% down to 2%. However, this feature is not reflected in our hemolymph and EPF data and may indicate that regulation processes and isotopic fractionation may take place in self-contained spaces located close to calcification sites. The potential role of the shell organic matrix, which may host non-lattice-bound Mg in the shell, is also discussed but remains difficult to assess with our data. Regarding the large physiological effects, the δ26Mg record in the Manila clam shell offers limited potential as a proxy of temperature or seawater Mg isotopic composition. In contrast, the sensitivity of its δ26Mg to the salinity regime may offer an interesting tool to track changes in clam biological activity in estuarine environments.
The potential of a dielectrophoresis activated cell sorter (DACS) as a next generation cell sorter
NASA Astrophysics Data System (ADS)
Lee, Dongkyu; Hwang, Bohyun; Kim, Byungkyu
2016-12-01
Originally introduced by H. A. Pohl in 1951, dielectrophoretic (DEP) force has been used as a striking tool for biological particle manipulation (or separation) for the last few decades. In particular, dielectrophoresis activated cell sorters (DACSes) have been developed for applications in various biomedical fields. These applications include cell replacement therapy, drug screening and medical diagnostics. Since a DACS does not require a specific bio-marker, it is able to function as a biological particle sorting tool with numerous configurations for various cells [e.g. red blood cells (RBCs), white blood cells (WBCs), circulating tumor cells, leukemia cells, breast cancer cells, bacterial cells, yeast cells and sperm cells]. This article explores current DACS capabilities worldwide, and it also looks at recent developments intended to overcome particular limitations. First, the basic theories are reviewed. Then, representative DACSes based on DEP trapping, traveling wave DEP systems, DEP field-flow fractionation and DEP barriers are introduced, and the strong and weak points of each DACS are discussed. Finally, for the purposes of commercialization, prerequisites regarding throughput, efficiency and recovery rates are discussed in detail through comparisons with commercial cell sorters (e.g. fluorescent activated and magnetic activated cell sorters).
Sęczyk, Łukasz; Świeca, Michał; Gawlik-Dziki, Urszula; Luty, Marcin; Czyż, Jarosław
2016-01-01
This study examines the nutraceutical (phenolics content, antioxidant activity, biological activity) and nutritional potential (starch and protein digestibility) of wheat pasta supplemented with 1-4% of powdered parsley leaves. Compared to the control, the potentially bioaccessible fraction of pasta fortified with 4% parsley leaves was characterized by 67% increased phenolics content, a 146% higher antiradical ability and 220% additional reducing power. Elevation of these parameters in fortified pasta was accompanied by an augmentation of its antiproliferative effect on carcinoma cells, which confirms their biological relevance. Supplementation of pasta had no significant effect on starch digestibility, while negatively affecting protein digestibility (a reduction by about 20% for pasta with a 4% supplement). Electrophoretic and chromatographic analyses indicated the presence of phenolic interactions with proteins and/or digestive enzymes. Fortification improved the nutraceutical and nutritional potential of the studied pasta; however, the final effect is made by many factors, including phenolics-food matrix interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mackey-Glass equation driven by fractional Brownian motion
NASA Astrophysics Data System (ADS)
Nguyen, Dung Tien
2012-11-01
In this paper we introduce a fractional stochastic version of the Mackey-Glass model which is a potential candidate to model objects in biology and finance. By a semi-martingale approximate approach we find an semi-analytical expression for the solution.
Hippophae rhamnoides L. Fruits Reduce the Oxidative Stress in Human Blood Platelets and Plasma.
Olas, Beata; Kontek, Bogdan; Malinowska, Paulina; Żuchowski, Jerzy; Stochmal, Anna
2016-01-01
Effects of the phenolic fraction from Hippophae rhamnoides fruits on the production of thiobarbituric acid reactive substances (TBARS, a marker of lipid peroxidation) and the generation of superoxide anion (O2 (-∙)) in human blood platelets (resting platelets and platelets stimulated by a strong physiological agonist, thrombin) were studied in vitro. We also examined antioxidant properties of this fraction against human plasma lipid peroxidation and protein carbonylation induced by a strong biological oxidant, hydrogen peroxide (H2O2) or H2O2/Fe (a donor of hydroxyl radicals). The tested fraction of H. rhamnoides (0.5- 50 µg/mL; the incubation time: 15 and 60 min) inhibited lipid peroxidation induced by H2O2 or H2O2/Fe. The H. rhamnoides phenolic fraction inhibited not only plasma lipid peroxidation, but also plasma protein carbonylation stimulated by H2O2 or H2O2/Fe. Moreover, the level of O2 (-∙) in platelets significantly decreased. In comparative experiments, the H. rhamnoides fraction was a more effective antioxidant than aronia extract or grape seed extract (at the highest tested concentration, 50 µg/mL). The obtained results suggest that H. rhamnoides fruits may be a new, promising source of natural compounds with antioxidant and antiplatelet activity beneficial not only for healthy people, but also for those with oxidative stress-associated diseases.
Keren, Leeat; Segal, Eran; Milo, Ron
2016-01-01
Most proteins show changes in level across growth conditions. Many of these changes seem to be coordinated with the specific growth rate rather than the growth environment or the protein function. Although cellular growth rates, gene expression levels and gene regulation have been at the center of biological research for decades, there are only a few models giving a base line prediction of the dependence of the proteome fraction occupied by a gene with the specific growth rate. We present a simple model that predicts a widely coordinated increase in the fraction of many proteins out of the proteome, proportionally with the growth rate. The model reveals how passive redistribution of resources, due to active regulation of only a few proteins, can have proteome wide effects that are quantitatively predictable. Our model provides a potential explanation for why and how such a coordinated response of a large fraction of the proteome to the specific growth rate arises under different environmental conditions. The simplicity of our model can also be useful by serving as a baseline null hypothesis in the search for active regulation. We exemplify the usage of the model by analyzing the relationship between growth rate and proteome composition for the model microorganism E.coli as reflected in recent proteomics data sets spanning various growth conditions. We find that the fraction out of the proteome of a large number of proteins, and from different cellular processes, increases proportionally with the growth rate. Notably, ribosomal proteins, which have been previously reported to increase in fraction with growth rate, are only a small part of this group of proteins. We suggest that, although the fractions of many proteins change with the growth rate, such changes may be partially driven by a global effect, not necessarily requiring specific cellular control mechanisms. PMID:27073913
Scandolera, Amandine; Hubert, Jane; Humeau, Anne; Lambert, Carole; De Bizemont, Audrey; Winkel, Chris; Kaouas, Abdelmajid; Renault, Jean-Hugues; Reynaud, Romain
2018-01-01
The aim of the present study was to investigate the neuro-soothing activity of a water-soluble hydrolysate obtained from the red microalgae Rhodosorus marinus Geitler (Stylonemataceae). Transcriptomic analysis performed on ≈100 genes related to skin biological functions firstly revealed that the crude Rhodosorus marinus extract was able to significantly negatively modulate specific genes involved in pro-inflammation (interleukin 1α encoding gene, IL1A) and pain detection related to tissue inflammation (nerve growth factor NGF and its receptor NGFR). An in vitro model of normal human keratinocytes was then used to evaluate the ability of the Rhodosorus marinus extract to control the release of neuro-inflammation mediators under phorbol myristate acetate (PMA)-induced inflammatory conditions. The extract incorporated at 1% and 3% significantly inhibited the release of IL-1α and NGF secretion. These results were confirmed in a co-culture system of reconstructed human epithelium and normal human epidermal keratinocytes on which a cream formulated with the Rhodosorus marinus extract at 1% and 3% was topically applied after systemic induction of neuro-inflammation. Finally, an in vitro model of normal human astrocytes was developed for the evaluation of transient receptor potential vanilloid 1 (TRPV1) receptor modulation, mimicking pain sensing related to neuro-inflammation as observed in sensitive skins. Treatment with the Rhodosorus marinus extract at 1% and 3% significantly decreased PMA-mediated TRPV1 over-expression. In parallel with these biological experiments, the crude Rhodosorus marinus extract was fractionated by centrifugal partition chromatography (CPC) and chemically profiled by a recently developed 13C NMR-based dereplication method. The CPC-generated fractions as well as pure metabolites were tested again in vitro in an attempt to identify the biologically active constituents involved in the neuro-soothing activity of the Rhodosorus marinus extract. Two active molecules, namely, γ-aminobutyric acid (GABA) and its structural derivative GABA-alanine, demonstrated a strong capacity to positively regulate skin sensitization mechanisms related to the TRPV1 receptors under PMA-induced inflammatory conditions, therefore providing interesting perspectives for the treatment of sensitive skins, atopia, dermatitis, or psoriasis. PMID:29562624
Silva, Filipa V M; Martins, Alice; Salta, Joana; Neng, Nuno R; Nogueira, José M F; Mira, Delfina; Gaspar, Natália; Justino, Jorge; Grosso, Clara; Urieta, José S; Palavra, António M S; Rauter, Amélia P
2009-12-23
Winter savory Satureja montana is a medicinal herb used in traditional gastronomy for seasoning meats and salads. This study reports a comparison between conventional (hydrodistillation, HD, and Soxhlet extraction, SE) and alternative (supercritical fluid extraction, SFE) extraction methods to assess the best option to obtain bioactive compounds. Two different types of extracts were tested, the volatile (SFE-90 bar, second separator vs HD) and the nonvolatile fractions (SFE-250 bar, first and second separator vs SE). The inhibitory activity over acetyl- and butyrylcholinesterase by S. montana extracts was assessed as a potential indicator for the control of Alzheimer's disease. The supercritical nonvolatile fractions, which showed the highest content of (+)-catechin, chlorogenic, vanillic, and protocatechuic acids, also inhibited selectively and significantly butyrylcholinesterase, whereas the nonvolatile conventional extract did not affect this enzyme. Microbial susceptibility tests revealed the great potential of S. montana volatile supercritical fluid extract for the growth control and inactivation of Bacillus subtilis and Bacillus cereus, showing some activity against Botrytis spp. and Pyricularia oryzae. Although some studies were carried out on S. montana, the phytochemical analysis together with the biological properties, namely, the anticholinesterase and antimicrobial activities of the plant nonvolatile and volatile supercritical fluid extracts, are described herein for the first time.
Rawat, Renu; Deheyn, Dimitri D.
2016-01-01
The blue glow of the mucus from Chaetopterus involves a photoprotein, iron and flavins. Identity and respective role of these components remain, however, largely unresolved today, likely because of viscosity issues and inhibition of this system by oxidizers conventionally used to track bioluminescence activity. Here, we used gentle centrifugation to obtain a mucus supernatant showing no inhibition to oxidizers, allowing for further analysis. We applied conventional chromatographic techniques to isolate major proteins associated with light emission. Luminescence ability of elutriate fractions was tested with hydrogen peroxide to track photoprotein and/or protein-bound chromophore. Fractions producing light contained few major proteins, one with similarity to ferritin. Addition to the mucus of elements with inhibitory/potentiary effect on ferritin ferroxidase activity induced corresponding changes in light production, emphasizing the possible role of ferritin in the worm bioluminescence. DNA of the protein was cloned, sequenced, and expressed, confirming its identity to a Chaetopterus Ferritin (ChF). Both ferric and ferrous iron were found in the mucus, indicating the occurrence of both oxidase and reductase activity. Biochemical analysis showed ChF has strong ferroxidase activity, which could be a source of biological iron and catalytic energy for the worm bioluminescence when coupled to a reduction process with flavins. PMID:27830745
Katherine Philpott, M; Stanciu, Cristina E; Kwon, Ye Jin; Bustamante, Eduardo E; Greenspoon, Susan A; Ehrhardt, Christopher J
2017-07-01
The goal of this study was to survey optical and biochemical variation in cell populations deposited onto a surface through touch or contact and identify specific features that may be used to distinguish and then sort cell populations from separate contributors in a trace biological mixture. Although we were not able to detect meaningful biochemical variation in touch samples deposited by different contributors through preliminary antibody surveys, we did observe distinct differences in red autofluorescence emissions (650-670 nm), with as much as a tenfold difference in mean fluorescence intensities observed between certain pairs of donors. Results indicate that the level of red autofluorescence in touch samples can be influenced by a donor's contact with specific material prior to handling the substrate from which cells were collected. In particular, we observed increased red autofluorescence in cells deposited subsequent to handling laboratory gloves, plant material, and certain types of marker ink, which could be easily visualized microscopically or using flow cytometry, and persisted after hand washing. To test whether these observed optical differences could potentially be used as the basis for a cell separation workflow, a controlled two-person touch mixture was separated into two fractions via fluorescence-activated cell sorting (FACS) using gating criteria based on intensity of 650-670 nm emissions and then subjected to DNA analysis. Genetic analysis of the sorted fractions provided partial DNA profiles that were consistent with separation of individual contributors from the mixture suggesting that variation in autofluorescence signatures, even if driven by extrinsic factors, may nonetheless be a useful means of isolating contributors to some touch mixtures. Graphical Abstract Conceptual workflow diagram. Trace biological mixtures containing cells from multiple individuals are analyzed by flow cytometry. Cells are then physically separated into two populations based on intensity of red autofluorescence using Fluorescence Activated Cell Sorting. Each isolated cell fraction is subjected to DNA analysis resulting in a DNA profile for each contributor.
Regarding on the prototype solutions for the nonlinear fractional-order biological population model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baskonus, Haci Mehmet, E-mail: hmbaskonus@gmail.com; Bulut, Hasan
2016-06-08
In this study, we have submitted to literature a method newly extended which is called as Improved Bernoulli sub-equation function method based on the Bernoulli Sub-ODE method. The proposed analytical scheme has been expressed with steps. We have obtained some new analytical solutions to the nonlinear fractional-order biological population model by using this technique. Two and three dimensional surfaces of analytical solutions have been drawn by wolfram Mathematica 9. Finally, a conclusion has been submitted by mentioning important acquisitions founded in this study.
Metal stable isotopes in low-temperature systems: A primer
Bullen, T.D.; Eisenhauer, A.
2009-01-01
Recent advances in mass spectrometry have allowed isotope scientists to precisely determine stable isotope variations in the metallic elements. Biologically infl uenced and truly inorganic isotope fractionation processes have been demonstrated over the mass range of metals. This Elements issue provides an overview of the application of metal stable isotopes to low-temperature systems, which extend across the borders of several science disciplines: geology, hydrology, biology, environmental science, and biomedicine. Information on instrumentation, fractionation processes, data-reporting terminology, and reference materials presented here will help the reader to better understand this rapidly evolving field.
NASA Astrophysics Data System (ADS)
Zhang, X.; Kopf, S.; Lee, A. C.
2016-12-01
The N stable isotope composition (δ15N) of biomass provides a powerful tool for reconstructing present and past N cycling, but its interpretation hinges on a complete understanding of the isotopic signature of biological nitrogen fixation, which sets the δ15N of newly fixed N. All biological nitrogen fixation is catalyzed by the metalloenzyme nitrogenase in a complex reaction that reduces inert atmospheric N2 gas into bioavailable ammonium. Recent investigations into the metal cofactor variants of nitrogenase revealed that the canonical Mo-, and alternative V-, and Fe-only isoforms of nitrogenase impart different isotope fractionations during N2 fixation in vivo, challenging the traditional view that N2 fixation only imparts small, invariable isotope effects of 0-2‰. However, the mechanistic basis for the fractionation of N2 fixation remains largely unknown. To better understand mechanisms underlying fractionation, we varied Fe availability and measured in vivo fractionations for the aerobic chemoheterotroph Azotobacter vinelandii utilizing Mo- or V-nitrogenase under batch culture conditions. Under all iron conditions, N2 fixation based on Mo-nitrogenase yielded lower fractionations (heavier biomasss δ15N) compared to V-nitrogenase. For fractionations associated with a single metalloenzyme, higher Fe concentrations, which correlated with faster growth rates, yielded small but systematically larger fractionations ( 1 ‰ increase for Mo- and V- nitrogenases). To directly determine the effect of growth rate on fractionation, we grew Mo-nitrogenase expressing A. vinelandii in Fe-replete medium at different growth rates using chemostats and found that growth rate alone does not alter fractionation. The results indicate that Fe availability, in addition to the type of nitrogenase metalloenzyme, controls 15N fractionation during N2 fixation by A. vinelandii.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maggi, F.M.; Riley, W.J.
2009-06-01
The theoretical formulation of biological kinetic reactions in isotopic applications often assume first-order or Michaelis-Menten-Monod kinetics under the quasi-steady-state assumption to simplify the system kinetics. However, isotopic e ects have the same order of magnitude as the potential error introduced by these simpli cations. Both formulations lead to a constant fractionation factor which may yield incorrect estimations of the isotopic effect and a misleading interpretation of the isotopic signature of a reaction. We have analyzed the isotopic signature of denitri cation in biogeochemical soil systems by Menyailo and Hungate [2006], where high {sup 15}N{sub 2}O enrichment during N{sub 2}O productionmore » and inverse isotope fractionation during N{sub 2}O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with the quasi-steady-state Michaelis-Menten-Monod kinetics. When the quasi-steady-state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observations and aided in interpretation of experimental isotopic signatures. These results may imply a substantial revision in using the Rayleigh equation for interpretation of isotopic signatures and in modeling biological kinetic isotope fractionation with first-order kinetics or quasi-steady-state Michaelis-Menten-Monod kinetics.« less
Characterization of dissolved organic material in the interstitial brine of Lake Vida, Antarctica
NASA Astrophysics Data System (ADS)
Cawley, Kaelin M.; Murray, Alison E.; Doran, Peter T.; Kenig, Fabien; Stubbins, Aron; Chen, Hongmei; Hatcher, Patrick G.; McKnight, Diane M.
2016-06-01
Lake Vida (LV) is located in the McMurdo Dry Valleys (Victoria Valley, East Antarctica) and has no inflows, outflows, or connectivity to the atmosphere due to a thick (16 m), turbid ice surface and cold (<-20 °C) subsurface alluvium surrounding the lake. The liquid portion of LV has a salinity about seven times that of seawater and is entrained in ice and sediment below the ice cap. This subzero (-13.4 °C), anoxic brine supports a microbial community, which has low levels of activity and has been isolated from the atmosphere for at least 2800 14C years before present. The brine has high dissolved organic carbon concentration (DOC; 580 mg-C L-1 or greater); the study of which provides a unique opportunity to better understand biological and/or abiotic processes taking place in an isolated saline ecosystem with no external inputs. We isolated two sub-fractions of LV dissolved organic matter (DOM) by chemical separation using XAD-8 and XAD-4 resins in series. This separation was followed by physical separation using ultrafiltration to isolate a higher molecular weight (HMW) fraction that was retained by the membrane and a salty, dilute low molecular weight fraction. This analytical path resulted in three, low salt sub-fractions and allowed comparison to other Antarctic lake DOM samples isolated using similar procedures. Compared to other Antarctic lakes, a lower portion of the DOC was retained by XAD-8 (∼10% vs. 16-24%) resin, while the portions retained by XAD-4 (∼8%) resin and the 1 kDa ultrafiltration membrane (∼50%) were similar. The 14C radiocarbon ages of the XAD-8 (mean 3940 ybp), XAD-4 (mean 4048 ybp) and HMW (mean 3270 ybp) fractions are all older than the apparent age of ice-cover formation (2800 ybp). Ultrahigh resolution mass spectrometry showed that compounds with two and three nitrogen atoms in the molecular formulas were common in both the LV-XAD8 and LV-XAD4 fractions, consistent with microbial production and processing. The long-term oxidation of LVBr DOM by abiotic oxidants including perchlorate and chlorate may explain the low portion in the XAD8 fraction and the lack of aromatic carbon, as measured by 13C NMR spectroscopy, found for all but the most hydrophobic fraction, LV-XAD8. Overall, the chemical characteristics of Lake Vida brine DOM suggest that legacy DOM sealed and concentrated within the brine has been altered due to a combination of both biological and abiotic chemical reactions.
Alien Biochemistries and Their Metabolic By-Products. Lessons from Synthetic Biology
NASA Astrophysics Data System (ADS)
Benner, S.
2014-03-01
While the metabolisms of terran organisms are accessible for study and their byproducts are, for the most part, well known, the "diversity" of terran biology arises (as far as we know) from a single common ancestor, represents only a small fraction of possible chemical difersity, and may reflect only a fraction of the possible chemical diversity that might support Darwinian evolution [1]. This talk will consider laboratory experiments on origins [2] and synthetic biology [3], asking how they might inform us about alternative biochemistries, and whether we have any chance of observing remotely their by-products, recognizing the uncertanties in both our models for "weird life" and our models of abiotic processes in incompletely defined planetary environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Thomas I.; Chaudhary, Pankaj; Michaelidesová, Anna
2016-05-01
Purpose: To investigate the clinical implications of a variable relative biological effectiveness (RBE) on proton dose fractionation. Using acute exposures, the current clinical adoption of a generic, constant cell killing RBE has been shown to underestimate the effect of the sharp increase in linear energy transfer (LET) in the distal regions of the spread-out Bragg peak (SOBP). However, experimental data for the impact of dose fractionation in such scenarios are still limited. Methods and Materials: Human fibroblasts (AG01522) at 4 key depth positions on a clinical SOBP of maximum energy 219.65 MeV were subjected to various fractionation regimens with an interfractionmore » period of 24 hours at Proton Therapy Center in Prague, Czech Republic. Cell killing RBE variations were measured using standard clonogenic assays and were further validated using Monte Carlo simulations and parameterized using a linear quadratic formalism. Results: Significant variations in the cell killing RBE for fractionated exposures along the proton dose profile were observed. RBE increased sharply toward the distal position, corresponding to a reduction in cell sparing effectiveness of fractionated proton exposures at higher LET. The effect was more pronounced at smaller doses per fraction. Experimental survival fractions were adequately predicted using a linear quadratic formalism assuming full repair between fractions. Data were also used to validate a parameterized variable RBE model based on linear α parameter response with LET that showed considerable deviations from clinically predicted isoeffective fractionation regimens. Conclusions: The RBE-weighted absorbed dose calculated using the clinically adopted generic RBE of 1.1 significantly underestimates the biological effective dose from variable RBE, particularly in fractionation regimens with low doses per fraction. Coupled with an increase in effective range in fractionated exposures, our study provides an RBE dataset that can be used by the modeling community for the optimization of fractionated proton therapy.« less
Chemical properties and biological activity of a polysaccharide from Melocactus depressus.
da Silva, Bernadete P; Parente, José P
2002-01-01
An arabinogalactan with mean Mr of 6.85 x 10(4), was isolated from the pulps of Melocactus depressus Hook by fractionation on Sephacryl S-300 HR. Chemical and spectroscopic studies indicated that it has a branched arabinogalactan type structure composed of beta-(1-->4) linked D-galactopyranose residues with beta-(1-->3) and beta-(1-->6) branching points. Its structural features include also alpha-(1-->2), alpha-(1-->3) and alpha-(1-->5) linked L-arabinofuranose residues. The polysaccharide demonstrated a phagocytosis stimulating property.
Sun, Jingling; Drosos, Marios; Mazzei, Pierluigi; Savy, Davide; Todisco, Daniele; Vinci, Giovanni; Pan, Genxing; Piccolo, Alessandro
2017-01-15
It is not yet clear whether the carbon released from biochar in the soil solution stimulates biological activities. Soluble fractions (AQU) from wheat and maize biochars, whose molecular content was thoroughly characterized by FTIR, 13 C and 1 H NMR, and high-resolution ESI-IT-TOF-MS, were separated in dilute acidic solution to simulate soil rhizospheric conditions and their effects evaluated on maize seeds germination activity. Elongation of maize-seeds coleoptile was significantly promoted by maize biochar AQU, whereas it was inhibited by wheat biochar AQU. Both AQU fractions contained relatively small heterocyclic nitrogen compounds, whose structures were accounted by their spectroscopic properties. Point-of-Zero-Charge (PZC) values and van Krevelen plots of identified masses of soluble components suggested that the dissolved carbon from maize biochar behaved as humic-like supramolecular material capable to adhere to seedlings and deliver bioactive molecules. These findings contribute to understand the biostimulation potential of biochars from crop biomasses when applied in agricultural production. Copyright © 2016 Elsevier B.V. All rights reserved.
Robust control for fractional variable-order chaotic systems with non-singular kernel
NASA Astrophysics Data System (ADS)
Zuñiga-Aguilar, C. J.; Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; Romero-Ugalde, H. M.
2018-01-01
This paper investigates the chaos control for a class of variable-order fractional chaotic systems using robust control strategy. The variable-order fractional models of the non-autonomous biological system, the King Cobra chaotic system, the Halvorsen's attractor and the Burke-Shaw system, have been derived using the fractional-order derivative with Mittag-Leffler in the Liouville-Caputo sense. The fractional differential equations and the control law were solved using the Adams-Bashforth-Moulton algorithm. To test the control stability efficiency, different statistical indicators were introduced. Finally, simulation results demonstrate the effectiveness of the proposed robust control.
Controls on the Transition Metal Isotopic Composition of Seawater: Diatom Culture Experiments
NASA Astrophysics Data System (ADS)
Vance, D.; Archer, C.; Kennaway, G.; Cox, E.; Statham, P. J.
2004-12-01
Many transition metals are essential micronutrients for marine phytoplankton. As a result the expectation is that biological processes play an important, perhaps a dominant, role in their marine isotope geochemistry. These observations raise the prospect of using isotope records to trace transition metal micronutrient usage in the past oceans, an issue that is of importance to the efficiency of the biological pump and atmospheric carbon dioxide. As such, the characterisation of trace metal isotopic fractionations associated with marine primary productivity are an important scientific goal. Here we report fractionations associated with Fe, Cu and Zn sequestration by diatoms, one of the main primary producers in the oceans. Axenic unialgal cultures of Thalassiosira weissflogii and Thalassiosira pseudonana were established in artificial seawater + F/2 medium at 18° C on a 16:8 light:dark cycle. The cultures were filtered to separate diatom material from residual media and analysed for Zn, Cu and Fe concentrations and isotope composition using techniques described elsewhere1,2. Aliquots of the starting medium were also measured for each batch of cultures. The diatom organic material shows small, but consistent and resolvable, positive fractionations (0.1-0.3 per mil) for Fe, Cu and Zn relative to the starting medium. In the case of all three metals, but particularly for Zn (70-95% depending on experiment size), the diatoms had sequestered a large proportion of the available metal, suggesting that the fractionation factor for metal usage by the diatoms is much greater than 1.0001 to 1.0003. Time-series experiments are under way to determine the exact magnitude of the fractionation factor. The mass-balance is supported by the fact that the residual medium is around -0.4 per mil for Zn. The fact that diatoms incorporate trace metals that are isotopically heavier than the nutrient pool is a surprising result, the expectation having been that, as with carbon, the biological usage of trace metals would result in kinetic fractionations3. The positive fractionations necessitate an equilibrium process and, perhaps, active extra-cellular sequestration of trace metals. The second broader implication is that given the proposed role of diatoms in controlling the extreme depletion of Zn in open ocean surface waters, particularly in the Pacific where surface waters are have up to a factor of 250 less Zn than deep waters4, the depletion of the light isotope in surface waters and its enrichment in deep waters are predicted to be extreme. Zn, and other trace metal, isotopes may have an important role in recording this process in the past oceans. 1 C. Archer and D. Vance, 2004, J. Anal. Atom. Spectr. 19, 656-665. 2 J. Bermin, et al., 2004, this volume. 3 Pichat, S et al., 2003, Earth Planet. Sci. Lett. 210, 167-178. 4 Lohan, M.C. et al., 2002, Deep-Sea Res. II 49, 5793-5808.
Isolation of biologically-active exosomes from human plasma.
Muller, Laurent; Hong, Chang-Sook; Stolz, Donna B; Watkins, Simon C; Whiteside, Theresa L
2014-09-01
Effects of exosomes present in human plasma on immune cells have not been examined in detail. Immunological studies with plasma-derived exosomes require their isolation by procedures involving ultracentrifugation. These procedures were largely developed using supernatants of cultured cells. To test biologic activities of plasma-derived exosomes, methods are necessary that ensure adequate recovery of exosome fractions free of contaminating larger vesicles, cell fragments and protein/nucleic acid aggregates. Here, an optimized method for exosome isolation from human plasma/serum specimens of normal controls (NC) or cancer patients and its advantages and pitfalls are described. To remove undesirable plasma-contaminating components, ultrafiltration of differentially-centrifuged plasma/serum followed by size-exclusion chromatography prior to ultracentrifugation facilitated the removal of contaminants. Plasma or serum was equally acceptable as a source of exosomes based on the recovered protein levels (in μg protein/mL plasma) and TEM image quality. Centrifugation on sucrose density gradients led to large exosome losses. Fresh plasma was the best source of morphologically-intact exosomes, while the use of frozen/thawed plasma decreased exosome purity but not their biologic activity. Treatments of frozen plasma with DNAse, RNAse or hyaluronidase did not improve exosome purity and are not recommended. Cancer patients' plasma consistently yielded more isolated exosomes than did NCs' plasma. Cancer patients' exosomes also mediated higher immune suppression as evidenced by decreased CD69 expression on responder CD4+ T effector cells. Thus, the described procedure yields biologically-active, morphologically-intact exosomes that have reasonably good purity without large protein losses and can be used for immunological, biomarker and other studies. Copyright © 2014 Elsevier B.V. All rights reserved.
Isolation and characterization of recombinant murine Wnt3a.
Witkowski, Andrzej; Krishnamoorthy, Aparna; Su, Betty; Beckstead, Jennifer A; Ryan, Robert O
2015-02-01
Wnt proteins are a family of morphogens that possess potent biological activity. Structure-function studies have been impeded by poor yield of biologically active recombinant Wnt as well as a propensity of isolated Wnt to self-associate in the absence of detergent. Using stably transfected Drosophila S2 cells, studies have been conducted to improve recovery of recombinant murine Wnt3a, establish conditions for a detergent-free Wnt preparation and examine the effects of limited proteolysis. S2 cell culture conditioned media was subjected to a 3-step protocol including dye-ligand chromatography, immobilized metal affinity chromatography and gel filtration chromatography. Through selective pooling of column fractions, homogeneous and purified Wnt3a preparations were obtained. Limited proteolysis of Wnt3a with thrombin resulted in site-specific cleavage within the N-terminal saposin-like motif. To generate detergent-free protein, Wnt3a was immobilized on Cu(2+)-charged, iminodiacetic acid-derivatized Sepharose beads, detergent-free buffer was applied and Wnt3a eluted from the beads with buffer containing imidazole plus 30mM methyl-ß-cyclodextrin (MßCD). Wnt3a recovered in MßCD-containing buffer was soluble and biologically active. Insofar as MßCD is a member of a family of non-toxic, low molecular weight compounds capable of binding and solubilizing small hydrophobic ligands, Wnt-cyclodextrin complexes may facilitate structure-activity studies in the absence of adverse detergent effects. Copyright © 2014 Elsevier Inc. All rights reserved.
Isolation and characterization of recombinant murine Wnt3a
Witkowski, Andrzej; Krishnamoorthy, Aparna; Su, Betty; Beckstead, Jennifer A.; Ryan, Robert O.
2014-01-01
Wnt proteins are a family of morphogens that possess potent biological activity. Structure – function studies have been impeded by poor yield of biologically active recombinant Wnt as well as a propensity of isolated Wnt to self-associate in the absence of detergent. Using stably transfected Drosophila S2 cells, studies have been conducted to improve recovery of recombinant murine Wnt3a, establish conditions for a detergent-free Wnt preparation and examine the effects of limited proteolysis. S2 cell culture conditioned media was subjected to a 3-step protocol including dye-ligand chromatography, immobilized metal affinity chromatography and gel filtration chromatography. Through selective pooling of column fractions, homogeneous and purified Wnt3a preparations were obtained. Limited proteolysis of Wnt3a with thrombin resulted in site-specific cleavage within the N-terminal saposin-like motif. To generate detergent-free protein, Wnt3a was immobilized on Cu2+-charged, iminodiacetic acid-derivatized Sepharose beads, detergent-free buffer was applied and Wnt3a eluted from the beads with buffer containing imidazole plus 30 mM methyl-β-cyclodextrin (MβCD). Wnt3a recovered in MβCD-containing buffer was soluble and biologically active. Insofar as MβCD is a member of a family of non-toxic, low molecular weight compounds capable of binding and solubilizing small hydrophobic ligands, Wnt-cyclodextrin complexes may facilitate structure-activity studies in the absence of adverse detergent effects. PMID:25448592
NASA Astrophysics Data System (ADS)
Burrows, S. M.; Elliott, S.; Liu, X.; Ogunro, O. O.; Easter, R. C.; Rasch, P. J.
2013-12-01
Aerosol concentrations and their cloud nucleation activity in remote ocean regions represent an important uncertainty in current models of global climate. In particular, the impact of marine biological activity on the primary submicron sea spray aerosol is not yet fully understood, and existing knowledge has not yet been fully integrated into climate modeling efforts. We present recent results addressing two aspects of this problem. First, we present an estimate of the concentrations of ice-nucleation active particles derived from ocean biological material, and show that these may dominate IN concentrations in the remote marine boundary layer, particularly over the Southern Ocean. (Burrows et al., ACP, 2013a) Second, we present a novel framework for parameterizing the fractionation of marine organic matter into sea spray. The framework models aerosol organic enrichment as resulting from Langmuir adsorption of surface-active macromolecules at the surface of bursting bubbles. Distributions of macromolecular classes are estimated using output from a global marine biogeochemistry model (Burrows et al., in prep, 2013b; Elliott et al., submitted, 2013). The proposed parameterization independently produces relationships between chlorophyll-a and the sea spray organic mass fraction that are similar to existing empirical parameterizations in highly productive bloom regions, but which differ between seasons and ocean regions as a function of ocean biogeochemical variables. Future work should focus on further evaluating and improving the parameterization based on laboratory and field experiments, as well as on further investigation of the atmospheric implications of the predicted sea spray aerosol chemistry. Field experiments in the Southern Ocean and other remote ocean locations would be especially valuable in evaluating and improving these parameterizations. Burrows, S. M., Hoose, C., Pöschl, U., and Lawrence, M. G.: Ice nuclei in marine air: biogenic particles or dust?, Atmos. Chem. Phys., 13, 245-267, doi:10.5194/acp-13-245-2013, 2013a. Burrows, S. M., Elliott, S., Ogunro, O. and Rasch, P.: A framework for modeling the organic fractionation of the sea spray aerosol, in prep., 2013b. Elliott, S., S. Burrows, C. Deal, X. Liu, M. Long, O. Oluwaseun, L. Russell, and O. Wingenter, Prospects for the simulation of macromolecular surfactant chemistry in the ocean-atmosphere, submitted, 2013b.
Measurement of 14CO2 Assimilation in Soils: an Experiment for the Biological Exploration of Mars
Hubbard, Jerry S.; Hobby, George L.; Horowitz, Norman H.; Geiger, Paul J.; Morelli, Frank A.
1970-01-01
A method is described for the measurement of 14CO2 assimilation by microorganisms in soils. A determination involves exposing soil to 14CO2, pyrolyzing the exposed soil, trapping the organic pyrolysis products on a column of firebrick coated with CuO, combusting the trapped organics by heating, and measuring the radioactivity in the CO2 produced in the combustion. The detection of significant levels of 14C in the trapped organic fraction appears to be an unambiguous indication of biological activity. The 14CO2 which is adsorbed or exchanged into soils by nonbiological processes does not interfere. The method easily detects the 14CO2 fixed by 102 to 103 algae after light exposure for 3 to 24 hr. Assimilation of 14C is also demonstrable in dark-exposed soils containing 105 to 106 heterotrophic bacteria. Possible applications of the method in the biological exploration of Mars are discussed. Images PMID:16349879
Do lipids shape the eukaryotic cell cycle?
Furse, Samuel; Shearman, Gemma C
2018-01-01
Successful passage through the cell cycle presents a number of structural challenges to the cell. Inceptive studies carried out in the last five years have produced clear evidence of modulations in the lipid profile (sometimes referred to as the lipidome) of eukaryotes as a function of the cell cycle. This mounting body of evidence indicates that lipids play key roles in the structural transformations seen across the cycle. The accumulation of this evidence coincides with a revolution in our understanding of how lipid composition regulates a plethora of biological processes ranging from protein activity through to cellular signalling and membrane compartmentalisation. In this review, we discuss evidence from biological, chemical and physical studies of the lipid fraction across the cell cycle that demonstrate that lipids are well-developed cellular components at the heart of the biological machinery responsible for managing progress through the cell cycle. Furthermore, we discuss the mechanisms by which this careful control is exercised. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Biological Activities of Oleanolic Acid Derivatives from Calendula officinalis Seeds.
Zaki, Ahmed; Ashour, Ahmed; Mira, Amira; Kishikawa, Asuka; Nakagawa, Toshinori; Zhu, Qinchang; Shimizu, Kuniyoshi
2016-05-01
Phytochemical examination of butanol fraction of Calendula officinalis seeds led to the isolation of two compounds identified as 28-O-β-D-glucopyranosyl-oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS1) and oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS2). Biological evaluation was carried out for these two compounds such as melanin biosynthesis inhibitory, hyaluronic acid production activities, anti obesity using lipase inhibition and adipocyte differentiation as well as evaluation of the protective effect against hydrogen peroxide induced neurotoxicity in neuro-2A cells. The results showed that, compound CS2 has a melanin biosynthesis stimulatory activity; however, compound CS1 has a potent stimulatory effect for the production of hyaluronic acid on normal human dermal fibroblast from adult (NHDF-Ad). Both compounds did not show any inhibitory effect on both lipase and adipocyte differentiation. Compound CS2 could protect neuro-2A cells and increased cell viability against H2 O2 . These activities (melanin biosynthesis stimulatory and protective effect against H2 O2 of CS2 and hyaluronic acid productive activities of these triterpene derivatives) have been reported for the first time. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Damu, Amooru G; Kuo, Ping-Chung; Su, Chung-Ren; Kuo, Tsung-Hsiao; Chen, Tzu-Hsuan; Bastow, Kenneth F; Lee, Kuo-Hsiung; Wu, Tian-Shung
2007-07-01
Phytochemical investigation of Physalis angulata was initiated following primary biological screening. Fractionation of CHCl3 and n-BuOH solubles of the MeOH extract from the whole plant was guided by in vitro cytotoxic activity assay using cultured HONE-1 and NUGC cells and led to the isolation of seven new withanolides, withangulatins B-H (1-7), and a new minor physalin, physalin W (8), along with 14 known compounds, including physaprun A, withaphysanolide, dihydrowithanolide E, physanolide A, withaphysalin A, and physalins B, D, F, G, I, J, T, U, and V. New compounds (1-8) were fully characterized by a combination of spectroscopic methods (1D and 2D NMR and MS) and the relative stereochemical assignments based on NOESY correlations and analysis of coupling constants. Biological evaluation of these compounds against a panel of human cancer cell lines showed broad cytotoxic activity. Withangulatin B (1) and physalins D (10) and F (11) displayed potent cytotoxic activity against a panel of human cancer cell lines with EC50 values ranging from 0.2 to 1.6 microg/mL. Structure-activity relationship analysis indicated that withanolides and physalins with 4beta-hydroxy-2-en-1-one and 5beta,6beta-epoxy moieties are potential cytotoxic agents.
Tilaoui, Mounir; Ait Mouse, Hassan; Jaafari, Abdeslam; Zyad, Abdelmajid
2015-01-01
Carrying out the chemical composition and antiproliferative effects against cancer cells from different biological parts of Artemisia herba alba. Essential oils were studied by gas chromatography coupled to mass spectrometry (GC-MS) and their antitumoral activity was tested against P815 mastocytoma and BSR kidney carcinoma cell lines; also, in order to evaluate the effect on normal human cells, oils were tested against peripheral blood mononuclear cells PBMCs. Essential oils from leaves and aerial parts (mixture of capitulum and leaves) were mainly composed by oxygenated sesquiterpenes 39.89% and 46.15% respectively; capitulum oil contained essentially monoterpenes (22.86%) and monocyclic monoterpenes (21.48%); esters constituted the major fraction (62.8%) of stem oil. Essential oils of different biological parts studied demonstrated a differential antiproliferative activity against P815 and BSR cancer cells; P815 cells are the most sensitive to the cytotoxic effect. Leaves and capitulum essential oils are more active than aerial parts. Interestingly, no cytotoxic effect of these essential oils was observed on peripheral blood mononuclear cells. Our results showed that the chemical composition variability of essential oils depends on the nature of botanical parts of Artemisia herba alba. Furthermore, we have demonstrated that the differential cytotoxic effect depends not only on the essential oils concentration, but also on the target cells and the botanical parts of essential oils used.
Vazirian, Mahdi; Faramarzi, Mohammad Ali; Ebrahimi, Seyed Esmaeil Sadat; Esfahani, Hamid Reza Monsef; Samadi, Nasrin; Hosseini, Seyed Aboulfazl; Asghari, Ali; Manayi, Azadeh; Mousazadeh, Ali; Asef, Mohammad Reza; Habibi, Emran; Amanzadeh, Yaghoub
2014-01-01
Mushrooms are considered one of the richest sources of natural antibiotics, and various species of them inhibit the growth of a wide diversity of microorganisms. Ganoderma lucidum, a well-known medicinal mushroom. has many pharmacological and biological activities including an antimicrobial effect, although few studies have investigated the antibacterial and antifungal effects of its purified compounds. The chemical structure of the purified compounds from the hexane fraction was elucidated as ergosta-7,22-dien-3β-yl acetate, ergosta-5,7,22-trien-3β-yl acetate (isopyrocalciferol acetate), ergosta-7,22-dien-3-one, ergosta-7,22-dien-3β-ol, and ergosta-5,7,22-trien-3β-ol (ergostrol). In addition, the structure of ganodermadiol was demonstrated after purification from the chloroform fraction. The fractions inhibited Gram-positive bacteria and yeast, with minimum inhibitory concentration values of 6.25 mg/mL, but were ineffective against Gram-negative bacteria in the tested concentrations. The results were comparable for isolated compounds, whereas the mixture of ergosta-7,22-dien-3β-yl acetate and isopyrocalciferol acetate was weakly effective against Escherichia coli (minimum inhibitory concentration, 10 mg/mL). It could be assumed that the antimicrobial effect of crude fractions is the consequence of mixing triterpenoid and steroid compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doucet, L.; De Veyrac, B.; Delaage, M.
1990-08-01
Perindopril (P) is a prodrug whose active metabolite perindoprilat (PT) is an antihypertensive agent which acts by inhibition of angiotensin-converting enzyme (ACE). Anti-PT antiserum was produced in a rabbit immunized against PT that was covalently linked to bovine serum albumin. The radioligand is an iodinated ({sup 125}I) derivative of PT-glycyltyrosinamide. Both the drug (PT) and the prodrug (P) are assayed in the same sample; PT is assayed as is and P is assayed after quantitative alkaline hydrolysis into PT. Certain data obtained from such assays suggest the occurrence in plasma and urine of a third immunoreactive component. A chromatographic fractionationmore » of samples allowed us to isolate a new immunoreactive metabolite which was further identified as a glucuronide of PT (PT-G). Therefore, the whole assay was carried out as follows: biological samples were fractionated by stepwise chromatography on a anion-exchange resin (the first fraction contained P, the second contained PT, and the third contained PT-G); and RIA was performed on fractions 2 and 3 as is, and on fraction 1 after alkaline hydrolysis. Performances and assessments of this method are presented together with an example of a pharmacokinetic profile.« less
Miller, Laurence G; Baesman, Shaun M; Oremland, Ronald S
2015-11-01
We report the first study of stable carbon isotope fractionation during microbial fermentation of acetylene (C2H2) in sediments, sediment enrichments, and bacterial cultures. Kinetic isotope effects (KIEs) averaged 3.7 ± 0.5‰ for slurries prepared with sediment collected at an intertidal mudflat in San Francisco Bay and 2.7 ± 0.2‰ for a pure culture of Pelobacter sp. isolated from these sediments. A similar KIE of 1.8 ± 0.7‰ was obtained for methanogenic enrichments derived from sediment collected at freshwater Searsville Lake, California. However, C2H2 uptake by a highly enriched mixed culture (strain SV7) obtained from Searsville Lake sediments resulted in a larger KIE of 9.0 ± 0.7‰. These are modest KIEs when compared with fractionation observed during oxidation of C1 compounds such as methane and methyl halides but are comparable to results obtained with other C2 compounds. These observations may be useful in distinguishing biologically active processes operating at distant locales in the Solar System where C2H2 is present. These locales include the surface of Saturn's largest moon Titan and the vaporous water- and hydrocarbon-rich jets emanating from Enceladus. Acetylene-Fermentation-Isotope fractionation-Enceladus-Life detection.
Medina Juárez, L A; Trejo González, A
1989-12-01
The purpose of this study was to establish a new methodology to remove the toxic compounds present in jojoba meal and flour. Also, to perform the biological evaluation of the detoxified products and to chemically characterize the protein fractions. Jojoba meal and seed without testa were deffated with hexane and detoxified with a 7:3 isopropanol-water mixture which removed 86% of total phenolic compounds and 100% of simmondsins originally present, the resulting products had reduced bitterness and caused no deaths on experimental animals. NPR values obtained for diets containing such products were significantly different from those obtained with the casein control (p less than 0.05). Total protein was made up of three different fractions: the water-soluble fraction was the most abundant (61.8%), followed by the salt-soluble (23.6%), and the alkaline soluble fraction (14.6%). The nitrogen solubility curves showed that the isoelectric point for the water-soluble and salt-soluble fractions was pH 3.0, while that of the alkaline fraction fell in the range of 4.5-5.0. All fractions had a maximum solubility at pH 7.0. The methodology reported here, offers a viable solution to eliminate toxic compounds from jojoba meal or seeds, and upgrades the potential use of products such as animal feed or raw material for the production of protein isolates.
Isotopic fractionation of tritium in biological systems.
Le Goff, Pierre; Fromm, Michel; Vichot, Laurent; Badot, Pierre-Marie; Guétat, Philippe
2014-04-01
Isotopic fractionation of tritium is a highly relevant issue in radiation protection and requires certain radioecological considerations. Sound evaluation of this factor is indeed necessary to determine whether environmental compartments are enriched/depleted in tritium or if tritium is, on the contrary, isotopically well-distributed in a given system. The ubiquity of tritium and the standard analytical methods used to assay it may induce biases in both the measurement and the signification that is accorded to the so-called fractionation: based on an exhaustive review of the literature, we show how, sometimes large deviations may appear. It is shown that when comparing the non-exchangeable fraction of organically bound tritium (neOBT) to another fraction of tritium (e.g. tritiated water) the preparation of samples and the measurement of neOBT reported frequently led to underestimation of the ratio of tritium to hydrogen (T/H) in the non-exchangeable compartment by a factor of 5% to 50%. In the present study, corrections are proposed for most of the biological matrices studied so far. Nevertheless, the values of isotopic fractionation reported in the literature remain difficult to compare with each other, especially since the physical quantities and units often vary between authors. Some improvements are proposed to better define what should encompass the concepts of exchangeable and non-exchangeable fractions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Naqvi, Arshi; Malasoni, Richa; Gupta, Swati; Srivastava, Akansha; Pandey, Rishi R; Dwivedi, Anil Kumar
2017-10-01
Turmeric ( Curcuma longa ) is reported to possess wide array of biological activities. Herbal Medicament (HM) is a standardized hexane-soluble fraction of C. longa and is well known for its neuroprotective effect. In this study, we attempted to synthesize a novel chemically modified bioactive fraction from HM (NCCL) along with isolation and characterization of a novel marker compound (I). NCCL was prepared from HM. The chemical structure of the marker compound isolated from NCCL was determined from 1D/2D nuclear magnetic resonance, mass spectroscopy, and Fourier transform infrared. The compound so isolated was subjected to in silico and in vitro screenings to test its inhibitory effect on estrogen receptors. Molecular docking studies revealed that the binding poses of the compound I was energetically favorable. Among NCCL and compound I taken for in vitro studies, NCCL had exhibited good anti-cancer activity over compound I against MCF-7, MDA-MB-231, DU-145, and PC-3 cells. This is the first study about the synthesis of a chemically modified bioactive fraction which used a standardized extract since the preparation of the HM. It may be concluded that NCCL fraction having residual components induce more cell death than compound I alone. Thus, NCCL may be used as a potent therapeutic drug. In the present paper, a standardized hexane soluble fraction of Curcuma longa (HM) was chemically modified to give a novel bioactive fraction (NCCL). A novel marker compound was isolated from NCCL and was characerized using various spectral techniques. The compound so isolated was investigated for in-silico screenings. NCCL and isolated compound was subjected to in-vitro anti-cancer screenings against MCF 7, MDA MB 231 (breast adenocarcinoma) and DU 145 and PC 3 cell lines (androgen independent human prostate cancer cells). The virtual screenings reveals that isolated compound has shown favourable drug like properties. NCCL fraction having residual components induces more cell death in these four cancer cell lines than isolated compound alone. Abbreviations used: HM: Herbal Medicament; NCCL: Chemically modified HM; FT-IR: Fourier transform-infrared spectroscopy; NMR: Nuclear magnetic resonance spectroscopy; MS: Mass spectroscopy; HPLC: High-performance liquid chromatography; ER: Estrogen receptor; MTT: 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; MIC: Minimum inhibitory concentration; TAM: Tamoxifen KBr: Potassium bromide; DMSO: Dimethyl sulfoxide; ACN: Acetonitrile; PDB: Protein Data Bank; PDA: Photodiode array detector.
Kamalanathan, Manoj; Xu, Chen; Schwehr, Kathy; Bretherton, Laura; Beaver, Morgan; Doyle, Shawn M.; Genzer, Jennifer; Hillhouse, Jessica; Sylvan, Jason B.; Santschi, Peter; Quigg, Antonietta
2018-01-01
Extracellular enzymes and extracellular polymeric substances (EPS) play a key role in overall microbial activity, growth and survival in the ocean. EPS, being amphiphilic in nature, can act as biological surfactant in an oil spill situation. Extracellular enzymes help microbes to digest and utilize fractions of organic matter, including EPS, which can stimulate growth and enhance microbial activity. These natural processes might have been altered during the 2010 Deepwater Horizon oil spill due to the presence of hydrocarbon and dispersant. This study aims to investigate the role of bacterial extracellular enzymes during exposure to hydrocarbons and dispersant. Mesocosm studies were conducted using a water accommodated fraction of oil mixed with the chemical dispersant, Corexit (CEWAF) in seawater collected from two different locations in the Gulf of Mexico and corresponding controls (no additions). Activities of five extracellular enzymes typically found in the EPS secreted by the microbial community – α- and β-glucosidase, lipase, alkaline phosphatase, leucine amino-peptidase – were measured using fluorogenic substrates in three different layers of the mesocosm tanks (surface, water column and bottom). Enhanced EPS production and extracellular enzyme activities were observed in the CEWAF treatment compared to the Control. Higher bacterial and micro-aggregate counts were also observed in the CEWAF treatment compared to Controls. Bacterial genera in the order Alteromonadaceae were the most abundant bacterial 16S rRNA amplicons recovered. Genomes of Alteromonadaceae commonly have alkaline phosphatase and leucine aminopeptidase, therefore they may contribute significantly to the measured enzyme activities. Only Alteromonadaceae and Pseudomonadaceae among bacteria detected here have higher percentage of genes for lipase. Piscirickettsiaceae was abundant; genomes from this order commonly have genes for leucine aminopeptidase. Overall, this study provides insights into the alteration to the microbial processes such as EPS and extracellular enzyme production, and to the microbial community, when exposed to the mixture of oil and dispersant. PMID:29740422
Sharma, Amit Kumar; Gangwar, Mayank; Kumar, Dharmendra; Nath, Gopal; Kumar Sinha, Akhoury Sudhir; Tripathi, Yamini Bhushan
2016-01-01
Objective: This study aims to evaluate the antimicrobial activity, phytochemical studies and thin layer chromatography analysis of machine oil, hexane extract of seed oil and methanol extract of presscake & latex of Jatropha curcas Linn (family Euphorbiaceae). Materials and Methods: J. curcas extracts were subjected to preliminary qualitative phytochemical screening to detect the major phytochemicals followed by its reducing power and content of phenol and flavonoids in different fractions. Thin layer chromatography was also performed using different solvent systems for the analysis of a number of constituents in the plant extracts. Antimicrobial activity was evaluated by the disc diffusion method, while the minimum inhibitory concentration, minimum bactericidal concentration and minimum fungicidal concentration were calculated by micro dilution method. Results: The methanolic fraction of latex and cake exhibited marked antifungal and antibacterial activities against Gram-positive and Gram-negative bacteria. Phytochemical analysis revealed the presence of alkaloids, saponins, tannins, terpenoids, steroids, glycosides, phenols and flavonoids. Reducing power showed dose dependent increase in concentration compared to standard Quercetin. Furthermore, this study recommended the isolation and separation of bioactive compounds responsible for the antibacterial activity which would be done by using different chromatographic methods such as high-performance liquid chromatography (HPLC), GC-MS etc. Conclusion: The results of the above study suggest that all parts of the plants possess potent antibacterial activity. Hence, it is important to isolate the active principles for further testing of antimicrobial and other biological efficacy. PMID:27516977
Sharma, Amit Kumar; Gangwar, Mayank; Kumar, Dharmendra; Nath, Gopal; Kumar Sinha, Akhoury Sudhir; Tripathi, Yamini Bhushan
2016-01-01
This study aims to evaluate the antimicrobial activity, phytochemical studies and thin layer chromatography analysis of machine oil, hexane extract of seed oil and methanol extract of presscake & latex of Jatropha curcas Linn (family Euphorbiaceae). J. curcas extracts were subjected to preliminary qualitative phytochemical screening to detect the major phytochemicals followed by its reducing power and content of phenol and flavonoids in different fractions. Thin layer chromatography was also performed using different solvent systems for the analysis of a number of constituents in the plant extracts. Antimicrobial activity was evaluated by the disc diffusion method, while the minimum inhibitory concentration, minimum bactericidal concentration and minimum fungicidal concentration were calculated by micro dilution method. The methanolic fraction of latex and cake exhibited marked antifungal and antibacterial activities against Gram-positive and Gram-negative bacteria. Phytochemical analysis revealed the presence of alkaloids, saponins, tannins, terpenoids, steroids, glycosides, phenols and flavonoids. Reducing power showed dose dependent increase in concentration compared to standard Quercetin. Furthermore, this study recommended the isolation and separation of bioactive compounds responsible for the antibacterial activity which would be done by using different chromatographic methods such as high-performance liquid chromatography (HPLC), GC-MS etc. The results of the above study suggest that all parts of the plants possess potent antibacterial activity. Hence, it is important to isolate the active principles for further testing of antimicrobial and other biological efficacy.
Vughs, D; Baken, K A; Kolkman, A; Martijn, A J; de Voogt, P
2018-02-01
Advanced oxidation processes are important barriers for organic micropollutants in (drinking) water treatment. It is however known that medium pressure UV/H 2 O 2 treatment may lead to mutagenicity in the Ames test, which is no longer present after granulated activated carbon (GAC) filtration. Many nitrogen-containing disinfection by-products (N-DBPs) result from the reaction of photolysis products of nitrate with (photolysis products of) natural organic material (NOM) during medium pressure UV treatment of water. Identification of the N-DBPs and the application of effect-directed analysis to combine chemical screening results with biological activity would provide more insight into the relation of specific N-DBPs with the observed mutagenicity and was the subject of this study. To this end, fractions of medium pressure UV-treated and untreated water extracts were prepared using preparative HPLC and tested using the Ames fluctuation test. In addition, high-resolution mass spectrometry was performed on all fractions to assess the presence of N-DBPs. Based on toxicity data and read across analysis, we could identify five N-DBPs that are potentially genotoxic and were present in relatively high concentrations in the fractions in which mutagenicity was observed. The results of this study offer opportunities to further evaluate the identity and potential health concern of N-DBPs formed during advanced oxidation UV drinking water treatment.
Jelusic, Masa; Lestan, Domen
2014-03-15
We applied a multi-level approach assessing the quality, toxicity and functioning of Pb, Zn and Cd contaminated/remediated soil from a vegetable garden in Meza Valley, Slovenia. Contaminated soil was extracted with EDTA and placed into field experimental plots equipped with lysimeters. Soil properties were assessed by standard pedological analysis. Fractionation and leachability of toxic metals were analyzed by sequential extraction and TCLP and metal bioaccessibility by UBM tests. Soil respiration and enzyme activities were measured as indicators of soil functioning. Remediation reduced the metal burden by 80, 28 and 72% for Pb, Zn and Cd respectively, with a limited impact on soil pedology. Toxic metals associated with labile soil fractions were largely removed. No shifts between labile and residual fractions were observed during the seven months of the experiment. Initial metal leaching measured through lysimeters eventually ceased. However, remediation significantly diminished potential soil enzyme activity and no trends were observed of the remediated soil recovering its biological properties. Soil washing successfully removed available forms of Pb, Zn and Cd and thus lowered the human and environmental hazards of the remediated soil; however, remediation also extracted the trace elements essential for soil biota. In addition to reduced water holding capacity, soil health was not completely restored. Copyright © 2013 Elsevier B.V. All rights reserved.
Erb, Samuel J; Schappi, Jeffrey M; Rasenick, Mark M
2016-09-16
Depression is a significant public health problem for which currently available medications, if effective, require weeks to months of treatment before patients respond. Previous studies have shown that the G protein responsible for increasing cAMP (Gαs) is increasingly localized to lipid rafts in depressed subjects and that chronic antidepressant treatment translocates Gαs from lipid rafts. Translocation of Gαs, which shows delayed onset after chronic antidepressant treatment of rats or of C6 glioma cells, tracks with the delayed onset of therapeutic action of antidepressants. Because antidepressants appear to specifically modify Gαs localized to lipid rafts, we sought to determine whether structurally diverse antidepressants accumulate in lipid rafts. Sustained treatment of C6 glioma cells, which lack 5-hydroxytryptamine transporters, showed marked concentration of several antidepressants in raft fractions, as revealed by increased absorbance and by mass fingerprint. Closely related molecules without antidepressant activity did not concentrate in raft fractions. Thus, at least two classes of antidepressants accumulate in lipid rafts and effect translocation of Gαs to the non-raft membrane fraction, where it activates the cAMP-signaling cascade. Analysis of the structural determinants of raft localization may both help to explain the hysteresis of antidepressant action and lead to design and development of novel substrates for depression therapeutics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Lorenzatto, Karina R; Kim, Kyunggon; Ntai, Ioanna; Paludo, Gabriela P; Camargo de Lima, Jeferson; Thomas, Paul M; Kelleher, Neil L; Ferreira, Henrique B
2015-11-06
Echinococcus granulosus is the causative agent of cystic hydatid disease, a neglected zoonosis responsible for high morbidity and mortality. Several molecular mechanisms underlying parasite biology remain poorly understood. Here, E. granulosus subcellular fractions were analyzed by top down and bottom up proteomics for protein identification and characterization of co-translational and post-translational modifications (CTMs and PTMs, respectively). Nuclear and cytosolic extracts of E. granulosus protoscoleces were fractionated by 10% GELFrEE and proteins under 30 kDa were analyzed by LC-MS/MS. By top down analysis, 186 proteins and 207 proteoforms were identified, of which 122 and 52 proteoforms were exclusively detected in nuclear and cytosolic fractions, respectively. CTMs were evident as 71% of the proteoforms had methionine excised and 47% were N-terminal acetylated. In addition, in silico internal acetylation prediction coupled with top down MS allowed the characterization of 9 proteins differentially acetylated, including histones. Bottom up analysis increased the overall number of identified proteins in nuclear and cytosolic fractions to 154 and 112, respectively. Overall, our results provided the first description of the low mass proteome of E. granulosus subcellular fractions and highlighted proteoforms with CTMs and PTMS whose characterization may lead to another level of understanding about molecular mechanisms controlling parasitic flatworm biology.
Mares-Mares, Everardo; Gutiérrez-Vargas, Santiago; Pérez-Moreno, Luis; Ordoñez-Acevedo, Leandro G; Barboza-Corona, José E; León-Galván, Ma Fabiola
2017-01-01
The objective of this research was to identify and characterize the encoded peptides present in nut storage proteins of Carya illinoinensis . It was found, through in silico prediction, proteomic analysis, and MS spectrometry, that bioactive peptides were mainly found in albumin and glutelin fractions. Glutelin was the major fraction with ~53% of the nut storage proteins containing at least 21 peptides with different putative biological activities, including antihypertensives, antioxidants, immunomodulators, protease inhibitors, and inhibitors of cell cycle progression in cancer cells. Data showed that using 50 μ g/mL tryptic digests of enriched peptides obtained from nut glutelins is able to induce up to 19% of apoptosis in both HeLa and CasKi cervical cancer cells. To our knowledge, this is the first report that shows the potential value of the nut-encoded peptides to be considered as adjuvants in cancer therapies.
Nishigami, Yukinori; Ichikawa, Masatoshi; Kazama, Toshiya; Kobayashi, Ryo; Shimmen, Teruo; Yoshikawa, Kenichi; Sonobe, Seiji
2013-01-01
Amoeboid locomotion is one of the typical modes of biological cell migration. Cytoplasmic sol-gel conversion of an actomyosin system is thought to play an important role in locomotion. However, the mechanisms underlying sol-gel conversion, including trigger, signal, and regulating factors, remain unclear. We developed a novel model system in which an actomyosin fraction moves like an amoeba in a cytoplasmic extract. Rheological study of this model system revealed that the actomyosin fraction exhibits shear banding: the sol-gel state of actomyosin can be regulated by shear rate or mechanical force. Furthermore, study of the living cell indicated that the shear-banding property also causes sol-gel conversion with the same order of magnitude as that of shear rate. Our results suggest that the inherent sol-gel transition property plays an essential role in the self-regulation of autonomous translational motion in amoeba.
Bueno-Orovio, Alfonso; Kay, David; Grau, Vicente; Rodriguez, Blanca; Burrage, Kevin
2014-01-01
Impulse propagation in biological tissues is known to be modulated by structural heterogeneity. In cardiac muscle, improved understanding on how this heterogeneity influences electrical spread is key to advancing our interpretation of dispersion of repolarization. We propose fractional diffusion models as a novel mathematical description of structurally heterogeneous excitable media, as a means of representing the modulation of the total electric field by the secondary electrical sources associated with tissue inhomogeneities. Our results, analysed against in vivo human recordings and experimental data of different animal species, indicate that structural heterogeneity underlies relevant characteristics of cardiac electrical propagation at tissue level. These include conduction effects on action potential (AP) morphology, the shortening of AP duration along the activation pathway and the progressive modulation by premature beats of spatial patterns of dispersion of repolarization. The proposed approach may also have important implications in other research fields involving excitable complex media. PMID:24920109
Gutiérrez-Vargas, Santiago; Pérez-Moreno, Luis; Ordoñez-Acevedo, Leandro G.
2017-01-01
The objective of this research was to identify and characterize the encoded peptides present in nut storage proteins of Carya illinoinensis. It was found, through in silico prediction, proteomic analysis, and MS spectrometry, that bioactive peptides were mainly found in albumin and glutelin fractions. Glutelin was the major fraction with ~53% of the nut storage proteins containing at least 21 peptides with different putative biological activities, including antihypertensives, antioxidants, immunomodulators, protease inhibitors, and inhibitors of cell cycle progression in cancer cells. Data showed that using 50 μg/mL tryptic digests of enriched peptides obtained from nut glutelins is able to induce up to 19% of apoptosis in both HeLa and CasKi cervical cancer cells. To our knowledge, this is the first report that shows the potential value of the nut-encoded peptides to be considered as adjuvants in cancer therapies. PMID:29279842
Kazama, Toshiya; Kobayashi, Ryo; Shimmen, Teruo; Yoshikawa, Kenichi; Sonobe, Seiji
2013-01-01
Amoeboid locomotion is one of the typical modes of biological cell migration. Cytoplasmic sol–gel conversion of an actomyosin system is thought to play an important role in locomotion. However, the mechanisms underlying sol–gel conversion, including trigger, signal, and regulating factors, remain unclear. We developed a novel model system in which an actomyosin fraction moves like an amoeba in a cytoplasmic extract. Rheological study of this model system revealed that the actomyosin fraction exhibits shear banding: the sol–gel state of actomyosin can be regulated by shear rate or mechanical force. Furthermore, study of the living cell indicated that the shear-banding property also causes sol–gel conversion with the same order of magnitude as that of shear rate. Our results suggest that the inherent sol–gel transition property plays an essential role in the self-regulation of autonomous translational motion in amoeba. PMID:23940560
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papp, D; Unkelbach, J
2014-06-01
Purpose: Non-uniform fractionation, i.e. delivering distinct dose distributions in two subsequent fractions, can potentially improve outcomes by increasing biological dose to the target without increasing dose to healthy tissues. This is possible if both fractions deliver a similar dose to normal tissues (exploit the fractionation effect) but high single fraction doses to subvolumes of the target (hypofractionation). Optimization of such treatment plans can be formulated using biological equivalent dose (BED), but leads to intractable nonconvex optimization problems. We introduce a novel optimization approach to address this challenge. Methods: We first optimize a reference IMPT plan using standard techniques that deliversmore » a homogeneous target dose in both fractions. The method then divides the pencil beams into two sets, which are assigned to either fraction one or fraction two. The total intensity of each pencil beam, and therefore the physical dose, remains unchanged compared to the reference plan. The objectives are to maximize the mean BED in the target and to minimize the mean BED in normal tissues, which is a quadratic function of the pencil beam weights. The optimal reassignment of pencil beams to one of the two fractions is formulated as a binary quadratic optimization problem. A near-optimal solution to this problem can be obtained by convex relaxation and randomized rounding. Results: The method is demonstrated for a large arteriovenous malformation (AVM) case treated in two fractions. The algorithm yields a treatment plan, which delivers a high dose to parts of the AVM in one of the fractions, but similar doses in both fractions to the normal brain tissue adjacent to the AVM. Using the approach, the mean BED in the target was increased by approximately 10% compared to what would have been possible with a uniform reference plan for the same normal tissue mean BED.« less
Kiss, Tivadar; Cank, Kristóf Bence; Orbán-Gyapai, Orsolya; Liktor-Busa, Erika; Zomborszki, Zoltán Péter; Rutkovska, Santa; Pučka, Irēna; Németh, Anikó; Csupor, Dezső
2017-12-21
Diterpene alkaloids are secondary plant metabolites and chemotaxonomical markers with a strong biological activity. These compounds are characteristic for the Ranunculaceae family, while their occurrence in other taxa is rare. Several species of the Spiraea genus (Rosaceae) are examples of this rarity. Screening Spiraea species for alkaloid content is a chemotaxonomical approach to clarify the classification and phylogeny of the genus. Novel pharmacological findings make further investigations of Spiraea diterpene alkaloids promising. Seven Spiraea species were screened for diterpene alkaloids. Phytochemical and pharmacological investigations were performed on Spiraea chamaedryfolia, the species found to contain diterpene alkaloids. Its alkaloid-rich fractions were found to exert a remarkable xanthine-oxidase inhibitory activity and a moderate antibacterial activity. The alkaloid distribution within the root was clarified by microscopic techniques.
NASA Astrophysics Data System (ADS)
Su, H.; Wang, Z.; Cheng, Y.; Xie, Z.; Kecorius, S.; McMeeking, G. R.; Yu, X.; Pöhlker, C.; Zhang, M.; Wiedensohler, A.; Kuhn, U.; Poeschl, U.; Huffman, J. A.
2015-12-01
Online measurements of ambient fluorescent aerosol particles by WIBS at a polluted regional site in the North China Plain: potential impact of burning activities Zhibin Wang1, Xiawei Yu1,3, Simonas Kecorius2, Zhouqing Xie3, Gavin McMeeking4, Christopher Pöhlker1, Minghui, Zhang1, Alfred Wiedensohler2, Uwe Kuhn1, Yafang Cheng1, Ulrich Pöschl1, Hang Su1,*1Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz 55128, Germany2Leibniz-Institute for Tropospheric Research, Leipzig 04318, Germany3School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China4Droplet Measurement Technologies, Boulder 80301, USA ABSTRACTBioaerosols are the main subset of super-micron particles, and significantly influence the evolution of cloud and precipitation, as well as the public health. Currently, the detection of ambient biological materials in real-time is mainly based on the presence of fluorophores in the particles. In this study, we present the wideband integrated bioaerosol spectrometer (WIBS) measurement results to characterize the fluorescent aerosol particles (FAP) at a polluted regional site (Xianghe, 39.80 °N, 116.96 °E) in the North China Plain. We observed substantially much higher number concentration of FAP as compared with those of previous studies in clean environments. We found the good agreement between the FAP number fraction in coarse mode particles (> 1 mm) and BC mass fraction in fine particles (< 1 mm), possibly indicating a majority of the observed FAP is to a certain extent related to the anthropogenic burning activities nearby. This interference and uncertainty should be especially noticed when performing fluorescence measurements in the polluted area, where the certain non-biological compounds (such as SOA, PAH and soot) may significantly lead to a positive fluorescence measurement artifacts and an overestimation of actual fluorescent biological aerosol particles. We also suggested to introduce the classification analysis of fluorescence spectral patterns from single FAP into the data analysis, which aims to reduce the potential misattribution and provide extra dimensions in the differentiation and identification of fluorescent aerosol particle.
Cunha, Jonathan Da; Lavaggi, María Laura; Abasolo, María Inés; Cerecetto, Hugo; González, Mercedes
2011-12-01
Hypoxic regions of tumours are associated with increased resistance to radiation and chemotherapy. Nevertheless, hypoxia has been used as a tool for specific activation of some antitumour prodrugs, named bioreductive agents. Phenazine dioxides are an example of such bioreductive prodrugs. Our 2D-quantitative structure activity relationship studies established that phenazine dioxides electronic and lipophilic descriptors are related to survival fraction in oxia or in hypoxia. Additionally, statistically significant models, derived by partial least squares, were obtained between survival fraction in oxia and comparative molecular field analysis standard model (r² = 0.755, q² = 0.505 and F = 26.70) or comparative molecular similarity indices analysis-combined steric and electrostatic fields (r² = 0.757, q² = 0.527 and F = 14.93), and survival fraction in hypoxia and comparative molecular field analysis standard model (r² = 0.736, q² = 0.521 and F = 18.63) or comparative molecular similarity indices analysis-hydrogen bond acceptor field (r² = 0.858, q² = 0.737 and F = 27.19). Categorical classification was used for the biological parameter selective cytotoxicity emerging also good models, derived by soft independent modelling of class analogy, with both comparative molecular field analysis standard model (96% of overall classification accuracy) and comparative molecular similarity indices analysis-steric field (92% of overall classification accuracy). 2D- and 3D-quantitative structure-activity relationships models provided important insights into the chemical and structural basis involved in the molecular recognition process of these phenazines as bioreductive agents and should be useful for the design of new structurally related analogues with improved potency. © 2011 John Wiley & Sons A/S.
Illuminati, S; Annibaldi, A; Romagnoli, T; Libani, G; Antonucci, M; Scarponi, G; Totti, C; Truzzi, C
2017-10-01
During the austral summer 2011-2012, the metal quotas of Cd, Pb and Cu in the phytoplankton of Terra Nova Bay (TNB, Antarctica) were measured for the first time. Evolution of all the three metal distributions between dissolved and particulate fractions during the season was also evaluated. Metal concentrations were mainly affected by the dynamic of the pack ice melting and phytoplankton activity. In mid-December when TNB area was covered by a thick pack ice layer and phytoplankton activity was very low, all the three metals were present mainly in their dissolved species. When the pack ice started to melt and the water column characteristics became ideal (i.e. moderate stratification, ice free area), the phytoplankton bloom occurred. Cd showed a nutrient-type behaviour with dissolved and particulate fractions mainly influenced by phytoplankton activity. Cd quota showed a mean value of 0.12 ± 0.07 nmol L -1 (30-100% of the total particulate). Also Cu showed a nutrient-type behaviour, with its quota in phytoplankton varying between 0.08 and 2.1 nmol L -1 (20-100% of the total particulate). Pb features the typical distribution of a scavenged element with very low algal content (0.03 ± 0.02 nmol L -1 , representing 20-50% of the total particulate). The vertical distribution of this element was influenced by several factors (e.g. pack ice melting, atmospheric inputs), the phytoplankton activity affecting Pb behaviour only partially. Metal:C ratios provide valuable information on the biological requirements for Cd, Pb and Cu, leading us to better understand their biogeochemical cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Paredes, Cecilia; Gianfreda, Liliana; Mora, María de la Luz
2015-04-01
The Chilean Andisols are of great importance in the economy of southern Chile supporting the bulk of agricultural production. The major characteristics of Chilean volcanic soils are the high adsorption capacity of P with a concomitant low P availability to plants. Studies preliminary using dairy cattle dung suggest that we can improve P availability using organic P sources within the soil because of microorganism. Phosphorous solubilization by microorganisms is a complex phenomenon, which depends on many factors such as nutritional, physiological and growth condition of the culture. The principal mechanism for mineral phosphate solubilization is the production of organic acids where the enzyme phosphatases play a major role in the mineralization of organic phosphorous in soil. The objective of this study was to evaluate changes in soil phosphorus fractions due to application the cattle dung, glucose, nitrogen (N) and phosphorus (P). In this experiment we incubated soil samples with 300 g of cattle dung, 30 mg kg-1 of N and P and 1000 mg glucose kg-1. The soil samples were moistened to field capacity and incubated in plastic bags to room temperature by different time. The changes in P forms in soil were monitored through the Hedley fractionation procedure and phosphatase activity. Our preliminary results indicated that the application of cattle dung, glucose nitrogen and phosphorus, caused the increased phosphatase activity until to 7 days and then apparently return to normal values. Interestingly, we observed a rise in the inorganic P fraction extracted by NaHCO3 in the same period. In summary, the increase biological activity by carbon and nitrogen increase P availability. Acknowledgements: The authors thank Fondecyt 1141247 Project.
Portuguese propolis disturbs glycolytic metabolism of human colorectal cancer in vitro
2013-01-01
Background Propolis is a resin collected by bees from plant buds and exudates, which is further processed through the activity of bee enzymes. Propolis has been shown to possess many biological and pharmacological properties, such as antimicrobial, antioxidant, immunostimulant and antitumor activities. Due to this bioactivity profile, this resin can become an alternative, economic and safe source of natural bioactive compounds. Antitumor action has been reported in vitro and in vivo for propolis extracts or its isolated compounds; however, Portuguese propolis has been little explored. The aim of this work was to evaluate the in vitro antitumor activity of Portuguese propolis on the human colon carcinoma cell line HCT-15, assessing the effect of different fractions (hexane, chloroform and ethanol residual) of a propolis ethanol extract on cell viability, proliferation, metabolism and death. Methods Propolis from Angra do Heroísmo (Azores) was extracted with ethanol and sequentially fractionated in solvents with increasing polarity, n-hexane and chloroform. To assess cell viability, cell proliferation and cell death, Sulforhodamine B, BrDU incorporation assay and Anexin V/Propidium iodide were used, respectively. Glycolytic metabolism was estimated using specific kits. Results All propolis samples exhibited a cytotoxic effect against tumor cells, in a dose- and time-dependent way. Chloroform fraction, the most enriched in phenolic compounds, appears to be the most active, both in terms of inhibition of viability and cell death. Data also show that this cytotoxicity involves disturbance in tumor cell glycolytic metabolism, seen by a decrease in glucose consumption and lactate production. Conclusion Our results show that Portuguese propolis from Angra do Heroísmo (Azores) can be a potential therapeutic agent against human colorectal cancer. PMID:23870175
The budget of biologically active ultraviolet radiation in the earth-atmosphere system
NASA Technical Reports Server (NTRS)
Frederick, John E.; Lubin, Dan
1988-01-01
This study applies the concept of a budget to describe the interaction of solar ultraviolet (UV) radiation with the earth-atmosphere system. The wavelength ranges of interest are the biologically relevant UV-B between 280 and 320 nm and the UV-A from 32000 to 400 nm. The Nimbus 7 solar backscattered ultraviolet (SBUV) instrument provides measurements of total column ozone and information concerning cloud cover which, in combination with a simple model of radiation transfer, define the fractions of incident solar irradiance absorbed in the atmosphere, reflected to space, and absorbed at the ground. Results for the month of July quantify the contribution of fractional cloud cover and cloud optical thickness to the radiation budget's three components. Scattering within a thick cloud layer makes the downward radiation field at the cloud base more isotropic than is the case for clear skies. For small solar zenith angles, typical of summer midday conditions, the effective pathlength of this diffuse irradiance through tropospheric ozone is greater than that under clear-sky conditions. The result is an enhanced absorption of UV-B radiation in the troposphere during cloud-covered conditions. Major changes in global cloud cover or cloud optical thicknesses could alter the ultraviolet radiation received by the biosphere by an amount comparable to that predicted for long-term trends in ozone.
NASA Astrophysics Data System (ADS)
Hofmockel, K. S.; Bach, E.; Williams, R.; Howe, A.
2014-12-01
Identifying the microbial metabolic pathways that most strongly influence ecosystem carbon (C) cycling requires a deeper understanding of the availability and accessibility of microbial substrates. A first step towards this goal is characterizing the relationships between microbial community function and soil C chemistry in a field context. For this perspective, soil aggregate fractions can be used as model systems that scale between microbe-substrate interactions and ecosystem C cycling and storage. The present study addresses how physicochemical variation among soil aggregate fractions influences the composition and functional potential of C cycling microbial communities. We report variation across soil aggregates using plot scale biological replicates from biofuel agroecosystems (fertilized, reconstructed, tallgrass prairie). Our results suggest that C and nitrogen (N) chemistry significantly differ among aggregate fractions. This leads to variation in microbial community composition, which was better characterized among aggregates than by using the whole soil. In fact by considering soil aggregation, we were able to characterize almost 2000 more taxa than whole soil alone, resulting in 65% greater community richness. Availability of C and N strongly influenced the composition of microbial communities among soil aggregate fractions. The normalized abundance of microbial functional guilds among aggregate fractions correlated with C and N chemistry, as did functional potential, measured by extracellular enzyme activity. Metagenomic results suggest that soil aggregate fractions select for functionally distinct microbial communities, which may significantly influence decomposition and soil C storage. Our study provides support for the premise that integration of soil aggregate chemistry, especially microaggregates that have greater microbial richness and occur at spatial scales relevant to microbial community functioning, may be necessary to understand the role of microbial communities on terrestrial C and N cycling.
Rimmerman, Neta; Bradshaw, Heather B; Kozela, Ewa; Levy, Rivka; Juknat, Ana; Vogel, Zvi
2012-01-01
BACKGROUND AND PURPOSE N-acyl ethanolamines (NAEs) and 2-arachidonoyl glycerol (2-AG) are endogenous cannabinoids and along with related lipids are synthesized on demand from membrane phospholipids. Here, we have studied the compartmentalization of NAEs and 2-AG into lipid raft fractions isolated from the caveolin-1-lacking microglial cell line BV-2, following vehicle or cannabidiol (CBD) treatment. Results were compared with those from the caveolin-1-positive F-11 cell line. EXPERIMENTAL APPROACH BV-2 cells were incubated with CBD or vehicle. Cells were fractionated using a detergent-free continuous OptiPrep density gradient. Lipids in fractions were quantified using HPLC/MS/MS. Proteins were measured using Western blot. KEY RESULTS BV-2 cells were devoid of caveolin-1. Lipid rafts were isolated from BV-2 cells as confirmed by co-localization with flotillin-1 and sphingomyelin. Small amounts of cannabinoid CB1 receptors were found in lipid raft fractions. After incubation with CBD, levels and distribution in lipid rafts of 2-AG, N-arachidonoyl ethanolamine (AEA), and N-oleoyl ethanolamine (OEA) were not changed. Conversely, the levels of the saturated N-stearoyl ethanolamine (SEA) and N-palmitoyl ethanolamine (PEA) were elevated in lipid raft fractions. In whole cells with growth medium, CBD treatment increased AEA and OEA time-dependently, while levels of 2-AG, PEA and SEA did not change. CONCLUSIONS AND IMPLICATIONS Whereas levels of 2-AG were not affected by CBD treatment, the distribution and levels of NAEs showed significant changes. Among the NAEs, the degree of acyl chain saturation predicted the compartmentalization after CBD treatment suggesting a shift in cell signalling activity. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21449981
Sakagami, Hiroshi; Asano, Kazuhito; Satoh, Kazue; Takahashi, Keiso; Kobayashi, Masaki; Koga, Noriko; Takahashi, Hitomi; Tachikawa, Rieko; Tashiro, Tadamasa; Hasegawa, Akihiko; Kurihara, Kaeko; Ikarashi, Takeshi; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Watanabe, Satoru; Nakamura, Wataru
2007-01-01
Anti-stress and anti-HIV activity of mulberry juice were separated by centrifugation. The anti-stress activity was enriched in the supernatant fraction whereas the anti-HIV activity in the precipitate fraction. Oral administration of the supernatant fraction significantly reduced the elevated plasma level of lipid peroxide in mice loaded with water immersion restraint stress. The kinetic study revealed that the anti-stress activity was maintained for 4 hours after cessation of the administration of mulberry juice. The lignin fraction in the precipitate fraction scavenged superoxide and hydroxyl radicals more efficiently than other fractions, in a synergistic fashion with sodium ascorbate. Anti-HIV activity of mulberry juice was concentrated in the lignin fraction, whereas blueberry juice, which has no precipitating fibrous materials, did not show anti-HIV activity. The present study suggests the functionality of mulberry juice as an alternative medicine.