Sample records for biologically active human

  1. Validation of biological activity testing procedure of recombinant human interleukin-7.

    PubMed

    Lutsenko, T N; Kovalenko, M V; Galkin, O Yu

    2017-01-01

    Validation procedure for method of monitoring the biological activity of reсombinant human interleukin-7 has been developed and conducted according to the requirements of national and international recommendations. This method is based on the ability of recombinant human interleukin-7 to induce proliferation of T lymphocytes. It has been shown that to control the biological activity of recombinant human interleukin-7 peripheral blood mononuclear cells (PBMCs) derived from blood or cell lines can be used. Validation charac­teristics that should be determined depend on the method, type of product or object test/measurement and biological test systems used in research. The validation procedure for the method of control of biological activity of recombinant human interleukin-7 in peripheral blood mononuclear cells showed satisfactory results on all parameters tested such as specificity, accuracy, precision and linearity.

  2. Exploring an Alternative Model of Human Reproductive Capability: A Creative Learning Activity

    ERIC Educational Resources Information Center

    Cherif, Abour H.; Jedlicka, Dianne M.

    2012-01-01

    Biological and social evolutionary processes, along with social and cultural developments, have allowed humans to separate procreation from pleasurable/recreational sexual activity. As a class learning project, an alternative, hypothetical reproductive scenario is presented: "What if humans were biologically ready to conceive only during one…

  3. Structural Stereochemistry of Androstene Hormones Determines Interactions with Human Androgen, Estrogen, and Glucocorticoid Receptors

    PubMed Central

    Shaak, Thomas L.; Wijesinghe, Dayanjan S.; Chalfant, Charles E.; Diegelmann, Robert F.; Ward, Kevin R.; Loria, Roger M.

    2013-01-01

    DHEA, 17α-AED, 17β-AED, and 17β-AET exhibit strong biological activity that has been attributed to androgenic, estrogenic, or antiglucocorticoid activity in vivo and in vitro. This study compared DHEA, 17α-AED, 17β-AED, and 17β-AET for their ability to activate the human AR, ER, and GR and determine the relative androgenicity, estrogenicity, and glucocorticoid activity. The results show that, at the receptor level, these androstene hormones are weak AR and even weaker ER activators. Direct androstene hormone activation of the human AR, ERα, and ERβ may not be essential for their biological function. Similarly, these hormones indirectly activated the human GR, only in the presence of high dexamethasone concentrations. These results underscore the major difference between androstene hormone interactions with these nuclear receptors and their biological effects. PMID:24729874

  4. Biological Criteria for Protection of U.S. Coral Reefs.

    EPA Science Inventory

    Coral reef ecosystems are threatened by natural stressors, human activities, and natural stressors exacerbated by human activities. Under the U.S. Clean Water Act, States and Territories may guard against anthropogenic threats by adopting water quality standards based on biologic...

  5. Biological Criteria for Protection of U.S. Coral Reefs

    EPA Science Inventory

    Coral reef ecosystems are threatened by natural stressors, human activities, and natural stressors exacerbated by human activities. Under the U.S. Clean Water Act, States and Territories may guard against anthropogenic threats by adopting water quality standards based on biologic...

  6. Black pepper (Piper nigrum) essential oil demonstrates tissue remodeling and metabolism modulating potential in human cells.

    PubMed

    Han, Xuesheng; Beaumont, Cody; Rodriguez, Damian; Bahr, Tyler

    2018-05-17

    Very few studies have investigated the biological activities of black pepper essential oil (BPEO) in human cells. Therefore, in the current study, we examined the biological activities of BPEO in cytokine-stimulated human dermal fibroblasts by analyzing the levels of 17 important protein biomarkers pertinent to inflammation and tissue remodeling. BPEO exhibited significant antiproliferative activity in these skin cells and significantly inhibited the production of Collagen I, Collagen III, and plasminogen activator inhibitor 1. In addition, we studied the effect of BPEO on the regulation of genome-wide expression and found that BPEO diversely modulated global gene expression. Further analysis showed that BPEO affected many important genes and signaling pathways closely related to metabolism, inflammation, tissue remodeling, and cancer signaling. This study is the first to provide evidence of the biological activities of BPEO in human dermal fibroblasts. The data suggest that BPEO possesses promising potential to modulate the biological processes of tissue remodeling, wound healing, and metabolism. Although further research is required, BPEO appears to be a good therapeutic candidate for a variety of health conditions including wound care and metabolic diseases. Research into the biological and pharmacological mechanisms of action of BPEO and its major active constituents is recommended. Copyright © 2018 John Wiley & Sons, Ltd.

  7. 78 FR 28856 - Agency Information Collection Activities; Submission for Office of Management and Budget Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... Request; Bar Code Label Requirement for Human Drug and Biological Products AGENCY: Food and Drug... and clearance. Bar Code Label Requirement for Human Drug and Biological Products--(OMB Control Number... that required human drug product and biological product labels to have bar codes. The rule required bar...

  8. The Biology of Human Play.

    ERIC Educational Resources Information Center

    Byers, John A.

    1998-01-01

    Maintains that the "getting into shape" hypothesis of explaining the inverted-U distribution of exercise play across age is likely incorrect. Argues that the biological study of human physical activity play, as recommended by Pellegrini and Smith (1998), will reveal whether physical activity play represents an example of…

  9. Chemical synthesis of biologically active tat trans-activating protein of human immunodeficiency virus type 1.

    PubMed Central

    Chun, R; Glabe, C G; Fan, H

    1990-01-01

    Full-length (86-residue) polypeptide corresponding to the human immunodeficiency virus type 1 tat trans-activating protein was chemically synthesized on a semiautomated apparatus, using an Fmoc amino acid continuous-flow strategy. The bulk material was relatively homogeneous, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing, and it showed trans-activating activity when scrape loaded into cells containing a human immunodeficiency virus long terminal repeat-chloramphenicol acetyl-transferase reporter plasmid. Reverse-phase high-pressure liquid chromatography yielded a rather broad elution profile, and assays across the column for biological activity indicated a sharper peak. Thus, high-pressure liquid chromatography provided for enrichment of biological activity. Fast atom bombardment-mass spectrometry of tryptic digests of synthetic tat identified several of the predicted tryptic peptides, consistent with accurate chemical synthesis. Images PMID:2186178

  10. Exploring Visuomotor Priming Following Biological and Non-Biological Stimuli

    ERIC Educational Resources Information Center

    Gowen, E.; Bradshaw, C.; Galpin, A.; Lawrence, A.; Poliakoff, E.

    2010-01-01

    Observation of human actions influences the observer's own motor system, termed visuomotor priming, and is believed to be caused by automatic activation of mirror neurons. Evidence suggests that priming effects are larger for biological (human) as opposed to non-biological (object) stimuli and enhanced when viewing stimuli in mirror compared to…

  11. The Responsiveness of Biological Motion Processing Areas to Selective Attention Towards Goals

    PubMed Central

    Herrington, John; Nymberg, Charlotte; Faja, Susan; Price, Elinora; Schultz, Robert

    2012-01-01

    A growing literature indicates that visual cortex areas viewed as primarily responsive to exogenous stimuli are susceptible to top-down modulation by selective attention. The present study examines whether brain areas involved in biological motion perception are among these areas – particularly with respect to selective attention towards human movement goals. Fifteen participants completed a point-light biological motion study following a two-by-two factorial design, with one factor representing an exogenous manipulation of human movement goals (goal-directed versus random movement), and the other an endogenous manipulation (a goal identification task versus an ancillary color-change task). Both manipulations yielded increased activation in the human homologue of motion-sensitive area MT+ (hMT+) as well as the extrastriate body area (EBA). The endogenous manipulation was associated with increased right posterior superior temporal sulcus (STS) activation, whereas the exogenous manipulation was associated with increased activation in left posterior STS. Selective attention towards goals activated portion of left hMT+/EBA only during the perception of purposeful movement consistent with emerging theories associating this area with the matching of visual motion input to known goal-directed actions. The overall pattern of results indicates that attention towards the goals of human movement activates biological motion areas. Ultimately, selective attention may explain why some studies examining biological motion show activation in hMT+ and EBA, even when using control stimuli with comparable motion properties. PMID:22796987

  12. Exploring Contemporary Issues in Genetics & Society: Karyotyping, Biological Sex, & Gender

    ERIC Educational Resources Information Center

    Brown, Julie C.

    2013-01-01

    In this two-part activity, high school biology students examine human karyotyping, sex-chromosome-linked disorders, and the relationship between biological sex and gender. Through interactive simulations and a structured discussion lab, students create a human karyotype and diagnose chromosomal disorders in hypothetical patients, as well as…

  13. One-step production of a biologically active novel furan fatty acid from 7,10-dihydroxy-8(E)-octadecenoic acid

    USDA-ARS?s Scientific Manuscript database

    Furan fatty acids (F-acids) gain special attentions since they are known to play important roles in biological systems including humans. Specifically F-acids are known to have strong antioxidant activity like radical scavenging activity. Although widely distributed in most biological systems, F-ac...

  14. Alcohol and Drug Prevention Curriculum Resource Guide Grades 10-12: Science--Biology.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Alcohol and Drug Defense Program.

    This curriculum resource guide on alcohol and drug prevention provides suggested activities for teachers of grades 10 through 12. Three integrated learning activities for science/biology and healthful living are presented. The science/biology goal is understanding the biology of humans. Healthful living goals include analyzing drug and alcohol use…

  15. Profiling Bioactivity of the ToxCast Chemical Library Using BioMAP Primary Human Cell Systems

    EPA Science Inventory

    The complexity of human biology has made prediction of health effects as a consequence of exposure to environmental chemicals especially challenging. Complex cell systems, such as the Biologically Multiplexed Activity Profiling (BioMAP) primary, human, cell-based disease models, ...

  16. The responsiveness of biological motion processing areas to selective attention towards goals.

    PubMed

    Herrington, John; Nymberg, Charlotte; Faja, Susan; Price, Elinora; Schultz, Robert

    2012-10-15

    A growing literature indicates that visual cortex areas viewed as primarily responsive to exogenous stimuli are susceptible to top-down modulation by selective attention. The present study examines whether brain areas involved in biological motion perception are among these areas-particularly with respect to selective attention towards human movement goals. Fifteen participants completed a point-light biological motion study following a two-by-two factorial design, with one factor representing an exogenous manipulation of human movement goals (goal-directed versus random movement), and the other an endogenous manipulation (a goal identification task versus an ancillary color-change task). Both manipulations yielded increased activation in the human homologue of motion-sensitive area MT+ (hMT+) as well as the extrastriate body area (EBA). The endogenous manipulation was associated with increased right posterior superior temporal sulcus (STS) activation, whereas the exogenous manipulation was associated with increased activation in left posterior STS. Selective attention towards goals activated a portion of left hMT+/EBA only during the perception of purposeful movement-consistent with emerging theories associating this area with the matching of visual motion input to known goal-directed actions. The overall pattern of results indicates that attention towards the goals of human movement activates biological motion areas. Ultimately, selective attention may explain why some studies examining biological motion show activation in hMT+ and EBA, even when using control stimuli with comparable motion properties. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Culture, Urbanism and Changing Human Biology.

    PubMed

    Schell, L M

    2014-04-03

    Anthropologists have long known that human activity driven by culture changes the environment. This is apparent in the archaeological record and through the study of the modern environment. Perhaps the largest change since the paleolithic era is the organization of human populations in cities. New environments can reshape human biology through evolution as shown by the evolution of the hominid lineage. Evolution is not the only process capable of reshaping our biology. Some changes in our human biology are adaptive and evolutionary while others are pathological. What changes in human biology may be wrought by the modern urban environment? One significant new change in the environment is the introduction of pollutants largely through urbanization. Pollutants can affect human biology in myriad ways. Evidence shows that human growth, reproduction, and cognitive functioning can be altered by some pollutants, and altered in different ways depending on the pollutant. Thus, pollutants have significance for human biologists and anthropologists generally. Further, they illustrate the bio-cultural interaction characterizing human change. Humans adapt by changing the environment, a cultural process, and then change biologically to adjust to that new environment. This ongoing, interactive process is a fundamental characteristic of human change over the millennia.

  18. Culture, Urbanism and Changing Human Biology

    PubMed Central

    Schell, L.M.

    2014-01-01

    Anthropologists have long known that human activity driven by culture changes the environment. This is apparent in the archaeological record and through the study of the modern environment. Perhaps the largest change since the paleolithic era is the organization of human populations in cities. New environments can reshape human biology through evolution as shown by the evolution of the hominid lineage. Evolution is not the only process capable of reshaping our biology. Some changes in our human biology are adaptive and evolutionary while others are pathological. What changes in human biology may be wrought by the modern urban environment? One significant new change in the environment is the introduction of pollutants largely through urbanization. Pollutants can affect human biology in myriad ways. Evidence shows that human growth, reproduction, and cognitive functioning can be altered by some pollutants, and altered in different ways depending on the pollutant. Thus, pollutants have significance for human biologists and anthropologists generally. Further, they illustrate the bio-cultural interaction characterizing human change. Humans adapt by changing the environment, a cultural process, and then change biologically to adjust to that new environment. This ongoing, interactive process is a fundamental characteristic of human change over the millennia. PMID:25598655

  19. Preparation of Gc protein-derived macrophage activating factor (GcMAF) and its structural characterization and biological activities.

    PubMed

    Mohamad, Saharuddin Bin; Nagasawa, Hideko; Uto, Yoshihiro; Hori, Hitoshi

    2002-01-01

    Gc protein has been reported to be a precursor of Gc protein-derived macrophage activation factor (GcMAF) in the inflammation-primed macrophage activation cascade. An inducible beta-galactosidase of B cells and neuraminidase of T cells convert Gc protein to GcMAF. Gc protein from human serum was purified using 25(OH)D3 affinity column chromatography and modified to GcMAF using immobilized glycosidases (beta-galactosidase and neuraminidase) The sugar moiety structure of GcMAF was characterized by lectin blotting by Helix pomatia agglutinin. The biological activities of GcMAF were evaluated by a superoxide generation assay and a phagocytosis assay. We successfully purified Gc protein from human serum. GcMAF was detected by lectin blotting and showed a high biological activity. Our results support the importance of the terminal N-acetylgalactosamine moiety in the GcMAF-mediated macrophage activation cascade, and the existence of constitutive GcMAF in human serum. These preliminary data are important for designing small molecular GcMAF mimics.

  20. Integration of culture and biology in human development.

    PubMed

    Mistry, Jayanthi

    2013-01-01

    The challenge of integrating biology and culture is addressed in this chapter by emphasizing human development as involving mutually constitutive, embodied, and epigenetic processes. Heuristically rich constructs extrapolated from cultural psychology and developmental science, such as embodiment, action, and activity, are presented as promising approaches to the integration of cultural and biology in human development. These theoretical notions are applied to frame the nascent field of cultural neuroscience as representing this integration of culture and biology. Current empirical research in cultural neuroscience is then synthesized to illustrate emerging trends in this body of literature that examine the integration of biology and culture.

  1. Low Budget Biology. A Collection of Low Cost Labs and Activities.

    ERIC Educational Resources Information Center

    Wartski, Bert; Wartski, Lynn Marie

    This document contains a collection of low cost labs and activities. The activities are organized into the following units: Chemistry; Microbiology; DNA to Chromosomes; Genetics; Evolution; Classification, Protist, and Fungus; Plant; Invertebrate; Human Biology; and Ecology and Miscellaneous. Some of the activities within these units include: (1)…

  2. Determining environmental causes of biological effects: the need for a mechanistic physiological dimension in conservation biology.

    PubMed

    Seebacher, Frank; Franklin, Craig E

    2012-06-19

    The emerging field of Conservation Physiology links environmental change and ecological success by the application of physiological theory, approaches and tools to elucidate and address conservation problems. Human activity has changed the natural environment to a point where the viability of many ecosystems is now under threat. There are already many descriptions of how changes in biological patterns are correlated with environmental changes. The next important step is to determine the causative relationship between environmental variability and biological systems. Physiology provides the mechanistic link between environmental change and ecological patterns. Physiological research, therefore, should be integrated into conservation to predict the biological consequences of human activity, and to identify those species or populations that are most vulnerable.

  3. Human Metabolites of Cannabidiol: A Review on Their Formation, Biological Activity, and Relevance in Therapy

    PubMed Central

    Ujváry, István; Hanuš, Lumír

    2016-01-01

    Abstract Cannabidiol (CBD), the main nonpsychoactive constituent of Cannabis sativa, has shown a wide range of therapeutically promising pharmacological effects either as a sole drug or in combination with other drugs in adjunctive therapy. However, the targets involved in the therapeutic effects of CBD appear to be elusive. Furthermore, scarce information is available on the biological activity of its human metabolites which, when formed in pharmacologically relevant concentration, might contribute to or even account for the observed therapeutic effects. The present overview summarizes our current knowledge on the pharmacokinetics and metabolic fate of CBD in humans, reviews studies on the biological activity of CBD metabolites either in vitro or in vivo, and discusses relevant drug–drug interactions. To facilitate further research in the area, the reported syntheses of CBD metabolites are also catalogued. PMID:28861484

  4. Human Metabolites of Cannabidiol: A Review on Their Formation, Biological Activity, and Relevance in Therapy.

    PubMed

    Ujváry, István; Hanuš, Lumír

    2016-01-01

    Cannabidiol (CBD), the main nonpsychoactive constituent of Cannabis sativa , has shown a wide range of therapeutically promising pharmacological effects either as a sole drug or in combination with other drugs in adjunctive therapy. However, the targets involved in the therapeutic effects of CBD appear to be elusive. Furthermore, scarce information is available on the biological activity of its human metabolites which, when formed in pharmacologically relevant concentration, might contribute to or even account for the observed therapeutic effects. The present overview summarizes our current knowledge on the pharmacokinetics and metabolic fate of CBD in humans, reviews studies on the biological activity of CBD metabolites either in vitro or in vivo , and discusses relevant drug-drug interactions. To facilitate further research in the area, the reported syntheses of CBD metabolites are also catalogued.

  5. Visual event-related potentials to biological motion stimuli in autism spectrum disorders

    PubMed Central

    Bletsch, Anke; Krick, Christoph; Siniatchkin, Michael; Jarczok, Tomasz A.; Freitag, Christine M.; Bender, Stephan

    2014-01-01

    Atypical visual processing of biological motion contributes to social impairments in autism spectrum disorders (ASD). However, the exact temporal sequence of deficits of cortical biological motion processing in ASD has not been studied to date. We used 64-channel electroencephalography to study event-related potentials associated with human motion perception in 17 children and adolescents with ASD and 21 typical controls. A spatio-temporal source analysis was performed to assess the brain structures involved in these processes. We expected altered activity already during early stimulus processing and reduced activity during subsequent biological motion specific processes in ASD. In response to both, random and biological motion, the P100 amplitude was decreased suggesting unspecific deficits in visual processing, and the occipito-temporal N200 showed atypical lateralization in ASD suggesting altered hemispheric specialization. A slow positive deflection after 400 ms, reflecting top-down processes, and human motion-specific dipole activation differed slightly between groups, with reduced and more diffuse activation in the ASD-group. The latter could be an indicator of a disrupted neuronal network for biological motion processing in ADS. Furthermore, early visual processing (P100) seems to be correlated to biological motion-specific activation. This emphasizes the relevance of early sensory processing for higher order processing deficits in ASD. PMID:23887808

  6. Relationship between sugar chain structure and biological activity of recombinant human erythropoietin produced in Chinese hamster ovary cells.

    PubMed Central

    Takeuchi, M; Inoue, N; Strickland, T W; Kubota, M; Wada, M; Shimizu, R; Hoshi, S; Kozutsumi, H; Takasaki, S; Kobata, A

    1989-01-01

    Two forms of erythropoietin, EPO-bi and EPO-tetra, with different biological activities were isolated from the culture medium of a recombinant Chinese hamster ovary cell line, B8-300, into which the human erythropoietin gene had been introduced. EPO-bi, an unusual form, showed only one-seventh the in vivo activity and 3 times higher in vitro activity of the previously described recombinant human EPO (standard EPO). In contrast, EPO-tetra showed both in vivo and in vitro activities comparable to those of the standard EPO. EPO-bi, EPO-tetra, and the standard EPO had the same amino acid composition and immunoreactivity. However, structural analyses of their N-linked sugar chains revealed that EPO-bi contains the biantennary complex type as the major sugar chain, while EPO-tetra and the standard EPO contain the tetraantennary complex type as the major sugar chain. From examination of various preparations of recombinant human EPO, we found a positive correlation between the in vivo activity of EPO and the ratio of tetraantennary to biantennary oligosaccharides. These results suggest that higher branching of the N-linked sugar chains is essential for effective expression of in vivo biological activity of EPO. PMID:2813359

  7. Expression and Purification of Recombinant Human Basic Fibroblast Growth Factor Fusion Proteins and Their Uses in Human Stem Cell Culture.

    PubMed

    Imsoonthornruksa, Sumeth; Pruksananonda, Kamthorn; Parnpai, Rangsun; Rungsiwiwut, Ruttachuk; Ketudat-Cairns, Mariena

    2015-01-01

    To reduce the cost of cytokines and growth factors in stem cell research, a simple method for the production of soluble and biological active human basic fibroblast growth factor (hbFGF) fusion protein in Escherichia coli was established. Under optimal conditions, approximately 60-80 mg of >95% pure hbFGF fusion proteins (Trx-6xHis-hbFGF and 6xHis-hbFGF) were obtained from 1 liter of culture broth. The purified hbFGF proteins, both with and without the fusion tags, were biologically active, which was confirmed by their ability to stimulate proliferation of NIH3T3 cells. The fusion proteins also have the ability to support several culture passages of undifferentiated human embryonic stem cells and induce pluripotent stem cells. This paper describes a low-cost and uncomplicated method for the production and purification of biologically active hbFGF fusion proteins. © 2015 S. Karger AG, Basel.

  8. EEG theta and Mu oscillations during perception of human and robot actions

    PubMed Central

    Urgen, Burcu A.; Plank, Markus; Ishiguro, Hiroshi; Poizner, Howard; Saygin, Ayse P.

    2013-01-01

    The perception of others’ actions supports important skills such as communication, intention understanding, and empathy. Are mechanisms of action processing in the human brain specifically tuned to process biological agents? Humanoid robots can perform recognizable actions, but can look and move differently from humans, and as such, can be used in experiments to address such questions. Here, we recorded EEG as participants viewed actions performed by three agents. In the Human condition, the agent had biological appearance and motion. The other two conditions featured a state-of-the-art robot in two different appearances: Android, which had biological appearance but mechanical motion, and Robot, which had mechanical appearance and motion. We explored whether sensorimotor mu (8–13 Hz) and frontal theta (4–8 Hz) activity exhibited selectivity for biological entities, in particular for whether the visual appearance and/or the motion of the observed agent was biological. Sensorimotor mu suppression has been linked to the motor simulation aspect of action processing (and the human mirror neuron system, MNS), and frontal theta to semantic and memory-related aspects. For all three agents, action observation induced significant attenuation in the power of mu oscillations, with no difference between agents. Thus, mu suppression, considered an index of MNS activity, does not appear to be selective for biological agents. Observation of the Robot resulted in greater frontal theta activity compared to the Android and the Human, whereas the latter two did not differ from each other. Frontal theta thus appears to be sensitive to visual appearance, suggesting agents that are not sufficiently biological in appearance may result in greater memory processing demands for the observer. Studies combining robotics and neuroscience such as this one can allow us to explore neural basis of action processing on the one hand, and inform the design of social robots on the other. PMID:24348375

  9. EEG theta and Mu oscillations during perception of human and robot actions.

    PubMed

    Urgen, Burcu A; Plank, Markus; Ishiguro, Hiroshi; Poizner, Howard; Saygin, Ayse P

    2013-01-01

    The perception of others' actions supports important skills such as communication, intention understanding, and empathy. Are mechanisms of action processing in the human brain specifically tuned to process biological agents? Humanoid robots can perform recognizable actions, but can look and move differently from humans, and as such, can be used in experiments to address such questions. Here, we recorded EEG as participants viewed actions performed by three agents. In the Human condition, the agent had biological appearance and motion. The other two conditions featured a state-of-the-art robot in two different appearances: Android, which had biological appearance but mechanical motion, and Robot, which had mechanical appearance and motion. We explored whether sensorimotor mu (8-13 Hz) and frontal theta (4-8 Hz) activity exhibited selectivity for biological entities, in particular for whether the visual appearance and/or the motion of the observed agent was biological. Sensorimotor mu suppression has been linked to the motor simulation aspect of action processing (and the human mirror neuron system, MNS), and frontal theta to semantic and memory-related aspects. For all three agents, action observation induced significant attenuation in the power of mu oscillations, with no difference between agents. Thus, mu suppression, considered an index of MNS activity, does not appear to be selective for biological agents. Observation of the Robot resulted in greater frontal theta activity compared to the Android and the Human, whereas the latter two did not differ from each other. Frontal theta thus appears to be sensitive to visual appearance, suggesting agents that are not sufficiently biological in appearance may result in greater memory processing demands for the observer. Studies combining robotics and neuroscience such as this one can allow us to explore neural basis of action processing on the one hand, and inform the design of social robots on the other.

  10. Observation and imitation of actions performed by humans, androids, and robots: an EMG study

    PubMed Central

    Hofree, Galit; Urgen, Burcu A.; Winkielman, Piotr; Saygin, Ayse P.

    2015-01-01

    Understanding others’ actions is essential for functioning in the physical and social world. In the past two decades research has shown that action perception involves the motor system, supporting theories that we understand others’ behavior via embodied motor simulation. Recently, empirical approach to action perception has been facilitated by using well-controlled artificial stimuli, such as robots. One broad question this approach can address is what aspects of similarity between the observer and the observed agent facilitate motor simulation. Since humans have evolved among other humans and animals, using artificial stimuli such as robots allows us to probe whether our social perceptual systems are specifically tuned to process other biological entities. In this study, we used humanoid robots with different degrees of human-likeness in appearance and motion along with electromyography (EMG) to measure muscle activity in participants’ arms while they either observed or imitated videos of three agents produce actions with their right arm. The agents were a Human (biological appearance and motion), a Robot (mechanical appearance and motion), and an Android (biological appearance and mechanical motion). Right arm muscle activity increased when participants imitated all agents. Increased muscle activation was found also in the stationary arm both during imitation and observation. Furthermore, muscle activity was sensitive to motion dynamics: activity was significantly stronger for imitation of the human than both mechanical agents. There was also a relationship between the dynamics of the muscle activity and motion dynamics in stimuli. Overall our data indicate that motor simulation is not limited to observation and imitation of agents with a biological appearance, but is also found for robots. However we also found sensitivity to human motion in the EMG responses. Combining data from multiple methods allows us to obtain a more complete picture of action understanding and the underlying neural computations. PMID:26150782

  11. Anticancer activity of ferrocenylthiosemicarbazones.

    PubMed

    Sandra, Cortez-Maya; Elena, Klimova; Marcos, Flores-Alamo; Elena, Martínez-Klimova; Arturo, Ramírez-Ramírez; Teresa, Ramírez Apan; Marcos, Martínez-García

    2014-03-01

    Aliphatic and aromatic ferrocenylthiosemicarbazones were synthesized. The characterization of the new ferrocenylthiosemicarbazones was done by IR, (1)H-NMR and (13)C-NMR spectroscopy, elemental analysis and X-ray diffraction studies. The biological activity of the obtained compounds was assessed in terms of anticancer activity. Their activity against U251 (human glyoblastoma), PC-3 (human prostatic adenocarcinoma), K562 (human chronic myelogenous leukemia), HCT-15 (human colorectal adenocarcinoma), MCF-7 (human mammary adenocarcinoma) and SKLU-1 (human lung adenocarcinoma) cell lines was studied and compared with cisplatin. All tested compounds showed good activity and the aryl-chloro substituted ferrocenylthiosemicarbazones showed the best anticancer activity.

  12. 76 FR 4360 - Guidance for Industry on Process Validation: General Principles and Practices; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... elements of process validation for the manufacture of human and animal drug and biological products... process validation for the manufacture of human and animal drug and biological products, including APIs. This guidance describes process validation activities in three stages: In Stage 1, Process Design, the...

  13. Biological Awareness: Statements for Self-Discovery.

    ERIC Educational Resources Information Center

    Edington, D.W.; Cunningham, Lee

    This guide to biological awareness through guided self-discovery is based on 51 single focus statements concerning the human body. For each statement there are explanations of the underlying physiological principles and suggested activities and discussion ideas to encourage understanding of the statement in terms of the human body's functions,…

  14. Physical Activity: A Tool for Improving Health (Part 1--Biological Health Benefits)

    ERIC Educational Resources Information Center

    Gallaway, Patrick J.; Hongu, Nobuko

    2015-01-01

    Extension educators have been promoting and incorporating physical activities into their community-based programs and improving the health of individuals, particularly those with limited resources. This article is the first of a three-part series describing the benefits of physical activity for human health: 1) biological health benefits of…

  15. The Art of Interpreting Epigenetic Activity | Center for Cancer Research

    Cancer.gov

    Even though all the cells of the human body share a common genomic blueprint, epigenetic activity such as DNA methylation, introduces molecular diversity that results in functionally and biologically different cellular constituents. In cancers, this ability of epigenetic activity to introduce molecular diversity is emerging as a powerful classifier of biological aggressiveness.

  16. Learning about the Human Body. Superific Science Book IV. A Good Apple Science Activity Book for Grades 5-8+.

    ERIC Educational Resources Information Center

    Conway, Lorraine

    Designed to supplement a basic life science or biology program, this document provides teachers with experiential learning activities dealing with the human body. The learning activities vary in the length of time needed for their completion, and require a minimum of equipment and materials. The activities focus on: (1) the human skeleton; (2)…

  17. Natural Organohalogens: A New Frontier for Medicinal Agents?

    ERIC Educational Resources Information Center

    Gribble, Gordon W.

    2004-01-01

    Newly discovered biogenic organo halogens with an emphasis on the biologically active examples from marine organisms, bacteria, terrestrial plants and higher life forms, including humans, are focused. Organohalogen compounds represent a valuable and expanding class of natural products, in many cases boasting exceptional biological activity.

  18. Introductory Biology Labs... They Just Aren't Sexy Enough!

    ERIC Educational Resources Information Center

    Cotner, Sehoya; Gallup, Gordon G., Jr.

    2011-01-01

    The typical introductory biology curriculum includes the nature of science, evolution and genetics. Laboratory activities are designed to engage students in typical subject areas ranging from cell biology and physiology, to ecology and evolution. There are few, if any, laboratory classes exploring the biology and evolution of human sexual…

  19. Biological Activity of Polynesian Calophyllum inophyllum Oil Extract on Human Skin Cells.

    PubMed

    Ansel, Jean-Luc; Lupo, Elise; Mijouin, Lily; Guillot, Samuel; Butaud, Jean-François; Ho, Raimana; Lecellier, Gaël; Raharivelomanana, Phila; Pichon, Chantal

    2016-07-01

    Oil from the nuts of Calophyllum inophyllum, locally called "Tamanu oil" in French Polynesia, was traditionally used for wound healing and to cure various skin problems and ailments. The skin-active effect of "Tamanu oil emulsion" was investigated on human skin cells (keratinocytes and dermal fibroblasts) and showed cell proliferation, glycosaminoglycan and collagen production, and wound healing activity. Transcriptomic analysis of the treated cells revealed gene expression modulation including genes involved in the metabolic process implied in O-glycan biosynthesis, cell adhesion, and cell proliferation. The presence of neoflavonoids as bioactive constituents in Tamanu oil emulsion may contribute to these biological activities. Altogether, consistent data related to targeted histological and cellular functions brought new highlights on the mechanisms involved in these biological processes induced by Tamanu oil effects in skin cells. Georg Thieme Verlag KG Stuttgart · New York.

  20. Resveratrol glucuronides as the metabolites of resveratrol in humans: characterization, synthesis, and anti-HIV activity.

    PubMed

    Wang, Lai-Xi; Heredia, Alonso; Song, Haijing; Zhang, Zhaojun; Yu, Biao; Davis, Charles; Redfield, Robert

    2004-10-01

    Resveratrol is a natural product with diverse biological activities. We have previously reported that resveratrol possesses potent synergistic inhibitory activity against human immunodeficiency virus (HIV)-1 infection in combination with nucleoside analogs (Heredia et al. 2000. J Acquir Immune Defic Syndr 25:246-255). As a part of our program in developing resveratrol as a component for anti-HIV chemotherapy, we describe in this article the characterization, chemical synthesis, and biological effects of the human metabolites of resveratrol. We found that resveratrol was metabolized in humans into two metabolites, which were characterized as resveratrol-3-O- and 4'-O-glucuronides. For further biological studies, we reported two simple, alternative methods for the synthesis of the metabolites. The cytotoxic and antiviral activities of resveratrol and its metabolites were compared in cell culture experiments using human peripheral blood mononuclear cells. Whereas resveratrol was cytotoxic at > or =30 microM, no cytotoxicity was observed for the metabolites at concentrations as high as 300 microM. However, resveratrol showed strong synergistic anti-HIV activity with didanosine at 10 microM, but no synergistic effects were observed for either of the metabolites at up to 300 microM. Nevertheless, the in vitro activity of the metabolites (resveratrol glucuronides) may not necessarily reflect their in vivo function, given the fact that the ubiquitously existing human beta-glucuronidase could convert the metabolites back to resveratrol locally or systematically in vivo. The present studies have implications for future development of resveratrol and/or its derivatives as a chemotherapeutic agent. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association

  1. Violating instructed human agency: An fMRI study on ocular tracking of biological and nonbiological motion stimuli.

    PubMed

    Gertz, Hanna; Hilger, Maximilian; Hegele, Mathias; Fiehler, Katja

    2016-09-01

    Previous studies have shown that beliefs about the human origin of a stimulus are capable of modulating the coupling of perception and action. Such beliefs can be based on top-down recognition of the identity of an actor or bottom-up observation of the behavior of the stimulus. Instructed human agency has been shown to lead to superior tracking performance of a moving dot as compared to instructed computer agency, especially when the dot followed a biological velocity profile and thus matched the predicted movement, whereas a violation of instructed human agency by a nonbiological dot motion impaired oculomotor tracking (Zwickel et al., 2012). This suggests that the instructed agency biases the selection of predictive models on the movement trajectory of the dot motion. The aim of the present fMRI study was to examine the neural correlates of top-down and bottom-up modulations of perception-action couplings by manipulating the instructed agency (human action vs. computer-generated action) and the observable behavior of the stimulus (biological vs. nonbiological velocity profile). To this end, participants performed an oculomotor tracking task in an MRI environment. Oculomotor tracking activated areas of the eye movement network. A right-hemisphere occipito-temporal cluster comprising the motion-sensitive area V5 showed a preference for the biological as compared to the nonbiological velocity profile. Importantly, a mismatch between instructed human agency and a nonbiological velocity profile primarily activated medial-frontal areas comprising the frontal pole, the paracingulate gyrus, and the anterior cingulate gyrus, as well as the cerebellum and the supplementary eye field as part of the eye movement network. This mismatch effect was specific to the instructed human agency and did not occur in conditions with a mismatch between instructed computer agency and a biological velocity profile. Our results support the hypothesis that humans activate a specific predictive model for biological movements based on their own motor expertise. A violation of this predictive model causes costs as the movement needs to be corrected in accordance with incoming (nonbiological) sensory information. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. [The biological action of chromium in relation to its valency].

    PubMed

    Vishniakov, S I; Levantovskiĭ, S A; Ryzhkova, G F

    1992-01-01

    The biological action of chromium in the human or animal organism depends on valency: normal physiological activity is displayed at the expense of CrIII, but toxic activity is more characteristic of CrVI. In the digestive tract and pulmonary tissue CrVI may restore in CrIII.

  3. Studying Biological Rhythms of Person's Skin-galvanic Reaction and Dynamics of Light Transmission by Isomeric Substance in Space Flight Conditions

    NASA Technical Reports Server (NTRS)

    Glushko, Vladimir

    2004-01-01

    Intensity and amplitude of human functional systems and human most important organs are wavelike, rhythmic by nature. These waves have constant periodicity, phase and amplitude. The mentioned characteristics can vary, however their variations have a pronounced reiteration in the course of time. This indicates a hashing of several wave processes and their interference. Stochastic changes in wave processes characteristics of a human organism are explained either by 'pulsations' associated with hashing (superposition) of several wave processes and their interference, or by single influence of environmental physical factors on a human organism. Human beings have respectively periods of higher and lower efficiency, state of health and so on, depending not only of environmental factors, but also of 'internal' rhythmic factor. Sometimes peaks and falls periodicity of some or other characteristics is broken. Disturbance of steady-state biological rhythms is usually accompanied by reduction of activity steadiness of the most important systems of a human organism. In its turn this has an effect on organism's adaptation to changing living conditions as well as on general condition and efficiency of a human being. The latter factor is very important for space medicine. Biological rhythmology is a special branch of biology and medicine, it studies rhythmic activity mechanisms of organs, their systems, individuals and species. Appropriate researches were also carried out in space medicine.

  4. Surveying an Ecosystem: An Exercise for High School Biology Students.

    ERIC Educational Resources Information Center

    Lewis, James K.

    This activity is used to introduce students to biology in general and the significance of environmental studies. The focus of the ecosystem survey is to examine the effects humans have on the environment. After completing a series of investigations, students develop their own hypothesis about human impact on the environment, and then test this on…

  5. Exploring Human Growth: Using a Calculator to Integrate Mathematics and Science.

    ERIC Educational Resources Information Center

    Wandersee, James H.

    1992-01-01

    Presents integrated activities for mathematics and biology appropriate for various levels from grades five through eight. Explores interesting aspects of human fingernails and hair growth and their mathematical relationship to time. Provides suggestions to integrate the activities with technology. (MDH)

  6. 37 CFR 1.710 - Patents subject to extension of the patent term.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... product as defined in paragraph (b) of this section, either alone or in combination with other ingredients... active ingredient of a new human drug, antibiotic drug, or human biological product (as those terms are... or ester of the active ingredient, as a single entity or in combination with another active...

  7. 37 CFR 1.710 - Patents subject to extension of the patent term.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... product as defined in paragraph (b) of this section, either alone or in combination with other ingredients... active ingredient of a new human drug, antibiotic drug, or human biological product (as those terms are... or ester of the active ingredient, as a single entity or in combination with another active...

  8. 37 CFR 1.710 - Patents subject to extension of the patent term.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... product as defined in paragraph (b) of this section, either alone or in combination with other ingredients... active ingredient of a new human drug, antibiotic drug, or human biological product (as those terms are... or ester of the active ingredient, as a single entity or in combination with another active...

  9. 37 CFR 1.710 - Patents subject to extension of the patent term.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... product as defined in paragraph (b) of this section, either alone or in combination with other ingredients... active ingredient of a new human drug, antibiotic drug, or human biological product (as those terms are... or ester of the active ingredient, as a single entity or in combination with another active...

  10. 37 CFR 1.710 - Patents subject to extension of the patent term.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... product as defined in paragraph (b) of this section, either alone or in combination with other ingredients... active ingredient of a new human drug, antibiotic drug, or human biological product (as those terms are... or ester of the active ingredient, as a single entity or in combination with another active...

  11. Fabrication of enzyme-degradable and size-controlled protein nanowires using single particle nano-fabrication technique

    PubMed Central

    Omichi, Masaaki; Asano, Atsushi; Tsukuda, Satoshi; Takano, Katsuyoshi; Sugimoto, Masaki; Saeki, Akinori; Sakamaki, Daisuke; Onoda, Akira; Hayashi, Takashi; Seki, Shu

    2014-01-01

    Protein nanowires exhibiting specific biological activities hold promise for interacting with living cells and controlling and predicting biological responses such as apoptosis, endocytosis and cell adhesion. Here we report the result of the interaction of a single high-energy charged particle with protein molecules, giving size-controlled protein nanowires with an ultra-high aspect ratio of over 1,000. Degradation of the human serum albumin nanowires was examined using trypsin. The biotinylated human serum albumin nanowires bound avidin, demonstrating the high affinity of the nanowires. Human serum albumin–avidin hybrid nanowires were also fabricated from a solid state mixture and exhibited good mechanical strength in phosphate-buffered saline. The biotinylated human serum albumin nanowires can be transformed into nanowires exhibiting a biological function such as avidin–biotinyl interactions and peroxidase activity. The present technique is a versatile platform for functionalizing the surface of any protein molecule with an extremely large surface area. PMID:24770668

  12. The Value of Humans in the Biological Exploration of Space

    NASA Astrophysics Data System (ADS)

    Cockell, C. S.

    2004-06-01

    Regardless of the discovery of life on Mars, or of "no apparent life" on Mars, the questions that follow will provide a rich future for biological exploration. Extraordinary pattern recognition skills, decadal assimilation of data and experience, and rapid sample acquisition are just three of the characteristics that make humans the best means we have to explore the biological potential of Mars and other planetary surfaces. I make the case that instead of seeing robots as in conflict, or even in support, of human exploration activity, from the point of view of scientific data gathering and analysis, we should view humans as the most powerful robots we have, thus removing the separation that dogs discussions on the exploration of space. The narrow environmental requirements of humans, although imposing constraints on the life support systems required, is more than compensated for by their capabilities in biological exploration. I support this view with an example of the "Christmas present effect," a simple demonstration of human data and pattern recognition capabilities.

  13. Case study: Comparison of biological active compounds in milk from organic and conventional dairy herds

    USDA-ARS?s Scientific Manuscript database

    Conflicting reports of the quantities of biologically active compounds present in milk from organic grass-fed and conventional herds show that more research is required, especially as these compounds are linked to human health benefits and can improve the health value consumers place on dairy produc...

  14. Human milk proteins: key components for the biological activity of human milk.

    PubMed

    Lönnerdal, Bo

    2004-01-01

    Human milk contains a wide array of proteins that provide biologic activities ranging from antimicrobial effects to immunostimulatory functions. Proteins like lactoferrin, secretory IgA, kappa-casein, lactoperoxidase, haptocorrin, lactadherin and peptides formed from human milk proteins during digestion can inhibit the growth of pathogenic bacteria and viruses and therefore protect against infection. At the same time, proteins like lactoferrin, bile-salt stimulated lipase, haptocorrin, kappa-casein, and folate-binding protein can facilitate the absorption of nutrients in the neonatal gut. However, the proteins in human milk themselves also provide adequate amounts of essential amino acids to the growing infant. This suggests a highly adapted digestive system, which allows the survival of some proteins and peptides in the upper gastrointestinal tract, while still allowing amino acid utilization from these proteins further down in the gut. It is now possible to produce recombinant human milk proteins in transgenic plants and animals, which makes it possible to further study the bioactivity of these proteins. Provided these proteins can be produced in large scale at low cost, that they show biologic activity and pose no safety concerns, it may be possible to add some human milk proteins to infant diets, such as formula and complementary foods. Human milk proteins produced in rice or potatoes, for example, could be added without much purification, because these staples commonly are used in weaning foods. Thus, some qualities provided by human milk may be included into other diets, although it is highly unlikely that all unique components of human milk can be copied this way.

  15. The Midwest Stream Quality Assessment—Influences of human activities on streams

    USGS Publications Warehouse

    Van Metre, Peter C.; Mahler, Barbara J.; Carlisle, Daren M.; Coles, James F.

    2018-04-16

    Healthy streams and the fish and other organisms that live in them contribute to our quality of life. Extensive modification of the landscape in the Midwestern United States, however, has profoundly affected the condition of streams. Row crops and pavement have replaced grasslands and woodlands, streams have been straightened, and wetlands and fields have been drained. Runoff from agricultural and urban land brings sediment and chemicals to streams. What is the chemical, physical, and biological condition of Midwestern streams? Which physical and chemical stressors are adversely affecting biological communities, what are their origins, and how might we lessen or avoid their adverse effects?In 2013, the U.S. Geological Survey (USGS) conducted the Midwest Stream Quality Assessment to evaluate how human activities affect the biological condition of Midwestern streams. In collaboration with the U.S. Environmental Protection Agency National Rivers and Streams Assessment, the USGS sampled 100 streams, chosen to be representative of the different types of watersheds in the region. Biological condition was evaluated based on the number and diversity of fish, algae, and invertebrates in the streams. Changes to the physical habitat and chemical characteristics of the streams—“stressors”—were assessed, and their relation to landscape factors and biological condition was explored by using mathematical models. The data and models help us to better understand how the human activities on the landscape are affecting streams in the region.

  16. 76 FR 78668 - Agency Information Collection Activities; Proposed Collection; Comment Request; Requirements on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0883] Agency Information Collection Activities; Proposed Collection; Comment Request; Requirements on Content and Format of Labeling for Human Prescription Drug and Biological Products AGENCY: Food and Drug...

  17. 15 CFR 921.11 - Site selection and feasibility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... an estuarine ecosystem minimally affected by human activity or influence (see § 921.1(e)). (3... within which adequate control has or will be established by the managing entity over human activities... physical, chemical and biological factors contributing to the diversity of fauna, flora and natural...

  18. Chemistry and Biological Activities of Flavonoids: An Overview

    PubMed Central

    Kumar, Shashank; Pandey, Abhay K.

    2013-01-01

    There has been increasing interest in the research on flavonoids from plant sources because of their versatile health benefits reported in various epidemiological studies. Since flavonoids are directly associated with human dietary ingredients and health, there is need to evaluate structure and function relationship. The bioavailability, metabolism, and biological activity of flavonoids depend upon the configuration, total number of hydroxyl groups, and substitution of functional groups about their nuclear structure. Fruits and vegetables are the main dietary sources of flavonoids for humans, along with tea and wine. Most recent researches have focused on the health aspects of flavonoids for humans. Many flavonoids are shown to have antioxidative activity, free radical scavenging capacity, coronary heart disease prevention, hepatoprotective, anti-inflammatory, and anticancer activities, while some flavonoids exhibit potential antiviral activities. In plant systems, flavonoids help in combating oxidative stress and act as growth regulators. For pharmaceutical purposes cost-effective bulk production of different types of flavonoids has been made possible with the help of microbial biotechnology. This review highlights the structural features of flavonoids, their beneficial roles in human health, and significance in plants as well as their microbial production. PMID:24470791

  19. Processing of natural and recombinant CXCR3-targeting chemokines and implications for biological activity.

    PubMed

    Hensbergen, P J; van der Raaij-Helmer, E M; Dijkman, R; van der Schors, R C; Werner-Felmayer, G; Boorsma, D M; Scheper, R J; Willemze, R; Tensen, C P

    2001-09-01

    Chemokines comprise a class of peptides with chemotactic activity towards leukocytes. The potency of different chemokines for the same receptor often varies as a result of differences in primary structure. In addition, post-translational modifications have been shown to affect the effectiveness of chemokines. Although in several studies, natural CXCR3-targeting chemokines have been isolated, detailed information about the proteins and their possible modifications is lacking. Using a combination of liquid chromatography and mass spectrometry we studied the protein profile of CXCR3-targeting chemokines expressed by interferon-gamma-stimulated human keratinocytes. The biological implications of one of the identified modifications was studied in more detail using calcium mobilization and chemotaxis assays. We found that the primary structure of human CXCL10 is different from the generally accepted sequence. In addition we identified a C-terminally truncated CXCL10, lacking the last four amino acids. Native CXCL11 was primarily found in its intact mature form but we also found a mass corresponding to an N-terminally truncated human CXCL11, lacking the first two amino acids FP, indicating that this chemokine is a substrate for dipeptidylpeptidase IV. Interestingly, this same truncation was found when we expressed human CXCL11 in Drosophila S2 cells. The biological activity of this truncated form of CXCL11 was greatly reduced, both in calcium mobilization (using CXCR3 expressing CHO cells) as well as its chemotactic activity for CXCR3-expressing T-cells. It is concluded that detailed information on chemokines at the protein level is important to characterize the exact profile of these chemotactic peptides as modifications can severely alter their biological activity.

  20. Biological responses of progestogen metabolites in normal and cancerous human breast.

    PubMed

    Pasqualini, Jorge R; Chetrite, Gérard S

    2010-12-01

    At present, more than 200 progestogen molecules are available, but their biological response is a function of various factors: affinity to progesterone or other receptors, their structure, the target tissues considered, biological response, experimental conditions, dose, method of administration and metabolic transformations. Metabolic transformation is of huge importance because in various biological processes the metabolic product(s) not only control the activity of the maternal hormone but also have an important activity of its own. In this regard, it was observed that the 20-dihydro derivative of the progestogen dydrogesterone (Duphaston®) is significantly more active than the parent compound in inhibiting sulfatase and 17β-hydroxysteroid dehydrogenase in human breast cancer cells. Estrone sulfatase activity is also inhibited by norelgestromin, a norgestimate metabolite. Interesting information was obtained with a similar progestogen, tibolone, which is rapidly metabolized into the active 3α/3β-hydroxy and 4-ene metabolites. All these metabolites can inhibit sulfatase and 17β-hydroxysteroid dehydrogenase and stimulate sulfotransferase in human breast cancer cells. Another attractive aspect is the metabolic transformation of progesterone itself in human breast tissues. In the normal breast progesterone is mainly converted to 4-ene derivatives, whereas in the tumor tissue it is converted mostly to 5α-pregnane derivatives. 20α-Dihydroprogesterone is found mainly in normal breast tissue and possesses antiproliferative properties as well as the ability to act as an anti-aromatase agent. Consequently, this progesterone metabolite could be involved in the control of estradiol production in the normal breast and therefore implicated in one of the multifactorial mechanisms of the breast carcinogenesis process. In conclusion, a better understanding of both natural and synthetic hormone metabolic transformations and their control could potentially provide attractive new therapies for the treatment of hormone-dependent pathologies.

  1. Biological/Genetic Regulation of Physical Activity Level: Consensus from GenBioPAC.

    PubMed

    Lightfoot, J Timothy; DE Geus, Eco J C; Booth, Frank W; Bray, Molly S; DEN Hoed, Marcel; Kaprio, Jaakko; Kelly, Scott A; Pomp, Daniel; Saul, Michael C; Thomis, Martine A; Garland, Theodore; Bouchard, Claude

    2018-04-01

    Physical activity unquestionably maintains and improves health; however, physical activity levels globally are low and not rising despite all the resources devoted to this goal. Attention in both the research literature and the public policy domain has focused on social-behavioral factors; however, a growing body of literature suggests that biological determinants play a significant role in regulating physical activity levels. For instance, physical activity level, measured in various manners, has a genetic component in both humans and nonhuman animal models. This consensus article, developed as a result of an American College of Sports Medicine-sponsored round table, provides a brief review of the theoretical concepts and existing literature that supports a significant role of genetic and other biological factors in the regulation of physical activity. Future research on physical activity regulation should incorporate genetics and other biological determinants of physical activity instead of a sole reliance on social and other environmental determinants.

  2. Yellow-Cedar, Callitropsis (Chamaecyparis) nootkatensis, Secondary Metabolites, Biological Activities, and Chemical Ecology.

    PubMed

    Karchesy, Joseph J; Kelsey, Rick G; González-Hernández, M P

    2018-05-01

    Yellow-cedar, Callitropsis nootkatensis, is prevalent in coastal forests of southeast Alaska, western Canada, and inland forests along the Cascades to northern California, USA. These trees have few microbial or animal pests, attributable in part to the distinct groups of biologically active secondary metabolites their tissues store for chemical defense. Here we summarize the new yellow-cedar compounds identified and their biological activities, plus new or expanded activities for tissues, extracts, essential oils and previously known compounds since the last review more than 40 years ago. Monoterpene hydrocarbons are the most abundant compounds in foliage, while heartwood contains substantial quantities of oxygenated monoterpenes and oxygenated sesquiterpenes, with one or more tropolones. Diterpenes occur in foliage and bark, whereas condensed tannins have been isolated from inner bark. Biological activities expressed by one or more compounds in these groups include fungicide, bactericide, sporicide, acaricide, insecticide, general cytotoxicity, antioxidant and human anticancer. The diversity of organisms impacted by whole tissues, essential oils, extracts, or individual compounds now encompasses ticks, fleas, termites, ants, mosquitoes, bacteria, a water mold, fungi and browsing animals. Nootkatone, is a heartwood component with sufficient activity against arthropods to warrant research focused toward potential development as a commercial repellent and biopesticide for ticks, mosquitoes and possibly other arthropods that vector human and animal pathogens.

  3. 77 FR 16234 - Agency Information Collection Activities; Submission for Office of Management and Budget Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0883] Agency Information Collection Activities; Submission for Office of Management and Budget Review; Comment Request; Requirements on Content and Format of Labeling for Human Prescription Drug and Biological...

  4. Compendium of Immune Signatures Identifies Conserved and Species-Specific Biology in Response to Inflammation.

    PubMed

    Godec, Jernej; Tan, Yan; Liberzon, Arthur; Tamayo, Pablo; Bhattacharya, Sanchita; Butte, Atul J; Mesirov, Jill P; Haining, W Nicholas

    2016-01-19

    Gene-expression profiling has become a mainstay in immunology, but subtle changes in gene networks related to biological processes are hard to discern when comparing various datasets. For instance, conservation of the transcriptional response to sepsis in mouse models and human disease remains controversial. To improve transcriptional analysis in immunology, we created ImmuneSigDB: a manually annotated compendium of ∼5,000 gene-sets from diverse cell states, experimental manipulations, and genetic perturbations in immunology. Analysis using ImmuneSigDB identified signatures induced in activated myeloid cells and differentiating lymphocytes that were highly conserved between humans and mice. Sepsis triggered conserved patterns of gene expression in humans and mouse models. However, we also identified species-specific biological processes in the sepsis transcriptional response: although both species upregulated phagocytosis-related genes, a mitosis signature was specific to humans. ImmuneSigDB enables granular analysis of transcriptomic data to improve biological understanding of immune processes of the human and mouse immune systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Human impacts on regional avian diversity and abundance

    Treesearch

    Christopher A. Lepczyk; Curtis H. Flather; Volker C. Radeloff; Anna M. Pidgeon; Roger B. Hammer; Jianguo Liu

    2008-01-01

    Patterns of association between humans and biodiversity typically show positive, negative, or negative quadratic relationships and can be described by 3 hypotheses: biologically rich areas that support high human population densities co-occur with areas of high biodiversity (productivity); biodiversity decreases monotonically with increasing human activities (ecosystem...

  6. Ellagic Acid: A Logical Lead for Drug Development?

    PubMed

    Shakeri, Abolfazl; Zirak, Mohammad Reza; Sahebkar, Amirhossein

    2018-01-01

    Naturally occurring polyphenols are the subject of increasing attention due to their potent antioxidant activity and their marked effects on the prevention of various oxidative stress-associated diseases such as cancer. Ellagic acid (EA) is an herbal polyphenol that is structurally a condensed dimer of gallic acid. This review aims to provide a comprehensive and updated overview on the biological activities of EA and potential therapeutic applications. EA is found in fruits and nuts, either in the combined form with hexahydroxydiphenic acid or in the bound form (ellagitannins). EA exhibits many biological properties such as antioxidant, anti-diabetic, anticancer and apoptosis-inducing activities. These biological and pharmacological properties are relevant to the treatment of several human diseases. Owing to its multiple mechanisms of action, EA represents a potential therapeutic agent against human diseases particularly cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Comparison of biological activities of human antithrombins with high-mannose or complex-type nonfucosylated N-linked oligosaccharides

    PubMed Central

    Yamada, Tsuyoshi; Kanda, Yutaka; Takayama, Makoto; Hashimoto, Akitoshi; Sugihara, Tsutomu; Satoh-Kubota, Ai; Suzuki-Takanami, Eri; Yano, Keiichi; Iida, Shigeru; Satoh, Mitsuo

    2016-01-01

    The structure of the N-linked oligosaccharides attached to antithrombin (AT) has been shown to affect its anticoagulant activity and pharmacokinetics. Human AT has biantennary complex-type oligosaccharides with the unique feature of lacking a core fucose, which affects its biological activities by changing its heparin-binding affinity. In human plasma, AT circulates as a mixture of the α-form bearing four oligosaccharides and the β-form lacking an oligosaccharide at Asn135. However, it remains unclear how the immature high-mannose-type oligosaccharides produced by mammalian cells affect biological activities of AT. Here, we succeeded in directly comparing the activities between the high-mannose and complex types. Interestingly, although there were no substantial differences in thrombin inhibitory activity, the high-mannose type showed higher heparin-binding affinity. The anticoagulant activities were increased by heparin and correlated with the heparin-binding affinity, resulting in the strongest anticoagulant activity being displayed in the β-form with the high-mannose type. In pharmacokinetic profiling, the high-mannose type showed a much shorter plasma half-life than the complex type. The β-form was found to have a prolonged plasma half-life compared with the α-form for the high-mannose type; conversely, the α-form showed a longer half-life than the β-form for the complex-type. The present study highlights that AT physiological activities are strictly controlled not only by a core fucose at the reducing end but also by the high-mannose-type structures at the nonreducing end. The β-form with the immature high-mannose type appears to function as a more potent anticoagulant than the AT typically found in human plasma, once it emerges in the blood. PMID:26747427

  8. Comparison of biological activities of human antithrombins with high-mannose or complex-type nonfucosylated N-linked oligosaccharides.

    PubMed

    Yamada, Tsuyoshi; Kanda, Yutaka; Takayama, Makoto; Hashimoto, Akitoshi; Sugihara, Tsutomu; Satoh-Kubota, Ai; Suzuki-Takanami, Eri; Yano, Keiichi; Iida, Shigeru; Satoh, Mitsuo

    2016-05-01

    The structure of the N-linked oligosaccharides attached to antithrombin (AT) has been shown to affect its anticoagulant activity and pharmacokinetics. Human AT has biantennary complex-type oligosaccharides with the unique feature of lacking a core fucose, which affects its biological activities by changing its heparin-binding affinity. In human plasma, AT circulates as a mixture of the α-form bearing four oligosaccharides and the β-form lacking an oligosaccharide at Asn135. However, it remains unclear how the immature high-mannose-type oligosaccharides produced by mammalian cells affect biological activities of AT. Here, we succeeded in directly comparing the activities between the high-mannose and complex types. Interestingly, although there were no substantial differences in thrombin inhibitory activity, the high-mannose type showed higher heparin-binding affinity. The anticoagulant activities were increased by heparin and correlated with the heparin-binding affinity, resulting in the strongest anticoagulant activity being displayed in the β-form with the high-mannose type. In pharmacokinetic profiling, the high-mannose type showed a much shorter plasma half-life than the complex type. The β-form was found to have a prolonged plasma half-life compared with the α-form for the high-mannose type; conversely, the α-form showed a longer half-life than the β-form for the complex-type. The present study highlights that AT physiological activities are strictly controlled not only by a core fucose at the reducing end but also by the high-mannose-type structures at the nonreducing end. The β-form with the immature high-mannose type appears to function as a more potent anticoagulant than the AT typically found in human plasma, once it emerges in the blood. © The Author 2016. Published by Oxford University Press.

  9. Determinants Affecting Physical Activity Levels In Animal Models

    NASA Technical Reports Server (NTRS)

    Tou, Janet C. L.; Wade, Charles E.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    Weight control is dependent on energy balance. Reduced energy expenditure (EE) associated with decreased physical activity is suggested to be a major underlying cause in the increasing prevalence of weight gain and obesity. Therefore, a better understanding of the biological determinants involved in the regulation of physical activity is essential. To facilitate interpretation in humans, it is helpful to consider the evidence from animal studies. This review focuses on animal studies examining the biological determinants influencing activity and potential implications to human. It appears that physical activity is influenced by a number of parameters. However, regardless of the parameter involved, body weight appears to play all underlying role in the regulation of activity. Furthermore, the regulation of activity associated with body weight appears to occur only after the animal achieves a critical weight. This suggests that activity levels are a consequence rather than a contributor to weight control. However, the existence of an inverse weight-activity relationship remains inconclusive. Confounding the results are the multi-factorial nature of physical activity and the lack of appropriate measuring devices. Furthermore, many determinants of body weight are closely interlocked making it difficult to determine whether a single, combination or interaction of factors is important for the regulation of activity. For example, diet-induced obesity, aging, lesions to tile ventral medial hypothalamus and genetics all produce hypoactivity. Providing a better understanding of the biological determinants involved in the regulation of activity has important implications for the development of strategies for the prevention of weight gain leading to obesity and subsequent morbidity and mortality in the human population.

  10. Determinants affecting physical activity levels in animal models

    NASA Technical Reports Server (NTRS)

    Tou, Janet C L.; Wade, Charles E.

    2002-01-01

    Weight control is dependent on energy balance. Reduced energy expenditure (EE) associated with decreased physical activity is suggested to be a major underlying cause in the increasing prevalence of weight gain and obesity. Therefore, a better understanding of the biological determinants involved in the regulation of physical activity is essential. To facilitate interpretation in humans, it is helpful to consider the evidence from animal studies. This review focuses on animal studies examining the biological determinants influencing activity and potential implications to human. It appears that physical activity is influenced by a number of parameters. However, regardless of the parameter involved, body weight appears to play an underlying role in the regulation of activity. Furthermore, the regulation of activity associated with body weight appears to occur only after the animal achieves a critical weight. This suggests that activity levels are a consequence rather than a contributor to weight control. However, the existence of an inverse weight-activity relationship remains inconclusive. Confounding the results are the multifactorial nature of physical activity and the lack of appropriate measuring devices. Furthermore, many determinants of body weight are closely interlocked, making it difficult to determine whether a single, combination, or interaction of factors is important for the regulation of activity. For example, diet-induced obesity, aging, lesions to the ventral medial hypothalamus, and genetics all produce hypoactivity. Providing a better understanding of the biological determinants involved in the regulation of activity has important implications for the development of strategies for the prevention of weight gain leading to obesity and subsequent morbidity and mortality in the human population.

  11. [Effect of biologically active food additives on energy metabolism and human body weight].

    PubMed

    Gapparov, M M

    1999-01-01

    Review is devoted to analysis of human energy requirements depending on age, sex, occupational and living condition. Special attention was paid to importance of strict balance in organism between consumption and expense of energy. Modern views on mechanism of action food supplements as additional instrument of regulation of energy metabolism for correction of surplus body weight is given. Review is the first attempt of systematisation of biologically active food supplements according to their mechanism of action both on nutrition processes and on biochemical mechanisms of assimilation and utilisation of macronutrients, in particular of fats and carbohydrates.

  12. Examination of Signatures of Recent Positive Selection on Genes Involved in Human Sialic Acid Biology.

    PubMed

    Moon, Jiyun M; Aronoff, David M; Capra, John A; Abbot, Patrick; Rokas, Antonis

    2018-03-28

    Sialic acids are nine carbon sugars ubiquitously found on the surfaces of vertebrate cells and are involved in various immune response-related processes. In humans, at least 58 genes spanning diverse functions, from biosynthesis and activation to recycling and degradation, are involved in sialic acid biology. Because of their role in immunity, sialic acid biology genes have been hypothesized to exhibit elevated rates of evolutionary change. Consistent with this hypothesis, several genes involved in sialic acid biology have experienced higher rates of non-synonymous substitutions in the human lineage than their counterparts in other great apes, perhaps in response to ancient pathogens that infected hominins millions of years ago (paleopathogens). To test whether sialic acid biology genes have also experienced more recent positive selection during the evolution of the modern human lineage, reflecting adaptation to contemporary cosmopolitan or geographically-restricted pathogens, we examined whether their protein-coding regions showed evidence of recent hard and soft selective sweeps. This examination involved the calculation of four measures that quantify changes in allele frequency spectra, extent of population differentiation, and haplotype homozygosity caused by recent hard and soft selective sweeps for 55 sialic acid biology genes using publicly available whole genome sequencing data from 1,668 humans from three ethnic groups. To disentangle evidence for selection from confounding demographic effects, we compared the observed patterns in sialic acid biology genes to simulated sequences of the same length under a model of neutral evolution that takes into account human demographic history. We found that the patterns of genetic variation of most sialic acid biology genes did not significantly deviate from neutral expectations and were not significantly different among genes belonging to different functional categories. Those few sialic acid biology genes that significantly deviated from neutrality either experienced soft sweeps or population-specific hard sweeps. Interestingly, while most hard sweeps occurred on genes involved in sialic acid recognition, most soft sweeps involved genes associated with recycling, degradation and activation, transport, and transfer functions. We propose that the lack of signatures of recent positive selection for the majority of the sialic acid biology genes is consistent with the view that these genes regulate immune responses against ancient rather than contemporary cosmopolitan or geographically restricted pathogens. Copyright © 2018 Moon et al.

  13. Degalactosylated/desialylated human serum containing GcMAF induces macrophage phagocytic activity and in vivo antitumor activity.

    PubMed

    Kuchiike, Daisuke; Uto, Yoshihiro; Mukai, Hirotaka; Ishiyama, Noriko; Abe, Chiaki; Tanaka, Daichi; Kawai, Tomohito; Kubo, Kentaro; Mette, Martin; Inui, Toshio; Endo, Yoshio; Hori, Hitoshi

    2013-07-01

    The group-specific component protein-derived macrophage-activating factor (GcMAF) has various biological activities, such as macrophage activation and antitumor activity. Clinical trials of GcMAF have been carried out for metastatic breast cancer, prostate cancer, and metastatic colorectal cancer. In this study, despite the complicated purification process of GcMAF, we used enzymatically-treated human serum containing GcMAF with a considerable macrophage-stimulating activity and antitumor activity. We detected GcMAF in degalactosylated/desialylated human serum by western blotting using an anti-human Gc globulin antibody, and Helix pomatia agglutinin lectin. We also found that GcMAF-containing human serum significantly enhanced the phagocytic activity of mouse peritoneal macrophages and extended the survival time of mice bearing Ehrlich ascites tumors. We demonstrated that GcMAF-containing human serum can be used as a potential macrophage activator for cancer immunotherapy.

  14. Can the invasive earthworm, Amynthas agrestis, be controlled with prescribed fire?

    Treesearch

    Hiroshi Ikeda; Mac A. Callaham Jr.; Joseph J. O' Brien; Benjamin S. Hornsby; Evelyn S. Wenk

    2015-01-01

    Biological invasions are one of the most significant global-scale problems caused by human activities. Earthworms function as ecosystem engineers in soil ecosystems because their feeding and burrowing activities fundamentally change the physical and biological characteristics of the soils they inhabit. As a result of this “engineering,” earthworm invasions can have...

  15. Peptide mimic for influenza vaccination using nonnatural combinatorial chemistry

    PubMed Central

    Miles, John J.; Tan, Mai Ping; Dolton, Garry; Galloway, Sarah A.E.; Laugel, Bruno; Makinde, Julia; Matthews, Katherine K.; Watkins, Thomas S.; Wong, Yide; Clark, Richard J.; Pentier, Johanne M.; Attaf, Meriem; Lissina, Anya; Ager, Ann; Gallimore, Awen; Gras, Stephanie; Rossjohn, Jamie; Burrows, Scott R.; Cole, David K.; Price, David A.

    2018-01-01

    Polypeptide vaccines effectively activate human T cells but suffer from poor biological stability, which confines both transport logistics and in vivo therapeutic activity. Synthetic biology has the potential to address these limitations through the generation of highly stable antigenic “mimics” using subunits that do not exist in the natural world. We developed a platform based on D–amino acid combinatorial chemistry and used this platform to reverse engineer a fully artificial CD8+ T cell agonist that mirrored the immunogenicity profile of a native epitope blueprint from influenza virus. This nonnatural peptide was highly stable in human serum and gastric acid, reflecting an intrinsic resistance to physical and enzymatic degradation. In vitro, the synthetic agonist stimulated and expanded an archetypal repertoire of polyfunctional human influenza virus–specific CD8+ T cells. In vivo, specific responses were elicited in naive humanized mice by subcutaneous vaccination, conferring protection from subsequent lethal influenza challenge. Moreover, the synthetic agonist was immunogenic after oral administration. This proof-of-concept study highlights the power of synthetic biology to expand the horizons of vaccine design and therapeutic delivery. PMID:29528337

  16. Part-1: Design, synthesis and biological evaluation of novel bromo-pyrimidine analogs as tyrosine kinase inhibitors.

    PubMed

    Munikrishnappa, Chandrashekar Suradhenupura; Puranik, Sangamesh B; Kumar, G V Suresh; Prasad, Y Rajendra

    2016-08-25

    A novel series of 5-bromo-pyrimidine derivatives (5a-l, 6a-h, 9a-m and 10a-d) were synthesized through multi step reactions starting from 5-bromo-2,4-dichloro pyrimidine. The newly synthesized compounds were characterized using elemental analysis and spectral data (IR, (1)H NMR, (13)C NMR and LC-MS) analysis. The titled compounds were evaluated for their in vitro cytotoxic activity against tumor cell lines panel consisted of HCT116 (human colon cancer cell line), A549 (human lung cancer cell line), K562 (human chronic myeloid leukemia cell line), U937 (human acute monocytic myeloid leukemia cell line), and L02 (human normal cell line) by using MTT assay Mosmann's method. As most of the compounds are highly potent against K562 cells, all the synthesized compounds were evaluated for Bcr/Abl tyrosine kinase inhibitory activity by using well-established ADP-Glo assay method. Dasatinib was utilized as positive control to validate in both biological evaluations. The biological activity revealed that the compounds 5c, 5e, 6g, 9e, 9f and 10c were potent Bcr/Abl kinase inhibitors among the titled compounds. Thus these compounds may be promising lead compounds to be developed as an alternative for current Dasatinib therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Pharmacokinetic and pharmacodynamic comparisons between human granulocyte colony-stimulating factor purified from human bladder carcinoma cell line 5637 culture medium and recombinant human granulocyte colony-stimulating factor produced in Escherichia coli.

    PubMed

    Tanaka, H; Kaneko, T

    1992-07-01

    The pharmacokinetics and biological activities of recombinant human granulocyte colony-stimulating factor (hG-CSF) produced in Escherichia coli were compared with those of hG-CSF purified from human bladder carcinoma cell line 5637 culture medium (5637-hG-CSF). Recombinant hG-CSF was biologically active in a bone marrow cell proliferation assay in vitro, with a dose-response curve similar to that of 5637-hG-CSF. The effects of 5637- and recombinant hG-CSF administered via i.v. injection to rats showed similar response patterns of neutrophil counts in peripheral blood. From these results, it is concluded that the O-linked sugar chain of hG-CSF does not contribute to the in vitro and in vivo biological activities. The pharmacokinetics of both forms of hG-CSF in rats were investigated using a sandwich enzyme-linked immunosorbent assay. After i.v. administration, the serum concentration-time curves of 5637- and recombinant hG-CSF declined biexponentially. Total body clearance and steady-state volume of distribution of 5637-hG-CSF were smaller than those for the recombinant form. After s.c. administration, a lower peak serum level, smaller AUC, and lower bioavailability of 5637-hG-CSF were observed compared to recombinant hG-CSF.

  18. Application of in Vitro Biotransformation Data and ...

    EPA Pesticide Factsheets

    The adverse biological effects of toxic substances are dependent upon the exposure concentration and the duration of exposure. Pharmacokinetic models can quantitatively relate the external concentration of a toxicant in the environment to the internal dose of the toxicant in the target tissues of an exposed organism. The exposure concentration of a toxic substance is usually not the same as the concentration of the active form of the toxicant that reaches the target tissues following absorption, distribution, and biotransformation of the parent toxicant. Biotransformation modulates the biological activity of chemicals through bioactivation and detoxication pathways. Many toxicants require biotransformation to exert their adverse biological effects. Considerable species differences in biotransformation and other pharmacokinetic processes can make extrapolation of toxicity data from laboratory animals to humans problematic. Additionally, interindividual differences in biotransformation among human populations with diverse genetics and lifestyles can lead to considerable variability in the bioactivation of toxic chemicals. Compartmental pharmacokinetic models of animals and humans are needed to understand the quantitative relationships between chemical exposure and target tissue dose as well as animal to human differences and interindividual differences in human populations. The data-based compartmental pharmacokinetic models widely used in clinical pharmacology ha

  19. ASBESTOS-INDUCED ACTIVATION OF SIGNALING PATHWAYS IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Title: Asbestos-Induced Activation of Signaling Pathways in Human
    Bronchial Epithelial Cells

    X. Wang, MD 1, J. M. Samet, PhD 2 and A. J. Ghio, MD 2. 1 Center for
    Environmental Medicine, Asthma and Lung Biology, University of North
    Carolina, Chapel Hill, NC, Uni...

  20. Screening vaccine formulations for biological activity using fresh human whole blood

    PubMed Central

    Brookes, Roger H; Hakimi, Jalil; Ha, Yukyung; Aboutorabian, Sepideh; Ausar, Salvador F; Hasija, Manvi; Smith, Steven G; Todryk, Stephen M; Dockrell, Hazel M; Rahman, Nausheen

    2014-01-01

    Understanding the relevant biological activity of any pharmaceutical formulation destined for human use is crucial. For vaccine-based formulations, activity must reflect the expected immune response, while for non-vaccine therapeutic agents, such as monoclonal antibodies, a lack of immune response to the formulation is desired. During early formulation development, various biochemical and biophysical characteristics can be monitored in a high-throughput screening (HTS) format. However, it remains impractical and arguably unethical to screen samples in this way for immunological functionality in animal models. Furthermore, data for immunological functionality lag formulation design by months, making it cumbersome to relate back to formulations in real-time. It is also likely that animal testing may not accurately reflect the response in humans. For a more effective formulation screen, a human whole blood (hWB) approach can be used to assess immunological functionality. The functional activity relates directly to the human immune response to a complete formulation (adjuvant/antigen) and includes adjuvant response, antigen response, adjuvant-modulated antigen response, stability, and potentially safety. The following commentary discusses the hWB approach as a valuable new tool to de-risk manufacture, formulation design, and clinical progression. PMID:24401565

  1. Screening vaccine formulations for biological activity using fresh human whole blood.

    PubMed

    Brookes, Roger H; Hakimi, Jalil; Ha, Yukyung; Aboutorabian, Sepideh; Ausar, Salvador F; Hasija, Manvi; Smith, Steven G; Todryk, Stephen M; Dockrell, Hazel M; Rahman, Nausheen

    2014-01-01

    Understanding the relevant biological activity of any pharmaceutical formulation destined for human use is crucial. For vaccine-based formulations, activity must reflect the expected immune response, while for non-vaccine therapeutic agents, such as monoclonal antibodies, a lack of immune response to the formulation is desired. During early formulation development, various biochemical and biophysical characteristics can be monitored in a high-throughput screening (HTS) format. However, it remains impractical and arguably unethical to screen samples in this way for immunological functionality in animal models. Furthermore, data for immunological functionality lag formulation design by months, making it cumbersome to relate back to formulations in real-time. It is also likely that animal testing may not accurately reflect the response in humans. For a more effective formulation screen, a human whole blood (hWB) approach can be used to assess immunological functionality. The functional activity relates directly to the human immune response to a complete formulation (adjuvant/antigen) and includes adjuvant response, antigen response, adjuvant-modulated antigen response, stability, and potentially safety. The following commentary discusses the hWB approach as a valuable new tool to de-risk manufacture, formulation design, and clinical progression.

  2. Analysis of synthetic and biological microparticles on several flow cytometric platforms***

    EPA Science Inventory

    Biological microparticles (MPs) are potentially important biomarkers for thrombosis, cancer, glomerulonephritis and other disease states. These MPs are generally accepted to be membrane vesicles extruded following cellular activation. While human blood cells range from 10-15 micr...

  3. Sex Hormone Effects on Physical Activity Levels: Why Doesn’t Jane Run as Much as Dick?

    PubMed Central

    Bowen, Robert S.; Turner, Michael J.; Lightfoot, J. Timothy

    2010-01-01

    The relationship between physical activity levels and disease rates have become an important health related concern in the developed world. Heart disease, certain cancers, and obesity persist at epidemic rates in the United States and Western Europe. Increased physical activity levels have been shown to reduce the occurrence of many chronic diseases leading to reductions in the burden on the health care system. Activity levels in humans are affected by many cultural and environmental factors, nevertheless current research points to a strong biological input with potential genetic, neurological, and endocrinological origins. Of unique interest, the sex hormones appear to have a very strong influence on activity levels. The current animal literature suggests that females tend to be more active than males due to biological pathways of estrogenic origin. The majority of human epidemiological and anthropological data, on the contrary, suggest women are less active than men in spite of this inherent activity-increasing mechanism. The purpose of this manuscript was to review the current literature regarding the control of physical activity levels by the sex hormones in humans. Using the natural transitional phases of the aging endocrine system, natural periodicity of the menstrual cycle, and pharmacological/hormone replacement therapy as variable experimental stages, some authors have been able to provide some information regarding the existence of an inherent activity-increasing mechanism in humans. In brief, activity levels during life stages prior to and after menopause do not significantly differ, despite the vast changes in sex hormone levels and function. Activity difference throughout a regular menstrual cycle do not appear to influence activity levels in humans either—an effect that is pronounced in the female rodent. The use of hormone replacement therapies provide researchers with more systematic controls over hormone modulation in human subjects; however, this benefit comes with additional confounding variables, mostly due to disease or other states of malfunction. Despite the addition of these confounding factors, minor changes to the activity pattern have been observed in women, especially during the initial administration for the therapy. Observations are yet to be made in male subjects during replacement therapy. In general, some evidence exists suggesting that a biological mechanism—extending from the sex hormones—influences activity in humans. Unfortunately, despite a small number of investigative reports, the paucity of human research investigating how the sex hormones affect activity levels in humans prevents conclusive delineation of the mechanisms involved. Future research in this unique sub-field of endocrinology and exercise science utilizing more appropriate research protocols and effective techniques will provide definitive evidence of such mechanisms. PMID:21142285

  4. Activation of human herpesvirus replication by apoptosis.

    PubMed

    Prasad, Alka; Remick, Jill; Zeichner, Steven L

    2013-10-01

    A central feature of herpesvirus biology is the ability of herpesviruses to remain latent within host cells. Classically, exposure to inducing agents, like activating cytokines or phorbol esters that stimulate host cell signal transduction events, and epigenetic agents (e.g., butyrate) was thought to end latency. We recently showed that Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus-8 [HHV-8]) has another, alternative emergency escape replication pathway that is triggered when KSHV's host cell undergoes apoptosis, characterized by the lack of a requirement for the replication and transcription activator (RTA) protein, accelerated late gene kinetics, and production of virus with decreased infectivity. Caspase-3 is necessary and sufficient to initiate the alternative replication program. HSV-1 was also recently shown to initiate replication in response to host cell apoptosis. These observations suggested that an alternative apoptosis-triggered replication program might be a general feature of herpesvirus biology and that apoptosis-initiated herpesvirus replication may have clinical implications, particularly for herpesviruses that almost universally infect humans. To explore whether an alternative apoptosis-initiated replication program is a common feature of herpesvirus biology, we studied cell lines latently infected with Epstein-Barr virus/HHV-4, HHV-6A, HHV-6B, HHV-7, and KSHV. We found that apoptosis triggers replication for each HHV studied, with caspase-3 being necessary and sufficient for HHV replication. An alternative apoptosis-initiated replication program appears to be a common feature of HHV biology. We also found that commonly used cytotoxic chemotherapeutic agents activate HHV replication, which suggests that treatments that promote apoptosis may lead to activation of latent herpesviruses, with potential clinical significance.

  5. Activation of Human Herpesvirus Replication by Apoptosis

    PubMed Central

    Prasad, Alka; Remick, Jill

    2013-01-01

    A central feature of herpesvirus biology is the ability of herpesviruses to remain latent within host cells. Classically, exposure to inducing agents, like activating cytokines or phorbol esters that stimulate host cell signal transduction events, and epigenetic agents (e.g., butyrate) was thought to end latency. We recently showed that Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus-8 [HHV-8]) has another, alternative emergency escape replication pathway that is triggered when KSHV's host cell undergoes apoptosis, characterized by the lack of a requirement for the replication and transcription activator (RTA) protein, accelerated late gene kinetics, and production of virus with decreased infectivity. Caspase-3 is necessary and sufficient to initiate the alternative replication program. HSV-1 was also recently shown to initiate replication in response to host cell apoptosis. These observations suggested that an alternative apoptosis-triggered replication program might be a general feature of herpesvirus biology and that apoptosis-initiated herpesvirus replication may have clinical implications, particularly for herpesviruses that almost universally infect humans. To explore whether an alternative apoptosis-initiated replication program is a common feature of herpesvirus biology, we studied cell lines latently infected with Epstein-Barr virus/HHV-4, HHV-6A, HHV-6B, HHV-7, and KSHV. We found that apoptosis triggers replication for each HHV studied, with caspase-3 being necessary and sufficient for HHV replication. An alternative apoptosis-initiated replication program appears to be a common feature of HHV biology. We also found that commonly used cytotoxic chemotherapeutic agents activate HHV replication, which suggests that treatments that promote apoptosis may lead to activation of latent herpesviruses, with potential clinical significance. PMID:23885073

  6. Reading about the actions of others: biological motion imagery and action congruency influence brain activity.

    PubMed

    Deen, Ben; McCarthy, Gregory

    2010-05-01

    Prior neuroimaging research has implicated regions within and near the posterior superior temporal sulcus (pSTS) in the visual processing of biological motion and of the intentions implied by specific movements. However, it is unknown whether this region is engaged during the processing of human motion at a conceptual level, such as during story comprehension. Here, we obtained functional magnetic resonance images from subjects reading brief stories that described a human character's background and then concluded with an action or decision made by the character. Half of the stories contained incidental descriptions of biological motion (such as the character's walking or grasping) while the remaining half did not. As a second factor, the final action of the story was either congruent or incongruent with the character's background and implied goals and intentions. Stories that contained biological motion strongly activated the pSTS bilaterally, along with ventral temporal areas, premotor cortex, left motor cortex, and the precuneus. Active regions of pSTS in individual subjects closely overlapped with regions identified with a separate biological motion localizer (point-light display) task. Reading incongruent versus congruent stories activated dorsal anterior cingulate cortex and bilateral anterior insula. These results support the hypothesis that reading can engage higher visual cortex in a content-specific manner, and suggest that the presence of biological motion should be controlled as a potential confound in fMRI studies using story comprehension tasks. 2010. Published by Elsevier Ltd.

  7. Tumor-specific delivery of biologics by a novel T-cell line HOZOT

    PubMed Central

    Onishi, Teppei; Tazawa, Hiroshi; Hashimoto, Yuuri; Takeuchi, Makoto; Otani, Takeshi; Nakamura, Shuji; Sakurai, Fuminori; Mizuguchi, Hiroyuki; Kishimoto, Hiroyuki; Umeda, Yuzo; Shirakawa, Yasuhiro; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi

    2016-01-01

    “Cell-in-cell” denotes an invasive phenotype in which one cell actively internalizes in another. The novel human T-cell line HOZOT, established from human umbilical cord blood, was shown to penetrate a variety of human cancer cells but not normal cells. Oncolytic viruses are emerging as biological therapies for human cancers; however, efficient viral delivery is limited by a lack of tumor-specific homing and presence of pre-existing or therapy-induced neutralizing antibodies. Here, we report a new, intriguing approach using HOZOT cells to transmit biologics such as oncolytic viruses into human cancer cells by cell-in-cell invasion. HOZOT cells were successfully loaded via human CD46 antigen with an attenuated adenovirus containing the fiber protein of adenovirus serotype 35 (OBP-401/F35), in which the telomerase promoter regulates viral replication. OBP-401/F35–loaded HOZOT cells were efficiently internalized into human cancer cells and exhibited tumor-specific killing by release of viruses, even in the presence of anti-viral neutralizing antibodies. Moreover, intraperitoneal administration of HOZOT cells loaded with OBP-401/F35 significantly suppressed peritoneally disseminated tumor growth in mice. This unique cell-in-cell property provides a platform for selective delivery of biologics into human cancer cells, which has important implications for the treatment of human cancers. PMID:27901098

  8. Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum.

    PubMed

    Gholami-Shabani, Mohammadhassan; Akbarzadeh, Azim; Norouzian, Dariush; Amini, Abdolhossein; Gholami-Shabani, Zeynab; Imani, Afshin; Chiani, Mohsen; Riazi, Gholamhossein; Shams-Ghahfarokhi, Masoomeh; Razzaghi-Abyaneh, Mehdi

    2014-04-01

    Nanostructures from natural sources have received major attention due to wide array of biological activities and less toxicity for humans, animals, and the environment. In the present study, silver nanoparticles were successfully synthesized using a fungal nitrate reductase, and their biological activity was assessed against human pathogenic fungi and bacteria. The enzyme was isolated from Fusarium oxysporum IRAN 31C after culturing on malt extract-glucose-yeast extract-peptone (MGYP) medium. The enzyme was purified by a combination of ultrafiltration and ion exchange chromatography on DEAE Sephadex and its molecular weight was estimated by gel filtration on Sephacryl S-300. The purified enzyme had a maximum yield of 50.84 % with a final purification of 70 folds. With a molecular weight of 214 KDa, it is composed of three subunits of 125, 60, and 25 KDa. The purified enzyme was successfully used for synthesis of silver nanoparticles in a way dependent upon NADPH using gelatin as a capping agent. The synthesized silver nanoparticles were characterized by X-ray diffraction, dynamic light scattering spectroscopy, and transmission and scanning electron microscopy. These stable nonaggregating nanoparticles were spherical in shape with an average size of 50 nm and a zeta potential of -34.3. Evaluation of the antimicrobial effects of synthesized nanoparticles by disk diffusion method showed strong growth inhibitory activity against all tested human pathogenic fungi and bacteria as evident from inhibition zones that ranged from 14 to 25 mm. Successful green synthesis of biologically active silver nanoparticles by a nitrate reductase from F. oxysporum in the present work not only reduces laborious downstream steps such as purification of nanoparticle from interfering cellular components, but also provides a constant source of safe biologically-active nanomaterials with potential application in agriculture and medicine.

  9. Cysteine cathepsin S processes leptin, inactivating its biological activity.

    PubMed

    Oliveira, Marcela; Assis, Diego M; Paschoalin, Thaysa; Miranda, Antonio; Ribeiro, Eliane B; Juliano, Maria A; Brömme, Dieter; Christoffolete, Marcelo Augusto; Barros, Nilana M T; Carmona, Adriana K

    2012-08-01

    Leptin is a 16  kDa hormone mainly produced by adipocytes that plays an important role in many biological events including the regulation of appetite and energy balance, atherosclerosis, osteogenesis, angiogenesis, the immune response, and inflammation. The search for proteolytic enzymes capable of processing leptin prompted us to investigate the action of cysteine cathepsins on human leptin degradation. In this study, we observed high cysteine peptidase expression and hydrolytic activity in white adipose tissue (WAT), which was capable of degrading leptin. Considering these results, we investigated whether recombinant human cysteine cathepsins B, K, L, and S were able to degrade human leptin. Mass spectrometry analysis revealed that among the tested enzymes, cathepsin S exhibited the highest catalytic activity on leptin. Furthermore, using a Matrigel assay, we observed that the leptin fragments generated by cathepsin S digestion did not exhibit angiogenic action on endothelial cells and were unable to inhibit food intake in Wistar rats after intracerebroventricular administration. Taken together, these results suggest that cysteine cathepsins may be putative leptin activity regulators in WAT.

  10. 2006 In Vitro Biology Meeting. Volume 42

    DTIC Science & Technology

    2006-04-25

    industry. Production of elite stock plants for small fruit and vegetable crops is a secondary area of activity . Clonal propagation of coniferous forest...Biotechnology, Inc. 11:45 P-18 Transgenic Expression and Recovery of Biologically Active Recombinant Human Insulin from Arabidopsis thaliana Oilseeds...Mangadlao, University of the Philippines SECONDARY PRODUCTS AND BIOTECHNOLOGY Moderator: Mitchell L. Wise, USDA/ARS 2:30 pm - 3:30 pm Plant Interactive

  11. Synthesis and Biological Evaluation of Benzochromenopyrimidinones as Cholinesterase Inhibitors and Potent Antioxidant, Non-Hepatotoxic Agents for Alzheimer's Disease.

    PubMed

    Dgachi, Youssef; Bautista-Aguilera, Oscar M; Benchekroun, Mohamed; Martin, Hélène; Bonet, Alexandre; Knez, Damijan; Godyń, Justyna; Malawska, Barbara; Gobec, Stanislav; Chioua, Mourad; Janockova, Jana; Soukup, Ondrej; Chabchoub, Fakher; Marco-Contelles, José; Ismaili, Lhassane

    2016-05-14

    We report herein the straightforward two-step synthesis and biological assessment of novel racemic benzochromenopyrimidinones as non-hepatotoxic, acetylcholinesterase inhibitors with antioxidative properties. Among them, compound 3Bb displayed a mixed-type inhibition of human acetylcholinesterase (IC50 = 1.28 ± 0.03 μM), good antioxidant activity, and also proved to be non-hepatotoxic on human HepG2 cell line.

  12. Biological properties of dehydrated human amnion/chorion composite graft: implications for chronic wound healing

    PubMed Central

    Koob, Thomas J; Rennert, Robert; Zabek, Nicole; Massee, Michelle; Lim, Jeremy J; Temenoff, Johnna S; Li, William W; Gurtner, Geoffrey

    2013-01-01

    Human amnion/chorion tissue derived from the placenta is rich in cytokines and growth factors known to promote wound healing; however, preservation of the biological activities of therapeutic allografts during processing remains a challenge. In this study, PURION® (MiMedx, Marietta, GA) processed dehydrated human amnion/chorion tissue allografts (dHACM, EpiFix®, MiMedx) were evaluated for the presence of growth factors, interleukins (ILs) and tissue inhibitors of metalloproteinases (TIMPs). Enzyme-linked immunosorbent assays (ELISA) were performed on samples of dHACM and showed quantifiable levels of the following growth factors: platelet-derived growth factor-AA (PDGF-AA), PDGF-BB, transforming growth factor α (TGFα), TGFβ1, basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), placental growth factor (PLGF) and granulocyte colony-stimulating factor (GCSF). The ELISA assays also confirmed the presence of IL-4, 6, 8 and 10, and TIMP 1, 2 and 4. Moreover, the relative elution of growth factors into saline from the allograft ranged from 4% to 62%, indicating that there are bound and unbound fractions of these compounds within the allograft. dHACM retained biological activities that cause human dermal fibroblast proliferation and migration of human mesenchymal stem cells (MSCs) in vitro. An in vivo mouse model showed that dHACM when tested in a skin flap model caused mesenchymal progenitor cell recruitment to the site of implantation. The results from both the in vitro and in vivo experiments clearly established that dHACM contains one or more soluble factors capable of stimulating MSC migration and recruitment. In summary, PURION® processed dHACM retains its biological activities related to wound healing, including the potential to positively affect four distinct and pivotal physiological processes intimately involved in wound healing: cell proliferation, inflammation, metalloproteinase activity and recruitment of progenitor cells. This suggests a paracrine mechanism of action for dHACM when used for wound healing applications. PMID:23902526

  13. Biological activities of human mannose-binding lectin bound to two different ligand sugar structures, Lewis A and Lewis B antigens and high-mannose type oligosaccharides.

    PubMed

    Muto, S; Takada, T; Matsumoto, K

    2001-07-02

    The biological activities of mannose-binding lectin (MBL) which binds to different ligands on mammalian cells were examined using two types of Colo205 cells, a human colon adenocarcinoma cell line: one naturally expressing Lewis A and Lewis B antigens as ligands for MBL (NT-Colo205), and the other modified to express high-mannose type oligosaccharides by treatment with benzyl-2-acetamide-2-deoxy-alpha-galactopyranoside and 1-deoxymannojirimycin (Bz+dMM-Colo205). Although the final lysis was not observed, the deposition of C4 and C3 was observed on both types of Colo205 cells after treatment with MBL and complements as a result of complement activation by MBL. MBL bound to Bz+dMM-Colo205 could also activate human peripheral blood leukocytes and induce superoxide production; however, MBL bound to NT-Colo205 could not. This may be explained by the lower affinity of MBL to Lewis A and Lewis B antigens than to high-mannose type oligosaccharides under physiological conditions, since MBL bound to NT-Colo205 was more easily released from the cell surface than that bound to Bz+dMM-Colo205 at 37 degrees C. These findings suggest that the difference in the affinity of MBL to its ligands could influence the expression of some biological activities of MBL.

  14. Human Enteropathogen Load in Activated Sewage Sludge and Corresponding Sewage Sludge End Products▿

    PubMed Central

    Graczyk, Thaddeus K.; Lucy, Frances E.; Tamang, Leena; Miraflor, Allen

    2007-01-01

    This study demonstrated a significant reduction in the concentrations of Cryptosporidium parvum and Cryptosporidium hominis oocysts, Giardia lamblia cysts, and spores of human-virulent microsporidia in dewatered and biologically stabilized sewage sludge cake end products compared to those of the respective pathogens in the corresponding samples collected during the sludge activation process. PMID:17277215

  15. High yield bacterial expression, purification and characterisation of bioactive Human Tousled-like Kinase 1B involved in cancer.

    PubMed

    Bhoir, Siddhant; Shaik, Althaf; Thiruvenkatam, Vijay; Kirubakaran, Sivapriya

    2018-03-19

    Human Tousled-like kinases (TLKs) are highly conserved serine/threonine protein kinases responsible for cell proliferation, DNA repair, and genome surveillance. Their possible involvement in cancer via efficient DNA repair mechanisms have made them clinically relevant molecular targets for anticancer therapy. Innovative approaches in chemical biology have played a key role in validating the importance of kinases as molecular targets. However, the detailed understanding of the protein structure and the mechanisms of protein-drug interaction through biochemical and biophysical techniques demands a method for the production of an active protein of exceptional stability and purity on a large scale. We have designed a bacterial expression system to express and purify biologically active, wild-type Human Tousled-like Kinase 1B (hTLK1B) by co-expression with the protein phosphatase from bacteriophage λ. We have obtained remarkably high amounts of the soluble and homogeneously dephosphorylated form of biologically active hTLK1B with our unique, custom-built vector design strategy. The recombinant hTLK1B can be used for the structural studies and may further facilitate the development of new TLK inhibitors for anti-cancer therapy using a structure-based drug design approach.

  16. Sex and life expectancy.

    PubMed

    Seifarth, Joshua E; McGowan, Cheri L; Milne, Kevin J

    2012-12-01

    A sexual dimorphism in human life expectancy has existed in almost every country for as long as records have been kept. Although human life expectancy has increased each year, females still live longer, on average, than males. Undoubtedly, the reasons for the sex gap in life expectancy are multifaceted, and it has been discussed from both sociological and biological perspectives. However, even if biological factors make up only a small percentage of the determinants of the sex difference in this phenomenon, parity in average life expectancy should not be anticipated. The aim of this review is to highlight biological mechanisms that may underlie the sexual dimorphism in life expectancy. Using PubMed, ISI Web of Knowledge, and Google Scholar, as well as cited and citing reference histories of articles through August 2012, English-language articles were identified, read, and synthesized into categories that could account for biological sex differences in human life expectancy. The examination of biological mechanisms accounting for the female-based advantage in human life expectancy has been an active area of inquiry; however, it is still difficult to prove the relative importance of any 1 factor. Nonetheless, biological differences between the sexes do exist and include differences in genetic and physiological factors such as progressive skewing of X chromosome inactivation, telomere attrition, mitochondrial inheritance, hormonal and cellular responses to stress, immune function, and metabolic substrate handling among others. These factors may account for at least a part of the female advantage in human life expectancy. Despite noted gaps in sex equality, higher body fat percentages and lower physical activity levels globally at all ages, a sex-based gap in life expectancy exists in nearly every country for which data exist. There are several biological mechanisms that may contribute to explaining why females live longer than men on average, but the complexity of the human life experience makes research examining the contribution of any single factor for the female advantage difficult. However, this information may still prove important to the development of strategies for healthy aging in both sexes. Copyright © 2012 Elsevier HS Journals, Inc. All rights reserved.

  17. IL-9 expression by human eosinophils: regulation by IL-1beta and TNF-alpha.

    PubMed

    Gounni, A S; Nutku, E; Koussih, L; Aris, F; Louahed, J; Levitt, R C; Nicolaides, N C; Hamid, Q

    2000-09-01

    IL-9 is a pleiotropic cytokine that exhibits biologic activity on cells of diverse hemopoietic lineage. IL-9 stimulates the proliferation of activated T cells, enhances the production of IgE from B cells, and promotes the proliferation and differentiation of mast cells and hematopoietic progenitors. In this study we evaluated the expression of IL-9 messenger (m)RNA and protein by human peripheral blood eosinophils. We also investigated the role of IL-1beta and TNF-alpha in the release of IL-9 from human peripheral blood eosinophils. RT-PCR, in situ hybridization, and immunocytochemistry were used to investigate the presence of IL-9 mRNA and protein in human peripheral blood eosinophils from asthmatic patients and normal control subjects. Furthermore, biologic assay was used to investigate the release of IL-9 protein from IL-1beta- or TNF-alpha-stimulated eosinophils in vitro. RT-PCR analysis showed the presence of IL-9 mRNA in human peripheral blood eosinophil RNA preparations from subjects with atopic asthma, as well as in the eosinophil-differentiated HL-60 cell line. By using in situ hybridization, a significant difference (P <.01) in IL-9 mRNA expression was detected in human peripheral blood eosinophils freshly isolated from asthmatic subjects compared with those isolated from normal control subjects. Furthermore, the percentage of IL-9 immunoreactive eosinophils from asthmatic patients was increased compared with that found in normal control subjects (P <.01). We also demonstrate that cultured human peripheral blood eosinophils from asthmatic subjects synthesize and release IL-9 protein, which is upregulated on stimulation with TNF-alpha and IL-1beta. Human eosinophils express biologically active IL-9, which suggests that these cells may influence the recruitment and activation of effector cells linked to the pathogenesis of allergic disease. These observations provide further evidence for the role of eosinophils in regulating airway immune responses.

  18. Upregulation and Identification of Antibiotic Activity of a Marine-Derived Streptomyces sp. via Co-Cultures with Human Pathogens.

    PubMed

    Sung, Anne A; Gromek, Samantha M; Balunas, Marcy J

    2017-08-11

    Marine natural product drug discovery has begun to play an important role in the treatment of disease, with several recently approved drugs. In addition, numerous microbial natural products have been discovered from members of the order Actinomycetales, particularly in the genus Streptomyces , due to their metabolic diversity for production of biologically active secondary metabolites. However, many secondary metabolites cannot be produced under laboratory conditions because growth conditions in flask culture differ from conditions in the natural environment. Various experimental conditions (e.g., mixed fermentation) have been attempted to increase yields of previously described metabolites, cause production of previously undetected metabolites, and increase antibiotic activity. Adult ascidians-also known as tunicates-are sessile marine invertebrates, making them vulnerable to predation and therefore are hypothesized to use host-associated bacteria that produce biologically active secondary metabolites for chemical defense. A marine-derived Streptomyces sp. strain PTY087I2 was isolated from a Panamanian tunicate and subsequently co-cultured with human pathogens including Bacillus subtilis , methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa , followed by extraction. Co-culture of Streptomyces sp. PTY087I2 with each of these human pathogens resulted in increased production of three antibiotics: granaticin, granatomycin D, and dihydrogranaticin B, as well as several analogues seen via molecular networking. In addition, co-cultures resulted in strongly enhanced biological activity against the Gram positive human pathogens used in these experiments. Expanded utilization of co-culture experiments to allow for competitive interactions may enhance metabolite production and further our understanding of these microbial interactions.

  19. Synthesis and biological evaluation of 2-heteroarylthioalkanoic acid analogues of clofibric acid as peroxisome proliferator-activated receptor alpha agonists.

    PubMed

    Giampietro, Letizia; Ammazzalorso, Alessandra; Giancristofaro, Antonella; Lannutti, Fabio; Bettoni, Giancarlo; De Filippis, Barbara; Fantacuzzi, Marialuigia; Maccallini, Cristina; Petruzzelli, Michele; Morgano, Annalisa; Moschetta, Antonio; Amoroso, Rosa

    2009-10-22

    A series of 2-heteroarylthioalkanoic acids were synthesized through systematic structural modifications of clofibric acid and evaluated for human peroxisome proliferator-activated receptor alpha (PPARalpha) transactivation activity, with the aim of obtaining new hypolipidemic compounds. Some thiophene and benzothiazole derivatives showing a good activation of the receptor alpha were screened for activity against the PPARgamma isoform. The gene induction of selected compounds was also investigated in the human hepatoma cell line.

  20. Do Zoo Visitors Need Zoology Knowledge to Understand Conservation Messages? An Exploration of the Public Understanding of Animal Biology and of the Conservation of Biodiversity in a Zoo Setting

    ERIC Educational Resources Information Center

    Dove, Tracy; Byrne, Jenny

    2014-01-01

    This study explores the current knowledge and understanding about animal biology of zoo visitors and investigates whether knowledge of animal biology influences the ability of people to understand how human activity affects biodiversity. Zoos can play a role in the development of scientific literacy in the fields of animal biology and biodiversity…

  1. Use of Primary Human Cell Systems for Creating Predictive Toxicology Profiles

    EPA Science Inventory

    Use of cellular regulatory networks to detect and distinguish effects of compounds with a broad range of on- and off-target mechanisms and biological processes provides an opportunity to understand toxicity mechanisms of action. Here we use the Biologically Multiplexed Activity P...

  2. Novel coumarins and related copper complexes with biological activity: DNA binding, molecular docking and in vitro antiproliferative activity.

    PubMed

    Pivetta, Tiziana; Valletta, Elisa; Ferino, Giulio; Isaia, Francesco; Pani, Alessandra; Vascellari, Sarah; Castellano, Carlo; Demartin, Francesco; Cabiddu, Maria Grazia; Cadoni, Enzo

    2017-12-01

    Coumarins show biological activity and are widely exploited for their therapeutic effects. Although a great number of coumarins substituted by heterocyclic moieties have been prepared, few studies have been carried out on coumarins containing pyridine heterocycle, which is known to modulate their physiological activities. We prepared and characterized three novel 3-(pyridin-2-yl)coumarins and their corresponding copper(II) complexes. We extended our investigations also to three known similar coumarins, since no data about their biochemical activity was previously been reported. The antiproliferative activity of the studied compounds was tested against human derived tumor cell lines and one human normal cell line. The DNA binding constants were determined and docking studies with DNA carried out. Selected Quantitative Structure-Activity Relationship (QSAR) descriptors were calculated in order to relate a set of structural and topological descriptors of the studied compounds to their DNA interaction and cytotoxic activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Determination of Death: A Scientific Perspective on Biological Integration

    PubMed Central

    Condic, Maureen L.

    2016-01-01

    Human life is operationally defined by the onset and cessation of organismal function. At postnatal stages of life, organismal integration critically and uniquely requires a functioning brain. In this article, a distinction is drawn between integrated and coordinated biologic activities. While communication between cells can provide a coordinated biologic response to specific signals, it does not support the integrated function that is characteristic of a living human being. Determining the loss of integrated function can be complicated by medical interventions (i.e., “life support”) that uncouple elements of the natural biologic hierarchy underlying our intuitive understanding of death. Such medical interventions can allow living human beings who are no longer able to function in an integrated manner to be maintained in a living state. In contrast, medical intervention can also allow the cells and tissues of an individual who has died to be maintained in a living state. To distinguish between a living human being and living human cells, two criteria are proposed: either the persistence of any form of brain function or the persistence of autonomous integration of vital functions. Either of these criteria is sufficient to determine a human being is alive. PMID:27075193

  4. Polysulfides as biologically active ingredients of garlic.

    PubMed

    Münchberg, Ute; Anwar, Awais; Mecklenburg, Susanne; Jacob, Claus

    2007-05-21

    Garlic has long been considered as a natural remedy against a range of human illnesses, including various bacterial, viral and fungal infections. This kind of antibiotic activity of garlic has mostly been associated with the thiosulfinate allicin. Even so, recent studies have pointed towards a significant biological activity of trisulfides and tetrasulfides found in various Allium species, including a wide range of antibiotic properties and the ability of polysulfides to cause the death of certain cancer cells. The chemistry underlying the biological activity of these polysulfides is currently emerging. It seems to include a combination of several distinct transformations, such as oxidation reactions, superoxide radical and peroxide generation, decomposition with release of highly electrophilic S(x) species, inhibition of metalloenzymes, disturbance of metal homeostasis and membrane integrity and interference with different cellular signalling pathways. Further research in this area is required to provide a better understanding of polysulfide reactions within a biochemical context. This knowledge may ultimately form the basis for the development of 'green' antibiotics, fungicides and possibly anticancer agents with dramatically reduced side effects in humans.

  5. Ex vivo human pancreatic slice preparations offer a valuable model for studying pancreatic exocrine biology.

    PubMed

    Liang, Tao; Dolai, Subhankar; Xie, Li; Winter, Erin; Orabi, Abrahim I; Karimian, Negar; Cosen-Binker, Laura I; Huang, Ya-Chi; Thorn, Peter; Cattral, Mark S; Gaisano, Herbert Y

    2017-04-07

    A genuine understanding of human exocrine pancreas biology and pathobiology has been hampered by a lack of suitable preparations and reliance on rodent models employing dispersed acini preparations. We have developed an organotypic slice preparation of the normal portions of human pancreas obtained from cancer resections. The preparation was assessed for physiologic and pathologic responses to the cholinergic agonist carbachol (Cch) and cholecystokinin (CCK-8), including 1) amylase secretion, 2) exocytosis, 3) intracellular Ca 2+ responses, 4) cytoplasmic autophagic vacuole formation, and 5) protease activation. Cch and CCK-8 both dose-dependently stimulated secretory responses from human pancreas slices similar to those previously observed in dispersed rodent acini. Confocal microscopy imaging showed that these responses were accounted for by efficient apical exocytosis at physiologic doses of both agonists and by apical blockade and redirection of exocytosis to the basolateral plasma membrane at supramaximal doses. The secretory responses and exocytotic events evoked by CCK-8 were mediated by CCK-A and not CCK-B receptors. Physiologic agonist doses evoked oscillatory Ca 2+ increases across the acini. Supraphysiologic doses induced formation of cytoplasmic autophagic vacuoles and activation of proteases (trypsin, chymotrypsin). Maximal atropine pretreatment that completely blocked all the Cch-evoked responses did not affect any of the CCK-8-evoked responses, indicating that rather than acting on the nerves within the pancreas slice, CCK cellular actions directly affected human acinar cells. Human pancreas slices represent excellent preparations to examine pancreatic cell biology and pathobiology and could help screen for potential treatments for human pancreatitis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Synthesis and biological evaluation of 2-thioxopyrimidin-4(1H)-one derivatives as potential non-nucleoside HIV-1 reverse transcriptase inhibitors.

    PubMed

    Khalifa, Nagy M; Al-Omar, Mohamed A

    2014-11-12

    A series of new 5-allyl-6-benzylpyrimidin-4(3H)-ones bearing different substituents at the C-2 position of the pyrimidine core have been synthesized and evaluated for their in vitro activities against human immunodeficiency virus type 1 (HIV-1) in the human T-lymphotropic type (MT-4 cell cultures). The majority of the title compounds showed moderate to good activities against HIV-1. Amongst them, 5-allyl-6-benzyl-2-(3-hydroxypropylthio)pyrimidin-4(3H)-one analogue 11c exhibited the most potent anti-HIV-1 activity (IC50 0.32 µM). The biological testing results clearly indicated that the substitution at C-2 position of the pyrimidine ring could increase the anti-HIV-1 reverse transcriptase (RT) activity.

  7. Biotransformation of glycyrrhizin by human intestinal bacteria and its relation to biological activities.

    PubMed

    Kim, D H; Hong, S W; Kim, B T; Bae, E A; Park, H Y; Han, M J

    2000-04-01

    The relationship between the metabolites of glycyrrhizin (18beta-glycyrrhetinic acid-3-O-beta-D-glucuronopyranosyl-(1-->2)-beta-D-glucuronide, GL) and their biological activities was investigated. By human intestinal microflora, GL was metabolized to 18beta-glycyrrhetinic acid (GA) as a main product and to 18beta-glycyrrhetinic acid-3-O-beta-D-glucuronide (GAMG) as a minor product. The former reaction was catalyzed by Eubacterium L-8 and the latter was by Streptococcus LJ-22. Among GL and its metabolites, GA and GAMG had more potent in vitro anti-platelet aggregation activity than GL. GA also showed the most potent cytotoxicity against tumor cell lines and the potent inhibitory activity on rotavirus infection as well as growth of Helicobacter pylori. GAMG, the minor metabolite of GL, was the sweetest.

  8. Synthesis and Biological Evaluation of 2-Thioxopyrimidin-4(1H)-one Derivatives as Potential Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors

    PubMed Central

    Khalifa, Nagy M.; Al-Omar, Mohamed A.

    2014-01-01

    A series of new 5-allyl-6-benzylpyrimidin-4(3H)-ones bearing different substituents at the C-2 position of the pyrimidine core have been synthesized and evaluated for their in vitro activities against human immunodeficiency virus type 1 (HIV-1) in the human T-lymphotropic type (MT-4 cell cultures). The majority of the title compounds showed moderate to good activities against HIV-1. Amongst them, 5-allyl-6-benzyl-2-(3-hydroxypropylthio)pyrimidin-4(3H)-one analogue 11c exhibited the most potent anti-HIV-1 activity (IC50 0.32 µM). The biological testing results clearly indicated that the substitution at C-2 position of the pyrimidine ring could increase the anti-HIV-1 reverse transcriptase (RT) activity. PMID:25397597

  9. The Estuary.

    ERIC Educational Resources Information Center

    Fortner, Rosanne; Bainer, Deborah L.

    1983-01-01

    Provides an OEAGLS (Oceanic Education Activities for Great Lakes Schools) activity showing how biological sampling can be taught using acquatic examples in a "dry lab." The activity, requiring use of mathematical/observational skills, simulates a plankton sample and stimulates discussions of how environmental/human factors can cause…

  10. Expression and fast preparation of biologically active recombinant human coagulation factor VII in CHO-K1 cells.

    PubMed

    Xiao, W; Li, C Q; Xiao, X P; Lin, F Z

    2013-12-16

    Human coagulation factor VII (FVII) plays an important role in the blood coagulation process and exists in micro amounts in human plasma; therefore, any attempt at the large-scale production of FVII in significant quantities is challenging. The purpose of this study was to express and obtain biologically active recombinant FVII (rFVII) from Chinese hamster ovary K1 (CHO-K1) cells. The full-length FVII cDNA was isolated from a HepG2 cell line and then subcloned in pcDNA3.1 to construct an expression vector, pcDNA-FVII. CHO-K1 cells were transfected with 1 µg pcDNA-FVII. The cell line that stably expressed secretory FVII was screened using 900 µg/mL G418. The FVII copy number in CHO-K1 cells was detected by quantitative polymerase chain reaction (qPCR). The rFVII was purified in ligand affinity chromatography medium. The purified protein was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis. The biological activity of the purified FVII protein was determined by a prothrombin time assay. Three cell lines that permanently expressed rFVII were screened. The qPCR results demonstrated that each CHO-K1 cell harbored two FVII DNA copies. The SDS-PAGE and Western blot analysis showed that the purified protein was about 50 kDa. The purity of the target protein was 95%. The prothrombin time assay indicated that the FVII-specific activity of rFVII was 2573 ± 75 IU/mg. This method enabled the fast preparation of high-purity rFVII from CHO-K1 cells, and the purified protein had good biological activity.

  11. Dinitrosyl iron complexes with thiol-containing ligands as a "working form" of endogenous nitric oxide.

    PubMed

    Vanin, Anatoly F

    2016-04-01

    The material presented herein is an overview of the results obtained by our research team during the many years' study of biological activities and occurrence of dinitrosyl iron complexes (DNIC) with thiol-containing ligands in human and animal organisms. With regard to their dose dependence and vast diversity of biological activities, DNIC are similar to the system of endogenous NO, one of the most universal regulators of biological processes. The role of biologically active components in DNIC is played by their iron-dinitrosyl fragments, [Fe(NO)2], endowed with the ability to generate neutral NO molecules and nitrosonium ions (NO(+)). Their release is effected by heme-and thiol-containing proteins, which fulfill the function of biological targets and acceptors of NO and NO(+). Beneficial regulatory effects of DNIC on physiological and metabolic processes are numerous and diverse and include, among other things, lowering of arterial pressure and accelerated healing of skin wounds. In the course of fast decomposition of their Fe(NO)2 fragments (e.g., in the presence of iron chelators), DNIC produce adverse (cytotoxic) effects, which can best be exemplified by their ability to suppress the development of experimental endometriosis in animals. In animal tissues, DNIC with thiol-containing ligands are predominantly represented by the binuclear form, which, contrary to mononuclear DNIC detectable by the 2.03 signal, is EPR-silent. The ample body of evidence on biological activities and occurrence of DNIC gained so far clearly demonstrates that in human and animal organisms DNIC with thiol-containing ligands represent a "working form" of the system of endogenous NO responsible for its accumulation and stabilization in animal tissues as well as its further transfer to its biological targets. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Biology Student Teachers' Conceptual Frameworks regarding Biodiversity

    ERIC Educational Resources Information Center

    Dikmenli, Musa

    2010-01-01

    In recent years, biodiversity has received a great deal of attention worldwide, especially in environmental education. The reasons for this attention are the increase of human activities on biodiversity and environmental problems. The purpose of this study is to investigate biology student teachers' conceptual frameworks regarding biodiversity.…

  13. Amphetamine increases activity but not exploration in humans and mice

    PubMed Central

    Minassian, Arpi; Young, Jared W.; Cope, Zackary A.; Henry, Brook L.; Geyer, Mark A.; Perry, William

    2015-01-01

    Rationale Cross-species quantification of physiological behavior enables a better understanding of the biological systems underlying neuropsychiatric diseases such as Bipolar Disorder (BD). Cardinal symptoms of manic BD include increased motor activity and goal-directed behavior, thought to be related to increased catecholamine activity, potentially selective to dopamine homeostatic dysregulation. Objectives The objective of this study was to test whether acute administration of amphetamine, a norepinephrine/dopamine transporter inhibitor and dopamine releaser, would replicate the profile of activity and exploration observed in both humans with manic BD and mouse models of mania. Methods Healthy volunteers with no psychiatric history were randomized to a one-time dose of placebo (n=25), 10 mg d-amphetamine (n=18), or 20 mg amphetamine (n=23). 80 mice were administered one of 4 doses of d-amphetamine or vehicle. Humans and mice were tested in the Behavioral Pattern Monitor (BPM), which quantifies motor activity, exploratory behavior, and spatial patterns of behavior. Results In humans, the 20-mg dose of amphetamine increased motor activity as measured by acceleration without marked effects on exploration or spatial patterns of activity. In mice, amphetamine increased activity, decreased specific exploration, and caused straighter, one-dimensional movements in a dose-dependent manner. Conclusions Consistent with mice, amphetamine increased motoric activity in humans without increasing exploration. Given that BD patients exhibit heightened exploration, these data further emphasize the limitation of amphetamine-induced hyperactivity as a suitable model for BD. Further, these studies highlight the utility of cross-species physiological paradigms in validating biological mechanisms of psychiatric diseases. PMID:26449721

  14. Synthesis and molecular docking of some novel anticancer sulfonamides carrying a biologically active pyrrole and pyrrolopyrimidine moieties.

    PubMed

    Ghorab, Mostafa M; Alsaid, Mansour S; Nissan, Yassin M

    2014-01-01

    Abstract: A novel series of pyrroles and pyrrolopyrimdines carrying a biologically active sulfonamide moiety have been synthesized. The structures were confirmed by elemental analyses and spectral data. All the target compounds were subjected to in vitro cytotoxic screening on breast cancer cell line (MCF-7). Most of the synthesized compounds showed good activity as cytotoxic agents with better IC50 than doxorubicin as a reference drug. In order to suggest a mechanism of action for their activity, molecular docking on the active site of human c-Src was performed for all synthesized compounds.

  15. The Default Mode Network Differentiates Biological From Non-Biological Motion

    PubMed Central

    Dayan, Eran; Sella, Irit; Mukovskiy, Albert; Douek, Yehonatan; Giese, Martin A.; Malach, Rafael; Flash, Tamar

    2016-01-01

    The default mode network (DMN) has been implicated in an array of social-cognitive functions, including self-referential processing, theory of mind, and mentalizing. Yet, the properties of the external stimuli that elicit DMN activity in relation to these domains remain unknown. Previous studies suggested that motion kinematics is utilized by the brain for social-cognitive processing. Here, we used functional MRI to examine whether the DMN is sensitive to parametric manipulations of observed motion kinematics. Preferential responses within core DMN structures differentiating non-biological from biological kinematics were observed for the motion of a realistically looking, human-like avatar, but not for an abstract object devoid of human form. Differences in connectivity patterns during the observation of biological versus non-biological kinematics were additionally observed. Finally, the results additionally suggest that the DMN is coupled more strongly with key nodes in the action observation network, namely the STS and the SMA, when the observed motion depicts human rather than abstract form. These findings are the first to implicate the DMN in the perception of biological motion. They may reflect the type of information used by the DMN in social-cognitive processing. PMID:25217472

  16. Insulin released from titanium discs with insulin coatings-Kinetics and biological activity.

    PubMed

    Malekzadeh, B Ö; Ransjo, M; Tengvall, P; Mladenovic, Z; Westerlund, A

    2017-10-01

    Local administration of insulin from a titanium surface has been demonstrated to increase bone formation in non-diabetic rats. The authors hypothesized that insulin was released from the titanium surface and with preserved biological activity after the release. Thus, in the present in vitro study, human recombinant insulin was immobilized onto titanium discs, and the insulin release kinetics was evaluated using Electro-chemiluminescence immunoassay. Neutral Red uptake assay and mineralization assay were used to evaluate the biological effects of the released insulin on human osteoblast-like MG-63 cells. The results confirmed that insulin was released from titanium surfaces during a six-week period. Etching the disc prior to insulin coating, thickening of the insulin coating and incubation of the discs in serum-enriched cell culture medium increased the release. However, longer storage time decreased the release of insulin. Furthermore, the released insulin had retained its biological activity, as demonstrated by the significant increase in cell number and a stimulated mineralization process, upon exposure to released insulin. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1847-1854, 2017. © 2016 Wiley Periodicals, Inc.

  17. Introduced Species: Can We Balance Human Systems with Natural Processes? Global Environmental Change Series.

    ERIC Educational Resources Information Center

    National Science Teachers Association, Arlington, VA.

    The seven activities contained in this book are designed to equip students (grades 9-12) with scientific tools and skills for understanding what introduced species are, how they impact natural processes and human systems, and what may be done about them. The activities are designed to link the biology and ecology of introduced species with…

  18. Sight restoration after congenital blindness does not reinstate alpha oscillatory activity in humans

    PubMed Central

    Bottari, Davide; Troje, Nikolaus F.; Ley, Pia; Hense, Marlene; Kekunnaya, Ramesh; Röder, Brigitte

    2016-01-01

    Functional brain development is characterized by sensitive periods during which experience must be available to allow for the full development of neural circuits and associated behavior. Yet, only few neural markers of sensitive period plasticity in humans are known. Here we employed electroencephalographic recordings in a unique sample of twelve humans who had been blind from birth and regained sight through cataract surgery between four months and 16 years of age. Two additional control groups were tested: a group of visually impaired individuals without a history of total congenital blindness and a group of typically sighted individuals. The EEG was recorded while participants performed a visual discrimination task involving intact and scrambled biological motion stimuli. Posterior alpha and theta oscillations were evaluated. The three groups showed indistinguishable behavioral performance and in all groups evoked theta activity varied with biological motion processing. By contrast, alpha oscillatory activity was significantly reduced only in individuals with a history of congenital cataracts. These data document on the one hand brain mechanisms of functional recovery (related to theta oscillations) and on the other hand, for the first time, a sensitive period for the development of alpha oscillatory activity in humans. PMID:27080158

  19. Immunotoxicity of perfluorooctanoic acid and perfluorooctane sulfonate and the role of peroxisome proliferator-activated receptor alpha

    EPA Science Inventory

    Peroxisome proliferators, including perfluorooctanoic acid (PFOA), are environmentally widespread and persistent and multiple toxicities have been reported in experimental animals and humans. These compounds trigger biological activity via activation of the alpha isotype of pero...

  20. Biological activity of neosergeolide and isobrucein B (and two semi-synthetic derivatives) isolated from the Amazonian medicinal plant Picrolemma sprucei (Simaroubaceae).

    PubMed

    Silva, Ellen C C; Cavalcanti, Bruno C; Amorim, Rodrigo C N; Lucena, Jorcilene F; Quadros, Dulcimar S; Tadei, Wanderli P; Montenegro, Raquel C; Costa-Lotufo, Letícia V; Pessoa, Cláudia; Moraes, Manoel O; Nunomura, Rita C S; Nunomura, Sergio M; Melo, Marcia R S; Andrade-Neto, Valter F de; Silva, Luiz Francisco R; Vieira, Pedro Paulo R; Pohlit, Adrian M

    2009-02-01

    In the present study, in vitro techniques were used to investigate a range of biological activities of known natural quassinoids isobrucein B (1) and neosergeolide (2), known semi-synthetic derivative 1,12-diacetylisobrucein B (3), and a new semi-synthetic derivative, 12-acetylneosergeolide (4). These compounds were evaluated for general toxicity toward the brine shrimp species Artemia franciscana, cytotoxicity toward human tumour cells, larvicidal activity toward the dengue fever mosquito vector Aedes aegypti, haemolytic activity in mouse erythrocytes and antimalarial activity against the human malaria parasite Plasmodium falciparum. Compounds 1 and 2 exhibited the greatest cytotoxicity against all the tumor cells tested (IC50 = 5-27 microg/L) and against multidrug-resistant P. falciparum K1 strain (IC50 = 1.0-4.0 g/L) and 3 was only cytotoxic toward the leukaemia HL-60 strain (IC50 = 11.8 microg/L). Quassinoids 1 and 2 (LC50 = 3.2-4.4 mg/L) displayed greater lethality than derivative 4 (LC50 = 75.0 mg/L) toward A. aegypti larvae, while derivative 3 was inactive. These results suggest a novel application for these natural quassinoids as larvicides. The toxicity toward A. franciscana could be correlated with the activity in several biological models, a finding that is in agreement with the literature. Importantly, none of the studied compounds exhibited in vitro haemolytic activity, suggesting specificity of the observed cytotoxic effects. This study reveals the biological potential of quassinoids 1 and 2 and to a lesser extent their semi-synthetic derivatives for their in vitro antimalarial and cytotoxic activities.

  1. Cytotoxic and multidrug resistance reversal activity of a vegetable, 'Anastasia Red', a variety of sweet pepper.

    PubMed

    Motohashi, Noboru; Wakabayashi, Hidetsugu; Kurihara, Teruo; Takada, Yuko; Maruyama, Shichiro; Sakagami, Hiroshi; Nakashima, Hideki; Tani, Satoru; Shirataki, Yoshiaki; Kawase, Masami; Wolfard, Kristina; Molnár, Joseph

    2003-04-01

    The vegetable, Anastasia Red, Capsicum annuum L. var. angulosum Mill. (Solanaceae) was successively extracted with hexane, acetone, methanol and 70% methanol, and the extracts were further separated into a total of 21 fractions by silica gel or octadecylsilane (ODS) column chromatography. The biological activities of extracts and fractions were determined. These extracts showed relatively higher cytotoxic activity against two human oral tumor cell lines (HSC-2, HSG) than against normal human gingival fibroblasts (HGF), suggesting a tumor-specific cytotoxic activity. The cytotoxic activity of these extracts was enhanced by fractionation on silica gel [H2, A2, M1-M3] or ODS column chromatography [70M]. Several fractions [H2, H4, H5, A1, A2, A3, A5, A6, A7, M2] reversed the multidrug resistance (MDR) phenotype with L5178 mouse lymphoma T cells, more efficiently than (+/-)-verapamil. The extracts and fractions did not show any detectable anti-human immunodeficiency virus (HIV) or anti-Helicobacter pylori activity. Thus, this study suggests the effective and selective antitumor potential of 'Anastasia Red' of sweet pepper for further phytochemical and biological investigation. Copyright 2003 John Wiley & Sons, Ltd.

  2. Chemical composition and phagocyte immunomodulatory activity of Ferula iliensis essential oils.

    PubMed

    Özek, Gulmira; Schepetkin, Igor A; Utegenova, Gulzhakhan A; Kirpotina, Liliya N; Andrei, Spencer R; Özek, Temel; Başer, Kemal Hüsnü Can; Abidkulova, Karime T; Kushnarenko, Svetlana V; Khlebnikov, Andrei I; Damron, Derek S; Quinn, Mark T

    2017-06-01

    Essential oil extracts from Ferula iliensis have been used traditionally in Kazakhstan for treatment of inflammation and other illnesses. Because little is known about the biologic activity of these essential oils that contributes to their therapeutic properties, we analyzed their chemical composition and evaluated their phagocyte immunomodulatory activity. The main components of the extracted essential oils were ( E )-propenyl sec -butyl disulfide (15.7-39.4%) and ( Z )-propenyl sec -butyl disulfide (23.4-45.0%). Ferula essential oils stimulated [Ca 2+ ] i mobilization in human neutrophils and activated ROS production in human neutrophils and murine bone marrow phagocytes. Activation of human neutrophil [Ca 2+ ] i flux by Ferula essential oils was dose-dependently inhibited by capsazepine, a TRPV1 channel antagonist, indicating that TRPV1 channels mediate this response. Furthermore, Ferula essential oils stimulated Ca 2+ influx in TRPV1 channel-transfected HEK293 cells and desensitized the capsaicin-induced response in these cells. Additional molecular modeling with known TRPV1 channel agonists suggested that the active component is likely to be ( Z )-propenyl sec -butyl disulfide. Our results provide a cellular and molecular basis to explain at least part of the beneficial therapeutic properties of FEOs. © Society for Leukocyte Biology.

  3. Comparison of Biological Activity of Human Anti-Apical Membrane Antigen-1 Antibodies Induced by Natural Infection and Vaccination

    PubMed Central

    Miura, Kazutoyo; Zhou, Hong; Moretz, Samuel E.; Diouf, Ababacar; Thera, Mahamadou A; Dolo, Amagana; Doumbo, Ogobara; Malkin, Elissa; Diemert, David; Miller, Louis H.; Mullen, Gregory E.D.; Long, Carole A.

    2009-01-01

    Vaccines represent a significant potential means of decreasing global morbidity and mortality due to malaria. Clinical trials in the U.S. with Plasmodium falciparum Apical Membrane Antigen 1 (AMA1) showed that the vaccine induced biologically active antibodies judged by an in vitro parasite Growth Inhibition Assay (GIA). However, the same vaccine in Malian adults did not increase biological activity although it elevated ELISA titers. As GIA has been used to evaluate the biological activity of antibodies induced by blood-stage malarial vaccine candidates, we explored this discrepancy in this study. We affinity purified AMA1-specific antibodies from both US vaccinees and from non-vaccinated individuals living in a malaria-endemic area of Mali, and performed ELISA and GIA. Both AMA1-specifc antibodies induced by vaccination (US) and by natural infection (Mali) have comparable biological activity in GIA when the ELISA titer is normalized. However, a fraction of Malians’ IgG which did not bind to AMA1 protein (Mali-non-AMA1 IgG) reduced the biological activity of the AMA1 antibodies from US vaccinees; in contrast, US-non-AMA1 IgGs did not show a reduction of the biological activity. Further investigation revealed that the reduction was due to malaria-specific IgGs in the Mali-non-AMA1 IgGs. The fact that both US- and Mali-AMA1-specific antibodies showed comparable biological activity supports further development of AMA1-based vaccines. However, the reduction of biological activity of AMA1-specific antibody by other malaria-specific IgGs likely explains the limited effect on growth-inhibitory activity of antibodies induced by AMA1 vaccination in Malian adults and may complicate efforts to develop a blood-stage malaria vaccine. PMID:19050299

  4. Developing the Biological Condition Gradient (BCG), as a Tool for Describing the Condition of US Coral Reefs

    EPA Science Inventory

    Understanding effects of human activity on coral reefs requires knowing what characteristics constitute a high quality coral reef and identifying measurable criteria. The BCG is a conceptual model that describes how biological attributes of coral reefs change along a gradient of ...

  5. Dietary flavonoid aglycones and their glycosides: Which show better biological significance?

    PubMed

    Xiao, Jianbo

    2017-06-13

    The dietary flavonoids, especially their glycosides, are the most vital phytochemicals in diets and are of great general interest due to their diverse bioactivity. The natural flavonoids almost all exist as their O-glycoside or C-glycoside forms in plants. In this review, we summarized the existing knowledge on the different biological benefits and pharmacokinetic behaviors between flavonoid aglycones and their glycosides. Due to various conclusions from different flavonoid types and health/disease conditions, it is very difficult to draw general or universally applicable comments regarding the impact of glycosylation on the biological benefits of flavonoids. It seems as though O-glycosylation generally reduces the bioactivity of these compounds - this has been observed for diverse properties including antioxidant activity, antidiabetes activity, anti-inflammation activity, antibacterial, antifungal activity, antitumor activity, anticoagulant activity, antiplatelet activity, antidegranulating activity, antitrypanosomal activity, influenza virus neuraminidase inhibition, aldehyde oxidase inhibition, immunomodulatory, and antitubercular activity. However, O-glycosylation can enhance certain types of biological benefits including anti-HIV activity, tyrosinase inhibition, antirotavirus activity, antistress activity, antiobesity activity, anticholinesterase potential, antiadipogenic activity, and antiallergic activity. However, there is a lack of data for most flavonoids, and their structures vary widely. There is also a profound lack of data on the impact of C-glycosylation on flavonoid biological benefits, although it has been demonstrated that in at least some cases C-glycosylation has positive effects on properties that may be useful in human healthcare such as antioxidant and antidiabetes activity. Furthermore, there is a lack of in vivo data that would make it possible to make broad generalizations concerning the influence of glycosylation on the benefits of flavonoids for human health. It is possible that the effects of glycosylation on flavonoid bioactivity in vitro may differ from that seen in vivo. With in vivo (oral) treatment, flavonoid glycosides showed similar or even higher antidiabetes, anti-inflammatory, antidegranulating, antistress, and antiallergic activity than their flavonoid aglycones. Flavonoid glycosides keep higher plasma levels and have a longer mean residence time than those of aglycones. We should pay more attention to in vivo benefits of flavonoid glycosides, especially C-glycosides.

  6. Purification and Refolding of Overexpressed Human Basic Fibroblast Growth Factor in Escherichia coli

    PubMed Central

    Alibolandi, Mona; Mirzahoseini, Hasan

    2011-01-01

    This work describes the integration of expanded bed adsorption (EBA) and adsorptive protein refolding operations used to recover purified and biologically active human basic fibroblast growth factor from inclusion bodies expressed in E. coli. Insoluble overexpressed human basic fibroblast growth factor has been purified on CM Hyper Z matrix by expanded bed adsorption after isolation and solubilization in 8 M urea. The adsorption was made in expanded bed without clarification steps such as centrifugation. Column refolding was done by elimination of urea and elution with NaCl. The human basic fibroblast growth factor was obtained as a highly purified soluble monomer form with similar behavior in circular dichroism and fluorescence spectroscopy as native protein. A total of 92.52% of the available human basic fibroblast growth factor was recovered as biologically active and purified protein using the mentioned purification and refolding process. This resulted in the first procedure describing high-throughput purification and refolding of human basic fibroblast growth factor in one step and is likely to have the greatest benefit for proteins that tend to aggregate when refolded by dilution. PMID:21837279

  7. Tiptoeing to chromosome tips: facts, promises and perils of today's human telomere biology.

    PubMed

    Fajkus, J; Simícková, M; Maláska, J

    2002-04-29

    The past decade has witnessed an explosion of knowledge concerning the structure and function of chromosome terminal structures-telomeres. Today's telomere research has advanced from a pure descriptive approach of DNA and protein components to an elementary understanding of telomere metabolism, and now to promising applications in medicine. These applications include 'passive' ones, among which the use of analysis of telomeres and telomerase (a cellular reverse transcriptase that synthesizes telomeres) for cancer diagnostics is the best known. The 'active' applications involve targeted downregulation or upregulation of telomere synthesis, either to mortalize immortal cancer cells, or to rejuvenate mortal somatic cells and tissues for cellular transplantations, respectively. This article reviews the basic data on structure and function of human telomeres and telomerase, as well as both passive and active applications of human telomere biology.

  8. Sweat Gland Progenitors in Development, Homeostasis, and Wound Repair

    PubMed Central

    Lu, Catherine; Fuchs, Elaine

    2014-01-01

    The human body is covered with several million sweat glands. These tiny coiled tubular skin appendages produce the sweat that is our primary source of cooling and hydration of the skin. Numerous studies have been published on their morphology and physiology. Until recently, however, little was known about how glandular skin maintains homeostasis and repairs itself after tissue injury. Here, we provide a brief overview of sweat gland biology, including newly identified reservoirs of stem cells in glandular skin and their activation in response to different types of injuries. Finally, we discuss how the genetics and biology of glandular skin has advanced our knowledge of human disorders associated with altered sweat gland activity. PMID:24492848

  9. Proteome profile and biological activity of caprine, bovine and human milk fat globules.

    PubMed

    Spertino, Stefano; Cipriani, Valentina; De Angelis, Chiara; Giuffrida, Maria Gabriella; Marsano, Francesco; Cavaletto, Maria

    2012-04-01

    Upon combining bidimensional electrophoresis with monodimensional separation, a more comprehensive analysis of the milk fat globule membrane has been obtained. The proteomic profile of caprine milk fat globules revealed the presence of butyrophilin, lactadherin and perilipin as the major proteins, they were also associated to bovine and human milk fat globule membranes. Xanthine dehydrogenase/oxidase has been detected only in monodimensional gels. Biological activity of milk fat globules has been evaluated in Caco2-cells, as a representative model of the intestinal barrier. The increase of cell viability was indicative of a potential nutraceutical role for the whole milk fat globule, suggesting a possible employment in milk formula preparation.

  10. Marine Indole Alkaloids

    PubMed Central

    Netz, Natalie; Opatz, Till

    2015-01-01

    Marine indole alkaloids comprise a large and steadily growing group of secondary metabolites. Their diverse biological activities make many compounds of this class attractive starting points for pharmaceutical development. Several marine-derived indoles were found to possess cytotoxic, antineoplastic, antibacterial and antimicrobial activities, in addition to the action on human enzymes and receptors. The newly isolated indole alkaloids of marine origin since the last comprehensive review in 2003 are reported, and biological aspects will be discussed. PMID:26287214

  11. Biological Effects of Directed Energy

    NASA Astrophysics Data System (ADS)

    Dayton, Thomas; Beason, Charles; Hitt, M. K.; Rogers, Walter; Cook, Michael

    2002-11-01

    This Final Report summarizes the biological effects research conducted by Veridian Engineering personnel under contract F41624-96-C-9009 in support of the Air Force Research Laboratory's Radio Frequency Radiation Branch from April 1997 to April 2002. Biological effects research and consultation were provided in five major areas: Active Denial System (also known as Vehicle Mounted Active Denial System), radio frequency radiation (RFR) health and safety, non-lethal weapon biological effects research, the newly formed Joint Non-Lethal Weapons Human Effects Center of Excellence, and Biotechnology. The report is organized by research efforts within the major research areas, providing title, objective, a brief description, relevance to the AF or DoD, funding, and products.

  12. Interaction studies reveal specific recognition of an anti-inflammatory polyphosphorhydrazone dendrimer by human monocytes

    NASA Astrophysics Data System (ADS)

    Ledall, Jérémy; Fruchon, Séverine; Garzoni, Matteo; Pavan, Giovanni M.; Caminade, Anne-Marie; Turrin, Cédric-Olivier; Blanzat, Muriel; Poupot, Rémy

    2015-10-01

    Dendrimers are nano-materials with perfectly defined structure and size, and multivalency properties that confer substantial advantages for biomedical applications. Previous work has shown that phosphorus-based polyphosphorhydrazone (PPH) dendrimers capped with azabisphosphonate (ABP) end groups have immuno-modulatory and anti-inflammatory properties leading to efficient therapeutic control of inflammatory diseases in animal models. These properties are mainly prompted through activation of monocytes. Here, we disclose new insights into the molecular mechanisms underlying the anti-inflammatory activation of human monocytes by ABP-capped PPH dendrimers. Following an interdisciplinary approach, we have characterized the physicochemical and biological behavior of the lead ABP dendrimer with model and cell membranes, and compared this experimental set of data to predictive computational modelling studies. The behavior of the ABP dendrimer was compared to the one of an isosteric analog dendrimer capped with twelve azabiscarboxylate (ABC) end groups instead of twelve ABP end groups. The ABC dendrimer displayed no biological activity on human monocytes, therefore it was considered as a negative control. In detail, we show that the ABP dendrimer can bind both non-specifically and specifically to the membrane of human monocytes. The specific binding leads to the internalization of the ABP dendrimer by human monocytes. On the contrary, the ABC dendrimer only interacts non-specifically with human monocytes and is not internalized. These data indicate that the bioactive ABP dendrimer is recognized by specific receptor(s) at the surface of human monocytes.Dendrimers are nano-materials with perfectly defined structure and size, and multivalency properties that confer substantial advantages for biomedical applications. Previous work has shown that phosphorus-based polyphosphorhydrazone (PPH) dendrimers capped with azabisphosphonate (ABP) end groups have immuno-modulatory and anti-inflammatory properties leading to efficient therapeutic control of inflammatory diseases in animal models. These properties are mainly prompted through activation of monocytes. Here, we disclose new insights into the molecular mechanisms underlying the anti-inflammatory activation of human monocytes by ABP-capped PPH dendrimers. Following an interdisciplinary approach, we have characterized the physicochemical and biological behavior of the lead ABP dendrimer with model and cell membranes, and compared this experimental set of data to predictive computational modelling studies. The behavior of the ABP dendrimer was compared to the one of an isosteric analog dendrimer capped with twelve azabiscarboxylate (ABC) end groups instead of twelve ABP end groups. The ABC dendrimer displayed no biological activity on human monocytes, therefore it was considered as a negative control. In detail, we show that the ABP dendrimer can bind both non-specifically and specifically to the membrane of human monocytes. The specific binding leads to the internalization of the ABP dendrimer by human monocytes. On the contrary, the ABC dendrimer only interacts non-specifically with human monocytes and is not internalized. These data indicate that the bioactive ABP dendrimer is recognized by specific receptor(s) at the surface of human monocytes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03884g

  13. Chemical composition analysis and in vitro biological activities of ten essential oils in human skin cells.

    PubMed

    Han, Xuesheng; Beaumont, Cody; Stevens, Nicole

    2017-12-01

    Research on the biological effects of essential oils on human skin cells is scarce. In the current study, we primarily explored the biological activities of 10 essential oils (nine single and one blend) in a pre-inflamed human dermal fibroblast system that simulated chronic inflammation. We measured levels of proteins critical for inflammation, immune responses, and tissue-remodeling processes. The nine single oils were distilled from Citrus bergamia (bergamot), Coriandrum sativum (cilantro), Pelargonium graveolens (geranium), Helichrysum italicum (helichrysum), Pogostemon cablin (patchouli), Citrus aurantium (petitgrain), Santalum album (sandalwood), Nardostachys jatamansi (spikenard), and Cananga odorata (ylang ylang). The essential oil blend (commercial name Immortelle) is composed of oils from frankincense, Hawaiian sandalwood, lavender, myrrh, helichrysum, and rose. All the studied oils were significantly anti-proliferative against these cells. Furthermore, bergamot, cilantro, and spikenard essential oils primarily inhibited protein molecules related to inflammation, immune responses, and tissue-remodeling processes, suggesting they have anti-inflammatory and wound healing properties. Helichrysum and ylang ylang essential oils, as well as Immortelle primarily inhibited tissue remodeling-related proteins, suggesting a wound healing property. The data are consistent with the results of existing studies examining these oils in other models and suggest that the studied oils may be promising therapeutic candidates. Further research into their biological mechanisms of action is recommended. The differential effects of these essential oils suggest that they exert activities by different mechanisms or pathways, warranting further investigation. The chemical composition of these oils was analyzed using gas chromatography-mass spectrometry.

  14. Isolation, characterization and propagation of mitotically active germ cells from adult mouse and human ovaries

    PubMed Central

    Woods, Dori C; Tilly, Jonathan L

    2017-01-01

    Accruing evidence indicates that production of new oocytes (oogenesis) and their enclosure by somatic cells (folliculogenesis) are processes not limited to the perinatal period in mammals. Endpoints ranging from oocyte counts to genetic lineage tracing and transplantation experiments support a paradigm shift in reproductive biology involving active renewal of oocyte-containing follicles during postnatal life. The recent purification of mitotically active oocyte progenitor cells, termed female germline stem cells (fGSCs) or oogonial stem cells (OSCs), from mouse and human ovaries opens up new avenues for research into the biology and clinical utility of these cells. Here we detail methods for the isolation of mouse and human OSCs from adult ovarian tissue, cultivation of the cells after purification, and characterization of the cells before and after ex vivo expansion. The latter methods include analysis of germ cell–specific markers and in vitro oogenesis, as well as the use of intraovarian transplantation to test the oocyte-forming potential of OSCs in vivo. PMID:23598447

  15. Rapid and sensitive method for determination of withaferin-A in human plasma by HPLC.

    PubMed

    Patial, Pankaj; Gota, Vikram

    2011-02-01

    To develop and validate a rapid and sensitive high-performance liquid chromatographic method for determination of withaferin-A in human plasma. Withaferin-A, the active molecule of a traditional Indian herb, has demonstrated several biological activities in preclinical models. A validated bioassay is not available for its pharmacokinetic evaluation. The chromatographic system used a reverse-phase C18 column with UV-visible detection at 225 nm. The mobile phase consisted of water and acetonitrile applied in a gradient flow. Withaferin-A was extracted by simple protein-precipitation technique. The calibration curve was linear in the concentration range of 0.05-1.6 µg/ml. The method has the desired sensitivity to detect the plasma concentration range of withaferin-A that is likely to show biological activity based on in vitro data. This is the first HPLC method ever described for the estimation of withaferin-A in human plasma which could be applied for pharmacokinetic studies.

  16. Biologically Active Secondary Metabolites from the Fungi.

    PubMed

    Bills, Gerald F; Gloer, James B

    2016-11-01

    Many Fungi have a well-developed secondary metabolism. The diversity of fungal species and the diversification of biosynthetic gene clusters underscores a nearly limitless potential for metabolic variation and an untapped resource for drug discovery and synthetic biology. Much of the ecological success of the filamentous fungi in colonizing the planet is owed to their ability to deploy their secondary metabolites in concert with their penetrative and absorptive mode of life. Fungal secondary metabolites exhibit biological activities that have been developed into life-saving medicines and agrochemicals. Toxic metabolites, known as mycotoxins, contaminate human and livestock food and indoor environments. Secondary metabolites are determinants of fungal diseases of humans, animals, and plants. Secondary metabolites exhibit a staggering variation in chemical structures and biological activities, yet their biosynthetic pathways share a number of key characteristics. The genes encoding cooperative steps of a biosynthetic pathway tend to be located contiguously on the chromosome in coregulated gene clusters. Advances in genome sequencing, computational tools, and analytical chemistry are enabling the rapid connection of gene clusters with their metabolic products. At least three fungal drug precursors, penicillin K and V, mycophenolic acid, and pleuromutilin, have been produced by synthetic reconstruction and expression of respective gene clusters in heterologous hosts. This review summarizes general aspects of fungal secondary metabolism and recent developments in our understanding of how and why fungi make secondary metabolites, how these molecules are produced, and how their biosynthetic genes are distributed across the Fungi. The breadth of fungal secondary metabolite diversity is highlighted by recent information on the biosynthesis of important fungus-derived metabolites that have contributed to human health and agriculture and that have negatively impacted crops, food distribution, and human environments.

  17. Economics, human biology and inequality: A review of "puzzles" and recent contributions from a Deatonian perspective.

    PubMed

    Baten, Joerg

    2017-05-01

    The Nobel laureate Angus Deaton concentrated his work on puzzling developments and phenomena in economics. Puzzles are exciting elements in economics, because readers feel challenged by the question of how they can be solved. Among the puzzles analyzed by Deaton are: (1) Mortality increase of white, U.S. non-Hispanic men (2000 to today); (2) Why are height and income sometimes closely correlated, but not always?; (3) Height inequality among males and females; and (4) The Indian puzzle of declining consumption of calories during overall expenditure growth. This article reviews these "puzzles" and the main insights that Deaton derived from their discussion insofar as they pertain to the biological aspects of human development. I will focus on the field of this journal, Economics and Human Biology, in which Deaton has been very active over the last two decades. I will also document some of the responses by other scholars and their contributions to these puzzles, as they relate to the field of economics and human biology. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Extending human perception of electromagnetic radiation to the UV region through biologically inspired photochromic fuzzy logic (BIPFUL) systems.

    PubMed

    Gentili, Pier Luigi; Rightler, Amanda L; Heron, B Mark; Gabbutt, Christopher D

    2016-01-25

    Photochromic fuzzy logic systems have been designed that extend human visual perception into the UV region. The systems are founded on a detailed knowledge of the activation wavelengths and quantum yields of a series of thermally reversible photochromic compounds. By appropriate matching of the photochromic behaviour unique colour signatures are generated in response differing UV activation frequencies.

  19. Chemical mixtures and environmental effects: a pilot study to assess ecological exposure and effects in streams

    USGS Publications Warehouse

    Buxton, Herbert T.; Reilly, Timothy J.; Kuivila, Kathryn; Kolpin, Dana W.; Bradley, Paul M.; Villeneuve, Daniel L.; Mills, Marc A.

    2015-01-01

    Assessment and management of the risks of exposure to complex chemical mixtures in streams are priorities for human and environmental health organizations around the world. The current lack of information on the composition and variability of environmental mixtures and a limited understanding of their combined effects are fundamental obstacles to timely identification and prevention of adverse human and ecological effects of exposure. This report describes the design of a field-based study of the composition and biological activity of chemical mixtures in U.S. stream waters affected by a wide range of human activities and contaminant sources. The study is a collaborative effort by the U.S. Geological Survey and the U.S. Environmental Protection Agency. Scientists sampled 38 streams spanning 24 States and Puerto Rico. Thirty-four of the sites were located in watersheds impacted by multiple contaminant sources, including industrial and municipal wastewater discharges, crop and animal agricultural runoff, urban runoff, and other point and nonpoint contaminant sources. The remaining four sites were minimally development reference watersheds. All samples underwent comprehensive chemical and biological characterization, including sensitive and specific direct analysis for over 700 dissolved organic and inorganic chemicals and field parameters, identification of unknown contaminants (environmental diagnostics), and a variety of bioassays to evaluate biological activity and toxicity.

  20. Toxicity and biocompatibility of carbon nanoparticles.

    PubMed

    Fiorito, S; Serafino, A; Andreola, F; Togna, A; Togna, G

    2006-03-01

    A review is presented of the literature data concerning the effects induced by carbon nanoparticles on the biological environment and the importance of these effects in human and animal health. The discovery in 1985 of fullerenes, a novel carbon allotrope with a polygonal structure made up solely by 60 carbon atoms, and in 1991 of carbon nanotubes, thin carbon filaments (1-3 microm in length and 1-3 nm in diameter) with extraordinary mechanical properties, opened a wide field of activity in carbon research. During the last few years, practical applications of fullerenes as biological as well as pharmacological agents have been investigated. Various fullerene-based compounds were tested for biological activity, including antiviral, antioxidant, and chemiotactic activities. Nanotubes consist of carbon atoms arranged spirally to form concentric cylinders, that are perfect crystals and thinner than graphite whiskers. They are stronger than steel but very flexible and lightweight and transfer heat better than any other known material. These characteristics make them suitable for various potential applications such as super strong cables and tips for scanning probe microscopes, as well as biomedical devices for drug delivery, medical diagnostic, and therapeutic applications. The effects induced by these nanostructures on rat lung tissues, as well as on human skin and human macrophage and keratinocyte cells are presented.

  1. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity.

    PubMed

    Xu, Xiang; Zhao, Jingyue; Xu, Zhen; Peng, Baozhen; Huang, Qiuhua; Arnold, Eddy; Ding, Jianping

    2004-08-06

    Isocitrate dehydrogenases (IDHs) catalyze the oxidative decarboxylation of isocitrate to alpha-ketoglutarate, and regulation of the enzymatic activity of IDHs is crucial for their biological functions. Bacterial IDHs are reversibly regulated by phosphorylation of a strictly conserved serine residue at the active site. Eukaryotic NADP-dependent IDHs (NADP-IDHs) have been shown to have diverse important biological functions; however, their regulatory mechanism remains unclear. Structural studies of human cytosolic NADP-IDH (HcIDH) in complex with NADP and in complex with NADP, isocitrate, and Ca2+ reveal three biologically relevant conformational states of the enzyme that differ substantially in the structure of the active site and in the overall structure. A structural segment at the active site that forms a conserved alpha-helix in all known NADP-IDH structures assumes a loop conformation in the open, inactive form of HcIDH; a partially unraveled alpha-helix in the semi-open, intermediate form; and an alpha-helix in the closed, active form. The side chain of Asp279 of this segment occupies the isocitrate-binding site and forms hydrogen bonds with Ser94 (the equivalent of the phosphorylation site in bacterial IDHs) in the inactive form and chelates the metal ion in the active form. The structural data led us to propose a novel self-regulatory mechanism for HcIDH that mimics the phosphorylation mechanism used by the bacterial homologs, consistent with biochemical and biological data. This mechanism might be applicable to other eukaryotic NADP-IDHs. The results also provide insights into the recognition and specificity of substrate and cofactor by eukaryotic NADP-IDHs.

  2. [Evaluation of the total biological activity and allergenic composition of allergenic extracts].

    PubMed

    Lombardero, M; González, R; Duffort, O; Juan, F; Ayuso, R; Ventas, P; Cortés, C; Carreira, J

    1986-01-01

    In the present study, a complete procedure is presented in order to standardize allergenic extracts, the meaning of which is the measurement of the total allergenic activity and the determination of the allergenic composition. The measurement of the biological activity comprises 2 steps: Preparation of Reference Extracts and determination of their "in vivo" activity. Evaluation of the total allergenic activity of extracts for clinical use. Reference extracts were prepared from the main allergens and their "in vivo" biological activity was determined by a quantitative skin prick test in a sample of at least 30 allergic patients. By definition, the protein concentration of Reference Extract that produces, in the allergic population, a geometric mean wheal of 75 mm.2 has an activity of 100 biological units (BUs). The determination of the biological activity of a problem extract is made by RAST inhibition. The sample is compared with the corresponding Reference Extract by this technique and, from this comparison, it is possible to quantify the activity of the problem extract in biologic units (BUs) with clinical significance. Likewise, different techniques have been used to determine the allergenic composition of extracts. These techniques comprise 2 steps: Separation of the components of the extract. Identification of the components that bind specific human IgE. The separation of the components of the extract has been carried out by isoelectric focusing (IEF) and electrophoresis in the presence of sodium dodecyl sulphate (SDS-PAGE). In order to identify the allergenic components, an immunoblotting technique has been employed. The separated components in the IEF gel or SDS-PAGE gel are transferred to a nitrocellulose sheet and later on, this membrane is overlaid with a serum pool from allergic patients and a mouse monoclonal anti-human IgE, labelled with 125I. Finally, the autoradiography of the nitrocellulose membrane is obtained. In this way it is possible to compare the allergenic composition of an extract with the corresponding Reference Extract and so to employ for clinical use only those extracts with the right allergenic composition.

  3. Immunology & Human Health.

    ERIC Educational Resources Information Center

    Dawson, Jeffrey R.; And Others

    This monograph was designed for the high school biology curriculum. The first section reviews the major areas of importance in immunology. Section three contains six instructional activities for the high school classroom and the second section contains teacher's materials for those activities. The activities address for students some of the major…

  4. Marine Biology Activities. Ocean Related Curriculum Activities.

    ERIC Educational Resources Information Center

    Pauls, John

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  5. Advance on the Flavonoid C-glycosides and Health Benefits.

    PubMed

    Xiao, Jianbo; Capanoglu, Esra; Jassbi, Amir Reza; Miron, Anca

    2016-07-29

    The dietary flavonoids, especially their glycosides, are the most vital phytochemicals in diets and are of great general interest due to their diverse bioactivity. Almost all natural flavonoids exist as their O-glycoside or C-glycoside forms in plants. The dietary flavonoid C-glycosides have received less attention than their corresponding O-glycosides. This review summarizes current knowledge regarding flavonoid C-glycosides and their influence on human health. Among the flavonoid C-glycosides, flavone C-glycosides, especially vitexin, isoorientin, orientin, isovitexin and their multiglycosides are more frequently mentioned than others. Flavonoid C-monoglycosides are poorly absorbed in human beings with very few metabolites in urine and blood and are deglycosylated and degraded by human intestinal bacteria in colon. However, flavonoid C-multiglycosides are absorbed unchanged in the intestine and distributed to other tissues. Flavonoid C-glycosides showed significant antioxidant activity, anticancer and antitumor activity, hepatoprotective activity, anti-inflammatory activity, anti-diabetes activity, antiviral activity, antibacterial and antifungal activity, and other biological effects. It looks like that the C-glycosylflavonoids in most cases showed higher antioxidant and anti-diabetes potential than their corresponding O-glycosylflavonoids and aglycones. However, there is a lack of in vivo data on the biological benefits of flavonoid C-glycosides. It is necessary to investigate more on how flavonoid C-glycosides prevent and handle the diseases.

  6. Normal form from biological motion despite impaired ventral stream function.

    PubMed

    Gilaie-Dotan, S; Bentin, S; Harel, M; Rees, G; Saygin, A P

    2011-04-01

    We explored the extent to which biological motion perception depends on ventral stream integration by studying LG, an unusual case of developmental visual agnosia. LG has significant ventral stream processing deficits but no discernable structural cortical abnormality. LG's intermediate visual areas and object-sensitive regions exhibit abnormal activation during visual object perception, in contrast to area V5/MT+ which responds normally to visual motion (Gilaie-Dotan, Perry, Bonneh, Malach, & Bentin, 2009). Here, in three studies we used point light displays, which require visual integration, in adaptive threshold experiments to examine LG's ability to detect form from biological and non-biological motion cues. LG's ability to detect and discriminate form from biological motion was similar to healthy controls. In contrast, he was significantly deficient in processing form from non-biological motion. Thus, LG can rely on biological motion cues to perceive human forms, but is considerably impaired in extracting form from non-biological motion. Finally, we found that while LG viewed biological motion, activity in a network of brain regions associated with processing biological motion was functionally correlated with his V5/MT+ activity, indicating that normal inputs from V5/MT+ might suffice to activate his action perception system. These results indicate that processing of biologically moving form can dissociate from other form processing in the ventral pathway. Furthermore, the present results indicate that integrative ventral stream processing is necessary for uncompromised processing of non-biological form from motion. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Curcumin conjugated with PLGA potentiates sustainability, anti-proliferative activity and apoptosis in human colon carcinoma cells.

    PubMed

    Waghela, Bhargav N; Sharma, Anupama; Dhumale, Suhashini; Pandey, Shashibahl M; Pathak, Chandramani

    2015-01-01

    Curcumin, an ingredient of turmeric, exhibits a variety of biological activities such as anti-inflammatory, anti-atherosclerotic, anti-proliferative, anti-oxidant, anti-cancer and anti-metastatic. It is a highly pleiotropic molecule that inhibits cell proliferation and induces apoptosis in cancer cells. Despite its imperative biological activities, chemical instability, photo-instability and poor bioavailability limits its utilization as an effective therapeutic agent. Therefore, enhancing the bioavailability of curcumin may improve its therapeutic index for clinical setting. In the present study, we have conjugated curcumin with a biodegradable polymer Poly (D, L-lactic-co-glycolic acid) and evaluated its apoptotic potential in human colon carcinoma cells (HCT 116). The results show that curcumin-PLGA conjugate efficiently inhibits cell proliferation and cell survival in human colon carcinoma cells as compared to native curcumin. Additionally, curcumin conjugated with PLGA shows improved cellular uptake and exhibits controlled release at physiological pH as compared to native curcumin. The curcumin-PLGA conjugate efficiently activates the cascade of caspases and promotes intrinsic apoptotic signaling. Thus, the results suggest that conjugation potentiates the sustainability, anti-proliferative and apoptotic activity of curcumin. This approach could be a promising strategy to improve the therapeutic index of cancer therapy.

  8. Annual National Teachers Workshop on ’Human Biology’ Held in San Jose, California on 7-13 November 1995.

    DTIC Science & Technology

    1994-11-01

    Conference teacher program were to enable participating teachers to: (1) understand basic human anatomy and physiology content. (2) understand appropriate...teaching methodology for American Indian students. (3) engage in classroom activities that focus on human anatomy and physiology which can be transferred and applied to their own classrooms.

  9. Crabby Interactions: Fifth Graders Explore Human Impact on the Blue Crab Population

    ERIC Educational Resources Information Center

    Jeffery, Tonya D.; McCollough, Cherie A.; Moore, Kim

    2016-01-01

    This article describes a two-day lesson in which fifth-grade students took on the role of marine biology scientists, using their critical-thinking and problem-solving skills to explore human impact on the blue crab ecosystem. The purpose of "Crabby Interactions" was to help students understand the impact of human activities on the local…

  10. We Are Not Alone: The iMOP Initiative and Its Roles in a Biology- and Disease-Driven Human Proteome Project.

    PubMed

    Tholey, Andreas; Taylor, Nicolas L; Heazlewood, Joshua L; Bendixen, Emøke

    2017-12-01

    Mapping of the human proteome has advanced significantly in recent years and will provide a knowledge base to accelerate our understanding of how proteins and protein networks can affect human health and disease. However, providing solutions to human health challenges will likely fail if insights are exclusively based on studies of human samples and human proteomes. In recent years, it has become evident that human health depends on an integrated understanding of the many species that make human life possible. These include the commensal microorganisms that are essential to human life, pathogens, and food species as well as the classic model organisms that enable studies of biological mechanisms. The Human Proteome Organization (HUPO) initiative on multiorganism proteomes (iMOP) works to support proteome research undertaken on nonhuman species that remain widely under-studied compared with the progress in human proteome research. This perspective argues the need for further research on multiple species that impact human life. We also present an update on recent progress in model organisms, microbiota, and food species, address the emerging problem of antibiotics resistance, and outline how iMOP activities could lead to a more inclusive approach for the human proteome project (HPP) to better support proteome research aimed at improving human health and furthering knowledge on human biology.

  11. A Multi-Level Model of Moral Thinking Based on Neuroscience and Moral Psychology

    ERIC Educational Resources Information Center

    Jeong, Changwoo; Han, Hye Min

    2011-01-01

    Developments in neurobiology are providing new insights into the biological and physical features of human thinking, and brain-activation imaging methods such as functional magnetic resonance imaging have become the most dominant research techniques to approach the biological part of thinking. With the aid of neurobiology, there also have been…

  12. Considerations on Directive 98/8 of the European Commission - the biocide directive.

    PubMed

    Patryn, Rafał; Jarosz, Mirosław J; Włoszczak-Szubzda, Anna; Sak, Jarosław; Pawlikowski, Jakub

    2011-01-01

    Nowadays, versatile human activity requires the development of technologies in the chemical and biological industries that ultimately enable an increase in human activity, and help create the living conditions in the domain of human civilization. Increasing this activity very frequently requires the implementation of new technologies concerning the active elimination of numerous threats and obstacles which are found in the human and natural environment. The concept of so-called biocidal products has been introduced into the European legislation as long as ten years ago, defining them as various types of 'chemical substances or microorganisms which can deter, render harmless, or exert a controlling eff ect on any harmful organism, by chemical or biological means'. They can be added to other materials (typically liquids) to protect them against biological infestation and growth. Biocidal products - due to their specificity, toxicity and composition - create a serious risk for human and animal life and health, as well as for the natural environment, it is therefore fully justified to have legal regulations concerning such biocides. Because biocidal products are intended to kill living organisms, and as such, many biocidal products pose a significant risk to human health and welfare, and have significant adverse eff ects on the natural environment. Great care is required when handling biocides and appropriate protective clothing and equipment should be used. Currently, Directive 98/8/EC is a comprehensive set of legal regulations concerning biocidal products, their specificity, principles relating to their placing on the market, and guidelines for their control. It is worth emphasizing that Directive 98/8/EC implements the clampdown on poisoning cases with biocides, the duty of which was passed to the so-called Centres of Consultation and Toxicological Information. These centres provide round-the-clock (24-hour) medical consultation and assistance in cases of poisonings with these products. The presented study constitutes an in-depth presentation and analysis of the European law concerning biocides and the current regulations applying to them.

  13. Protein Hydrolysates and Biopeptides: Production, Biological Activities, and Applications in Foods and Health Benefits. A Review.

    PubMed

    Nasri, M

    In recent years, a great deal of interest has been expressed regarding the production, characterization, and applications of protein hydrolysates and food-derived biopeptides due to their numerous beneficial health effects. In this regard, research is mainly focused on investigating the therapeutic potential of these natural compounds. Based on their amino acids composition, sequences, hydrophobicity, and length, peptides released from food proteins, beyond their nutritional properties, can exhibit various biological activities including antihypertensive, antioxidative, antithrombotic, hypoglycemic, hypocholesterolemic, and antibacterial activities among others. Protein hydrolysates are essentially produced by enzymatic hydrolysis of whole protein sources by appropriate proteolytic enzymes under controlled conditions, followed by posthydrolysis processing to isolate desired and potent bioactive peptides from a complex mixture of active and inactive peptides. Therefore, because of their human health potential and safety profiles, protein hydrolysates and biopeptides may be used as ingredients in functional foods and pharmaceuticals to improve human health and prevent diseases. In this review, we have focused on the major variables influencing the enzymatic process of protein hydrolysates production. The biological properties of protein hydrolysates will be described as well as their applications in foods and health benefits. © 2017 Elsevier Inc. All rights reserved.

  14. Genetic and pharmacological suppression of oncogenic mutations in RAS genes of yeast and humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schafer, W.R.; Sterne, R.; Thorner, J.

    1989-07-28

    The activity of an oncoprotein and the secretion of a pheromone can be affected by an unusual protein modification. Specifically, posttranslational modification of yeast-a-factor and Ras protein requires an intermediate of the cholesterol biosynthetic pathway. This modification is apparently essential for biological activity. Studies of yeast mutants blocked in sterol biosynthesis demonstrated that the membrane association and biological activation of the yeast Ras2 protein require mevalonate, a precursor of sterols and other isoprenes such as farnesyl pyrophosphate. Furthermore, drugs that inhibit mevalonate biosynthesis blocked the in vivo action of oncogenic derivatives of human Ras protein in the Xenopus oocyte assay.more » The same drugs and mutations also prevented the posttranslational processing and secretion of yeast a-factor, a peptide that is farnesylated. Thus, the mevalonate requirement for Ras activation may indicate that attachment of a mevalonate-derived (isoprenoid) moiety to Ras proteins is necessary for membrane association and biological function. These observations establish a connection between the cholesterol biosynthetic pathway and transformation by the ras oncogene and offer a novel pharmacological approach to investigating, and possibly controlling, ras-mediated malignant transformations. 50 refs., 3 figs., 3 tabs.« less

  15. Isolation of biologically-active exosomes from human plasma.

    PubMed

    Muller, Laurent; Hong, Chang-Sook; Stolz, Donna B; Watkins, Simon C; Whiteside, Theresa L

    2014-09-01

    Effects of exosomes present in human plasma on immune cells have not been examined in detail. Immunological studies with plasma-derived exosomes require their isolation by procedures involving ultracentrifugation. These procedures were largely developed using supernatants of cultured cells. To test biologic activities of plasma-derived exosomes, methods are necessary that ensure adequate recovery of exosome fractions free of contaminating larger vesicles, cell fragments and protein/nucleic acid aggregates. Here, an optimized method for exosome isolation from human plasma/serum specimens of normal controls (NC) or cancer patients and its advantages and pitfalls are described. To remove undesirable plasma-contaminating components, ultrafiltration of differentially-centrifuged plasma/serum followed by size-exclusion chromatography prior to ultracentrifugation facilitated the removal of contaminants. Plasma or serum was equally acceptable as a source of exosomes based on the recovered protein levels (in μg protein/mL plasma) and TEM image quality. Centrifugation on sucrose density gradients led to large exosome losses. Fresh plasma was the best source of morphologically-intact exosomes, while the use of frozen/thawed plasma decreased exosome purity but not their biologic activity. Treatments of frozen plasma with DNAse, RNAse or hyaluronidase did not improve exosome purity and are not recommended. Cancer patients' plasma consistently yielded more isolated exosomes than did NCs' plasma. Cancer patients' exosomes also mediated higher immune suppression as evidenced by decreased CD69 expression on responder CD4+ T effector cells. Thus, the described procedure yields biologically-active, morphologically-intact exosomes that have reasonably good purity without large protein losses and can be used for immunological, biomarker and other studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Patterns of fMRI activity dissociate overlapping functional brain areas that respond to biological motion.

    PubMed

    Peelen, Marius V; Wiggett, Alison J; Downing, Paul E

    2006-03-16

    Accurate perception of the actions and intentions of other people is essential for successful interactions in a social environment. Several cortical areas that support this process respond selectively in fMRI to static and dynamic displays of human bodies and faces. Here we apply pattern-analysis techniques to arrive at a new understanding of the neural response to biological motion. Functionally defined body-, face-, and motion-selective visual areas all responded significantly to "point-light" human motion. Strikingly, however, only body selectivity was correlated, on a voxel-by-voxel basis, with biological motion selectivity. We conclude that (1) biological motion, through the process of structure-from-motion, engages areas involved in the analysis of the static human form; (2) body-selective regions in posterior fusiform gyrus and posterior inferior temporal sulcus overlap with, but are distinct from, face- and motion-selective regions; (3) the interpretation of region-of-interest findings may be substantially altered when multiple patterns of selectivity are considered.

  17. Update and future perspectives of a thymic biological response modifier (Thymomodulin).

    PubMed

    Cazzola, P; Mazzanti, P; Kouttab, N M

    1987-01-01

    Thymomodulin (Ellem Industria Farmaceutica spa, Milan, Italy) is a calf thymus acid lysate with immunomodulating activities. It is composed of several peptides with a molecular weight range of 1-10kD. Extensive studies in animal systems showed that Thymomodulin exhibited no, or very little toxicity even when used at high doses. Studies done in vitro and in vivo demonstrated that Thymomodulin is a biologically active compound which regulates the maturation of human and murine pre T lymphocytes, as well as modulate the functions of apparently mature human and animal B and T lymphocytes. It was observed that Thymomodulin can promote myelopoiesis as demonstrated by an increase of granulocyte-macrophage colonies in agar. Although additional studies to examine its target cell lineage are required, it appears that Thymomodulin exhibits specificity toward T cells. Therefore, enhancement of other cell lineage functions by Thymomodulin may be indirect, and mainly due to its effect on T cells. Of major importance is to note that Thymomodulin is prepared in a manner which allows it to maintain its biological activity when administered orally.

  18. Biological properties of dehydrated human amnion/chorion composite graft: implications for chronic wound healing.

    PubMed

    Koob, Thomas J; Rennert, Robert; Zabek, Nicole; Massee, Michelle; Lim, Jeremy J; Temenoff, Johnna S; Li, William W; Gurtner, Geoffrey

    2013-10-01

    Human amnion/chorion tissue derived from the placenta is rich in cytokines and growth factors known to promote wound healing; however, preservation of the biological activities of therapeutic allografts during processing remains a challenge. In this study, PURION® (MiMedx, Marietta, GA) processed dehydrated human amnion/chorion tissue allografts (dHACM, EpiFix®, MiMedx) were evaluated for the presence of growth factors, interleukins (ILs) and tissue inhibitors of metalloproteinases (TIMPs). Enzyme-linked immunosorbent assays (ELISA) were performed on samples of dHACM and showed quantifiable levels of the following growth factors: platelet-derived growth factor-AA (PDGF-AA), PDGF-BB, transforming growth factor α (TGFα), TGFβ1, basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), placental growth factor (PLGF) and granulocyte colony-stimulating factor (GCSF). The ELISA assays also confirmed the presence of IL-4, 6, 8 and 10, and TIMP 1, 2 and 4. Moreover, the relative elution of growth factors into saline from the allograft ranged from 4% to 62%, indicating that there are bound and unbound fractions of these compounds within the allograft. dHACM retained biological activities that cause human dermal fibroblast proliferation and migration of human mesenchymal stem cells (MSCs) in vitro. An in vivo mouse model showed that dHACM when tested in a skin flap model caused mesenchymal progenitor cell recruitment to the site of implantation. The results from both the in vitro and in vivo experiments clearly established that dHACM contains one or more soluble factors capable of stimulating MSC migration and recruitment. In summary, PURION® processed dHACM retains its biological activities related to wound healing, including the potential to positively affect four distinct and pivotal physiological processes intimately involved in wound healing: cell proliferation, inflammation, metalloproteinase activity and recruitment of progenitor cells. This suggests a paracrine mechanism of action for dHACM when used for wound healing applications. ©2013 The Authors. International Wound Journal published by John Wiley & Sons Ltd and Medicalhelplines.com Inc.

  19. The Default Mode Network Differentiates Biological From Non-Biological Motion.

    PubMed

    Dayan, Eran; Sella, Irit; Mukovskiy, Albert; Douek, Yehonatan; Giese, Martin A; Malach, Rafael; Flash, Tamar

    2016-01-01

    The default mode network (DMN) has been implicated in an array of social-cognitive functions, including self-referential processing, theory of mind, and mentalizing. Yet, the properties of the external stimuli that elicit DMN activity in relation to these domains remain unknown. Previous studies suggested that motion kinematics is utilized by the brain for social-cognitive processing. Here, we used functional MRI to examine whether the DMN is sensitive to parametric manipulations of observed motion kinematics. Preferential responses within core DMN structures differentiating non-biological from biological kinematics were observed for the motion of a realistically looking, human-like avatar, but not for an abstract object devoid of human form. Differences in connectivity patterns during the observation of biological versus non-biological kinematics were additionally observed. Finally, the results additionally suggest that the DMN is coupled more strongly with key nodes in the action observation network, namely the STS and the SMA, when the observed motion depicts human rather than abstract form. These findings are the first to implicate the DMN in the perception of biological motion. They may reflect the type of information used by the DMN in social-cognitive processing. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. 40 CFR 725.255 - Information to be included in the TERA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., geographical, physical, chemical, and biological features, proximity to human habitation or activity, and... of the activity. (ii) Mitigation and emergency procedures. (iii) Measures to detect and control... and Development Activities § 725.255 Information to be included in the TERA. (a) To review a TERA, EPA...

  1. 40 CFR 725.255 - Information to be included in the TERA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., geographical, physical, chemical, and biological features, proximity to human habitation or activity, and... of the activity. (ii) Mitigation and emergency procedures. (iii) Measures to detect and control... and Development Activities § 725.255 Information to be included in the TERA. (a) To review a TERA, EPA...

  2. 40 CFR 725.255 - Information to be included in the TERA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., geographical, physical, chemical, and biological features, proximity to human habitation or activity, and... of the activity. (ii) Mitigation and emergency procedures. (iii) Measures to detect and control... and Development Activities § 725.255 Information to be included in the TERA. (a) To review a TERA, EPA...

  3. 40 CFR 725.255 - Information to be included in the TERA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., geographical, physical, chemical, and biological features, proximity to human habitation or activity, and... of the activity. (ii) Mitigation and emergency procedures. (iii) Measures to detect and control... and Development Activities § 725.255 Information to be included in the TERA. (a) To review a TERA, EPA...

  4. Reduced physical activity and risk of chronic disease: the biology behind the consequences.

    PubMed

    Booth, Frank W; Laye, Matthew J; Lees, Simon J; Rector, R Scott; Thyfault, John P

    2008-03-01

    This review focuses on three preserved, ancient, biological mechanisms (physical activity, insulin sensitivity, and fat storage). Genes in humans and rodents were selected in an environment of high physical activity that favored an optimization of aerobic metabolic pathways to conserve energy for a potential, future food deficiency. Today machines and other technologies have replaced much of the physical activity that selected optimal gene expression for energy metabolism. Distressingly, the negative by-product of a lack of ancient physical activity levels in our modern civilization is an increased risk of chronic disease. We have been employing a rodent wheel-lock model to approximate the reduction in physical activity in humans from the level under which genes were selected to a lower level observed in modern daily functioning. Thus far, two major changes have been identified when rats undertaking daily, natural voluntary running on wheels experience an abrupt cessation of the running (wheel lock model). First, insulin sensitivity in the epitrochlearis muscle of rats falls to sedentary values after 2 days of the cessation of running, confirming the decline to sedentary values in whole-body insulin sensitivity when physically active humans stop high levels of daily exercise. Second, visceral fat increases within 1 week after rats cease daily running, confirming the plasticity of human visceral fat. This review focuses on the supporting data for the aforementioned two outcomes. Our primary goal is to better understand how a physically inactive lifestyle initiates maladaptations that cause chronic disease.

  5. Development of novel therapeutic drugs in humans from plant antimicrobial peptides.

    PubMed

    da Rocha Pitta, Maira Galdino; da Rocha Pitta, Marina Galdino; Galdino, Suely Lins

    2010-05-01

    All living organisms, ranging from microorganisms to plants and mammals, have evolved mechanisms to actively defend themselves against pathogen attack. A wide range of biological activities have been attributed to plant antimicrobial peptides (AMPs) including growth inhibitory effects on a broad range of fungi, Gram-positive and Gram-negative bacteria, viruses, neoplasic cells and parasitic protozoa. Classes of AMPs, their mechanisms of action, biological activity, and cytotoxicity towards host cells are discussed. A particular focus regards AMP candidates with potential for use in defense against biological warfare agents. This field is young, but provides additional stimulus to consideration of these molecules as a new class of therapeutic agents and promises to revolutionize treatment of many infectious diseases.

  6. Composition and biological activities of hydrolyzable tannins of fruits of Phyllanthus emblica.

    PubMed

    Yang, Baoru; Liu, Pengzhan

    2014-01-22

    Fruits of emblic leafflower have been used as food and traditional medicine in Asia. A wide range of biological activities have been shown in modern research suggesting potential of the fruits as healthy food and raw material for bioactive ingredients of food. Hydrolyzable tannins are among the major bioactive components of the fruits. Mucic acid gallate, mucic acid lactone gallate, monogalloylglucose, gallic acid, digalloylglucose, putranjivain A, galloyl-HHDP-glucose, elaeocarpusin, and chebulagic acid are the most abundant hydrolyzable tannins. The compositional profiles of tannins in the fruits vary depending on the cultivars as well as ripening stages. Fruits and tannin-rich extracts of fruits have shown antidiabetic, antimicrobial, anti-inflammatory, and immune-regulating activities in vitro and in animal studies. The fruits and fruit extracts have manifested protective effects on organs/tissues from damages induced by chemicals, stresses, and aging in animal models. The fruits and fruit extracts have potential in inhibiting the growth of cancer cells and reducing DNA damage induced by chemicals and radiation. Antioxidative activities are likely among the mechanisms of the biological activities and physiological effects. Human intervention/clinical studies are needed to investigate the bioavailability and metabolism of the tannins and to substantiate the health benefits in humans. Emblic leafflower may be a potential raw material for natural food preservatives.

  7. Phytochemical Profile and Evaluation of the Biological Activities of Essential Oils Derived from the Greek Aromatic Plant Species Ocimum basilicum, Mentha spicata, Pimpinella anisum and Fortunella margarita.

    PubMed

    Fitsiou, Eleni; Mitropoulou, Gregoria; Spyridopoulou, Katerina; Tiptiri-Kourpeti, Angeliki; Vamvakias, Manolis; Bardouki, Haido; Panayiotidis, Mihalis Ι; Galanis, Alex; Kourkoutas, Yiannis; Chlichlia, Katerina; Pappa, Aglaia

    2016-08-16

    Natural products, known for their medicinal properties since antiquity, are continuously being studied for their biological properties. In the present study, we analyzed the composition of the volatile preparations of essential oils of the Greek plants Ocimum basilicum (sweet basil), Mentha spicata (spearmint), Pimpinella anisum (anise) and Fortunella margarita (kumquat). GC/MS analyses revealed that the major components in the essential oil fractions, were carvone (85.4%) in spearmint, methyl chavicol (74.9%) in sweet basil, trans-anethole (88.1%) in anise, and limonene (93.8%) in kumquat. We further explored their biological potential by studying their antimicrobial, antioxidant and antiproliferative activities. Only the essential oils from spearmint and sweet basil demonstrated cytotoxicity against common foodborne bacteria, while all preparations were active against the fungi Saccharomyces cerevisiae and Aspergillus niger. Antioxidant evaluation by DPPH and ABTS radical scavenging activity assays revealed a variable degree of antioxidant potency. Finally, their antiproliferative potential was tested against a panel of human cancer cell lines and evaluated by using the sulforhodamine B (SRB) assay. All essential oil preparations exhibited a variable degree of antiproliferative activity, depending on the cancer model used, with the most potent one being sweet basil against an in vitro model of human colon carcinoma.

  8. Ancient cellular structures and modern humans: change of survival strategies before prolonged low solar activity period

    NASA Astrophysics Data System (ADS)

    Ragulskaya, Mariya; Rudenchik, Evgeniy; Gromozova, Elena; Voychuk, Sergei; Kachur, Tatiana

    The study of biotropic effects of modern space weather carries the information about the rhythms and features of adaptation of early biological systems to the outer space influence. The influence of cosmic rays, ultraviolet waves and geomagnetic field on early life has its signs in modern biosphere processes. These phenomena could be experimentally studied on present-day biological objects. Particularly inorganic polyphosphates, so-called "fossil molecules", attracts special attention as the most ancient molecules which arose in inanimate nature and have been accompanying biological objects at all stages of evolution. Polyphosphates-containing graves of yeast's cells of Saccharomyces cerevisiae strain Y-517, , from the Ukrainian Collection of Microorganisms was studied by daily measurements during 2000-2013 years. The IZMIRAN daily data base of physiological parameters dynamics during 2000-2013 years were analyzed simultaneously (25 people). The analysis showed significant simultaneous changes of the statistical parameters of the studied biological systems in 2004 -2006. The similarity of simultaneous changes of adaptation strategies of human organism and the cell structures of Saccharomyces cerevisiae during the 23-24 cycles of solar activity are discussed. This phenomenon could be due to a replacement of bio-effective parameters of space weather during the change from 23rd to 24th solar activity cycle and nonstandard geophysical peculiarities of the 24th solar activity cycle. It could be suggested that the observed similarity arose as the optimization of evolution selection of the living systems in expectation of probable prolonged period of low solar activity (4-6 cycles of solar activity).

  9. Comparative Biology of Decellularized Lung Matrix: Implications of Species Mismatch in Regenerative Medicine

    PubMed Central

    Balestrini, Jenna L.; Gard, Ashley L.; Gerhold, Kristin A.; Wilcox, Elise C.; Liu, Angela; Schwan, Jonas; Le, Andrew V.; Baevova, Pavlina; Dimitrievska, Sashka; Zhao, Liping; Sundaram, Sumati; Sun, Huanxing; Rittié, Laure; Dyal, Rachel; Broekelmann, Tom J.; Mecham, Robert P.; Schwartz, Martin A.; Niklason, Laura E.; White, Eric S.

    2016-01-01

    Lung engineering is a promising technology, relying on re-seeding of either human or xenographic decellularized matrices with patient-derived pulmonary cells. Little is known about the species-specificity of decellularization in various models of lung regeneration, or if species dependent cell-matrix interactions exist within these systems. Therefore decellularized scaffolds were produced from rat, pig, primate and human lungs, and assessed by measuring residual DNA, mechanical properties, and key matrix proteins (collagen, elastin, glycosaminoglycans). To study intrinsic matrix biologic cues, human endothelial cells were seeded onto acellular slices and analyzed for markers of cell health and inflammation. Despite similar levels of collagen after decellularization, human and primate lungs were stiffer, contained more elastin, and retained fewer glycosaminoglycans than pig or rat lung scaffolds. Human endothelial cells seeded onto human and primate lung tissue demonstrated less expression of vascular cell adhesion molecule and activation of nuclear factor-κB compared to those seeded onto rodent or porcine tissue. Adhesion of endothelial cells was markedly enhanced on human and primate tissues. Our work suggests that species-dependent biologic cues intrinsic to lung extracellular matrix could have profound effects on attempts at lung regeneration. PMID:27344365

  10. The biological activities and chemical composition of Pereskia species (Cactaceae)--a review.

    PubMed

    Pinto, Nícolas de Castro Campos; Scio, Elita

    2014-09-01

    The exploration of nature as a source of sustainable, novel bioactive substances continues to grow as natural products play a significant role in the search for new therapeutic and agricultural agents. In this context, plants of the genus Pereskia (Cactaceae) have been studied for their biological activities, and are evolving as an interesting subject in the search for new, bioactive compounds. These species are commonly used as human foodstuffs and in traditional medicine to treat a variety of diseases. This review focuses on the bioactivity and chemical composition of the genus Pereskia, and aims to stimulate further studies on the chemistry and biological potential of the genus.

  11. An ancestral host defence peptide within human β-defensin 3 recapitulates the antibacterial and antiviral activity of the full-length molecule

    PubMed Central

    Nigro, Ersilia; Colavita, Irene; Sarnataro, Daniela; Scudiero, Olga; Zambrano, Gerardo; Granata, Vincenzo; Daniele, Aurora; Carotenuto, Alfonso; Galdiero, Stefania; Folliero, Veronica; Galdiero, Massimiliano; Urbanowicz, Richard A.; Ball, Jonathan K.; Salvatore, Francesco; Pessi, Antonello

    2015-01-01

    Host defence peptides (HDPs) are critical components of innate immunity. Despite their diversity, they share common features including a structural signature, designated “γ-core motif”. We reasoned that for each HDPs evolved from an ancestral γ-core, the latter should be the evolutionary starting point of the molecule, i.e. it should represent a structural scaffold for the modular construction of the full-length molecule, and possess biological properties. We explored the γ-core of human β-defensin 3 (HBD3) and found that it: (a) is the folding nucleus of HBD3; (b) folds rapidly and is stable in human serum; (c) displays antibacterial activity; (d) binds to CD98, which mediates HBD3 internalization in eukaryotic cells; (e) exerts antiviral activity against human immunodeficiency virus and herpes simplex virus; and (f) is not toxic to human cells. These results demonstrate that the γ-core within HBD3 is the ancestral core of the full-length molecule and is a viable HDP per se, since it is endowed with the most important biological features of HBD3. Notably, the small, stable scaffold of the HBD3 γ-core can be exploited to design disease-specific antimicrobial agents. PMID:26688341

  12. Seeing by touch: evaluation of a soft biologically-inspired artificial fingertip in real-time active touch.

    PubMed

    Assaf, Tareq; Roke, Calum; Rossiter, Jonathan; Pipe, Tony; Melhuish, Chris

    2014-02-07

    Effective tactile sensing for artificial platforms remains an open issue in robotics. This study investigates the performance of a soft biologically-inspired artificial fingertip in active exploration tasks. The fingertip sensor replicates the mechanisms within human skin and offers a robust solution that can be used both for tactile sensing and gripping/manipulating objects. The softness of the optical sensor's contact surface also allows safer interactions with objects. High-level tactile features such as edges are extrapolated from the sensor's output and the information is used to generate a tactile image. The work presented in this paper aims to investigate and evaluate this artificial fingertip for 2D shape reconstruction. The sensor was mounted on a robot arm to allow autonomous exploration of different objects. The sensor and a number of human participants were then tested for their abilities to track the raised perimeters of different planar objects and compared. By observing the technique and accuracy of the human subjects, simple but effective parameters were determined in order to evaluate the artificial system's performance. The results prove the capability of the sensor in such active exploration tasks, with a comparable performance to the human subjects despite it using tactile data alone whereas the human participants were also able to use proprioceptive cues.

  13. Immunostimulatory Activity of the Cytokine-Based Biologic, IRX-2, on Human Papillomavirus-Exposed Langerhans Cells

    PubMed Central

    Da Silva, Diane M.; Woodham, Andrew W.; Naylor, Paul H.; Egan, James E.; Berinstein, Neil L.

    2016-01-01

    Langerhans cells (LCs) are the antigen-presenting cells of the epithelial layer and are responsible for initiating immune responses against skin and mucosa-invading viruses. Human papillomavirus (HPV)-mediated suppression of LC function is a crucial mechanism of HPV immune evasion, which can lead to persistent infection and development of several human cancers, including cervical, anal, and head and neck cancers. The cell-derived cytokine-based biologic, IRX-2, consists of multiple well-defined cytokines and is broadly active on various immune cell subsets. In this study, we investigated primary human LC activation after exposure to HPV16, followed by treatment with IRX-2 in vitro, and evaluated their subsequent ability to induce HPV16-specific T cells. In contrast to its activity on dendritic cells, HPV16 alone is not sufficient to induce phenotypic and functional activation of LCs. However, IRX-2 induces a significant upregulation of antigen presentation and costimulatory molecules, T helper 1 (Th1)-associated cytokine release, and chemokine-directed migration of LCs pre-exposed to HPV16. Furthermore, LCs treated with IRX-2 after HPV16 exposure induced CD8+ T-cell responses against specific HLA-A*0201-binding HPV16 T-cell epitopes. The present study suggests that IRX-2 is an attractive immunomodulator for assisting the immune response in eradication of HPV-infected cells, thereby potentially preventing HPV-induced cancers. PMID:26653678

  14. Immunostimulatory Activity of the Cytokine-Based Biologic, IRX-2, on Human Papillomavirus-Exposed Langerhans Cells.

    PubMed

    Da Silva, Diane M; Woodham, Andrew W; Naylor, Paul H; Egan, James E; Berinstein, Neil L; Kast, W Martin

    2016-05-01

    Langerhans cells (LCs) are the antigen-presenting cells of the epithelial layer and are responsible for initiating immune responses against skin and mucosa-invading viruses. Human papillomavirus (HPV)-mediated suppression of LC function is a crucial mechanism of HPV immune evasion, which can lead to persistent infection and development of several human cancers, including cervical, anal, and head and neck cancers. The cell-derived cytokine-based biologic, IRX-2, consists of multiple well-defined cytokines and is broadly active on various immune cell subsets. In this study, we investigated primary human LC activation after exposure to HPV16, followed by treatment with IRX-2 in vitro, and evaluated their subsequent ability to induce HPV16-specific T cells. In contrast to its activity on dendritic cells, HPV16 alone is not sufficient to induce phenotypic and functional activation of LCs. However, IRX-2 induces a significant upregulation of antigen presentation and costimulatory molecules, T helper 1 (Th1)-associated cytokine release, and chemokine-directed migration of LCs pre-exposed to HPV16. Furthermore, LCs treated with IRX-2 after HPV16 exposure induced CD8(+) T-cell responses against specific HLA-A*0201-binding HPV16 T-cell epitopes. The present study suggests that IRX-2 is an attractive immunomodulator for assisting the immune response in eradication of HPV-infected cells, thereby potentially preventing HPV-induced cancers.

  15. 3-Acetyl-8-methoxy-2[H]-chromen-2-one derived Schiff bases as potent antiproliferative agents: Insight into the influence of 4(N)-substituents on the in vitro biological activity

    NASA Astrophysics Data System (ADS)

    Kalaiarasi, G.; Rex Jeya Rajkumar, S.; Aswini, G.; Dharani, S.; Fronczek, Frank R.; Prabhakaran, R.

    2018-07-01

    A series of 3-acetyl-8-methoxycoumarin appended thiosemicarbazones (1-4) was prepared from the reaction of 3-acetyl-8-methoxycoumarin with 4(N)-substituted thiosemicarbazides in a view of ascertaining their biological properties with the change of N-terminal substitution in the thiosemicarbazide moiety. Comprehensive characterization was brought about by various spectral and analytical methods. The molecular structures of all the compounds were determined by single crystal X-ray diffraction analysis. Binding studies with Calf thymus DNA (CT-DNA) and proteins such as Bovine Serum Albumin (BSA) and Human Serum Albumin (HSA) indicated an intercalative mode of binding with DNA and static quenching mechanism with proteins. The compounds cleaved plasmid DNA (pBR322) and acted well as free radical scavengers. A good spectrum of antimicrobial activity was observed against four bacterial and five fungal pathogens. The compounds exhibited profound antiproliferative activity on MCF-7 (human breast cancer) and A549 (human lung carcinoma) cell lines. Assay on human normal keratinocyte cell line HaCaT showed that the compounds were non-toxic to normal cells.

  16. Defining functional DNA elements in the human genome

    PubMed Central

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P.; Bernstein, Bradley E.; Kundaje, Anshul; Marinov, Georgi K.; Ward, Lucas D.; Birney, Ewan; Crawford, Gregory E.; Dekker, Job; Dunham, Ian; Elnitski, Laura L.; Farnham, Peggy J.; Feingold, Elise A.; Gerstein, Mark; Giddings, Morgan C.; Gilbert, David M.; Gingeras, Thomas R.; Green, Eric D.; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D.; Myers, Richard M.; Pazin, Michael J.; Ren, Bing; Stamatoyannopoulos, John A.; Weng, Zhiping; White, Kevin P.; Hardison, Ross C.

    2014-01-01

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. PMID:24753594

  17. Benzoin Schiff Bases: Design, Synthesis, and Biological Evaluation as Potential Antitumor Agents.

    PubMed

    Sabbah, Dima A; Al-Tarawneh, Fatima; Talib, Wamidh H; Sweidan, Kamal; Bardaweel, Sanaa K; Al-Shalabi, Eveen; Zhong, Haizhen A; Abu Sheikha, Ghassan; Abu Khalaf, Reema; Mubarak, Mohammad S

    2018-04-12

    Phosphoinositide 3-kinase α (PI3Kα) is an attractive target for anticancer drug design. Target compounds were designed to probe the significance of alcohol and imine moieties tailored on a benzoin scaffold to better understand the structure activity relation (SAR) and improve their biological activity as anticancer compounds. Chemical synthesis of the targeted compounds, biological evaluation tests against human colon adenocarcinoma (HCT-116), breast adenocarcinoma (MCF-7), and breast carcinoma (T47D) cell lines, as well as Glide docking studies were employed in this investigation. A new series of 1,2-diphenylimino ethanol was successfully synthesized and characterized by means of FT-IR, HRMS, NMR, and by elemental analysis. Biological screening revealed that the newly synthesized compounds inhibit PI3Kα activity in human colon adenocarcinoma (HCT-116), breast adenocarcinoma (MCF-7), and breast carcinoma (T47D) cell lines. Results additionally showed that these compounds exhibit selective antiproliferative activity, induce apoptosis, and suppress the VEGF production. Compounds 2b, 2d, and 2g displayed promising inhibitory activity in HCT-116 suggesting that hydrophobic and/or hydrogen bond-acceptor mediate(s) ligand-receptor interaction on o- and m-positions. Furthermore, compounds 2g, 2i, 2j, and 2h, bearing hydrophobic moiety on m- and p-position, exerted high antiproliferative activity in T47D and MCF-7 cells, whereas compound 2e showed selectivity against T47D and MCF-7. Molecular docking studies against PI3Kα and caspase-3 demonstrated a strong correlation between the predicted binding affinity (ΔGobsd) and IC50 values of prepared compounds for the caspase-3 model, implying that the cellulous inhibitory activity was caspase-3-dependent. Moreover, Glide docking against PI3Kα identified Ser774, Lys802, E849, V851, and Asp933 as key binding residues. The series exerted a potential PI3Kα inhibitory activity in human carcinoma cell lines expressing PI3Kα. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Diverse Molecular Targets for Chalcones with Varied Bioactivities

    PubMed Central

    Zhou, Bo; Xing, Chengguo

    2015-01-01

    Natural or synthetic chalcones with different substituents have revealed a variety of biological activities that may benefit human health. The underlying mechanisms of action, particularly with respect to the direct cellular targets and the modes of interaction with the targets, have not been rigorously characterized, which imposes challenges to structure-guided rational development of therapeutic agents or chemical probes with acceptable target-selectivity profile. This review summarizes literature evidence on chalcones’ direct molecular targets in the context of their biological activities. PMID:26798565

  19. Configural processing of biological motion in human superior temporal sulcus.

    PubMed

    Thompson, James C; Clarke, Michele; Stewart, Tennille; Puce, Aina

    2005-09-28

    Observers recognize subtle changes in the movements of others with relative ease. However, tracking a walking human is computationally difficult, because the degree of articulation is high and scene changes can temporarily occlude parts of the moving figure. Here, we used functional magnetic resonance imaging to test the hypothesis that the superior temporal sulcus (STS) uses form cues to aid biological movement tracking. The same 10 healthy subjects detected human gait changes in a walking mannequin in two experiments. In experiment 1, we tested the effects of configural change and occlusion. The walking mannequin was presented intact or with the limbs and torso apart in visual space and either unoccluded or occluded by a set of vertical white bars. In experiment 2, the effects of inversion and occlusion were investigated, using an intact walking mannequin. Subjects reliably detected gait changes under all stimulus conditions. The intact walker produced significantly greater activation in the STS, inferior temporal sulcus (ITS), and inferior parietal cortex relative to the apart walker, regardless of occlusion. Interestingly, STS and ITS activation to the upright versus inverted walker was not significantly different. In contrast, superior parietal lobule and parieto-occipital cortex showed greater activation to the apart relative to intact walker. In the absence of an intact body configuration, parietal cortex activity increased to the independent movements of the limbs and torso. Our data suggest that the STS may use a body configuration-based model to process biological movement, thus forming a representation that survives partial occlusion.

  20. The effect of UV-Vis to near-infrared light on the biological response of human dental pulp cells

    NASA Astrophysics Data System (ADS)

    Hadis, Mohammed A.; Cooper, Paul R.; Milward, Michael R.; Gorecki, Patricia; Tarte, Edward; Churm, James; Palin, William M.

    2015-03-01

    Human dental pulp cells (DPCs) were isolated and cultured in phenol-red-free α-MEM/10%-FCS at 37ºC in 5% CO2. DPCs at passages 2-4 were seeded (150μL; 25,000 cell/ml) in black 96-microwell plates with transparent bases. 24h post-seeding, cultures were irradiated using a bespoke LED array consisting of 60 LEDs (3.5mW/cm2) of wavelengths from 400-900nm (10 wavelengths, n=6) for time intervals of up to 120s. Metabolic and mitochondrial activity was assessed via a modified MTT assay. Statistical differences were identified using multi-factorial analysis of variance and post-hoc Tukey tests (P=0.05). The biological responses were significantly dependent upon post-irradiation incubation period, wavelength and exposure time (P<0.05). At shorter wavelength irradiances (400nm), a reduction in mitochondrial activity was detected although not significant, whereas longer wavelength irradiances (at 633, 656, 781 and 799nm) significantly increased mitochondrial activity (P<0.05) in DPCs. At these wavelengths, mitochondrial activity was generally increased for exposures less than 90s with 30s exposures being most effective with 24h incubation. Increasing the post-irradiation incubation period increased the measured response and identified further significance (P<0.05). The biological responses of human DPCs were wavelength, exposure-time and incubation period dependent. The optimisation of irradiation parameters will be key to the successful application of LLLT in dentistry.

  1. Peptide processing and biology in human disease.

    PubMed

    Kovac, Suzana; Shulkes, Arthur; Baldwin, Graham S

    2009-02-01

    To describe recent advances in the processing of gastrointestinal hormones, and the consequences for human disease of mutations in the enzymes involved. Although gastrointestinal prohormones were long regarded as devoid of biological activity, recent data indicate that the prohormones for both gastrin and gastrin-releasing peptide are bioactive, through different receptors from the mature hormones. Mutations in the family of prohormone convertases responsible for the initial steps in the processing of gastrointestinal hormones are associated with several different pathophysiological conditions in humans. Human mutational studies, when taken together with the phenotypes observed in mice deficient in the prohormone convertases, emphasize the crucial importance of the processing enzymes in mammalian biology. Although the phenotypes may often be ascribed to defective production of a mature hormone or growth factor, the recognition that the precursors are independently bioactive suggests that the increased precursor concentrations may also contribute to the symptoms. The observation that the precursors often act through different receptors from the mature hormones may permit the development of precursor-selective antagonists for therapeutic use.

  2. Bioengineered 2'-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines.

    PubMed

    Weichert, Stefan; Jennewein, Stefan; Hüfner, Eric; Weiss, Christel; Borkowski, Julia; Putze, Johannes; Schroten, Horst

    2013-10-01

    Human milk oligosaccharides help to prevent infectious diseases in breastfed infants. Larger scale testing, particularly in animal models and human clinical studies, is still limited due to shortened availability of more complex oligosaccharides. The purpose of this study was to evaluate 2'-fucosyllactose (2'-FL) and 3-fucosyllactose (3-FL) synthesized by whole-cell biocatalysis for their biological activity in vitro. Therefore, we have tested these oligosaccharides for their inhibitory potential of pathogen adhesion in two different human epithelial cell lines. 2'-FL could inhibit adhesion of Campylobacter jejuni, enteropathogenic Escherichia coli, Salmonella enterica serovar fyris, and Pseudomonas aeruginosa to the intestinal human cell line Caco-2 (reduction of 26%, 18%, 12%, and 17%, respectively), as could be shown for 3-FL (enteropathogenic E coli 29%, P aeruginosa 26%). Furthermore, adherence of P aeruginosa to the human respiratory epithelial cell line A549 was significantly inhibited by 2'-FL and 3-FL (reduction of 24% and 23%, respectively). These results confirm the biological and functional activity of biotechnologically synthesized human milk oligosaccharides. Mass-tailored human milk oligosaccharides could be used in the future to supplement infant formula ingredients or as preventatives to reduce the impact of infectious diseases. © 2013 Elsevier Inc. All rights reserved.

  3. Stochastic cycle selection in active flow networks

    NASA Astrophysics Data System (ADS)

    Woodhouse, Francis; Forrow, Aden; Fawcett, Joanna; Dunkel, Jorn

    2016-11-01

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such non-equilibrium networks. By connecting concepts from lattice field theory, graph theory and transition rate theory, we show how topology controls dynamics in a generic model for actively driven flow on a network. Through theoretical and numerical analysis we identify symmetry-based rules to classify and predict the selection statistics of complex flow cycles from the network topology. Our conceptual framework is applicable to a broad class of biological and non-biological far-from-equilibrium networks, including actively controlled information flows, and establishes a new correspondence between active flow networks and generalized ice-type models.

  4. Human skin gene expression: Natural (trans) resveratrol versus five resveratrol analogs for dermal applications.

    PubMed

    Lephart, Edwin D; Andrus, Merritt B

    2017-09-01

    Resveratrol (RV) is a polyphenolic compound naturally produced by plants. Polyphenolic compounds incorporated into medicinal products are beneficial but, RV is rapidly metabolized with an associated decline in biological activity. This study tested RV as the standard and compared five structurally modified RV analogs: butyrate, isobutyrate, palmitoate, acetate, and diacetate (to improve functionality) at 1% concentration(s) for 24 h in epiderm full thickness cultures by gene array/qPCR mRNA analysis. When silent mating type information regulation 2 homolog 1, extracellular elements (collagen1A1, 3A1, 4A1; elastin, tissue inhibitor of matrix metalloproteinase 1, fibrillin 1 laminin beta1 and matrix metalloproteinase 9), anti-aging and aging genes, inflammatory biomarkers (interleukin-1A [IL1A], IL1R2, IL-6 and IL-8), nerve growth factor, and the antioxidants (proliferating cell nuclear antigen, catalase, superoxide dismutase and metallothionein 1H/2H) were evaluated, ranking each from highest-to-lowest for gene expression: butyrate > isobutyrate > diacetate > acetate > palmitoate. This study showed that the butyrate and isobutyrate analogs are more biologically active compared to resveratrol and have potential use in topical applications to improve dermal and other health applications. Impact statement Resveratrol has been reported to have a wide variety of health benefits but its rapid metabolism especially after oral ingestion results in very low bioavailability. Notably, the first human skin gene expression study of resveratrol was not published until 2014. The purpose of this study was to determine if increased stability and biological activity could be obtained by modifying the chemical structure of natural (trans) resveratrol and quantifying human gene expression by qPCR of skin biomarkers that enhance dermal health. Five resveratrol analogs were synthesized that increased their lipophilic index to enhance tissue penetration and augment biological activities on the measured parameters that expand the current knowledge of structure/function relationships. The butyrate and isobutyrate modifications displayed gene expression values significantly above resveratrol and suggest that oral application of these and potentially other resveratrol analogs may yield similar results to improve stability and biological activity to benefit/address various disorders/diseases.

  5. Physical Activity: A Tool for Improving Health (Part 3--Recommended Amounts of Physical Activity for Optimal Health)

    ERIC Educational Resources Information Center

    Gallaway, Patrick J.; Hongu, Nobuko

    2016-01-01

    By promoting physical activities and incorporating them into their community-based programs, Extension professionals are improving the health of individuals, particularly those with limited resources. This article is the third in a three-part series describing the benefits of physical activity for human health: (1) biological health benefits of…

  6. Toxicity and metabolism of nitroalkanes and substituted nitroalkanes

    USDA-ARS?s Scientific Manuscript database

    A series of low molecular weight nitro- containing compounds has recently been discovered to have a variety of biological activities including the reduction of anaerobic methane production in ruminant animals and activity against economically important human pathogens, including Salmonella sp. and s...

  7. The Human HPLC Column

    ERIC Educational Resources Information Center

    Frantz, Kyle

    2007-01-01

    Initiatives in education reform emphasize inquiry-based active learning and real-world relevance to increase science literacy nationwide. Active teaching and learning approaches yield rapid intellectual development and may increase interest and motivation to learn science. Incorporating the topic of drug use with neuroscience, biology, psychology,…

  8. Synthesis and biological activities of fluorinated chalcone derivatives.

    PubMed

    Nakamura, Chika; Kawasaki, Nobuhide; Miyataka, Hideki; Jayachandran, Ezhuthachan; Kim, In Ho; Kirk, Kenneth L; Taguchi, Takeo; Takeuchi, Yoshio; Hori, Hitoshi; Satoh, Toshio

    2002-03-01

    We have designed and synthesized new 5-lipoxygenase inhibitors, fluorinated 3,4-dihydroxychalcones, and evaluated their biological activities with respect to antiperoxidation activity and in vitro antitumor activities. All fluorinated chalcones tested showed 5-lipoxygenase inhibition on rat basophilic leukemia-1 (RBL-1) cells and inhibitory action on Fe(3+)-ADP induced NADPH-dependent lipid peroxidation in rat liver microsomes. The potencies were comparable or better to that of the lead 3,4-dihydroxychalcone. 6-Fluoro-3,4-dihydroxy-2',4'-dimethoxy chalcone (7) was the most effective compound in the in vitro assay using a human cancer cell line panel (HCC panel) consisting of 39 systems.

  9. Teachers' Perceptions on the Changes in the Curriculum and Exit Examinations for Biology and Human Biology

    ERIC Educational Resources Information Center

    Kruger, Mirko; Won, Mihye; Treagust, David F.

    2013-01-01

    In the age of educational accountability, national and statewide measures are assumed to secure and improve the educational quality. However, educators often wonder how much a new accountability measure may improve the actual teaching and learning practices when the agents of change (teachers) are not active participants of such educational…

  10. New, national bottom-up estimate for tree-based biological nitrogen fixation in the US

    EPA Science Inventory

    Nitrogen is a limiting nutrient in many ecosystems, but is also a chief pollutant from human activity. Quantifying human impacts on the nitrogen cycle and investigating natural ecosystem nitrogen cycling both require an understanding of the magnitude of nitrogen inputs from biolo...

  11. Extramural Activities, Fiscal Year 1969.

    ERIC Educational Resources Information Center

    National Inst. of Child Health and Human Development (NIH), Bethesda, MD.

    The Adult Development and Aging Branch of the National Institute of Child Health and Human Development supports research and training relevant to the biological and behavioral changes that occur in humans with increasing age from the adult years through maturity and old age. Supported are research projects, training projects, special and…

  12. On the Sustainability and Management of a Model System with Ecological, Macroeconomic, and Legal Components

    EPA Science Inventory

    Sustainability is essentially about insuring that human existence can be indefinitely supported by the biological system of the Earth at an appropriate level of civilization. Hence, one of the most fundamental questions in sustainability is the extent to which human activities a...

  13. Biological Motion Task Performance Predicts Superior Temporal Sulcus Activity

    ERIC Educational Resources Information Center

    Herrington, John D.; Nymberg, Charlotte; Schultz, Robert T.

    2011-01-01

    Numerous studies implicate superior temporal sulcus (STS) in the perception of human movement. More recent theories hold that STS is also involved in the "understanding" of human movement. However, almost no studies to date have associated STS function with observable variability in action understanding. The present study directly associated STS…

  14. A network-based multi-target computational estimation scheme for anticoagulant activities of compounds.

    PubMed

    Li, Qian; Li, Xudong; Li, Canghai; Chen, Lirong; Song, Jun; Tang, Yalin; Xu, Xiaojie

    2011-03-22

    Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. This article proposes a network-based multi-target computational estimation method for anticoagulant activities of compounds by combining network efficiency analysis with scoring function from molecular docking.

  15. A Network-Based Multi-Target Computational Estimation Scheme for Anticoagulant Activities of Compounds

    PubMed Central

    Li, Canghai; Chen, Lirong; Song, Jun; Tang, Yalin; Xu, Xiaojie

    2011-01-01

    Background Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. Methodology We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. Conclusions This article proposes a network-based multi-target computational estimation method for anticoagulant activities of compounds by combining network efficiency analysis with scoring function from molecular docking. PMID:21445339

  16. Trace elements during primordial plexiform network formation in human cerebral organoids

    PubMed Central

    Sartore, Rafaela C.; Cardoso, Simone C.; Lages, Yury V.M.; Paraguassu, Julia M.; Stelling, Mariana P.; Madeiro da Costa, Rodrigo F.; Guimaraes, Marilia Z.; Pérez, Carlos A.

    2017-01-01

    Systematic studies of micronutrients during brain formation are hindered by restrictions to animal models and adult post-mortem tissues. Recently, advances in stem cell biology have enabled recapitulation of the early stages of human telencephalon development in vitro. In the present work, we analyzed cerebral organoids derived from human pluripotent stem cells by synchrotron radiation X-ray fluorescence in order to measure biologically valuable micronutrients incorporated and distributed into the exogenously developing brain. Our findings indicate that elemental inclusion in organoids is consistent with human brain tissue and involves P, S, K, Ca, Fe and Zn. Occurrence of different concentration gradients also suggests active regulation of elemental transmembrane transport. Finally, the analysis of pairs of elements shows interesting elemental interaction patterns that change from 30 to 45 days of development, suggesting short- or long-term associations, such as storage in similar compartments or relevance for time-dependent biological processes. These findings shed light on which trace elements are important during human brain development and will support studies aimed to unravel the consequences of disrupted metal homeostasis for neurodevelopmental diseases, including those manifested in adulthood. PMID:28194309

  17. Bivalent Carbohydrate Binding Is Required for Biological Activity of Clitocybe nebularis Lectin (CNL), the N,N′-Diacetyllactosediamine (GalNAcβ1–4GlcNAc, LacdiNAc)-specific Lectin from Basidiomycete C. nebularis*

    PubMed Central

    Pohleven, Jure; Renko, Miha; Magister, Špela; Smith, David F.; Künzler, Markus; Štrukelj, Borut; Turk, Dušan; Kos, Janko; Sabotič, Jerica

    2012-01-01

    Lectins are carbohydrate-binding proteins that exert their biological activity by binding to specific cell glycoreceptors. We have expressed CNL, a ricin B-like lectin from the basidiomycete Clitocybe nebularis in Escherichia coli. The recombinant lectin, rCNL, agglutinates human blood group A erythrocytes and is specific for the unique glycan N,N′-diacetyllactosediamine (GalNAcβ1–4GlcNAc, LacdiNAc) as demonstrated by glycan microarray analysis. We here describe the crystal structures of rCNL in complex with lactose and LacdiNAc, defining its interactions with the sugars. CNL is a homodimeric lectin, each of whose monomers consist of a single ricin B lectin domain with its β-trefoil fold and one carbohydrate-binding site. To study the mode of CNL action, a nonsugar-binding mutant and nondimerizing monovalent CNL mutants that retain carbohydrate-binding activity were prepared. rCNL and the mutants were examined for their biological activities against Jurkat human leukemic T cells and the hypersensitive nematode Caenorhabditis elegans mutant strain pmk-1. rCNL was toxic against both, although the mutants were inactive. Thus, the bivalent carbohydrate-binding property of homodimeric CNL is essential for its activity, providing one of the rare pieces of evidence that certain activities of lectins are associated with their multivalency. PMID:22298779

  18. Functional Analogy in Human Metabolism: Enzymes with Different Biological Roles or Functional Redundancy?

    PubMed Central

    Piergiorge, Rafael Mina; de Miranda, Antonio Basílio; Catanho, Marcos

    2017-01-01

    Abstract Since enzymes catalyze almost all chemical reactions that occur in living organisms, it is crucial that genes encoding such activities are correctly identified and functionally characterized. Several studies suggest that the fraction of enzymatic activities in which multiple events of independent origin have taken place during evolution is substantial. However, this topic is still poorly explored, and a comprehensive investigation of the occurrence, distribution, and implications of these events has not been done so far. Fundamental questions, such as how analogous enzymes originate, why so many events of independent origin have apparently occurred during evolution, and what are the reasons for the coexistence in the same organism of distinct enzymatic forms catalyzing the same reaction, remain unanswered. Also, several isofunctional enzymes are still not recognized as nonhomologous, even with substantial evidence indicating different evolutionary histories. In this work, we begin to investigate the biological significance of the cooccurrence of nonhomologous isofunctional enzymes in human metabolism, characterizing functional analogous enzymes identified in metabolic pathways annotated in the human genome. Our hypothesis is that the coexistence of multiple enzymatic forms might not be interpreted as functional redundancy. Instead, these enzymatic forms may be implicated in distinct (and probably relevant) biological roles. PMID:28854631

  19. Collections of human biological samples for scientific purposes. Why do current regulation need to be clarified and how?

    PubMed

    Deplanque, Dominique; Birraux, Guillaume; Bertoye, Pierre-Henri; Postaire, Eric

    2009-01-01

    The collection of human biological samples is of major importance for future research in France and Europe. In recent years, new regulatory procedures have been designed to monitor these activities; but they are somewhat complex and some clarifications are needed. The law needs also to be amended. The definition of biobanking activities should be clarified, and regulatory procedures, including consultation of the Ethics Committee, declarations to the Ministry of Research and the protection of personal data, should be simplified. It is also of great importance to correctly define the modalities in which Biobanks are granted their authorisations. The role of Ethics Committees regarding the evaluation of information and the consent procedures should also be clarified, particularly when samples from children are used, or when the samples are used for genetic analyses. As well as scientific and public health aspects, the storage of human biological samples may also have important economic consequences. It is hence crucial to adapt the procedure for submitting patents, particularly when several public or private partners are working together. The possible changes to both French and European laws planned in the next months would be an ideal time to introduce these changes.

  20. A comprehensive experiment for molecular biology: Determination of single nucleotide polymorphism in human REV3 gene using PCR-RFLP.

    PubMed

    Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui

    2017-07-08

    Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of DNA polymerase ζ and SNPs in this gene are associated with altered susceptibility to cancer. This newly designed experiment is composed of three parts, including genomic DNA extraction, gene amplification by PCR, and genotyping by RFLP. By combining these activities, the students are not only able to learn a series of biotechniques in molecular biology, but also acquire the ability to link the learned knowledge with practical applications. This comprehensive experiment will help the medical students improve the conceptual understanding of SNP and the technical understanding of SNP detection. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):299-304, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  1. Discovery of Curcumin, a Component of the Golden Spice, and Its Miraculous Biological Activities

    PubMed Central

    Gupta, Subash C; Patchva, Sridevi; Koh, Wonil; Aggarwal, Bharat B

    2012-01-01

    SUMMARY 1. Curcumin is the active ingredient of the dietary spice turmeric and has been consumed for medicinal purposes for thousands of years. Modern science has shown that curcumin modulates various signaling molecules, including inflammatory molecules, transcription factors, enzymes, protein kinases, protein reductases, carrier proteins, cell survival proteins, drug resistance proteins, adhesion molecules, growth factors, receptors, cell-cycle regulatory proteins, chemokines, DNA, RNA, and metal ions. 2. Because of this polyphenol's potential to modulate multiple signaling molecules, it has been reported to possess pleiotropic activities. First shown to have anti-bacterial activity in 1949, curcumin has since been shown to have anti-inflammatory, anti-oxidant, pro-apoptotic, chemopreventive, chemotherapeutic, anti-proliferative, wound healing, anti-nociceptive, anti-parasitic, and anti-malarial properties as well. Animal studies have suggested that curcumin may be active against a wide range of human diseases, including diabetes, obesity, neurologic and psychiatric disorders, and cancer, as well as chronic illnesses affecting the eyes, lungs, liver, kidneys, and gastrointestinal and cardiovascular systems. 3. Although many clinical trials evaluating curcumin's safety and efficacy against human ailments have already been completed, others are still ongoing. Moreover, curcumin is used as a supplement in several countries, including India, Japan, the United States, Thailand, China, Korea, Turkey, South Africa, Nepal, and Pakistan. Although inexpensive, apparently well tolerated, and potentially active, curcumin has yet not been approved for treatment of any human disease. 4. In this article, we discuss the discovery and key biological activities of curcumin, with a particular emphasis on its activities at the molecular, cellular, animal, and human levels. PMID:22118895

  2. Extracellular production of an intact and biologically active human growth hormone by the Bacillus brevis system.

    PubMed

    Kajino, T; Saito, Y; Asami, O; Yamada, Y; Hirai, M; Udata, S

    1997-10-01

    The characteristic features of the Bacillus brevis system are very high productivity of heterologous proteins and very low extracellular protease activity. However, degradation of some heterologous proteins, especially mammalian proteins, can be observed and resulted in a lowering of protein productivity. By using a mutant expressing low levels of proteases and the addition of EDTA to the medium, intact human growth hormone (hGH) was successfully produced with the B. brevis system. Signal peptide modification with higher basicity in the amino terminal region and higher hydrophobicity in the middle region brought about a twelve-fold increase in hGH production. The hGH yield was further elevated to 240 mg L-1 by optimization of culture conditions. Thus, biologically active and mature hGH can be efficiently produced directly in the medium with the B. brevis system.

  3. Recombinant production of enzymatically active male contraceptive drug target hTSSK2 - Localization of the TSKS domain phosphorylated by TSSK2.

    PubMed

    Shetty, Jagathpala; Sinville, Rondedrick; Shumilin, Igor A; Minor, Wladek; Zhang, Jianhai; Hawkinson, Jon E; Georg, Gunda I; Flickinger, Charles J; Herr, John C

    2016-05-01

    The testis-specific serine/threonine kinase 2 (TSSK2) has been proposed as a candidate male contraceptive target. Development of a selective inhibitor for this kinase first necessitates the production of highly purified, soluble human TSSK2 and its substrate, TSKS, with high yields and retention of biological activity for crystallography and compound screening. Strategies to produce full-length, soluble, biologically active hTSSK2 in baculovirus expression systems were tested and refined. Soluble preparations of TSSK2 were purified by immobilized-metal affinity chromatography (IMAC) followed by gel filtration chromatography. The biological activities of rec.hTSSK2 were verified by in vitro kinase and mobility shift assays using bacterially produced hTSKS (isoform 2), casein, glycogen synthase peptide (GS peptide) and various TSKS peptides as target substrates. Purified recombinant hTSSK2 showed robust kinase activity in the in vitro kinase assay by phosphorylating hTSKS isoform 2 and casein. The ATP Km values were similar for highly and partially purified fractions of hTSSK2 (2.2 and 2.7 μM, respectively). The broad spectrum kinase inhibitor staurosporine was a potent inhibitor of rec.hTSSK2 (IC50 = 20 nM). In vitro phosphorylation experiments carried out with TSKS (isoform 1) fragments revealed particularly strong phosphorylation of a recombinant N-terminal region representing aa 1-150 of TSKS, indicating that the N-terminus of human TSKS is phosphorylated by human TSSK2. Production of full-length enzymatically active recombinant TSSK2 kinase represents the achievement of a key benchmark for future discovery of TSSK inhibitors as male contraceptive agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Exploring the biological activities of Echeveria leucotricha.

    PubMed

    Martínez Ruiz, María G; Gómez-Velasco, Anaximandro; Juárez, Zaida N; Hernández, Luis R; Bach, Horacio

    2013-01-01

    Echeveria leucotricha J. A. Purpus (Crassulaceae) was evaluated for its potential antibacterial, antifungal, antiparasitic, cytotoxic and anti-inflammatory bioactivities. Aerial parts were extracted with hexane, methanol and chloroform, and fractionated accordingly. Biological activity was assessed in vitro against five Gram-positive and four Gram-negative bacteria, four human pathogenic fungi and the protozoan Leishmania donovani. Extracts and fractions showing bioactivities were further investigated for their cytotoxic activities on macrophages. Results show that several extracts and fractions exhibited significant antibacterial, antifungal, and antiparasitic activities, but no anti-inflammatory activity was recorded. Here, we report for the first time, and to the best of our knowledge, these bioactivities, which suggest that this plant can be used in the traditional Mexican medicine.

  5. Tau Kinetics in Neurons and the Human Central Nervous System.

    PubMed

    Sato, Chihiro; Barthélemy, Nicolas R; Mawuenyega, Kwasi G; Patterson, Bruce W; Gordon, Brian A; Jockel-Balsarotti, Jennifer; Sullivan, Melissa; Crisp, Matthew J; Kasten, Tom; Kirmess, Kristopher M; Kanaan, Nicholas M; Yarasheski, Kevin E; Baker-Nigh, Alaina; Benzinger, Tammie L S; Miller, Timothy M; Karch, Celeste M; Bateman, Randall J

    2018-03-21

    We developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central nervous system (CNS) and in human induced pluripotent stem cell (iPSC)-derived neurons. Newly synthesized tau is truncated and released from human neurons in 3 days. Although most tau proteins have similar turnover, 4R tau isoforms and phosphorylated forms of tau exhibit faster turnover rates, suggesting unique processing of these forms that may have independent biological activities. The half-life of tau in control human iPSC-derived neurons is 6.74 ± 0.45 days and in human CNS is 23 ± 6.4 days. In cognitively normal and Alzheimer's disease participants, the production rate of tau positively correlates with the amount of amyloid plaques, indicating a biological link between amyloid plaques and tau physiology. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Darwin in Mind: New Opportunities for Evolutionary Psychology

    PubMed Central

    Bolhuis, Johan J.; Brown, Gillian R.; Richardson, Robert C.; Laland, Kevin N.

    2011-01-01

    Evolutionary Psychology (EP) views the human mind as organized into many modules, each underpinned by psychological adaptations designed to solve problems faced by our Pleistocene ancestors. We argue that the key tenets of the established EP paradigm require modification in the light of recent findings from a number of disciplines, including human genetics, evolutionary biology, cognitive neuroscience, developmental psychology, and paleoecology. For instance, many human genes have been subject to recent selective sweeps; humans play an active, constructive role in co-directing their own development and evolution; and experimental evidence often favours a general process, rather than a modular account, of cognition. A redefined EP could use the theoretical insights of modern evolutionary biology as a rich source of hypotheses concerning the human mind, and could exploit novel methods from a variety of adjacent research fields. PMID:21811401

  7. State-of-the-art in biosafety and biosecurity in European countries.

    PubMed

    Bielecka, Anna; Mohammadi, Ali Akbar

    2014-06-01

    The terms biosafety and biosecurity are widely used in different concepts and refer not only to protection of human beings and their surrounding environment against hazardous biological agent, but also to global disarmament of weapons of mass destruction. As a result, the biosafety and biosecurity issues should be considered interdisciplinary based on multilateral agreements against proliferation of biological weapons, public health and environmental protection. This publication presents information on both, international and national biosafety and biosecurity legislation. Status of national implementation of the Biological and Toxin Weapons Convention, penalization issues and measures to account for and secure production, use, storage of particularly dangerous pathogens or activities involving humans, plants and animals where infection may pose a risk have been analyzed. Safety and security measures in laboratories have been studied. Moreover, dual-use technology and measures of secure transport of biohazard materials have been also taken into account. In addition, genetic engineering regulations, biosecurity activities in laboratories and code of conducts have been investigated, as well.

  8. Biological Activities of Stilbenoids.

    PubMed

    Akinwumi, Bolanle C; Bordun, Kimberly-Ann M; Anderson, Hope D

    2018-03-09

    Stilbenoids are a group of naturally occurring phenolic compounds found in various plant species. They share a common backbone structure known as stilbene, but differ in the nature and position of substituents. Stilbenoids are classified as phytoalexins, which are antimicrobial compounds produced de novo in plants to protect against fungal infection and toxins. In this review, the biological effects of stilbenoids such as resveratrol, pterostilbene, gnetol and piceatannol are discussed. Stilbenoids exert various biological activities ranging from cardioprotection, neuroprotection, anti-diabetic properties, depigmentation, anti-inflammation, cancer prevention and treatment. The results presented cover a myriad of models, from cell culture to animal studies as well as clinical human trials. Although positive results were obtained in most cell culture and animal studies, further human studies are needed to substantiate beneficial effects of stilbenoids. Resveratrol remains the most widely studied stilbenoid. However, there is limited information regarding the potential of less common stilbenoids. Therefore, further research is warranted to evaluate the salutary effects of various stilbenoids.

  9. Biological Activities of Stilbenoids

    PubMed Central

    Bordun, Kimberly-Ann M.

    2018-01-01

    Stilbenoids are a group of naturally occurring phenolic compounds found in various plant species. They share a common backbone structure known as stilbene, but differ in the nature and position of substituents. Stilbenoids are classified as phytoalexins, which are antimicrobial compounds produced de novo in plants to protect against fungal infection and toxins. In this review, the biological effects of stilbenoids such as resveratrol, pterostilbene, gnetol and piceatannol are discussed. Stilbenoids exert various biological activities ranging from cardioprotection, neuroprotection, anti-diabetic properties, depigmentation, anti-inflammation, cancer prevention and treatment. The results presented cover a myriad of models, from cell culture to animal studies as well as clinical human trials. Although positive results were obtained in most cell culture and animal studies, further human studies are needed to substantiate beneficial effects of stilbenoids. Resveratrol remains the most widely studied stilbenoid. However, there is limited information regarding the potential of less common stilbenoids. Therefore, further research is warranted to evaluate the salutary effects of various stilbenoids. PMID:29522491

  10. Antarctica’s Protected Areas Are Inadequate, Unrepresentative, and at Risk

    PubMed Central

    Shaw, Justine D.; Terauds, Aleks; Riddle, Martin J.; Possingham, Hugh P.; Chown, Steven L.

    2014-01-01

    Antarctica is widely regarded as one of the planet's last true wildernesses, insulated from threat by its remoteness and declaration as a natural reserve dedicated to peace and science. However, rapidly growing human activity is accelerating threats to biodiversity. We determined how well the existing protected-area system represents terrestrial biodiversity and assessed the risk to protected areas from biological invasions, the region's most significant conservation threat. We found that Antarctica is one of the planet's least protected regions, with only 1.5% of its ice-free area formally designated as specially protected areas. Five of the distinct ice-free ecoregions have no specially designated areas for the protection of biodiversity. Every one of the 55 designated areas that protect Antarctica's biodiversity lies closer to sites of high human activity than expected by chance, and seven lie in high-risk areas for biological invasions. By any measure, including Aichi Target 11 under the Convention on Biological Diversity, Antarctic biodiversity is poorly protected by reserves, and those reserves are threatened. PMID:24936869

  11. Joint Spacelab-J (SL-J) Activities at the Huntsville Operations Support Center (HOSC) Spacelab

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in joint ground activities during the SL-J mission are NASA/NASDA personnel at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC).

  12. Physical Activity: A Tool for Improving Health (Part 2-Mental Health Benefits)

    ERIC Educational Resources Information Center

    Gallaway, Patrick J.; Hongu, Nobuko

    2016-01-01

    By promoting physical activities and incorporating them into their community-based programs, Extension professionals are improving the health of individuals, particularly those with limited resources. This article is the second in a three-part series describing the benefits of physical activity for human health: (1) biological health benefits of…

  13. Production of feline leukemia inhibitory factor with biological activity in Escherichia coli.

    PubMed

    Kanegi, R; Hatoya, S; Tsujimoto, Y; Takenaka, S; Nishimura, T; Wijewardana, V; Sugiura, K; Takahashi, M; Kawate, N; Tamada, H; Inaba, T

    2016-07-15

    Leukemia inhibitory factor (LIF) is a cytokine which is essential for oocyte and embryo development, embryonic stem cell, and induced pluripotent stem cell maintenance. Leukemia inhibitory factor improves the maturation of oocytes in the human and the mouse. However, feline LIF (fLIF) cloning and effects on oocytes during IVM have not been reported. Thus, we cloned complete cDNA of fLIF and examined its biological activity and effects on oocytes during IVM in the domestic cat. The aminoacid sequence of fLIF revealed a homology of 81% or 92% with that of mouse or human. The fLIF produced by pCold TF DNA in Escherichia coli was readily soluble and after purification showed bioactivity in maintaining the undifferentiated state of mouse embryonic stem cells and enhancing the proliferation of human erythrocyte leukemia cells. Furthermore, 10- and 100-ng/mL fLIF induced cumulus expansion with or without FSH and EGF (P < 0.05). The rate of metaphase II oocytes was also improved with 100-ng/mL fLIF (P < 0.05). We therefore confirmed the successful production for the first time of biologically active fLIF and revealed its effects on oocytes during IVM in the domestic cat. Feline LIF will further improve reproduction and stem cell research in the feline family. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Barley as a green factory for the production of functional Flt3 ligand.

    PubMed

    Erlendsson, Lýdur S; Muench, Marcus O; Hellman, Ulf; Hrafnkelsdóttir, Soffía M; Jonsson, Anders; Balmer, Yves; Mäntylä, Einar; Orvar, Björn L

    2010-02-01

    Biologically active recombinant human Flt3 ligand was expressed and isolated from transgenic barley seeds. Its expression is controlled by a tissue specific promoter that confines accumulation of the recombinant protein to the endosperm tissue of the seed. The recombinant Flt3 ligand variant expressed in the seeds contains an HQ-tag for affinity purification on immobilized metal ion affinity chromatography (IMAC) resin. The tagged protein was purified from seed extracts to near homogeneity using sequential chromatography on IMAC affinity resin and cation exchange resin. We also show that the recombinant Flt3 ligand protein undergoes posttranslational modifications: it is a glycoprotein containing alpha-1,3-fucose and alpha-1,2-xylose. The HQ-tagged Flt3 ligand variant exhibits comparable biological activity to commercial Flt3 ligand. This is the first report showing expression and accumulation of recombinant human growth factor in barley seeds with a yield of active protein similar to a bacterial expression system. The present results demonstrate that plant molecular farming is a viable approach for the bioproduction of human-derived growth factors.

  15. Interaction studies reveal specific recognition of an anti-inflammatory polyphosphorhydrazone dendrimer by human monocytes.

    PubMed

    Ledall, Jérémy; Fruchon, Séverine; Garzoni, Matteo; Pavan, Giovanni M; Caminade, Anne-Marie; Turrin, Cédric-Olivier; Blanzat, Muriel; Poupot, Rémy

    2015-11-14

    Dendrimers are nano-materials with perfectly defined structure and size, and multivalency properties that confer substantial advantages for biomedical applications. Previous work has shown that phosphorus-based polyphosphorhydrazone (PPH) dendrimers capped with azabisphosphonate (ABP) end groups have immuno-modulatory and anti-inflammatory properties leading to efficient therapeutic control of inflammatory diseases in animal models. These properties are mainly prompted through activation of monocytes. Here, we disclose new insights into the molecular mechanisms underlying the anti-inflammatory activation of human monocytes by ABP-capped PPH dendrimers. Following an interdisciplinary approach, we have characterized the physicochemical and biological behavior of the lead ABP dendrimer with model and cell membranes, and compared this experimental set of data to predictive computational modelling studies. The behavior of the ABP dendrimer was compared to the one of an isosteric analog dendrimer capped with twelve azabiscarboxylate (ABC) end groups instead of twelve ABP end groups. The ABC dendrimer displayed no biological activity on human monocytes, therefore it was considered as a negative control. In detail, we show that the ABP dendrimer can bind both non-specifically and specifically to the membrane of human monocytes. The specific binding leads to the internalization of the ABP dendrimer by human monocytes. On the contrary, the ABC dendrimer only interacts non-specifically with human monocytes and is not internalized. These data indicate that the bioactive ABP dendrimer is recognized by specific receptor(s) at the surface of human monocytes.

  16. Physical Activity & Well-being.

    ERIC Educational Resources Information Center

    Seefeldt, Vern, Ed.

    This book reviews evidence in the biological and behavioral sciences relating physical activity to human well-being. The following articles are included: (1) "Physical Growth and Maturation" (Robert M. Malina); (2) "Acquisition of Motor Skills During Childhood" (John L. Haubenstricker and Vern D. Seefeldt); (3) "Development of Sensory-Motor…

  17. ALTERED MAMMARY GLAND DEVELOPMENT IN MALE RATS EXPOSED TO GENISTEIN AND METHOXYCHLOR

    EPA Science Inventory

    Genistein is a prevalent phytoestrogen whose presence in human and animal foods may affect biological actions of synthetic endocrine active compounds. We have previously reported that in utero and lactational exposure to genistein and the endocrine active pesticide methoxychlor c...

  18. EVALUATION OF PERFLUOROALKYL ACID ACTIVITY USING PRIMARY MOUSE AND HUMAN HEPATOCYTES

    EPA Science Inventory

    While perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been studied at length, less is know about the biological activity of other environmental perfluoroalkyl acids (pFAAs). Using a transient transfection assay developed in COS-l cells, our group has previ...

  19. Evaluation of Perfluoroalkyl Acid Activity Using Primary Mouse and Human Hepatocytes.

    EPA Science Inventory

    While perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been studied at length, less is known about the biological activity of other perfluoroalkyl acids (PFAAs) in the environment. Using a transient transfection assay developed in COS-1 cells, our group h...

  20. The Fate of Synthetic and Endogenous Hormones Used in the US Beef and Dairy Industries and the Potential for Human Exposure.

    PubMed

    Kolok, Alan S; Ali, Jonathan M; Rogan, Eleanor G; Bartelt-Hunt, Shannon L

    2018-05-12

    Growth-enhancing chemicals used by the beef and dairy industries may be bioavailable to humans via milk, meat, and other environmental matrices. This review evaluates the potential for environmental transport and bioavailability of the active chemical to humans. Bovine somatostatin is detectable in milk; however, there is no evidence that the protein persists in the environment nor that it is active in humans. In contrast, steroids are transported through milk and meat to humans where they may exert biological activity. Furthermore, environmental matrices such as raw water and dust may also allow for the environmental transport and bioavailability of steroids to humans. Endogenous and exogenous steroids can be found in the meat, milk, and waste materials produced by cattle. While the concentrations may be low, exposure to these matrices, most notably dairy products made with whole milk, can be a source of exogenous steroids to humans.

  1. Anti-proliferation activity of terpenoids isolated from Euphorbia kansui in human cancer cells and their structure-activity relationship.

    PubMed

    Hou, Jin-Jun; Shen, Yao; Yang, Zhou; Fang, Lin; Cai, Lu-Ying; Yao, Shuai; Long, Hua-Li; Wu, Wan-Ying; Guo, De-An

    2017-10-01

    Euphorbia kansui is a commonly used traditional Chinese medicine for the treatment of edema, pleural effusion, and asthma, etc. According to the previous researches, terpenoids in E. kansui possess various biological activities, e.g., anti-virus, anti-allergy, antitumor effects. In this work, twenty five terpenoids were isolated from E. kansui, including thirteen ingenane- and eight jatrophane-type diterpenoids (with two new compounds, kansuinin P and Q) and four triterpenoids. Eighteen of them were analyzed by MTS assay for in vitro anticancer activity in five human cancer cell lines. Structure-activity relationship for 12 ingenane-type diterpenoids in colorectal cancer Colo205 cells were preliminary studied. Significant anti-proliferation activities were observed in human melanoma cells breast cancer MDA-MB-435 cells and Colo205 cells. More than half of the isolated ingenane-type diterpenoids showed inhibitory activities in MDA-MB-435 cells. Eight ingenane- and one jatrophane-type diterpenoids possessed much lower IC 50 values in MDA-MB-435 cells than positive control staurosporine. Preliminary structure-activity relationship analysis showed that substituent on position 20 was important for the activity of ingenane-type diterpenoids in Colo205 cells and substituent on position 3 contributed more significant biological activity of the compounds than that on position 5 in both MDA-MB-435 and Colo205 cells. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  2. [Advance in flavonoids biosynthetic pathway and synthetic biology].

    PubMed

    Zou, Li-Qiu; Wang, Cai-Xia; Kuang, Xue-Jun; Li, Ying; Sun, Chao

    2016-11-01

    Flavonoids are the valuable components in medicinal plants, which possess a variety of pharmacological activities, including anti-tumor, antioxidant and anti-inflammatory activities. There is an unambiguous understanding about flavonoids biosynthetic pathway, that is,2S-flavanones including naringenin and pinocembrin are the skeleton of other flavonoids and they can transform to other flavonoids through branched metabolic pathway. Elucidation of the flavonoids biosynthetic pathway lays a solid foundation for their synthetic biology. A few flavonoids have been produced in Escherichia coli or yeast with synthetic biological technologies, such as naringenin, pinocembrin and fisetin. Synthetic biology will provide a new way to get valuable flavonoids and promote the research and development of flavonoid drugs and health products, making flavonoids play more important roles in human diet and health. Copyright© by the Chinese Pharmaceutical Association.

  3. Synthesis, spectroscopic characterization and in vitro cytotoxicities of new organometallic palladium complexes with biologically active β-diketones; Biological evaluation probing of the interaction mechanism with DNA/Protein and molecular docking

    NASA Astrophysics Data System (ADS)

    Karami, Kazem; Rafiee, Mina; Lighvan, Zohreh Mehri; Zakariazadeh, Mostafa; Faal, Ali Yeganeh; Esmaeili, Seyed-Alireza; Momtazi-Borojeni, Amir Abbas

    2018-02-01

    [Pd{(C,N)sbnd C6H4CH (CH3)NH}(CUR)] (3) and [Pd2{(C,N)sbnd C6H4CH(CH3)NH2}2(μ-N3CS2)] (4) [cur = 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dion] novel organometallic complexes with biologically active ligands have been prepared and characterized via elemental analysis, multinuclear spectroscopic techniques (1H, and 13C NMR and IR) and their biological activities, including antitumoral activity and DNA-protein interactions have been investigated. Fluorescence spectroscopy used to study the interaction of the complexes with BSA have shown the affinity of the complexes for these proteins with relatively high binding constant values and the changed secondary structure of BSA in the presence of the complexes. In the meantime, spectroscopy and competitive titration have been applied to investigate the interaction of complexes with Warfarin and Ibuprofen site markers for sites I and II, respectively, with BSA. The results have suggested that the locations of complexes 3 and 4 are sites II and I, respectively. UV-Vis spectroscopy, emission titration and helix melting methods have been used to study the interaction of these complexes with CT-DNA, indicating that complexes are bound to CT-DNA by intercalation binding mode. In addition, good cytotoxic activity against MCF-7 (human breast cancer) and JURKAT (human leukemia) cell line has been shown by both complexes whereas low cytotoxicity was exerted on normal peripheral blood mononuclear cells.

  4. Disregarded Effect of Biological Fluids in siRNA Delivery: Human Ascites Fluid Severely Restricts Cellular Uptake of Nanoparticles.

    PubMed

    Dakwar, George R; Braeckmans, Kevin; Demeester, Joseph; Ceelen, Wim; De Smedt, Stefaan C; Remaut, Katrien

    2015-11-04

    Small interfering RNA (siRNA) offers a great potential for the treatment of various diseases and disorders. Nevertheless, inefficient in vivo siRNA delivery hampers its translation into the clinic. While numerous successful in vitro siRNA delivery stories exist in reduced-protein conditions, most studies so far overlook the influence of the biological fluids present in the in vivo environment. In this study, we compared the transfection efficiency of liposomal formulations in Opti-MEM (low protein content, routinely used for in vitro screening) and human undiluted ascites fluid obtained from a peritoneal carcinomatosis patient (high protein content, representing the in vivo situation). In Opti-MEM, all formulations are biologically active. In ascites fluid, however, the biological activity of all lipoplexes is lost except for lipofectamine RNAiMAX. The drop in transfection efficiency was not correlated to the physicochemical properties of the nanoparticles, such as premature siRNA release and aggregation of the nanoparticles in the human ascites fluid. Remarkably, however, all of the formulations except for lipofectamine RNAiMAX lost their ability to be taken up by cells following incubation in ascites fluid. To take into account the possible effects of a protein corona formed around the nanoparticles, we recommend always using undiluted biological fluids for the in vitro optimization of nanosized siRNA formulations next to conventional screening in low-protein content media. This should tighten the gap between in vitro and in vivo performance of nanoparticles and ensure the optimal selection of nanoparticles for further in vivo studies.

  5. Curcumin Conjugated with PLGA Potentiates Sustainability, Anti-Proliferative Activity and Apoptosis in Human Colon Carcinoma Cells

    PubMed Central

    Waghela, Bhargav N.; Sharma, Anupama; Dhumale, Suhashini; Pandey, Shashibahl M.; Pathak, Chandramani

    2015-01-01

    Curcumin, an ingredient of turmeric, exhibits a variety of biological activities such as anti-inflammatory, anti-atherosclerotic, anti-proliferative, anti-oxidant, anti-cancer and anti-metastatic. It is a highly pleiotropic molecule that inhibits cell proliferation and induces apoptosis in cancer cells. Despite its imperative biological activities, chemical instability, photo-instability and poor bioavailability limits its utilization as an effective therapeutic agent. Therefore, enhancing the bioavailability of curcumin may improve its therapeutic index for clinical setting. In the present study, we have conjugated curcumin with a biodegradable polymer Poly (D, L-lactic-co-glycolic acid) and evaluated its apoptotic potential in human colon carcinoma cells (HCT 116). The results show that curcumin-PLGA conjugate efficiently inhibits cell proliferation and cell survival in human colon carcinoma cells as compared to native curcumin. Additionally, curcumin conjugated with PLGA shows improved cellular uptake and exhibits controlled release at physiological pH as compared to native curcumin. The curcumin-PLGA conjugate efficiently activates the cascade of caspases and promotes intrinsic apoptotic signaling. Thus, the results suggest that conjugation potentiates the sustainability, anti-proliferative and apoptotic activity of curcumin. This approach could be a promising strategy to improve the therapeutic index of cancer therapy. PMID:25692854

  6. Human Uterine Cervical Stromal Stem Cells (hUCESCs): Why and How they Exert their Antitumor Activity

    PubMed Central

    SCHNEIDER, JOSÉ; EIRÓ, NOEMÍ; PÉREZ-FERNÁNDEZ, ROMÁN; MARTÍNEZ-ORDÓÑEZ, ANXO; VIZOSO, FRANCISCO

    2016-01-01

    Our research team has recently isolated and characterized a new stromal stem cell line (hUCESCs) obtained from cytological smears, as routinely performed for cervical cancer screening. We have, furthermore, described that both hUCESCs directly, as well as the secretome contained in the conditioned medium used for growing them (hUCESCs-CM) have potent antitumoral, anti-inflammatory, antibiotic, antimycotic and re-epitheliasation-enhancing properties. The scientific explanation our team proposes for these pleiotropic effects are directly related to the site of origin of hUCESCs, the human cervical transition zone, which has unique features that biologically justify the different actions of hUCESCs and hUCESCs-CM. We, herein, expose our working theory for the biological activity of hUCESCs and hUCESCs-CM. PMID:27566652

  7. Application of chemical biology in target identification and drug discovery.

    PubMed

    Zhu, Yue; Xiao, Ting; Lei, Saifei; Zhou, Fulai; Wang, Ming-Wei

    2015-09-01

    Drug discovery and development is vital to the well-being of mankind and sustainability of the pharmaceutical industry. Using chemical biology approaches to discover drug leads has become a widely accepted path partially because of the completion of the Human Genome Project. Chemical biology mainly solves biological problems through searching previously unknown targets for pharmacologically active small molecules or finding ligands for well-defined drug targets. It is a powerful tool to study how these small molecules interact with their respective targets, as well as their roles in signal transduction, molecular recognition and cell functions. There have been an increasing number of new therapeutic targets being identified and subsequently validated as a result of advances in functional genomics, which in turn led to the discovery of numerous active small molecules via a variety of high-throughput screening initiatives. In this review, we highlight some applications of chemical biology in the context of drug discovery.

  8. PTEN: Multiple Functions in Human Malignant Tumors.

    PubMed

    Milella, Michele; Falcone, Italia; Conciatori, Fabiana; Cesta Incani, Ursula; Del Curatolo, Anais; Inzerilli, Nicola; Nuzzo, Carmen M A; Vaccaro, Vanja; Vari, Sabrina; Cognetti, Francesco; Ciuffreda, Ludovica

    2015-01-01

    PTEN is the most important negative regulator of the PI3K signaling pathway. In addition to its canonical, PI3K inhibition-dependent functions, PTEN can also function as a tumor suppressor in a PI3K-independent manner. Indeed, the PTEN network regulates a broad spectrum of biological functions, modulating the flow of information from membrane-bound growth factor receptors to nuclear transcription factors, occurring in concert with other tumor suppressors and oncogenic signaling pathways. PTEN acts through its lipid and protein phosphatase activity and other non-enzymatic mechanisms. Studies conducted over the past 10 years have expanded our understanding of the biological role of PTEN, showing that in addition to its ability to regulate proliferation and cell survival, it also plays an intriguing role in regulating genomic stability, cell migration, stem cell self-renewal, and tumor microenvironment. Changes in PTEN protein levels, location, and enzymatic activity through various molecular mechanisms can generate a continuum of functional PTEN levels in inherited syndromes, sporadic cancers, and other diseases. PTEN activity can indeed, be modulated by mutations, epigenetic silencing, transcriptional repression, aberrant protein localization, and post-translational modifications. This review will discuss our current understanding of the biological role of PTEN, how PTEN expression and activity are regulated, and the consequences of PTEN dysregulation in human malignant tumors.

  9. PTEN: Multiple Functions in Human Malignant Tumors

    PubMed Central

    Milella, Michele; Falcone, Italia; Conciatori, Fabiana; Cesta Incani, Ursula; Del Curatolo, Anais; Inzerilli, Nicola; Nuzzo, Carmen M. A.; Vaccaro, Vanja; Vari, Sabrina; Cognetti, Francesco; Ciuffreda, Ludovica

    2015-01-01

    PTEN is the most important negative regulator of the PI3K signaling pathway. In addition to its canonical, PI3K inhibition-dependent functions, PTEN can also function as a tumor suppressor in a PI3K-independent manner. Indeed, the PTEN network regulates a broad spectrum of biological functions, modulating the flow of information from membrane-bound growth factor receptors to nuclear transcription factors, occurring in concert with other tumor suppressors and oncogenic signaling pathways. PTEN acts through its lipid and protein phosphatase activity and other non-enzymatic mechanisms. Studies conducted over the past 10 years have expanded our understanding of the biological role of PTEN, showing that in addition to its ability to regulate proliferation and cell survival, it also plays an intriguing role in regulating genomic stability, cell migration, stem cell self-renewal, and tumor microenvironment. Changes in PTEN protein levels, location, and enzymatic activity through various molecular mechanisms can generate a continuum of functional PTEN levels in inherited syndromes, sporadic cancers, and other diseases. PTEN activity can indeed, be modulated by mutations, epigenetic silencing, transcriptional repression, aberrant protein localization, and post-translational modifications. This review will discuss our current understanding of the biological role of PTEN, how PTEN expression and activity are regulated, and the consequences of PTEN dysregulation in human malignant tumors. PMID:25763354

  10. Evidence for functional heterogeneity of circulating B-type natriuretic peptide.

    PubMed

    Liang, Faquan; O'Rear, Jessica; Schellenberger, Ute; Tai, Lungkuo; Lasecki, Michael; Schreiner, George F; Apple, Fred S; Maisel, Alan S; Pollitt, N Stephen; Protter, Andrew A

    2007-03-13

    These studies describe molecular forms of circulating B-type natriuretic peptide (BNP) as well as their biological activity. Increased circulating levels of immunoreactive BNP correlate with the severity of heart failure and are considered a sensitive biomarker. However, little is known about the molecular forms of circulating BNP and their biological activity. Western blot analysis was used to characterize immunoreactive BNP species in heart failure plasma. Recombinant proBNP was assessed for reactivity in commercially available BNP assays and cell activity by cyclic guanosine monophosphate production in vascular cells. Heart failure plasma contained both low- (LMW-BNP) and high-molecular-weight (HMW-BNP) forms. The LMW-BNP migrated similarly to a 32-amino acid BNP standard, whereas HMW-BNP, when deglycosylated, was similar to deglycosylated recombinant proBNP. Recombinant proBNP and BNP were equally recognized by the Triage BNP assay (Biosite, San Diego, California). Furthermore, recombinant proBNP and BNP were both recognized by the Advia Centaur BNP test (Bayer Diagnostics, Tarrytown, New York), but only recombinant proBNP was recognized by the Elecsys NTproBNP assay (Roche Diagnostics, Indianapolis, Indiana). Recombinant proBNP exerted significantly less biological activity than BNP on human endothelial and vascular smooth muscle cells. Comparison of effective concentration (50%) values indicates that proBNP is 6- to 8-fold less potent than BNP in these human cells. This study demonstrates that proBNP, constituting a substantial portion of immunoreactive BNP in heart failure plasma, possesses significantly lower biological activity than the processed 32-amino acid hormone. These results implicate a discordance in heart failure between the high circulating levels of immunoreactive BNP and hormone activity, suggesting that some patients may be in a state of natriuretic peptide deficiency.

  11. Biological responses to PDGF-BB versus PDGF-DD in human mesangial cells.

    PubMed

    van Roeyen, C R C; Ostendorf, T; Denecke, B; Bokemeyer, D; Behrmann, I; Strutz, F; Lichenstein, H S; LaRochelle, W J; Pena, C E; Chaudhuri, A; Floege, J

    2006-04-01

    Platelet-derived growth factor (PDGF)-BB and PDGF-DD mediate mesangial cell proliferation in vitro and in vivo. While PDGF-BB is a ligand for the PDGF alpha- and beta-receptor chains, PDGF-DD binds more selectively to the beta-chain, suggesting potential differences in the biological activities. Signal transduction and regulation of gene expression induced by PDGF-BB and -DD were compared in primary human mesangial cells (HMCs), which expressed PDGF alpha- and beta-receptor subunits. The growth factor concentrations used were chosen based on their equipotency in inducing HMCs proliferation and binding to the betabeta-receptor. Both growth factors, albeit at different concentrations induced phosphorylation and activation of extracellular signal-regulated kinase 1 (ERK1) and ERK2. In addition, PDGFs led to the phosphorylation and activation of signal transducers and activators of transcription 1 (STAT1) and STAT3. HMCs proliferation induced by either PDGF-BB or -DD could be blocked by signal transduction inhibitors of the mitogen-activated protein kinase-, Janus kinase (JAK)/STAT-, or phosphatidyl-inositol 3-kinase pathways. Using a gene chip array and subsequent verification by real-time reverse transcriptase (RT)-polymerase chain reaction, we found that in HMC genes for matrix metalloproteinase 13 (MMP-13) and MMP-14 and, to a low extent, cytochrome B5 and cathepsin L were exclusively regulated by PDGF-BB, whereas no exclusive gene regulation was detected by PDGF-DD. However, at the protein level, both MMP-13 and -14 were equally induced by PDGF-BB and -DD. PDGF-BB and -DD effect similar biological responses in HMCs albeit at different potencies. Rare apparently differential gene regulation did not result in different protein expression, suggesting that in HMCs both PDGFs exert their biological activity almost exclusively via the PDGF beta-receptor.

  12. A Dimeric Mutant of Human Pancreatic Ribonuclease with Selective Cytotoxicity toward Malignant Cells

    NASA Astrophysics Data System (ADS)

    Piccoli, Renata; di Gaetano, Sonia; de Lorenzo, Claudia; Grauso, Michela; Monaco, Carmen; Spalletti-Cernia, Daniela; Laccetti, Paolo; Cinatl, Jaroslav; Matousek, Josef; D'Alessio, Giuseppe

    1999-07-01

    Monomeric human pancreatic RNase, devoid of any biological activity other than its RNA degrading ability, was engineered into a dimeric protein with a cytotoxic action on mouse and human tumor cells, but lacking any appreciable toxicity on mouse and human normal cells. This dimeric variant of human pancreas RNase selectively sensitizes to apoptotic death cells derived from a human thyroid tumor. Because of its selectivity for tumor cells, and because of its human origin, this protein represents a potentially very attractive, novel tool for anticancer therapy.

  13. Particle complexation of mitochondrial iron produces superoxide generation and activates MAP kinases, NF-kappa B, nrf-2 in human respiratory epithelial cell

    EPA Science Inventory

    The biological effect of particles is associated with a disruption in cell iron homeostasis. We tested the postulate that complexation of cell iron by silica (Si02) results in both an oxidative stress and biological effect. BEAS-2B cells were exposed to either media or 100 ug/ml....

  14. Expression of biologically active human interferon alpha 2 in aloe vera

    USDA-ARS?s Scientific Manuscript database

    We have developed a system for transgenic expression of proteins in Aloe Vera. Using this approach we have generated plants expressing the human gene interferon alpha 2, IFNa2. IFNa2 is a small secreted cytokine that plays a vital role in regulating the body’s immune response to viral infections a...

  15. Induction of interleukin 1 by synthetic and naturally occurring muramyl peptides.

    PubMed

    Dinarello, C A; Krueger, J M

    1986-10-01

    Like bacterial lipopolysaccharides (endotoxins), synthetic muramyl peptides (MPs) are thought to exert many of their biological effects by inducing the production of various mediators from host cells. Both synthetic muramyl dipeptide (MDP) and naturally occurring sleep factor (SF), which contains an MP structure, stimulate human monocytes to produce interleukin 1 (IL 1). IL 1 is a family of unique polypeptides that mediate a variety of host defense functions and possess several biological properties, many of which are shared with MPs. Endotoxins are potent inducers of IL 1, but polymyxin B, which blocks endotoxin's biological activities, has no effect on MP-induced IL 1 production. SF purified from human urine and SF isolated from the peritoneal fluid of patients undergoing chronic ambulatory peritoneal dialysis (CAPD) induce IL 1 when incubated with human mononuclear cells in vitro. SF from urine or CAPD fluid induces IL 1 production in the picrogram per milliliter range whereas synthetic MDP requires microgram per milliliter concentrations. Thus, both synthetic and naturally occurring MPs exert their biological effects, in part, by inducing IL 1.

  16. Human Embryonic Kidney 293 Cells: A Vehicle for Biopharmaceutical Manufacturing, Structural Biology, and Electrophysiology.

    PubMed

    Hu, Jianwen; Han, Jizhong; Li, Haoran; Zhang, Xian; Liu, Lan Lan; Chen, Fei; Zeng, Bin

    2018-01-01

    Mammalian cells, e.g., CHO, BHK, HEK293, HT-1080, and NS0 cells, represent important manufacturing platforms in bioengineering. They are widely used for the production of recombinant therapeutic proteins, vaccines, anticancer agents, and other clinically relevant drugs. HEK293 (human embryonic kidney 293) cells and their derived cell lines provide an attractive heterologous system for the development of recombinant proteins or adenovirus productions, not least due to their human-like posttranslational modification of protein molecules to provide the desired biological activity. Secondly, they also exhibit high transfection efficiency yielding high-quality recombinant proteins. They are easy to maintain and express with high fidelity membrane proteins, such as ion channels and transporters, and thus are attractive for structural biology and electrophysiology studies. In this article, we review the literature on HEK293 cells regarding their origins but also stress their advancements into the different cell lines engineered and discuss some significant aspects which make them versatile systems for biopharmaceutical manufacturing, drug screening, structural biology research, and electrophysiology applications. © 2018 S. Karger AG, Basel.

  17. Biological properties of 6-gingerol: a brief review.

    PubMed

    Wang, Shaopeng; Zhang, Caihua; Yang, Guang; Yang, Yanzong

    2014-07-01

    Numerous studies have revealed that regular consumption of certain fruits and vegetables can reduce the risk of many diseases. The rhizome of Zingiber officinale (ginger) is consumed worldwide as a spice and herbal medicine. It contains pungent phenolic substances collectively known as gingerols. 6-Gingerol is the major pharmacologically-active component of ginger. It is known to exhibit a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. 6-Gingerol has been found to possess anticancer activities via its effect on a variety of biological pathways involved in apoptosis, cell cycle regulation, cytotoxic activity, and inhibition of angiogenesis. Thus, due to its efficacy and regulation of multiple targets, as well as its safety for human use, 6-gingerol has received considerable interest as a potential therapeutic agent for the prevention and/or treatment of various diseases. Taken together, this review summarizes the various in vitro and in vivo pharmacological aspects of 6-gingerol and the underlying mechanisms.

  18. New approaches to the treatment of inflammatory disorders small molecule inhibitors of p38 MAP kinase.

    PubMed

    Peifer, Christian; Wagner, Gerd; Laufer, Stefan

    2006-01-01

    The therapy of chronic inflammatory diseases like rheumatoid arthritis (RA) and inflammatory bowel disease (IBD) has recently been enriched by the successful launch of the anti-cytokine biologicals Etanercept (tumor necrosis factor (TNF) receptor-p75 Fc fusion protein), Infliximab (chimeric anti-human TNF-alpha monoclonal antibody), Adalimumab (recombinant human anti-human TNF-alpha monoclonal antibody) and Anakinra (recombinant form of human interleukin 1beta (IL-1) receptor antagonist). The success of these novel treatments has impressively demonstrated the clinical benefit that can be gained from therapeutic intervention in cytokine signalling, highlighting the central role of proinflammatory cytokine systems like IL-1alpha and TNF-alpha to be validated targets. However, all of the anti-cytokine biologicals available to date are proteins, and therefore suffering to a varying degree from the general disadvantages associated with protein drugs. Therefore, small molecular, orally active anti-cytokine agents, which target specific pathways of proinflammatory cytokines, would offer an attractive alternative to anti-cytokine biologicals. A number of molecular targets have been identified for the development of such small molecular agents but p38 mitogen-activated protein (MAP) kinase occupies a central role in the regulation of IL-1beta and TNF-alpha signalling network at both the transcriptional and translational level. Since the mid-1990s, an immense number of inhibitors of p38 MAP kinase has been characterised in vitro, and to date several compounds have been advanced into clinical trials. This review will highlight the correlation between effective inhibition of p38 MAP kinase at the molecular target and cellular activity in functional assays of cytokine, particularly TNF-alpha and IL-1beta production. SAR will be discussed regarding activity at the enzyme target, but also with regard to properties required for efficient in vitro and in vivo activity.

  19. Arborvitae (Thuja plicata) essential oil significantly inhibited critical inflammation- and tissue remodeling-related proteins and genes in human dermal fibroblasts.

    PubMed

    Han, Xuesheng; Parker, Tory L

    2017-06-01

    Arborvitae ( Thuja plicata ) essential oil (AEO) is becoming increasingly popular in skincare, although its biological activity in human skin cells has not been investigated. Therefore, we sought to study AEO's effect on 17 important protein biomarkers that are closely related to inflammation and tissue remodeling by using a pre-inflamed human dermal fibroblast culture model. AEO significantly inhibited the expression of vascular cell adhesion molecule 1 (VCAM-1), intracellular cell adhesion molecule 1 (ICAM-1), interferon gamma-induced protein 10 (IP-10), interferon-inducible T-cell chemoattractant (I-TAC), monokine induced by interferon gamma (MIG), and macrophage colony-stimulating factor (M-CSF). It also showed significant antiproliferative activity and robustly inhibited collagen-I, collagen-III, plasminogen activator inhibitor-1 (PAI-1), and tissue inhibitor of metalloproteinase 1 and 2 (TIMP-1 and TIMP-2). The inhibitory effect of AEO on increased production of these protein biomarkers suggests it has anti-inflammatory property. We then studied the effect of AEO on the genome-wide expression of 21,224 genes in the same cell culture. AEO significantly and diversely modulated global gene expression. Ingenuity pathway analysis (IPA) showed that AEO robustly affected numerous critical genes and signaling pathways closely involved in inflammatory and tissue remodeling processes. The findings of this study provide the first evidence of the biological activity and beneficial action of AEO in human skin cells.

  20. Detection and Quantification of Biologically Active Botulinum Neurotoxin Serotypes A and B Using a Förster Resonance Energy Transfer-Based Quantum Dot Nanobiosensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yun; Fry, H. Christopher; Skinner, Guy E.

    Botulinum neurotoxin (BoNT) is the most potent toxin known. The ingestion of food contaminated with biologically active BoNT causes foodborne botulism, which can lead to respiratory paralysis, coma, and death after ingestion of as little as 70 mu g for a 70 kg human. Because of its lethality and challenges associated with current detection methods, there is an urgent need for highly sensitive rapid screening techniques capable of detecting biologically active BoNT. Here, we describe a Forster resonance energy transfer-based nanobiosensor that uses quantum dots (QDs) and two specific quencher-labeled peptide probes to detect and differentiate two biologically active formsmore » of BoNT, serotypes A and B, which were responsible for 80% of human foodborne botulism cases in the U.S. from 2012 to 2015. Each peptide probe contains an enzymatic cleavage site specific to only one serotype. QDs were selected based on the spectral overlap with the quenchers. In the presence of the target BoNT serotype, the peptide probe is cleaved and the quenching of QD photoluminescence (PL) is reduced, giving a signal that is easily detected by a PL spectrophotometer. This sensor performance was evaluated with light chains of BoNT/A and BoNT/B (LcA and LcB), catalytic domains of the respective serotypes. LcA and LcB were detected in 3 h with limits of detection of 0.2 and 2 ng/mL, respectively. The specificity of the sensor was evaluated, and no cross-reactivity from nontarget serotypes was observed with 2 h of incubation. Because each serotype-specific peptide is conjugated to a QD with a unique emission wavelength, multiple biologically active BoNT serotypes could be detected in one PL spectrum. The sensor was also shown to be responsive to BoNT/A and BoNT/B holotoxins. Good performance of this sensor implies its potential application as a rapid screening method for biologically active BoNT/A and BoNT/B in the laboratory and in the field.« less

  1. Antimicrobial activity and mechanism of the human milk-sourced peptide Casein201

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fan; Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing; Cui, Xianwei

    Introduction: Casein201 is one of the human milk sourced peptides that differed significantly in preterm and full-term mothers. This study is designed to demonstrate the biological characteristics, antibacterial activity and mechanisms of Casein201 against common pathogens in neonatal infection. Methodology: The analysis of biological characteristics was done by bioinformatics. Disk diffusion method and flow cytometry were used to detect the antimicrobial activity of Casein201. Killing kinetics of Casein201 was measured using microplate reader. The antimicrobial mechanism of Casein201 was studied by electron microscopy and electrophoresis. Results: Bioinformatics analysis indicates that Casein201 derived from β-casein and showed significant sequence overlap. Antibacterialmore » assays showed Casein201 inhibited the growth of S taphylococcus aureus and Y ersinia enterocolitica. Ultrastructural analyses revealed that the antibacterial activity of Casein201 is through cytoplasmic structures disintegration and bacterial cell envelope alterations but not combination with DNA. Conclusion: We conclude the antimicrobial activity and mechanism of Casein201. Our data demonstrate that Casein201 has potential therapeutic value for the prevention and treatment of pathogens in neonatal infection.« less

  2. Antimicrobial activity and mechanism of the human milk-sourced peptide Casein201.

    PubMed

    Zhang, Fan; Cui, Xianwei; Fu, Yanrong; Zhang, Jun; Zhou, Yahui; Sun, Yazhou; Wang, Xing; Li, Yun; Liu, Qianqi; Chen, Ting

    2017-04-08

    Casein201 is one of the human milk sourced peptides that differed significantly in preterm and full-term mothers. This study is designed to demonstrate the biological characteristics, antibacterial activity and mechanisms of Casein201 against common pathogens in neonatal infection. The analysis of biological characteristics was done by bioinformatics. Disk diffusion method and flow cytometry were used to detect the antimicrobial activity of Casein201. Killing kinetics of Casein201 was measured using microplate reader. The antimicrobial mechanism of Casein201 was studied by electron microscopy and electrophoresis. Bioinformatics analysis indicates that Casein201 derived from β-casein and showed significant sequence overlap. Antibacterial assays showed Casein201 inhibited the growth of S taphylococcus aureus and Y ersinia enterocolitica. Ultrastructural analyses revealed that the antibacterial activity of Casein201 is through cytoplasmic structures disintegration and bacterial cell envelope alterations but not combination with DNA. We conclude the antimicrobial activity and mechanism of Casein201. Our data demonstrate that Casein201 has potential therapeutic value for the prevention and treatment of pathogens in neonatal infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Aromatase inhibitors in human lung cancer therapy.

    PubMed

    Weinberg, Olga K; Marquez-Garban, Diana C; Fishbein, Michael C; Goodglick, Lee; Garban, Hermes J; Dubinett, Steven M; Pietras, Richard J

    2005-12-15

    Lung cancer is the most common cancer in the world. It is a highly lethal disease in women and men, and new treatments are urgently needed. Previous studies implicated a role of estrogens and estrogen receptors in lung cancer progression, and this steroidal growth-stimulatory pathway may be promoted by tumor expression and activity of aromatase, an estrogen synthase. We found expression of aromatase transcripts and protein in human non-small cell lung cancer (NSCLC) cells using reverse transcription-PCR and Western immunoblots, respectively. Aromatase staining by immunohistochemistry was detected in 86% of archival NSCLC tumor specimens from the clinic. Further, biological activity of aromatase was determined in NSCLC tumors using radiolabeled substrate assays as well as measure of estradiol product using ELISA. Significant activity of aromatase occurred in human NSCLC tumors, with enhanced levels in tumor cells compared with that in nearby normal cells. Lung tumor aromatase activity was inhibited by anastrozole, an aromatase inhibitor, and treatment of tumor cells in vitro with anastrozole led to significant suppression of tumor cell growth. Similarly, among ovariectomized nude mice with A549 lung tumor xenografts, administration of anastrozole by p.o. gavage for 21 days elicited pronounced inhibition of tumor growth in vivo. These findings show that aromatase is present and biologically active in human NSCLCs and that tumor growth can be down-regulated by specific inhibition of aromatase. This work may lead to development of new treatment options for patients afflicted with NSCLC.

  4. Flavonoids from Argentine Tagetes (Asteraceae) with antimicrobial activity.

    PubMed

    Tereschuk, María L; Baigorí, Mario D; De Figueroa, Lucia I C; Abdala, Lidia R

    2004-01-01

    The flavonoids, constituting one of the most numerous and widespread groups of natural plant constituents, are important to humans not only because they contribute to plant colors but also because many members are physiologically active. These low-molecular-weight substances, found in all vascular plants, are phenylbenzopyrones. Over 4000 structures have been identified in plant sources, and they are categorized into several groups. Primarily recognized as pigments responsible for the autumnal burst of hues and the many shades of yellow, orange, and red in flowers and food, the flavonoids are found in fruits, vegetables, nuts, seeds, stems, flowers, and leaves as well as tea and wine and are important constituents of the human diet. They are prominent components of citrus fruits and other food sources. Flavonols (quercetin, myricetin, and kaempferol) and flavones (apigenin and luteolin) are the most common phenolics in plant-based foods. Quercetin is also a predominant component of onions, apples, and berries. Such flavanones as naringin are typically present in citrus fruit, and flavanols, particularly catechin, are present as catechin gallate in such beverages as green or black tea and wine. Some major sources of flavonoids are outlined in Table 1. The daily intake of flavonoids in humans has been estimated to be approx 25 mg/d, a quantity that could provide pharmacologically significant concentrations in body fluids and tissues, assuming good absorption from the gastrointestinal tract. Biological activity of flavonoids was first suggested by Szent-Gÿorgyi 1938, who reported that citrus peel flavonoids were effective in preventing the capillary bleeding and fragility associated with scurvy. The broad spectrum of biological activity within the group and the multiplicity of actions displayed by a certain individual members make the flavonoids one of the most promising classes of biologically active compounds.

  5. Bioactive sterols from marine resources and their potential benefits for human health.

    PubMed

    Kim, Se-Kwon; Van Ta, Quang

    2012-01-01

    Bioactive agents from marine resources have shown their valuable health beneficial effects. Therefore, increase knowledge on novel functional ingredients with biological activities from marine animal and microbe has gained much attention. Sterols are recognized as potential in development functional food ingredients and pharmaceutical agents. Marine resources, with a great diversity, can be a very interesting natural resource of sterols. This chapter focuses on biological activities of marine animal and microbe sterols with potential health beneficial applications in functional foods and pharmaceuticals. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Prediction of biological functions on glycosylation site migrations in human influenza H1N1 viruses.

    PubMed

    Sun, Shisheng; Wang, Qinzhe; Zhao, Fei; Chen, Wentian; Li, Zheng

    2012-01-01

    Protein glycosylation alteration is typically employed by various viruses for escaping immune pressures from their hosts. Our previous work had shown that not only the increase of glycosylation sites (glycosites) numbers, but also glycosite migration might be involved in the evolution of human seasonal influenza H1N1 viruses. More importantly, glycosite migration was likely a more effectively alteration way for the host adaption of human influenza H1N1 viruses. In this study, we provided more bioinformatics and statistic evidences for further predicting the significant biological functions of glycosite migration in the host adaptation of human influenza H1N1 viruses, by employing homology modeling and in silico protein glycosylation of representative HA and NA proteins as well as amino acid variability analysis at antigenic sites of HA and NA. The results showed that glycosite migrations in human influenza viruses have at least five possible functions: to more effectively mask the antigenic sites, to more effectively protect the enzymatic cleavage sites of neuraminidase (NA), to stabilize the polymeric structures, to regulate the receptor binding and catalytic activities and to balance the binding activity of hemagglutinin (HA) with the release activity of NA. The information here can provide some constructive suggestions for the function research related to protein glycosylation of influenza viruses, although these predictions still need to be supported by experimental data.

  7. Telomere biology in aging and cancer: early history and perspectives.

    PubMed

    Hayashi, Makoto T

    2018-01-20

    The ends of eukaryotic linear chromosomes are protected from undesired enzymatic activities by a nucleoprotein complex called the telomere. Expanding evidence indicates that telomeres have central functions in human aging and tumorigenesis. While it is undoubtedly important to follow current advances in telomere biology, it is also fruitful to be well informed in seminal historical studies for a comprehensive understanding of telomere biology, and for the anticipation of future directions. With this in mind, I here summarize the early history of telomere biology and current advances in the field, mostly focusing on mammalian studies relevant to aging and cancer.

  8. Evaluation of Biological Activity of Mastic Extracts Based on Chemotherapeutic Indices

    PubMed Central

    SUZUKI, RYUICHIRO; SAKAGAMI, HIROSHI; AMANO, SHIGERU; FUKUCHI, KUNIHIKO; SUNAGA, KATSUYOSHI; KANAMOTO, TAISEI; TERAKUBO, SHIGEMI; NAKASHIMA, HIDEKI; SHIRATAKI, YOSHIAKI; TOMOMURA, MINEKO; MASUDA, YOSHIKO; YOKOSE, SATOSHI; TOMOMURA, AKITO; WATANABE, HIROFUMI; OKAWARA, MASAKI; MATAHIRA, YOSHIHARU

    2017-01-01

    Background: Most previous mastic investigators have not considered its potent cytotoxicity that may significantly affect the interpretation of obtained data. In the present study, we re-evaluated several biological activities of mastic extracts, based on chemotherapeutic indexes. Materials and Methods: Pulverized mastic gum was extracted with n-hexane and then with ethyl acetate or independently with methanol or n-butanol. Tumor specificity (TS) of the extracts was determined by their cytotoxicity against human malignant and non-malignant cells. Antibacterial activity was determined by their cytotoxicity against bacteria and normal oral cells. Antiviral activity was determined by their protection of viral infection and cytotoxic activity. Cytochrome P-450 (CYP) 3A4 activity was measured by β-hydroxylation of testosterone. Results: Ethyl acetate extract showed slightly higher tumor specificity (TS=2.6) and one order higher antibacterial activity (selectivity index (SI)=0.813) than other extracts (TS=1.4-2.5; SI=0.030-0.063). All extracts showed no anti-human immunodeficiency virus (HIV) activity, but some anti-herpes simplex virus (HSV) activity, which was masked by potent cytotoxicity. They showed strong inhibitory activity against CYP3A4. Conclusion: Ethyl acetate extraction following the removal of cytotoxic and CYP3A4 inhibitory substances by n-hexane can enhance antitumor and antibacterial activity of mastic. PMID:28652425

  9. Sequence-specific backbone resonance assignments and microsecond timescale molecular dynamics simulation of human eosinophil-derived neurotoxin.

    PubMed

    Gagné, Donald; Narayanan, Chitra; Bafna, Khushboo; Charest, Laurie-Anne; Agarwal, Pratul K; Doucet, Nicolas

    2017-10-01

    Eight active canonical members of the pancreatic-like ribonuclease A (RNase A) superfamily have been identified in human. All structural homologs share similar RNA-degrading functions, while also cumulating other various biological activities in different tissues. The functional homologs eosinophil-derived neurotoxin (EDN, or RNase 2) and eosinophil cationic protein (ECP, or RNase 3) are known to be expressed and secreted by eosinophils in response to infection, and have thus been postulated to play an important role in host defense and inflammatory response. We recently initiated the biophysical and dynamical investigation of several vertebrate RNase homologs and observed that clustering residue dynamics appear to be linked with the phylogeny and biological specificity of several members. Here we report the 1 H, 13 C and 15 N backbone resonance assignments of human EDN (RNase 2) and its molecular dynamics simulation on the microsecond timescale, providing means to pursue this comparative atomic-scale functional and dynamical analysis by NMR and computation over multiple time frames.

  10. The Fate of Major Royal Jelly Proteins during Proteolytic Digestion in the Human Gastrointestinal Tract.

    PubMed

    Mureşan, Carmen I; Schierhorn, Angelika; Buttstedt, Anja

    2018-04-25

    Royal jelly (RJ) is a beehive product with a complex composition, major royal jelly proteins (MRJPs) being the most abundant proteins. Cell culture and animal studies suggest various biological activities for the full-length/native MRJPs. In the field of apitherapy, it is assumed that MRJPs can positively affect human health. However, whenever RJ is administered orally, the availability for assimilation in the gastrointestinal tract is a prerequisite for MRJPs to have any effect on humans. We here show that MRJPs vary in resistance to pepsin digestion with MRJP2 being most stable and still present as full-length protein after 24 h of digestion. In the intestinal phase, using trypsin and chymotrypsin, MRJPs are rapidly digested with MRJP2 again showing longest stability (40 min), suggesting that MRJPs can reach the small intestine as full-length proteins but then have to be resorbed quickly if full-length proteins are to fulfill any biological activity.

  11. Intraarticular expression of biologically active interleukin 1-receptor-antagonist protein by ex vivo gene transfer.

    PubMed Central

    Bandara, G; Mueller, G M; Galea-Lauri, J; Tindal, M H; Georgescu, H I; Suchanek, M K; Hung, G L; Glorioso, J C; Robbins, P D; Evans, C H

    1993-01-01

    Gene therapy offers a radical different approach to the treatment of arthritis. Here we have demonstrated that two marker genes (lacZ and neo) and cDNA coding for a potentially therapeutic protein (human interleukin 1-receptor-antagonist protein; IRAP or IL-1ra) can be delivered, by ex vivo techniques, to the synovial lining of joints; intraarticular expression of IRAP inhibited intraarticular responses to interleukin 1. To achieve this, lapine synoviocytes were first transduced in culture by retroviral infection. The genetically modified synovial cells were then transplanted by intraarticular injection into the knee joints of rabbits, where they efficiently colonized the synovium. Assay of joint lavages confirmed the in vivo expression of biologically active human IRAP. With allografted cells, IRAP expression was lost by 12 days after transfer. In contrast, autografted synoviocytes continued to express IRAP for approximately 5 weeks. Knee joints expressing human IRAP were protected from the leukocytosis that otherwise follows the intraarticular injection of recombinant human interleukin 1 beta. Thus, we report the intraarticular expression and activity of a potentially therapeutic protein by gene-transfer technology; these experiments demonstrate the feasibility of treating arthritis and other joint disorders with gene therapy. Images Fig. 1 Fig. 2 PMID:8248169

  12. Population and Human Development: A Course Curriculum Including Lesson Plans, Activities, and Bibliography. Revised.

    ERIC Educational Resources Information Center

    Murphy, Elaine M.; Long, Alison T.

    This course outline suggests materials and learning activities on the interrelated causes and consequences of population growth and other population matters. The document describes 15 class sessions which integrate information for sociology, anthropology, psychology, biology, animal behavior, and education. Topics include the history of human…

  13. 77 FR 49818 - Agency Information Collection Activities; Proposed Collection; Comment Request; Bar Code Label...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ...] Agency Information Collection Activities; Proposed Collection; Comment Request; Bar Code Label... allow 60 days for public comment in response to the notice. This notice solicits comments on the bar... technology. Bar Code Label Requirement for Human Drug and Biological Products--(OMB Control Number 0910-0537...

  14. Honoring the Child with Dyslexia in a Montessori Classroom

    ERIC Educational Resources Information Center

    Skotheim, Meghan Kane

    2009-01-01

    Speaking, listening, reading, and writing are all language activities. The human capacity for speaking and listening has a biological foundation: wherever there are people, there is spoken language. Acquiring spoken language is an unconscious activity, and, barring any physical deformity or language learning disability, like severe autism, all…

  15. Marine Biology Field Trip Sites. Ocean Related Curriculum Activities.

    ERIC Educational Resources Information Center

    Pauls, John

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  16. Combined Functional and Immunochemical Analysis of Normal and Abnormal Human Factor X

    PubMed Central

    Fair, Daryl S.; Plow, Edward F.; Edgington, Thomas S.

    1979-01-01

    Human Factor X was isolated from Cohn fraction III and characterized by polyacrylamide gel electrophoresis, amino acid composition, and isoelectric focusing. Two molecular forms with biological activity were observed at isoelectric points of 4.8 and 5.0. Antisera generated to Factor X was monospecific and used to establish an equilibrium competitive inhibition radioimmunoassay. This assay was specific for human Factor X and did not cross-react with human prothrombin or bovine Factor X within the sensitivity range of 6-300 ng Factor X antigen/ml. The mean concentration of Factor X based on the antigen was 11.9 μg/ml, whereas concentration values based on coagulant activity was 7.8 μg/ml. This 30% difference in measurement appears to result from the presence of a subpopulation of Factor X molecules devoid of coagulant activity. The radioimmunoassay was used to qualitatively and quantitatively compare purified Factor X to plasmic Factor X obtained from normal, warfarintreated, acquired Factor X-deficient, and congenitaldeficient patients. In all but one case, the Factor X present in these plasmas was immunochemically identical to the purified Factor X and permitted precise quantitation of these abnormal Factor X molecules. Factor X procoagulant activity was analyzed relative to Factor X antigen and the specific activities were used to characterize normal and abnormal Factor X molecules. Reduced Factor X activity in plasmas from warfarin-treated and acquired Factor X-deficient patients was attributed to both decreases in Factor X antigen and decreased function of the Factor X molecules. Congenitally deficient patients, in general, showed a reduction in Factor X antigen in parallel with Factor X procoagulant activities resulting from comparable decreases in specific biological activity of the molecules. Images PMID:90058

  17. Cytokine-like Activity of Liver Type Fatty Acid Binding Protein (L-FABP) Inducing Inflammatory Cytokine Interleukin-6

    PubMed Central

    Kim, Hyunwoo; Gil, Gaae; Lee, Siyoung; Kwak, Areum; Jo, Seunghyun; Kim, Ensom; Nguyen, Tam T.; Kim, Sinae; Jhun, Hyunjhung; Kim, Somi; Kim, Miyeon; Lee, Youngmin

    2016-01-01

    It has been reported that fatty acid binding proteins (FABPs) do not act only as intracellular mediators of lipid responses but also have extracellular functions. This study aimed to investigate whether extracellular liver type (L)-FABP has a biological activity and to determined serum L-FABP levels in patients with end-stage renal disease (ESRD). We isolated L-FABP complementary deoxyribonucleic acid (cDNA) from the Huh7 human hepatocarcinoma cell line and expressed the recombinant L-FABP protein in Escherichia coli. A549 lung carcinoma and THP-1 monocytic cells were stimulated with the human recombinant L-FABP. Human whole blood cells were also treated with the human recombinant L-FABP or interleukin (IL)-1α. IL-6 levels were measured in cell culture supernatants using IL-6 enzyme-linked immunosorbent assay (ELISA). Human recombinant L-FABP induced IL-6 in a dose-dependent manner in A549, THP-1 cells, and whole blood cells. The blood samples of healthy volunteers and patients with ESRD were taken after an overnight fast. The serum levels of L-FABP in healthy volunteers and ESRD patients were quantified with L-FABP ELISA. The values of L-FABP in patients with ESRD were significantly lower than those in the control group. Our results demonstrated the biological activity of L-FABP in human cells suggesting L-FABP can be a mediator of inflammation. PMID:27799875

  18. Ferrocenyl and organic novobiocin derivatives: Synthesis and their in vitro biological activity.

    PubMed

    Mbaba, Mziyanda; Mabhula, Amanda N; Boel, Natasha; Edkins, Adrienne L; Isaacs, Michelle; Hoppe, Heinrich C; Khanye, Setshaba D

    2017-07-01

    A focused series of novobiocin derivatives containing a ferrocene unit together with their corresponding organic novobiocin analogues have been synthesized in modest to good yields. These compounds were screened for biological activity against a chloroquine-sensitive strain of Plasmodium falciparum (3D7) and human breast cancer cell line (HCC38). With the exception of compounds 5c and 5d, the general trend observed is that incorporation of the ferrocene moiety into novobiocin scaffold resulted in compounds 6a-d/6f showing enhanced activity compared to organic analogues 5a-b and 5e-f. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Impaired visual recognition of biological motion in schizophrenia.

    PubMed

    Kim, Jejoong; Doop, Mikisha L; Blake, Randolph; Park, Sohee

    2005-09-15

    Motion perception deficits have been suggested to be an important feature of schizophrenia but the behavioral consequences of such deficits are unknown. Biological motion refers to the movements generated by living beings. The human visual system rapidly and effortlessly detects and extracts socially relevant information from biological motion. A deficit in biological motion perception may have significant consequences for detecting and interpreting social information. Schizophrenia patients and matched healthy controls were tested on two visual tasks: recognition of human activity portrayed in point-light animations (biological motion task) and a perceptual control task involving detection of a grouped figure against the background noise (global-form task). Both tasks required detection of a global form against background noise but only the biological motion task required the extraction of motion-related information. Schizophrenia patients performed as well as the controls in the global-form task, but were significantly impaired on the biological motion task. In addition, deficits in biological motion perception correlated with impaired social functioning as measured by the Zigler social competence scale [Zigler, E., Levine, J. (1981). Premorbid competence in schizophrenia: what is being measured? Journal of Consulting and Clinical Psychology, 49, 96-105.]. The deficit in biological motion processing, which may be related to the previously documented deficit in global motion processing, could contribute to abnormal social functioning in schizophrenia.

  20. Artificial photosynthesis combines biology with technology for sustainable energy transformation

    NASA Astrophysics Data System (ADS)

    Moore, Thomas A.; Moore, Ana L.; Gust, Devens

    2013-03-01

    Photosynthesis supports the biosphere. Currently, human activity appropriates about one fourth of terrestrial photosynthetic net primary production (NPP) to support our GDP and nutrition. The cost to Earth systems of "our cut" of NPP is thought to be rapidly driving several Earth systems outside of bounds that were established on the geological time scale. Even with a fundamental realignment of human priorities, changing the unsustainable trajectory of the anthropocene will require reengineering photosynthesis to more efficiently meet human needs. Artificial photosynthetic systems are envisioned that can both supply renewable fuels and serve as platforms for exploring redesign strategies for photosynthesis. These strategies can be used in the nascent field of synthetic biology to make vast, much needed improvements in the biomass production efficiency of photosynthesis.

  1. Leadership in Mammalian Societies: Emergence, Distribution, Power, and Payoff.

    PubMed

    Smith, Jennifer E; Gavrilets, Sergey; Mulder, Monique Borgerhoff; Hooper, Paul L; Mouden, Claire El; Nettle, Daniel; Hauert, Christoph; Hill, Kim; Perry, Susan; Pusey, Anne E; van Vugt, Mark; Smith, Eric Alden

    2016-01-01

    Leadership is an active area of research in both the biological and social sciences. This review provides a transdisciplinary synthesis of biological and social-science views of leadership from an evolutionary perspective, and examines patterns of leadership in a set of small-scale human and non-human mammalian societies. We review empirical and theoretical work on leadership in four domains: movement, food acquisition, within-group conflict mediation, and between-group interactions. We categorize patterns of variation in leadership in five dimensions: distribution (across individuals), emergence (achieved versus inherited), power, relative payoff to leadership, and generality (across domains). We find that human leadership exhibits commonalities with and differences from the broader mammalian pattern, raising interesting theoretical and empirical issues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Environmental Measurements and Modeling

    EPA Pesticide Factsheets

    Environmental measurement is any data collection activity involving the assessment of chemical, physical, or biological factors in the environment which affect human health. Learn more about these programs and tools that aid in environmental decisions

  3. Effects of titanium surface topography on morphology and in vitro activity of human gingival fibroblasts.

    PubMed

    Ramaglia, L; Capece, G; Di Spigna, G; Bruno, M P; Buonocore, N; Postiglione, L

    2013-01-01

    The aim of the present study was to evaluate in vitro the biological behavior of human gingival fibroblasts cultured on two different titanium surfaces. Titanium test disks were prepared with a machined, relatively smooth (S) surface or a rough surface (O) obtained by a double acid etching procedure. Primary cultures of human gingival fibroblasts were plated on the experimental titanium disks and cultured up to 14 days. Titanium disk surfaces were analysed by scanning electron microscopy (SEM). Cell proliferation and a quantitative analysis by ELISA in situ of ECM components as CoI, FN and TN were performed. Results have shown different effects of titanium surface microtopography on cell expression and differentiation. At 96 hours of culture on experimental surfaces human gingival fibroblasts displayed a favourable cell attachment and proliferation on both surfaces although showing some differences. Both the relatively smooth and the etched surfaces interacted actively with in vitro cultures of human gingival fibroblasts, promoting cell proliferation and differentiation. Results suggested that the microtopography of a double acid-etched rough surface may induce a greater Co I and FN production, thus conditioning in vivo the biological behaviour of human gingival fibroblasts during the process of peri-implant soft tissue healing.

  4. Human serum activates CIDEB-mediated lipid droplet enlargement in hepatoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singaravelu, Ragunath; National Research Council of Canada, Ottawa, Ontario K1A 0R6; Lyn, Rodney K.

    Highlights: •Human serum induced differentiation of hepatoma cells increases cellular lipid droplet (LD) size. •The observed increase in LD size correlates with increased PGC-1α and CIDEB expression. •Induction of CIDEB expression correlates with rescue of VLDL secretion and loss of ADRP. •siRNA knockdown of CIDEB impairs the human serum mediated increase in LD size. •This system represents a cost-efficient model to study CIDEB’s role in lipid biology. -- Abstract: Human hepatocytes constitutively express the lipid droplet (LD) associated protein cell death-inducing DFFA-like effector B (CIDEB). CIDEB mediates LD fusion, as well as very-low-density lipoprotein (VLDL) maturation. However, there are limitedmore » cell culture models readily available to study CIDEB’s role in these biological processes, as hepatoma cell lines express negligible levels of CIDEB. Recent work has highlighted the ability of human serum to differentiate hepatoma cells. Herein, we demonstrate that culturing Huh7.5 cells in media supplemented with human serum activates CIDEB expression. This activation occurs through the induced expression of PGC-1α, a positive transcriptional regulator of CIDEB. Coherent anti-Stokes Raman scattering (CARS) microscopy revealed a correlation between CIDEB levels and LD size in human serum treated Huh7.5 cells. Human serum treatment also resulted in a rapid decrease in the levels of adipose differentiation-related protein (ADRP). Furthermore, individual overexpression of CIDEB was sufficient to down-regulate ADRP protein levels. siRNA knockdown of CIDEB revealed that the human serum mediated increase in LD size was CIDEB-dependent. Overall, our work highlights CIDEB’s role in LD fusion, and presents a new model system to study the PGC-1α/CIDEB pathway’s role in LD dynamics and the VLDL pathway.« less

  5. Recent developments in therapeutic applications of Cyanobacteria.

    PubMed

    Raja, Rathinam; Hemaiswarya, Shanmugam; Ganesan, Venkatesan; Carvalho, Isabel S

    2016-05-01

    The cyanobacteria (blue-green algae) are photosynthetic prokaryotes having applications in human health with numerous biological activities and as a dietary supplement. It is used as a food supplement because of its richness in nutrients and digestibility. Many cyanobacteria (Microcystis sp, Anabaena sp, Nostoc sp, Oscillatoria sp., etc.) produce a great variety of secondary metabolites with potent biological activities. Cyanobacteria produce biologically active and chemically diverse compounds belonging to cyclic peptides, lipopeptides, fatty acid amides, alkaloids and saccharides. More than 50% of the marine cyanobacteria are potentially exploitable for extracting bioactive substances which are effective in killing cancer cells by inducing apoptotic death. Their role as anti-viral, anti-tumor, antimicrobial, anti-HIV and a food additive have also been well established. However, such products are at different stages of clinical trials and only a few compounds have reached to the market.

  6. Peptide processing and biology in human disease

    PubMed Central

    Kovac, Suzana; Shulkes, Arthur; Baldwin, Graham S.

    2008-01-01

    Purpose of review To describe recent advances in the processing of gastrointestinal hormones, and the consequences for human disease of mutations in the enzymes involved. Recent findings Although gastrointestinal prohormones were long regarded as devoid of biological activity, recent data indicates that the prohormones for both gastrin and gastrin-releasing peptide are bioactive, through different receptors from the mature hormones. Mutations in the family of prohormone convertases responsible for the initial steps in the processing of gastrointestinal hormones are associated with several different pathophysiological conditions in humans. Summary Human mutational studies, when taken together with the phenotypes observed in mice deficient in the prohormone convertases, emphasize the crucial importance of the processing enzymes in mammalian biology. Although the phenotypes may often be ascribed to defective production of a mature hormone or growth factor, the recognition that the precursors are independently bioactive suggests that the increased precursor concentrations may also contribute to the symptoms. The observation that the precursors often act through different receptors from the mature hormones may permit the development of precursor-selective antagonists for therapeutic use. PMID:19104240

  7. Carbocyclic nucleoside analogues: classification, target enzymes, mechanisms of action and synthesis

    NASA Astrophysics Data System (ADS)

    Matyugina, E. S.; Khandazhinskaya, A. P.; Kochetkov, Sergei N.

    2012-08-01

    Key biological targets (S-adenosyl-L-homocysteine hydrolase, telomerase, human immunodeficiency virus reverse transcriptase, herpes virus DNA polymerase and hepatitis B virus DNA polymerase) and the mechanisms of action of carbocyclic nucleoside analogues are considered. Structural types of analogues are discussed. Methods of synthesis for the most promising compounds and the spectrum of their biological activities are described. The bibliography includes 126 references.

  8. Identification of Putative Steroid Receptor Antagonists in Bottled Water: Combining Bioassays and High-Resolution Mass Spectrometry

    PubMed Central

    Wagner, Martin; Schlüsener, Michael P.; Ternes, Thomas A.; Oehlmann, Jörg

    2013-01-01

    Endocrine disrupting chemicals (EDCs) are man-made compounds interfering with hormone signaling and thereby adversely affecting human health. Recent reports provide evidence for the presence of EDCs in commercially available bottled water, including steroid receptor agonists and antagonists. However, since these findings are based on biological data the causative chemicals remain unidentified and, therefore, inaccessible for toxicological evaluation. Thus, the aim of this study is to assess the antiestrogenic and antiandrogenic activity of bottled water and to identify the causative steroid receptor antagonists. We evaluated the antiestrogenic and antiandrogenic activity of 18 bottled water products in reporter gene assays for human estrogen receptor alpha and androgen receptor. Using nontarget high-resolution mass spectrometry (LTQ-Orbitrap Velos), we acquired corresponding analytical data. We combined the biological and chemical information to determine the exact mass of the tentative steroid receptor antagonist. Further MSn experiments elucidated the molecule’s structure and enabled its identification. We detected significant antiestrogenicity in 13 of 18 products. 16 samples were antiandrogenic inhibiting the androgen receptor by up to 90%. Nontarget chemical analysis revealed that out of 24520 candidates present in bottled water one was consistently correlated with the antagonistic activity. By combining experimental and in silico MSn data we identified this compound as di(2-ethylhexyl) fumarate (DEHF). We confirmed the identity and biological activity of DEHF and additional isomers of dioctyl fumarate and maleate using authentic standards. Since DEHF is antiestrogenic but not antiandrogenic we conclude that additional, yet unidentified EDCs must contribute to the antagonistic effect of bottled water. Applying a novel approach to combine biological and chemical analysis this is the first study to identify so far unknown EDCs in bottled water. Notably, dioctyl fumarates and maleates have been overlooked by science and regulation to date. This illustrates the need to identify novel toxicologically relevant compounds to establish a more holistic picture of the human exposome. PMID:24015248

  9. Structure-Based Virtual Screening of Protein Tyrosine Phosphatase Inhibitors: Significance, Challenges, and Solutions.

    PubMed

    Reddy, Rallabandi Harikrishna; Kim, Hackyoung; Cha, Seungbin; Lee, Bongsoo; Kim, Young Jun

    2017-05-28

    Phosphorylation, a critical mechanism in biological systems, is estimated to be indispensable for about 30% of key biological activities, such as cell cycle progression, migration, and division. It is synergistically balanced by kinases and phosphatases, and any deviation from this balance leads to disease conditions. Pathway or biological activity-based abnormalities in phosphorylation and the type of involved phosphatase influence the outcome, and cause diverse diseases ranging from diabetes, rheumatoid arthritis, and numerous cancers. Protein tyrosine phosphatases (PTPs) are of prime importance in the process of dephosphorylation and catalyze several biological functions. Abnormal PTP activities are reported to result in several human diseases. Consequently, there is an increased demand for potential PTP inhibitory small molecules. Several strategies in structure-based drug designing techniques for potential inhibitory small molecules of PTPs have been explored along with traditional drug designing methods in order to overcome the hurdles in PTP inhibitor discovery. In this review, we discuss druggable PTPs and structure-based virtual screening efforts for successful PTP inhibitor design.

  10. Human embryonic and induced pluripotent stem cell-derived cardiomyocytes exhibit beat rate variability and power-law behavior.

    PubMed

    Mandel, Yael; Weissman, Amir; Schick, Revital; Barad, Lili; Novak, Atara; Meiry, Gideon; Goldberg, Stanislav; Lorber, Avraham; Rosen, Michael R; Itskovitz-Eldor, Joseph; Binah, Ofer

    2012-02-21

    The sinoatrial node is the main impulse-generating tissue in the heart. Atrioventricular conduction block and arrhythmias caused by sinoatrial node dysfunction are clinically important and generally treated with electronic pacemakers. Although an excellent solution, electronic pacemakers incorporate limitations that have stimulated research on biological pacing. To assess the suitability of potential biological pacemakers, we tested the hypothesis that the spontaneous electric activity of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) exhibit beat rate variability and power-law behavior comparable to those of human sinoatrial node. We recorded extracellular electrograms from hESC-CMs and iPSC-CMs under stable conditions for up to 15 days. The beat rate time series of the spontaneous activity were examined in terms of their power spectral density and additional methods derived from nonlinear dynamics. The major findings were that the mean beat rate of hESC-CMs and iPSC-CMs was stable throughout the 15-day follow-up period and was similar in both cell types, that hESC-CMs and iPSC-CMs exhibited intrinsic beat rate variability and fractal behavior, and that isoproterenol increased and carbamylcholine decreased the beating rate in both hESC-CMs and iPSC-CMs. This is the first study demonstrating that hESC-CMs and iPSC-CMs exhibit beat rate variability and power-law behavior as in humans, thus supporting the potential capability of these cell sources to serve as biological pacemakers. Our ability to generate sinoatrial-compatible spontaneous cardiomyocytes from the patient's own hair (via keratinocyte-derived iPSCs), thus eliminating the critical need for immunosuppression, renders these myocytes an attractive cell source as biological pacemakers.

  11. Complex formation of blueberry (Vaccinium angustifolium) anthocyanins during freeze-drying and its influence on their biological activity.

    PubMed

    Correa-Betanzo, Julieta; Padmanabhan, Priya; Corredig, Milena; Subramanian, Jayasankar; Paliyath, Gopinadhan

    2015-03-25

    Biological activity of polyphenols is influenced by their uptake and is highly influenced by their interactions with the food matrix. This study evaluated the complex formation of blueberry polyphenols with fruit matrixes such as pectin and cellulose and their effect on the biological and antiproliferative properties of human colon cell lines HT-29 and CRL 1790. Free or complexed polyphenols were isolated by dialyzing aqueous or methanolic blueberry homogenates. Seven phenolic compounds and thirteen anthocyanins were identified in blueberry extracts. Blueberry extracts showed varying degrees of antioxidant and antiproliferative activities, as well as α-glucosidase activity. Fruit matrix containing cellulose and pectin, or purified polygalacturonic acid and cellulose, did not retain polyphenols and showed very low antioxidant or antiproliferative activities. These findings suggest that interactions between polyphenols and the food matrix may be more complex than a simple association and may play an important role in the bioefficacy of blueberry polyphenols.

  12. The processing of social stimuli in early infancy: from faces to biological motion perception.

    PubMed

    Simion, Francesca; Di Giorgio, Elisa; Leo, Irene; Bardi, Lara

    2011-01-01

    There are several lines of evidence which suggests that, since birth, the human system detects social agents on the basis of at least two properties: the presence of a face and the way they move. This chapter reviews the infant research on the origin of brain specialization for social stimuli and on the role of innate mechanisms and perceptual experience in shaping the development of the social brain. Two lines of convergent evidence on face detection and biological motion detection will be presented to demonstrate the innate predispositions of the human system to detect social stimuli at birth. As for face detection, experiments will be presented to demonstrate that, by virtue of nonspecific attentional biases, a very coarse template of faces become active at birth. As for biological motion detection, studies will be presented to demonstrate that, since birth, the human system is able to detect social stimuli on the basis of their properties such as the presence of a semi-rigid motion named biological motion. Overall, the empirical evidence converges in supporting the notion that the human system begins life broadly tuned to detect social stimuli and that the progressive specialization will narrow the system for social stimuli as a function of experience. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Neuroimaging of the joint Simon effect with believed biological and non-biological co-actors

    PubMed Central

    Wen, Tanya; Hsieh, Shulan

    2015-01-01

    Performing a task alone or together with another agent can produce different outcomes. The current study used event-related functional magnetic resonance imaging (fMRI) to investigate the neural underpinnings when participants performed a Go/Nogo task alone or complementarily with another co-actor (unseen), whom was believed to be another human or a computer. During both complementary tasks, reaction time data suggested that participants integrated the potential action of their co-actor in their own action planning. Compared to the single-actor task, increased parietal and precentral activity during complementary tasks as shown in the fMRI data further suggested representation of the co-actor’s response. The superior frontal gyrus of the medial prefrontal cortex was differentially activated in the human co-actor condition compared to the computer co-actor condition. The medial prefrontal cortex, involved thinking about the beliefs and intentions of other people, possibly reflects a social-cognitive aspect or self-other discrimination during the joint task when believing a biological co-actor is present. Our results suggest that action co-representation can occur even offline with any agent type given a priori information that they are co-acting; however, additional regions are recruited when participants believe they are task-sharing with another human. PMID:26388760

  14. Neuroimaging of the joint Simon effect with believed biological and non-biological co-actors.

    PubMed

    Wen, Tanya; Hsieh, Shulan

    2015-01-01

    Performing a task alone or together with another agent can produce different outcomes. The current study used event-related functional magnetic resonance imaging (fMRI) to investigate the neural underpinnings when participants performed a Go/Nogo task alone or complementarily with another co-actor (unseen), whom was believed to be another human or a computer. During both complementary tasks, reaction time data suggested that participants integrated the potential action of their co-actor in their own action planning. Compared to the single-actor task, increased parietal and precentral activity during complementary tasks as shown in the fMRI data further suggested representation of the co-actor's response. The superior frontal gyrus of the medial prefrontal cortex was differentially activated in the human co-actor condition compared to the computer co-actor condition. The medial prefrontal cortex, involved thinking about the beliefs and intentions of other people, possibly reflects a social-cognitive aspect or self-other discrimination during the joint task when believing a biological co-actor is present. Our results suggest that action co-representation can occur even offline with any agent type given a priori information that they are co-acting; however, additional regions are recruited when participants believe they are task-sharing with another human.

  15. Biological Effects of Activating Distinct ErbB Receptor Dimers in Polarized Growth Arrested Epithelia

    DTIC Science & Technology

    2006-09-01

    deregulating the function of Par protein complex, we made the unexpected observation that overexpression of Par6 induced growth- factor independent...predisposition factors for human cancer [8] and the human papillomavirus protein E6, targets scribble for degradation[9]. It has also been shown that Par6...vivo and thus is an excellent model to study the important factors in the initiation of the oncogenic process. However, activation of ErbB1 does not

  16. Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1984

    1984-01-01

    Presents 28 activities, games, demonstrations, experiments, and computer programs for biology, chemistry, physics, and conservation education. Background information, laboratory procedures, equipment lists, and instructional strategies are included. Topics include nature conservation, chickens in school, human anatomy, nitrogen cycle, mechanism…

  17. RESEARCH NEEDS FOR EFFECTIVE WATERSHED PLANNING

    EPA Science Inventory

    Watershed research has historically focused on physical and biological processes, stressor-response, and effects research, providing valuable understanding of the effects of human activity and natural disturbances on watershed ecosystems. Continued research to support watershed ...

  18. 75 FR 54888 - Determination of Regulatory Review Period for Purposes of Patent Extension; IXIARO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... marketing the human biologic product IXIARO (Japanese Encephalitis Virus, Vaccine Inactivated, Adsorbed). IXIARO is indicated for active immunization for the prevention of disease caused by Japanese encephalitis...

  19. Flavones: Food Sources, Bioavailability, Metabolism, and Bioactivity12

    PubMed Central

    Hostetler, Gregory L; Ralston, Robin A; Schwartz, Steven J

    2017-01-01

    Flavones are a class of flavonoids that are a subject of increasing interest because of their biological activities in vitro and in vivo. This article reviews the major sources of flavones and their concentrations in food and beverages, which vary widely between studies. It also covers the roles of flavones in plants, the influence of growing conditions on their concentrations, and their stability during food processing. The absorption and metabolism of flavones are also reviewed, in particular the intestinal absorption of both O- and C-glycosides. Pharmacokinetic studies in both animals and humans are described, comparing differences between species and the effects of glycosylation on bioavailability. Biological activity in animal models and human dietary intervention studies is also reviewed. A better understanding of flavone sources and bioavailability is needed to understand mechanisms of action and nutritional intervention. PMID:28507008

  20. Rationally designed mutations convert complexes of human recombinant T cell receptor ligands into monomers that retain biological activity

    PubMed Central

    Huan, Jianya Y; Meza-Romero, Roberto; Mooney, Jeffery L; Chou, Yuan K; Edwards, David M; Rich, Cathleen; Link, Jason M; Vandenbark, Arthur A; Bourdette, Dennis N; Bächinger, Hans-Peter; Burrows, Gregory G

    2012-01-01

    Single-chain human recombinant T cell receptor ligands derived from the peptide binding/TCR recognition domain of human HLA-DR2b (DRA*0101/DRB1*1501) produced in Escherichia coli with and without amino-terminal extensions containing antigenic peptides have been described previously. While molecules with the native sequence retained biological activity, they formed higher order aggregates in solution. In this study, we used site-directed mutagenesis to modify the β-sheet platform of the DR2-derived RTLs, obtaining two variants that were monomeric in solution by replacing hydrophobic residues with polar (serine) or charged (aspartic acid) residues. Size exclusion chromatography and dynamic light scattering demonstrated that the modified RTLs were monomeric in solution, and structural characterization using circular dichroism demonstrated the highly ordered secondary structure of the RTLs. Peptide binding to the `empty' RTLs was quantified using biotinylated peptides, and functional studies showed that the modified RTLs containing covalently tethered peptides were able to inhibit antigen-specific T cell proliferation in vitro, as well as suppress experimental autoimmune encephalomyelitis in vivo. These studies demonstrated that RTLs encoding the Ag-binding/TCR recognition domain of MHC class II molecules are innately very robust structures, capable of retaining potent biological activity separate from the Ig-fold domains of the progenitor class II structure, with prevention of aggregation accomplished by modification of an exposed surface that was buried in the progenitor structure. PMID:22973070

  1. Analysis of Protein Composition and Bioactivity of Neoponera villosa Venom (Hymenoptera: Formicidae).

    PubMed

    Pessoa, Wallace Felipe Blohem; Silva, Ludimilla Carvalho Cerqueira; de Oliveira Dias, Leila; Delabie, Jacques Hubert Charles; Costa, Helena; Romano, Carla Cristina

    2016-04-21

    Ants cause a series of accidents involving humans. Such accidents generate different reactions in the body, ranging from a mild irritation at the bite site to anaphylactic shock, and these reactions depend on the mechanism of action of the venom. The study of animal venom is a science known as venomics. Through venomics, the composition of the venom of several ant species has already been characterized and their biological activities described. Thus, the aim of this study was to evaluate the protein composition and biological activities (hemolytic and immunostimulatory) of the venom of Neoponera villosa (N. villosa), an ant widely distributed in South America. The protein composition was evaluated by proteomic techniques, such as two-dimensional electrophoresis. To assess the biological activity, hemolysis assay was carried out and cytokines were quantified after exposure of macrophages to the venom. The venom of N. villosa has a profile composed of 145 proteins, including structural and metabolic components (e.g., tubulin and ATPase), allergenic and immunomodulatory proteins (arginine kinase and heat shock proteins (HSPs)), protective proteins of venom (superoxide dismutase (SOD) and catalase) and tissue degradation proteins (hyaluronidase and phospholipase A2). The venom was able to induce hemolysis in human erythrocytes and also induced release of both pro-inflammatory cytokines, as the anti-inflammatory cytokine release by murine macrophages. These results allow better understanding of the composition and complexity of N. villosa venom in the human body, as well as the possible mechanisms of action after the bite.

  2. Analysis of Protein Composition and Bioactivity of Neoponera villosa Venom (Hymenoptera: Formicidae)

    PubMed Central

    Pessoa, Wallace Felipe Blohem; Silva, Ludimilla Carvalho Cerqueira; de Oliveira Dias, Leila; Delabie, Jacques Hubert Charles; Costa, Helena; Romano, Carla Cristina

    2016-01-01

    Ants cause a series of accidents involving humans. Such accidents generate different reactions in the body, ranging from a mild irritation at the bite site to anaphylactic shock, and these reactions depend on the mechanism of action of the venom. The study of animal venom is a science known as venomics. Through venomics, the composition of the venom of several ant species has already been characterized and their biological activities described. Thus, the aim of this study was to evaluate the protein composition and biological activities (hemolytic and immunostimulatory) of the venom of Neoponera villosa (N. villosa), an ant widely distributed in South America. The protein composition was evaluated by proteomic techniques, such as two-dimensional electrophoresis. To assess the biological activity, hemolysis assay was carried out and cytokines were quantified after exposure of macrophages to the venom. The venom of N. villosa has a profile composed of 145 proteins, including structural and metabolic components (e.g., tubulin and ATPase), allergenic and immunomodulatory proteins (arginine kinase and heat shock proteins (HSPs)), protective proteins of venom (superoxide dismutase (SOD) and catalase) and tissue degradation proteins (hyaluronidase and phospholipase A2). The venom was able to induce hemolysis in human erythrocytes and also induced release of both pro-inflammatory cytokines, as the anti-inflammatory cytokine release by murine macrophages. These results allow better understanding of the composition and complexity of N. villosa venom in the human body, as well as the possible mechanisms of action after the bite. PMID:27110765

  3. Xylan-regulated Delivery of Human Keratinocyte Growth Factor-2 to the Inflamed Colon by the Human Anaerobic Commensal Bacterium Bacteroides ovatus

    USDA-ARS?s Scientific Manuscript database

    The use of genetically modified bacteria to deliver biologically active molecules directly to the gut has become an increasingly attractive area of investigation. The challenge of regulation of production of the therapeutic molecule and colonization of the bowel led us to investigate Bacteroides ov...

  4. Expression of Biologically Active Human Butyrylcholinesterase in the Cabbage Looper (Trichoplusia ni)

    DTIC Science & Technology

    2000-01-01

    recombinant human BUChE; Sf, Spodoptera frugiperda ; VX, 0-ethyl S-[2-[bis(I -methylethyl)amino]ethyl]methyl phosphonothiolate; wt, wild-type. 1 To whom...ATCC (Rockville, MD, U.S.A.). Insect cells ( Spodoptera frugiperda Sf9 cells and T. ni High 5 cells) and wild-type (wt)-AcNPV were purchased from

  5. Anthropomorphically Speaking: On Communication between Teachers and Children in Early Childhood Biology Education

    ERIC Educational Resources Information Center

    Thulin, Susanne; Pramling, Niklas

    2009-01-01

    In this study a particular kind of figurative language, so-called anthropomorphic speech, is analysed in the context of science activities in a preschool setting. Anthropomorphism means speaking about something non-human in human terms. Can any systematic pattern be seen with regard to when such speech is used? Do children and/or teachers…

  6. A history of biological disasters of animal origin in North America.

    PubMed

    Ackerman, G A; Giroux, J

    2006-04-01

    This paper examines past occurrences in North America relevant to the possibility of biological disasters with animal origins. With respect to naturally occurring animal disease outbreaks, North America, while not as adversely affected by epizootics as other regions, has had its fair share of such outbreaks of both 'traditional' and emerging animal diseases. The traditional category includes such diseases as anthrax, classical swine fever, bluetongue, brucellosis, foot and mouth disease, and the family of equine encephalomyelitis viruses. The emerging diseases include relatively more recent culprits such as postweaning multisystemic wasting syndrome, poultry enteritis mortality syndrome, and newly discovered examples of the transmissible spongiform encephalopathies. Additionally, several serious diseases of human beings that involve animal vectors or reservoirs occur naturally in North America or have emerged in recent decades; these include plague, hantavirus, monkeypox, West Nile virus and avian-derived influenza. At the same time, there have been very few intentional attacks on livestock using biological agents and no recorded cases in North America of animals intentionally being used to transmit disease to humans. According to the historical record, therefore, naturally occurring emerging zoonoses probably constitute the greatest threat in terms of biological disasters with animal origins. However, some of the general trends in terrorist activity, such as the intensification of activities by animal rights extremists against facilities undertaking animal research, mean that the possibility of intentional animal-related biological disasters should not be discounted.

  7. Extract from the Zooxanthellate Jellyfish Cotylorhiza tuberculata Modulates Gap Junction Intercellular Communication in Human Cell Cultures

    PubMed Central

    Leone, Antonella; Lecci, Raffaella Marina; Durante, Miriana; Piraino, Stefano

    2013-01-01

    On a global scale, jellyfish populations in coastal marine ecosystems exhibit increasing trends of abundance. High-density outbreaks may directly or indirectly affect human economical and recreational activities, as well as public health. As the interest in biology of marine jellyfish grows, a number of jellyfish metabolites with healthy potential, such as anticancer or antioxidant activities, is increasingly reported. In this study, the Mediterranean “fried egg jellyfish” Cotylorhiza tuberculata (Macri, 1778) has been targeted in the search forputative valuable bioactive compounds. A medusa extract was obtained, fractionated, characterized by HPLC, GC-MS and SDS-PAGE and assayed for its biological activity on breast cancer cells (MCF-7) and human epidermal keratinocytes (HEKa). The composition of the jellyfish extract included photosynthetic pigments, valuable ω-3 and ω-6 fatty acids, and polypeptides derived either from jellyfish tissues and their algal symbionts. Extract fractions showed antioxidant activity and the ability to affect cell viability and intercellular communication mediated by gap junctions (GJIC) differentially in MCF-7and HEKa cells. A significantly higher cytotoxicity and GJIC enhancement in MCF-7 compared to HEKa cells was recorded. A putative action mechanism for the anticancer bioactivity through the modulation of GJIC has been hypothesized and its nutraceutical and pharmaceutical potential was discussed. PMID:23697954

  8. Extract from the zooxanthellate jellyfish Cotylorhiza tuberculata modulates gap junction intercellular communication in human cell cultures.

    PubMed

    Leone, Antonella; Lecci, Raffaella Marina; Durante, Miriana; Piraino, Stefano

    2013-05-22

    On a global scale, jellyfish populations in coastal marine ecosystems exhibit increasing trends of abundance. High-density outbreaks may directly or indirectly affect human economical and recreational activities, as well as public health. As the interest in biology of marine jellyfish grows, a number of jellyfish metabolites with healthy potential, such as anticancer or antioxidant activities, is increasingly reported. In this study, the Mediterranean "fried egg jellyfish" Cotylorhiza tuberculata (Macri, 1778) has been targeted in the search forputative valuable bioactive compounds. A medusa extract was obtained, fractionated, characterized by HPLC, GC-MS and SDS-PAGE and assayed for its biological activity on breast cancer cells (MCF-7) and human epidermal keratinocytes (HEKa). The composition of the jellyfish extract included photosynthetic pigments, valuable ω-3 and ω-6 fatty acids, and polypeptides derived either from jellyfish tissues and their algal symbionts. Extract fractions showed antioxidant activity and the ability to affect cell viability and intercellular communication mediated by gap junctions (GJIC) differentially in MCF-7 and HEKa cells. A significantly higher cytotoxicity and GJIC enhancement in MCF-7 compared to HEKa cells was recorded. A putative action mechanism for the anticancer bioactivity through the modulation of GJIC has been hypothesized and its nutraceutical and pharmaceutical potential was discussed.

  9. Recombinant Collagen Engineered to Bind to Discoidin Domain Receptor Functions as a Receptor Inhibitor*

    PubMed Central

    An, Bo; Abbonante, Vittorio; Xu, Huifang; Gavriilidou, Despoina; Yoshizumi, Ayumi; Bihan, Dominique; Farndale, Richard W.; Kaplan, David L.; Balduini, Alessandra; Leitinger, Birgit; Brodsky, Barbara

    2016-01-01

    A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities. PMID:26702058

  10. Evolutionary origin and functional divergence of totipotent cell homeobox genes in eutherian mammals.

    PubMed

    Maeso, Ignacio; Dunwell, Thomas L; Wyatt, Chris D R; Marlétaz, Ferdinand; Vető, Borbála; Bernal, Juan A; Quah, Shan; Irimia, Manuel; Holland, Peter W H

    2016-06-13

    A central goal of evolutionary biology is to link genomic change to phenotypic evolution. The origin of new transcription factors is a special case of genomic evolution since it brings opportunities for novel regulatory interactions and potentially the emergence of new biological properties. We demonstrate that a group of four homeobox gene families (Argfx, Leutx, Dprx, Tprx), plus a gene newly described here (Pargfx), arose by tandem gene duplication from the retinal-expressed Crx gene, followed by asymmetric sequence evolution. We show these genes arose as part of repeated gene gain and loss events on a dynamic chromosomal region in the stem lineage of placental mammals, on the forerunner of human chromosome 19. The human orthologues of these genes are expressed specifically in early embryo totipotent cells, peaking from 8-cell to morula, prior to cell fate restrictions; cow orthologues have similar expression. To examine biological roles, we used ectopic gene expression in cultured human cells followed by high-throughput RNA-seq and uncovered extensive transcriptional remodelling driven by three of the genes. Comparison to transcriptional profiles of early human embryos suggest roles in activating and repressing a set of developmentally-important genes that spike at 8-cell to morula, rather than a general role in genome activation. We conclude that a dynamic chromosome region spawned a set of evolutionarily new homeobox genes, the ETCHbox genes, specifically in eutherian mammals. After these genes diverged from the parental Crx gene, we argue they were recruited for roles in the preimplantation embryo including activation of genes at the 8-cell stage and repression after morula. We propose these new homeobox gene roles permitted fine-tuning of cell fate decisions necessary for specification and function of embryonic and extra-embryonic tissues utilised in mammalian development and pregnancy.

  11. Eosinophils as a novel cell source of prostaglandin D2: autocrine role in allergic inflammation

    PubMed Central

    Luna-Gomes, Tatiana; Magalhães, Kelly G; Mesquita-Santos, Fabio P.; Bakker-Abreu, Ilka; Samico, Rafaela F.; Molinaro, Raphael; Calheiros, Andrea S.; Diaz, Bruno L.; Bozza, Patrícia T.

    2011-01-01

    Prostaglandin (PG)D2 is a key mediator of allergic inflammatory diseases that is mainly synthesized by mast cells, which constitutively express high levels of the terminal enzyme involved in PGD2 synthesis, the hematopoietic PGD synthase (H-PGDS). Here, we investigated whether eosinophils are also able to synthesize, and therefore, supply biologically active PGD2. PGD2 synthesis was evaluated within human blood eosinophils, in vitro-differentiated mouse eosinophils, and eosinophils infiltrating inflammatory site of mouse allergic reaction. Biological function of eosinophil-derived PGD2 was studied by employing inhibitors of synthesis and activity. Constitutive expression of H-PGDS was found within non-stimulated human circulating eosinophils. Acute stimulation of human eosinophils with A23187 (0.1 – 5 μM) evoked PGD2 synthesis, which was located at the nuclear envelope and was inhibited by pre-treatment with HQL-79 (10 μM), a specific H-PGDS inhibitor. Pre-stimulation of human eosinophils with arachidonic acid (AA; 10 μM) or human eotaxin (6 nM) also enhanced HQL-79-sensitive PGD2 synthesis, which, by acting on membrane-expressed specific receptors (DP1 and DP2), displayed an autocrine/paracrine ability to trigger leukotriene (LT)C4 synthesis and lipid body biogenesis, hallmark events of eosinophil activation. In vitro-differentiated mouse eosinophils also synthesized paracrine/autocrine active PGD2 in response to AA stimulation. In vivo, at late time point of the allergic reaction, infiltrating eosinophils found at the inflammatory site appeared as an auxiliary PGD2-synthesizing cell population. Our findings reveal that eosinophils are indeed able to synthesize and secrete PGD2, hence representing during allergic inflammation an extra cell source of PGD2, which functions as an autocrine signal for eosinophil activation. PMID:22102725

  12. A novel anti-EMMPRIN function-blocking antibody reduces T cell proliferation and neurotoxicity: relevance to multiple sclerosis

    PubMed Central

    2012-01-01

    Background Extracellular matrix metalloproteinase inducer (EMMPRIN; CD147, basigin) is an inducer of the expression of several matrix metalloproteinases (MMPs). We reported previously that blocking EMMPRIN activity reduced neuroinflammation and severity of disease in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). Methods To improve upon EMMPRIN blockade, and to help unravel the biological functions of EMMPRIN in inflammatory disorders, we have developed several anti-EMMPRIN monoclonal antibodies. Results Of these monoclonal antibodies, a particular one, clone 10, was efficient in binding mouse and human cells using several methods of detection. The specificity of clone 10 was demonstrated by its lack of staining of EMMPRIN-null embryos compared to heterozygous and wild-type mouse samples. Functionally, human T cells activated with anti-CD3 and anti-CD28 elevated their expression of EMMPRIN and the treatment of these T cells with clone 10 resulted in decreased proliferation and matrix metalloproteinase- 9 (MMP-9) production. Activated human T cells were toxic to human neurons in culture and clone 10 pretreatment reduced T cell cytotoxicity correspondent with decrease of granzyme B levels within T cells. In vivo, EAE mice treated with clone 10 had a markedly reduced disease score compared to mice treated with IgM isotype control. Conclusions We have produced a novel anti-EMMPRIN monoclonal antibody that blocks several aspects of T cell activity, thus highlighting the multiple roles of EMMPRIN in T cell biology. Moreover, clone 10 reduces EAE scores in mice compared to controls, and has activity on human cells, potentially allowing for the testing of anti-EMMPRIN treatment not only in EAE, but conceivably also in MS. PMID:22480370

  13. A novel anti-EMMPRIN function-blocking antibody reduces T cell proliferation and neurotoxicity: relevance to multiple sclerosis.

    PubMed

    Agrawal, Smriti M; Silva, Claudia; Wang, Janet; Tong, Jade Pui-Wai; Yong, V Wee

    2012-04-05

    Extracellular matrix metalloproteinase inducer (EMMPRIN; CD147, basigin) is an inducer of the expression of several matrix metalloproteinases (MMPs). We reported previously that blocking EMMPRIN activity reduced neuroinflammation and severity of disease in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). To improve upon EMMPRIN blockade, and to help unravel the biological functions of EMMPRIN in inflammatory disorders, we have developed several anti-EMMPRIN monoclonal antibodies. Of these monoclonal antibodies, a particular one, clone 10, was efficient in binding mouse and human cells using several methods of detection. The specificity of clone 10 was demonstrated by its lack of staining of EMMPRIN-null embryos compared to heterozygous and wild-type mouse samples. Functionally, human T cells activated with anti-CD3 and anti-CD28 elevated their expression of EMMPRIN and the treatment of these T cells with clone 10 resulted in decreased proliferation and matrix metalloproteinase- 9 (MMP-9) production. Activated human T cells were toxic to human neurons in culture and clone 10 pretreatment reduced T cell cytotoxicity correspondent with decrease of granzyme B levels within T cells. In vivo, EAE mice treated with clone 10 had a markedly reduced disease score compared to mice treated with IgM isotype control. We have produced a novel anti-EMMPRIN monoclonal antibody that blocks several aspects of T cell activity, thus highlighting the multiple roles of EMMPRIN in T cell biology. Moreover, clone 10 reduces EAE scores in mice compared to controls, and has activity on human cells, potentially allowing for the testing of anti-EMMPRIN treatment not only in EAE, but conceivably also in MS.

  14. Modeling recent human evolution in mice by expression of a selected EDAR variant

    PubMed Central

    Kamberov, Yana G.; Wang, Sijia; Tan, Jingze; Gerbault, Pascale; Wark, Abigail; Tan, Longzhi; Yang, Yajun; Li, Shilin; Tang, Kun; Chen, Hua; Powell, Adam; Itan, Yuval; Fuller, Dorian; Lohmueller, Jason; Mao, Junhao; Schachar, Asa; Paymer, Madeline; Hostetter, Elizabeth; Byrne, Elizabeth; Burnett, Melissa; McMahon, Andrew P.; Thomas, Mark G.; Lieberman, Daniel E.; Jin, Li; Tabin, Clifford J.; Morgan, Bruce A.; Sabeti, Pardis C.

    2013-01-01

    Summary An adaptive variant of the human Ectodysplasin receptor, EDARV370A, is one of the strongest candidates of recent positive selection from genome-wide scans. We have modeled EDAR370A in mice and characterized its phenotype and evolutionary origins in humans. Our computational analysis suggests the allele arose in Central China approximately 30,000 years ago. Although EDAR370A has been associated with increased scalp hair thickness and changed tooth morphology in humans, its direct biological significance and potential adaptive role remain unclear. We generated a knock-in mouse model and find that, as in humans, hair thickness is increased in EDAR370A mice. We identify novel biological targets affected by the mutation, including mammary and eccrine glands. Building on these results, we find that EDAR370A is associated with an increased number of active eccrine glands in the Han Chinese. This interdisciplinary approach yields unique insight into the generation of adaptive variation among modern humans. PMID:23415220

  15. Activation of motility and chemotaxis in the spermatozoa: From invertebrates to humans

    PubMed Central

    YOSHIDA, MANABU

    2005-01-01

    Activation of the sperm motility and chemotactic behavior of sperm toward eggs are the first communication between spermatozoa and eggs at fertilization, and understanding of the phenomena is a prerequisite for progress of not only basic biology, but also clinical aspects. The nature of molecules derived from eggs by which sperm are activated and attracted towards the eggs and the molecular mechanisms underlying the sperm activation and chemotaxis have been investigated in only a few invertebrate species, sea urchins, ascidians and herring fish. However, knowledge on this phenomena has been ignored in mammalian species including humans. The current review first introduces the studies on the activation and chemotaxis of sperm in marine invertebrates, and the same phenomena in mammals including humans, are described. (Reprod Med Biol 2005; 4: 101–115) PMID:29699215

  16. What have humans done for evolutionary biology? Contributions from genes to populations.

    PubMed

    Briga, Michael; Griffin, Robert M; Berger, Vérane; Pettay, Jenni E; Lummaa, Virpi

    2017-11-15

    Many fundamental concepts in evolutionary biology were discovered using non-human study systems. Humans are poorly suited to key study designs used to advance this field, and are subject to cultural, technological, and medical influences often considered to restrict the pertinence of human studies to other species and general contexts. Whether studies using current and recent human populations provide insights that have broader biological relevance in evolutionary biology is, therefore, frequently questioned. We first surveyed researchers in evolutionary biology and related fields on their opinions regarding whether studies on contemporary humans can advance evolutionary biology. Almost all 442 participants agreed that humans still evolve, but fewer agreed that this occurs through natural selection. Most agreed that human studies made valuable contributions to evolutionary biology, although those less exposed to human studies expressed more negative views. With a series of examples, we discuss strengths and limitations of evolutionary studies on contemporary humans. These show that human studies provide fundamental insights into evolutionary processes, improve understanding of the biology of many other species, and will make valuable contributions to evolutionary biology in the future. © 2017 The Author(s).

  17. What have humans done for evolutionary biology? Contributions from genes to populations

    PubMed Central

    Briga, Michael; Griffin, Robert M.; Berger, Vérane; Pettay, Jenni E.

    2017-01-01

    Many fundamental concepts in evolutionary biology were discovered using non-human study systems. Humans are poorly suited to key study designs used to advance this field, and are subject to cultural, technological, and medical influences often considered to restrict the pertinence of human studies to other species and general contexts. Whether studies using current and recent human populations provide insights that have broader biological relevance in evolutionary biology is, therefore, frequently questioned. We first surveyed researchers in evolutionary biology and related fields on their opinions regarding whether studies on contemporary humans can advance evolutionary biology. Almost all 442 participants agreed that humans still evolve, but fewer agreed that this occurs through natural selection. Most agreed that human studies made valuable contributions to evolutionary biology, although those less exposed to human studies expressed more negative views. With a series of examples, we discuss strengths and limitations of evolutionary studies on contemporary humans. These show that human studies provide fundamental insights into evolutionary processes, improve understanding of the biology of many other species, and will make valuable contributions to evolutionary biology in the future. PMID:29118130

  18. Thyrotropin-releasing hormone controls mitochondrial biology in human epidermis.

    PubMed

    Knuever, Jana; Poeggeler, Burkhard; Gáspár, Erzsébet; Klinger, Matthias; Hellwig-Burgel, Thomas; Hardenbicker, Celine; Tóth, Balázs I; Bíró, Tamás; Paus, Ralf

    2012-03-01

    Mitochondrial capacity and metabolic potential are under the control of hormones, such as thyroid hormones. The most proximal regulator of the hypothalamic-pituitary-thyroid (HPT) axis, TRH, is the key hypothalamic integrator of energy metabolism via its impact on thyroid hormone secretion. Here, we asked whether TRH directly modulates mitochondrial functions in normal, TRH-receptor-positive human epidermis. Organ-cultured human skin was treated with TRH (5-100 ng/ml) for 12-48 h. TRH significantly increased epidermal immunoreactivity for the mitochondria-selective subunit I of respiratory chain complex IV (MTCO1). This resulted from an increased MTCO1 transcription and protein synthesis and a stimulation of mitochondrial biogenesis as demonstrated by transmission electron microscopy and TRH-enhanced mitochondrial DNA synthesis. TRH also significantly stimulated the transcription of several other mitochondrial key genes (TFAM, HSP60, and BMAL1), including the master regulator of mitochondrial biogenesis (PGC-1α). TRH significantly enhanced mitochondrial complex I and IV enzyme activity and enhanced the oxygen consumption of human skin samples, which shows that the stimulated mitochondria are fully vital because the main source for cellular oxygen consumption is mitochondrial endoxidation. These findings identify TRH as a potent, novel neuroendocrine stimulator of mitochondrial activity and biogenesis in human epidermal keratinocytes in situ. Thus, human epidermis offers an excellent model for dissecting neuroendocrine controls of human mitochondrial biology under physiologically relevant conditions and for exploring corresponding clinical applications.

  19. Control of Mycobacterial Infections in Mice Expressing Human Tumor Necrosis Factor (TNF) but Not Mouse TNF.

    PubMed

    Olleros, Maria L; Chavez-Galan, Leslie; Segueni, Noria; Bourigault, Marie L; Vesin, Dominique; Kruglov, Andrey A; Drutskaya, Marina S; Bisig, Ruth; Ehlers, Stefan; Aly, Sahar; Walter, Kerstin; Kuprash, Dmitry V; Chouchkova, Miliana; Kozlov, Sergei V; Erard, François; Ryffel, Bernard; Quesniaux, Valérie F J; Nedospasov, Sergei A; Garcia, Irene

    2015-09-01

    Tumor necrosis factor (TNF) is an important cytokine for host defense against pathogens but is also associated with the development of human immunopathologies. TNF blockade effectively ameliorates many chronic inflammatory conditions but compromises host immunity to tuberculosis. The search for novel, more specific human TNF blockers requires the development of a reliable animal model. We used a novel mouse model with complete replacement of the mouse TNF gene by its human ortholog (human TNF [huTNF] knock-in [KI] mice) to determine resistance to Mycobacterium bovis BCG and M. tuberculosis infections and to investigate whether TNF inhibitors in clinical use reduce host immunity. Our results show that macrophages from huTNF KI mice responded to BCG and lipopolysaccharide similarly to wild-type macrophages by NF-κB activation and cytokine production. While TNF-deficient mice rapidly succumbed to mycobacterial infection, huTNF KI mice survived, controlling the bacterial burden and activating bactericidal mechanisms. Administration of TNF-neutralizing biologics disrupted the control of mycobacterial infection in huTNF KI mice, leading to an increased bacterial burden and hyperinflammation. Thus, our findings demonstrate that human TNF can functionally replace murine TNF in vivo, providing mycobacterial resistance that could be compromised by TNF neutralization. This new animal model will be helpful for the testing of specific biologics neutralizing human TNF. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Biological and psychological markers of stress in humans: focus on the Trier Social Stress Test.

    PubMed

    Allen, Andrew P; Kennedy, Paul J; Cryan, John F; Dinan, Timothy G; Clarke, Gerard

    2014-01-01

    Validated biological and psychological markers of acute stress in humans are an important tool in translational research. The Trier Social Stress Test (TSST), involving public interview and mental arithmetic performance, is among the most popular methods of inducing acute stress in experimental settings, and reliably increases hypothalamic-pituitary-adrenal axis activation. However, although much research has focused on HPA axis activity, the TSST also affects the sympathetic-adrenal-medullary system, the immune system, cardiovascular outputs, gastric function and cognition. We critically assess the utility of different biological and psychological markers, with guidance for future research, and discuss factors which can moderate TSST effects. We outline the effects of the TSST in stress-related disorders, and if these responses can be abrogated by pharmacological and psychological treatments. Modified TSST protocols are discussed, and the TSST is compared to alternative methods of inducing acute stress. Our analysis suggests that multiple readouts are necessary to derive maximum information; this strategy will enhance our understanding of the psychobiology of stress and provide the means to assess novel therapeutic agents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Plasma Shh levels reduced in pancreatic cancer patients

    PubMed Central

    El-Zaatari, Mohamad; Daignault, Stephanie; Tessier, Art; Kelsey, Gail; Travnikar, Lisa A.; Cantu, Esperanza F.; Lee, Jamie; Plonka, Caitlyn M.; Simeone, Diane M.; Anderson, Michelle A.; Merchant, Juanita L.

    2012-01-01

    Objectives Normally, sonic hedgehog (Shh) is expressed in the pancreas during fetal development and transiently after tissue injury. Although pancreatic cancers express Shh, it is not known if the protein is secreted into the blood and whether its plasma levels change with pancreatic transformation. The goal of this study was to develop an ELISA to detect human Shh in blood, and determine the levels in subjects with and without pancreatic cancer. Methods A human Shh ELISA assay was developed, and plasma Shh levels were measured in blood samples from normal volunteers and subjects with pancreatitis or pancreatic cancer. The biological activity of plasma Shh was tested using NIH-3T3 cells. Results The average levels of Shh in human blood were lower in pancreatitis and pancreatic cancer patients than in normal individuals. Hematopoietic cells did not express Shh suggesting that Shh is secreted into the bloodstream. Plasma fractions enriched for Shh did not induce Gli-1 mRNA suggesting that the protein was not biologically active. Conclusions Shh is secreted from tissues and organs into the circulation but its activity is blocked by plasma proteins. Reduced plasma levels were found in pancreatic cancer patients, but alone were not sufficient to predict pancreatic cancer. PMID:22513293

  2. Plasma Shh levels reduced in pancreatic cancer patients.

    PubMed

    El-Zaatari, Mohamad; Daignault, Stephanie; Tessier, Art; Kelsey, Gail; Travnikar, Lisa A; Cantu, Esperanza F; Lee, Jamie; Plonka, Caitlyn M; Simeone, Diane M; Anderson, Michelle A; Merchant, Juanita L

    2012-10-01

    Normally, sonic hedgehog (Shh) is expressed in the pancreas during fetal development and transiently after tissue injury. Although pancreatic cancers express Shh, it is not known if the protein is secreted into the blood and whether its plasma levels change with pancreatic transformation. The goal of this study was to develop an enzyme-linked immunosorbent assay to detect human Shh in blood and determine its levels in subjects with and without pancreatic cancer. A human Shh enzyme-linked immunosorbent assay was developed, and plasma Shh levels were measured in blood samples from healthy subjects and patients with pancreatitis or pancreatic cancer. The biological activity of plasma Shh was tested using NIH-3T3 cells. The mean levels of Shh in human blood were lower in patients with pancreatitis and pancreatic cancer than in healthy subjects. Hematopoietic cells did not express Shh, suggesting that Shh is secreted into the bloodstream. Plasma fractions enriched with Shh did not induce Gli-1 messenger RNA, suggesting that the protein was not biologically active. Shh is secreted from tissues and organs into the circulation, but its activity is blocked by plasma proteins. Reduced plasma levels were found in pancreatic cancer patients, but alone were not sufficient to predict pancreatic cancer.

  3. Expression of single-chain Fv gene specific for gamma-seminoprotein by RTS and its biological activity identification.

    PubMed

    Han, Yuedong; Haun, Yi; Deng, Jinlan; Gao, Feng; Pan, Bifeng; Cui, Daxiang

    2006-01-01

    Fabricating a single-chain variable fragment specific for human seminoprotein is very important in antibody-directed enzyme prodrug therapy and NMR imaging for prostate cancer. Here a single-chain Fv specific for gamma-seminoprotein was expressed by RTS. Its activity and the efficiency of entry into prostate cancer cells are investigated by immunoprecipitation and Western blotting and immunofluorescent staining, as well as entry of conjugated magnetic beads into cells. Results showed that ScFv peptides specific for gamma-seminoprotein were successfully prepared, which can bind with the prostate cells specifically and can bring magnetic beads into prostate cancer cells within 15 min, the amount of magnetic beads inside prostate cancer cells increased as the culture time prolonged. ScFv-conjugated magnetic beads did not enter into control cells. In conclusion, the ScFv peptide against human gamma-seminoprotein with biological activity was successfully fabricated, which can take magnetic beads to prostate cancer cells specifically and not to the control cells. This ScFv peptide against human gamma-seminoprotein should be useful in improving the detection and therapy of prostate cancer at early stages and NMR imaging.

  4. Human Milk Oligosaccharides Attenuate Antigen-Antibody Complex Induced Chemokine Release from Human Intestinal Epithelial Cell Lines.

    PubMed

    Zehra, Sehrish; Khambati, Ibrahim; Vierhout, Megan; Mian, M Firoz; Buck, Rachael; Forsythe, Paul

    2018-02-01

    There has been increased interest in the use of dietary ingredients, including prebiotics such as human-milk oligosaccharides (HMOs), as therapeutic strategies for food allergy. Understanding the mechanisms underlying the beneficial effects of HMOs is important to realizing their therapeutic potential. Here we demonstrate that the HMO, 6'-sialyllactose (6'SL) inhibited chemokine (IL-8 and CCL20) release from T-84 and HT-29 cells stimulated with antigen-antibody complex, TNFα or PGE 2 ; an effect that was PPARγ dependent and associated with decreased activity of the transcription factors AP-1 and NFκB. In contrast, 2'-fucosyllactose (2'FL) selectively inhibited CCL20 release in response to antigen antibody complex in a PPARγ independent manner. This study reinforces the concept that structurally different oligosaccharides have distinct biological activities and identifies, for the first time, that the HMOs, 6'SL, and 2'FL, modulate human epithelial cell responses related to allergic disease. These findings encourage further investigation of the therapeutic potential of specific HMOs in food allergy. This study provides evidence for direct effects of HMOs in addition to their prebiotic role and demonstrates, for the first time, modulation of Ag-IgE complex activation of human epithelial cells that may have important implications for food-allergy. The study also reinforces the concept that structurally different oligosaccharides have distinct biological activities. In determining the composition of infant formula, addition of oligosaccharides with specific structures may provide direct modulation of immune responses and potentially attenuate symptoms or development of food allergy. © 2018 Institute of Food Technologists®.

  5. Isolation of Nicotinic Acid (Vitamin B3) and N-Propylamine after Myosmine Peroxidation.

    PubMed

    Zwickenpflug, Wolfgang; Högg, Christof; Feierfeil, Johannes; Dachs, Manuel; Gudermann, Thomas

    2016-01-13

    The alkaloid myosmine (3-(1-pyrroline-2-yl)pyridine) is widespread in biological matrixes including foodstuffs and tobacco products. Some in vitro tests in cellular systems showed mutagenic activity for myosmine. Myosmine activation including peroxidation mechanism employs unstable oxazirane intermediates. The formation of minor metabolite 3-hydroxymethyl-pyridine in rat metabolism experiments as well as in in vitro peroxidation assays suggests its further oxidation to nicotinic acid and possible concomitant formation of n-propylamine. A sensitive high-performance liquid chromatography-ultraviolet (HPLC-UV) method was developed for the direct analysis of n-propylamine in the peroxidation assay solution of myosmine employing derivatization with 3,5-dinitrobenzoyl chloride. Additionally, during peroxidation procedures, formation of 3-pyridylmethanol to nicotinic acid, the essential vitamin B3, was observed and characterized using HPLC-UV and gas chromatography/mass spectrometry. This new reaction pathway may present further contribution to our knowledge of myosmine's significance in human food including its activation in human organism, foodstuffs, and biological systems.

  6. Integrated Earth System Model (iESM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, Peter Edmond; Mao, Jiafu; Shi, Xiaoying

    2016-12-02

    The iESM is a simulation code that represents the physical and biological aspects of Earth's climate system, and also includes the macro-economic and demographic properties of human societies. The human aspect of the simulation code is focused in particular on the effects of human activities on land use and land cover change, but also includes aspects such as energy economies. The time frame for predictions with iESM is approximately 1970 through 2100.

  7. 75 FR 67676 - Endangered and Threatened Wildlife and Plants; Revised Critical Habitat for Astragalus jaegerianus

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    .... 1531 et seq.), including whether there are threats to the species from human activity, the degree of...) Land-use designations and current or planned activities in the subject areas and their possible effects... identifying or clarifying the primary constituent elements and the resulting physical and biological features...

  8. More examples of chimpanzees teaching.

    PubMed

    Scheel, Matthew H; Shaw, Heidi L; Gardner, R Allen

    2015-01-01

    Darwinism is a principle of biological continuity. This commentary argues against any claim of discontinuity between humans and other animals that must be based on absence of evidence. Instead, we offer additional examples of active teaching by chimpanzees.

  9. Biological Diversity in the Patent System

    PubMed Central

    Oldham, Paul; Hall, Stephen; Forero, Oscar

    2013-01-01

    Biological diversity in the patent system is an enduring focus of controversy but empirical analysis of the presence of biodiversity in the patent system has been limited. To address this problem we text mined 11 million patent documents for 6 million Latin species names from the Global Names Index (GNI) established by the Global Biodiversity Information Facility (GBIF) and Encyclopedia of Life (EOL). We identified 76,274 full Latin species names from 23,882 genera in 767,955 patent documents. 25,595 species appeared in the claims section of 136,880 patent documents. This reveals that human innovative activity involving biodiversity in the patent system focuses on approximately 4% of taxonomically described species and between 0.8–1% of predicted global species. In this article we identify the major features of the patent landscape for biological diversity by focusing on key areas including pharmaceuticals, neglected diseases, traditional medicines, genetic engineering, foods, biocides, marine genetic resources and Antarctica. We conclude that the narrow focus of human innovative activity and ownership of genetic resources is unlikely to be in the long term interest of humanity. We argue that a broader spectrum of biodiversity needs to be opened up to research and development based on the principles of equitable benefit-sharing, respect for the objectives of the Convention on Biological Diversity, human rights and ethics. Finally, we argue that alternative models of innovation, such as open source and commons models, are required to open up biodiversity for research that addresses actual and neglected areas of human need. The research aims to inform the implementation of the 2010 Nagoya Protocol on Access to Genetic Resources and the Equitable Sharing of Benefits Arising from their Utilization and international debates directed to the governance of genetic resources. Our research also aims to inform debates under the Intergovernmental Committee on Intellectual Property and Genetic Resources, Traditional Knowledge and Folklore at the World Intellectual Property Organization. PMID:24265714

  10. 3D in vitro technology for drug discovery.

    PubMed

    Hosseinkhani, Hossein

    2012-02-01

    Three-dimensional (3D) in vitro systems that can mimic organ and tissue structure and function in vivo, will be of great benefit for a variety of biological applications from basic biology to toxicity testing and drug discovery. There have been several attempts to generate 3D tissue models but most of these models require costly equipment, and the most serious disadvantage in them is that they are too far from the mature human organs in vivo. Because of these problems, research and development in drug discovery, toxicity testing and biotech industries are highly expensive, and involve sacrifice of countless animals and it takes several years to bring a single drug/product to the market or to find the toxicity or otherwise of chemical entities. Our group has been actively working on several alternative models by merging biomaterials science, nanotechnology and biological principles to generate 3D in vitro living organs, to be called "Human Organs-on-Chip", to mimic natural organ/tissues, in order to reduce animal testing and clinical trials. We have fabricated a novel type of mechanically and biologically bio-mimicking collagen-based hydrogel that would provide for interconnected mini-wells in which 3D cell/organ culture of human samples in a manner similar to human organs with extracellular matrix (ECM) molecules would be possible. These products mimic the physical, chemical, and biological properties of natural organs and tissues at different scales. This paper will review the outcome of our several experiments so far in this direction and the future perspectives.

  11. Synthetic cyclohexenyl chalcone natural products possess cytotoxic activities against prostate cancer cells and inhibit cysteine cathepsins in vitro.

    PubMed

    Deb Majumdar, Ishita; Devanabanda, Arvind; Fox, Benjamin; Schwartzman, Jacob; Cong, Huan; Porco, John A; Weber, Horst C

    2011-12-16

    A number of cyclohexenyl chalcone Diels-Alder natural products possess promising biological properties including strong cytotoxicity in various human cancer cells. Herein, we show that natural products in this class including panduratin A and nicolaioidesin C inhibit cysteine cathepsins as indicated by protease profiling assays and cell-free cathepsin L enzyme assays. Owing to the critical roles of cathepsins in the biology of human tumor progression, invasion, and metastasis, these findings should pave the way for development of novel antitumor agents for use in clinical settings. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Phenolic Composition and Antioxidant and Antiproliferative Activities of the Extracts of Twelve Common Bean (Phaseolus vulgaris L.) Endemic Ecotypes of Southern Italy before and after Cooking.

    PubMed

    Ombra, Maria Neve; d'Acierno, Antonio; Nazzaro, Filomena; Riccardi, Riccardo; Spigno, Patrizia; Zaccardelli, Massimo; Pane, Catello; Maione, Mena; Fratianni, Florinda

    2016-01-01

    Beans are important dietary components with versatile health benefits. We analysed the extracts of twelve ecotypes of Phaseolus vulgaris in order to determine their phenolic profiles, antioxidant activity, and the in vitro antiproliferative activity. Ultra-performance liquid chromatography with diode array detector (UPLC-DAD) admitted us to detect and quantify some known polyphenols, such as gallic acid, chlorogenic acid, epicatechin, myricetin, formononetin, caffeic acid, and kaempferol. The antioxidant activity (AA) ranged from 1.568 ± 0.041 to 66.572 ± 3.197 mg necessary to inhibit the activity of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical by 50% (EC 50 ). The extracts, except those obtained from the nonpigmented samples, were capable of inhibiting the proliferation of the human epithelial colorectal adenocarcinoma (Caco-2) cells, human breast cancer cells MCF-7, and A549 NSCLC cell line. Cultivars differed in composition and concentration of polyphenols including anthocyanins; cooking affected the antioxidant activity only marginally. Qualitative and quantitative differences in phenolic composition between the groups of beans influenced the biological activities; on the other hand, we did not find significant differences on the biological activities within the same variety, before and after cooking.

  13. Antifungal plant defensins: increased insight in their mode of action as a basis for their use to combat fungal infections.

    PubMed

    Cools, Tanne L; Struyfs, Caroline; Cammue, Bruno Pa; Thevissen, Karin

    2017-04-01

    Plant defensins are small, cationic peptides with a highly conserved 3D structure. They have been studied extensively in the past decades. Various biological activities have been attributed to plant defensins, such as anti-insect and antimicrobial activities, but they are also known to affect ion channels and display antitumor activity. This review focuses on the structure, biological activity and antifungal mode of action of some well-characterized plant defensins, with particular attention to their fungal membrane target(s), their induced cell death mechanisms as well as their antibiofilm activity. As plant defensins are, in general, not toxic to human cells, show in vivo efficacy and have low frequencies of resistance occurrence, they are of particular interest in the fight against fungal infections.

  14. Stability of human interferon-beta 1: oligomeric human interferon-beta 1 is inactive but is reactivated by monomerization.

    PubMed

    Utsumi, J; Yamazaki, S; Kawaguchi, K; Kimura, S; Shimizu, H

    1989-10-05

    Human interferon-beta 1 is extremely stable is a low ionic strength solution of pH 2 such as 10 mM HCl at 37 degrees C. However, the presence of 0.15 M NaCl led to a remarkable loss of antiviral activity. The molecular-sieve high-performance liquid chromatography revealed that, whereas completely active human interferon-beta 1 eluted as a 25 kDa species (monomeric form), the inactivated preparation eluted primarily as a 90 kDa species (oligomeric form). The specific activity (units per mg protein) of the oligomeric form was approx. 10% of that of the monomeric form. This observation shows that oligomeric human interferon-beta 1 is apparently in an inactive form. When the oligomeric eluate was resolved by polyacrylamide gel containing sodium dodecyl sulphate (SDS), it appeared to be monomeric under non-reducing conditions. Monomerization of the oligomeric human interferon-beta 1 by treatment with 1% SDS, fully regenerated its antiviral activity. These results suggest that the inactivation of the human interferon-beta 1 preparation was caused by its oligomerization via hydrophobic interactions without the formation of intermolecular disulphide bonds. These oligomers can be dissociated by SDS to restore biological activity.

  15. Social & Cooperative Learning in the Solving of Case Histories

    ERIC Educational Resources Information Center

    Gooran, Deena; Braude, Stan

    2007-01-01

    Human Biology courses are typically offered for non-biology majors who, like students in high school biology courses, have varying degrees of motivation and background. The primary focus is on explaining the biology behind human health and disease, but human ecology, human evolution, and human genetics may also be covered. Hence, Human Biology…

  16. Platypus and opossum calcitonins exhibit strong activities, even though they belong to mammals.

    PubMed

    Yamashita, Teruhito; Udagawa, Nobuyuki; Thirukonda, Gnanasagar Janardhanan; Uehara, Shunsuke; Yamauchi, Hirose; Suzuki, Nobuo; Li, Feng; Kobayashi, Yasuhiro; Takahashi, Naoyuki

    2017-05-15

    In mammalian assay systems, calcitonin peptides of non-mammalian species exhibit stronger activity than those of mammals. Recently, comparative analyses of a wide-range of species revealed that platypus and opossum, which diverged early from other mammals, possess calcitonins that are more similar in amino acid sequence to those of non-mammals than mammals. We herein determined whether platypus and opossum calcitonins exhibit similar biological activities to those of non-mammalian calcitonins using an assay of actin ring formation in mouse osteoclasts. We also compared the dose-dependent effects of each calcitonin on cAMP production in osteoclasts. Consistent with the strong similarities in their primary amino acid sequences, platypus and opossum calcitonins disrupted actin rings with similar efficacies to that of salmon calcitonin. Human calcitonin exhibited the weakest inhibitory potency and required a 100-fold higher concentration (EC 50 =3×10 -11 M) than that of salmon calcitonin (EC 50 =2×10 -13 M). Platypus and opossum calcitonins also induced cAMP production in osteoclast cultures with the same efficacies as that of salmon calcitonin. Thus, platypus and opossum calcitonins exhibited strong biological activities, similar to those of the salmon. In addition, phylogenetic analysis revealed that platypus and opossum calcitonins clustered with the salmon-type group but not human- or porcine-type group. These results suggest that platypus and opossum calcitonins are classified into the salmon-type group, in terms of the biological activities and amino acid sequences. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Nonexercise activity thermogenesis (NEAT): environment and biology.

    PubMed

    Levine, James A

    2004-05-01

    Nonexercise activity thermogenesis (NEAT) is the energy expended for everything that is not sleeping, eating, or sports-like exercise. It includes the energy expended walking to work, typing, performing yard work, undertaking agricultural tasks, and fidgeting. NEAT can be measured by one of two approaches. The first is to measure or estimate total NEAT. Here, total daily energy expenditure is measured, and from it "basal metabolic rate-plus-thermic effect of food" is subtracted. The second is the factoral approach, whereby the components of NEAT are quantified, and total NEAT is calculated by summing these components. The amount of NEAT that humans perform represents the product of the amount and types of physical activities and the thermogenic cost of each activity. The factors that impact a human's NEAT are readily divisible into environmental factors, such as occupation or dwelling within a "concrete jungle," and biological factors such as weight, gender, and body composition. The combined impact of these factors explains the substantial variance in human NEAT. The variability in NEAT might be viewed as random, but human and animal data contradict this. It appears that changes in NEAT subtly accompany experimentally induced changes in energy balance and are important in the physiology of weight change. Inadequate modulation of NEAT plus a sedentary lifestyle may thus be important in obesity. It then becomes intriguing to dissect mechanistic studies that delineate how NEAT is regulated into neural, peripheral, and humoral factors. A scheme is described in this review in which NEAT corresponds to a carefully regulated "tank" of physical activity that is crucial for weight control.

  18. Synthesis and biological evaluation of indeno[1,5]naphthyridines as topoisomerase I (TopI) inhibitors with antiproliferative activity.

    PubMed

    Alonso, Concepción; Fuertes, María; González, María; Rubiales, Gloria; Tesauro, Cinzia; Knudsen, Birgitta R; Palacios, Francisco

    2016-06-10

    In an effort to establish new candidates with improved anticancer activity, we report here the synthesis of various series of 7H-indeno[2,1-c][1,5]-naphthyridines and novel 7H-indeno[2,1-c][1,5]-naphthyridine-7-ones and 7H-indeno[2,1-c][1,5]-naphthyridine-7-ols. Most of the products which were synthesized were able to inhibit Topoisomerase I activity. Moreover, in vitro testing demonstrated that a subset of the products exhibited a cytotoxic effect on cell lines derived from human breast cancer (BT 20), human lung adenocarcinoma (A 549), or human ovarian carcinoma (SKOV3). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. [Engineering of a System for the Production of Mutant Human Alpha-Fetoprotein in the Methylotrophic Yeast Pichia pastoris].

    PubMed

    Morozkina, E V; Vavilova, E A; Zatsepin, S S; Klyachko, E V; Yagudin, T A; Chulkin, A M; Dudich, I V; Semenkova, L N; Churilova, I V; Benevolenskii, S V

    2016-01-01

    A system for the production of mutant recombinant human alpha-fetoprotein (rhAFPO) lacking the glycosylation site has been engineered in the yeast Pichia pastoris. A strain of the methylotrophic yeast Pichia pastoris GS 115/pPICZ?A/rhAFP0, which produces unglycosylated rhAFPO and secretes it to the culture medium, has been constructed. Optimization and scale-up of the fermentation technology have resulted in an increase in the rhAFP0 yield to 20 mg/L. A scheme of isolation and purification of biologically active rhAFP0 has been developed. The synthesized protein has the antitumor activity, which is analogous to the activity of natural human embryonic alpha-fetoprotein.

  20. Integrative analysis of 111 reference human epigenomes

    PubMed Central

    Kundaje, Anshul; Meuleman, Wouter; Ernst, Jason; Bilenky, Misha; Yen, Angela; Kheradpour, Pouya; Zhang, Zhizhuo; Heravi-Moussavi, Alireza; Liu, Yaping; Amin, Viren; Ziller, Michael J; Whitaker, John W; Schultz, Matthew D; Sandstrom, Richard S; Eaton, Matthew L; Wu, Yi-Chieh; Wang, Jianrong; Ward, Lucas D; Sarkar, Abhishek; Quon, Gerald; Pfenning, Andreas; Wang, Xinchen; Claussnitzer, Melina; Coarfa, Cristian; Harris, R Alan; Shoresh, Noam; Epstein, Charles B; Gjoneska, Elizabeta; Leung, Danny; Xie, Wei; Hawkins, R David; Lister, Ryan; Hong, Chibo; Gascard, Philippe; Mungall, Andrew J; Moore, Richard; Chuah, Eric; Tam, Angela; Canfield, Theresa K; Hansen, R Scott; Kaul, Rajinder; Sabo, Peter J; Bansal, Mukul S; Carles, Annaick; Dixon, Jesse R; Farh, Kai-How; Feizi, Soheil; Karlic, Rosa; Kim, Ah-Ram; Kulkarni, Ashwinikumar; Li, Daofeng; Lowdon, Rebecca; Mercer, Tim R; Neph, Shane J; Onuchic, Vitor; Polak, Paz; Rajagopal, Nisha; Ray, Pradipta; Sallari, Richard C; Siebenthall, Kyle T; Sinnott-Armstrong, Nicholas; Stevens, Michael; Thurman, Robert E; Wu, Jie; Zhang, Bo; Zhou, Xin; Beaudet, Arthur E; Boyer, Laurie A; De Jager, Philip; Farnham, Peggy J; Fisher, Susan J; Haussler, David; Jones, Steven; Li, Wei; Marra, Marco; McManus, Michael T; Sunyaev, Shamil; Thomson, James A; Tlsty, Thea D; Tsai, Li-Huei; Wang, Wei; Waterland, Robert A; Zhang, Michael; Chadwick, Lisa H; Bernstein, Bradley E; Costello, Joseph F; Ecker, Joseph R; Hirst, Martin; Meissner, Alexander; Milosavljevic, Aleksandar; Ren, Bing; Stamatoyannopoulos, John A; Wang, Ting; Kellis, Manolis

    2015-01-01

    The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but a similar reference has lacked for epigenomic studies. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection to-date of human epigenomes for primary cells and tissues. Here, we describe the integrative analysis of 111 reference human epigenomes generated as part of the program, profiled for histone modification patterns, DNA accessibility, DNA methylation, and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically-relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation, and human disease. PMID:25693563

  1. Integrative analysis of 111 reference human epigenomes.

    PubMed

    Kundaje, Anshul; Meuleman, Wouter; Ernst, Jason; Bilenky, Misha; Yen, Angela; Heravi-Moussavi, Alireza; Kheradpour, Pouya; Zhang, Zhizhuo; Wang, Jianrong; Ziller, Michael J; Amin, Viren; Whitaker, John W; Schultz, Matthew D; Ward, Lucas D; Sarkar, Abhishek; Quon, Gerald; Sandstrom, Richard S; Eaton, Matthew L; Wu, Yi-Chieh; Pfenning, Andreas R; Wang, Xinchen; Claussnitzer, Melina; Liu, Yaping; Coarfa, Cristian; Harris, R Alan; Shoresh, Noam; Epstein, Charles B; Gjoneska, Elizabeta; Leung, Danny; Xie, Wei; Hawkins, R David; Lister, Ryan; Hong, Chibo; Gascard, Philippe; Mungall, Andrew J; Moore, Richard; Chuah, Eric; Tam, Angela; Canfield, Theresa K; Hansen, R Scott; Kaul, Rajinder; Sabo, Peter J; Bansal, Mukul S; Carles, Annaick; Dixon, Jesse R; Farh, Kai-How; Feizi, Soheil; Karlic, Rosa; Kim, Ah-Ram; Kulkarni, Ashwinikumar; Li, Daofeng; Lowdon, Rebecca; Elliott, GiNell; Mercer, Tim R; Neph, Shane J; Onuchic, Vitor; Polak, Paz; Rajagopal, Nisha; Ray, Pradipta; Sallari, Richard C; Siebenthall, Kyle T; Sinnott-Armstrong, Nicholas A; Stevens, Michael; Thurman, Robert E; Wu, Jie; Zhang, Bo; Zhou, Xin; Beaudet, Arthur E; Boyer, Laurie A; De Jager, Philip L; Farnham, Peggy J; Fisher, Susan J; Haussler, David; Jones, Steven J M; Li, Wei; Marra, Marco A; McManus, Michael T; Sunyaev, Shamil; Thomson, James A; Tlsty, Thea D; Tsai, Li-Huei; Wang, Wei; Waterland, Robert A; Zhang, Michael Q; Chadwick, Lisa H; Bernstein, Bradley E; Costello, Joseph F; Ecker, Joseph R; Hirst, Martin; Meissner, Alexander; Milosavljevic, Aleksandar; Ren, Bing; Stamatoyannopoulos, John A; Wang, Ting; Kellis, Manolis

    2015-02-19

    The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

  2. Maintenance of submersible pumps in the septic tanks: ergonomic and biological risks to the worker.

    PubMed

    Mariño, Suzi; Figueiredo, Alex

    2012-01-01

    In this study was observed the maintenance task of submersible pumps septic tanks installed in industrial bathrooms. This maintenance activity operators are exposed to various biological and ergonomic risks. This type of activity requires its great physical performers who are also subject to contact with human waste in the form of liquids, gases and solids. Besides the problems mentioned, are still exposed to high temperatures that can cause diseases such as hyperthermia or heatstroke. These aspects were observed using the ergonomic assessment methodology in order to suggest improvements that are reflected in productivity and employee satisfaction.

  3. Bio-medical telemetry: Sensing and transmitting biological information from animals to man

    NASA Technical Reports Server (NTRS)

    Mackay, S.

    1971-01-01

    The application of small radio transmitters for monitoring biological activity in animals and humans is discussed. The microminiaturization of the electronic transmitters makes it possible for them to be swallowed and to operate within the body with no external connections. The small size also makes it possible for the transmitters to be surgically implanted or carried externally to monitor specific bodily functions. The use of satellites to monitor the activity of birds and animals carrying small transmitters is described. Photographs of birds, fish, and reptiles which were equipped with miniature electronic monitors are provided.

  4. Biology and pathological implications of brown adipose tissue: promises and caveats for the control of obesity and its associated complications.

    PubMed

    Tapia, Pablo; Fernández-Galilea, Marta; Robledo, Fermín; Mardones, Pablo; Galgani, José E; Cortés, Víctor A

    2018-05-01

    The discovery of metabolically active brown adipose tissue (BAT) in adult humans has fuelled the research of diverse aspects of this previously neglected tissue. BAT is solely present in mammals and its clearest physiological role is non-shivering thermogenesis, owing to the capacity of brown adipocytes to dissipate metabolic energy as heat. Recently, a number of other possible functions have been proposed, including direct regulation of glucose and lipid homeostasis and the secretion of a number of factors with diverse regulatory actions. Herein, we review recent advances in general biological knowledge of BAT and discuss the possible implications of this tissue in human metabolic health. In particular, we confront the claimed thermogenic potential of BAT for human energy balance and body mass regulation, mostly based on animal studies, with the most recent quantifications of human BAT. © 2017 Cambridge Philosophical Society.

  5. Inhibition of biological activity of staphylococcal enterotoxin A (SEA) by apple juice and apple polyphenols.

    PubMed

    Rasooly, Reuven; Do, Paula M; Friedman, Mendel

    2010-05-12

    The foodborne pathogen Staphylococcus aureus produces the virulent staphylococcal enterotoxin A (SEA), a single-chain protein that consists of 233 amino acid residues with a molecular weight of 27 078 Da. SEA is a superantigen that is reported to contribute to animal (mastitis) and human (emesis, diarrhea, atopic dermatitis, arthritis, and toxic shock) syndromes. Changes of the native structural integrity may inactivate the toxin by preventing molecular interaction with cell membrane receptor sites of their host cells. In the present study, we evaluated the ability of one commercial and two freshly prepared apple juices and a commercial apple polyphenol preparation (Apple Poly) to inhibit the biological activity of SEA. Dilutions of freshly prepared apple juices and Apple Poly inhibited the biological activity of SEA without any significant cytotoxic effect on the spleen cells. Additional studies with antibody-coated immunomagnetic beads bearing specific antibodies against the toxin revealed that SEA added to apple juice appears to be largely irreversibly bound to the juice constituents. The results suggest that food-compatible and safe anti-toxin phenolic compounds can be used to inactivate SEA in vitro and possibly also in vivo, even after induction of T-cell proliferation by long-term exposure to SEA. The significance of the results for microbial food safety and human health is discussed.

  6. Further Characterization of an Interleukin-2-1Ike Cytokine Produced by Xenopus Laevis T Lymphocytes

    PubMed Central

    Haynes, Laura

    1993-01-01

    A T-cell growth factor (TCGF) is produced by antigen- or mitogen-stimulated T lymphocytes from the South African clawed frog Xenopus laevis. This study further defines the physical and biological properties of this cytokine and demonstrates that TCGF is biochemically similar to mammalian interleukin-2 (IL-2). Biologically active TCGF eluted from SDS-PAGE displays a Mr of 16 kD and lectin-affinity chromatography indicates that the three-dimensionmal configuration of carbohydrates on TCGF and human IL-2 is similar. Secretion of TCGF is detectable 1 day after stimulation of splenocytes with the T-cell mitogen phytohemagglutinin (PHA) and peaks following 2 to 3 days of stimulation. Finally, despite the biological and physical similarities between Xenopus TCGF and mammalian IL-2, anti-human IL-2 monoclonal antibodies do not recognize Xenopus TCGF. PMID:8281036

  7. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review

    PubMed Central

    Dhifi, Wissal; Bellili, Sana; Jazi, Sabrine; Bahloul, Nada; Mnif, Wissem

    2016-01-01

    This review covers literature data summarizing, on one hand, the chemistry of essential oils and, on the other hand, their most important activities. Essential oils, which are complex mixtures of volatile compounds particularly abundant in aromatic plants, are mainly composed of terpenes biogenerated by the mevalonate pathway. These volatile molecules include monoterpenes (hydrocarbon and oxygenated monoterpens), and also sesquiterpenes (hydrocarbon and oxygenated sesquiterpens). Furthermore, they contain phenolic compounds, which are derived via the shikimate pathway. Thanks to their chemical composition, essential oils possess numerous biological activities (antioxidant, anti-inflammatory, antimicrobial, etc…) of great interest in food and cosmetic industries, as well as in the human health field. PMID:28930135

  8. Human Platelet Lipidomics: Variance, Visualization, Flux, and Fuel.

    PubMed

    FitzGerald, Garret A

    2016-05-10

    The cardioprotection afforded by low-dose aspirin reflects the biological importance of the platelet lipid thromboxane A2. In this issue of Cell Metabolism, Slatter et al. (2016) illuminate the breadth, complexity, and variability of the human platelet lipidome under conditions of thrombin activation and aspirin suppression, potentially facilitating the pursuit of precision medicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Plant hybridization: the role of human disturbance and biological invasion

    Treesearch

    Qinfeng Guo

    2014-01-01

    Aim Anderson & Stebbins (1954, Evolution, 8, 378–388) posited that human activities promote species hybridizations by creating opportunities for hybridization and new habitats for hybrids to persist through disturbances (i.e. the ‘disturbance hypothesis’). While the first part of this hypothesis appears to be well supported, the second part has...

  10. An overview of the Southern Nevada Agency Partnership Science and Research Synthesis [Chapter 1

    Treesearch

    Jeanne C. Chambers; Matthew L. Brooks; Kent Turner; Carol B. Raish; Steven M. Ostoja

    2013-01-01

    Southern Nevada is characterized by an arid to semi-arid environment with numerous cultural resources and a high level of biological diversity. Since 1980, the human population of the region has increased at unprecedented rates largely due to the expansion of suburban areas (Hughson 2009). The various human activities associated with this growth and the interactions of...

  11. Hands-On! Living in the Biosphere: Production, Pattern, Population, and Diversity. Developing Active Learning Module on the Human Dimensions of Global Change.

    ERIC Educational Resources Information Center

    Brown, Dwight

    Biogeography examines questions of organism inventory and pattern, organisms' interactions with the environment, and the processes that create and change inventory, pattern, and interactions. This learning module uses time series maps and simple simulation models to illustrate how human actions alter biological productivity patterns at local and…

  12. Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Eppler, D. B.; Kennedy, K. J.; Lewis, R.; Spann, J. F.; Sullivan, T. A.

    2016-01-01

    Beginning in as early as 2023, crewed missions beyond low Earth orbit will begin enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long duration spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground.

  13. Could LogP be a principal determinant of biological activity in 18-crown-6 ethers? Synthesis of biologically active adamantane-substituted diaza-crowns.

    PubMed

    Supek, Fran; Ramljak, Tatjana Šumanovac; Marjanović, Marko; Buljubašić, Maja; Kragol, Goran; Ilić, Nataša; Smuc, Tomislav; Zahradka, Davor; Mlinarić-Majerski, Kata; Kralj, Marijeta

    2011-08-01

    18-crown-6 ethers are known to exert their biological activity by transporting K(+) ions across cell membranes. Using non-linear Support Vector Machines regression, we searched for structural features that influence antiproliferative activity in a diverse set of 19 known oxa-, monoaza- and diaza-18-crown-6 ethers. Here, we show that the logP of the molecule is the most important molecular descriptor, among ∼1300 tested descriptors, in determining biological potency (R(2)(cv) = 0.704). The optimal logP was at 5.5 (Ghose-Crippen ALOGP estimate) while both higher and lower values were detrimental to biological potency. After controlling for logP, we found that the antiproliferative activity of the molecule was generally not affected by side chain length, molecular symmetry, or presence of side chain amide links. To validate this QSAR model, we synthesized six novel, highly lipophilic diaza-18-crown-6 derivatives with adamantane moieties attached to the side arms. These compounds have near-optimal logP values and consequently exhibit strong growth inhibition in various human cancer cell lines and a bacterial system. The bioactivities of different diaza-18-crown-6 analogs in Bacillus subtilis and cancer cells were correlated, suggesting conserved molecular features may be mediating the cytotoxic response. We conclude that relying primarily on the logP is a sensible strategy in preparing future 18-crown-6 analogs with optimized biological activity. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  14. Evaluation of Biological Activity of Mastic Extracts Based on Chemotherapeutic Indices.

    PubMed

    Suzuki, Ryuichiro; Sakagami, Hiroshi; Amano, Shigeru; Fukuchi, Kunihiko; Sunaga, Katsuyoshi; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Shirataki, Yoshiaki; Tomomura, Mineko; Masuda, Yoshiko; Yokose, Satoshi; Tomomura, Akito; Watanabe, Hirofumi; Okawara, Masaki; Matahira, Yoshiharu

    2017-01-01

    Most previous mastic investigators have not considered its potent cytotoxicity that may significantly affect the interpretation of obtained data. In the present study, we re-evaluated several biological activities of mastic extracts, based on chemotherapeutic indexes. Pulverized mastic gum was extracted with n-hexane and then with ethyl acetate or independently with methanol or n-butanol. Tumor specificity (TS) of the extracts was determined by their cytotoxicity against human malignant and non-malignant cells. Antibacterial activity was determined by their cytotoxicity against bacteria and normal oral cells. Antiviral activity was determined by their protection of viral infection and cytotoxic activity. Cytochrome P-450 (CYP) 3A4 activity was measured by β-hydroxylation of testosterone. Ethyl acetate extract showed slightly higher tumor specificity (TS=2.6) and one order higher antibacterial activity (selectivity index (SI)=0.813) than other extracts (TS=1.4-2.5; SI=0.030-0.063). All extracts showed no anti-human immunodeficiency virus (HIV) activity, but some anti-herpes simplex virus (HSV) activity, which was masked by potent cytotoxicity. They showed strong inhibitory activity against CYP3A4. Ethyl acetate extraction following the removal of cytotoxic and CYP3A4 inhibitory substances by n-hexane can enhance antitumor and antibacterial activity of mastic. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  15. The human pain genetics database: an interview with Luda Diatchenko.

    PubMed

    Diatchenko, Luda

    2018-06-05

    Luda Diatchenko, MD, PhD is a Canada Excellence Research Chair in Human Pain Genetics, Professor, Faculty of Medicine, Department of Anesthesia and Faculty of Dentistry at McGill University, Alan Edwards Centre for Research on Pain. She earned her MD and PhD in the field of molecular biology from the Russian State Medical University. She started her career in industry, she was a Leader of the RNA Expression Group at Clontech, Inc., and subsequently, Director of Gene Discovery at Attagene, Inc. During this time, she was actively involved in the development of several widely used and widely cited molecular tools for the analysis of gene expression and regulation. Her academic career started at 2000 in the Center for Neurosensory Disorders at University of North Carolina. Her research since then is focused on determining the cellular and molecular biological mechanisms by which functional genetic variations impact human pain perception and risk of development of chronic pain conditions, enabling new approaches to identify new drug targets, treatment responses to analgesics and diagnostic. Multiple collaborative activities allow the Diatchenko group to take basic genetic findings all the way from human association studies, through molecular and cellular mechanisms to animal models and ultimately to human clinical trials. In total, she has authored or co-authored over 120 peer-reviewed research papers in journals, ten book chapters and edited a book in human pain genetics. She is a member and an active officer of several national and international scientific societies, including the International Association for the Study of Pain and the American Pain Society.

  16. Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications—A Review

    PubMed Central

    Ambati, Ranga Rao; Siew Moi, Phang; Ravi, Sarada; Aswathanarayana, Ravishankar Gokare

    2014-01-01

    There is currently much interest in biological active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Astaxanthin (3,3′-dihydroxy-β, β′-carotene-4,4′-dione) is a xanthophyll carotenoid, contained in Haematococcus pluvialis, Chlorella zofingiensis, Chlorococcum, and Phaffia rhodozyma. It accumulates up to 3.8% on the dry weight basis in H. pluvialis. Our recent published data on astaxanthin extraction, analysis, stability studies, and its biological activities results were added to this review paper. Based on our results and current literature, astaxanthin showed potential biological activity in in vitro and in vivo models. These studies emphasize the influence of astaxanthin and its beneficial effects on the metabolism in animals and humans. Bioavailability of astaxanthin in animals was enhanced after feeding Haematococcus biomass as a source of astaxanthin. Astaxanthin, used as a nutritional supplement, antioxidant and anticancer agent, prevents diabetes, cardiovascular diseases, and neurodegenerative disorders, and also stimulates immunization. Astaxanthin products are used for commercial applications in the dosage forms as tablets, capsules, syrups, oils, soft gels, creams, biomass and granulated powders. Astaxanthin patent applications are available in food, feed and nutraceutical applications. The current review provides up-to-date information on astaxanthin sources, extraction, analysis, stability, biological activities, health benefits and special attention paid to its commercial applications. PMID:24402174

  17. Epigenetic profiling of growth plate chondrocytes sheds insight into regulatory genetic variation influencing height.

    PubMed

    Guo, Michael; Liu, Zun; Willen, Jessie; Shaw, Cameron P; Richard, Daniel; Jagoda, Evelyn; Doxey, Andrew C; Hirschhorn, Joel; Capellini, Terence D

    2017-12-05

    GWAS have identified hundreds of height-associated loci. However, determining causal mechanisms is challenging, especially since height-relevant tissues (e.g. growth plates) are difficult to study. To uncover mechanisms by which height GWAS variants function, we performed epigenetic profiling of murine femoral growth plates. The profiled open chromatin regions recapitulate known chondrocyte and skeletal biology, are enriched at height GWAS loci, particularly near differentially expressed growth plate genes, and enriched for binding motifs of transcription factors with roles in chondrocyte biology. At specific loci, our analyses identified compelling mechanisms for GWAS variants. For example, at CHSY1 , we identified a candidate causal variant (rs9920291) overlapping an open chromatin region. Reporter assays demonstrated that rs9920291 shows allelic regulatory activity, and CRISPR/Cas9 targeting of human chondrocytes demonstrates that the region regulates CHSY1 expression. Thus, integrating biologically relevant epigenetic information (here, from growth plates) with genetic association results can identify biological mechanisms important for human growth.

  18. Music, cognition, culture, and evolution.

    PubMed

    Cross, I

    2001-06-01

    We seem able to define the biological foundations for our musicality within a clear and unitary framework, yet music itself does not appear so clearly definable. Music is different things and does different things in different cultures; the bundles of elements and functions that are music for any given culture may overlap minimally with those of another culture, even for those cultures where "music" constitutes a discrete and identifiable category of human activity in its own right. The dynamics of culture, of music as cultural praxis, are neither necessarily reducible, nor easily relatable, to the dynamics of our biologies. Yet music appears to be a universal human competence. Recent evolutionary theory, however, affords a means for exploring things biological and cultural within a framework in which they are at least commensurable. The adoption of this perspective shifts the focus of the search for the foundations of music away from the mature and particular expression of music within a specific culture or situation and on to the human capacity for musicality. This paper will survey recent research that examines that capacity and its evolutionary origins in the light of a definition of music that embraces music's multifariousness. It will be suggested that music, like speech, is a product of both our biologies and our social interactions; that music is a necessary and integral dimension of human development; and that music may have played a central role in the evolution of the modern human mind.

  19. Blood transcriptomics and metabolomics for personalized medicine.

    PubMed

    Li, Shuzhao; Todor, Andrei; Luo, Ruiyan

    2016-01-01

    Molecular analysis of blood samples is pivotal to clinical diagnosis and has been intensively investigated since the rise of systems biology. Recent developments have opened new opportunities to utilize transcriptomics and metabolomics for personalized and precision medicine. Efforts from human immunology have infused into this area exquisite characterizations of subpopulations of blood cells. It is now possible to infer from blood transcriptomics, with fine accuracy, the contribution of immune activation and of cell subpopulations. In parallel, high-resolution mass spectrometry has brought revolutionary analytical capability, detecting > 10,000 metabolites, together with environmental exposure, dietary intake, microbial activity, and pharmaceutical drugs. Thus, the re-examination of blood chemicals by metabolomics is in order. Transcriptomics and metabolomics can be integrated to provide a more comprehensive understanding of the human biological states. We will review these new data and methods and discuss how they can contribute to personalized medicine.

  20. Human Uterine Cervical Stromal Stem Cells (hUCESCs): Why and How they Exert their Antitumor Activity.

    PubMed

    Schneider, José; Eiró, Noemí; Pérez-Fernández, Román; Martínez-Ordóñez, Anxo; Vizoso, Francisco

    Our research team has recently isolated and characterized a new stromal stem cell line (hUCESCs) obtained from cytological smears, as routinely performed for cervical cancer screening. We have, furthermore, described that both hUCESCs directly, as well as the secretome contained in the conditioned medium used for growing them (hUCESCs-CM) have potent antitumoral, anti-inflammatory, antibiotic, antimycotic and re-epitheliasation-enhancing properties. The scientific explanation our team proposes for these pleiotropic effects are directly related to the site of origin of hUCESCs, the human cervical transition zone, which has unique features that biologically justify the different actions of hUCESCs and hUCESCs-CM. We, herein, expose our working theory for the biological activity of hUCESCs and hUCESCs-CM. Copyright© 2016, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  1. High-performance liquid chromatographic determination of loxoprofen and its diastereomeric alcohol metabolites in biological fluids by fluorescence labelling with 4-bromomethyl-6,7-methylenedioxycoumarin.

    PubMed

    Naganuma, H; Kawahara, Y

    1990-09-14

    A simple and sensitive high-performance liquid chromatographic procedure to determine loxoprofen and its diastereomeric alcohol metabolites in biological specimens is described. The analysis involves liquid-liquid extraction with benzene, pre-column derivatization with a highly fluorogenic reagent, 4-bromomethyl-6,7-methylenedioxycoumarin (BrMDC) and subsequent separation on a reversed-phase column. Loxoprofen, its pharmacologically active metabolite, trans-alcohol, and less active cis-alcohol were completely separated within 20 min with a mobile phase of 55% of aqueous acetonitrile containing acetic acid. Any endogenous substances do not interfere in the analysis of either plasma or urine samples. The quantitation limit was 0.01 micrograms/ml for human plasma and 0.05 micrograms/ml for urine. The method was applied to a pharmacokinetic study in healthy human subjects who had received 60 mg of loxoprofen sodium.

  2. Biology of Anopheles saperoi, an Endemic Species in Okinawajima, the Ryukyu Archipelago, Japan.

    PubMed

    Mannen, Kosuke; Toma, Takako; Minakawa, Noboru; Higa, Yukiko; Miyagi, Ichiro

    2016-03-01

    Biological studies of Anopheles saperoi were conducted using larval and adult mosquito collections in the northern part of Okinawajima of the Ryukyu Archipelago from June 2009 to July 2010. Anopheles saperoi was the most collected species in the northern Okinawajima, except Motobu Peninsula, where it was not collected. The southern distribution of An. saperoi was Sugita Stream, Nago City. Anopheles saperoi was collected throughout the year with reproduction (gonotrophic cycle) observed year-round. Immature densities varied for Hinna and Yona streams, and were negatively affected by precipitation patterns. Human attraction activity of females varied for by study area and collection time and was positively affected by temperature, but negatively by heavy rainfall. The greatest female human attraction activity was observed during 3:00-5:00 p.m., with peak at twilight. Parity rates varied from 23.1% to 83.3% throughout the year.

  3. Prioritizing human pharmaceuticals for ecological risks in the freshwater environment of Korea.

    PubMed

    Ji, Kyunghee; Han, Eun Jeong; Back, Sunhyoung; Park, Jeongim; Ryu, Jisung; Choi, Kyungho

    2016-04-01

    Pharmaceutical residues are potential threats to aquatic ecosystems. Because more than 3000 active pharmaceutical ingredients (APIs) are in use, identifying high-priority pharmaceuticals is important for developing appropriate management options. Priority pharmaceuticals may vary by geographical region, because their occurrence levels can be influenced by demographic, societal, and regional characteristics. In the present study, the authors prioritized human pharmaceuticals of potential ecological risk in the Korean water environment, based on amount of use, biological activity, and regional hydrologic characteristics. For this purpose, the authors estimated the amounts of annual production of 695 human APIs in Korea. Then derived predicted environmental concentrations, using 2 approaches, to develop an initial candidate list of target pharmaceuticals. Major antineoplastic drugs and hormones were added in the initial candidate list regardless of their production amount because of their high biological activity potential. The predicted no effect concentrations were derived for those pharmaceuticals based on ecotoxicity information available in the literature or by model prediction. Priority lists of human pharmaceuticals were developed based on ecological risks and availability of relevant information. Those priority APIs identified include acetaminophen, clarithromycin, ciprofloxacin, ofloxacin, metformin, and norethisterone. Many of these pharmaceuticals have been neither adequately monitored nor assessed for risks in Korea. Further efforts are needed to improve these lists and to develop management decisions for these compounds in Korean water. © 2015 SETAC.

  4. Monocyclic aromatic amines as potential human carcinogens: old is new again

    PubMed Central

    Skipper, Paul L.; Kim, Min Young; Sun, H.-L. Patty; Wogan, Gerald N.; Tannenbaum, Steven R.

    2010-01-01

    Alkylanilines are a group of chemicals whose ubiquitous presence in the environment is a result of the multitude of sources from which they originate. Exposure assessments indicate that most individuals experience lifelong exposure to these compounds. Many alkylanilines have biological activity similar to that of the carcinogenic multi-ring aromatic amines. This review provides an overview of human exposure and biological effects. It also describes recent investigations into the biochemical mechanisms of action that lead to the assessment that they are most probably more complex than those of the more extensively investigated multi-ring aromatic amines. Not only is nitrenium ion chemistry implicated in DNA damage by alkylanilines but also reactions involving quinone imines and perhaps reactive oxygen species. Recent results described here indicate that alkylanilines can be potent genotoxins for cultured mammalian cells when activated by exogenous or endogenous phase I and phase II xenobiotic-metabolizing enzymes. The nature of specific DNA damage products responsible for mutagenicity remains to be identified but evidence to date supports mechanisms of activation through obligatory N-hydroxylation as well as subsequent conjugation by sulfation and/or acetylation. A fuller understanding of the mechanisms of alkylaniline genotoxicity is expected to provide important insights into the environmental and genetic origins of one or more human cancers and may reveal a substantial role for this group of compounds as potential human chemical carcinogens. PMID:19887514

  5. Vertebrate records in polar sediments: Biological responses to past climate change and human activities

    NASA Astrophysics Data System (ADS)

    Sun, L. G.; Emslie, S. D.; Huang, T.; Blais, J. M.; Xie, Z. Q.; Liu, X. D.; Yin, X. B.; Wang, Y. H.; Huang, W.; Hodgson, D. A.; Smol, J. P.

    2013-11-01

    Biological responses to climate and environmental changes in remote polar regions are of increasing interest in global change research. Terrestrial and marine polar ecosystems have suffered from impacts of both rapid climate change and intense human activities, and large fluctuations in the population sizes of seabirds, seals, and Antarctic krill have been observed in the past decades. To understand the mechanisms driving these regime shifts in polar ecosystems, it is important to first distinguish the influences of natural forcing from anthropogenic activities. Therefore, investigations of past changes of polar ecosystems prior to human contact are relevant for placing recent human-induced changes within a long-term historical context. Here we focus our review on the fossil, sub-fossil, archaeological, and biogeochemical remains of marine vertebrates in polar sediments. These remains include well-preserved tissues such as bones, hairs and feathers, and biogeochemical markers and other proxy indicators, including deposits of guano and excrement, which can accumulate in lake and terrestrial sediments over thousands of years. Analyses of these remains have provided insight into both natural and anthropogenic impacts on marine vertebrates over millennia and have helped identify the causal agents for these impacts. Furthermore, land-based seabirds and marine mammals have been shown to play an important role as bio-vectors in polar environments as they transport significant amounts of nutrients and anthropogenic contaminants between ocean and terrestrial ecosystems.

  6. Hemolytic, anticancer and antigiardial activity of Palythoa caribaeorum venom.

    PubMed

    Lazcano-Pérez, Fernando; Zavala-Moreno, Ariana; Rufino-González, Yadira; Ponce-Macotela, Martha; García-Arredondo, Alejandro; Cuevas-Cruz, Miguel; Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Arreguín-Lozano, Barbarín; Arreguín-Espinosa, Roberto

    2018-01-01

    Cnidarian venoms and extracts have shown a broad variety of biological activities including cytotoxic, antibacterial and antitumoral effects. Most of these studied extracts were obtained from sea anemones or jellyfish. The present study aimed to determine the toxic activity and assess the antitumor and antiparasitic potential of Palythoa caribaeorum venom by evaluating its in vitro toxicity on several models including human tumor cell lines and against the parasite Giardia intestinalis . The presence of cytolysins and vasoconstrictor activity of P. caribaeorum venom were determined by hemolysis, PLA 2 and isolated rat aortic ring assays, respectively. The cytotoxic effect was tested on HCT-15 (human colorectal adenocarcinoma), MCF-7 (human mammary adenocarcinoma), K562 (human chronic myelogenous leukemia), U251 (human glyoblastoma), PC-3 (human prostatic adenocarcinoma) and SKLU-1 (human lung adenocarcinoma). An in vivo toxicity assay was performed with crickets and the antiparasitic assay was performed against G. intestinalis at 24 h of incubation. P. caribaeorum venom produced hemolytic and PLA 2 activity and showed specific cytotoxicity against U251 and SKLU-1 cell lines, with approximately 50% growing inhibition. The venom was toxic to insects and showed activity against G. intestinalis in a dose-dependent manner by possibly altering its membrane osmotic equilibrium. These results suggest that P. caribaeorum venom contains compounds with potential therapeutic value against microorganisms and cancer.

  7. From Extremophiles to Star Trek, The Use of Synthetic Biology in Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Fujishima, Kosuke; Lima, Ivan Paulino; Gentry, Diana; Phan, Samson; Navarette, Jesica; Palmer, Jesse; Burnier, Andre

    2012-01-01

    Synthetic biology – the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes – has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids. In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as bio-mining, human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  8. Chemistry and biology of ω-3 PUFA peroxidation-derived compounds.

    PubMed

    Wang, Weicang; Yang, Haixia; Johnson, David; Gensler, Catherine; Decker, Eric; Zhang, Guodong

    2017-09-01

    The ω-3 polyunsaturated fatty acids (PUFAs) are among the most popular dietary supplements in the US, but they are chemically unstable and highly prone to lipid peroxidation. Many studies performed in different countries demonstrate that the majority of ω-3 PUFA products on the market are oxidized, suggesting that the resulting ω-3 PUFA peroxidation-derived compounds could be widely consumed by the general public. Therefore, it is of practical importance to understand the effects of these oxidized lipid compounds on human health. In this review, we summarize and discuss the chemical structures and biological activities of ω-3 PUFA peroxidation-derived compounds, and emphasize the importance to better understand the role of lipid peroxidation in biological activities of ω-3 PUFAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Current advances in screening for bioactive components from medicinal plants by affinity ultrafiltration mass spectrometry.

    PubMed

    Chen, Guilin; Huang, Bill X; Guo, Mingquan

    2018-05-21

    Medicinal plants have played an important role in maintaining human health for thousands of years. However, the interactions between the active components in medicinal plants and some certain biological targets during a disease are still unclear in most cases. To conduct the high-throughput screening for small active molecules that can interact with biological targets, which is of great theoretical significance and practical value. The ultrafiltration mass spectrometry (UF-LC/MS) is a powerful bio-analytical method by combining affinity ultrafiltration and liquid chromatography-mass spectrometry (LC/MS), which could rapidly screen and identify small active molecules that bind to biological targets of interest at the same time. Compared with other analytical methods, affinity UF-LC/MS has the characteristics of fast, sensitive and high throughput, and is especially suitable for the complicated extracts of medicinal plants. In this review, the basic principle, characteristics and some most recent challenges in UF-LC/MS have been demonstrated. Meanwhile, the progress and applications of affinity UF-LC/MS in the discovery of the active components from natural medicinal plants and the interactions between small molecules and biological target proteins are also briefly summarised. In addition, the future directions for UF-LC/MS are also prospected. Affinity UF-LC/MS is a powerful tool in studies on the interactions between small active molecules and biological protein targets, especially in the high-throughput screening of active components from the natural medicinal plants. Copyright © 2018 John Wiley & Sons, Ltd.

  10. Interacting Physical and Biological Processes Affecting Nutrient Transport Through Human Dominated Landscapes

    NASA Astrophysics Data System (ADS)

    Finlay, J. C.

    2015-12-01

    Human activities increasingly dominate biogeochemical cycles of limiting nutrients on Earth. Urban and agricultural landscapes represent the largest sources of excess nutrients that drive water quality degradation. The physical structure of both urban and agricultural watersheds has been extensively modified, and these changes have large impacts on water and nutrient transport. Despite strong physical controls over nutrient transport in human dominated landscapes, biological processes play important roles in determining the fates of both nitrogen and phosphorus. This talk uses examples from research in urban and agricultural watersheds in the Midwestern USA to illustrate interactions of physical and biological controls over nutrient cycles that have shifted nitrogen (N) and phosphorus (P) sources and cycling in unexpected ways in response to management changes. In urban watersheds, efforts to improve water quality have been hindered by legacy sources of phosphorus added to storm water through transport to drainage systems by vegetation. Similarly, reductions in field erosion in agricultural watersheds have not led to major reductions in phosphorus transport, because of continued release of biological sources of P. Where management of phosphorus has been most effective in reducing eutrophication of lakes, decreases in N removal processes have led to long term increases in N concentration and transport. Together, these examples show important roles for biological processes affecting nutrient movement in highly modified landscapes. Consideration of the downstream physical and biological responses of management changes are thus critical toward identification of actions that will most effectively reduce excess nutrients watersheds and coastal zones.

  11. Comparative proteomic exploration of whey proteins in human and bovine colostrum and mature milk using iTRAQ-coupled LC-MS/MS.

    PubMed

    Yang, Mei; Cao, Xueyan; Wu, Rina; Liu, Biao; Ye, Wenhui; Yue, Xiqing; Wu, Junrui

    2017-09-01

    Whey, an essential source of dietary nutrients, is widely used in dairy foods for infants. A total of 584 whey proteins in human and bovine colostrum and mature milk were identified and quantified by the isobaric tag for relative and absolute quantification (iTRAQ) proteomic method. The 424 differentially expressed whey proteins were identified and analyzed according to gene ontology (GO) annotation, Kyoto encyclopedia of genes and genomes (KEGG) pathway, and multivariate statistical analysis. Biological processes principally involved biological regulation and response to stimulus. Major cellular components were extracellular region part and extracellular space. The most prevalent molecular function was protein binding. Twenty immune-related proteins and 13 proteins related to enzyme regulatory activity were differentially expressed in human and bovine milk. Differentially expressed whey proteins participated in many KEGG pathways, including major complement and coagulation cascades and in phagosomes. Whey proteins show obvious differences in expression in human and bovine colostrum and mature milk, with consequences for biological function. The results here increase our understanding of different whey proteomes, which could provide useful information for the development and manufacture of dairy products and nutrient food for infants. The advanced iTRAQ proteomic approach was used to analyze differentially expressed whey proteins in human and bovine colostrum and mature milk.

  12. Federal Research and Development Funding: FY2010

    DTIC Science & Technology

    2009-09-23

    Budget activities 6.4 and 6.5 focus on the development of specific weapon systems or components (e.g., the Joint Strike Fighter or missile defense systems...more than the request for chemical and biological basic research and would provide $10 million in the Infrastructure and Geophysical Division for...40 40 Chemical and Biological 208 200 207 222 207 Command, Control, and Interoperability 57 75 80 81 83 Explosives 78 96 121 121 121 Human

  13. The "What Is a System" Reflection Interview as a Knowledge Integration Activity for High School Students' Understanding of Complex Systems in Human Biology

    ERIC Educational Resources Information Center

    Tripto, Jaklin; Ben-Zvi Assaraf, Orit; Snapir, Zohar; Amit, Miriam

    2016-01-01

    This study examined the reflection interview as a tool for assessing and facilitating the use of "systems language" amongst 11th grade students who have recently completed their first year of high school biology. Eighty-three students composed two concept maps in the 10th grade--one at the beginning of the school year and one at its end.…

  14. Application of a phenotypic drug discovery strategy to identify biological and chemical starting points for inhibition of TSLP production in lung epithelial cells

    PubMed Central

    Orellana, Adelina; García-González, Vicente; López, Rosa; Pascual-Guiral, Sonia; Lozoya, Estrella; Díaz, Julia; Casals, Daniel; Barrena, Antolín; Paris, Stephane; Andrés, Miriam; Segarra, Victor; Vilella, Dolors; Malhotra, Rajneesh; Eastwood, Paul; Planagumà, Anna; Miralpeix, Montserrat

    2018-01-01

    Thymic stromal lymphopoietin (TSLP) is a cytokine released by human lung epithelium in response to external insult. Considered as a master switch in T helper 2 lymphocyte (Th2) mediated responses, TSLP is believed to play a key role in allergic diseases including asthma. The aim of this study was to use a phenotypic approach to identify new biological and chemical starting points for inhibition of TSLP production in human bronchial epithelial cells (NHBE), with the objective of reducing Th2-mediated airway inflammation. To this end, a phenotypic screen was performed using poly I:C / IL-4 stimulated NHBE cells interrogated with a 44,974 compound library. As a result, 85 hits which downregulated TSLP protein and mRNA levels were identified and a representative subset of 7 hits was selected for further characterization. These molecules inhibited the activity of several members of the MAPK, PI3K and tyrosine kinase families and some of them have been reported as modulators of cellular phenotypic endpoints like cell-cell contacts, microtubule polymerization and caspase activation. Characterization of the biological profile of the hits suggested that mTOR could be a key activity involved in the regulation of TSLP production in NHBE cells. Among other targeted kinases, inhibition of p38 MAPK and JAK kinases showed different degrees of correlation with TSLP downregulation, while Syk kinase did not seem to be related. Overall, inhibition of TSLP production by the selected hits, rather than resulting from inhibition of single isolated targets, appeared to be due to a combination of activities with different levels of relevance. Finally, a hit expansion exercise yielded additional active compounds that could be amenable to further optimization, providing an opportunity to dissociate TSLP inhibition from other non-desired activities. This study illustrates the potential of phenotypic drug discovery to complement target based approaches by providing new chemistry and biology leads. PMID:29320511

  15. In Vitro Biologic Activities of the Antimicrobials Triclocarban, Its Analogs, and Triclosan in Bioassay Screens: Receptor-Based Bioassay Screens

    PubMed Central

    Ahn, Ki Chang; Zhao, Bin; Chen, Jiangang; Cherednichenko, Gennady; Sanmarti, Enio; Denison, Michael S.; Lasley, Bill; Pessah, Isaac N.; Kültz, Dietmar; Chang, Daniel P.Y.; Gee, Shirley J.; Hammock, Bruce D.

    2008-01-01

    Background Concerns have been raised about the biological and toxicologic effects of the antimicrobials triclocarban (TCC) and triclosan (TCS) in personal care products. Few studies have evaluated their biological activities in mammalian cells to assess their potential for adverse effects. Objectives In this study, we assessed the activity of TCC, its analogs, and TCS in in vitro nuclear-receptor–responsive and calcium signaling bioassays. Materials and methods We determined the biological activities of the compounds in in vitro, cell-based, and nuclear-receptor–responsive bioassays for receptors for aryl hydrocarbon (AhR), estrogen (ER), androgen (AR), and ryanodine (RyR1). Results Some carbanilide compounds, including TCC (1–10 μM), enhanced estradiol (E2)-dependent or testosterone-dependent activation of ER- and AR-responsive gene expression up to 2.5-fold but exhibited little or no agonistic activity alone. Some carbanilides and TCS exhibited weak agonistic and/or antagonistic activity in the AhR-responsive bioassay. TCS exhibited antagonistic activity in both ER- and AR-responsive bioassays. TCS (0.1–10 μM) significantly enhanced the binding of [3H]ryanodine to RyR1 and caused elevation of resting cytosolic [Ca2+] in primary skeletal myotubes, but carbanilides had no effect. Conclusions Carbanilides, including TCC, enhanced hormone-dependent induction of ER- and AR-dependent gene expression but had little agonist activity, suggesting a new mechanism of action of endocrine-disrupting compounds. TCS, structurally similar to noncoplanar ortho-substituted poly-chlorinated biphenyls, exhibited weak AhR activity but interacted with RyR1 and stimulated Ca2+ mobilization. These observations have potential implications for human and animal health. Further investigations are needed into the biological and toxicologic effects of TCC, its analogs, and TCS. PMID:18795164

  16. Neuroprotective effects of phloretin and its glycosylated derivative on rotenone-induced toxicity in human SH-SY5Y neuronal-like cells.

    PubMed

    Barreca, Davide; Currò, Monica; Bellocco, Ersilia; Ficarra, Silvana; Laganà, Giuseppina; Tellone, Ester; Laura Giunta, Maria; Visalli, Giuseppa; Caccamo, Daniela; Galtieri, Antonio; Ientile, Riccardo

    2017-07-08

    Phloretin and phlorizin are the two strong natural antioxidants whose biological and pharmacological applications are rapidly growing in different human pathological conditions. The neuroprotective activity of the two flavonoids has been analyzed on cell culture of neuroblastoma cells. The neuroprotective activity of the two flavonoids has been analyzed on cell culture of neuroblastoma cells and evaluated by testing cell vitality, mitochondrial transmembrane potential and ROS production, antioxidant enzymes detection, activation of caspase 3, DNA damage, protein carbonylation, lipid peroxidation, and superoxide anion scavenging activity. Incubation of cells with rotenone caused cell death and significant increase in intracellular reactive oxygen species, activation of caspase 3, and variation in mitochondrial transmembrane potential. Although, rotenone exposure caused a significant increase of antioxidant enzymes, high levels of lipid peroxidation were also observed. Phloretin or phlorizin, at micromolar concentration, reduced rotenone-induced cell death by scavenging ability against superoxide anion radical, one of the main effectors of rotenone toxicity at level of mitochondrial respiratory chain complex I. Under our experimental conditions, a reduction of the intracellular ROS levels with consequent normalization of the aforementioned antioxidant enzymes occurred. Concomitantly, we observed the inhibition of caspase 3 activity and DNA damage. This study shows the promising neuroprotective ability of the two dihydrochalcones able to protect human differentiated neuroblastoma cells (commonly used as model of Parkinson's disease) from injury induced by rotenone, actively scavenging ROS, normalizing mitochondrial transmembrane potential and consequently avoiding energy depletion. © 2017 BioFactors, 43(4):549-557, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  17. Novel insights into embryonic stem cell self-renewal revealed through comparative human and mouse systems biology networks.

    PubMed

    Dowell, Karen G; Simons, Allen K; Bai, Hao; Kell, Braden; Wang, Zack Z; Yun, Kyuson; Hibbs, Matthew A

    2014-05-01

    Embryonic stem cells (ESCs), characterized by their ability to both self-renew and differentiate into multiple cell lineages, are a powerful model for biomedical research and developmental biology. Human and mouse ESCs share many features, yet have distinctive aspects, including fundamental differences in the signaling pathways and cell cycle controls that support self-renewal. Here, we explore the molecular basis of human ESC self-renewal using Bayesian network machine learning to integrate cell-type-specific, high-throughput data for gene function discovery. We integrated high-throughput ESC data from 83 human studies (~1.8 million data points collected under 1,100 conditions) and 62 mouse studies (~2.4 million data points collected under 1,085 conditions) into separate human and mouse predictive networks focused on ESC self-renewal to analyze shared and distinct functional relationships among protein-coding gene orthologs. Computational evaluations show that these networks are highly accurate, literature validation confirms their biological relevance, and reverse transcriptase polymerase chain reaction (RT-PCR) validation supports our predictions. Our results reflect the importance of key regulatory genes known to be strongly associated with self-renewal and pluripotency in both species (e.g., POU5F1, SOX2, and NANOG), identify metabolic differences between species (e.g., threonine metabolism), clarify differences between human and mouse ESC developmental signaling pathways (e.g., leukemia inhibitory factor (LIF)-activated JAK/STAT in mouse; NODAL/ACTIVIN-A-activated fibroblast growth factor in human), and reveal many novel genes and pathways predicted to be functionally associated with self-renewal in each species. These interactive networks are available online at www.StemSight.org for stem cell researchers to develop new hypotheses, discover potential mechanisms involving sparsely annotated genes, and prioritize genes of interest for experimental validation. © 2013 AlphaMed Press.

  18. A MAIL SURVEY APPROACH TO WATERSHED CONDITION ASSESSMENT

    EPA Science Inventory

    Aquatic resource monitoring attempts to assess the condition of aquatic habitat and organisms. Assessments require that disturbances from human activities be identified, quantified and ordered along a gradient for interpreting biological response. An index of relative risk to a...

  19. Expression of an Exogenous Growth Hormone Gene by Transplantable Human Epidermal Cells

    NASA Astrophysics Data System (ADS)

    Morgan, Jeffrey R.; Barrandon, Yann; Green, Howard; Mulligan, Richard C.

    1987-09-01

    Retrovirus-mediated gene transfer was used to introduce a recombinant human growth hormone gene into cultured human keratinocytes. The transduced keratinocytes secreted biologically active growth hormone into the culture medium. When grafted as an epithelial sheet onto athymic mice, these cultured keratinocytes reconstituted an epidermis that was similar in appearance to that resulting from normal cells, but from which human growth hormone could be extracted. Transduced epidermal cells may prove to be a general vehicle for the delivery of gene products by means of grafting.

  20. Semisynthesis, Characterization and Evaluation of New Adenosine Derivatives as Antiproliferative Agents.

    PubMed

    Valdés Zurita, Francisco; Brown Vega, Nelson; Gutiérrez Cabrera, Margarita

    2018-05-08

    We describe the semisynthesis and biological effects of adenosine derivatives, which were anticipated to function as agonists for the A₃ receptor. Molecular docking was used to select candidate compounds. Fifteen nucleoside derivatives were obtained through nucleophilic substitutions of the N ⁶-position of the nucleoside precursor 6-chloropurine riboside by amines of different origin. All compounds were purified by column chromatography and further characterized by spectroscopic and spectrometric techniques, showing moderate yield. These molecules were then evaluated for their antiproliferative activity in human gastric cancer cells expressing the A₃ receptor. We found that the compounds obtained have antiproliferative activity and that new structural modifications can enhance their biological activity. The ADME (Absorption, Distribution, Metabolism and Excretion) properties of the most active compounds were also evaluated theoretically.

  1. Combined Administration of Recombinant Human Megakaryocyte Growth and Development Factor and Granulocyte Colony-Stimulating Factor Enhances Multilineage Hematopoietic Reconstitution in Nonhuman Primates after Radiation-Induced Marrow Aplasia

    DTIC Science & Technology

    1996-05-01

    dose would yield an equivalent or better biological activity. Neupogen ® ( Filgrastim ), r-metHuG-CSF, was produced in E. coli as a...recombinant human granulocyte colony-stimulating factor on hematopoiesis of normal dogs and on hematopoi- etic recovery after otherwise lethal total body

  2. Convenience versus Biological Significance: Are PMA-Differentiated THP-1 Cells a Reliable Substitute for Blood-Derived Macrophages When Studying in Vitro Polarization?

    PubMed Central

    Tedesco, Serena; De Majo, Federica; Kim, Jieun; Trenti, Annalisa; Trevisi, Lucia; Fadini, Gian Paolo; Bolego, Chiara; Zandstra, Peter W.; Cignarella, Andrea; Vitiello, Libero

    2018-01-01

    Human peripheral-blood monocytes are used as an established in vitro system for generating macrophages. For several reasons, monocytic cell lines such as THP-1 have been considered as a possible alternative. In view of their distinct developmental origins and phenotypic attributes, we set out to assess the extent to which human monocyte-derived macrophages (MDMs) and phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells were overlapping across a variety of responses to activating stimuli. Resting (M0) macrophages were polarized toward M1 or M2 phenotypes by 48-h incubation with LPS (1 μg/ml) and IFN-γ (10 ng/ml) or with IL-4 (20 ng/ml) and IL-13 (5 ng/ml), respectively. At the end of stimulation, MDMs displayed more pronounced changes in marker gene expression than THP-1. Upon assaying an array of 41 cytokines, chemokines and growth factors in conditioned media (CM) using the Luminex technology, secretion of 29 out of the 41 proteins was affected by polarized activation. While in 12 of them THP-1 and MDM showed comparable trends, for the remaining 17 proteins their responses to activating stimuli did markedly differ. Quantitative comparison for selected analytes confirmed this pattern. In terms of phenotypic activation markers, measured by flow cytometry, M1 response was similar but the established MDM M2 marker CD163 was undetectable in THP-1 cells. In a beads-based assay, MDM activation did not induce significant changes, whereas M2 activation of THP-1 decreased phagocytic activity compared to M0 and M1. In further biological activity tests, both MDM and THP-1 CM failed to affect proliferation of mouse myogenic progenitors, whereas they both reduced adipogenic differentiation of mouse fibro-adipogenic progenitor cells (M2 to a lesser extent than M1 and M0). Finally, migration of human umbilical vein endothelial cells was enhanced by CM irrespective of cell type and activation state except for M0 CM from MDMs. In summary, PMA-differentiated THP-1 macrophages did not entirely reproduce the response spectrum of primary MDMs to activating stimuli. We suggest that THP-1 be regarded as a simplified model of human macrophages when investigating relatively straightforward biological processes, such as polarization and its functional implications, but not as an alternative source in more comprehensive immunopharmacology and drug screening programs. PMID:29520230

  3. Convenience versus Biological Significance: Are PMA-Differentiated THP-1 Cells a Reliable Substitute for Blood-Derived Macrophages When Studying in Vitro Polarization?

    PubMed

    Tedesco, Serena; De Majo, Federica; Kim, Jieun; Trenti, Annalisa; Trevisi, Lucia; Fadini, Gian Paolo; Bolego, Chiara; Zandstra, Peter W; Cignarella, Andrea; Vitiello, Libero

    2018-01-01

    Human peripheral-blood monocytes are used as an established in vitro system for generating macrophages. For several reasons, monocytic cell lines such as THP-1 have been considered as a possible alternative. In view of their distinct developmental origins and phenotypic attributes, we set out to assess the extent to which human monocyte-derived macrophages (MDMs) and phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells were overlapping across a variety of responses to activating stimuli. Resting (M0) macrophages were polarized toward M1 or M2 phenotypes by 48-h incubation with LPS (1 μg/ml) and IFN-γ (10 ng/ml) or with IL-4 (20 ng/ml) and IL-13 (5 ng/ml), respectively. At the end of stimulation, MDMs displayed more pronounced changes in marker gene expression than THP-1. Upon assaying an array of 41 cytokines, chemokines and growth factors in conditioned media (CM) using the Luminex technology, secretion of 29 out of the 41 proteins was affected by polarized activation. While in 12 of them THP-1 and MDM showed comparable trends, for the remaining 17 proteins their responses to activating stimuli did markedly differ. Quantitative comparison for selected analytes confirmed this pattern. In terms of phenotypic activation markers, measured by flow cytometry, M1 response was similar but the established MDM M2 marker CD163 was undetectable in THP-1 cells. In a beads-based assay, MDM activation did not induce significant changes, whereas M2 activation of THP-1 decreased phagocytic activity compared to M0 and M1. In further biological activity tests, both MDM and THP-1 CM failed to affect proliferation of mouse myogenic progenitors, whereas they both reduced adipogenic differentiation of mouse fibro-adipogenic progenitor cells (M2 to a lesser extent than M1 and M0). Finally, migration of human umbilical vein endothelial cells was enhanced by CM irrespective of cell type and activation state except for M0 CM from MDMs. In summary, PMA-differentiated THP-1 macrophages did not entirely reproduce the response spectrum of primary MDMs to activating stimuli. We suggest that THP-1 be regarded as a simplified model of human macrophages when investigating relatively straightforward biological processes, such as polarization and its functional implications, but not as an alternative source in more comprehensive immunopharmacology and drug screening programs.

  4. Review on Abyssomicins: Inhibitors of the Chorismate Pathway and Folate Biosynthesis.

    PubMed

    Sadaka, Carmen; Ellsworth, Edmund; Hansen, Paul Robert; Ewin, Richard; Damborg, Peter; Watts, Jeffrey L

    2018-06-06

    Antifolates targeting folate biosynthesis within the shikimate-chorismate-folate metabolic pathway are ideal and selective antimicrobials, since higher eukaryotes lack this pathway and rely on an exogenous source of folate. Resistance to the available antifolates, inhibiting the folate pathway, underlines the need for novel antibiotic scaffolds and molecular targets. While para-aminobenzoic acid synthesis within the chorismate pathway constitutes a novel molecular target for antifolates, abyssomicins are its first known natural inhibitors. This review describes the abyssomicin family, a novel spirotetronate polyketide Class I antimicrobial. It summarizes synthetic and biological studies, structural, biosynthetic, and biological properties of the abyssomicin family members. This paper aims to explain their molecular target, mechanism of action, structure⁻activity relationship, and to explore their biological and pharmacological potential. Thirty-two natural abyssomicins and numerous synthetic analogues have been reported. The biological activity of abyssomicins includes their antimicrobial activity against Gram-positive bacteria and mycobacteria, antitumor properties, latent human immunodeficiency virus (HIV) reactivator, anti-HIV and HIV replication inducer properties. Their antimalarial properties have not been explored yet. Future analoging programs using the structure⁻activity relationship data and synthetic approaches may provide a novel abyssomicin structure that is active and devoid of cytotoxicity. Abyssomicin J and atrop- o -benzyl-desmethylabyssomicin C constitute promising candidates for such programs.

  5. Cysteine Cathepsins in the Secretory Vesicle Produce Active Peptides: Cathepsin L Generates Peptide Neurotransmitters and Cathepsin B Produces Beta-Amyloid of Alzheimer’s Disease

    PubMed Central

    Hook, Vivian; Funkelstein, Lydiane; Wegrzyn, Jill; Bark, Steven; Kindy, Mark; Hook, Gregory

    2011-01-01

    Recent new findings indicate significant biological roles of cysteine cathepsin proteases in secretory vesicles for production of biologically active peptides. Notably, cathepsin L in secretory vesicles has been demonstrated as a key protease for proteolytic processing of proneuropeptides (and prohormones) into active neuropeptides that are released to mediate cell-cell communication in the nervous system for neurotransmission. Moreover, cathepsin B in secretory vesicles has been recently identified as a β-secretase for production of neurotoxic β-amyloid (Aβ) peptides that accumulate in Alzheimer’s disease (AD), participating as a notable factor in the severe memory loss in AD. These secretory vesicle functions of cathepsins L and B for production of biologically active peptides contrasts with the well-known role of cathepsin proteases in lysosomes for the degradation of proteins to result in their inactivation. The unique secretory vesicle proteome indicates proteins of distinct functional categories that provide the intravesicular environment for support of cysteine cathepsin function. Features of the secretory vesicle protein systems insure optimized intravesicular conditions that support the proteolytic activity of cathepsins. These new findings of recently discovered biological roles of cathepsins L and B indicate their significance in human health and disease. PMID:21925292

  6. Optoelectronic investigation of nanodiamond interactions with human blood

    NASA Astrophysics Data System (ADS)

    Ficek, M.; Wróbel, M. S.; Wasowicz, M.; Jedrzejewska-Szczerska, M.

    2016-03-01

    We present optoelectronic investigation of in vitro interactions of whole human blood with different nanodiamond biomarkers. Plasmo-chemical modifications of detonation nanodiamond particles gives the possibility for controlling their surface for biological applications. Optical investigations reveal the biological activity of nanodiamonds in blood dependent on its surface termination. We compare different types of nanodiamonds: commercial non-modified detonation nanodiamonds, and nanodiamonds modified by MW PACVD method with H2-termination, and chemically modified nanodiamond with O2-termination. The absorption spectra, and optical microscope investigations were conducted. The results indicate haemocompatibility of non-modified detonation nanodiamond as well as modified nanodiamonds, which enables their application for drug delivery, as well as sensing applications.

  7. Magnetic factor in solar-terrestrial relations and its impact on the human body: physical problems and prospects for research

    NASA Astrophysics Data System (ADS)

    Breus, T. K.; Binhi, V. N.; Petrukovich, A. A.

    2016-05-01

    The body of current heliobiological evidence suggests that very weak variable magnetic fields due to solar- and geomagnetic-activities do have a biological effect. Geomagnetic disturbances can cause a nonspecific reaction in the human body - a kind of general adaptation syndrome which occurs due to any external stress factor. Also, specific reactions can develop. One of the reasons discussed for the similarity between biological and heliogeophysical rhythms is that geomagnetic variations have a direct influence on organisms, although exact magnetoreception mechanisms are not yet clear. The paper briefly reviews the current state of empirical and theoretical work on this fundamental multidisciplinary problem.

  8. Platelets as Cellular Effectors of Inflammation in Vascular Diseases

    PubMed Central

    Rondina, Matthew T.; Weyrich, Andrew S.; Zimmerman, Guy A.

    2013-01-01

    Platelets are chief effector cells in hemostasis. In addition, they are multifaceted inflammatory cells with functions that span the continuum from innate immune responses to adaptive immunity. Activated platelets have key “thromboinflammatory” activities in a variety of vascular disorders and vasculopathies. Recently-identified inflammatory and immune activities provide insights into the biology of these versatile blood cells that are directly relevant to human vascular diseases. PMID:23704217

  9. Chicken cathelicidin-2-derived peptides with enhanced immunomodulatory and antibacterial activities against biological warfare agents.

    PubMed

    Molhoek, E Margo; van Dijk, Albert; Veldhuizen, Edwin J A; Dijk-Knijnenburg, Helma; Mars-Groenendijk, Roos H; Boele, Linda C L; Kaman-van Zanten, Wendy E; Haagsman, Henk P; Bikker, Floris J

    2010-09-01

    Host defence peptides (HDPs) are considered to be excellent candidates for the development of novel therapeutic agents. Recently, it was demonstrated that the peptide C1-15, an N-terminal segment of chicken HDP cathelicidin-2, exhibits potent antibacterial activity while lacking cytotoxicity towards eukaryotic cells. In the present study, we report that C1-15 is active against bacteria such as Bacillus anthracis and Yersinia pestis that may potentially be used by bioterrorists. Substitution of single and multiple phenylalanine (Phe) residues to tryptophan (Trp) in C1-15 resulted in variants with improved antibacterial activity against B. anthracis and Y. pestis as well as decreased salt sensitivity. In addition, these peptides exhibited enhanced neutralisation of lipopolysaccharide (LPS)-induced release of pro-inflammatory cytokines in human peripheral blood mononuclear cells (PBMCs). The antibacterial and LPS-neutralising activities of these C1-15-derived peptides are exerted at concentrations far below the concentrations that are toxic to human PBMCs. Taken together, we show that Phe-->Trp substitutions in C1-15 variants enhances the antibacterial and LPS-neutralising activities against pathogenic bacteria, including those that may potentially be used as biological warfare agents. Copyright (c) 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  10. Active site similarity between human and Plasmodium falciparum phosphodiesterases: considerations for antimalarial drug design

    NASA Astrophysics Data System (ADS)

    Howard, Brittany L.; Thompson, Philip E.; Manallack, David T.

    2011-08-01

    The similarity between Plasmodium falciparum phosphodiesterase enzymes ( PfPDEs) and their human counterparts have been examined and human PDE9A was found to be a suitable template for the construction of homology models for each of the four PfPDE isoforms. In contrast, the architecture of the active sites of each model was most similar to human PDE1. Molecular docking was able to model cyclic guanosine monophosphate (cGMP) substrate binding in each case but a docking mode supporting cyclic adenosine monophosphate (cAMP) binding could not be found. Anticipating the potential of PfPDE inhibitors as anti-malarial drugs, a range of reported PDE inhibitors including zaprinast and sildenafil were docked into the model of PfPDEα. The results were consistent with their reported biological activities, and the potential of PDE1/9 inhibitor analogues was also supported by docking.

  11. Wearable Wide-Range Strain Sensors Based on Ionic Liquids and Monitoring of Human Activities

    PubMed Central

    Zhang, Shao-Hui; Wang, Feng-Xia; Li, Jia-Jia; Peng, Hong-Dan; Yan, Jing-Hui; Pan, Ge-Bo

    2017-01-01

    Wearable sensors for detection of human activities have encouraged the development of highly elastic sensors. In particular, to capture subtle and large-scale body motion, stretchable and wide-range strain sensors are highly desired, but still a challenge. Herein, a highly stretchable and transparent stain sensor based on ionic liquids and elastic polymer has been developed. The as-obtained sensor exhibits impressive stretchability with wide-range strain (from 0.1% to 400%), good bending properties and high sensitivity, whose gauge factor can reach 7.9. Importantly, the sensors show excellent biological compatibility and succeed in monitoring the diverse human activities ranging from the complex large-scale multidimensional motions to subtle signals, including wrist, finger and elbow joint bending, finger touch, breath, speech, swallow behavior and pulse wave. PMID:29135928

  12. Chemical, biological, radiological, and nuclear decontamination: Recent trends and future perspective

    PubMed Central

    Kumar, Vinod; Goel, Rajeev; Chawla, Raman; Silambarasan, M.; Sharma, Rakesh Kumar

    2010-01-01

    Chemical, biological, radiological, and nuclear (CBRN) decontamination is the removal of CBRN material from equipment or humans. The objective of the decontamination is to reduce radiation burden, salvage equipment, and materials, remove loose CBRN contaminants, and fix the remaining in place in preparation for protective storage or permanent disposal work activities. Decontamination may be carried out using chemical, electrochemical, and mechanical means. Like materials, humans may also be contaminated with CBRN contamination. Changes in cellular function can occur at lower radiation doses and exposure to chemicals. At high dose, cell death may take place. Therefore, decontamination of humans at the time of emergency while generating bare minimum waste is an enormous task requiring dedication of large number of personnel and large amount of time. General principles of CBRN decontamination are discussed in this review with emphasis on radiodecontamination. PMID:21829318

  13. Evaluation of neural reflex activation as a mode of action for the acute respiratory effects of ozone.

    PubMed

    Prueitt, Robyn L; Goodman, Julie E

    2016-09-01

    Exposure to elevated levels of ozone has been associated with a variety of respiratory-related health endpoints in both epidemiology and controlled human exposure studies, including lung function decrements and airway inflammation. A mode of action (MoA) for these effects has not been established, but it has been proposed that they may occur through ozone-induced activation of neural reflexes. We critically reviewed experimental studies of ozone exposure and neural reflex activation and applied the International Programme on Chemical Safety (IPCS) mode-of-action/human relevance framework to evaluate the biological plausibility and human relevance of this proposed MoA. Based on the currently available experimental data, we found that the proposed MoA of neural reflex activation is biologically plausible for the endpoint of ozone-induced lung function decrements at high ozone exposures, but further studies are needed to fill important data gaps regarding the relevance of this MoA at lower exposures. A role for the proposed MoA in ozone-induced airway inflammation is less plausible, as the evidence is conflicting and is also of unclear relevance given the lack of studies conducted at lower exposures. The evidence suggests a different MoA for ozone-induced inflammation that may still be linked to the key events in the proposed MoA, such that neural reflex activation may have some degree of involvement in modulating ozone-induced neutrophil influx, even if it is not a direct role.

  14. Successful synthesis of active human coagulation factor VII by co-expression of mammalian gamma-glutamyl carboxylase and modification of vit.K cycle in Drosophila Schneider S2 cells.

    PubMed

    Nagahashi, Kotomi; Umemura, Kazuo; Kanayama, Naohiro; Iwaki, Takayuki

    2017-04-01

    Mammalian gamma-glutamyl carboxylase and reduced vitamin K are indispensable for synthesis of mature mammalian vitamin K dependent proteins including some of blood coagulation factors (factors II, VII, IX, and X). It was well known that Drosophila melanogaster expressed gamma-glutamyl carboxylase and possessed a vit.K cycle although native substrates for them have not been identified yet. Despite the potential capability of gamma carboxylation in D. melanogaster derived cells such as S2 cells, Drosophila gamma-glutamyl carboxylase failed to gamma carboxylate a peptide fused to the human coagulation factor IX propeptide. Thus, it had been believed that the Drosophila system was not adequate to synthesize mammalian vit.K dependent proteins. Indeed, we previously attempted to synthesize biologically active factor VII in S2 cells although we were not able to obtain it. However, recently, a successful transient expression of biologically active human factor IX from S2 cells was reported. In the present study, several expression vectors which enable expressing mammalian GGCX, VKORC1, and/or PDIA2 along with F7 were developed. S2 cells transfected with pMKA85, pMAK86, and pMAK219 successfully synthesized active FVII. Thus, mammalian GGCX was indispensable to synthesize active FVII while mammalian VKORC1 and PDIA2 were not critical but supportive factors for S2 cells.

  15. Isolation, biology and chemistry of the disorazoles: new anti-cancer macrodiolides

    PubMed Central

    Hopkins, Chad D.; Wipf, Peter

    2009-01-01

    The disorazoles comprise a family of 29 closely related macrocyclic polyketides isolated in 1994 from the fermentation broth of the gliding myxobacterium Sorangium cellulosum. Disorazoles A1, E and C1 have shown exceptional biological activities toward inhibiting the proliferation of human cancer cell lines in picomolar and nanomolar concentrations through the disruption of microtubule polymerization. This review gives a brief introduction describing the biosynthesis and the significance of the disorazoles as a new class of microtubulin disruptors. Another portion of the review focuses on the biology of the disorazoles, specifically disorazole A1 and C1, and their antiproliferative efficacy against animal and human tumor cell lines, as well as the available SAR data. The majority of the discussion addresses synthetic efforts, including partial syntheses of various disorazoles and a summary of the total synthesis of disorazole C1. PMID:19387496

  16. Multiway modeling and analysis in stem cell systems biology

    PubMed Central

    2008-01-01

    Background Systems biology refers to multidisciplinary approaches designed to uncover emergent properties of biological systems. Stem cells are an attractive target for this analysis, due to their broad therapeutic potential. A central theme of systems biology is the use of computational modeling to reconstruct complex systems from a wealth of reductionist, molecular data (e.g., gene/protein expression, signal transduction activity, metabolic activity, etc.). A number of deterministic, probabilistic, and statistical learning models are used to understand sophisticated cellular behaviors such as protein expression during cellular differentiation and the activity of signaling networks. However, many of these models are bimodal i.e., they only consider row-column relationships. In contrast, multiway modeling techniques (also known as tensor models) can analyze multimodal data, which capture much more information about complex behaviors such as cell differentiation. In particular, tensors can be very powerful tools for modeling the dynamic activity of biological networks over time. Here, we review the application of systems biology to stem cells and illustrate application of tensor analysis to model collagen-induced osteogenic differentiation of human mesenchymal stem cells. Results We applied Tucker1, Tucker3, and Parallel Factor Analysis (PARAFAC) models to identify protein/gene expression patterns during extracellular matrix-induced osteogenic differentiation of human mesenchymal stem cells. In one case, we organized our data into a tensor of type protein/gene locus link × gene ontology category × osteogenic stimulant, and found that our cells expressed two distinct, stimulus-dependent sets of functionally related genes as they underwent osteogenic differentiation. In a second case, we organized DNA microarray data in a three-way tensor of gene IDs × osteogenic stimulus × replicates, and found that application of tensile strain to a collagen I substrate accelerated the osteogenic differentiation induced by a static collagen I substrate. Conclusion Our results suggest gene- and protein-level models whereby stem cells undergo transdifferentiation to osteoblasts, and lay the foundation for mechanistic, hypothesis-driven studies. Our analysis methods are applicable to a wide range of stem cell differentiation models. PMID:18625054

  17. Olive oil phenolics are dose-dependently absorbed in humans.

    PubMed

    Visioli, F; Galli, C; Bornet, F; Mattei, A; Patelli, R; Galli, G; Caruso, D

    2000-02-25

    Olive oil phenolic constituents have been shown, in vitro, to be endowed with potent biological activities including, but not limited to, an antioxidant action. To date, there is no information on the absorption and disposition of such compounds in humans. We report that olive oil phenolics, namely tyrosol and hydroxytyrosol, are dose-dependently absorbed in humans after ingestion and that they are excreted in the urine as glucuronide conjugates. Furthermore, an increase in the dose of phenolics administered increased the proportion of conjugation with glucuronide.

  18. CrossTalk: The Journal of Defense Software Engineering. Volume 20, Number 8, August 2007

    DTIC Science & Technology

    2007-08-01

    He challenged anyone to prove or disprove that the solar system was stable. Henri Poincaré, sometimes called the Father of Chaos, was awarded the...the human body and our planet. In other words, examples of open systems are the human body and or solar system where the human body is composed of...interact- ing biological cells and our solar system with planets, stars, etc. They are like an organization where each is engaged in active transactions

  19. Shell extracts from the marine bivalve Pecten maximus regulate the synthesis of extracellular matrix in primary cultured human skin fibroblasts.

    PubMed

    Latire, Thomas; Legendre, Florence; Bigot, Nicolas; Carduner, Ludovic; Kellouche, Sabrina; Bouyoucef, Mouloud; Carreiras, Franck; Marin, Frédéric; Lebel, Jean-Marc; Galéra, Philippe; Serpentini, Antoine

    2014-01-01

    Mollusc shells are composed of more than 95% calcium carbonate and less than 5% of an organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. Previous studies have elucidated the biological activities of the shell matrices from bivalve molluscs on skin, especially on the expression of the extracellular matrix components of fibroblasts. In this work, we have investigated the potential biological activities of shell matrix components extracted from the shell of the scallop Pecten maximus on human fibroblasts in primary culture. Firstly, we demonstrated that shell matrix components had different effects on general cellular activities. Secondly, we have shown that the shell matrix components stimulate the synthesis of type I and III collagens, as well as that of sulphated GAGs. The increased expression of type I collagen is likely mediated by the recruitment of transactivating factors (Sp1, Sp3 and human c-Krox) in the -112/-61 bp COL1A1 promoter region. Finally, contrarily to what was obtained in previous works, we demonstrated that the scallop shell extracts have only a small effect on cell migration during in vitro wound tests and have no effect on cell proliferation. Thus, our research emphasizes the potential use of shell matrix of Pecten maximus for dermo-cosmetic applications.

  20. Synthesis and biological activity of N-arylpiperazine-modified analogues of KN-62, a potent antagonist of the purinergic P2X7 receptor.

    PubMed

    Baraldi, Pier Giovanni; del Carmen Nuñez, Maria; Morelli, Anna; Falzoni, Simonetta; Di Virgilio, Francesco; Romagnoli, Romeo

    2003-04-10

    The P2X(7) receptor is involved in several processes relevant to inflammation (cytokine release, NO generation, killing of intracellular pathogens, cytotoxicity); thus, it may be an appealing target for pharmacological intervention. The characterization of native and recombinant P2X(7) receptor continues to be hindered by the lack of specific and subtype-selective antagonists. However, a tyrosine derivative named KN-62 exhibits selective P2X(7) receptor-blocking properties. The present study was designed to evaluate the functional antagonistic properties of a novel series of KN-62-related compounds characterized by the presence of different phenyl-substituted piperazine moieties. Antagonistic activity of KN-62 derivatives was tested on HEK293 cells transduced with the human P2X(7) receptor and monocyte-derived human macrophages, a cell type well-known for the high level of expression of this receptor. The biological responses investigated were ATP-dependent Ca(2+) influx across the plasma membrane, ethidium bromide uptake, and secretion of the cytokine interleukin-1beta. KN-62 was characterized by the presence of a phenylpiperazine moiety, and the presence of a one-carbon linker between the piperazine nitrogen and the phenyl ring (compound 61) increases the activity, while a two-carbon linker (compound 62) decreases biological activity 10-fold. Also, the nature and the position of substituents on the phenyl ring tethered to the piperazine seemed to exert a fundamental influence on the biological activity. In the series of synthesized compounds, the presence of a fluorine in the para position gives the most potent compound (63), while the same atom in the ortho position reduces potency by 3-fold. When the p-fluorine was replaced in the same position with other halogens, such as chlorine (compound 64) or iodine (compound 65), the activity decreased dramatically. We then tested the activity of the four most potent KN-62 derivatives on ATP-stimulated secretion of IL-1beta from monocyte-derived human macrophages, a key cell type in inflammation and innate immunity. Interestingly, compound 68 and 71 caused a complete inhibition of IL-1beta release, while with KN-62, 63, and 85, there was a small residual cytokine secretion even at concentrations exceeding 100 nM. None of the compounds tested on IL-1beta release had any effect on isolated CaMII kinase activity up to 20 microM (not shown).

  1. A novel role for a major component of the vitamin D axis: vitamin D binding protein-derived macrophage activating factor induces human breast cancer cell apoptosis through stimulation of macrophages.

    PubMed

    Thyer, Lynda; Ward, Emma; Smith, Rodney; Fiore, Maria Giulia; Magherini, Stefano; Branca, Jacopo J V; Morucci, Gabriele; Gulisano, Massimo; Ruggiero, Marco; Pacini, Stefania

    2013-07-08

    The role of vitamin D in maintaining health appears greater than originally thought, and the concept of the vitamin D axis underlines the complexity of the biological events controlled by biologically active vitamin D (1,25(OH)(2)D3), its two binding proteins that are the vitamin D receptor (VDR) and the vitamin D-binding protein-derived macrophage activating factor (GcMAF). In this study we demonstrate that GcMAF stimulates macrophages, which in turn attack human breast cancer cells, induce their apoptosis and eventually phagocytize them. These results are consistent with the observation that macrophages infiltrated implanted tumors in mice after GcMAF injections. In addition, we hypothesize that the last 23 hydrophobic amino acids of VDR, located at the inner part of the plasma membrane, interact with the first 23 hydrophobic amino acids of the GcMAF located at the external part of the plasma membrane. This allows 1,25(OH)(2)D3 and oleic acid to become sandwiched between the two vitamin D-binding proteins, thus postulating a novel molecular mode of interaction between GcMAF and VDR. Taken together, these results support and reinforce the hypothesis that GcMAF has multiple biological activities that could be responsible for its anti-cancer effects, possibly through molecular interaction with the VDR that in turn is responsible for a multitude of non-genomic as well as genomic effects.

  2. Patents on Phytochemicals: Methodologies of Extraction, Application in Food and Pharmaceutical Industry.

    PubMed

    Ordaz-Trinidad, Nancy; Dorantes-Alvarez, Lidia; Salas-Benito, Juan

    2015-01-01

    Patents on phytochemicals are being registered worldwide. Such phytochemicals provide benefits to human health, and include terpenoids, phenolic compounds, alkaloids, lignin, and fiber. This review has the purpose to provide a comprehensive overview of patents published in the last five years about extraction of phytochemicals and their application in the food and pharmaceutical industry. Forty eight pa- tents were analyzed and classified in four topics of interest; 1) Extraction, 2) Functional foods, 3) Biological activity, and 4) Prevention of diseases. Extraction yield of phytochemicals is the critical step. The techniques to extract phytochemicals include enzymat- ic hydrolysis, nano-particulate precipitation, salts formation and combination of solvents; however, the use of ultrasound and microwave is increasing. Patents concerning functional foods include pediatric formulations, sport drink, and compo- sitions that produce beneficial effects. Biological activity of plant extracts tested in animals or cell cultures, as antioxidant, anti-inflammatory, anticancer activity, reduction of obesity and diabetes are presented in this review. Application of phy- tochemicals in the prevention and treatment of health disorders, such as diabetes, gastritis, enteritis, topical inflammation, macular degeneration, gingivitis, prostatic hyperplasia, urinary impairments. Patents revised include 30% methodologies for extraction of phytochemicals, 16% application of phytochem- icals in food matrixes to obtain functional foods, 18% biological activity of extracts or compounds and 36% application in the prevention and treatment of illness, which reveals a great interest to protect intellectual property concerning applica- tion of phytochemicals formulations for human health.

  3. Lysine acetyltransferase inhibitors: structure-activity relationships and potential therapeutic implications.

    PubMed

    Fiorentino, Francesco; Mai, Antonello; Rotili, Dante

    2018-05-01

    Lysine acetylation is a post-translational modification of both histone and nonhistone proteins that is catalyzed by lysine acetyltransferases and plays a key role in numerous biological contexts. The dysregulation of this enzyme activity is implicated in many human pathologies such as cancer, neurological and inflammatory disorders. Many lysine acetyltransferase inhibitors (KATi) have been developed so far, but there is still the need for new, more potent, metabolically stable and selective KATi as chemical tools for studying KAT biology and/or as potential therapeutic agents. This review will examine the features of KAT enzymes and related diseases, with particular emphasis on KATi (bisubstrate analogs, natural compounds and synthetic derivatives), analyzing their mechanism of action, structure-activity relationships, pharmacokinetic/pharmacodynamic properties and potential future applications.

  4. Synthesis and biological evaluation of sulfur-containing cinnamate and salicylate derivatives.

    PubMed

    Chiang, Chih-Chia; Chang, Tsu-Chung; Tsai, Hou-Jen; Hsu, Ling-Yih

    2008-03-01

    UV irradiation induced formation of reactive oxygen radical species and matrix metalloproteinases (MMPs) are thought to be involved in photo-damage to the skin. MMP-1 is the major collagenolytic enzyme responsible for collagen destruction in skin tissue. To develop new anti-photoaging agents, a series of 2,2'-dithiocinnamate derivatives and 2,2'-dithio or 2-thiobenzoate derivatives were designed and synthesized. The biological activities of the synthesized compounds were assayed for ABTS [2,2'-azinobis-(3-ethyl-benzo-thiazoline-6-sulfonic acid)] radical scavenging activity, MMP-1 inhibitory activity, and cytotoxicity to human dermal fibroblast cells. Compounds with potential of resistance to UV irradiation were identified. These compounds are expected to be useful for preventing photo-damage to the skin.

  5. The lymphotoxin promoter is stimulated by HTLV-I tax activation of NF-kappa B in human T-cell lines.

    PubMed

    Paul, N L; Millet, I; Ruddle, N H

    1993-07-01

    The HTLV-I transcriptional activator tax was used to gain insight into the mechanism of lymphotoxin (LT; TNF-beta) gene induction. Tax-expressing cell lines produce LT biologic activity. An LT promoter (LT-293) CAT construct that contained an NF-kappa B site was active in the LT-producing C81-66-45 cell line, which contains defective HTLV-I but expresses tax. The observation that a mutated LT-kappa B construct (M1-CAT) was inactive in C81-66-45, confirmed the importance of NF-kappa B in LT gene expression. Tax was transfected into HTLV-I-negative human T-cell lines. Jurkat T cells stably expressing tax contained elevated levels of NF-kappa B that directly bound to the LT-kappa B site. Tax co-transfected with reporter constructs into Jurkat cells maximally activated HTLV-I-LTR-CAT and kappa B-fos-CAT and also activated LT-293 to a lesser extent. In JM T cells, tax induced LT-293 activity by two- to four-fold, though there was no induction of M1-CAT. The increase in LT-293 CAT activity mirrored the increase in LT biologic activity seen under these conditions. These studies, the first to demonstrate induction of LT promoter activity over basal levels, indicate that HTLV-I tax causes low-level activation of both endogenous LT and the LT promoter, at least in part through activation of NF-kappa B.

  6. LRP5 regulates human body fat distribution by modulating adipose progenitor biology in a dose- and depot-specific fashion.

    PubMed

    Loh, Nellie Y; Neville, Matt J; Marinou, Kyriakoula; Hardcastle, Sarah A; Fielding, Barbara A; Duncan, Emma L; McCarthy, Mark I; Tobias, Jonathan H; Gregson, Celia L; Karpe, Fredrik; Christodoulides, Constantinos

    2015-02-03

    Common variants in WNT pathway genes have been associated with bone mass and fat distribution, the latter predicting diabetes and cardiovascular disease risk. Rare mutations in the WNT co-receptors LRP5 and LRP6 are similarly associated with bone and cardiometabolic disorders. We investigated the role of LRP5 in human adipose tissue. Subjects with gain-of-function LRP5 mutations and high bone mass had enhanced lower-body fat accumulation. Reciprocally, a low bone mineral density-associated common LRP5 allele correlated with increased abdominal adiposity. Ex vivo LRP5 expression was higher in abdominal versus gluteal adipocyte progenitors. Equivalent knockdown of LRP5 in both progenitor types dose-dependently impaired β-catenin signaling and led to distinct biological outcomes: diminished gluteal and enhanced abdominal adipogenesis. These data highlight how depot differences in WNT/β-catenin pathway activity modulate human fat distribution via effects on adipocyte progenitor biology. They also identify LRP5 as a potential pharmacologic target for the treatment of cardiometabolic disorders. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. LRP5 Regulates Human Body Fat Distribution by Modulating Adipose Progenitor Biology in a Dose- and Depot-Specific Fashion

    PubMed Central

    Loh, Nellie Y.; Neville, Matt J.; Marinou, Kyriakoula; Hardcastle, Sarah A.; Fielding, Barbara A.; Duncan, Emma L.; McCarthy, Mark I.; Tobias, Jonathan H.; Gregson, Celia L.; Karpe, Fredrik; Christodoulides, Constantinos

    2015-01-01

    Summary Common variants in WNT pathway genes have been associated with bone mass and fat distribution, the latter predicting diabetes and cardiovascular disease risk. Rare mutations in the WNT co-receptors LRP5 and LRP6 are similarly associated with bone and cardiometabolic disorders. We investigated the role of LRP5 in human adipose tissue. Subjects with gain-of-function LRP5 mutations and high bone mass had enhanced lower-body fat accumulation. Reciprocally, a low bone mineral density-associated common LRP5 allele correlated with increased abdominal adiposity. Ex vivo LRP5 expression was higher in abdominal versus gluteal adipocyte progenitors. Equivalent knockdown of LRP5 in both progenitor types dose-dependently impaired β-catenin signaling and led to distinct biological outcomes: diminished gluteal and enhanced abdominal adipogenesis. These data highlight how depot differences in WNT/β-catenin pathway activity modulate human fat distribution via effects on adipocyte progenitor biology. They also identify LRP5 as a potential pharmacologic target for the treatment of cardiometabolic disorders. PMID:25651180

  8. Biological processes, quantum mechanics and electromagnetic fields: the possibility of device-encapsulated human intention in medical therapies.

    PubMed

    Kohane, M J; Tiller, W A

    2001-06-01

    The general hypothesis that quantum mechanics (QM) and thermodynamic concepts relate to biological systems is discussed and applied to the biological influence of: (1) electromagnetic fields (EMFs); and (2) EMFs that have been exposed to human intention. We illustrate our hypothesis with experiments involving four simultaneous treatments: exposure to ambient EMFs in the laboratory environment (C), exposure in a Faraday cage (F) and exposure in a Faraday cage with either: (i) an electronic device (IIED) which had been exposed to a specific human intention (d,j); or (ii) a non-exposed, physically identical, device (d,o). Experimental systems were fitness and energy metabolism in Drosophila melanogaster, in vitro enzyme activity and molecular concentration variability over time. Results indicated that shielding from ambient EMFs via a Faraday cage (F) made a significant difference relative to the unshielded control (C). Further, (d,o) had a significant lowering effect in the shielded environment. Finally, there was a strong 'intention' effect with the IIED (d,j) producing significant and positive effects in comparison to (d,o) in each experimental system. Copyright 2001 Harcourt Publishers Ltd.

  9. Pacific Northwest Laboratory annual report for 1989 to the DOE Office of Energy Research - Part 1: Biomedical Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.F.

    This report summarizes progress on OHER human health, biological, general life sciences, and medical applications research programs conducted at PNL in FY 1989. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and developing energy-related technologies through an increased understanding of how radiation and chemicals cause biological damage. The sequence of this report of PNL research reflects the OHER programmatic structure. The first section, on human health research, concerns statistical and epidemiologicalmore » studies for assessing health risks. The next section contains reports of biological research in laboratory animals and in vitro cell systems, including research with radionuclides and chemicals. The general life sciences research section reports research conducted for the OHER human genome research program, and the medical applications section summarizes commercial radioisotope production and distribution activities at DOE facilities. 6 refs., 50 figs., 35 tabs.« less

  10. Anti-infectious drug repurposing using an integrated chemical genomics and structural systems biology approach.

    PubMed

    Ng, Clara; Hauptman, Ruth; Zhang, Yinliang; Bourne, Philip E; Xie, Lei

    2014-01-01

    The emergence of multi-drug and extensive drug resistance of microbes to antibiotics poses a great threat to human health. Although drug repurposing is a promising solution for accelerating the drug development process, its application to anti-infectious drug discovery is limited by the scope of existing phenotype-, ligand-, or target-based methods. In this paper we introduce a new computational strategy to determine the genome-wide molecular targets of bioactive compounds in both human and bacterial genomes. Our method is based on the use of a novel algorithm, ligand Enrichment of Network Topological Similarity (ligENTS), to map the chemical universe to its global pharmacological space. ligENTS outperforms the state-of-the-art algorithms in identifying novel drug-target relationships. Furthermore, we integrate ligENTS with our structural systems biology platform to identify drug repurposing opportunities via target similarity profiling. Using this integrated strategy, we have identified novel P. falciparum targets of drug-like active compounds from the Malaria Box, and suggest that a number of approved drugs may be active against malaria. This study demonstrates the potential of an integrative chemical genomics and structural systems biology approach to drug repurposing.

  11. 78 FR 41022 - Endangered and Threatened Wildlife and Plants; 6-Month Extension of Final Determination for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ..., its biology and ecology, specific threats (or lack thereof) and regulations that may be addressing... whether any threats to the species from human activity would be expected to increase due to the...

  12. NON-INDIGENOUS SPECIES: IMPORTANT BIOLOGICAL STRESSORS

    EPA Science Inventory

    A model for predicting where certain species will invade next is being developed and tested in cooperation with researchers at the University of Kansas. Human activities have increased the wholesale movement, either accidental or deliberate, of many species of animals and plants ...

  13. Coral Reef Biological Criteria

    EPA Science Inventory

    Coral reefs worldwide are experiencing decline from a variety of stressors. Some important stressors are land-based sources of pollution and human activities in the coastal zone. However, few tools are available to offset the impact of these stressors. The Clean Water Act (CWA...

  14. 78 FR 35283 - Agency Information Collection Activities; Proposed Collection; Comment Request: Investigational...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ... for Bioavailability and Bioequivalence Studies in Humans AGENCY: Food and Drug Administration, HHS... requirements and safety reporting requirements for bioavailability and bioequivalence studies. DATES: Submit... Biological Products and Safety Reporting Requirements for Bioavailability and Bioequivalence Studies in...

  15. PPARs and Xenobiotic-Induced Adverse Effects:Relevance to Human Health

    EPA Science Inventory

    The peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily that act as transcription factors and play important roles in the regulation ofa variety of biological processes, such as adipocyte proliferation and differentiation, glucose h...

  16. Structure, Content, and Bioactivity of Food-Derived Peptides in the Body.

    PubMed

    Sato, Kenji

    2018-03-28

    Orally administered peptides are assumed to be degraded into amino acids in the body. However, our recent studies revealed some food-derived prolyl and pyroglutamyl peptides with 2-3 amino acid residues in the blood of humans and animals, while most of the peptides in the endoproteinase digest of food protein are degraded by exopeptidase. Some food-derived dipeptides in the body display in vitro and in vivo biological activities. These facts indicate that the biological activities of food-derived peptides in the body rather than those in food are crucial to understanding the mechanism of the beneficial effects of orally administered peptides.

  17. Oligodeoxyribonucleotides derived from salmon sperm DNA: an alternative to defibrotide.

    PubMed

    Hui, Chang-Ye; Guo, Yan; Zhang, Xi; Shao, Jian-Hua; Yang, Xue-Qin; Zhang, Wen

    2013-05-01

    Defibrotide is a single-stranded nucleic acid polymer originally derived from porcine mucosa. Cheap salmon sperm DNA is commercially available and widely used in drug production. In this study, oligodeoxyribonucleotides were successfully obtained from the controlled depolymerization of salmon sperm DNA. The obtained product shared similar chemical and biological properties with defibrotide produced by Gentium SpA, Italy. It was also found that oligodeoxyribonucleotides derived from non-mammalian origins could also directly stimulate tissue plasminogen activator (t-PA) release from cultured human endothelial cells, and enhance fibrinolytic activity in the rabbit. Copyright © 2013 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  18. Eld's deer translocated to human-inhabited areas become nocturnal.

    PubMed

    Pan, Duo; Teng, Liwei; Cui, Fangjie; Zeng, Zhigao; Bravery, Benjamin D; Zhang, Qiong; Song, Yanling

    2011-02-01

    As human populations expand and nonhuman animals decline, understanding the interactions between people and wildlife is essential. For endangered species, appreciating the effect of human disturbance can be important for their conservation. However, a human disturbance angle is often absent from ecological research, despite growing evidence of the negative impact of nonfatal human interference. Here, we monitored Hainan Eld's deer living within a reserve and translocated animals living amongst villagers. We show that translocated deer deviated from a crepuscular activity pattern and became increas-. ingly nocturnal, and most active when villagers were not. It appears that translocated deer adapted over time to human disturbance and this pattern is similar to that of other species during periods of hunting. People do not pose an actual threat to Eld's deer, but their presence triggered a response akin to predator avoidance and may be interfering with broader aspects of their biology and conservation.

  19. Imidazolium-labeled glycosides as probes to harness glycosyltransferase activity in human breast milk† †Electronic supplementary information (ESI) available: Full experimental and characterization data for all compounds, including NMR spectra and LC-MS traces. See DOI: 10.1039/c7ob00550d

    PubMed Central

    Sittel, I.

    2017-01-01

    Imidazolium-labeled (ITag-) glycosides are used to harness the glycosyltransferase activity directly from human breast milk. The covalently attached ionic labels provide a bifunctional chemical handle that is used to monitor reaction progress by MS, as well as aid in product purification from complex mixtures. The technology is exemplified in the synthesis of biologically relevant oligosaccharide analogs, LacNAc-ITag, ITag-Lewisx and ITag-Lewisa, in a matter of days from human breast milk without having to isolate specific enzymes. PMID:28401975

  20. Synthesis, characterization and biological activities of copper(II) complex of 2-Benzimidazolyl-urea and the nitrate salt of 2-Benzimidazolyl-urea

    NASA Astrophysics Data System (ADS)

    Poyraz, Mehmet; Sari, Musa; Banti, Christina N.; Hadjikakou, Sotiris K.

    2017-10-01

    The synthesis of the complex {[Cu(BZIMU)2](NO3)2} (1) (BZIMU = 2-Benzimidazolyl-urea) is reported here. The complex 1 was characterized by elemental analysis, FT-IR, magnetic susceptibility and molar conductance measurements. The crystal structures of 1 and of the nitrate salt of [(BZIMUH+)(NO3)-] (2) were determined by X-ray diffraction analysis. The copper complex 1 and [(BZIMUH+)(NO3)-] (2) were evaluated for their in vitro cytotoxic activity (cell viability) against human cervix adenocarcinoma (HeLa) and human breast adenocarcinoma (MCF-7) cell line and normal human fetal lung fibroblast cells (MRC-5) with SRB assay.

  1. Biosentinel: Developing a Space Radiation Biosensor

    NASA Technical Reports Server (NTRS)

    Santa Maria, Sergio R.; Marina, Diana B.; Parra, Macarena P.; Boone, Travis D.; Tan, Ming; Ricco, Antonio J.; Straume, Tore N.; Lusby, Terry C.; Harkness, T.; Reiss-Bubenheim, Debra; hide

    2014-01-01

    Ionizing radiation presents a major challenge to human exploration and long-term residence in space. The deep-space radiation spectrum includes highly energetic particles that generate double strand breaks (DSBs), deleterious DNA lesions that are usually repaired without errors via homologous recombination (HR), a conserved pathway in all eukaryotes. While progress identifying and characterizing biological radiation effects using Earth-based facilities has been significant, no terrestrial source duplicates the unique space radiation environment.We are developing a biosensor-based nanosatellite to fly aboard NASAs Space Launch System Exploration Mission 1, expected to launch in 2017 and reach a 1AU (astronomic unit) heliocentric orbit. Our biosensor (called BioSentinel) uses the yeast S. cerevisiae to measure DSBs in response to ambient space radiation. The BioSentinel strain contains engineered genetic defects that prevent growth until and unless a radiation-induced DSB near a reporter gene activates the yeasts HR repair mechanisms. Thus, culture growth and metabolic activity directly indicate a successful DSB-and-repair event. In parallel, HR-defective and wild type strains will provide survival data. Desiccated cells will be carried within independent culture microwells, built into 96-well microfluidic cards. Each microwell set will be activated by media addition at different time points over 18 months, and cell growth will be tracked continuously via optical density. One reserve set will be activated only in the occurrence of a solar particle event. Biological measurements will be compared to data provided by onboard physical dosimeters and to Earth-based experiments.BioSentinel will conduct the first study of biological response to space radiation outside Low Earth Orbit in over 40 years. BioSentinel will thus address strategic knowledge gaps related to the biological effects of space radiation and will provide an adaptable platform to perform human-relevant measurements in multiple space environments. We hope that it can therefore be used on the ISS, on and around other planetary bodies as well as other exploration platforms as a self-contained system that will allow us to compare and calibrate different radiation environments.BioSentinels results will be critical for improving interpretation of the effects of space radiation exposure, and for reducing the risk associated with long-term human exploration.

  2. Repair Machinery for Radiation-Induced DNA Damage

    DTIC Science & Technology

    2000-07-01

    Biological Chemistry (see Appendix for included pre-print). "* Completed characterization of the human Hem45 protein. Results from these studies are...bc3300/bc7577-00a stafford S=3 14/7/00 4:511 Comments: ARTNO: M002672200 THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 275, No. ??, Issue of???? ??, pp. 1-=n...length or the 20. Lee, B. I., and Wilson, D. M., III (1999) J. Biol. Chem. 274, 37763-37769 nucleic acid chemistry influences Sfin/Orn enzymatic activity

  3. MyGeneFriends: A Social Network Linking Genes, Genetic Diseases, and Researchers

    PubMed Central

    Allot, Alexis; Chennen, Kirsley; Nevers, Yannis; Poidevin, Laetitia; Kress, Arnaud; Ripp, Raymond; Thompson, Julie Dawn; Poch, Olivier

    2017-01-01

    Background The constant and massive increase of biological data offers unprecedented opportunities to decipher the function and evolution of genes and their roles in human diseases. However, the multiplicity of sources and flow of data mean that efficient access to useful information and knowledge production has become a major challenge. This challenge can be addressed by taking inspiration from Web 2.0 and particularly social networks, which are at the forefront of big data exploration and human-data interaction. Objective MyGeneFriends is a Web platform inspired by social networks, devoted to genetic disease analysis, and organized around three types of proactive agents: genes, humans, and genetic diseases. The aim of this study was to improve exploration and exploitation of biological, postgenomic era big data. Methods MyGeneFriends leverages conventions popularized by top social networks (Facebook, LinkedIn, etc), such as networks of friends, profile pages, friendship recommendations, affinity scores, news feeds, content recommendation, and data visualization. Results MyGeneFriends provides simple and intuitive interactions with data through evaluation and visualization of connections (friendships) between genes, humans, and diseases. The platform suggests new friends and publications and allows agents to follow the activity of their friends. It dynamically personalizes information depending on the user’s specific interests and provides an efficient way to share information with collaborators. Furthermore, the user’s behavior itself generates new information that constitutes an added value integrated in the network, which can be used to discover new connections between biological agents. Conclusions We have developed MyGeneFriends, a Web platform leveraging conventions from popular social networks to redefine the relationship between humans and biological big data and improve human processing of biomedical data. MyGeneFriends is available at lbgi.fr/mygenefriends. PMID:28623182

  4. Integrated Modular Teaching of Human Biology for Primary Care Practitioners

    ERIC Educational Resources Information Center

    Glasgow, Michael S.

    1977-01-01

    Describes the use of integrated modular teaching of the human biology component of the Health Associate Program at Johns Hopkins University, where the goal is to develop an understanding of the sciences as applied to primary care. Discussion covers the module sequence, the human biology faculty, goals of the human biology faculty, laboratory…

  5. Source Identification of Human Biological Materials and Its Prospect in Forensic Science.

    PubMed

    Zou, K N; Gui, C; Gao, Y; Yang, F; Zhou, H G

    2016-06-01

    Source identification of human biological materials in crime scene plays an important role in reconstructing the crime process. Searching specific genetic markers to identify the source of different human biological materials is the emphasis and difficulty of the research work of legal medical experts in recent years. This paper reviews the genetic markers which are used for identifying the source of human biological materials and studied widely, such as DNA methylation, mRNA, microRNA, microflora and protein, etc. By comparing the principles and methods of source identification of human biological materials using different kinds of genetic markers, different source of human biological material owns suitable marker types and can be identified by detecting single genetic marker or combined multiple genetic markers. Though there is no uniform standard and method for identifying the source of human biological materials in forensic laboratories at present, the research and development of a series of mature and reliable methods for distinguishing different human biological materials play the role as forensic evidence which will be the future development direction. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  6. Home-Based vs. Laboratory-Based Practical Activities in the Learning of Human Physiology: The Perception of Students

    ERIC Educational Resources Information Center

    Neves, Ben-Hur S.; Altermann, Caroline; Gonçalves, Rithiele; Lara, Marcus Vinícius; Mello-Carpes, Pâmela B.

    2017-01-01

    Different tools have been used to facilitate the teaching and learning process in different areas of knowledge. Practical activities represent a form of teaching in which students not only listen to theoretical concepts but are also able to link theory and practice, and their importance in the biological sciences is notable. Sometimes, however,…

  7. The transfer and transformation of collective network information in gene-matched networks.

    PubMed

    Kitsukawa, Takashi; Yagi, Takeshi

    2015-10-09

    Networks, such as the human society network, social and professional networks, and biological system networks, contain vast amounts of information. Information signals in networks are distributed over nodes and transmitted through intricately wired links, making the transfer and transformation of such information difficult to follow. Here we introduce a novel method for describing network information and its transfer using a model network, the Gene-matched network (GMN), in which nodes (neurons) possess attributes (genes). In the GMN, nodes are connected according to their expression of common genes. Because neurons have multiple genes, the GMN is cluster-rich. We show that, in the GMN, information transfer and transformation were controlled systematically, according to the activity level of the network. Furthermore, information transfer and transformation could be traced numerically with a vector using genes expressed in the activated neurons, the active-gene array, which was used to assess the relative activity among overlapping neuronal groups. Interestingly, this coding style closely resembles the cell-assembly neural coding theory. The method introduced here could be applied to many real-world networks, since many systems, including human society and various biological systems, can be represented as a network of this type.

  8. Isolation and characterization of high affinity aptamers against DNA polymerase iota.

    PubMed

    Lakhin, Andrei V; Kazakov, Andrei A; Makarova, Alena V; Pavlov, Yuri I; Efremova, Anna S; Shram, Stanislav I; Tarantul, Viacheslav Z; Gening, Leonid V

    2012-02-01

    Human DNA-polymerase iota (Pol ι) is an extremely error-prone enzyme and the fidelity depends on the sequence context of the template. Using the in vitro systematic evolution of ligands by exponential enrichment (SELEX) procedure, we obtained an oligoribonucleotide with a high affinity to human Pol ι, named aptamer IKL5. We determined its dissociation constant with homogenous preparation of Pol ι and predicted its putative secondary structure. The aptamer IKL5 specifically inhibits DNA-polymerase activity of the purified enzyme Pol ι, but did not inhibit the DNA-polymerase activities of human DNA polymerases beta and kappa. IKL5 suppressed the error-prone DNA-polymerase activity of Pol ι also in cellular extracts of the tumor cell line SKOV-3. The aptamer IKL5 is useful for studies of the biological role of Pol ι and as a potential drug to suppress the increase of the activity of this enzyme in malignant cells.

  9. A Quaternary Mechanism Enables the Complex Biological Functions of Octameric Human UDP-glucose Pyrophosphorylase, a Key Enzyme in Cell Metabolism

    PubMed Central

    Führing, Jana Indra; Cramer, Johannes Thomas; Schneider, Julia; Baruch, Petra; Gerardy-Schahn, Rita; Fedorov, Roman

    2015-01-01

    In mammals, UDP-glucose pyrophosphorylase (UGP) is the only enzyme capable of activating glucose-1-phosphate (Glc-1-P) to UDP-glucose (UDP-Glc), a metabolite located at the intersection of virtually all metabolic pathways in the mammalian cell. Despite the essential role of its product, the molecular basis of UGP function is poorly understood. Here we report the crystal structure of human UGP in complex with its product UDP-Glc. Beyond providing first insight into the active site architecture, we describe the substrate binding mode and intermolecular interactions in the octameric enzyme that are crucial to its activity. Importantly, the quaternary mechanism identified for human UGP in this study may be common for oligomeric sugar-activating nucleotidyltransferases. Elucidating such mechanisms is essential for understanding nucleotide sugar metabolism and opens the perspective for the development of drugs that specifically inhibit simpler organized nucleotidyltransferases in pathogens. PMID:25860585

  10. [Responses of functional diversity of aquatic insect community to land use change in middle reach of Qiantang River, East China].

    PubMed

    Zhang, Lian-Bo; Liu, Dong-Xiao; Liu, Shuo-Ru; Zhang, Yong; Tong, Xiao-Li; Wang, Bei-Xin

    2013-10-01

    Based on the biological traits such as life history, resistance ability against environmental disturbance, and physiological characteristics of aquatic insects, and by using the fourth-corner statistical method, this paper studied the responses of the functional diversity of aquatic insect community to land use change in the middle reach of Qiantang River, Zhejiang Province of East China. For the test aquatic insect community, some of its biological traits were sensitive to land use change, and altered along human disturbance gradients as expected. With the increasing intensity of human disturbance, the maximal insect body length decreased gradually, the dominant respiration pattern evolved from gill respiration to tegument respiration, and the abundance of burrowers increased significantly. At the same time, the functional diversity measured as Rao's quadratic entropy was significantly higher in reference sites than in disturbed sites (P < 0.001), demonstrating that the changes in the functional diversity of the aquatic community were mainly induced by the land use change caused by human activities, which resulted in the decline of stream water quality and habitat quality and the variations of aquatic insect community composition and biological traits. The aquatic insect biological traits and functional diversity could be the potentially effective indicators in the stream health assessment in the future.

  11. Combined analytical approaches to define biodistribution and biological activity of semi-synthetic berberrubine, the active metabolite of natural berberine.

    PubMed

    Porru, Emanuele; Franco, Placido; Calabria, Donato; Spinozzi, Silvia; Roberti, Marinella; Caliceti, Cristiana; Roda, Aldo

    2018-06-01

    Berberine (BBR) is a natural alkaloid obtained from Berberis species plants, known for its protective effects against several diseases. Among the primary BBR metabolites, berberrubine (M1) showed the highest plasma concentration but few and conflicting data are available regarding its concentration in biological fluids related to its new potential activity on vascular cells. A combined analytical approach was applied to study biodistribution of M1 in comparison with BBR. The optimization of sample clean-up combined with a fully validated HPLC-ESI-MS/MS tailored for M1 allows sufficient detectability and accuracy to be reached in the different studied organs even when administered at low dose, comparable to that assumed by human. A predictive human vascular endothelial cell-based assay to measure intracellular xanthine oxidase has been developed and applied to study unexplored activities of M1 alongside other common activities. Results showed that oral M1 treatment exhibits higher plasma levels than BBR, reaching maximum concentration 400-fold higher than BBR (204 vs 0.5 ng/mL); moreover, M1 exhibits higher concentrations than BBR also in all the biological compartments analyzed. Noteworthy, the two compounds follow two different excretion routes: M1 through urine, while BBR through feces. In vitro studies demonstrated that M1 inhibited intracellular xanthine oxidase activity, one of the major sources of reactive oxygen species in vasculature, with an IC50 = 9.90 ± 0.01 μg/mL and reduced the expression of the inflammatory marker ICAM-1. These peculiar characteristics allow new perspectives to be opened up for the direct use of M1 instead of BBR in endothelial dysfunction treatment.

  12. Tunable mechanical stability and deformation response of a resilin-based elastomer.

    PubMed

    Li, Linqing; Teller, Sean; Clifton, Rodney J; Jia, Xinqiao; Kiick, Kristi L

    2011-06-13

    Resilin, the highly elastomeric protein found in specialized compartments of most arthropods, possesses superior resilience and excellent high-frequency responsiveness. Enabled by biosynthetic strategies, we have designed and produced a modular, recombinant resilin-like polypeptide bearing both mechanically active and biologically active domains to create novel biomaterial microenvironments for engineering mechanically active tissues such as blood vessels, cardiovascular tissues, and vocal folds. Preliminary studies revealed that these recombinant materials exhibit promising mechanical properties and support the adhesion of NIH 3T3 fibroblasts. In this Article, we detail the characterization of the dynamic mechanical properties of these materials, as assessed via dynamic oscillatory shear rheology at various protein concentrations and cross-linking ratios. Simply by varying the polypeptide concentration and cross-linker ratios, the storage modulus G' can be easily tuned within the range of 500 Pa to 10 kPa. Strain-stress cycles and resilience measurements were probed via standard tensile testing methods and indicated the excellent resilience (>90%) of these materials, even when the mechanically active domains are intercepted by nonmechanically active biological cassettes. Further evaluation, at high frequencies, of the mechanical properties of these materials were assessed by a custom-designed torsional wave apparatus (TWA) at frequencies close to human phonation, indicating elastic modulus values from 200 to 2500 Pa, which is within the range of experimental data collected on excised porcine and human vocal fold tissues. The results validate the outstanding mechanical properties of the engineered materials, which are highly comparable to the mechanical properties of targeted vocal fold tissues. The ease of production of these biologically active materials, coupled to their outstanding mechanical properties over a range of compositions, suggests their potential in tissue regeneration applications.

  13. Composition and biological activities of the aqueous extracts of three scleractinian corals from the Mexican Caribbean: Pseudodiploria strigosa, Porites astreoides and Siderastrea siderea.

    PubMed

    García-Arredondo, Alejandro; Rojas-Molina, Alejandra; Ibarra-Alvarado, César; Lazcano-Pérez, Fernando; Arreguín-Espinosa, Roberto; Sánchez-Rodríguez, Judith

    2016-01-01

    Scleractinian corals (stony corals) are the most abundant reef-forming cnidarians found in coral reefs throughout the world. Despite their abundance and ecological importance, information about the diversity of their toxins and their biological activities is very scarce. In this study, the chemical composition and the biological activities of the aqueous extracts of Pseudodiploria strigosa , Porites astreoides and Siderastrea siderea , three scleractinian corals from the Mexican Caribbean, have been assessed for the first time. Toxicity of the extracts was assessed in crickets; the presence of cytolysins was detected by the hemolysis assay; the vasoconstrictor activity was determined by the isolated rat aortic ring assay; the nociceptive activity was evaluated by the formalin test. The presence of phospholipases A 2 (PLA 2 ), serine proteases, and hyaluronidases was determined by enzymatic methods. Low-molecular-weight fractions were obtained by gel filtration chromatography and ultrafiltration. Extracts from the three species were toxic to crickets, induced hemolysis in human and rat erythrocytes, produced vasoconstriction on isolated rat aortic rings, and presented phospholipase A 2 and serine-protease activity. Despite the fact that these corals are not considered to be harmless to humans, the extracts generated significant nociceptive responses. The matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry analysis of the low-molecular-weight fractions revealed the presence of peptides within a mass range of 3000 to 6000 Da. These fractions were toxic to crickets and two of them induced a transitory vasoconstrictor effect on isolated rat aortic rings. This study suggests that scleractinian corals produce low-molecular-weight peptides that are lethal to crickets and induce vasoconstriction.

  14. Isolation, Structural characterization, and antiproliferative activity of phycocolloids from the red seaweed Laurencia papillosa on MCF-7 human breast cancer cells.

    PubMed

    Ghannam, Ahmed; Murad, Hossam; Jazzara, Marie; Odeh, Adnan; Allaf, Abdul Wahab

    2018-03-01

    Hydrocolloids from seaweeds (phycocolloids) have interesting functional properties like antiproliferative activity. Marine algae consumptions are linked to law cancer incidences in countries that traditionally consume marine products. In this study, we have investigated water-soluble sulfated polysaccharides isolated from the red seaweed Laurencia papillosa and determined their chemical characteristics and biological activities on the human breast cancer cell line MCF-7. Total polysaccharides were extracted and fractionated from L. papillosa and characterized using FTIR-ATR and NMR spectrometry. In addition, their approximate molar mass was determined by GPC method. The chemical characterization of purified polysaccharides reveals the presence of sulfated polysaccharides differentially dispersed in the algal cell wall. They are the three types of carrageenan, kappa, iota and lambda carrageenans, named LP-W1, -W2 and -W3 respectively. Biological effects and cytotoxicity of the identified of the three sulfated polysaccharide fractions were evaluated in MCF-7 cell line. Our results showed a significant inhibition of MCF-7 cell viability by dose-dependent manner for cells exposed to LP-W2 and LP-W3 polysaccharides for 24h. The mechanistic of LP fractions-mediated apoptosis in MCF-7 cells was demonstrated. The biological effects of L. papillosa SPs indicate that it may be a promising candidate for breast cancer prevention and therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. microRNA regulation of T lymphocyte immunity: modulation of molecular networks responsible for T cell activation, differentiation and development

    PubMed Central

    Podshivalova, Katie; Salomon, Daniel R.

    2014-01-01

    MicroRNAs (miRNA) are a class of small non-coding RNAs that constitute an essential and evolutionarily conserved mechanism for post-transcriptional gene regulation. Multiple miRNAs have been described to play key roles in T lymphocyte development, differentiation and function. In this review we highlight the current literature regarding the differential expression of miRNAs in various models of mouse and human T cell biology and emphasize mechanistic understandings of miRNA regulation of thymocyte development, T cell activation, and differentiation into effector and memory subsets. We describe the participation of miRNAs in complex regulatory circuits shaping T cell proteomes in a context-dependent manner. It is striking that some miRNAs regulate multiple processes, while others only appear in limited functional contexts. It is also evident that the expression and function of specific miRNAs can differ between mouse and human systems. Ultimately, it is not always correct to simplify the complex events of T cell biology into a model driven by only one or two master regulator miRNAs. In reality, T cell activation and differentiation involves the expression of multiple miRNAs with many mRNA targets and thus, the true extent of miRNA regulation of T cell biology is likely far more vast than currently appreciated. PMID:24099302

  16. Using the brain's fight-or-flight response for predicting mental illness on the human space flight program

    NASA Astrophysics Data System (ADS)

    Losik, L.

    A predictive medicine program allows disease and illness including mental illness to be predicted using tools created to identify the presence of accelerated aging (a.k.a. disease) in electrical and mechanical equipment. When illness and disease can be predicted, actions can be taken so that the illness and disease can be prevented and eliminated. A predictive medicine program uses the same tools and practices from a prognostic and health management program to process biological and engineering diagnostic data provided in analog telemetry during prelaunch readiness and space exploration missions. The biological and engineering diagnostic data necessary to predict illness and disease is collected from the pre-launch spaceflight readiness activities and during space flight for the ground crew to perform a prognostic analysis on the results from a diagnostic analysis. The diagnostic, biological data provided in telemetry is converted to prognostic (predictive) data using the predictive algorithms. Predictive algorithms demodulate telemetry behavior. They illustrate the presence of accelerated aging/disease in normal appearing systems that function normally. Mental illness can predicted using biological diagnostic measurements provided in CCSDS telemetry from a spacecraft such as the ISS or from a manned spacecraft in deep space. The measurements used to predict mental illness include biological and engineering data from an astronaut's circadian and ultranian rhythms. This data originates deep in the brain that is also damaged from the long-term exposure to cortisol and adrenaline anytime the body's fight or flight response is activated. This paper defines the brain's FOFR; the diagnostic, biological and engineering measurements needed to predict mental illness, identifies the predictive algorithms necessary to process the behavior in CCSDS analog telemetry to predict and thus prevent mental illness from occurring on human spaceflight missions.

  17. ESEA: Discovering the Dysregulated Pathways based on Edge Set Enrichment Analysis

    PubMed Central

    Han, Junwei; Shi, Xinrui; Zhang, Yunpeng; Xu, Yanjun; Jiang, Ying; Zhang, Chunlong; Feng, Li; Yang, Haixiu; Shang, Desi; Sun, Zeguo; Su, Fei; Li, Chunquan; Li, Xia

    2015-01-01

    Pathway analyses are playing an increasingly important role in understanding biological mechanism, cellular function and disease states. Current pathway-identification methods generally focus on only the changes of gene expression levels; however, the biological relationships among genes are also the fundamental components of pathways, and the dysregulated relationships may also alter the pathway activities. We propose a powerful computational method, Edge Set Enrichment Analysis (ESEA), for the identification of dysregulated pathways. This provides a novel way of pathway analysis by investigating the changes of biological relationships of pathways in the context of gene expression data. Simulation studies illustrate the power and performance of ESEA under various simulated conditions. Using real datasets from p53 mutation, Type 2 diabetes and lung cancer, we validate effectiveness of ESEA in identifying dysregulated pathways. We further compare our results with five other pathway enrichment analysis methods. With these analyses, we show that ESEA is able to help uncover dysregulated biological pathways underlying complex traits and human diseases via specific use of the dysregulated biological relationships. We develop a freely available R-based tool of ESEA. Currently, ESEA can support pathway analysis of the seven public databases (KEGG; Reactome; Biocarta; NCI; SPIKE; HumanCyc; Panther). PMID:26267116

  18. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2015-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  19. Molecular biology of human herpesvirus 8: novel functions and virus-host interactions implicated in viral pathogenesis and replication.

    PubMed

    Cousins, Emily; Nicholas, John

    2014-01-01

    Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is the second identified human gammaherpesvirus. Like its relative Epstein-Barr virus, HHV-8 is linked to B-cell tumors, specifically primary effusion lymphoma and multicentric Castleman's disease, in addition to endothelial-derived KS. HHV-8 is unusual in its possession of a plethora of "accessory" genes and encoded proteins in addition to the core, conserved herpesvirus and gammaherpesvirus genes that are necessary for basic biological functions of these viruses. The HHV-8 accessory proteins specify not only activities deducible from their cellular protein homologies but also novel, unsuspected activities that have revealed new mechanisms of virus-host interaction that serve virus replication or latency and may contribute to the development and progression of virus-associated neoplasia. These proteins include viral interleukin-6 (vIL-6), viral chemokines (vCCLs), viral G protein-coupled receptor (vGPCR), viral interferon regulatory factors (vIRFs), and viral antiapoptotic proteins homologous to FLICE (FADD-like IL-1β converting enzyme)-inhibitory protein (FLIP) and survivin. Other HHV-8 proteins, such as signaling membrane receptors encoded by open reading frames K1 and K15, also interact with host mechanisms in unique ways and have been implicated in viral pathogenesis. Additionally, a set of micro-RNAs encoded by HHV-8 appear to modulate expression of multiple host proteins to provide conditions conducive to virus persistence within the host and could also contribute to HHV-8-induced neoplasia. Here, we review the molecular biology underlying these novel virus-host interactions and their potential roles in both virus biology and virus-associated disease.

  20. A case study of technology transfer: Rehabilitative engineering at Rancho Los Amigos Hospital. [prosthetic devices engineering

    NASA Technical Reports Server (NTRS)

    Hildred, W.

    1973-01-01

    The transfer of NASA technolgy to rehabilitative applications of artificial limbs is studied. Human factors engineering activities range from orthotic manipulators to tiny dc motors and transducers to detect and transmit voluntary control signals. It is found that bicarbon implant devices are suitable for medical equipment and artificial limbs because of their biological compatibility with human body fluids and tissues.

  1. The space program's impact on society

    NASA Astrophysics Data System (ADS)

    Toffler, Alvin

    In terms of human evolution, when viewed from 500 or 1000 years from now, today's primitive, still faltering steps beyond the Earth will be recognized as the most important human project of our era, matched only by what is going on in computers and biology. In this paper the social effects of space activity are addressed at three different levels: key social institutions, key social groups, and key social processes.

  2. [Medical and biologic aspects of regulation and evaluation of microclimate: results and prospects of further studies].

    PubMed

    Afanas'eva, R F

    2008-01-01

    The article deals with basic points concerning influence of microclimate on humans and tasks of its regulation in contemporary conditions. The authors described universality of microclimate from viewpoint of producing functional state and health state of human, so microclimate should be assessed consistently and systematically through all aspects of its influence, with complex approach to evaluation (clothing, physical activity, etc.).

  3. Growth inhibitory effects of the dual ErbB1/ErbB2 tyrosine kinase inhibitor PKI-166 on human prostate cancer xenografts.

    PubMed

    Mellinghoff, Ingo K; Tran, Chris; Sawyers, Charles L

    2002-09-15

    Experiments with human prostate cancer cell lines have shown that forced overexpression of the ErbB2-receptor tyrosine kinase (RTK) promotes androgen-independent growth and increases androgen receptor-transcriptional activity in a ligand-independent fashion. To investigate the relationship between ErbB-RTK signaling and androgen in genetically unmanipulated human prostate cancer, we performed biochemical and biological studies with the dual ErbB1/ErbB2 RTK inhibitor PKI-166 using human prostate cancer xenograft models with isogenic sublines reflecting the transition from androgen-dependent to androgen-independent growth. In the presence of low androgen concentrations, PKI-166 showed profound growth-inhibitory effects on tumor growth, which could be partially reversed by androgen add-back. At physiological androgen concentrations, androgen withdrawal greatly enhanced the ability of PKI-166 to retard tumor growth. The level of extracellular signal-regulated kinase activation correlated with the response to PKI-166 treatment, whereas the expression levels of ErbB1 and ErbB2 did not. These results suggest that ErbB1/ErbB2 RTKs play an important role in the biology of androgen-independent prostate cancer and provide a rationale for clinical evaluation of inhibitors targeted to this pathway.

  4. Listening to humans walking together activates the social brain circuitry.

    PubMed

    Saarela, Miiamaaria V; Hari, Riitta

    2008-01-01

    Human footsteps carry a vast amount of social information, which is often unconsciously noted. Using functional magnetic resonance imaging, we analyzed brain networks activated by footstep sounds of one or two persons walking. Listening to two persons walking together activated brain areas previously associated with affective states and social interaction, such as the subcallosal gyrus bilaterally, the right temporal pole, and the right amygdala. These areas seem to be involved in the analysis of persons' identity and complex social stimuli on the basis of auditory cues. Single footsteps activated only the biological motion area in the posterior STS region. Thus, hearing two persons walking together involved a more widespread brain network than did hearing footsteps from a single person.

  5. The human biology of Jim Tanner.

    PubMed

    Cameron, Noël

    2012-09-01

    In 1940, during his second year of medical training, Jim Tanner expressed the desire to work, 'where physiology, psychology and sociology meet'. His subsequent exposure to the breadth of an American medical education and to the social and economic environment of post-war Europe distilled his belief in the importance of viewing the human in a broad context. Following his visits to the American longitudinal growth studies in 1948. Jim's dreams of a broad scientific discipline that incorporated both the biology and ecology of the human were strengthened by an inspirational group of embryonic human biologists with whom he developed '… the new Human Biology …' from the '… Physical Anthropology of old…'. With Jo Weiner, Derek Roberts, Geoffrey Harrison, Arthur Mourant, Nigel Barnicot and Kenneth Oakley, Jim was to form the Society for the Study of Human Biology in 1958. The development of human biology over the next 50 years was shaped by the expertise and diversity of that group of visionary scientists who conceived the scientific discipline of 'human biology' in which biology, behaviour and social context define the human species.

  6. Global advances in selenium research from theory to application

    USDA-ARS?s Scientific Manuscript database

    Selenium is without question one of the most influential natural-occurring trace elements for biological systems worldwide. The multi-faceted connections between the environment, food crops, human and animal health and selenium’s function through selenoprotein activity, have been well characterized....

  7. Invasive species in agriculture

    USDA-ARS?s Scientific Manuscript database

    Agricultural production of food, feed, fiber or fuel is a local human activity with global ecological impacts, including the potential to foster invasions. Agriculture plays an unusual role in biological invasions, in that it is both a source of non-indigenous invasive species (NIS) and especially s...

  8. Water Quality Standards for Coral Reef Protection

    EPA Science Inventory

    The U.S. Clean Water Act provides a legal framework to protect coastal biological resources such as coral reefs, mangrove forests, and seagrass meadows from the damaging effects of human activities. Even though many resources are protected under this authority, water quality stan...

  9. Drawdown Effects on Lake and Reservoir Physical Habitat - a National Picture

    EPA Science Inventory

    Structural complexity at the land-water interface of lakes promotes interchange of water, nutrients and energy; and provides diverse habitat for aquatic and terrestrial organisms. Shoreline zones are hot-spots for both biological diversity and human activity. Lake level fluctuat...

  10. Assessing the biological impact of exposure to environmental surface waters with cell-based lipidomics

    EPA Science Inventory

    Environmental surface waters often contain a variety of chemical contaminants from different sources including wastewater treatment plants, concentrated animal feeding operations, agricultural runoff and other human-related activities. Exposure to these contaminants may pose a th...

  11. In Vitro Metabolism of Tamoxifen in Human, Rat, and Fish Microsomes

    EPA Science Inventory

    Results from an in vivo study comparing biologically-active metabolites in the plasma of Wistar rats and cunner fish (Tautogolabrus adspersus) treated with tamoxifen indicate notable differences in circulating metabolite concentrations between these two species. After a single or...

  12. THE ROLE OF MAMMALIAN DATA IN DETERMINING PHARMACEUTICAL RESPONSES IN AQUATIC SPECIES

    EPA Science Inventory

    Human pharmaceuticals are designed to be biologically active, and are extensively studies for physicalchemical, pharmacological, and toxicological properties. In those studies, efficacy and safety endpoints ED50s, LCSOs, NOAELs, LOAELs, etc.) are linked to plasma exposures (Cmax ...

  13. 50 CFR 530.3 - Typical classes of action.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Federal agency; and (b) Research contracts relating to policy issues, biological-ecological data needed to make sound management decisions, and better methods for collecting and analyzing data. These activities are not, by themselves, major Federal actions significantly affecting the quality of the human...

  14. Ecological Forecasting: Microbial Contamination and Atmospheric Loadings of Nutrients to Land and Water

    EPA Science Inventory

    The development of ecological forecasts, namely, methodologies to predict the chemical, biological, and physical changes in terrestrial and aquatic ecosystems is desirable so that effective strategies for reducing the adverse impacts of human activities and extreme natural events...

  15. Molecular mechanism of biological and therapeutical effect of low-intensity laser irradiation

    NASA Astrophysics Data System (ADS)

    Mostovnikov, Vasili A.; Mostovnikova, Galina R.; Plavski, Vitali Y.; Plavskaja, Ljudmila G.; Morozova, Raisa P.

    1995-05-01

    The investigations carried out in our group on biological systems of various organization level (enzyme molecules in solution, human and animal cell cultures), allowed us to conclude, that the light-induced changes of spatial structure of cells components form the basis of biological activity (and as a consequence therapeutic effect) of various wavelength low-intensity laser emission. Photophysical mechanism of these changes lies in the reorientation of highregulated anisotropic parts (domains) with the liquid-crystalline type of ordering of the cell components due to the interaction between the electric field and the light induced integral electric dipole of the domain. The mechanism of such reorientation is well established in physics of liquid crystals of nematic type and is known as light induced analogue of Frederix's effect. The following results enable us to draw the conclusion about the determining role of the orientations effects on the biological activity mechanism of low-intensity laser radiation: (i) the possibility of reversible modification of spatial structure and enzyme molecules functional activity under the influence of laser radiation outside the band of their own or admixture absorption; (ii) the dependence of biological effect of laser radiation on the functional activity of cells vs. polarization degree of the light with the maximum photobiological effects observed for linear-polarized radiation; (iii) the equivalence of a static magnetic field and low-intensity laser radiation in action on functional activity of the cells and the lowering of the laser field intensity for the achieving the difinite changes of the cell functional activity in the presence of static magnetic field.

  16. Development of a Mouse Model of Menopausal Ovarian Cancer

    PubMed Central

    Smith, Elizabeth R.; Wang, Ying; Xu, Xiang-Xi

    2014-01-01

    Despite significant understanding of the genetic mutations involved in ovarian epithelial cancer and advances in genomic approaches for expression and mutation profiling of tumor tissues, several key questions in ovarian cancer biology remain enigmatic: the mechanism for the well-established impact of reproductive factors on ovarian cancer risk remains obscure; cell of origin of ovarian cancer continue to be debated; and the precursor lesion, sequence, or events in progression remain to be defined. Suitable mouse models should complement the analysis of human tumor tissues and may provide clues to these questions currently perplexing ovarian cancer biology. A potentially useful model is the germ cell-deficient Wv (white spotting variant) mutant mouse line, which may be used to study the impact of menopausal physiology on the increased risk of ovarian cancer. The Wv mice harbor a point mutation in c-Kit that reduces the receptor tyrosine kinase activity to about 1–5% (it is not a null mutation). Homozygous Wv mutant females have a reduced ovarian germ cell reservoir at birth and the follicles are rapidly depleted upon reaching reproductive maturity, but other biological phenotypes are minimal and the mice have a normal life span. The loss of ovarian function precipitates changes in hormonal and metabolic activity that model features of menopause in humans. As a consequence of follicle depletion, the Wv ovaries develop ovarian tubular adenomas, a benign epithelial tumor corresponding to surface epithelial invaginations and papillomatosis that mark human ovarian aging. Ongoing work will test the possibility of converting the benign epithelial tubular adenomas into neoplastic tumors by addition of an oncogenic mutation, such as of Tp53, to model the genotype and biology of serous ovarian cancer. Model based on the Wv mice may have the potential to gain biological and etiological insights into ovarian cancer development and prevention. PMID:24616881

  17. IFNα enhances the production of IL-6 by human neutrophils activated via TLR8.

    PubMed

    Zimmermann, Maili; Arruda-Silva, Fabio; Bianchetto-Aguilera, Francisco; Finotti, Giulia; Calzetti, Federica; Scapini, Patrizia; Lunardi, Claudio; Cassatella, Marco A; Tamassia, Nicola

    2016-01-21

    Recently, we reported that human neutrophils produce biologically active amounts of IL-6 when incubated with agonists activating TLR8, a receptor recognizing viral single strand RNA. In this study, we demonstrate that IFNα, a cytokine that modulates the early innate immune responses toward viral and bacterial infections, potently enhances the production of IL-6 in neutrophils stimulated with R848, a TLR8 agonist. We also show that such an effect is not caused by an IFNα-dependent induction of TLR7 and its consequent co-activation with TLR8 in response to R848, but, rather, it is substantially mediated by an increased production and release of endogenous TNFα. The latter cytokine, in an autocrine manner, leads to an augmented synthesis of the IkBζ co-activator and an enhanced recruitment of the C/EBPβ transcription factor to the IL-6 promoter. Moreover, we show that neutrophils from SLE patients with active disease state, hence displaying an IFN-induced gene expression signature, produce increased amounts of both IL-6 and TNFα in response to R848 as compared to healthy donors. Altogether, data uncover novel effects that type I IFN exerts in TLR8-activated neutrophils, which therefore enlarge our knowledge on the various biological actions which type I IFN orchestrates during infectious and autoimmune diseases.

  18. Identification of Novel Activators of Constitutive Androstane Receptor from FDA-approved Drugs by Integrated Computational and Biological Approaches

    PubMed Central

    Lynch, Caitlin; Pan, Yongmei; Li, Linhao; Ferguson, Stephen S.; Xia, Menghang; Swaan, Peter W.; Wang, Hongbing

    2012-01-01

    Purpose The constitutive androstane receptor (CAR, NR1I3) is a xenobiotic sensor governing the transcription of numerous hepatic genes associated with drug metabolism and clearance. Recent evidence suggests that CAR also modulates energy homeostasis and cancer development. Thus, identification of novel human (h) CAR activators is of both clinical importance and scientific interest. Methods Docking and ligand-based structure-activity models were used for virtual screening of a database containing over 2000 FDA-approved drugs. Identified lead compounds were evaluated in cell-based reporter assays to determine hCAR activation. Potential activators were further tested in human primary hepatocytes (HPHs) for the expression of the prototypical hCAR target gene CYP2B6. Results Nineteen lead compounds with optimal modeling parameters were selected for biological evaluation. Seven of the 19 leads exhibited moderate to potent activation of hCAR. Five out of the seven compounds translocated hCAR from the cytoplasm to the nucleus of HPHs in a concentration-dependent manner. These compounds also induce the expression of CYP2B6 in HPHs with rank-order of efficacies closely resembling that of hCAR activation. Conclusion These results indicate that our strategically integrated approaches are effective in the identification of novel hCAR modulators, which may function as valuable research tools or potential therapeutic molecules. PMID:23090669

  19. Stochastic cycle selection in active flow networks.

    PubMed

    Woodhouse, Francis G; Forrow, Aden; Fawcett, Joanna B; Dunkel, Jörn

    2016-07-19

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models.

  20. Dapson in heterocyclic chemistry, part VIII: synthesis, molecular docking and anticancer activity of some novel sulfonylbiscompounds carrying biologically active 1,3-dihydropyridine, chromene and chromenopyridine moieties.

    PubMed

    Al-Said, Mansour S; Ghorab, Mostafa M; Nissan, Yassin M

    2012-07-02

    Several new sulfonebiscompounds having a biologically active 1,2-dihydropyridine-2-one 3-19, acrylamide 20, chromene 21, 22 and chromenopyridine 23, 24 moieties were synthesized and evaluated as potential anticancer agents. The structures of the products were confirmed via elemental analyses and spectral data. The screening tests showed that many of the biscompounds obtained exhibited good anticancer activity against human breast cell line (MCF7) comparable to doxorubicin which was used as reference drug. Compounds 11, 17 and 24 showed IC50 values 35.40 μM, 29.86 μM and 30.99 μM, respectively. In order to elucidate the mechanism of action of the synthesized compounds as anticancer agents, docking on the active site of farnesyltransferase and arginine methyltransferase was also performed and good results were obtained.

  1. Stochastic cycle selection in active flow networks

    PubMed Central

    Woodhouse, Francis G.; Forrow, Aden; Fawcett, Joanna B.; Dunkel, Jörn

    2016-01-01

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models. PMID:27382186

  2. DNA Topoisomerase IB as a Potential Ionizing Radiation Exposure and Dose Biomarker.

    PubMed

    Daudee, Rotem; Gonen, Rafi; German, Uzi; Orion, Itzhak; Alfassi, Zeev B; Priel, Esther

    2018-06-01

    In radiation exposure scenarios where physical dosimetry is absent or inefficient, dose estimation must rely on biological markers. A reliable biomarker is of utmost importance in correlating biological system changes with radiation exposure. Human DNA topoisomerase ІB (topo І) is a ubiquitous nuclear enzyme, which is involved in essential cellular processes, including transcription, DNA replication and DNA repair, and is the target of anti-cancer drugs. It has been shown that the cellular activity of this enzyme is significantly sensitive to various DNA lesions, including radiation-induced DNA damages. Therefore, we investigated the potential of topo I as a biomarker of radiation exposure and dose. We examined the effect of exposure of different human cells to beta, X-ray and gamma radiation on the cellular catalytic activity of topo I. The results demonstrate a significant reduction in the DNA relaxation activity of topo I after irradiation and the level of the reduction was correlated with radiation dose. In normal human peripheral blood lymphocytes, exposure for 3 h to an integral dose of 0.065 mGy from tritium reduced the enzyme activity to less than 25%. In MG-63 osteoblast-like cells and in human pulmonary fibroblast (HPF) cells exposed to gamma radiation from a 60 Co source (up to 2 Gy) or to X rays (up to 2.8 Gy), a significant decrease in topo I catalytic activity was also observed. We observed that the enzyme-protein level was not altered but was partially posttranslational modified by ADP-ribosylation of the enzyme protein that is known to reduce topo I activity. The results of this study suggest that the decrease in the cellular topo I catalytic activity after low-dose exposure to different radiation types may be considered as a novel biomarker of ionizing radiation exposure and dose. For this purpose, a suitable ELISA-based method for large-scale analysis of radiation-induced topo I modification is under development.

  3. Minimal changes in heart rate of incubating American Oystercatchers (Haematopus palliatus) in response to human activity

    USGS Publications Warehouse

    Borneman, Tracy E.; Rose, Eli T.; Simons, Theodore R.

    2014-01-01

    An organism's heart rate is commonly used as an indicator of physiological stress due to environmental stimuli. We used heart rate to monitor the physiological response of American Oystercatchers (Haematopus palliatus) to human activity in their nesting environment. We placed artificial eggs with embedded microphones in 42 oystercatcher nests to record the heart rate of incubating oystercatchers continuously for up to 27 days. We used continuous video and audio recordings collected simultaneously at the nests to relate physiological response of birds (heart rate) to various types of human activity. We observed military and civilian aircraft, off-road vehicles, and pedestrians around nests. With the exception of high-speed, low-altitude military overflights, we found little evidence that oystercatcher heart rates were influenced by most types of human activity. The low-altitude flights were the only human activity to significantly increase average heart rates of incubating oystercatchers (12% above baseline). Although statistically significant, we do not consider the increase in heart rate during high-speed, low-altitude military overflights to be of biological significance. This noninvasive technique may be appropriate for other studies of stress in nesting birds.

  4. Purified high molecular weight synthetic Aβ(1-42) and biological Aβ oligomers are equipotent in rapidly inducing MTT formazan exocytosis.

    PubMed

    Weidner, Adam M; Housley, Molly; Murphy, M Paul; Levine, Harry

    2011-06-15

    Synthetic soluble Aβ oligomers are often used as a surrogate for biologic material in a number of model systems. We compared the activity of Aβ oligomers (synthetic and cell culture media derived) on the human SH-SY5Y neuroblastoma and C2C12 mouse myoblast cell lines in a novel, modified MTT assay. Separating oligomers from monomeric peptide by size exclusion chromatography produced effects at peptide concentrations approaching physiologic levels (10-100 nM). Purified oligomers, but not monomers or fibrils, elicited an increase of a detergent-insoluble form of MTT formazan within 2h as opposed to a control toxin (H(2)O(2)). This effect was comparable for biological and synthetic peptide in both cell types. Monomeric Aβ attenuated the effect of soluble oligomers. This study suggests that the activities of biological and synthetic oligomers are indistinguishable during early stages of Aβ oligomer-cell interaction. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Activity of the de novo engineered antimicrobial peptide WLBU2 against Pseudomonas aeruginosa in human serum and whole blood: implications for systemic applications.

    PubMed

    Deslouches, Berthony; Islam, Kazi; Craigo, Jodi K; Paranjape, Shruti M; Montelaro, Ronald C; Mietzner, Timothy A

    2005-08-01

    Cationic amphipathic peptides have been extensively investigated as a potential source of new antimicrobials that can complement current antibiotic regimens in the face of emerging drug-resistant bacteria. However, the suppression of antimicrobial activity under certain biologically relevant conditions (e.g., serum and physiological salt concentrations) has hampered efforts to develop safe and effective antimicrobial peptides for clinical use. We have analyzed the activity and selectivity of the human peptide LL37 and the de novo engineered antimicrobial peptide WLBU2 in several biologically relevant conditions. The host-derived synthetic peptide LL37 displayed high activity against Pseudomonas aeruginosa but demonstrated staphylococcus-specific sensitivity to NaCl concentrations varying from 50 to 300 mM. Moreover, LL37 potency was variably suppressed in the presence of 1 to 6 mM Mg(2+) and Ca(2+) ions. In contrast, WLBU2 maintained its activity in NaCl and physiologic serum concentrations of Mg(2+) and Ca(2+). WLBU2 is able to kill P. aeruginosa (10(6) CFU/ml) in human serum, with a minimum bactericidal concentration of <9 microM. Conversely, LL37 is inactive in the presence of human serum. Bacterial killing kinetic assays in serum revealed that WLBU2 achieved complete bacterial killing in 20 min. Consistent with these results was the ability of WLBU2 (15 to 20 microM) to eradicate bacteria from ex vivo samples of whole blood. The selectivity of WLBU2 was further demonstrated by its ability to specifically eliminate P. aeruginosa in coculture with human monocytes or skin fibroblasts without detectable adverse effects to the host cells. Finally, WLBU2 displayed potent efficacy against P. aeruginosa in an intraperitoneal infection model using female Swiss Webster mice. These results establish a potential application of WLBU2 in the treatment of bacterial sepsis.

  6. Activity of the De Novo Engineered Antimicrobial Peptide WLBU2 against Pseudomonas aeruginosa in Human Serum and Whole Blood: Implications for Systemic Applications

    PubMed Central

    Deslouches, Berthony; Islam, Kazi; Craigo, Jodi K.; Paranjape, Shruti M.; Montelaro, Ronald C.; Mietzner, Timothy A.

    2005-01-01

    Cationic amphipathic peptides have been extensively investigated as a potential source of new antimicrobials that can complement current antibiotic regimens in the face of emerging drug-resistant bacteria. However, the suppression of antimicrobial activity under certain biologically relevant conditions (e.g., serum and physiological salt concentrations) has hampered efforts to develop safe and effective antimicrobial peptides for clinical use. We have analyzed the activity and selectivity of the human peptide LL37 and the de novo engineered antimicrobial peptide WLBU2 in several biologically relevant conditions. The host-derived synthetic peptide LL37 displayed high activity against Pseudomonas aeruginosa but demonstrated staphylococcus-specific sensitivity to NaCl concentrations varying from 50 to 300 mM. Moreover, LL37 potency was variably suppressed in the presence of 1 to 6 mM Mg2+ and Ca2+ ions. In contrast, WLBU2 maintained its activity in NaCl and physiologic serum concentrations of Mg2+ and Ca2+. WLBU2 is able to kill P. aeruginosa (106 CFU/ml) in human serum, with a minimum bactericidal concentration of <9 μM. Conversely, LL37 is inactive in the presence of human serum. Bacterial killing kinetic assays in serum revealed that WLBU2 achieved complete bacterial killing in 20 min. Consistent with these results was the ability of WLBU2 (15 to 20 μM) to eradicate bacteria from ex vivo samples of whole blood. The selectivity of WLBU2 was further demonstrated by its ability to specifically eliminate P. aeruginosa in coculture with human monocytes or skin fibroblasts without detectable adverse effects to the host cells. Finally, WLBU2 displayed potent efficacy against P. aeruginosa in an intraperitoneal infection model using female Swiss Webster mice. These results establish a potential application of WLBU2 in the treatment of bacterial sepsis. PMID:16048927

  7. Isolation, structures, and structure - cytotoxic activity relationships of withanolides and physalins from Physalis angulata.

    PubMed

    Damu, Amooru G; Kuo, Ping-Chung; Su, Chung-Ren; Kuo, Tsung-Hsiao; Chen, Tzu-Hsuan; Bastow, Kenneth F; Lee, Kuo-Hsiung; Wu, Tian-Shung

    2007-07-01

    Phytochemical investigation of Physalis angulata was initiated following primary biological screening. Fractionation of CHCl3 and n-BuOH solubles of the MeOH extract from the whole plant was guided by in vitro cytotoxic activity assay using cultured HONE-1 and NUGC cells and led to the isolation of seven new withanolides, withangulatins B-H (1-7), and a new minor physalin, physalin W (8), along with 14 known compounds, including physaprun A, withaphysanolide, dihydrowithanolide E, physanolide A, withaphysalin A, and physalins B, D, F, G, I, J, T, U, and V. New compounds (1-8) were fully characterized by a combination of spectroscopic methods (1D and 2D NMR and MS) and the relative stereochemical assignments based on NOESY correlations and analysis of coupling constants. Biological evaluation of these compounds against a panel of human cancer cell lines showed broad cytotoxic activity. Withangulatin B (1) and physalins D (10) and F (11) displayed potent cytotoxic activity against a panel of human cancer cell lines with EC50 values ranging from 0.2 to 1.6 microg/mL. Structure-activity relationship analysis indicated that withanolides and physalins with 4beta-hydroxy-2-en-1-one and 5beta,6beta-epoxy moieties are potential cytotoxic agents.

  8. Gingerols and shogaols: Important nutraceutical principles from ginger.

    PubMed

    Semwal, Ruchi Badoni; Semwal, Deepak Kumar; Combrinck, Sandra; Viljoen, Alvaro M

    2015-09-01

    Gingerols are the major pungent compounds present in the rhizomes of ginger (Zingiber officinale Roscoe) and are renowned for their contribution to human health and nutrition. Medicinal properties of ginger, including the alleviation of nausea, arthritis and pain, have been associated with the gingerols. Gingerol analogues are thermally labile and easily undergo dehydration reactions to form the corresponding shogaols, which impart the characteristic pungent taste to dried ginger. Both gingerols and shogaols exhibit a host of biological activities, ranging from anticancer, anti-oxidant, antimicrobial, anti-inflammatory and anti-allergic to various central nervous system activities. Shogaols are important biomarkers used for the quality control of many ginger-containing products, due to their diverse biological activities. In this review, a large body of available knowledge on the biosynthesis, chemical synthesis and pharmacological activities, as well as on the structure-activity relationships of various gingerols and shogaols, have been collated, coherently summarised and discussed. The manuscript highlights convincing evidence indicating that these phenolic compounds could serve as important lead molecules for the development of therapeutic agents to treat various life-threatening human diseases, particularly cancer. Inclusion of ginger or ginger extracts in nutraceutical formulations could provide valuable protection against diabetes, cardiac and hepatic disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Removal of Biologically Active Organic Contaminants using Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Banks, Michael A. (Inventor); Banks, Eric B. (Inventor)

    2003-01-01

    Biomedical devices that are to come into contact with living tissue, such as prosthetic and other implants for the human body and the containers used to store and transport them, are together cleaned of non-living, but biologically active organic materials, including endotoxins such as lipopolysaccharides, and assembled into a hermetically sealed package without recontamination. This is achieved by cleaning both the device and package components together in an apparatus, which includes a hermetically sealed chamber, in which they are contacted with atomic oxygen which biocleans them, by oxidizing the biologically active organic materials. The apparatus also includes means for manipulating the device and container and hermetically sealing the cleaned device into the cleaned container to form the package. A calibrated witness coupon visually indicates whether or not the device and container have received enough exposure to the atomic oxygen to have removed the organic materials from their surfaces. Gamma radiation is then used to sterilize the device in the sealed container.

  10. Chemical synthesis of erythropoietin glycoforms for insights into the relationship between glycosylation pattern and bioactivity

    PubMed Central

    Murakami, Masumi; Kiuchi, Tatsuto; Nishihara, Mika; Tezuka, Katsunari; Okamoto, Ryo; Izumi, Masayuki; Kajihara, Yasuhiro

    2016-01-01

    The role of sialyloligosaccharides on the surface of secreted glycoproteins is still unclear because of the difficulty in the preparation of sialylglycoproteins in a homogeneous form. We selected erythropoietin (EPO) as a target molecule and designed an efficient synthetic strategy for the chemical synthesis of a homogeneous form of five EPO glycoforms varying in glycosylation position and the number of human-type biantennary sialyloligosaccharides. A segment coupling strategy performed by native chemical ligation using six peptide segments including glycopeptides yielded homogeneous EPO glycopeptides, and folding experiments of these glycopeptides afforded the correctly folded EPO glycoforms. In an in vivo erythropoiesis assay in mice, all of the EPO glycoforms displayed biological activity, in particular the EPO bearing three sialyloligosaccharides, which exhibited the highest activity. Furthermore, we observed that the hydrophilicity and biological activity of the EPO glycoforms varied depending on the glycosylation pattern. This knowledge will pave the way for the development of homogeneous biologics by chemical synthesis. PMID:26824070

  11. Recent Advances in the Chemistry and Biology of Podophyllotoxins.

    PubMed

    Yu, Xiang; Che, Zhiping; Xu, Hui

    2017-04-03

    Podophyllotoxin and its related aryltetralin cyclolignans belong to a family of important products that exhibit various biological properties (e.g., cytotoxic, insecticidal, antifungal, antiviral, anti-inflammatory, neurotoxic, immunosuppressive, antirheumatic, antioxidative, antispasmogenic, and hypolipidemic activities). This Review provides a survey of podophyllotoxin and its analogues isolated from plants. In particular, recent developments in the elegant total chemical synthesis, structural modifications, biosynthesis, and biotransformation of podophyllotoxin and its analogues are summarized. Moreover, a deoxypodophyllotoxin-based chemosensor for selective detection of mercury ion is described. In addition to the most active podophyllotoxin derivatives in each series against human cancer cell lines and insect pests listed in the tables, the structure-activity relationships of podophyllotoxin derivatives as cytotoxic and insecticidal agents are also outlined. Future prospects and further developments in this area are covered at the end of the Review. We believe that this Review will provide necessary information for synthetic, medicinal, and pesticidal chemistry researchers who are interested in the chemistry and biology of podophyllotoxins. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Development and Mining of a Volatile Organic Compound Database

    PubMed Central

    Abdullah, Azian Azamimi; Ono, Naoaki; Sugiura, Tadao; Morita, Aki Hirai; Katsuragi, Tetsuo; Muto, Ai; Nishioka, Takaaki; Kanaya, Shigehiko

    2015-01-01

    Volatile organic compounds (VOCs) are small molecules that exhibit high vapor pressure under ambient conditions and have low boiling points. Although VOCs contribute only a small proportion of the total metabolites produced by living organisms, they play an important role in chemical ecology specifically in the biological interactions between organisms and ecosystems. VOCs are also important in the health care field as they are presently used as a biomarker to detect various human diseases. Information on VOCs is scattered in the literature until now; however, there is still no available database describing VOCs and their biological activities. To attain this purpose, we have developed KNApSAcK Metabolite Ecology Database, which contains the information on the relationships between VOCs and their emitting organisms. The KNApSAcK Metabolite Ecology is also linked with the KNApSAcK Core and KNApSAcK Metabolite Activity Database to provide further information on the metabolites and their biological activities. The VOC database can be accessed online. PMID:26495281

  13. HDAC inhibitors: a 2013-2017 patent survey.

    PubMed

    Faria Freitas, Micaela; Cuendet, Muriel; Bertrand, Philippe

    2018-04-19

    Zinc-dependent histone deacetylases (HDAC) inhibitors represent an important class of biologically active compounds with four of them approved by the FDA. A wide range of molecules has been reported for applications in several human diseases.Area covered: This review covers recent efforts in the synthesis and applications of HDAC inhibitors from 2013-2017.Expert opinion: HDAC inhibitors represent an important class of biologically active compounds for single or combination therapies. The current synthetic methodologies are oriented towards selective HDAC isoforms to achieve better therapeutic effects. Among the recent patents available, most of them focus on HDAC6 selective inhibitors. Beside this search for isoform selectivity, the quest for zinc binding groups with better pharmacokinetic properties and high potency against HDACs only motivates medicinal chemists, as well as the design of inhibitors targeting HDACs and at the same time another biological target. If the major applications are for anticancer activity, one can note the emerging applications in neurological or metabolic disorders or for the stimulation of the immune system.

  14. Where Synthetic Biology Meets ET

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  15. Polarization: A Key Difference between Man-made and Natural Electromagnetic Fields, in regard to Biological Activity.

    PubMed

    Panagopoulos, Dimitris J; Johansson, Olle; Carlo, George L

    2015-10-12

    In the present study we analyze the role of polarization in the biological activity of Electromagnetic Fields (EMFs)/Electromagnetic Radiation (EMR). All types of man-made EMFs/EMR - in contrast to natural EMFs/EMR - are polarized. Polarized EMFs/EMR can have increased biological activity, due to: 1) Ability to produce constructive interference effects and amplify their intensities at many locations. 2) Ability to force all charged/polar molecules and especially free ions within and around all living cells to oscillate on parallel planes and in phase with the applied polarized field. Such ionic forced-oscillations exert additive electrostatic forces on the sensors of cell membrane electro-sensitive ion channels, resulting in their irregular gating and consequent disruption of the cell's electrochemical balance. These features render man-made EMFs/EMR more bioactive than natural non-ionizing EMFs/EMR. This explains the increasing number of biological effects discovered during the past few decades to be induced by man-made EMFs, in contrast to natural EMFs in the terrestrial environment which have always been present throughout evolution, although human exposure to the latter ones is normally of significantly higher intensities/energy and longer durations. Thus, polarization seems to be a trigger that significantly increases the probability for the initiation of biological/health effects.

  16. Polarization: A Key Difference between Man-made and Natural Electromagnetic Fields, in regard to Biological Activity

    PubMed Central

    Panagopoulos, Dimitris J.; Johansson, Olle; Carlo, George L.

    2015-01-01

    In the present study we analyze the role of polarization in the biological activity of Electromagnetic Fields (EMFs)/Electromagnetic Radiation (EMR). All types of man-made EMFs/EMR - in contrast to natural EMFs/EMR - are polarized. Polarized EMFs/EMR can have increased biological activity, due to: 1) Ability to produce constructive interference effects and amplify their intensities at many locations. 2) Ability to force all charged/polar molecules and especially free ions within and around all living cells to oscillate on parallel planes and in phase with the applied polarized field. Such ionic forced-oscillations exert additive electrostatic forces on the sensors of cell membrane electro-sensitive ion channels, resulting in their irregular gating and consequent disruption of the cell’s electrochemical balance. These features render man-made EMFs/EMR more bioactive than natural non-ionizing EMFs/EMR. This explains the increasing number of biological effects discovered during the past few decades to be induced by man-made EMFs, in contrast to natural EMFs in the terrestrial environment which have always been present throughout evolution, although human exposure to the latter ones is normally of significantly higher intensities/energy and longer durations. Thus, polarization seems to be a trigger that significantly increases the probability for the initiation of biological/health effects. PMID:26456585

  17. Polarization: A Key Difference between Man-made and Natural Electromagnetic Fields, in regard to Biological Activity

    NASA Astrophysics Data System (ADS)

    Panagopoulos, Dimitris J.; Johansson, Olle; Carlo, George L.

    2015-10-01

    In the present study we analyze the role of polarization in the biological activity of Electromagnetic Fields (EMFs)/Electromagnetic Radiation (EMR). All types of man-made EMFs/EMR - in contrast to natural EMFs/EMR - are polarized. Polarized EMFs/EMR can have increased biological activity, due to: 1) Ability to produce constructive interference effects and amplify their intensities at many locations. 2) Ability to force all charged/polar molecules and especially free ions within and around all living cells to oscillate on parallel planes and in phase with the applied polarized field. Such ionic forced-oscillations exert additive electrostatic forces on the sensors of cell membrane electro-sensitive ion channels, resulting in their irregular gating and consequent disruption of the cell’s electrochemical balance. These features render man-made EMFs/EMR more bioactive than natural non-ionizing EMFs/EMR. This explains the increasing number of biological effects discovered during the past few decades to be induced by man-made EMFs, in contrast to natural EMFs in the terrestrial environment which have always been present throughout evolution, although human exposure to the latter ones is normally of significantly higher intensities/energy and longer durations. Thus, polarization seems to be a trigger that significantly increases the probability for the initiation of biological/health effects.

  18. Evaluation of biological properties and clinical effectiveness of Aloe vera: A systematic review

    PubMed Central

    Radha, Maharjan H.; Laxmipriya, Nampoothiri P.

    2014-01-01

    Aloe vera (蘆薈 lú huì) is well known for its considerable medicinal properties. This plant is one of the richest natural sources of health for human beings coming. The chemistry of the plant has revealed the presence of more than 200 different biologically active substances. Many biological properties associated with Aloe species are contributed by inner gel of the leaves. Most research has been centralized on the biological activities of the various species of Aloe, which include antibacterial and antimicrobial activities of the nonvolatile constituents of the leaf gel. Aloe species are widely distributed in the African and the eastern European continents, and are spread almost throughout the world. The genus Aloe has more than 400 species but few, such as A. vera, Aloe ferox, and Aloe arborescens, are globally used for trade. A. vera has various medicinal properties such as antitumor, antiarthritic, antirheumatoid, anticancer, and antidiabetic properties. In addition, A. vera has also been promoted for constipation, gastrointestinal disorders, and for immune system deficiencies. However, not much convincing information is available on properties of the gel. The present review focuses on the detailed composition of Aloe gel, its various phytocomponents having various biological properties that help to improve health and prevent disease conditions. PMID:26151005

  19. The Biological Function and Clinical Utilization of CD147 in Human Diseases: A Review of the Current Scientific Literature

    PubMed Central

    Xiong, Lijuan; Edwards, Carl K.; Zhou, Lijun

    2014-01-01

    CD147 or EMMPRIN is a member of the immunoglobulin superfamily in humans. It is widely expressed in human tumors and plays a central role in the progression of many cancers by stimulating the secretion of matrix metalloproteinases (MMPs) and cytokines. CD147 regulates cell proliferation, apoptosis, and tumor cell migration, metastasis and differentiation, especially under hypoxic conditions. CD147 is also important to many organ systems. This review will provide a detailed overview of the discovery, characterization, molecular structure, diverse biological functions and regulatory mechanisms of CD147 in human physiological and pathological processes. In particular, recent studies have demonstrated the potential application of CD147 not only as a phenotypic marker of activated regulatory T cells but also as a potential diagnostic marker for early-stage disease. Moreover, CD147 is recognized as an effective therapeutic target for hepatocellular carcinoma (HCC) and other cancers, and exciting clinical progress has been made in HCC treatment using CD147-directed monoclonal antibodies. PMID:25268615

  20. Isolation of lignans and biological activity studies of Ephedra viridis.

    PubMed

    Pullela, Srinivas V; Takamatsu, Satoshi; Khan, Shabana I; Khan, Ikhlas A

    2005-08-01

    Phytochemical investigation of Ephedra viridis (whole plant) led to the isolation of four lignans including (+)-9-acetoxyisolariciresinol, which is a new lignan, lariciresinol, 9-acetoxylariciresinol and isolariciresinol. All the isolates were tested for their antioxidant activity and cytotoxicity against a panel of solid tumor and human leukemia cells. They were also screened for estrogenic activity using a recombinant yeast estrogen screening (YES) assay. Most of the lignans exhibited moderate antioxidant activity without any cytotoxicity. None of them were estrogenic in the YES assay.

  1. Social interaction, languaging and the operational conditions for the emergence of observing.

    PubMed

    Raimondi, Vincenzo

    2014-01-01

    In order to adequately understand the foundations of human social interaction, we need to provide an explanation of our specific mode of living based on linguistic activity and the cultural practices with which it is interwoven. To this end, we need to make explicit the constitutive conditions for the emergence of the phenomena which relate to language and joint activity starting from their operational-relational matrix. The approach presented here challenges the inadequacy of mentalist models to explain the relation between language and interaction. Recent empirical studies concerning joint attention and language acquisition have led scholars such as Tomasello et al. (2005) to postulate the existence of a universal human "sociocognitive infrastructure" that drives joint social activities and is biologically inherited. This infrastructure would include the skill of precocious intention-reading, and is meant to explain human linguistic development and cultural learning. However, the cognitivist and functionalist assumptions on which this model relies have resulted in controversial hypotheses (i.e., intention-reading as the ontogenetic precursor of language) which take a contentious conception of mind and language for granted. By challenging this model, I will show that we should instead turn ourselves towards a constitutive explanation of language within a "bio-logical" understanding of interactivity. This is possible only by abandoning the cognitivist conception of organism and traditional views of language. An epistemological shift must therefore be proposed, based on embodied, enactive and distributed approaches, and on Maturana's work in particular. The notions of languaging and observing that will be discussed in this article will allow for a bio-logically grounded, theoretically parsimonious alternative to mentalist and spectatorial approaches, and will guide us towards a wider understanding of our sociocultural mode of living.

  2. Human RecQL4 helicase plays multifaceted roles in the genomic stability of normal and cancer cells.

    PubMed

    Mo, Dongliang; Zhao, Yongliang; Balajee, Adayabalam S

    2018-01-28

    Human RecQ helicases that share homology with E. coli RecQ helicase play critical roles in diverse biological activities such as DNA replication, transcription, recombination and repair. Mutations in three of the five human RecQ helicases (RecQ1, WRN, BLM, RecQL4 and RecQ5) result in autosomal recessive syndromes characterized by accelerated aging symptoms and cancer incidence. Mutational inactivation of Werner (WRN) and Bloom (BLM) genes results in Werner syndrome (WS) and Bloom syndrome (BS) respectively. However, mutations in RecQL4 result in three human disorders: (I) Rothmund-Thomson syndrome (RTS), (II) RAPADILINO and (III) Baller-Gerold syndrome (BGS). Cells from WS, BS and RTS are characterized by a unique chromosomal anomaly indicating that each of the RecQ helicases performs specialized function(s) in a non-redundant manner. Elucidating the biological functions of RecQ helicases will enable us to understand not only the aging process but also to determine the cause for age-associated human diseases. Recent biochemical and molecular studies have given new insights into the multifaceted roles of RecQL4 that range from genomic stability to carcinogenesis and beyond. This review summarizes some of the existing and emerging knowledge on diverse biological functions of RecQL4 and its significance as a potential molecular target for cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Producing recombinant human milk proteins in the milk of livestock species.

    PubMed

    Bösze, Zsuzsanna; Baranyi, Mária; Whitelaw, C Bruce A

    2008-01-01

    Recombinant human proteins produced by the mammary glands of genetically modified transgenic livestock mammals represent a special aspect of milk bioactive components. For therapeutic applications, the often complex posttranslational modifications of human proteins should be recapitulated in the recombinant products. Compared to alternative production methods, mammary gland production is a viable option, underlined by a number of transgenic livestock animal models producing abundant biologically active foreign proteins in their milk. Recombinant proteins isolated from milk have reached different phases of clinical trials, with the first marketing approval for human therapeutic applications from the EMEA achieved in 2006.

  4. Microfibril-associated glycoproteins MAGP-1 and MAGP-2 in disease.

    PubMed

    Craft, Clarissa S; Broekelmann, Thomas J; Mecham, Robert P

    2018-03-07

    Microfibril-associated glycoproteins 1 and 2 (MAGP-1, MAGP-2) are protein components of extracellular matrix microfibrils. These proteins interact with fibrillin, the core component of microfibrils, and impart unique biological properties that influence microfibril function in vertebrates. MAGPs bind active forms of TGFβ and BMPs and are capable of modulating Notch signaling. Mutations in MAGP-1 or MAGP-2 have been linked to thoracic aneurysms and metabolic disease in humans. MAGP-2 has also been shown to be an important biomarker in several human cancers. Mice lacking MAGP-1 or MAGP-2 have defects in multiple organ systems, which reflects the widespread distribution of microfibrils in vertebrate tissues. This review summarizes our current understanding of the function of the MAGPs and their relationship to human disease. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  5. Envisioning, quantifying, and managing thermal regimes on river networks

    USGS Publications Warehouse

    Steel, E. Ashley; Beechie, Timothy J.; Torgersen, Christian E.; Fullerton, Aimee H.

    2017-01-01

    Water temperatures fluctuate in time and space, creating diverse thermal regimes on river networks. Temporal variability in these thermal landscapes has important biological and ecological consequences because of nonlinearities in physiological reactions; spatial diversity in thermal landscapes provides aquatic organisms with options to maximize growth and survival. However, human activities and climate change threaten to alter the dynamics of riverine thermal regimes. New data and tools can identify particular facets of the thermal landscape that describe ecological and management concerns and that are linked to human actions. The emerging complexity of thermal landscapes demands innovations in communication, opens the door to exciting research opportunities on the human impacts to and biological consequences of thermal variability, suggests improvements in monitoring programs to better capture empirical patterns, provides a framework for suites of actions to restore and protect the natural processes that drive thermal complexity, and indicates opportunities for better managing thermal landscapes.

  6. Biological Tools to Study the Effects of Environmental Contaminants at the Feto–Maternal Interface

    PubMed Central

    Mannelli, Chiara; Ietta, Francesca; Avanzati, Anna Maria; Skarzynski, Dariusz

    2015-01-01

    The identification of reproductive toxicants is a major scientific challenge for human health. Prenatal life is the most vulnerable and important time span of human development. For obvious ethical reasons, in vivo models cannot be used in human pregnancy, and animal models do not perfectly reflect human physiology. This review describes the in vitro test models representative of the human feto–maternal interface and the effects of environmental chemicals with estrogen-like activity, mainly bisphenol A and para-nonylphenol, with a particular emphasis on the effects at low, nontoxic doses similar to concentrations commonly detected in the population. PMID:26740808

  7. Inclusion of Biological Foundations of Human Behavior in Counselor Education.

    ERIC Educational Resources Information Center

    Panther, Edward E.

    1987-01-01

    Reports that textbooks and counseling approaches studied by prospective counselors largely omit information on biological foundations of human behavior, although biological factors often affect human behavior profoundly. Uses case study examples to show importance of biological factors. Recommends that counselor educators understand biological…

  8. Volunteer Losing Balance Wearing Inverted Glasses

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Brad McLain for the Space Biology Museum Network puts a volunteer back on balance as he tries to adjust to a world inverted by a special pair of glasses. This helps illustrate how dependent the human vestibular system is on visual cues. A volunteer is The activity was part of the Space Research and You education event held by NASA's Office of Biological and Physical Research on June 25, 2002, in Arlington, VA, to highlight the research that will be conducted on STS-107.

  9. Isolation and biological evaluation of jatrophane diterpenoids from Euphorbia dendroides.

    PubMed

    Aljancić, Ivana S; Pesić, Milica; Milosavljević, Slobodan M; Todorović, Nina M; Jadranin, Milka; Milosavljević, Goran; Povrenović, Dragan; Banković, Jasna; Tanić, Nikola; Marković, Ivanka D; Ruzdijić, Sabera; Vajs, Vlatka E; Tesević, Vele V

    2011-07-22

    From the Montenegrin spurge Euphorbia dendroides, seven new diterpenoids [jatrophanes (1-6) and a tigliane (7)] were isolated and their structures elucidated by spectroscopic techniques. The biological activity of the new compounds was studied against four human cancer cell lines. The most effective jatrophane-type compound (2) and its structurally closely related derivative (1) were evaluated for their interactions with paclitaxel and doxorubicin using a multi-drug-resistant cancer cell line. Both compounds exerted a strong reversal potential resulting from inhibition of P-glycoprotein transport.

  10. Art and brain: insights from neuropsychology, biology and evolution.

    PubMed

    Zaidel, Dahlia W

    2010-02-01

    Art is a uniquely human activity associated fundamentally with symbolic and abstract cognition. Its practice in human societies throughout the world, coupled with seeming non-functionality, has led to three major brain theories of art. (1) The localized brain regions and pathways theory links art to multiple neural regions. (2) The display of art and its aesthetics theory is tied to the biological motivation of courtship signals and mate selection strategies in animals. (3) The evolutionary theory links the symbolic nature of art to critical pivotal brain changes in Homo sapiens supporting increased development of language and hierarchical social grouping. Collectively, these theories point to art as a multi-process cognition dependent on diverse brain regions and on redundancy in art-related functional representation.

  11. Art and brain: insights from neuropsychology, biology and evolution

    PubMed Central

    Zaidel, Dahlia W

    2010-01-01

    Art is a uniquely human activity associated fundamentally with symbolic and abstract cognition. Its practice in human societies throughout the world, coupled with seeming non-functionality, has led to three major brain theories of art. (1) The localized brain regions and pathways theory links art to multiple neural regions. (2) The display of art and its aesthetics theory is tied to the biological motivation of courtship signals and mate selection strategies in animals. (3) The evolutionary theory links the symbolic nature of art to critical pivotal brain changes in Homo sapiens supporting increased development of language and hierarchical social grouping. Collectively, these theories point to art as a multi-process cognition dependent on diverse brain regions and on redundancy in art-related functional representation. PMID:19490399

  12. Modeling users' activity on Twitter networks: validation of Dunbar's number

    NASA Astrophysics Data System (ADS)

    Goncalves, Bruno; Perra, Nicola; Vespignani, Alessandro

    2012-02-01

    Microblogging and mobile devices appear to augment human social capabilities, which raises the question whether they remove cognitive or biological constraints on human communication. In this paper we analyze a dataset of Twitter conversations collected across six months involving 1.7 million individuals and test the theoretical cognitive limit on the number of stable social relationships known as Dunbar's number. We find that the data are in agreement with Dunbar's result; users can entertain a maximum of 100-200 stable relationships. Thus, the ``economy of attention'' is limited in the online world by cognitive and biological constraints as predicted by Dunbar's theory. We propose a simple model for users' behavior that includes finite priority queuing and time resources that reproduces the observed social behavior.

  13. The Ozark Highlands

    USGS Publications Warehouse

    Ethridge, Max

    2009-01-01

    The Ozark Highlands include diverse topographic, geologic, soil, and hydrologic conditions that support a broad range of habitat types. The landscape features rugged uplands - some peaks higher than 2,500 feet above sea level - with exposed rock and varying soil depths and includes extensive areas of karst terrain. The Highlands are characterized by extreme biological diversity and high endemism (uniqueness of species). Vegetation communities are dominated by open oak-hickory and shortleaf pine woodlands and forests. Included in this vegetation matrix is an assemblage of various types of fens, forests, wetlands, fluvial features, and carbonate and siliceous glades. An ever-growing human population in the Ozark Highlands has become very dependent on reservoirs constructed on major rivers in the region and, in some cases, groundwater for household and public water supply. Because of human population growth in the Highlands and increases in industrial and agricultural activities, not only is adequate water quantity an issue, but maintaining good water quality is also a challenge. Point and nonpoint sources of excessive nutrients are an issue. U.S. Geological Survey (USGS) partnership programs to monitor water quality and develop simulation tools to help stakeholders better understand strategies to protect the quality of water and the environment are extremely important. The USGS collects relevant data, conducts interpretive studies, and develops simulation tools to help stakeholders understand resource availability and sustainability issues. Stakeholders dependent on these resources are interested in and benefit greatly from evolving these simulation tools (models) into decision support systems that can be used for adaptive management of water and ecological resources. The interaction of unique and high-quality biological and hydrologic resources and the effects of stresses from human activities can be evaluated best by using a multidisciplinary approach that the USGS can provide. Information varying from defining baseline resource conditions to developing simulation models will help resource managers and users understand the human impact on resource sustainability. Varied expertise and experience in biological and water-resources activities across the entire Highlands make the USGS a valued collaborator in studies of Ozark ecosystems, streams, reservoirs, and groundwater. A large part of future success will depend on the involvement and active participation of key partners.

  14. Photo-damage protective effect of two facial products, containing a unique complex of Dead Sea minerals and Himalayan actives.

    PubMed

    Wineman, Eitan; Portugal-Cohen, Meital; Soroka, Yoram; Cohen, Dror; Schlippe, Gerrit; Voss, Werner; Brenner, Sarah; Milner, Yoram; Hai, Noam; Ma'or, Zeevi

    2012-09-01

    Skin appearance is badly affected when exposed to solar UV rays, which encourage physiological and structural cutaneous alterations that eventually lead to skin photo-damage. To test the capability of two facial preparations, extreme day cream (EXD) and extreme night treatment (EXN), containing a unique complex of Dead Sea water and three Himalayan extracts, to antagonize biological effects induced by photo-damage. Pieces of organ cultures of human skin were used as a model to assess the biological effects of UVB irradiation and the protective effect of topical application of two Extreme preparations. Skin pieces were analyzed for mitochondrial activity by MTT assay, for apoptosis by caspase 3 assay, and for cytokine secretion by solid phase ELISA. Human subjects were tested to evaluate the effect of Extreme preparations on skin wrinkle depth using PRIMOS and skin hydration by a corneometer. UVB irradiation induced cell apoptosis in the epidermis of skin organ cultures and increased their pro-inflammatory cytokine, tumor necrosis α (TNFα) secretion. Topical applications of both preparations significantly attenuated all these effects. Furthermore, in human subjects, a reduction in wrinkle depth and an elevation in the intense skin moisture were observed. The observations clearly show that EXD and EXN preparations have protective anti-apoptotic and anti-inflammatory properties that can attenuate biological effects of skin photo-damage. Topical application of the preparations improves skin appearance by reducing its wrinkles depth and increasing its moisturizing impact. © 2012 Wiley Periodicals, Inc.

  15. Biological effects of plasma rich in growth factors (PRGF) on human endometrial fibroblasts.

    PubMed

    Anitua, Eduardo; de la Fuente, María; Ferrando, Marcos; Quintana, Fernando; Larreategui, Zaloa; Matorras, Roberto; Orive, Gorka

    2016-11-01

    To evaluate the biological outcomes of plasma rich in growth factors (PRGF) on human endometrial fibroblasts in culture. PRGF was obtained from three healthy donors and human endometrial fibroblasts (HEF) were isolated from endometrial specimens from five healthy women. The effects of PRGF on cell proliferation and migration, secretion of vascular endothelial growth factor (VEGF), procollagen type I and hyaluronic acid (HA) and contractility of isolated and cultured human endometrial fibroblasts (HEF) were analyzed. Statistical analysis was performed in order to compare the effects of PRGF with respect to control situation (T-test or Mann-Whitney U-test). We report a significantly elevated human endometrial fibroblast proliferation and migration after treatment with PRGF. In addition, stimulation of HEF with PRGF induced an increased expression of the angiogenic factor VEGF and favored the endometrial matrix remodeling by the secretion of procollagen type I and HA and endometrial regeneration by elevating the contractility of HEF. These results were obtained for all PRGF donors and each endometrial cell line. The myriad of growth factors contained in PRGF promoted HEF proliferation, migration and synthesis of paracrine molecules apart from increasing their contractility potential. These preliminary results suggest that PRGF improves the biological activity of HEF in vitro, enhancing the regulation of several cellular processes implied in endometrial regeneration. This innovative treatment deserves further investigation for its potential in "in vivo" endometrial development and especially in human embryo implantation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Highlights of the Biology and Disease-driven Human Proteome Project, 2015-2016.

    PubMed

    Van Eyk, Jennifer E; Corrales, Fernando J; Aebersold, Ruedi; Cerciello, Ferdinando; Deutsch, Eric W; Roncada, Paola; Sanchez, Jean-Charles; Yamamoto, Tadashi; Yang, Pengyuan; Zhang, Hui; Omenn, Gilbert S

    2016-11-04

    The Biology and Disease-driven Human Proteome Project (B/D-HPP) is aimed at supporting and enhancing the broad use of state-of-the-art proteomic methods to characterize and quantify proteins for in-depth understanding of the molecular mechanisms of biological processes and human disease. Based on a foundation of the pre-existing HUPO initiatives begun in 2002, the B/D-HPP is designed to provide standardized methods and resources for mass spectrometry and specific protein affinity reagents and facilitate accessibility of these resources to the broader life sciences research and clinical communities. Currently there are 22 B/D-HPP initiatives and 3 closely related HPP resource pillars. The B/D-HPP groups are working to define sets of protein targets that are highly relevant to each particular field to deliver relevant assays for the measurement of these selected targets and to disseminate and make publicly accessible the information and tools generated. Major developments are the 2016 publications of the Human SRM Atlas and of "popular protein sets" for six organ systems. Here we present the current activities and plans of the BD-HPP initiatives as highlighted in numerous B/D-HPP workshops at the 14th annual HUPO 2015 World Congress of Proteomics in Vancouver, Canada.

  17. Inhibition of Akt with small molecules and biologics: historical perspective and current status of the patent landscape

    PubMed Central

    Mattmann, Margrith E; Stoops, Sydney L; Lindsley, Craig W

    2014-01-01

    Introduction Akt plays a pivotal role in cell survival and proliferation through a number of downstream effectors; unregulated activation of the PI3K/PTEN/Akt pathway is a prominent feature of many human cancers. Akt is considered an attractive target for cancer therapy by the inhibition of Akt alone or in combination with standard cancer chemotherapeutics. Both preclinical animal studies and clinical trials in humans have validated Akt as an important target of cancer drug discovery. Area covered A historical perspective of Akt inhibitors, including PI analogs, ATP-competitive and allosteric Akt inhibitors, along with other inhibitory mechanisms are reviewed in this paper with a focus on issued patents, patent applications and a summary of clinical trial updates since the last review in 2007. Expert opinion A vast diversity of inhibitors of Akt, both small molecule and biologic, have been developed in the past 5 years, with over a dozen in various phases of clinical development, and several displaying efficacy in humans. While it is not yet clear which mechanism of Akt inhibition will be optimal in humans, or which Akt isoforms to inhibit, or whether a small molecule or biologic agent will be best, data to all of these points will be available in the near future. PMID:21635152

  18. 37 CFR 1.775 - Calculation of patent term extension for a human drug, antibiotic drug or human biological product.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... extension for a human drug, antibiotic drug or human biological product. 1.775 Section 1.775 Patents... Review § 1.775 Calculation of patent term extension for a human drug, antibiotic drug or human biological product. (a) If a determination is made pursuant to § 1.750 that a patent for a human drug, antibiotic...

  19. 37 CFR 1.775 - Calculation of patent term extension for a human drug, antibiotic drug or human biological product.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... extension for a human drug, antibiotic drug or human biological product. 1.775 Section 1.775 Patents... Review § 1.775 Calculation of patent term extension for a human drug, antibiotic drug or human biological product. (a) If a determination is made pursuant to § 1.750 that a patent for a human drug, antibiotic...

  20. 37 CFR 1.775 - Calculation of patent term extension for a human drug, antibiotic drug or human biological product.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... extension for a human drug, antibiotic drug or human biological product. 1.775 Section 1.775 Patents... Review § 1.775 Calculation of patent term extension for a human drug, antibiotic drug or human biological product. (a) If a determination is made pursuant to § 1.750 that a patent for a human drug, antibiotic...

  1. 37 CFR 1.775 - Calculation of patent term extension for a human drug, antibiotic drug or human biological product.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... extension for a human drug, antibiotic drug or human biological product. 1.775 Section 1.775 Patents... Review § 1.775 Calculation of patent term extension for a human drug, antibiotic drug or human biological product. (a) If a determination is made pursuant to § 1.750 that a patent for a human drug, antibiotic...

  2. 37 CFR 1.775 - Calculation of patent term extension for a human drug, antibiotic drug or human biological product.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... extension for a human drug, antibiotic drug or human biological product. 1.775 Section 1.775 Patents... Review § 1.775 Calculation of patent term extension for a human drug, antibiotic drug or human biological product. (a) If a determination is made pursuant to § 1.750 that a patent for a human drug, antibiotic...

  3. Identification of Odorant-Receptor Interactions by Global Mapping of the Human Odorome

    PubMed Central

    Audouze, Karine; Tromelin, Anne; Le Bon, Anne Marie; Belloir, Christine; Petersen, Rasmus Koefoed; Kristiansen, Karsten; Brunak, Søren; Taboureau, Olivier

    2014-01-01

    The human olfactory system recognizes a broad spectrum of odorants using approximately 400 different olfactory receptors (hORs). Although significant improvements of heterologous expression systems used to study interactions between ORs and odorant molecules have been made, screening the olfactory repertoire of hORs remains a tremendous challenge. We therefore developed a chemical systems level approach based on protein-protein association network to investigate novel hOR-odorant relationships. Using this new approach, we proposed and validated new bioactivities for odorant molecules and OR2W1, OR51E1 and OR5P3. As it remains largely unknown how human perception of odorants influence or prevent diseases, we also developed an odorant-protein matrix to explore global relationships between chemicals, biological targets and disease susceptibilities. We successfully experimentally demonstrated interactions between odorants and the cannabinoid receptor 1 (CB1) and the peroxisome proliferator-activated receptor gamma (PPARγ). Overall, these results illustrate the potential of integrative systems chemical biology to explore the impact of odorant molecules on human health, i.e. human odorome. PMID:24695519

  4. Lineage-specific genomics: Frequent birth and death in the human genome: The human genome contains many lineage-specific elements created by both sequence and functional turnover.

    PubMed

    Young, Robert S

    2016-07-01

    Frequent evolutionary birth and death events have created a large quantity of biologically important, lineage-specific DNA within mammalian genomes. The birth and death of DNA sequences is so frequent that the total number of these insertions and deletions in the human population remains unknown, although there are differences between these groups, e.g. transposable elements contribute predominantly to sequence insertion. Functional turnover - where the activity of a locus is specific to one lineage, but the underlying DNA remains conserved - can also drive birth and death. However, this does not appear to be a major driver of divergent transcriptional regulation. Both sequence and functional turnover have contributed to the birth and death of thousands of functional promoters in the human and mouse genomes. These findings reveal the pervasive nature of evolutionary birth and death and suggest that lineage-specific regions may play an important but previously underappreciated role in human biology and disease. © 2016 The Authors BioEssays Published by WILEY Periodicals, Inc.

  5. Overcoming the hurdles for a reproducible generation of human functionally mature reprogrammed neurons.

    PubMed

    Broccoli, Vania; Rubio, Alicia; Taverna, Stefano; Yekhlef, Latefa

    2015-06-01

    The advent of cell reprogramming technologies has widely disclosed the possibility to have direct access to human neurons for experimental and biomedical applications. Human pluripotent stem cells can be instructed in vitro to generate specific neuronal cell types as well as different glial cells. Moreover, new approaches of direct neuronal cell reprogramming can strongly accelerate the generation of different neuronal lineages. However, genetic heterogeneity, reprogramming fidelity, and time in culture of the starting cells can still significantly bias their differentiation efficiency and quality of the neuronal progenies. In addition, reprogrammed human neurons exhibit a very slow pace in gaining a full spectrum of functional properties including physiological levels of membrane excitability, sustained and prolonged action potential firing, mature synaptic currents and synaptic plasticity. This delay poses serious limitations for their significance as biological experimental model and screening platform. We will discuss new approaches of neuronal cell differentiation and reprogramming as well as methods to accelerate the maturation and functional activity of the converted human neurons. © 2015 by the Society for Experimental Biology and Medicine.

  6. Report on the Human Genome Initiative for the Office of Health and Environmental Research

    DOE R&D Accomplishments Database

    Tinoco, I.; Cahill, G.; Cantor, C.; Caskey, T.; Dulbecco, R.; Engelhardt, D. L.; Hood, L.; Lerman, L. S.; Mendelsohn, M. L.; Sinsheimer, R. L.; Smith, T.; Soll, D.; Stormo, G.; White, R. L.

    1987-04-01

    The report urges DOE and the Nation to commit to a large, multi-year, multidisciplinary, technological undertaking to order and sequence the human genome. This effort will first require significant innovation in general capability to manipulate DNA, major new analytical methods for ordering and sequencing, theoretical developments in computer science and mathematical biology, and great expansions in our ability to store and manipulate the information and to interface it with other large and diverse genetic databases. The actual ordering and sequencing involves the coordinated processing of some 3 billion bases from a reference human genome. Science is poised on the rudimentary edge of being able to read and understand human genes. A concerted, broadly based, scientific effort to provide new methods of sufficient power and scale should transform this activity from an inefficient one-gene-at-a-time, single laboratory effort into a coordinated, worldwide, comprehensive reading of "the book of man". The effort will be extraordinary in scope and magnitude, but so will be the benefit to biological understanding, new technology and the diagnosis and treatment of human disease.

  7. Natural disturbance production functions

    Treesearch

    Jeffrey P. Prestemon; D. Evan Mercer; John M. Pye

    2008-01-01

    Natural disturbances in forests are driven by physical and biological processes. Large, landscape scale disturbances derive primarily from weather (droughts, winds, ice storms, and floods), geophysical activities (earthquakes, volcanic eruptions), fires, insects, and diseases. Humans have invented ways to minimize their negative impacts and reduce their rates of...

  8. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY TOXIC INDUSTRIAL CHEMICALS

    EPA Science Inventory

    Numerous natural and man-made agents are continuously released into the environment due to human activity. Many of these agents cause irreversible damage to the normal biological functions leading to morbidity and mortality in the exposed organisms. The possibility of deliberat...

  9. [Polymethyleneamine alkaloids of animal origin: II. Polyamine neurotoxins].

    PubMed

    Rogoza, L N; Salakhutdinov, N F; Tolstikov, G A

    2006-01-01

    Information on the structure and biological activity of animal alkaloids, polymethyleneamine components of spider and wasp venoms, is considered and systematized. These natural compounds are used for the development and modification of medicines for treating the functional disturbances in the central nervous system of humans.

  10. alpha-Lactalbumin species variation, HAMLET formation, and tumor cell death.

    PubMed

    Pettersson, Jenny; Mossberg, Ann-Kristin; Svanborg, Catharina

    2006-06-23

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of apo alpha-lactalbumin and oleic acid, formed in casein after low pH treatment of human milk. This study examined if HAMLET-like complexes are present in casein from different species and if isolated alpha-lactalbumin from those species can form such complexes with oleic acid. Casein from human, bovine, equine, and porcine milk was separated by ion exchange chromatography and active complexes were only found in human casein. This was not explained by alpha-lactalbumin sequence variation, as purified bovine, equine, porcine, and caprine alpha-lactalbumins formed complexes with oleic acid with biological activity similar to HAMLET. We conclude that structural variation of alpha-lactalbumins does not preclude the formation of HAMLET-like complexes and that natural HAMLET formation in casein was unique to human milk, which also showed the highest oleic acid content.

  11. Humanized Antibodies for Antiviral Therapy

    NASA Astrophysics Data System (ADS)

    Co, Man Sung; Deschamps, Marguerite; Whitley, Richard J.; Queen, Cary

    1991-04-01

    Antibody therapy holds great promise for the treatment of cancer, autoimmune disorders, and viral infections. Murine monoclonal antibodies are relatively easy to produce but are severely restricted for therapeutic use by their immunogenicity in humans. Production of human monoclonal antibodies has been problematic. Humanized antibodies can be generated by introducing the six hypervariable regions from the heavy and light chains of a murine antibody into a human framework sequence and combining it with human constant regions. We humanized, with the aid of computer modeling, two murine monoclonal antibodies against herpes simplex virus gB and gD glycoproteins. The binding, virus neutralization, and cell protection results all indicate that both humanized antibodies have retained the binding activities and the biological properties of the murine monoclonal antibodies.

  12. Cutaneous sarcoidosis successfully treated with alefacept.

    PubMed

    Garcia-Zuazaga, Jorge; Korman, Neil J

    2006-01-01

    Sarcoidosis is a systemic granulomatous disease of unknown etiology that affects multiple organ systems, including the pulmonary, lymphatic, skeletal, and integumentary systems. Improved understanding of the intrinsic immunology and molecular biology in sarcoidosis can be applied to the treatment of this disease. Alefacept is a human fusion protein consisting of the extracellular domain of leukocyte function-associated antigen 3 fused with the Fc portion of human immunoglobulin G1. It works by blocking the interaction between antigen-presenting cells and T cells to inhibit activation and by inducing apoptosis of CD4+ T cells. In this case report, we describe a 46-year-old patient with recalcitrant lupus pernio who was successfully treated with alefacept. To determine whether T-cell inhibition, specifically the use of alefacept, may be used to treat a patient with recalcitrant cutaneous sarcoidosis. Case report. There was a modest clinical improvement after 8 weeks of intramuscular injections of alefacept. This case report provides further evidence of successful treatment of sarcoidosis with biologic agents directed against T-lymphocyte activation.

  13. Discovering an Accessible Enzyme: Salivary [alpha]-Amylase--"Prima Digestio Fit in Ore"--A Didactic Approach for High School Students

    ERIC Educational Resources Information Center

    Marini, Isabella

    2005-01-01

    Human salivary [alpha]-amylase is used in this experimental approach to introduce biology high school students to the concept of enzyme activity in a dynamic way. Through a series of five easy, rapid, and inexpensive laboratory experiments students learn what the activity of an enzyme consists of: first in a qualitative then in a semi-quantitative…

  14. Synthesis and biological evaluation of kresoxim-methyl analogues as novel inhibitors of hypoxia-inducible factor (HIF)-1 accumulation in cancer cells.

    PubMed

    Lee, Sanghyuck; Kwon, Oh Seok; Lee, Chang-Soo; Won, Misun; Ban, Hyun Seung; Ra, Choon Sup

    2017-07-01

    We designed and synthesized strobilurin analogues as hypoxia-inducible factor (HIF) inhibitors based on the molecular structure of kresoxim-methyl. Biological evaluation in human colorectal cancer HCT116 cells showed that most of the synthesized kresoxim-methyl analogues possessed moderate to potent inhibitory activity against hypoxia-induced HIF-1 transcriptional activation. Three candidates, compounds 11b, 11c, and 11d were identified as potent inhibitors against HIF-1 activation with IC 50 values of 0.60-0.94µM. Under hypoxic condition, compounds 11b, 11c, and 11d increased the intracellular oxygen contents, thereby attenuating the hypoxia-induced accumulation of HIF-1α protein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Functional human antibody CDR fusions as long-acting therapeutic endocrine agonists.

    PubMed

    Liu, Tao; Zhang, Yong; Liu, Yan; Wang, Ying; Jia, Haiqun; Kang, Mingchao; Luo, Xiaozhou; Caballero, Dawna; Gonzalez, Jose; Sherwood, Lance; Nunez, Vanessa; Wang, Danling; Woods, Ashley; Schultz, Peter G; Wang, Feng

    2015-02-03

    On the basis of the 3D structure of a bovine antibody with a well-folded, ultralong complementarity-determining region (CDR), we have developed a versatile approach for generating human or humanized antibody agonists with excellent pharmacological properties. Using human growth hormone (hGH) and human leptin (hLeptin) as model proteins, we have demonstrated that functional human antibody CDR fusions can be efficiently engineered by grafting the native hormones into different CDRs of the humanized antibody Herceptin. The resulting Herceptin CDR fusion proteins were expressed in good yields in mammalian cells and retain comparable in vitro biological activity to the native hormones. Pharmacological studies in rodents indicated a 20- to 100-fold increase in plasma circulating half-life for these antibody agonists and significantly extended in vivo activities in the GH-deficient rat model and leptin-deficient obese mouse model for the hGH and hLeptin antibody fusions, respectively. These results illustrate the utility of antibody CDR fusions as a general and versatile strategy for generating long-acting protein therapeutics.

  16. Activation of the constitutive androstane receptor inhibits gluconeogenesis without affecting lipogenesis or fatty acid synthesis in human hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Caitlin; Pan, Yongmei; Li, Linhao

    Objective: Accumulating evidence suggests that activation of mouse constitutive androstane receptor (mCAR) alleviates type 2 diabetes and obesity by inhibiting hepatic gluconeogenesis, lipogenesis, and fatty acid synthesis. However, the role of human (h) CAR in energy metabolism is largely unknown. The present study aims to investigate the effects of selective hCAR activators on hepatic energy metabolism in human primary hepatocytes (HPH). Methods: Ligand-based structure–activity models were used for virtual screening of the Specs database ( (www.specs.net)) followed by biological validation in cell-based luciferase assays. The effects of two novel hCAR activators (UM104 and UM145) on hepatic energy metabolism were evaluatedmore » in HPH. Results: Real-time PCR and Western blotting analyses reveal that activation of hCAR by UM104 and UM145 significantly repressed the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, two pivotal gluconeogenic enzymes, while exerting negligible effects on the expression of genes associated with lipogenesis and fatty acid synthesis. Functional experiments show that UM104 and UM145 markedly inhibit hepatic synthesis of glucose but not triglycerides in HPH. In contrast, activation of mCAR by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, a selective mCAR activator, repressed the expression of genes associated with gluconeogenesis, lipogenesis, and fatty acid synthesis in mouse primary hepatocytes, which were consistent with previous observations in mouse model in vivo. Conclusion: Our findings uncover an important species difference between hCAR and mCAR in hepatic energy metabolism, where hCAR selectively inhibits gluconeogenesis without suppressing fatty acid synthesis. Implications: Such species selectivity should be considered when exploring CAR as a potential therapeutic target for metabolic disorders. - Highlights: • Novel hCAR activators were identified by computational and biological approaches. • The role of hCAR in hepatic energy metabolism was examined. • hCAR activators repress gluconeogenesis but not lipogenesis and fatty acid synthesis. • Human and mouse CAR exhibit differential effects on energy metabolism.« less

  17. Human Vitronectin-Derived Peptide Covalently Grafted onto Titanium Surface Improves Osteogenic Activity: A Pilot In Vivo Study on Rabbits.

    PubMed

    Cacchioli, Antonio; Ravanetti, Francesca; Bagno, Andrea; Dettin, Monica; Gabbi, Carlo

    2009-10-01

    Peptide and protein exploitation for the biochemical functionalization of biomaterial surfaces allowed fabricating biomimetic devices able to evoke and promote specific and advantageous cell functions in vitro and in vivo. In particular, cell adhesion improvement to support the osseointegration of implantable devices has been thoroughly investigated. This study was aimed at checking the biological activity of the (351-359) human vitronectin precursor (HVP) sequence, mapped on the human vitronectin protein; the peptide was covalently linked to the surface of titanium cylinders, surgically inserted in the femurs of New Zealand white rabbits and analyzed at short experimental time points (4, 9, and 16 days after surgery). To assess the osteogenic activity of the peptide, three vital fluorochromic bone markers were used (calcein green, xylenol orange, and calcein blue) to stain the areas of newly grown bone. Static and dynamic histomorphometric parameters were measured at the bone-implant interface and at different distances from the surface. The biological role of the (351-359)HVP sequence was checked by comparing peptide-grafted samples and controls, analyzing how and how much its effects change with time across the bone regions surrounding the implant surface. The results obtained reveal a major activity of the investigated peptide 4 days after surgery, within the bone region closest to the implant surface, and larger bone to implant contact 9 and 16 days after surgery. Thus, improved primary fixation of endosseous devices can be foreseen, resulting in an increased osteointegration.

  18. Disturbances of electrodynamic activity affect abortion in human

    NASA Astrophysics Data System (ADS)

    Jandová, A.; Nedbalová, M.; Kobilková, J.; Čoček, A.; Dohnalová, A.; Cifra, M.; Pokorný, J.

    2011-12-01

    Biochemical research of biological systems is highly developed, and it has disclosed a spectrum of chemical reactions, genetic processes, and the pathological development of various diseases. The fundamental hypothesis of physical processes in biological systems, in particular of coherent electrically polar vibrations and electromagnetic activity, was formulated by H. Fröhlich he assumed connection of cancer process with degradation of coherent electromagnetic activity. But the questions of cellular structures capable of the coherent electrical polar oscillation, mechanisms of energy supply, and the specific role of the endogenous electromagnetic fields in transport, organisation, interactions, and information transfer remained open. The nature of physical disturbances caused by some diseases (including the recurrent abortion in humans and the cancer) was unknown. We have studied the reasons of recurrent abortions in humans by means of the cell mediated immunity (using immunologic active RNA prepared from blood of inbred laboratory mice strain C3H/H2K, infected with the lactate dehydrogenase elevating virus-LD V) and the cytogenetic examination from karyotype pictures. The recurrent abortion group contained women with dg. spontaneous abortion (n = 24) and the control group was composed of 30 healthy pregnant women. Our hypothesis was related to quality of endometrium in relation to nidation of the blastocyst. The energetic insufficiency (ATP) inhibits normal development of fetus and placenta. We hope that these ideas might have impact on further research, which could provide background for effective interdisciplinary cooperation of malignant and non-malignant diseases.

  19. Molecular biology of Homo sapiens: Abstracts of papers presented at the 51st Cold Spring Harbor symposium on quantitative biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J.D.; Siniscalco, M.

    This volume contains abstracts of papers presented at the 51st Cold Springs Harbor Symposium on Quantitative Biology. The topic for this meeting was the ''Molecular Biology of Homo sapiens.'' Sessions were entitled Human Gene Map, Human Cancer Genes, Genetic Diagnosis, Human Evolution, Drugs Made Off Human Genes, Receptors, and Gene Therapy. (DT)

  20. Online biospeckle assessment without loss of definition and resolution by motion history image

    NASA Astrophysics Data System (ADS)

    Godinho, R. P.; Silva, M. M.; Nozela, J. R.; Braga, R. A.

    2012-03-01

    The application of the dynamic laser speckle as a reliable instrument to achieve maps of activity in biological material is available in literature optics and laser. The application, particularly in live specimens, such as animals and human beings necessitated some approaches to avoid the kinking of the bodies, which creates changes in the patterns undermining the biological activity under monitoring. The adoption of online techniques circumvented the noise generated by the kinking, however, with considerable reduction in the resolution and definition of the activity maps. This work presents a feasible alternative to the routine online methods based on the Motion History Image (MHI) methodology. The adoption of MHI was tested in biological and non-biological samples and compared with online as well as offline procedures of biospeckle image analysis. Tests on paint drying was associated to alcohol volatilization, and tests on a maize seed and on growing of roots confirmed the hypothesis that the MHI would be able to implement an online approach without the reduction of resolution and definition on the resultant images, thereby presenting in some cases results that were comparable to the offline procedures.

Top