Science.gov

Sample records for biologically active purine

  1. Versatile synthesis and biological evaluation of novel 3’-fluorinated purine nucleosides

    PubMed Central

    Ren, Hang; Hatala, Paul J; Stevens, William C; He, Baicheng

    2015-01-01

    Summary A unified synthetic strategy accessing novel 3'-fluorinated purine nucleoside derivatives and their biological evaluation were achieved. Novel 3’-fluorinated analogues were constructed from a common 3’-deoxy-3’-fluororibofuranose intermediate. Employing Suzuki and Stille cross-coupling reactions, fifteen 3’-fluororibose purine nucleosides 1–15 and eight 3’-fluororibose 2-chloro/2-aminopurine nucleosides 16–23 with various substituents at position 6 of the purine ring were efficiently synthesized. Furthermore, 3’-fluorine analogs of natural products nebularine and 6-methylpurine riboside were constructed via our convergent synthetic strategy. Synthesized nucleosides were tested against HT116 (colon cancer) and 143B (osteosarcoma cancer) tumor cell lines. We have demonstrated 3’-fluorine purine nucleoside analogues display potent tumor cell growth inhibition activity at sub- or low micromolar concentration. PMID:26734098

  2. Synthesis and anticonvulsant activity of novel purine derivatives.

    PubMed

    Wang, Shi-Ben; Jin, Peng; Li, Fu-Nan; Quan, Zhe-Shan

    2014-09-12

    A series of new purines containing triazole and other heterocycle substituents was synthesized and evaluated for their preliminary anticonvulsant activity and neurotoxicity by using the maximal electroshock (MES), subcutaneous pentylenetetrazole (scPTZ) and rotarod neurotoxicity (TOX) tests. Among the compounds studied, 9-decyl-6-(1H-1,2,4-triazol-1-yl)-9H-purine (5e) was the most potent compound, with a median effective dose of 23.4 mg/kg and a high protective index of more than 25.6 after intraperitoneal administration in mice. Compound 5e showed significant oral activity against MES-induced seizures in mice, with an ED50 of 39.4 mg/kg and a PI above 31.6. These results demonstrate that compound 5e possesses better anticonvulsant activity and is safer than the commercially available drugs carbamazepine and valproate in MES, scPTZ and TOX models.

  3. Anti‐flavivirus Activity of Different Tritylated Pyrimidine and Purine Nucleoside Analogues

    PubMed Central

    Serpi, Michaela; Slusarczyk, Magdalena; Ferrari, Valentina; Pertusati, Fabrizio; Meneghesso, Silvia; Derudas, Marco; Farleigh, Laura; Zanetta, Paola; Bugert, Joachim

    2016-01-01

    Abstract A series of tritylated and dimethoxytritylated analogues of selected pyrimidine and purine nucleosides were synthesized and evaluated for their in vitro inhibitory activity against two important members of the genus Flavivirus in the Flaviviridae family, the yellow fever (YFV) and dengue viruses (DENV). Among all compounds tested, the 5′‐O‐tritylated and the 5′‐O‐dimethoxytritylated 5‐fluorouridine derivatives exerted potency against YFV. Interestingly in the series of purine analogues, the 5′O, N‐bis‐tritylated fludarabine derivative revealed strong inhibitory activity against DENV at μm concentrations, however significantly weaker potency against YFV. PMID:27551659

  4. Anti-flavivirus Activity of Different Tritylated Pyrimidine and Purine Nucleoside Analogues.

    PubMed

    McGuigan, Christopher; Serpi, Michaela; Slusarczyk, Magdalena; Ferrari, Valentina; Pertusati, Fabrizio; Meneghesso, Silvia; Derudas, Marco; Farleigh, Laura; Zanetta, Paola; Bugert, Joachim

    2016-06-01

    A series of tritylated and dimethoxytritylated analogues of selected pyrimidine and purine nucleosides were synthesized and evaluated for their in vitro inhibitory activity against two important members of the genus Flavivirus in the Flaviviridae family, the yellow fever (YFV) and dengue viruses (DENV). Among all compounds tested, the 5'-O-tritylated and the 5'-O-dimethoxytritylated 5-fluorouridine derivatives exerted potency against YFV. Interestingly in the series of purine analogues, the 5'O, N-bis-tritylated fludarabine derivative revealed strong inhibitory activity against DENV at μm concentrations, however significantly weaker potency against YFV. PMID:27551659

  5. Perspectives on purine analogues.

    PubMed

    Cheson, B D

    1996-12-01

    The purine analogs, fludarabine, 2-chlorodeoxy-adenosine, and 2'-deoxycoformycin, have revolutionized our approach to the treatment of a variety of indolent lymphoid malignancies. Because of their impressive single agent activity, they should be considered as an initial therapeutic option, not only for hairy cell leukemia, but also for chronic lymphocytic leukemia, indolent non-Hodgkin's lymphomas, and Waldenström's macroglobulenemia. Combinations of purine analogs with alkylatng agents, topisomerase II inhibitors, and other new compounds are in development, and their role as radiation sensitizers is being explored in clinical trials. Substantial activity has also been noted in several of the rheumatologic and immunologic disorders, and in multiple sclerosis. Continued progress requires innovative strategies which can modulate the biology and immunology of these diseases toward the goal of curing these patients. PMID:9137964

  6. The electrochemical properties of the purine bases : at the interface between biological conjugates to inorganic surfaces

    NASA Technical Reports Server (NTRS)

    Hays, Charles C.

    2003-01-01

    The study of the charge transfer and interfacial reactions of the purine bases in physiological solutions provides valuable knowledge, as these processes are relevant to the origins of life. It has been proposed that the adsorption of the adsorption of the purine bases on an inorganic surface could serve as a template for specifying the arrangement of amino acids in peptides.

  7. Changes in Purines Concentration in the Cerebrospinal Fluid of Pregnant Women Experiencing Pain During Active Labor.

    PubMed

    Schmidt, André P; Böhmer, Ana E; Hansel, Gisele; Soares, Félix A; Oses, Jean P; Giordani, Alex T; Posso, Irimar P; Auler, José Otávio C; Mendes, Florentino F; Félix, Elaine A; Portela, Luís V; Souza, Diogo O

    2015-11-01

    Labor pain has been reported as a severe pain and can be considered as a model of acute visceral pain. It is well known that extracellular purines have an important role in pain signaling in the central nervous system. This study analyzes the relationship between extracellular purines and pain perception during active labor. A prospective observational study was performed. Cerebrospinal fluid (CSF) levels of the purines and their metabolites were compared between women at term pregnancy with labor pain (n = 49) and without labor pain (Caesarian section; n = 47). Control groups (healthy men and women without chronic or acute pain-n = 40 and 32, respectively) were also investigated. The CSF levels of adenosine were significantly lower in the labor pain group (P = 0.026) and negatively correlated with pain intensity measured by a visual analogue scale (r = -0.48, P = 0.0005). Interestingly, CSF levels of uric acid were significantly higher in healthy men as compared to women. Additionally, pregnant women showed increased CSF levels of ADP, GDP, adenosine and guanosine and reduced CSF levels of AMP, GTP, and uric acid as compared to non-pregnant women (P < 0.05). These findings suggest that purines, in special the nucleoside adenosine, are associated with pregnancy and labor pain.

  8. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines

    PubMed Central

    López-Cruz, Roberto I.; Crocker, Daniel E.; Gaxiola-Robles, Ramón; Bernal, Jaime A.; Real-Valle, Roberto A.; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements. PMID:27375492

  9. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines.

    PubMed

    López-Cruz, Roberto I; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal, Jaime A; Real-Valle, Roberto A; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements.

  10. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines.

    PubMed

    López-Cruz, Roberto I; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal, Jaime A; Real-Valle, Roberto A; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements. PMID:27375492

  11. Synthesis and antimycobacterial activity of N-(2-aminopurin-6-yl) and N-(purin-6-yl) amino acids and dipeptides.

    PubMed

    Krasnov, Victor P; Vigorov, Alexey Yu; Musiyak, Vera V; Nizova, Irina A; Gruzdev, Dmitry A; Matveeva, Tatyana V; Levit, Galina L; Kravchenko, Marionella A; Skornyakov, Sergey N; Bekker, Olga B; Danilenko, Valery N; Charushin, Valery N

    2016-06-01

    Synthetic routes to novel N-(purin-6-yl)- and N-(2-aminopurin-6-yl) conjugates with amino acids and glycine-containing dipeptides were developed. In vitro testing of 42 new and known compounds made it possible to reveal a series of N-(purin-6-yl)- and N-(2-aminopurin-6-yl) conjugates exhibiting significant antimycobacterial activity against Mycobacterium tuberculosis H37Rv, Mycobacterium avium, Mycobacterium terrae, and multidrug-resistant M. tuberculosis strain isolated from tuberculosis patients in the Ural region (Russia). N-(2-Aminopurin-6-yl)- and N-(purin-6-yl)-glycyl-(S)-glutamic acids were the most active compounds. PMID:27107949

  12. Purine nucleoside phosphorylase and xanthine oxidase activities in erythrocytes and plasma from marine, semiaquatic and terrestrial mammals.

    PubMed

    López-Cruz, Roberto I; Pérez-Milicua, Myrna Barjau; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal-Vertiz, Jaime A; de la Rosa, Alejandro; Vázquez-Medina, José P; Zenteno-Savín, Tania

    2014-05-01

    Purine nucleoside phosphorylase (PNP) and xanthine oxidase (XO) are key enzymes involved in the purine salvage pathway. PNP metabolizes purine bases to synthetize purine nucleotides whereas XO catalyzes the oxidation of purines to uric acid. In humans, PNP activity is reported to be high in erythrocytes and XO activity to be low in plasma; however, XO activity increases after ischemic events. XO activity in plasma of northern elephant seals has been reported during prolonged fasting and rest and voluntary associated apneas. The objective of this study was to analyze circulating PNP and XO activities in marine mammals adapted to tolerate repeated cycles of ischemia/reperfusion associated with diving (bottlenose dolphin, northern elephant seal) in comparison with semiaquatic (river otter) and terrestrial mammals (human, pig). PNP activities in plasma and erythrocytes, as well as XO activity in plasma, from all species were quantified by spectrophotometry. No clear relationship in circulating PNP or XO activity could be established between marine, semiaquatic and terrestrial mammals. Erythrocytes from bottlenose dolphins and humans are highly permeable to nucleosides and glucose, intraerythrocyte PNP activity may be related to a release of purine nucleotides from the liver. High-energy costs will probably mean a higher ATP degradation rate in river otters, as compared to northern elephant seals or dolphins. Lower erythrocyte PNP activity and elevated plasma XO activity in northern elephant seal could be associated with fasting and/or sleep- and dive-associated apneas.

  13. Purine nucleoside phosphorylase and xanthine oxidase activities in erythrocytes and plasma from marine, semiaquatic and terrestrial mammals.

    PubMed

    López-Cruz, Roberto I; Pérez-Milicua, Myrna Barjau; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal-Vertiz, Jaime A; de la Rosa, Alejandro; Vázquez-Medina, José P; Zenteno-Savín, Tania

    2014-05-01

    Purine nucleoside phosphorylase (PNP) and xanthine oxidase (XO) are key enzymes involved in the purine salvage pathway. PNP metabolizes purine bases to synthetize purine nucleotides whereas XO catalyzes the oxidation of purines to uric acid. In humans, PNP activity is reported to be high in erythrocytes and XO activity to be low in plasma; however, XO activity increases after ischemic events. XO activity in plasma of northern elephant seals has been reported during prolonged fasting and rest and voluntary associated apneas. The objective of this study was to analyze circulating PNP and XO activities in marine mammals adapted to tolerate repeated cycles of ischemia/reperfusion associated with diving (bottlenose dolphin, northern elephant seal) in comparison with semiaquatic (river otter) and terrestrial mammals (human, pig). PNP activities in plasma and erythrocytes, as well as XO activity in plasma, from all species were quantified by spectrophotometry. No clear relationship in circulating PNP or XO activity could be established between marine, semiaquatic and terrestrial mammals. Erythrocytes from bottlenose dolphins and humans are highly permeable to nucleosides and glucose, intraerythrocyte PNP activity may be related to a release of purine nucleotides from the liver. High-energy costs will probably mean a higher ATP degradation rate in river otters, as compared to northern elephant seals or dolphins. Lower erythrocyte PNP activity and elevated plasma XO activity in northern elephant seal could be associated with fasting and/or sleep- and dive-associated apneas. PMID:24530799

  14. Endonucleolytic activity directed towards 8-(2-hydroxy-2-propyl) purines in double-stranded DNA.

    PubMed

    Livneh, Z; Elad, D; Sperling, J

    1979-11-01

    Photoalkylation of circular covalently closed DNA from phage PM2 with isopropyl alcohol by using a free radical photoinitiator and UV light of lambda greater than 305 nm led to the specific 8-substitution of purine moieties in the DNA, yielding 8-(2-hydroxy-2-propyl)adenine and 8-(2-hydroxy-2-propyl)guanine as the only detectable damage in the DNA. Using this specifically photoalkylated DNA as a substrate, we discovered in extracts of Micrococcus luteus an endonucleolytic activity that is directed towards 8-(2-hydroxy-2-propyl) purines in DNA. The activity is not a combination of a DNA-glycosylase and an apurinic site endonuclease. It is not inhibited by single-stranded DNA, by UV- or gamma-irradiated single-stranded DNA, or by normal or depurinated double-stranded DNA. however, gamma- or UV-(254 nm) irradiated double-stranded DNAs to inhibit the activity, hinting at the possibility of a common type of lesion in these damaged DNAs. Divalent cations are not required for the incising activity, and it is fully active in 1 mM EDTA, whereas caffeine and ATP cause inhibition. Extracts of mutant M. luteus lacking pyrimidine-dimer-directed endonucleases were found to contain the endonucleolytic activity in levels comparable to those present in the wild type. After the incision, we could demonstrate the specific excision of the 8-alkylated purines from the damaged DNA. The special conformational consequences of the 8-alkylation of purines, at the nucleotide level, namely their nonregular syn conformation, suggest that it is the distortion in the DNA that is recognized by the endonuclease. PMID:293658

  15. Study on the activity of non-purine xanthine oxidase inhibitor by 3D-QSAR modeling and molecular docking

    NASA Astrophysics Data System (ADS)

    Li, Peizhen; Tian, Yueli; Zhai, Honglin; Deng, Fangfang; Xie, Meihong; Zhang, Xiaoyun

    2013-11-01

    Non-purine derivatives have been shown to be promising novel drug candidates as xanthine oxidase inhibitors. Based on three-dimensional quantitative structure-activity relationship (3D-QSAR) methods including comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), two 3D-QSAR models for a series of non-purine xanthine oxidase (XO) inhibitors were established, and their reliability was supported by statistical parameters. Combined 3D-QSAR modeling and the results of molecular docking between non-purine xanthine oxidase inhibitors and XO, the main factors that influenced activity of inhibitors were investigated, and the obtained results could explain known experimental facts. Furthermore, several new potential inhibitors with higher activity predicted were designed, which based on our analyses, and were supported by the simulation of molecular docking. This study provided some useful information for the development of non-purine xanthine oxidase inhibitors with novel structures.

  16. Amide-controlled, one-pot synthesis of tri-substituted purines generates structural diversity and analogues with trypanocidal activity.

    PubMed

    Pineda de las Infantas y Villatoro, Maria J; Unciti-Broceta, Juan D; Contreras-Montoya, Rafael; Garcia-Salcedo, Jose A; Gallo Mezo, Miguel A; Unciti-Broceta, Asier; Diaz-Mochon, Juan J

    2015-01-01

    A novel one-pot synthesis of tri-substituted purines and the discovery of purine analogues with trypanocidal activity are reported. The reaction is initiated by a metal-free oxidative coupling of primary alkoxides and diaminopyrimidines with Schiff base formation and subsequent annulation in the presence of large N,N-dimethylamides (e.g. N,N-dimethylpropanamide or larger). This synthetic route is in competition with a reaction previously-reported by our group, allowing the generation of a combinatorial library of tri-substituted purines by the simple modification of the amide and the alkoxide employed. Among the variety of structures generated, two purine analogues displayed trypanocidal activity against the protozoan parasite Trypanosoma brucei with IC50 < 5 μM, being each of those compounds obtained through each of the synthetic pathways.

  17. Modification of purine and pyrimidine nucleosides by direct C-H bond activation.

    PubMed

    Liang, Yong; Wnuk, Stanislaw F

    2015-03-17

    Transition metal-catalyzed modifications of the activated heterocyclic bases of nucleosides as well as DNA or RNA fragments employing traditional cross-coupling methods have been well-established in nucleic acid chemistry. This review covers advances in the area of cross-coupling reactions in which nucleosides are functionalized via direct activation of the C8-H bond in purine and the C5-H or C6-H bond in uracil bases. The review focuses on Pd/Cu-catalyzed couplings between unactivated nucleoside bases with aryl halides. It also discusses cross-dehydrogenative arylations and alkenylations as well as other reactions used for modification of nucleoside bases that avoid the use of organometallic precursors and involve direct C-H bond activation in at least one substrate. The scope and efficiency of these coupling reactions along with some mechanistic considerations are discussed.

  18. [Purine nucleoside phosphorylase].

    PubMed

    Pogosian, L G; Akopian, Zh I

    2013-01-01

    Purine nucleoside phosphorylase (PNP) is one of the most important enzymes of the purine metabolism, wich promotes the recycling of purine bases. Nowadays is the actual to search for effective inhibitors of this enzyme which is necessary for creation T-cell immunodeficient status of the organism in the organs and tissues transplantation, and chemotherapy of a number pathologies as well. For their successful practical application necessary to conduct in-depth and comprehensive study of the enzyme, namely a structure, functions, and an affinity of the reaction mechanism. In the review the contemporary achievements in the study of PNP from various biological objects are presented. New data describing the structure of PNP are summarised and analysed. The physiological role of the enzyme is discussed. The enzyme basic reaction mechanisms and actions are considered. The studies on enzyme physicochemical, kinetic, and catalytic research are presented. PMID:24479338

  19. Microwave-assisted synthesis of C-8 aryl and heteroaryl inosines and determination of their inhibitory activities against Plasmodium falciparum purine nucleoside phosphorylase.

    PubMed

    Gigante, Alba; Priego, Eva-María; Sánchez-Carrasco, Paula; Ruiz-Pérez, Luis Miguel; Vande Voorde, Johan; Camarasa, María-José; Balzarini, Jan; González-Pacanowska, Dolores; Pérez-Pérez, María-Jesús

    2014-07-23

    8-Arylinosines have been scarcely studied for therapeutic purposes, probably due to difficulties in their synthesis. The recently described direct arylation reaction at position 8 of purine nucleosides has been employed to synthesize a series of 8-aryl and 8-pyridylinosines. These compounds have been studied for hydrolytic stability and subjected to biological evaluation. Three compounds have shown a pronounced specific inhibition of Plasmodium falciparum-encoded purine nucleoside phosphorylase, an important target for antimalarial chemotherapy. PMID:24929343

  20. The antibacterial activity and toxicity of enrofloxacin are decreased by nanocellulose conjugated with aminobenzyl purin.

    PubMed

    Yasini, Seyed Ali; Zadeh, Mohammad Hossein Balal; Shahdadi, Hossein

    2015-11-01

    The first aim of this study was to synthesize nanocellulose conjugated with aminobenzyl purin (NCABP), and the second aim was to evaluate the effect of NCABP on both toxicity and antibacterial activity of enrofloxacin. Here, the adsorption of enrofloxacin by NCABP was first modeled by molecular dynamic (MD) simulation. In the next step, NCABP was synthesized, and was exposed to enrofloxacin, 1000 μg mL(-1), at various conditions. Then, the quantity of adsorption and release was separately measured. Furthermore, both toxicity and antibacterial activity of NCABP, enrofloxacin, and (NCABP+enrofloxacin) were separately evaluated. In this study, MD simulation clearly showed the adsorption after 50 picoseconds. The adsorption tests revealed that the increase of incubation time and NCABP concentration, at range of 50-200 μg mL(-1), led to increase of adsorption. Moreover, the decrease of pH led to increase of adsorption. Interestingly, NCABP could adsorb enrofloxacin, up to 1000 μg mL(-1), in different types of meat. Moreover, the increase of incubation time and temperature did not release enrofloxacin, but the increase of pH increased release. This study showed that both toxicity and antibacterial activity of enrofloxacin were decreased when exposed together with NCABP. PMID:26295691

  1. Design, synthesis, and in vitro biological evaluation of novel 6-methyl-7-substituted-7-deaza purine nucleoside analogs as anti-influenza A agents.

    PubMed

    Lin, Cai; Sun, Chenghai; Liu, Xiao; Zhou, Yiqian; Hussain, Muzammal; Wan, Junting; Li, Minke; Li, Xue; Jin, Ruiliang; Tu, Zhengchao; Zhang, Jiancun

    2016-05-01

    Among many subtypes of influenza A viruses, influenza A(H1N1) and A(H3N2) subtypes are currently circulating among humans (WHO report 2014-15). Therapeutically, the emergence of viral resistance to currently available drugs (adamantanes and neuraminidase inhibitors) has heightened alarms for developing novel drugs that could address diverse targets in the viral replication cycle in order to improve treatment outcomes. To this regard, the design and synthesis of nucleoside analog inhibitors as potential anti-influenza A agents is a very active field of research nowadays. In this study, we designed and synthesized a series of hitherto unknown 6-methyl-7-substituted-7-deaza purine nucleoside analogs, and evaluated for their biological activities against influenza A virus strains, H1N1 and H3N2. From the viral inhibition assay, we identified some effective compounds, among which, compounds 5x (IC50 = 5.88 μM and 6.95 μM for H1N1 and H3N2, respectively) and 5z (IC50 = 3.95 μM and 3.61 μM for H1N1 and H3N2, respectively) demonstrated potent anti-influenza A activity. On the basis of selectivity index, we conceive that compound 5x may serve as a chemical probe of interest for further lead optimization studies with a general aim of developing novel and effective anti-influenza A virus agents.

  2. The PurR mutation of Drosophila melanogaster confers resistance to purine and 2,6-diaminopurine by elevating adenosine deaminase activity.

    PubMed

    Dutton, F L; Chovnick, A

    1990-01-01

    Media supplemented with purine (7H-imidazo[4,5-d]pyrimidine) or the purine analogue 2,6-diaminopurine (DAP) can be employed to select several classes of purine-resistant variants from mutagenized cultures of Drosophila. One class results in elevated resistance to purine and diaminopurine which is correlated with elevated activity of the enzyme adenosine deaminase (adenosine aminohydrolase = EC 3.5.4.4). The first member of this class, Pur R, maps to position 82 +/- in the right arm of the second chromosome. The Pur R mutation causes an elevation of adenosine deaminase (ADA) enzyme activity, apparently by altering a thermolabile, ADA-specific repressor. Pur R may thus encode a negative regulator of adenosine deaminase activity similar to the ADA-binding protein found in mammalian systems.

  3. RECEPTOR AFFINITY AND PHOSPHODIESTERASES 4B AND 10A ACTIVITY OF OCTAHYDRO- AND 6,7-DIMETHOXY-3,4-DIHYDRO- ISOQUINOLIN-2(1H)-YL-ALKYL DERIVATIVES OF IMIDAZO- AND PYRIMIDINO[2,1-f]PURINES.

    PubMed

    Zagórska, Agnieszka; Gryzło, Beata; Satała, Grzegorz; Bojarski, Andrzej J; Głuch-Lutwin, Monika; Mordyl, Barbara; Kazek, Grzegorz; Pawłowski, Maciej

    2016-01-01

    A series of octahydro- and 6,7-dimethoxy-3,4-dihydro- isoquinolin-2(1H)-yl-alkyl derivatives of imidazo- and pyrimidino[2,1-f]purines were synthesized and biologically evaluated in in vitro competition binding experiments for serotonin 5-HT(1A), 5-HT(6), 5-HT(7), and dopamine D2 receptors and inhibitory potencies for phosphodiesterases - PDE4B1 and PDE10A. The structure-activity relationships allowed to determine the structural features responsible for receptor and enzyme activity. Compound 5 (8-(4-(6,7-dimethoxy-3,4-dihydroiso- quinolin-2(1H)butyl)1,3-dimethyl-H-imidazo[2,1-f]purine-2,4(3H,8H)-dione) could be regarded as promising structure for further modification and detailed mechanistic study for obtained hybrid ligands.

  4. Exploring human adenosine A3 receptor complementarity and activity for adenosine analogues modified in the ribose and purine moiety

    PubMed Central

    Van Rompaey, Philippe; Jacobson, Kenneth A.; Gross, Ariel S.; Gao, Zhan-Guo; Van Calenbergh, Serge

    2012-01-01

    In this paper we investigated the influence on affinity, selectivity and intrinsic activity upon modification of the adenosine agonist scaffold at the 3′- and 5′-positions of the ribofuranosyl moiety and the 2- and N6-positions of the purine base. This resulted in the synthesis of various analogues, that is, 3–12 and 24–33, with good hA3AR selectivity and moderate-to-high affinities (as in 32, Ki = 27 nM). Interesting was the ability to tune the intrinsic activity depending on the substituent introduced at the 3′-position. PMID:15670905

  5. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose

    PubMed Central

    Hibbs, John B.; Vavrin, Zdenek; Cox, James E.

    2016-01-01

    Complex metabolism is thought to occur exclusively in the crowded intracellular environment. Here we report that diluted enzymes from lysed human leukocytes produce extracellular energy. Our findings involve two pathways: the purine nucleotide catabolic pathway and the pentose phosphate pathway, which function together to generate energy as NADPH. Glucose6P fuel for NADPH production is generated from structural ribose of purine ribonucleoside monophosphates, ADP, and ADP-ribose. NADPH drives glutathione reductase to reduce an oxidized glutathione disulfide-glutathione redox couple. Acid phosphatases initiate ribose5P salvage from purine ribonucleoside monophosphates, and transaldolase controls the direction of carbon chain flow through the nonoxidative branch of the pentose phosphate pathway. These metabolic control points are regulated by pH. Biologically, this energy conserving metabolism could function in perturbed extracellular spaces. PMID:26895212

  6. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose.

    PubMed

    Hibbs, John B; Vavrin, Zdenek; Cox, James E

    2016-08-01

    Complex metabolism is thought to occur exclusively in the crowded intracellular environment. Here we report that diluted enzymes from lysed human leukocytes produce extracellular energy. Our findings involve two pathways: the purine nucleotide catabolic pathway and the pentose phosphate pathway, which function together to generate energy as NADPH. Glucose6P fuel for NADPH production is generated from structural ribose of purine ribonucleoside monophosphates, ADP, and ADP-ribose. NADPH drives glutathione reductase to reduce an oxidized glutathione disulfide-glutathione redox couple. Acid phosphatases initiate ribose5P salvage from purine ribonucleoside monophosphates, and transaldolase controls the direction of carbon chain flow through the nonoxidative branch of the pentose phosphate pathway. These metabolic control points are regulated by pH. Biologically, this energy conserving metabolism could function in perturbed extracellular spaces.

  7. Purine Metabolism During Neuronal Differentiation: The Relevance of Purine Synthesis and Recycling

    PubMed Central

    Göttle, Martin; Burhenne, Heike; Sutcliffe, Diane; Jinnah, H. A.

    2013-01-01

    Purines are a class of small organic molecules that are essential for all cells. They play critical roles in neuronal differentiation and function. Their importance is highlighted by several inherited disorders of purine metabolism, such as the Lesch-Nyhan disease, which is caused by a deficiency of the purine salvage enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt). Despite the known importance of purines in the nervous system, knowledge regarding their metabolism in neurons is limited. In the current studies, purine pools and their metabolism were examined in rat PC6-3 cells, a PC12 pheochromocytoma subclone that undergoes robust differentiation with nerve growth factor. The results were compared with five new independent PC6-3 subclones with defective purine recycling due to different mutations affecting HGprt enzyme activity. The results demonstrate an increase in most purines and in energy state following neuronal differentiation, as well as specific abnormalities when purine recycling is lost. The loss of HGprt-mediated purine recycling also is associated with significant loss of dopamine and related metabolites in the mutant PC6-3 lines, suggesting an important connection between purine and dopamine pathways. These results provide insights into how purine pools and metabolism change with neuronal differentiation, and how specific enzyme defects may cause neuronal dysfunction. PMID:23859490

  8. Purification and Properties of a Protein Which Binds Cytokinin-active 6-Substituted Purines 1

    PubMed Central

    Erion, Jack L.; Fox, J. Eugene

    1981-01-01

    A protein which binds 6-substituted purines of the cytokinin type with relatively high affinity has been extensively purified from wheat germ. Conventional chromatographic techniques, as well as an affinity matrix to which a cytokinin was covalently coupled, were used in the purification. The wheat germ cytokinin-binding protein (CBF-1) has four unlike subunits and an apparent molecular weight of 183,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. CBF-1 is saturated at one cytokinin molecule per tetramer with a Kd for 6-benzylaminopurine of 5 × 10−7 molar. The protein exists both on the native wheat germ ribosome (1 molecule CBF-1 per 80S ribosome) and free in the cytosol with approximately three copies of the latter for each of the former. Data from affinity chromatography studies and cross-linking experiments strongly suggest that a specific binding site for CBF-1 occurs on the wheat germ ribosome. Images PMID:16661618

  9. Anti-proliferative activity of 2,6-dichloro-9- or 7-(ethoxycarbonylmethyl)-9H- or 7H-purines against several human solid tumour cell lines.

    PubMed

    Morales, Fátima; Ramírez, Alberto; Conejo-García, Ana; Morata, Cynthia; Marchal, Juan A; Campos, Joaquín M

    2014-04-01

    As leads we took several benzo-fused seven- and six-membered scaffolds linked to the pyrimidine or purine moieties with notable anti-proliferative activity against human breast, colon and melanoma cancerous cell lines. We then decided to maintain the double-ringed nitrogenous bases and change the other components to the ethyl acetate moiety. This way six purine and two 5-fluorouracil derivatives were obtained and evaluated against the MCF-7, HCT-116, A-375 and G-361 cancer cell lines. Two QSARs are obtained between the anti-proliferative IC₅₀ values for compounds 26-33 and the clog P against the melanoma cell lines A-375 and G-361. Our results show that two of the analogues [ethyl 2-(2,6-dichloro-9H- or 7H-purine-9- or 7-yl)acetates (30 and 33, respectively)] are potent cytotoxic agents against all the tumour cell lines assayed, showing single-digit micromolar IC₅₀ values. This exemplifies the potential of our previously reported purine compounds to qualify as lead structures for medicinal chemistry campaigns, affording simplified analogues easy to synthesize and with a noteworthy bioactivity. The selective activity of 30 and 33 against the melanoma cell line A-375, via apoptosis, supposes a great advantage for a future therapeutic use.

  10. Anti-inflammatory active gold(I) complexes involving 6-substituted-purine derivatives.

    PubMed

    Trávníček, Zdeněk; Starha, Pavel; Vančo, Ján; Silha, Tomáš; Hošek, Jan; Suchý, Pavel; Pražanová, Gabriela

    2012-05-24

    The gold(I) complexes of the general formula [Au(L(n))(PPh(3))]·xH(2)O (1-8; n = 1-8 and x = 0-1.5), where L(n) stands for a deprotonated form of the benzyl-substituted derivatives of 6-benzylaminopurine, were prepared, thoroughly characterized (elemental analyses, FT-IR, Raman and multinuclear NMR spectroscopy, ESI+ mass spectrometry, conductivity, DFT calculations), and studied for their in vitro cytotoxicity and in vitro and in vivo anti-inflammatory effects on LPS-activated macrophages (derived from THP-1 cell line) and using the carrageenan-induced hind paw edema model on rats. The obtained results indicate that the representative complexes (1, 3, 6) exhibit a strong ability to reduce the production of pro-inflammatory cytokines TNF-α, IL-1β and HMGB1 without influence on the secretion of anti-inflammatory cytokine IL-1RA in the LPS-activated macrophages. The complexes also significantly influence the formation of edema, caused by the intraplantar application of polysaccharide λ-carrageenan to rats in vivo. All the tested complexes showed similar or better biological effects as compared with Auranofin, but contrary to Auranofin they were found to be less cytotoxic in vitro. The obtained results clearly indicate that the gold(I) complexes behave as very effective anti-inflammatory agents and could prove to be useful for the treatment of difficult to treat inflammatory diseases such as rheumatoid arthritis. PMID:22541000

  11. p38α Activates Purine Metabolism to Initiate Hematopoietic Stem/Progenitor Cell Cycling in Response to Stress.

    PubMed

    Karigane, Daiki; Kobayashi, Hiroshi; Morikawa, Takayuki; Ootomo, Yukako; Sakai, Mashito; Nagamatsu, Go; Kubota, Yoshiaki; Goda, Nobuhito; Matsumoto, Michihiro; Nishimura, Emi K; Soga, Tomoyoshi; Otsu, Kinya; Suematsu, Makoto; Okamoto, Shinichiro; Suda, Toshio; Takubo, Keiyo

    2016-08-01

    Hematopoietic stem cells (HSCs) maintain quiescence by activating specific metabolic pathways, including glycolysis. We do not yet have a clear understanding of how this metabolic activity changes during stress hematopoiesis, such as bone marrow transplantation. Here, we report a critical role for the p38MAPK family isoform p38α in initiating hematopoietic stem and progenitor cell (HSPC) proliferation during stress hematopoiesis in mice. We found that p38MAPK is immediately phosphorylated in HSPCs after a hematological stress, preceding increased HSPC cycling. Conditional deletion of p38α led to defective recovery from hematological stress and a delay in initiation of HSPC proliferation. Mechanistically, p38α signaling increases expression of inosine-5'-monophosphate dehydrogenase 2 in HSPCs, leading to altered levels of amino acids and purine-related metabolites and changes in cell-cycle progression in vitro and in vivo. Our studies have therefore uncovered a p38α-mediated pathway that alters HSPC metabolism to respond to stress and promote recovery. PMID:27345838

  12. Metadata Activities in Biology

    SciTech Connect

    Inigo, Gil San; HUTCHISON, VIVIAN; Frame, Mike; Palanisamy, Giri

    2010-01-01

    The National Biological Information Infrastructure program has advanced the biological sciences ability to standardize, share, integrate and synthesize data by making the metadata program a core of its activities. Through strategic partnerships, a series of crosswalks for the main biological metadata specifications have enabled data providers and international clearinghouses to aggregate and disseminate tens of thousands of metadata sets describing petabytes of data records. New efforts at the National Biological Information Infrastructure are focusing on better metadata creation and curation tools, semantic mediation for data discovery and other curious initiatives.

  13. Targeting a Novel Plasmodium falciparum Purine Recycling Pathway with Specific Immucillins

    SciTech Connect

    Ting, L; Shi, W; Lewandowicz, A; Singh, V; Mwakingwe, A; Birck, M R; Taylor Ringia, E A; Bench, G; Madrid, D C; Tyler, P C; Evans, G B; Furneaux, R H; Schramm, V L; Kim, K

    2004-05-19

    Plasmodium falciparum is unable to synthesize purine bases and relies upon purine salvage and purine recycling to meet its purine needs. We report that purines formed as products of the polyamine pathway are recycled in a novel pathway in which 5'-methylthioinosine is generated by adenosine deaminase. The action of P. falciparum purine nucleoside phosphorylase is a convergent step of purine salvage, converting both 5'-methylthioinosine and inosine to hypoxanthine. We used accelerator mass spectrometry to verify that 5'-methylthioinosine is an active nucleic acid precursor in P. falciparum. Prior studies have shown that inhibitors of purine salvage enzymes kill malaria, but potent malaria-specific inhibitors of these enzymes have not previously been described. 5'-methylthio-Immucillin-H, a transition state analogue inhibitor that is selective for malarial over human purine nucleoside phosphorylase, kills P. falciparum in culture. Immucillins are currently in clinical trials for other indications and may have application as antimalarials.

  14. Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner

    PubMed Central

    Takagi, Hiroshi; Ishiga, Yasuhiro; Watanabe, Shunsuke; Konishi, Tomokazu; Egusa, Mayumi; Akiyoshi, Nobuhiro; Matsuura, Takakazu; Mori, Izumi C.; Hirayama, Takashi; Kaminaka, Hironori; Shimada, Hiroshi; Sakamoto, Atsushi

    2016-01-01

    Allantoin is a metabolic intermediate of purine catabolism that often accumulates in stressed plants. Recently, we used Arabidopsis knockout mutants (aln) of ALLANTOINASE to show that this purine metabolite activates abscisic acid (ABA) production, thereby stimulating stress-related gene expression and enhancing seedling tolerance to abiotic stress. A detailed re-examination of the microarray data of an aln mutant (aln-1) confirmed the increased expression of ABA-related genes and also revealed altered expression of genes involved in jasmonic acid (JA) responses, probably under the control of MYC2, a master switch in the JA signaling pathway. Consistent with the transcriptome profiles, the aln-1 mutant displayed increased JA levels and enhanced responses to mechanical wounding and exogenous JA. Moreover, aln mutants demonstrated modestly increased susceptibility to Pseudomonas syringae and Pectobacterium carotovorum, probably reflecting the antagonistic action of MYC2 on the defense against these bacterial phytopathogens. Exogenously administered allantoin elicited the expression of JA-responsive genes, including MYC2, in wild-type plants, supporting the idea that allantoin might be responsible for the observed JA-related phenotypes of aln mutants. However, mutants deficient in bioactive JA (jar1-1), insensitive to JA (myc2-3), or deficient in ABA (aba2-1 and bglu18) suppressed the effect of exogenous allantoin. The suppression was further confirmed in aln-1 jar1-1 and aln-1 bglu18 double mutants. These results indicate that allantoin can activate the MYC2-regulated JA signaling pathway through ABA production. Overall, this study suggests a possible connection of purine catabolism with stress hormone homeostasis and signaling, and highlights the potential importance of allantoin in these interactions. PMID:26931169

  15. A transcriptional activator, homologous to the Bacillus subtilis PurR repressor, is required for expression of purine biosynthetic genes in Lactococcus lactis.

    PubMed

    Kilstrup, M; Martinussen, J

    1998-08-01

    A purR::pGh9:ISS1 mutant of Lactococcus lactis was obtained following transposon mutagenesis of strain MG1363 and selection for purine auxotrophs. After determination of the nucleotide sequence and deduction of the purR reading frame, the PurR product was found to be highly similar to the purR-encoded repressor from Bacillus subtilis. The wild-type purR gene complemented the purine auxotrophy of a purR::ISS1 mutant, and it was shown that the purR::ISS1 mutation lowered the level of transcription from the purine-regulated L. lactis purD promoter. In a parallel study on the regulation of purC and purD expression in L. lactis (M. Kilstrup, S. G. Jessing, S. B. Wichmand-Jorgensen, M. Madsen, and D. Nilsson, J. Bacteriol. 180:3900-3906, 1998), we identified regions (PurBox sequences: AWWWCCGAACWWT) upstream of the promoters with a central G residue at exactly position -76 relative to the transcriptional start site. The PurBox sequences were found to be required for high-level promoter activity and purine regulation. We identified a PurBox sequence overlapping the -35 region of the L. lactis purR promoter and found, by studies of a purR-lacLM fusion plasmid, that purR is autoregulated. Because of the high degree of similarity of the PurR proteins from B. subtilis and L. lactis, we looked for PurBox sequences in the promoter regions of the PurR-regulated genes in B. subtilis and identified a perfectly matching PurBox sequence in the purA promoter region and slightly degenerate PurBox-like sequences in the promoter regions for the pur operon and the purR gene. Interestingly, the PurBox in the pur operon of B. subtilis is located almost identically, with respect to the promoter, to the PurBox sequences located in front of purC and purD in L. lactis. We present a hypothesis to explain how an ancestral PurR protein in B. subtilis could have evolved from an activator of the pur operon into a repressor which regulates transcription initiation from the same pur promoter by using

  16. Disparate actions of hydroxyurea in potentiation of purine and pyrimidine 2',3'-dideoxynucleoside activities against replication of human immunodeficiency virus.

    PubMed Central

    Gao, W Y; Johns, D G; Chokekuchai, S; Mitsuya, H

    1995-01-01

    We and other groups have recently reported the potentiation by ribonucleotide reductase inhibitors such as hydroxyurea of the anti-human immunodeficiency virus type 1 (HIV-1) activity of purine and pyrimidine 2',3'-dideoxynucleosides in both resting and phytohemagglutinin-stimulated peripheral blood mononuclear cells. Little agreement prevails, however, as to the mechanism of the synergistic effects described. We report here that in phytohemagglutinin-stimulated peripheral blood mononuclear cells, two mechanisms exist for the potentiation of the anti-HIV-1 activity by low-dose hydroxyurea of the purine-based dideoxynucleoside 2',3'-dideoxyinosine and the pyrimidine-based dideoxynucleosides 3'-azido-3'-deoxythymidine and 2',3'-dideoxycytidine. For 2',3'-dideoxyinosine, the enhancement arises from a specific depletion of dATP by hydroxyurea, resulting in a favorable shift of the 2',3'-dideoxyadenosine 5'-triphosphate/dATP ratio. For the pyrimidine dideoxynucleosides 3'-azido-3'-deoxythymidine and 2',3'-dideoxycytidine, the more modest anti-HIV enhancement results from hydroxyurea-induced increases of pyrimidine kinase activities in the salvage pathway and, hence, increased 5'-phosphorylation of these drugs, while depletion of the corresponding deoxynucleoside 5'-triphosphates (dTTP and dCTP) plays no significant role. Images Fig. 4 PMID:7667290

  17. Nucleolipids of Canonical Purine ß-d-Ribo-Nucleosides: Synthesis and Cytostatic/Cytotoxic Activities Toward Human and Rat Glioblastoma Cells.

    PubMed

    Knies, Christine; Hammerbacher, Katharina; Bonaterra, Gabriel A; Kinscherf, Ralf; Rosemeyer, Helmut

    2016-04-01

    We report on the synthesis of two series of canonical purine ß-d-ribonucleoside nucleolipids derived from inosine and adenosine, which have been characterized by elemental analyses, electrospray ionization mass spectrometry (ESI MS) as well as by (1)H and (13)C NMR, and pH-dependent UV/Vis spectroscopy. A selection of the novel nucleolipids with different lipophilic moieties were first tested on their cytotoxic effect toward human macrophages. Compounds without a significant inhibitory effect on the viability of the macrophages were tested on their cytostatic/cytotoxic effect toward human astrocytoma/oligodendroglioma GOS-3 cells as well as against the rat malignant neuroectodermal BT4Ca cell line. In order to additionally investigate the potential molecular mechanisms involved in the cytotoxic effects of the derivatives on GOS-3 or BT4Ca cells, we evaluated the induction of apoptosis and observed the particular activity of the nucleolipid ethyl 3-{4-hydroxymethyl-2-methyl-6-[6-oxo-1-(3,7,11-trimethyl-dodeca-2,6,10-trienyl)-1,6-dihydro-purin-9-yl]-tetrahydro-furo[3,4-d][1,3]dioxol-2-yl}propionate (8 c) toward both human and rat glioblastoma cell lines in vitro. PMID:27308225

  18. The purine degradation pathway: possible role in paralytic shellfish toxin metabolism in the cyanobacterium Planktothrix sp. FP1.

    PubMed

    Pomati, F; Manarolla, G; Rossi, O; Vigetti, D; Rossetti, C

    2001-12-01

    The paralytic shellfish toxins (PSTs) are potent neurotoxic alkaloids and their major biological effect is due to the blockage of voltage-gated sodium channels in excitable cells. They have been recognised as an important health risk for humans, animals, and ecosystems worldwide. The metabolic pathways that lead to the production and the degradation of these toxic metabolites are still unknown. In this study, we investigated the possible link between PST accumulation and the activation of the metabolism that leads to purine degradation in the filamentous freshwater cyanobacterium Planktothrix sp. FP1. The purine catabolic pathway is related to the nitrogen microcycle in water environments, in which cyanobacteria use traces of purines and ureides as a nitrogen source for growth. Thus, the activity of allantoicase, a key inducible enzyme of this metabolism, was used as tool for assaying the activation of the purine degradation pathway. The enzyme and the pathway were induced by allantoic acid, the direct substrate of allantoicase, as well as by adenine and, to a lower degree, by urea, one of the main products of purine catabolism. Crude cell extract of Escherichia coli was also employed and showed the best induction of allantoicase activity. In culture, Planktothrix sp. FP1 showed a differential accumulation of PST in consequence of the induction with different substrates. The cyanobacterial culture induced with allantoic acid accumulated 61.7% more toxins in comparison with the control. On the other hand, the cultures induced with adenine, urea, and the E. coli extract showed low PST accumulation, respectively, 1%, 38%, and 5% of the total toxins content detected in the noninduced culture. A degradation pathway for the PSTs can be hypothesised: as suggested for purine alkaloids in higher plants, saxitoxin (STX) and derivatives may also be converted into xanthine, urea, and further to CO2 and NH4+ or recycled in the primary metabolism through the purine degradation

  19. Synthesis and biological activity of a novel series of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier for cellular entry†

    PubMed Central

    Wang, Lei; Cherian, Christina; Desmoulin, Sita Kugel; Polin, Lisa; Deng, Yijun; Wu, Jianmei; Hou, Zhanjun; White, Kathryn; Kushner, Juiwanna; Matherly, Larry H.; Gangjee, Aleem

    2010-01-01

    2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidines with a thienoyl side chain and 4-6 carbon bridge lengths (compounds 1-3) were synthesized as substrates for folate receptors (FRs) and the proton-coupled folate transporter (PCFT). Conversion of acetylene carboxylic acids to α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidines. Sonogashira coupling with (S)-2-[(5-bromo-thiophene-2-carbonyl)-amino]-pentanedioic acid diethyl ester, followed by hydrogenation and saponification, afforded 1-3. Compounds 1 and 2 potently inhibited KB and IGROV1 human tumor cells that express FRα, reduced folate carrier (RFC), and PCFT. The analogs were selective for FR- and PCFT over RFC. Glycinamide ribonucleotide formyltransferase was the principal cellular target. In SCID mice with KB tumors, 1 was highly active against both early (3.5 log kill, 1/5 cures) and advanced (3.7 log kill, 4/5 complete remissions) stage tumors. Our results demonstrate potent in vitro and in vivo antitumor activity for 1 due to selective transport by FRs and PCFT over RFC. PMID:20085328

  20. Prebiotic syntheses of purines and pyrimidines

    NASA Technical Reports Server (NTRS)

    Basile, B.; Oro, J.; Lazcano, A.

    1984-01-01

    The results of experimental and theoretical investigations of the prebiotic synthesis of purines and pyramidines are surveyed. Topics examined include the synthesis of purines from HCN via 4,5-disubstituted imidazole derivatives in aqueous solutions or liquid NH3, simultaneous formation of amino acids and purines by electron irradiation of CH4-NH3-H2O mixtures, synthesis of pyrimadines from cynoacetylene, energetics, formation of bases under anhydrous or concentrated conditions, formation of bases under dilute conditions, Fischer-Tropsch-type reactions, and the role of activated intermediates. It is pointed out that the precursor compounds have been detected in the interstellar medium, on Titan, and in other solar-system bodies, and that solar-nebula HCN concentrations of the order of 1-10 mM have been estimated on the basis of meteorite measurements.

  1. Investigation of free amino acid, total phenolics, antioxidant activity and purine alkaloids to assess the health properties of non-Camellia tea

    PubMed Central

    Bi, Wu; He, Chunnian; Ma, Yunyun; Shen, Jie; Zhang, Linghua Harris; Peng, Yong; Xiao, Peigen

    2015-01-01

    To find novel functional beverages from folk teas, 33 species of frequently used non-Camellia tea (plants other than Camellia) were collected and compared with Camellia tea (green tea, pu-erh tea and black tea) for the first time. Data are reported here on the quantities of 20 free amino acids (FAAs) and three purine alkaloids (measured by UHPLC), total polyphenols (measured by Folin-Ciocalteu assay), and antioxidant activity (DPPH). The total amounts of FAAs in non-Camellia tea (0.62–18.99 mg/g) are generally less than that of Camellia tea (16.55–24.99 mg/g). However, for certain FAAs, the quantities were much higher in some non-Camellia teas, such as γ-aminobutyric acid in teas from Ampelopsis grossedentata, Isodon serra and Hibiscus sabdariffa. Interestingly, theanine was detected in tea from Potentilla fruticosa (1.16±0.81 mg/g). Furthermore, the content of polyphenols in teas from A. grossedentata, Acer tataricum subsp. ginnala are significantly higher than those from Camellia tea; teas from I. serra, Pistacia chinensis and A. tataricum subsp. ginnala have remarkable antioxidant activities similar to the activities from green tea (44.23 μg/mL). Purine alkaloids (caffeine, theobromine and theophylline) were not detected in non-Camellia teas. The investigation suggest some non-Camellia teas may be great functional natural products with potential for prevention of chronic diseases and aging, by providing with abundant polyphenols, antioxidants and specific FAAs. PMID:27006902

  2. Investigation of free amino acid, total phenolics, antioxidant activity and purine alkaloids to assess the health properties of non-Camellia tea.

    PubMed

    Bi, Wu; He, Chunnian; Ma, Yunyun; Shen, Jie; Zhang, Linghua Harris; Peng, Yong; Xiao, Peigen

    2016-03-01

    To find novel functional beverages from folk teas, 33 species of frequently used non-Camellia tea (plants other than Camellia) were collected and compared with Camellia tea (green tea, pu-erh tea and black tea) for the first time. Data are reported here on the quantities of 20 free amino acids (FAAs) and three purine alkaloids (measured by UHPLC), total polyphenols (measured by Folin-Ciocalteu assay), and antioxidant activity (DPPH). The total amounts of FAAs in non-Camellia tea (0.62-18.99 mg/g) are generally less than that of Camellia tea (16.55-24.99 mg/g). However, for certain FAAs, the quantities were much higher in some non-Camellia teas, such as γ-aminobutyric acid in teas from Ampelopsis grossedentata, Isodon serra and Hibiscus sabdariffa. Interestingly, theanine was detected in tea from Potentilla fruticosa (1.16±0.81 mg/g). Furthermore, the content of polyphenols in teas from A. grossedentata, Acer tataricum subsp. ginnala are significantly higher than those from Camellia tea; teas from I. serra, Pistacia chinensis and A. tataricum subsp. ginnala have remarkable antioxidant activities similar to the activities from green tea (44.23 μg/mL). Purine alkaloids (caffeine, theobromine and theophylline) were not detected in non-Camellia teas. The investigation suggest some non-Camellia teas may be great functional natural products with potential for prevention of chronic diseases and aging, by providing with abundant polyphenols, antioxidants and specific FAAs. PMID:27006902

  3. Development of Purine-Derived 18F-Labeled Pro-drug Tracers for Imaging of MRP1 Activity with PET

    PubMed Central

    2014-01-01

    Multidrug resistance-associated protein 1 (MRP1) is a drug efflux transporter that has been implicated in the pathology of several neurological diseases and is associated with development of multidrug resistance. To enable measurement of MRP1 function in the living brain, a series of 6-halopurines decorated with fluorinated side chains have been synthesized and evaluated as putative pro-drug tracers. The tracers were designed to undergo conjugation with glutathione within the brain and hence form the corresponding MRP1 substrate tracers in situ. 6-Bromo-7-(2-[18F]fluoroethyl)purine showed good brain uptake and rapid metabolic conversion. Dynamic PET imaging demonstrated a marked difference in brain clearance rates between wild-type and mrp1 knockout mice, suggesting that the tracer can allow noninvasive assessment of MRP1 activity in vivo. PMID:24456310

  4. Functional analysis of 14 genes that constitute the purine catabolic pathway in Bacillus subtilis and evidence for a novel regulon controlled by the PucR transcription activator.

    PubMed

    Schultz, A C; Nygaard, P; Saxild, H H

    2001-06-01

    The soil bacterium Bacillus subtilis has developed a highly controlled system for the utilization of a diverse array of low-molecular-weight compounds as a nitrogen source when the preferred nitrogen sources, e.g., glutamate plus ammonia, are exhausted. We have identified such a system for the utilization of purines as nitrogen source in B. subtilis. Based on growth studies of strains with knockout mutations in genes, complemented with enzyme analysis, we could ascribe functions to 14 genes encoding enzymes or proteins of the purine degradation pathway. A functional xanthine dehydrogenase requires expression of five genes (pucA, pucB, pucC, pucD, and pucE). Uricase activity is encoded by the pucL and pucM genes, and a uric acid transport system is encoded by pucJ and pucK. Allantoinase is encoded by the pucH gene, and allantoin permease is encoded by the pucI gene. Allantoate amidohydrolase is encoded by pucF. In a pucR mutant, the level of expression was low for all genes tested, indicating that PucR is a positive regulator of puc gene expression. All 14 genes except pucI are located in a gene cluster at 284 to 285 degrees on the chromosome and are contained in six transcription units, which are expressed when cells are grown with glutamate as the nitrogen source (limiting conditions), but not when grown on glutamate plus ammonia (excess conditions). Our data suggest that the 14 genes and the gde gene, encoding guanine deaminase, constitute a regulon controlled by the pucR gene product. Allantoic acid, allantoin, and uric acid were all found to function as effector molecules for PucR-dependent regulation of puc gene expression. When cells were grown in the presence of glutamate plus allantoin, a 3- to 10-fold increase in expression was seen for most of the genes. However, expression of the pucABCDE unit was decreased 16-fold, while expression of pucR was decreased 4-fold in the presence of allantoin. We have identified genes of the purine degradation pathway in B

  5. Synthesis and anti-HIV activity of (-)-β-D-(2R,4R) 1,3-dioxolane 2,6-diamino purine (DAPD) (Amdoxovir) and (-)-β-D-(2R,4R) 1,3-dioxolane guanosine (DXG) prodrugs

    PubMed Central

    Narayanasamy, Janarthanan; Pullagurla, Manik R.; Sharon, Ashoke; Wang, Jianing; Schinazi, Raymond F.; Chu, Chung K.

    2007-01-01

    Prodrugs of (-)-β-D-(2R,4R)-1,3-dioxolane-2,6-diamino purine (DAPD), organic salts of DAPD, 5′-l-valyl DAPD and N-1 substituted (-)-β-D-(2R,4R)-1,3-dioxolane guanosine (DXG) have been synthesized with the objective of finding molecules which might be superior to DAPD and DXG in solubility as well as pharmacologic profiles. Synthesized prodrugs were evaluated for anti-HIV activity against HIV-1LAI in primary human lymphocytes (PBM cells) as well as their cytotoxicity in PBM, CEM and Vero cells. DAPD prodrugs, modified at the C6 position of the purine ring, demonstrated several folds of enhanced anti-HIV activity in comparison to the parent compound DAPD without increasing the toxicity. The presence of alkyl amino groups at the C6 position of the purine ring increased the antiviral potency several folds, and the most potent compound (-)-β-D-(2R,4R)-1,3-dioxolane-2-amino-6-aminoethyl purine (8) was 17 times more potent than that of DAPD. 5′-l-Valyl DAPD 20 and organic acid salts 21-24 also exhibited enhanced anti-HIV activity in comparison to DAPD, while DXG prodrugs 16-17 exhibited lower potency than that of DXG or DAPD. PMID:17532483

  6. Purine Analog-Like Properties of Bendamustine Underlie Rapid Activation of DNA Damage Response and Synergistic Effects with Pyrimidine Analogues in Lymphoid Malignancies

    PubMed Central

    Hiraoka, Nobuya; Kikuchi, Jiro; Yamauchi, Takahiro; Koyama, Daisuke; Wada, Taeko; Uesawa, Mitsuyo; Akutsu, Miyuki; Mori, Shigehisa; Nakamura, Yuichi; Ueda, Takanori; Kano, Yasuhiko; Furukawa, Yusuke

    2014-01-01

    Bendamustine has shown considerable clinical activity against indolent lymphoid malignancies as a single agent or in combination with rituximab, but combination with additional anti-cancer drugs may be required for refractory and/or relapsed cases as well as other intractable tumors. In this study, we attempted to determine suitable anti-cancer drugs to be combined with bendamustine for the treatment of mantle cell lymphoma, diffuse large B-cell lymphoma, aggressive lymphomas and multiple myeloma, all of which are relatively resistant to this drug, and investigated the mechanisms underlying synergism. Isobologram analysis revealed that bendamustine had synergistic effects with alkylating agents (4-hydroperoxy-cyclophosphamide, chlorambucil and melphalan) and pyrimidine analogues (cytosine arabinoside, gemcitabine and decitabine) in HBL-2, B104, Namalwa and U266 cell lines, which represent the above entities respectively. In cell cycle analysis, bendamustine induced late S-phase arrest, which was enhanced by 4-hydroperoxy-cyclophosphamide, and potentiated early S-phase arrest by cytosine arabinoside (Ara-C), followed by a robust increase in the size of sub-G1 fractions. Bendamustine was able to elicit DNA damage response and subsequent apoptosis faster and with shorter exposure than other alkylating agents due to rapid intracellular incorporation via equilibrative nucleoside transporters (ENTs). Furthermore, bendamustine increased the expression of ENT1 at both mRNA and protein levels and enhanced the uptake of Ara-C and subsequent increase in Ara-C triphosphate (Ara-CTP) in HBL-2 cells to an extent comparable with the purine analog fludarabine. These purine analog-like properties of bendamustine may underlie favorable combinations with other alkylators and pyrimidine analogues. Our findings may provide a theoretical basis for the development of more effective bendamustine-based combination therapies. PMID:24626203

  7. Structure of eukaryotic purine/H(+) symporter UapA suggests a role for homodimerization in transport activity.

    PubMed

    Alguel, Yilmaz; Amillis, Sotiris; Leung, James; Lambrinidis, George; Capaldi, Stefano; Scull, Nicola J; Craven, Gregory; Iwata, So; Armstrong, Alan; Mikros, Emmanuel; Diallinas, George; Cameron, Alexander D; Byrne, Bernadette

    2016-04-18

    The uric acid/xanthine H(+) symporter, UapA, is a high-affinity purine transporter from the filamentous fungus Aspergillus nidulans. Here we present the crystal structure of a genetically stabilized version of UapA (UapA-G411VΔ1-11) in complex with xanthine. UapA is formed from two domains, a core domain and a gate domain, similar to the previously solved uracil transporter UraA, which belongs to the same family. The structure shows UapA in an inward-facing conformation with xanthine bound to residues in the core domain. Unlike UraA, which was observed to be a monomer, UapA forms a dimer in the crystals with dimer interactions formed exclusively through the gate domain. Analysis of dominant negative mutants is consistent with dimerization playing a key role in transport. We postulate that UapA uses an elevator transport mechanism likely to be shared with other structurally homologous transporters including anion exchangers and prestin.

  8. Structure of eukaryotic purine/H+ symporter UapA suggests a role for homodimerization in transport activity

    NASA Astrophysics Data System (ADS)

    Alguel, Yilmaz; Amillis, Sotiris; Leung, James; Lambrinidis, George; Capaldi, Stefano; Scull, Nicola J.; Craven, Gregory; Iwata, So; Armstrong, Alan; Mikros, Emmanuel; Diallinas, George; Cameron, Alexander D.; Byrne, Bernadette

    2016-04-01

    The uric acid/xanthine H+ symporter, UapA, is a high-affinity purine transporter from the filamentous fungus Aspergillus nidulans. Here we present the crystal structure of a genetically stabilized version of UapA (UapA-G411VΔ1-11) in complex with xanthine. UapA is formed from two domains, a core domain and a gate domain, similar to the previously solved uracil transporter UraA, which belongs to the same family. The structure shows UapA in an inward-facing conformation with xanthine bound to residues in the core domain. Unlike UraA, which was observed to be a monomer, UapA forms a dimer in the crystals with dimer interactions formed exclusively through the gate domain. Analysis of dominant negative mutants is consistent with dimerization playing a key role in transport. We postulate that UapA uses an elevator transport mechanism likely to be shared with other structurally homologous transporters including anion exchangers and prestin.

  9. Structure of eukaryotic purine/H+ symporter UapA suggests a role for homodimerization in transport activity

    PubMed Central

    Alguel, Yilmaz; Amillis, Sotiris; Leung, James; Lambrinidis, George; Capaldi, Stefano; Scull, Nicola J.; Craven, Gregory; Iwata, So; Armstrong, Alan; Mikros, Emmanuel; Diallinas, George; Cameron, Alexander D.; Byrne, Bernadette

    2016-01-01

    The uric acid/xanthine H+ symporter, UapA, is a high-affinity purine transporter from the filamentous fungus Aspergillus nidulans. Here we present the crystal structure of a genetically stabilized version of UapA (UapA-G411VΔ1–11) in complex with xanthine. UapA is formed from two domains, a core domain and a gate domain, similar to the previously solved uracil transporter UraA, which belongs to the same family. The structure shows UapA in an inward-facing conformation with xanthine bound to residues in the core domain. Unlike UraA, which was observed to be a monomer, UapA forms a dimer in the crystals with dimer interactions formed exclusively through the gate domain. Analysis of dominant negative mutants is consistent with dimerization playing a key role in transport. We postulate that UapA uses an elevator transport mechanism likely to be shared with other structurally homologous transporters including anion exchangers and prestin. PMID:27088252

  10. Anticancer activity and cDNA microarray studies of a (RS)-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-yl]-6-chloro-9H-purine, and an acyclic (RS)-O,N-acetalic 6-chloro-7H-purine.

    PubMed

    Caba, Octavio; Díaz-Gavilán, Mónica; Rodríguez-Serrano, Fernando; Boulaiz, Houria; Aránega, Antonia; Gallo, Miguel A; Marchal, Juan A; Campos, Joaquín M

    2011-09-01

    Completing a SAR study, a series of (RS)-6-substituted-7- or 9-(1,2,3,5-tetrahydro-4,1-benzoxazepine-3-yl)-7H or 9H-purines was previously prepared. The most potent antiproliferative agent against the MCF-7 adenocarcinoma cell line that belongs to the benzoxazepine O,N-acetalic family is (RS)-9-[1-(9H-fluorenyl-9-methoxycarbonyl)-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-yl]-6-chloro-9H-purine (16, IC(50) = 0.67 ± 0.18 μM), whilst (RS)-7-{2-(N-hydroxymethylphenyl)-2-nitrobenzenesulfonamido]-1-methoxyethyl}-6-chloro-7H-purine (37) shows the lowest IC(50) value between the family of acyclic O,N-acetals (IC(50) = 3.25 ± 0.23 μM). Moreover, 16 showed the better in vitro Therapeutic Index in breast cell lines (3.19), whilst 37 was found to be 3.69-fold more active against HT-29 human colon cancer cell line than versus IEC-6 normal rat intestinal epithelial cell line. The global apoptotic cells caused by 16 and 37 against MCF-7 were 80.08% and 54.85% of cell population after 48 h, respectively. cDNA microarray technology reveals potential drug targets, which are mainly centred on positive apoptosis regulatory pathway genes, and the repression of genes involved in carcinogenesis, proliferation and tumour invasion.

  11. Escherichia coli purine repressor: key residues for the allosteric transition between active and inactive conformations and for interdomain signaling.

    PubMed

    Lu, F; Brennan, R G; Zalkin, H

    1998-11-10

    The Escherichia coli purine repressor, PurR, exists in an equilibrium between open and closed conformations. Binding of a corepressor, hypoxanthine or guanine, shifts the allosteric equilibrium in favor of the closed conformation and increases the operator DNA binding affinity by 40-fold compared to aporepressor. Glu70 and Trp147 PurR mutations were isolated which perturb the allosteric equilibrium. Three lines of evidence indicate that the allosteric equilibrium of E70A and W147A aporepressors was shifted toward the closed conformation. First, compared to wild-type PurR, these mutant repressors had a 10-30-fold higher corepressor binding affinity. Second, the mutant aporepressors bound to operator DNA with an affinity that is characteristic of the wild-type PurR holorepressor. Third, binding of guanine to wild-type PurR resulted in a near-UV circular dichroism spectral change at 297-305 nm that is attributed to the closed conformation. The circular dichroism spectrum of the E70A aporepressor at 297-305 nm was that expected for the closed conformation, and it was not appreciably altered by corepressor binding. Mutational analysis was used to identify an Arg115-Ser46' interdomain intersubunit hydrogen bond that is necessary for transmitting the allosteric transition in the corepressor binding domain to the DNA binding domain. R115A and S46G PurR mutants were defective in DNA binding in vitro and repressor function in vivo although corepressor binding was identical to the wild type. These results establish that the hydrogen bond between the side chain NH2 of Arg115 and the main chain CO of Ser46' plays a critical role in interdomain signaling.

  12. Purine Salvage Pathway in Mycobacterium tuberculosis.

    PubMed

    Ducati, R G; Breda, A; Basso, L A; Santos, D S

    2011-01-01

    Millions of deaths worldwide are caused by the aetiological agent of tuberculosis, Mycobacterium tuberculosis. The increasing prevalence of this disease, the emergence of drug-resistant strains, and the devastating effect of human immunodeficiency virus coinfection have led to an urgent need for the development of new and more efficient antimycobacterial drugs. The modern approach to the development of new chemical compounds against complex diseases, especially the neglected endemic ones, such as tuberculosis, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a specific target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, and (iii) the development of compounds with selective toxicity. The present review describes the enzymes of the purine salvage pathway in M. tuberculosis as attractive targets for the development of new antimycobacterial agents. Enzyme kinetics and structural data have been included to provide a thorough knowledge on which to base the search for compounds with biological activity. We have focused on the mycobacterial homologues of this pathway as potential targets for the development of new antitubercular agents.

  13. Biological activity of purpurogallin.

    PubMed

    Inamori, Y; Muro, C; Sajima, E; Katagiri, M; Okamoto, Y; Tanaka, H; Sakagami, Y; Tsujibo, H

    1997-05-01

    Purpurogallin showed antibacterial activity toward gram-positive bacteria. Strong activity against methicillin-resistant Staphylococcus aureus [minimal inhibitory concentration (MIC) against methicillin of 1600 micrograms/ml] was found, with MIC of 11.0 micrograms/ml. Purpurogallin inhibited the growth of all tested plants and decreased the chlorophyll content in the cotyledons of Brassica campestris subsp. rapa. It showed potent inhibitory activity against prolyl endopeptidase (the 50% inhibitory concentration was 1.6 x 10(-5) M), unlike its analogues, hinokitiol and tropolone.

  14. Purine alkaloids in Paullinia.

    PubMed

    Weckerle, Caroline S; Stutz, Michael A; Baumann, Thomas W

    2003-10-01

    Among the few purine alkaloid-containing genera consumed as stimulants, Paullinia is the least investigated with respect to both chemotaxonomy and within-the-plant allocation of caffeine and its allies. Since purine alkaloids (PuA) have been proved to be valuable marker compounds in chemotaxonomy, 34 species of Paullinia and related genera were screened for them, but only one, P. pachycarpa, was positive in addition to the already known P. cupana and P. yoco. The PuA allocation in P. pachycarpa was examined and found to be restricted to theobromine in the stem, leaves and flowers. Moreover, the theobromine concentration in the stem cortex increased significantly towards the base of the plant. Since the stem cortex of P. yoco is traditionally used by the natives of Colombia and Ecuador to prepare a caffeine-rich beverage, we suspected that within the genus Paullinia the PuA are preferentially allocated to the older parts of the stem and not to young shoots like e.g., in the coffee plant (Coffea spp.). Indeed, the axis (greenhouse) of P. cupana (guaraná), known for its caffeine-rich seeds, exhibited a basipetal PuA gradient (0.005-0.145%). Moreover, the analysis of young cortex samples (herbarium) and of one piece of old stem (museum collection) revealed the same for P. yoco, even though we found much less (0.5 vs 2.5%) caffeine in the old cortex as compared to the only two analyses in 1926 of similar material. However, this discrepancy may be explained by the high variability of the PuA pattern we detected among yoco, the diversity of which the Indians take advantage.

  15. Towards in vivo regulon kinetics: PurR activation by 5-phosphoribosyl-α-1-pyrophosphate during purine depletion in Lactococcus lactis.

    PubMed

    Jendresen, Christian Bille; Dimitrov, Peter; Gautier, Laurent; Liu, Meng; Martinussen, Jan; Kilstrup, Mogens

    2014-07-01

    Short-term adaptation to changing environments relies on regulatory elements translating shifting metabolite concentrations into a specifically optimized transcriptome. So far the focus of analyses has been divided between regulatory elements identified in vivo and kinetic studies of small molecules interacting with the regulatory elements in vitro. Here we describe how in vivo regulon kinetics can describe a regulon through the effects of the metabolite controlling it, exemplified by temporal purine exhaustion in Lactococcus lactis. We deduced a causal relation between the pathway precursor 5-phosphoribosyl-α-1-pyrophosphate (PRPP) and individual mRNA levels, whereby unambiguous and homogeneous relations could be obtained for PurR regulated genes, thus linking a specific regulon to a specific metabolite. As PurR activates gene expression upon binding of PRPP, the pur mRNA curves reflect the in vivo kinetics of PurR PRPP binding and activation. The method singled out the xpt-pbuX operon as kinetically distinct, which was found to be caused by a guanine riboswitch whose regulation was overlaying the PurR regulation. Importantly, genes could be clustered according to regulatory mechanism and long-term consequences could be distinguished from transient changes--many of which would not be seen in a long-term adaptation to a new environment. The strategy outlined here can be adapted to analyse the individual effects of members from larger metabolomes in virtually any organism, for elucidating regulatory networks in vivo.

  16. ANTI-INFLAMMATORY AND ANTIOXIDANT ACTIVITY OF 8-METHOXY-1,3-DIMETHYL-2,6-DIOXO-PURIN-7-YL DERIVATIVES WITH TERMINAL CARBOXYLIC, ESTER OR AMIDE MOIETIES IN ANIMAL MODELS.

    PubMed

    Zygmunt, Małgorzata; Chłon-Rzepa, Grazyna; Wyska, Elzbieta; Pociecha, Krzysztof; Sapa, Jacek

    2016-01-01

    The previous studies in a series of 8-methoxy-1,3-dimethyl-2,6-dioxo-purin-7-yl derivatives revealed their analgesic properties. We extended the study with these compounds in aim to assess their impact on inflammatory process. For this purpose we used: the zymosan-induced peritonitis and the carrageenan-induced edema model. Furthermore, the antioxidant activity of the investigated compounds by the FRAP assay was determined. For the most active derivatives from evaluated series their influence on plasma TNF-α level was also tested in vivo. All investigated purine-2,6-dione derivatives 1-11 decreased neutrophils count and inhibited intensity of early vascular permeability. Furthermore, all evaluated compounds reduced the volume of edema caused by subcutaneous injection of carrageenan. Derivatives 1 (with ester moiety), 3 and 4 (with carboxylic group) showed the highest activity in the zymosan-induced peritonitis. In addition, a significant inhibition of plasma TNF-α level in rats with endotoxemia was observed following intraperitoneal administration of these compounds. In turn, compounds 6 and 8-11 containing amide moiety showed the greatest anti-inflammatory (antiedematous) effect in the carrageenan-induced paw edema model. All compounds did not show significant antioxidant properties. The present studies revealed that the presented purine-2,6-dione derivatives exhibit a significant anti-inflammatory activity and this effect may result from their ability to lower TNF-α level. PMID:27476295

  17. Characterization of purine catabolic pathway genes in coelacanths.

    PubMed

    Forconi, Mariko; Biscotti, Maria Assunta; Barucca, Marco; Buonocore, Francesco; De Moro, Gianluca; Fausto, Anna Maria; Gerdol, Marco; Pallavicini, Alberto; Scapigliati, Giuseppe; Schartl, Manfred; Olmo, Ettore; Canapa, Adriana

    2014-09-01

    Coelacanths are a critically valuable species to explore the gene changes that took place in the transition from aquatic to terrestrial life. One interesting and biologically relevant feature of the genus Latimeria is ureotelism. However not all urea is excreted from the body; in fact high concentrations are retained in plasma and seem to be involved in osmoregulation. The purine catabolic pathway, which leads to urea production in Latimeria, has progressively lost some steps, reflecting an enzyme loss during diversification of terrestrial species. We report the results of analyses of the liver and testis transcriptomes of the Indonesian coelacanth Latimeria menadoensis and of the genome of Latimeria chalumnae, which has recently been fully sequenced in the framework of the coelacanth genome project. We describe five genes, uricase, 5-hydroxyisourate hydrolase, parahox neighbor B, allantoinase, and allantoicase, each coding for one of the five enzymes involved in urate degradation to urea, and report the identification of a putative second form of 5-hydroxyisourate hydrolase that is characteristic of the genus Latimeria. The present data also highlight the activity of the complete purine pathway in the coelacanth liver and suggest its involvement in the maintenance of high plasma urea concentrations.

  18. 6-Methylpurine derived sugar modified nucleosides: Synthesis and in vivo antitumor activity in D54 tumor expressing M64V-Escherichia coli purine nucleoside phosphorylase.

    PubMed

    Hassan, Abdalla E A; Abou-Elkhair, Reham A I; Parker, William B; Allan, Paula W; Secrist, John A

    2016-01-27

    Impressive antitumor activity has been observed with fludarabine phosphate against tumors that express Escherichia coli purine nucleoside phosphorylase (PNP) due to the liberation of 2-fluoroadenine in the tumor tissue. 6-Methylpurine (MeP) is another cytotoxic adenine analog that does not exhibit selectivity when administered systemically, and could be very useful in a gene therapy approach to cancer treatment involving E. coli PNP. The prototype MeP releasing prodrug 9-(2-deoxy-β-d-ribofuranosyl)-6-methylpurine (1) [MeP-dR] has demonstrated good activity against tumors expressing E. coli PNP, but its antitumor activity is limited due to toxicity resulting from the generation of MeP from gut bacteria. Therefore, we have embarked on a medicinal chemistry program to identify a combination of non-toxic MeP prodrugs and non-human adenosine glycosidic bond cleaving enzymes. The two best MeP-based substrates with M64V-E coli PNP, a mutant which was engineered to tolerate modification at the 5'-position of adenosine and its analogs, were 9-(6-deoxy-α-l-talofuranosyl)-6-methylpurine (3) [methyl(talo)-MeP-R] and 9-(α-l-lyxofuranosyl)6-methylpurine (4) [lyxo-MeP-R]. The detailed synthesis methyl(talo)-MeP-R and lyxo-MeP-R, and the evaluation of their substrate activity with 4 enzymes not normally associated with cancer patients is described. In addition, we have determined the intraperitoneal pharmacokinetic (ip-PK) properties of methyl(talo)-MeP-R and have determined its in vivo bystander activity in mice bearing D54 tumors that express M64V PNP. The observed good in vivo bystander activity of [methyl(talo)-MeP-R/M64V-E coli PNP combination suggests that these agents could be useful for the treatment of cancer.

  19. Nucleolipids of Canonical Purine ß‐d‐Ribo‐Nucleosides: Synthesis and Cytostatic/Cytotoxic Activities Toward Human and Rat Glioblastoma Cells

    PubMed Central

    Knies, Christine; Hammerbacher, Katharina; Kinscherf, Ralf

    2015-01-01

    Abstract We report on the synthesis of two series of canonical purine ß‐d‐ribonucleoside nucleolipids derived from inosine and adenosine, which have been characterized by elemental analyses, electrospray ionization mass spectrometry (ESI MS) as well as by 1H and 13C NMR, and pH‐dependent UV/Vis spectroscopy. A selection of the novel nucleolipids with different lipophilic moieties were first tested on their cytotoxic effect toward human macrophages. Compounds without a significant inhibitory effect on the viability of the macrophages were tested on their cytostatic/cytotoxic effect toward human astrocytoma/oligodendroglioma GOS‐3 cells as well as against the rat malignant neuroectodermal BT4Ca cell line. In order to additionally investigate the potential molecular mechanisms involved in the cytotoxic effects of the derivatives on GOS‐3 or BT4Ca cells, we evaluated the induction of apoptosis and observed the particular activity of the nucleolipid ethyl 3‐{4‐hydroxymethyl‐2‐methyl‐6‐[6‐oxo‐1‐(3,7,11‐trimethyl‐dodeca‐2,6,10‐trienyl)‐1,6‐dihydro‐purin‐9‐yl]‐tetrahydro‐furo[3,4‐d][1,3]dioxol‐2‐yl}propionate (8 c) toward both human and rat glioblastoma cell lines in vitro. PMID:27308225

  20. Purification, crystallization, and preliminary X-ray diffraction study of purine nucleoside phosphorylase from E. coli

    SciTech Connect

    Abramchik, Yu. A. Timofeev, V. I. Zhukhlistova, N. E.; Muravieva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2015-07-15

    Crystals of E. coli purine nucleoside phosphorylase were grown in microgravity by the capillary counter-diffusion method through a gel layer. The X-ray diffraction data set suitable for the determination of the three-dimensional structure at atomic resolution was collected from one crystal at the Spring-8 synchrotron facility to 0.99 Å resolution. The crystals belong to sp. gr. P2{sub 1} and have the following unit-cell parameters: a = 74.1 Å, b = 110.2 Å, c = 88.2 Å, α = γ = 90°, β = 111.08°. The crystal contains six subunits of the enzyme comprising a hexamer per asymmetric unit. The hexamer is the biological active form of E. coli. purine nucleoside phosphorylase.

  1. Solar Energy Project, Activities: Biology.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of biology experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher information…

  2. Experimental and theoretical dipole moments of purines in their ground and lowest excited singlet states

    NASA Astrophysics Data System (ADS)

    Aaron, Jean-Jacques; Diabou Gaye, Mame; Párkányi, Cyril; Cho, Nam Sook; Von Szentpály, László

    1987-01-01

    The ground-state dipole moments of seven biologically important purines (purine, 6-chloropurine, 6-mercaptopurine, hypoxanthine, theobromine, theophylline and caffeine) were determined at 25°C in acetic acid (all the above compounds with the exception of purine) and in ethyl acetate (purine, theophylline and caffeine). Because of its low solubility, it was not possible to measure the dipole moment of uric acid. The first excited singlet-state dipole moments were obtained on the basis of the Bakhshiev and Chamma—Viallet equations using the variation of the Stokes shift with the solvent dielectric constant-refractive index term. The theoretical dipole moments for all the purines listed above and including uric acid were calculated by combining the use of the PPP (π-LCI-SCF-MO) method for the π-contribution to the overall dipole moment with the σ-contribution obtained as a vector sum of the σbond moments and group moments. The experimental and theoretical values were compared with the data available in the literature for some of the purines under study. For several purines, the calculations were carried out for different tautomeric forms. Excited singlet-state dipole moments are smaller than the ground-state values by 0.8 to 2.2 Debye units for all purines under study with the exception of 6-chloropurine. The effects of the structure upon the ground- and excited-state dipole moments of the purines are discussed.

  3. Diverse biological activities of dandelion.

    PubMed

    González-Castejón, Marta; Visioli, Francesco; Rodriguez-Casado, Arantxa

    2012-09-01

    Dandelion (Taraxacum officinale Weber) is a member of the Asteraceae (Compositae) family, native to Europe but widely distributed in the warmer temperate zones of the Northern Hemisphere. Dandelion and its parts are habitually consumed as plant foods in several areas of the world, where they are also employed in phytotherapy. Indeed, dandelion contains a wide array of phytochemicals whose biological activities are actively being explored in various areas of human health. In particular, emerging evidence suggests that dandelion and its constituents have antioxidant and anti-inflammatory activities that result in diverse biological effects. The present review provides a comprehensive analysis of the constituents of dandelion, an assessment of the pharmacological properties of dandelion, and a description of relevant studies that support the use of dandelion as a medicinal plant.

  4. Biological activity of ionene polymers

    NASA Technical Reports Server (NTRS)

    Rembaum, A.

    1973-01-01

    Ionene polymers are polyammonium salts with positive nitrogens in the backbone, resulting from the polycondensation of diamines with dihalides or from the polycondensation of halo amines. The mechanism of formation of ionene polymers of different structures and their biological activity is reviewed. The antimicrobial and antifungal properties are compared with low molecular weight ammonium salts. Ionenes were found to combine with DNA by means of ionic bonds to yield similar complexes to those obtained with polyamines (spermine and spermidine). They also combine with nerve cell receptors and exercise a more powerful and longer duration ganglionic blocking action than their monomeric analogs. The antiheparin activity of ionenes and the thromboresistance of elastomeric ionene heparin coatings is described. The enhanced biological activity of ionenes as compared with low molecular weight compounds is attributed to a cooperative effect of a large number of positive charges on the polymeric chains.

  5. New 7-arylpiperazinylalkyl-8-morpholin-4-yl-purine-2,6-dione derivatives with anxiolytic activity - Synthesis, crystal structure and structure-activity study

    NASA Astrophysics Data System (ADS)

    Chłoń-Rzepa, Grażyna; Żmudzki, Paweł; Pawłowski, Maciej; Wesołowska, Anna; Satała, Grzegorz; Bojarski, Andrzej J.; Jabłoński, Mateusz; Kalinowska-Tłuścik, Justyna

    2014-06-01

    On the basis of our earlier studies with serotonin (5-HT) receptor ligands in the group of long-chain arylpiperazines (LCAPs), a new series of 7-arylpiperazinylalkyl-8-morpholin-4-yl-purine-2,6-dione derivatives (5-12) has been designed, synthesised and studied in vitro for their affinity for 5-HT1A, 5-HT2A, 5-HT6 and 5-HT7 receptors. The introduction of o-OCH3 and m-Cl into the phenylpiperazinyl moiety as well as the elongation of the linker between purine-2,6-dione core and arylpiperazine fragment modified the affinity for the tested 5-HT receptors. The structures of compounds 9-11 (hydrochloride salts) were confirmed by an X-ray diffraction method. All molecules adopted a different conformation in the crystal. The strongest observed type of interaction is a charge assisted hydrogen bond N+-H⋯Cl-. Additionally, the π-π interactions between 1,3-dimethyl-3,7-dihydropurine-2,6-dione cores of the neighbouring molecules were also observed. As it is observed in the presented crystal structures, the morpholine ring (a potential donor and acceptor of the hydrogen bonds) seems to be an attractive substituent, that may support binding to the non-specific sites of 5-HT receptors. Another interesting feature is the mutual orientation of rings in the arylpiperazine fragment, with plausible influence on ligand-receptor recognition. For compound 10, with strong 5-HT1A binding affinity, the mutual orientation of rings is determined by the intramolecular weak C-H⋯O hydrogen bond. This observation may contribute to a better understanding of the more selective binding of o-OCH3 arylpiperazine derivatives to the 5-HT1A receptor.

  6. Isolation of Purines and Pyrimidines from the Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Bada, J. K.

    2003-01-01

    The origin of life on Earth, and possibly on other planets such as Mars, would have required the presence of liquid water and a continuous supply of prebiotic organic compounds. The delivery of organic matter by asteroids, comets, and carbonaceous meteorites could have contributed to the early Earth's prebiotic inventory by seeding the planet with biologically important organic compounds. A wide variety of prebiotic organic compounds have previously been detected in the Murchison CM type carbonaceous chondrite including amino acids, purines and pyrimidines'. These compounds play a major role in terrestrial biochemistry and are integral components of proteins, DNA and RNA. In this study we developed a new extraction technique using sublimation in order to isolate purines and pyrimidines from Murchison2, which is cleaner and more time efficient that traditional methods3. Several purines including adenine, guanine, hypoxanthine and xanthine were positively identified by high performance liquid chromatography and ultraviolet absorption detection in our Murchison extracts. The purines detected in Murchison do not correlate with the distribution of nucleobases found in geological environments on Earth4. Moreover, the abundance of extraterrestrial amino acids and the low level of terrestrial amino acid contaminants found in Murchison', support the idea that the purines in t h s meteorite are extraterrestrial in origin.

  7. X-ray structure, NMR and stability-in-solution study of 6-(furfurylamino)-9-(tetrahydropyran-2-yl)purine - A new active compound for cosmetology

    NASA Astrophysics Data System (ADS)

    Walla, Jan; Szüčová, Lucie; Císařová, Ivana; Gucký, Tomáš; Zatloukal, Marek; Doležal, Karel; Greplová, Jarmila; Massino, Frank J.; Strnad, Miroslav

    2010-06-01

    The crystal and molecular structure of 6-(furfurylamino)-9-(tetrahydropyran-2-yl)purine ( 1) was determined at 150(2) K. The compound crystallizes in monoclinic P2 1/ c space group with a = 10.5642(2), b = 13.6174(3), c = 10.3742(2) Å, V = 1460.78(5) Å 3, Z = 4, R( F) = for 3344 unique reflections. The purine moiety and furfuryl ring are planar and the tetrahydropyran-2-yl is disordered in the ratio 1:3, probably due to the chiral carbon atom C(17). The individual 1H and 13C NMR signals were assigned by 2D correlation experiments such as 1H- 1H COSY and ge-2D HSQC. Stability-in-solution was determined in methanol/water in acidic pH (3-7).

  8. Distinct Purine Distribution in Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Callahan, Michael P.; Smith, Karen E.; Cleaves, Henderson J.; Ruzicka, Josef; Stern, Jennifer C.; Glavin, Daniel P.; House, Christopher H.; Dworkin, Jason P.

    2011-01-01

    Carbonaceous chondrite meteorites are known to contain a diverse suite of organic compounds, many of which are essential components of biochemistry. Amino acids, which are the monomers of proteins, have been extensively studied in such meteorites (e.g. Botta and Bada 2002; Pizzarello et aI., 2006). The origin of amino acids in meteorites has been firmly established as extraterrestrial based on their detection typically as racemic mixtures of amino acids, the presence of many non-protein amino acids, and non-terrestrial values for compound-specific deuterium, carbon, and nitrogen isotopic measurements. In contrast to amino acids, nucleobases in meteorites have been far less studied. Nucleobases are substituted one-ring (pyrimidine) or two-ring (purine) nitrogen heterocyclic compounds and serve as the information carriers of nucleic acids and in numerous coenzymes. All of the purines (adenine, guanine, hypoxanthine, and xanthine) and pyrimidines (uracil) previously reported in meteorites are biologically common and could be interpreted as the result of terrestrial contamination (e.g. van del' Velden and Schwartz, 1974.) Unlike other meteoritic organics, there have been no observations of stochastic molecular diversity of purines and pyrimidines in meteorites, which has been a criterion for establishing extraterrestrial origin. Maltins et al. (2008) performed compound-specific stable carbon isotope measurements for uracil and xanthine in the Murchison meteorite. They assigned a non-terrestrial origin for these nucleobases; however, the possibility that interfering indigenous molecules (e.g. carboxylic acids) contributed to the 13C-enriched isotope values for these nucleobases cannot be completely ruled out. Thus, the origin of these meteoritic nucleobases has never been established unequivocally. Here we report on our investigation of extracts of II different carbonaceous chondrites covering various petrographic types (Cl, CM, and CR) and degrees of aqueous alteration

  9. Molecular characteristics versus biological activity

    USGS Publications Warehouse

    Applegate, Vernon C.; Smith, Manning A.; Willeford, Bennett R.

    1967-01-01

    The molecular characteristics of mononitrophenols containing halogens not only play a key role in their biological activity but provide a novel example of selective toxicity among vertebrate animals. It has been reported that efforts to control the parasitic sea lamprey in the Great Lakes are directed at present to the applications of a selective toxicant to streams inhabited by lamprey larvae. Since 1961, the larvicide that has been used almost exclusively in the control program has been 3-trifluoromethyl-4-nitrophenol (TFM). However, this is only one of about 15 closely related compounds, all halogen-containing mononitrophenols, that display a selectively toxic action upon lampreys. Although not all of the halogenated mononitrophenols are selectively toxic to lampreys (in fact, fewer than half of those tested), no other group of related compounds has displayed any useful larvicidal activity except for the substituted nitrosalicylanilides.

  10. Biological activation of carbon filters.

    PubMed

    Seredyńska-Sobecka, Bozena; Tomaszewska, Maria; Janus, Magdalena; Morawski, Antoni W

    2006-01-01

    To prepare biological activated carbon (BAC), raw surface water was circulated through granular activated carbon (GAC) beds. Biological activity of carbon filters was initiated after about 6 months of filter operation and was confirmed by two methods: measurement of the amount of biomass attached to the carbon and by the fluorescein diacetate (FDA) test. The effect of carbon pre-washing on WG-12 carbon properties was also studied. For this purpose, the nitrogen adsorption isotherms at 77K and Fourier transform-infrared (FT-IR) spectra analyses were performed. Moreover, iodine number, decolorizing power and adsorption properties of carbon in relation to phenol were studied. Analysis of the results revealed that after WG-12 carbon pre-washing its BET surface increased a little, the pH value of the carbon water extract decreased from 11.0 to 9.4, decolorizing power remained at the same level, and the iodine number and phenol adsorption rate increased. In preliminary studies of the ozonation-biofiltration process, a model phenol solution with concentration of approximately 10mg/l was applied. During the ozonation process a dose of 1.64 mg O(3)/mg TOC (total organic carbon) was employed and the contact time was 5 min. Four empty bed contact times (EBCTs) in the range of 2.4-24.0 min were used in the biofiltration experiment. The effectiveness of purification was measured by the following parameters: chemical oxygen demand (COD(Mn)), TOC, phenol concentration and UV(254)-absorbance. The parameters were found to decrease with EBCT. PMID:16376966

  11. Purine and glycine metabolism by purinolytic clostridia.

    PubMed Central

    Dürre, P; Andreesen, J R

    1983-01-01

    Cell extracts of Clostridium acidiurici, C. cylindrosporum, and C. purinolyticum converted purine, hypoxanthine, 2-hydroxypurine, 6,8-dihydroxypurine, and uric acid into xanthine by the shortest possible route. Adenine was transformed to xanthine only by C. purinolyticum, whereas the other two species formed 6-amino-8-hydroxypurine, which was neither deaminated nor hydroxylated further. 8-Hydroxypurine was formed from purine by all three species. Xanthine dehydrogenase activity was constitutively expressed by C. purinolyticum. Due to the lability of the enzyme activity, comparative studies could not be done with a purified preparation. All enzymes reported to be involved in formiminoglycine metabolism of C. acidiurici and C. cylindrosporum were present in C. purinolyticum. However, glycine was reduced directly to acetate in all three species, as indicated by radiochemical data and by the detection of glycine reductase in cell extracts of C. cylindrosporum and C. purinolyticum. The expression of glycine reductase and the high ratio of glycine fermented to uric acid present points to an energetic advantage for the glycine reductase system, which is expressed when selenium compounds are added to the growth media. PMID:6833177

  12. Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis

    PubMed Central

    2014-01-01

    Background Purine nucleotides are essential metabolites for living organisms because they are involved in many important processes, such as nucleic acid synthesis, energy supply, and biosynthesis of several amino acids and riboflavin. Owing to the pivotal roles of purines in cell physiology, the pool of intracellular purine nucleotides must be maintained under strict control, and hence the de novo purine biosynthetic pathway is tightly regulated by transcription repression and inhibition mechanism. Deregulation of purine pathway is essential for this pathway engineering in Bacillus subtilis. Results Deregulation of purine pathway was attempted to improve purine nucleotides supply, based on a riboflavin producer B. subtilis strain with modification of its rib operon. To eliminate transcription repression, the pur operon repressor PurR and the 5’-UTR of pur operon containing a guanine-sensing riboswitch were disrupted. Quantitative RT-PCR analysis revealed that the relative transcription levels of purine genes were up-regulated about 380 times. Furthermore, site-directed mutagenesis was successfully introduced into PRPP amidotransferase (encoded by purF) to remove feedback inhibition by homologous alignment and analysis. Overexpression of the novel mutant PurF (D293V, K316Q and S400W) significantly increased PRPP amidotransferase activity and triggered a strong refractory effect on purine nucleotides mediated inhibition. Intracellular metabolite target analysis indicated that the purine nucleotides supply in engineered strains was facilitated by a stepwise gene-targeted deregulation. With these genetic manipulations, we managed to enhance the metabolic flow through purine pathway and consequently increased riboflavin production 3-fold (826.52 mg/L) in the purF-VQW mutant strain. Conclusions A sequential optimization strategy was applied to deregulate the rib operon and purine pathway of B. subtilis to create genetic diversities and to improve riboflavin production

  13. Biological activity of phthalated endotoxin.

    PubMed

    Pistole, T G

    1975-09-01

    Glycolipid (GL) was extracted from a heptoseless mutant of Salmonella minnesota by a mixture of phenol, chloroform, and petroleum ether. The GL was subjected to treatment with either acetic anhydride or phthalic anhydride; a portion of the GL was untreated. Both of the chemically treated preparations as well as the parent GL were examined for biological activity in the following systems: mouse lethality assays, rabbit pyrogenicity assays, and rabbit skin assays. The results of these studies indicated that both treated preparations were less toxic in mice than the parent GL. Compared with saline-treated controls, rabbits pretreated with either of the modified preparations exhibited a reduced pyrogenic response to a subsequent challenge dose of the homologous material but no reduction when challenged with the parent GL. Pretreatment with the unaltered GL rendered rabbits tolerant to the homologous material and to some degree to the modified preparations. Rabbits immunized witn any of the three Gl preparations exhibited dermal toxicity responses comparable with those in untreated animals. Based on these findings, it was concluded that treating GL with either phthalic anhydride or acetic anhydride results in a product which is less toxic in mice and less pyrogenic in rabbits than the parent GL, but which also exhibits a loss of ability to render rabbits tolerant to challenge with untreated GL.

  14. Purine Salvage Pathways among Borrelia Species▿

    PubMed Central

    Pettersson, Jonas; Schrumpf, Merry E.; Raffel, Sandra J.; Porcella, Stephen F.; Guyard, Cyril; Lawrence, Kevin; Gherardini, Frank C.; Schwan, Tom G.

    2007-01-01

    Genome sequencing projects on two relapsing fever spirochetes, Borrelia hermsii and Borrelia turicatae, revealed differences in genes involved in purine metabolism and salvage compared to those in the Lyme disease spirochete Borrelia burgdorferi. The relapsing fever spirochetes contained six open reading frames that are absent from the B. burgdorferi genome. These genes included those for hypoxanthine-guanine phosphoribosyltransferase (hpt), adenylosuccinate synthase (purA), adenylosuccinate lyase (purB), auxiliary protein (nrdI), the ribonucleotide-diphosphate reductase alpha subunit (nrdE), and the ribonucleotide-diphosphate reductase beta subunit (nrdF). Southern blot assays with multiple Borrelia species and isolates confirmed the presence of these genes in the relapsing fever group of spirochetes but not in B. burgdorferi and related species. TaqMan real-time reverse transcription-PCR demonstrated that the chromosomal genes (hpt, purA, and purB) were transcribed in vitro and in mice. Phosphoribosyltransferase assays revealed that, in general, B. hermsii exhibited significantly higher activity than did the B. burgdorferi cell lysate, and enzymatic activity was observed with adenine, hypoxanthine, and guanine as substrates. B. burgdorferi showed low but detectable phosphoribosyltransferase activity with hypoxanthine even though the genome lacks a discernible ortholog to the hpt gene in the relapsing fever spirochetes. B. hermsii incorporated radiolabeled hypoxanthine into RNA and DNA to a much greater extent than did B. burgdorferi. This complete pathway for purine salvage in the relapsing fever spirochetes may contribute, in part, to these spirochetes achieving high cell densities in blood. PMID:17502392

  15. Trehalose glycolipids--synthesis and biological activities.

    PubMed

    Khan, Ashna A; Stocker, Bridget L; Timmer, Mattie S M

    2012-07-15

    A variety of trehalose glycolipids have been isolated from natural sources, and several of these glycolipids exhibit important biological properties. These molecules also represent challenging synthetic targets due to their highly amphiphilic character, their large number of functional groups and additional chiral centres. This review highlights some of the recent advances made in the synthesis of trehalose glycolipids, and their associated biological activities.

  16. SAR of carbon-linked, 2-substituted purines: synthesis and characterization of AP23451 as a novel bone-targeted inhibitor of Src tyrosine kinase with in vivo anti-resorptive activity.

    PubMed

    Shakespeare, William C; Wang, Yihan; Bohacek, Regine; Keenan, Terry; Sundaramoorthi, Raji; Metcalf, Chet; Dilauro, Anne; Roeloffzen, Sonya; Liu, Shuangying; Saltmarsh, Jennifer; Paramanathan, Guru; Dalgarno, David; Narula, Surinder; Pradeepan, Selvi; van Schravendijk, Marie Rose; Keats, Jeff; Ram, Mary; Liou, Shuenn; Adams, Susan; Wardwell, Scott; Bogus, Julie; Iuliucci, John; Weigele, Manfred; Xing, Lianping; Boyce, Brendan; Sawyer, Tomi K

    2008-02-01

    Targeted disruption of the pp60(src) (Src) gene has implicated this tyrosine kinase in osteoclast-mediated bone resorption and as a therapeutic target for the treatment of osteoporosis and other bone-related diseases. Here, we describe structure activity relationships of a novel series of carbon-linked, 2-substituted purines that led to the identification of AP23451 as a potent inhibitor of Src tyrosine kinase with antiresorptive activity in vivo. AP23451 features the use of an arylphosphinylmethylphosphinic acid moiety which confers bone-targeting properties to the molecule, thereby increasing local concentrations of the inhibitor to actively resorbing osteoclasts at the bone interface. AP23451 exhibited an IC50 = 68 nm against Src kinase; an X-ray crystal structure of the molecule complexed with Src detailed the molecular interactions responsible for its Src inhibition. In vivo, AP23451 demonstrated a dose-dependent decrease in PTH-induced hypercalcemia. Moreover, AP23517, a structurally and biochemically similar molecule with comparable activity (IC50 = 73 nm) except devoid of the bone-targeting element, demonstrated significantly reduced in vivo efficacy, suggesting that Src activity was necessary but not sufficient for in vivo activity in this series of compounds. PMID:18179464

  17. Structure–Activity Relationship in a Purine-Scaffold Compound Series with Selectivity for the Endoplasmic Reticulum Hsp90 Paralog Grp94

    PubMed Central

    Patel, Hardik J.; Patel, Pallav D.; Ochiana, Stefan O.; Yan, Pengrong; Sun, Weilin; Patel, Maulik R.; Shah, Smit K.; Tramentozzi, Elisa; Brooks, James; Bolaender, Alexander; Shrestha, Liza; Stephani, Ralph; Finotti, Paola; Leifer, Cynthia; Li, Zihai; Gewirth, Daniel T.; Taldone, Tony; Chiosis, Gabriela

    2015-01-01

    Grp94 is involved in the regulation of a restricted number of proteins and represents a potential target in a host of diseases, including cancer, septic shock, autoimmune diseases, chronic inflammatory conditions, diabetes, coronary thrombosis, and stroke. We have recently identified a novel allosteric pocket located in the Grp94 N-terminal binding site that can be used to design ligands with a 2-log selectivity over the other Hsp90 paralogs. Here we perform extensive SAR investigations in this ligand series and rationalize the affinity and paralog selectivity of choice derivatives by molecular modeling. We then use this to design 18c, a derivative with good potency for Grp94 (IC50 = 0.22 μM) and selectivity over other paralogs (>100- and 33-fold for Hsp90α/β and Trap-1, respectively). The paralog selectivity and target-mediated activity of 18c was confirmed in cells through several functional readouts. Compound 18c was also inert when tested against a large panel of kinases. We show that 18c has biological activity in several cellular models of inflammation and cancer and also present here for the first time the in vivo profile of a Grp94 inhibitor. PMID:25901531

  18. mTORC1 Induces Purine Synthesis Through Control of the Mitochondrial Tetrahydrofolate Cycle

    PubMed Central

    Ricoult, Stéphane J.H.; Asara, John M.; Manning, Brendan D.

    2016-01-01

    In response to growth signals, mTOR complex 1 (mTORC1) stimulates anabolic processes underlying cell growth. We found that mTORC1 increases metabolic flux through the de novo purine synthesis pathway in various mouse and human cells, thereby influencing the nucleotide pool available for nucleic acid synthesis. mTORC1 had transcriptional effects on multiple enzymes contributing to purine synthesis, with expression of the mitochondrial tetrahydrofolate (mTHF) cycle enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) being closely associated with mTORC1 signaling in both normal and cancer cells. MTHFD2 expression and purine synthesis were stimulated by ATF4, which was activated by mTORC1 independent of its canonical induction downstream of eIF2α phosphorylation. Thus, mTORC1 stimulates the mTHF cycle, which contributes one-carbon units to enhance production of purine nucleotides in response to growth signals. PMID:26912861

  19. Biological activity of liposomal vanillin.

    PubMed

    Castan, Leniher; Del Toro, Grisel; Fernández, Adolfo A; González, Manuel; Ortíz, Emilia; Lobo, Daliana

    2013-06-01

    This article presents a study of vanillin encapsulation inside multilamellar liposomes, with emphasis on the evaluation of antioxidant activity, the hemolytic effect, and the antisickling properties of these products. Egg phosphatidylcholine-cholesterol and egg phosphatidylcholine-cholesterol-1-O-decylglycerol liposomes were prepared by mechanical dispersion, all with vanillin included. Vesicles were characterized by determination of encapsulation efficiency and vanillin retention capacity. Antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. The hemolytic effect of liposomes was also evaluated by spectrophotometry, as well as the antisickling activity by the Huck test using optical microscopy. Results showed that the lipid composition of liposomes did not significantly affect the encapsulation efficiency. Stable vesicles were obtained with a high retention percentage of vanillin. Liposomes exhibited a high capture of the DPPH radical compared to free vanillin and 1-O-decylglycerol (C10) in solution. Vesicles caused no significant hemolisys in normal erythrocytes, nor in those coming from patients with sickle cell anemia. Vanillin encapsulated in liposomes retained its antisickling activity, with a greater effect for C10-containing vesicles. Our results show that vanillin encapsulation in liposomes is a way to enhance the pharmacologic properties of this molecule using a suitable vehicle.

  20. Biological activities of heparan sulfate.

    PubMed

    Arumugam, Muthuvel; Giji, Sadhasivam

    2014-01-01

    Heparan sulfate was isolated from two bivalve mollusks such as Tridacna maxima and Perna viridis. The isolated heparin was quantified in crude as well as purified samples and they were estimated as 2.72 and 2.2g/kg (crude) and 260 and 248 mg/g (purified) in T. maxima and P. viridis, respectively. Both the bivalves showed the anticoagulant activity of the crude and purified sample as 20,128 USP units/kg and 7.4 USP units/mg, 39,000 USP units/kg and 75 USP units/mg, 9460 USP units/kg and 4.3 USP units/mg, and 13,392 USP units/kg and 54 USP units/mg correspondingly in T. maxima and P. viridis. The antiproliferative activity that was studied with pulmonary artery smooth muscle cells using RPMI media reported that the result is in a dose-dependent manner. Among the two clams, P. viridis showed more antiproliferative activity than that of T. maxima.

  1. Biosynthesis of purines by a proplastid fraction from soybean nodules.

    PubMed

    Boland, M J; Schubert, K R

    1983-01-01

    A proplastid-containing fraction was rapidly prepared from soybean nodules by a combination of differential and step gradient centrifugation. This fraction was capable of incorporating [U-14C]glycine into purines in the presence of added phosphoribosylpyrophosphate or ribose 5-phosphate, glutamine, aspartate, ATP, bicarbonate, methenyl tetrahydrofolate, MgCl2, and KCl. The primary product was IMP; some inosine was also formed. Soluble and bacteroid fractions from soybean nodules gave considerably lower rates of incorporation. Labeled carbon from both [U-14C]serine and [3-14C]serine was incorporated into purines when tetrahydrofolate and NADP+ were substituted for methenyl tetrahydrofolate. In this case, small amounts of label were also found in AMP and xanthine monophosphate (XMP). Labeled bicarbonate was incorporated into IMP and inosine by the proplastid fraction. Labeled formate, however, was not a competent substrate for purine synthesis, indicating the absence of formyl tetrahydrofolate synthetase activity in this fraction. When labeled IMP was incubated with a proplastid preparation, most of the label appeared in inosine. XMP and xanthosine were also formed if NAD+ or NADP+ was added to the incubation mixture indicating the presence of IMP dehydrogenase activity in the proplastid fraction.

  2. Marine Pyridoacridine Alkaloids: Biosynthesis and Biological Activities.

    PubMed

    Ibrahim, Sabrin R M; Mohamed, Gamal A

    2016-01-01

    Pyridoacridines are a class of strictly marine-derived alkaloids that constitute one of the largest chemical families of marine alkaloids. During the last few years, both natural pyridoacridines and their analogues have constituted excellent targets for synthetic works. They have been the subject of intense study due to their significant biological activities; cytotoxic, antibacterial, antifungal, antiviral, insecticidal, anti-HIV, and anti-parasitic activities. In the present review, 95 pyridoacridine alkaloids isolated from marine organisms are discussed in term of their occurrence, biosynthesis, biological activities, and structural assignment.

  3. Marine Biology Activities. Ocean Related Curriculum Activities.

    ERIC Educational Resources Information Center

    Pauls, John

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  4. Antidepressant- and anxiolytic-like activity of 7-phenylpiperazinylalkyl-1,3-dimethyl-purine-2,6-dione derivatives with diversified 5-HT₁A receptor functional profile.

    PubMed

    Partyka, Anna; Chłoń-Rzepa, Grażyna; Wasik, Anna; Jastrzębska-Więsek, Magdalena; Bucki, Adam; Kołaczkowski, Marcin; Satała, Grzegorz; Bojarski, Andrzej J; Wesołowska, Anna

    2015-01-01

    Continuing our earlier study in a group of purine-2,6-dione derivatives of long chain arylpiperazines (LCAPs), a series of 8-unsubstituted 7-phenylpiperazin-4-yl-alkyl (4-14) and 7-tetrahydroisoquinolinyl-alkyl (15-17) analogues were synthesized and their serotonin 5-HT1A, 5-HT2A, 5-HT6, 5-HT7 and dopamine D2 receptor affinities were determined. The study allowed us to identify some potent 5-HT1A receptor ligands with additional moderate affinity for 5-HT2A, 5-HT7 and dopamine D2 receptors. Compounds 9, 12, 13 and 14, with the highest 5HT1A receptor affinity, were selected for further functional in vivo studies and behavioural evaluation of antidepressant- and antianxiety-like activity. Compounds 9, 12 and 13 showed features of agonists of pre- and/or post-synaptic 5-HT1A receptors, whereas 14 was classified as an antagonist of postsynaptic sites. Moreover, derivatives 9 and 14 acted as antagonists of 5-HT2A receptors. In behavioural studies, compounds 9 and 13 showed antidepressant-like activity in the mouse forced swim test, and their effects were similar or stronger than those of imipramine. Compounds 9, 12 and 14 displayed potential anxiolytic-like properties in the mouse four-plate test, similar or even greater than those of the reference anxiolytic drug, diazepam.

  5. Perylenequinones: Isolation, Synthesis, and Biological Activity

    PubMed Central

    Mulrooey, Carol A.; O'Brien, Erin M.; Morgan, Barbara J.

    2013-01-01

    The perylenequinones are a novel class of natural products characterized by pentacyclic conjugated chromophore giving rise to photoactivity. Potentially useful light-activated biological activity, targeting protein kinase C (PKC), has been identified for several of the natural products. Recently discovered new members of this class of compound, as well as several related phenanthroperylenequinones, are reviewed. Natural product modifications that improve biological profiles, and avenues for the total synthesis of analogs, which are not available from the natural product series, are outlined. An overview of structure/function relationships is provided. PMID:24039544

  6. [Plasma antioxidant activity--a test for impaired biological functions of endoecology, exotrophy, and inflammation reactions].

    PubMed

    Titov, V N; Krylin, V V; Dmitriev, V A; Iashin, Ia I

    2010-07-01

    The authors discuss the diagnostic value of a test for total serum antioxidant activity determined by an electrochemistry method on a liquid chromatograph (without a column), by using an amperometric detector, as well as the composition of the endogenously synthesized hydrophilic and hydrophobic acceptors of reactive oxygen species (ROS). Uric acid is a major hydrophilic acceptor of ROS; monoenic oleic fatty acid acts as its major lipophilic acceptor. The constant determined by the authors for of 03 oleic acid oxidation during automatic titration in the organic medium is an order of magnitude higher than that for alpha-tocopherol, beta-carotene and linoleic fatty acid; its concentration is also an order of magnitude higher. In oxidative stress, the adrenal steroid hormone dehydroepiandrosterone initiates oleic acid synthesis via expression of palmitoyl elongase and steatoryl desaturase. In early steps of phylogenesis in primates, spontaneous mutation resulted in ascorbic acid synthesis gene knockout; phylogenetically, further other mutation knocked out the gene encoding the synthesis of uricase and the conversion of uric acid to alantoin. In primates, uric acid became not only a catabolite of purine bases in vivo, but also the major endogenous hydrophilic acceptor of ROS. This philogenetic order makes it clear why the epithelium in the proximal nephron tubule entirely reabsorbs uric acid (a catabolite?) from primary urine and then secretes it again to urine depending on the impairment of biological functions of endoecology (the intercellular medium being contaminated with biological rubbish), the activation of a biological inflammatory reaction, the cellular production of ROS, and the reduction in serum total antioxidant activity. With each biological reaction, there was an increase in the blood content of uric acid as a hydrophilic acceptor of ROS, by actively lowering its secretion into urine. Uric acid is a diagnostic test of inflammation, or rather compensatory

  7. [Biologically Active Peptides of King Crab Hepatopancreas].

    PubMed

    Bogdanov, V V; Berezin, B B; Il'ina, A P; Yamskova, V P; Yamskov, I A

    2015-01-01

    Substances of a peptide nature isolated from the hepatopancreas of the king crab Paralithodes camtschaticus exhibited physicochemical properties and membranotropic and specific activities similar to those of membranotropic homeostatic tissue-specific bioregulators previously found in different mammalian and plant tissues. Their biological effect on vertebrate tissues was demonstrated on a model of roller organotypic cultivation of Pleurodeles waltl newt liver tissue. PMID:26353409

  8. From Purines to Basic Biochemical Concepts: Experiments for High School Students

    ERIC Educational Resources Information Center

    Marini, Isabella; Ipata, Piero Luigi

    2007-01-01

    Many high school biology courses address mainly the molecular and cellular basis of life. The complexity that underlies the most essential processes is often difficult for the students to understand; possibly, in part, because of the inability to see and explore them. Six simple practical experiments on purine catabolism as a part of a…

  9. Structural determinants of the 5'-methylthioinosine specificity of Plasmodium purine nucleoside phosphorylase.

    PubMed

    Donaldson, Teraya M; Ting, Li-Min; Zhan, Chenyang; Shi, Wuxian; Zheng, Renjian; Almo, Steven C; Kim, Kami

    2014-01-01

    Plasmodium parasites rely upon purine salvage for survival. Plasmodium purine nucleoside phosphorylase is part of the streamlined Plasmodium purine salvage pathway that leads to the phosphorylysis of both purines and 5'-methylthiopurines, byproducts of polyamine synthesis. We have explored structural features in Plasmodium falciparum purine nucleoside phosphorylase (PfPNP) that affect efficiency of catalysis as well as those that make it suitable for dual specificity. We used site directed mutagenesis to identify residues critical for PfPNP catalytic activity as well as critical residues within a hydrophobic pocket required for accommodation of the 5'-methylthio group. Kinetic analysis data shows that several mutants had disrupted binding of the 5'-methylthio group while retaining activity for inosine. A triple PfPNP mutant that mimics Toxoplasma gondii PNP had significant loss of 5'-methylthio activity with retention of inosine activity. Crystallographic investigation of the triple mutant PfPNP with Tyr160Phe, Val66Ile, andVal73Ile in complex with the transition state inhibitor immucillin H reveals fewer hydrogen bond interactions for the inhibitor in the hydrophobic pocket. PMID:24416224

  10. Structural determinants of the 5'-methylthioinosine specificity of Plasmodium purine nucleoside phosphorylase.

    PubMed

    Donaldson, Teraya M; Ting, Li-Min; Zhan, Chenyang; Shi, Wuxian; Zheng, Renjian; Almo, Steven C; Kim, Kami

    2014-01-01

    Plasmodium parasites rely upon purine salvage for survival. Plasmodium purine nucleoside phosphorylase is part of the streamlined Plasmodium purine salvage pathway that leads to the phosphorylysis of both purines and 5'-methylthiopurines, byproducts of polyamine synthesis. We have explored structural features in Plasmodium falciparum purine nucleoside phosphorylase (PfPNP) that affect efficiency of catalysis as well as those that make it suitable for dual specificity. We used site directed mutagenesis to identify residues critical for PfPNP catalytic activity as well as critical residues within a hydrophobic pocket required for accommodation of the 5'-methylthio group. Kinetic analysis data shows that several mutants had disrupted binding of the 5'-methylthio group while retaining activity for inosine. A triple PfPNP mutant that mimics Toxoplasma gondii PNP had significant loss of 5'-methylthio activity with retention of inosine activity. Crystallographic investigation of the triple mutant PfPNP with Tyr160Phe, Val66Ile, andVal73Ile in complex with the transition state inhibitor immucillin H reveals fewer hydrogen bond interactions for the inhibitor in the hydrophobic pocket.

  11. Leishmania amazonensis: Biological and biochemical characterization of ecto-nucleoside triphosphate diphosphohydrolase activities.

    PubMed

    Pinheiro, Carla M; Martins-Duarte, Erica S; Ferraro, Rodrigo B; Fonseca de Souza, André Luíz; Gomes, Marta T; Lopes, Angela H C S; Vannier-Santos, Marcos A; Santos, André L S; Meyer-Fernandes, José R

    2006-09-01

    The presence of Leishmania amazonensis ecto-nucleoside triphosphate triphosphohydrolase activities was demonstrated using antibodies against different NTPDase members by Western blotting, flow cytometry, and immunoelectron microscopy analysis. Living promastigote cells sequentially hydrolyzed the ATP molecule generating ADP, AMP, and adenosine, indicating that this surface enzyme may play a role in the salvage of purines from the extracellular medium. The L. amazonensis ecto-NTPDase activities were insensitive to Triton X-100, but they were enhanced by divalent cations, such as Mg(2+). In addition, the ecto-NTPDase activities decreased with time for 96 h when promastigotes were grown in vitro. On the other hand, these activities increased considerably when measured in living amastigote forms. Furthermore, the treatment with adenosine, a mediator of several relevant biological phenomena, induced a decrease in the reactivity with anti-CD39 antibody, raised against mammalian E-NTPDase, probably because of down regulation in the L. amazonensis ecto-NTPDase expression. Also, adenosine and anti-NTPDase antibodies induced a significant diminishing in the interaction between promastigotes of L. amazonensis and mouse peritoneal macrophages. PMID:16603157

  12. Functional and Structural Characterization of Purine Nucleoside Phosphorylase from Kluyveromyces lactis and Its Potential Applications in Reducing Purine Content in Food

    PubMed Central

    Mahor, Durga; Priyanka, Anu; Prasad, Gandham S; Thakur, Krishan Gopal

    2016-01-01

    Consumption of foods and beverages with high purine content increases the risk of hyperuricemia, which causes gout and can lead to cardiovascular, renal, and other metabolic disorders. As patients often find dietary restrictions challenging, enzymatically lowering purine content in popular foods and beverages offers a safe and attractive strategy to control hyperuricemia. Here, we report structurally and functionally characterized purine nucleoside phosphorylase (PNP) from Kluyveromyces lactis (KlacPNP), a key enzyme involved in the purine degradation pathway. We report a 1.97 Å resolution crystal structure of homotrimeric KlacPNP with an intrinsically bound hypoxanthine in the active site. KlacPNP belongs to the nucleoside phosphorylase-I (NP-I) family, and it specifically utilizes 6-oxopurine substrates in the following order: inosine > guanosine > xanthosine, but is inactive towards adenosine. To engineer enzymes with broad substrate specificity, we created two point variants, KlacPNPN256D and KlacPNPN256E, by replacing the catalytically active Asn256 with Asp and Glu, respectively, based on structural and comparative sequence analysis. KlacPNPN256D not only displayed broad substrate specificity by utilizing both 6-oxopurines and 6-aminopurines in the order adenosine > inosine > xanthosine > guanosine, but also displayed reversal of substrate specificity. In contrast, KlacPNPN256E was highly specific to inosine and could not utilize other tested substrates. Beer consumption is associated with increased risk of developing gout, owing to its high purine content. Here, we demonstrate that KlacPNP and KlacPNPN256D could be used to catalyze a key reaction involved in lowering beer purine content. Biochemical properties of these enzymes such as activity across a wide pH range, optimum activity at about 25°C, and stability for months at about 8°C, make them suitable candidates for food and beverage industries. Since KlacPNPN256D has broad substrate specificity, a

  13. Loranthus micranthus Linn.: Biological Activities and Phytochemistry

    PubMed Central

    Zorofchian Moghadamtousi, Soheil; Hajrezaei, Maryam; Abdul Kadir, Habsah

    2013-01-01

    Loranthus micranthus Linn. is a medicinal plant from the Loranthaceae family commonly known as an eastern Nigeria species of the African mistletoe and is widely used in folkloric medicine to cure various ailments and diseases. It is semiparasitic plant because of growing on various host trees and shrubs and absorbing mineral nutrition and water from respective host. Hence, the phytochemicals and biological activities of L. micranthus demonstrated strong host and harvesting period dependency. The leaves have been proved to possess immunomodulatory, antidiabetic, antimicrobial, antihypertensive, antioxidant, antidiarrhoeal, and hypolipidemic activities. This review summarizes the information and findings concerning the current knowledge on the biological activities, pharmacological properties, toxicity, and chemical constituents of Loranthus micranthus. PMID:24109490

  14. Glycosides from marine sponges (Porifera, Demospongiae): structures, taxonomical distribution, biological activities and biological roles.

    PubMed

    Kalinin, Vladimir I; Ivanchina, Natalia V; Krasokhin, Vladimir B; Makarieva, Tatyana N; Stonik, Valentin A

    2012-08-01

    Literature data about glycosides from sponges (Porifera, Demospongiae) are reviewed. Structural diversity, biological activities, taxonomic distribution and biological functions of these natural products are discussed.

  15. Glycosides from Marine Sponges (Porifera, Demospongiae): Structures, Taxonomical Distribution, Biological Activities and Biological Roles

    PubMed Central

    Kalinin, Vladimir I.; Ivanchina, Natalia V.; Krasokhin, Vladimir B.; Makarieva, Tatyana N.; Stonik, Valentin A.

    2012-01-01

    Literature data about glycosides from sponges (Porifera, Demospongiae) are reviewed. Structural diversity, biological activities, taxonomic distribution and biological functions of these natural products are discussed. PMID:23015769

  16. Biological activities of selected basidiomycetes from Yemen.

    PubMed

    Al-Fatimi, M; Schröder, G; Kreisel, H; Lindequist, U

    2013-03-01

    In a previous paper we demonstrated the results of biological screening of Yemeni basidiomycetes. The present study was aimed to investigate the antimicrobial and the antioxidant activity of further basidiomycetes collected in Yemen. Dichloromethane, methanol and aqueous extracts of the fruiting bodies of 25 species were screened in vitro for their antibacterial activities against three Gram-positive bacteria (Staphyloccocus aureus, Bacillus subtilis, Micrococcus flavus) and two Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa), against six human fungal pathogens (Candida albicans, Candida krusei, Aspergillus fumigatus, Mucor sp., Microsporum gypseum, Trichophyton mentagrophytes) and against one non human pathogenic fungus (Candida maltosa). The results indicated that 75 extracts exhibited activity against one or more of the bacteria. The methanol extracts of Agaricus cf. bernardii, Agrocybe pediades, Chlorophyllum molybdites, Coriolopsis polyzona, Ganoderma xylonoides, Pycnoporus sanguineus, Trametes lactinea and Trametes cingulata showed activity against all tested bacteria. The highest antibacterial activity was exhibited by methanol extracts from Chlorophyllum molybdites, Ganoderma xylonoides and Trametes cingulata and Agaricus cf. bernardii, Agrocybe pediades, Coriolopsis polyzona, Pycnoporus sanguineus and Trametes lactinea. The methanol extracts of Chlorophyllum molybdites, Ganoderma xylonoides and Pycnoporus sanguineus showed considerable antifungal activities against the tested fungal strains. Strong antioxidative effects employing the DPPH assay were exhibited by methanol extracts from Chlorophyllum molybdites, Ganoderma xylonoides, Hexagonia velutina, Pycnoporus sanguineus, Trametes lactinea and Trametes cingulata. Our previous and presented studies about 48 basidiomycetes collected in Yemen provide evidence that basidiomycetes from the Arabic region so far should attract more attention as potential source for new biologically active

  17. Perspectives on Biologically Active Camptothecin Derivatives

    PubMed Central

    Liu, Ying-Qian; Li, Wen-Qun; Morris-Natschke, Susan L.; Qian, Keduo; Yang, Liu; Zhu, Gao-Xiang; Wu, Xiao-Bing; Chen, An-Liang; Zhang, Shao-Yong; Song, Zi-Long; Lee, Kuo-Hsiung

    2015-01-01

    Camptothecins (CPTs) are cytotoxic natural alkaloids that specifically target DNA topoisomerase I. Research on CPTs has undergone a significant evolution from the initial discovery of CPT in the late 1960s through the study of synthetic small molecule derivatives to investigation of macromolecular constructs and formulations. Over the past years, intensive medicinal chemistry efforts have generated numerous CPT derivatives. Three derivatives, topotecan, irinotecan, and belotecan, are currently prescribed as anticancer drugs, and several related compounds are now in clinical trials. Interest in other biological effects, besides anticancer activity, of CPTs is also growing exponentially, as indicated by the large number of publications on the subject during the last decades. Therefore, the main focus of the present review is to provide an ample but condensed overview on various biological activities of CPT derivatives, in addition to continued up-to-date coverage of anticancer effects. PMID:25808858

  18. Monitoring Biological Activity at Geothermal Power Plants

    SciTech Connect

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  19. Can erythrocytes release biologically active NO?

    PubMed

    Benz, Peter M; Fleming, Ingrid

    2016-01-01

    Under physiological conditions, endothelial cells and the endothelial nitric oxide (NO) synthase (eNOS) are the main source of NO in the cardiovascular system. However, several other cell types have also been implicated in the NO-dependent regulation of cell function, including erythrocytes. NO derived from red blood cells has been proposed to regulate erythrocyte membrane fluidity, inhibit platelet activation and induce vasodilation in hypoxic areas, but these proposals are highly controversial. In the current issue of Cell Communication and Signaling, an elegant study by Gambaryan et al., assayed NO production by erythrocytes by monitoring the activation of the platelet intracellular NO receptor, soluble guanylyl cyclase, and its downstream kinase protein kinase G. After systematically testing different combinations of erythrocyte/platelet suspensions, the authors found no evidence for platelet soluble guanylyl cyclase/protein kinase G activation by erythrocytes and conclude that erythrocytes do not release biologically active NO to inhibit platelet activation. PMID:27639852

  20. Modulation by purines of calcium-activated non-selective cation channels in the outer hair cells of the guinea-pig cochlea.

    PubMed Central

    Van den Abbeele, T; Tran Ba Huy, P; Teulon, J

    1996-01-01

    1. The cell-attached and cell-free configurations of the patch-clamp technique were used to investigate whether external ATP and its derivatives modulate channel activity in outer hair cells freshly isolated from the guinea-pig cochlea. 2. Submicromolar concentrations of ATP stimulated a non-selective cation channel with a conductance of about 25 pS. The ATP-elicited stimulation was partly blocked by the membrane-permeant blocker 3',5-dichlorodiphenylamine-2-carboxylic acid (DCDPC), and mimicked by the calcium ionophore, ionomycin, suggesting that the channel activated by ATP is identical to a previously reported calcium-activated non-selective (CAN) cation channel. 3. The P2x agonist beta, gamma-methylene-ATP (beta, gamma-MeATP, 10 microM) and the P2Y agonist 2-methyl-thio-ATP (2-MeSATP, 1 microM) both activated CAN channels. The effect of ATP was inhibited by the P2 antagonist suramin but not by the P2Y antagonist Reactive Blue 2. These results suggest that both purinergic receptors are involved in the ATP-evoked response and that internal calcium acts as a second messenger for opening CAN channels. 4. In contrast, adenosine inhibited CAN channels. This effect was reproduced by the A2 agonist 5'-N-ethylcarboxyamidoadenosine (NECA) and the permeant cAMP analogue 8-bromo-adenosine 3',5'-cyclic monophosphate (8-Br-cAMP), but not by the A1 agonist N6-cyclo-hexyladenosine (CHA). CAN channels were also inhibited when the catalytic subunit of protein kinase A was applied internally on inside-out patches, suggesting that adenosine A2 receptor downregulates CAN channels via a cAMP-dependent phosphorylation. Images Figure 10 PMID:8814608

  1. Specific and non-specific purine trap in the T-loop of normal and suppressor tRNAs.

    PubMed

    Doyon, Félix R; Zagryadskaya, Ekaterina I; Chen, Jianhong; Steinberg, Sergey V

    2004-10-01

    To elucidate the general constraints imposed on the structure of the D and T-loops in functional tRNAs, active suppressor tRNAs were selected in vivo from a combinatorial tRNA gene library in which several nucleotide positions in these loops were randomized. Analysis of the nucleotide sequences of the selected clones demonstrates that most of them contain combination U54-A58 allowing the formation of the standard reverse-Hoogsteen base-pair 54-58 in the T-loop. With only one exception, all these clones fall into two groups, each characterized by a distinct sequence pattern. Analysis of these two groups has allowed us to suggest two different types of nucleotide arrangement in the DT region. The first type, the so-called specific purine trap, is found in 12 individual tRNA clones and represents a generalized version of the standard D-T loop interaction. It consists of purine 18 sandwiched between the reverse-Hoogsteen base-pair U54-A58 and purine 57. The identity of purine 18 is restricted by the specific base-pairing with nucleotide 55. Depending on whether nucleotide 55 is U or G, purine 18 should be, respectively, G or A. The second structural type, the so-called non-specific purine trap, corresponds to the nucleotide sequence pattern found in 16 individual tRNA clones and is described here for the first time. It consists of purine 18 sandwiched between two reverse-Hoogsteen base-pairs U54-A58 and A55-C57 and, unlike the specific purine trap, requires the T-loop to contain an extra eighth nucleotide. Since purine 18 does not form a base-pair in the non-specific purine trap, both purines, G18 and A18, fit to the structure equally well. The important role of both the specific and non-specific purine traps in the formation of the tRNA L-shape is discussed.

  2. Lights and shadows in the challenge of binding acyclovir, a synthetic purine-like nucleoside with antiviral activity, at an apical-distal coordination site in copper(II)-polyamine chelates.

    PubMed

    Pérez-Toro, Inmaculada; Domínguez-Martín, Alicia; Choquesillo-Lazarte, Duane; Vílchez-Rodríguez, Esther; González-Pérez, Josefa María; Castiñeiras, Alfonso; Niclós-Gutiérrez, Juan

    2015-07-01

    Several nucleic acid components and their metal complexes are known to be involved in crucial metabolic steps. Therefore the study of metal-nucleic acid interactions becomes essential to understand these biological processes. In this work, the synthetic purine-like nucleoside acyclovir (acv) has been used as a model of guanosine recognition with copper(II)-polyamine chelates. The chemical stability of the N9-acyclic arm in acv offers the possibility to use this antiviral drug to deepen the knowledge of metal-nucleoside interactions. Cu(II) chelates with cyclam, cyclen and trien were used as suitable receptors. All these copper(II) tetraamine chelates have in common the potential ability to yield a Cu-N7(apical) bond assisted by an appropriate (amine)N-H⋯O6(acv) intra-molecular interligand interaction. A series of synthesis afforded the following compounds: [Cu(cyclam)(ClO4)2] (1), {[Cu(cyclam)(μ2-NO3)](NO3)}n (2), {[Cu(cyclam)(μ2-SO4)]·MeOH}n (3), {[Cu(cyclam)(μ2-SO4)]·5H2O}n (4), [Cu(cyclen)(H2O)]SO4·2H2O (5), [Cu(cyclen)(H2O)]SO4·3H2O (6), [Cu(trien)(acv)](NO3)2·acv (7) and [Cu(trien)(acv)]SO4·0.71H2O (8). All these compounds have been characterized by X-ray crystallography and FT-IR spectroscopy. Our results reveal that the macrochelates Cu(cyclen)(2+) and Cu(cyclam)(2+) are unable to bind acv at an apical site. In contrast, the Cu(trien)(2+) complex has proved to be an efficient receptor for acv in compounds (7) and (8). In the ternary complex [Cu(trien)(acv)](2+), the metal binding pattern of acv consists of an apical Cu-N7 bond assisted by an intra-molecular (primary amino)N-H⋯O6(acv) interligand interaction. Structural comparisons reveal that this unprecedented apical role of acv is due to the acyclic nature of trien together with the ability of the Cu(trien)(2+) chelate to generate five-coordinated (type 4+1) copper(II) complexes. PMID:25863571

  3. Lights and shadows in the challenge of binding acyclovir, a synthetic purine-like nucleoside with antiviral activity, at an apical-distal coordination site in copper(II)-polyamine chelates.

    PubMed

    Pérez-Toro, Inmaculada; Domínguez-Martín, Alicia; Choquesillo-Lazarte, Duane; Vílchez-Rodríguez, Esther; González-Pérez, Josefa María; Castiñeiras, Alfonso; Niclós-Gutiérrez, Juan

    2015-07-01

    Several nucleic acid components and their metal complexes are known to be involved in crucial metabolic steps. Therefore the study of metal-nucleic acid interactions becomes essential to understand these biological processes. In this work, the synthetic purine-like nucleoside acyclovir (acv) has been used as a model of guanosine recognition with copper(II)-polyamine chelates. The chemical stability of the N9-acyclic arm in acv offers the possibility to use this antiviral drug to deepen the knowledge of metal-nucleoside interactions. Cu(II) chelates with cyclam, cyclen and trien were used as suitable receptors. All these copper(II) tetraamine chelates have in common the potential ability to yield a Cu-N7(apical) bond assisted by an appropriate (amine)N-H⋯O6(acv) intra-molecular interligand interaction. A series of synthesis afforded the following compounds: [Cu(cyclam)(ClO4)2] (1), {[Cu(cyclam)(μ2-NO3)](NO3)}n (2), {[Cu(cyclam)(μ2-SO4)]·MeOH}n (3), {[Cu(cyclam)(μ2-SO4)]·5H2O}n (4), [Cu(cyclen)(H2O)]SO4·2H2O (5), [Cu(cyclen)(H2O)]SO4·3H2O (6), [Cu(trien)(acv)](NO3)2·acv (7) and [Cu(trien)(acv)]SO4·0.71H2O (8). All these compounds have been characterized by X-ray crystallography and FT-IR spectroscopy. Our results reveal that the macrochelates Cu(cyclen)(2+) and Cu(cyclam)(2+) are unable to bind acv at an apical site. In contrast, the Cu(trien)(2+) complex has proved to be an efficient receptor for acv in compounds (7) and (8). In the ternary complex [Cu(trien)(acv)](2+), the metal binding pattern of acv consists of an apical Cu-N7 bond assisted by an intra-molecular (primary amino)N-H⋯O6(acv) interligand interaction. Structural comparisons reveal that this unprecedented apical role of acv is due to the acyclic nature of trien together with the ability of the Cu(trien)(2+) chelate to generate five-coordinated (type 4+1) copper(II) complexes.

  4. The involvement of the anticodon adjacent modified nucleoside N-(9-(BETA-D-ribofuranosyl) purine-6-ylcarbamoyl)-threonine in the biological function of E. coli tRNAile.

    PubMed Central

    Miller, J P; Hussain, Z; Schweizer, M P

    1976-01-01

    tRNAile was isolated from E. coli Cp 79 (leu-, arg-, thr-, his-, thiamin-, RCrel) which had been grown on a sub-optimal concentration of thr and was found to contain an average of 50% less N-[9-(beta-D-ribofuranosyl)- purin-6-ylcarbamoyl]threonine, t6Ado, than tRNAile from cells grown on an optimum concentration of thr and containing a normal complement of t6Ado. The two tRNA's were identical in their ability to be aminoacylated, to accept the 3'-terminal dinucleotide, and to form an ile-tRNAile-Tu-GTP complex. In contrast, the t6Ado-deficient-tRNA was significantly less efficient in binding to ribosomes compared to the normal tRNA. This difference was seen in the binding of deacylated tRNA and in the nonenzymatic and enzymatic binding of ile-tRNA, all in response to poly AUC. The t6Ado-deficient ile-tRNA demonstrated no binding at Mg2+ concentrations less than or equal to 10 mM, while the normal ile-tRNA bound at low Mg2+ concentrations. Tetracycline had the same effect on the normal as on the t6Ado-deficient ile-tRNA binding. As a control, the binding of phe-tRNA (which does not contain t6Ado) from normal and thr-starved cells in response to poly U was identical. It was concluded that t6Ado is required for proper codon-anticodon interaction. PMID:781621

  5. Fungal proteinaceous compounds with multiple biological activities.

    PubMed

    Ng, Tzi Bun; Cheung, Randy Chi Fai; Wong, Jack Ho; Chan, Yau Sang; Dan, Xiuli; Pan, Wenliang; Wang, Hexiang; Guan, Suzhen; Chan, Ki; Ye, Xiuyun; Liu, Fang; Xia, Lixin; Chan, Wai Yee

    2016-08-01

    Fungi comprise organisms like molds, yeasts and mushrooms. They have been used as food or medicine for a long time. A large number of fungal proteins or peptides with diverse biological activities are considered as antibacterial, antifungal, antiviral and anticancer agents. They encompass proteases, ribosome inactivating proteins, defensins, hemolysins, lectins, laccases, ribonucleases, immunomodulatory proteins, and polysaccharopeptides. The target of the present review is to update the status of the various bioactivities of these fungal proteins and peptides and discuss their therapeutic potential. PMID:27338574

  6. Vibrational Raman optical activity of biological molecules

    NASA Astrophysics Data System (ADS)

    Barron, L. D.; Gargaro, A. R.; Hecht, Lutz; Wen, Z. Q.; Hug, W.

    1991-05-01

    Advances in Raman optical activity (ROA) instrumentation based on the employment of a backscattering geometry together with a cooled CCD detector have now enhanced the sensitivity to the level necessary to provide vibrational ROA spectra of biological molecules in aqueous solution. Preliminary results on peptides and proteins show features originating in coupled Ca-H and N-H deformations of the peptide backbone which appear to be sensitive to the secondary conformation. Also carbohydrates show many features that appear to be characteristic of the central aspects of carbohydrate architecture with effects from the glycosidic link in di- and oligosaccharides particularly prominent. 1.

  7. Reconstructing Causal Biological Networks through Active Learning

    PubMed Central

    Cho, Hyunghoon; Berger, Bonnie; Peng, Jian

    2016-01-01

    Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs), which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments. PMID:26930205

  8. Reconstructing Causal Biological Networks through Active Learning.

    PubMed

    Cho, Hyunghoon; Berger, Bonnie; Peng, Jian

    2016-01-01

    Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs), which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments. PMID:26930205

  9. Biological activities of Morus celtidifolia leaf extracts.

    PubMed

    Viveros-Valdez, Ezequiel; Oranday-Cárdenas, Azucena; Rivas-Morales, Catalina; Verde-Star, María Julia; Carranza-Rosales, Pilar

    2015-07-01

    The aims of this research were to examine the antibacterial, cytotoxic and antiradical/antioxidant activities of the organic extracts obtained from the leaves of the medicinal plant Morus celtidifolia (Family: Moraceae). To evaluate its antimicrobial properties, M. celtidifolia was tested against the bacteria of medical importance: Bacillus subtilis, Staphyloccocus aureus, Enterococcus faecalis, Escherichia coli, Enterobacter cloacae and Enterobacter aerogenes. Cytotoxic activity was assessed by using the brine shrimp (Artemia salina) lethality assay and also by toxicity screening against human cancer cell lines: MCF-7 (human breast adenocarcinoma) and HeLa (cervix adenocarcinoma). The free radical-scavenging activity was determined by the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) assay. Results revealed that the hexanic extract has antibacterial activity only against Gram positive strains, while the methanolic extract showed better cytotoxic and antioxidant activities than the non- polar extract with a median lethal dose (LD₅₀) of 125μg/ml, 90μg/ml and 75μg/ml against A. salina, MCF-7 and HeLa cells respectively, and median effective concentration (EC₅₀) of 152μg/ml on radical scavenging assay. This is the first study reporting the biological activities of leaves of Morus celtidifolia.

  10. Biological activities of Morus celtidifolia leaf extracts.

    PubMed

    Viveros-Valdez, Ezequiel; Oranday-Cárdenas, Azucena; Rivas-Morales, Catalina; Verde-Star, María Julia; Carranza-Rosales, Pilar

    2015-07-01

    The aims of this research were to examine the antibacterial, cytotoxic and antiradical/antioxidant activities of the organic extracts obtained from the leaves of the medicinal plant Morus celtidifolia (Family: Moraceae). To evaluate its antimicrobial properties, M. celtidifolia was tested against the bacteria of medical importance: Bacillus subtilis, Staphyloccocus aureus, Enterococcus faecalis, Escherichia coli, Enterobacter cloacae and Enterobacter aerogenes. Cytotoxic activity was assessed by using the brine shrimp (Artemia salina) lethality assay and also by toxicity screening against human cancer cell lines: MCF-7 (human breast adenocarcinoma) and HeLa (cervix adenocarcinoma). The free radical-scavenging activity was determined by the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) assay. Results revealed that the hexanic extract has antibacterial activity only against Gram positive strains, while the methanolic extract showed better cytotoxic and antioxidant activities than the non- polar extract with a median lethal dose (LD₅₀) of 125μg/ml, 90μg/ml and 75μg/ml against A. salina, MCF-7 and HeLa cells respectively, and median effective concentration (EC₅₀) of 152μg/ml on radical scavenging assay. This is the first study reporting the biological activities of leaves of Morus celtidifolia. PMID:26142508

  11. SORPTION ON WASTEWATER SOLIDS: ELIMINATION OF BIOLOGICAL ACTIVITY

    EPA Science Inventory

    Sorption was found to be greatly affected by the biological activity in wastewater solids. wo experimental techniques, cyanide treatment and pasteurization, were developed for eliminating the biological activity during isotherm measurements. oth methods are effective; however, pa...

  12. Biologically Active Metabolites Synthesized by Microalgae.

    PubMed

    de Morais, Michele Greque; Vaz, Bruna da Silva; de Morais, Etiele Greque; Costa, Jorge Alberto Vieira

    2015-01-01

    Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences.

  13. Potential biological activity of acacia honey.

    PubMed

    Muhammad, Aliyu; Odunola, Oyeronke A; Ibrahim, Mohammed A; Sallau, Abdullahi B; Erukainure, Ochuko L; Aimola, Idown A; Malami, Ibrahim

    2016-01-01

    Recent advances in functional foods-based research have increasingly become an area of major interest because it affects human health and activities. Functional foods are classes of foods with health promoting and disease preventing properties in addition to multiple nutritional values and of such type is honey. Acacia honey is a type of honey produced by bees (Apis mellifera) fed on Acacia flowers, hence the name. This review focuses on the potential biological activities of Acacia honey which includes quality, antioxidant, immuno-modulatory, antiproliferative and neurological properties at in vitro and in vivo levels. Based on our review, Acacia honey used from various researches is of high purity, contains some bioactive compounds ranging from vitamins, phenolics, flavonoids and fatty acids. It's highly nutritional with strong antioxidant and immuno-modulatory potentials which may therefore be considered a potential candidate for both cancer prevention and treatment. Neurologically, it may be considered as a viable therapeutic agent in the management of Alzheimer's disease.

  14. Biologically Active Metabolites Synthesized by Microalgae

    PubMed Central

    de Morais, Michele Greque; Vaz, Bruna da Silva; de Morais, Etiele Greque; Costa, Jorge Alberto Vieira

    2015-01-01

    Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences. PMID:26339647

  15. Aminoderivatives of cycloalkanespirohydantoins: synthesis and biological activity.

    PubMed

    Naydenova, Emilia; Pencheva, Nevena; Popova, Julita; Stoyanov, Neyko; Lazarova, Maria; Aleksiev, Boris

    2002-03-01

    3-Aminocycloalkanespiro-5-hydantoins were synthesized and their biological activity was studied. In contrast to hydantoins, these compounds failed to induce either anticonvulsive effects in the central nervous system or inhibitory effects on cholinergic contractions in the enteric nervous system. However, they exerted well pronounced, atropinsensitive, contractile effects on the guinea-pig ileum longitudinal muscle preparations. Structure-activity relationships established allow the assumption that: (i) the reduction of the ring size in the molecule of the spirohydantoins leads to an increase in the potency of the respective analogue to induce contractile effect; (ii) the introduction of -NH2 in position 3 increases the ability of all the compounds studied to exert contractions; (iii) the enlargement of the ring leads to: (1) an increase of the degree of desensitization of the preparations; and (2) a decrease (except 1a) of the potency of the analogues to exert contractile effects.

  16. [Bergenia genus - content matters and biological activity].

    PubMed

    Hendrychová, Helena; Tůmová, Lenka

    2012-10-01

    Bergenia, a genus included in the family Saxifragaceae, is a valuable source of healing matters. About 30 Bergenia species are known all over the world. Scientific research is focused on five species mainly distributed in the mountains of Central and East Asia: Bergenia ciliata (Haw.) Sternb., Bergenia stracheyi Engl., Bergenia crassifolia (L.) Fritsch, Bergenia ligulata (Wall.) Engl. and Bergenia himalaica Boriss. These taxons belong to the widely used medicinal herbs in the traditional Chinese, Nepalese and Indian medicine, for therapy of cough and pulmonary diseases, to stop bleeding, to increase immunity and to dissolve kidney or bladder stones. Bergenia consists of many different active compounds including bergenin, norbergenin, catechin, gallic acid, arbutin and other polyphenols. In the Czech Republic this species is commonly grown but it is not used for medical therapy. Individual parts of this plant demonstrate an interesting biological activity, and antibacterial, antiviral, cytoprotective and antioxidant effects. PMID:23256653

  17. Carbon nanomaterials: Biologically active fullerene derivatives.

    PubMed

    Bogdanović, Gordana; Djordjević, Aleksandar

    2016-01-01

    Since their discovery, fullerenes, carbon nanotubes, and graphene attract significant attention of researches in various scientific fields including biomedicine. Nano-scale size and a possibility for diverse surface modifications allow carbon nanoallotropes to become an indispensable nanostructured material in nanotechnologies, including nanomedicine. Manipulation of surface chemistry has created diverse populations of water-soluble derivatives of fullerenes, which exhibit different behaviors. Both non-derivatized and derivatized fullerenes show various biological activities. Cellular processes that underline their toxicity are oxidative, genotoxic, and cytotoxic responses.The antioxidant/cytoprotective properties of fullerenes and derivatives have been considered in the prevention of organ oxidative damage and treatment. The same unique physiochemical properties of nanomaterials may also be associated with potential health hazards. Non-biodegradability and toxicity of carbon nanoparticles still remain a great concern in the area of biomedical application. In this review, we report on basic physical and chemical properties of carbon nano-clusters--fullerenes, nanotubes, and grapheme--their specificities, activities, and potential application in biological systems. Special emphasis is given to our most important results obtained in vitro and in vivo using polyhydroxylated fullerene derivative C₆₀(OH)₂₄.

  18. Carbon nanomaterials: Biologically active fullerene derivatives.

    PubMed

    Bogdanović, Gordana; Djordjević, Aleksandar

    2016-01-01

    Since their discovery, fullerenes, carbon nanotubes, and graphene attract significant attention of researches in various scientific fields including biomedicine. Nano-scale size and a possibility for diverse surface modifications allow carbon nanoallotropes to become an indispensable nanostructured material in nanotechnologies, including nanomedicine. Manipulation of surface chemistry has created diverse populations of water-soluble derivatives of fullerenes, which exhibit different behaviors. Both non-derivatized and derivatized fullerenes show various biological activities. Cellular processes that underline their toxicity are oxidative, genotoxic, and cytotoxic responses.The antioxidant/cytoprotective properties of fullerenes and derivatives have been considered in the prevention of organ oxidative damage and treatment. The same unique physiochemical properties of nanomaterials may also be associated with potential health hazards. Non-biodegradability and toxicity of carbon nanoparticles still remain a great concern in the area of biomedical application. In this review, we report on basic physical and chemical properties of carbon nano-clusters--fullerenes, nanotubes, and grapheme--their specificities, activities, and potential application in biological systems. Special emphasis is given to our most important results obtained in vitro and in vivo using polyhydroxylated fullerene derivative C₆₀(OH)₂₄. PMID:27483572

  19. Spectroscopic study of biologically active glasses

    NASA Astrophysics Data System (ADS)

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  20. Serotonin transporter activity of imidazolidine-2,4-dione and imidazo[2,1-f]purine-2,4-dione derivatives in aspect of their acid-base properties.

    PubMed

    Zagórska, Agnieszka; Czopek, Anna; Pawłowski, Maciej; Dybała, Małgorzata; Siwek, Agata; Nowak, Gabriel

    2012-11-01

    Affinities of arylpiperazinylalkyl derivatives of imidazo[2,1-f]purine-2,4-dione and imidazolidine-2,4-dione for serotonin transporter and their acid-base properties were evaluated. The dissociation constant (pK(a)) of compounds 1-22 were determinated by potentiometric titration and calculated using pKalc 3.1 module of the Pallas system. The data from experimental methods and computational calculations were compared and suitable conclusions were reached.

  1. Purine and pyrimidine excretion in psoriasis

    PubMed Central

    Simmonds, H. A.; Bowyer, A.

    1974-01-01

    1 Urinary purine excretion has been investigated in two healthy controls and two patients with psoriasis, one a hyperuricaemic, one a normouricaemic. No difference was detected between the patients and controls. Therapy with allopurinol effectively lowered blood and urinary uric acid levels and produced a deficit in total urinary oxypurine excretion in both controls and patients with psoriasis. The concomitant increase in xanthine excretion was greater than the increase in hypoxanthine excretion and xanthine/hypoxanthine ratios (average 0.70 and 1.0 prior to therapy) were increased by allopurinol to an average of 3.0 and 3.8 respectively in the two groups. Allopurinol also reduced the excretion of 8-hydroxy-7-methyl guanine but no effect on the excretion levels of other minor purine bases was noted. 2 Allopurinol was metabolized similarly by both patients and controls, 84% of the administered allopurinol being accounted for as urinary metabolites. 74% of the drug in the urine was excreted as oxipurinol, 26% as unchanged allopurinol plus allopurinol riboside, the remainder being oxipurinol riboside. 3 Pseudouridine excretion in 25 healthy controls was 86.5 ± 17.8 mg/24 hours. Pseudouridine excretion was not excessive in the patients with psoriasis and was not altered by allopurinol therapy. 4 No abnormality or difference in purine or pyrimidine excretion in either patient was detected prior to or during therapy which could be related to the epidermal lesion. PMID:22454896

  2. Biological Activity of Dolichandrone serrulata Flowers and Their Active Components.

    PubMed

    Phanthong, Phanida; Phumal, Noppawan; Chancharunee, Sirirat; Mangmool, Supachoke; Anantachoke, Natthinee; Bunyapraphatsara, Nuntavan

    2015-08-01

    Dolichandrone serrulata (DC.) Seem flowers are widely used as vegetables in northern and eastern Thailand. Biological studies of the methanolic extract of these flowers have shown promising antioxidant activity. Biological-guided separation of D. serrulata flowers yielded six compounds, identified as hallerone, protocatechuic acid, rengyolone, cleroindicin B, ixoside, and isomaltose. This is the first report on hallerone, protocatechuic acid, rengyolone, cleroindicin B, and isomaltose in D. serrulata. Protocatechuic acid was the most potent scavenger of 2,2-diphenyl-l-picrylhydrazyl and hydroxyl radicals with IC50 values of 25.6 +/- 0.6 and 29.6 +/- 0.4 microM, respectively. Hallerone and rengyolone showed moderate scavenging action on superoxide radicals and inhibited H202 induced reactive oxygen species production in HEK-293 cell. In addition, the other isolated compounds showed weak activity.

  3. Riboswitch structure: an internal residue mimicking the purine ligand

    PubMed Central

    Delfosse, Vanessa; Bouchard, Patricia; Bonneau, Eric; Dagenais, Pierre; Lemay, Jean-François; Lafontaine, Daniel A.; Legault, Pascale

    2010-01-01

    The adenine and guanine riboswitches regulate gene expression in response to their purine ligand. X-ray structures of the aptamer moiety of these riboswitches are characterized by a compact fold in which the ligand forms a Watson–Crick base pair with residue 65. Phylogenetic analyses revealed a strict restriction at position 39 of the aptamer that prevents the G39–C65 and A39–U65 combinations, and mutational studies indicate that aptamers with these sequence combinations are impaired for ligand binding. In order to investigate the rationale for sequence conservation at residue 39, structural characterization of the U65C mutant from Bacillus subtilis pbuE adenine riboswitch aptamer was undertaken. NMR spectroscopy and X-ray crystallography studies demonstrate that the U65C mutant adopts a compact ligand-free structure, in which G39 occupies the ligand-binding site of purine riboswitch aptamers. These studies present a remarkable example of a mutant RNA aptamer that adopts a native-like fold by means of ligand mimicking and explain why this mutant is impaired for ligand binding. Furthermore, this work provides a specific insight into how the natural sequence has evolved through selection of nucleotide identities that contribute to formation of the ligand-bound state, but ensures that the ligand-free state remains in an active conformation. PMID:20022916

  4. Vibrational Raman optical activity of biological molecules

    NASA Astrophysics Data System (ADS)

    Barron, L. D.; Hecht, Lutz; Wen, Z. Q.; Ford, Steven J.; Bell, A. F.

    1993-06-01

    Advances in Raman optical activity (ROA) instrumentation based on the employment of a backscattering geometry together with a cooled backthinned CCD detector, a holographic notch filter, and a high-efficiency single-grating spectrograph have now enhanced the sensitivity to the level necessary to provide vibrational ROA spectra of most biological molecules in aqueous solution. Results on peptides and proteins show features originating in coupled C(alpha )-H and N-H deformations of the peptide backbone which appear to be sensitive to the secondary conformation including loop and turn structures. Also carbohydrates show many features characteristic of the central aspects of carbohydrate architecture, with effects from the glycosidic link in oligosaccharides particularly prominent. Preliminary ROA spectra of pyrimidine nucleosides appear to reflect the mutual orientation of the sugar and base rings and the dominant furanose conformations.

  5. Biologically Active and Antimicrobial Peptides from Plants

    PubMed Central

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  6. Biologically active and antimicrobial peptides from plants.

    PubMed

    Salas, Carlos E; Badillo-Corona, Jesus A; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.

  7. [Nonequilibrium state of electrochemically activated water and its biological activity].

    PubMed

    Petrushanko, I Iu; Lobyshev, V I

    2001-01-01

    Changes in the physicochemical parameters (pH, redox potential and electroconductivity) of catholyte and anolyte produced by membrane electrolysis of distilled water and dilute (c < 10(-3) M) sodium chloride solutions were studied. The relaxation of these parameters after electrolysis and the influence of catholyte and anolyte on the growth of roots of Tradescantia viridis grafts, the development of duckweed, and the motive activity of infusoria Spirostomum ambiguum were investigated. It was found that the anolyte of distilled water stimulated development of these biological objects. The direction of shift of physicochemical parameters of catholyte and anolyte from equilibrium values and the type of their biological activity (stimulation or inhibition) depend on salt concentration in initial solution. Barbotage of initial distilled water with argon or nitrogen leads to a greater decrease in the redox potential of catholyte during electrolysis. The physicochemical parameters relax to equilibrium values, and the biological activity of catholite and anolyte decreases with time and practically disappears by the end of the day. It was found that the oxidation of reducing agent by atmospheric oxygen is not the sole cause of the relaxation of catalyte redox potential. The increase in the ionic strength of catholite and anolyte by the addition of concentrated sodium chloride after electrolysis decreases the rate of redox potential relaxation several times. The redox potential can be maintained for long periods by freezing.

  8. Antiparasitic chemotherapy: tinkering with the purine salvage pathway.

    PubMed

    Datta, Alok Kumar; Datta, Rupak; Sen, Banibrata

    2008-01-01

    Distinguishable differences between infectine organisms and their respective hosts with respect to metabolism and macromolecular structure provide scopes for detailed characterization of target proteins and/or macromolecules as the focus for the development of selective inhibitors. In order to develop a rational approach to antiparasitic chemotherapy, finding differences in the biochemical pathways of the parasite with respect to the host it infects is therefore of primary importance. Like most parasitic protozoan, the genus Leishmania is an obligate auxotroph of purines and hence for requirement of purine bases depends on its own purine salvage pathways. Among various purine acquisition routes used by the parasite, the pathway involved in assimilation of adenosine nucleotide is unique and differs significantly in the extracellular form of the parasite (promastigotes) from its corresponding intracellular form (amastigotes). Adenosine kinase (AdK) is the gateway enzyme of this pathway and displays stage-specific activity pattern. Therefore, understanding the catalytic mechanism of the enzyme, its structural complexities and mode of its regulation have emerged as one of the major areas of investigation. This review, in general, discusses possible strategies to validate several purine salvage enzymes as targets for chemotherapeutic manipulation with special reference to adenosine kinase of Leishmania donovani. Systemic endotheliosis, commonly known as Kala-azar in India, is caused by the parasitic protozoon Leishmania donovani. The spread of leishmaniases follows the distribution of these vectors in the temperate, tropical and subtropical regions of the world leading to loss of thousands of human lives.' WHO has declared leishmaniasis among one of the six major diseases namely leishmaniasis, malaria, amoebiasis, filariasis, Chagas disease and schistosomiasis in its Special Programme for Research and Training in Tropical Diseases. Strategies for better prophylaxis and

  9. [Metformin impact on purine metabolism in breast cancer].

    PubMed

    Shatova, O P; Butenko, Eu V; Khomutov, Eu V; Kaplun, D S; Sedakov, I Eu; Zinkovych, I I

    2016-03-01

    Large-scale epidemiological and clinical studies have demonstrated the efficacy of metformin in oncology practice. However, the mechanisms of implementation of the anti-tumor effect of this drug there is still need understanding. In this study we have investigated the effect of metformin on the activity of adenosine deaminase and respectively adenosinergic immunosuppression in tumors and their microenvironment. The material of the study was taken during surgery of breast cacer patients receiveing metformin, and also patients which did not take this drug. The adenosine deaminase activity and substrate (adenosine) and products (inosine, hypoxanthine) concentrations were determined by HPLC. Results of this study suggest that metformin significantly alters catabolism of purine nucleotides in the node breast adenocarcinoma tisue. However, the metformin-induced increase in the adenosine deaminase activity is not sufficient to reduce the level of adenosine in cancer tissue. Thus, in metformin treated patients the adenosine concentration remained unchanged, and inosine and hypoxanthine concentration significantly increased. PMID:27420623

  10. [Metformin impact on purine metabolism in breast cancer].

    PubMed

    Shatova, O P; Butenko, Eu V; Khomutov, Eu V; Kaplun, D S; Sedakov, I Eu; Zinkovych, I I

    2016-03-01

    Large-scale epidemiological and clinical studies have demonstrated the efficacy of metformin in oncology practice. However, the mechanisms of implementation of the anti-tumor effect of this drug there is still need understanding. In this study we have investigated the effect of metformin on the activity of adenosine deaminase and respectively adenosinergic immunosuppression in tumors and their microenvironment. The material of the study was taken during surgery of breast cacer patients receiveing metformin, and also patients which did not take this drug. The adenosine deaminase activity and substrate (adenosine) and products (inosine, hypoxanthine) concentrations were determined by HPLC. Results of this study suggest that metformin significantly alters catabolism of purine nucleotides in the node breast adenocarcinoma tisue. However, the metformin-induced increase in the adenosine deaminase activity is not sufficient to reduce the level of adenosine in cancer tissue. Thus, in metformin treated patients the adenosine concentration remained unchanged, and inosine and hypoxanthine concentration significantly increased.

  11. Biological active compounds from Georgian Galanthus shaoricus.

    PubMed

    Jokhadze, M; Kuchukhidze, J; Chincharadze, D; Murtazashvili, T

    2011-10-01

    Amaryllidaceae alkaloids exhibit antitumour, antiviral and anticholinergic activities. Some of them have been used in the treatment of myasthenia gravis, myopathy and diseases of the nervous system. In this study, the characterization of these compounds from Amaryllidaceae plants along with some biological activities and some regulations to conserve the native flora will be reviewed. Plants materials: Galanthus shaoricus Kem.-Nath., were collected in 2007-2008 during the flowering period in Georgia. The preparation of extracts and fractions were obtained using methanolic maceration. Crude alkaloidal extracts were typically purified by liquid-liquid partitioning of their basic forms in chloroform. Lycorine, galantamine and tazettine has been found as one of the major alkaloid from Amaryllidaceae plants. Galanthus shaoricus have shown good antimalarial and cytotoxic activity in a dose-dependent manner. Methanolic extracts from bulbs demonstrated significant growth inhibition on human Hela and HCT-116 cells lines with IC50 (μg/mL) 16.3±1.8; 22.1±2.9 (aerial parts) and 12.8±1.7; 16.5±1.9 (Bulbs), respectively. Concerning the Amaryllidaceae alkaloids, lycorine with IC50 (μM) 0.8±0.5 and 2.6±0.2, haemantaimene (IC50=1.1±0.7 and 2.7±0.8 μM), hamaine (IC50=3.4±1.0 and 6.2 ±1.4 μM), homolycorine (IC50=1.4±0.9 and 3.3±1.0 μM), hipeastrine (IC50=2.8±1.0 and 7.5±1.8 μM) were found to be responsible for the cytotoxic activity on HCT-116 and Hela cell lines, respectively.

  12. Potential biological activity of acacia honey.

    PubMed

    Muhammad, Aliyu; Odunola, Oyeronke A; Ibrahim, Mohammed A; Sallau, Abdullahi B; Erukainure, Ochuko L; Aimola, Idown A; Malami, Ibrahim

    2016-01-01

    Recent advances in functional foods-based research have increasingly become an area of major interest because it affects human health and activities. Functional foods are classes of foods with health promoting and disease preventing properties in addition to multiple nutritional values and of such type is honey. Acacia honey is a type of honey produced by bees (Apis mellifera) fed on Acacia flowers, hence the name. This review focuses on the potential biological activities of Acacia honey which includes quality, antioxidant, immuno-modulatory, antiproliferative and neurological properties at in vitro and in vivo levels. Based on our review, Acacia honey used from various researches is of high purity, contains some bioactive compounds ranging from vitamins, phenolics, flavonoids and fatty acids. It's highly nutritional with strong antioxidant and immuno-modulatory potentials which may therefore be considered a potential candidate for both cancer prevention and treatment. Neurologically, it may be considered as a viable therapeutic agent in the management of Alzheimer's disease. PMID:26709666

  13. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle.

    PubMed

    Ben-Sahra, Issam; Hoxhaj, Gerta; Ricoult, Stéphane J H; Asara, John M; Manning, Brendan D

    2016-02-12

    In response to growth signals, mechanistic target of rapamycin complex 1 (mTORC1) stimulates anabolic processes underlying cell growth. We found that mTORC1 increases metabolic flux through the de novo purine synthesis pathway in various mouse and human cells, thereby influencing the nucleotide pool available for nucleic acid synthesis. mTORC1 had transcriptional effects on multiple enzymes contributing to purine synthesis, with expression of the mitochondrial tetrahydrofolate (mTHF) cycle enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) being closely associated with mTORC1 signaling in both normal and cancer cells. MTHFD2 expression and purine synthesis were stimulated by activating transcription factor 4 (ATF4), which was activated by mTORC1 independent of its canonical induction downstream of eukaryotic initiation factor 2α eIF2α phosphorylation. Thus, mTORC1 stimulates the mTHF cycle, which contributes one-carbon units to enhance production of purine nucleotides in response to growth signals. PMID:26912861

  14. Purine synthesis de novo and salvage in hypoxanthine phosphoribosyltransferase-deficient mice.

    PubMed

    Allsop, J; Watts, R W

    1990-01-01

    Extreme degrees of hypoxanthine phosphoribosyltransferase (HPRT) deficiency in man are associated with gross sex-linked neurological dysfunction, gout and urinary stones (the Lesch-Nyhan or 'complete HPRT-deficiency' syndrome). The less severe degrees of enzyme deficiency (sex-linked recessive gout and/or urolithiasis or the 'partial HPRT-deficiency' syndrome) may be associated with minor neurological manifestations. Whole body purine synthesis de novo is accelerated in both these groups of patients. A strain of mice with an experimentally produced mutation at the HPRT locus showed some residual 'apparent HPRT activity' in brain, liver, testicular, splenic, kidney and ovarian tissues but not in erythrocyte haemolysates. The mutation removes exons 1 and 2 of the coding region of the gene together with the promotor and about 10 kb of upstream sequence from the gene. It is therefore possible that the observed 'apparent HPRT activity' in these mice is due to the operation of an alternative metabolic pathway. Purine synthesis de novo was markedly accelerated in their brain, testicular, splenic and kidney tissues. It was not accelerated in the liver tissue of male mice hemizygous for the mutation and the degree of acceleration in the female homozygotes only just reached statistical significance at the p = 0.02 level. This observation casts doubt on the importance of modulations in the rate of hepatic purine synthesis de novo as a mechanism for maintaining a steady supply of purines for translocation to other organs.

  15. A computational study of the protein-ligand interactions in CDK2 inhibitors: using quantum mechanics/molecular mechanics interaction energy as a predictor of the biological activity.

    PubMed

    Alzate-Morales, Jans H; Contreras, Renato; Soriano, Alejandro; Tuñon, Iñaki; Silla, Estanislao

    2007-01-15

    We report a combined quantum mechanics/molecular mechanics (QM/MM) study to determine the protein-ligand interaction energy between CDK2 (cyclin-dependent kinase 2) and five inhibitors with the N(2)-substituted 6-cyclohexyl-methoxy-purine scaffold. The computational results in this work show that the QM/MM interaction energy is strongly correlated to the biological activity and can be used as a predictor, at least within a family of substrates. A detailed analysis of the protein-ligand structures obtained from molecular dynamics simulations shows specific interactions within the active site that, in some cases, have not been reported before to our knowledge. The computed interaction energy gauges the strength of protein-ligand interactions. Finally, energy decomposition and multiple regression analyses were performed to check the contribution of the electrostatic and van der Waals energies to the total interaction energy and to show the capabilities of the computational model to identify new potent inhibitors.

  16. Monascus secondary metabolites: production and biological activity.

    PubMed

    Patakova, Petra

    2013-02-01

    The genus Monascus, comprising nine species, can reproduce either vegetatively with filaments and conidia or sexually by the formation of ascospores. The most well-known species of genus Monascus, namely, M. purpureus, M. ruber and M. pilosus, are often used for rice fermentation to produce red yeast rice, a special product used either for food coloring or as a food supplement with positive effects on human health. The colored appearance (red, orange or yellow) of Monascus-fermented substrates is produced by a mixture of oligoketide pigments that are synthesized by a combination of polyketide and fatty acid synthases. The major pigments consist of pairs of yellow (ankaflavin and monascin), orange (rubropunctatin and monascorubrin) and red (rubropunctamine and monascorubramine) compounds; however, more than 20 other colored products have recently been isolated from fermented rice or culture media. In addition to pigments, a group of monacolin substances and the mycotoxin citrinin can be produced by Monascus. Various non-specific biological activities (antimicrobial, antitumor, immunomodulative and others) of these pigmented compounds are, at least partly, ascribed to their reaction with amino group-containing compounds, i.e. amino acids, proteins or nucleic acids. Monacolins, in the form of β-hydroxy acids, inhibit hydroxymethylglutaryl-coenzyme A reductase, a key enzyme in cholesterol biosynthesis in animals and humans.

  17. Structure and function of nucleoside hydrolases from Physcomitrella patens and maize catalyzing the hydrolysis of purine, pyrimidine, and cytokinin ribosides.

    PubMed

    Kopecná, Martina; Blaschke, Hanna; Kopecny, David; Vigouroux, Armelle; Koncitíková, Radka; Novák, Ondrej; Kotland, Ondrej; Strnad, Miroslav; Moréra, Solange; von Schwartzenberg, Klaus

    2013-12-01

    We present a comprehensive characterization of the nucleoside N-ribohydrolase (NRH) family in two model plants, Physcomitrella patens (PpNRH) and maize (Zea mays; ZmNRH), using in vitro and in planta approaches. We identified two NRH subclasses in the plant kingdom; one preferentially targets the purine ribosides inosine and xanthosine, while the other is more active toward uridine and xanthosine. Both subclasses can hydrolyze plant hormones such as cytokinin ribosides. We also solved the crystal structures of two purine NRHs, PpNRH1 and ZmNRH3. Structural analyses, site-directed mutagenesis experiments, and phylogenetic studies were conducted to identify the residues responsible for the observed differences in substrate specificity between the NRH isoforms. The presence of a tyrosine at position 249 (PpNRH1 numbering) confers high hydrolase activity for purine ribosides, while an aspartate residue in this position confers high activity for uridine. Bud formation is delayed by knocking out single NRH genes in P. patens, and under conditions of nitrogen shortage, PpNRH1-deficient plants cannot salvage adenosine-bound nitrogen. All PpNRH knockout plants display elevated levels of certain purine and pyrimidine ribosides and cytokinins that reflect the substrate preferences of the knocked out enzymes. NRH enzymes thus have functions in cytokinin conversion and activation as well as in purine and pyrimidine metabolism.

  18. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2001-07-03

    The present invention relates to purine analogs that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such purine analogs to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  19. Purine metabolism in response to hypoxic conditions associated with breath-hold diving and exercise in erythrocytes and plasma from bottlenose dolphins (Tursiops truncatus).

    PubMed

    del Castillo Velasco-Martínez, Iris; Hernández-Camacho, Claudia J; Méndez-Rodríguez, Lía C; Zenteno-Savín, Tania

    2016-01-01

    In mammalian tissues under hypoxic conditions, ATP degradation results in accumulation of purine metabolites. During exercise, muscle energetic demand increases and oxygen consumption can exceed its supply. During breath-hold diving, oxygen supply is reduced and, although oxygen utilization is regulated by bradycardia (low heart rate) and peripheral vasoconstriction, tissues with low blood flow (ischemia) may become hypoxic. The goal of this study was to evaluate potential differences in the circulating levels of purine metabolism components between diving and exercise in bottlenose dolphins (Tursiops truncatus). Blood samples were taken from captive dolphins following a swimming routine (n=8) and after a 2min dive (n=8). Activity of enzymes involved in purine metabolism (hypoxanthine guanine phosphoribosyl transferase (HGPRT), inosine monophosphate deshydrogenase (IMPDH), xanthine oxidase (XO), purine nucleoside phosphorylase (PNP)), and purine metabolite (hypoxanthine (HX), xanthine (X), uric acid (UA), inosine monophosphate (IMP), inosine, nicotinamide adenine dinucleotide (NAD(+)), adenosine, adenosine monophosphate (AMP), adenosine diphosphate (ADP), ATP, guanosine diphosphate (GDP), guanosine triphosphate (GTP)) concentrations were quantified in erythrocyte and plasma samples. Enzymatic activity and purine metabolite concentrations involved in purine synthesis and degradation, were not significantly different between diving and exercise. Plasma adenosine concentration was higher after diving than exercise (p=0.03); this may be related to dive-induced ischemia. In erythrocytes, HGPRT activity was higher after diving than exercise (p=0.007), suggesting an increased capacity for purine recycling and ATP synthesis from IMP in ischemic tissues of bottlenose dolphins during diving. Purine recycling and physiological adaptations may maintain the ATP concentrations in bottlenose dolphins after diving and exercise.

  20. [Natural purine compounds as radioprotective agents].

    PubMed

    Popova, N R; Gudkov, S V; Bruskov, V I

    2014-01-01

    Purine compounds xanthosine, caffeine, inosine-5'-monophosphate and guanosine-5'-monophosphate in the concentration range of 0.02-1 mmol/L exhibit antioxidant properties in vitro, significantly reducing the formation of hydrogen peroxide and hydroxyl radicals induced by X-rays in aqueous solutions and preventing the formation of 8-oxoguanine in DNA solutions. These compounds neutralize the long-lived protein radicals in vitro induced by radiation. In vivo they exhibit pronounced radiotherapeutic properties, increasing the survival rate of mice up to 50% by intraperitoneal injection (45 mg/kg) after the exposure to a lethal dose of 7 Gy. The tested compounds stimulate hemopoiesis, increasing the number of white blood cells and platelets in the peripheral blood of animals in postradiation period, as well as radiation recovery of DNA damage when administered both before and after irradiation. These purine compounds can be considered as potentially promising preventive and therapeutic agents to reduce the risk of the pathological effects of ionizing radiation on the body of mammals. PMID:25764844

  1. Allosteric Modulation of Purine and Pyrimidine Receptors

    PubMed Central

    Jacobson, Kenneth A.; Gao, Zhan-Guo; Göblyös, Anikó; IJzerman, Adriaan P.

    2011-01-01

    Among the purine and pyrimidine receptors, the discovery of small molecular allosteric modulators has been most highly advanced for the A1 and A3 ARs. These AR modulators have allosteric effects that are structurally separated from the orthosteric effects in SAR studies. The benzoylthiophene derivatives tend to act as allosteric agonists, as well as selective positive allosteric modulators (PAMs) of the A1 AR. A 2-amino-3-aroylthiophene derivative T-62 has been under development as a PAM of the A1 AR for the treatment of chronic pain. Several structurally distinct classes of allosteric modulators of the human A3 AR have been reported: 3-(2-pyridinyl)isoquinolines, 2,4-disubstituted quinolines, 1H-imidazo-[4,5-c]quinolin-4-amines, endocannabinoid 2-arachidonylglycerol and the food dye Brilliant Black BN. Site-directed mutagenesis of A1 and A3 ARs has identified residues associated with the allosteric effect, distinct from those that affect orthosteric binding. A few small molecular allosteric modulators have been reported for several of the P2X ligand-gated ion channels and the G protein-coupled P2Y receptor nucleotides. Metal ion modulation of the P2X receptors has been extensively explored. The allosteric approach to modulation of purine and pyrimidine receptors looks promising for development of drugs that are event-specific and site-specific in action. PMID:21586360

  2. Office of Biological Informatics and Outreach geospatial technology activities

    USGS Publications Warehouse

    ,

    1998-01-01

    The U.S. Geological Survey (USGS) Office of Biological Informatics and Outreach (OBIO) in Reston, Virginia, and its Center for Biological Informatics (CBI) in Denver, Colorado, provide leadership in the development and use of geospatial technologies to advance the Nation's biological science activities.

  3. Lung biological activity of American attapulgite

    SciTech Connect

    Begin, R.; Masse, S.; Rola-Pleszczynski, M.; Geoffroy, M.; Martel, M.; Desmarais, Y.; Sebastien, P.

    1987-04-01

    Attapulgite is a fibrous mineral industrially consumed at the rate of over a million tons per year but the biological activity of the material is not fully known. To evaluate the in vivo toxicity of the fibrous materials, they exposed the tracheal lobe of 16 sheep to a single exposure of either 100 ml saline, 100 mg UICC asbestos fibers in 100 ml saline, 100 mg short asbestos fibers in 100 ml saline, or 100 mg attapulgite in 100 ml saline. The animals were studied by bronchoalveolar lavage (BAL) at Days 2, 12, 24, 40, and 60 and by autopsy at Day 60. In the saline-exposed sheep, BAL and lung histology did not change. In the UICC asbestos-exposed animals, they reproduced the BAL changes previously reported. In the short asbestos-exposed sheep, there were no significant BAL changes. In the attapulgite sheep, they found significant and sustained increases in total BAL cells, macrophages, neutrophils, fibronectin, lactate dehydrogenase, ..beta..-glucuronidase, but BAL cellularity returned to control levels by Day 60 whereas in the UICC asbestos-exposed sheep, it remained significantly above control. Lung histology demonstrated the characteristic peribronchiolar fibrosing alveolitis in the UICC asbestos-exposed sheep, whereas macrophagic alveolitis with minimal airway distortion was seen in the short asbestos-exposed sheep, whereas macrophagic alveolitis with minimal airway distortion was seen in the short asbestos-exposed sheep and in all of the attapulgite-exposed sheep but three which had typical peribronchiolar alveolitis quite similar to that observed in UICC-exposed sheep, but of lower intensity.

  4. The Formation of Nucleobases from the Irradiation of Purine in Astophysical Ices and Comparisons with Meteorites.

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Materese, C. K.; Nuevo, M.

    2016-01-01

    N-heterocycles have been identified in meteorites and their extraterrestrial origins are suggested by isotopic ratio measurements. Although small N- heterocycles have not been detected in the interstellar medium (ISM), recent experiments in our lab have shown that the irradiation of the aromatic molecules like benzene (C6H6) and naphthalene (C10H8) in mixed molecular ices leads to the formation of O- and N-heterocyclic molecules. Among the class of N-heterocycles are the nucleobases, which are of astrobiological interest because they are the information bearing units of DNA and RNA. Nucleobases have been detected in meteorites [3-5], with isotopic signatures that are also consistent with an extraterrestrial origin. Three of the biologically relevant nucleobases (uracil, cytosine, and guanine) have a pyrimidine core structure while the remaining two (adenine and guanine) possess a purine core. Previous experiments in our lab have demonstrated that all of the bio-logical nucleobases (and numerous other molecules) with a pyrimidine core structure can be produced by irradiating pyrimidine in mixed molecular ices of several compositions [6-8]. In this work, we study the formation of purine-based molecules, including the nucleobases adenine, and guanine, from the ultraviolet (UV) irradiation of purine in ices consisting mixtures of H2O and NH3 at low temperature. The experiments are designed to simulate the astrophysical conditions under which these species may be formed in dense molecular clouds, protoplanetary disks, or on the surfaces of icy bodies in planetary systems.

  5. Purine pathway implicated in mechanism of resistance to aspirin therapy: pharmacometabolomics-informed pharmacogenomics.

    PubMed

    Yerges-Armstrong, L M; Ellero-Simatos, S; Georgiades, A; Zhu, H; Lewis, J P; Horenstein, R B; Beitelshees, A L; Dane, A; Reijmers, T; Hankemeier, T; Fiehn, O; Shuldiner, A R; Kaddurah-Daouk, R

    2013-10-01

    Although aspirin is a well-established antiplatelet agent, the mechanisms of aspirin resistance remain poorly understood. Metabolomics allows for measurement of hundreds of small molecules in biological samples, enabling detailed mapping of pathways involved in drug response. We defined the metabolic signature of aspirin exposure in subjects from the Heredity and Phenotype Intervention Heart Study. Many metabolites, including known aspirin catabolites, changed on exposure to aspirin, and pathway enrichment analysis identified purine metabolism as significantly affected by drug exposure. Furthermore, purines were associated with aspirin response, and poor responders had higher postaspirin adenosine and inosine levels than did good responders (n = 76; both P < 4 × 10(-3)). Using our established "pharmacometabolomics-informed pharmacogenomics" approach, we identified genetic variants in adenosine kinase associated with aspirin response. Combining metabolomics and genomics allowed for more comprehensive interrogation of mechanisms of variation in aspirin response--an important step toward personalized treatment approaches for cardiovascular disease. PMID:23839601

  6. [Glutathione redox system, immune status, antioxidant enzymes and metabolism of purine nucleotides in hypothyroidism].

    PubMed

    Tapbergenov, S O; Sovetov, B S; Bekbosynova, R B; Bolysbekova, S M

    2015-01-01

    The immune status, components of the glutathione redox system, the activity of antioxidant enzymes and metabolism of purine nucleotides have been investigated in animals with experimental hypothyroidism. On day 8 after an increase in the number of leukocytes, lymphocytes, T-helpers and T-suppressors as well as increased number of B-lymphocytes was found in blood of thyroidectomized rats. This was accompanied by decreased activity of adenosine deaminase (AD), AMP-deaminase (AMPD), and 5'-nucleotidase (5'N) in blood, but the ratio of enzyme activity AD/AMPD increased. These changes in the activity of enzymes, involved in purine catabolism can be regarded as increased functional relationships between T and B lymphocytes in hypothyroidism. The functional changes of immune system cells were accompanied by increased activity of glutathione peroxidase (GPx), a decrease in the activity of superoxide dismutase (SOD), glutathione reductase (GR) and the ratio GH/GPx. Thyroidectomized rats had increased amounts of total, oxidized (GSSG) and reduced glutathione (GSH), but the ratio GSH/GSSG decerased as compared with control animals. In the liver, hypothyroidism resulted in activation of SOD, GPx, decreased activity of GR and decreased ratio GR/GPx. At the same time, the levels of total, oxidized, and reduced glutathione increased, but the ratio GSH/GSSG as well as activities of enzymes involved in purine nucleotide metabolism ratio (and their ratio 5'N/AD + AMPD) decreased. All these data suggest a functional relationship of the glutathione redox system not only with antioxidant enzymes, but also activity of enzymes involved purine nucleotide metabolism and immune status.

  7. Molecular Dissection of a Borrelia burgdorferi In Vivo Essential Purine Transport System

    PubMed Central

    Jain, Sunny; Showman, Adrienne C.

    2015-01-01

    The Lyme disease spirochete Borrelia burgdorferi is dependent on purine salvage from the host environment for survival. The genes bbb22 and bbb23 encode purine permeases that are essential for B. burgdorferi mouse infectivity. We now demonstrate the unique contributions of each of these genes to purine transport and murine infection. The affinities of spirochetes carrying bbb22 alone for hypoxanthine and adenine were similar to those of spirochetes carrying both genes. Spirochetes carrying bbb22 alone were able to achieve wild-type levels of adenine saturation but not hypoxanthine saturation, suggesting that maximal hypoxanthine uptake requires the presence of bbb23. Moreover, the purine transport activity conferred by bbb22 was dependent on an additional distal transcriptional start site located within the bbb23 open reading frame. The initial rates of uptake of hypoxanthine and adenine by spirochetes carrying bbb23 alone were below the level of detection. However, these spirochetes demonstrated a measurable increase in hypoxanthine uptake over a 30-min time course. Our findings indicate that bbb22-dependent adenine transport is essential for B. burgdorferi survival in mice. The bbb23 gene was dispensable for B. burgdorferi mouse infectivity, yet its presence was required along with that of bbb22 for B. burgdorferi to achieve maximal spirochete loads in infected mouse tissues. These data demonstrate that both genes, bbb22 and bbb23, are critical for B. burgdorferi to achieve wild-type infection of mice and that the differences in the capabilities of the two transporters may reflect distinct purine salvage needs that the spirochete encounters throughout its natural infectious cycle. PMID:25776752

  8. The ice nucleation activity of biological aerosols

    NASA Astrophysics Data System (ADS)

    Grothe, H.; Pummer, B.; Bauer, H.; Bernardi, J.

    2012-04-01

    Primary Biological Aerosol Particles (PBAPs), including bacteria, spores and pollen may be important for several atmospheric processes. Particularly, the ice nucleation caused by PBAPs is a topic of growing interest, since their impact on ice cloud formation and thus on radiative forcing, an important parameter in global climate is not yet fully understood. In laboratory model studies we investigated the ice nucleation activity of selected PBAPs. We studied the immersion mode freezing using water-oil emulsion, which we observed by optical microscopy. We particularly focused on pollen. We show that pollen of different species strongly differ in their ice nucleation behavior. The average freezing temperatures in laboratory experiments range from 240 K to 255 K. As the most efficient nuclei (silver birch, Scots pine and common juniper pollen) have a distribution area up to the Northern timberline, their ice nucleation activity might be a cryoprotective mechanism. For comparison the ice nucleation activity of Snomax, fungal spores, and mushrooms will be discussed as well. In the past, pollen have been rejected as important atmospheric IN, as they are not as abundant in the atmosphere as bacteria or mineral dust and are too heavy to reach higher altitudes. However, in our experiments (Pummer et al. 2011) it turned out that water, which had been in contact with pollen and then been separated from the bodies, nucleates as good as the pollen grains themselves. So the ice nuclei have to be easily-suspendable macromolecules (100-300 kDa) located on the pollen. Once extracted, they can be distributed further through the atmosphere than the heavy pollen grains and so augment the impact of pollen on ice cloud formation even in the upper troposphere. It is widely known, that material from the pollen, like allergens and sugars, can indeed leave the pollen body and be distributed independently. The most probable mechanism is the pollen grain bursting by rain, which releases

  9. Solution-Phase Parallel Synthesis of Acyclic Nucleoside Libraries of Purine, Pyrimidine, and Triazole Acetamides

    PubMed Central

    2015-01-01

    Molecular diversity plays a pivotal role in modern drug discovery against phenotypic or enzyme-based targets using high throughput screening technology. Under the auspices of the Pilot Scale Library Program of the NIH Roadmap Initiative, we produced and report herein a diverse library of 181 purine, pyrimidine, and 1,2,4-triazole-N-acetamide analogues which were prepared in a parallel high throughput solution-phase reaction format. A set of assorted amines were reacted with several nucleic acid N-acetic acids utilizing HATU as the coupling reagent to produce diverse acyclic nucleoside N-acetamide analogues. These reactions were performed using 24 well reaction blocks and an automatic reagent-dispensing platform under inert atmosphere. The targeted compounds were purified on an automated purification system using solid sample loading prepacked cartridges and prepacked silica gel columns. All compounds were characterized by NMR and HRMS, and were analyzed for purity by HPLC before submission to the Molecular Libraries Small Molecule Repository (MLSMR) at NIH. Initial screening through the Molecular Libraries Probe Production Centers Network (MLPCN) program, indicates that several analogues showed diverse and interesting biological activities. PMID:24933643

  10. The Infusion of Environmental Activities into a Secondary Biology Curriculum

    ERIC Educational Resources Information Center

    Foster, Helen M.

    1976-01-01

    Reviewed are "adventure-type" environmental education activities incorporated into a secondary level biology course. Student wilderness experiences included 24 weekend activities of hiking, bird watching, camping, and cross-country skiing. (SL)

  11. Multifunctional and biologically active matrices from multicomponent polymeric solutions

    NASA Technical Reports Server (NTRS)

    Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor); Rabolt, John (Inventor); Casper, Cheryl (Inventor)

    2012-01-01

    A functionalized electrospun matrix for the controlled-release of biologically active agents, such as growth factors, is presented. The functionalized matrix comprises a matrix polymer, a compatibilizing polymer and a biomolecule or other small functioning molecule. In certain aspects the electrospun polymer fibers comprise at least one biologically active molecule functionalized with low molecular weight heparin.

  12. Purine metabolism in adenosine deaminase deficiency.

    PubMed Central

    Mills, G C; Schmalstieg, F C; Trimmer, K B; Goldman, A S; Goldblum, R M

    1976-01-01

    Purine and pyrimidine metabolites were measured in erythrocytes, plasma, and urine of a 5-month-old infant with adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4) deficiency. Adenosine and adenine were measured using newly devised ion exchange separation techniques and a sensitive fluorescence assay. Plasma adenosine levels were increased, whereas adenosine was normal in erythrocytes and not detectable in urine. Increased amounts of adenine were found in erythrocytes and urine as well as in the plasma. Erythrocyte adenosine 5'-monophosphate and adenosine diphosphate concentrations were normal, but adenosine triphosphate content was greatly elevated. Because of the possibility of pyrimidine starvation, pyrimidine nucleotides (pyrimidine coenzymes) in erythrocytes and orotic acid in urine were measured. Pyrimidine nucleotide concentrations were normal, while orotic acid was not detected. These studies suggest that the immune deficiency associated with adenosine deaminase deficiency may be related to increased amounts of adenine, adenosine, or adenine nucleotides. PMID:1066699

  13. Acceleration of purine degradation by periodontal diseases.

    PubMed

    Barnes, V M; Teles, R; Trivedi, H M; Devizio, W; Xu, T; Mitchell, M W; Milburn, M V; Guo, L

    2009-09-01

    Periodontal diseases, such as gingivitis and periodontitis, are characterized by bacterial plaque accumulation around the gingival crevice and the subsequent inflammation and destruction of host tissues. To test the hypothesis that cellular metabolism is altered as a result of host-bacteria interaction, we performed an unbiased metabolomic profiling of gingival crevicular fluid (GCF) collected from healthy, gingivitis, and periodontitis sites in humans, by liquid and gas chromatography mass spectrometry. The purine degradation pathway, a major biochemical source for reactive oxygen species (ROS) production, was significantly accelerated at the disease sites. This suggests that periodontal-disease-induced oxidative stress and inflammation are mediated through this pathway. The complex host-bacterial interaction was further highlighted by depletion of anti-oxidants, degradation of host cellular components, and accumulation of bacterial products in GCF. These findings provide new mechanistic insights and a panel of comprehensive biomarkers for periodontal disease progression. PMID:19767584

  14. Acceleration of purine degradation by periodontal diseases.

    PubMed

    Barnes, V M; Teles, R; Trivedi, H M; Devizio, W; Xu, T; Mitchell, M W; Milburn, M V; Guo, L

    2009-09-01

    Periodontal diseases, such as gingivitis and periodontitis, are characterized by bacterial plaque accumulation around the gingival crevice and the subsequent inflammation and destruction of host tissues. To test the hypothesis that cellular metabolism is altered as a result of host-bacteria interaction, we performed an unbiased metabolomic profiling of gingival crevicular fluid (GCF) collected from healthy, gingivitis, and periodontitis sites in humans, by liquid and gas chromatography mass spectrometry. The purine degradation pathway, a major biochemical source for reactive oxygen species (ROS) production, was significantly accelerated at the disease sites. This suggests that periodontal-disease-induced oxidative stress and inflammation are mediated through this pathway. The complex host-bacterial interaction was further highlighted by depletion of anti-oxidants, degradation of host cellular components, and accumulation of bacterial products in GCF. These findings provide new mechanistic insights and a panel of comprehensive biomarkers for periodontal disease progression.

  15. Milk inhibits the biological activity of ricin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ricin is a highly toxic protein produced by the castor plant Ricinus communis. The toxin is relatively easy to isolate and can be used as a biological weapon. There is great interest in identifying effective inhibitors for ricin. In this study, we demonstrated by three independent assays that compon...

  16. Cyclobutane-Containing Alkaloids: Origin, Synthesis, and Biological Activities

    PubMed Central

    Sergeiko, Anastasia; Poroikov, Vladimir V; Hanuš, Lumir O; Dembitsky, Valery M

    2008-01-01

    Present review describes research on novel natural cyclobutane-containing alkaloids isolated from terrestrial and marine species. More than 60 biological active compounds have been confirmed to have antimicrobial, antibacterial, antitumor, and other activities. The structures, synthesis, origins, and biological activities of a selection of cyclobutane-containing alkaloids are reviewed. With the computer program PASS some additional biological activities are also predicted, which point toward new possible applications of these compounds. This review emphasizes the role of cyclobutane-containing alkaloids as an important source of leads for drug discovery. PMID:19696873

  17. Determination and profiling of purines in foods by using HPLC and LC-MS.

    PubMed

    Inazawa, K; Sato, A; Kato, Y; Yamaoka, N; Fukuuchi, T; Yasuda, M; Mawatari, K; Nakagomi, K; Kaneko, K

    2014-01-01

    Purines in food are known to raise serum uric acid levels. We determined the purine content of sweet potato and beef by high-performance liquid chromatography and liquid chromatography-mass spectrometry. The purine content of the samples was 118-1,034 μmol/100 g. The total purine content was also divided into purine bases, nucleosides, nucleotides, and nucleic acids. Our results suggest that differences in total purine content and in the ratio of purine types between vegetables and beef cause a difference in elevation of serum uric acid levels.

  18. Determination and profiling of purines in foods by using HPLC and LC-MS.

    PubMed

    Inazawa, K; Sato, A; Kato, Y; Yamaoka, N; Fukuuchi, T; Yasuda, M; Mawatari, K; Nakagomi, K; Kaneko, K

    2014-01-01

    Purines in food are known to raise serum uric acid levels. We determined the purine content of sweet potato and beef by high-performance liquid chromatography and liquid chromatography-mass spectrometry. The purine content of the samples was 118-1,034 μmol/100 g. The total purine content was also divided into purine bases, nucleosides, nucleotides, and nucleic acids. Our results suggest that differences in total purine content and in the ratio of purine types between vegetables and beef cause a difference in elevation of serum uric acid levels. PMID:24940702

  19. Isolation of Purines and Pyrimidines from the Murchison Meteorite Using Sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Bada, J. L.

    2004-01-01

    The origin of life on Earth, and possibly on other planets such as Mars, would have required the presence of liquid water and a continuous supply of prebiotic organic compounds. The exogenous delivery of organic matter by asteroids, comets, and carbonaceous meteorites could have contributed to the early Earth s prebiotic inventory by seeding the planet with biologically important organic compounds. A wide variety of prebiotic organic compounds have previously been detected in the Murchison CM type carbonaceous chondrite including amino acids, purines and pyrimidines. These compounds dominate terrestrial biochemistry and are integral components of proteins, DNA and RNA. Several purines including adenine, guanine, hypoxanthine, and xanthine, as well as the pyrimidine uracil, have previously been detected in water or formic acid extracts of Murchison using ion-exclusion chromatography and ultraviolet spectroscopy. However, even after purification of these extracts, the accurate identification and quantification of nucleobases is difficult due to interfering UV absorbing compounds. In order to reduce these effects, we have developed an extraction technique using sublimation to isolate purines and pyrimidines from other non-volatile organic compounds in Murchison acid extracts.

  20. Purine biosynthetic genes are required for cadmium tolerance in Schizosaccharomyces pombe

    SciTech Connect

    Speiser, D.M.; Ortiz, D.F.; Kreppel, L.; Scheel, G.; McDonald, G.; Ow, D.W. Univ. of California, Berkeley )

    1992-12-01

    Phytochelatins (PCs) are metal-chelating peptides produced in plants and some fungi in response to heavy metal exposure. A Cd-sensitive mutant of the fission yeast Schizosaccharomyces pombe, defective in production of a PC-Cd-sulfide complex essential for metal tolerance, was found to harbor mutations in specific genes of the purine biosynthetic pathway. Genetic analysis of the link between metal complex accumulation and purine biosynthesis enzymes revealed that genetic lesions blocking two segments of the pathway, before and after the IMP branchpoint, are required to produce the Cd-sensitive phenotype. The biochemical functions of these two segments of the pathway are similar, and a model based on the alternate use of a sulfur analog substrate is presented. The novel participation of purine biosynthesis enzymes in the conversion of the PC-Cd complex to the PC-Cd-sulfide complex in the fission yeast raises an intriguing possibility that these same enzymes might have a role in sulfur metabolism in the fission yeast S. pombe, and perhaps in other biological systems. 41 refs., 8 figs., 2 tabs.

  1. Purine biosynthetic genes are required for cadmium tolerance in Schizosaccharomyces pombe.

    PubMed Central

    Speiser, D M; Ortiz, D F; Kreppel, L; Scheel, G; McDonald, G; Ow, D W

    1992-01-01

    Phytochelatins (PCs) are metal-chelating peptides produced in plants and some fungi in response to heavy metal exposure. A Cd-sensitive mutant of the fission yeast Schizosaccharomyces pombe, defective in production of a PC-Cd-sulfide complex essential for metal tolerance, was found to harbor mutations in specific genes of the purine biosynthetic pathway. Genetic analysis of the link between metal complex accumulation and purine biosynthesis enzymes revealed that genetic lesions blocking two segments of the pathway, before and after the IMP branchpoint, are required to produce the Cd-sensitive phenotype. The biochemical functions of these two segments of the pathway are similar, and a model based on the alternate use of a sulfur analog substrate is presented. The novel participation of purine biosynthesis enzymes in the conversion of the PC-Cd complex to the PC-Cd-sulfide complex in the fission yeast raises an intriguing possibility that these same enzymes might have a role in sulfur metabolism in the fission yeast S. pombe, and perhaps in other biological systems. Images PMID:1448066

  2. Biology Research Activities: Teacher's Edition (with Answers).

    ERIC Educational Resources Information Center

    Newman, Barbara

    This book is part of the series "Explorations in Science" which contains enrichment activities for the general science curriculum. Each book in the series contains innovative and traditional projects for both the bright and average, the self-motivated, and those who find activity motivating. Each activity is self-contained and provides everything…

  3. Stereoselective synthesis of 9-beta-d-arabianofuranosyl guanine and 2-amino-9-(beta-d-arabianofuranosyl)purine.

    PubMed

    Yu, Xue-Jun; Li, Gai-Xia; Qi, Xiou-Xiang; Deng, You-Quan

    2005-02-01

    9-beta-d-Arabianofuranosyl guanine (6) and 2-amino-9-(beta-d-arabianofuranosyl)purine (8) were prepared from 2-amino-6-chloro-9-(2,3,5-triphenylmethoxyl-beta-d-arabianofuranosyl)purine (4), a key intermediate which was stereoselectively prepared from 2,3,5-triphenylmethoxyl-d-arabianofuranose and 2-amino-6-chloro-purine. The yield of the intermediate was obviously improved and only beta-isomer was formed by using the activated molecular sieve as environmental friendly catalyst, overcoming the defect that a 1:1 mixture of alpha- and beta-isomers was formed, which was difficult to separate, when toxic mercury cyanide was previously used as catalyst.

  4. The biochemistry of nitrogen mobilization: purine ring catabolism.

    PubMed

    Werner, Andrea K; Witte, Claus-Peter

    2011-07-01

    The enzymatic route of purine ring catabolism has recently been completed by the discovery of several novel enzymes identified through comparative genome analyses. Here, we review these recent discoveries and present an overview of purine ring catabolism in plants. Xanthine is oxidized to urate in the cytosol, followed by three enzymatic steps taking place in the peroxisome and four reactions in the endoplasmic reticulum releasing the four ring nitrogen as ammonia. Although the main physiological function of purine degradation might lie in the remobilization of nitrogen resources, it has also emerged that catabolic intermediates, the ureides allantoin and allantoate, are likely to be involved in protecting plants against abiotic stress. Conserved alternative splicing mediating the peroxisomal as well as cytosolic localization of allantoin synthase potentially links purine ring catabolism to brassinosteroid signaling.

  5. Purine alkaloids from the South China Sea gorgonian Subergorgia suberosa.

    PubMed

    Qi, Shu-Hua; Zhang, Si; Huang, Hui

    2008-04-01

    Four new purine alkaloids, namely, 6-(1'-purine-6',8'-dionyl)suberosanone ( 1), 3,9-(2-imino-1-methyl-4-imidazolidinone-5-yl)isopropenylpurine-6,8-dione ( 2), 1-(3'-carbonylbutyl)purine-6,8-dione ( 3), and 9-(3'-carbonylbutyl)purine-6,8-dione ( 4), together with three known compounds, guanosine ( 5), thymidine ( 6), and adenosine ( 7), were isolated from the EtOH/CH 2Cl 2 extracts of the South China Sea gorgonian Subergorgia suberosa. The structures of 1- 4 were determined on the basis of extensive spectroscopic analysis, including 1D and 2D NMR data. Compounds 1- 4 all showed weak cytotoxicity toward human cancer cell lines MDA-MB-231 and A435.

  6. Biological Activity of Recently Discovered Halogenated Marine Natural Products

    PubMed Central

    Gribble, Gordon W.

    2015-01-01

    This review presents the biological activity—antibacterial, antifungal, anti-parasitic, antiviral, antitumor, antiinflammatory, antioxidant, and enzymatic activity—of halogenated marine natural products discovered in the past five years. Newly discovered examples that do not report biological activity are not included. PMID:26133553

  7. Sensitive bioassay for detection of biologically active ricin in food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential use of ricin as an agent of biological warfare highlights the need to develop fast and effective methods to detect biologically active ricin. The current “gold standard” for ricin detection is an in vivo mouse bioassay; however, this method is not practical to test on a large number of...

  8. Constituents and biological activities of Schinus polygamus.

    PubMed

    Erazo, Silvia; Delporte, Carla; Negrete, Rosa; García, Rubén; Zaldívar, Mercedes; Iturra, Gladys; Caballero, Esther; López, José Luis; Backhouse, Nadine

    2006-10-11

    The folk medicine employs Schinus polygamus to treat arthritic pain and cleansing of wounds. As no reports of pharmacological studies supporting its anti-inflammatory and analgesic properties, extracts of increasing polarity were assayed on the base of fever, pain and inflammation, together with its antimicrobial activity. All the extracts showed pharmacological activities. From the most active extracts different metabolites were isolated that can in part explain the antipyretic, anti-inflammatory, and analgesic activity: beta-sitosterol, shikimic acid together with quercetin, previously reported. Also, the essential oil of leaves and fruits was obtained and compared with the oil obtained from Schinus polygamus collected in Argentine. Oils differed in composition and in antibacterial activity, where the Chilean species exhibited a wide spectrum of activity against Gram-positive and Gram-negative bacteria, and the most abundant compound found in leaves and fruits was beta-pinene, meanwhile the Argentine species showed high activity against Bacillus cereus, and the main components resulted to be alpha-phellandrene and limonene.

  9. Biological activities of Croton palanostigma Klotzsch

    PubMed Central

    Mota, Eduardo Ferreira; Rosario, Diele Magno; Silva Veiga, Andreza Socorro; Barros Brasil, Davi Do Socorro; Silveira, Fernando Tobias; Dolabela, Maria Fâni

    2016-01-01

    Background: Different species of Croton are used in traditional Amazonian medicine. Among the popular uses are treatment of bacterial diseases, poorly healing wounds and fevers. Objective: This study evaluated the antileishmanial, antiplasmodial and antimicrobial activities of the extracts and diterpenes of Croton palanostigma Klotzsch (Euphorbiaceae). Materials and Methods: Leaves and bark were extracted with dichloromethane and methanol. The bark dichloromethane extract (BDE) was chromatographed on a column, obtaining cordatin and aparisthman. The extracts and diterpenes were assayed thought agar disk diffusion method and their bactericidal or fungicidal effects were evaluated by minimum bactericidal or fungicidal concentration. The antiplasmodial activity was evaluated after 24 and 72 h of exposition. The antileishmanial activity was performed on promastigotes forms of Leishmania amazonensis. Results: The bark methanol extract (BME) and cordatin were not active against any microbial strains tested; BDE and leaves methanol extract (LME) were positive for Pseudomonas aeruginosa and aparisthman was positive for Candida albicans. In the determination of the minimum bactericidal concentration, neither of them were active in the highest concentration tested. The extracts and diterpenes were inactive in Plasmodium falciparum, except the LME in 72 h. Any extract was shown to be active in promastigote forms of L. amazonensis. Conclusion: These results indicate that the BDE and LME did not inhibit the bacterial growth, then they probably had bacteriostatic effect. LME presented activity in P. falciparum. PMID:27041867

  10. [Galanin: a new biologically active gastrointestinal neuropeptide].

    PubMed

    Bauer, F E

    1990-03-01

    The 29 amino acid containing neuropeptide galanin is localized in the intrinsic nervous system of the entire gastrointestinal tract and the pancreas. It was found in man and several animal species. Molecular biology studies revealed different molecular forms of galanin in several mammalian species including man. The galanin precursor was also found. Galanin shows several potent pharmacological actions: it inhibits gastrointestinal motility in man. It also has an inhibitory effect on intestinal smooth muscle contractility of several animal species. These actions are mediated directly by opening of potassium channels and indirectly by inhibition of acetylcholine release. In addition galanin inhibits pancreatic hormone secretion (i.e. hypoinsulinemia, hyperglycemia) and partly the release of hormones localized in the gastrointestinal tract. On exocrine glands in man (salivary glands) galanin has hydrokinetic actions. The physiological role of galanin might be regulation of gastrointestinal motility, control of secretory function of intestine and a regulatory role in endocrine and exocrine gland secretion.

  11. The biological effects of solar activity.

    PubMed

    Breus, T K; Pimenov, K Yu; Cornélissen, G; Halberg, E; Syutkina, E V; Baevsky, R M; Petrov, V M; Orth-Gómer, K; Akerstedt, T; Otsuka, K; Watanabe, Y; Chibisov, S M

    2002-01-01

    The synchronization of biological circadian and circannual rhythms is broadly viewed as a result of photic solar effects. Evidence for non-photic solar effects on biota is also slowly being recognized. The ultrastructure of cardiomyocytes from rabbits, the time structure of blood pressure and heart rate of neonates, and the heart rate variability of human adults on earth and in space were examined during magnetically disturbed and quiet days, as were morbidity statistics. Alterations in both the about-daily (circadian) and about-weekly (circaseptan) components are observed during disturbed vs. quite days. The about-weekly period of neonatal blood pressure correlates with that of the local geomagnetic disturbance index K. Circaseptans which are seen early in human life and in various other forms of life, including unicells, may provide information about the possible site(s) of life's origins from an integrative as well as adaptive evolutionary perspective. PMID:12653180

  12. [Galanin: a new biologically active gastrointestinal neuropeptide].

    PubMed

    Bauer, F E

    1990-03-01

    The 29 amino acid containing neuropeptide galanin is localized in the intrinsic nervous system of the entire gastrointestinal tract and the pancreas. It was found in man and several animal species. Molecular biology studies revealed different molecular forms of galanin in several mammalian species including man. The galanin precursor was also found. Galanin shows several potent pharmacological actions: it inhibits gastrointestinal motility in man. It also has an inhibitory effect on intestinal smooth muscle contractility of several animal species. These actions are mediated directly by opening of potassium channels and indirectly by inhibition of acetylcholine release. In addition galanin inhibits pancreatic hormone secretion (i.e. hypoinsulinemia, hyperglycemia) and partly the release of hormones localized in the gastrointestinal tract. On exocrine glands in man (salivary glands) galanin has hydrokinetic actions. The physiological role of galanin might be regulation of gastrointestinal motility, control of secretory function of intestine and a regulatory role in endocrine and exocrine gland secretion. PMID:1693024

  13. Multifunctional and biologically active matrices from multicomponent polymeric solutions

    NASA Technical Reports Server (NTRS)

    Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)

    2010-01-01

    The present invention relates to a biologically active functionalized electrospun matrix to permit immobilization and long-term delivery of biologically active agents. In particular the invention relates to a functionalized polymer matrix comprising a matrix polymer, a compatibilizing polymer and a biomolecule or other small functioning molecule. In certain aspects the electrospun polymer fibers comprise at least one biologically active molecule functionalized with low molecular weight heparin. Examples of active molecules that may be used with the multicomponent polymer of the invention include, for example, a drug, a biopolymer, for example a growth factor, a protein, a peptide, a nucleotide, a polysaccharide, a biological macromolecule or the like. The invention is further directed to the formation of functionalized crosslinked matrices, such as hydrogels, that include at least one functionalized compatibilizing polymer capable of assembly.

  14. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2014-05-27

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  15. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2013-10-01

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  16. Coumarin heterocyclic derivatives: chemical synthesis and biological activity.

    PubMed

    Medina, Fernanda G; Marrero, Joaquín G; Macías-Alonso, Mariana; González, Magdalena C; Córdova-Guerrero, Iván; Teissier García, Ariana G; Osegueda-Robles, Soraya

    2015-09-23

    This review highlights the broad range of science that has arisen from the synthesis of coumarin-linked and fused heterocycle derivatives. Specific topics include their synthesis and biological activity.

  17. Methods of increasing secretion of polypeptides having biological activity

    SciTech Connect

    Merino, Sandra

    2014-10-28

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  18. Methods of increasing secretion of polypeptides having biological activity

    SciTech Connect

    Merino, Sandra

    2015-04-14

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  19. Coexpression of two closely linked avian genes for purine nucleotide synthesis from a bidirectional promoter.

    PubMed Central

    Gavalas, A; Dixon, J E; Brayton, K A; Zalkin, H

    1993-01-01

    Two avian genes encoding essential steps in the purine nucleotide biosynthetic pathway are transcribed divergently from a bidirectional promoter element. The bidirectional promoter, embedded in a CpG island, directs coexpression of GPAT and AIRC genes from distinct transcriptional start sites 229 bp apart. The bidirectional promoter can be divided in half, with each half retaining partial activity towards the cognate gene. GPAT and AIRC genes encode the enzymes that catalyze step 1 and steps 6 plus 7, respectively, in the de novo purine biosynthetic pathway. This is the first report of genes coding for structurally unrelated enzymes of the same pathway that are tightly linked and transcribed divergently from a bidirectional promoter. This arrangement has the potential to provide for regulated coexpression comparable to that in a prokaryotic operon. Images PMID:8336716

  20. Discovery of 5-substituted pyrrolo[2,3-d]pyrimidine antifolates as dual acting inhibitors of glycinamide ribonucleotide formyltransferase and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase in de novo purine nucleotide biosynthesis: implications of inhibiting 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase to AMPK activation and anti-tumor activity

    PubMed Central

    Raghavan, Sudhir; Ravindra, Manasa Punaha; Hales, Eric; Orr, Steven; Cherian, Christina; Hou, Zhanjun

    2014-01-01

    We synthesized 5-substituted pyrrolo[2,3-d]pyrimidine antifolates (compounds 5–10) with 1 to 6 bridge carbons and a benozyl ring in the side chain as antitumor agents. Compound 8 with a 4-carbon bridge was the most active analog and potently inhibited proliferation of folate receptor (FR) α-expressing Chinese hamster ovary and KB human tumor cells. Growth inhibition was reversed completely or in part by excess folic acid, indicating that FRα is involved in cellular uptake, and resulted in S-phase accumulation and apoptosis. Anti-proliferative effects of compound 8 toward KB cells were protected by excess adenosine but not thymidine, establishing de novo purine nucleotide biosynthesis as the targeted pathway. However, 5-aminoimidazole-4-carboxamide (AICA) protection was incomplete, suggesting inhibition of both AICA ribonucleotide formyltransferase (AICARFTase) and glycinamide ribonucleotide formyltransferase (GARFTase). Inhibition of GARFTase and AICARFTase by compound 8 was confirmed by cellular metabolic assays and resulted in ATP pool depletion. To our knowledge, this is the first example of an antifolate that acts as a dual inhibitor of GARFTase and AICARFTase as its principal mechanism of action. PMID:24256410

  1. Physical activity and biological maturation: a systematic review

    PubMed Central

    Bacil, Eliane Denise Araújo; Mazzardo, Oldemar; Rech, Cassiano Ricardo; Legnani, Rosimeide Francisco dos Santos; de Campos, Wagner

    2015-01-01

    OBJECTIVE: To analyze the association between physical activity (PA) and biological maturation in children and adolescents. DATA SOURCE: We performed a systematic review in April 2013 in the electronic databases of PubMed/MEDLINE, SportDiscus, Web of Science and LILACS without time restrictions. A total of 628 potentially relevant articles were identified and 10 met the inclusion criteria for this review: cross-sectional or longitudinal studies, published in Portuguese, English or Spanish, with schoolchildren aged 9-15 years old of both genders. DATA SYNTHESIS: Despite the heterogeneity of the studies, there was an inverse association between PA and biological maturation. PA decreases with increased biological and chronological age in both genders. Boys tend to be more physically active than girls; however, when controlling for biological age, the gender differences disappear. The association between PA and timing of maturation varies between the genders. Variation in the timing of biological maturation affects the tracking of PA in early adolescent girls. This review suggests that mediators (BMI, depression, low self-esteem, and concerns about body weight) can explain the association between PA and biological maturation. CONCLUSIONS: There is an association between PA and biological maturation. PA decreases with increasing biological age with no differences between genders. As for the timing of biological maturation, this association varies between genders. PMID:25583624

  2. New biologically active compounds from Kenyan propolis.

    PubMed

    Petrova, Assya; Popova, Milena; Kuzmanova, Christina; Tsvetkova, Iva; Naydenski, Hristo; Muli, Eliud; Bankova, Vassya

    2010-09-01

    From propolis samples from Kenya, two new arylnaphtalene lignans were isolated, tetrahydrojusticidin B 1 and 6-methoxydiphyllin 2, along with four known phenolic compounds 5-8, found for the first time in propolis. The structures of the compounds were elucidated based on their spectral properties. The geranylstilbenes 7 and 8 demonstrated antibacterial activity against S. aureus, and the geranylflavon macarangin 6 possessed antiradical activity against DPPH radicals.

  3. Metabolic Reprogramming During Purine Stress in the Protozoan Pathogen Leishmania donovani

    SciTech Connect

    Martin, Jessica L.; Yates, Phillip A.; Soysa, Radika; Alfaro, Joshua F.; Yang, Feng; Burnum-Johnson, Kristin E.; Petyuk, Vladislav A.; Weitz, Karl K.; Camp, David G.; Smith, Richard D.; Wilmarth, Phillip A.; David, Larry L.; Ramasamy, Gowthaman; Myler, Peter J.; Carter, Nicola S.

    2014-02-27

    The ability of Leishmania to survive in their insect or mammalian host is dependent upon an ability to sense and adapt to changes in the microenvironment. However, little is known about the molecular mechanisms underlying the parasite response to environmental changes, such as nutrient availability. To elucidate nutrient stress response pathways in Leishmania donovani, we have used purine starvation as the paradigm. The salvage of purines from the host milieu is obligatory for parasite replication; nevertheless, purine-starved parasites can persist in culture without supplementary purine for over 3 months, indicating that the response to purine starvation is robust and engenders parasite survival under conditions of extreme scarcity. To understand metabolic reprogramming during purine starvation we have employed global approaches. Whole proteome comparisons between purine-starved and purine-replete parasites over a 6-48 h span have revealed a temporal and coordinated response to purine starvation. Purine transporters and enzymes involved in acquisition at the cell surface are upregulated within a few hours of purine removal from the media, while other key purine salvage components are upregulated later in the time-course and more modestly. After 48 h, the proteome of purine-starved parasites is extensively remodeled and adaptations to purine stress appear tailored to deal with both purine deprivation and general stress. To probe the molecular mechanisms affecting proteome remodeling in response to purine starvation, comparative RNA-seq analyses, qRT-PCR, and luciferase reporter assays were performed on purine-starved versus purine-replete parasites. While the regulation of a minority of proteins tracked with changes at the mRNA level, for many regulated proteins it appears that proteome remodeling during purine stress occurs primarily via translational and/or post-translational mechanisms.

  4. Metabolic reprogramming during purine stress in the protozoan pathogen Leishmania donovani.

    PubMed

    Martin, Jessica L; Yates, Phillip A; Soysa, Radika; Alfaro, Joshua F; Yang, Feng; Burnum-Johnson, Kristin E; Petyuk, Vladislav A; Weitz, Karl K; Camp, David G; Smith, Richard D; Wilmarth, Phillip A; David, Larry L; Ramasamy, Gowthaman; Myler, Peter J; Carter, Nicola S

    2014-02-01

    The ability of Leishmania to survive in their insect or mammalian host is dependent upon an ability to sense and adapt to changes in the microenvironment. However, little is known about the molecular mechanisms underlying the parasite response to environmental changes, such as nutrient availability. To elucidate nutrient stress response pathways in Leishmania donovani, we have used purine starvation as the paradigm. The salvage of purines from the host milieu is obligatory for parasite replication; nevertheless, purine-starved parasites can persist in culture without supplementary purine for over three months, indicating that the response to purine starvation is robust and engenders parasite survival under conditions of extreme scarcity. To understand metabolic reprogramming during purine starvation we have employed global approaches. Whole proteome comparisons between purine-starved and purine-replete parasites over a 6-48 h span have revealed a temporal and coordinated response to purine starvation. Purine transporters and enzymes involved in acquisition at the cell surface are upregulated within a few hours of purine removal from the media, while other key purine salvage components are upregulated later in the time-course and more modestly. After 48 h, the proteome of purine-starved parasites is extensively remodeled and adaptations to purine stress appear tailored to deal with both purine deprivation and general stress. To probe the molecular mechanisms affecting proteome remodeling in response to purine starvation, comparative RNA-seq analyses, qRT-PCR, and luciferase reporter assays were performed on purine-starved versus purine-replete parasites. While the regulation of a minority of proteins tracked with changes at the mRNA level, for many regulated proteins it appears that proteome remodeling during purine stress occurs primarily via translational and/or post-translational mechanisms.

  5. Total synthesis and biological activity of natural product Urukthapelstatin A.

    PubMed

    Lin, Chun-Chieh; Tantisantisom, Worawan; McAlpine, Shelli R

    2013-07-19

    Herein we report the first total synthesis of the natural product Urkuthaplestatin A (Ustat A) utilizing a convergent synthetic strategy. The characterization and biological activity match those of the previously published natural product. Interestingly, several intermediates, including the linear and serine cyclized precursors, show a 100-fold decrease in cytotoxicity, with IC50's in the low micromolar range. These data indicate that the rigidity and the consecutive aromatic heterocyclic system are responsible for the biological activity. PMID:23819711

  6. Activated Sludge. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Boe, Owen K.; Klopping, Paul H.

    This student manual contains the textual material for a seven-lesson unit on activated sludge. Topic areas addressed in the lessons include: (1) activated sludge concepts and components (including aeration tanks, aeration systems, clarifiers, and sludge pumping systems); (2) activated sludge variations and modes; (3) biological nature of activated…

  7. Modulation of AMP deaminase in rat hearts subjected to ischemia and reperfusion by purine riboside.

    PubMed

    Borkowski, T; Lipinski, M; Kaminski, R; Krzyminska-Stasiuk, E; Langowska, M; Raczak, G; Slominska, E M; Smolenski, R T

    2008-06-01

    Changes in AMP deaminase (AMPD) activity influence heart function and progression of heart disease, but the underlying mechanism is unknown. We evaluated the effect of purine riboside (Purr) on the activity of AMPD in perfused rat hearts and in isolated rat cardiomyocytes. Brief perfusion of the pre-ischemic heart with 200 micro M Purr resulted in activation of AMPD, more pronounced degradation of the adenine nucleotides, and reduced recovery of the adenine nucleotide pool during reperfusion. Brief incubation of rat cardiomyocytes with 200 micro M Purr also activated AMPD, while prolonged exposure resulted in enzyme inhibition. We conclude that Purr activates AMPD, whereas metabolites of this compound may inhibit the enzyme.

  8. Biologically active compounds of semi-metals.

    PubMed

    Rezanka, Tomás; Sigler, Karel

    2008-02-01

    Semi-metals (boron, silicon, arsenic and selenium) form organo-metal compounds, some of which are found in nature and affect the physiology of living organisms. They include, e.g., the boron-containing antibiotics aplasmomycin, borophycin, boromycin, and tartrolon or the silicon compounds present in "silicate" bacteria, relatives of the genus Bacillus, which release silicon from aluminosilicates through the secretion of organic acids. Arsenic is incorporated into arsenosugars and arsenobetaines by marine algae and invertebrates, and fungi and bacteria can produce volatile methylated arsenic compounds. Some prokaryotes can use arsenate as a terminal electron acceptor while others can utilize arsenite as an electron donor to generate energy. Selenium is incorporated into selenocysteine that is found in some proteins. Biomethylation of selenide produces methylselenide and dimethylselenide. Selenium analogues of amino acids, antitumor, antibacterial, antifungal, antiviral, anti-infective drugs are often used as analogues of important pharmacological sulfur compounds. Other metalloids, i.e. the rare and toxic tellurium and the radioactive short-lived astatine, have no biological significance. PMID:17991498

  9. Building biologically active nucleic acid nanocomplexes.

    PubMed

    Smith, C I Edvard; Lundin, Karin E; Simonson, Oscar E; Moreno, Pedro M D; Svahn, Mathias G; Wenska, Malgorzata; Strömberg, Roger

    2008-01-01

    The Bioplex technology allows the hybridization of functional entities to various forms of nucleic acids by the use of synthetic nucleic acid analogs. Such supramolecular assemblies can be made in a predetermined fashion and can confer new properties. The Zorro technology is based on a novel construct generated to simultaneously bind to both DNA strands. Such compounds may have gene silencing activity.

  10. Isoxanthohumol--Biologically active hop flavonoid.

    PubMed

    Żołnierczyk, Anna Katarzyna; Mączka, Wanda Krystyna; Grabarczyk, Małgorzata; Wińska, Katarzyna; Woźniak, Edyta; Anioł, Mirosław

    2015-06-01

    Isoxanthohumol (IXN), apart from xanthohumol (XN) and 8-prenylnaringenin (8PN), is one of the most important prenylflavonoids found in hops. Another natural source of this compound is a shrub Sophora flavescens, used in traditional Chinese medicine. Main dietary source of IXN is beer, and the compound is produced from XN during wort boiling. In the human body, the compound is O-demethylated to 8PN, the strongest known phytoestrogen. This process takes place in the liver and in the intestine, where it is mediated by local microflora. It has been reported in some studies that even though beer contains small amounts of hops and its preparations, these compounds may affect the functioning of the human body. IXN exhibits an antiproliferative activity against human cell lines typical for breast cancer (MCF-7), ovarian cancer (A-2780), prostate cancer (DU145 and PC-3), and colon cancer (HT-29 and SW620) cells. It strongly inhibits the activation of the following carcinogens: 2-amino-3-methylimidazol-[4,5-f]quinoline and aflatoxin B1 (AFB1) via human cytochrome P450 (CYP1A2). It also inhibits the production of prostate specific antigen (PSA). IXN significantly reduces the expression of transforming growth factor-β (TGF-β) in the case of invasive breast cancer MDA-MB-231. It interferes with JAK/STAT signaling pathway and inhibits the expression of pro1inflammatory genes in the monoblastic leukemia cell line (MonoMac6). It activates apoptosis in human umbilical vein endothelial cells (HUVEC) and human aortic smooth muscle cells (HASMCs). In addition, IXN shows an antiviral activity towards herpes viruses (HSV1 and HSV2) and bovine viral diarrhea virus (BVDV). PMID:25771121

  11. Physical aspects of biological activity and cancer

    NASA Astrophysics Data System (ADS)

    Pokorný, Jiří

    2012-03-01

    Mitochondria are organelles at the boundary between chemical-genetic and physical processes in living cells. Mitochondria supply energy and provide conditions for physical mechanisms. Protons transferred across the inner mitochondrial membrane diffuse into cytosol and form a zone of a strong static electric field changing water into quasi-elastic medium that loses viscosity damping properties. Mitochondria and microtubules form a unique cooperating system in the cell. Microtubules are electrical polar structures that make possible non-linear transformation of random excitations into coherent oscillations and generation of coherent electrodynamic field. Mitochondria supply energy, may condition non-linear properties and low damping of oscillations. Electrodynamic activity might have essential significance for material transport, organization, intra- and inter-cellular interactions, and information transfer. Physical processes in cancer cell are disturbed due to suppression of oxidative metabolism in mitochodria (Warburg effect). Water ordering level in the cell is decreased, excitation of microtubule electric polar oscilations diminished, damping increased, and non-linear energy transformation shifted towards the linear region. Power and coherence of the generated electrodynamic field are reduced. Electromagnetic activity of healthy and cancer cells may display essential differences. Local invasion and metastastatic growth may strongly depend on disturbed electrodynamic activity. Nanotechnological measurements may disclose yet unknown properties and parameters of electrodynamic oscillations and other physical processes in healthy and cancer cells.

  12. Purine and pyrimidine metabolism: Convergent evidence on chronic antidepressant treatment response in mice and humans

    PubMed Central

    Park, Dong Ik; Dournes, Carine; Sillaber, Inge; Uhr, Manfred; Asara, John M.; Gassen, Nils C.; Rein, Theo; Ising, Marcus; Webhofer, Christian; Filiou, Michaela D.; Müller, Marianne B.; Turck, Christoph W.

    2016-01-01

    Selective Serotonin Reuptake Inhibitors (SSRIs) are commonly used drugs for the treatment of psychiatric diseases including major depressive disorder (MDD). For unknown reasons a substantial number of patients do not show any improvement during or after SSRI treatment. We treated DBA/2J mice for 28 days with paroxetine and assessed their behavioral response with the forced swim test (FST). Paroxetine-treated long-time floating (PLF) and paroxetine-treated short-time floating (PSF) groups were stratified as proxies for drug non-responder and responder mice, respectively. Proteomics and metabolomics profiles of PLF and PSF groups were acquired for the hippocampus and plasma to identify molecular pathways and biosignatures that stratify paroxetine-treated mouse sub-groups. The critical role of purine and pyrimidine metabolisms for chronic paroxetine treatment response in the mouse was further corroborated by pathway protein expression differences in both mice and patients that underwent chronic antidepressant treatment. The integrated -omics data indicate purine and pyrimidine metabolism pathway activity differences between PLF and PSF mice. Furthermore, the pathway protein levels in peripheral specimens strongly correlated with the antidepressant treatment response in patients. Our results suggest that chronic SSRI treatment differentially affects purine and pyrimidine metabolisms, which may explain the heterogeneous antidepressant treatment response and represents a potential biosignature. PMID:27731396

  13. Purine catabolic pathway revealed by transcriptomics in the model marine bacterium Ruegeria pomeroyi DSS-3.

    PubMed

    Cunliffe, Michael

    2016-01-01

    Purines are nitrogen-rich compounds that are widely distributed in the marine environment and are an important component of the dissolved organic nitrogen (DON) pool. Even though purines have been shown to be degraded by bacterioplankton, the identities of marine bacteria capable of purine degradation and their underlying catabolic mechanisms are currently unknown. This study shows that Ruegeria pomeroyi, a model marine bacterium and Marine Roseobacter Clade (MRC) representative, utilizes xanthine as a source of carbon and nitrogen. The R. pomeroyi genome contains putative genes that encode xanthine dehydrogenase (XDH), which is expressed during growth with xanthine. RNAseq-based analysis of the R. pomeroyi transcriptome revealed that the transcription of an XDH-initiated catabolic pathway is up-regulated during growth with xanthine, with transcription greatest when xanthine was the only available carbon source. The RNAseq-deduced pathway indicates that glyoxylate and ammonia are the key intermediates from xanthine degradation. Utilising a laboratory model, this study has identified the potential genes and catabolic pathway active during xanthine degradation. The ability of R. pomeroyi to utilize xanthine provides novel insights into the capabilities of the MRC that may contribute to their success in marine ecosystems and the potential biogeochemical importance of the group in processing DON.

  14. Biosynthesis, Synthesis and Biological Activities of Pyrrolobenzodiazepines

    PubMed Central

    Gerratana, Barbara

    2014-01-01

    Pyrrolobenzodiazepines (PBDs) are sequence selective DNA alkylating agents with remarkable antineoplastic activity. They are either naturally produced by actinomycetes or synthetically produced. The remarkable broad spectrum of activities of the naturally produced PBDs encouraged the synthesis of several PBDs, including dimeric and hybrid PBDs yielding to an improvement in the DNA binding sequence specificity and in the potency of this class of compounds. However, limitation in the chemical synthesis prevented the testing of one of the most potent PBDs, sibiromycin, a naturally produced glycosylated PBDs. Only recently the biosynthetic gene clusters for PBDs have been identified opening the doors to the production of glycosylated PBDs by mutasynthesis and biosynthetic engineering. The present review describes the recent studies on the biosynthesis of naturally produced pyrrolobenzodiazepines. In addition, it provides an overview on the isolation and characterization of naturally produced PBDs, on the chemical synthesis of PBDs, on the mechanism of DNA alkylation, and on the DNA binding affinity and cytotoxic properties of both naturally produced and synthetic pyrrolobenzodiazepines. PMID:20544978

  15. Biologically active extracts with kidney affections applications

    NASA Astrophysics Data System (ADS)

    Pascu (Neagu), Mihaela; Pascu, Daniela-Elena; Cozea, Andreea; Bunaciu, Andrei A.; Miron, Alexandra Raluca; Nechifor, Cristina Aurelia

    2015-12-01

    This paper is aimed to select plant materials rich in bioflavonoid compounds, made from herbs known for their application performances in the prevention and therapy of renal diseases, namely kidney stones and urinary infections (renal lithiasis, nephritis, urethritis, cystitis, etc.). This paper presents a comparative study of the medicinal plant extracts composition belonging to Ericaceae-Cranberry (fruit and leaves) - Vaccinium vitis-idaea L. and Bilberry (fruit) - Vaccinium myrtillus L. Concentrated extracts obtained from medicinal plants used in this work were analyzed from structural, morphological and compositional points of view using different techniques: chromatographic methods (HPLC), scanning electronic microscopy, infrared, and UV spectrophotometry, also by using kinetic model. Liquid chromatography was able to identify the specific compounds of the Ericaceae family, present in all three extracts, arbutosid, as well as specific components of each species, mostly from the class of polyphenols. The identification and quantitative determination of the active ingredients from these extracts can give information related to their therapeutic effects.

  16. Transport of biologically active material in laser cutting.

    PubMed

    Frenz, M; Mathezloic, F; Stoffel, M H; Zweig, A D; Romano, V; Weber, H P

    1988-01-01

    The transport of biologically active material during laser cutting with CO2 and Er lasers is demonstrated. This transport mechanism removes particles from the surface of gelatin, agar, and liver samples into the depth of the laser-formed craters. The transport phenomenon is explained by a contraction and condensation of enclosed hot water vapor. We show by cultivating transported bacteria in agar that biological particles can survive the shock of the transport. Determination of the numbers of active cells evidences a more pronounced activity of the cultivated bacteria after impact with an Er laser than with a CO2 laser.

  17. Synthesis and biological activity of new arenediyne-linked isoxazolidines.

    PubMed

    Romeo, Roberto; Navarra, Michele; Giofrè, Salvatore V; Carnovale, Caterina; Cirmi, Santa; Lanza, Giuseppe; Chiacchio, Maria A

    2014-07-01

    Arenediyne-isoxazolidine conjugates have been synthesized as a new scaffold for the development of bioactive mimics. Some of the synthesized compounds are endowed with antiproliferative activity against three human cancer cell lines. Their thermal reactivity suggests that the biological activity probably could not be linked to the Bergman cyclization.

  18. Models Role within Active Learning in Biology. A Case Study

    ERIC Educational Resources Information Center

    Pop-Pacurar, Irina; Tirla, Felicia-Doina

    2009-01-01

    In order to integrate ideas and information creatively, to motivate students and activate their thinking, we have used in Biology classes a series of active methods, among which the methods of critical thinking, which had very good results. Still, in the case of some intuitive, abstract, more difficult topics, such as the cell structure,…

  19. AFLATOXIN B2: CHEMICAL IDENTITY AND BIOLOGICAL ACTIVITY.

    PubMed

    CHANG, S B; ABDEL-KADER, M M; WICK, E L; WOGAN, G N

    1963-11-29

    Aflatoxin B(2), a blue-fluorescent metabolite of Aspergillus flavus, was isolated from cultures grown on crushed wheat. Chemical structure of the compound was elucidated as dihydroaflatoxin B(1). Biological activity was determined in day-old male white Pekin ducklings. The criteria of activity were reduction in growth and liver size and the extent of bile-duct hyperplasia.

  20. [Oregano: properties, composition and biological activity].

    PubMed

    Arcila-Lozano, Cynthia Cristina; Loarca-Piña, Guadalupe; Lecona-Uribe, Salvador; González de Mejía, Elvira

    2004-03-01

    The oregano spice includes various plant species. The most common are the genus Origanum, native of Europe, and the Lippia, native of Mexico. Among the species of Origanum. their most important components are the limonene, gamma-cariofilene, rho-cymenene, canfor, linalol, alpha-pinene, carvacrol and thymol. In the genus Lippia, the same compounds can be found. The oregano composition depends on the specie, climate, altitude, time of recollection and the stage of growth. Some of the properties of this plant's extracts are being currently studied due to the growing interest for substituting synthetic additives commonly found in foods. Oregano has a good antioxidant capacity and also presents antimicrobial activity against pathogenic microorganisms like Salmonella typhimurium, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, among others. These are all characteristics of interest for the food industry because they may enhance the safety and stability of foods. There are also some reports regarding the antimutagenic and anticarcinogenic effect of oregano; representing an alternative for the potential treatment and/or prevention of certain chronic ailments, like cancer. PMID:15332363

  1. Azaglycomimetics: Natural Occurrence, Biological Activity, and Application

    NASA Astrophysics Data System (ADS)

    Asano, Naoki

    A large number of alkaloids mimicking the structures of monosaccharides or oligosaccharides have been isolated from plants and microorganisms. The sugar mimicking alkaloids with a nitrogen in the ring are called azasugars or iminosugars. Naturally occurring azasugars are classified into five structural classes: polyhydroxylated piperidines, pyrrolidines, indolizidines, pyrrolizidines, and nortropanes. They are easily soluble in water because of their polyhydroxylated structures and inhibit glycosidases because of a structural resemblance to the sugar moiety of the natural substrate. Glycosidases are involved in a wide range of anabolic and catabolic processes, such as digestion, lysosomal catabolism of glycoconjugates, biosynthesis of glycoproteins, and the endoplasmic reticulum (ER) quality control and ER-associated degradation of glycoproteins. Hence, modifying or blocking these processes in vivo by inhibitors is of great interest from a therapeutic point of view. Azasugars are an important class of glycosidase inhibitors and are arousing great interest for instance as antidiabetics, antiobesity drugs, antivirals, and therapeutic agents for some genetic disorders. This review describes the recent studies on isolation, characterization, glycosidase inhibitory activity, and therapeutic application of azaglycomimetics.

  2. Purine nucleoside phosphorylase polymorphism in the genus Littorina (Prosobranchia: Mollusca).

    PubMed

    Knight, A J; Ward, R D

    1986-06-01

    Examination of eight Atlantic species of the genus Littorina by starch gel electrophoresis of purine nucleoside phosphorylase revealed extensive polymorphism within the L. saxatilis complex. In this group, four alleles have been identified. Heterozygotes are four banded, and thus, as in vertebrates, the enzyme is likely to be a trimer. Breeding experiments confirmed the genetic interpretation of the phenotype patterns. Where species of the saxatilis complex [L. saxatilis (=L. rudis), L. arcana, L. nigrolineata, L. neglecta] are sympatric, there are sometimes significant allele frequency differences between them. A fifth allele was present at a high frequency in L. obtusata and L. mariae, and L. littorea and L. neritoides each possessed unique alleles. A total of eight alleles was identified. Densitometric scanning of heterozygote patterns pointed to activity differences between alleles and also showed that, while the heterotrimeric bands were never less intense than the homotrimeric bands, the heterotrimeric bands were sometimes less intense than expected. It is not clear whether this represents nonrandom association of subunits, decreased stability of heterotrimers, or simply an artifact of the staining and quantifying process. PMID:3091000

  3. [The Biological Activity of the Sevanol and Its Analogues].

    PubMed

    Osmakov, D I; Koshelev, S G; Belozerova, O A; Kublitski, V S; Andreev, Ya A; Grishin, E V; Kozlov, S A

    2015-01-01

    Previously, from the plant Thymus armeniacus a new lignan sevanol was isolated, it's structure was elucidated and was shown that it effectively inhibits the acid-sensing channel ASIC3 and also exhibits a pronounced analgesic and anti-inflammatory effect. In this work biological activity of the sevanol analog obtained by chemical synthesis from simple precursors, the stereoisomer of sevanol and a precursor molecule represents a half of sevanol was measured in electrophysiological experiments on human ASIC3 channels expressed in Xenopus laevis oocytes. Measured inhibitory activity of a synthetic analogue coincided with the activity ofthe natural molecule. Stereoisomer showed inhibitory activity drop by about a third part, and the precursor molecule showed much less significant activity. In result the significance of functional groups and a spatial configuration of sevanol in order to biological activity was shown that is important to take into account for the optimal synthesis design as well as for new drugs development on its base. PMID:26762099

  4. Sensitive bioassay for detection of biologically active ricin in food.

    PubMed

    Rasooly, Reuven; He, Xiaohua

    2012-05-01

    The potential use of ricin as an agent of biological warfare highlights the need to develop fast and effective methods to detect biologically active ricin. The current "gold standard" for ricin detection is an in vivo mouse bioassay; however, this method is not practical to test on a large number of samples and raises ethical concerns with regard to the use of experimental animals. In this work, we generated adenoviral vectors that express the green fluorescent protein gene and used the relative fluorescence units intensity inhibition by transduced cells for quantitative measurement of biologically active ricin. The detection limit of the assay was 200 pg/ml, which is over 500,000 times greater than the adult human lethal oral dose. The inhibition of fluorescence intensity between ricin treatment and control was higher in 72-h posttransduction Vero cells than 24-h human embryonic kidney cells. Therefore, to detect biologically active ricin in food matrices that might influence the assay, we used 72-h posttransduction Vero cells. This simple assay could be used for large-scale screening to detect biologically active ricin in food without added substrates or use of cell fixation methods.

  5. Double functionalization of carbon nanotubes with purine and pyrimidine derivatives.

    PubMed

    Singh, Prabhpreet; Ménard-Moyon, Cécilia; Battigelli, Alessia; Toma, Francesca Maria; Raya, Jesus; Kumar, Jitendra; Nidamanuri, Nagapradeep; Verma, Sandeep; Bianco, Alberto

    2013-07-01

    Herein, we have developed a synthetic strategy for the covalent double functionalization of single-walled carbon nanotubes (SWCNTs) with a combination of purine-pyrimidine and purine-purine nucleobase systems. The nucleobases were introduced on the sidewall of oxidized SWCNTs through 1,3-dipolar cycloaddition and by amidation of the carboxylic acids located at the tips and defect sites of the nanotubes. The new nanohybrids were characterized by transmission electron microscopy, thermogravimetric analysis, FTIR and Raman spectroscopy, magic-angle spinning NMR spectroscopy, and Kaiser test. The nucleobase/SWCNT conjugates can be envisaged for the modulation of the interactions with nucleic acids by means of base pairing, thereby opening new possibilities in the development of DNA/CNT nanobioconjugates. PMID:23703975

  6. Computational studies of the purine-functionalized graphene sheets

    NASA Astrophysics Data System (ADS)

    Mirzaei, Mahmoud; Yousefi, Mohammad

    2012-10-01

    We performed a computational work to investigate the properties of functionalized graphene sheets (S) by adenine (A) and guanine (G) purine nucleobases. To achieve the purpose of this work, we examined the functionalization of armchair and zigzag tips of the S model by each of the A and G purines. The results indicated that the optimized properties for the investigated hybrid structures are different depending on the tip of functionalization and the used purine nucleobase. Moreover, the atomic level properties of the investigated structures were investigated by evaluating quadrupole coupling constants (CQ) for the atoms of the optimized structures. The remarkable trend of the CQ parameters is that the changes of atomic properties are many more significant for the functionalization of the zigzag-tip by the G nucleobase, which is in agreement with the results of the optimized properties.

  7. Plasticity in the purine-thiamine metabolic network of Salmonella.

    PubMed

    Bazurto, Jannell V; Downs, Diana M

    2011-02-01

    In Salmonella enterica, 5-aminoimidazole ribonucleotide (AIR) is the precursor of the 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) pyrophosphate moiety of thiamine and the last intermediate in the common HMP/purine biosynthetic pathway. AIR is synthesized de novo via five reactions catalyzed by the purF, -D, -T, -G, and -I gene products. In vivo genetic analysis demonstrated that in the absence of these gene products AIR can be generated if (i) methionine and lysine are in the growth medium, (ii) PurC is functional, and (iii) 5-amino-4-imidazolecarboxamide ribotide (AICAR) has accumulated. This study provides evidence that the five steps of the common HMP/purine biosynthetic pathway can be bypassed in the synthesis of AIR and thus demonstrates that thiamine synthesis can be uncoupled from the early purine biosynthetic pathway in bacteria.

  8. Purine metabolism in mesophyll protoplasts of tobacco (Nicotiana tabacum) leaves.

    PubMed Central

    Barankiewicz, J; Paszkowski, J

    1980-01-01

    The overall metabolism of purines was studied in tobacco (Nicotiana tabacum) mesophyll protoplasts. Metabolic pathways were studied by measuring the conversion of radioactive adenine, adenosine, hypoxanthine and guanine into purine ribonucleotides, ribonucleosides, bases and nucleic acid constituents. Adenine was extensively deaminated to hypoxanthine, whereupon it was also converted into AMP and incorporated into nucleic acids. Adenosine was mainly hydrolysed to adenine. Inosinate formed from hypoxanthine was converted into AMP and GMP, which were then catabolized to adenine and guanosine respectively. Guanine was mainly deaminated to xanthine and also incorporated into nucleic acids via GTP. Increased RNA synthesis in the protoplasts resulted in enhanced incorporation of adenine and guanine, but not of hypoxanthine and adenosine, into the nucleic acid fraction. The overall pattern of purine-nucleotide metabolic pathways in protoplasts of tobacco leaf mesophyll is proposed. PMID:6154458

  9. Fungal Polysaccharides: Biological Activity Beyond the Usual Structural Properties

    PubMed Central

    Rodrigues, Marcio L.; Nimrichter, Leonardo; Cordero, Radames J. B.; Casadevall, Arturo

    2011-01-01

    Studies on structure and function of polysaccharides in biological systems classically involve sequence and compositional analyses, anomeric configuration, type of glycosidic linkage, and presence of substituents. Recent studies, however, indicates that other structural parameters, so far little explored, can directly influence the biological activity of microbial polysaccharides. Among these parameters, we highlight the molecular dimensions of Cryptococcus neoformans polysaccharides, which appear to be inversely correlated with their immunobiological activity. These recent observations raise new concepts about the structure and function of polysaccharides, which stimulates the design of new experimental approaches and suggests previously unknown applications. PMID:21886639

  10. Biological Activity of Aminophosphonic Acids and Their Short Peptides

    NASA Astrophysics Data System (ADS)

    Lejczak, Barbara; Kafarski, Pawel

    The biological activity and natural occurrence of the aminophosphonic acids were described half a century ago. Since then the chemistry and biology of this class of compounds have developed into the separate field of phosphorus chemistry. Today it is well acknowledged that these compounds possess a wide variety of promising, and in some cases commercially useful, physiological activities. Thus, they have found applications ranging from agrochemical (with the herbicides glyphosate and bialaphos being the most prominent examples) to medicinal (with the potent antihypertensive fosinopril and antiosteoporetic bisphosphonates being examples).

  11. Computer Simulations Reveal Substrate Specificity of Glycosidic Bond Cleavage in Native and Mutant Human Purine Nucleoside Phosphorylase.

    PubMed

    Isaksen, Geir Villy; Hopmann, Kathrin Helen; Åqvist, Johan; Brandsdal, Bjørn Olav

    2016-04-12

    Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of purine ribonucleosides and 2'-deoxyribonucleosides, yielding the purine base and (2'-deoxy)ribose 1-phosphate as products. While this enzyme has been extensively studied, several questions with respect to the catalytic mechanism have remained largely unanswered. The role of the phosphate and key amino acid residues in the catalytic reaction as well as the purine ring protonation state is elucidated using density functional theory calculations and extensive empirical valence bond (EVB) simulations. Free energy surfaces for adenosine, inosine, and guanosine are fitted to ab initio data and yield quantitative agreement with experimental data when the surfaces are used to model the corresponding enzymatic reactions. The cognate substrates 6-aminopurines (inosine and guanosine) interact with PNP through extensive hydrogen bonding, but the substrate specificity is found to be a direct result of the electrostatic preorganization energy along the reaction coordinate. Asn243 has previously been identified as a key residue providing substrate specificity. Mutation of Asn243 to Asp has dramatic effects on the substrate specificity, making 6-amino- and 6-oxopurines equally good as substrates. The principal effect of this particular mutation is the change in the electrostatic preorganization energy between the native enzyme and the Asn243Asp mutant, clearly favoring adenosine over inosine and guanosine. Thus, the EVB simulations show that this particular mutation affects the electrostatic preorganization of the active site, which in turn can explain the substrate specificity. PMID:26985580

  12. [Purine regulon of gamma-proteobacteria: a detailed description].

    PubMed

    Ravcheev, D A; Gel'fand, M S; Mironov, A A; Rakhmaninova, A B

    2002-09-01

    The structure of the purine regulon was studied by a comparative genomic approach in seven genomes of gamma-proteobacteria: Escherichia coli, Salmonella typhi, Yersinia pestis, Haemophilus influenzae, Pasteurella multocida, Actinobacillus actinomycetemcomitans, and Vibrio cholerae. The palindromic binding site of the purine repressor (consensus ACGCAAACGTTTGCGT) is fairly well retained of genes encoding enzymes that participate in the synthesis of inosinemonophosphate from phosphoribozylpyrophosphate and in transfer of unicarbon groups, and also upstream of some transport protein genes. These genes may be regarded as the main part of the purine regulon. In terms of physiology, the regulation of the purC and gcvTHP/folD genes seems to be especially important, because the PurR site was found upstream of nonorthologous but functionally replaceable genes. However, the PurR site is poorly retained in front of orthologs of some genes belonging to the E. coli purine regulon, such as genes involved in general nitrogen metabolism, biosynthesis of pyrimidines, and synthesis of AMP and GMP from IMP, and also upstream of the purine repressor gene. It is predicted that purine regulons of the examined bacteria include the following genes: upp participating in synthesis of pyrimidines; uraA encoding an uracil transporter gene; serA involved in serine biosynthesis; folD responsible for the conversion of N5,N10-methenyl tetrahydrofolate into N10-formyltetrahydrofolate; rpiA involved in ribose metabolism; and protein genes with an unknown function (yhhQ and ydiK). The PurR site was shown to have different structure in different genomes. Thus, the tendency for a decline of the conservatism of site positions 2 and 15 was observed in genomes of bacteria belonging to the Pasteurellaceae and Vibrionaceae groups.

  13. Gemini ester quat surfactants and their biological activity.

    PubMed

    Łuczyński, Jacek; Frąckowiak, Renata; Włoch, Aleksandra; Kleszczyńska, Halina; Witek, Stanisław

    2013-03-01

    Cationic gemini surfactants are an important class of surface-active compounds that exhibit much higher surface activity than their monomeric counterparts. This type of compound architecture lends itself to the compound being easily adsorbed at interfaces and interacting with the cellular membranes of microorganisms. Conventional cationic surfactants have high chemical stability but poor chemical and biological degradability. One of the main approaches to the design of readily biodegradable and environmentally friendly surfactants involves inserting a bond with limited stability into the surfactant molecule to give a cleavable surfactant. The best-known example of such a compound is the family of ester quats, which are cationic surfactants with a labile ester bond inserted into the molecule. As part of this study, a series of gemini ester quat surfactants were synthesized and assayed for their biological activity. Their hemolytic activity and changes in the fluidity and packing order of the lipid polar heads were used as the measures of their biological activity. A clear correlation between the hemolytic activity of the tested compounds and their alkyl chain length was established. It was found that the compounds with a long hydrocarbon chain showed higher activity. Moreover, the compounds with greater spacing between their alkyl chains were more active. This proves that they incorporate more easily into the lipid bilayer of the erythrocyte membrane and affect its properties to a greater extent. A better understanding of the process of cell lysis by surfactants and of their biological activity may assist in developing surfactants with enhanced selectivity and in widening their range of application.

  14. BIOLOGICALLY ENHANCED OXYGEN TRANSFER IN THE ACTIVATED SLUDGE PROCESS (JOURNAL)

    EPA Science Inventory

    Biologically enhanced oxgyen transfer has been a hypothesis to explain observed oxygen transfer rates in activated sludge systems that were well above that predicted from aerator clean-water testing. The enhanced oxygen transfer rates were based on tests using BOD bottle oxygen ...

  15. Solar Energy Education. Renewable energy activities for biology

    SciTech Connect

    Not Available

    1982-01-01

    An instructional aid for teachers is presented that will allow biology students the opportunity to learn about renewable energy sources. Some of the school activities include using leaves as collectors of solar energy, solar energy stored in wood, and a fuel value test for green and dry woods. A study of organic wastes as a source of fuel is included. (BCS)

  16. Modeling Radial Holoblastic Cleavage: A Laboratory Activity for Developmental Biology.

    ERIC Educational Resources Information Center

    Ellis, Linda K.

    2000-01-01

    Introduces a laboratory activity designed for an undergraduate developmental biology course. Uses Play-Doh (plastic modeling clay) to build a multicellular embryo in order to provide a 3-D demonstration of cleavage. Includes notes for the instructor and student directions. (YDS)

  17. Students' Learning Activities While Studying Biological Process Diagrams

    ERIC Educational Resources Information Center

    Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert

    2015-01-01

    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students' learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each student completed three learning tasks. Verbal…

  18. 40 CFR 721.4685 - Substituted purine metal salt (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted purine metal salt (generic... Specific Chemical Substances § 721.4685 Substituted purine metal salt (generic name). (a) Chemical... as a substituted purine metal salt (PMN P-95-175) is subject to reporting under this section for...

  19. 40 CFR 721.4685 - Substituted purine metal salt (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted purine metal salt (generic... Specific Chemical Substances § 721.4685 Substituted purine metal salt (generic name). (a) Chemical... as a substituted purine metal salt (PMN P-95-175) is subject to reporting under this section for...

  20. 40 CFR 721.4685 - Substituted purine metal salt (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted purine metal salt (generic... Specific Chemical Substances § 721.4685 Substituted purine metal salt (generic name). (a) Chemical... as a substituted purine metal salt (PMN P-95-175) is subject to reporting under this section for...

  1. 40 CFR 721.4685 - Substituted purine metal salt (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted purine metal salt (generic... Specific Chemical Substances § 721.4685 Substituted purine metal salt (generic name). (a) Chemical... as a substituted purine metal salt (PMN P-95-175) is subject to reporting under this section for...

  2. 40 CFR 721.4685 - Substituted purine metal salt (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted purine metal salt (generic... Specific Chemical Substances § 721.4685 Substituted purine metal salt (generic name). (a) Chemical... as a substituted purine metal salt (PMN P-95-175) is subject to reporting under this section for...

  3. Biologically active low density lipoprotein in human peripheral lymph.

    PubMed Central

    Reichl, D; Myant, N B; Brown, M S; Goldstein, J L

    1978-01-01

    We have compared the ability of human serum and peripheral lymph to suppress the activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), to activate cholesteryl ester synthesis, and to compete with 125I-labeled low density lipoprotein (LDL) for binding to LDL receptors in cultured human fibroblasts. Whole lymph was active in all three tests and the activity per unit volume in lymph was approximately equal to 1/10th that in serum. All three biologic activities in lymph were confined to the d less than 1.063 g/ml fraction. Whole lymph had no significant effect on HMG-CoA reductase activity in fibroblasts from a patient with homozygous familial hypercholesterolemia, whose cells lack LDL receptors. The LDL-like biologic activity per unit mass of immunologically active apoprotein B was approximately the same in lymph as in serum. The current data indicate that functionally active LDL is present in lymph and that the concentration of this lipoprotein is approximately equal to 1/10th that in serum. PMID:201669

  4. Using ILP to Identify Pathway Activation Patterns in Systems Biology

    PubMed Central

    Neaves, Samuel R; Millard, Louise A C; Tsoka, Sophia

    2016-01-01

    We show a logical aggregation method that, combined with propositionalization methods, can construct novel structured biological features from gene expression data. We do this to gain understanding of pathway mechanisms, for instance, those associated with a particular disease. We illustrate this method on the task of distinguishing between two types of lung cancer; Squamous Cell Carcinoma (SCC) and Adenocarcinoma (AC). We identify pathway activation patterns in pathways previously implicated in the development of cancers. Our method identified a model with comparable predictive performance to the winning algorithm of a recent challenge, while providing biologically relevant explanations that may be useful to a biologist. PMID:27478883

  5. Controlled release of biologically active silver from nanosilver surfaces.

    PubMed

    Liu, Jingyu; Sonshine, David A; Shervani, Saira; Hurt, Robert H

    2010-11-23

    Major pathways in the antibacterial activity and eukaryotic toxicity of nanosilver involve the silver cation and its soluble complexes, which are well established thiol toxicants. Through these pathways, nanosilver behaves in analogy to a drug delivery system, in which the particle contains a concentrated inventory of an active species, the ion, which is transported to and released near biological target sites. Although the importance of silver ion in the biological response to nanosilver is widely recognized, the drug delivery paradigm has not been well developed for this system, and there is significant potential to improve nanosilver technologies through controlled release formulations. This article applies elements of the drug delivery paradigm to nanosilver dissolution and presents a systematic study of chemical concepts for controlled release. After presenting thermodynamic calculations of silver species partitioning in biological media, the rates of oxidative silver dissolution are measured for nanoparticles and macroscopic foils and used to derive unified area-based release kinetics. A variety of competing chemical approaches are demonstrated for controlling the ion release rate over 4 orders of magnitude. Release can be systematically slowed by thiol and citrate ligand binding, formation of sulfidic coatings, or the scavenging of peroxy-intermediates. Release can be accelerated by preoxidation or particle size reduction, while polymer coatings with complexation sites alter the release profile by storing and releasing inventories of surface-bound silver. Finally, the ability to tune biological activity is demonstrated through a bacterial inhibition zone assay carried out on selected formulations of controlled release nanosilver.

  6. Stereochemical Assignment of Strigolactone Analogues Confirms Their Selective Biological Activity.

    PubMed

    Artuso, Emma; Ghibaudi, Elena; Lace, Beatrice; Marabello, Domenica; Vinciguerra, Daniele; Lombardi, Chiara; Koltai, Hinanit; Kapulnik, Yoram; Novero, Mara; Occhiato, Ernesto G; Scarpi, Dina; Parisotto, Stefano; Deagostino, Annamaria; Venturello, Paolo; Mayzlish-Gati, Einav; Bier, Ariel; Prandi, Cristina

    2015-11-25

    Strigolactones (SLs) are new plant hormones with various developmental functions. They are also soil signaling chemicals that are required for establishing beneficial mycorrhizal plant/fungus symbiosis. In addition, SLs play an essential role in inducing seed germination in root-parasitic weeds, which are one of the seven most serious biological threats to food security. There are around 20 natural SLs that are produced by plants in very low quantities. Therefore, most of the knowledge on SL signal transduction and associated molecular events is based on the application of synthetic analogues. Stereochemistry plays a crucial role in the structure-activity relationship of SLs, as compounds with an unnatural D-ring configuration may induce biological effects that are unrelated to SLs. We have synthesized a series of strigolactone analogues, whose absolute configuration has been elucidated and related with their biological activity, thus confirming the high specificity of the response. Analogues bearing the R-configured butenolide moiety showed enhanced biological activity, which highlights the importance of this stereochemical motif. PMID:26502774

  7. Purines and neuronal excitability: links to the ketogenic diet.

    PubMed

    Masino, S A; Kawamura, M; Ruskin, D N; Geiger, J D; Boison, D

    2012-07-01

    ATP and adenosine are purines that play dual roles in cell metabolism and neuronal signaling. Acting at the A(1) receptor (A(1)R) subtype, adenosine acts directly on neurons to inhibit excitability and is a powerful endogenous neuroprotective and anticonvulsant molecule. Previous research showed an increase in ATP and other cell energy parameters when an animal is administered a ketogenic diet, an established metabolic therapy to reduce epileptic seizures, but the relationship among purines, neuronal excitability and the ketogenic diet was unclear. Recent work in vivo and in vitro tested the specific hypothesis that adenosine acting at A(1)Rs is a key mechanism underlying the success of ketogenic diet therapy and yielded direct evidence linking A(1)Rs to the antiepileptic effects of a ketogenic diet. Specifically, an in vitro mimic of a ketogenic diet revealed an A(1)R-dependent metabolic autocrine hyperpolarization of hippocampal neurons. In parallel, applying the ketogenic diet in vivo to transgenic mouse models with spontaneous electrographic seizures revealed that intact A(1)Rs are necessary for the seizure-suppressing effects of the diet. This is the first direct in vivo evidence linking A(1)Rs to the antiepileptic effects of a ketogenic diet. Other predictions of the relationship between purines and the ketogenic diet are discussed. Taken together, recent research on the role of purines may offer new opportunities for metabolic therapy and insight into its underlying mechanisms. PMID:21880467

  8. Inhibition and Structure of Toxoplasma gondii Purine Nucleoside Phosphorylase

    PubMed Central

    Donaldson, Teraya M.; Cassera, María B.; Ho, Meng-Chiao; Zhan, Chenyang; Merino, Emilio F.; Evans, Gary B.; Tyler, Peter C.; Almo, Steven C.; Schramm, Vern L.

    2014-01-01

    The intracellular pathogen Toxoplasma gondii is a purine auxotroph that relies on purine salvage for proliferation. We have optimized T. gondii purine nucleoside phosphorylase (TgPNP) stability and crystallized TgPNP with phosphate and immucillin-H, a transition-state analogue that has high affinity for the enzyme. Immucillin-H bound to TgPNP with a dissociation constant of 370 pM, the highest affinity of 11 immucillins selected to probe the catalytic site. The specificity for transition-state analogues indicated an early dissociative transition state for TgPNP. Compared to Plasmodium falciparum PNP, large substituents surrounding the 5′-hydroxyl group of inhibitors demonstrate reduced capacity for TgPNP inhibition. Catalytic discrimination against large 5′ groups is consistent with the inability of TgPNP to catalyze the phosphorolysis of 5′-methylthioinosine to hypoxanthine. In contrast to mammalian PNP, the 2′-hydroxyl group is crucial for inhibitor binding in the catalytic site of TgPNP. This first crystal structure of TgPNP describes the basis for discrimination against 5′-methylthioinosine and similarly 5′-hydroxy-substituted immucillins; structural differences reflect the unique adaptations of purine salvage pathways of Apicomplexa. PMID:24585883

  9. Distinct Distribution of Purines in CM and CR Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Callahan, Michael P.; Stern, Jennifer C.; Glavin, Daniel P.; Smith, Karen E.; Martin, Mildred G.; Dworkin, Jason P.

    2010-01-01

    Carbonaceous meteorites contain a diverse suite of organic molecules and delivered pre biotic organic compounds, including purines and pyrimidines, to the early Earth (and other planetary bodies), seeding it with the ingredients likely required for the first genetic material. We have investigated the distribution of nucleobases in six different CM and CR type carbonaceous chondrites, including fivc Antarctic meteorites never before analyzed for nucleobases. We employed a traditional formic acid extraction protocol and a recently developed solid phase extraction method to isolate nucleobases. We analyzed these extracts by high performance liquid chromatography with UV absorbance detection and tandem mass spectrometry (HPLC-UV -MS/MS) targeting the five canonical RNAIDNA bases and hypoxanthine and xanthine. We detected parts-per-billion levels of nucleobases in both CM and CR meteorites. The relative abundances of the purines found in Antarctic CM and CR meteorites were clearly distinct from each other suggesting that these compounds are not terrestrial contaminants. One likely source of these purines is formation by HCN oligomerization (with other small molecules) during aqueous alteration inside the meteorite parent body. The detection of the purines adenine (A), guanine (0), hypoxanthine (HX), and xanthine (X) in carbonaceous meteorites indicates that these compounds should have been available on the early Earth prior to the origin of the first genetic material.

  10. Similar Biological Activities of Two Isostructural Ruthenium and Osmium Complexes

    SciTech Connect

    Maksimoska,J.; Williams, D.; Atilla-Gokcumen, G.; Smalley, K.; Carroll, P.; Webster, R.; Filippakopoulos, P.; Knapp, S.; Herlyn, M.; Meggers, E.

    2008-01-01

    In this study, we probe and verify the concept of designing unreactive bioactive metal complexes, in which the metal possesses a purely structural function, by investigating the consequences of replacing ruthenium in a bioactive half-sandwich kinase inhibitor scaffold by its heavier congener osmium. The two isostructural complexes are compared with respect to their anticancer properties in 1205?Lu melanoma cells, activation of the Wnt signaling pathway, IC50 values against the protein kinases GSK-3? and Pim-1, and binding modes to the protein kinase Pim-1 by protein crystallography. It was found that the two congeners display almost indistinguishable biological activities, which can be explained by their nearly identical three-dimensional structures and their identical mode of action as protein kinase inhibitors. This is a unique example in which the replacement of a metal in an anticancer scaffold by its heavier homologue does not alter its biological activity.

  11. Biological Activities of Phenolic Compounds Present in Virgin Olive Oil

    PubMed Central

    Cicerale, Sara; Lucas, Lisa; Keast, Russell

    2010-01-01

    The Mediterranean diet is associated with a lower incidence of atherosclerosis, cardiovascular disease, neurodegenerative diseases and certain types of cancer. The apparent health benefits have been partially ascribed to the dietary consumption of virgin olive oil by Mediterranean populations. Much research has focused on the biologically active phenolic compounds naturally present in virgin olive oils to aid in explaining reduced mortality and morbidity experienced by people consuming a traditional Mediterranean diet. Studies (human, animal, in vivo and in vitro) have demonstrated that olive oil phenolic compounds have positive effects on certain physiological parameters, such as plasma lipoproteins, oxidative damage, inflammatory markers, platelet and cellular function, antimicrobial activity and bone health. This paper summarizes current knowledge on the bioavailability and biological activities of olive oil phenolic compounds. PMID:20386648

  12. Polyisoprenylated benzophenones in cuban propolis; biological activity of nemorosone.

    PubMed

    Cuesta-Rubio, Osmany; Frontana-Uribe, Bernardo A; Ramírez-Apan, Teresa; Cárdenas, Jorge

    2002-01-01

    The Copey tree (Clusia rosea) has a large distribution in Cuba and its floral resin is a rich source of polyisoprenylated benzophenones. To determine the presence of these natural products, we carried out a study by HPLC of 21 propolis samples produced by honey bees (Apis mellifera) from different provinces of Cuba. Nemorosone resulted to be the most abundant polyisoprenylated benzophenone and the mixture of xanthochymol and guttiferone E was also observed, but in minor proportion. We studied the biological activity of the pure natural product nemorosone and its methyl derivatives. We found that nemorosone has cytotoxic activity against epitheloid carcinoma (HeLa), epidermoid carcinoma (Hep-2), prostate cancer (PC-3) and central nervous system cancer (U251). It also exhibited antioxidant capacity. Methylated nemorosone exhibited less biological activity than the natural product. PMID:12064743

  13. Enhancement of Peripheral Nerve Regrowth by the Purine Nucleoside Analog and Cell Cycle Inhibitor, Roscovitine

    PubMed Central

    Law, Vincent; Dong, Sophie; Rosales, Jesusa L.; Jeong, Myung-Yung; Zochodne, Douglas; Lee, Ki-Young

    2016-01-01

    Peripheral nerve regeneration is a slow process that can be associated with limited outcomes and thus a search for novel and effective therapy for peripheral nerve injury and disease is crucial. Here, we found that roscovitine, a synthetic purine nucleoside analog, enhances neurite outgrowth in neuronal-like PC12 cells. Furthermore, ex vivo analysis of pre-injured adult rat dorsal root ganglion (DRG) neurons showed that roscovitine enhances neurite regrowth in these cells. Likewise, in vivo transected sciatic nerves in rats locally perfused with roscovitine had augmented repopulation of new myelinated axons beyond the transection zone. By mass spectrometry, we found that roscovitine interacts with tubulin and actin. It interacts directly with tubulin and causes a dose-dependent induction of tubulin polymerization as well as enhances Guanosine-5′-triphosphate (GTP)-dependent tubulin polymerization. Conversely, roscovitine interacts indirectly with actin and counteracts the inhibitory effect of cyclin-dependent kinases 5 (Cdk5) on Actin-Related Proteins 2/3 (Arp2/3)-dependent actin polymerization, and thus, causes actin polymerization. Moreover, in the presence of neurotrophic factors such as nerve growth factor (NGF), roscovitine-enhanced neurite outgrowth is mediated by increased activation of the extracellular signal-regulated kinases 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) pathways. Since microtubule and F-actin dynamics are critical for axonal regrowth, the ability of roscovitine to activate the ERK1/2 and p38 MAPK pathways and support polymerization of tubulin and actin indicate a major role for this purine nucleoside analog in the promotion of axonal regeneration. Together, our findings demonstrate a therapeutic potential for the purine nucleoside analog, roscovitine, in peripheral nerve injury. PMID:27799897

  14. Indonesian propolis: chemical composition, biological activity and botanical origin.

    PubMed

    Trusheva, Boryana; Popova, Milena; Koendhori, Eko Budi; Tsvetkova, Iva; Naydenski, Christo; Bankova, Vassya

    2011-03-01

    From a biologically active extract of Indonesian propolis from East Java, 11 compounds were isolated and identified: four alk(en)ylresorcinols (obtained as an inseparable mixture) (1-4) were isolated for the first time from propolis, along with four prenylflavanones (6-9) and three cycloartane-type triterpenes (5, 10 and 11). The structures of the components were elucidated based on their spectral properties. All prenylflavanones demonstrated significant radical scavenging activity against diphenylpicrylhydrazyl radicals, and compound 6 showed significant antibacterial activity against Staphylococcus aureus. For the first time Macaranga tanarius L. and Mangifera indica L. are shown as plant sources of Indonesian propolis.

  15. Biological Ice Nucleation Activity in Cloud Water (Invited)

    NASA Astrophysics Data System (ADS)

    Delort, A.

    2013-12-01

    Ice nucleation active (INA) biological particles, in particular microorganisms, were studied in cloud water. Twelve cloud samples were collected over a period of 16 months from the puy de Dôme summit (1465 m, France) using sterile cloud droplet impactors. The samples were characterized through biological (cultures, cell counts) and physico-chemical measurements (pH, ion concentrations, carbon content...), and biological ice nuclei were investigated by droplet-freezing assays from -3°C to -13°C. The concentration of total INA particles within this temperature range typically varied from ~1 to ~100 per mL of cloud water; the concentrations of biological IN were several orders of magnitude higher than the values previously reported for precipitations. At -12°C, at least 76% of the IN were biological in origin, i.e. they were inactivated by heating at 95°C, and at temperatures above -8°C only biological material could induce ice. By culture, 44 Pseudomonas-like strains of bacteria were isolated from cloud water samples; 16% of them were found INA at the temperature of -8°C and they were identified as Pseudomonas syringae, Xanthomonas sp. and Pseudoxanthomonas sp.. Two strains induced freezing at as warm as -2°C, positioning them among the most active ice nucleators described so far. We estimated that, in average, 0.18% and more than 1%.of the bacterial cells present in clouds (~104 mL-1) are INA at the temperatures of -8°C and -12°C, respectively.

  16. A purine nucleoside phosphorylase in Solanum tuberosum L. (potato) with specificity for cytokinins contributes to the duration of tuber endodormancy.

    PubMed

    Bromley, Jennifer R; Warnes, Barbara J; Newell, Christine A; Thomson, Jamie C P; James, Celia M; Turnbull, Colin G N; Hanke, David E

    2014-03-01

    StCKP1 (Solanum tuberosum cytokinin riboside phosphorylase) catalyses the interconversion of the N9-riboside form of the plant hormone CK (cytokinin), a subset of purines, with its most active free base form. StCKP1 prefers CK to unsubstituted aminopurines. The protein was discovered as a CK-binding activity in extracts of tuberizing potato stolon tips, from which it was isolated by affinity chromatography. The N-terminal amino acid sequence matched the translation product of a set of ESTs, enabling a complete mRNA sequence to be obtained by RACE-PCR. The predicted polypeptide includes a cleavable signal peptide and motifs for purine nucleoside phosphorylase activity. The expressed protein was assayed for purine nucleoside phosphorylase activity against CKs and adenine/adenosine. Isopentenyladenine, trans-zeatin, dihydrozeatin and adenine were converted into ribosides in the presence of ribose 1-phosphate. In the opposite direction, isopentenyladenosine, trans-zeatin riboside, dihydrozeatin riboside and adenosine were converted into their free bases in the presence of Pi. StCKP1 had no detectable ribohydrolase activity. Evidence is presented that StCKP1 is active in tubers as a negative regulator of CKs, prolonging endodormancy by a chill-reversible mechanism.

  17. Biological activities and medicinal properties of Gokhru (Pedalium murex L.).

    PubMed

    Rajashekar, V; Rao, E Upender; P, Srinivas

    2012-07-01

    Bada Gokhru (Pedalium murex L.) is perhaps the most useful traditional medicinal plant in India. Each part of the neem tree has some medicinal property and is thus commercially exploitable. During the last five decades, apart from the chemistry of the Pedalium murex compounds, considerable progress has been achieved regarding the biological activity and medicinal applications of this plant. It is now considered as a valuable source of unique natural products for development of medicines against various diseases and also for the development of industrial products. This review gives a bird's eye view mainly on the biological activities of some of this compounds isolated, pharmacological actions of the extracts, clinical studies and plausible medicinal applications of gokharu along with their safety evaluation.

  18. Visual Analysis of Biological Activity Data with Scaffold Hunter.

    PubMed

    Klein, Karsten; Koch, Oliver; Kriege, Nils; Mutzel, Petra; Schäfer, Till

    2013-12-01

    The growing interest in chemogenomics approaches over the last years has led to an increasing amount of data regarding chemical and the corresponding biological activity space. The resulting data, collected in either in-house or public databases, need to be analyzed efficiently to speed-up the increasingly difficult task of drug discovery. Unfortunately, the discovery of new chemical entities or new targets for known drugs ('drug repurposing') is not suitable to a fully automated analysis or a simple drill down process. Visual interactive interfaces that allow to explore chemical space in a systematic manner and facilitate analytical reasoning can help to overcome these problems. Scaffold Hunter is a tool for the visual analysis of chemical compound databases that provides integrated visualization and analysis of biological activity data and fosters the interactive exploration of data imported from a variety of sources. We describe the features and illustrate the use by means of an exemplary analysis workflow.

  19. Milk kefir: composition, microbial cultures, biological activities, and related products.

    PubMed

    Prado, Maria R; Blandón, Lina Marcela; Vandenberghe, Luciana P S; Rodrigues, Cristine; Castro, Guillermo R; Thomaz-Soccol, Vanete; Soccol, Carlos R

    2015-01-01

    In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir's exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir's microflora and the importance of kefiran as a beneficial health substance.

  20. Milk kefir: composition, microbial cultures, biological activities, and related products

    PubMed Central

    Prado, Maria R.; Blandón, Lina Marcela; Vandenberghe, Luciana P. S.; Rodrigues, Cristine; Castro, Guillermo R.; Thomaz-Soccol, Vanete; Soccol, Carlos R.

    2015-01-01

    In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir’s exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir’s microflora and the importance of kefiran as a beneficial health substance. PMID:26579086

  1. Removal of Biologically Active Organic Contaminants using Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Banks, Michael A. (Inventor); Banks, Eric B. (Inventor)

    2003-01-01

    Biomedical devices that are to come into contact with living tissue, such as prosthetic and other implants for the human body and the containers used to store and transport them, are together cleaned of non-living, but biologically active organic materials, including endotoxins such as lipopolysaccharides, and assembled into a hermetically sealed package without recontamination. This is achieved by cleaning both the device and package components together in an apparatus, which includes a hermetically sealed chamber, in which they are contacted with atomic oxygen which biocleans them, by oxidizing the biologically active organic materials. The apparatus also includes means for manipulating the device and container and hermetically sealing the cleaned device into the cleaned container to form the package. A calibrated witness coupon visually indicates whether or not the device and container have received enough exposure to the atomic oxygen to have removed the organic materials from their surfaces. Gamma radiation is then used to sterilize the device in the sealed container.

  2. Biological activities and medicinal properties of Gokhru (Pedalium murex L.)

    PubMed Central

    Rajashekar, V; Rao, E Upender; P, Srinivas

    2012-01-01

    Bada Gokhru (Pedalium murex L.) is perhaps the most useful traditional medicinal plant in India. Each part of the neem tree has some medicinal property and is thus commercially exploitable. During the last five decades, apart from the chemistry of the Pedalium murex compounds, considerable progress has been achieved regarding the biological activity and medicinal applications of this plant. It is now considered as a valuable source of unique natural products for development of medicines against various diseases and also for the development of industrial products. This review gives a bird's eye view mainly on the biological activities of some of this compounds isolated, pharmacological actions of the extracts, clinical studies and plausible medicinal applications of gokharu along with their safety evaluation. PMID:23569975

  3. Biological activities and medicinal properties of Cajanus cajan (L) Millsp.

    PubMed

    Pal, Dilipkumar; Mishra, Pragya; Sachan, Neetu; Ghosh, Ashoke K

    2011-10-01

    Cajanus cajan (L) Millsp. (Sanskrit: Adhaki, Hindi: Arhar, English: Pigeon pea, Bengali: Tur) (family: Fabaceae) is the most important grain legume crop of rain-fed agriculture in semi-arid tropics. It is both a food crop and a cover/forage crop with high levels of proteins and important amino acids like methionine, lysine and tryptophan. During the last few decades extensive studies have been carried out regarding the chemistry of C. cajan and considerable progress has been achieved regarding its biological activities and medicinal applications. This review article gives an overview on the biological activities of the compounds isolated, pharmacological actions and clinical studies of C. cajan extracts apart from its general details.

  4. Marine Omega-3 Phospholipids: Metabolism and Biological Activities

    PubMed Central

    Burri, Lena; Hoem, Nils; Banni, Sebastiano; Berge, Kjetil

    2012-01-01

    The biological activities of omega-3 fatty acids (n-3 FAs) have been under extensive study for several decades. However, not much attention has been paid to differences of dietary forms, such as triglycerides (TGs) versus ethyl esters or phospholipids (PLs). New innovative marine raw materials, like krill and fish by-products, present n-3 FAs mainly in the PL form. With their increasing availability, new evidence has emerged on n-3 PL biological activities and differences to n-3 TGs. In this review, we describe the recently discovered nutritional properties of n-3 PLs on different parameters of metabolic syndrome and highlight their different metabolic bioavailability in comparison to other dietary forms of n-3 FAs. PMID:23203133

  5. Chemical synthesis of a biologically active natural tRNA with its minor bases.

    PubMed Central

    Gasparutto, D; Livache, T; Bazin, H; Duplaa, A M; Guy, A; Khorlin, A; Molko, D; Roget, A; Téoule, R

    1992-01-01

    The complete chemical synthesis of an E. coli tRNA(Ala) with its specific minor nucleosides, dihydrouridine, ribothymidine and pseudouridine, is reported. The method makes use of protected 2'-O-tertiobutyldimethylsilyl-ribonucleoside-3'-O-(2-cyanoethyl-N- ethyl-N- methyl)phosphoramidites. The exocyclic amino functions of the bases were protected by the phenoxyacetyl group for purines and acetyl for cytosine. The assembling has been performed on a silica support with coupling yield better than 98% within 2 min of condensation. Triethylamine tris-hydrofluoride allowed a clean and complete deprotection of the tBDMS groups. The synthetic tRNA(Ala) has been transcribed into cDNA by reverse transcriptase and sequenced. With E. coli alanyl-tRNA synthetase the alanyl acceptance activity and kcat/Km were 672 pmol/A260 and 6 x 10(4)M-1s-1, respectively. Images PMID:1383941

  6. Current status of pyrazole and its biological activities

    PubMed Central

    Naim, Mohd Javed; Alam, Ozair; Nawaz, Farah; Alam, Md. Jahangir; Alam, Perwaiz

    2016-01-01

    Pyrazole are potent medicinal scaffolds and exhibit a full spectrum of biological activities. This review throws light on the detailed synthetic approaches which have been applied for the synthesis of pyrazole. This has been followed by an in depth analysis of the pyrazole with respect to their medical significance. This follow-up may help the medicinal chemists to generate new leads possessing pyrazole nucleus with high efficacy. PMID:26957862

  7. Evaluation of soil biological activity after a diesel fuel spill.

    PubMed

    Serrano, A; Tejada, M; Gallego, M; Gonzalez, J L

    2009-06-15

    Diesel fuel contamination in soils may be toxic to soil microorganisms and plants and acts as a source of groundwater contamination. The objective of this study was to evaluate the soil biological activity and phytotoxicity to garden cress (Lepidium sativum L.) in a soil polluted with diesel fuel. For this, a diesel fuel spill was simulated on agricultural soil at dose 1 l m(-2). During the experiment (400 days) the soil was not covered in vegetation and no agricultural tasks were carried out. A stress period of 18 days following the spill led to a decrease in soil biological activity, reflected by the soil microbial biomass and soil enzymatic activities, after which it increased again. The n-C(17)/Pristine and n-C(18)/Phytane ratios were correlated negatively and significantly with the dehydrogenase, arylsulphatase, protease, phosphatase and urease activities and with the soil microbial biomass during the course of the experiment. The beta-glucosidase activity indicated no significant connection with the parameters related with the evolution of hydrocarbons in the soil. Finally, the germination activity of the soil was seen to recover 200 days after the spill.

  8. Oxyresveratrol: Structural Modification and Evaluation of Biological Activities.

    PubMed

    Chatsumpun, Nutputsorn; Chuanasa, Taksina; Sritularak, Boonchoo; Lipipun, Vimolmas; Jongbunprasert, Vichien; Ruchirawat, Somsak; Ploypradith, Poonsakdi; Likhitwitayawuid, Kittisak

    2016-01-01

    Oxyresveratrol (2,4,3',5'-tetrahydroxystilbene, 1), a phytoalexin present in large amounts in the heartwood of Artocarpus lacucha Buch.-Ham., has been reported to possess a wide variety of biological activities. As part of our continuing studies on the structural modification of oxyresveratrol, a library of twenty-six compounds was prepared via O-alkylation, aromatic halogenation, and electrophilic aromatic substitution. The two aromatic rings of the stilbene system of 1 can be chemically modulated by exploiting different protecting groups. Such a strategy allows for selective and exclusive modifications on either ring A or ring B. All compounds were evaluated in vitro for a panel of biological activities, including free radical scavenging activity, DNA protective properties, antiherpetic activity, inhibition of α-glucosidase and neuraminidase, and cytotoxicity against some cancer cell lines. Several derivatives were comparably active or even more potent than the parent oxyresveratrol and/or the appropriate positive controls. The partially etherified analogs 5'-hydroxy-2,3',4-trimethoxystilbene and 3',5'-dihydroxy-2,4-dimethoxystilbene demonstrated promising anti-herpetic and DNA protective activities, offering new leads for neuropreventive agent research, whereas 5'-hydroxy-2,3',4,-triisopropoxystilbene displayed anti-α-glucosidase effects, providing a new lead molecule for anti-diabetic drug development. 3',5'-Diacetoxy-2,4-diisopropoxystilbene showed potent and selective cytotoxicity against HeLa cancer cells, but the compound still needs further in vivo investigation to verify its anticancer potential. PMID:27104505

  9. Oxyresveratrol: Structural Modification and Evaluation of Biological Activities.

    PubMed

    Chatsumpun, Nutputsorn; Chuanasa, Taksina; Sritularak, Boonchoo; Lipipun, Vimolmas; Jongbunprasert, Vichien; Ruchirawat, Somsak; Ploypradith, Poonsakdi; Likhitwitayawuid, Kittisak

    2016-01-01

    Oxyresveratrol (2,4,3',5'-tetrahydroxystilbene, 1), a phytoalexin present in large amounts in the heartwood of Artocarpus lacucha Buch.-Ham., has been reported to possess a wide variety of biological activities. As part of our continuing studies on the structural modification of oxyresveratrol, a library of twenty-six compounds was prepared via O-alkylation, aromatic halogenation, and electrophilic aromatic substitution. The two aromatic rings of the stilbene system of 1 can be chemically modulated by exploiting different protecting groups. Such a strategy allows for selective and exclusive modifications on either ring A or ring B. All compounds were evaluated in vitro for a panel of biological activities, including free radical scavenging activity, DNA protective properties, antiherpetic activity, inhibition of α-glucosidase and neuraminidase, and cytotoxicity against some cancer cell lines. Several derivatives were comparably active or even more potent than the parent oxyresveratrol and/or the appropriate positive controls. The partially etherified analogs 5'-hydroxy-2,3',4-trimethoxystilbene and 3',5'-dihydroxy-2,4-dimethoxystilbene demonstrated promising anti-herpetic and DNA protective activities, offering new leads for neuropreventive agent research, whereas 5'-hydroxy-2,3',4,-triisopropoxystilbene displayed anti-α-glucosidase effects, providing a new lead molecule for anti-diabetic drug development. 3',5'-Diacetoxy-2,4-diisopropoxystilbene showed potent and selective cytotoxicity against HeLa cancer cells, but the compound still needs further in vivo investigation to verify its anticancer potential.

  10. Integrity and biological activity of DNA after UV exposure.

    PubMed

    Lyon, Delina Y; Monier, Jean-Michel; Dupraz, Sébastien; Freissinet, Caroline; Simonet, Pascal; Vogel, Timothy M

    2010-04-01

    The field of astrobiology lacks a universal marker with which to indicate the presence of life. This study supports the proposal to use nucleic acids, specifically DNA, as a signature of life (biosignature). In addition to its specificity to living organisms, DNA is a functional molecule that can confer new activities and characteristics to other organisms, following the molecular biology dogma, that is, DNA is transcribed to RNA, which is translated into proteins. Previous criticisms of the use of DNA as a biosignature have asserted that DNA molecules would be destroyed by UV radiation in space. To address this concern, DNA in plasmid form was deposited onto different surfaces and exposed to UVC radiation. The surviving DNA was quantified via the quantitative polymerase chain reaction (qPCR). Results demonstrate increased survivability of DNA attached to surfaces versus non-adsorbed DNA. The DNA was also tested for biological activity via transformation into the bacterium Acinetobacter sp. and assaying for antibiotic resistance conferred by genes encoded by the plasmid. The success of these methods to detect DNA and its gene products after UV exposure (254 nm, 3.5 J/m(2)s) not only supports the use of the DNA molecule as a biosignature on mineral surfaces but also demonstrates that the DNA retained biological activity.

  11. Integrity and Biological Activity of DNA after UV Exposure

    NASA Astrophysics Data System (ADS)

    Lyon, Delina Y.; Monier, Jean-Michel; Dupraz, Sébastien; Freissinet, Caroline; Simonet, Pascal; Vogel, Timothy M.

    2010-04-01

    The field of astrobiology lacks a universal marker with which to indicate the presence of life. This study supports the proposal to use nucleic acids, specifically DNA, as a signature of life (biosignature). In addition to its specificity to living organisms, DNA is a functional molecule that can confer new activities and characteristics to other organisms, following the molecular biology dogma, that is, DNA is transcribed to RNA, which is translated into proteins. Previous criticisms of the use of DNA as a biosignature have asserted that DNA molecules would be destroyed by UV radiation in space. To address this concern, DNA in plasmid form was deposited onto different surfaces and exposed to UVC radiation. The surviving DNA was quantified via the quantitative polymerase chain reaction (qPCR). Results demonstrate increased survivability of DNA attached to surfaces versus non-adsorbed DNA. The DNA was also tested for biological activity via transformation into the bacterium Acinetobacter sp. and assaying for antibiotic resistance conferred by genes encoded by the plasmid. The success of these methods to detect DNA and its gene products after UV exposure (254 nm, 3.5 J/m2s) not only supports the use of the DNA molecule as a biosignature on mineral surfaces but also demonstrates that the DNA retained biological activity.

  12. Genomic evidence for complementary purine metabolism in the pea aphid, Acyrthosiphon pisum, and its symbiotic bacterium Buchnera aphidicola.

    PubMed

    Ramsey, J S; MacDonald, S J; Jander, G; Nakabachi, A; Thomas, G H; Douglas, A E

    2010-03-01

    The purine salvage pathway recycles purines to nucleotides, promoting efficient utilization of purine nucleotides. Exceptionally among animals with completely sequenced genomes, the pea aphid lacks key purine recycling genes that code for purine nucleoside phosphorylase and adenosine deaminase, indicating that the aphid can neither metabolize nucleosides to the corresponding purines, nor adenosine to inosine. Purine metabolism genes in the symbiotic bacterium Buchnera complement aphid genes, and Buchnera can meet its nucleotide requirement from aphid-derived guanosine. Buchnera demand for nucleosides may have relaxed the selection for purine recycling in the aphid, leading to the loss of key aphid purine salvage genes. Further, the coupled purine metabolism of aphid and Buchnera could contribute to the dependence of the pea aphid on this symbiosis.

  13. Subsurface biological activity zone detection using genetic search algorithms

    SciTech Connect

    Mahinthakumar, G.; Gwo, J.P.; Moline, G.R.; Webb, O.F.

    1999-12-01

    Use of generic search algorithms for detection of subsurface biological activity zones (BAZ) is investigated through a series of hypothetical numerical biostimulation experiments. Continuous injection of dissolved oxygen and methane with periodically varying concentration stimulates the cometabolism of indigenous methanotropic bacteria. The observed breakthroughs of methane are used to deduce possible BAZ in the subsurface. The numerical experiments are implemented in a parallel computing environment to make possible the large number of simultaneous transport simulations required by the algorithm. The results show that genetic algorithms are very efficient in locating multiple activity zones, provided the observed signals adequately sample the BAZ.

  14. Target identification for biologically active small molecules using chemical biology approaches.

    PubMed

    Lee, Heesu; Lee, Jae Wook

    2016-09-01

    The identification and validation of the targets of biologically active molecules is an important step in the field of chemical biology. While recent advances in proteomic and genomic technology have accelerated this identification process, the discovery of small molecule targets remains the most challenging step. A general method for the identification of these small molecule targets has not yet been established. To overcome the difficulty in target identification, new technology derived from the fields of genomics, proteomics, and bioinformatics has been developed. To date, pull-down methods using small molecules immobilized on a solid support followed by mass spectrometry have been the most successful approach. Here, we discuss current procedures for target identification. We also review the most recent target identification approaches and present several examples that illustrate advanced target identification technology.

  15. Role and regulation of coordinately expressed de novo purine biosynthetic enzymes PPAT and PAICS in lung cancer.

    PubMed

    Goswami, Moloy T; Chen, Guoan; Chakravarthi, Balabhadrapatruni V S K; Pathi, Satya S; Anand, Sharath K; Carskadon, Shannon L; Giordano, Thomas J; Chinnaiyan, Arul M; Thomas, Dafydd G; Palanisamy, Nallasivam; Beer, David G; Varambally, Sooryanarayana

    2015-09-15

    Cancer cells exhibit altered metabolism including aerobic glycolysis that channels several glycolytic intermediates into de novo purine biosynthetic pathway. We discovered increased expression of phosphoribosyl amidotransferase (PPAT) and phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS) enzymes of de novo purine biosynthetic pathway in lung adenocarcinomas. Transcript analyses from next-generation RNA sequencing and gene expression profiling studies suggested that PPAT and PAICS can serve as prognostic biomarkers for aggressive lung adenocarcinoma. Immunohistochemical analysis of PAICS performed on tissue microarrays showed increased expression with disease progression and was significantly associated with poor prognosis. Through gene knockdown and over-expression studies we demonstrate that altering PPAT and PAICS expression modulates pyruvate kinase activity, cell proliferation and invasion. Furthermore we identified genomic amplification and aneuploidy of the divergently transcribed PPAT-PAICS genomic region in a subset of lung cancers. We also present evidence for regulation of both PPAT and PAICS and pyruvate kinase activity by L-glutamine, a co-substrate for PPAT. A glutamine antagonist, 6-Diazo-5-oxo-L-norleucine (DON) blocked glutamine mediated induction of PPAT and PAICS as well as reduced pyruvate kinase activity. In summary, this study reveals the regulatory mechanisms by which purine biosynthetic pathway enzymes PPAT and PAICS, and pyruvate kinase activity is increased and exposes an existing metabolic vulnerability in lung cancer cells that can be explored for pharmacological intervention. PMID:26140362

  16. Role and regulation of coordinately expressed de novo purine biosynthetic enzymes PPAT and PAICS in lung cancer

    PubMed Central

    Pathi, Satya S.; Anand, Sharath K.; Carskadon, Shannon L.; Giordano, Thomas J.; Chinnaiyan, Arul M.; Thomas, Dafydd G.; Palanisamy, Nallasivam; Beer, David G.; Varambally, Sooryanarayana

    2015-01-01

    Cancer cells exhibit altered metabolism including aerobic glycolysis that channels several glycolytic intermediates into de novo purine biosynthetic pathway. We discovered increased expression of phosphoribosyl amidotransferase (PPAT) and phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS) enzymes of de novo purine biosynthetic pathway in lung adenocarcinomas. Transcript analyses from next-generation RNA sequencing and gene expression profiling studies suggested that PPAT and PAICS can serve as prognostic biomarkers for aggressive lung adenocarcinoma. Immunohistochemical analysis of PAICS performed on tissue microarrays showed increased expression with disease progression and was significantly associated with poor prognosis. Through gene knockdown and over-expression studies we demonstrate that altering PPAT and PAICS expression modulates pyruvate kinase activity, cell proliferation and invasion. Furthermore we identified genomic amplification and aneuploidy of the divergently transcribed PPAT-PAICS genomic region in a subset of lung cancers. We also present evidence for regulation of both PPAT and PAICS and pyruvate kinase activity by L-glutamine, a co-substrate for PPAT. A glutamine antagonist, 6-Diazo-5-oxo-L-norleucine (DON) blocked glutamine mediated induction of PPAT and PAICS as well as reduced pyruvate kinase activity. In summary, this study reveals the regulatory mechanisms by which purine biosynthetic pathway enzymes PPAT and PAICS, and pyruvate kinase activity is increased and exposes an existing metabolic vulnerability in lung cancer cells that can be explored for pharmacological intervention. PMID:26140362

  17. The purine repressor of Bacillus subtilis: a novel combination of domains adapted for transcription regulation.

    PubMed

    Sinha, Sangita C; Krahn, Joseph; Shin, Byung Sik; Tomchick, Diana R; Zalkin, Howard; Smith, Janet L

    2003-07-01

    The purine repressor from Bacillus subtilis, PurR, represses transcription from a number of genes with functions in the synthesis, transport, and metabolism of purines. The 2.2-A crystal structure of PurR reveals a two-domain protein organized as a dimer. The larger C-terminal domain belongs to the PRT structural family, in accord with a sequence motif for binding the inducer phosphoribosylpyrophosphate (PRPP). The PRT domain is fused to a smaller N-terminal domain that belongs to the winged-helix family of DNA binding proteins. A positively charged surface on the winged-helix domain likely binds specific DNA sequences in the recognition site. A second positively charged surface surrounds the PRPP site at the opposite end of the PurR dimer. Conserved amino acids in the sequences of PurR homologs in 21 gram-positive bacteria cluster on the proposed recognition surface of the winged-helix domain and around the PRPP binding site at the opposite end of the molecule, supporting a common function of DNA and PRPP binding for all of the proteins. The structure supports a binding mechanism in which extended regions of DNA interact with extensive protein surface. Unlike most PRT proteins, which are phosphoribosyltransferases (PRTases), PurR lacks catalytic activity. This is explained by a tyrosine side chain that blocks the site for a nucleophile cosubstrate in PRTases. Thus, B. subtilis has adapted an enzyme fold to serve as an effector-binding domain and has used it in a novel combination with the DNA-binding winged-helix domain as a repressor of purine genes.

  18. Targeting the Parasite's DNA with Methyltriazenyl Purine Analogs Is a Safe, Selective, and Efficacious Antitrypanosomal Strategy

    PubMed Central

    Wanner, Martin J.; Alkhaldi, Abdulsalam A. M.; Ebiloma, Godwin U.; Barnes, Rebecca L.; Kaiser, Marcel; Brun, Reto; McCulloch, Richard; Koomen, Gerrit-Jan

    2015-01-01

    The human and veterinary disease complex known as African trypanosomiasis continues to inflict significant global morbidity, mortality, and economic hardship. Drug resistance and toxic side effects of old drugs call for novel and unorthodox strategies for new and safe treatment options. We designed methyltriazenyl purine prodrugs to be rapidly and selectively internalized by the parasite, after which they disintegrate into a nontoxic and naturally occurring purine nucleobase, a simple triazene-stabilizing group, and the active toxin: a methyldiazonium cation capable of damaging DNA by alkylation. We identified 2-(3-acetyl-3-methyltriazen-1-yl)-6-hydroxypurine (compound 1) as a new lead compound, which showed submicromolar potency against Trypanosoma brucei, with a selectivity index of >500, and it demonstrated a curative effect in animal models of acute trypanosomiasis. We investigated the mechanism of action of this lead compound and showed that this molecule has significantly higher affinity for parasites over mammalian nucleobase transporters, and it does not show cross-resistance with current first-line drugs. Once selectively accumulated inside the parasite, the prodrug releases a DNA-damaging methyldiazonium cation. We propose that ensuing futile cycles of attempted mismatch repair then lead to G2/M phase arrest and eventually cell death, as evidenced by the reduced efficacy of this purine analog against a mismatch repair-deficient (MSH2−/−) trypanosome cell line. The observed absence of genotoxicity, hepatotoxicity, and cytotoxicity against mammalian cells revitalizes the idea of pursuing parasite-selective DNA alkylators as a safe chemotherapeutic option for the treatment of human and animal trypanosomiasis. PMID:26282430

  19. The purine nucleotide cycle. A pathway for ammonia production in the rat kidney.

    PubMed Central

    Bogusky, R T; Lowenstein, L M; Lowenstein, J M

    1976-01-01

    Particle-free extracts prepared from kidney cortex of rat catalyze the formation of ammonia via the purine nucleotide cycle. The cycle generates ammonia and fumarate from aspartate, using catalytic amounts of inosine monophosphate, adenylosuccinate, and adenosine monophosphate. The specific activities of the enzymes of the cycle are 1.27+/-0.27 nmol/mg protein per min (SE) for adenoylosuccinate synthetase, 1.38+/-0.16 for adenylosuccinase, and 44.0+/-3.3 for AMP deaminase. Compared with controls, extracts prepared from kidneys of rats fed ammonium chloride for 2 days show a 60% increase in adenylosuccinate synthetase and a threefold increase in adenylosuccinase activity, and a greater and more rapid synthesis of ammonia and adenine nucleotide from aspartate and inosine monophosphate. Extracts prepared from kidneys of rats fed a potassium-deficient diet show a twofold increase in adenylosuccinate synthetase and a threefold increase in adenylosuccinase activity. In such extracts the rate of synthesis of ammonia and adenine nucleotide from aspartate and inosine monophosphate is also increased. These results show that the reactions of the purine nucleotide cycle are present and can operate in extracts of kidney cortex. The operational capacity of the cycle is accelerated by ammonium chloride feeding and potassium depletion, conditions known to increase renal ammonia excretion. Extracts of kidney cortex convert inosine monophosphate to uric acid. This is prevented by addition of allopurinol of 1-pyrophosphoryl ribose 5-phosphate to the reaction mixture. PMID:821968

  20. Crystal structure and molecular dynamics studies of purine nucleoside phosphorylase from Mycobacterium tuberculosis associated with acyclovir.

    PubMed

    Caceres, Rafael A; Timmers, Luís F S M; Ducati, Rodrigo G; da Silva, Diego O N; Basso, Luiz A; de Azevedo, Walter F; Santos, Diógenes S

    2012-01-01

    Consumption has been a scourge of mankind since ancient times. This illness has charged a high price to human lives. Many efforts have been made to defeat Mycobacterium tuberculosis (Mt). The M. tuberculosis purine nucleoside phosphorylase (MtPNP) is considered an interesting target to pursuit new potential inhibitors, inasmuch it belongs to the purine salvage pathway and its activity might be involved in the mycobacterial latency process. Here we present the MtPNP crystallographic structure associated with acyclovir and phosphate (MtPNP:ACY:PO(4)) at 2.10 Å resolution. Molecular dynamics simulations were carried out in order to dissect MtPNP:ACY:PO(4) structural features, and the influence of the ligand in the binding pocket stability. Our results revealed that the ligand leads to active site lost of stability, in agreement with experimental results, which demonstrate a considerable inhibitory activity against MtPNP (K(i) = 150 nM). Furthermore, we observed that some residues which are important in the proper ligand's anchor into the human homologous enzyme do not present the same importance to MtPNP. Therewithal, these findings contribute to the search of new specific inhibitors for MtPNP, since peculiarities between the mycobacterial and human enzyme binding sites have been identified, making a structural-based drug design feasible.

  1. Chemistry, biological activity, and uses of formamidine pesticides.

    PubMed Central

    Hollingworth, R M

    1976-01-01

    The formamidines, a relatively new group of acaricide-insecticides, are novel both in their range of biological activities and in their mode of action, which is presently unknown. This paper is a review of the historical development, properties, structures, uses, and chemistry of this group of pesticides, with particular emphasis on chlordimeform (Galecron or Fundal), N'-4-chloro-o-tolyl-N,N-dimethylformamidine, and amitraz, 1,3=di-(2,4-dimethylphenylimino)-2-methyl-2-azapropane. Their biological activity and uses are defined by their toxicity to spider mites, ticks, and certain insects, and they are particularly effective against juvenile and resistant forms of these organisms. A significant, but poorly understood feature of their field effectiveness is their breadth of toxic action which includes direct lethality, excitant-repellant behavioral effects, and chemosterilization. They are generally of low hazard for nontarget species with the significant exception of predaceous mites. Several aspects of the chemistry of these compounds are considered, including structure--activity relations, synthetic pathways, isomerism and configuration, and their chemical and environmental stability. A significant feature of the metabolism and toxicity of these agents is the possible activation of chlordimeform by N-demethylation in vivo. Strong evidence for this has been presented with the cattle tick, but recent results discussed here suggest that in other species, i.e., mice, German cockroaches or black cutworm eggs, N-demethylation is neither a strong activation nor a detoxication reaction. PMID:789070

  2. Distribution and biological activities of the flavonoid luteolin.

    PubMed

    López-Lázaro, Miguel

    2009-01-01

    Epidemiological evidence suggests that flavonoids may play an important role in the decreased risk of chronic diseases associated with a diet rich in plant-derived foods. Flavonoids are also common constituents of plants used in traditional medicine to treat a wide range of diseases. The purpose of this article is to summarize the distribution and biological activities of one of the most common flavonoids: luteolin. This flavonoid and its glycosides are widely distributed in the plant kingdom; they are present in many plant families and have been identified in Bryophyta, Pteridophyta, Pinophyta and Magnoliophyta. Dietary sources of luteolin include, for instance, carrots, peppers, celery, olive oil, peppermint, thyme, rosemary and oregano. Preclinical studies have shown that this flavone possesses a variety of pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial and anticancer activities. The ability of luteolin to inhibit angiogenesis, to induce apoptosis, to prevent carcinogenesis in animal models, to reduce tumor growth in vivo and to sensitize tumor cells to the cytotoxic effects of some anticancer drugs suggests that this flavonoid has cancer chemopreventive and chemotherapeutic potential. Modulation of ROS levels, inhibition of topoisomerases I and II, reduction of NF-kappaB and AP-1 activity, stabilization of p53, and inhibition of PI3K, STAT3, IGF1R and HER2 are possible mechanisms involved in the biological activities of luteolin. PMID:19149659

  3. Biological activities of Eikenella corrodens outer membrane and lipopolysaccharide.

    PubMed Central

    Progulske, A; Mishell, R; Trummel, C; Holt, S C

    1984-01-01

    Highly purified preparations of the outer membrane and lipopolysaccharide (LPS) of Eikenella corrodens strain ATCC 23834 and the outer membrane fraction (OMF) of strain 470 were tested in in vitro biological assays. The OMFs of both strains were found to be mitogenic for BDF and C3H/HeJ murine splenocytes. The E. corrodens LPS was mitogenic for BDF spleen cells; however, doses of LPS as high as 50 micrograms/ml failed to stimulate C3H/HeJ cells. When incubated with T-lymphocyte-depleted C3H/HeJ splenocytes, the strain 23834 OMF demonstrated significant mitogenic activity, indicating that the OMF is a B-cell mitogen by a mechanism other than that elicited by conventional LPS. The E. corrodens 23834 OMF and LPS were stimulators of bone resorption when tested in organ cultures of fetal rat long bones. In contrast, the strain 470 OMF was only weakly stimulatory. Both OMFs and LPSs demonstrated "endotoxic" activity, since as little as 0.062 micrograms of E. corrodens LPS and 0.015 micrograms of the OMFs induced gelation in the Limulus amebocyte clotting assay. Thus, despite having a "nonclassical" LPS biochemistry, the E. corrodens LPS elicits classical endotoxic activities. These results also indicate that the surface structures of E. corrodens have significant biological activities as measured in vitro. The expression of such activities in vivo may play an important role in the pathogenesis of periodontitis as well as other E. corrodens infections. PMID:6360893

  4. Biologically active LIL proteins built with minimal chemical diversity

    PubMed Central

    Heim, Erin N.; Marston, Jez L.; Federman, Ross S.; Edwards, Anne P. B.; Karabadzhak, Alexander G.; Petti, Lisa M.; Engelman, Donald M.; DiMaio, Daniel

    2015-01-01

    We have constructed 26-amino acid transmembrane proteins that specifically transform cells but consist of only two different amino acids. Most proteins are long polymers of amino acids with 20 or more chemically distinct side-chains. The artificial transmembrane proteins reported here are the simplest known proteins with specific biological activity, consisting solely of an initiating methionine followed by specific sequences of leucines and isoleucines, two hydrophobic amino acids that differ only by the position of a methyl group. We designate these proteins containing leucine (L) and isoleucine (I) as LIL proteins. These proteins functionally interact with the transmembrane domain of the platelet-derived growth factor β-receptor and specifically activate the receptor to transform cells. Complete mutagenesis of these proteins identified individual amino acids required for activity, and a protein consisting solely of leucines, except for a single isoleucine at a particular position, transformed cells. These surprisingly simple proteins define the minimal chemical diversity sufficient to construct proteins with specific biological activity and change our view of what can constitute an active protein in a cellular context. PMID:26261320

  5. Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil

    PubMed Central

    Servili, Maurizio; Sordini, Beatrice; Esposto, Sonia; Urbani, Stefania; Veneziani, Gianluca; Maio, Ilona Di; Selvaggini, Roberto; Taticchi, Agnese

    2013-01-01

    Over the last few decades, multiple biological properties, providing antioxidant, anti-inflammatory, chemopreventive and anti-cancer benefits, as well as the characteristic pungent and bitter taste, have been attributed to Extra Virgin Olive Oil (EVOO) phenols. In particular, growing efforts have been devoted to the study of the antioxidants of EVOO, due to their importance from health, biological and sensory points of view. Hydrophilic and lipophilic phenols represent the main antioxidants of EVOO, and they include a large variety of compounds. Among them, the most concentrated phenols are lignans and secoiridoids, with the latter found exclusively in the Oleaceae family, of which the drupe is the only edible fruit. In recent years, therefore, we have tackled the study of the main properties of phenols, including the relationships between their biological activity and the related chemical structure. This review, in fact, focuses on the phenolic compounds of EVOO, and, in particular, on their biological properties, sensory aspects and antioxidant capacity, with a particular emphasis on the extension of the product shelf-life. PMID:26784660

  6. Structure activity relationships: their function in biological prediction

    SciTech Connect

    Schultz, T.W.

    1982-01-01

    Quantitative structure activity relationships provide a means of ranking or predicting biological effects based on chemical structure. For each compound used to formulate a structure activity model two kinds of quantitative information are required: (1) biological activity and (2) molecular properties. Molecular properties are of three types: (1) molecular shape, (2) physiochemical parameters, and (3) abstract quantitations of molecular structure. Currently the two best descriptors are the hydrophobic parameter, log 1-octanol/water partition coefficient (log P), and the /sup 1/X/sup v/(one-chi-v) molecular connectivity index. Biological responses can be divided into three main categories: (1) non-specific effects due to membrane perturbation, (2) non-specific effects due to interaction with functional groups of proteins, and (3) specific effects due to interaction with receptors. Twenty-six synthetic fossil fuel-related nitrogen-containing aromatic compounds were examined to determine the quantitative correlation between log P and /sup 1/X/sup v/ and population growth impairment of Tetrahymena pyriformis. Nitro-containing compounds are the most active, followed by amino-containing compounds and azaarenes. Within each analog series activity increases with alkyl substitution and ring addition. The planar model log BR = 0.5564 log P + 0.3000 /sup 1/X/sup v/ -2.0138 was determined using mono-nitrogen substituted compounds. Attempts to extrapolate this model to dinitrogen-containing molecules were, for the most part, unsuccessful because of a change in mode of action from membrane perturbation to uncoupling of oxidative phosphoralation.

  7. Biologically active traditional medicinal herbs from Balochistan, Pakistan.

    PubMed

    Zaidi, Mudassir A; Crow, Sidney A

    2005-01-01

    The biological activities of the following four important medicinal plants of Balochistan, Pakistan were checked; Grewia erythraea Schwein f. (Tiliaceae), Hymenocrater sessilifolius Fisch. and C.A. Mey (Lamiaceae), Vincetoxicum stocksii Ali and Khatoon (Asclepiadaceae) and Zygophyllum fabago L. (Zygophyllaceae). The methanolic extracts were fractionated into hexane, ethyl acetate, chloroform, butanol and water. The antifungal and antibacterial activities of these plants were determined against 12 fungal and 12 bacterial strains by agar well diffusion and disk diffusion assays. The extract of Zygophyllum fabago was found to be highly effective against Candida albicans and Escherichia coli. The extract of Vincetoxicum stocksii was also found to be significantly active against Candida albicans, Bacillus subtilis and Bacillus cereus. Extracts of Hymenocrater sessilifolius and Grewia erythraea showed good activity only against Pseudomonas aeruginosa.

  8. Biological activities of water-soluble fullerene derivatives

    NASA Astrophysics Data System (ADS)

    Nakamura, S.; Mashino, T.

    2009-04-01

    Three types of water-soluble fullerene derivatives were synthesized and their biological activities were investigated. C60-dimalonic acid, an anionic fullerene derivative, showed antioxidant activity such as quenching of superoxide and relief from growth inhibition of E. coli by paraquat. C60-bis(7V,7V-dimethylpyrrolidinium iodide), a cationic fullerene derivative, has antibacterial activity and antiproliferative effect on cancer cell lines. The mechanism is suggested to be respiratory chain inhibition by reactive oxygen species produced by the cationic fullerene derivative. Proline-type fullerene derivatives showed strong inhibition activities on HIV-reverse transcriptase. The IC50 values were remarkably lower than nevirapine, a clinically used anti-HIV drug. Fullerene derivatives have a big potential for a new type of lead compound to be used as medicine.

  9. [Influence of biological activated carbon dosage on landfill leachate treatment].

    PubMed

    Cui, Yan-Rui; Guo, Yan; Wu, Qing

    2014-08-01

    Effects of biological activated carbon (BAC) dosage on COD removal in landfill leachate treatment were compared. The COD removal efficiency of reactors with 0, 100 and 300 g activated carbon dosage per litre activated sludge was 12.9%, 19.6% and 27.7%, respectively. The results indicated that BAC improved the refractory organic matter removal efficiency and there was a positive correlation between COD removal efficiency and BAC dosage. The output of carbon dioxide after 8h of aeration in reactors was 109, 193 and 306 mg corresponding to the activated carbon dosages mentioned above, which indicated the amount of biodegradation and BAC dosage also had a positive correlation. The combination of adsorption and bioregeneration of BAC resulted in the positive correlation betweem organic matter removal efficiency and BAC dosage, and bioregeneration was the root cause for the microbial decomposition of refractory organics.

  10. The regulation and biological activity of interleukin 12.

    PubMed

    Lee, S M; Suen, Y; Qian, J; Knoppel, E; Cairo, M S

    1998-05-01

    Interleukin 12 (IL-12) is a pleiotropic cytokine and mediates several biological activities on human T and natural killer (NK) cells, including induction of IFN-gamma production, enhancement of cell-mediated cytotoxicity and comitogenic effects on resting T-cells. The major cellular sources producing IL-12 are antigen-stimulated monocytes, macrophages, and B-cells isolated from peripheral blood mononuclear cells (PBMC). Our laboratory has investigated the regulation of IL-12 gene expression in both cord blood and adult PBMC, and the effects of IL-12 on induction of IFN-gamma production, NK, and lymphokine-activated killer (LAK) cytotoxicity. IL-12 mRNA expression and protein production in LPS-stimulated cord blood MNC were 3-4 fold decreased when compared with adult PBMC. There were no differences between cord blood and adult PBMC in both basal levels of transcription or the degree of transcriptional activation of the IL-12 gene. Additionally, the half-life of IL-12 p40 mRNA was 3-fold lower in activated cord blood compared to adult PBMC. Exogenous IL-12 induced a significant increase of IFN-gamma from both cord and adult PBMC. Cord MNC has significantly reduced levels of NK activity, and IL-12 significantly enhanced cord blood NK cytotoxicity up to similar levels in adult PBMC. IL-12 also significantly enhanced cord blood NK and LAK activities against a broad range of neuroblastoma, leukemia, and lymphoma cell lines. Lower doses of IL-12 and IL-15 concomitantly generated either synergistic or additive effects on cord blood NK and LAK cytotoxicities. In light of the important biological functions of IL-12, reduced expression and production of IL-12 from activated cord blood may contribute to the immaturity of cord blood cellular immunity and contribute, in part, to decreased severe graft vs. host disease following unrelated cord blood stem cell transplantation. IL-12 enhancement of IFN-gamma, NK, and LAK activity in activated cord blood MNC up to comparable levels

  11. Natural products as a resource for biologically active compounds

    SciTech Connect

    Hanke, F.J.

    1986-01-01

    The goal of this study was to investigate various sources of biologically active natural products in an effort to identify the active pesticidal compounds involved. The study is divided into several parts. Chapter 1 contains a discussion of several new compounds from plant and animal sources. Chapter 2 introduces a new NMR technique. In section 2.1 a new technique for better utilizing the lanthanide relaxation agent Gd(fod)/sub 3/ is presented which allows the predictable removal of resonances without line broadening. Section 2.2 discusses a variation of this technique for use in an aqueous solvent by applying this technique towards identifying the binding sites of metals of biological interest. Section 2.3 presents an unambiguous /sup 13/C NMR assignment of melibiose. Chapter 3 deals with work relating to the molting hormone of most arthropods, 20-hydroxyecdysone. Section 3.1 discusses the use of two-dimensional NMR (2D NMR) to assign the /sup 1/H NMR spectrum of this biologically important compound. Section 3.2 presents a new application for Droplet countercurrent chromatography (DCCC). Chapter 4 presents a basic improvement to the commercial DCCC instrument that is currently being applied to future commercial instruments. Chapter 5 discusses a curious observation of the effects that two previously known compounds, nagilactone C and (-)-epicatechin, have on lettuce and rice and suggest a possible new role for the ubiquitous flavanol (-)-epicatechin in plants.

  12. Ion exchange defines the biological activity of titanate nanotubes.

    PubMed

    Rónavári, Andrea; Kovács, Dávid; Vágvölgyi, Csaba; Kónya, Zoltán; Kiricsi, Mónika; Pfeiffer, Ilona

    2016-05-01

    One-dimensional titanate nanotubes (TiONTs) were subjected to systematic ion exchange to determine the impact of these modifications on biological activities. Ion exchanged TiONTs (with Ag, Mg, Bi, Sb, Ca, K, Sr, Fe, and Cu ions) were successfully synthesized and the presence of the substituted ions was verified by energy dispersive X-ray spectroscopy (EDS). A complex screening was carried out to reveal differences in toxicity to human cells, as well as in antibacterial, antifungal, and antiviral activities between the various modified nanotubes. Our results demonstrated that Ag ion exchanged TiONTs exerted potent antibacterial and antifungal effects against all examined microbial species but were ineffective on viruses. Surprisingly, the antibacterial activity of Cu/TiONTs was restricted to Micrococcus luteus. Most ion exchanged TiONTs did not show antimicrobial activity against the tested bacterial and fungal species. Incorporation of various ions into nanotube architectures lead to mild, moderate, or even to a massive loss of human cell viability; therefore, this type of biological effect exerted by TiONTs can be greatly modulated by ion exchange. These findings further emphasize the contribution of ion exchange in determining not only the physical and chemical characteristics but also the bioactivity of TiONT against different types of living cells.

  13. Biologically Active Metabolites Produced by the Basidiomycete Quambalaria cyanescens

    PubMed Central

    Stodůlková, Eva; Císařová, Ivana; Kolařík, Miroslav; Chudíčková, Milada; Novák, Petr; Man, Petr; Kuzma, Marek; Pavlů, Barbora; Černý, Jan; Flieger, Miroslav

    2015-01-01

    Four strains of the fungus Quambalaria cyanescens (Basidiomycota: Microstromatales), were used for the determination of secondary metabolites production and their antimicrobial and biological activities. A new naphthoquinone named quambalarine A, (S)-(+)-3-(5-ethyl-tetrahydrofuran-2-yliden)-5,7,8-trihydroxy-2-oxo-1,4-naphthoquinone (1), together with two known naphthoquinones, 3-hexanoyl-2,5,7,8-tetrahydroxy-1,4-naphthoquinone (named here as quambalarine B, 2) and mompain, 2,5,7,8-tetrahydroxy-1,4-naphthoquinone (3) were isolated. Their structures were determined by single-crystal X-ray diffraction crystallography, NMR and MS spectrometry. Quambalarine A (1) had a broad antifungal and antibacterial activity and is able inhibit growth of human pathogenic fungus Aspergillus fumigatus and fungi co-occurring with Q. cyanescens in bark beetle galleries including insect pathogenic species Beauveria bassiana. Quambalarine B (2) was active against several fungi and mompain mainly against bacteria. The biological activity against human-derived cell lines was selective towards mitochondria (2 and 3); after long-term incubation with 2, mitochondria were undetectable using a mitochondrial probe. A similar effect on mitochondria was observed also for environmental competitors of Q. cyanescens from the genus Geosmithia. PMID:25723150

  14. Perceived causality influences brain activity evoked by biological motion.

    PubMed

    Morris, James P; Pelphrey, Kevin A; McCarthy, Gregory

    2008-01-01

    Using functional magnetic resonance imaging (fMRI), we investigated brain activity in an observer who watched the hand and arm motions of an individual when that individual was, or was not, the cause of the motion. Subjects viewed a realistic animated 3D character who sat at a table containing four pistons. On Intended Motion trials, the character raised his hand and arm upwards. On Unintended Motion trials, the piston under one of the character's hands pushed the hand and arm upward with the same motion. Finally, during Non-Biological Motion control trials, a piston pushed a coffee mug upward in the same smooth motion. Hand and arm motions, regardless of intention, evoked significantly more activity than control trials in a bilateral region that extended ventrally from the posterior superior temporal sulcus (pSTS) region and which was more spatially extensive in the right hemisphere. The left pSTS near the temporal-parietal junction, robustly differentiated between the Intended Motion and Unintended Motion conditions. Here, strong activity was observed for Intended Motion trials, while Unintended Motion trials evoked similar activity as the coffee mug trials. Our results demonstrate a strong hemispheric bias in the role of the pSTS in the perception of causality of biological motion. PMID:18633843

  15. Application of activation techniques to biological analysis. [813 references

    SciTech Connect

    Bowen, H.J.M.

    1981-12-01

    Applications of activation analysis in the biological sciences are reviewed for the period of 1970 to 1979. The stages and characteristics of activation analysis are described, and its advantages and disadvantages enumerated. Most applications involve activation by thermal neutrons followed by either radiochemical or instrumental determination. Relatively little use has been made of activation by fast neutrons, photons, or charged particles. In vivo analyses are included, but those based on prompt gamma or x-ray emission are not. Major applications include studies of reference materials, and the elemental analysis of plants, marine biota, animal and human tissues, diets, and excreta. Relatively little use of it has been made in biochemistry, microbiology, and entomology, but it has become important in toxicology and environmental science. The elements most often determined are Ag, As, Au, Br, Ca, Cd, Cl, Co, Cr, Cs, Cu, Fe, Hg, I, K, Mn, Mo, Na, Rb, Sb, Sc, Se, and Zn, while few or no determinations of B, Be, Bi, Ga, Gd, Ge, H, In, Ir, Li, Nd, Os, Pd, Pr, Pt, Re, Rh, Ru, Te, Tl, or Y have been made in biological materials.

  16. Chemical constituents and biological activities of the genus Linaria (Scrophulariaceae).

    PubMed

    Cheriet, Thamere; Mancini, Ines; Seghiri, Ramdane; Benayache, Fadila; Benayache, Samir

    2015-01-01

    This is a review on 95 references dealing with the genus Linaria (Scrophularioideae-Antirrhineae tribe), a known genus of the Scrophulariaceae family, which comprises about 200 species mainly distributed in Europe, Asia and North Africa. The use of some Linaria species in folk medicine has attracted the attention for chemical and biological studies. This report is aimed to be a comprehensive overview on the isolated or identified known and often new metabolites from the 41 Linaria species so far cited. It is organised presenting first the phytochemical classes of alkaloids, polyphenols including flavonoids, the latter being quite diffused and mostly present as flavones, flavonols and their glycosides, and terpenoids including iridoids and steroids. Second, the results from biological investigation on plant extracts, pure natural products isolated from Linaria species and some synthetic derivatives are reported, with antitumour, anti-acetylcholinesterase, anti-inflammatory and analgesic, antioxidant and antibacterial activities. PMID:25674928

  17. Dependence of gamma-aminobutyric acid modulation of cholinergic transmission on nitric oxide and purines in cat terminal ileum.

    PubMed

    Pencheva, N

    1997-11-27

    The possible involvement of purines and/or nitric oxide (NO) in the gamma-aminobutyric acid (GABA)A receptor-mediated effects on the spontaneous activity of isolated preparations from longitudinal and circular muscles of cat terminal ileum was investigated. GABA had biphasic effects, which were neurogenic and muscarinic. ATP and adenosine dose dependently inhibited the activity of the muscles. A contractile response evoked by the nucleotide only was also observed. The effects of the purines were equipotent and resistant to Nomega-nitro-L-arginine (L-NNA), tetrodotoxin and to desensitization by alpha,beta-methylene adenosine 5'-triphosphate (alpha,beta-meATP), except for the contractile effect of ATP, which was abolished by alpha,beta-meATP. Pretreatment of the preparations with ATP or adenosine produced: (i) desensitization to the effects of the respective purinoceptor agonist only; and (ii) suppression of the GABA-induced responses of longitudinal and circular muscles. Hemoglobin and L-NNA greatly reduced or completely blocked the GABA(A)-induced relaxation and decreased the GABA(A)-induced contraction. Our results indicate that purines and NO, to a different extent, mediate the relaxant phase of the GABA effects in both layers. Interactions between muscarinic cholinoceptors and GABA-nitrergic pathway and a concomitant activation of postjunctional P1 and P2y purinoceptors are suggested to explain the prejunctional biphasic effects of GABA.

  18. Preparation and characterization of new biologically active polyurethane foams.

    PubMed

    Savelyev, Yuri; Veselov, Vitali; Markovskaya, Ludmila; Savelyeva, Olga; Akhranovich, Elena; Galatenko, Natalya; Robota, Ludmila; Travinskaya, Tamara

    2014-12-01

    Biologically active polyurethane foams are the fast-developed alternative to many applications of biomedical materials. Due to the polyurethane structure features and foam technology it is possible to incorporate into their structure the biologically active compounds of target purpose via structural-chemical modification of macromolecule. A series of new biologically active polyurethane foams (PUFs) was synthesized with polyethers (MM 2500-5000), polyesters MM (500-2200), 2,4(2,6) toluene diisocyanate, water as a foaming agent, catalysts, foam stabilizers and functional compounds. Different functional compounds: 1,4-di-N-oxy-2,3-bis-(oxymethyl)-quinoxaline (DOMQ), partial sodium salt of poly(acrylic acid) and 2,6-dimethyl-N,N-diethyl aminoacetatanilide hydrochloride were incorporated into the polymer structure/composition due to the chemical and/or physical bonding. Structural peculiarities of PUFs were studied by FTIR spectroscopy and X-ray scattering. Self-adhesion properties of PUFs were estimated by measuring of tensile strength at break of adhesive junction. The optical microscopy method was performed for the PUF morphology studies. Toxicological estimation of the PUFs was carried out in vitro and in vivo. The antibacterial action towards the Gram-positive and Gram-negative bacteria (Escherichia coli ATC 25922, E. coli ATC 2150, Klebsiella pneumoniae 6447, Staphylococcus aureus 180, Pseudomonas aeruginosa 8180, Proteus mirabilis F 403, P. mirabilis 6054, and Proteus vulgaris 8718) was studied by the disc method on the solid nutrient. Physic-chemical properties of the PUFs (density, tensile strength and elongation at break, water absorption and vapor permeability) showed that all studied PUFs are within the operational requirements for such materials and represent fine-cellular foams. Spectral studies confirmed the incorporation of DOMQ into the PUF's macrochain. PUFs are characterized by microheterogeneous structure. They are antibacterially active, non

  19. Infrared Spectroscopy of Charge Transfer Complexes of Purines and Pyrimidines

    SciTech Connect

    Rathod, Pravinsinh I.; Oza, A. T.

    2011-10-20

    The FTIR spectra of charge transfer complexes of purines and pyrimidines with organic acceptors such as TCNQ, TCNE, DDQ, chloranil and iodine are obtained and studied in the present work. Adenine, guanine, thymine, cytosine and uracil are the purines and pyrimidines which are found as constituent of DNA and RNA. Charge transfer induced hydrogen bonding is concluded on the basis of indirect transitions observed in the infrared range in these CTCs. Some CTCs show gaussian bands revealing delocalization of charge carriers. The CTCs show interband transition in three-dimensions rather than two-dimensions unlike CTCs of amino acids. There is no extended hydrogen bonded network spanning the whole crystal. This leads to indirect transition due to locally deformed lattice furnishing a phonon-assisted transition.

  20. Synthesis of some glycoside analogs and related compounds from 9-amino-6-(methylthio)-9H-purine.

    PubMed

    Temple, C; Kussner, C L; Montgomery, J A

    1975-12-01

    Additional information on the anticancer activity of 9-amino-9H-purine-6(1H)-thione and its derivatives was sought by the synthesis of some 9-(substituted amino)-6-(methylthio)-9H-purines in which the 9-substituent contained functional groups capable of either reversible or irreversible binding with an enzymatic site. Condensation of 9-amino-6-(methylthio)-9H-purine (1) with some carbonyl compounds followed by hydride reduction of the azomethine linkage in the intermediates leads to the 2-pyrrolylmethyl (8), 2,3,4-trihydroxybutyl (10), and the 1,5-dihydroxy-2- and 3-pentyl (11 and 12) compounds. A 4-hydroxybutyl derivative (13) was obtained by alkylation of 18, the 9-acetyl derivative of 1, with 4-chlorobutyl acetate followed by saponification. The cyclization of 13 and 11 with a sulfonyl chloride gave the 9-pyrrolidin-1-yl (27) and the 9-[2-(tosyloxymethyl)pyrrolidin-1-yl] (28), respectively. Acylation of 1 with ethyl L-2-pyrrolidine-5-carboxylate and ethyl 1-methyl-5-pyrrolidone-3-carboxylate, respectively, in Me2SO containing NaH gave the corresponding amides 15 and 17. Alkylation of 18 with 1-bromo-2-chloroethane and epichlorohydrin gave the N-(2-chloroethyl) and N-(1,2-epoxy-3-propyl) derivatives 19 and 20. The chloro group of the chlorobutyl derivative of 18 was displaced with KSCN and NaN3, respectively, to give the thiocyanate and azido derivatives 23 and 24. Hydrogenation of the latter gave the amine (25), which was acylated with ethyl chloroformate to give the (ethoxycarbonyl)amino compound 26. None of these compounds showed activity against L1210 leukemia cells implanted ip in mice on a single-dose schedule, suggesting that the activity observed in the simpler 9-aminopurines resulted from cleavage of the hydrazino linkage to give pH-purine-6(1H)-thione. PMID:1195279

  1. Soil biological activity at European scale - two calculation concepts

    NASA Astrophysics Data System (ADS)

    Krüger, Janine; Rühlmann, Jörg

    2014-05-01

    The CATCH-C project aims to identify and improve the farm-compatibility of Soil Management Practices including to promote productivity, climate change mitigation and soil quality. The focus of this work concentrates on turnover conditions for soil organic matter (SOM). SOM is fundamental for the maintenance of quality and functions of soils while SOM storage is attributed a great importance in terms of climate change mitigation. The turnover conditions depend on soil biological activity characterized by climate and soil properties. To assess the turnover conditions two model concepts are applied: (I) Biological active time (BAT) regression approach derived from CANDY model (Franko & Oelschlägel 1995) expresses the variation of air temperature, precipitation and soil texture as a timescale and an indicator of biological activity for soil organic matter (SOM) turnover. (II) Re_clim parameter within the Introductory Carbon Balance Model (Andrén & Kätterer 1997) states the soil temperature and soil water to estimate soil biological activity. The modelling includes two strategies to cover the European scale and conditions. BAT was calculated on a 20x20 km grid basis. The European data sets of precipitation and air temperature (time period 1901-2000, monthly resolution), (Mitchell et al. 2004) were used to derive long-term averages. As we focus on agricultural areas we included CORINE data (2006) to extract arable land. The resulting BATs under co-consideration of the main soil textures (clay, silt, sand and loam) were investigated per environmental zone (ENZs, Metzger et al. 2005) that represents similar conditions for precipitation, temperature and relief to identify BAT ranges and hence turnover conditions for each ENZ. Re_clim was quantified by climatic time series of more than 250 weather stations across Europe presented by Klein Tank et al. (2002). Daily temperature, precipitation and potential evapotranspiration (maximal thermal extent) were used to calculate

  2. Hydrodynamic collective effects of active proteins in biological membranes.

    PubMed

    Koyano, Yuki; Kitahata, Hiroyuki; Mikhailov, Alexander S

    2016-08-01

    Lipid bilayers forming biological membranes are known to behave as viscous two-dimensional fluids on submicrometer scales; usually they contain a large number of active protein inclusions. Recently, it was shown [A. S. Mikhailov and R. Kapral, Proc. Natl. Acad. Sci. USA 112, E3639 (2015)PNASA60027-842410.1073/pnas.1506825112] that such active proteins should induce nonthermal fluctuating lipid flows leading to diffusion enhancement and chemotaxislike drift for passive inclusions in biomembranes. Here, a detailed analytical and numerical investigation of such effects is performed. The attention is focused on the situations when proteins are concentrated within lipid rafts. We demonstrate that passive particles tend to become attracted by active rafts and are accumulated inside them. PMID:27627343

  3. CANTHARELLUS CIBARIUS - CULINARY-MEDICINAL MUSHROOM CONTENT AND BIOLOGICAL ACTIVITY.

    PubMed

    Muszyńska, Bozena; Kała, Katarzyna; Firlej, Anna; Sułkowska-Ziaja, Katarzyna

    2016-01-01

    One of the most frequently harvested mushrooms in Polish forests is Yellow chanterelle (chanterelle) - Cantharellus cibarius Fr. from the Cantharellaceae family. Chanterelle is an ectomycorrhizal mushroom occurring in Poland. Chanterelle lives in symbiosis with pine, spruce, oak and hombeam. In cookery, chanterelle is appreciated because of the aroma, taste, firmness and crunchiness of its fruiting bodies. Wild edible mushrooms are widely consumed in Asia, Western Europe and Central America. Chanterelle contains a great number of carbohydrates and proteins and a low amount of fat. Actual review presents the main groups of physiologically active primary and secondary metabolites in the fruiting bodies of chanterelle such as indole and phenolic compounds, carbohydrates, fatty acids, proteins, free amino acids, sterols, carotenoids, enzymes, vitamins and elements with biological activity. The presence of these compounds and elements conditions the nutrient and therapeutic activity of chanterelle, e.g., immunomodulatory, anti-inflammatory, antioxidant, antiviral, antimicrobial and antigenotoxic properties. PMID:27476275

  4. Biological activity of trisporoids and trisporoid analogues in Mucor mucedo (-).

    PubMed

    Schachtschabel, Doreen; Schimek, Christine; Wöstemeyer, Johannes; Boland, Wilhelm

    2005-06-01

    In the course of their sexual interactions, zygomycete fungi communicate via an elaborate series of carotene-derived compounds, namely trisporic acid and its biosynthetic progenitors. A novel building-block strategy allowed the systematic generation of structurally modified trisporoids along with putative early biosynthetic precursors for physiological tests. The impact of discrete structural elements was documented by the ability of individual compounds to induce sexually committed hyphae in Mucor mucedo. The activity screening contributed to establish general structure-function relationships for trisporoid action. Most crucial for activity were the dimension of the longer side chain, the polarity of functional groups at C(4) and C(13), and the number of conjugated double bonds in the side chain. The presence of an oxygen substituent at the cyclohexene ring is not essential for function. The overall biological activity apparently results from the combination of the various structural elements.

  5. Biological activities of aqueous extract from Cinnamomum porrectum

    NASA Astrophysics Data System (ADS)

    Farah, H. Siti; Nazlina, I.; Yaacob, W. A.

    2013-11-01

    A study was carried out to evaluate biological activities of an extract obtained from Cinnamomum porrectum under reflux using water. Aqueous extract of Cinnamomum porrectum was tested for antibacterial activity against six Gram-positive and eight Gram-negative bacteria as well as MRSA. The results confirmed that the aqueous extract of Cinnamomum porrectum was bactericidal. Cytotoxic tests on Vero cell culture revealed that Cinnamomum porrectum was non-toxic which IC50 value higher than 0.02 mg/mL. Antiviral activity was tested based on the above IC50 values together with the measured EC50 values to obtain Therapeutic Index. The result showed that Cinnamomum porrectum has the ability to inhibit viral replication of HSV-1 in Vero cells.

  6. CANTHARELLUS CIBARIUS - CULINARY-MEDICINAL MUSHROOM CONTENT AND BIOLOGICAL ACTIVITY.

    PubMed

    Muszyńska, Bozena; Kała, Katarzyna; Firlej, Anna; Sułkowska-Ziaja, Katarzyna

    2016-01-01

    One of the most frequently harvested mushrooms in Polish forests is Yellow chanterelle (chanterelle) - Cantharellus cibarius Fr. from the Cantharellaceae family. Chanterelle is an ectomycorrhizal mushroom occurring in Poland. Chanterelle lives in symbiosis with pine, spruce, oak and hombeam. In cookery, chanterelle is appreciated because of the aroma, taste, firmness and crunchiness of its fruiting bodies. Wild edible mushrooms are widely consumed in Asia, Western Europe and Central America. Chanterelle contains a great number of carbohydrates and proteins and a low amount of fat. Actual review presents the main groups of physiologically active primary and secondary metabolites in the fruiting bodies of chanterelle such as indole and phenolic compounds, carbohydrates, fatty acids, proteins, free amino acids, sterols, carotenoids, enzymes, vitamins and elements with biological activity. The presence of these compounds and elements conditions the nutrient and therapeutic activity of chanterelle, e.g., immunomodulatory, anti-inflammatory, antioxidant, antiviral, antimicrobial and antigenotoxic properties.

  7. Hydrodynamic collective effects of active proteins in biological membranes

    NASA Astrophysics Data System (ADS)

    Koyano, Yuki; Kitahata, Hiroyuki; Mikhailov, Alexander S.

    2016-08-01

    Lipid bilayers forming biological membranes are known to behave as viscous two-dimensional fluids on submicrometer scales; usually they contain a large number of active protein inclusions. Recently, it was shown [A. S. Mikhailov and R. Kapral, Proc. Natl. Acad. Sci. USA 112, E3639 (2015), 10.1073/pnas.1506825112] that such active proteins should induce nonthermal fluctuating lipid flows leading to diffusion enhancement and chemotaxislike drift for passive inclusions in biomembranes. Here, a detailed analytical and numerical investigation of such effects is performed. The attention is focused on the situations when proteins are concentrated within lipid rafts. We demonstrate that passive particles tend to become attracted by active rafts and are accumulated inside them.

  8. Xenicane Natural Products: Biological Activity and Total Synthesis.

    PubMed

    Betschart, Leo; Altmann, Karl-Heinz

    2015-01-01

    The xenicanes are a large class of mostly bicyclic marine diterpenoids featuring a cyclononane ring as a common structural denominator. After a brief introduction into the characteristic structural features of xenicanes and some biogenetic considerations, the major focus of this review will be on the various biological activities that have been reported for xenicanes and on efforts towards the total synthesis of these structures. Several xenicanes have been shown to be potent antiproliferative agents in vitro, but activities have also been reported in relation to inflammatory processes. However, so far, data on the possible in vivo activity of xenicanes are lacking. The major challenge in the total synthesis of xenicanes is the construction of the nine-membered ring. Different strategies have been pursued to establish this crucial substructure, including Grob fragmentation, ring-closing olefin metathesis, or Suzuki cross coupling as the enabling transformations. PMID:26429717

  9. Biological and therapeutic activities, and anticancer properties of curcumin

    PubMed Central

    PERRONE, DONATELLA; ARDITO, FATIMA; GIANNATEMPO, GIOVANNI; DIOGUARDI, MARIO; TROIANO, GIUSEPPE; LO RUSSO, LUCIO; DE LILLO, ALFREDO; LAINO, LUIGI; LO MUZIO, LORENZO

    2015-01-01

    Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Curcumin has been used extensively in Ayurvedic medicine, as it is nontoxic and exhibits a variety of therapeutic properties, including antioxidant, analgesic, anti-inflammatory and antiseptic activities. Recently, certain studies have indicated that curcumin may exert anticancer effects in a variety of biological pathways involved in mutagenesis, apoptosis, tumorigenesis, cell cycle regulation and metastasis. The present study reviewed previous studies in the literature, which support the therapeutic activity of curcumin in cancer. In addition, the present study elucidated a number of the challenges concerning the use of curcumin as an adjuvant chemotherapeutic agent. All the studies reviewed herein suggest that curcumin is able to exert anti-inflammatory, antiplatelet, antioxidative, hepatoprotective and antitumor activities, particularly against cancers of the liver, skin, pancreas, prostate, ovary, lung and head neck, as well as having a positive effect in the treatment of arthritis. PMID:26640527

  10. Students' Learning Activities While Studying Biological Process Diagrams

    NASA Astrophysics Data System (ADS)

    Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert

    2015-08-01

    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students' learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each student completed three learning tasks. Verbal data and eye-tracking data were collected as indications of students' learning activities. For the verbal data, we applied a fine-grained coding scheme to optimally describe students' learning activities. For the eye-tracking data, we used fixation time and transitions between areas of interest in the process diagrams as indices of learning activities. Various learning activities while studying process diagrams were found that distinguished between more and less successful students. Results showed that between-student variance in comprehension score was highly predicted by meaning making of the process arrows (80%) and fixation time in the main area (65%). Students employed successful learning activities consistently across learning tasks. Furthermore, compared to unsuccessful students, successful students used a more coherent approach of interrelated learning activities for comprehending process diagrams.

  11. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities

    PubMed Central

    Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo

    2016-01-01

    The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression. PMID:27598154

  12. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities.

    PubMed

    Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo

    2016-01-01

    The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression. PMID:27598154

  13. Inhibition of gene transcription by purine rich triplex forming oligodeoxyribonucleotides.

    PubMed Central

    Roy, C

    1993-01-01

    Several oligodeoxynucleotides (ODNs) were designed in order to interact with the purine rich element of the IRE (Interferon Responsive Element) of the 6-16 gene by triplex formation. An ODN of 21 bases, the sequence being identical to that of the purine strand of the IRE (48% G), but in reverse orientation, was able to interact with the IRE (KD: 20 nM). The binding was Mg2+ dependent. The two purine strands of the triplex were oriented antiparallel as confirmed by DNAase I and copper-phenanthroline footprinting experiments. An ODN in which A were replaced by T, also interacted with the same target, but with a lower affinity. Exonuclease III action indicated that the two IRE repeats of the 6-16 promoter interacted with each other through Hoogsteen base pairing, the third strand being parallel to the paired Watson-Crick strand. This led to a potential H-DNA structure which could be destabilized by adding ODNs able to form a triplex structure. 6-16 IRE driven-reporter gene constructs lost their interferon stimulability when co-transfected with triplex forming ODNs. The range of effective ODN concentrations was compatible with the affinity determined when measuring their direct interactions with the DNA. Images PMID:7687346

  14. Propolis volatile compounds: chemical diversity and biological activity: a review

    PubMed Central

    2014-01-01

    Propolis is a sticky material collected by bees from plants, and used in the hive as building material and defensive substance. It has been popular as a remedy in Europe since ancient times. Nowadays, propolis use in over-the-counter preparations, “bio”-cosmetics and functional foods, etc., increases. Volatile compounds are found in low concentrations in propolis, but their aroma and significant biological activity make them important for propolis characterisation. Propolis is a plant-derived product: its chemical composition depends on the local flora at the site of collection, thus it offers a significant chemical diversity. The role of propolis volatiles in identification of its plant origin is discussed. The available data about chemical composition of propolis volatiles from different geographic regions are reviewed, demonstrating significant chemical variability. The contribution of volatiles and their constituents to the biological activities of propolis is considered. Future perspectives in research on propolis volatiles are outlined, especially in studying activities other than antimicrobial. PMID:24812573

  15. Phytochemical concentrations and biological activities of Sorghum bicolor alcoholic extracts.

    PubMed

    Dia, Vermont P; Pangloli, Philipus; Jones, Lynsey; McClure, Angela; Patel, Anjali

    2016-08-10

    Sorghum is an important cereal with reported health benefits. The objectives of this study were to measure the biological activities of alcoholic extracts of ten sorghum varieties and to determine the association between the color of the extracts and their biological activities. Variation on concentrations of bioactives among sorghum varieties was observed with ethanolic extracts giving higher concentrations than methanolic extracts. The color of the extracts significantly correlated with the concentrations of bioactives and with nitric oxide scavenging activity. Freeze-dried ethanol extract is more potent than freeze-dried methanol extract and caused cytotoxicity to A27801AP and PTX-10 OVCA with ED50 values of 0.69 and 1.29 mg mL(-1), respectively. Pre-treatment of OVCA with ethanol extract led to chemosensitization to paclitaxel and the proliferation and colony formation of OVCA cells were reduced by 14.7 to 44.6% and 36.4 to 40.1%, respectively. Sorghum is a potential source of colorants with health promoting properties. This is the first report on the capability of sorghum alcoholic extracts to cause cytotoxicity and chemosensitize ovarian cancer cells in vitro. PMID:27406291

  16. Gynura procumbens: An Overview of the Biological Activities

    PubMed Central

    Tan, Hui-Li; Chan, Kok-Gan; Pusparajah, Priyia; Lee, Learn-Han; Goh, Bey-Hing

    2016-01-01

    Gynura procumbens (Lour.) Merr. (Family Asteraceae) is a medicinal plant commonly found in tropical Asia countries such as China, Thailand, Indonesia, Malaysia, and Vietnam. Traditionally, it is widely used in many different countries for the treatment of a wide variety of health ailments such as kidney discomfort, rheumatism, diabetes mellitus, constipation, and hypertension. Based on the traditional uses of G. procumbens, it seems to possess high therapeutic potential for treatment of various diseases making it a target for pharmacological studies aiming to validate and provide scientific evidence for the traditional claims of its efficacy. Although there has been considerable progress in the research on G. procumbens, to date there is no review paper gathering the reported biological activities of G. procumbens. Hence, this review aims to provide an overview of the biological activities of G. procumbens based on reported in vitro and in vivo studies. In brief, G. procumbens has been reported to exhibit antihypertensive, cardioprotective, antihyperglycemic, fertility enhancement, anticancer, antimicrobial, antioxidant, organ protective, and antiinflammatory activity. The commercial applications of G. procumbens have also been summarized in this paper based on existing patents. The data compiled illustrate that G. procumbens is a potential natural source of compounds with various pharmacological actions which can be utilized for the development of novel therapeutic agents. PMID:27014066

  17. The ligand binding mechanism to purine nucleoside phosphorylase elucidated via molecular dynamics and machine learning

    PubMed Central

    Decherchi, Sergio; Berteotti, Anna; Bottegoni, Giovanni; Rocchia, Walter; Cavalli, Andrea

    2015-01-01

    The study of biomolecular interactions between a drug and its biological target is of paramount importance for the design of novel bioactive compounds. In this paper, we report on the use of molecular dynamics (MD) simulations and machine learning to study the binding mechanism of a transition state analogue (DADMe–immucillin-H) to the purine nucleoside phosphorylase (PNP) enzyme. Microsecond-long MD simulations allow us to observe several binding events, following different dynamical routes and reaching diverse binding configurations. These simulations are used to estimate kinetic and thermodynamic quantities, such as kon and binding free energy, obtaining a good agreement with available experimental data. In addition, we advance a hypothesis for the slow-onset inhibition mechanism of DADMe–immucillin-H against PNP. Combining extensive MD simulations with machine learning algorithms could therefore be a fruitful approach for capturing key aspects of drug–target recognition and binding. PMID:25625196

  18. Synthesis and biological activity of novel deoxycholic acid derivatives.

    PubMed

    Popadyuk, Irina I; Markov, Andrey V; Salomatina, Oksana V; Logashenko, Evgeniya B; Shernyukov, Andrey V; Zenkova, Marina A; Salakhutdinov, Nariman F

    2015-08-01

    We report the synthesis and biological activity of new semi-synthetic derivatives of naturally occurring deoxycholic acid (DCA) bearing 2-cyano-3-oxo-1-ene, 3-oxo-1(2)-ene or 3-oxo-4(5)-ene moieties in ring A and 12-oxo or 12-oxo-9(11)-ene moieties in ring C. Bioassays using murine macrophage-like cells and tumour cells show that the presence of the 9(11)-double bond associated with the increased polarity of ring A or with isoxazole ring joined to ring A, improves the ability of the compounds to inhibit cancer cell growth. PMID:26037611

  19. Biological and pharmacological activities of iridoids: recent developments.

    PubMed

    Tundis, Rosa; Loizzo, Monica R; Menichini, Federica; Statti, Giancarlo A; Menichini, Francesco

    2008-04-01

    Iridoids represent a large group of cyclopenta[c]pyran monoterpenoids that occur wide-spread in nature, mainly in dicotyledonous plant families like Apocynaceae, Scrophulariaceae, Diervillaceae, Lamiaceae, Loganiaceae and Rubiaceae. Recently, more extensive studies revealed that iridoids exhibit a wide range of bioactivity, such as neuroprotective, antinflammatory and immunomodulator, hepatoprotective and cardioprotective effects. Anticancer, antioxidant, antimicrobic, hypoglycaemic, hypolipidemic, choleretic, antispasmodic and purgative properties were also reported. The aim of the present review is to discuss the recent developments on biological and pharmacological activities of iridoids, supporting the new therapeutic possibilities for the use of these compounds.

  20. Nanodiamonds as Carriers for Address Delivery of Biologically Active Substances

    PubMed Central

    2010-01-01

    Surface of detonation nanodiamonds was functionalized for the covalent attachment of immunoglobulin, and simultaneously bovine serum albumin and Rabbit Anti-Mouse Antibody. The nanodiamond-IgGI125 and RAM-nanodiamond-BSAI125 complexes are stable in blood serum and the immobilized proteins retain their biological activity. It was shown that the RAM-nanodiamond-BSAI125 complex is able to bind to the target antigen immobilized on the Sepharose 6B matrix through antibody–antigen interaction. The idea can be extended to use nanodiamonds as carriers for delivery of bioactive substances (i.e., drugs) to various targets in vivo. PMID:20672079

  1. Synthesis and biological activity of novel deoxycholic acid derivatives.

    PubMed

    Popadyuk, Irina I; Markov, Andrey V; Salomatina, Oksana V; Logashenko, Evgeniya B; Shernyukov, Andrey V; Zenkova, Marina A; Salakhutdinov, Nariman F

    2015-08-01

    We report the synthesis and biological activity of new semi-synthetic derivatives of naturally occurring deoxycholic acid (DCA) bearing 2-cyano-3-oxo-1-ene, 3-oxo-1(2)-ene or 3-oxo-4(5)-ene moieties in ring A and 12-oxo or 12-oxo-9(11)-ene moieties in ring C. Bioassays using murine macrophage-like cells and tumour cells show that the presence of the 9(11)-double bond associated with the increased polarity of ring A or with isoxazole ring joined to ring A, improves the ability of the compounds to inhibit cancer cell growth.

  2. Nanodiamonds as Carriers for Address Delivery of Biologically Active Substances

    NASA Astrophysics Data System (ADS)

    Purtov, K. V.; Petunin, A. I.; Burov, A. E.; Puzyr, A. P.; Bondar, V. S.

    2010-03-01

    Surface of detonation nanodiamonds was functionalized for the covalent attachment of immunoglobulin, and simultaneously bovine serum albumin and Rabbit Anti-Mouse Antibody. The nanodiamond-IgGI125 and RAM-nanodiamond-BSAI125 complexes are stable in blood serum and the immobilized proteins retain their biological activity. It was shown that the RAM-nanodiamond-BSAI125 complex is able to bind to the target antigen immobilized on the Sepharose 6B matrix through antibody-antigen interaction. The idea can be extended to use nanodiamonds as carriers for delivery of bioactive substances (i.e., drugs) to various targets in vivo.

  3. Local or distributed activation? The view from biology

    NASA Astrophysics Data System (ADS)

    Reimers, Mark

    2011-06-01

    There is considerable disagreement among connectionist modellers over whether to represent distinct properties by distinct nodes of a network or whether properties should be represented by patterns of activity across all nodes. This paper draws on the literature of neuroscience to say that a more subtle way of describing how different brain regions contribute to a behaviour, in terms of individual learning and in terms of degrees of importance, may render the current debate moot: both sides of the 'localist' versus 'distributed' debate emphasise different aspects of biology.

  4. Purification, characterization, and biological activities of broccolini lectin.

    PubMed

    Xu, Pingping; Zhang, Ting; Guo, Xiaolei; Ma, Chungwah; Zhang, Xuewu

    2015-01-01

    Plant lectins have displayed a variety of biological activities. In this study, for the first time, a 27 kDa arabinose- and mannose-specific lectin from Broccolini (Brassica oleracea Italica × Alboglabra), named as BL (Broccolini lectin), was purified by an activity-driven protocol. Mass spectrometry analysis and database search indicated that no matches with any plant lectin were found, but BL contained some peptide fragments (QQQGQQGQQLQQVISR, QQGQQQGQQGQQLQQVISR and VCNIPQVSVCPF QK). BL exhibited hemagglutinating activity against chicken erythrocytes at 4 µg/mL. BL retained full hemagglutinating activity at pH 7-8 and temperature 30-40°C, and had an optimal activity in Ca(2+) solution. Bioactivity assay revealed that BL exhibited dose-dependent inhibition activity on 5 bacterial species with IC50 values of 143.95-486.33 μg/mL, and on 3 cancer cells with IC50 values of 178.82-350.93 μg/mL. Notably, 5-fold reduction in IC50 values was observed on normal L-O2 vs cancerous HepG-2 cells (924.35 vs. 178.82 μg/mL). This suggests that BL should be promising in food and medicine. PMID:25737003

  5. Purification and characterization of purine nucleoside phosphorylase from developing embryos of Hyalomma dromedarii.

    PubMed

    Kamel, M Y; Fahmy, A S; Ghazy, A H; Mohamed, M A

    1991-04-01

    Purine nucleoside phosphorylase from Hyalomma dromedarii, the camel tick, was purified to apparent homogeneity. A molecular weight of 56,000 - 58,000 was estimated for both the native and denatured enzyme, suggesting that the enzyme is monomeric. Unlike purine nucleoside phosphorylase preparations from other tissues, the H. dromedarii enzyme was unstable in the presence of beta-mercaptoethanol. The enzyme had a sharp pH optimum at pH 6.5. It catalyzed the phosphorolysis and arsenolysis of ribo- and deoxyribo-nucleosides of hypoxanthine and guanine, but not of adenine or pyrimidine nucleosides. The Km values of the enzyme at the optimal pH for inosine, deoxyinosine, guanosine, and deoxyguanosine were 0.31, 0.67, 0.55, and 0.33 mM, respectively. Inactivation and kinetic studies suggested that histidine and cysteine residues were essential for activity. The pKa values determined for catalytic ionizable groups were 6-7 and 8-9. The enzyme was completely inactivated by thiol reagents and reactivated by excess beta-mercaptoethanol. The enzyme was also susceptible to pH-dependent photooxidation in the presence of methylene blue, implicating histidine. Initial velocity studies showed an intersecting pattern of double-reciprocal plots of the data, consistent with a sequential mechanism. PMID:1905141

  6. Biological activity of lactoferrin-functionalized biomimetic hydroxyapatite nanocrystals

    PubMed Central

    Nocerino, Nunzia; Fulgione, Andrea; Iannaccone, Marco; Tomasetta, Laura; Ianniello, Flora; Martora, Francesca; Lelli, Marco; Roveri, Norberto; Capuano, Federico; Capparelli, Rosanna

    2014-01-01

    The emergence of bacterial strains resistant to antibiotics is a general public health problem. Progress in developing new molecules with antimicrobial properties has been made. In this study, we evaluated the biological activity of a hybrid nanocomposite composed of synthetic biomimetic hydroxyapatite surface-functionalized by lactoferrin (LF-HA). We evaluated the antimicrobial, anti-inflammatory, and antioxidant properties of LF-HA and found that the composite was active against both Gram-positive and Gram-negative bacteria, and that it modulated proinflammatory and anti-inflammatory responses and enhanced antioxidant properties as compared with LF alone. These results indicate the possibility of using LF-HA as an antimicrobial system and biomimetic hydroxyapatite as a candidate for innovative biomedical applications. PMID:24623976

  7. Biological mechanisms of physical activity in preventing cognitive decline.

    PubMed

    Lista, I; Sorrentino, G

    2010-05-01

    In order to guarantee better conditions for competition, the nervous system has developed not only mechanisms controlling muscle effectors, but also retrograde systems that, starting from peripheral structures, may influence brain functions. Under such perspective, physical activity could play an important role in influencing cognitive brain functions including learning and memory. The results of epidemiological studies (cross-sectional, prospective and retrospective) support a positive relationship between cognition and physical activities. Recent meta-analysis confirmed a significant effect of exercise on cognitive functions. However, the biological mechanisms that underlie such beneficial effects are still to be completely elucidated. They include supramolecular mechanisms (e.g. neurogenesis, synaptogenesis, and angiogenesis) which, in turn, are controlled by molecular mechanisms, such as BDNF, IGF-1, hormone and second messengers.

  8. Synthesis and biological activity of polyalthenol and pentacyclindole analogues.

    PubMed

    Marcos, Isidro S; Moro, Rosalina F; Costales, Isabel; Basabe, Pilar; Díez, David; Gil, Ana; Mollinedo, Faustino; Pérez-de la Rosa, Fátima; Pérez-Roth, Eduardo; Padrón, José M

    2014-02-12

    A series of indole sesquiterpenes analogues of polyalthenol and pentacyclindole have been synthesized starting from ent-halimic acid in order to test their biological activity. These analogues include diverse oxidation levels at the sesquiterpenyl moiety and different functionalization on the indole ring. All synthetic derivatives were tested against a representative panel of Gram positive and Gram negative bacterial strains, and the human solid tumour cell lines A549 (non-small cell lung), HBL-100 (breast), HeLa (cervix), SW1573 (non-small cell lung), T-47D (breast) and WiDr (colon). Overall, the compounds presented activity against the cancer cell lines. The resulting lead, displaying a polyalthenol scaffold, showed GI50 values in the range 1.2-5.7 μM against all cell lines tested. PMID:24412720

  9. A biologically active peptide mimetic of N-acetylgalactosamine/galactose

    PubMed Central

    Eggink, Laura L; Hoober, J Kenneth

    2009-01-01

    Background Glycosylated proteins and lipids are important regulatory factors whose functions can be altered by addition or removal of sugars to the glycan structure. The glycans are recognized by sugar-binding lectins that serve as receptors on the surface of many cells and facilitate initiation of an intracellular signal that changes the properties of the cells. We identified a peptide that mimics the ligand of an N-acetylgalactosamine (GalNAc)-specific lectin and asked whether the peptide would express specific biological activity. Findings A 12-mer phage display library was screened with a GalNAc-specific lectin to identify an amino acid sequence that binds to the lectin. Phage particles that were eluted from the lectin with free GalNAc were considered to have been bound to a GalNAc-binding site. Peptides were synthesized with the selected sequence as a quadravalent structure to facilitate receptor crosslinking. Treatment of human peripheral blood mononuclear cells for 24 h with the peptide stimulated secretion of interleukin-8 (IL-8) but not of IL-1β, IL-6, IL-10, or tumor necrosis factor-α (TNF-α). The secretion of IL-21 was stimulated as strongly with the peptide as with interferon-γ. Conclusion The data indicate that the quadravalent peptide has biological activity with a degree of specificity. These effects occurred at concentrations in the nanomolar range, in contrast to free sugars that generally bind to proteins in the micro- to millimolar range. PMID:19284521

  10. Fruit cuticular waxes as a source of biologically active triterpenoids.

    PubMed

    Szakiel, Anna; Pączkowski, Cezary; Pensec, Flora; Bertsch, Christophe

    2012-06-01

    The health benefits associated with a diet rich in fruit and vegetables include reduction of the risk of chronic diseases such as cardiovascular disease, diabetes and cancer, that are becoming prevalent in the aging human population. Triterpenoids, polycyclic compounds derived from the linear hydrocarbon squalene, are widely distributed in edible and medicinal plants and are an integral part of the human diet. As an important group of phytochemicals that exert numerous biological effects and display various pharmacological activities, triterpenoids are being evaluated for use in new functional foods, drugs, cosmetics and healthcare products. Screening plant material in the search for triterpenoid-rich plant tissues has identified fruit peel and especially fruit cuticular waxes as promising and highly available sources. The chemical composition, abundance and biological activities of triterpenoids occurring in cuticular waxes of some economically important fruits, like apple, grape berry, olive, tomato and others, are described in this review. The need for environmentally valuable and potentially profitable technologies for the recovery, recycling and upgrading of residues from fruit processing is also discussed.

  11. Methanocarba ring as a ribose modification in ligands of G protein-coupled purine and pyrimidine receptors: synthetic approaches

    PubMed Central

    Tosh, Dilip K.

    2015-01-01

    Adenosine receptors (ARs) and P2Y receptors for purine and pyrimidine nucleotides have widespread distribution and regulate countless physiological processes. Various synthetic ligands are in clinical trials for treatment of inflammatory diseases, pain, cancer, thrombosis, ischemia, and other conditions. The methanocarba (bicyclo[3.1.0]hexane) ring system as a rigid substitution for ribose, which maintains either a North (N) or South (S) conformation, tends to preserve or enhance the potency and/or selectivity for certain receptor subtypes. This review summarizes recent developments in the synthetic approaches to these biologically important nucleoside and nucleotide analogues. PMID:26161251

  12. Inhalable DNase I microparticles engineered with biologically active excipients.

    PubMed

    Osman, Rihab; Al Jamal, Khuloud T; Kan, Pei-Lee; Awad, Gehanne; Mortada, Nahed; El-Shamy, Abd-Elhameed; Alpar, Oya

    2013-12-01

    Highly viscous mucus poses a big challenge for the delivery of particulates carrying therapeutics to patients with cystic fibrosis. In this study, surface modifying DNase I loaded particles using different excipients to achieve better lung deposition, higher enzyme stability or better biological activity had been exploited. For the purpose, controlled release microparticles (MP) were prepared by co-spray drying DNase I with the polymer poly-lactic-co-glycolic acid (PLGA) and the biocompatible lipid surfactant 1,2-dipalmitoyl-Sn-phosphatidyl choline (DPPC) using various hydrophilic excipients. The effect of the included modifiers on the particle morphology, size, zeta potential as well as enzyme encapsulation efficiency, biological activity and release had been evaluated. Powder aerosolisation performance and particle phagocytosis by murine macrophages were also investigated. The results showed that more than 80% of enzyme activity was recovered after MP preparation and that selected surface modifiers greatly increased the enzyme encapsulation efficiency. The particle morphology was greatly modified altering in turn the powders inhalation indices where dextran, ovalbumin and chitosan hydrochloride increased considerably the respirable fraction compared to the normal hydrophilic carriers lactose and PVP. Despite of the improved aerosolisation caused by chitosan hydrochloride, yet retardation of chitosan coated particles in artificial mucus samples discouraged its application. On the other hand, dextran and polyanions enhanced DNase I effect in reducing cystic fibrosis mucus viscosity. DPPC proved good ability to reduce particles phagocytic uptake even in the presence of the selected adjuvants. The prepared MP systems were biocompatible with lung epithelial cells. To conclude, controlled release DNase I loaded PLGA-MP with high inhalation indices and enhanced mucolytic activity on CF sputum could be obtained by surface modifying the particles with PGA or dextran. PMID

  13. BIOLOGICALLY ACTIVE NATURAL PRODUCTS OF THE GENUS CALLICARPA.

    PubMed

    Jones, William P; Kinghorn, A Douglas

    2008-06-01

    About 20 species from Callicarpa have reported ethnobotanical and ethnomedical uses, and several members of this genus are well known in the traditional medical systems of China and South Asia. Ethnomedical reports indicate their use in the treatment of hepatitis, rheumatism, fever, headache, indigestion, and other ailments. Several species of Callicarpa have been reported to be used against cancer (e.g., Callicarpa americana root to treat skin cancer and Callicarpa rubella bark to treat tumors of the large intestine). Extracts from about 14 species in this genus have been evaluated for biological activity, including antibacterial, antifungal, anti-insect growth, cytotoxic, and phytotoxic activities. In addition to amino acids, benzenoids, simple carbohydrates, and lipids, numerous diterpenes, flavonoids, phenylpropanoids, phytosterols, sesquiterpenes, and triterpenes have been detected in or isolated from the genus Callicarpa. The essential oils of Callicarpa americana have recently been reported to have antialgal and phytotoxic activities, and several isolates from this species (and C. japonica) were identified as contributing to the mosquito bite-deterrent activity that was first indicated by folkloric usage. Recent bioassay-guided investigations of C. americana extracts have resulted in the isolation of several active compounds, mainly of the clerodane diterpene structural type. PMID:19830264

  14. Myricetin: A Dietary Molecule with Diverse Biological Activities

    PubMed Central

    Semwal, Deepak Kumar; Semwal, Ruchi Badoni; Combrinck, Sandra; Viljoen, Alvaro

    2016-01-01

    Myricetin is a common plant-derived flavonoid and is well recognised for its nutraceuticals value. It is one of the key ingredients of various foods and beverages. The compound exhibits a wide range of activities that include strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities. It displays several activities that are related to the central nervous system and numerous studies have suggested that the compound may be beneficial to protect against diseases such as Parkinson’s and Alzheimer’s. The use of myricetin as a preserving agent to extend the shelf life of foods containing oils and fats is attributed to the compound’s ability to protect lipids against oxidation. A detailed search of existing literature revealed that there is currently no comprehensive review available on this important molecule. Hence, the present work includes the history, synthesis, pharmaceutical applications and toxicity studies of myricetin. This report also highlights structure-activity relationships and mechanisms of action for various biological activities. PMID:26891321

  15. BIOLOGICALLY ACTIVE NATURAL PRODUCTS OF THE GENUS CALLICARPA⊥

    PubMed Central

    JONES, WILLIAM P.; KINGHORN, A. DOUGLAS

    2009-01-01

    About 20 species from Callicarpa have reported ethnobotanical and ethnomedical uses, and several members of this genus are well known in the traditional medical systems of China and South Asia. Ethnomedical reports indicate their use in the treatment of hepatitis, rheumatism, fever, headache, indigestion, and other ailments. Several species of Callicarpa have been reported to be used against cancer (e.g., Callicarpa americana root to treat skin cancer and Callicarpa rubella bark to treat tumors of the large intestine). Extracts from about 14 species in this genus have been evaluated for biological activity, including antibacterial, antifungal, anti-insect growth, cytotoxic, and phytotoxic activities. In addition to amino acids, benzenoids, simple carbohydrates, and lipids, numerous diterpenes, flavonoids, phenylpropanoids, phytosterols, sesquiterpenes, and triterpenes have been detected in or isolated from the genus Callicarpa. The essential oils of Callicarpa americana have recently been reported to have antialgal and phytotoxic activities, and several isolates from this species (and C. japonica) were identified as contributing to the mosquito bite-deterrent activity that was first indicated by folkloric usage. Recent bioassay-guided investigations of C. americana extracts have resulted in the isolation of several active compounds, mainly of the clerodane diterpene structural type. PMID:19830264

  16. Biological activity of soil contaminated with cobalt, tin, and molybdenum.

    PubMed

    Zaborowska, Magdalena; Kucharski, Jan; Wyszkowska, Jadwiga

    2016-07-01

    In this age of intensive industrialization and urbanization, mankind's highest concern should be to analyze the effect of all metals accumulating in the environment, both those considered toxic and trace elements. With this aim in mind, a unique study was conducted to determine the potentially negative impact of Sn(2+), Co(2+), and Mo(5+) in optimal and increased doses on soil biological properties. These metals were applied in the form of aqueous solutions of Sn(2+) (SnCl2 (.)2H2O), Co(2+) (CoCl2 · 6H2O), and Mo(5+) (MoCl5), each in the doses of 0, 25, 50, 100, 200, 400, and 800 mg kg(-1) soil DM. The activity of dehydrogenases, urease, acid phosphatase, alkaline phosphatase, arylsulfatase, and catalase and the counts of twelve microorganism groups were determined on the 25th and 50th day of experiment duration. Moreover, to present the studied problem comprehensively, changes in the biochemical activity and yield of spring barley were shown using soil and plant resistance indices-RS. The study shows that Sn(2+), Co(2+), and Mo(5+) disturb the state of soil homeostasis. Co(2+) and Mo(5+) proved the greatest soil biological activity inhibitors. The residence of these metals in soil, particularly Co(2+), also generated a drastic decrease in the value of spring barley resistance. Only Sn(2+) did not disrupt its yielding. The studied enzymes can be arranged as follows for their sensitivity to Sn(2+), Co(2+), Mo(5+): Deh > Ure > Aryl > Pal > Pac > Cat. Dehydrogenases and urease may be reliable soil health indicators. PMID:27277093

  17. Biological Activities of the Essential Oil from Erigeron floribundus.

    PubMed

    Petrelli, Riccardo; Orsomando, Giuseppe; Sorci, Leonardo; Maggi, Filippo; Ranjbarian, Farahnaz; Biapa Nya, Prosper C; Petrelli, Dezemona; Vitali, Luca A; Lupidi, Giulio; Quassinti, Luana; Bramucci, Massimo; Hofer, Anders; Cappellacci, Loredana

    2016-08-13

    Erigeron floribundus (Asteraceae) is an herbaceous plant widely used in Cameroonian traditional medicine to treat various diseases of microbial and non-microbial origin. In the present study, we evaluated the in vitro biological activities displayed by the essential oil obtained from the aerial parts of E. floribundus, namely the antioxidant, antimicrobial and antiproliferative activities. Moreover, we investigated the inhibitory effects of E. floribundus essential oil on nicotinate mononucleotide adenylyltransferase (NadD), a promising new target for developing novel antibiotics, and Trypanosoma brucei, the protozoan parasite responsible for Human African trypanosomiasis. The essential oil composition was dominated by spathulenol (12.2%), caryophyllene oxide (12.4%) and limonene (8.8%). The E. floribundus oil showed a good activity against Staphylococcus aureus (inhibition zone diameter, IZD of 14 mm, minimum inhibitory concentration, MIC of 512 µg/mL). Interestingly, it inhibited the NadD enzyme from S. aureus (IC50 of 98 µg/mL), with no effects on mammalian orthologue enzymes. In addition, T. brucei proliferation was inhibited with IC50 values of 33.5 µg/mL with the essential oil and 5.6 µg/mL with the active component limonene. The essential oil exhibited strong cytotoxicity on HCT 116 colon carcinoma cells with an IC50 value of 14.89 µg/mL, and remarkable ferric reducing antioxidant power (tocopherol-equivalent antioxidant capacity, TEAC = 411.9 μmol·TE/g).

  18. Biologically active metal-independent superoxide dismutase mimics

    SciTech Connect

    Mitchell, J.B.; Samuni, A.; Krishna, M.C.; DeGraff, W.G.; Ahn, M.S.; Samuni, U.; Russo, A. )

    1990-03-20

    Superoxide dismutase (SOD) is an enzyme that detoxifies superoxide (O2.-), a potentially toxic oxygen-derived species. Attempts to increase intracellular concentrations of SOD by direct application are complicated because SOD, being a relatively large molecule, does not readily cross cell membranes. We have identified a set of stable nitroxides that possess SOD-like activity, have the advantage of being low molecular weight, membrane permeable, and metal independent, and at pH 7.0 have reaction rate constants with O2.- ranging from 1.1 x 10(3) to 1.3 x 10(6) M-1 s-1. These SOD mimics protect mammalian cells from damage induced by hypoxanthine/xanthine oxidase and H{sub 2}O{sub 2}, although they exhibit no catalase-like activity. In addition, the nitroxide SOD mimics rapidly oxidize DNA-FeII and thus may interrupt the Fenton reaction and prevent formation of deleterious OH radicals and/or higher oxidation states of metal ions. Whether by SOD-like activity and/or interception of an electron from redox-active metal ions they protect cells from oxidative stress and may have use in basic and applied biological studies.

  19. Catalytically and biologically active silver nanoparticles synthesized using essential oil

    NASA Astrophysics Data System (ADS)

    Vilas, Vidya; Philip, Daizy; Mathew, Joseph

    2014-11-01

    There are numerous reports on phytosynthesis of silver nanoparticles and various phytochemicals are involved in the reduction and stabilization. Pure explicit phytosynthetic protocol for catalytically and biologically active silver nanoparticles is of importance as it is an environmentally benign green method. This paper reports the use of essential oil of Myristica fragrans enriched in terpenes and phenyl propenes in the reduction and stabilization. FTIR spectra of the essential oil and the synthesized biogenic silver nanoparticles are in accordance with the GC-MS spectral analysis reports. Nanosilver is initially characterized by an intense SPR band around 420 nm, followed by XRD and TEM analysis revealing the formation of 12-26 nm sized, highly pure, crystalline silver nanoparticles. Excellent catalytic and bioactive potential of the silver nanoparticles is due to the surface modification. The chemocatalytic potential of nanosilver is exhibited by the rapid reduction of the organic pollutant, para nitro phenol and by the degradation of the thiazine dye, methylene blue. Significant antibacterial activity of the silver colloid against Gram positive, Staphylococcus aureus (inhibition zone - 12 mm) and Gram negative, Escherichia coli (inhibition zone - 14 mm) is demonstrated by Agar-well diffusion method. Strong antioxidant activity of the biogenic silver nanoparticles is depicted through NO scavenging, hydrogen peroxide scavenging, reducing power, DPPH and total antioxidant activity assays.

  20. Biological Activities of Oleanolic Acid Derivatives from Calendula officinalis Seeds.

    PubMed

    Zaki, Ahmed; Ashour, Ahmed; Mira, Amira; Kishikawa, Asuka; Nakagawa, Toshinori; Zhu, Qinchang; Shimizu, Kuniyoshi

    2016-05-01

    Phytochemical examination of butanol fraction of Calendula officinalis seeds led to the isolation of two compounds identified as 28-O-β-D-glucopyranosyl-oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS1) and oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS2). Biological evaluation was carried out for these two compounds such as melanin biosynthesis inhibitory, hyaluronic acid production activities, anti obesity using lipase inhibition and adipocyte differentiation as well as evaluation of the protective effect against hydrogen peroxide induced neurotoxicity in neuro-2A cells. The results showed that, compound CS2 has a melanin biosynthesis stimulatory activity; however, compound CS1 has a potent stimulatory effect for the production of hyaluronic acid on normal human dermal fibroblast from adult (NHDF-Ad). Both compounds did not show any inhibitory effect on both lipase and adipocyte differentiation. Compound CS2 could protect neuro-2A cells and increased cell viability against H2 O2 . These activities (melanin biosynthesis stimulatory and protective effect against H2 O2 of CS2 and hyaluronic acid productive activities of these triterpene derivatives) have been reported for the first time. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26887328

  1. Biological Activities of the Essential Oil from Erigeron floribundus.

    PubMed

    Petrelli, Riccardo; Orsomando, Giuseppe; Sorci, Leonardo; Maggi, Filippo; Ranjbarian, Farahnaz; Biapa Nya, Prosper C; Petrelli, Dezemona; Vitali, Luca A; Lupidi, Giulio; Quassinti, Luana; Bramucci, Massimo; Hofer, Anders; Cappellacci, Loredana

    2016-01-01

    Erigeron floribundus (Asteraceae) is an herbaceous plant widely used in Cameroonian traditional medicine to treat various diseases of microbial and non-microbial origin. In the present study, we evaluated the in vitro biological activities displayed by the essential oil obtained from the aerial parts of E. floribundus, namely the antioxidant, antimicrobial and antiproliferative activities. Moreover, we investigated the inhibitory effects of E. floribundus essential oil on nicotinate mononucleotide adenylyltransferase (NadD), a promising new target for developing novel antibiotics, and Trypanosoma brucei, the protozoan parasite responsible for Human African trypanosomiasis. The essential oil composition was dominated by spathulenol (12.2%), caryophyllene oxide (12.4%) and limonene (8.8%). The E. floribundus oil showed a good activity against Staphylococcus aureus (inhibition zone diameter, IZD of 14 mm, minimum inhibitory concentration, MIC of 512 µg/mL). Interestingly, it inhibited the NadD enzyme from S. aureus (IC50 of 98 µg/mL), with no effects on mammalian orthologue enzymes. In addition, T. brucei proliferation was inhibited with IC50 values of 33.5 µg/mL with the essential oil and 5.6 µg/mL with the active component limonene. The essential oil exhibited strong cytotoxicity on HCT 116 colon carcinoma cells with an IC50 value of 14.89 µg/mL, and remarkable ferric reducing antioxidant power (tocopherol-equivalent antioxidant capacity, TEAC = 411.9 μmol·TE/g). PMID:27529211

  2. Biological Activity and Phytochemical Study of Scutellaria platystegia

    PubMed Central

    Madani mousavi, Seyedeh Neda; Delazar, Abbas; Nazemiyeh, Hossein; Khodaie, Laleh

    2015-01-01

    This study aimed to determine biological activity and phytochemical study of Scutellaria platystegia (family Labiatae). Methanolic (MeOH) extract of aerial parts of S. platystegia and SPE fractions of methanolic extract (specially 20% and 40% methanolic fractions), growing in East-Azarbaijan province of Iran were found to have radical scavenging activity by DPPH (2, 2-diphenyl -1- pycryl hydrazyl) assay. Dichloromethane (DCM) extract of this plant exhibited animalarial activity by cell free method providing IC50 at 1.1876 mg/mL. Crude extracts did not exhibit any toxicity assessed by brine shrimp lethality assay. Phytochemical study of methanolic extract by using reverse phase HPLC method and NMR instrument for isolation and identification of pure compounds respectively, yielded 2-(4- hydroxy phenyl) ethyl-O-β-D- glucopyranoside from 10% and apigenin 7-O-glucoside, verbascoside and martynoside from 40% SPE fraction. Occurance of verbascoside and martynoside as biochemical markers appeared to be widespread in this genus. Antioxidant and antimalarial activity of MeOH and DCM extracts, respectively, as well as no general toxicity of them could provide a basis for further in-vitro and in-vivo studies and clinical trials to develop new therapeutical alternatives. PMID:25561927

  3. Biological Activities of Oleanolic Acid Derivatives from Calendula officinalis Seeds.

    PubMed

    Zaki, Ahmed; Ashour, Ahmed; Mira, Amira; Kishikawa, Asuka; Nakagawa, Toshinori; Zhu, Qinchang; Shimizu, Kuniyoshi

    2016-05-01

    Phytochemical examination of butanol fraction of Calendula officinalis seeds led to the isolation of two compounds identified as 28-O-β-D-glucopyranosyl-oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS1) and oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS2). Biological evaluation was carried out for these two compounds such as melanin biosynthesis inhibitory, hyaluronic acid production activities, anti obesity using lipase inhibition and adipocyte differentiation as well as evaluation of the protective effect against hydrogen peroxide induced neurotoxicity in neuro-2A cells. The results showed that, compound CS2 has a melanin biosynthesis stimulatory activity; however, compound CS1 has a potent stimulatory effect for the production of hyaluronic acid on normal human dermal fibroblast from adult (NHDF-Ad). Both compounds did not show any inhibitory effect on both lipase and adipocyte differentiation. Compound CS2 could protect neuro-2A cells and increased cell viability against H2 O2 . These activities (melanin biosynthesis stimulatory and protective effect against H2 O2 of CS2 and hyaluronic acid productive activities of these triterpene derivatives) have been reported for the first time. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Phytochemical profile and biological activity of Juglans regia.

    PubMed

    Panth, Nisha; Paudel, Keshav Raj; Karki, Rajendra

    2016-09-01

    Juglans regia Linn. (Juglandaceae), popularly known as English or Persian walnut, is a valuable medicinal plant with a potency to cure various diseases in traditional medicine. Since ancient time, different local ethnic groups have used various part of J. regia for a wide array of ailments including helminthiasis, diarrhea, sinusitis, stomach ache, arthritis, asthma, eczema, scrofula, skin disorders, diabetes mellitus, anorexia, thyroid dysfunction, cancer and infectious diseases. Biological activities of J. regia have been reported in several peer review journals and scientific attention is increasing. The present review attempts to provide comprehensive information on plant description, ethnobotanical use, toxicity, phytochemical profile, pharmacology, clinical studies and current research prospective of the J. regia. Currently, there is an immense interest on isolation/identification of active constituents from walnut and screening those active compounds for pharmacological activities. In addition, researchers are performing clinical trials as well as screening various solvent extracts or fractions of J. regia in several animal diseases models to identify promising therapeutic benefits. In the present work, we review the latest information based on published scientific investigations of J. regia. PMID:27641607

  5. Chemistry and Biological Activities of Flavonoids: An Overview

    PubMed Central

    Kumar, Shashank; Pandey, Abhay K.

    2013-01-01

    There has been increasing interest in the research on flavonoids from plant sources because of their versatile health benefits reported in various epidemiological studies. Since flavonoids are directly associated with human dietary ingredients and health, there is need to evaluate structure and function relationship. The bioavailability, metabolism, and biological activity of flavonoids depend upon the configuration, total number of hydroxyl groups, and substitution of functional groups about their nuclear structure. Fruits and vegetables are the main dietary sources of flavonoids for humans, along with tea and wine. Most recent researches have focused on the health aspects of flavonoids for humans. Many flavonoids are shown to have antioxidative activity, free radical scavenging capacity, coronary heart disease prevention, hepatoprotective, anti-inflammatory, and anticancer activities, while some flavonoids exhibit potential antiviral activities. In plant systems, flavonoids help in combating oxidative stress and act as growth regulators. For pharmaceutical purposes cost-effective bulk production of different types of flavonoids has been made possible with the help of microbial biotechnology. This review highlights the structural features of flavonoids, their beneficial roles in human health, and significance in plants as well as their microbial production. PMID:24470791

  6. Phytochemical profile and biological activity of Juglans regia.

    PubMed

    Panth, Nisha; Paudel, Keshav Raj; Karki, Rajendra

    2016-09-01

    Juglans regia Linn. (Juglandaceae), popularly known as English or Persian walnut, is a valuable medicinal plant with a potency to cure various diseases in traditional medicine. Since ancient time, different local ethnic groups have used various part of J. regia for a wide array of ailments including helminthiasis, diarrhea, sinusitis, stomach ache, arthritis, asthma, eczema, scrofula, skin disorders, diabetes mellitus, anorexia, thyroid dysfunction, cancer and infectious diseases. Biological activities of J. regia have been reported in several peer review journals and scientific attention is increasing. The present review attempts to provide comprehensive information on plant description, ethnobotanical use, toxicity, phytochemical profile, pharmacology, clinical studies and current research prospective of the J. regia. Currently, there is an immense interest on isolation/identification of active constituents from walnut and screening those active compounds for pharmacological activities. In addition, researchers are performing clinical trials as well as screening various solvent extracts or fractions of J. regia in several animal diseases models to identify promising therapeutic benefits. In the present work, we review the latest information based on published scientific investigations of J. regia.

  7. Catalytically and biologically active silver nanoparticles synthesized using essential oil.

    PubMed

    Vilas, Vidya; Philip, Daizy; Mathew, Joseph

    2014-11-11

    There are numerous reports on phytosynthesis of silver nanoparticles and various phytochemicals are involved in the reduction and stabilization. Pure explicit phytosynthetic protocol for catalytically and biologically active silver nanoparticles is of importance as it is an environmentally benign green method. This paper reports the use of essential oil of Myristica fragrans enriched in terpenes and phenyl propenes in the reduction and stabilization. FTIR spectra of the essential oil and the synthesized biogenic silver nanoparticles are in accordance with the GC-MS spectral analysis reports. Nanosilver is initially characterized by an intense SPR band around 420 nm, followed by XRD and TEM analysis revealing the formation of 12-26 nm sized, highly pure, crystalline silver nanoparticles. Excellent catalytic and bioactive potential of the silver nanoparticles is due to the surface modification. The chemocatalytic potential of nanosilver is exhibited by the rapid reduction of the organic pollutant, para nitro phenol and by the degradation of the thiazine dye, methylene blue. Significant antibacterial activity of the silver colloid against Gram positive, Staphylococcus aureus (inhibition zone--12 mm) and Gram negative, Escherichia coli (inhibition zone--14 mm) is demonstrated by Agar-well diffusion method. Strong antioxidant activity of the biogenic silver nanoparticles is depicted through NO scavenging, hydrogen peroxide scavenging, reducing power, DPPH and total antioxidant activity assays. PMID:24956490

  8. Biological and Nonbiological Antioxidant Activity of Some Essential Oils.

    PubMed

    Pérez-Rosés, Renato; Risco, Ester; Vila, Roser; Peñalver, Pedro; Cañigueral, Salvador

    2016-06-15

    Fifteen essential oils, four essential oil fractions, and three pure compounds (thymol, carvacrol, and eugenol), characterized by gas chromatography and gas chromatography-mass spectrometry, were investigated for biological and nonbiological antioxidant activity. Clove oil and eugenol showed strong DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical scavenging activity (IC50 = 13.2 μg/mL and 11.7 μg/mL, respectively) and powerfully inhibited reactive oxygen species (ROS) production in human neutrophils stimulated by PMA (phorbol 12-myristate 13-acetate) (IC50 = 7.5 μg/mL and 1.6 μg/mL) or H2O2 (IC50 = 22.6 μg/mL and 27.1 μg/mL). Nutmeg, ginger, and palmarosa oils were also highly active on this test. Essential oils from clove and ginger, as well as eugenol, carvacrol, and bornyl acetate inhibited NO (nitric oxide) production (IC50 < 50.0 μg/mL). The oils of clove, red thyme, and Spanish oregano, together with eugenol, thymol, and carvacrol showed the highest myeloperoxidase inhibitory activity. Isomers carvacrol and thymol displayed a disparate behavior in some tests. All in all, clove oil and eugenol offered the best antioxidant profile. PMID:27214068

  9. Diastereoselective Synthesis of Biologically Active Cyclopenta[b]indoles.

    PubMed

    Santos, Marilia S; Fernandes, Daniara C; Rodrigues, Manoel T; Regiani, Thais; Andricopulo, Adriano D; Ruiz, Ana Lúcia T G; Vendramini-Costa, Débora B; de Carvalho, João E; Eberlin, Marcos N; Coelho, Fernando

    2016-08-01

    The cyclopenta[b]indole motif is present in several natural and synthetic biologically active compounds, being directly responsible for the biological effects some of them present. We described herein a three step sequence for the synthesis of cyclopenta[b]indoles with a great structural diversity. The method is based on an oxidative Michael addition of suitable indoles on the double bond of Morita-Baylis-Hillman adducts mediated by a hypervalent iodine reagent (IBX) to form β-ketoesters, which were chemoselectively reduced with NaBH4 in THF to give the corresponding β-hydroxy-esters. The diastereoisomeric mixture was then treated with a catalytic amount of triflic acid (20 mol %) to give cyclopenta[b]indoles with overall yields ranging from 8 to 73% (for 2 steps). The acid-catalyzed cyclization step gave the required heterocycles, via an intramolecular Friedel-Crafts reaction, with high diastereoselectivity, where only the trans product was observed. A mechanistic study monitored by ESI-(+)-MS was also conducted to collect evidence about the mechanism of this reaction. The new molecules herein synthesized were also evaluated against a panel of human cancer cells demonstrating a promising antitumoral profile. PMID:27403650

  10. Conjugation position of quercetin glucuronides and effect on biological activity.

    PubMed

    Day, A J; Bao, Y; Morgan, M R; Williamson, G

    2000-12-15

    Quercetin glycosides are common dietary antioxidants. In general, however, potential biological effects of the circulating plasma metabolites (e.g., glucuronide conjugates) have not been measured. We have determined the rate of glucuronidation of quercetin at each position on the polyphenol ring by human liver cell-free extracts containing UDP-glucuronosyltransferases. The apparent affinity of UDP-glucuronosyltransferase followed the order 4'- > 3'- > 7- > 3, although the apparent maximum rate of formation was for the 7-position. The 5-position did not appear to be a site for conjugation. After isolation of individual glucuronides, the inhibition of xanthine oxidase and lipoxygenase were assessed. The K(i) for the inhibition of xanthine oxidase by quercetin glucuronides followed the order 4'- > 3'- > 7- > 3-, with quercetin-4'-glucuronide a particularly potent inhibitor (K(i) = 0. 25 microM). The glucuronides, with the exception of quercetin-3-glucuronide, were also inhibitors of lipoxygenase. Quercetin glucuronides are metabolites of quercetin in humans, and these compounds can retain some biological activity depending on conjugation position at expected plasma concentrations. PMID:11118813

  11. Residual matrix from different separation techniques impacts exosome biological activity

    PubMed Central

    Paolini, Lucia; Zendrini, Andrea; Noto, Giuseppe Di; Busatto, Sara; Lottini, Elisabetta; Radeghieri, Annalisa; Dossi, Alessandra; Caneschi, Andrea; Ricotta, Doris; Bergese, Paolo

    2016-01-01

    Exosomes are gaining a prominent role in research due to their intriguing biology and several therapeutic opportunities. However, their accurate purification from body fluids and detailed physicochemical characterization remain open issues. We isolated exosomes from serum of patients with Multiple Myeloma by four of the most popular purification methods and assessed the presence of residual contaminants in the preparations through an ad hoc combination of biochemical and biophysical techniques - including Western Blot, colloidal nanoplasmonics, atomic force microscopy (AFM) and scanning helium ion microscopy (HIM). The preparations obtained by iodixanol and sucrose gradients were highly pure. To the contrary, those achieved with limited processing (serial centrifugation or one step precipitation kit) resulted contaminated by a residual matrix, embedding the exosomes. The contaminated preparations showed lower ability to induce NfkB nuclear translocation in endothelial cells with respect to the pure ones, probably because the matrix prevents the interaction and fusion of the exosomes with the cell membrane. These findings suggest that exosome preparation purity must be carefully assessed since it may interfere with exosome biological activity. Contaminants can be reliably probed only by an integrated characterization approach aimed at both the molecular and the colloidal length scales. PMID:27009329

  12. Diastereoselective Synthesis of Biologically Active Cyclopenta[b]indoles.

    PubMed

    Santos, Marilia S; Fernandes, Daniara C; Rodrigues, Manoel T; Regiani, Thais; Andricopulo, Adriano D; Ruiz, Ana Lúcia T G; Vendramini-Costa, Débora B; de Carvalho, João E; Eberlin, Marcos N; Coelho, Fernando

    2016-08-01

    The cyclopenta[b]indole motif is present in several natural and synthetic biologically active compounds, being directly responsible for the biological effects some of them present. We described herein a three step sequence for the synthesis of cyclopenta[b]indoles with a great structural diversity. The method is based on an oxidative Michael addition of suitable indoles on the double bond of Morita-Baylis-Hillman adducts mediated by a hypervalent iodine reagent (IBX) to form β-ketoesters, which were chemoselectively reduced with NaBH4 in THF to give the corresponding β-hydroxy-esters. The diastereoisomeric mixture was then treated with a catalytic amount of triflic acid (20 mol %) to give cyclopenta[b]indoles with overall yields ranging from 8 to 73% (for 2 steps). The acid-catalyzed cyclization step gave the required heterocycles, via an intramolecular Friedel-Crafts reaction, with high diastereoselectivity, where only the trans product was observed. A mechanistic study monitored by ESI-(+)-MS was also conducted to collect evidence about the mechanism of this reaction. The new molecules herein synthesized were also evaluated against a panel of human cancer cells demonstrating a promising antitumoral profile.

  13. CMOS Imaging Device for Optical Imaging of Biological Activities

    NASA Astrophysics Data System (ADS)

    Shishido, Sanshiro; Oguro, Yasuhiro; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    In this paper, we propose a CMOS image sensor device placed on the brain surface or cerebral sulcus (Fig. 1). The device has a photo detector array where a single optical detector is usually used. The proposed imaging device enables the analysis which reflects a surface blood pattern in the observed area. It is also possible to improve effective sensitivity by image processing and to simplify the measurement system by the CMOS sensor device with on-chip light source. We describe the design details and characterization of proposed device. We also demonstrate detection of hemoglobin oxygenation level with external light source, imaging capability of biological activities, and image processing for sensitivity improvement is also realized.

  14. Advances in preparation, analysis and biological activities of single chitooligosaccharides.

    PubMed

    Li, Kecheng; Xing, Ronge; Liu, Song; Li, Pengcheng

    2016-03-30

    Chitooligosaccharides (COS), as a source of potential bioactive material, has been reported to possess diverse bioactivities. These bioactivities of COS are often tested using relatively poorly characterized oligomer mixtures during past few decades, resulting in difficult identification of COS molecules responsible for biological effects. Therefore, a new interest has recently been emerged on highly purified COS of defined size. Several technological approaches have been used to produce single COS and new improvements were introduced to their characterization in order to understand the unrevealed structure-function relationship. Here we provide an overview of techniques that were used to prepare and analyze reasonably well-defined COS fractions. Based on the latest reports, several applications of single COS for plants and animals, are also presented, including antitumor, immunostimulatory, antioxidant, antimicrobial, elicitors of plant defence and neural activity. PMID:26794961

  15. Biological activity of oxidized and reduced iodinated bombesins

    SciTech Connect

    Vigna, S.R.; Giraud, A.S.; Reeve, J.R. Jr.; Walsh, J.H.

    1988-07-01

    A method is reported for preparing oxidized and reduced iodinated Tyr4-bombesin. Iodogen was used to iodinate Tyr4-bombesin and the reaction products were separated by reverse-phase HPLC. The peak of oxidized label was then reduced by incubation with 725 mM dithiothreitol at 80 degrees C (pH 8.0) for one hour and the reaction products separated by HPLC as before. The reduced but not oxidized peaks of /sup 125/I-Tyr4-bombesin stimulated amylase release from rat pancreatic acini in vitro. We conclude that oxidation of bombesin producing C-terminal methionine sulfoxide destroys the biological activity of the peptide and that this form of oxidation can be reversed.

  16. Advances in the chemical analysis and biological activities of chuanxiong.

    PubMed

    Li, Weixia; Tang, Yuping; Chen, Yanyan; Duan, Jin-Ao

    2012-01-01

    Chuanxiong Rhizoma (Chuan-Xiong, CX), the dried rhizome of Ligusticum chuanxiong Hort. (Umbelliferae), is one of the most popular plant medicines in the World. Modern research indicates that organic acids, phthalides, alkaloids, polysaccharides, ceramides and cerebrosides are main components responsible for the bioactivities and properties of CX. Because of its complex constituents, multidisciplinary techniques are needed to validate the analytical methods that support CX's use worldwide. In the past two decades, rapid development of technology has advanced many aspects of CX research. The aim of this review is to illustrate the recent advances in the chemical analysis and biological activities of CX, and to highlight new applications and challenges. Emphasis is placed on recent trends and emerging techniques. PMID:22955453

  17. Efficient expression and purification of biologically active human cystatin proteins.

    PubMed

    Chauhan, Sakshi; Tomar, Raghuvir S

    2016-02-01

    Cystatins are reversible cysteine protease inhibitor proteins. They are known to play important roles in controlling cathepsins, neurodegenerative disease, and in immune system regulation. Production of recombinant cystatin proteins is important for biochemical and function characterization. In this study, we cloned and expressed human stefin A, stefin B and cystatin C in Escherichia coli. Human stefin A, stefin B and cystatin C were purified from soluble fraction. For cystatin C, we used various chaperone plasmids to make cystatin C soluble, as it is reported to localize in inclusion bodies. Trigger factor, GroES-GroEL, DnaK-DnaJ-GrpE chaperones lead to the presence of cystatin C in the soluble fraction. Immobilized metal affinity chromatography, glutathione sepharose and anion exchange chromatography techniques were employed for efficient purification of these proteins. Their biological activities were tested by inhibition assays against cathepsin L and H3 protease.

  18. Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization.

    PubMed

    Cimmino, Alessio; Masi, Marco; Evidente, Marco; Superchi, Stefano; Evidente, Antonio

    2015-12-19

    Covering: 2007 to 2015 Fungal phytotoxins are secondary metabolites playing an important role in the induction of disease symptoms interfering with host plant physiological processes. Although fungal pathogens represent a heavy constraint for agrarian production and for forest and environmental heritage, they can also represent an ecofriendly alternative to manage weeds. Indeed, the phytotoxins produced by weed pathogenic fungi are an efficient tool to design natural, safe bioherbicides. Their use could avoid that of synthetic pesticides causing resistance in the host plants and the long term impact of residues in agricultural products with a risk to human and animal health. The isolation and structural and biological characterization of phytotoxins produced by pathogenic fungi for weeds, including parasitic plants, are described. Structure activity relationships and mode of action studies for some phytotoxins are also reported to elucidate the herbicide potential of these promising fungal metabolites.

  19. Infrared Spectra and Hydrogen Bonds of Biologically Active Benzaldehydes

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Skornyakov, I. V.; Belkov, M. V.; Shimko, A. N.; Shadyro, O. I.; Brinkevich, S. D.; Samovich, S. N.

    2013-09-01

    IR-Fourier spectra of solutions and crystals of biologically active benzaldehyde derivatives were studied. Specific features of the formation of intra- and intermolecular hydrogen bonds were analyzed. Spectral signatures that characterized participation of the hydroxyl OH group and also the OCH3 and C=O groups in the formation of intramolecular hydrogen bonds of the three different types O-H···O-H, O-H···O-CH3, and O-H···O=C were revealed. Intramolecular hydrogen bonds of the types O-H···O-H and O-H···O-CH3 were absent for benzaldehyde derivatives in the crystal phase. Only hydroxyl and carbonyl groups participated in intermolecular interactions. This resulted in the formation of linear intermolecular dimers. Seven various configurations of the linear dimers were identified in solutions and crystals.

  20. Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization.

    PubMed

    Cimmino, Alessio; Masi, Marco; Evidente, Marco; Superchi, Stefano; Evidente, Antonio

    2015-12-19

    Covering: 2007 to 2015 Fungal phytotoxins are secondary metabolites playing an important role in the induction of disease symptoms interfering with host plant physiological processes. Although fungal pathogens represent a heavy constraint for agrarian production and for forest and environmental heritage, they can also represent an ecofriendly alternative to manage weeds. Indeed, the phytotoxins produced by weed pathogenic fungi are an efficient tool to design natural, safe bioherbicides. Their use could avoid that of synthetic pesticides causing resistance in the host plants and the long term impact of residues in agricultural products with a risk to human and animal health. The isolation and structural and biological characterization of phytotoxins produced by pathogenic fungi for weeds, including parasitic plants, are described. Structure activity relationships and mode of action studies for some phytotoxins are also reported to elucidate the herbicide potential of these promising fungal metabolites. PMID:26443032

  1. [Identification and quantitation of purine derivatives in urinary calculi as markers of abnormal purine metabolism by using high-performance liquid chromatography (HPLC)].

    PubMed

    Safranow, K

    2000-01-01

    The objective of this study was to develop a practical method for the analysis of purine derivatives in urinary calculi using high-performance liquid chromatography (HPLC). The method presented herein includes extraction of purine derivatives from urinary stones, followed by chromatography on a reversed-phase column with UV detection. A simpler isocratic method was applied to quantitate 6 purines known to be components of urinary stones, namely uric acid, xanthine, hypoxanthine, 2,8-dihydroxyadenine, oxypurinol and allopurinol. Gradient method separated 10 additional peaks representing methyl derivatives of uric acid or xanthine (1-, 3-, 7-, and 9-methyluric acid, 1,3-,1,7-, and 3,7-dimethyluric acid, and 1-, 3-, and 7-methylxanthine) (Fig. 1). Detection limits for individual compounds ranged from 25 to 140 micrograms purine per g stone weight and precision (RSD%) was 0.5-2.4%. Both methods were next used to analyze purine derivatives in urinary calculi from 48 residents of Western Pomerania. Uric acid was the main component of 9 stones. All of the uric acid stones showed admixtures of 9 other purine derivatives: natural metabolites (hypoxanthine, xanthine, 2,8-dihydroxyadenine) and methyl derivatives of uric acid (1-,3-, and 7-methyluric acid, 1,3-dimethyluric acid, 3-, and 7-methylxanthine) originating from the metabolism of exogenous methylxanthines (caffeine, theophylline and theobromine) (Tab. 1,2). Methyl derivatives of uric acid and xanthine, with a maximal content in stones of 1.7%, have hitherto not been considered constituents of urinary calculi. Statistical analysis of the results revealed strong positive correlations between the level of uric acid and of other purine derivatives in stones (Fig. 2). Correlations were also found between levels of some purines and inorganic compounds (Tab. 3). The sensitivity and specificity of HPLC with UV detection satisfy the requirements of a reference method for the analysis of purines in urinary stones. Isocratic

  2. Glycosaminoglycans differentially bind HARP and modulate its biological activity.

    PubMed

    Vacherot, F; Delbé, J; Heroult, M; Barritault, D; Fernig, D G; Courty, J

    1999-03-19

    Heparin affin regulatory peptide (HARP) is a polypeptide belonging to a family of heparin binding growth/differentiation factors. The high affinity of HARP for heparin suggests that this secreted polypeptide should also bind to heparan sulfate proteoglycans derived from cell surface and extracellular matrix defined as extracellular compartments. Using Western blot analysis, we detected HARP bound to heparan sulfate proteoglycans in the extracellular compartments of MDA-MB 231 and MC 3T3-E1 as well as NIH3T3 cells overexpressing HARP protein. Heparitinase treatment of BEL cells inhibited HARP-induced cell proliferation, and the biological activity of HARP in this system was restored by the addition of heparin. We report that heparan sulfate, dermatan sulfate, and to a lesser extent, chondroitin sulfate A, displaced HARP bound to the extracellular compartment. Binding analyses with a biosensor showed that HARP bound heparin with fast association and dissociation kinetics (kass = 1.6 x 10(6) M-1 s-1; kdiss = 0.02 s-1), yielding a Kd value of 13 nM; the interaction between HARP and dermatan sulfate was characterized by slower association kinetics (kass = 0.68 x 10(6) M-1 s-1) and a lower affinity (Kd = 51 nM). Exogenous heparin, heparan sulfate, and dermatan sulfate potentiated the growth-stimulatory activity of HARP, suggesting that corresponding proteoglycans could be involved in the regulation of the mitogenic activity of HARP.

  3. Dynamic properties of biologically active synthetic heparin-like hexasaccharides.

    PubMed

    Angulo, Jesús; Hricovíni, Milos; Gairi, Margarida; Guerrini, Marco; de Paz, José Luis; Ojeda, Rafael; Martín-Lomas, Manuel; Nieto, Pedro M

    2005-10-01

    A complete study of the dynamics of two synthetic heparin-like hexasaccharides, D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (1) and -->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHAc-6-SO4-alpha-(1-->4)-L-IdoA-alpha-(1-->4)-D-GlcNHSO3-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (2), has been performed using 13C-nuclear magnetic resonance (NMR) relaxation parameters, T1, T2, and heteronuclear nuclear Overhauser effect (NOEs). Compound 1 is constituted from sequences corresponding to the major polysaccharide heparin region, while compound 2 contains a sequence never found in natural heparin. They differ from each other only in sulphation patterns, and are capable of stimulating fibroblast growth factors (FGFs)-1 induced mitogenesis. Both oligosaccharides exhibit a remarkable anisotropic overall motion in solution as revealed by their anisotropic ratios (tau /tau||), 4.0 and 3.0 respectively. This is a characteristic behaviour of natural glycosaminoglycans (GAG) which has also been observed for the antithrombin (AT) binding pentasaccharide D-GlcNHSO3-6-SO4-alpha-(1-->4)-D-GlcA-beta-(1-->4)-D-GlcNHSO3-(3,6-SO4)-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-1-->Me (3) (Hricovíni, M., Guerrini, M., Torri, G., Piani, S., and Ungarelli, F. (1995) Conformational analysis of heparin epoxide in aqueous solution. An NMR relaxation study. Carbohydr. Res., 277, 11-23). The motional properties observed for 1 and 2 provide additional support to the suitability of these compounds as heparin models in agreement with previous structural (de Paz, J.L., Angulo, J., Lassaletta, J.M., Nieto, P.M., Redondo-Horcajo, M., Lozano, R.M., Jiménez-Gallego, G., and Martín-Lomas, M. (2001) The activation of fibroblast growth factors by heparin: synthesis, structure and biological activity of heparin-like oligosaccharides. Chembiochem, 2, 673-685; Ojeda, R

  4. Dynamic properties of biologically active synthetic heparin-like hexasaccharides.

    PubMed

    Angulo, Jesús; Hricovíni, Milos; Gairi, Margarida; Guerrini, Marco; de Paz, José Luis; Ojeda, Rafael; Martín-Lomas, Manuel; Nieto, Pedro M

    2005-10-01

    A complete study of the dynamics of two synthetic heparin-like hexasaccharides, D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (1) and -->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHAc-6-SO4-alpha-(1-->4)-L-IdoA-alpha-(1-->4)-D-GlcNHSO3-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (2), has been performed using 13C-nuclear magnetic resonance (NMR) relaxation parameters, T1, T2, and heteronuclear nuclear Overhauser effect (NOEs). Compound 1 is constituted from sequences corresponding to the major polysaccharide heparin region, while compound 2 contains a sequence never found in natural heparin. They differ from each other only in sulphation patterns, and are capable of stimulating fibroblast growth factors (FGFs)-1 induced mitogenesis. Both oligosaccharides exhibit a remarkable anisotropic overall motion in solution as revealed by their anisotropic ratios (tau /tau||), 4.0 and 3.0 respectively. This is a characteristic behaviour of natural glycosaminoglycans (GAG) which has also been observed for the antithrombin (AT) binding pentasaccharide D-GlcNHSO3-6-SO4-alpha-(1-->4)-D-GlcA-beta-(1-->4)-D-GlcNHSO3-(3,6-SO4)-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-1-->Me (3) (Hricovíni, M., Guerrini, M., Torri, G., Piani, S., and Ungarelli, F. (1995) Conformational analysis of heparin epoxide in aqueous solution. An NMR relaxation study. Carbohydr. Res., 277, 11-23). The motional properties observed for 1 and 2 provide additional support to the suitability of these compounds as heparin models in agreement with previous structural (de Paz, J.L., Angulo, J., Lassaletta, J.M., Nieto, P.M., Redondo-Horcajo, M., Lozano, R.M., Jiménez-Gallego, G., and Martín-Lomas, M. (2001) The activation of fibroblast growth factors by heparin: synthesis, structure and biological activity of heparin-like oligosaccharides. Chembiochem, 2, 673-685; Ojeda, R

  5. Phytochemical Analysis and Biological Activities of Cola nitida Bark.

    PubMed

    Dah-Nouvlessounon, Durand; Adoukonou-Sagbadja, Hubert; Diarrassouba, Nafan; Sina, Haziz; Adjanohoun, Adolphe; Inoussa, Mariam; Akakpo, Donald; Gbenou, Joachim D; Kotchoni, Simeon O; Dicko, Mamoudou H; Baba-Moussa, Lamine

    2015-01-01

    Kola nut is chewed in many West African cultures and is used ceremonially. The aim of this study is to investigate some biological effects of Cola nitida's bark after phytochemical screening. The bark was collected, dried, and then powdered for the phytochemical screening and extractions. Ethanol and ethyl acetate extracts of C. nitida were used in this study. The antibacterial activity was tested on ten reference strains and 28 meat isolated Staphylococcus strains by disc diffusion method. The antifungal activity of three fungal strains was determined on the Potato-Dextrose Agar medium mixed with the appropriate extract. The antioxidant activity was determined by DPPH and ABTS methods. Our data revealed the presence of various potent phytochemicals. For the reference and meat isolated strains, the inhibitory diameter zone was from 17.5 ± 0.7 mm (C. albicans) to 9.5 ± 0.7 mm (P. vulgaris). The MIC ranged from 0.312 mg/mL to 5.000 mg/mL and the MBC from 0.625 mg/mL to >20 mg/mL. The highest antifungal activity was observed with F. verticillioides and the lowest one with P. citrinum. The two extracts have an excellent reducing free radical activity. The killing effect of A. salina larvae was perceptible at 1.04 mg/mL. The purified extracts of Cola nitida's bark can be used to hold meat products and also like phytomedicine.

  6. Biological and enzymatic activities of Micrurus sp. (Coral) snake venoms.

    PubMed

    Cecchini, Alessandra L; Marcussi, Silvana; Silveira, Lucas B; Borja-Oliveira, Caroline R; Rodrigues-Simioni, Léa; Amara, Susan; Stábeli, Rodrigo G; Giglio, José R; Arantes, Eliane C; Soares, Andreimar M

    2005-01-01

    The venoms of Micrurus lemniscatus carvalhoi, Micrurus frontalis frontalis, Micrurus surinamensis surinamensis and Micrurus nigrocinctus nigrocinctus were assayed for biological activities. Although showing similar liposome disrupting and myotoxic activities, M. frontalis frontalis and M. nigrocinctus nigrocinctus displayed higher anticoagulant and phospholipase A2 (PLA2) activities. The latter induced a higher edema response within 30 min. Both venoms were the most toxic as well. In the isolated chick biventer cervicis preparation, M. lemniscatus carvalhoi venom blocked the indirectly elicited twitch-tension response (85+/-0.6% inhibition after a 15 min incubation at 5 microg of venom/mL) and the response to acetylcholine (ACh; 55 or 110 microM), without affecting the response to KCl (13.4 mM). In mouse phrenic nerve-diaphragm preparation, the venom (5 microg/mL) produced a complete inhibition of the indirectly elicited contractile response after 50 min incubation and did not affect the contractions elicited by direct stimulation. M. lemniscatus carvalhoi inhibited 3H-L-glutamate uptake in brain synaptosomes in a Ca2+-, but not time, dependent manner. The replacement of Ca2+ by Sr2+ and ethylene glycol-bis(beta-aminoethyl ether) (EGTA), or alkylation of the venom with p-bromophenacyl bromide (BPB), inhibited 3H-L-glutamate uptake. M. lemniscatus carvalhoi venom cross-reacted with postsynaptic alpha-neurotoxins short-chain (antineurotoxin-II) and long-chain (antibungarotoxin) antibodies. It also cross-reacted with antimyotoxic PLA2 antibodies from M. nigrocinctus nigrocinctus (antinigroxin). Our results point to the need of catalytic activity for these venoms to exert their neurotoxic activity efficiently and to their components as attractive tools for the study of molecular targets on cell membranes.

  7. Phytochemical Analysis and Biological Activities of Cola nitida Bark

    PubMed Central

    Dah-Nouvlessounon, Durand; Adoukonou-Sagbadja, Hubert; Diarrassouba, Nafan; Sina, Haziz; Adjanohoun, Adolphe; Inoussa, Mariam; Akakpo, Donald; Gbenou, Joachim D.; Kotchoni, Simeon O.; Dicko, Mamoudou H.; Baba-Moussa, Lamine

    2015-01-01

    Kola nut is chewed in many West African cultures and is used ceremonially. The aim of this study is to investigate some biological effects of Cola nitida's bark after phytochemical screening. The bark was collected, dried, and then powdered for the phytochemical screening and extractions. Ethanol and ethyl acetate extracts of C. nitida were used in this study. The antibacterial activity was tested on ten reference strains and 28 meat isolated Staphylococcus strains by disc diffusion method. The antifungal activity of three fungal strains was determined on the Potato-Dextrose Agar medium mixed with the appropriate extract. The antioxidant activity was determined by DPPH and ABTS methods. Our data revealed the presence of various potent phytochemicals. For the reference and meat isolated strains, the inhibitory diameter zone was from 17.5 ± 0.7 mm (C. albicans) to 9.5 ± 0.7 mm (P. vulgaris). The MIC ranged from 0.312 mg/mL to 5.000 mg/mL and the MBC from 0.625 mg/mL to >20 mg/mL. The highest antifungal activity was observed with F. verticillioides and the lowest one with P. citrinum. The two extracts have an excellent reducing free radical activity. The killing effect of A. salina larvae was perceptible at 1.04 mg/mL. The purified extracts of Cola nitida's bark can be used to hold meat products and also like phytomedicine. PMID:25767723

  8. Computer-generated Model of Purine Nucleoside Phosphorylase (PNP)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Purine Nucleoside Phosphorylase (PNP) is an important target enzyme for the design of anti-cancer and immunosuppressive drugs. Bacterial PNP, which is slightly different from the human enzyme, is used to synthesize chemotherapuautic agents. Knowledge of the three-dimensional structure of the bacterial PNP molecule is useful in efforts to engineer different types of PNP enzymes, that can be used to produce new chemotherapeutic agents. This picture shows a computer model of bacterial PNP, which looks a lot like a display of colorful ribbons. Principal Investigator was Charles Bugg.

  9. [Biologically active substances of cornelian cherry fruits (Cornus mas L.)].

    PubMed

    Perova, I B; Zhogova, A A; Poliakova, A V; Éller, K I; Ramenskaia, G V; Samylina, I A

    2014-01-01

    10 samples of fresh-frozen cornelian cherry fruits (Cornus mas L.), collected in the Tambov and the Caucasus regions, were investigated for the total amount and composition of the main biologically active substances (BAS): anthocyanins (AC), proanthocyanidins (OPC), dihydroxycinnamic acids (DHCA), iridoids, organic acids, mono- and disaccharides and antiradical activity in the DPPH-test in vitro. Total phenolics content determined by Folin-Ciocalteu method, was 150-400 mg/100 g fresh fruit weight. The OPC content, estimated by Bate-Smith method, varied from 20-25 mg/100 g of unripe cornelian cherries to 80-430 mg/100 g of mature cornelian cherries. Total AC amount evaluated by pH-differential spectrophotometry was minimal in unripe fruits (11,2 mg/100 g), and maximal in mature fruits (92,2 mg/100 g). Profile of individual AC was determined by HPLC with UV/Vis and ESI-TOF-MS detections. 3-galactosides of cyanidin (19,0-80,3%) and pelargonidin (15,1-75,6%) were found as main anthocyanins. An original methodology for iridoid determination based on HPLC with UV and ESI-TOF-MS detection was developed. The main iridoids were identified as loganic acid, loganin, sweroside and cornuside. Total iridoids content was 130-400 mg/100 g, and loganic acid was predominant in all samples (87,6-94,8%). Only minor amount of the DHCA derivatives (<10 mg/100 g) were found. The malic acid was predominant among organic acids, the total content of which varied from 0,4 to 2,8%. Relatively high amount of ascorbic acid (35-60 mg/100 g) was found. The carbohydrates profile of cornielian cherries was represented by fructose (2,2-3,8%) and glucose (2,5-7,0%). 70% water-ethanol extracts of Cornus mas fruits have showed pronounced antiradical activity in DPPH-test (470,5-932,0 mg TE/100 g). The data on specific minor BAS can be used in the standardization and evaluation of potential biological activity of extracts and dietary supplements based on the cornelian cherry fruits. PMID:25816631

  10. [Biologically active substances of cornelian cherry fruits (Cornus mas L.)].

    PubMed

    Perova, I B; Zhogova, A A; Poliakova, A V; Éller, K I; Ramenskaia, G V; Samylina, I A

    2014-01-01

    10 samples of fresh-frozen cornelian cherry fruits (Cornus mas L.), collected in the Tambov and the Caucasus regions, were investigated for the total amount and composition of the main biologically active substances (BAS): anthocyanins (AC), proanthocyanidins (OPC), dihydroxycinnamic acids (DHCA), iridoids, organic acids, mono- and disaccharides and antiradical activity in the DPPH-test in vitro. Total phenolics content determined by Folin-Ciocalteu method, was 150-400 mg/100 g fresh fruit weight. The OPC content, estimated by Bate-Smith method, varied from 20-25 mg/100 g of unripe cornelian cherries to 80-430 mg/100 g of mature cornelian cherries. Total AC amount evaluated by pH-differential spectrophotometry was minimal in unripe fruits (11,2 mg/100 g), and maximal in mature fruits (92,2 mg/100 g). Profile of individual AC was determined by HPLC with UV/Vis and ESI-TOF-MS detections. 3-galactosides of cyanidin (19,0-80,3%) and pelargonidin (15,1-75,6%) were found as main anthocyanins. An original methodology for iridoid determination based on HPLC with UV and ESI-TOF-MS detection was developed. The main iridoids were identified as loganic acid, loganin, sweroside and cornuside. Total iridoids content was 130-400 mg/100 g, and loganic acid was predominant in all samples (87,6-94,8%). Only minor amount of the DHCA derivatives (<10 mg/100 g) were found. The malic acid was predominant among organic acids, the total content of which varied from 0,4 to 2,8%. Relatively high amount of ascorbic acid (35-60 mg/100 g) was found. The carbohydrates profile of cornielian cherries was represented by fructose (2,2-3,8%) and glucose (2,5-7,0%). 70% water-ethanol extracts of Cornus mas fruits have showed pronounced antiradical activity in DPPH-test (470,5-932,0 mg TE/100 g). The data on specific minor BAS can be used in the standardization and evaluation of potential biological activity of extracts and dietary supplements based on the cornelian cherry fruits.

  11. Catalytic activity of bovine seminal ribonuclease is essential for its immunosuppressive and other biological activities.

    PubMed Central

    Kim, J S; Soucek, J; Matousek, J; Raines, R T

    1995-01-01

    Bovine seminal ribonuclease (BS-RNase) is a homologue of RNase A with special biological properties, including potent immunosuppressive activity. A mutant BS-RNase was created in which His-119, the active-site residue that acts as a general acid during catalysis, was changed to an aspartic acid. H119D BS-RNase formed a dimer with quaternary structure similar to that of the wild-type enzyme but with values of kcat. and kcat./Km for the cleavage of UpA [uridylyl(3'-->5')adenosine] that were 4 x 10(3)-fold lower. The mutant protein also demonstrated dramatically decreased immunosuppressive, anti-tumour, aspermatogenic, and embryotoxic activities. The catalytic activity of BS-RNase is therefore necessary for its special biological properties. PMID:7772040

  12. Teaching Systems Biology: An Active-Learning Approach

    ERIC Educational Resources Information Center

    Kumar, Anuj

    2005-01-01

    With genomics well established in modern molecular biology, recent studies have sought to further the discipline by integrating complementary methodologies into a holistic depiction of the molecular mechanisms underpinning cell function. This genomic subdiscipline, loosely termed "systems biology," presents the biology educator with both…

  13. A Conceptual Framework for Organizing Active Learning Experiences in Biology Instruction

    ERIC Educational Resources Information Center

    Gardner, Joel; Belland, Brian R.

    2012-01-01

    Introductory biology courses form a cornerstone of undergraduate instruction. However, the predominantly used lecture approach fails to produce higher-order biology learning. Research shows that active learning strategies can increase student learning, yet few biology instructors use all identified active learning strategies. In this paper, we…

  14. [Composition and content of biologically active substances in rose hips].

    PubMed

    Dubtsova, G N; Negmatulloeva, R N; Bessonov, V V; Baĭkov, V G; Sheviakova, L V; Makhova, N N; Perederiaev, O I; Bogachuk, M N; Baĭgarin, E K

    2012-01-01

    The paper studies the chemical composition of the powders obtained from the pulp with the skins and seeds of fruits of wild rose hips. Research results have shown that the main fraction of the powder is dietary fiber, powder of seeds of insoluble fiber in 1,6 and 2,3 higher than in the powder of the fruit with a thin skin and pulp, respectively. The greatest amount of carbohydrates and protein found in powders and pulp of the fruit with a thin skin, and lipids predominate in the powder from the seeds. Found that the lipid powder rosehip richest in oleic, linoleic and linolenic acids, the share of oleic acid has 6,4-19,2%, linoleic and linolenic 19,7-45,8 and 23,3-33,9% of the amount of fatty acids. Lipids powders of hips and seeds of rose have higher levels of essential linoleic acid and powder from the pulp with the skins - linolenic acid. In the study established the presence of sterols 7 fractions, the predominant of which is the beta-sitosterol. In the powder from the pulp with the skins found the greatest amount of ascorbic acid, carotenoids, and the powder of seeds - vitamin E. Carotenoids in powders are beta-carotene and lycopene. The high content of ascorbic acid, vitamin E and carotenoids in powder from wild rose hips makes them a good source of antioxidants. Therefore, we studied the possibility of using vegetable powders obtained from hips of wild rose, to enrich biologically active substances such as vitamins C, E and carotenoids, food supply, particularly of health care use. Rosehip powder from the pulp with the skins had the highest antioxidant activity, antioxidant activity of hips powders was 74% of the activity of powder from the pulp with the skins, the lowest antioxidant activity was observed in the powder from the wild rose seeds. That's way, based on the analysis of the chemical composition of rose hip powder found high levels they ascorbic acid, carotenoids, flavonoids,found their high antioxidant activity. It allows to recommend powders

  15. Chemistry, biogenesis, and biological activities of Cinnamomum zeylanicum.

    PubMed

    Jayaprakasha, G K; Rao, L Jagan Mohan

    2011-07-01

    The genus Cinnamomum comprises of several hundreds of species, which are distributed in Asia and Australia. Cinnamomum zeylanicum, the source of cinnamon bark and leaf oils, is an indigenous tree of Sri Lanka, although most oil now comes from cultivated areas. C. zeylanicum is an important spice and aromatic crop having wide applications in flavoring, perfumery, beverages, and medicines. Volatile oils from different parts of cinnamon such as leaves, bark, fruits, root bark, flowers, and buds have been isolated by hydro distillation/steam distillation and supercritical fluid extraction. The chemical compositions of the volatile oils have been identified by GC and GC-MS. More than 80 compounds were identified from different parts of cinnamon. The leaf oil has a major component called eugenol. Cinnamaldehyde and camphor have been reported to be the major components of volatile oils from stem bark and root bark, respectively. Trans-cinnamyl acetate was found to be the major compound in fruits, flowers, and fruit stalks. These volatile oils were found to exhibit antioxidant, antimicrobial, and antidiabetic activities. C. zeylanicum bark and fruits were found to contain proanthocyandins with doubly linked bis-flavan-3-ol units in the molecule. The present review provides a coherent presentation of scattered literature on the chemistry, biogenesis, and biological activities of cinnamon.

  16. Prescribed Active Learning Increases Performance in Introductory Biology

    PubMed Central

    O'Connor, Eileen; Parks, John W.; Cunningham, Matthew; Hurley, David; Haak, David; Dirks, Clarissa; Wenderoth, Mary Pat

    2007-01-01

    We tested five course designs that varied in the structure of daily and weekly active-learning exercises in an attempt to lower the traditionally high failure rate in a gateway course for biology majors. Students were given daily multiple-choice questions and answered with electronic response devices (clickers) or cards. Card responses were ungraded; clicker responses were graded for right/wrong answers or participation. Weekly practice exams were done as an individual or as part of a study group. Compared with previous versions of the same course taught by the same instructor, students in the new course designs performed better: There were significantly lower failure rates, higher total exam points, and higher scores on an identical midterm. Attendance was higher in the clicker versus cards section; attendance and course grade were positively correlated. Students did better on clicker questions if they were graded for right/wrong answers versus participation, although this improvement did not translate into increased scores on exams. In this course, achievement increases when students get regular practice via prescribed (graded) active-learning exercises. PMID:17548875

  17. A new assay system for guinea pig interferon biological activity.

    PubMed

    Yamamoto, Toshiko; Jeevan, Amminikutty; Ohishi, Kazue; Nojima, Yasuhiro; Umemori, Kiyoko; Yamamoto, Saburo; McMurray, David N

    2002-07-01

    We have developed an assay system for guinea pig interferon (IFN) based on reduction of viral cytopathic effect (CPE) in various cell lines. CPE inhibition was detected optimally in the guinea pig fibroblast cell line 104C1 infected with encephalomyocarditis virus (EMCV). The amount of biologically active guinea pig IFN was quantified by estimating viable cell numbers colorimetrically by means of a tetrazolium compound, 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt (WST-1) and 1-methoxy-5-methylphenazinium methylsulfate (PMS). WST-1 color developed until stopped by the addition of sulfuric acid. This had no effect on the colorimetric assay, and the color was stable for at least 24 h. The acid also inactivated the EMCV and, thus, eliminated the viral hazard. Inhibition of CPE activity was highly correlated with the concentration of culture supernatants from BCG-vaccinated guinea pig splenocytes stimulated in vitro with tuberculin or an immunostimulatory oligoDNA. This assay detected guinea pig IFN and human IFN-alpha, but not IFN-gamma from human, mouse, rat, pig, or dog. This assay system has proved useful for the titration of guinea pig IFN, being easy to perform, free from viral hazard, relatively species specific, highly reproducible, and inexpensive.

  18. Biological activities of phosphocitrate: a potential meniscal protective agent.

    PubMed

    Sun, Yubo; Roberts, Andrea; Mauerhan, David R; Sun, Andrew R; Norton, H James; Hanley, Edward N

    2013-01-01

    Phosphocitrate (PC) inhibited meniscal calcification and the development of calcium crystal-associated osteoarthritis (OA) in Hartley guinea pigs. However, the mechanisms remain elusive. This study sought to examine the biological activities of PC in the absence of calcium crystals and test the hypothesis that PC is potentially a meniscal protective agent. We found that PC downregulated the expression of many genes classified in cell proliferation, ossification, prostaglandin metabolic process, and wound healing, including bloom syndrome RecQ helicase-like, cell division cycle 7 homolog, cell division cycle 25 homolog C, ankylosis progressive homolog, prostaglandin-endoperoxide synthases-1/cyclooxygenase-1, and plasminogen activator urokinase receptor. In contrast, PC stimulated the expression of many genes classified in fibroblast growth factor receptor signaling pathway, collagen fibril organization, and extracellular structure organization, including fibroblast growth factor 7, collagen type I, alpha 1, and collagen type XI, alpha 1. Consistent with its effect on the expression of genes classified in cell proliferation, collagen fibril organization, and ossification, PC inhibited the proliferation of OA meniscal cells and meniscal cell-mediated calcification while stimulating the production of collagens. These findings indicate that PC is potentially a meniscal-protective agent and a disease-modifying drug for arthritis associated with severe meniscal degeneration. PMID:23936839

  19. Soil biological activity as affected by tillage intensity

    NASA Astrophysics Data System (ADS)

    Gajda, A. M.; Przewłoka, B.

    2012-02-01

    The effect of tillage intensity on changes of microbiological activity and content of particulate organic matter in soil under winter wheat duirng 3 years was studied. Microbial response related to the tillage-induced changes in soil determined on the content of biomass C and N, the rate of CO2 evolution, B/F ratio, the activity of dehydrogenases, acid and alkaline phosphatases, soil C/N ratio and microbial biomass C/N ratio confirmed the high sensitivity of soil microbial populations to the tillage system applied. After three year studies, the direct sowing system enhanced the increase of labile fraction of organic matter content in soil. There were no significant changes in the labile fraction quantity observed in soil under conventional tillage. Similar response related to the tillage intensity was observed in particulate organic matter quantities expressed as a percentage of total organic matter in soil. A high correlation coefficients calculated between contents of soil microbial biomass C and N, particulate organic matter and potentially mineralizable N, and the obtained yields of winter wheat grown on experimental fields indicated on a high importance of biological quality of status of soil for agricultural crop production.

  20. Chemical constituents and biological activities of two Iranian Cystoseira species.

    PubMed

    Yegdaneh, Afsaneh; Ghannadi, Alireza; Dayani, Ladan

    2016-07-01

    The marine environment represents approximately half of the global biodiversity and could provide unlimited biological resources for the production of therapeutic drugs. Marine seaweeds comprise few thousands of species representing a considerable part of the littoral biomass. Extracts of the Cystoseira indica and Cystoseira merica were subjected to phytochemical and cytotoxicity evaluation. The amount of total phenol was determined with Folin-Ciocalteu reagent. Cytotoxicity was characterized by IC50 of human cancer cell lines including MCF-7 (human breast adenocarcinoma), HeLa (cervical carcinoma), and HT-29 (human colon adenocarcinoma) using Sulforhodamin assay. Antioxidant activities were evaluated using 2,2-diphenylpicrylhydrazyl (DPPH) method. The analysis revealed that tannins, saponins, sterols and triterpenes were the most abundant constituents in these Cystoseira species while cyanogenic and cardiac glycosides were the least ones. C. indica had the higher content of total phenolics and also showed higher antioxidant activity. Cytotoxic results showed that both species inhibited cell growth effectively, especially against MCF-7 cell line. The present findings suggest potential pharmacological applications of selected seaweeds but require further investigation and identification of their bioactive principles. PMID:27651811

  1. Chemical constituents and biological activities of two Iranian Cystoseira species

    PubMed Central

    Yegdaneh, Afsaneh; Ghannadi, Alireza; Dayani, Ladan

    2016-01-01

    The marine environment represents approximately half of the global biodiversity and could provide unlimited biological resources for the production of therapeutic drugs. Marine seaweeds comprise few thousands of species representing a considerable part of the littoral biomass. Extracts of the Cystoseira indica and Cystoseira merica were subjected to phytochemical and cytotoxicity evaluation. The amount of total phenol was determined with Folin-Ciocalteu reagent. Cytotoxicity was characterized by IC50 of human cancer cell lines including MCF-7 (human breast adenocarcinoma), HeLa (cervical carcinoma), and HT-29 (human colon adenocarcinoma) using Sulforhodamin assay. Antioxidant activities were evaluated using 2,2-diphenylpicrylhydrazyl (DPPH) method. The analysis revealed that tannins, saponins, sterols and triterpenes were the most abundant constituents in these Cystoseira species while cyanogenic and cardiac glycosides were the least ones. C. indica had the higher content of total phenolics and also showed higher antioxidant activity. Cytotoxic results showed that both species inhibited cell growth effectively, especially against MCF-7 cell line. The present findings suggest potential pharmacological applications of selected seaweeds but require further investigation and identification of their bioactive principles. PMID:27651811

  2. Prescribed active learning increases performance in introductory biology.

    PubMed

    Freeman, Scott; O'Connor, Eileen; Parks, John W; Cunningham, Matthew; Hurley, David; Haak, David; Dirks, Clarissa; Wenderoth, Mary Pat

    2007-01-01

    We tested five course designs that varied in the structure of daily and weekly active-learning exercises in an attempt to lower the traditionally high failure rate in a gateway course for biology majors. Students were given daily multiple-choice questions and answered with electronic response devices (clickers) or cards. Card responses were ungraded; clicker responses were graded for right/wrong answers or participation. Weekly practice exams were done as an individual or as part of a study group. Compared with previous versions of the same course taught by the same instructor, students in the new course designs performed better: There were significantly lower failure rates, higher total exam points, and higher scores on an identical midterm. Attendance was higher in the clicker versus cards section; attendance and course grade were positively correlated. Students did better on clicker questions if they were graded for right/wrong answers versus participation, although this improvement did not translate into increased scores on exams. In this course, achievement increases when students get regular practice via prescribed (graded) active-learning exercises.

  3. Chemical constituents and biological activities of two Iranian Cystoseira species

    PubMed Central

    Yegdaneh, Afsaneh; Ghannadi, Alireza; Dayani, Ladan

    2016-01-01

    The marine environment represents approximately half of the global biodiversity and could provide unlimited biological resources for the production of therapeutic drugs. Marine seaweeds comprise few thousands of species representing a considerable part of the littoral biomass. Extracts of the Cystoseira indica and Cystoseira merica were subjected to phytochemical and cytotoxicity evaluation. The amount of total phenol was determined with Folin-Ciocalteu reagent. Cytotoxicity was characterized by IC50 of human cancer cell lines including MCF-7 (human breast adenocarcinoma), HeLa (cervical carcinoma), and HT-29 (human colon adenocarcinoma) using Sulforhodamin assay. Antioxidant activities were evaluated using 2,2-diphenylpicrylhydrazyl (DPPH) method. The analysis revealed that tannins, saponins, sterols and triterpenes were the most abundant constituents in these Cystoseira species while cyanogenic and cardiac glycosides were the least ones. C. indica had the higher content of total phenolics and also showed higher antioxidant activity. Cytotoxic results showed that both species inhibited cell growth effectively, especially against MCF-7 cell line. The present findings suggest potential pharmacological applications of selected seaweeds but require further investigation and identification of their bioactive principles.

  4. Pomegranate Fruit as a Rich Source of Biologically Active Compounds

    PubMed Central

    Sreekumar, Sreeja; Sithul, Hima; Muraleedharan, Parvathy; Azeez, Juberiya Mohammed; Sreeharshan, Sreeja

    2014-01-01

    Pomegranate is a widely used plant having medicinal properties. In this review, we have mainly focused on the already published data from our laboratory pertaining to the effect of methanol extract of pericarp of pomegranate (PME) and have compared it with other relevant literatures on Punica. Earlier, we had shown its antiproliferative effect using human breast (MCF-7, MDA MB-231), and endometrial (HEC-1A), cervical (SiHa, HeLa), and ovarian (SKOV3) cancer cell lines, and normal breast fibroblasts (MCF-10A) at concentration of 20–320 μg/mL. The expressions of selected estrogen responsive genes (PR, pS2, and C-Myc) were downregulated by PME. Unlike estradiol, PME did not increase the uterine weight and proliferation in bilaterally ovariectomized Swiss-Albino mice models and its cardioprotective effects were comparable to that of 17β-estradiol. We had further assessed the protective role of PME on skeletal system, using MC3T3-E1 cells. The results indicated that PME (80 μg/mL) significantly increased ALP (Alkaline Phosphatase) activity, supporting its suggested role in modulating osteoblastic cell differentiation. The antiosteoporotic potential of PME was also evaluated in ovariectomized (OVX) rodent model. The results from our studies and from various other studies support the fact that pomegranate fruit is indeed a source of biologically active compounds. PMID:24818149

  5. A novel bis(pinacolato)diboron-mediated N-O bond deoxygenative route to C6 benzotriazolyl purine nucleoside derivatives.

    PubMed

    Basava, Vikram; Yang, Lijia; Pradhan, Padmanava; Lakshman, Mahesh K

    2016-08-01

    Reaction of amide bonds in t-butyldimethylsilyl-protected inosine, 2'-deoxyinosine, guanosine, 2'-deoxyguanosine, and 2-phenylinosine with commercially available peptide-coupling agents (benzotriazol-1H-yloxy)tris(dimethylaminophosphonium) hexafluorophosphate (BOP), (6-chloro-benzotriazol-1H-yloxy)trispyrrolidinophosphonium hexafluorophosphate (PyClocK), and (7-azabenzotriazol-1H-yloxy)trispyrrolidinophosphonium hexafluorophospate (PyAOP) gave the corresponding O(6)-(benzotriazol-1-yl) nucleoside analogues containing a C-O-N bond. Upon exposure to bis(pinacolato)diboron and base, the O(6)-(benzotriazol-1-yl) and O(6)-(6-chlorobenzotriazol-1-yl) purine nucleoside derivatives obtained from BOP and PyClocK, respectively, underwent N-O bond reduction and C-N bond formation, leading to the corresponding C6 benzotriazolyl purine nucleoside analogues. In contrast, the 7-azabenzotriazolyloxy purine nucleoside derivatives did not undergo efficient deoxygenation, but gave unsymmetrical nucleoside dimers instead. This is consistent with a prior report on the slow reduction of 1-hydroxy-1H-4-aza and 1-hydroxy-1H-7-azabenzotriazoles. Because of the limited number of commercial benzotriazole-based peptide coupling agents, and to show the applicability of the method when such coupling agents are unavailable, 1-hydroxy-1H-5,6-dichlorobenzotriazole was synthesized. Using this compound, silyl-protected inosine and 2'-deoxyinosine were converted to the O(6)-(5,6-dichlorobenzotriazol-1-yl) derivatives via in situ amide activation with PyBroP. The O(6)-(5,6-dichlorobenzotriazol-1-yl) purine nucleosides so obtained also underwent smooth reduction to afford the corresponding C6 5,6-dichlorobenzotriazolyl purine nucleoside derivatives. A total of 13 examples were studied with successful reactions occurring in 11 cases (the azabenzotriazole derivatives, mentioned above, being the only unreactive entities). To understand whether these reactions are intra or intermolecular processes, a

  6. Morphine enhances the release of /sup 3/H-purines from rat brain cerebral cortical prisms

    SciTech Connect

    Wu, P.H.; Phillis, J.W.; Yuen, H.

    1982-10-01

    In vitro experiments have shown that /sup 3/H-purines can be released from /sup 3/H-adenosine preloaded rat brain cortical prisms by a KCl-evoked depolarization. The KCl-evoked release of /sup 3/H-purines is dependent on the concentration of KCl present in the superfusate. At concentrations of 10(-7) approximately 10(-5)M morphine did not influence the basal release of /sup 3/H-purines from the prisms, although it enhanced the KCl-evoked release of /sup 3/H-purines. The enhancement of KCl-evoked /sup 3/H-purine release by morphine was concentration-dependent and was antagonized by naloxone, suggesting the involvement of opiate receptors. Uptake studies with rat brain cerebral cortical synaptosomes show that morphine is a very weak inhibitor of adenosine uptake. Comparisons with dipyridamole, a potent inhibitor of adenosine uptake, suggest that this low level of inhibition of the uptake did not contribute significantly to the release of /sup 3/H-purine by morphine seen in our experiments. It is therefore suggested that morphine enhances KCl-evoked /sup 3/H-purine release by an interaction with opiate receptors and that the resultant increase in extracellular purine (adenosine) levels may account for some of the actions of morphine.

  7. Hen's egg as a source of valuable biologically active substances.

    PubMed

    Zdrojewicz, Zygmunt; Herman, Marta; Starostecka, Ewa

    2016-01-01

    The aim of this article is to show current knowledge concerning valuable substances biologically active present in hen eggs and underline important nutritive role of hen eggs. Hen egg is a good source of nutrients such as proteins, vitamins (A, B2, B6, B12, D, E, K), minerals and lipids. The significant part of lipids is a group of unsaturated phospholipids, which are components of cell membranes, act protectively on the cardiovascular system and contribute to a decrease of cholesterol level and blood pressure. Therefore, the consumption of unsaturated phospholipids is recommended especially in patients suffering from diseases of the cardiovascular system. Another important substance is egg cystatin, which has a wide spectrum of biological functions, for example the ability to stimulate cell growth, inhibit inflammatory processes and has antibacterial and antiviral properties. Other substance presented in the egg white which helps fight bacteria is lysozyme. It is used in medicine as an aid in antibiotic therapy and analgesic in the course of infection, as well as in tumor malignancies. Among the components contained in the egg yolk there is also immunoglobulin Y which due to its therapeutic importance deserves special attention. Its use offers the possibility of replacing chemotherapeutic agents in the treatment of bacterial infections of digestive system, as well as an opportunity for the development of medicine associated with passive immunization of patients. The egg is a rich source of retinol which gradual depletion in the organism causes many eye pathologies. A very important and useful part of the egg, used in medicine is a shell and its membranes, due to the high collagen content relevant in the treatment of connective tissue diseases. PMID:27383572

  8. KNApSAcK Metabolite Activity Database for retrieving the relationships between metabolites and biological activities.

    PubMed

    Nakamura, Yukiko; Afendi, Farit Mochamad; Parvin, Aziza Kawsar; Ono, Naoaki; Tanaka, Ken; Hirai Morita, Aki; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Kanaya, Shigehiko

    2014-01-01

    Databases (DBs) are required by various omics fields because the volume of molecular biology data is increasing rapidly. In this study, we provide instructions for users and describe the current status of our metabolite activity DB. To facilitate a comprehensive understanding of the interactions between the metabolites of organisms and the chemical-level contribution of metabolites to human health, we constructed a metabolite activity DB known as the KNApSAcK Metabolite Activity DB. It comprises 9,584 triplet relationships (metabolite-biological activity-target species), including 2,356 metabolites, 140 activity categories, 2,963 specific descriptions of biological activities and 778 target species. Approximately 46% of the activities described in the DB are related to chemical ecology, most of which are attributed to antimicrobial agents and plant growth regulators. The majority of the metabolites with antimicrobial activities are flavonoids and phenylpropanoids. The metabolites with plant growth regulatory effects include plant hormones. Over half of the DB contents are related to human health care and medicine. The five largest groups are toxins, anticancer agents, nervous system agents, cardiovascular agents and non-therapeutic agents, such as flavors and fragrances. The KNApSAcK Metabolite Activity DB is integrated within the KNApSAcK Family DBs to facilitate further systematized research in various omics fields, especially metabolomics, nutrigenomics and foodomics. The KNApSAcK Metabolite Activity DB could also be utilized for developing novel drugs and materials, as well as for identifying viable drug resources and other useful compounds.

  9. Lie Markov models with purine/pyrimidine symmetry.

    PubMed

    Fernández-Sánchez, Jesús; Sumner, Jeremy G; Jarvis, Peter D; Woodhams, Michael D

    2015-03-01

    Continuous-time Markov chains are a standard tool in phylogenetic inference. If homogeneity is assumed, the chain is formulated by specifying time-independent rates of substitutions between states in the chain. In applications, there are usually extra constraints on the rates, depending on the situation. If a model is formulated in this way, it is possible to generalise it and allow for an inhomogeneous process, with time-dependent rates satisfying the same constraints. It is then useful to require that, under some time restrictions, there exists a homogeneous average of this inhomogeneous process within the same model. This leads to the definition of "Lie Markov models" which, as we will show, are precisely the class of models where such an average exists. These models form Lie algebras and hence concepts from Lie group theory are central to their derivation. In this paper, we concentrate on applications to phylogenetics and nucleotide evolution, and derive the complete hierarchy of Lie Markov models that respect the grouping of nucleotides into purines and pyrimidines-that is, models with purine/pyrimidine symmetry. We also discuss how to handle the subtleties of applying Lie group methods, most naturally defined over the complex field, to the stochastic case of a Markov process, where parameter values are restricted to be real and positive. In particular, we explore the geometric embedding of the cone of stochastic rate matrices within the ambient space of the associated complex Lie algebra.

  10. Leishmania Metacyclogenesis Is Promoted in the Absence of Purines

    PubMed Central

    Serafim, Tiago Donatelli; Figueiredo, Amanda Braga; Costa, Pedro Augusto Carvalho; Marques-da-Silva, Eduardo Almeida; Gonçalves, Ricardo; de Moura, Sandra Aparecida Lima; Gontijo, Nelder Figueiredo; da Silva, Sydnei Magno; Michalick, Marilene Suzan Marques; Meyer-Fernandes, José Roberto; de Carvalho, Roberto Paes; Uliana, Silvia Reni Bortolin; Fietto, Juliana Lopes Rangel; Afonso, Luís Carlos Crocco

    2012-01-01

    Leishmania parasites, the causative agent of leishmaniasis, are transmitted through the bite of an infected sand fly. Leishmania parasites present two basic forms known as promastigote and amastigote which, respectively, parasitizes the vector and the mammalian hosts. Infection of the vertebrate host is dependent on the development, in the vector, of metacyclic promastigotes, however, little is known about the factors that trigger metacyclogenesis in Leishmania parasites. It has been generally stated that “stressful conditions” will lead to development of metacyclic forms, and with the exception of a few studies no detailed analysis of the molecular nature of the stress factor has been performed. Here we show that presence/absence of nucleosides, especially adenosine, controls metacyclogenesis both in vitro and in vivo. We found that addition of an adenosine-receptor antagonist to in vitro cultures of Leishmania amazonensis significantly increases metacyclogenesis, an effect that can be reversed by the presence of specific purine nucleosides or nucleobases. Furthermore, our results show that proliferation and metacyclogenesis are independently regulated and that addition of adenosine to culture medium is sufficient to recover proliferative characteristics for purified metacyclic promastigotes. More importantly, we show that metacyclogenesis was inhibited in sand flies infected with Leishmania infantum chagasi that were fed a mixture of sucrose and adenosine. Our results fill a gap in the life cycle of Leishmania parasites by demonstrating how metacyclogenesis, a key point in the propagation of the parasite to the mammalian host, can be controlled by the presence of specific purines. PMID:23050028

  11. Leishmania metacyclogenesis is promoted in the absence of purines.

    PubMed

    Serafim, Tiago Donatelli; Figueiredo, Amanda Braga; Costa, Pedro Augusto Carvalho; Marques-da-Silva, Eduardo Almeida; Gonçalves, Ricardo; de Moura, Sandra Aparecida Lima; Gontijo, Nelder Figueiredo; da Silva, Sydnei Magno; Michalick, Marilene Suzan Marques; Meyer-Fernandes, José Roberto; de Carvalho, Roberto Paes; Uliana, Silvia Reni Bortolin; Fietto, Juliana Lopes Rangel; Afonso, Luís Carlos Crocco

    2012-01-01

    Leishmania parasites, the causative agent of leishmaniasis, are transmitted through the bite of an infected sand fly. Leishmania parasites present two basic forms known as promastigote and amastigote which, respectively, parasitizes the vector and the mammalian hosts. Infection of the vertebrate host is dependent on the development, in the vector, of metacyclic promastigotes, however, little is known about the factors that trigger metacyclogenesis in Leishmania parasites. It has been generally stated that "stressful conditions" will lead to development of metacyclic forms, and with the exception of a few studies no detailed analysis of the molecular nature of the stress factor has been performed. Here we show that presence/absence of nucleosides, especially adenosine, controls metacyclogenesis both in vitro and in vivo. We found that addition of an adenosine-receptor antagonist to in vitro cultures of Leishmania amazonensis significantly increases metacyclogenesis, an effect that can be reversed by the presence of specific purine nucleosides or nucleobases. Furthermore, our results show that proliferation and metacyclogenesis are independently regulated and that addition of adenosine to culture medium is sufficient to recover proliferative characteristics for purified metacyclic promastigotes. More importantly, we show that metacyclogenesis was inhibited in sand flies infected with Leishmania infantum chagasi that were fed a mixture of sucrose and adenosine. Our results fill a gap in the life cycle of Leishmania parasites by demonstrating how metacyclogenesis, a key point in the propagation of the parasite to the mammalian host, can be controlled by the presence of specific purines.

  12. Pathway Engineered Enzymatic de novo Purine Nucleotide Synthesis

    PubMed Central

    Schultheisz, Heather L.; Szymczyna, Blair R.; Scott, Lincoln G.; Williamson, James R.

    2009-01-01

    A general method for isotopic labeling of the purine base moiety of nucleotides and RNA has been developed through biochemical pathway engineering in vitro. A synthetic scheme was designed and implemented utilizing recombinant enzymes from the pentose phosphate and de novo purine synthesis pathways, with regeneration of folate, aspartate, glutamine, ATP, and NADPH cofactors, in a single-pot reaction. Syntheses proceeded quickly and efficiently in comparison to chemical methods with isolated yields up to 66% for 13C, 15N enriched ATP and GTP. The scheme is robust and flexible, requiring only serine, NH4+, glucose and CO2 as stoichiometric precursors in labeled form. Using this approach, U-13C- GTP, U-13C,15N- GTP, 13C2,8- ATP and U-15N- GTP were synthesized on a millimole scale, and the utility of the isotope labeling is illustrated in NMR spectra of HIV-2 transactivation region (TAR) RNA containing 13C 2,8-adenosine and 15N-1,3,7,9,2-guanosine. Pathway engineering in vitro permits complex synthetic cascades to be effected expanding the applicability of enzymatic synthesis. PMID:18707057

  13. Polyphosphate Kinase from Activated Sludge Performing Enhanced Biological Phosphorus Removal†

    PubMed Central

    McMahon, Katherine D.; Dojka, Michael A.; Pace, Norman R.; Jenkins, David; Keasling, Jay D.

    2002-01-01

    A novel polyphosphate kinase (PPK) was retrieved from an uncultivated organism in activated sludge carrying out enhanced biological phosphorus removal (EBPR). Acetate-fed laboratory-scale sequencing batch reactors were used to maintain sludge with a high phosphorus content (approximately 11% of the biomass). PCR-based clone libraries of small subunit rRNA genes and fluorescent in situ hybridization (FISH) were used to verify that the sludge was enriched in Rhodocyclus-like β-Proteobacteria known to be associated with sludges carrying out EBPR. These organisms comprised approximately 80% of total bacteria in the sludge, as assessed by FISH. Degenerate PCR primers were designed to retrieve fragments of putative ppk genes from a pure culture of Rhodocyclus tenuis and from organisms in the sludge. Four novel ppk homologs were found in the sludge, and two of these (types I and II) shared a high degree of amino acid similarity with R. tenuis PPK (86 and 87% similarity, respectively). Dot blot analysis of total RNA extracted from sludge demonstrated that the Type I ppk mRNA was present, indicating that this gene is expressed during EBPR. Inverse PCR was used to obtain the full Type I sequence from sludge DNA, and a full-length PPK was cloned, overexpressed, and purified to near homogeneity. The purified PPK has a specific activity comparable to that of other PPKs, has a requirement for Mg2+, and does not appear to operate in reverse. PPK activity was found mainly in the particulate fraction of lysed sludge microorganisms. PMID:12324346

  14. Important biological activities induced by Thalassophryne maculosa fish venom.

    PubMed

    Sosa-Rosales, Josefina Ines; Piran-Soares, Ana Amélia; Farsky, Sandra H P; Takehara, Harumi Ando; Lima, Carla; Lopes-Ferreira, Mônica

    2005-02-01

    The accidents caused by Thalassophryne maculosa fish venoms are frequent and represent a public health problem in some regions of Venezuela. Most accidents occur in the fishing communities and tourists. The clinical picture is characterized by severe pain, dizziness, fever, edema, and necrosis. Due to the lack of efficient therapy it may take weeks, or even months for complete recovery of the victims. The investigations presented here were undertaken to assess the eletrophoretical profile and principal biological properties of the T. maculosa venom. Venom obtained from fresh captured specimens of this fish was tested in vitro or in animal models for a better characterization of its toxic activities. In contrast to other fish venoms, T. maculosa venom showed relative low LD50. The injection of venom in the footpad of mice reproduced a local inflammatory lesion similar to that described in humans. Significant increase of the nociceptive and edematogenic responses was observed followed within 48 h by necrosis. Pronounced alterations on microvascular hemodynamics were visualized after venom application. These alterations were represented by fibrin depots and thrombus formation followed by complete venular stasis and transient arteriolar contraction. T. maculosa venom is devoid of phospholipase A2 activity, but the venom showed proteolytic and myotoxic activities. SDS-Page analysis of the crude venom showed important bands: one band located above 97 M(w), one band between 68 and 97 M(w), one major band between 29 and 43 M(w) and the last one located below 18.4 M(w) Then, the results presented here support that T. maculosa venom present a mixture of bioactive toxins involved in a local inflammatory lesion. PMID:15626364

  15. Actinobacteria from Arid and Desert Habitats: Diversity and Biological Activity

    PubMed Central

    Mohammadipanah, Fatemeh; Wink, Joachim

    2016-01-01

    The lack of new antibiotics in the pharmaceutical pipeline guides more and more researchers to leave the classical isolation procedures and to look in special niches and ecosystems. Bioprospecting of extremophilic Actinobacteria through mining untapped strains and avoiding resiolation of known biomolecules is among the most promising strategies for this purpose. With this approach, members of acidtolerant, alkalitolerant, psychrotolerant, thermotolerant, halotolerant and xerotolerant Actinobacteria have been obtained from respective habitats. Among these, little survey exists on the diversity of Actinobacteria in arid areas, which are often adapted to relatively high temperatures, salt concentrations, and radiation. Therefore, arid and desert habitats are special ecosystems which can be recruited for the isolation of uncommon Actinobacteria with new metabolic capability. At the time of this writing, members of Streptomyces, Micromonospora, Saccharothrix, Streptosporangium, Cellulomonas, Amycolatopsis, Geodermatophilus, Lechevalieria, Nocardia, and Actinomadura are reported from arid habitats. However, metagenomic data present dominant members of the communities in desiccating condition of areas with limited water availability that are not yet isolated. Furthermore, significant diverse types of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes are detected in xerophilic and xerotolerant Actinobacteria and some bioactive compounds are reported from them. Rather than pharmaceutically active metabolites, molecules with protection activity against drying such as Ectoin and Hydroxyectoin with potential application in industry and agriculture have also been identified from xerophilic Actinobacteria. In addition, numerous biologically active small molecules are expected to be discovered from arid adapted Actinobacteria in the future. In the current survey, the diversity and biotechnological potential of Actinobacteria obtained from arid ecosystems

  16. Synthesis of biologically active influenza virus hemagglutinin in insect larvae.

    PubMed Central

    Kuroda, K; Gröner, A; Frese, K; Drenckhahn, D; Hauser, C; Rott, R; Doerfler, W; Klenk, H D

    1989-01-01

    The hemagglutinin of influenza (fowl plague) virus was expressed in larvae of Heliothis virescens by using recombinant Autographa californica nuclear polyhedrosis virus (AcNPV) as a vector. Animals were infected with the recombinant virus either by parenteral injection or by feeding. For oral uptake, recombinant virus occluded in polyhedra obtained from cultured Spodoptera frugiperda cells after coinfection with authentic AcNPV was used. Immunohistological analyses of infected animals revealed that the hemagglutinin was expressed only in those tissues that are also permissive for the replication of authentic AcNPV. These tissues included hypodermis, fat body, and tracheal matrix. After oral infection, hemagglutinin was also detected in individual gut cells. The amount of hemagglutinin synthesized in larvae after parenteral infection was 0.3% of the total protein, compared with 5% obtained in cultured insect cells. The hemagglutinin was transported to the cell surface and expressed in polarized cells only at the apical plasma membrane. It was processed by posttranslational proteolysis into the cleavage products HA1 and HA2. Oligosaccharides were attached by N-glycosidic linkages and were smaller than those found on hemagglutinin obtained from vertebrate cells. Hemagglutinin from larvae expressed receptor binding and cell fusion activities, but quantitation of the hemolytic capacity revealed that it was only about half as active as hemagglutinin from vertebrate or insect cell cultures. Chickens immunized with larval tissues containing hemagglutinin were protected from infection with fowl plague virus. These observations demonstrate that live insects are able to produce a recombinant membrane protein of vertebrate origin in biologically active form. Images PMID:2648023

  17. Purine and pyrimidine derivatives from the South China Sea gorgonian Subergorgia suberosa.

    PubMed

    Qi, Shu-Hua; Zhang, Si; Gao, Cheng-Hai; Li, Qin-Xing

    2008-07-01

    Three new purine derivatives, namely, 4-caryboxy-5,6-dihydro-4H,8H-pyrimido[1,2,3-cd]purine-8,10(9H)-dione (1), 7,9-dihydro-1-(3-oxobutyl)-1H-purine-6,8-dione (2), and 7-hydro-9-(3-oxobutyl)-1H-purine-6,8-dione (3) together with six known purine and pyrimidine derivatives were isolated from the EtOH/CH(2)Cl(2) extracts of the South China Sea gorgonian Subergorgia suberosa. The structures of 1-3 were determined on the bases of extensive spectroscopic analysis, including 1D and 2D NMR data.

  18. Evaluation of capillary chromatographic supports for immobilized human purine nucleoside phosphorylase in frontal affinity chromatography studies.

    PubMed

    de Moraes, Marcela Cristina; Temporini, Caterina; Calleri, Enrica; Bruni, Giovanna; Ducati, Rodrigo Gay; Santos, Diógenes Santiago; Cardoso, Carmen Lucia; Cass, Quezia Bezerra; Massolini, Gabriella

    2014-04-18

    The aim of this work was to optimize the preparation of a capillary human purine nucleoside phosphorylase (HsPNP) immobilized enzyme reactor (IMER) for characterization and affinity screening studies of new inhibitors by frontal affinity chromatography coupled to mass spectrometry (FAC-MS). For this purpose two monolithic supports, a Chromolith Speed Rod (0.1mm I.D.×5cm) and a methacrylate-based monolithic epoxy polymeric capillary column (0.25mm I.D.×5cm) with epoxy reactive groups were considered and compared to an IMER previously developed using an open fused silica capillary. Each HsPNP-IMER was characterized in terms of catalytic activity using Inosine as standard substrate. Furthermore, they were also explored for affinity ranking experiments. Kd determination was carried out with the based fused silica HsPNP-IMER and the results are herein discussed.

  19. Novel skeleton compound Allomyrinanoid A and two purine alkaloids from the adult of Allomyrina dichotoma L.

    PubMed

    Niu, Lanlan; Gao, Jiayu; Li, Haidi; Liu, Junna; Yin, Weiping

    2016-01-15

    Three new compounds were isolated from the adult insect of Allomyrina dichotoma L. for the first time. A new skeleton compound is named as Allomyrinanoid A (1) originated from the familiar norbornane derivatives and two new compounds of purine alkaloid are named as adenine-9-methylaldehyde oxime B (2) and 6-N-methyleneimine-adenine-9-methylaldehyde oxime B (3). The compounds (2) and (3) are the tautomers of imine-enamine and creatively separated form the solvent using column chromatography method. The structures of all isolated compounds were established by spectroscopic methods including analyses of their 1D, 2D NMR and HRESI-MS data, and confirmed by comparison of the literature data. These new components displayed antibacterial activities against both Gram-positive and Gram-negative strain.

  20. Biological activity and microscopic characterization of Lythrum salicaria L

    PubMed Central

    2013-01-01

    Background There are several plants have been used worldwide in the folk medicine with high incidence for treatment of human disorders, of which Lythrum salicaria belongs to the Lythraceae family has traditionally reputation for some medicinal usage and recently many biological and pharmacological activity of the plant have been studied. Methods In this study, microscopic characterizations of the aerial parts of the plant were determined. Moreover, the plant extract (aqueous methanol 80%) was subjected to an anti-diabetic activity test (in a rat model of streptozocin induced diabetes), anti-Helicobacter pylori (using disc diffusion method) along with antioxidant activity against DPPH (stable free radical) tests. Besides, total flavonoids, phenols, tannins, as well as polysaccharides contents have been assessed using spectroscopic methods. Results The microscopic properties of the plant fragments revealed anomocytic stomata, conical shape trichomes, and abundant spherical pollen grains as a characteristic pattern for the aerial parts of the plant. The extract of the plant at concentration of 15 g/kg showed mild lowering activity on blood glucose level to 12.6% and 7.3% after 2 and 3 h of administration. Additionally, clinically isolated H. pylori strain was inhibited with the plant extract at concentration of 500 mg/mL (zone of inhibition: 17 ± 0.08 mm). Moreover, IC50 values for DPPH inhibition of the plant extract, vitamin E, BHA were examined as 13.5, 14.2, and 7.8 μg/mL, respectively. Total flavonoids, phenols, tannin, and polysaccharides contents of the extract were successfully evaluated as 5.8 ± 0.4 μg QE/mg EXT, 331 ± 3.7 μg GAE/mg EXT, 340 ± 2.3 μg TAE/mg EXT, 21 ± 0.2 μg GE/mg EXT, respectively. Conclusions The results suggested that L. salicaria has low anti-diabetic and anti-Helicobacter pylori effects, but high antioxidant activity, just the same as positive standard (vitamin E), which might be attributed to the

  1. Controlled transcriptional regulation in eukaryotes by a novel transcription factor derived from Escherichia coli purine repressor.

    PubMed

    Yeon, Eun-Hee; Noh, Ju-Young; Kim, Jong-Min; Lee, Min-Young; Yoon, Sarah; Park, Sang-Kyu; Choi, Kang-Yell; Kim, Kyung-Sup

    2004-06-25

    Unlike the DNA-binding domains (DBD) of most eukaryotic transcription factors, Escherichia coli LacI family transcription factors are unable to bind to specific target DNA sequences without a cofactor-binding domain. In the present study, we reconstructed a novel DBD designated as PurHG, which binds constitutively to a 16bp purine repressor operator, by fusion of the purine repressor (PurR) DBD (residues 1-57) and the GAL4 dimerization domain (DD, residues 42-148). Binding of PurHG to DNA requires the dimerization and a hinge helix of PurR DBD. When the PurHG was expressed as a fusion protein in a form of a transcription activator (PurAD) or an artificial nuclear receptor (PurAPR or PurAER) responding to ligand, such as RU486 or beta-estradiol, it could regulate the expression of the reporter genes in NIH3T3 cells. The prerequisite region of the GAL4 DD for DNA-binding was amino acid residues from 42 to 98 in the form of PurAD, while the amino acid residues from 42 to 75 were sufficient for ligand-dependent regulation in the form of PurAPR. These results suggest that the dimerization function of the progesterone ligand-binding domain could be substituted for region 76-98 of the GAL4 DD. In summary, the fusion of the PurR DBD and the GAL4 DD generates fully active DNA-binding protein, PurHG, in vitro and in vivo, and these results provide the direct evidence of structural predictions that the proximate positioning of PurR hinge helical regions is critical for DNA-binding.

  2. Molecular and biochemical characterization of caffeine synthase and purine alkaloid concentration in guarana fruit.

    PubMed

    Schimpl, Flávia Camila; Kiyota, Eduardo; Mayer, Juliana Lischka Sampaio; Gonçalves, José Francisco de Carvalho; da Silva, José Ferreira; Mazzafera, Paulo

    2014-09-01

    Guarana seeds have the highest caffeine concentration among plants accumulating purine alkaloids, but in contrast with coffee and tea, practically nothing is known about caffeine metabolism in this Amazonian plant. In this study, the levels of purine alkaloids in tissues of five guarana cultivars were determined. Theobromine was the main alkaloid that accumulated in leaves, stems, inflorescences and pericarps of fruit, while caffeine accumulated in the seeds and reached levels from 3.3% to 5.8%. In all tissues analysed, the alkaloid concentration, whether theobromine or caffeine, was higher in young/immature tissues, then decreasing with plant development/maturation. Caffeine synthase activity was highest in seeds of immature fruit. A nucleotide sequence (PcCS) was assembled with sequences retrieved from the EST database REALGENE using sequences of caffeine synthase from coffee and tea, whose expression was also highest in seeds from immature fruit. The PcCS has 1083bp and the protein sequence has greater similarity and identity with the caffeine synthase from cocoa (BTS1) and tea (TCS1). A recombinant PcCS allowed functional characterization of the enzyme as a bifunctional CS, able to catalyse the methylation of 7-methylxanthine to theobromine (3,7-dimethylxanthine), and theobromine to caffeine (1,3,7-trimethylxanthine), respectively. Among several substrates tested, PcCS showed higher affinity for theobromine, differing from all other caffeine synthases described so far, which have higher affinity for paraxanthine. When compared to previous knowledge on the protein structure of coffee caffeine synthase, the unique substrate affinity of PcCS is probably explained by the amino acid residues found in the active site of the predicted protein. PMID:24856135

  3. Molecular and biochemical characterization of caffeine synthase and purine alkaloid concentration in guarana fruit.

    PubMed

    Schimpl, Flávia Camila; Kiyota, Eduardo; Mayer, Juliana Lischka Sampaio; Gonçalves, José Francisco de Carvalho; da Silva, José Ferreira; Mazzafera, Paulo

    2014-09-01

    Guarana seeds have the highest caffeine concentration among plants accumulating purine alkaloids, but in contrast with coffee and tea, practically nothing is known about caffeine metabolism in this Amazonian plant. In this study, the levels of purine alkaloids in tissues of five guarana cultivars were determined. Theobromine was the main alkaloid that accumulated in leaves, stems, inflorescences and pericarps of fruit, while caffeine accumulated in the seeds and reached levels from 3.3% to 5.8%. In all tissues analysed, the alkaloid concentration, whether theobromine or caffeine, was higher in young/immature tissues, then decreasing with plant development/maturation. Caffeine synthase activity was highest in seeds of immature fruit. A nucleotide sequence (PcCS) was assembled with sequences retrieved from the EST database REALGENE using sequences of caffeine synthase from coffee and tea, whose expression was also highest in seeds from immature fruit. The PcCS has 1083bp and the protein sequence has greater similarity and identity with the caffeine synthase from cocoa (BTS1) and tea (TCS1). A recombinant PcCS allowed functional characterization of the enzyme as a bifunctional CS, able to catalyse the methylation of 7-methylxanthine to theobromine (3,7-dimethylxanthine), and theobromine to caffeine (1,3,7-trimethylxanthine), respectively. Among several substrates tested, PcCS showed higher affinity for theobromine, differing from all other caffeine synthases described so far, which have higher affinity for paraxanthine. When compared to previous knowledge on the protein structure of coffee caffeine synthase, the unique substrate affinity of PcCS is probably explained by the amino acid residues found in the active site of the predicted protein.

  4. Plant polyphenols: chemical properties, biological activities, and synthesis.

    PubMed

    Quideau, Stéphane; Deffieux, Denis; Douat-Casassus, Céline; Pouységu, Laurent

    2011-01-17

    Eating five servings of fruits and vegetables per day! This is what is highly recommended and heavily advertised nowadays to the general public to stay fit and healthy! Drinking green tea on a regular basis, eating chocolate from time to time, as well as savoring a couple of glasses of red wine per day have been claimed to increase life expectancy even further! Why? The answer is in fact still under scientific scrutiny, but a particular class of compounds naturally occurring in fruits and vegetables is considered to be crucial for the expression of such human health benefits: the polyphenols! What are these plant products really? What are their physicochemical properties? How do they express their biological activity? Are they really valuable for disease prevention? Can they be used to develop new pharmaceutical drugs? What recent progress has been made toward their preparation by organic synthesis? This Review gives answers from a chemical perspective, summarizes the state of the art, and highlights the most significant advances in the field of polyphenol research.

  5. Chelating ability and biological activity of hesperetin Schiff base.

    PubMed

    Lodyga-Chruscinska, Elzbieta; Symonowicz, Marzena; Sykula, Anna; Bujacz, Anna; Garribba, Eugenio; Rowinska-Zyrek, Magdalena; Oldziej, Stanislaw; Klewicka, Elzbieta; Janicka, Magdalena; Krolewska, Karolina; Cieslak, Marcin; Brodowska, Katarzyna; Chruscinski, Longin

    2015-02-01

    Hydrazone hesperetin Schiff base (HHSB) - N-[(±)-[5,7-dihydroxy-2-(3-hydroxy-4-methoxy-phenyl)chroman-4-ylidene]amino]benzamide has been synthesized and its crystal structure was determined. This compound was used for the formation of Cu(II) complexes in solid state and in solution which were characterized using different spectroscopic methods. The analyses of potentiometric titration curves revealed that monomeric and dimeric complexes of Cu(II) are formed above pH7. The ESI-MS (electrospray ionization-mass spectrometry) spectra confirmed their formation. The EPR and UV-visible spectra evidenced the involvement of oxygen and nitrogen atoms in Cu(II) coordination. Hydrazone hesperetin Schiff base can show keto-enol tautomerism and coordinate Cu(II) in the keto (O(-), N, Oket) and in the enolate form (O(-), N, O(-)enol). The semi-empirical molecular orbital method PM6 and DFT (density functional theory) calculations have revealed that the more stable form of the dimeric complex is that one in which the ligand is present in the enol form. The CuHHSB complex has shown high efficiency in the cleavage of plasmid DNA in aqueous solution, indicating its potential as chemical nuclease. Studies on DNA interactions, antimicrobial and cytotoxic activities have been undertaken to gain more information on the biological significance of HHSB and copper(II)-HHSB chelate species.

  6. Biological activities caused by far-infrared radiation

    NASA Astrophysics Data System (ADS)

    Inoué, Shojiro; Kabaya, Morihiro

    1989-09-01

    Contrary to previous presumption, accumulated evidence indicates that far-infrared rays are biologically active. A small ceramic disk that emist far-infrared rays (4 16 μm) has commonly been applied to a local spot or a whole part of the body for exposure. Pioneering attempts to experimentally analyze an effect of acute and chronic radiation of far-infrared rays on living organisms have detected a growth-promoting effect in growing rats, a sleep-modulatory effect in freely behaving rats and an insomiac patient, and a blood circulation-enhancing effect in human skin. Question-paires to 542 users of far-infrared radiator disks embedded in bedelothes revealed that the majority of the users subjectively evaluated an improvement of their health. These effects on living organisms appear to be non-specifically triggered by an exposure to far-infrared rays, which eventually induce an increase in temperature of the body tissues or, more basically, an elevated motility of body fluids due to decrease in size of water clusters.

  7. Magnetically and biologically active bead-patterned hydrogels.

    PubMed

    Pregibon, Daniel C; Toner, Mehmet; Doyle, Patrick S

    2006-05-23

    We present a new approach to the direct patterning of biologically and magnetically active microbeads in nonbiofouling polymer scaffolds for use in microfluidic devices. Briefly, the process involves treatment of a glass substrate, conformal contact bonding of a PDMS microchannel on the substrate, filling of the channel with beads and prepolymer solution, and UV-initiated photopolymerization of a mask-defined pattern using a standard inverted microscope. This versatile and simple method allows for the rapid fabrication of dispersed or packed bead patterns in poly(ethylene glycol) (PEG) hydrogels that are covalently linked to glass surfaces. By exploiting the relative opacity of the microbeads used, we are able to create both partially exposed and fully encapsulated bead patterns. To demonstrate the utility of this new technology, we separated magnetic bead-bound B lymphocytes from T lymphocytes on a PEG-encapsulated magnetic filtration platform and also captured B cells directly on patterned, protein-decorated beads in a flow-through microfluidic device. Beyond cell sorting, the accurate patterning of industrially standardized, chemically diverse microbeads may have significant implications for microchip-based analyte detection.

  8. Plant polyphenols: chemical properties, biological activities, and synthesis.

    PubMed

    Quideau, Stéphane; Deffieux, Denis; Douat-Casassus, Céline; Pouységu, Laurent

    2011-01-17

    Eating five servings of fruits and vegetables per day! This is what is highly recommended and heavily advertised nowadays to the general public to stay fit and healthy! Drinking green tea on a regular basis, eating chocolate from time to time, as well as savoring a couple of glasses of red wine per day have been claimed to increase life expectancy even further! Why? The answer is in fact still under scientific scrutiny, but a particular class of compounds naturally occurring in fruits and vegetables is considered to be crucial for the expression of such human health benefits: the polyphenols! What are these plant products really? What are their physicochemical properties? How do they express their biological activity? Are they really valuable for disease prevention? Can they be used to develop new pharmaceutical drugs? What recent progress has been made toward their preparation by organic synthesis? This Review gives answers from a chemical perspective, summarizes the state of the art, and highlights the most significant advances in the field of polyphenol research. PMID:21226137

  9. Biological aerosol detection with combined passive-active infrared measurements

    NASA Astrophysics Data System (ADS)

    Ifarraguerri, Agustin I.; Vanderbeek, Richard G.; Ben-David, Avishai

    2004-12-01

    A data collection experiment was performed in November of 2003 to measure aerosol signatures using multiple sensors, all operating in the long-wave infrared. The purpose of this data collection experiment was to determine whether combining passive hyperspectral and LIDAR measurements can substantially improve biological aerosol detection performance. Controlled releases of dry aerosols, including road dust, egg albumin and two strains of Bacillus Subtilis var. Niger (BG) spores were performed using the ECBC/ARTEMIS open-path aerosol test chamber located in the Edgewood Area of Aberdeen Proving Grounds, MD. The chamber provides a ~ 20' path without optical windows. Ground truth devices included 3 aerodynamic particle sizers, an optical particle size spectrometer, 6 nephelometers and a high-volume particle sampler. Two sensors were used to make measurements during the test: the AIRIS long-wave infrared imaging spectrometer and the FAL CO2 LIDAR. The AIRIS and FAL data sets were analyzed for detection performance relative to the ground truth. In this paper we present experimental results from the individual sensors as well as results from passive-active sensor fusion. The sensor performance is presented in the form of receiver operating characteristic curves.

  10. Sustainable production of biologically active molecules of marine based origin.

    PubMed

    Murray, Patrick M; Moane, Siobhan; Collins, Catherine; Beletskaya, Tanya; Thomas, Olivier P; Duarte, Alysson W F; Nobre, Fernando S; Owoyemi, Ifeloju O; Pagnocca, Fernando C; Sette, L D; McHugh, Edward; Causse, Eric; Pérez-López, Paula; Feijoo, Gumersindo; Moreira, Ma T; Rubiolo, Juan; Leirós, Marta; Botana, Luis M; Pinteus, Susete; Alves, Celso; Horta, André; Pedrosa, Rui; Jeffryes, Clayton; Agathos, Spiros N; Allewaert, Celine; Verween, Annick; Vyverman, Wim; Laptev, Ivan; Sineoky, Sergei; Bisio, Angela; Manconi, Renata; Ledda, Fabio; Marchi, Mario; Pronzato, Roberto; Walsh, Daniel J

    2013-09-25

    The marine environment offers both economic and scientific potential which are relatively untapped from a biotechnological point of view. These environments whilst harsh are ironically fragile and dependent on a harmonious life form balance. Exploitation of natural resources by exhaustive wild harvesting has obvious negative environmental consequences. From a European industry perspective marine organisms are a largely underutilised resource. This is not due to lack of interest but due to a lack of choice the industry faces for cost competitive, sustainable and environmentally conscientious product alternatives. Knowledge of the biotechnological potential of marine organisms together with the development of sustainable systems for their cultivation, processing and utilisation are essential. In 2010, the European Commission recognised this need and funded a collaborative RTD/SME project under the Framework 7-Knowledge Based Bio-Economy (KBBE) Theme 2 Programme 'Sustainable culture of marine microorganisms, algae and/or invertebrates for high value added products'. The scope of that project entitled 'Sustainable Production of Biologically Active Molecules of Marine Based Origin' (BAMMBO) is outlined. Although the Union is a global leader in many technologies, it faces increasing competition from traditional rivals and emerging economies alike and must therefore improve its innovation performance. For this reason innovation is placed at the heart of a European Horizon 2020 Strategy wherein the challenge is to connect economic performance to eco performance. This article provides a synopsis of the research activities of the BAMMBO project as they fit within the wider scope of sustainable environmentally conscientious marine resource exploitation for high-value biomolecules.

  11. Novel peptidomimetic inhibitors of signal transducer and activator of transcription 3 dimerization and biological activity.

    PubMed

    Turkson, James; Kim, Joon S; Zhang, Shumin; Yuan, Jing; Huang, Mei; Glenn, Matthew; Haura, Eric; Sebti, Said; Hamilton, Andrew D; Jove, Richard

    2004-03-01

    The critical role of signal transducer and activator of transcription 3 (Stat3) in the growth and survival of human tumor cells identifies it as a promising target for cancer drug discovery. We previously identified a Stat3 SH2 domain-binding phosphopeptide, PY*LKTK, and its tripeptide derivatives, PY*L and AY*L (where Y* represents phosphotyrosine), which inhibit Stat3 biochemical activity and biological function. Here, we report novel peptidomimetic compounds based on PY*L (or AY*L) with substitution of the Y-1 residue by benzyl, pyridyl, or pyrazinyl derivatives that are selective and greater than 5-fold more potent in disrupting Stat3 activity in vitro than lead tripeptides. The biological activities of these derivatives mirror that originally observed for peptides. In this context, the representative peptidomimetic ISS 610 with 4-cyanobenzoate substitution inhibits constitutive Stat3 activity in Src-transformed mouse fibroblasts and human breast and lung carcinoma cells. This effect is not evident with the non-phosphorylated counterpart, ISS 610NP, consistent with interaction of peptidomimetics with the SH2 domain of Stat3. Moreover, ISS 610 induces cell growth inhibition and apoptosis of Src-transformed fibroblasts that contain persistently active Stat3. We present the first report of a peptidomimetic approach to design of small-molecule inhibitors of Stat3 that are also among the first examples of disruptors of transcription factor dimerization with the potential for novel cancer therapy.

  12. Anopheles gambiae Purine Nucleoside Phosphorylase: Catalysis, Structure, and Inhibition

    SciTech Connect

    Taylor,E.; Rinaldo-Matthis, A.; Li, L.; Ghanem, M.; Hazleton, K.; Cassera, M.; Almo, S.; Schramm, V.

    2007-01-01

    The purine salvage pathway of Anopheles gambiae, a mosquito that transmits malaria, has been identified in genome searches on the basis of sequence homology with characterized enzymes. Purine nucleoside phosphorylase (PNP) is a target for the development of therapeutic agents in humans and purine auxotrophs, including malarial parasites. The PNP from Anopheles gambiae (AgPNP) was expressed in Escherichia coli and compared to the PNPs from Homo sapiens (HsPNP) and Plasmodium falciparum (PfPNP). AgPNP has kcat values of 54 and 41 s-1 for 2'-deoxyinosine and inosine, its preferred substrates, and 1.0 s-1 for guanosine. However, the chemical step is fast for AgPNP at 226 s-1 for guanosine in pre-steady-state studies. 5'-Deaza-1'-aza-2'-deoxy-1'-(9-methylene)-Immucillin-H (DADMe-ImmH) is a transition-state mimic for a 2'-deoxyinosine ribocation with a fully dissociated N-ribosidic bond and is a slow-onset, tight-binding inhibitor with a dissociation constant of 3.5 pM. This is the tightest-binding inhibitor known for any PNP, with a remarkable Km/Ki* of 5.4 x 107, and is consistent with enzymatic transition state predictions of enhanced transition-state analogue binding in enzymes with enhanced catalytic efficiency. Deoxyguanosine is a weaker substrate than deoxyinosine, and DADMe-Immucillin-G is less tightly bound than DADMe-ImmH, with a dissociation constant of 23 pM for AgPNP as compared to 7 pM for HsPNP. The crystal structure of AgPNP was determined in complex with DADMe-ImmH and phosphate to a resolution of 2.2 Angstroms to reveal the differences in substrate and inhibitor specificity. The distance from the N1' cation to the phosphate O4 anion is shorter in the AgPNP{center_dot}DADMe-ImmH{center_dot}PO4 complex than in HsPNP{center_dot}DADMe-ImmH{center_dot}SO4, offering one explanation for the stronger inhibitory effect of DADMe-ImmH for AgPNP.

  13. Arginine mimetic structures in biologically active antagonists and inhibitors.

    PubMed

    Masic, Lucija Peterlin

    2006-01-01

    Peptidomimetics have found wide application as bioavailable, biostable, and potent mimetics of naturally occurring biologically active peptides. L-Arginine is a guanidino group-containing basic amino acid, which is positively charged at neutral pH and is involved in many important physiological and pathophysiological processes. Many enzymes display a preference for the arginine residue that is found in many natural substrates and in synthetic inhibitors of many trypsin-like serine proteases, e.g. thrombin, factor Xa, factor VIIa, trypsin, and in integrin receptor antagonists, used to treat many blood-coagulation disorders. Nitric oxide (NO), which is produced by oxidation of L-arginine in an NADPH- and O(2)-dependent process catalyzed by isoforms of nitric oxide synthase (NOS), exhibits diverse roles in both normal and pathological physiologies and has been postulated to be a contributor to the etiology of various diseases. Development of NOS inhibitors as well as analogs and mimetics of the natural substrate L-arginine, is desirable for potential therapeutic use and for a better understanding of their conformation when bound in the arginine binding site. The guanidino residue of arginine in many substrates, inhibitors, and antagonists forms strong ionic interactions with the carboxylate of an aspartic acid moiety, which provides specificity for the basic amino acid residue in the active side. However, a highly basic guanidino moiety incorporated in enzyme inhibitors or receptor antagonists is often associated with low selectivity and poor bioavailability after peroral application. Thus, significant effort is focused on the design and preparation of arginine mimetics that can confer selective inhibition for specific trypsin-like serine proteases and NOS inhibitors as well as integrin receptor antagonists and possess reduced basicity for enhanced oral bioavailability. This review will describe the survey of arginine mimetics designed to mimic the function of the

  14. Transition Path Sampling Study of the Reaction Catalyzed by Purine Nucleoside Phosphorylase

    PubMed Central

    Saen-oon, Suwipa; Schramm, Vern L.; Schwartz, Steven D.

    2010-01-01

    The Transition Path Sampling (TPS) method is a powerful technique for studying rare events in complex systems, that allows description of reactive events in atomic detail without prior knowledge of reaction coordinates and transition states. We have applied TPS in combination with a hybrid Quantum Mechanical/Molecular Mechanical (QM/MM) method to study the enzyme human purine nucleoside phosphorylase (hPNP). This enzyme catalyzes the reversible phosphorolysis of 6-oxypurine (deoxy)nucleosides to generate the corresponding purine base and (deoxy)ribose 1-phosphate. Hundreds of reactive trajectories were generated. Analysis of this transition path ensembles provides insight into the detailed mechanistic dynamics of reaction in the enzyme. Our studies have indicated a reaction mechanism involving the cleavage of the N-ribosidic bond to form transition states with substantial ribooxacarbenium ion character, that is then followed by conformational changes in the enzyme and the ribosyl group leading to migration of the anomeric carbon of the ribosyl group toward phosphate to form the product ribose 1-phosphate. This latter process is crucial in PNP, because several strong H-bonds form between active site residues in order to capture and align the phosphate nucleophile. Calculations of the commitment probability along reactive paths demonstrated the presence of a broad energy barrier at the transition state. Analysis of these transition state structures showed that bond-breaking and bond-forming distances are not a good choice for the reaction coordinate, but that the pseudorotational phase of the ribose ring is also a significant variable. PMID:20664707

  15. Activities for Students: Biology as a Source for Algebra Equations--The Heart

    ERIC Educational Resources Information Center

    Horak, Virginia M.

    2005-01-01

    The high school course that integrated first year algebra with an introductory environmental biology/anatomy and physiology course, in order to solve algebra problems is discussed. Lessons and activities for the course were taken by identifying the areas where mathematics and biology content intervenes may help students understand biology concepts…

  16. Investigating the Use of Inquiry & Web-Based Activities with Inclusive Biology Learners

    ERIC Educational Resources Information Center

    Bodzin, Alec M.; Waller, Patricia L.; Edwards, Lana; Darlene Kale, Santoro

    2007-01-01

    A Web-integrated biology program is used to explore how to best assist inclusive high school students to learn biology with inquiry-based activities. Classroom adaptations and instructional strategies teachers may use to assist in promoting biology learning with inclusive learners are discussed.

  17. Microbial Survey of a Full-Scale, Biologically Active Filter for Treatment of Drinking Water

    PubMed Central

    DeBry, Ronald W.; Lytle, Darren A.

    2012-01-01

    The microbial community of a full-scale, biologically active drinking water filter was surveyed using molecular techniques. Nitrosomonas, Nitrospira, Sphingomonadales, and Rhizobiales dominated the clone libraries. The results elucidate the microbial ecology of biological filters and demonstrate that biological treatment of drinking water should be considered a viable alternative to physicochemical methods. PMID:22752177

  18. Evidence from CD spectra that d(purine).r(pyrimidine) and r(purine).d(pyrimidine) hybrids are in different structural classes.

    PubMed Central

    Hung, S H; Yu, Q; Gray, D M; Ratliff, R L

    1994-01-01

    CD spectra and difference CD spectra of four d(oligopurine).r(oligopyrimidine) and four r(oligopurine).d(oligopyrimidine) hybrid duplexes containing mixed A.T(U) and G.C base pairs were compared with the spectra of four DNA.DNA and four RNA.RNA oligomer duplexes of similar repeating sequences. The 16 duplexes were formed by mixing oligomers that were 24 nucleotides long. The buffer was 0.05 M Na+ (phosphate), pH 7.0. DNA.DNA and RNA.RNA oligomer duplexes were used as reference B-form and A-form structures. We found that the CD spectra of d(purine).r(pyrimidine) and r(purine).d(pyrimidine) hybrid duplexes were different from the CD spectra of either DNA.DNA or RNA.RNA duplexes. The data suggested that these hybrids have intermediate structures between A-form RNA and B-form DNA structures. The CD spectra of d(purine).r(pyrimidine) and r(purine).d(pyrimidine) hybrid duplexes were different from each other, but the hybrids in each class had consistent CD spectra as indicated by nearest-neighbor comparisons. Thus, it appeared that the two types of hybrids belonged to different structural classes. The negative 210 nm band found in difference CD spectra was correlated with the presence of an r(purine) strand in the hybrid duplexes. The melting temperatures (Tm values) of these hybrids were compared with the Tm values of the DNA.DNA and RNA.RNA duplexes. The order of the thermal stability was: RNA.RNA duplex > r(purine).d(pyrimidine) hybrid > DNA.DNA duplex > d(purine).r(pyrimidine) hybrid, when comparing analogous sequences. PMID:7937162

  19. Electrodermal screening of biologically active points for upper gastrointestinal bleeding.

    PubMed

    Tseng, Ying-Jung; Hu, Wen-Long; Hung, I-Ling; Hsieh, Chia-Jung; Hung, Yu-Chiang

    2014-01-01

    The purpose of this case-control study was to investigate the relationship between the electrical resistance of the skin at biologically active points (BAPs) on the main meridians and upper gastrointestinal bleeding (UGIB). Electrical resistance to direct current at 20 BAPs on the fingers and toes of 100 patients with (38 men, 12 women; mean age [range], 58.20 ± 19.62 [18-83] years) and without (27 men, 23 women; 49.54 ± 12.12 [22-74] years) UGIB was measured through electrodermal screening (EDS), based on the theory of electroacupuncture according to Voll (EAV). Data were compared through analysis of variance (ANOVA), receiver operating characteristic (ROC) curve analysis, and logistic regression. The initial readings were lower in the UGIB group, indicating blood and energy deficiency due to UGIB. Significant differences in indicator drop values were observed at nine BAPs (p < 0.05) on the bilateral small intestine, bilateral stomach, bilateral circulation, bilateral fibroid degeneration, and right lymph meridians. The area under the ROC curve values of the BAPs on the bilateral small intestine and stomach meridians were larger than 0.5, suggesting the diagnostic accuracy of EDS for UGIB on the basis of the indicator drop of these BAPs. Logistic regression revealed that when the indicator drop of the BAP on the left stomach meridian increased by one score, the risk of UGIB increased by about 1.545-3.523 times. In conclusion, the change in the electrical resistance of the skin measured by EDS at the BAPs on the bilateral small intestine and stomach meridians provides specific information on UGIB.

  20. Biological activity, design, synthesis and structure activity relationship of some novel derivatives of curcumin containing sulfonamides.

    PubMed

    Lal, Jaggi; Gupta, Sushil K; Thavaselvam, D; Agarwal, Dau D

    2013-06-01

    Five series of curcumin derivatives with sulfonamides 3a-3e, 4a-4e, 5a-5e, 6a-6e and 7a-7e have been synthesized and evaluated for in vitro antibacterial activity against selected medically important gram-(+) and gram-(-) bacterial species viz. Staphylococcus aureus, Bacillus cereus, Salmonella typhi, Pseudomonas aeruginosa and Escherichia coli, and antifungal activity against few pathogenic fungal species viz. Aspergillus niger, Aspergillus flavus, Trichoderma viride and Curvularia lunata. The cytotoxicity has been determined by measuring IC50 values against human cell lines HeLa, Hep G-2, QG-56 and HCT-116. Among the compounds screened, 3a-3e showed the most potent biological activity against tested bacteria and fungi. Compounds 3a-3e displayed higher cytotoxicity than curcumin. The curcumin derivatives were also evaluated for in vivo anti-inflammatory activity. In contrast, the compounds 6a-6e and 7a-7e showed dramatically decrease in biological activity. PMID:23685942

  1. Structural and catalytic effects of an invariant purine substitution in the hammerhead ribozyme: implications for the mechanism of acid-base catalysis.

    PubMed

    Schultz, Eric P; Vasquez, Ernesto E; Scott, William G

    2014-09-01

    The hammerhead ribozyme catalyzes RNA cleavage via acid-base catalysis. Whether it does so by general acid-base catalysis, in which the RNA itself donates and abstracts protons in the transition state, as is typically assumed, or by specific acid-base catalysis, in which the RNA plays a structural role and proton transfer is mediated by active-site water molecules, is unknown. Previous biochemical and crystallographic experiments implicate an invariant purine in the active site, G12, as the general base. However, G12 may play a structural role consistent with specific base catalysis. To better understand the role of G12 in the mechanism of hammerhead catalysis, a 2.2 Å resolution crystal structure of a hammerhead ribozyme from Schistosoma mansoni with a purine substituted for G12 in the active site of the ribozyme was obtained. Comparison of this structure (PDB entry 3zd4), in which A12 is substituted for G, with three previously determined structures that now serve as important experimental controls, allows the identification of structural perturbations that are owing to the purine substitution itself. Kinetic measurements for G12 purine-substituted schistosomal hammerheads confirm a previously observed dependence of rate on the pK(a) of the substituted purine; in both cases inosine, which is similar to G in pK(a) and hydrogen-bonding properties, is unexpectedly inactive. Structural comparisons indicate that this may primarily be owing to the lack of the exocyclic 2-amino group in the G12A and G12I substitutions and its structural effect upon both the nucleotide base and phosphate of A9. The latter involves the perturbation of a previously identified and well characterized metal ion-binding site known to be catalytically important in both minimal and full-length hammerhead ribozyme sequences. The results permit it to be suggested that G12 plays an important role in stabilizing the active-site structure. This result, although not inconsistent with the potential

  2. Structural and catalytic effects of an invariant purine substitution in the hammerhead ribozyme: implications for the mechanism of acid–base catalysis

    PubMed Central

    Schultz, Eric P.; Vasquez, Ernesto E.; Scott, William G.

    2014-01-01

    The hammerhead ribozyme catalyzes RNA cleavage via acid–base catalysis. Whether it does so by general acid–base catalysis, in which the RNA itself donates and abstracts protons in the transition state, as is typically assumed, or by specific acid–base catalysis, in which the RNA plays a structural role and proton transfer is mediated by active-site water molecules, is unknown. Previous biochemical and crystallographic experiments implicate an invariant purine in the active site, G12, as the general base. However, G12 may play a structural role consistent with specific base catalysis. To better understand the role of G12 in the mechanism of hammerhead catalysis, a 2.2 Å resolution crystal structure of a hammerhead ribozyme from Schistosoma mansoni with a purine substituted for G12 in the active site of the ribozyme was obtained. Comparison of this structure (PDB entry 3zd4), in which A12 is substituted for G, with three previously determined structures that now serve as important experimental controls, allows the identification of structural perturbations that are owing to the purine substitution itself. Kinetic measurements for G12 purine-substituted schistosomal hammerheads confirm a previously observed dependence of rate on the pK a of the substituted purine; in both cases inosine, which is similar to G in pK a and hydrogen-bonding properties, is unexpectedly inactive. Structural comparisons indicate that this may primarily be owing to the lack of the exocyclic 2-amino group in the G12A and G12I substitutions and its structural effect upon both the nucleotide base and phosphate of A9. The latter involves the perturbation of a previously identified and well characterized metal ion-binding site known to be catalytically important in both minimal and full-length hammerhead ribozyme sequences. The results permit it to be suggested that G12 plays an important role in stabilizing the active-site structure. This result, although not inconsistent with the

  3. Cyclopenta[c]phenanthrenes--chemistry and biological activity.

    PubMed

    Brzuzan, Paweł; Góra, Maciej; Luczyński, Michał K; Woźny, Maciej

    2013-06-25

    Despite cyclopenta-fused polycyclic aromatic hydrocarbons (CP-PAHs) having been detected in the environment, the ability of these compounds to induce cellular and tissue responses remains poorly characterized. In this review, we look at the chemistry and biological activity of the cyclopenta[c]phenanthrenes (CP[c]Phs) as potential chemicals of concern in the process of risk assessment. The first part of the review deals with the environmental occurrence and chemistry of CP-PAHs, focusing on available methods of CP[c]Ph chemical synthesis. The most interesting structural feature of the CP[c]Ph is the presence of a pseudo fjord-region constructed by the cyclopentane ring. This compound can be treated either as a structurally similar one to B[c]Ph, or as a phenanthrene skeleton with an electrodonating alkyl substituent in the bay-region of the molecule. The second thread, providing available data on the adverse effects of CP[c]Ph compounds on cells and tissues of living organisms, mainly fish, improves our understanding of these possible environmental hazards. The data show that CP[c]Ph is less potent at inducing CYP1A gene expression in rainbow trout than benzo[a]pyrene (B[a]P), a well-known Ah-receptor agonist. Interestingly, the CP[c]Ph dependent up-regulation of CYP1A mRNA is positively correlated with the incidences of clastogenic changes in rainbow trout erythrocytes. CP[c]Ph has, comparably to B[a]P, a potential to repress expression of tumor suppressor p53, in the head kidney of rainbow trout. Furthermore, estrogen responsive genes in fish liver, ERα and VTG, are not induced by CP[c]Ph, suggesting that the compound has no endocrine disrupting potential. However, some CP[c]Phs show mutagenic activity when investigated in the Ames test, and exhibit genotoxic properties in in vitro micronucleus assay. The above characteristics suggest that CP-PAHs are chemicals of concern for which potential pathways of exposure should be further identified. PMID:23628509

  4. Folate-Dependent Purine Nucleotide Biosynthesis in Humans1

    PubMed Central

    Baggott, Joseph E; Tamura, Tsunenobu

    2015-01-01

    Purine nucleotide biosynthesis de novo (PNB) requires 2 folate-dependent transformylases—5′-phosphoribosyl-glycinamide (GAR) and 5′-phosphoribosyl-5-aminoimidazole-4-carboxamide (AICAR) transformylases—to introduce carbon 8 (C8) and carbon 2 (C2) into the purine ring. Both transformylases utilize 10-formyltetrahydrofolate (10-formyl-H4folate), where the formyl-carbon sources include ring-2-C of histidine, 3-C of serine, 2-C of glycine, and formate. Our findings in human studies indicate that glycine provides the carbon for GAR transformylase (exclusively C8), whereas histidine and formate are the predominant carbon sources for AICAR transformylase (C2). Contrary to the previous notion, these carbon sources may not supply a general 10-formyl-H4folate pool, which was believed to equally provide carbons to C8 and C2. To explain these phenomena, we postulate that GAR transformylase is in a complex with the trifunctional folate-metabolizing enzyme (TFM) and serine hydroxymethyltransferase to channel carbons of glycine and serine to C8. There is no evidence for channeling carbons of histidine and formate to AICAR transformylase (C2). GAR transformylase may require the TFM to furnish 10-formyl-H4folate immediately after its production from serine to protect its oxidation to 10-formyldihydrofolate (10-formyl-H2folate), whereas AICAR transformylase can utilize both 10-formyl-H2folate and 10-formyl-H4folate. Human liver may supply AICAR to AICAR transformylase in erythrocytes/erythroblasts. Incorporation of ring-2-C of histidine and formate into C2 of urinary uric acid presented a circadian rhythm with a peak in the morning, which corresponds to the maximum DNA synthesis in the bone marrow, and it may be useful in the timing of the administration of drugs that block PNB for the treatment of cancer and autoimmune disease. PMID:26374178

  5. Folate-Dependent Purine Nucleotide Biosynthesis in Humans.

    PubMed

    Baggott, Joseph E; Tamura, Tsunenobu

    2015-09-01

    Purine nucleotide biosynthesis de novo (PNB) requires 2 folate-dependent transformylases-5'-phosphoribosyl-glycinamide (GAR) and 5'-phosphoribosyl-5-aminoimidazole-4-carboxamide (AICAR) transformylases-to introduce carbon 8 (C8) and carbon 2 (C2) into the purine ring. Both transformylases utilize 10-formyltetrahydrofolate (10-formyl-H4folate), where the formyl-carbon sources include ring-2-C of histidine, 3-C of serine, 2-C of glycine, and formate. Our findings in human studies indicate that glycine provides the carbon for GAR transformylase (exclusively C8), whereas histidine and formate are the predominant carbon sources for AICAR transformylase (C2). Contrary to the previous notion, these carbon sources may not supply a general 10-formyl-H4folate pool, which was believed to equally provide carbons to C8 and C2. To explain these phenomena, we postulate that GAR transformylase is in a complex with the trifunctional folate-metabolizing enzyme (TFM) and serine hydroxymethyltransferase to channel carbons of glycine and serine to C8. There is no evidence for channeling carbons of histidine and formate to AICAR transformylase (C2). GAR transformylase may require the TFM to furnish 10-formyl-H4folate immediately after its production from serine to protect its oxidation to 10-formyldihydrofolate (10-formyl-H2folate), whereas AICAR transformylase can utilize both 10-formyl-H2folate and 10-formyl-H4folate. Human liver may supply AICAR to AICAR transformylase in erythrocytes/erythroblasts. Incorporation of ring-2-C of histidine and formate into C2 of urinary uric acid presented a circadian rhythm with a peak in the morning, which corresponds to the maximum DNA synthesis in the bone marrow, and it may be useful in the timing of the administration of drugs that block PNB for the treatment of cancer and autoimmune disease. PMID:26374178

  6. Crystal structure of calf spleen purine nucleoside phosphorylase with two full trimers in the asymmetric unit: important implications for the mechanism of catalysis.

    PubMed

    Bzowska, Agnieszka; Koellner, Gertraud; Wielgus-Kutrowska, Beata; Stroh, Albrecht; Raszewski, Grzegorz; Holý, Antonin; Steiner, Thomas; Frank, Joachim

    2004-09-17

    The crystal structure of the binary complex of trimeric purine nucleoside phosphorylase (PNP) from calf spleen with the acyclic nucleoside phosphonate inhibitor 2,6-diamino-(S)-9-[2-(phosphonomethoxy)propyl]purine ((S)-PMPDAP) is determined at 2.3A resolution in space group P2(1)2(1)2(1). Crystallization in this space group, which is observed for the first time with a calf spleen PNP crystal structure, is obtained in the presence of calcium atoms. In contrast to the previously described cubic space group P2(1)3, two independent trimers are observed in the asymmetric unit, hence possible differences between monomers forming the biologically active trimer could be detected, if present. Such differences would be expected due to third-of-the-sites binding documented for transition-state events and inhibitors. However, no differences are noted, and binding stoichiometry of three inhibitor molecules per enzyme trimer is observed in the crystal structure, and in the parallel solution studies using isothermal titration calorimetry and spectrofluorimetric titrations. Presence of phosphate was shown to modify binding stoichiometry of hypoxanthine. Therefore, the enzyme was also crystallized in space group P2(1)2(1)2(1) in the presence of (S)-PMPDAP and phosphate, and the resulting structure of the binary PNP/(S)-PMPDAP complex was refined at 2.05A resolution. No qualitative differences between complexes obtained with and without the presence of phosphate were detected, except for the hydrogen bond contact of Arg84 and a phosphonate group, which is observed only in the former complex in three out of six independent monomers. Possible hydrogen bonds observed in the enzyme complexed with (S)-PMPDAP, in particular a putative hydrogen bonding contact N(1)-H cdots, three dots, centered Glu201, indicate that the inhibitor binds in a tautomeric or ionic form in which position N(1) acts as a hydrogen bond donor. This points to a crucial role of this hydrogen bond in defining

  7. Disturbance of Antioxidant Enzymes and Purine Metabolism in the Ejaculate of Men Living in Disadvantaged Areas of Kyzylorda Region

    PubMed Central

    Kislitskaya, Valentihna N.; Kenzhin, Zhandos D.; Kultanov, Berikbay Zh.; Dosmagambetova, Raushan S.; Turmuhambetova, Anar A.

    2015-01-01

    AIM: Objective of the study was to evaluate the state of the main indicators of antioxidant status and enzymes of purine metabolism in the germ cells of men living in the zone of ecological catastrophe Aral Sea region. METHODS: The criterion for inclusion is the stay of an adult in the Aral Sea area is not less than 5 years, employment in occupations with no more than 2 hazard class. Determination of the activity of adenosine deaminase (ADA) was conducted in semen by the method of Nemechek et al., 1993. Determination of the activity of catalase (CAT) was performed according by the method of Korolyuk et al., 1988. RESULTS: Results of the study indicate a change in the activity of catalase and adenosine deaminase, due to increased levels of oxidative stress and the development of the pathological process. CONCLUSIONS: According to the results of study, it was put the influence of negative factors of the Aral Sea region in men’s sperm of reproductive age gives to disability free-radical processes, that proves changing of ferments of ant oxidative protection Catalase and adenosine deaminase (ADA). This disturbance in men’s sperm of reproductive age leading to increased level of oxidative stress and impaired activity of antioxidant enzymes and purine metabolism, responsible for the abnormal transmembrane and intracellular processes, reflecting the degree of imbalance of enzymes. PMID:27275276

  8. The role of purine degradation in methane biosynthesis and energy production in Methanococcus vannielii

    SciTech Connect

    DeMoll, E.

    1990-10-22

    Research continues on the role of purine degradation in methane biosynthesis and energy production in Methanococcus vannielii. This report summarizes current progress of the research. Topics include: A survey of other methanogens for the purine degradation pathway; isolate and characterize the enzyme and products of formiminoglycine cleavage; ascertain the fate of glycine from the formiminoglycine cleavage; elucidate the route of incorporation of the formyl moiety of formiminoglycine into methane biosynthesis; determine the percent methane and amino acid synthesis from purine degradation; and related studies on xanthine dehydrogenase and pyrimidine degradation of M. Vannielii. (SM)

  9. Systems Biology Graphical Notation: Activity Flow language Level 1 Version 1.2.

    PubMed

    Mi, Huaiyu; Schreiber, Falk; Moodie, Stuart; Czauderna, Tobias; Demir, Emek; Haw, Robin; Luna, Augustin; Le Novère, Nicolas; Sorokin, Anatoly; Villéger, Alice

    2015-01-01

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Activity Flow language represents the influences of activities among various entities within a network. Unlike SBGN PD and ER that focus on the entities and their relationships with others, SBGN AF puts the emphasis on the functions (or activities) performed by the entities, and their effects to the functions of the same or other entities. The nodes (elements) describe the biological activities of the entities, such as protein kinase activity, binding activity or receptor activity, which can be easily mapped to Gene Ontology molecular function terms. The edges (connections) provide descriptions of relationships (or influences) between the activities, e.g., positive influence and negative influence. Among all three languages of SBGN, AF is the closest to signaling pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge. PMID:26528563

  10. Systems Biology Graphical Notation: Activity Flow language Level 1 Version 1.2.

    PubMed

    Mi, Huaiyu; Schreiber, Falk; Moodie, Stuart; Czauderna, Tobias; Demir, Emek; Haw, Robin; Luna, Augustin; Le Novère, Nicolas; Sorokin, Anatoly; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Activity Flow language represents the influences of activities among various entities within a network. Unlike SBGN PD and ER that focus on the entities and their relationships with others, SBGN AF puts the emphasis on the functions (or activities) performed by the entities, and their effects to the functions of the same or other entities. The nodes (elements) describe the biological activities of the entities, such as protein kinase activity, binding activity or receptor activity, which can be easily mapped to Gene Ontology molecular function terms. The edges (connections) provide descriptions of relationships (or influences) between the activities, e.g., positive influence and negative influence. Among all three languages of SBGN, AF is the closest to signaling pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  11. Purines in the eye: recent evidence for the physiological and pathological role of purines in the RPE, retinal neurons, astrocytes, Müller cells, lens, trabecular meshwork, cornea and lacrimal gland.

    PubMed

    Sanderson, Julie; Dartt, Darlene A; Trinkaus-Randall, Vickery; Pintor, Jesus; Civan, Mortimer M; Delamere, Nicholas A; Fletcher, Erica L; Salt, Thomas E; Grosche, Antje; Mitchell, Claire H

    2014-10-01

    This review highlights recent findings that describ how purines modulate the physiological and pathophysiological responses of ocular tissues. For example, in lacrimal glands the cross-talk between P2X7 receptors and both M3 muscarinic receptors and α1D-adrenergic receptors can influence tear secretion. In the cornea, purines lead to post-translational modification of EGFR and structural proteins that participate in wound repair in the epithelium and influence the expression of matrix proteins in the stroma. Purines act at receptors on both the trabecular meshwork and ciliary epithelium to modulate intraocular pressure (IOP); ATP-release pathways of inflow and outflow cells differ, possibly permitting differential modulation of adenosine delivery. Modulators of trabecular meshwork cell ATP release include cell volume, stretch, extracellular Ca(2+) concentration, oxidation state, actin remodeling and possibly endogenous cardiotonic steroids. In the lens, osmotic stress leads to ATP release following TRPV4 activation upstream of hemichannel opening. In the anterior eye, diadenosine polyphosphates such as Ap4A act at P2 receptors to modulate the rate and composition of tear secretion, impact corneal wound healing and lower IOP. The Gq11-coupled P2Y1-receptor contributes to volume control in Müller cells and thus the retina. P2X receptors are expressed in neurons in the inner and outer retina and contribute to visual processing as well as the demise of retinal ganglion cells. In RPE cells, the balance between extracellular ATP and adenosine may modulate lysosomal pH and the rate of lipofuscin formation. In optic nerve head astrocytes, mechanosensitive ATP release via pannexin hemichannels, coupled with stretch-dependent upregulation of pannexins, provides a mechanism for ATP signaling in chronic glaucoma. With so many receptors linked to divergent functions throughout the eye, ensuring the transmitters remain local and stimulation is restricted to the intended target

  12. Purines in the eye: recent evidence for the physiological and pathological role of purines in the RPE, retinal neurons, astrocytes, Müller cells, lens, trabecular meshwork, cornea and lacrimal gland

    PubMed Central

    Sanderson, Julie; Dartt, Darlene A.; Trinkaus-Randall, Vickery; Pintor, Jesus; Civan, Mortimer M.; Delamere, Nicholas A.; Fletcher, Erica L.; Salt, Thomas E.; Grosche, Antje; Mitchell, Claire H.

    2014-01-01

    This review highlights recent findings that describe how purines modulate the physiological and pathophysiological responses of ocular tissues. For example, in lacrimal glands the cross-talk between P2X7 receptors and both M3 muscarinic receptors and α1D-adrenergic receptors can influence tear secretion. In the cornea, purines lead to post-translational modification of EGFR and structural proteins that participate in wound repair in the epithelium and influence the expression of matrix proteins in the stroma. Purines act at receptors on both the trabecular meshwork and ciliary epithelium to modulate intraocular pressure (IOP); ATP-release pathways of inflow and outflow cells differ, possibly permitting differential modulation of adenosine delivery. Modulators of trabecular meshwork cell ATP release include cell volume, stretch, extracellular Ca2+ concentration, oxidation state, actin remodeling and possibly endogenous cardiotonic steroids. In the lens, osmotic stress leads to ATP release following TRPV4 activation upstream of hemichannel opening. In the anterior eye, diadenosine polyphosphates such as Ap4A act at P2 receptors to modulate the rate and composition of tear secretion, impact corneal wound healing and lower IOP. The Gq11-coupled P2Y1-receptor contributes to volume control in Müller cells and thus the retina. P2X receptors are expressed in neurons in the inner and outer retina and contribute to visual processing as well as the demise of retinal ganglion cells. In RPE cells, the balance between extracellular ATP and adenosine may modulate lysosomal pH and the rate of lipofuscin formation. In optic nerve head astrocytes, mechanosensitive ATP release via pannexin hemichannels, coupled with stretch-dependent upregulation of pannexins, provides a mechanism for ATP signaling in chronic glaucoma. With so many receptors linked to divergent functions throughout the eye, ensuring the transmitters remain local and stimulation is restricted to the intended target

  13. FR901483, a novel immunosuppressant isolated from Cladobotryum sp. No. 11231. Taxonomy of the producing organism, fermentation, isolation, physico-chemical properties and biological activities.

    PubMed

    Sakamoto, K; Tsujii, E; Abe, F; Nakanishi, T; Yamashita, M; Shigematsu, N; Izumi, S; Okuhara, M

    1996-01-01

    FR901483, a novel immunosuppressant, has been isolated from the fermentation broth of Cladobotryum sp. No. 11231. The molecular formula of FR901483 has been determined as C20H31N2O6P. FR901483 exerts a potent immunosuppressive activity in vitro and significantly prolongs graft survival time in the rat skin allograft model. This compound has an intriguing tricyclic structure possessing a phosphate ester in its molecule. The ester residue may play an important role in exerting immunosuppressive activity because the desphosphoryl compound is devoid of activity. It is thought that the primary target of immunosuppression by this compound is inhibition of purine nucleotide biosynthesis. PMID:8609083

  14. Three Activities To Assist Biology Teachers in Presenting Conceptually Difficult Topics.

    ERIC Educational Resources Information Center

    Taylor, Neil; Tulip, David

    1997-01-01

    Outlines three activities for different areas of biology that can serve as motivators for students or as demonstrations. Each activity is easy to organize and uses available materials. Topics include evolution, anaerobic respiration, and heat loss. (DDR)

  15. Homochiral Selectivity in RNA Synthesis: Montmorillonite-catalyzed Quaternary Reactions of D, L-Purine with D, L- Pyrimidine Nucleotides

    NASA Astrophysics Data System (ADS)

    Joshi, Prakash C.; Aldersley, Michael F.; Ferris, James P.

    2011-06-01

    Selective adsorption of D, L-ImpA with D, L-ImpU on the platelets of montmorillonite demonstrates an important reaction pathway for the origin of homochirality in RNA synthesis. Our earlier studies have shown that the individual reactions of D, L-ImpA or D, L-ImpU on montmorillonite catalyst produced oligomers which were only partially inhibited by the incorporation of both D- and L-enantiomers. Homochirality in these reactions was largely due to the formation of cyclic dimers that cannot elongate. We investigated the quaternary reactions of D, L-ImpA with D, L-ImpU on montmorillonite. The chain length of these oligomers increased from 9-mer to 11-mer as observed by HPLC, with a concominant increase in the yield of linear dimers and higher oligomers in the reactions involving D, L-ImpA with D, L-ImpU as compared to the similar reactions carried out with D-enantiomers only. The formation of cyclic dimers of U was completely inhibited in the quaternary reactions. The yield of cyclic dimers of A was reduced from 60% to 10% within the dimer fraction. 12 linear dimers and 3 cyclic dimers were isolated and characterized from the quaternary reaction. The homochirality and regioselectivity of dimers were 64.1% and 71.7%, respectively. Their sequence selectivity was shown by the formation of purine-pyrimidine (54-59%) linkages, followed by purine-purine (29-32%) linkages and pyrimidine-pyrimidine (9-13%) linkages. Of the 16 trimers detected, 10 were homochiral with an overall homochirality of 73-76%. In view of the greater homochirality, sequence- and regio- selectivity, the quaternary reactions on montmorillonite demonstrate an unexpectedly favorable route for the prebiotic synthesis of homochiral RNA compared with the separate reactions of enantiomeric activated mononucleotides.

  16. Using Active Learning to Teach Concepts and Methods in Quantitative Biology.

    PubMed

    Waldrop, Lindsay D; Adolph, Stephen C; Diniz Behn, Cecilia G; Braley, Emily; Drew, Joshua A; Full, Robert J; Gross, Louis J; Jungck, John A; Kohler, Brynja; Prairie, Jennifer C; Shtylla, Blerta; Miller, Laura A

    2015-11-01

    This article provides a summary of the ideas discussed at the 2015 Annual Meeting of the Society for Integrative and Comparative Biology society-wide symposium on Leading Students and Faculty to Quantitative Biology through Active Learning. It also includes a brief review of the recent advancements in incorporating active learning approaches into quantitative biology classrooms. We begin with an overview of recent literature that shows that active learning can improve students' outcomes in Science, Technology, Engineering and Math Education disciplines. We then discuss how this approach can be particularly useful when teaching topics in quantitative biology. Next, we describe some of the recent initiatives to develop hands-on activities in quantitative biology at both the graduate and the undergraduate levels. Throughout the article we provide resources for educators who wish to integrate active learning and technology into their classrooms.

  17. Potential biological activities and bioavailability of alfrutamide and caffedymine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alfrutamide and caffedymine are clovamide-type phenolic amides whose analogues are found in numerous plants including garlic and cocoa. However, potential health effects of the amides are largely unknown. For last ten years, several amides have been synthesized and their potential biological activi...

  18. Biosynthesis of the pyrimidine moiety of thiamine. A new route of pyrimidine biosynthesis involving purine intermediates

    PubMed Central

    Newell, P. C.; Tucker, R. G.

    1968-01-01

    1. The pattern of distribution on the purine pathway of mutants of Salmonella typhimurium LT2 that had the double growth requirement for a purine plus the pyrimidine moiety of thiamine (ath mutants) indicated that purines and the pyrimidine moiety of thiamine share the early part of their biosynthetic pathways, and that 4-aminoimidazole ribonucleotide (AIR) is the last common intermediate. Two mutants that at first appeared anomalous were further investigated and found not to affect this deduction. 2. The ribonucleoside form of AIR (AIRs) satisfied the requirements both for a purine and for the pyrimidine moiety of thiamine of an ath mutant. 3. Methionine was required for the conversion of AIR into the pyrimidine moiety. 4. Radioactive AIRs was converted into radioactive pyrimidine moiety by an ath mutant without significant dilution of specific radioactivity. 5. Possible mechanisms for pyrimidine-moiety biosynthesis from AIR are discussed. PMID:4889364

  19. Effect of purine alkaloids on the proliferation of lettuce cells derived from protoplasts.

    PubMed

    Sasamoto, Hamako; Fujii, Yoshiharu; Ashihara, Hiroshi

    2015-05-01

    To investigate the ecological role of caffeine, theobromine, theophylline and paraxanthine, which are released from purine alkaloid forming plants, the effects of these purine alkaloids on the division and colony formation of lettuce cells were assessed at concentrations up to 1 mM. Five days after treatment with 500 μM caffeine, theophylline and paraxanthine, division of isolated protoplasts was significantly inhibited. Thirteen days treatment with > 250 μM caffeine had a marked inhibitory effect on the colony formation of cells derived from the protoplasts. Other purine alkaloids also acted as inhibitors. The order of the inhibition was caffeine > theophylline > paraxanthine > theobromine. These observations suggest that a relatively low concentration of caffeine is toxic for proliferation of plant cells. In contrast, theobromine is a weak inhibitor of proliferation. Possible allelopathic roles of purine alkaloids in natural ecosystems are discussed.

  20. Structure of purine nucleoside phosphorylase (DeoD) from Bacillus anthracis

    SciTech Connect

    Grenha, Rosa; Levdikov, Vladimir M.; Fogg, Mark J.; Blagova, Elena V.; Brannigan, James A. Wilkinson, Anthony J.; Wilson, Keith S.

    2005-05-01

    The crystal structure of purine nucleoside phosphorylase (DeoD) from B. anthracis was solved by X-ray crystallography using molecular replacement and refined at a resolution of 2.24 Å. Protein structures from the causative agent of anthrax (Bacillus anthracis) are being determined as part of a structural genomics programme. Amongst initial candidates for crystallographic analysis are enzymes involved in nucleotide biosynthesis, since these are recognized as potential targets in antibacterial therapy. Purine nucleoside phosphorylase is a key enzyme in the purine-salvage pathway. The crystal structure of purine nucleoside phosphorylase (DeoD) from B. anthracis has been solved by molecular replacement at 2.24 Å resolution and refined to an R factor of 18.4%. This is the first report of a DeoD structure from a Gram-positive bacterium.

  1. Synthesis, biological activities, and quantitative structure-activity relationship (QSAR) study of novel camptothecin analogues.

    PubMed

    Wu, Dan; Zhang, Shao-Yong; Liu, Ying-Qian; Wu, Xiao-Bing; Zhu, Gao-Xiang; Zhang, Yan; Wei, Wei; Liu, Huan-Xiang; Chen, An-Liang

    2015-05-13

    In continuation of our program aimed at the development of natural product-based pesticidal agents, three series of novel camptothecin derivatives were designed, synthesized, and evaluated for their biological activities against T. Cinnabarinus, B. brassicae, and B. xylophilus. All of the derivatives showed good-to-excellent activity against three insect species tested, with LC50 values ranging from 0.00761 to 0.35496 mmol/L. Remarkably, all of the compounds were more potent than CPT against T. Cinnabarinus, and compounds 4d and 4c displayed superior activity (LC50 0.00761 mmol/L and 0.00942 mmol/L, respectively) compared with CPT (LC50 0.19719 mmol/L) against T. Cinnabarinus. Based on the observed bioactivities, preliminary structure-activity relationship (SAR) correlations were also discussed. Furthermore, a three-dimensional quantitative structure-activity relationship (3D-QSAR) model using comparative molecular field analysis (CoMFA) was built. The model gave statistically significant results with the cross-validated q2 values of 0.580 and correlation coefficient r2 of 0.991 and  of 0.993. The QSAR analysis indicated that the size of the substituents play an important in the activity of 7-modified camptothecin derivatives. These findings will pave the way for further design, structural optimization, and development of camptothecin-derived compounds as pesticidal agents.

  2. Extracellular-purine metabolism in blood vessels (part I). Extracellular-purine level in blood of patients with abdominal aortic aneurysm.

    PubMed

    Lecka, Joanna; Molski, Stanislaw; Komoszynski, Michal

    2010-09-01

    Adenosine and adenosine derivatives are the main regulators of purinoceptors (P1 and P2) mediated hemostasis and blood pressure. Since impaired hemostasis and high blood pressure lead to atherosclerosis and to the development of aneurysm, in this study we tested and compared the concentration of extracellular purines (e-purines) in the blood in of patients having abdominal aortic aneurysm with that from healthy volunteers. Whereas adenine nucleosides and nucleotides level in human blood plasma was analysed using reverse phase high performance liquid chromatography (HPLC), cholesterol concentration was estimated by an enzymatic assay. We did not find any correlation between e-purines concentration and the age of healthy volunteers. Furthermore, the sum level of e-purines (ATP, ADP, AMP, adenosine, and inosine) in the control group did not exceed 70 microM, while it was nearly two-fold higher in the blood of patients having abdominal aortic aneurysm, (123 microM). In a special case of people with Leriche Syndrome, a disease characterized by deep atherosclerotic changes, the e-purines level had further increased. Additionally, we also report typical atherosclerotic changes in the aorta using histological assays as well as total cholesterol rise. The significant rise in cholesterol concentration in the blood of the patients with abdominal aortas aneurysm, compared with the control groups, was not unique since 23% of the healthy people also exceeded the normal level of cholesterol. Therefore, our results strongly indicate that the estimation of e-purines concentration in the blood may serve as another indicator of atherosclerosis and warrant further consideration as a futuristic diagnostic tool.

  3. The transition state analog inhibitor of Purine Nucleoside Phosphorylase (PNP) Immucillin-H arrests bone loss in rat periodontal disease models.

    PubMed

    Deves, Candida; de Assunção, Thiago Milech; Ducati, Rodrigo Gay; Campos, Maria Martha; Basso, Luiz Augusto; Santos, Diogenes Santiago; Batista, Eraldo L

    2013-01-01

    Purine nucleoside phosphorylase (PNP) is a purine-metabolizing enzyme that catalyzes the reversible phosphorolysis of 6-oxypurine (deoxy)nucleosides to their respective bases and (deoxy)ribose-1-phosphate. It is a key enzyme in the purine salvage pathway of mammalian cells. The present investigation sought to determine whether the PNP transition state analog inhibitor (Immucillin-H) arrests bone loss in two models of induced periodontal disease in rats. Periodontal disease was induced in rats using ligature or LPS injection followed by administration of Immucillin-H for direct analysis of bone loss, histology and TRAP staining. In vitro osteoclast differentiation and activation of T CD4+ cells in the presence of Immucillin-H were carried out for assessment of RANKL expression, PNP and Cathepsin K activity. Immucillin-H inhibited bone loss induced by ligatures and LPS, leading to a reduced number of infiltrating osteoclasts and inflammatory cells. In vitro assays revealed that Immucillin-H could not directly abrogate differentiation of osteoclast precursor cells, but affected lymphocyte-mediated osteoclastogenesis. On the other hand, incubation of pre-activated T CD4+ with Immucillin-H decreased RANKL secretion with no compromise of cell viability. The PNP transition state analog Immucillin-H arrests bone loss mediated by T CD4+ cells with no direct effect on osteoclasts. PNP inhibitor may have an impact in the treatment of diseases characterized by the presence of pathogens and imbalances of bone metabolism.

  4. Borrelia burgdorferi Harbors a Transport System Essential for Purine Salvage and Mammalian Infection

    PubMed Central

    Jain, Sunny; Sutchu, Selina; Rosa, Patricia A.; Byram, Rebecca

    2012-01-01

    Borrelia burgdorferi is the tick-borne bacterium that causes the multistage inflammatory disease Lyme disease. B. burgdorferi has a reduced genome and lacks the enzymes required for de novo synthesis of purines for synthesis of RNA and DNA. Therefore, this obligate pathogen is dependent upon the tick vector and mammalian host environments for salvage of purine bases for nucleic acid biosynthesis. This pathway is vital for B. burgdorferi survival throughout its infectious cycle, as key enzymes in the purine salvage pathway are essential for the ability of the spirochete to infect mice and critical for spirochete replication in the tick. The transport of preformed purines into the spirochete is the first step in the purine salvage pathway and may represent a novel therapeutic target and/or means to deliver antispirochete molecules to the pathogen. However, the transport systems critical for purine salvage by B. burgdorferi have yet to be identified. Herein, we demonstrate that the genes bbb22 and bbb23, present on B. burgdorferi's essential plasmid circular plasmid 26 (cp26), encode key purine transport proteins. BBB22 and/or BBB23 is essential for hypoxanthine transport and contributes to the transport of adenine and guanine. Furthermore, B. burgdorferi lacking bbb22-23 was noninfectious in mice up to a dose of 1 × 107 spirochetes. Together, our data establish that bbb22-23 encode purine permeases critical for B. burgdorferi mammalian infectivity, suggesting that this transport system may serve as a novel antimicrobial target for the treatment of Lyme disease. PMID:22710875

  5. Regional differences in the electrically stimulated release of endogenous and radioactive adenosine and purine derivatives from rat brain slices.

    PubMed

    Pedata, F; Pazzagli, M; Tilli, S; Pepeu, G

    1990-10-01

    The release of both radioactive and endogenous purines was investigated in rat brain cortical, hippocampal and striatal slices at rest and following stimulation with electrical fields. Purines were labelled by incubating the slices with 3H-adenine. The purine efflux at rest and that evoked by electrical stimulation (10 Hz. 5 min) was analyzed by HPLC with ultraviolet absorbance detection. Both radioactive and endogenous purines in the effluent consisted mainly of hypoxanthine, xanthine, inosine and adenosine. No qualitative differences in the composition of the released purines were found in the three areas investigated. Electrical stimulation evoked a net increase in both radioactive and endogenous purine release. However the increase in 3H-adenosine following electrical stimulation was twice as large as that of endogenous adenosine. The electrically evoked release of both radioactive and endogenous purines was greatest in hippocampal slices and progressively smaller in cortical and striatal slices. In the three areas the addition of 0.5 microM tetrodotoxin to the superfusing Krebs solution brought about a similar (83-100%) reduction in evoked 3H-purine and endogenous purine release. Superfusion of the slices with calcium-free Krebs solution containing 0.5 mM EGTA reduced evoked release of 3H-purines by 58-60% and that of endogenous purine components by 54-89%. The results demonstrate similar characteristics for both radioactive and endogenous purine release but indicate that the most recently synthetized adenosine is the most readily available for release. The features of the electrically evoked purine release support a neuronal origin of adenosine and derivatives and are consistent with the hypothesis of discrete regional differences in adenosine neuromodulation. PMID:2255336

  6. [Inhibition of glutamine synthetase activity by biologically active derivatives of glutamic acid].

    PubMed

    Firsova, N A; Selivanova, K M; Alekseeva, L V; Evstigneeva, Z G

    1986-05-01

    The inhibition of activity of glutamine synthetase from Chlorella and porcine brain by 4-hydroxy-D-4-fluoro-D,L- and 4-amino-D,L-glutamic acids diastereoisomers was studied. Each compound was shown to exert the same inhibiting effect on glutamine synthetase from both sources. In case of threo-4-hydroxy-D-glutamic acid the inhibition of the Chlorella enzyme was of a competitive and of a completely mixed type. The enzyme inhibition by 4-fluoro-D, L-glutamic acids seemed to be of a completely non-competitive type. The Ki values for all inhibition reactions were determined. A comparison of biochemical parameters and biological activity revealed that the most effective inhibitors of the enzyme exert a most potent antitumour and antiviral action.

  7. Physicochemical and porosity characteristics of thermally regenerated activated carbon polluted with biological activated carbon process.

    PubMed

    Dong, Lihua; Liu, Wenjun; Jiang, Renfu; Wang, Zhansheng

    2014-11-01

    The characteristics of thermally regenerated activated carbon (AC) polluted with biological activated carbon (BAC) process were investigated. The results showed that the true micropore and sub-micropore volume, pH value, bulk density, and hardness of regenerated AC decreased compared to the virgin AC, but the total pore volume increased. XPS analysis displayed that the ash contents of Al, Si, and Ca in the regenerated AC respectively increased by 3.83%, 2.62% and 1.8%. FTIR spectrum showed that the surface functional groups of virgin and regenerated AC did not change significantly. Pore size distributions indicated that the AC regeneration process resulted in the decrease of micropore and macropore (D>10 μm) volume and the increase of mesopore and macropore (0.1 μmbiological waste (spent AC) from BAC process.

  8. Pur-1, a zinc-finger protein that binds to purine-rich sequences, transactivates an insulin promoter in heterologous cells.

    PubMed Central

    Kennedy, G C; Rutter, W J

    1992-01-01

    Purine-rich stretches of nucleotides (GAGA boxes) are often found just upstream of transcription start sites in many genes, including insulin. Mutational analysis suggests that the GAGA box plays an important role in transcription of the rat insulin I gene. We identify here at least four different proteins that bind specifically to the insulin GAGA box. Using a GAGA oligonucleotide, we have isolated a cDNA encoding a sequence-specific protein from a HIT (hamster insulinoma cell line) lambda gt11 library. This protein, which we designate Pur-1 (for purine binding), binds to the GAGA boxes of the rat insulin I and II genes and the human islet amyloid polypeptide gene. Pur-1 is a potent transactivator in both pancreatic and nonpancreatic cells. Furthermore, Pur-1 is able to activate an intact insulin promoter in HeLa cells, where it is normally inactive. Images PMID:1454839

  9. Elucidation of Different Binding Modes of Purine Nucleosides to Human Deoxycytidine Kinase

    SciTech Connect

    Sabini, Elisabetta; Hazra, Saugata; Konrad, Manfred; Lavie, Arnon

    2008-07-30

    Purine nucleoside analogues of medicinal importance, such as cladribine, require phosphorylation by deoxycytidine kinase (dCK) for pharmacological activity. Structural studies of ternary complexes of human dCK show that the enzyme conformation adjusts to the different hydrogen-bonding properties between dA and dG and to the presence of substituent at the 2-position present in dG and cladribine. Specifically, the carbonyl group in dG elicits a previously unseen conformational adjustment of the active site residues Arg104 and Asp133. In addition, dG and cladribine adopt the anti conformation, in contrast to the syn conformation observed with dA. Kinetic analysis reveals that cladribine is phosphorylated at the highest efficiency with UTP as donor. We attribute this to the ability of cladribine to combine advantageous properties from dA (favorable hydrogen-bonding pattern) and dG (propensity to bind to the enzyme in its anti conformation), suggesting that dA analogues with a substituent at the 2-position are likely to be better activated by human dCK.

  10. Nicotinamide riboside and nicotinic acid riboside salvage in fungi and mammals. Quantitative basis for Urh1 and purine nucleoside phosphorylase function in NAD+ metabolism.

    PubMed

    Belenky, Peter; Christensen, Kathryn C; Gazzaniga, Francesca; Pletnev, Alexandre A; Brenner, Charles

    2009-01-01

    NAD+ is a co-enzyme for hydride transfer enzymes and an essential substrate of ADP-ribose transfer enzymes and sirtuins, the type III protein lysine deacetylases related to yeast Sir2. Supplementation of yeast cells with nicotinamide riboside extends replicative lifespan and increases Sir2-dependent gene silencing by virtue of increasing net NAD+ synthesis. Nicotinamide riboside elevates NAD+ levels via the nicotinamide riboside kinase pathway and by a pathway initiated by splitting the nucleoside into a nicotinamide base followed by nicotinamide salvage. Genetic evidence has established that uridine hydrolase, purine nucleoside phosphorylase, and methylthioadenosine phosphorylase are required for Nrk-independent utilization of nicotinamide riboside in yeast. Here we show that mammalian purine nucleoside phosphorylase but not methylthioadenosine phosphorylase is responsible for mammalian nicotinamide riboside kinase-independent nicotinamide riboside utilization. We demonstrate that so-called uridine hydrolase is 100-fold more active as a nicotinamide riboside hydrolase than as a uridine hydrolase and that uridine hydrolase and mammalian purine nucleoside phosphorylase cleave nicotinic acid riboside, whereas the yeast phosphorylase has little activity on nicotinic acid riboside. Finally, we show that yeast nicotinic acid riboside utilization largely depends on uridine hydrolase and nicotinamide riboside kinase and that nicotinic acid riboside bioavailability is increased by ester modification. PMID:19001417

  11. [Water activity and food stability. I. Effects on viability of Saccharomyces cerevisiae cells (author's transl)].

    PubMed

    Guerzoni, M E; Suzzi, G; Lerici, C R; Bartolini, R; Testa, G

    1976-01-01

    Biological activity of microorganism is related to water activity (aw). In this paper the effect of glicerol as humectant on Saccharomyces cerevisiae viability was considered. The irreversible loss of viability was observed only for values inferior than 0,75. The K+ presence promoted an increasing of cell viability and growth. We have evaluated the changes of the most important components of cell poll; the increasing of glicerol amount of the system induced a drastic fall of aminoacids, purines and K ions content, but it increased the Na ions content. The exposure of cells to increasing glicerol concentrations, caused an aminoacids and purines excretion related to contact time; after a few hours this material was readsorbed by cells. PMID:799835

  12. Interaction of Bacillus subtilis purine repressor with DNA.

    PubMed

    Shin, B S; Stein, A; Zalkin, H

    1997-12-01

    A purine repressor (PurR) mediates adenine nucleotide-dependent regulation of transcription initiation of the Bacillus subtilis pur operon. This repressor has been purified for the first time, and binding to control site DNA was characterized. PurR binds in vitro to four operons. Apparent Kd values for binding were 7 nM for the pur operon, 8 nM for purA, 13 nM for purR, and 44 nM for the pyr operon. In each case, DNase I footprints exhibited a pattern of protected and hypersensitive sites that extended over more than 60 bp. A GAAC-N24-GTTC sequence in the pur operon was necessary but not sufficient for the PurR-DNA interaction. However, this motif, which is conserved in the four binding sites, was not required for binding of PurR to purA. Thus, the common DNA recognition element for binding of PurR to the four operons is not known. Multiple PurR-pur operon DNA complexes having a binding stoichiometry that was either approximately two or six repressor molecules per DNA fragment were detected. The results of a torsional constraint experiment suggest that control site DNA forms one right-handed turn around PurR.

  13. Deprotonated purine dissociation: experiments, computations, and astrobiological implications.

    PubMed

    Cole, Callie A; Wang, Zhe-Chen; Snow, Theodore P; Bierbaum, Veronica M

    2015-01-15

    A central focus of astrobiology is the determination of abiotic formation routes to important biomolecules. The dissociation mechanisms of these molecules lend valuable insights into their synthesis pathways. Because of the detection of organic anions in the interstellar medium (ISM), it is imperative to study their role in these syntheses. This work aims to experimentally and computationally examine deprotonated adenine and guanine dissociation in an effort to illuminate potential anionic precursors to purine formation. Collision-induced dissociation (CID) products and their branching fractions are experimentally measured using an ion trap mass spectrometer. Deprotonated guanine dissociates primarily by deammoniation (97%) with minor losses of carbodiimide (HNCNH) and/or cyanamide (NH2CN), and isocyanic acid (HNCO). Deprotonated adenine fragments by loss of hydrogen cyanide and/or isocyanide (HCN/HNC; 90%) and carbodiimide (HNCNH) and/or cyanamide (NH2CN; 10%). Tandem mass spectrometry (MS(n)) experiments reveal that deprotonated guanine fragments lose additional HCN and CO, while deprotonated adenine fragments successively lose HNC and HCN. Every neutral fragment observed in this study has been detected in the ISM, highlighting the potential for nucleobases such as these to form in such environments. Lastly, the acidity of abundant fragment ions is experimentally bracketed. Theoretical calculations at the B3LYP/6-311++G(d,p) level of theory are performed to delineate the mechanisms of dissociation and analyze the energies of reactants, intermediates, transition states, and products of these CID processes. PMID:25559322

  14. 6-(2-Methoxy­benzyl­amino)purine

    PubMed Central

    Trávníček, Zdeněk; Matiková-Maľarová, Miroslava; Mikulík, Jiří

    2008-01-01

    The title compound, C13H13N5O, consists of discrete mol­ecules connected by N—H⋯N hydrogen bonds to form infinite chains, with N⋯N separations of 3.0379 (15) and 2.8853 (15) Å. The benzene and purine ring systems make a dihedral angle of 77.58 (3)°. The crystal structure is further stabilized by intra­molecular N⋯O inter­actions [2.9541 (12) Å] and inter­molecular C—H⋯C and C⋯C contacts [3.304 (2), 3.368 (2), 3.667 (2), 3.618 (2) and 3.512 (2) Å] which arrange the mol­ecules into graphite-like layers. The inter­layer separations are 3.248 and 3.256 Å. PMID:21202313

  15. Biologically Active Chorionic Gonadotropin: Synthesis by the Human Fetus

    NASA Astrophysics Data System (ADS)

    McGregor, W. G.; Kuhn, R. W.; Jaffe, R. B.

    1983-04-01

    The kidney, and to a slight extent the liver, of human fetuses were found to synthesize and secrete the α subunit common to glycoprotein hormones. Fetal lung and muscle did not synthesize this protein. Since fetal kidney and liver were previously found to synthesize β chorionic gonadotropin, their ability to synthesize bioactive chorionic gonadotropin was also determined. The newly synthesized hormone bound to mouse Leydig cells and elicited a biological response: namely, the synthesis of testosterone. These results suggest that the human fetus may participate in metabolic homeostasis during its development.

  16. Synthesis and biological activity of benzamide DNA minor groove binders.

    PubMed

    Khan, Gul Shahzada; Pilkington, Lisa I; Barker, David

    2016-02-01

    A range of di- and triaryl benzamides were synthesised to investigate the effect of the presence and nature of a polar sidechain, bonding and substitution patterns and functionalisation of benzylic substituents. These compounds were tested for their antiproliferative activity as well as their DNA binding activity. The most active compounds in all assays were unsymmetrical triaryl benzamides with a bulky or alkylating benzylic substituent and a polar amino sidechain.

  17. Identification of potential inhibitors for AIRS from de novo purine biosynthesis pathway through molecular modeling studies - a computational approach.

    PubMed

    Rao, R Guru Raj; Biswal, Jayashree; Dhamodharan, Prabhu; Kanagarajan, Surekha; Jeyaraman, Jeyakanthan

    2016-10-01

    In cancer, de novo pathway plays an important role in cell proliferation by supplying huge demand of purine nucleotides. Aminoimidazole ribonucleotide synthetase (AIRS) catalyzes the fifth step of de novo purine biosynthesis facilitating in the conversion of formylglycinamidine ribonucleotide to aminoimidazole ribonucleotide. Hence, inhibiting AIRS is crucial due to its involvement in the regulation of uncontrollable cancer cell proliferation. In this study, the three-dimensional structure of AIRS from P. horikoshii OT3 was constructed based on the crystal structure from E. coli and the modeled protein is verified for stability using molecular dynamics for a time frame of 100 ns. Virtual screening and induced fit docking were performed to identify the best antagonists based on their binding mode and affinity. Through mutational studies, the residues necessary for catalytic activity of AIRS were identified and among which the following residues Lys35, Asp103, Glu137, and Thr138 are important in determination of AIRS function. The mutational studies help to understand the structural and energetic characteristics of the specified residues. In addition to Molecular Dynamics, ADME properties, binding free-energy, and density functional theory calculations of the compounds were carried out to find the best lead molecule. Based on these analyses, the compound from the NCI database, NCI_121957 was adjudged as the best molecule and could be suggested as the suitable inhibitor of AIRS. In future studies, experimental validation of these ligands as AIRS inhibitors will be carried out.

  18. Loss of DNA polymerase beta stacking interactions with templating purines, but not pyrimidines, alters catalytic efficiency and fidelity.

    PubMed

    Beard, William A; Shock, David D; Yang, Xiao-Ping; DeLauder, Saundra F; Wilson, Samuel H

    2002-03-01

    Structures of DNA polymerases bound with DNA reveal that the 5'-trajectory of the template strand is dramatically altered as it exits the polymerase active site. This distortion provides the polymerase access to the nascent base pair to interrogate proper Watson-Crick geometry. Upon binding a correct deoxynucleoside triphosphate, alpha-helix N of DNA polymerase beta is observed to form one face of the binding pocket for the new base pair. Asp-276 and Lys-280 stack with the bases of the incoming nucleotide and template, respectively. To determine the role of Lys-280, site-directed mutants were constructed at this position, and the proteins were expressed and purified, and their catalytic efficiency and fidelity were assessed. The catalytic efficiency for single-nucleotide gap filling with the glycine mutant (K280G) was strongly diminished relative to wild type for templating purines (>15-fold) due to a decreased binding affinity for the incoming nucleotide. In contrast, catalytic efficiency was hardly affected by glycine substitution for templating pyrimidines (<4-fold). The fidelity of the glycine mutant was identical to the wild type enzyme for misinsertion opposite a template thymidine, whereas the fidelity of misinsertion opposite a template guanine was modestly altered. The nature of the Lys-280 side-chain substitution for thymidine triphosphate insertion (templating adenine) indicates that Lys-280 "stabilizes" templating purines through van der Waals interactions. PMID:11756435

  19. Evidence that biological activity affects Ocean Bottom Seismograph recordings

    NASA Astrophysics Data System (ADS)

    Buskirk, Ruth E.; Frohlich, Cliff; Latham, Gary V.; Chen, Allen T.; Lawton, Jeff

    1981-06-01

    Brief and impulsive signals of uncertain origin appear regularly on records from Ocean Bottom Seismographs (OBS) of several institutions. These signals have been recorded on nearly all deployments of the Texas OBS, including sites at depths greater than 7000 m. At some sites, they account for over 90% of the events recorded. They are of short duration (usually 0.5 4.0 s) and have a characteristic frequency (usually in the range of 4 18 Hz) that differs from site to site. When networks of OBS instruments are deployed, the signals are not recorded simultaneously by different instruments. Neither the frequency content nor the distribution of durations of these signals is similar to what is observed for known earthquake events. We present evidence suggesting that the signals are of biological origin, perhaps caused by animals touching the OBS units. (1) The distribution of these signals on instruments deployed at depths shallower than 1000 m shows a 24 h periodicity, while there is a 24 h periodic pattern on instruments deployed at sites deeper than 1000 m (where there is no visible light). (2) The frequency of occurrence of signals is similar to the vertical distribution of biomass in the oceans, i.e., they appear most frequently on OBS instruments deployed at very shallow depths. (3) Biological material has been found attached to several OBS units upon recovery.

  20. Learning Activity Package, Biology, LAPs 20, 30, 31, 32, and 33.

    ERIC Educational Resources Information Center

    Rhoden, Bruce

    Included is a set of five teacher-prepared Learning Activity Packages (LAPs) for individualized instruction in topics in biology. The units cover the topics of genetic continuity, methods of investigation, cell biology, genetics, and animal physiology. Each unit contains a rationale for the material; a list of behavioral objectives for the unit; a…

  1. An Introduction to Biological Modeling Using Coin Flips to Predict the Outcome of a Diffusion Activity

    ERIC Educational Resources Information Center

    Butcher, Greg Q.; Rodriguez, Juan; Chirhart, Scott; Messina, Troy C.

    2016-01-01

    In order to increase students' awareness for and comfort with mathematical modeling of biological processes, and increase their understanding of diffusion, the following lab was developed for use in 100-level, majors/non-majors biology and neuroscience courses. The activity begins with generation of a data set that uses coin-flips to replicate…

  2. Low Budget Biology 3: A Collection of Low Cost Labs and Activities.

    ERIC Educational Resources Information Center

    Wartski, Bert; Wartski, Lynn Marie

    This document contains biology labs, demonstrations, and activities that use low budget materials. The goal is to get students involved in the learning process by experiencing biology. Each lab has a teacher preparation section which outlines the purpose of the lab, some basic information, a list of materials , and how to prepare the different…

  3. Purine nucleoside metabolism in the erythrocytes of patients with adenosine deaminase deficiency and severe combined immunodeficiency.

    PubMed Central

    Agarwal, R P; Crabtree, G W; Parks, R E; Nelson, J A; Keightley, R; Parkman, R; Rosen, F S; Stern, R C; Polmar, S H

    1976-01-01

    Deficiency of erythrocytic and lymphocytic adenosine deaminase (ADA) occurs in some patients with severe combined immunodeficiency disease (SCID). SCID with ADA deficiency is inherited as an autosomal recessive trait. ADA is markedly reduced or undetectable in affected patients (homozygotes), and approximately one-half normal levels are found in individuals heterozygous for ADA deficiency. The metabolism of purine nucleosides was studied in erythrocytes from normal individuals, four ADA-deficiency patients, and two heterozygous individuals. ADA deficiency in intake erythrocytes was confirmed by a very sensitive ammonia-liberation technique. Erythrocytic ADA activity in three heterozygous individuals (0.07,0.08, and 0.14 mumolar units/ml of packed cells) was between that of the four normal controls (0.20-0.37 mumol/ml) and the ADA-deficient patients (no activity). In vitro, adenosine was incorporated principally into IMP in the heterozygous and normal individuals but into the adenosine nucleotides in the ADa-deficient patients. Coformycin (3-beta-D-ribofuranosyl-6,7,8-trihydroimidazo[4,5-4] [1,3] diazepin-8 (R)-ol), a potent inhibitor of ADA, made possible incorporation of adenosine nucleotides in the ADA-deficient patients... PMID:947948

  4. Some biologically active oxovanadium(IV) complexes of triazole derived Schiff bases: their synthesis, characterization and biological properties.

    PubMed

    Chohan, Zahid H; Sumrra, Sajjad H

    2010-10-01

    A series of biologically active oxovanadium(IV) complexes of triazole derived Schiff bases L(1)-L(5) have been synthesized and characterized by their physical, analytical, and spectral data. The synthesized ligands potentially act as bidentate, in which the oxygen of furfural and nitrogen of azomethine coordinate with the oxovanadium atom to give a stoichiometry of vanadyl complexes 1:2 (M:L) in a square-pyramidal geometry. In vitro antibacterial and antifungal activities on different species of pathogenic bacteria (E. coli, S. flexneri, P. aeruginosa, S. typhi, S. aureus, and B. subtilis) and fungi (T. longifusus, C. albicans, A. flavus, M. canis, F. solani, and C. glabrata) have been studied. All compounds showed moderate to significant antibacterial activity against one or more bacterial strains and good antifungal activity against most of the fungal strains. The brine shrimp bioassay was also carried out to check the cytotoxicity of coordinated and uncoordinated synthesized compounds. PMID:20429776

  5. Activation of PPARδ: from computer modelling to biological effects

    PubMed Central

    Kahremany, Shirin; Livne, Ariela; Gruzman, Arie; Senderowitz, Hanoch; Sasson, Shlomo

    2015-01-01

    PPARδ is a ligand-activated receptor that dimerizes with another nuclear receptor of the retinoic acid receptor family. The dimers interact with other co-activator proteins and form active complexes that bind to PPAR response elements and promote transcription of genes involved in lipid metabolism. It appears that various natural fatty acids and their metabolites serve as endogenous activators of PPARδ; however, there is no consensus in the literature on the nature of the prime activators of the receptor. In vitro and cell-based assays of PPARδ activation by fatty acids and their derivatives often produce conflicting results. The search for synthetic and selective PPARδ agonists, which may be pharmacologically useful, is intense. Current rational modelling used to obtain such compounds relies mostly on crystal structures of synthetic PPARδ ligands with the recombinant ligand binding domain (LBD) of the receptor. Here, we introduce an original computational prediction model for ligand binding to PPARδ LBD. The model was built based on EC50 data of 16 ligands with available crystal structures and validated by calculating binding probabilities of 82 different natural and synthetic compounds from the literature. These compounds were independently tested in cell-free and cell-based assays for their capacity to bind or activate PPARδ, leading to prediction accuracy of between 70% and 93% (depending on ligand type). This new computational tool could therefore be used in the search for natural and synthetic agonists of the receptor. PMID:25255770

  6. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis

    PubMed Central

    Crane, Erika A.

    2016-01-01

    Abstract Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody–drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products. PMID:26833854

  7. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis.

    PubMed

    Crane, Erika A; Gademann, Karl

    2016-03-14

    Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody-drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products.

  8. Biological Activities of 2-Mercaptobenzothiazole Derivatives: A Review

    PubMed Central

    Azam, Mohammed Afzal; Suresh, Bhojraj

    2012-01-01

    2-Mercaptobenzothiazoles are an important class of bioactive and industrially important organic compounds. These compounds are reported for their antimicrobial and antifungal activities, and are subsequently highlighted as a potent mechanism-based inhibitor of several enzymes like acyl coenzyme A cholesterol acyltransferase, monoamine oxidase, heat shock protein 90, cathepsin D, and c-Jun N-terminal kinases. These derivatives are also known to possess antitubercular, anti-inflammatory, antitumor, amoebic, antiparkinsonian, anthelmintic, antihypertensive, antihyperlipidemic, antiulcer, chemoprotective, and selective CCR3 receptor antagonist activity. This present review article focuses on the pharmacological profile of 2-mercaptobenzothiazoles with their potential activities. PMID:23264933

  9. Biological activity of a polypeptide modulator of TRPV1 receptor.

    PubMed

    Dyachenko, I A; Andreev, Ya A; Logashina, Yu A; Murashev, A N; Grishin, E V

    2015-11-01

    This paper presents data on the activity of a new APHC2 polypeptide modulator of TRPV1 receptors, which was isolated from the sea anemone Heteractis crispa. It has been shown that APHC2 has an analgesic activity, does not impair normal motor activity, and does not change body temperature of experimental animals, which has a great practical value for design of potent analgesics of a new generation. Further study of the characteristics of binding of the polypeptide to the TRPV1 receptor may show approaches to the development of other antagonists of this receptor that do not influence the body temperature. PMID:26725234

  10. Some chemical composition and biological activity of northern Argentine propolis.

    PubMed

    Isla, Maria I; Paredes-Guzman, Julio F; Nieva-Moreno, M I; Koo, H; Park, Yong K

    2005-02-23

    Twenty-five samples of propolis were collected from seven different regions in northern Argentina; ethanolic extracts of propolis were prepared from all samples, and the respective samples were examined for UV absorption spectra, RPHPTLC, RPHPLC, antimicrobial activity, antiradical activity, and total phenolic content. It was found that 16 of the 25 samples showed a phenolic profile similar to that found in samples from southern Brazil and corresponding to poplar-based propolis and that the rest of the samples showed a different profile and higher antimicrobial and antiradical activities.

  11. Activated Biological Filters (ABF Towers). Instructor's Guide. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Wooley, John F.

    This instructor's manual contains materials needed to teach a two-lesson unit on activated bio-filters (ABF). These materials include: (1) an overview of the two lessons; (2) lesson plans; (3) lecture outlines (keyed to a set of slides designed for use with the lessons); (4) overhead transparency masters; (5) worksheets for each lesson (with…

  12. Activated Biological Filters (ABF Towers). Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Wooley, John F.

    This student manual contains textual material for a two-lesson unit on activated bio-filters (ABF). The first lesson (the sewage treatment plant) examines those process units that are unique to the ABF system. The lesson includes a review of the structural components of the ABF system and their functions and a discussion of several operational…

  13. Biological activities and potential health benefit effects of polysaccharides isolated from Lycium barbarum L.

    PubMed

    Jin, Mingliang; Huang, Qingsheng; Zhao, Ke; Shang, Peng

    2013-03-01

    Recently, isolation and investigation of novel ingredients with biological activities and health benefit effects from natural resources have attracted a great deal of attention. The fruit of Lycium barbarum L., a well-known Chinese herbal medicine as well as valuable nourishing tonic, has been used historically as antipyretic, anti-inflammation and anti-senile agent for thousands of years. Modern pharmacological experiments have proved that polysaccharide is one of the major ingredients responsible for those biological activities in L. barbarum. It has been demonstrated that L. barbarum polysaccharides had various important biological activities, such as antioxidant, immunomodulation, antitumor, neuroprotection, radioprotection, anti-diabetes, hepatoprotection, anti-osteoporosis and antifatigue. The purpose of the present review is to summarize previous and current references regarding biological activities as well as potential health benefits of L. barbarum polysaccharides.

  14. Biologically active components against Drosophila melanogaster from Podophyllum hexandrum.

    PubMed

    Miyazawa, M; Fukuyama, M; Yoshio, K; Kato, T; Ishikawa, Y

    1999-12-01

    In the course of screening for novel naturally occurring insecticides from Chinese crude drugs, a dichloromethane extract of Podophyllum hexandrum was found to give an insecticidal activity against larvae of Drosophila melanogaster Meigen. From the extract, an insecticidal compound was isolated by bioassay-guided fractionation. The compound was identified as podophyllotoxin (1) by comparison of its spectroscopic characteristics with literature data. In bioassays for insecticidal activity, 1 showed a LC(50) value of 0.24 micromol/mL diet against larvae of D. melanogaster and a LD(50) value of 22 microg/adult against adults. Acetylpodophyllotoxin (1A), however showed slight insecticidal activity in both assays, indicating that the 4-hydroxyl group was an important function for enhanced activity of 1.

  15. Biological Studies in Childhood Schizophrenia: Plasma and RBC Cholinesterase Activity

    ERIC Educational Resources Information Center

    Lucas, Alexander R.; And Others

    1971-01-01

    A comparison of plasma (pseudo) cholinesterase and erythrocyte (true) cholinesterase activity in 16 male childhood schizophrenic patients and 16 male nonpsychotic hospitalized controls revealed no significant differences between the two groups. (Author)

  16. CHARACTERIZATION ADN BIOLOGICAL ACTIVITY OF SECONDARY METABOLITES FROM ARMILLARIA TABESCENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethyl acetate extracts from liquid cultures of Armillaria tabescens showed good antimicrobial activity against Candida albicans, Cryptococcus neoformans, Escherichia coli and Mycobacterium intracellulare. Chemical analyses of extract constituents led to the isolation and identification of two new co...

  17. Synthesis and biological activity of novel tiliroside derivants.

    PubMed

    Qin, Nan; Li, Chun-Bao; Jin, Mei-Na; Shi, Li-Huan; Duan, Hong-Quan; Niu, Wen-Yan

    2011-10-01

    A series of new tiliroside derivatives were synthesized and characterized by analytical (1)H NMR, (13)C NMR and mass spectrometry. All of the compounds were evaluated for anti-diabetic properties in vitro using HepG2 cells. Compounds 3c, 3d, and 3i-l caused significant enhancements in glucose consumption by insulin-resistant HepG2 cells compared with control cells and cells that were exposed to metformin (an anti-diabetic drug). Moreover, compound 3l significantly activated adenosine 5'-monophosphate-activated protein kinase activity and reduced acetyl-CoA carboxylase activity. Thus, the tiliroside derivative 3l offers potential to be developed as a new approach for treating type II diabetes.

  18. Synthesis and Biological Activities of Camphor Hydrazone and Imine Derivatives

    PubMed Central

    da Silva, Emerson T.; da Silva Araújo, Adriele; Moraes, Adriana M.; de Souza, Leidiane A.; Silva Lourenço, Maria Cristina; de Souza, Marcus V. N.; Wardell, James L.; Wardell, Solange M. S. V.

    2015-01-01

    Both sonochemical and classical methodologies have been employed to convert camphor, 1,7,7-trimethylbicyclo[2.2.1]heptan-2-one, C9H16C=O, into a number of derivatives including hydrazones, C9H16C=N-NHAr 3, imines, C9H16C=N-R 7, and the key intermediate nitroimine, C9H16C=N-NO2 6. Reactions of nitroamine 6 with nucleophiles by classical methods provided the desired compounds in a range of yields. In evaluations of activity against Mycobacterium tuberculosis, compound 7j exhibited the best activity (minimal inhibitory concentration (MIC) = 3.12 µg/mL), comparable to that of the antitubercular drug ethambutol. The other derivatives displayed modest antimycobacterial activities at 25–50 µg/mL. In in vitro tests against cancer cell lines, none of the synthesized camphor compounds exhibited cytotoxic activities.

  19. Assessing the Biological Activity of the Glucan Phosphatase Laforin.

    PubMed

    Romá-Mateo, Carlos; Raththagala, Madushi; Gentry, Mathew S; Sanz, Pascual

    2016-01-01

    Glucan phosphatases are a recently discovered family of enzymes that dephosphorylate either starch or glycogen and are essential for proper starch metabolism in plants and glycogen metabolism in humans. Mutations in the gene encoding the only human glucan phosphatase, laforin, result in the fatal, neurodegenerative, epilepsy known as Lafora disease. Here, we describe phosphatase assays to assess both generic laforin phosphatase activity and laforin's unique glycogen phosphatase activity. PMID:27514803

  20. Biological Activities of Aerial Parts Extracts of Euphorbia characias

    PubMed Central

    Pisano, Maria Barbara; Cosentino, Sofia; Viale, Silvia; Spanò, Delia; Corona, Angela; Esposito, Francesca; Tramontano, Enzo; Montoro, Paola; Tuberoso, Carlo Ignazio Giovanni; Medda, Rosaria; Pintus, Francesca

    2016-01-01

    The aim of the present study was to evaluate antioxidant, antimicrobial, anti-HIV, and cholinesterase inhibitory activities of aqueous and alcoholic extracts from leaves, stems, and flowers of Euphorbia characias. The extracts showed a high antioxidant activity and were a good source of total polyphenols and flavonoids. Ethanolic extracts from leaves and flowers displayed the highest inhibitory activity against acetylcholinesterase and butyrylcholinesterase, showing potential properties against Alzheimer's disease. Antimicrobial assay showed that leaves and flowers extracts were active against all Gram-positive bacteria tested. The ethanolic leaves extract appeared to have the strongest antibacterial activity against Bacillus cereus with MIC value of 312.5 μg/mL followed by Listeria monocytogenes and Staphylococcus aureus that also exhibited good sensitivity with MIC values of 1250 μg/mL. Moreover, all the extracts possessed anti-HIV activity. The ethanolic flower extract was the most potent inhibitor of HIV-1 RT DNA polymerase RNA-dependent and Ribonuclease H with IC50 values of 0.26 and 0.33 μg/mL, respectively. The LC-DAD metabolic profile showed that ethanolic leaves extract contains high levels of quercetin derivatives. This study suggests that Euphorbia characias extracts represent a good source of natural bioactive compounds which could be useful for pharmaceutical application as well as in food system for the prevention of the growth of food-borne bacteria and to extend the shelf-life of processed foods. PMID:27314007

  1. Secondary Metabolites from the Marine Algal-Derived Endophytic Fungi: Chemical Diversity and Biological Activity.

    PubMed

    Zhang, Peng; Li, Xin; Wang, Bin-Gui

    2016-06-01

    Marine algal-derived endophytic fungi have attracted considerable attention in the most recent two decades due to their prolific production of structurally diverse secondary metabolites with various biological activities. This review summarizes a total of 182 natural products isolated from marine algal-derived endophytic fungi in the past two decades. The emphasis is on the unique chemical diversity of these metabolic products, together with relevant biological activities.

  2. Synthesis and Biological Activities of Organotin(IV) Complexes as Antitumoral and Antimicrobial Agents. A Review.

    PubMed

    Shah, Syed Shoaib Ahmad; Ashfaq, Muhammad; Waseem, Amir; Ahmed, M Mehboob; Najam, Tayyaba; Shaheen, Salma; Rivera, Gildardo

    2015-01-01

    Advances in the use of organotin(IV) compounds have gained relevant interest in both the chemical and pharmaceutical industry. Tin(IV) form stable complexes with a unique structure and physicochemical properties that are used in organic synthesis as heat stabilizers and catalysts, in drug development as biologically active agents, and in other areas. This review focuses on recent progress in the classical and convenient synthesis procedure, on their mechanism of action, and biological activities as antitumoral and antimicrobial agents.

  3. Research and Teaching: Instructor Use of Group Active Learning in an Introductory Biology Sequence

    ERIC Educational Resources Information Center

    Auerbach, Anna Jo; Schussler, Elisabeth E.

    2016-01-01

    Active learning (or learner-centered) pedagogies have been shown to enhance student learning in introductory biology courses. Student collaboration has also been shown to enhance student learning and may be a critical part of effective active learning practices. This study focused on documenting the use of individual active learning and group…

  4. Active Learning in a Non-Majors Biology Class: Lessons Learned

    ERIC Educational Resources Information Center

    McClanahan, Elaine B.; McClanahan, Lon L.

    2002-01-01

    This article describes how a traditional biology lecture course was transformed into an interactive class. A review the activities used, changes made to grading policy, and practical tips for integration of active learning in the classroom are provided. Analysis of student responses to course assessments indicated that active learning experiences…

  5. Low Budget Biology. A Collection of Low Cost Labs and Activities.

    ERIC Educational Resources Information Center

    Wartski, Bert; Wartski, Lynn Marie

    This document contains a collection of low cost labs and activities. The activities are organized into the following units: Chemistry; Microbiology; DNA to Chromosomes; Genetics; Evolution; Classification, Protist, and Fungus; Plant; Invertebrate; Human Biology; and Ecology and Miscellaneous. Some of the activities within these units include: (1)…

  6. Using Active Learning in a Studio Classroom to Teach Molecular Biology

    ERIC Educational Resources Information Center

    Nogaj, Luiza A.

    2013-01-01

    This article describes the conversion of a lecture-based molecular biology course into an active learning environment in a studio classroom. Specific assignments and activities are provided as examples. The goal of these activities is to involve students in collaborative learning, teach them how to participate in the learning process, and give…

  7. Biological activities and chemical composition of lichens from Serbia

    PubMed Central

    Kosanic, Marijana; Rankovic, Branislav; Stanojkovic, Tatjana; Vasiljevic, Perica; Manojlovic, Nedeljko

    2014-01-01

    The aim of this study is to investigate chemical composition of acetone extracts of the lichens Parmelia arseneana and Acarospora fuscata and in vitro antioxidant, antimicrobial, and anticancer activities of these extracts and gyrophoric acid isolated from A. fuscata. The HPLC-UV method was used for the identification of secondary metabolites. Stictic acid, norstictic acid, gyrophoric acid, usnic acid, atranorin and chloroatranorin were identified in the A. fuscata. In P. arseneana, we detected stictic acid, norstictic acid, usnic acid and atranorin, while gyrophoric acid was not identified. Antioxidant activity was evaluated by measuring the scavenging capacity of tested samples on DPPH and superoxide anion radicals, reducing the power of samples and determination of total phenolic compounds in extracts. As a result of the study, gyrophoric acid was found to have the largest DPPH radical scavenging activity with an IC50 value of 105.75 µg/ml. Moreover, the tested samples had an effective superoxide anion radical scavenging and reducing power. The total content of phenol in extracts was determined as pyrocatechol equivalent. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method. The most active was also gyrophoric acid, with minimum inhibitory concentration values ranging from 0.019 to 1.25 mg/ml. Anticancer activity was tested against LS174 (human colon carcinoma cell line), A549 (human lung carcinoma cell line), Fem-x (malignant melanoma cell line), and a chronic myelogeneous leukaemia K562 cell line using the MTT method. Extract of P. arseneana expressed the strongest anticancer activity against all cell lines with IC50 values ranging from 11.61 to 47.06 µg/ml. PMID:26417336

  8. Biological activities and chemical composition of lichens from Serbia.

    PubMed

    Kosanic, Marijana; Rankovic, Branislav; Stanojkovic, Tatjana; Vasiljevic, Perica; Manojlovic, Nedeljko

    2014-01-01

    The aim of this study is to investigate chemical composition of acetone extracts of the lichens Parmelia arseneana and Acarospora fuscata and in vitro antioxidant, antimicrobial, and anticancer activities of these extracts and gyrophoric acid isolated from A. fuscata. The HPLC-UV method was used for the identification of secondary metabolites. Stictic acid, norstictic acid, gyrophoric acid, usnic acid, atranorin and chloroatranorin were identified in the A. fuscata. In P. arseneana, we detected stictic acid, norstictic acid, usnic acid and atranorin, while gyrophoric acid was not identified. Antioxidant activity was evaluated by measuring the scavenging capacity of tested samples on DPPH and superoxide anion radicals, reducing the power of samples and determination of total phenolic compounds in extracts. As a result of the study, gyrophoric acid was found to have the largest DPPH radical scavenging activity with an IC50 value of 105.75 µg/ml. Moreover, the tested samples had an effective superoxide anion radical scavenging and reducing power. The total content of phenol in extracts was determined as pyrocatechol equivalent. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method. The most active was also gyrophoric acid, with minimum inhibitory concentration values ranging from 0.019 to 1.25 mg/ml. Anticancer activity was tested against LS174 (human colon carcinoma cell line), A549 (human lung carcinoma cell line), Fem-x (malignant melanoma cell line), and a chronic myelogeneous leukaemia K562 cell line using the MTT method. Extract of P. arseneana expressed the strongest anticancer activity against all cell lines with IC50 values ranging from 11.61 to 47.06 µg/ml. PMID:26417336

  9. Alterations in purine metabolism in middle-aged elite, amateur, and recreational runners across a 1-year training cycle.

    PubMed

    Zieliński, Jacek; Kusy, Krzysztof; Słomińska, Ewa

    2013-03-01

    Changes in purine derivatives may be considered as signs of training-induced metabolic adaptations. The purpose of this study was to assess the effect of a 1-year training cycle on the response of hypoxanthine (Hx) concentration and Hx-guanine phosphoribosyltransferase (HGPRT) activity. Three groups of middle-aged male runners were examined: 11 elite master runners (EL; 46.0 ± 3.8 years), 9 amateur runners (AM; 45.1 ± 4.7 years), and 10 recreational runners (RE; 45.9 ± 6.1 years). Plasma Hx concentration and erythrocyte HGPRT activity were measured in three characteristic training phases of the annual cycle. Significant differences in post-exercise Hx concentration and resting HGPRT activity were demonstrated between the EL, AM, and RE groups across consecutive training phases. The EL group showed lowest Hx concentration and highest HGPRT activity compared to the AM and RE groups. Analogous differences were observed between the AM and RE groups during specific preparation. For the EL group, the changes were observed across all examinations and the lowest Hx concentration and highest HGPRT activity were found in the competition phase. Significant change was also revealed in the AM group between the general and specific preparation, but not in the competition phase. No significant changes were found in the RE runners who did not use anaerobic exercise in their training. In conclusion, a long-lasting endurance training, incorporating high-intensity exercise, results in significant changes in purine metabolism, whereas training characterized by constant low-intensity exercise does not. Plasma Hx concentration and erythrocyte HGPRT activity may be sensitive indicators of training adaptation and training status in middle-aged athletes.

  10. Effects of biological and environmental factors on activity rhythms of wild animals.

    PubMed

    Tester, J R; Figala, J

    1990-01-01

    This paper reviews information on the effects of biological and environmental factors on activity rhythms of wild animals monitored by radio telemetry. Variations in radio signals received from free-ranging animals are used to determine the pattern of activity and rest. Telemetry is especially effective for obtaining activity data from wild animals at night and from those living in dense vegetation or underground. Biological factors such as breeding behavior, care of young, time of last eating, and food storage cause changes in daily activity patterns. Similarly, environmental factors such as temperature, snow cover, food supply and disturbance caused by humans in an urban setting also cause changes in daily activity patterns. The observed modifications of activity rhythms show that controlling mechanisms allow wild animals to quickly respond to changing biological and environmental factors.

  11. Biological activity of BO-1236, a new antipseudomonal cephalosporin.

    PubMed Central

    Nakagawa, S; Sanada, M; Matsuda, K; Hazumi, N; Tanaka, N

    1987-01-01

    BO-1236, a new cephalosporin having an N-methyl-5,6-dihydroxyisoindolinium moiety on the 3-methylene of the cephem, showed potent activity against gram-negative organisms, including Pseudomonas aeruginosa. The in vitro activity of BO-1236 was superior or comparable to that of ceftazidime, cefotaxime, and cefoperazone in susceptibility tests with clinical isolates. BO-1236 was significantly more active than ceftazidime against P. aeruginosa strains susceptible or resistant to ceftazidime or gentamicin or both. MBCs were usually close to MICs, both of which were influenced by inoculum size to about the same degree as those of the other beta-lactams. BO-1236 was stable to all types of beta-lactamases except type I oxyiminocephalosporin-hydrolyzing enzyme, by which BO-1236 was slightly hydrolyzed. BO-1236 showed protective activity superior to that of ceftazidime and cefotaxime in experimental infections in mice caused by two strains of P. aeruginosa and showed activity comparable to that of ceftazidime and cefotaxime against other gram-negative bacterial infections. PMID:3116919

  12. Syntheses and biological activities of pyranyl-substituted cinnamates.

    PubMed

    Zhu, J; Majikina, M; Tawata, S

    2001-01-01

    Twenty-two kinds of pyranyl-substituted cinnamates were synthesized by the reaction of 4-hydroxy-6-(2-phenylethyl)-2H-pyran-2-one or 4-hydroxy-6-methyl-2H-pyran-2-one (HMP) with a variety of substituted cinnamic acids, and their antifungal and plant growth inhibitory activities were investigated. Among the compounds prepared, 6-methyl-2-oxo-2H-pyran-4-yl 3-(4-isopropylphenyl)propenoate (H5) showed the strongest antifungal activity against Rhizoctonia solani and Sclerotium dellfinii, and 6-methyl-2-oxo-2H-pyran-4-yl 3-(2-methylphenyl)propenoate (H2) had the highest plant growth inhibitory activity toward Brassica rapa.

  13. Synthesis and biological activities of some benzimidazolone derivatives.

    PubMed

    Karale, B K; Rindhe, S S; Rode, M A

    2015-01-01

    The reaction of 5-nitrobenzimidazolone with phenoxyethyl bromide in presence of potassium carbonate in dimethyl formamide obtained 6-nitro-1,3-bis(2-phenoxyethyl)-1,3-dihydro-2H-benzimidazol-2-one. It was reduced using stannous chloride to get 6-amino -1,3-bis(2-phenoxyethyl)-1, 3-dihydro-2H-benzimidazol -2-one, which was further treated with aromatic sulphonyl chloride to obtain benzimidazolone derivatives, 6a-k. These compounds were tested for antibacterial, antituberculosis and antifungal activity. Most of them have shown very good activity against some gram positive and gram negative microorganisms and fungal strains. Some of them have shown moderate activity against Mycobacterium tuberculosis. PMID:26009659

  14. Biological activity of alkaloids from Solanum dulcamara L.

    PubMed

    Kumar, Padma; Sharma, Bindu; Bakshi, Nidhi

    2009-01-01

    Alkaloids are well known for their antimicrobial activity. Though all natural alkaloids come from plants, not all plants produce alkaloids. Plants of the Solanaceae family are known for their high alkaloid content. Alkaloids are found in all plant parts like roots, stems, leaves, flowers, fruits and seeds. In the present study, those plant parts of Solanum dulcamara were selected which have been reported to produce a high content of a specific alkaloid: solanine (from unripe fruits), solasodine (from flowers) and beta-solamarine (from roots). These alkaloids were extracted from various parts of S. dulcamara by well-established methods and were screened for their antibacterial activity. Human pathogenic bacteria, viz., Enterobacter aerogenes, Escherichia coli, Staphylococcus aureus, were selected for the study. All three alkaloids inhibited the growth of E. coli and S. aureus. However, no significant activity was observed against E. aerogenes. Minimum inhibitory concentration and minimum bactericidal concentration were also evaluated.

  15. Synthesis and biological activities of diflunisal hydrazide-hydrazones.

    PubMed

    Küçükgüzel, S Güniz; Mazi, Adil; Sahin, Fikrettin; Oztürk, Suzan; Stables, James

    2003-01-01

    Several diflunisal hydrazide-hydrazone derivatives namely 2',4'-difluoro-4-hydroxybiphenyl-3-carboxylic acid [(5-nitro-2-furyl/substitutedphenyl)methylene] hydrazide (3a-o) have been synthesised. Methyl 2',4'-difluoro-4-hydroxybiphenyl-3-carboxylate (1) and 2',4'-difluoro-4-hydroxybiphenyl-3-carboxylic acid hydrazide (2) were also synthesised and used as intermediate compounds. All synthesised compounds were screened for their antimycobacterial activity against Mycobacterium tuberculosis H37 Rv, antimicrobial activities against various bacteria, fungi and yeast species. Compound 3a have shown activity against Staphylococcus epidermis HE-5 and Staphylococcus aureus HE-9 at 18.75 and 37.5 microg mL(-1), respectively. Compound 3o have exhibited activity against Acinetobacter calcoaceticus IO-16 at a concentration of 37.5 microg mL(-1), whereas Cefepime, the drug used as standard, have been found less active against the microorganisms mentioned above. The synthesised compounds were found to provide 12-34% inhibition of mycobacterial growth of M. tuberculosis H37 Rv in the primary screen at 6.25 microg mL(-1). Anticonvulsant activity of the compounds were also determined by maximal electroshock (MES) and subcutaneous metrazole (scMET) tests in mice and rats following the procedures of antiepileptic drug development (ADD) program of the National Institutes of Health (NIH). Compound 3k showed 25% protection against MES induced seizures in p.o. rat screening at a dose level of 30 mg kg(-1) whereas 3n and 3o showed neurotoxicity after 4 and 0.5 h at a dose level of 100 and 300 mg kg(-1), respectively. PMID:14642333

  16. Investigation of some biologic activities of Swertia longifolia Boiss.

    PubMed

    Hajimehdipoor, H; Esmaeili, S; Shekarchi, M; Emrarian, T; Naghibi, F

    2013-10-01

    Swertia species are widespread in Eastern and Southern Asian countries and used in traditional medicine as anti-pyretic, analgesic, gastro and liver tonic. Among different species, only Swertia longifolia grows in Iran. In this investigation, antioxidant, cytotoxic and acetylcholinesterase inhibitory activities of S. longifolia have been studied. Aerial parts and roots of the plant were collected, dried and extracted with methanol 80% (total extract). Different extracts of the plant were obtained using hexane, chloroform, ethyl acetate, methanol, methanol:water (1:1) and water, respectively. Cytotoxic activity was determined by MTT assay on MDBK, HepG2, MCF7, HT29 and A549 cell lines. Antioxidant activity was measured by 2,2-diphenyl-1-picryl hydrazyl (DPPH) free radicals and acetylcholinesterase inhibitory (AChEI) effect was evaluated based on Ellman's method in 96-well microplates.The results showed no cytotoxicity of the plant extracts on MDBK, HepG2, MCF7, HT29 and A549 cell lines up to 100 μg/ml. All samples showed radical scavenging activity but methanol extract of aerial parts and ethyl acetate extract of the roots showed the highest effects.Total extract of the roots showed higher AChEI activity than the aerial parts. Among different extracts, chloroform and ethyl acetate extracts of the roots and chloroform and methanol:water extracts of the aerial parts were more potent in AChEI assay. It is concluded that aerial parts and roots of the plant are rich in antioxidant agents with no cytotoxicity on selected cell lines up to 100 μg/ml. Moreover, since antioxidant and AChEI activity of compounds play an important role in the treatment of Alzheimer's disorder, this plant might be a potential candidate for isolation of antioxidant and AChEI compounds which could be used as supportive treatment of Alzheimer's disease. PMID:24082894

  17. Biological activity of Paecilomyces genus against Toxocara canis eggs.

    PubMed

    Basualdo, J A; Ciarmela, M L; Sarmiento, P L; Minvielle, M C

    2000-10-01

    Saprophytic soil fungi can exert ovicidal and ovistatic effects on helminths with differing degrees of efficiency. The representatives of such fungi from temperate regions, Paecilomyces lilacinus (Thom) Samson and P. marquandii (Masse) Hughes, exhibit recognized ovicidal activity on some nematodes. We evaluated the action in vitro of P. lilacinus and P. marquandii on the zoonotic canine roundworm eggs of Toxocara canis. Eggs exposed and unexposed to fungal samples were observed by both light and scanning electron microscopy on days 4, 7 and 14 post-inoculation. Ovicidal activity of P. lilacinus on T. canis eggs was considered to be high and that of P. marquandii to be intermediate.

  18. Synthesis and biological activity of nifuroxazide and analogs. II.

    PubMed

    Tavares, L C; Chisté, J J; Santos, M G; Penna, T C

    1999-09-01

    Nifuroxazyde and six analogs were synthesized by varying the substitute from the para-position of the benzenic ring and the heteroatom of the heterocyclic ring. The MIC of seven resultant compounds was determined by serial dilutions, testing the ATCC 25923 strain of Staphylococcus aureus. A significant increase in the anti-microbial activity of thyophenic analogs, as compared with furanic and pyrrholic analogs, was observed. In addition, unlike the cyano and hydroxyl groups, the acetyl group promoted anti-microbial activity. PMID:10622109

  19. 5-N-Substituted-2-(substituted benzenesulphonyl) glutamines as antitumor agents. Part II: synthesis, biological activity and QSAR study.

    PubMed

    Samanta, Soma; Srikanth, K; Banerjee, Suchandra; Debnath, Bikash; Gayen, Shovanlal; Jha, Tarun

    2004-03-15

    Cancer is a major killer disease throughout human history. Thus, cancer becomes a major point of interest in life science. It was proved that cancer is a nitrogen trap and tumor cells are avid glutamine consumers. The non-essential amino acid glutamine, which is a glutamic acid derivative, supplies its amide nitrogen to tumor cells in the biosynthesis of purine and pyrimidine bases of nucleic acids as well as takes part in protein synthesis. Based on these and in continuation of our composite programme of development of new potential anticancer agents through rational drug design, 17 new 5-N-Substituted-2-(substituted benzenesulphonyl) glutamines were selected for synthesis. These compounds as well as 36 earlier synthesized glutamine analogues were screened for antitumor activity using percentage inhibition of tumor cell count as the activity parameter. QSAR study was performed with 53 compounds in order to design leads with increased effectiveness for antitumor activity using both physicochemical and topological parameters. QSAR study showed that steric effect on the aromatic ring is conducive to the activity. n-butyl substitution on aliphatic side chain and atom no 12 is important for antitumor activity of glutamine analogues.

  20. Quantifying biological activity in chemical terms: a pharmacology primer to describe drug effect.

    PubMed

    Kenakin, Terry

    2009-04-17

    Drugs can initiate, inhibit, modulate, or potentiate basal activity in cells to produce physiological effects. The interplay between the fundamental affinity and efficacy of drugs with the functional texture imposed on the receptor by the cell (e.g., variation in basal set points or cytosolic signal proteins) generates behaviors for drugs in different tissues that can cause apparently capricious variation between tissues under various physiological conditions. This poses a problem for pharmacologists studying drugs in test systems to predict effects in therapeutic ones. De-emphasis of tissue-specific drug behaviors by reducing drug effects to chemical terms can, to a large extent, reduce the effects of variances in biological systems (changing basal set points, genetic and biochemical variability, etc.). This Perspective discusses the application of four major pharmacodynamic parameters (affinity, efficacy, orthosteric vs allosteric binding, and rate of dissociation of drug from the biological target) to the quantification of biological activity to furnish chemical structure-activity relationships (SARs). These four parameters can be used to quantify effects in test systems and predict subsequent activity in a therapeutic setting. Because at least three different SARs are involved in the drug discovery process (primary therapeutic activity, pharmacokinetics, and safety), with more possible if target selectivity is required, some simple statistical approaches to multivariate structure-activity studies (i.e., primary activity plus selectivity data) also are considered. In total, these data can provide system-independent data to characterize biological activity of molecules in chemical terms that can greatly reduce biologically induced variability.

  1. Activated Sludge. Instructor's Guide. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Boe, Owen K.

    This instructor's guide contains the materials needed to teach a seven-lesson unit on activated sludge. These materials include an overview of the unit, lesson plans, lecture outlines (keyed to slides designed for use with the lessons), student worksheets for each of the seven lessons (with answers), and two copies of a final quiz (with and…

  2. Synthesis and biological activity of salinomycin conjugates with floxuridine.

    PubMed

    Huczyński, Adam; Antoszczak, Michał; Kleczewska, Natalia; Lewandowska, Marta; Maj, Ewa; Stefańska, Joanna; Wietrzyk, Joanna; Janczak, Jan; Celewicz, Lech

    2015-03-26

    As part of our program to develop anticancer agents, we have synthesized new compounds, which are conjugates between well-known anticancer drug, floxuridine and salinomycin which is able to selectivity kill cancer stem cells. The conjugates were obtained in two ways i.e. by copper(I) catalysed click Huisgen cycloaddition reaction performed between 3'-azido-2',3'-dideoxy-5-fluorouridine and salinomycin propargyl amide, and by the ester synthesis starting from salinomycin and floxuridine under mild condition. The compounds obtained were characterized by spectroscopic methods and evaluated for their in vitro cytotoxicity against seven human cancer cell lines as well as antibacterial activity against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE). The conjugate obtained by esterification reaction showed a significantly higher antiproliferative activity against the drug-resistant cancer cells and lower toxicity than those of salinomycin and floxuridine towards normal cells, as well as standard anticancer drugs, such as cisplatin and doxorubicin. The conjugate compound revealed also moderate activity against MRSA and MRSE bacterial strains. Very high activity of floxuridine and 5-fluorouracil against MRSA and MRSE has been also observed.

  3. Biological activities of extracts from cultivated Granadilla Passiflora alata.

    PubMed

    Vasic, Sava M; Stefanovic, Olgica D; Licina, Braho Z; Radojevic, Ivana D; Comic, Ljiljana R

    2012-01-01

    Research conducted in this study showed the influence of ethanol, acetone and ethyl acetate extracts of the outgrowth of cultivated Passiflora alata on microorganisms, as well as the antioxidant activity and the concentrations of total phenols, flavonoids and tannins. In vitro antimicrobial activities of extracts were studied on 27 species of microorganisms, of which 17 species of bacteria and 10 species of fungi. The strongest antimicrobial activity was detected on G+ bacteria while the activities on other species were moderate. Ethyl acetate extract showed the strongest effect. The concentrations of total phenols were examined by using Folin-Ciocalteu reagent and the obtained values ranged from 14.04 to 34.22 mg GA/g. By using aluminium chloride method, the concentrations of flavonoids were obtained and the values ranged from 33.19 to 62.30 mg RU/g. In determining the amount of tannins we used the method with buthanol-HCl reagent and the obtained value was 5.1 % of dry matter. The efficiency of antioxidation, which we identified through the reduction of DPPH, was in the range from 808.69 to 1107.79 µg/ml for a particular IC50, and AAI values were between 0.07 and 0.10. The best parameters were shown by ethanol extract. All data were statistically analyzed. Overall, extracts showed potential for further investigation and use.

  4. Biological activities of extracts from cultivated Granadilla Passiflora alata

    PubMed Central

    Vasic, Sava M.; Stefanovic, Olgica D.; Licina, Braho Z.; Radojevic, Ivana D.; Comic, Ljiljana R.

    2012-01-01

    Research conducted in this study showed the influence of ethanol, acetone and ethyl acetate extracts of the outgrowth of cultivated Passiflora alata on microorganisms, as well as the antioxidant activity and the concentrations of total phenols, flavonoids and tannins. In vitro antimicrobial activities of extracts were studied on 27 species of microorganisms, of which 17 species of bacteria and 10 species of fungi. The strongest antimicrobial activity was detected on G+ bacteria while the activities on other species were moderate. Ethyl acetate extract showed the strongest effect. The concentrations of total phenols were examined by using Folin-Ciocalteu reagent and the obtained values ranged from 14.04 to 34.22 mg GA/g. By using aluminium chloride method, the concentrations of flavonoids were obtained and the values ranged from 33.19 to 62.30 mg RU/g. In determining the amount of tannins we used the method with buthanol-HCl reagent and the obtained value was 5.1 % of dry matter. The efficiency of antioxidation, which we identified through the reduction of DPPH, was in the range from 808.69 to 1107.79 µg/ml for a particular IC50, and AAI values were between 0.07 and 0.10. The best parameters were shown by ethanol extract. All data were statistically analyzed. Overall, extracts showed potential for further investigation and use. PMID:27385958

  5. Total Chemical Synthesis of Biologically Active Vascular Endothelial Growth Factor

    SciTech Connect

    Mandal, Kalyaneswar; Kent, Stephen B.H.

    2011-09-15

    The 204-residue covalent-dimer vascular endothelial growth factor (VEGF, see picture) with full mitogenic activity was prepared from three unprotected peptide segments by one-pot native chemical ligations. The covalent structure of the synthetic VEGF was confirmed by precise mass measurement, and the three-dimensional structure of the synthetic protein was determined by high-resolution X-ray crystallography.

  6. Marine Biology Field Trip Sites. Ocean Related Curriculum Activities.

    ERIC Educational Resources Information Center

    Pauls, John

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  7. Biological function of activation-induced cytidine deaminase (AID).

    PubMed

    Kumar, Ritu; DiMenna, Lauren J; Chaudhuri, Jayanta; Evans, Todd

    2014-01-01

    Activation-induced Cytidine Deaminase (AID) is an essential regulator of B cell diversification, but its full range of action has until recently been an enigma. Based on homology, it was originally proposed to be an RNA-editing enzyme, but so far, no RNA substrates are known. Rather, it functions by deaminating cytidine, and in this manner, coupled with base-excision repair or mismatch repair machinery, it is a natural mutator. This allows it to play a central role in adaptive immunity, whereby it initiates the processes of class switch recombination and somatic hypermutation to help generate a diverse and high-affinity repertoire of immunoglobulin isotypes. More recently, it has been appreciated that methylated cytidine, already known as a key epigenetic mark on DNA controlling gene expression, can also be a target for AID modification. Coupled with repair machinery, this can facilitate the active removal of methylated DNA. This activity can impact the process of cellular reprogramming, including transition of a somatic cell to pluripotency, which requires major reshuffling of epigenetic memory. Thus, seemingly disparate roles for AID in controlling immune diversity and epigenetic memory have a common mechanistic basis. However, the very activity that is so useful for B cell diversity and cellular reprogramming is dangerous for the integrity of the genome. Thus, AID expression and activity is tightly regulated, and deregulation is associated with diseases including cancer. Here, we review the range of AID functions with a focus on its mechanisms of action and regulation. Major questions remain to be answered concerning how and when AID is targeted to specific loci and how this impacts development and disease.

  8. Biological activities of two macroalgae from Adriatic coast of Montenegro

    PubMed Central

    Kosanić, Marijana; Ranković, Branislav; Stanojković, Tatjana

    2014-01-01

    In the present investigation the acetone extracts of macroalgae Ulva lactuca and Enteromorpha intestinalis were tested for antioxidant, antimicrobial and cytotoxic potential. Antioxidant activity was evaluated by measuring the scavenging capacity of tested samples on DPPH and superoxide anion radicals, reducing the power of samples and determination of total phenolic and flavonoid compounds in extracts. As a result of the study, U. lactuca extract was found to have a better free radical scavenging activity (IC50 = 623.58 μg/ml) than E. intestinalis extract (IC50 = 732.12 μg/ml). Moreover, the tested extracts had effective ferric reducing power and superoxide anion radical scavenging. The total content of phenol in extracts of U. lactuca and E. intestinalis was 58.15 and 40.68 μg PE/mg, while concentrations of flavonoids were 39.58 and 21.74 μg RE/mg, respectively. Furthermore, among the tested species, extracts of U. lactuca showed a better antimicrobial activity with minimum inhibitory concentration values ranging from 0.156 to 5 mg/ml, but it was relatively weak in comparison with standard antibiotics. Bacillus mycoides and Bacillus subtilis were the most susceptible to the tested extracts. Contrary to this Aspergillus flavus, Aspergillus fumigatus and Penicillium purpurescens were the most resistant. Finally, cytotoxic activity of tested extracts was evaluated on four human cancer cell lines. Extract of E. intestinalis expressed the stronger cytotoxic activity towards all tested cell lines with IC50 values ranging from 74.73 to 155.39 μg/ml. PMID:26150743

  9. Antiproliferative naphthopyrans: biological activity, mechanistic studies and therapeutic potential.

    PubMed

    Dell, C P

    1998-06-01

    This article will firstly briefly review the newer generation of immunosuppressant drugs, focusing mainly on tacrolimus (FK-506), sirolimus (rapamycin), mycophenolate mofetil (RS-61443) and leflunomide (HWA 486) and then describe work carried out at the Lilly Research Centre on analogues of leflunomide and subsequent diversion into a structurally distinct series of compounds, the naphthopyrans. A clear structure activity relationship exists within this series and selected data from a Concanavalin A stimulated T-cell proliferation assay are presented to illustrate this. Although the compounds proved to possess little in vivo activity in our rheumatoid arthritis program, examination of the compounds in in vitro and in vivo models within the diabetic complications group showed the compounds behaved as would be anticipated for inhibitors of protein kinase C, although this direct mode of action was clearly not correct. Mechanistic investigations revealed that the favoured compound 290181 blocks phorbol 12,13-dibutyrate-induced binding of transcription factor proteins to the PEA3/TRE sequence of the promoter region of the urokinase plasminogen activator gene. The compounds also showed antiproliferative effects on vascular smooth muscle cells, an in vitro activity that translated into in vivo efficacy in a rat model of restenosis. Mechanistic studies here demonstrated that 290181 blocks proliferation in the G2/M phase of the cell cycle by binding directly to a novel site on tubulin. Finally the compounds were shown to inhibit the release of neutral proteases from interleukin-1 stimulated articular chondrocytes, this activity having implications in the degenerative aspects of osteoarthritis. PMID:9562601

  10. Which Electronic and Structural Factors Control the Photostability of DNA and RNA Purine Nucleobases?

    NASA Astrophysics Data System (ADS)

    Pollum, Marvin; Reichardt, Christian; Crespo-Hernández, Carlos E.; Martínez-Fernández, Lara; Corral, Inés; Rauer, Clemens; Mai, Sebastian; Marquetand, Philipp; González, Leticia

    2015-06-01

    Following ultraviolet excitation, the canonical purine nucleobases, guanine and adenine, are able to efficiently dissipate the absorbed energy within hundreds of femtoseconds. This property affords these nucleobases with great photostability. Conversely, non-canonical purine nucleobases exhibit high fluorescence quantum yields or efficiently populate long-lived triplet excited states from which chemistry can occur. Using femtosecond broadband transient absorption spectroscopy in combination with ab initio static and surface hopping dynamics simulations we have determined the electronic and structural factors that regulate the excited state dynamics of the purine nucleobase derivatives. Importantly, we have uncovered that the photostability of the guanine and adenine nucleobases is not due to the structure of the purine core itself and that the substituent at the C6 position of the purine nucleobase plays a more important role than that at the C2 position in the ultrafast relaxation of deleterious electronic energy. [The authors acknowledge the CAREER program of the National Science Foundation (Grant No. CHE-1255084) for financial support.

  11. Identification of a chemoreceptor that specifically mediates chemotaxis toward metabolizable purine derivatives.

    PubMed

    Fernández, Matilde; Morel, Bertrand; Corral-Lugo, Andrés; Krell, Tino

    2016-01-01

    Chemotaxis is an essential mechanism that enables bacteria to move toward favorable ecological niches. Escherichia coli, the historical model organism for studying chemotaxis, has five well-studied chemoreceptors. However, many bacteria with different lifestyle have more chemoreceptors, most of unknown function. Using a high throughput screening approach, we identified a chemoreceptor from Pseudomonas putida KT2440, named McpH, which specifically recognizes purine and its derivatives, adenine, guanine, xanthine, hypoxanthine and uric acid. The latter five compounds form part of the purine degradation pathway, permitting their use as sole nitrogen sources. Isothermal titration calorimetry studies show that these six compounds bind McpH-Ligand Binding Domain (LBD) with very similar affinity. In contrast, non-metabolizable purine derivatives (caffeine, theophylline, theobromine), nucleotides, nucleosides or pyrimidines are unable to bind McpH-LBD. Mutation of mcpH abolished chemotaxis toward the McpH ligands identified - a phenotype that is restored by complementation. This is the first report on bacterial chemotaxis to purine derivatives and McpH the first chemoreceptor described that responds exclusively to intermediates of a catabolic pathway, illustrating a clear link between metabolism and chemotaxis. The evolution of McpH may reflect a saprophytic lifestyle, which would have exposed the studied bacterium to high concentrations of purines produced by nucleic acid degradation.

  12. Metabolic Engineering of the Purine Pathway for Riboflavin Production in Ashbya gossypii†

    PubMed Central

    Jiménez, Alberto; Santos, María A.; Pompejus, Markus; Revuelta, José L.

    2005-01-01

    Purine nucleotides are essential precursors for living organisms because they are involved in many important processes, such as nucleic acid synthesis, energy supply, and the biosynthesis of several amino acids and vitamins such as riboflavin. GTP is the immediate precursor for riboflavin biosynthesis, and its formation through the purine pathway is subject to several regulatory mechanisms in different steps. Extracellular purines repress the transcription of most genes required for de novo ATP and GTP synthesis. Additionally, three enzymes of the pathway, phosphoribosyl pyrophosphate (PRPP) amidotransferase, adenylosuccinate synthetase, and IMP dehydrogenase, are subject to feedback inhibition by their end products. Here we report the characterization and manipulation of the committed step in the purine pathway of the riboflavin overproducer Ashbya gossypii. We report that phosphoribosylamine biosynthesis in A. gossypii is negatively regulated at the transcriptional level by extracellular adenine. Furthermore, we show that ATP and GTP exert a strong inhibitory effect on the PRPP amidotransferase from A. gossypii. We constitutively overexpressed the AgADE4 gene encoding PRPP amidotransferase in A. gossypii, thereby abolishing the adenine-mediated transcriptional repression. In addition, we replaced the corresponding residues (aspartic acid310, lysine333, and alanine417) that have been described to be important for PRPP amidotransferase feedback inhibition in other organisms by site-directed mutagenesis. With these manipulations, we managed to enhance metabolic flow through the purine pathway and to increase the production of riboflavin in the triple mutant strain 10-fold (228 mg/liter). PMID:16204483

  13. Oscillating response to a purine nucleotide disrupted by mutation in Paramecium tetraurelia.

    PubMed Central

    Mimikakis, J L; Nelson, D L; Preston, R R

    1998-01-01

    The purine nucleotide GTP, when added extracellularly, induces oscillations in the swimming behaviour of the protist Paramecium tetraurelia. For periods as long as 10 min the cell swims backwards and forwards repetitively. The oscillations in swimming behaviour are driven by changes in membrane potential of the cell, which in turn are caused by periodic activation of inward Mg2+- and Na+-specific currents. We screened for and isolated mutants that are defective in this response, exploiting the fact that the net result of GTP on a population of cells is repulsion. One mutant, GTP-insensitive (gin A), is not repelled by GTP. In addition, GTP fails to induce repetitive backwards swimming in gin A mutants, although they swim backwards normally in response to other stimuli. GTP fails to evoke oscillations in membrane potential or Mg2+ and Na+ currents in the mutant, although the Mg2+ and Na+ conductances are not themselves measurably affected. A small, oscillating Ca2+ current induced by GTP in the wild type, which might be part of the mechanism that generates oscillations, is also missing from gin A cells. To our knowledge, gin A is the first example of a mutant defective in a purinergic response. We discuss the possibility that the gin A lesion affects the oscillator itself. PMID:9461502

  14. A defect in the p53 response pathway induced by de novo purine synthesis inhibition.

    PubMed

    Bronder, Julie L; Moran, Richard G

    2003-12-01

    p53 is believed to sense cellular ribonucleotide depletion in the absence of DNA strand breaks and to respond by imposition of a p21-dependent G1 cell cycle arrest. We now report that the p53-dependent G1 checkpoint is blocked in human carcinoma cell lines after inhibition of de novo purine synthesis by folate analogs inhibitory to glycinamide ribonucleotide formyltransferase (GART). p53 accumulated in HCT116, MCF7, or A549 carcinoma cells upon GART inhibition, but, surprisingly, transcription of several p53 targets, including p21cip1/waf1, was impaired. The mechanism of this defect was examined. The p53 accumulating in these cells was nuclear but was not phosphorylated at serines 6, 15, and 20, nor was it acetylated at lysines 373 or 382. The DDATHF-stabilized p53 bound to the p21 promoter in vitro and in vivo but did not activate histone acetylation over the p53 binding sites in the p21 promoter that is an integral part of the transcriptional response mediated by the DNA damage pathway. We concluded that the robust initial response of the p53 pathway to GART inhibitors is not transcriptionally propagated to target genes due to a defect in p53 post-translational modifications and a failure to open chromatin structure despite promoter binding of this unmodified p53. PMID:14517211

  15. Crystal structure and molecular dynamics studies of human purine nucleoside phosphorylase complexed with 7-deazaguanine.

    PubMed

    Caceres, Rafael Andrade; Timmers, Luis Fernando Saraiva Macedo; Pauli, Ivani; Gava, Lisandra Marques; Ducati, Rodrigo Gay; Basso, Luiz Augusto; Santos, Diógenes Santiago; de Azevedo, Walter Filgueira

    2010-03-01

    In humans, purine nucleoside phosphorylase (HsPNP) is responsible for degradation of deoxyguanosine, and genetic deficiency of this enzyme leads to profound T-cell mediated immunosuppression. HsPNP is a target for inhibitor development aiming at T-cell immune response modulation. Here we report the crystal structure of HsPNP in complex with 7-deazaguanine (HsPNP:7DG) at 2.75 A. Molecular dynamics simulations were employed to assess the structural features of HsPNP in both free form and in complex with 7DG. Our results show that some regions, responsible for entrance and exit of substrate, present a conformational variability, which is dissected by dynamics simulation analysis. Enzymatic assays were also carried out and revealed that 7-deazaguanine presents a lower inhibitory activity against HsPNP (K(i)=200 microM). The present structure may be employed in both structure-based design of PNP inhibitors and in development of specific empirical scoring functions.

  16. Capillary bioreactors based on human purine nucleoside phosphorylase: a new approach for ligands identification and characterization.

    PubMed

    de Moraes, Marcela Cristina; Ducati, Rodrigo Gay; Donato, Augusto José; Basso, Luiz Augusto; Santos, Diógenes Santiago; Cardoso, Carmen Lucia; Cass, Quezia Bezerra

    2012-04-01

    The enzyme purine nucleoside phosphorylase (PNP) is a target for the discovery of new lead compounds employed on the treatment severe T-cell mediated disorders. Within this context, the development of new, direct, and reliable methods for ligands screening is an important task. This paper describes the preparation of fused silica capillaries human PNP (HsPNP) immobilized enzyme reactor (IMER). The activity of the obtained IMER is monitored on line in a multidimensional liquid chromatography system, by the quantification of the product formed throughout the enzymatic reaction. The K(M) value for the immobilized enzyme was about twofold higher than that measured for the enzyme in solution (255 ± 29.2 μM and 133 ± 14.9 μM, respectively). A new fourth-generation immucillin derivative (DI4G; IC(50)=40.6 ± 0.36 nM), previously identified and characterized in HsPNP free enzyme assays, was used to validate the IMER as a screening method for HsPNP ligands. The validated method was also used for mechanistic studies with this inhibitor. This new approach is a valuable tool to PNP ligand screening, since it directly measures the hypoxanthine released by inosine phosphorolysis, thus furnishing more reliable results than those one used in a coupled enzymatic spectrophotometric assay.

  17. Synthesis and biological activity of substituted-4,5,6,7-tetrahydrothieno pyridines: a review.

    PubMed

    Sangshetti, Jaiprakash N; Zambare, Abhay S; Khan, Firoz A Kalam; Gonjari, Indrajeet; Zaheer, Zahid

    2014-01-01

    4,5,6,7-Tetrahydrothieno pyridine is an important class of heterocyclic nucleus. Various 4,5,6,7-tetrahydrothieno pyridine derivatives have been synthesized and evaluated for various biological activities in different models with desired findings. Some analogs have shown potent biological activities and may be considered as lead molecule for the development of future drugs. Number of drug molecules are available in the market and many molecules are in clinical development containing 4,5,6,7-tetrahydrothieno pyridine nucleus as an important core. This review is an attempt to organize the chemical and biological aspects of 4,5,6,7-tetrahydrothieno pyridine analogs reported in last 20 year to till date. Review mainly focuses on the important role of the core in synthesis of drug or drug intermediates giving emphasis on synthetic schemes and biological activities of the different 4,5,6,7-tetrahydrothieno pyridine analogs. PMID:25373848

  18. Biologically Inspired Photocatalytically Active Membranes for Water Treatment

    NASA Astrophysics Data System (ADS)

    Kinsinger, Nichola M.

    There is an alarming increase of a variety of new chemicals that are now being discharged into the wastewater system causing increased concern for public health and safety because many are not removed by typical wastewater treatment practices. Titanium Dioxide (TiO2) is a heterogeneous photocatalytic material that rapidly and completely mineralizing organics without harmful byproducts. TiO2 is synthesized by various methods, which lack the necessary control of crystal size, phase, and morphological features that yield optimized semiconductor materials. Mineralizing organisms demonstrate how nature can produce elegant structures at room temperature through controlled organic-mineral interactions. Here, we utilize biologically-inspired scaffolds to template the nucleation and growth of inorganic materials such as TiO2, which aid in controlling the size and phase of these particles and ultimately, their properties. Nanosized rutile and anatase particles were synthesized under solution conditions at relatively low temperatures and mild pH conditions. The effects of reaction conditions on phase and grain size were investigated and discussed from coordination chemistry and coarsening mechanisms. Photocatalytic characterization of TiO2 phase mixtures was performed to investigate their synergistic effect. The suspension conditions of these catalytic nanomaterials were modulated to optimize the degradation rate of organic analytes. Through the addition of an organic scaffold during the synthesis reaction, a mechanically robust (elastic) composite material containing TiO2 nanoparticles was produced. This composite was subsequently heat-treated to produce a porous, high surface area TiO2 nanoparticulate membrane. Processing conditions were investigated to characterize the growth and phase transformation of TiO2, which ultimately impacts photocatalytic performance. These bulk porous TiO2 structures can be fabricated and tailored to act as stand-alone photocatalytic membranes

  19. Synthesis and biological activity of Wuweizisu C and analogs.

    PubMed

    Chang, J B; Wang, Q; Li, Y F

    2009-01-01

    Lignans are widely distributed in nature. The earliest recorded medicinal use of lignans dated back to over 1000 years ago. Lignan-rich plant products were also active ingredients in Chinese and Japanese folk medicines for the treatment of various diseases. The dried root and stem of this plant are listed in the Chinese pharmacopoeia for the treatment of rheumatoid arthritis, gastric, duodenal ulcers and many other diseases. This review highlights synthetic strategies for the Wuweizisu C analogs and the important pharmacological activities as well as therapeutic findings related to the treatment of HBV and other diseases. Notably a significant and ongoing project on Wuweizisu C and its analogs has led to the discovery and development of two potent derivatives alpha-DDB and BICYCLOL which are currently in clinical trials against HBV, especially in lowering elevated SGPT levels. Further design, synthesis, and evaluation of Wuweizisu C analogs are discussed.

  20. [Biological activity of selenorganic compounds at heavy metal salts intoxication].

    PubMed

    Rusetskaya, N Y; Borodulin, V B

    2015-01-01

    Possible mechanisms of the antitoxic action of organoselenium compounds in heavy metal poisoning have been considered. Heavy metal toxicity associated with intensification of free radical oxidation, suppression of the antioxidant system, damage to macromolecules, mitochondria and the genetic material can cause apoptotic cell death or the development of carcinogenesis. Organic selenium compounds are effective antioxidants during heavy metal poisoning; they exhibit higher bioavailability in mammals than inorganic ones and they are able to activate antioxidant defense, bind heavy metal ions and reactive oxygen species formed during metal-induced oxidative stress. One of promising organoselenium compounds is diacetophenonyl selenide (DAPS-25), which is characterized by antioxidant and antitoxic activity, under conditions including heavy metal intoxication.