Sample records for biologically based multistage

  1. A MULTISTAGE BIOLOGICALLY BASED MATHEMATICAL MODEL FOR MOUSE LIVER TUMORS INDUCED BY DICHLOROACETIC ACID (DCA) - EXPLORATION OF THE MODEL

    EPA Science Inventory

    A biologically based mathematical model for the induction of liver tumors in mice by dichloroacetic acid (DCA) has been developed from histopathologic analysis of the livers of exposed mice. This analysis suggests that following chronic exposure to DCA, carcinomas can arise dire...

  2. SU-E-T-480: Radiobiological Dose Comparison of Single Fraction SRS, Multi-Fraction SRT and Multi-Stage SRS of Large Target Volumes Using the Linear-Quadratic Formula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, C; Hrycushko, B; Jiang, S

    2014-06-01

    Purpose: To compare the radiobiological effect on large tumors and surrounding normal tissues from single fraction SRS, multi-fractionated SRT, and multi-staged SRS treatment. Methods: An anthropomorphic head phantom with a centrally located large volume target (18.2 cm{sup 3}) was scanned using a 16 slice large bore CT simulator. Scans were imported to the Multiplan treatment planning system where a total prescription dose of 20Gy was used for a single, three staged and three fractionated treatment. Cyber Knife treatment plans were inversely optimized for the target volume to achieve at least 95% coverage of the prescription dose. For the multistage plan,more » the target was segmented into three subtargets having similar volume and shape. Staged plans for individual subtargets were generated based on a planning technique where the beam MUs of the original plan on the total target volume are changed by weighting the MUs based on projected beam lengths within each subtarget. Dose matrices for each plan were export in DICOM format and used to calculate equivalent dose distributions in 2Gy fractions using an alpha beta ratio of 10 for the target and 3 for normal tissue. Results: Singe fraction SRS, multi-stage plan and multi-fractionated SRT plans had an average 2Gy dose equivalent to the target of 62.89Gy, 37.91Gy and 33.68Gy, respectively. The normal tissue within 12Gy physical dose region had an average 2Gy dose equivalent of 29.55Gy, 16.08Gy and 13.93Gy, respectively. Conclusion: The single fraction SRS plan had the largest predicted biological effect for the target and the surrounding normal tissue. The multi-stage treatment provided for a more potent biologically effect on target compared to the multi-fraction SRT treatments with less biological normal tissue than single-fraction SRS treatment.« less

  3. Enzyme-regulated the changes of pH values for assembling a colorimetric and multistage interconnection logic network with multiple readouts.

    PubMed

    Huang, Yanyan; Ran, Xiang; Lin, Youhui; Ren, Jinsong; Qu, Xiaogang

    2015-04-22

    Based on enzymatic reactions-triggered changes of pH values and biocomputing, a novel and multistage interconnection biological network with multiple easy-detectable signal outputs has been developed. Compared with traditional chemical computing, the enzyme-based biological system could overcome the interference between reactions or the incompatibility of individual computing gates and offer a unique opportunity to assemble multicomponent/multifunctional logic circuitries. Our system included four enzyme inputs: β-galactosidase (β-gal), glucose oxidase (GOx), esterase (Est) and urease (Ur). With the assistance of two signal transducers (gold nanoparticles and acid-base indicators) or pH meter, the outputs of the biological network could be conveniently read by the naked eyes. In contrast to current methods, the approach present here could realize cost-effective, label-free and colorimetric logic operations without complicated instrument. By designing a series of Boolean logic operations, we could logically make judgment of the compositions of the samples on the basis of visual output signals. Our work offered a promising paradigm for future biological computing technology and might be highly useful in future intelligent diagnostics, prodrug activation, smart drug delivery, process control, and electronic applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment

    PubMed Central

    Chen, Binlong; Dai, Wenbing; He, Bing; Zhang, Hua; Wang, Xueqing; Wang, Yiguang; Zhang, Qiang

    2017-01-01

    The development of traditional tumor-targeted drug delivery systems based on EPR effect and receptor-mediated endocytosis is very challenging probably because of the biological complexity of tumors as well as the limitations in the design of the functional nano-sized delivery systems. Recently, multistage drug delivery systems (Ms-DDS) triggered by various specific tumor microenvironment stimuli have emerged for tumor therapy and imaging. In response to the differences in the physiological blood circulation, tumor microenvironment, and intracellular environment, Ms-DDS can change their physicochemical properties (such as size, hydrophobicity, or zeta potential) to achieve deeper tumor penetration, enhanced cellular uptake, timely drug release, as well as effective endosomal escape. Based on these mechanisms, Ms-DDS could deliver maximum quantity of drugs to the therapeutic targets including tumor tissues, cells, and subcellular organelles and eventually exhibit the highest therapeutic efficacy. In this review, we expatiate on various responsive modes triggered by the tumor microenvironment stimuli, introduce recent advances in multistage nanoparticle systems, especially the multi-stimuli responsive delivery systems, and discuss their functions, effects, and prospects. PMID:28255348

  5. Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment.

    PubMed

    Chen, Binlong; Dai, Wenbing; He, Bing; Zhang, Hua; Wang, Xueqing; Wang, Yiguang; Zhang, Qiang

    2017-01-01

    The development of traditional tumor-targeted drug delivery systems based on EPR effect and receptor-mediated endocytosis is very challenging probably because of the biological complexity of tumors as well as the limitations in the design of the functional nano-sized delivery systems. Recently, multistage drug delivery systems (Ms-DDS) triggered by various specific tumor microenvironment stimuli have emerged for tumor therapy and imaging. In response to the differences in the physiological blood circulation, tumor microenvironment, and intracellular environment, Ms-DDS can change their physicochemical properties (such as size, hydrophobicity, or zeta potential) to achieve deeper tumor penetration, enhanced cellular uptake, timely drug release, as well as effective endosomal escape. Based on these mechanisms, Ms-DDS could deliver maximum quantity of drugs to the therapeutic targets including tumor tissues, cells, and subcellular organelles and eventually exhibit the highest therapeutic efficacy. In this review, we expatiate on various responsive modes triggered by the tumor microenvironment stimuli, introduce recent advances in multistage nanoparticle systems, especially the multi-stimuli responsive delivery systems, and discuss their functions, effects, and prospects.

  6. A MULTISTAGE BIOLOGICALLY BASED MODEL FOR MOUSE LIVER TUMORS RESULTING FROM EXPOSURE TO DICHLOROACETIC ACID

    EPA Science Inventory

    Dichloroacetic Acid (DCA) is a major byproduct of the chlorine disinfection of humic acid containing drinking water sources. It is a hepatocarcinogen in mice and rats at exposure concentrations in drinking water that are at least 4 orders of magnitude above the concentrations in ...

  7. A multistage gene normalization system integrating multiple effective methods.

    PubMed

    Li, Lishuang; Liu, Shanshan; Li, Lihua; Fan, Wenting; Huang, Degen; Zhou, Huiwei

    2013-01-01

    Gene/protein recognition and normalization is an important preliminary step for many biological text mining tasks. In this paper, we present a multistage gene normalization system which consists of four major subtasks: pre-processing, dictionary matching, ambiguity resolution and filtering. For the first subtask, we apply the gene mention tagger developed in our earlier work, which achieves an F-score of 88.42% on the BioCreative II GM testing set. In the stage of dictionary matching, the exact matching and approximate matching between gene names and the EntrezGene lexicon have been combined. For the ambiguity resolution subtask, we propose a semantic similarity disambiguation method based on Munkres' Assignment Algorithm. At the last step, a filter based on Wikipedia has been built to remove the false positives. Experimental results show that the presented system can achieve an F-score of 90.1%, outperforming most of the state-of-the-art systems.

  8. Loading, Release, Biodegradation, and Biocompatibility of a Nanovector Delivery System

    NASA Technical Reports Server (NTRS)

    Ferrai, Mauro; Tasciotti, Ennio

    2012-01-01

    A nanovector multistage system has been created to overcome or bypass sequential barriers within the human body, in order to deliver a therapeutic or imaging agent to a specific location. This innovation consists of a composition that includes two or more stages of particles, such that smaller, later-stage particles are contained in the larger, early-stage particles. An active agent, such as a therapeutic agent or imaging agent, is preferentially delivered and/or localized to a particular target site in the body of a subject. The multistage composition overcomes multiple biological barriers in the body. The multistage composition also allows for simultaneous delivery and localization at the same or different target sites of multiple active agents.

  9. Stability in chemical and biological systems: Multistage polyenzymatic reactions

    NASA Astrophysics Data System (ADS)

    Varfolomeev, S. D.; Lukovenkov, A. V.

    2010-08-01

    General principles of the theory of stability of solutions to differential equations are considered. The stability of equations describing the dynamics of changes in reagent concentrations in polyenzymatic biochemical chains is analyzed. Various mechanisms of formation of stable and unstable stationary states are considered, and unbalanced regimes and collapse are analyzed. The influence of systems of toxins and drugs on stability is studied. An interpretation of pathological processes based on stability theory is given.

  10. A multi-stage color model revisited: implications for a gene therapy cure for red-green colorblindness.

    PubMed

    Mancuso, Katherine; Mauck, Matthew C; Kuchenbecker, James A; Neitz, Maureen; Neitz, Jay

    2010-01-01

    In 1993, DeValois and DeValois proposed a 'multi-stage color model' to explain how the cortex is ultimately able to deconfound the responses of neurons receiving input from three cone types in order to produce separate red-green and blue-yellow systems, as well as segregate luminance percepts (black-white) from color. This model extended the biological implementation of Hurvich and Jameson's Opponent-Process Theory of color vision, a two-stage model encompassing the three cone types combined in a later opponent organization, which has been the accepted dogma in color vision. DeValois' model attempts to satisfy the long-remaining question of how the visual system separates luminance information from color, but what are the cellular mechanisms that establish the complicated neural wiring and higher-order operations required by the Multi-stage Model? During the last decade and a half, results from molecular biology have shed new light on the evolution of primate color vision, thus constraining the possibilities for the visual circuits. The evolutionary constraints allow for an extension of DeValois' model that is more explicit about the biology of color vision circuitry, and it predicts that human red-green colorblindness can be cured using a retinal gene therapy approach to add the missing photopigment, without any additional changes to the post-synaptic circuitry.

  11. A Correction to the Stress-Strain Curve During Multistage Hot Deformation of 7150 Aluminum Alloy Using Instantaneous Friction Factors

    NASA Astrophysics Data System (ADS)

    Jiang, Fulin; Tang, Jie; Fu, Dinfa; Huang, Jianping; Zhang, Hui

    2018-04-01

    Multistage stress-strain curve correction based on an instantaneous friction factor was studied for axisymmetric uniaxial hot compression of 7150 aluminum alloy. Experimental friction factors were calculated based on continuous isothermal axisymmetric uniaxial compression tests at various deformation parameters. Then, an instantaneous friction factor equation was fitted by mathematic analysis. After verification by comparing single-pass flow stress correction with traditional average friction factor correction, the instantaneous friction factor equation was applied to correct multistage stress-strain curves. The corrected results were reasonable and validated by multistage relative softening calculations. This research provides a broad potential for implementing axisymmetric uniaxial compression in multistage physical simulations and friction optimization in finite element analysis.

  12. Novel methodology for wide-ranged multistage morphing waverider based on conical theory

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Liu, Jun; Ding, Feng; Xia, Zhixun

    2017-11-01

    This study proposes the wide-ranged multistage morphing waverider design method. The flow field structure and aerodynamic characteristics of multistage waveriders are also analyzed. In this method, the multistage waverider is generated in the same conical flowfield, which contains a free-stream surface and different compression-stream surfaces. The obtained results show that the introduction of the multistage waverider design method can solve the problem of aerodynamic performance deterioration in the off-design state and allow the vehicle to always maintain the optimal flight state. The multistage waverider design method, combined with transfiguration flight strategy, can lead to greater design flexibility and the optimization of hypersonic wide-ranged waverider vehicles.

  13. A multistage stochastic programming model for a multi-period strategic expansion of biofuel supply chain under evolving uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Fei; Huang, Yongxi

    Here, we develop a multistage, stochastic mixed-integer model to support biofuel supply chain expansion under evolving uncertainties. By utilizing the block-separable recourse property, we reformulate the multistage program in an equivalent two-stage program and solve it using an enhanced nested decomposition method with maximal non-dominated cuts. We conduct extensive numerical experiments and demonstrate the application of the model and algorithm in a case study based on the South Carolina settings. The value of multistage stochastic programming method is also explored by comparing the model solution with the counterparts of an expected value based deterministic model and a two-stage stochastic model.

  14. A multistage stochastic programming model for a multi-period strategic expansion of biofuel supply chain under evolving uncertainties

    DOE PAGES

    Xie, Fei; Huang, Yongxi

    2018-02-04

    Here, we develop a multistage, stochastic mixed-integer model to support biofuel supply chain expansion under evolving uncertainties. By utilizing the block-separable recourse property, we reformulate the multistage program in an equivalent two-stage program and solve it using an enhanced nested decomposition method with maximal non-dominated cuts. We conduct extensive numerical experiments and demonstrate the application of the model and algorithm in a case study based on the South Carolina settings. The value of multistage stochastic programming method is also explored by comparing the model solution with the counterparts of an expected value based deterministic model and a two-stage stochastic model.

  15. Multi-stage separations based on dielectrophoresis

    DOEpatents

    Mariella, Jr., Raymond P.

    2004-07-13

    A system utilizing multi-stage traps based on dielectrophoresis. Traps with electrodes arranged transverse to the flow and traps with electrodes arranged parallel to the flow with combinations of direct current and alternating voltage are used to trap, concentrate, separate, and/or purify target particles.

  16. How quantitative measures unravel design principles in multi-stage phosphorylation cascades.

    PubMed

    Frey, Simone; Millat, Thomas; Hohmann, Stefan; Wolkenhauer, Olaf

    2008-09-07

    We investigate design principles of linear multi-stage phosphorylation cascades by using quantitative measures for signaling time, signal duration and signal amplitude. We compare alternative pathway structures by varying the number of phosphorylations and the length of the cascade. We show that a model for a weakly activated pathway does not reflect the biological context well, unless it is restricted to certain parameter combinations. Focusing therefore on a more general model, we compare alternative structures with respect to a multivariate optimization criterion. We test the hypothesis that the structure of a linear multi-stage phosphorylation cascade is the result of an optimization process aiming for a fast response, defined by the minimum of the product of signaling time and signal duration. It is then shown that certain pathway structures minimize this criterion. Several popular models of MAPK cascades form the basis of our study. These models represent different levels of approximation, which we compare and discuss with respect to the quantitative measures.

  17. A Systematic Approach to Determining the Identifiability of Multistage Carcinogenesis Models.

    PubMed

    Brouwer, Andrew F; Meza, Rafael; Eisenberg, Marisa C

    2017-07-01

    Multistage clonal expansion (MSCE) models of carcinogenesis are continuous-time Markov process models often used to relate cancer incidence to biological mechanism. Identifiability analysis determines what model parameter combinations can, theoretically, be estimated from given data. We use a systematic approach, based on differential algebra methods traditionally used for deterministic ordinary differential equation (ODE) models, to determine identifiable combinations for a generalized subclass of MSCE models with any number of preinitation stages and one clonal expansion. Additionally, we determine the identifiable combinations of the generalized MSCE model with up to four clonal expansion stages, and conjecture the results for any number of clonal expansion stages. The results improve upon previous work in a number of ways and provide a framework to find the identifiable combinations for further variations on the MSCE models. Finally, our approach, which takes advantage of the Kolmogorov backward equations for the probability generating functions of the Markov process, demonstrates that identifiability methods used in engineering and mathematics for systems of ODEs can be applied to continuous-time Markov processes. © 2016 Society for Risk Analysis.

  18. Adaptation of Decoy Fusion Strategy for Existing Multi-Stage Search Workflows

    NASA Astrophysics Data System (ADS)

    Ivanov, Mark V.; Levitsky, Lev I.; Gorshkov, Mikhail V.

    2016-09-01

    A number of proteomic database search engines implement multi-stage strategies aiming at increasing the sensitivity of proteome analysis. These approaches often employ a subset of the original database for the secondary stage of analysis. However, if target-decoy approach (TDA) is used for false discovery rate (FDR) estimation, the multi-stage strategies may violate the underlying assumption of TDA that false matches are distributed uniformly across the target and decoy databases. This violation occurs if the numbers of target and decoy proteins selected for the second search are not equal. Here, we propose a method of decoy database generation based on the previously reported decoy fusion strategy. This method allows unbiased TDA-based FDR estimation in multi-stage searches and can be easily integrated into existing workflows utilizing popular search engines and post-search algorithms.

  19. Classification and disease prediction via mathematical programming

    NASA Astrophysics Data System (ADS)

    Lee, Eva K.; Wu, Tsung-Lin

    2007-11-01

    In this chapter, we present classification models based on mathematical programming approaches. We first provide an overview on various mathematical programming approaches, including linear programming, mixed integer programming, nonlinear programming and support vector machines. Next, we present our effort of novel optimization-based classification models that are general purpose and suitable for developing predictive rules for large heterogeneous biological and medical data sets. Our predictive model simultaneously incorporates (1) the ability to classify any number of distinct groups; (2) the ability to incorporate heterogeneous types of attributes as input; (3) a high-dimensional data transformation that eliminates noise and errors in biological data; (4) the ability to incorporate constraints to limit the rate of misclassification, and a reserved-judgment region that provides a safeguard against over-training (which tends to lead to high misclassification rates from the resulting predictive rule) and (5) successive multi-stage classification capability to handle data points placed in the reserved judgment region. To illustrate the power and flexibility of the classification model and solution engine, and its multigroup prediction capability, application of the predictive model to a broad class of biological and medical problems is described. Applications include: the differential diagnosis of the type of erythemato-squamous diseases; predicting presence/absence of heart disease; genomic analysis and prediction of aberrant CpG island meythlation in human cancer; discriminant analysis of motility and morphology data in human lung carcinoma; prediction of ultrasonic cell disruption for drug delivery; identification of tumor shape and volume in treatment of sarcoma; multistage discriminant analysis of biomarkers for prediction of early atherosclerois; fingerprinting of native and angiogenic microvascular networks for early diagnosis of diabetes, aging, macular degeneracy and tumor metastasis; prediction of protein localization sites; and pattern recognition of satellite images in classification of soil types. In all these applications, the predictive model yields correct classification rates ranging from 80% to 100%. This provides motivation for pursuing its use as a medical diagnostic, monitoring and decision-making tool.

  20. Biological nutrient removal and molecular biological characteristics in an anaerobic-multistage anaerobic/oxic (A-MAO) process to treat municipal wastewater.

    PubMed

    Huang, Xiao; Dong, Wenyi; Wang, Hongjie; Jiang, Shilong

    2017-10-01

    This study aimed to present an anaerobic-multistage anaerobic/oxic (A-MAO) process to treat municipal wastewater. The average COD, NH 4 + -N, TN, and TP removal efficiency were 91.81%, 96.26%, 83.73% and 94.49%, respectively. Temperature plunge and C/N decrease have a certain impact on the modified process. Characteristics of microbial community, function microorganism, and correlation of microbial community with environmental variables in five compartments were carried out by Illumina Miseq high-throughput sequencing. The differences of microbial community were observed and Blastocatella, Flavobacterium and Pseudomonas were the dominant genus. Nitrosomonas and Nitrospira occupied a dominant position in AOB and NOB, respectively. Rhodospirillaceae and Rhodocyclaceae owned a considerable proportion in phosphorus removal bacteria. DO and COD played significant roles on affecting the microbial components. The A-MAO process in this study demonstrated a high potential for nutrient removal from municipal wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Health condition identification of multi-stage planetary gearboxes using a mRVM-based method

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Liu, Zongyao; Wu, Xionghui; Li, Naipeng; Chen, Wu; Lin, Jing

    2015-08-01

    Multi-stage planetary gearboxes are widely applied in aerospace, automotive and heavy industries. Their key components, such as gears and bearings, can easily suffer from damage due to tough working environment. Health condition identification of planetary gearboxes aims to prevent accidents and save costs. This paper proposes a method based on multiclass relevance vector machine (mRVM) to identify health condition of multi-stage planetary gearboxes. In this method, a mRVM algorithm is adopted as a classifier, and two features, i.e. accumulative amplitudes of carrier orders (AACO) and energy ratio based on difference spectra (ERDS), are used as the input of the classifier to classify different health conditions of multi-stage planetary gearboxes. To test the proposed method, seven health conditions of a two-stage planetary gearbox are considered and vibration data is acquired from the planetary gearbox under different motor speeds and loading conditions. The results of three tests based on different data show that the proposed method obtains an improved identification performance and robustness compared with the existing method.

  2. Towards a Unified Approach to Information Integration - A review paper on data/information fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, Paul D.; Posse, Christian; Lei, Xingye C.

    2005-10-14

    Information or data fusion of data from different sources are ubiquitous in many applications, from epidemiology, medical, biological, political, and intelligence to military applications. Data fusion involves integration of spectral, imaging, text, and many other sensor data. For example, in epidemiology, information is often obtained based on many studies conducted by different researchers at different regions with different protocols. In the medical field, the diagnosis of a disease is often based on imaging (MRI, X-Ray, CT), clinical examination, and lab results. In the biological field, information is obtained based on studies conducted on many different species. In military field, informationmore » is obtained based on data from radar sensors, text messages, chemical biological sensor, acoustic sensor, optical warning and many other sources. Many methodologies are used in the data integration process, from classical, Bayesian, to evidence based expert systems. The implementation of the data integration ranges from pure software design to a mixture of software and hardware. In this review we summarize the methodologies and implementations of data fusion process, and illustrate in more detail the methodologies involved in three examples. We propose a unified multi-stage and multi-path mapping approach to the data fusion process, and point out future prospects and challenges.« less

  3. Multi-stage decoding for multi-level block modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1991-01-01

    In this paper, we investigate various types of multi-stage decoding for multi-level block modulation codes, in which the decoding of a component code at each stage can be either soft-decision or hard-decision, maximum likelihood or bounded-distance. Error performance of codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. Based on our study and computation results, we find that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. In particular, we find that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum decoding of the overall code is very small: only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.

  4. Biologically based multistage modeling of radiation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistagemore » carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of epidemiologic studies using multistage carcinogenesis models that incorporate the ''initiation, promotion, and malignant conversion'' paradigm of carcinogenesis are indicating that promotion of initiated cells is the most important cellular mechanism driving the shape of the age specific hazard for many types of cancer. Second, we have realized that many of the genes that are modified in early stages of the carcinogenic process contribute to one or more of four general cellular pathways that confer a promotional advantage to cells when these pathways are disrupted.« less

  5. Multistage degradation modeling for BLDC motor based on Wiener process

    NASA Astrophysics Data System (ADS)

    Yuan, Qingyang; Li, Xiaogang; Gao, Yuankai

    2018-05-01

    Brushless DC motors are widely used, and their working temperatures, regarding as degradation processes, are nonlinear and multistage. It is necessary to establish a nonlinear degradation model. In this research, our study was based on accelerated degradation data of motors, which are their working temperatures. A multistage Wiener model was established by using the transition function to modify linear model. The normal weighted average filter (Gauss filter) was used to improve the results of estimation for the model parameters. Then, to maximize likelihood function for parameter estimation, we used numerical optimization method- the simplex method for cycle calculation. Finally, the modeling results show that the degradation mechanism changes during the degradation of the motor with high speed. The effectiveness and rationality of model are verified by comparison of the life distribution with widely used nonlinear Wiener model, as well as a comparison of QQ plots for residual. Finally, predictions for motor life are gained by life distributions in different times calculated by multistage model.

  6. Ramping up to the Biology Workbench: A Multi-Stage Approach to Bioinformatics Education

    ERIC Educational Resources Information Center

    Greene, Kathleen; Donovan, Sam

    2005-01-01

    In the process of designing and field-testing bioinformatics curriculum materials, we have adopted a three-stage, progressive model that emphasizes collaborative scientific inquiry. The elements of the model include: (1) context setting, (2) introduction to concepts, processes, and tools, and (3) development of competent use of technologically…

  7. Synthesis and screening of one-bead-one-compound cyclic peptide libraries.

    PubMed

    Qian, Ziqing; Upadhyaya, Punit; Pei, Dehua

    2015-01-01

    Cyclic peptides have been a rich source of biologically active molecules. Herein we present a method for the combinatorial synthesis and screening of large one-bead-one-compound (OBOC) libraries of cyclic peptides against biological targets such as proteins. Up to ten million different cyclic peptides are rapidly synthesized on TentaGel microbeads by the split-and-pool synthesis method and subjected to a multistage screening protocol which includes magnetic sorting, on-bead enzyme-linked and fluorescence-based assays, and in-solution binding analysis of cyclic peptides selectively released from single beads by fluorescence anisotropy. Finally, the most active hit(s) is identified by the partial Edman degradation-mass spectrometry (PED-MS) method. This method allows a single researcher to synthesize and screen up to ten million cyclic peptides and identify the most active ligand(s) in ~1 month, without the time-consuming and expensive hit resynthesis or the use of any special equipment.

  8. The development of deep karst in the anticlinal aquifer structure based on the coupling of multistage flow systems

    NASA Astrophysics Data System (ADS)

    Xu, M.; Zhong, L.; Yang, Y.

    2017-12-01

    Under the background of neotectonics, the multistage underground flow system has been form due the different responses of main stream and tributaries to crust uplift. The coupling of multistage underground flow systems influences the development of karst thoroughly. At first, the research area is divided into vadose area, shunted area and exorheic area based on the development characteristics of transverse valley. Combining the controlling-drain action with topographic index and analyzing the coupling features of multistage underground flow system. And then, based on the coupling of multistage underground flow systems, the characteristics of deep karst development were verified by the lossing degree of surface water, water bursting and karst development characteristics of tunnels. The vadose area is regional water system based, whose deep karst developed well. It resulted the large water inflow of tunnels and the surface water drying up. The shunted area, except the region near the transverse valleys, is characterized by regional water system. The developed deep karst make the surface water connect with deep ground water well, Which caused the relatively large water flow of tunnels and the serious leakage of surface water. The deep karst relatively developed poor in the regions near transverse valleys which is characterized by local water system. The exorheic area is local water system based, whose the deep karst developed poor, as well as the connection among surface water and deep ground water. It has result in the poor lossing of the surface water under the tunnel construction. This study broadens the application field of groundwater flow systems theory, providing a new perspective for the study of Karst development theory. Meanwhile it provides theoretical guidance for hazard assessment and environmental negative effect in deep-buried Karst tunnel construction.

  9. A Multistage Approach for Image Registration.

    PubMed

    Bowen, Francis; Hu, Jianghai; Du, Eliza Yingzi

    2016-09-01

    Successful image registration is an important step for object recognition, target detection, remote sensing, multimodal content fusion, scene blending, and disaster assessment and management. The geometric and photometric variations between images adversely affect the ability for an algorithm to estimate the transformation parameters that relate the two images. Local deformations, lighting conditions, object obstructions, and perspective differences all contribute to the challenges faced by traditional registration techniques. In this paper, a novel multistage registration approach is proposed that is resilient to view point differences, image content variations, and lighting conditions. Robust registration is realized through the utilization of a novel region descriptor which couples with the spatial and texture characteristics of invariant feature points. The proposed region descriptor is exploited in a multistage approach. A multistage process allows the utilization of the graph-based descriptor in many scenarios thus allowing the algorithm to be applied to a broader set of images. Each successive stage of the registration technique is evaluated through an effective similarity metric which determines subsequent action. The registration of aerial and street view images from pre- and post-disaster provide strong evidence that the proposed method estimates more accurate global transformation parameters than traditional feature-based methods. Experimental results show the robustness and accuracy of the proposed multistage image registration methodology.

  10. Phase-I monitoring of standard deviations in multistage linear profiles

    NASA Astrophysics Data System (ADS)

    Kalaei, Mahdiyeh; Soleimani, Paria; Niaki, Seyed Taghi Akhavan; Atashgar, Karim

    2018-03-01

    In most modern manufacturing systems, products are often the output of some multistage processes. In these processes, the stages are dependent on each other, where the output quality of each stage depends also on the output quality of the previous stages. This property is called the cascade property. Although there are many studies in multistage process monitoring, there are fewer works on profile monitoring in multistage processes, especially on the variability monitoring of a multistage profile in Phase-I for which no research is found in the literature. In this paper, a new methodology is proposed to monitor the standard deviation involved in a simple linear profile designed in Phase I to monitor multistage processes with the cascade property. To this aim, an autoregressive correlation model between the stages is considered first. Then, the effect of the cascade property on the performances of three types of T 2 control charts in Phase I with shifts in standard deviation is investigated. As we show that this effect is significant, a U statistic is next used to remove the cascade effect, based on which the investigated control charts are modified. Simulation studies reveal good performances of the modified control charts.

  11. The linearized multistage model and the future of quantitative risk assessment.

    PubMed

    Crump, K S

    1996-10-01

    The linearized multistage (LMS) model has for over 15 years been the default dose-response model used by the U.S. Environmental Protection Agency (USEPA) and other federal and state regulatory agencies in the United States for calculating quantitative estimates of low-dose carcinogenic risks from animal data. The LMS model is in essence a flexible statistical model that can describe both linear and non-linear dose-response patterns, and that produces an upper confidence bound on the linear low-dose slope of the dose-response curve. Unlike its namesake, the Armitage-Doll multistage model, the parameters of the LMS do not correspond to actual physiological phenomena. Thus the LMS is 'biological' only to the extent that the true biological dose response is linear at low dose and that low-dose slope is reflected in the experimental data. If the true dose response is non-linear the LMS upper bound may overestimate the true risk by many orders of magnitude. However, competing low-dose extrapolation models, including those derived from 'biologically-based models' that are capable of incorporating additional biological information, have not shown evidence to date of being able to produce quantitative estimates of low-dose risks that are any more accurate than those obtained from the LMS model. Further, even if these attempts were successful, the extent to which more accurate estimates of low-dose risks in a test animal species would translate into improved estimates of human risk is questionable. Thus, it does not appear possible at present to develop a quantitative approach that would be generally applicable and that would offer significant improvements upon the crude bounding estimates of the type provided by the LMS model. Draft USEPA guidelines for cancer risk assessment incorporate an approach similar to the LMS for carcinogens having a linear mode of action. However, under these guidelines quantitative estimates of low-dose risks would not be developed for carcinogens having a non-linear mode of action; instead dose-response modelling would be used in the experimental range to calculate an LED10* (a statistical lower bound on the dose corresponding to a 10% increase in risk), and safety factors would be applied to the LED10* to determine acceptable exposure levels for humans. This approach is very similar to the one presently used by USEPA for non-carcinogens. Rather than using one approach for carcinogens believed to have a linear mode of action and a different approach for all other health effects, it is suggested herein that it would be more appropriate to use an approach conceptually similar to the 'LED10*-safety factor' approach for all health effects, and not to routinely develop quantitative risk estimates from animal data.

  12. Influence of spatial beam inhomogeneities on the parameters of a petawatt laser system based on multi-stage parametric amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, S A; Trunov, V I; Pestryakov, Efim V

    2013-05-31

    We have developed a technique for investigating the evolution of spatial inhomogeneities in high-power laser systems based on multi-stage parametric amplification. A linearised model of the inhomogeneity development is first devised for parametric amplification with the small-scale self-focusing taken into account. It is shown that the application of this model gives the results consistent (with high accuracy and in a wide range of inhomogeneity parameters) with the calculation without approximations. Using the linearised model, we have analysed the development of spatial inhomogeneities in a petawatt laser system based on multi-stage parametric amplification, developed at the Institute of Laser Physics, Siberianmore » Branch of the Russian Academy of Sciences (ILP SB RAS). (control of laser radiation parameters)« less

  13. Test Information Targeting Strategies for Adaptive Multistage Testing Designs.

    ERIC Educational Resources Information Center

    Luecht, Richard M.; Burgin, William

    Adaptive multistage testlet (MST) designs appear to be gaining popularity for many large-scale computer-based testing programs. These adaptive MST designs use a modularized configuration of preconstructed testlets and embedded score-routing schemes to prepackage different forms of an adaptive test. The conditional information targeting (CIT)…

  14. Accuracy of a Classical Test Theory-Based Procedure for Estimating the Reliability of a Multistage Test. Research Report. ETS RR-17-02

    ERIC Educational Resources Information Center

    Kim, Sooyeon; Livingston, Samuel A.

    2017-01-01

    The purpose of this simulation study was to assess the accuracy of a classical test theory (CTT)-based procedure for estimating the alternate-forms reliability of scores on a multistage test (MST) having 3 stages. We generated item difficulty and discrimination parameters for 10 parallel, nonoverlapping forms of the complete 3-stage test and…

  15. Multi-Stage Mental Process for Economic Choice in Capuchins

    ERIC Educational Resources Information Center

    Padoa-Schioppa, Camillo; Jandolo, Lucia; Visalberghi, Elisabetta

    2006-01-01

    We studied economic choice behavior in capuchin monkeys by offering them to choose between two different foods available in variable amounts. When monkeys selected between familiar foods, their choice patterns were well-described in terms of relative value of the two foods. A leading view in economics and biology is that such behavior results from…

  16. A Top-Down Approach to Designing the Computerized Adaptive Multistage Test

    ERIC Educational Resources Information Center

    Luo, Xiao; Kim, Doyoung

    2018-01-01

    The top-down approach to designing a multistage test is relatively understudied in the literature and underused in research and practice. This study introduced a route-based top-down design approach that directly sets design parameters at the test level and utilizes the advanced automated test assembly algorithm seeking global optimality. The…

  17. Multi-stage decoding for multi-level block modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao

    1991-01-01

    Various types of multistage decoding for multilevel block modulation codes, in which the decoding of a component code at each stage can be either soft decision or hard decision, maximum likelihood or bounded distance are discussed. Error performance for codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. It was found that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. It was found that the difference in performance between the suboptimum multi-stage soft decision maximum likelihood decoding of a modulation code and the single stage optimum decoding of the overall code is very small, only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.

  18. Fuel system for diesel engine with multi-stage heated

    NASA Astrophysics Data System (ADS)

    Ryzhov, Yu N.; Kuznetsov, Yu A.; Kolomeichenko, A. V.; Kuznetsov, I. S.; Solovyev, R. Yu; Sharifullin, S. N.

    2017-09-01

    The article describes a fuel system of a diesel engine with a construction tractor multistage heating, allowing the use of pure rapeseed oil as a diesel engine fuel. The paper identified the kinematic viscosity depending on the temperature and composition of the mixed fuel, supplemented by the existing recommendations on the use of mixed fuels based on vegetable oils and developed the device allowing use as fuel for diesel engines of biofuels based on vegetable oils.

  19. Dynamic analysis for solid waste management systems: an inexact multistage integer programming approach.

    PubMed

    Li, Yongping; Huang, Guohe

    2009-03-01

    In this study, a dynamic analysis approach based on an inexact multistage integer programming (IMIP) model is developed for supporting municipal solid waste (MSW) management under uncertainty. Techniques of interval-parameter programming and multistage stochastic programming are incorporated within an integer-programming framework. The developed IMIP can deal with uncertainties expressed as probability distributions and interval numbers, and can reflect the dynamics in terms of decisions for waste-flow allocation and facility-capacity expansion over a multistage context. Moreover, the IMIP can be used for analyzing various policy scenarios that are associated with different levels of economic consequences. The developed method is applied to a case study of long-term waste-management planning. The results indicate that reasonable solutions have been generated for binary and continuous variables. They can help generate desired decisions of system-capacity expansion and waste-flow allocation with a minimized system cost and maximized system reliability.

  20. Mitotic trafficking of silicon microparticles†

    PubMed Central

    Serda, Rita E.; Ferrati, Silvia; Godin, Biana; Tasciotti, Ennio; Liu, XueWu

    2010-01-01

    Multistage carriers were recently introduced by our laboratory, with the concurrent objectives of co-localized delivery of multiple therapeutic agents, the “theranostic” integration of bioactive moieties with imaging contrast, and the selective, potentially personalized bypassing of the multiplicity of biological barriers that adversely impact biodistribution of vascularly injected particulates. Mesoporous (“nanoporous”) silicon microparticles were selected as primary carriers in multi-stage devices, with targets including vascular endothelia at pathological lesions. The objective of this study was to evaluate biocompatibility of mesoporous silicon microparticles with endothelial cells using in vitro assays with an emphasis on microparticle compatibility with mitotic events. We observed that vascular endothelial cells, following internalization of silicon microparticles, maintain cellular integrity, as demonstrated by cellular morphology, viability and intact mitotic trafficking of vesicles bearing silicon microparticles. The presence of gold or iron oxide nanoparticles within the porous matrix did not alter the cellular uptake of particles or the viability of endothelial cells subsequent to engulfment of microparticles. Endothelial cells maintained basal levels of IL-6 and IL-8 release in the presence of silicon microparticles. This is the first study that demonstrates polarized, ordered partitioning of endosomes based on tracking microparticles. The finding that mitotic sorting of endosomes is unencumbered by the presence of nanoporous silicon microparticles advocates the use of silicon microparticles for biomedical applications. PMID:20644846

  1. Multi-staged repair of contaminated primary and recurrent giant incisional herniae in the same hospital admission: a proposal for a new approach.

    PubMed

    Siddique, K; Shrestha, A; Basu, S

    2014-02-01

    Repair of primary and recurrent giant incisional herniae is extremely challenging and more so in the face of surgical field contamination. Literature supports the single- and multi-staged approaches including the use of biological meshes for these difficult patients with their associated benefits and limitations. This is a retrospective analysis of a prospective study of five patients who were successfully treated through a multi-staged approach but in the same hospital admission, not previously described, for the repair of contaminated primary and recurrent giant incisional herniae in a district general hospital between 2009 and 2012. Patient demographics including their BMI and ASA, previous and current operative history including complications and follow-up were collected in a secure database. The first stage involved the eradication of contamination, and the second stage was the definitive hernia repair with the new generation-coated synthetic meshes. Of the five patients, three were men and two women with a mean age of 58 (45-74) years. Two patients had grade 4 while the remaining had grade 3 hernia as per the hernia grading system with a mean BMI of 35 (30-46). All patients required extensive adhesiolysis, bowel resection and anastomoses and wash out. Hernial defect was measured as 204* (105-440) cm(2), size of mesh implant was 568* (375-930) cm(2) and the total duration of operation (1st + 2nd Stage) was 354* (270-540) min. Duration of hospital stay was 11* (7-19) days with a follow-up of 17* (6-36) months. We believe that our multi-staged approach in the same hospital admission (for the repair of contaminated primary and recurrent giant incisional herniae), excludes the disadvantages of a true multi-staged approach and simultaneously minimises the risks and complications associated with a single-staged repair, can be adopted for these challenging patients for a successful outcome (* indicates mean).

  2. Maisotsenko cycle applications in multi-stage ejector recycling module for chemical production

    NASA Astrophysics Data System (ADS)

    Levchenko, D. O.; Artyukhov, A. E.; Yurko, I. V.

    2017-08-01

    The article is devoted to the theoretical bases of multistage (multi-level) utilization modules as part of chemical plants (on the example of the technological line for obtaining nitrogen fertilizers). The possibility of recycling production waste (ammonia vapors, dust and substandard nitrogen fertilizers) using ejection devices and waste heat using Maisotsenko cycle technology (Maisotsenko heat and mass exchanger (HMX), Maisotsenko power cycles and recuperators, etc.) is substantiated. The principle of operation of studied recycling module and prospects for its implementation are presented. An improved technological scheme for obtaining granular fertilizers and granules with porous structure with multistage (multi-level) recycling module is proposed.

  3. Multi-stage classification method oriented to aerial image based on low-rank recovery and multi-feature fusion sparse representation.

    PubMed

    Ma, Xu; Cheng, Yongmei; Hao, Shuai

    2016-12-10

    Automatic classification of terrain surfaces from an aerial image is essential for an autonomous unmanned aerial vehicle (UAV) landing at an unprepared site by using vision. Diverse terrain surfaces may show similar spectral properties due to the illumination and noise that easily cause poor classification performance. To address this issue, a multi-stage classification algorithm based on low-rank recovery and multi-feature fusion sparse representation is proposed. First, color moments and Gabor texture feature are extracted from training data and stacked as column vectors of a dictionary. Then we perform low-rank matrix recovery for the dictionary by using augmented Lagrange multipliers and construct a multi-stage terrain classifier. Experimental results on an aerial map database that we prepared verify the classification accuracy and robustness of the proposed method.

  4. Forestry inventory based on multistage sampling with probability proportional to size

    NASA Technical Reports Server (NTRS)

    Lee, D. C. L.; Hernandez, P., Jr.; Shimabukuro, Y. E.

    1983-01-01

    A multistage sampling technique, with probability proportional to size, is developed for a forest volume inventory using remote sensing data. The LANDSAT data, Panchromatic aerial photographs, and field data are collected. Based on age and homogeneity, pine and eucalyptus classes are identified. Selection of tertiary sampling units is made through aerial photographs to minimize field work. The sampling errors for eucalyptus and pine ranged from 8.34 to 21.89 percent and from 7.18 to 8.60 percent, respectively.

  5. Analysis of oversulfation in biglycan chondroitin/dermatan sulfate oligosaccharides by chip-based nanoelectrospray ionization multistage mass spectrometry.

    PubMed

    Flangea, Corina; Sisu, Eugen; Seidler, Daniela G; Zamfir, Alina D

    2012-01-15

    Biglycan (BGN) is a small proteoglycan that consists of a protein core containing leucine-rich repeat regions and two glycosaminoglycan (GAG) chains of either chondroitin sulfate (CS) or dermatan sulfate (DS) type. The development of novel, highly efficient analytical methods for structural identification of BGN-derived CS/DS motifs, possibly implicated in biological events, is currently the focus of research. In this work, an improved analytical method based on fully automated chip-nanoelectrospray ionization (nanoESI) in conjunction with high-capacity ion trap (HCT) multistage mass spectrometry (MS) by collision-induced dissociation (CID) was for the first time applied to BGN CS/DS oligosaccharide analysis. The CS/DS chains were released from transfected 293 BGN by β-elimination. The chain was digested with AC I lyase, and the resulting mixture was purified and subsequently separated by size exclusion chromatography (SEC). Di- and tetrasaccharide fractions were pooled and characterized in detail using the developed chip-nanoESI protocol. The chip-nanoESI MS profile in the negative ion mode revealed the presence of under-, regularly, and oversulfated species in both di- and tetrasaccharide fractions. CID MS(2)-MS(3) yielded sequence patterns consistent with unusual oversulfated 4,5-Δ-GlcA(2S)-GalNAc(4S) and 4,5-Δ-GlcA(2S)-GalNAc(6S)-IdoA(2S)-GalNAc(6S) motifs. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Protocol for Reliability Assessment of Structural Health Monitoring Systems Incorporating Model-assisted Probability of Detection (MAPOD) Approach

    DTIC Science & Technology

    2011-09-01

    a quality evaluation with limited data, a model -based assessment must be...that affect system performance, a multistage approach to system validation, a modeling and experimental methodology for efficiently addressing a ...affect system performance, a multistage approach to system validation, a modeling and experimental methodology for efficiently addressing a wide range

  7. Interaction between Gaming and Multistage Guiding Strategies on Students' Field Trip Mobile Learning Performance and Motivation

    ERIC Educational Resources Information Center

    Chen, Chih-Hung; Liu, Guan-Zhi; Hwang, Gwo-Jen

    2016-01-01

    In this study, an integrated gaming and multistage guiding approach was proposed for conducting in-field mobile learning activities. A mobile learning system was developed based on the proposed approach. To investigate the interaction between the gaming and guiding strategies on students' learning performance and motivation, a 2 × 2 experiment was…

  8. Reentry trajectory optimization based on a multistage pseudospectral method.

    PubMed

    Zhao, Jiang; Zhou, Rui; Jin, Xuelian

    2014-01-01

    Of the many direct numerical methods, the pseudospectral method serves as an effective tool to solve the reentry trajectory optimization for hypersonic vehicles. However, the traditional pseudospectral method is time-consuming due to large number of discretization points. For the purpose of autonomous and adaptive reentry guidance, the research herein presents a multistage trajectory control strategy based on the pseudospectral method, capable of dealing with the unexpected situations in reentry flight. The strategy typically includes two subproblems: the trajectory estimation and trajectory refining. In each processing stage, the proposed method generates a specified range of trajectory with the transition of the flight state. The full glide trajectory consists of several optimal trajectory sequences. The newly focused geographic constraints in actual flight are discussed thereafter. Numerical examples of free-space flight, target transition flight, and threat avoidance flight are used to show the feasible application of multistage pseudospectral method in reentry trajectory optimization.

  9. Reentry Trajectory Optimization Based on a Multistage Pseudospectral Method

    PubMed Central

    Zhou, Rui; Jin, Xuelian

    2014-01-01

    Of the many direct numerical methods, the pseudospectral method serves as an effective tool to solve the reentry trajectory optimization for hypersonic vehicles. However, the traditional pseudospectral method is time-consuming due to large number of discretization points. For the purpose of autonomous and adaptive reentry guidance, the research herein presents a multistage trajectory control strategy based on the pseudospectral method, capable of dealing with the unexpected situations in reentry flight. The strategy typically includes two subproblems: the trajectory estimation and trajectory refining. In each processing stage, the proposed method generates a specified range of trajectory with the transition of the flight state. The full glide trajectory consists of several optimal trajectory sequences. The newly focused geographic constraints in actual flight are discussed thereafter. Numerical examples of free-space flight, target transition flight, and threat avoidance flight are used to show the feasible application of multistage pseudospectral method in reentry trajectory optimization. PMID:24574929

  10. MULTI-STAGE DELIVERY NANO-PARTICLE SYSTEMS FOR THERAPEUTIC APPLICATIONS

    PubMed Central

    Serda, Rita E.; Godin, Biana; Blanco, Elvin; Chiappini, Ciro; Ferrari, Mauro

    2010-01-01

    Background The daunting task for drug molecules to reach pathological lesions has fueled rapid advances in Nanomedicine. The progressive evolution of nanovectors has led to the development of multi-stage delivery systems aimed at overcoming the numerous obstacles encountered by nanovectors on their journey to the target site. Scope of Review This review summarizes major findings with respect to silicon-based drug delivery vectors for cancer therapeutics and imaging. Based on rational design, well established silicon technologies have been adapted for the fabrication of nanovectors with specific shapes, sizes, and porosities. These vectors are part of a multi-stage delivery system that contains multiple nano-components, each designed to achieve a specific task with the common goal of site-directed delivery of therapeutics. Major Conclusions Quasi-hemispherical and discoidal silicon microparticles are superior to spherical particles with respect to margination in the blood, with particles of different shapes and sizes having unique distributions in vivo. Cellular adhesion and internalization of silicon microparticles is influenced by microparticle shape and surface charge, with the latter dictating binding of serum opsonins. Based on in vitro cell studies, the internalization of porous silicon microparticles by endothelial cells and macrophages is compatible with cellular morphology, intracellular trafficking, mitosis, cell cycle progression, cytokine release, and cell viability. In vivo studies support superior therapeutic efficacy of liposomal encapsulated siRNA when delivered in multi-stage systems compared to free nanoparticles. PMID:20493927

  11. Three-dimensional turbopump flowfield analysis

    NASA Technical Reports Server (NTRS)

    Sharma, O. P.; Belford, K. A.; Ni, R. H.

    1992-01-01

    A program was conducted to develop a flow prediction method applicable to rocket turbopumps. The complex nature of a flowfield in turbopumps is described and examples of flowfields are discussed to illustrate that physics based models and analytical calculation procedures based on computational fluid dynamics (CFD) are needed to develop reliable design procedures for turbopumps. A CFD code developed at NASA ARC was used as the base code. The turbulence model and boundary conditions in the base code were modified, respectively, to: (1) compute transitional flows and account for extra rates of strain, e.g., rotation; and (2) compute surface heat transfer coefficients and allow computation through multistage turbomachines. Benchmark quality data from two and three-dimensional cascades were used to verify the code. The predictive capabilities of the present CFD code were demonstrated by computing the flow through a radial impeller and a multistage axial flow turbine. Results of the program indicate that the present code operated in a two-dimensional mode is a cost effective alternative to full three-dimensional calculations, and that it permits realistic predictions of unsteady loadings and losses for multistage machines.

  12. Influence of dispatching rules on average production lead time for multi-stage production systems.

    PubMed

    Hübl, Alexander; Jodlbauer, Herbert; Altendorfer, Klaus

    2013-08-01

    In this paper the influence of different dispatching rules on the average production lead time is investigated. Two theorems based on covariance between processing time and production lead time are formulated and proved theoretically. Theorem 1 links the average production lead time to the "processing time weighted production lead time" for the multi-stage production systems analytically. The influence of different dispatching rules on average lead time, which is well known from simulation and empirical studies, can be proved theoretically in Theorem 2 for a single stage production system. A simulation study is conducted to gain more insight into the influence of dispatching rules on average production lead time in a multi-stage production system. We find that the "processing time weighted average production lead time" for a multi-stage production system is not invariant of the applied dispatching rule and can be used as a dispatching rule independent indicator for single-stage production systems.

  13. Multistage Adaptive Testing for a Large-Scale Classification Test: Design, Heuristic Assembly, and Comparison with Other Testing Modes. ACT Research Report Series, 2012 (6)

    ERIC Educational Resources Information Center

    Zheng, Yi; Nozawa, Yuki; Gao, Xiaohong; Chang, Hua-Hua

    2012-01-01

    Multistage adaptive tests (MSTs) have gained increasing popularity in recent years. MST is a balanced compromise between linear test forms (i.e., paper-and-pencil testing and computer-based testing) and traditional item-level computer-adaptive testing (CAT). It combines the advantages of both. On one hand, MST is adaptive (and therefore more…

  14. A multistage decision support framework to guide tree species management under climate change via habitat suitability and colonization models, and a knowledge-based scoring system

    Treesearch

    Anantha M. Prasad; Louis R. Iverson; Stephen N. Matthews; Matthew P. Peters

    2016-01-01

    Context. No single model can capture the complex species range dynamics under changing climates--hence the need for a combination approach that addresses management concerns. Objective. A multistage approach is illustrated to manage forested landscapes under climate change. We combine a tree species habitat model--DISTRIB II, a species colonization model--SHIFT, and...

  15. Towards functional antibody-based vaccines to prevent pre-erythrocytic malaria infection.

    PubMed

    Sack, Brandon; Kappe, Stefan H I; Sather, D Noah

    2017-05-01

    An effective malaria vaccine would be considered a milestone of modern medicine, yet has so far eluded research and development efforts. This can be attributed to the extreme complexity of the malaria parasites, presenting with a multi-stage life cycle, high genome complexity and the parasite's sophisticated immune evasion measures, particularly antigenic variation during pathogenic blood stage infection. However, the pre-erythrocytic (PE) early infection forms of the parasite exhibit relatively invariant proteomes, and are attractive vaccine targets as they offer multiple points of immune system attack. Areas covered: We cover the current state of and roadblocks to the development of an effective, antibody-based PE vaccine, including current vaccine candidates, limited biological knowledge, genetic heterogeneity, parasite complexity, and suboptimal preclinical models as well as the power of early stage clinical models. Expert commentary: PE vaccines will need to elicit broad and durable immunity to prevent infection. This could be achievable if recent innovations in studying the parasites' infection biology, rational vaccine selection and design as well as adjuvant formulation are combined in a synergistic and multipronged approach. Improved preclinical assays as well as the iterative testing of vaccine candidates in controlled human malaria infection trials will further accelerate this effort.

  16. Self-assembled nano-balls released from multistage vector for cancer therapy

    NASA Astrophysics Data System (ADS)

    Qian, Jin; Xia, Xiaojun; Xie, Yan

    2017-03-01

    The efficacy of cancer drugs is often compromised due to the existence of biological barriers such as nonspecific distribution, hemorheological flow limitation and endothelial extravasation, impaired delivery across tumor cell membranes and tissue, and multidrug resistance. To overcome these obstacles, Xu et al developed an injectable nanoparticle generator platform to negotiate with the biological barriers and enable self-assembly of nano-balls in situ in order to maximize drug accumulation inside the tumor tissues and hence the therapeutic efficacy. This perspective aims to elaborate the designing strategy, and discuss the mechanism of action of the new drug and the potential for future development of nanoparticulate drugs.

  17. Disparity in report of autism-related behaviors by social demographic characteristics: Findings from a community-based study in Taiwan.

    PubMed

    Tsai, Peng-Chou; Harrington, Rebecca A; Lung, For-Wey; Lee, Li-Ching

    2017-07-01

    The Social Communication Questionnaire is one of the most commonly used screening tools for autism spectrum disorder. The Social Communication Questionnaire is a caregiver-reported questionnaire with 40 items based on questions from the Autism Diagnostic Interview-Revised. This study collected Social Communication Questionnaire data from a community-based, multi-stage case identification design epidemiologic study in one socioeconomically disadvantaged county in Taiwan. The Social Communication Questionnaire was distributed to 3034 school children, aged 6-8 years. Item prevalence results indicate males were reported to have more autism-related behaviors than females (higher prevalence on most items), in the whole study sample as well as in children meeting Social Communication Questionnaire clinical cut-offs (⩾15). Children whose biological fathers completed the Social Communication Questionnaire were reported to have more behavioral issues than children whose biological mothers were the respondent. Lower respondent education levels were associated with reports of clinically concerning autism-related behaviors. However, males were not at higher risk of meeting Social Communication Questionnaire clinical cut-offs than females in this study population. Findings from this study help to better understand reporting patterns on children's autism-related behaviors potentially due to social demographic characteristics and child sex, which may lead to improved identification of these behaviors.

  18. Multistage variable probability forest volume inventory. [the Defiance Unit of the Navajo Nation

    NASA Technical Reports Server (NTRS)

    Anderson, J. E. (Principal Investigator)

    1979-01-01

    An inventory scheme based on the use of computer processed LANDSAT MSS data was developed. Output from the inventory scheme provides an estimate of the standing net saw timber volume of a major timber species on a selected forested area of the Navajo Nation. Such estimates are based on the values of parameters currently used for scaled sawlog conversion to mill output. The multistage variable probability sampling appears capable of producing estimates which compare favorably with those produced using conventional techniques. In addition, the reduction in time, manpower, and overall costs lend it to numerous applications.

  19. Modifications of ORNL's computer programs MSF-21 and VTE-21 for the evaluation and rapid optimization of multistage flash and vertical tube evaporators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glueckstern, P.; Wilson, J.V.; Reed, S.A.

    1976-06-01

    Design and cost modifications were made to ORNL's Computer Programs MSF-21 and VTE-21 originally developed for the rapid calculation and design optimization of multistage flash (MSF) and multieffect vertical tube evaporator (VTE) desalination plants. The modifications include additional design options to make possible the evaluation of desalting plants based on current technology (the original programs were based on conceptual designs applying advanced and not yet proven technological developments and design features) and new materials and equipment costs updated to mid-1975.

  20. First demonstration of an emulsion multi-stage shifter for accelerator neutrino experiments in J-PARC T60

    NASA Astrophysics Data System (ADS)

    Yamada, K.; Aoki, S.; Cao, S.; Chikuma, N.; Fukuda, T.; Fukuzawa, Y.; Gonin, M.; Hayashino, T.; Hayato, Y.; Hiramoto, A.; Hosomi, F.; Inoh, T.; Iori, S.; Ishiguro, K.; Kawahara, H.; Kim, H.; Kitagawa, N.; Koga, T.; Komatani, R.; Komatsu, M.; Matsushita, A.; Mikado, S.; Minamino, A.; Mizusawa, H.; Matsumoto, T.; Matsuo, T.; Morimoto, Y.; Morishima, K.; Morishita, M.; Naganawa, N.; Nakamura, K.; Nakamura, M.; Nakamura, Y.; Nakano, T.; Nakatsuka, Y.; Nakaya, T.; Nishio, A.; Ogawa, S.; Oshima, H.; Quilain, B.; Rokujo, H.; Sato, O.; Seiya, Y.; Shibuya, H.; Shiraishi, T.; Suzuki, Y.; Tada, S.; Takahashi, S.; Yokoyama, M.; Yoshimoto, M.

    2017-06-01

    We describe the first ever implementation of a clock-based, multi-stage emulsion shifter in an accelerator neutrino experiment. The system was installed in the neutrino monitoring building at the Japan Proton Accelerator Research Complex as part of a test experiment, T60, and stable operation was maintained for a total of 126.6 days. By applying time information to emulsion films, various results were obtained. Time resolutions of 5.3-14.7 s were evaluated in an operation spanning 46.9 days (yielding division numbers of 1.4-3.8×105). By using timing and spatial information, reconstruction of coincident events consisting of high-multiplicity and vertex-contained events, including neutrino events, was performed. Emulsion events were matched to events observed by INGRID, one of the on-axis near detectors of the T2K experiment, with high reliability (98.5%), and hybrid analysis of the emulsion and INGRID events was established by means of the multi-stage shifter. The results demonstrate that the multi-stage shifter can feasibly be used in neutrino experiments.

  1. Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design

    NASA Technical Reports Server (NTRS)

    Adamczyk, John J.

    1999-01-01

    This paper summarizes the state of 3D CFD based models of the time average flow field within axial flow multistage turbomachines. Emphasis is placed on models which are compatible with the industrial design environment and those models which offer the potential of providing credible results at both design and off-design operating conditions. The need to develop models which are free of aerodynamic input from semi-empirical design systems is stressed. The accuracy of such models is shown to be dependent upon their ability to account for the unsteady flow environment in multistage turbomachinery. The relevant flow physics associated with some of the unsteady flow processes present in axial flow multistage machinery are presented along with procedures which can be used to account for them in 3D CFD simulations. Sample results are presented for both axial flow compressors and axial flow turbines which help to illustrate the enhanced predictive capabilities afforded by including these procedures in 3D CFD simulations. Finally, suggestions are given for future work on the development of time average flow models.

  2. Handling Imbalanced Data Sets in Multistage Classification

    NASA Astrophysics Data System (ADS)

    López, M.

    Multistage classification is a logical approach, based on a divide-and-conquer solution, for dealing with problems with a high number of classes. The classification problem is divided into several sequential steps, each one associated to a single classifier that works with subgroups of the original classes. In each level, the current set of classes is split into smaller subgroups of classes until they (the subgroups) are composed of only one class. The resulting chain of classifiers can be represented as a tree, which (1) simplifies the classification process by using fewer categories in each classifier and (2) makes it possible to combine several algorithms or use different attributes in each stage. Most of the classification algorithms can be biased in the sense of selecting the most populated class in overlapping areas of the input space. This can degrade a multistage classifier performance if the training set sample frequencies do not reflect the real prevalence in the population. Several techniques such as applying prior probabilities, assigning weights to the classes, or replicating instances have been developed to overcome this handicap. Most of them are designed for two-class (accept-reject) problems. In this article, we evaluate several of these techniques as applied to multistage classification and analyze how they can be useful for astronomy. We compare the results obtained by classifying a data set based on Hipparcos with and without these methods.

  3. Integrative Analysis of Many Weighted Co-Expression Networks Using Tensor Computation

    PubMed Central

    Li, Wenyuan; Liu, Chun-Chi; Zhang, Tong; Li, Haifeng; Waterman, Michael S.; Zhou, Xianghong Jasmine

    2011-01-01

    The rapid accumulation of biological networks poses new challenges and calls for powerful integrative analysis tools. Most existing methods capable of simultaneously analyzing a large number of networks were primarily designed for unweighted networks, and cannot easily be extended to weighted networks. However, it is known that transforming weighted into unweighted networks by dichotomizing the edges of weighted networks with a threshold generally leads to information loss. We have developed a novel, tensor-based computational framework for mining recurrent heavy subgraphs in a large set of massive weighted networks. Specifically, we formulate the recurrent heavy subgraph identification problem as a heavy 3D subtensor discovery problem with sparse constraints. We describe an effective approach to solving this problem by designing a multi-stage, convex relaxation protocol, and a non-uniform edge sampling technique. We applied our method to 130 co-expression networks, and identified 11,394 recurrent heavy subgraphs, grouped into 2,810 families. We demonstrated that the identified subgraphs represent meaningful biological modules by validating against a large set of compiled biological knowledge bases. We also showed that the likelihood for a heavy subgraph to be meaningful increases significantly with its recurrence in multiple networks, highlighting the importance of the integrative approach to biological network analysis. Moreover, our approach based on weighted graphs detects many patterns that would be overlooked using unweighted graphs. In addition, we identified a large number of modules that occur predominately under specific phenotypes. This analysis resulted in a genome-wide mapping of gene network modules onto the phenome. Finally, by comparing module activities across many datasets, we discovered high-order dynamic cooperativeness in protein complex networks and transcriptional regulatory networks. PMID:21698123

  4. Simulation of multi-stage nonlinear bone remodeling induced by fixed partial dentures of different configurations: a comparative clinical and numerical study.

    PubMed

    Liao, Zhipeng; Yoda, Nobuhiro; Chen, Junning; Zheng, Keke; Sasaki, Keiichi; Swain, Michael V; Li, Qing

    2017-04-01

    This paper aimed to develop a clinically validated bone remodeling algorithm by integrating bone's dynamic properties in a multi-stage fashion based on a four-year clinical follow-up of implant treatment. The configurational effects of fixed partial dentures (FPDs) were explored using a multi-stage remodeling rule. Three-dimensional real-time occlusal loads during maximum voluntary clenching were measured with a piezoelectric force transducer and were incorporated into a computerized tomography-based finite element mandibular model. Virtual X-ray images were generated based on simulation and statistically correlated with clinical data using linear regressions. The strain energy density-driven remodeling parameters were regulated over the time frame considered. A linear single-stage bone remodeling algorithm, with a single set of constant remodeling parameters, was found to poorly fit with clinical data through linear regression (low [Formula: see text] and R), whereas a time-dependent multi-stage algorithm better simulated the remodeling process (high [Formula: see text] and R) against the clinical results. The three-implant-supported and distally cantilevered FPDs presented noticeable and continuous bone apposition, mainly adjacent to the cervical and apical regions. The bridged and mesially cantilevered FPDs showed bone resorption or no visible bone formation in some areas. Time-dependent variation of bone remodeling parameters is recommended to better correlate remodeling simulation with clinical follow-up. The position of FPD pontics plays a critical role in mechanobiological functionality and bone remodeling. Caution should be exercised when selecting the cantilever FPD due to the risk of overloading bone resorption.

  5. A multi-stage heuristic algorithm for matching problem in the modified miniload automated storage and retrieval system of e-commerce

    NASA Astrophysics Data System (ADS)

    Wang, Wenrui; Wu, Yaohua; Wu, Yingying

    2016-05-01

    E-commerce, as an emerging marketing mode, has attracted more and more attention and gradually changed the way of our life. However, the existing layout of distribution centers can't fulfill the storage and picking demands of e-commerce sufficiently. In this paper, a modified miniload automated storage/retrieval system is designed to fit these new characteristics of e-commerce in logistics. Meanwhile, a matching problem, concerning with the improvement of picking efficiency in new system, is studied in this paper. The problem is how to reduce the travelling distance of totes between aisles and picking stations. A multi-stage heuristic algorithm is proposed based on statement and model of this problem. The main idea of this algorithm is, with some heuristic strategies based on similarity coefficients, minimizing the transportations of items which can not arrive in the destination picking stations just through direct conveyors. The experimental results based on the cases generated by computers show that the average reduced rate of indirect transport times can reach 14.36% with the application of multi-stage heuristic algorithm. For the cases from a real e-commerce distribution center, the order processing time can be reduced from 11.20 h to 10.06 h with the help of the modified system and the proposed algorithm. In summary, this research proposed a modified system and a multi-stage heuristic algorithm that can reduce the travelling distance of totes effectively and improve the whole performance of e-commerce distribution center.

  6. Multi-stage responsive 4D printed smart structure through varying geometric thickness of shape memory polymer

    NASA Astrophysics Data System (ADS)

    Teoh, Joanne Ee Mei; Zhao, Yue; An, Jia; Chua, Chee Kai; Liu, Yong

    2017-12-01

    Shape memory polymers (SMPs) have gained a presence in additive manufacturing due to their role in 4D printing. They can be printed either in multi-materials for multi-stage shape recovery or in a single material for single-stage shape recovery. When printed in multi-materials, material or material-based design is used as a controlling factor for multi-stage shape recovery. However, when printed in a single material, it is difficult to design multi-stage shape recovery due to the lack of a controlling factor. In this research, we explore the use of geometric thickness as a controlling factor to design smart structures possessing multi-stage shape recovery using a single SMP. L-shaped hinges with a thickness ranging from 0.3-2 mm were designed and printed in four different SMPs. The effect of thickness on SMP’s response time was examined via both experiment and finite element analysis using Ansys transient thermal simulation. A method was developed to accurately measure the response time in millisecond resolution. Temperature distribution and heat transfer in specimens during thermal activation were also simulated and discussed. Finally, a spiral square and an artificial flower consisting of a single SMP were designed and printed with appropriate thickness variation for the demonstration of a controlled multi-stage shape recovery. Experimental results indicated that smart structures printed using single material with controlled thickness parameters are able to achieve controlled shape recovery characteristics similar to those printed with multiple materials and uniform geometric thickness. Hence, the geometric parameter can be used to increase the degree of freedom in designing future smart structures possessing complex shape recovery characteristics.

  7. Active control of complex, multicomponent self-assembly processes

    NASA Astrophysics Data System (ADS)

    Schulman, Rebecca

    The kinetics of many complex biological self-assembly processes such as cytoskeletal assembly are precisely controlled by cells. Spatiotemporal control over rates of filament nucleation, growth and disassembly determine how self-assembly occurs and how the assembled form changes over time. These reaction rates can be manipulated by changing the concentrations of the components needed for assembly by activating or deactivating them. I will describe how we can use these principles to design driven self-assembly processes in which we assemble and disassemble multiple types of components to create micron-scale networks of semiflexible filaments assembled from DNA. The same set of primitive components can be assembled into many different, structures depending on the concentrations of different components and how designed, DNA-based chemical reaction networks manipulate these concentrations over time. These chemical reaction networks can in turn interpret environmental stimuli to direct complex, multistage response. Such a system is a laboratory for understanding complex active material behaviors, such as metamorphosis, self-healing or adaptation to the environment that are ubiquitous in biological systems but difficult to quantitatively characterize or engineer.

  8. A Simulated Annealing Algorithm for the Optimization of Multistage Depressed Collector Efficiency

    NASA Technical Reports Server (NTRS)

    Vaden, Karl R.; Wilson, Jeffrey D.; Bulson, Brian A.

    2002-01-01

    The microwave traveling wave tube amplifier (TWTA) is widely used as a high-power transmitting source for space and airborne communications. One critical factor in designing a TWTA is the overall efficiency. However, overall efficiency is highly dependent upon collector efficiency; so collector design is critical to the performance of a TWTA. Therefore, NASA Glenn Research Center has developed an optimization algorithm based on Simulated Annealing to quickly design highly efficient multi-stage depressed collectors (MDC).

  9. Multistage Spectral Relaxation Method for Solving the Hyperchaotic Complex Systems

    PubMed Central

    Saberi Nik, Hassan; Rebelo, Paulo

    2014-01-01

    We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM) is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results. PMID:25386624

  10. Rapid profiling of polymeric phenolic acids in Salvia miltiorrhiza by hybrid data-dependent/targeted multistage mass spectrometry acquisition based on expected compounds prediction and fragment ion searching.

    PubMed

    Shen, Yao; Feng, Zijin; Yang, Min; Zhou, Zhe; Han, Sumei; Hou, Jinjun; Li, Zhenwei; Wu, Wanying; Guo, De-An

    2018-04-01

    Phenolic acids are the major water-soluble components in Salvia miltiorrhiza (>5%). According to previous studies, many of them contribute to the cardiovascular effects and antioxidant effects of S. miltiorrhiza. Polymeric phenolic acids can be considered as the tanshinol derived metabolites, e.g., dimmers, trimers, and tetramers. A strategy combined with tanshinol-based expected compounds prediction, total ion chromatogram filtering, fragment ion searching, and parent list-based multistage mass spectrometry acquisition by linear trap quadropole-orbitrap Velos mass spectrometry was proposed to rapid profile polymeric phenolic acids in S. miltiorrhiza. More than 480 potential polymeric phenolic acids could be screened out by this strategy. Based on the fragment information obtained by parent list-activated data dependent multistage mass spectrometry acquisition, 190 polymeric phenolic acids were characterized by comparing their mass information with literature data, and 18 of them were firstly detected from S. miltiorrhiza. Seven potential compounds were tentatively characterized as new polymeric phenolic acids from S. miltiorrhiza. This strategy facilitates identification of polymeric phenolic acids in complex matrix with both selectivity and sensitivity, which could be expanded for rapid discovery and identification of compounds from complex matrix. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A Comparison of Performance Characteristics of Multistage Thermoelectric Coolers Based on Different Ceramic Substrates

    NASA Astrophysics Data System (ADS)

    Semenyuk, V.

    2014-06-01

    The influence of the thermal properties of the substrate on the performance of cascade thermoelectric coolers (TECs) is studied with an emphasis on a justified choice of substrate material. An analytical model is developed for predicting the thermal resistance of the substrate associated with three-dimensional heat transfer from a smaller cascade area into a larger cooling cascade. The model is used to define the maximum temperature difference for a line of standard multistage TECs based on various substrate materials with different thermal conductivities, including white 96% Al2O3 "Rubalit" ceramic, grey 99.8% Al2O3 "Policor" ceramic, and AlN and BeO ceramics. Two types of multistage TECs are considered, namely with series and series-parallel connection of TE pellets, having from two to five cascades with TE pellet length in the range from 0.3 mm to 2 mm. A comparative analysis of the obtained results is made, and recommendations are formulated concerning the selection of an appropriate substrate material providing the highest performance-to-cost ratio.

  12. Animal models of neoplastic development.

    PubMed

    Pitot, H C

    2001-01-01

    The basic animal model for neoplastic development used by regulatory agencies is the two-year chronic bioassay developed more than 30 years ago and based on the presumed mechanism of action of a few potential chemical carcinogens. Since that time, a variety of other model carcinogenic systems have been developed, usually involving shorter duration, single organ endpoints, multistage models, and those in genetically-engineered mice. The chronic bioassay is still the "gold standard" of regulatory agencies despite a number of deficiencies, while in this country the use of shorter term assays based on single organ endpoints has not been popular. The multistage model of carcinogenesis in mouse epidermis actually preceded the development of the chronic two-year bioassay, but it was not until multistage models in other organ systems were developed that the usefulness of such systems became apparent. Recently, several genetically-engineered mouse lines involving mutations in proto-oncogenes and tumour suppressor genes have been proposed as additional model systems for use in regulatory decisions. It is likely that a combination of several of these model systems may be most useful in both practical and basic applications of cancer prevention and therapy.

  13. Efficient design and inference for multistage randomized trials of individualized treatment policies.

    PubMed

    Dawson, Ree; Lavori, Philip W

    2012-01-01

    Clinical demand for individualized "adaptive" treatment policies in diverse fields has spawned development of clinical trial methodology for their experimental evaluation via multistage designs, building upon methods intended for the analysis of naturalistically observed strategies. Because often there is no need to parametrically smooth multistage trial data (in contrast to observational data for adaptive strategies), it is possible to establish direct connections among different methodological approaches. We show by algebraic proof that the maximum likelihood (ML) and optimal semiparametric (SP) estimators of the population mean of the outcome of a treatment policy and its standard error are equal under certain experimental conditions. This result is used to develop a unified and efficient approach to design and inference for multistage trials of policies that adapt treatment according to discrete responses. We derive a sample size formula expressed in terms of a parametric version of the optimal SP population variance. Nonparametric (sample-based) ML estimation performed well in simulation studies, in terms of achieved power, for scenarios most likely to occur in real studies, even though sample sizes were based on the parametric formula. ML outperformed the SP estimator; differences in achieved power predominately reflected differences in their estimates of the population mean (rather than estimated standard errors). Neither methodology could mitigate the potential for overestimated sample sizes when strong nonlinearity was purposely simulated for certain discrete outcomes; however, such departures from linearity may not be an issue for many clinical contexts that make evaluation of competitive treatment policies meaningful.

  14. Laboratory research of fracture geometry in multistage HFF in triaxial state

    NASA Astrophysics Data System (ADS)

    Bondarenko, T. M.; Hou, B.; Chen, M.; Yan, L.

    2017-05-01

    Multistage hydraulic fracturing of formation (HFF) in wells with horizontal completion is an efficientmethod for intensifying oil extraction which, as a rule, is used to develop nontraditional collectors. It is assumed that the complicated character of HFF fractures significantly influences the fracture geometry in the rock matrix. Numerous theoretical models proposed to predict the fracture geometry and the character of interaction of mechanical stresses in the multistage HFF have not been proved experimentally. In this paper, we present the results of laboratory modeling of the multistage HFF performed on a contemporary laboratory-scale plant in the triaxial stress state by using a gel-solution as the HFF agent. As a result of the experiment, a fracturing pattern was formed in the cubic specimen of the model material. The laboratory results showed that a nearly plane fracture is formed at the firstHFF stage, while a concave fracture is formed at the second HFF stage. The interaction of the stress fields created by the two principal HFF fractures results in the growth of secondary fractures whose directions turned out to be parallel to the modeled well bore. But this stress interference leads to a decrease in the width of the second principal fracture. It is was discovered that the penny-shaped fracture model is more appropriate for predicting the geometry of HFF fractures in horizontal wells than the two-dimensional models of fracture propagation (PKN model, KGD model). A computational experiment based on the boundary element method was carried out to obtain the qualitative description of the multistage HFF processes. As a result, a mechanical model of fracture propagation was constructed,which was used to obtain the mechanical stress field (the stress contrast) and the fracture opening angle distribution over fracture length and fracture orientation direction. The conclusions made in the laboratory modeling of the multistage HFF technology agree well with the conclusions made in the computational experiment. Special attention must be paid to the design of the HFF stage spacing density in the implementation of the multistage HFF in wells with horizontal completion.

  15. Precancerous lesions in the stomach: from biology to clinical patient management.

    PubMed

    Rugge, Massimo; Capelle, Lisette G; Cappellesso, Rocco; Nitti, Donato; Kuipers, Ernst J

    2013-04-01

    Gastric cancer is the final step in a multi-stage cascade triggered by long-standing inflammatory conditions (particularly Helicobacter pylori infection) resulting in atrophic gastritis and intestinal metaplasia: these lesions represent the cancerization field in which (intestinal-type) gastric cancer develops. Intraepithelial neoplasia is consistently recognized as the phenotypic bridge between atrophic/metaplastic lesions and invasive cancer. This paper addresses the epidemiology, pathology, molecular profiling, and clinical management of advanced precancerous gastric lesions. Copyright © 2013. Published by Elsevier Ltd.

  16. Patient-centred screening for primary immunodeficiency, a multi-stage diagnostic protocol designed for non-immunologists: 2011 update

    PubMed Central

    de Vries, E

    2012-01-01

    Members of the European Society for Immunodeficiencies (ESID) and other colleagues have updated the multi-stage expert-opinion-based diagnostic protocol for non-immunologists incorporating newly defined primary immunodeficiency diseases (PIDs). The protocol presented here aims to increase the awareness of PIDs among doctors working in different fields. Prompt identification of PID is important for prognosis, but this may not be an easy task. The protocol therefore starts from the clinical presentation of the patient. Because PIDs may present at all ages, this protocol is aimed at both adult and paediatric physicians. The multi-stage design allows cost-effective screening for PID of the large number of potential cases in the early phases, with more expensive tests reserved for definitive classification in collaboration with a specialist in the field of immunodeficiency at a later stage. PMID:22132890

  17. General theory of the multistage geminate reactions of the isolated pairs of reactants. II. Detailed balance and universal asymptotes of kinetics.

    PubMed

    Kipriyanov, Alexey A; Doktorov, Alexander B

    2014-10-14

    The analysis of general (matrix) kinetic equations for the mean survival probabilities of any of the species in a sample (or mean concentrations) has been made for a wide class of the multistage geminate reactions of the isolated pairs. These kinetic equations (obtained in the frame of the kinetic approach based on the concept of "effective" particles in Paper I) take into account various possible elementary reactions (stages of a multistage reaction) excluding monomolecular, but including physical and chemical processes of the change in internal quantum states carried out with the isolated pairs of reactants (or isolated reactants). The general basic principles of total and detailed balance have been established. The behavior of the reacting system has been considered on macroscopic time scales, and the universal long-term kinetics has been determined.

  18. Multi-stage phononic crystal structure for anchor-loss reduction of thin-film piezoelectric-on-silicon microelectromechanical-system resonator

    NASA Astrophysics Data System (ADS)

    Bao, Fei-Hong; Bao, Lei-Lei; Li, Xin-Yi; Ammar Khan, Muhammad; Wu, Hua-Ye; Qin, Feng; Zhang, Ting; Zhang, Yi; Bao, Jing-Fu; Zhang, Xiao-Sheng

    2018-06-01

    Thin-film piezoelectric-on-silicon acoustic wave resonators are promising for the development of system-on-chip integrated circuits with micro/nano-engineered timing reference. However, in order to realize their large potentials, a further enhancement of the quality factor (Q) is required. In this study, a novel approach, based on a multi-stage phononic crystal (PnC) structure, was proposed to achieve an ultra-high Q. A systematical study revealed that the multi-stage PnC structure formed a frequency-selective band-gap to effectively prohibit the dissipation of acoustic waves through tethers, which significantly reduced the anchor loss, leading to an insertion-loss reduction and enhancement of Q. The maximum unloaded Q u of the fabricated resonators reached the value of ∼10,000 at 109.85 MHz, indicating an enhancement by 19.4 times.

  19. Race/Ethnicity, Poverty, Urban Stressors and Telomere Length in a Detroit Community-Based Sample

    PubMed Central

    Geronimus, Arline T.; Pearson, Jay A.; Linnenbringer, Erin; Schulz, Amy J.; Reyes, Angela G.; Epel, Elissa S.; Lin, Jue; Blackburn, Elizabeth H.

    2015-01-01

    Residents of distressed urban areas suffer early aging-related disease and excess mortality. Using a community-based participatory research approach in a collaboration between social researchers and cellular biologists, we collected a unique data set of 239 black, white, or Mexican adults from a stratified, multi-stage probability sample of three Detroit neighborhoods. We drew venous blood and measured Telomere Length (TL), an indicator of stress-mediated biological aging, linking respondents’ TL to their community survey responses. We regressed TL on socioeconomic, psychosocial, neighborhood, and behavioral stressors, hypothesizing and finding an interaction between poverty and racial/ethnic group. Poor whites had shorter TL than nonpoor whites; poor and nonpoor blacks had equivalent TL; poor Mexicans had longer TL than nonpoor Mexicans. Findings suggest unobserved heterogeneity bias is an important threat to the validity of estimates of TL differences by race/ethnicity. They point to health impacts of social identity as contingent, the products of structurally-rooted biopsychosocial processes. PMID:25930147

  20. Race-Ethnicity, Poverty, Urban Stressors, and Telomere Length in a Detroit Community-based Sample.

    PubMed

    Geronimus, Arline T; Pearson, Jay A; Linnenbringer, Erin; Schulz, Amy J; Reyes, Angela G; Epel, Elissa S; Lin, Jue; Blackburn, Elizabeth H

    2015-06-01

    Residents of distressed urban areas suffer early aging-related disease and excess mortality. Using a community-based participatory research approach in a collaboration between social researchers and cellular biologists, we collected a unique data set of 239 black, white, or Mexican adults from a stratified, multistage probability sample of three Detroit neighborhoods. We drew venous blood and measured telomere length (TL), an indicator of stress-mediated biological aging, linking respondents' TL to their community survey responses. We regressed TL on socioeconomic, psychosocial, neighborhood, and behavioral stressors, hypothesizing and finding an interaction between poverty and racial-ethnic group. Poor whites had shorter TL than nonpoor whites; poor and nonpoor blacks had equivalent TL; and poor Mexicans had longer TL than nonpoor Mexicans. Findings suggest unobserved heterogeneity bias is an important threat to the validity of estimates of TL differences by race-ethnicity. They point to health impacts of social identity as contingent, the products of structurally rooted biopsychosocial processes. © American Sociological Association 2015.

  1. Coal: special report number 2

    USGS Publications Warehouse

    Keenlyne, Kent D.

    1977-01-01

    The Fish and Wildlife Service has extensive biological expertise within the Department of Interior and exerts national leadership in the management and protection of the nation's fish and wildlife resources, their habitat, and environment. Specifically, the Office of Biological Services obtains and assimilates biological and environmental data and identifies additional informational needs and means to provide environmental and biological input into major natural resource decisions. Coal Coordinators assist in carrying out Fish and Wildlife Service involvement in the Interior Department Coal Leasing Program through a multi-stage process designed to assemble existing fish and wildlife inventory data and to prioritize fish and wildlife values in areas subject to coal leasing and associated development. This report is designed to identify possible areas of concern for wildlife and its habitat in Wyoming in the development of coal and the associate implication of land use changes. This report summarizes past and present development of the coal resource in Wyoming in anticipation of future identification of data needs for making sound resource decisions in the development of coal.

  2. Large-scale optimization-based classification models in medicine and biology.

    PubMed

    Lee, Eva K

    2007-06-01

    We present novel optimization-based classification models that are general purpose and suitable for developing predictive rules for large heterogeneous biological and medical data sets. Our predictive model simultaneously incorporates (1) the ability to classify any number of distinct groups; (2) the ability to incorporate heterogeneous types of attributes as input; (3) a high-dimensional data transformation that eliminates noise and errors in biological data; (4) the ability to incorporate constraints to limit the rate of misclassification, and a reserved-judgment region that provides a safeguard against over-training (which tends to lead to high misclassification rates from the resulting predictive rule); and (5) successive multi-stage classification capability to handle data points placed in the reserved-judgment region. To illustrate the power and flexibility of the classification model and solution engine, and its multi-group prediction capability, application of the predictive model to a broad class of biological and medical problems is described. Applications include: the differential diagnosis of the type of erythemato-squamous diseases; predicting presence/absence of heart disease; genomic analysis and prediction of aberrant CpG island meythlation in human cancer; discriminant analysis of motility and morphology data in human lung carcinoma; prediction of ultrasonic cell disruption for drug delivery; identification of tumor shape and volume in treatment of sarcoma; discriminant analysis of biomarkers for prediction of early atherosclerois; fingerprinting of native and angiogenic microvascular networks for early diagnosis of diabetes, aging, macular degeneracy and tumor metastasis; prediction of protein localization sites; and pattern recognition of satellite images in classification of soil types. In all these applications, the predictive model yields correct classification rates ranging from 80 to 100%. This provides motivation for pursuing its use as a medical diagnostic, monitoring and decision-making tool.

  3. Glioma Dual-Targeting Nanohybrid Protein Toxin Constructed by Intein-Mediated Site-Specific Ligation for Multistage Booster Delivery

    PubMed Central

    Chen, Yingzhi; Zhang, Meng; Jin, Hongyue; Li, Dongdong; Xu, Fan; Wu, Aihua; Wang, Jinyu; Huang, Yongzhuo

    2017-01-01

    Malignant glioma is one of the most untreatable cancers because of the formidable blood-brain barrier (BBB), through which few therapeutics can penetrate and reach the tumors. Biologics have been booming in cancer therapy in the past two decades, but their application in brain tumor has long been ignored due to the impermeable nature of BBB against effective delivery of biologics. Indeed, it is a long unsolved problem for brain delivery of macromolecular drugs, which becomes the Holy Grail in medical and pharmaceutical sciences. Even assisting by targeting ligands, protein brain delivery still remains challenging because of the synthesis difficulties of ligand-modified proteins. Herein, we propose a rocket-like, multistage booster delivery system of a protein toxin, trichosanthin (TCS), for antiglioma treatment. TCS is a ribosome-inactivating protein with the potent activity against various solid tumors but lack of specific action and cell penetration ability. To overcome the challenge of its poor druggability and site-specific modification, intein-mediated ligation was applied, by which a gelatinase-cleavable peptide and cell-penetrating peptide (CPP)-fused recombinant TCS toxin can be site-specifically conjugated to lactoferrin (LF), thus constructing a BBB-penetrating, gelatinase-activatable cell-penetrating nanohybrid TCS toxin. This nanohybrid TCS system is featured by the multistage booster strategy for glioma dual-targeting delivery. First, LF can target to the BBB-overexpressing low-density lipoprotein receptor-related protein-1 (LRP-1), and assist with BBB penetration. Second, once reaching the tumor site, the gelatinase-cleavable peptide acts as a separator responsive to the glioma-associated matrix metalloproteinases (MMPs), thus releasing to the CPP-fused toxin. Third, CPP mediates intratumoral and intracellular penetration of TCS toxin, thereby enhancing its antitumor activity. The BBB penetration and MMP-2-activability of this delivery system were demonstrated. The antiglioma activity was evaluated in the subcutaneous and orthotopic animal models. Our work provides a useful protocol for improving the druggability of such class of protein toxins and promoting their in-vivo application for targeted cancer therapy. PMID:28912890

  4. Pulsed depressed collector

    DOEpatents

    Kemp, Mark A

    2015-11-03

    A high power RF device has an electron beam cavity, a modulator, and a circuit for feed-forward energy recovery from a multi-stage depressed collector to the modulator. The electron beam cavity include a cathode, an anode, and the multi-stage depressed collector, and the modulator is configured to provide pulses to the cathode. Voltages of the electrode stages of the multi-stage depressed collector are allowed to float as determined by fixed impedances seen by the electrode stages. The energy recovery circuit includes a storage capacitor that dynamically biases potentials of the electrode stages of the multi-stage depressed collector and provides recovered energy from the electrode stages of the multi-stage depressed collector to the modulator. The circuit may also include a step-down transformer, where the electrode stages of the multi-stage depressed collector are electrically connected to separate taps on the step-down transformer.

  5. Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells

    PubMed Central

    Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari

    2015-01-01

    Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC). PMID:26218470

  6. Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells.

    PubMed

    Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari

    2015-07-28

    Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC).

  7. A microprocessor-based automation test system for the experiment of the multi-stage compressor

    NASA Astrophysics Data System (ADS)

    Zhang, Huisheng; Lin, Chongping

    1991-08-01

    An automation test system that is controlled by the microprocessor and used in the multistage compressor experiment is described. Based on the analysis of the compressor experiment performances, a complete hardware system structure is set up. It is composed of a IBM PC/XT computer, a large scale sampled data system, the moving machine with three directions, the scanners, the digital instrumentation and some output devices. A program structure of real-time software system is described. The testing results show that this test system can take the measure of many parameter magnitudes in the blade row places and on a boundary layer in different states. The automatic extent and the accuracy of experiment is increased and the experimental cost is reduced.

  8. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    PubMed

    Ehret, Georg B; Munroe, Patricia B; Rice, Kenneth M; Bochud, Murielle; Johnson, Andrew D; Chasman, Daniel I; Smith, Albert V; Tobin, Martin D; Verwoert, Germaine C; Hwang, Shih-Jen; Pihur, Vasyl; Vollenweider, Peter; O'Reilly, Paul F; Amin, Najaf; Bragg-Gresham, Jennifer L; Teumer, Alexander; Glazer, Nicole L; Launer, Lenore; Zhao, Jing Hua; Aulchenko, Yurii; Heath, Simon; Sõber, Siim; Parsa, Afshin; Luan, Jian'an; Arora, Pankaj; Dehghan, Abbas; Zhang, Feng; Lucas, Gavin; Hicks, Andrew A; Jackson, Anne U; Peden, John F; Tanaka, Toshiko; Wild, Sarah H; Rudan, Igor; Igl, Wilmar; Milaneschi, Yuri; Parker, Alex N; Fava, Cristiano; Chambers, John C; Fox, Ervin R; Kumari, Meena; Go, Min Jin; van der Harst, Pim; Kao, Wen Hong Linda; Sjögren, Marketa; Vinay, D G; Alexander, Myriam; Tabara, Yasuharu; Shaw-Hawkins, Sue; Whincup, Peter H; Liu, Yongmei; Shi, Gang; Kuusisto, Johanna; Tayo, Bamidele; Seielstad, Mark; Sim, Xueling; Nguyen, Khanh-Dung Hoang; Lehtimäki, Terho; Matullo, Giuseppe; Wu, Ying; Gaunt, Tom R; Onland-Moret, N Charlotte; Cooper, Matthew N; Platou, Carl G P; Org, Elin; Hardy, Rebecca; Dahgam, Santosh; Palmen, Jutta; Vitart, Veronique; Braund, Peter S; Kuznetsova, Tatiana; Uiterwaal, Cuno S P M; Adeyemo, Adebowale; Palmas, Walter; Campbell, Harry; Ludwig, Barbara; Tomaszewski, Maciej; Tzoulaki, Ioanna; Palmer, Nicholette D; Aspelund, Thor; Garcia, Melissa; Chang, Yen-Pei C; O'Connell, Jeffrey R; Steinle, Nanette I; Grobbee, Diederick E; Arking, Dan E; Kardia, Sharon L; Morrison, Alanna C; Hernandez, Dena; Najjar, Samer; McArdle, Wendy L; Hadley, David; Brown, Morris J; Connell, John M; Hingorani, Aroon D; Day, Ian N M; Lawlor, Debbie A; Beilby, John P; Lawrence, Robert W; Clarke, Robert; Hopewell, Jemma C; Ongen, Halit; Dreisbach, Albert W; Li, Yali; Young, J Hunter; Bis, Joshua C; Kähönen, Mika; Viikari, Jorma; Adair, Linda S; Lee, Nanette R; Chen, Ming-Huei; Olden, Matthias; Pattaro, Cristian; Bolton, Judith A Hoffman; Köttgen, Anna; Bergmann, Sven; Mooser, Vincent; Chaturvedi, Nish; Frayling, Timothy M; Islam, Muhammad; Jafar, Tazeen H; Erdmann, Jeanette; Kulkarni, Smita R; Bornstein, Stefan R; Grässler, Jürgen; Groop, Leif; Voight, Benjamin F; Kettunen, Johannes; Howard, Philip; Taylor, Andrew; Guarrera, Simonetta; Ricceri, Fulvio; Emilsson, Valur; Plump, Andrew; Barroso, Inês; Khaw, Kay-Tee; Weder, Alan B; Hunt, Steven C; Sun, Yan V; Bergman, Richard N; Collins, Francis S; Bonnycastle, Lori L; Scott, Laura J; Stringham, Heather M; Peltonen, Leena; Perola, Markus; Vartiainen, Erkki; Brand, Stefan-Martin; Staessen, Jan A; Wang, Thomas J; Burton, Paul R; Soler Artigas, Maria; Dong, Yanbin; Snieder, Harold; Wang, Xiaoling; Zhu, Haidong; Lohman, Kurt K; Rudock, Megan E; Heckbert, Susan R; Smith, Nicholas L; Wiggins, Kerri L; Doumatey, Ayo; Shriner, Daniel; Veldre, Gudrun; Viigimaa, Margus; Kinra, Sanjay; Prabhakaran, Dorairaj; Tripathy, Vikal; Langefeld, Carl D; Rosengren, Annika; Thelle, Dag S; Corsi, Anna Maria; Singleton, Andrew; Forrester, Terrence; Hilton, Gina; McKenzie, Colin A; Salako, Tunde; Iwai, Naoharu; Kita, Yoshikuni; Ogihara, Toshio; Ohkubo, Takayoshi; Okamura, Tomonori; Ueshima, Hirotsugu; Umemura, Satoshi; Eyheramendy, Susana; Meitinger, Thomas; Wichmann, H-Erich; Cho, Yoon Shin; Kim, Hyung-Lae; Lee, Jong-Young; Scott, James; Sehmi, Joban S; Zhang, Weihua; Hedblad, Bo; Nilsson, Peter; Smith, George Davey; Wong, Andrew; Narisu, Narisu; Stančáková, Alena; Raffel, Leslie J; Yao, Jie; Kathiresan, Sekar; O'Donnell, Christopher J; Schwartz, Stephen M; Ikram, M Arfan; Longstreth, W T; Mosley, Thomas H; Seshadri, Sudha; Shrine, Nick R G; Wain, Louise V; Morken, Mario A; Swift, Amy J; Laitinen, Jaana; Prokopenko, Inga; Zitting, Paavo; Cooper, Jackie A; Humphries, Steve E; Danesh, John; Rasheed, Asif; Goel, Anuj; Hamsten, Anders; Watkins, Hugh; Bakker, Stephan J L; van Gilst, Wiek H; Janipalli, Charles S; Mani, K Radha; Yajnik, Chittaranjan S; Hofman, Albert; Mattace-Raso, Francesco U S; Oostra, Ben A; Demirkan, Ayse; Isaacs, Aaron; Rivadeneira, Fernando; Lakatta, Edward G; Orru, Marco; Scuteri, Angelo; Ala-Korpela, Mika; Kangas, Antti J; Lyytikäinen, Leo-Pekka; Soininen, Pasi; Tukiainen, Taru; Würtz, Peter; Ong, Rick Twee-Hee; Dörr, Marcus; Kroemer, Heyo K; Völker, Uwe; Völzke, Henry; Galan, Pilar; Hercberg, Serge; Lathrop, Mark; Zelenika, Diana; Deloukas, Panos; Mangino, Massimo; Spector, Tim D; Zhai, Guangju; Meschia, James F; Nalls, Michael A; Sharma, Pankaj; Terzic, Janos; Kumar, M V Kranthi; Denniff, Matthew; Zukowska-Szczechowska, Ewa; Wagenknecht, Lynne E; Fowkes, F Gerald R; Charchar, Fadi J; Schwarz, Peter E H; Hayward, Caroline; Guo, Xiuqing; Rotimi, Charles; Bots, Michiel L; Brand, Eva; Samani, Nilesh J; Polasek, Ozren; Talmud, Philippa J; Nyberg, Fredrik; Kuh, Diana; Laan, Maris; Hveem, Kristian; Palmer, Lyle J; van der Schouw, Yvonne T; Casas, Juan P; Mohlke, Karen L; Vineis, Paolo; Raitakari, Olli; Ganesh, Santhi K; Wong, Tien Y; Tai, E Shyong; Cooper, Richard S; Laakso, Markku; Rao, Dabeeru C; Harris, Tamara B; Morris, Richard W; Dominiczak, Anna F; Kivimaki, Mika; Marmot, Michael G; Miki, Tetsuro; Saleheen, Danish; Chandak, Giriraj R; Coresh, Josef; Navis, Gerjan; Salomaa, Veikko; Han, Bok-Ghee; Zhu, Xiaofeng; Kooner, Jaspal S; Melander, Olle; Ridker, Paul M; Bandinelli, Stefania; Gyllensten, Ulf B; Wright, Alan F; Wilson, James F; Ferrucci, Luigi; Farrall, Martin; Tuomilehto, Jaakko; Pramstaller, Peter P; Elosua, Roberto; Soranzo, Nicole; Sijbrands, Eric J G; Altshuler, David; Loos, Ruth J F; Shuldiner, Alan R; Gieger, Christian; Meneton, Pierre; Uitterlinden, Andre G; Wareham, Nicholas J; Gudnason, Vilmundur; Rotter, Jerome I; Rettig, Rainer; Uda, Manuela; Strachan, David P; Witteman, Jacqueline C M; Hartikainen, Anna-Liisa; Beckmann, Jacques S; Boerwinkle, Eric; Vasan, Ramachandran S; Boehnke, Michael; Larson, Martin G; Järvelin, Marjo-Riitta; Psaty, Bruce M; Abecasis, Gonçalo R; Chakravarti, Aravinda; Elliott, Paul; van Duijn, Cornelia M; Newton-Cheh, Christopher; Levy, Daniel; Caulfield, Mark J; Johnson, Toby

    2011-09-11

    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.

  9. Dimensioning of 10 Gbit/s all-optical packet switched networks based on optical label swapping routers with multistage 2R regeneration.

    PubMed

    Puerto, G; Ortega, B; Manzanedo, M D; Martínez, A; Pastor, D; Capmany, J; Kovacs, G

    2006-10-30

    This paper describes both the experimental and theoretical investigations on the cascadability of all-optical routers in optical label swapping networks incorporating a multistage wavelength conversion with 2R regeneration. A full description of a novel experimental setup allows the packet by packet measurement up to 16 hops with 10 Gb/s payload showing 1 dB penalty with 10(-12) bit error rate. Similarly, the simulations on the system allow a prediction on the cascadability of the router up to 64 hops.

  10. Conditional statistical inference with multistage testing designs.

    PubMed

    Zwitser, Robert J; Maris, Gunter

    2015-03-01

    In this paper it is demonstrated how statistical inference from multistage test designs can be made based on the conditional likelihood. Special attention is given to parameter estimation, as well as the evaluation of model fit. Two reasons are provided why the fit of simple measurement models is expected to be better in adaptive designs, compared to linear designs: more parameters are available for the same number of observations; and undesirable response behavior, like slipping and guessing, might be avoided owing to a better match between item difficulty and examinee proficiency. The results are illustrated with simulated data, as well as with real data.

  11. End-pumped 300 W continuous-wave ytterbium-doped all-fiber laser with master oscillator multi-stage power amplifiers configuration.

    PubMed

    Yin, Shupeng; Yan, Ping; Gong, Mali

    2008-10-27

    An end-pumped ytterbium-doped all-fiber laser with 300 W output in continuous regime was reported, which was based on master oscillator multi-stage power amplifiers configuration. Monolithic fiber laser system consisted of an oscillator stage and two amplifier stages. Total optical-optical efficiency of monolithic fiber laser was approximately 65%, corresponding to 462 W of pump power coupled into laser system. We proposed a new method to connect power amplifier stage, which was crucial for the application of end-pumped combiner in high power MOPAs all-fiber laser.

  12. Patient-centred screening for primary immunodeficiency: a multi-stage diagnostic protocol designed for non-immunologists

    PubMed Central

    de Vries, E

    2006-01-01

    Efficient early identification of primary immunodeficiency disease (PID) is important for prognosis, but is not an easy task for non-immunologists. The Clinical Working Party of the European Society for Immunodeficiencies (ESID) has composed a multi-stage diagnostic protocol that is based on expert opinion, in order to increase the awareness of PID among doctors working in different fields. The protocol starts from the clinical presentation of the patient; immunological skills are not needed for its use. The multi-stage design allows cost-effective screening for PID within the large pool of potential cases in all hospitals in the early phases, while more expensive tests are reserved for definitive classification in collaboration with an immunologist at a later stage. Although many PIDs present in childhood, others may present at any age. The protocols presented here are therefore aimed at both adult physicians and paediatricians. While designed for use throughout Europe, there will be national differences which may make modification of this generic algorithm necessary. PMID:16879238

  13. 40 CFR 600.316-78 - Multistage manufacture.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Multistage manufacture. 600.316-78 Section 600.316-78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY... and Later Model Year Automobiles-Labeling § 600.316-78 Multistage manufacture. Where more than one...

  14. Exposure Control Using Adaptive Multi-Stage Item Bundles.

    ERIC Educational Resources Information Center

    Luecht, Richard M.

    This paper presents a multistage adaptive testing test development paradigm that promises to handle content balancing and other test development needs, psychometric reliability concerns, and item exposure. The bundled multistage adaptive testing (BMAT) framework is a modification of the computer-adaptive sequential testing framework introduced by…

  15. A Testlet Assembly Design for Adaptive Multistage Tests

    ERIC Educational Resources Information Center

    Luecht, Richard; Brumfield, Terry; Breithaupt, Krista

    2006-01-01

    This article describes multistage tests and some practical test development considerations related to the design and implementation of a multistage test, using the Uniform CPA (certified public accountant) Examination as a case study. The article further discusses the use of automated test assembly procedures in an operational context to produce…

  16. Longitudinal Multistage Testing

    ERIC Educational Resources Information Center

    Pohl, Steffi

    2013-01-01

    This article introduces longitudinal multistage testing (lMST), a special form of multistage testing (MST), as a method for adaptive testing in longitudinal large-scale studies. In lMST designs, test forms of different difficulty levels are used, whereas the values on a pretest determine the routing to these test forms. Since lMST allows for…

  17. Applications of the Magnetocaloric Effect in Single-Stage, Multi-Stage and Continuous Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.

    2014-01-01

    Adiabatic demagnetization refrigerators (ADR), based on the magnetocaloric effect, are solid-state coolers that were the first to achieve cooling well into the sub-kelvin regime. Although supplanted by more powerful dilution refrigerators in the 1960s, ADRs have experienced a revival due to the needs of the space community for cooling astronomical instruments and detectors to temperatures below 100 mK. The earliest of these were single-stage refrigerators using superfluid helium as a heat sink. Their modest cooling power (<1 µW at 60 mK[1]) was sufficient for the small (6x6) detector arrays[2], but recent advances in arraying and multiplexing technologies[3] are generating a need for higher cooling power (5-10 µW), and lower temperature (<30 mK). Single-stage ADRs have both practical and fundamental limits to their operating range, as mass grows very rapidly as the operating range is expanded. This has led to the development of new architectures that introduce multi-staging as a way to improve operating range, efficiency and cooling power. Multi-staging also enables ADRs to be configured for continuous operation, which greatly improves cooling power per unit mass. This paper reviews the current field of adiabatic demagnetization refrigeration, beginning with a description of the magnetocaloric effect and its application in single-stage systems, and then describing the challenges and capabilities of multi-stage and continuous ADRs.

  18. Fashion sketch design by interactive genetic algorithms

    NASA Astrophysics Data System (ADS)

    Mok, P. Y.; Wang, X. X.; Xu, J.; Kwok, Y. L.

    2012-11-01

    Computer aided design is vitally important for the modern industry, particularly for the creative industry. Fashion industry faced intensive challenges to shorten the product development process. In this paper, a methodology is proposed for sketch design based on interactive genetic algorithms. The sketch design system consists of a sketch design model, a database and a multi-stage sketch design engine. First, a sketch design model is developed based on the knowledge of fashion design to describe fashion product characteristics by using parameters. Second, a database is built based on the proposed sketch design model to define general style elements. Third, a multi-stage sketch design engine is used to construct the design. Moreover, an interactive genetic algorithm (IGA) is used to accelerate the sketch design process. The experimental results have demonstrated that the proposed method is effective in helping laypersons achieve satisfied fashion design sketches.

  19. Does Artificial Tutoring Foster Inquiry Based Learning?

    ERIC Educational Resources Information Center

    Schmoelz, Alexander; Swertz, Christian; Forstner, Alexandra; Barberi, Alessandro

    2014-01-01

    This contribution looks at the Intelligent Tutoring Interface for Technology Enhanced Learning, which integrates multistage-learning and inquiry-based learning in an adaptive e-learning system. Based on a common pedagogical ontology, adaptive e-learning systems can be enabled to recommend learning objects and activities, which follow inquiry-based…

  20. Cardiorespiratory Fitness Levels among U.S. Youth Aged 12-15 Years: United States, 1999-2004 and 2012

    MedlinePlus

    ... use a complex, stratified, multistage probability cluster sampling design. NHANES data collection is based on a nationally ... conjunction with the 2012 NHANES and the survey design was based on the design for NHANES, with ...

  1. Multistage Planetary Power Transmissions

    NASA Technical Reports Server (NTRS)

    Hadden, G. B.; Dyba, G. J.; Ragen, M. A.; Kleckner, R. J.; Sheynin, L.

    1986-01-01

    PLANETSYS simulates thermomechanical performance of multistage planetary performance of multistage planetary power transmission. Two versions of code developed, SKF version and NASA version. Major function of program: compute performance characteristics of planet bearing for any of six kinematic inversions. PLANETSYS solves heat-balance equations for either steadystate or transient thermal conditions, and produces temperature maps for mechanical system.

  2. Modeling of Unsteady Three-dimensional Flows in Multistage Machines

    NASA Technical Reports Server (NTRS)

    Hall, Kenneth C.; Pratt, Edmund T., Jr.; Kurkov, Anatole (Technical Monitor)

    2003-01-01

    Despite many years of development, the accurate and reliable prediction of unsteady aerodynamic forces acting on turbomachinery blades remains less than satisfactory, especially when viewed next to the great success investigators have had in predicting steady flows. Hall and Silkowski (1997) have proposed that one of the main reasons for the discrepancy between theory and experiment and/or industrial experience is that many of the current unsteady aerodynamic theories model a single blade row in an infinitely long duct, ignoring potentially important multistage effects. However, unsteady flows are made up of acoustic, vortical, and entropic waves. These waves provide a mechanism for the rotors and stators of multistage machines to communicate with one another. In other words, wave behavior makes unsteady flows fundamentally a multistage (and three-dimensional) phenomenon. In this research program, we have has as goals (1) the development of computationally efficient computer models of the unsteady aerodynamic response of blade rows embedded in a multistage machine (these models will ultimately be capable of analyzing three-dimensional viscous transonic flows), and (2) the use of these computer codes to study a number of important multistage phenomena.

  3. OPTICAL PROCESSING OF INFORMATION: Multistage optoelectronic two-dimensional image switches

    NASA Astrophysics Data System (ADS)

    Fedorov, V. B.

    1994-06-01

    The implementation principles and the feasibility of construction of high-throughput multistage optoelectronic switches, capable of transmitting data in the form of two-dimensional images along interconnected pairs of optical channels, are considered. Different ways of realising compact switches are proposed. They are based on the use of polarisation-sensitive elements, arrays of modulators of the plane of polarisation of light, arrays of objectives, and free-space optics. Optical systems of such switches can theoretically ensure that the resolution and optical losses in two-dimensional image transmission are limited only by diffraction. Estimates are obtained of the main maximum-performance parameters of the proposed optoelectronic image switches.

  4. Proposal for a common nomenclature for fragment ions in mass spectra of lipids

    PubMed Central

    Hartler, Jürgen; Christiansen, Klaus; Gallego, Sandra F.; Peng, Bing; Ahrends, Robert

    2017-01-01

    Advances in mass spectrometry-based lipidomics have in recent years prompted efforts to standardize the annotation of the vast number of lipid molecules that can be detected in biological systems. These efforts have focused on cataloguing, naming and drawing chemical structures of intact lipid molecules, but have provided no guidelines for annotation of lipid fragment ions detected using tandem and multi-stage mass spectrometry, albeit these fragment ions are mandatory for structural elucidation and high confidence lipid identification, especially in high throughput lipidomics workflows. Here we propose a nomenclature for the annotation of lipid fragment ions, describe its implementation and present a freely available web application, termed ALEX123 lipid calculator, that can be used to query a comprehensive database featuring curated lipid fragmentation information for more than 430,000 potential lipid molecules from 47 lipid classes covering five lipid categories. We note that the nomenclature is generic, extendable to stable isotope-labeled lipid molecules and applicable to automated annotation of fragment ions detected by most contemporary lipidomics platforms, including LC-MS/MS-based routines. PMID:29161304

  5. Proposal for a common nomenclature for fragment ions in mass spectra of lipids.

    PubMed

    Pauling, Josch K; Hermansson, Martin; Hartler, Jürgen; Christiansen, Klaus; Gallego, Sandra F; Peng, Bing; Ahrends, Robert; Ejsing, Christer S

    2017-01-01

    Advances in mass spectrometry-based lipidomics have in recent years prompted efforts to standardize the annotation of the vast number of lipid molecules that can be detected in biological systems. These efforts have focused on cataloguing, naming and drawing chemical structures of intact lipid molecules, but have provided no guidelines for annotation of lipid fragment ions detected using tandem and multi-stage mass spectrometry, albeit these fragment ions are mandatory for structural elucidation and high confidence lipid identification, especially in high throughput lipidomics workflows. Here we propose a nomenclature for the annotation of lipid fragment ions, describe its implementation and present a freely available web application, termed ALEX123 lipid calculator, that can be used to query a comprehensive database featuring curated lipid fragmentation information for more than 430,000 potential lipid molecules from 47 lipid classes covering five lipid categories. We note that the nomenclature is generic, extendable to stable isotope-labeled lipid molecules and applicable to automated annotation of fragment ions detected by most contemporary lipidomics platforms, including LC-MS/MS-based routines.

  6. Multi-stage internal gear/turbine fuel pump

    DOEpatents

    Maier, Eugen; Raney, Michael Raymond

    2004-07-06

    A multi-stage internal gear/turbine fuel pump for a vehicle includes a housing having an inlet and an outlet and a motor disposed in the housing. The multi-stage internal gear/turbine fuel pump also includes a shaft extending axially and disposed in the housing. The multi-stage internal gear/turbine fuel pump further includes a plurality of pumping modules disposed axially along the shaft. One of the pumping modules is a turbine pumping module and another of the pumping modules is a gerotor pumping module for rotation by the motor to pump fuel from the inlet to the outlet.

  7. Tracking fluorescent dissolved organic matter in multistage rivers using EEM-PARAFAC analysis: implications of the secondary tributary remediation for watershed management.

    PubMed

    Nie, Zeyu; Wu, Xiaodong; Huang, Haomin; Fang, Xiaomin; Xu, Chen; Wu, Jianyu; Liang, Xinqiang; Shi, Jiyan

    2016-05-01

    Profound understanding of behaviors of organic matter from sources to multistage rivers assists watershed management for improving water quality of river networks in rural areas. Ninety-one water samples were collected from the three orders of receiving rivers in a typical combined polluted subcatchment (diffuse agricultural pollutants and domestic sewage) located in China. Then, the fluorescent dissolved organic matter (FDOM) information for these samples was determined by the excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC). Consequently, two typical humic-like (C1 and C2) and other two protein-like (C3 and C4) components were separated. Their fluorescence peaks were located at λ ex/em = 255(360)/455, <250(320)/395, 275/335, and <250/305 nm, which resembled the traditional peaks of A + C, A + M, T, and B, respectively. In addition, C1 and C2 accounted for the dominant contributions to FDOM (>60 %). Principal component analysis (PCA) further demonstrated that, except for the autochthonous produced C4, the allochthonous components (C1 and C2) had the same terrestrial origins, but C3 might possess the separate anthropogenic and biological sources. Moreover, the spatial heterogeneity of contamination levels was noticeable in multistage rivers, and the allochthonous FDOM was gradually homogenized along the migration directions. Interestingly, the average content of the first three PARAFAC components in secondary tributaries and source pollutants had significantly higher levels than that in subsequent receiving rivers, thus suggesting that the supervision and remediation for secondary tributaries would play a prominent role in watershed management works.

  8. Multistage treatment system for raw leachate from sanitary landfill combining biological nitrification-denitrification/solar photo-Fenton/biological processes, at a scale close to industrial--biodegradability enhancement and evolution profile of trace pollutants.

    PubMed

    Silva, Tânia F C V; Silva, M Elisabete F; Cunha-Queda, A Cristina; Fonseca, Amélia; Saraiva, Isabel; Sousa, M A; Gonçalves, C; Alpendurada, M F; Boaventura, Rui A R; Vilar, Vítor J P

    2013-10-15

    A multistage treatment system, at a scale close to the industrial, was designed for the treatment of a mature raw landfill leachate, including: a) an activated sludge biological oxidation (ASBO), under aerobic and anoxic conditions; b) a solar photo-Fenton process, enhancing the bio-treated leachate biodegradability, with and without sludge removal after acidification; and c) a final polishing step, with further ASBO. The raw leachate was characterized by a high concentration of humic substances (HS) (1211 mg CHS/L), representing 39% of the dissolved organic carbon (DOC) content, and a high nitrogen content, mainly in the form of ammonium nitrogen (>3.8 g NH4(+)-N/L). In the first biological oxidation step, a 95% removal of total nitrogen and a 39% mineralization in terms of DOC were achieved, remaining only the recalcitrant fraction, mainly attributed to HS (57% of DOC). Under aerobic conditions, the highest nitrification rate obtained was 8.2 mg NH4(+)-N/h/g of volatile suspended solids (VSS), and under anoxic conditions, the maximum denitrification rate obtained was 5.8 mg (NO2(-)-N + NO3(-)-N)/h/g VSS, with a C/N consumption ratio of 2.4 mg CH3OH/mg (NO2(-)-N + NO3(-)-N). The precipitation of humic acids (37% of HS) after acidification of the bio-treated leachate corresponds to a 96% DOC abatement. The amount of UV energy and H2O2 consumption during the photo-Fenton reaction was 30% higher in the experiment without sludge removal and, consequently, the reaction velocity was 30% lower. The phototreatment process led to the depletion of HS >80%, of low-molecular-weight carboxylate anions >70% and other organic micropollutants, thus resulting in a total biodegradability increase of >70%. The second biological oxidation allowed to obtain a final treated leachate in compliance with legal discharge limits regarding water bodies (with the exception of sulfate ions), considering the experiment without sludge. Finally, the high efficiency of the overall treatment process was further reinforced by the total removal percentages attained for the identified organic trace contaminants (>90%). Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. 75 FR 34107 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... Sciences Type of Review: Revision. Title: NAEP 2011 Wave II (Writing and Math Multi-Stage Computer- based, KASA Math and PR, NIES, NAEP-TIMSS Alignment) Frequency: Affected Public: Individuals or household...

  10. A timer inventory based upon manual and automated analysis of ERTS-1 and supporting aircraft data using multistage probability sampling. [Plumas National Forest, California

    NASA Technical Reports Server (NTRS)

    Nichols, J. D.; Gialdini, M.; Jaakkola, S.

    1974-01-01

    A quasi-operational study demonstrating that a timber inventory based on manual and automated analysis of ERTS-1, supporting aircraft data and ground data was made using multistage sampling techniques. The inventory proved to be a timely, cost effective alternative to conventional timber inventory techniques. The timber volume on the Quincy Ranger District of the Plumas National Forest was estimated to be 2.44 billion board feet with a sampling error of 8.2 percent. Costs per acre for the inventory procedure at 1.1 cent/acre compared favorably with the costs of a conventional inventory at 25 cents/acre. A point-by-point comparison of CALSCAN-classified ERTS data with human-interpreted low altitude photo plots indicated no significant differences in the overall classification accuracies.

  11. Multistage Spatial Property Based Segmentation for Quantification of Fluorescence Distribution in Cells

    NASA Astrophysics Data System (ADS)

    Zhang, Guangyun; Jia, Xiuping; Pham, Tuan D.; Crane, Denis I.

    2010-01-01

    The interpretation of the distribution of fluorescence in cells is often by simple visualization of microscope-derived images for qualitative studies. In other cases, however, it is desirable to be able to quantify the distribution of fluorescence using digital image processing techniques. In this paper, the challenges of fluorescence segmentation due to the noise present in the data are addressed. We report that intensity measurements alone do not allow separation of overlapping data between target and background. Consequently, spatial properties derived from neighborhood profile were included. Mathematical Morphological operations were implemented for cell boundary extraction and a window based contrast measure was developed for fluorescence puncta identification. All of these operations were applied in the proposed multistage processing scheme. The testing results show that the spatial measures effectively enhance the target separability.

  12. Causal attribution of mental illness in South-Eastern Nigeria.

    PubMed

    Ikwuka, Ugo; Galbraith, Niall; Nyatanga, Lovemore

    2014-05-01

    Understanding of mental illness in sub-Saharan Africa has remained under-researched in spite of the high and increasing neuropsychiatric burden of disease in the region. This study investigated the causal beliefs that the Igbo people of south-eastern Nigeria hold about schizophrenia, with a view to establishing the extent to which the population makes psychosocial, biological and supernatural attributions. Multi-stage sampling was used to select participants (N = 200) to which questionnaires were administered. Mean comparison of the three causal models revealed a significant endorsement of supernatural causation. Logistic regressions revealed significant contributions of old age and female gender to supernatural attribution; old age, high education and Catholic religious denomination to psychosocial attributions; and high education to biological attributions. It is hoped that the findings would enlighten, augment literature and enhance mental health care service delivery.

  13. Multistage estimation of received carrier signal parameters under very high dynamic conditions of the receiver

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra (Inventor)

    1991-01-01

    A multistage estimator is provided for the parameters of a received carrier signal possibly phase-modulated by unknown data and experiencing very high Doppler, Doppler rate, etc., as may arise, for example, in the case of Global Positioning Systems (GPS) where the signal parameters are directly related to the position, velocity and jerk of the GPS ground-based receiver. In a two-stage embodiment of the more general multistage scheme, the first stage, selected to be a modified least squares algorithm referred to as differential least squares (DLS), operates as a coarse estimator resulting in higher rms estimation errors but with a relatively small probability of the frequency estimation error exceeding one-half of the sampling frequency, provides relatively coarse estimates of the frequency and its derivatives. The second stage of the estimator, an extended Kalman filter (EKF), operates on the error signal available from the first stage refining the overall estimates of the phase along with a more refined estimate of frequency as well and in the process also reduces the number of cycle slips.

  14. Performance assessment and microbial diversity of two pilot scale multi-stage sub-surface flow constructed wetland systems.

    PubMed

    Babatunde, A O; Miranda-CasoLuengo, Raul; Imtiaz, Mehreen; Zhao, Y Q; Meijer, Wim G

    2016-08-01

    This study assessed the performance and diversity of microbial communities in multi-stage sub-surface flow constructed wetland systems (CWs). Our aim was to assess the impact of configuration on treatment performance and microbial diversity in the systems. Results indicate that at loading rates up to 100gBOD5/(m(2)·day), similar treatment performances can be achieved using either a 3 or 4 stage configuration. In the case of phosphorus (P), the impact of configuration was less obvious and a minimum of 80% P removal can be expected for loadings up to 10gP/(m(2)·day) based on the performance results obtained within the first 16months of operation. Microbial analysis showed an increased bacterial diversity in stage four compared to the first stage. These results indicate that the design and configuration of multi-stage constructed wetland systems may have an impact on the treatment performance and the composition of the microbial community in the systems, and such knowledge can be used to improve their design and performance. Copyright © 2016. Published by Elsevier B.V.

  15. Multistage estimation of received carrier signal parameters under very high dynamic conditions of the receiver

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra (Inventor)

    1990-01-01

    A multistage estimator is provided for the parameters of a received carrier signal possibly phase-modulated by unknown data and experiencing very high Doppler, Doppler rate, etc., as may arise, for example, in the case of Global Positioning Systems (GPS) where the signal parameters are directly related to the position, velocity and jerk of the GPS ground-based receiver. In a two-stage embodiment of the more general multistage scheme, the first stage, selected to be a modified least squares algorithm referred to as differential least squares (DLS), operates as a coarse estimator resulting in higher rms estimation errors but with a relatively small probability of the frequency estimation error exceeding one-half of the sampling frequency, provides relatively coarse estimates of the frequency and its derivatives. The second stage of the estimator, an extended Kalman filter (EKF), operates on the error signal available from the first stage refining the overall estimates of the phase along with a more refined estimate of frequency as well and in the process also reduces the number of cycle slips.

  16. Kinetics of the pyrolysis of arundo, sawdust, corn stover and switch grass biomass by thermogravimetric analysis using a multi-stage model.

    PubMed

    Biney, Paul O; Gyamerah, Michael; Shen, Jiacheng; Menezes, Bruna

    2015-03-01

    A new multi-stage kinetic model has been developed for TGA pyrolysis of arundo, corn stover, sawdust and switch grass that accounts for the initial biomass weight (W0). The biomass were decomposed in a nitrogen atmosphere from 23°C to 900°C in a TGA at a single 20°C/min ramp rate in contrast with the isoconversion technique. The decomposition was divided into multiple stages based on the absolute local minimum values of conversion derivative, (dx/dT), obtained from DTG curves. This resulted in three decomposition stages for arundo, corn stover and sawdust and four stages for switch grass. A linearized multi-stage model was applied to the TGA data for each stage to determine the pre-exponential factor, activation energy, and reaction order. The activation energies ranged from 54.7 to 60.9 kJ/mol, 62.9 to 108.7 kJ/mol, and 18.4 to 257.9 kJ/mol for the first, second and the third decomposition stages respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Circadian systems biology in Metazoa.

    PubMed

    Lin, Li-Ling; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2015-11-01

    Systems biology, which can be defined as integrative biology, comprises multistage processes that can be used to understand components of complex biological systems of living organisms and provides hierarchical information to decoding life. Using systems biology approaches such as genomics, transcriptomics and proteomics, it is now possible to delineate more complicated interactions between circadian control systems and diseases. The circadian rhythm is a multiscale phenomenon existing within the body that influences numerous physiological activities such as changes in gene expression, protein turnover, metabolism and human behavior. In this review, we describe the relationships between the circadian control system and its related genes or proteins, and circadian rhythm disorders in systems biology studies. To maintain and modulate circadian oscillation, cells possess elaborative feedback loops composed of circadian core proteins that regulate the expression of other genes through their transcriptional activities. The disruption of these rhythms has been reported to be associated with diseases such as arrhythmia, obesity, insulin resistance, carcinogenesis and disruptions in natural oscillations in the control of cell growth. This review demonstrates that lifestyle is considered as a fundamental factor that modifies circadian rhythm, and the development of dysfunctions and diseases could be regulated by an underlying expression network with multiple circadian-associated signals. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  18. Baculovirus-vectored multistage Plasmodium vivax vaccine induces both protective and transmission-blocking immunities against transgenic rodent malaria parasites.

    PubMed

    Mizutani, Masanori; Iyori, Mitsuhiro; Blagborough, Andrew M; Fukumoto, Shinya; Funatsu, Tomohiro; Sinden, Robert E; Yoshida, Shigeto

    2014-10-01

    A multistage malaria vaccine targeting the pre-erythrocytic and sexual stages of Plasmodium could effectively protect individuals against infection from mosquito bites and provide transmission-blocking (TB) activity against the sexual stages of the parasite, respectively. This strategy could help prevent malaria infections in individuals and, on a larger scale, prevent malaria transmission in communities of endemicity. Here, we describe the development of a multistage Plasmodium vivax vaccine which simultaneously expresses P. vivax circumsporozoite protein (PvCSP) and P25 (Pvs25) protein of this species as a fusion protein, thereby acting as a pre-erythrocytic vaccine and a TB vaccine, respectively. A new-concept vaccine platform based on the baculovirus dual-expression system (BDES) was evaluated. The BDES-Pvs25-PvCSP vaccine displayed correct folding of the Pvs25-PvCSP fusion protein on the viral envelope and was highly expressed upon transduction of mammalian cells in vitro. This vaccine induced high levels of antibodies to Pvs25 and PvCSP and elicited protective (43%) and TB (82%) efficacies against transgenic P. berghei parasites expressing the corresponding P. vivax antigens in mice. Our data indicate that our BDES, which functions as both a subunit and DNA vaccine, can offer a promising multistage vaccine capable of delivering a potent antimalarial pre-erythrocytic and TB response via a single immunization regimen. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Development of a three-dimensional multistage inverse design method for aerodynamic matching of axial compressor blading

    NASA Astrophysics Data System (ADS)

    van Rooij, Michael P. C.

    Current turbomachinery design systems increasingly rely on multistage Computational Fluid Dynamics (CFD) as a means to assess performance of designs. However, design weaknesses attributed to improper stage matching are addressed using often ineffective strategies involving a costly iterative loop between blading modification, revision of design intent, and evaluation of aerodynamic performance. A design methodology is presented which greatly improves the process of achieving design-point aerodynamic matching. It is based on a three-dimensional viscous inverse design method which generates the blade camber surface based on prescribed pressure loading, thickness distribution and stacking line. This inverse design method has been extended to allow blading analysis and design in a multi-blade row environment. Blade row coupling was achieved through a mixing plane approximation. Parallel computing capability in the form of MPI has been implemented to reduce the computational time for multistage calculations. Improvements have been made to the flow solver to reach the level of accuracy required for multistage calculations. These include inclusion of heat flux, temperature-dependent treatment of viscosity, and improved calculation of stress components and artificial dissipation near solid walls. A validation study confirmed that the obtained accuracy is satisfactory at design point conditions. Improvements have also been made to the inverse method to increase robustness and design fidelity. These include the possibility to exclude spanwise sections of the blade near the endwalls from the design process, and a scheme that adjusts the specified loading area for changes resulting from the leading and trailing edge treatment. Furthermore, a pressure loading manager has been developed. Its function is to automatically adjust the pressure loading area distribution during the design calculation in order to achieve a specified design objective. Possible objectives are overall mass flow and compression ratio, and radial distribution of exit flow angle. To supplement the loading manager, mass flow inlet and exit boundary conditions have been implemented. Through appropriate combination of pressure or mass flow inflow/outflow boundary conditions and loading manager objectives, increased control over the design intent can be obtained. The three-dimensional multistage inverse design method with pressure loading manager was demonstrated to offer greatly enhanced blade row matching capabilities. Multistage design allows for simultaneous design of blade rows in a mutually interacting environment, which permits the redesigned blading to adapt to changing aerodynamic conditions resulting from the redesign. This ensures that the obtained blading geometry and performance implied by the prescribed pressure loading distribution are consistent with operation in the multi-blade row environment. The developed methodology offers high aerodynamic design quality and productivity, and constitutes a significant improvement over existing approaches used to address design-point aerodynamic matching.

  20. A New Numerical Simulation technology of Multistage Fracturing in Horizontal Well

    NASA Astrophysics Data System (ADS)

    Cheng, Ning; Kang, Kaifeng; Li, Jianming; Liu, Tao; Ding, Kun

    2017-11-01

    Horizontal multi-stage fracturing is recognized the effective development technology of unconventional oil resources. Geological mechanics in the numerical simulation of hydraulic fracturing technology occupies very important position, compared with the conventional numerical simulation technology, because of considering the influence of geological mechanics. New numerical simulation of hydraulic fracturing can more effectively optimize the design of fracturing and evaluate the production after fracturing. This paper studies is based on the three-dimensional stress and rock physics parameters model, using the latest fluid-solid coupling numerical simulation technology to engrave the extension process of fracture and describes the change of stress field in fracturing process, finally predict the production situation.

  1. A posteriori error estimation for multi-stage Runge–Kutta IMEX schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhry, Jehanzeb H.; Collins, J. B.; Shadid, John N.

    Implicit–Explicit (IMEX) schemes are widely used for time integration methods for approximating solutions to a large class of problems. In this work, we develop accurate a posteriori error estimates of a quantity-of-interest for approximations obtained from multi-stage IMEX schemes. This is done by first defining a finite element method that is nodally equivalent to an IMEX scheme, then using typical methods for adjoint-based error estimation. Furthermore, the use of a nodally equivalent finite element method allows a decomposition of the error into multiple components, each describing the effect of a different portion of the method on the total error inmore » a quantity-of-interest.« less

  2. A posteriori error estimation for multi-stage Runge–Kutta IMEX schemes

    DOE PAGES

    Chaudhry, Jehanzeb H.; Collins, J. B.; Shadid, John N.

    2017-02-05

    Implicit–Explicit (IMEX) schemes are widely used for time integration methods for approximating solutions to a large class of problems. In this work, we develop accurate a posteriori error estimates of a quantity-of-interest for approximations obtained from multi-stage IMEX schemes. This is done by first defining a finite element method that is nodally equivalent to an IMEX scheme, then using typical methods for adjoint-based error estimation. Furthermore, the use of a nodally equivalent finite element method allows a decomposition of the error into multiple components, each describing the effect of a different portion of the method on the total error inmore » a quantity-of-interest.« less

  3. Performance of NACA Eight-stage Axial-flow Compressor Designed on the Basis of Airfoil Theory

    NASA Technical Reports Server (NTRS)

    Sinnette, John T; Schey, Oscar W; King, J Austin

    1943-01-01

    The NACA has conducted an investigation to determine the performance that can be obtained from a multistage axial-flow compressor based on airfoil research. A theory was developed; an eight-stage axial-flow compressor was designed, constructed, and tested. The performance of the compressor was determined for speeds from 5000 to 14,000 r.p.m with varying air flow at each speed. Most of the tests were made with air at room temperature. The performance was determined in accordance with the Committee's recommended procedure for testing superchargers. The expected performance was obtained, showing that a multistage compressor of high efficiency can be designed by the application of airfoil theory.

  4. RECRUITING FOR A LONGITUDINAL STUDY OF CHILDREN'S HEALTH USING A HOUSEHOLD-BASED PROBABILITY SAMPLING APPROACH

    EPA Science Inventory

    The sampling design for the National Children¿s Study (NCS) calls for a population-based, multi-stage, clustered household sampling approach (visit our website for more information on the NCS : www.nationalchildrensstudy.gov). The full sample is designed to be representative of ...

  5. Inspection logistics planning for multi-stage production systems with applications to semiconductor fabrication lines

    NASA Astrophysics Data System (ADS)

    Chen, Kyle Dakai

    Since the market for semiconductor products has become more lucrative and competitive, research into improving yields for semiconductor fabrication lines has lately received a tremendous amount of attention. One of the most critical tasks in achieving such yield improvements is to plan the in-line inspection sampling efficiently so that any potential yield problems can be detected early and eliminated quickly. We formulate a multi-stage inspection planning model based on configurations in actual semiconductor fabrication lines, specifically taking into account both the capacity constraint and the congestion effects at the inspection station. We propose a new mixed First-Come-First-Serve (FCFS) and Last-Come-First-Serve (LCFS) discipline for serving the inspection samples to expedite the detection of potential yield problems. Employing this mixed FCFS and LCFS discipline, we derive approximate expressions for the queueing delays in yield problem detection time and develop near-optimal algorithms to obtain the inspection logistics planning policies. We also investigate the queueing performance with this mixed type of service discipline under different assumptions and configurations. In addition, we conduct numerical tests and generate managerial insights based on input data from actual semiconductor fabrication lines. To the best of our knowledge, this research is novel in developing, for the first time in the literature, near-optimal results for inspection logistics planning in multi-stage production systems with congestion effects explicitly considered.

  6. TADS: A CFD-Based Turbomachinery Analysis and Design System with GUI: Methods and Results. 2.0

    NASA Technical Reports Server (NTRS)

    Koiro, M. J.; Myers, R. A.; Delaney, R. A.

    1999-01-01

    The primary objective of this study was the development of a Computational Fluid Dynamics (CFD) based turbomachinery airfoil analysis and design system, controlled by a Graphical User Interface (GUI). The computer codes resulting from this effort are referred to as TADS (Turbomachinery Analysis and Design System). This document is the Final Report describing the theoretical basis and analytical results from the TADS system developed under Task 10 of NASA Contract NAS3-27394, ADPAC System Coupling to Blade Analysis & Design System GUI, Phase II-Loss, Design and. Multi-stage Analysis. TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver (RVCQ3D) or a 3-D solver with slip condition on the end walls (B2BADPAC) in an interactive package. Throughflow analysis and design capability was developed in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling of the various programs was done in such a way that alternative solvers or grid generators could be easily incorporated into the TADS framework. Results of aerodynamic calculations using the TADS system are presented for a multistage compressor, a multistage turbine, two highly loaded fans, and several single stage compressor and turbine example cases.

  7. Comparative analysis of risk-based cleanup levels and associated remediation costs using linearized multistage model (cancer slope factor) vs. threshold approach (reference dose) for three chlorinated alkenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawton, L.J.; Mihalich, J.P.

    1995-12-31

    The chlorinated alkenes 1,1-dichloroethene (1,1-DCE), tetrachloroethene (PCE), and trichloroethene (TCE) are common environmental contaminants found in soil and groundwater at hazardous waste sites. Recent assessment of data from epidemiology and mechanistic studies indicates that although exposure to 1,1-DCE, PCE, and TCE causes tumor formation in rodents, it is unlikely that these chemicals are carcinogenic to humans. Nevertheless, many state and federal agencies continue to regulate these compounds as carcinogens through the use of the linearized multistage model and resulting cancer slope factor (CSF). The available data indicate that 1,1-DCE, PCE, and TCE should be assessed using a threshold (i.e., referencemore » dose [RfD]) approach rather than a CSF. This paper summarizes the available metabolic, toxicologic, and epidemiologic data that question the use of the linear multistage model (and CSF) for extrapolation from rodents to humans. A comparative analysis of potential risk-based cleanup goals (RBGs) for these three compounds in soil is presented for a hazardous waste site. Goals were calculated using the USEPA CSFs and using a threshold (i.e., RfD) approach. Costs associated with remediation activities required to meet each set of these cleanup goals are presented and compared.« less

  8. Axial and Centrifugal Compressor Mean Line Flow Analysis Method

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2009-01-01

    This paper describes a method to estimate key aerodynamic parameters of single and multistage axial and centrifugal compressors. This mean-line compressor code COMDES provides the capability of sizing single and multistage compressors quickly during the conceptual design process. Based on the compressible fluid flow equations and the Euler equation, the code can estimate rotor inlet and exit blade angles when run in the design mode. The design point rotor efficiency and stator losses are inputs to the code, and are modeled at off design. When run in the off-design analysis mode, it can be used to generate performance maps based on simple models for losses due to rotor incidence and inlet guide vane reset angle. The code can provide an improved understanding of basic aerodynamic parameters such as diffusion factor, loading levels and incidence, when matching multistage compressor blade rows at design and at part-speed operation. Rotor loading levels and relative velocity ratio are correlated to the onset of compressor surge. NASA Stage 37 and the three-stage NASA 74-A axial compressors were analyzed and the results compared to test data. The code has been used to generate the performance map for the NASA 76-B three-stage axial compressor featuring variable geometry. The compressor stages were aerodynamically matched at off-design speeds by adjusting the variable inlet guide vane and variable stator geometry angles to control the rotor diffusion factor and incidence angles.

  9. DENA: A Configurable Microarchitecture and Design Flow for Biomedical DNA-Based Logic Design.

    PubMed

    Beiki, Zohre; Jahanian, Ali

    2017-10-01

    DNA is known as the building block for storing the life codes and transferring the genetic features through the generations. However, it is found that DNA strands can be used for a new type of computation that opens fascinating horizons in computational medicine. Significant contributions are addressed on design of DNA-based logic gates for medical and computational applications but there are serious challenges for designing the medium and large-scale DNA circuits. In this paper, a new microarchitecture and corresponding design flow is proposed to facilitate the design of multistage large-scale DNA logic systems. Feasibility and efficiency of the proposed microarchitecture are evaluated by implementing a full adder and, then, its cascadability is determined by implementing a multistage 8-bit adder. Simulation results show the highlight features of the proposed design style and microarchitecture in terms of the scalability, implementation cost, and signal integrity of the DNA-based logic system compared to the traditional approaches.

  10. An FPGA-based DS-CDMA multiuser demodulator employing adaptive multistage parallel interference cancellation

    NASA Astrophysics Data System (ADS)

    Li, Xinhua; Song, Zhenyu; Zhan, Yongjie; Wu, Qiongzhi

    2009-12-01

    Since the system capacity is severely limited, reducing the multiple access interfere (MAI) is necessary in the multiuser direct-sequence code division multiple access (DS-CDMA) system which is used in the telecommunication terminals data-transferred link system. In this paper, we adopt an adaptive multistage parallel interference cancellation structure in the demodulator based on the least mean square (LMS) algorithm to eliminate the MAI on the basis of overviewing various of multiuser dectection schemes. Neither a training sequence nor a pilot signal is needed in the proposed scheme, and its implementation complexity can be greatly reduced by a LMS approximate algorithm. The algorithm and its FPGA implementation is then derived. Simulation results of the proposed adaptive PIC can outperform some of the existing interference cancellation methods in AWGN channels. The hardware setup of mutiuser demodulator is described, and the experimental results based on it demonstrate that the simulation results shows large performance gains over the conventional single-user demodulator.

  11. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Hashi, S.; Ishiyama, K.

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  12. Sequencing Cyclic Peptides by Multistage Mass Spectrometry

    PubMed Central

    Mohimani, Hosein; Yang, Yu-Liang; Liu, Wei-Ting; Hsieh, Pei-Wen; Dorrestein, Pieter C.; Pevzner, Pavel A.

    2012-01-01

    Some of the most effective antibiotics (e.g., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. While hundreds of biomedically important cyclic peptides have been sequenced, the computational techniques for sequencing cyclic peptides are still in their infancy. Previous methods for sequencing peptide antibiotics and other cyclic peptides are based on Nuclear Magnetic Resonance spectroscopy, and require large amount (miligrams) of purified materials that, for most compounds, are not possible to obtain. Recently, development of mass spectrometry based methods has provided some hope for accurate sequencing of cyclic peptides using picograms of materials. In this paper we develop a method for sequencing of cyclic peptides by multistage mass spectrometry, and show its advantages over single stage mass spectrometry. The method is tested on known and new cyclic peptides from Bacillus brevis, Dianthus superbus and Streptomyces griseus, as well as a new family of cyclic peptides produced by marine bacteria. PMID:21751357

  13. Cosmic ray exposure histories of Apollo 14, Apollo 15, and Apollo 16 rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eugster, O.; Eberhardt, P.

    1984-02-15

    The regolith exposure history of six rocks returned by the Apollo 14, 15, and 16 missions is studied based on the cosmogenic noble gas isotopes. For each sample, the complete set of all stable noble gas isotopes and the radiaoctive isotope Kr-81 were measured. Kr-81-Kr exposure ages are calculated for rocks for which a single-stage exposure can be demonstrated. A two-stage model exposure history is derived for multistage-exposure basalt 14310 based on the amounts and isotopic ratios of the cosmogenic noble gases. The apparent Kr-81-Kr age, the depth-sensitive isostopic ratios, and fission Xe-136 results lead to the conclusion that thismore » sample was preexposed 1.75 AE ago to cosmic rays for a duration of 350 m.y. Basalt 15058 and anorthosite 15415 also reveal multistage exposures. 44 references.« less

  14. Simulation of multistage turbine flows

    NASA Technical Reports Server (NTRS)

    Adamczyk, John J.; Mulac, Richard A.

    1987-01-01

    A flow model has been developed for analyzing multistage turbomachinery flows. This model, referred to as the average passage flow model, describes the time-averaged flow field with a typical passage of a blade row embedded within a multistage configuration. Computer resource requirements, supporting empirical modeling, formulation code development, and multitasking and storage are discussed. Illustrations from simulations of the space shuttle main engine (SSME) fuel turbine performed to date are given.

  15. Deep Vein Thrombosis After Complex Posterior Spine Surgery: Does Staged Surgery Make a Difference?

    PubMed

    Edwards, Charles C; Lessing, Noah L; Ford, Lisa; Edwards, Charles C

    Retrospective review of a prospectively collected database. To assess the incidence of deep vein thrombosis (DVT) associated with single- versus multistage posterior-only complex spinal surgeries. Dividing the physiologic burden of spinal deformity surgery into multiple stages has been suggested as a potential means of reducing perioperative complications. DVT is a worrisome complication owing to its potential to lead to pulmonary embolism. Whether or not staging affects DVT incidence in this population is unknown. Consecutive patients undergoing either single- or multistage posterior complex spinal surgeries over a 12-year period at a single institution were eligible. All patients received lower extremity venous duplex ultrasonographic (US) examinations 2 to 4 days postoperatively in the single-stage group and 2 to 4 days postoperatively after each stage in the multistage group. Multivariate logistic regression was used to assess the independent contribution of staging to developing a DVT. A total of 107 consecutive patients were enrolled-26 underwent multistage surgery and 81 underwent single-stage surgery. The single-stage group was older (63 years vs. 45 years; p < .01) and had a higher Charlson comorbidity index (2.25 ± 1.27 vs. 1.23 ± 1.58; p < .01). More multistage patients had positive US tests than single-stage patients (5 of 26 vs. 6 of 81; 19% vs. 7%; p = .13). Adjusting for all the above-mentioned covariates, a multistage surgery was 8.17 (95% CI 0.35-250.6) times more likely to yield a DVT than a single-stage surgery. Patients who undergo multistage posterior complex spine surgery are at a high risk for developing a DVT compared to those who undergo single-stage procedures. The difference in DVT incidence may be understated as the multistage group had a lower pre- and intraoperative risk profile with a younger age, lower medical comorbidities, and less per-stage blood loss. Copyright © 2017 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.

  16. T follicular helper cell differentiation, function, and roles in disease

    PubMed Central

    Crotty, Shane

    2014-01-01

    Summary Follicular helper T (Tfh) cells are specialized providers of T cell help to B cells, and are essential for germinal center formation, affinity maturation, and the development of most high affinity antibodies and memory B cells. Tfh cell differentiation is a multi-stage, multi-factorial process involving B cell lymphoma 6 (Bcl6) and other transcription factors. This article reviews understanding of Tfh cell biology, including their differentiation, migration, transcriptional regulation, and B cell help functions. Tfh cells are critical components of many protective immune responses against pathogens. As such, there is strong interest in harnessing Tfh cells to improve vaccination strategies. Tfh cells also have roles in a range of other diseases, particularly autoimmune diseases. Overall, there have been dramatic advances in this young field, but there is much to be learned about Tfh cell biology in the interest of applying that knowledge to biomedical needs. PMID:25367570

  17. Genetic progress in multistage dairy cattle breeding schemes using genetic markers.

    PubMed

    Schrooten, C; Bovenhuis, H; van Arendonk, J A M; Bijma, P

    2005-04-01

    The aim of this paper was to explore general characteristics of multistage breeding schemes and to evaluate multistage dairy cattle breeding schemes that use information on quantitative trait loci (QTL). Evaluation was either for additional genetic response or for reduction in number of progeny-tested bulls while maintaining the same response. The reduction in response in multistage breeding schemes relative to comparable single-stage breeding schemes (i.e., with the same overall selection intensity and the same amount of information in the final stage of selection) depended on the overall selection intensity, the selection intensity in the various stages of the breeding scheme, and the ratio of the accuracies of selection in the various stages of the breeding scheme. When overall selection intensity was constant, reduction in response increased with increasing selection intensity in the first stage. The decrease in response was highest in schemes with lower overall selection intensity. Reduction in response was limited in schemes with low to average emphasis on first-stage selection, especially if the accuracy of selection in the first stage was relatively high compared with the accuracy in the final stage. Closed nucleus breeding schemes in dairy cattle that use information on QTL were evaluated by deterministic simulation. In the base scheme, the selection index consisted of pedigree information and own performance (dams), or pedigree information and performance of 100 daughters (sires). In alternative breeding schemes, information on a QTL was accounted for by simulating an additional index trait. The fraction of the variance explained by the QTL determined the correlation between the additional index trait and the breeding goal trait. Response in progeny test schemes relative to a base breeding scheme without QTL information ranged from +4.5% (QTL explaining 5% of the additive genetic variance) to +21.2% (QTL explaining 50% of the additive genetic variance). A QTL explaining 5% of the additive genetic variance allowed a 35% reduction in the number of progeny tested bulls, while maintaining genetic response at the level of the base scheme. Genetic progress was up to 31.3% higher for schemes with increased embryo production and selection of embryos based on QTL information. The challenge for breeding organizations is to find the optimum breeding program with regard to additional genetic progress and additional (or reduced) cost.

  18. Reducing Delay in Diagnosis: Multistage Recommendation Tracking.

    PubMed

    Wandtke, Ben; Gallagher, Sarah

    2017-11-01

    The purpose of this study was to determine whether a multistage tracking system could improve communication between health care providers, reducing the risk of delay in diagnosis related to inconsistent communication and tracking of radiology follow-up recommendations. Unconditional recommendations for imaging follow-up of all diagnostic imaging modalities excluding mammography (n = 589) were entered into a database and tracked through a multistage tracking system for 13 months. Tracking interventions were performed for patients for whom completion of recommended follow-up imaging could not be identified 1 month after the recommendation due date. Postintervention compliance with the follow-up recommendation required examination completion or clinical closure (i.e., biopsy, limited life expectancy or death, or subspecialist referral). Baseline radiology information system checks performed 1 month after the recommendation due date revealed timely completion of 43.1% of recommended imaging studies at our institution before intervention. Three separate tracking interventions were studied, showing effectiveness between 29.0% and 57.8%. The multistage tracking system increased the examination completion rate to 70.5% (a 52% increase) and reduced the rate of unknown follow-up compliance and the associated risk of delay in diagnosis to 13.9% (a 74% decrease). Examinations completed after tracking intervention generated revenue of 4.1 times greater than the labor cost. Performing sequential radiology recommendation tracking interventions can substantially reduce the rate of unknown follow-up compliance and add value to the health system. Unknown follow-up compliance is a risk factor for delay in diagnosis, a form of preventable medical error commonly identified in malpractice claims involving radiologists and office-based practitioners.

  19. What predictions can be made on the nature of carbon and carbon-bearing compounds (hydrocarbons) in the interstellar medium based on studies of interplanetary dust particles?

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.

    1986-01-01

    The nature of hydrocarbons and properties of elemental carbon in circumstellar, interstellar, and interplanetary dust is a long standing problem in astronomy and meteorite research. The textures and crystallographical properties of poorly graphitized carbon (PGC) from carbonaceous chondrites and Chondritic Porous Aggregates (CPAs) are comparable with PGCs formed by dehydrogenation and carbonization of hydrocarbon precursors under natural terrestrial and experimental conditions. A multistage model of hydrocarbon diagenesis in CPA and carbonaceous chondrite (proto-) planetary parent bodies was proposed in which hydrocarbons are subjected to low temperature hydrous pyrolysis. Continued efforts to recognize hydrocarbons and elemental phases in CPAs may allow understanding of the multistage hydrocarbon/elemental carbon model.

  20. Subsychronous vibration of multistage centrifugal compressors forced by rotating stall

    NASA Technical Reports Server (NTRS)

    Fulton, J. W.

    1987-01-01

    A multistage centrifugal compressor, in natural gas re-injection service on an offshore petroleum production platform, experienced subsynchronous vibrations which caused excessive bearing wear. Field performance testing correlated the subsynchronous amplitude with the discharge flow coefficient, demonstrating the excitation to be aerodynamic. Adding two impellers allowed an increase in the diffuser flow angle (with respect to tangential) to meet the diffuser stability criteria based on factory and field tests correlated using the theory of Senoo (for rotating stall in a vaneless diffuser). This modification eliminated all significant subsynchronous vibrations in field service, thus confirming the correctness of the solution. Other possible sources of aerodynamically induced vibrations were considered, but the judgment that those are unlikely has been confirmed by subsequent experience with other similar compressors.

  1. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion.

    PubMed

    Kojima, A; Hanada, M; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  2. RGO/AuNR/HA-5FU nanocomposite with multi-stage release behavior and efficient antitumor activity for synergistic therapy.

    PubMed

    Yang, Ying; Wang, Yunlong; Zhu, Manzhou; Chen, Yan; Xiao, Yazhong; Shen, Yuhua; Xie, Anjian

    2017-05-02

    A reduced graphene oxide (RGO)/gold nanorod (AuNR)/hydroxyapatite (HA) nanocomposite was designed and successfully synthesized for the first time. An anticancer drug, 5-fluorouracil (5FU), was chosen as a model drug to be loaded in RGO/AuNR/HA. The fabricated RGO/AuNR/HA-5FU showed robust, selective targeting and penetrating efficiency against HeLa cells due to the good compatibility and nontoxicity of HA, and showed excellent synergetic antitumor effects through combined chemotherapy (CT) by 5FU and photothermal therapy (PTT) by both RGO and AuNRs under near-infrared (NIR) laser irradiation. More importantly, this synergistic dual therapy based on RGO/AuNR/HA can also minimize side effects in normal cells and exhibits greater antitumor activity because of a multi-stage drug release ability triggered by the pH sensitivity of HA in the first stage and the combined photothermal conversion capabilities of RGO and AuNRs by means of the NIR laser irradiation in the second stage. This study suggests that the novel RGO/AuNR/HA multi-stage drug delivery system may represent a promising potential application of multifunctional composite materials in the biomedical field.

  3. Immunogenicity and in vitro Protective Efficacy of a Recombinant Multistage Plasmodium falciparum Candidate Vaccine

    NASA Astrophysics Data System (ADS)

    Shi, Ya Ping; Hasnain, Seyed E.; Sacci, John B.; Holloway, Brian P.; Fujioka, Hisashi; Kumar, Nirbhay; Wohlhueter, Robert; Hoffman, Stephen L.; Collins, William E.; Lal, Altaf A.

    1999-02-01

    Compared with a single-stage antigen-based vaccine, a multistage and multivalent Plasmodium falciparum vaccine would be more efficacious by inducing "multiple layers" of immunity. We have constructed a synthetic gene that encodes for 12 B cell, 6 T cell proliferative, and 3 cytotoxic T lymphocyte epitopes derived from 9 stage-specific P. falciparum antigens corresponding to the sporozoite, liver, erythrocytic asexual, and sexual stages. The gene was expressed in the baculovirus system, and a 41-kDa antigen, termed CDC/NIIMALVAC-1, was purified. Immunization in rabbits with the purified protein in the presence of different adjuvants generated antibody responses that recognized vaccine antigen, linear peptides contained in the vaccine, and all stages of P. falciparum. In vitro assays of protection revealed that the vaccine-elicited antibodies strongly inhibited sporozoite invasion of hepatoma cells and growth of blood-stage parasites in the presence of monocytes. These observations demonstrate that a multicomponent, multistage malaria vaccine can induce immune responses that inhibit parasite development at multiple stages. The rationale and approach used in the development of a multicomponent P. falciparum vaccine will be useful in the development of a multispecies human malaria vaccine and vaccines against other infectious diseases.

  4. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, A., E-mail: kojima.atsushi@jaea.go.jp; Hanada, M.; Tobari, H.

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltagemore » holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.« less

  5. Reinforcement learning in supply chains.

    PubMed

    Valluri, Annapurna; North, Michael J; Macal, Charles M

    2009-10-01

    Effective management of supply chains creates value and can strategically position companies. In practice, human beings have been found to be both surprisingly successful and disappointingly inept at managing supply chains. The related fields of cognitive psychology and artificial intelligence have postulated a variety of potential mechanisms to explain this behavior. One of the leading candidates is reinforcement learning. This paper applies agent-based modeling to investigate the comparative behavioral consequences of three simple reinforcement learning algorithms in a multi-stage supply chain. For the first time, our findings show that the specific algorithm that is employed can have dramatic effects on the results obtained. Reinforcement learning is found to be valuable in multi-stage supply chains with several learning agents, as independent agents can learn to coordinate their behavior. However, learning in multi-stage supply chains using these postulated approaches from cognitive psychology and artificial intelligence take extremely long time periods to achieve stability which raises questions about their ability to explain behavior in real supply chains. The fact that it takes thousands of periods for agents to learn in this simple multi-agent setting provides new evidence that real world decision makers are unlikely to be using strict reinforcement learning in practice.

  6. A multi-stage drop-the-losers design for multi-arm clinical trials.

    PubMed

    Wason, James; Stallard, Nigel; Bowden, Jack; Jennison, Christopher

    2017-02-01

    Multi-arm multi-stage trials can improve the efficiency of the drug development process when multiple new treatments are available for testing. A group-sequential approach can be used in order to design multi-arm multi-stage trials, using an extension to Dunnett's multiple-testing procedure. The actual sample size used in such a trial is a random variable that has high variability. This can cause problems when applying for funding as the cost will also be generally highly variable. This motivates a type of design that provides the efficiency advantages of a group-sequential multi-arm multi-stage design, but has a fixed sample size. One such design is the two-stage drop-the-losers design, in which a number of experimental treatments, and a control treatment, are assessed at a prescheduled interim analysis. The best-performing experimental treatment and the control treatment then continue to a second stage. In this paper, we discuss extending this design to have more than two stages, which is shown to considerably reduce the sample size required. We also compare the resulting sample size requirements to the sample size distribution of analogous group-sequential multi-arm multi-stage designs. The sample size required for a multi-stage drop-the-losers design is usually higher than, but close to, the median sample size of a group-sequential multi-arm multi-stage trial. In many practical scenarios, the disadvantage of a slight loss in average efficiency would be overcome by the huge advantage of a fixed sample size. We assess the impact of delay between recruitment and assessment as well as unknown variance on the drop-the-losers designs.

  7. Organic matter degradation in a greywater recycling system using a multistage moving bed biofilm reactor (MBBR).

    PubMed

    Saidi, Assia; Masmoudi, Khaoula; Nolde, Erwin; El Amrani, Btissam; Amraoui, Fouad

    2017-12-01

    Greywater is an important non-conventional water resource which can be treated and recycled in buildings. A decentralized greywater recycling system for 223 inhabitants started operating in 2006 in Berlin, Germany. High load greywater undergoes advanced treatment in a multistage moving bed biofilm reactor (MBBR) followed by sand filtration and UV disinfection. The treated water is used safely as service water for toilet flushing. Monitoring of the organic matter degradation was pursued to describe the degradation processes in each stage and optimize the system. Results showed that organic matter reduction was achieved for the most part in the first three reactors, whereas the highest reduction rate was observed in the third reactor in terms of COD (chemical oxygen demand), dissolved organic carbon and BOD 7 (biological oxygen demand). The results also showed that the average loading rate entering the system was 3.7 kg COD/d, while the removal rate was 3.4 kg COD/d in a total bioreactor volume of 11.7 m³. In terms of BOD, the loading rate was 2.8 kg BOD/d and it was almost totally removed. This system requires little space (0.15 m²/person) and maintenance work of less than one hour per month and it shows operational stability under peak loads.

  8. Effect of multi-stage inoculation on the bacterial and fungal community structure during organic municipal solid wastes composting.

    PubMed

    Xi, Beidou; He, Xiaosong; Dang, Qiuling; Yang, Tianxue; Li, Mingxiao; Wang, Xiaowei; Li, Dan; Tang, Jun

    2015-11-01

    In this study, PCR-DGGE method was applied to investigate the impact of multi-stage inoculation treatment on the community composition of bacterial and fungal during municipal solid wastes (MSW) composting process. The results showed that the high temperature period was extended by the multi-stage inoculation treatment, 1day longer than initial-stage inoculation treatment, and 5days longer than non-inoculation treatment. The temperature of the secondary fermentation increased to 51°C with multi-stage inoculation treatment. The multi-stage inoculation method improved the community diversity of bacteria and fungi that the diversity indexes reached the maximum on the 17days and 20days respectively, avoided the competition between inoculations and indigenous microbes, and enhanced the growth of dominant microorganisms. The DNA sequence indicated that various kinds of uncultured microorganisms with determined ratios were detected, which were dominant microbes during the whole fermentation process. These findings call for further researches of compost microbial cultivation technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Bio-inspired approach to multistage image processing

    NASA Astrophysics Data System (ADS)

    Timchenko, Leonid I.; Pavlov, Sergii V.; Kokryatskaya, Natalia I.; Poplavska, Anna A.; Kobylyanska, Iryna M.; Burdenyuk, Iryna I.; Wójcik, Waldemar; Uvaysova, Svetlana; Orazbekov, Zhassulan; Kashaganova, Gulzhan

    2017-08-01

    Multistage integration of visual information in the brain allows people to respond quickly to most significant stimuli while preserving the ability to recognize small details in the image. Implementation of this principle in technical systems can lead to more efficient processing procedures. The multistage approach to image processing, described in this paper, comprises main types of cortical multistage convergence. One of these types occurs within each visual pathway and the other between the pathways. This approach maps input images into a flexible hierarchy which reflects the complexity of the image data. The procedures of temporal image decomposition and hierarchy formation are described in mathematical terms. The multistage system highlights spatial regularities, which are passed through a number of transformational levels to generate a coded representation of the image which encapsulates, in a computer manner, structure on different hierarchical levels in the image. At each processing stage a single output result is computed to allow a very quick response from the system. The result is represented as an activity pattern, which can be compared with previously computed patterns on the basis of the closest match.

  10. Identification of anthranilamide derivatives as potential factor Xa inhibitors: drug design, synthesis and biological evaluation.

    PubMed

    Xing, Junhao; Yang, Lingyun; Li, Hui; Li, Qing; Zhao, Leilei; Wang, Xinning; Zhang, Yuan; Zhou, Muxing; Zhou, Jinpei; Zhang, Huibin

    2015-05-05

    The coagulation enzyme factor Xa (fXa) plays a crucial role in the blood coagulation cascade. In this study, three-dimensional fragment based drug design (FBDD) combined with structure-based pharmacophore (SBP) model and structural consensus docking were employed to identify novel fXa inhibitors. After a multi-stage virtual screening (VS) workflow, two hit compounds 3780 and 319 having persistent high performance were identified. Then, these two hit compounds and several analogs were synthesized and screened for in-vitro inhibition of fXa. The experimental data showed that most of the designed compounds displayed significant in vitro potency against fXa. Among them, compound 9b displayed the greatest in vitro potency against fXa with the IC50 value of 23 nM and excellent selectivity versus thrombin (IC50 = 40 μM). Moreover, the prolongation of the prothrombin time (PT) was measured for compound 9b to evaluate its in vitro anticoagulant activity. As a result, compound 9b exhibited pronounced anticoagulant activity with the 2 × PT value of 8.7 μM. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Structure-property relations and modeling of small crack fatigue behavior of various magnesium alloys

    NASA Astrophysics Data System (ADS)

    Bernard, Jairus Daniel

    Lightweight structural components are important to the automotive and aerospace industries so that better fuel economy can be realized. Magnesium alloys in particular are being examined to fulfill this need due to their attractive stiffness- and strength-to-weight ratios when compared to other materials. However, when introducing a material into new roles, one needs to properly characterize its mechanical properties. Fatigue behavior is especially important considering aerospace and automotive component applications. Therefore, quantifying the structure-property relationships and accurately predicting the fatigue behavior for these materials are vital. This study has two purposes. The first is to quantify the structure-property relationships for the fatigue behavior in an AM30 magnesium alloy. The second is to use the microstructural-based MultiStage Fatigue (MSF) model in order to accurately predict the fatigue behavior of three magnesium alloys: AM30, Elektron 21, and AZ61. While some studies have previously quantified the MSF material constants for several magnesium alloys, detailed research into the fatigue regimes, notably the microstructurally small crack (MSC) region, is lacking. Hence, the contribution of this work is the first of its kind to experimentally quantify the fatigue crack incubation and MSC regimes that are used for the MultiStage Fatigue model. Using a multi-faceted experimental approach, these regimes were explored with a replica method that used a dual-stage silicone based compound along with previously published in situ fatigue tests. These observations were used in calibrating the MultiStage Fatigue model.

  12. Configuration of management accounting information system for multi-stage manufacturing

    NASA Astrophysics Data System (ADS)

    Mkrtychev, S. V.; Ochepovsky, A. V.; Enik, O. A.

    2018-05-01

    The article presents an approach to configuration of a management accounting information system (MAIS) that provides automated calculations and the registration of normative production losses in multi-stage manufacturing. The use of MAIS with the proposed configuration at the enterprises of textile and woodworking industries made it possible to increase the accuracy of calculations for normative production losses and to organize accounting thereof with the reference to individual stages of the technological process. Thus, high efficiency of multi-stage manufacturing control is achieved.

  13. Multi-megavolt low jitter multistage switch

    DOEpatents

    Humphreys, D.R.; Penn, K.J. Jr.

    1985-06-19

    It is one object of the present invention to provide a multistage switch capable of holding off numerous megavolts, until triggered, from a particle beam accelerator of the type used for inertial confinement fusion. The invention provides a multistage switch having low timing jitter and capable of producing multiple spark channels for spreading current over a wider area to reduce electrode damage and increase switch lifetime. The switch has fairly uniform electric fields and a short spark gap for laser triggering and is engineered to prevent insulator breakdowns.

  14. The integration of manual and automatic image analysis techniques with supporting ground data in a multistage sampling framework for timber resource inventories: Three examples

    NASA Technical Reports Server (NTRS)

    Gialdini, M.; Titus, S. J.; Nichols, J. D.; Thomas, R.

    1975-01-01

    An approach to information acquisition is discussed in the context of meeting user-specified needs in a cost-effective, timely manner through the use of remote sensing data, ground data, and multistage sampling techniques. The roles of both LANDSAT imagery and Skylab photography are discussed as first stages of three separate multistage timber inventory systems and results are given for each system. Emphasis is placed on accuracy and meeting user needs.

  15. Multipurpose image watermarking algorithm based on multistage vector quantization.

    PubMed

    Lu, Zhe-Ming; Xu, Dian-Guo; Sun, Sheng-He

    2005-06-01

    The rapid growth of digital multimedia and Internet technologies has made copyright protection, copy protection, and integrity verification three important issues in the digital world. To solve these problems, the digital watermarking technique has been presented and widely researched. Traditional watermarking algorithms are mostly based on discrete transform domains, such as the discrete cosine transform, discrete Fourier transform (DFT), and discrete wavelet transform (DWT). Most of these algorithms are good for only one purpose. Recently, some multipurpose digital watermarking methods have been presented, which can achieve the goal of content authentication and copyright protection simultaneously. However, they are based on DWT or DFT. Lately, several robust watermarking schemes based on vector quantization (VQ) have been presented, but they can only be used for copyright protection. In this paper, we present a novel multipurpose digital image watermarking method based on the multistage vector quantizer structure, which can be applied to image authentication and copyright protection. In the proposed method, the semi-fragile watermark and the robust watermark are embedded in different VQ stages using different techniques, and both of them can be extracted without the original image. Simulation results demonstrate the effectiveness of our algorithm in terms of robustness and fragility.

  16. Some Useful Cost-Benefit Criteria for Evaluating Computer-Based Test Delivery Models and Systems

    ERIC Educational Resources Information Center

    Luecht, Richard M.

    2005-01-01

    Computer-based testing (CBT) is typically implemented using one of three general test delivery models: (1) multiple fixed testing (MFT); (2) computer-adaptive testing (CAT); or (3) multistage testing (MSTs). This article reviews some of the real cost drivers associated with CBT implementation--focusing on item production costs, the costs…

  17. 78 FR 21547 - Approval and Promulgation of Air Quality Implementation Plans; Oregon: Eugene-Springfield PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... revision as a direct final rule without prior proposal because EPA views this as a noncontroversial SIP... daily multi-stage advisory issued each winter from November through the end of February. The daily advisory, which is based upon forecast meteorology and air quality, provides a color-coded stage based on...

  18. THE NORTH CAROLINA HERALD PILOT STUDY

    EPA Science Inventory



    The sampling design for the National Children's Study (NCS) calls for a population-based, multi-stage, clustered household sampling approach. The full sample is designed to be representative of both urban and rural births in the United States, 2007-2011. While other sur...

  19. Structural characterization of phenolics and betacyanins in Gomphrena globosa by high-performance liquid chromatography-diode array detection/electrospray ionization multi-stage mass spectrometry.

    PubMed

    Ferreres, Federico; Gil-Izquierdo, Angel; Valentão, Patrícia; Andrade, Paula B

    2011-11-30

    The metabolite profiling of Gomphrena globosa inflorescences was performed by high-performance liquid chromatography-diode array detection/electrospray ionization multi-stage mass spectrometry (HPLC-DAD/ESI-MS(n)). Based on the fragmentation patterns, 24 phenolic compounds were characterized. The identified phenolics include p-coumaric and ferulic acids, quercetin, kaempferol, isorhamnetin, and hydroxylated 6,7-methylenedioxyflavone derivatives, as well as their aglycones, none of them reported before in the species. This is also the first time that tetrahydroxy-methylenedioxyflavone derivatives and acetylglycosides are described in nature. Betacyanins were also found. This study significantly extends the knowledge of the G. globosa metabolome, by providing further insights into its phenolic composition. Copyright © 2011 John Wiley & Sons, Ltd.

  20. Multi-Stage Target Tracking with Drift Correction and Position Prediction

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Ren, Keyan; Hou, Yibin

    2018-04-01

    Most existing tracking methods are hard to combine accuracy and performance, and do not consider the shift between clarity and blur that often occurs. In this paper, we propound a multi-stage tracking framework with two particular modules: position prediction and corrective measure. We conduct tracking based on correlation filter with a corrective measure module to increase both performance and accuracy. Specifically, a convolutional network is used for solving the blur problem in realistic scene, training methodology that training dataset with blur images generated by the three blur algorithms. Then, we propose a position prediction module to reduce the computation cost and make tracker more capable of fast motion. Experimental result shows that our tracking method is more robust compared to others and more accurate on the benchmark sequences.

  1. Scaling of graphene integrated circuits.

    PubMed

    Bianchi, Massimiliano; Guerriero, Erica; Fiocco, Marco; Alberti, Ruggero; Polloni, Laura; Behnam, Ashkan; Carrion, Enrique A; Pop, Eric; Sordan, Roman

    2015-05-07

    The influence of transistor size reduction (scaling) on the speed of realistic multi-stage integrated circuits (ICs) represents the main performance metric of a given transistor technology. Despite extensive interest in graphene electronics, scaling efforts have so far focused on individual transistors rather than multi-stage ICs. Here we study the scaling of graphene ICs based on transistors from 3.3 to 0.5 μm gate lengths and with different channel widths, access lengths, and lead thicknesses. The shortest gate delay of 31 ps per stage was obtained in sub-micron graphene ROs oscillating at 4.3 GHz, which is the highest oscillation frequency obtained in any strictly low-dimensional material to date. We also derived the fundamental Johnson limit, showing that scaled graphene ICs could be used at high frequencies in applications with small voltage swing.

  2. Speech coding at low to medium bit rates

    NASA Astrophysics Data System (ADS)

    Leblanc, Wilfred Paul

    1992-09-01

    Improved search techniques coupled with improved codebook design methodologies are proposed to improve the performance of conventional code-excited linear predictive coders for speech. Improved methods for quantizing the short term filter are developed by employing a tree search algorithm and joint codebook design to multistage vector quantization. Joint codebook design procedures are developed to design locally optimal multistage codebooks. Weighting during centroid computation is introduced to improve the outlier performance of the multistage vector quantizer. Multistage vector quantization is shown to be both robust against input characteristics and in the presence of channel errors. Spectral distortions of about 1 dB are obtained at rates of 22-28 bits/frame. Structured codebook design procedures for excitation in code-excited linear predictive coders are compared to general codebook design procedures. Little is lost using significant structure in the excitation codebooks while greatly reducing the search complexity. Sparse multistage configurations are proposed for reducing computational complexity and memory size. Improved search procedures are applied to code-excited linear prediction which attempt joint optimization of the short term filter, the adaptive codebook, and the excitation. Improvements in signal to noise ratio of 1-2 dB are realized in practice.

  3. Multistage Estimation Of Frequency And Phase

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra

    1991-01-01

    Conceptual two-stage software scheme serves as prototype of multistage scheme for digital estimation of phase, frequency, and rate of change of frequency ("Doppler rate") of possibly phase-modulated received sinusoidal signal in communication system in which transmitter and/or receiver traveling rapidly, accelerating, and/or jerking severely. Each additional stage of multistage scheme provides increasingly refined estimate of frequency and phase of signal. Conceived for use in estimating parameters of signals from spacecraft and high dynamic GPS signal parameters, also applicable, to terrestrial stationary/mobile (e.g., cellular radio) and land-mobile/satellite communication systems.

  4. Gender Differences in Mathematics Achievement and Retention Scores: A Case of Problem-Based Learning Method

    ERIC Educational Resources Information Center

    Ajai, John T.; Imoko, Benjamin I.

    2015-01-01

    This study was undertaken to assess gender differences in mathematics achievement and retention by using Problem-Based Learning (PBL). The design of the study was pre-posttest quasi-experimental. Four hundred and twenty eight senior secondary one (SS I) students using multistage sampling from ten grant-aided and government schools were involved in…

  5. Transfer Function of Multi-Stage Active Filters: A Solution Based on Pascal's Triangle and a General Expression

    ERIC Educational Resources Information Center

    Levesque, Luc

    2012-01-01

    A method is proposed to simplify analytical computations of the transfer function for electrical circuit filters, which are made from repetitive identical stages. A method based on the construction of Pascal's triangle is introduced and then a general solution from two initial conditions is provided for the repetitive identical stage. The present…

  6. Midwives Performance in Early Detection of Growth and Development Irregularities of Children Based on Task Commitment

    ERIC Educational Resources Information Center

    Utami, Sri; Nursalam; Hargono, Rachmat; Susilaningrum, Rekawati

    2016-01-01

    The purpose of this study was to analyze the performance of midwives based on the task commitment. This was an observational analytic with cross sectional approach. Multistage random sampling was used to determine the public health center, proportional random sampling to selected participants. The samples were 222 midwives in the public health…

  7. Gyrotron multistage depressed collector based on E × B drift concept using azimuthal electric field. I. Basic design

    NASA Astrophysics Data System (ADS)

    Wu, Chuanren; Pagonakis, Ioannis Gr.; Avramidis, Konstantinos A.; Gantenbein, Gerd; Illy, Stefan; Thumm, Manfred; Jelonnek, John

    2018-03-01

    Multistage Depressed Collectors (MDCs) are widely used in vacuum tubes to regain energy from the depleted electron beam. However, the design of an MDC for gyrotrons, especially for those deployed in fusion experiments and future power plants, is not trivial. Since gyrotrons require relatively high magnetic fields, their hollow annular electron beam is magnetically confined in the collector. In such a moderate magnetic field, the MDC concept based on E × B drift is very promising. Several concrete design approaches based on the E × B concept have been proposed. This paper presents a realizable design of a two-stage depressed collector based on the E × B concept. A collector efficiency of 77% is achievable, which will be able to increase the total gyrotron efficiency from currently 50% to more than 60%. Secondary electrons reduce the efficiency only by 1%. Moreover, the collector efficiency is resilient to the change of beam current (i.e., space charge repulsion) and beam misalignment as well as magnetic field perturbations. Therefore, compared to other E × B conceptual designs, this design approach is promising and fairly feasible.

  8. Design of Multistage Axial-Flow Compressors

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.; Gorrell, W. T.

    1983-01-01

    Program developed for computing aerodynamic design of multistage axialflow compressor and associated blading geometry input for internal flow analysis. Aerodynamic solution gives velocity diagrams on selected streamlines of revolution at blade row edges. Program written in FORTRAN IV.

  9. Discovery of novel Pim-1 kinase inhibitors by a hierarchical multistage virtual screening approach based on SVM model, pharmacophore, and molecular docking.

    PubMed

    Ren, Ji-Xia; Li, Lin-Li; Zheng, Ren-Lin; Xie, Huan-Zhang; Cao, Zhi-Xing; Feng, Shan; Pan, You-Li; Chen, Xin; Wei, Yu-Quan; Yang, Sheng-Yong

    2011-06-27

    In this investigation, we describe the discovery of novel potent Pim-1 inhibitors by employing a proposed hierarchical multistage virtual screening (VS) approach, which is based on support vector machine-based (SVM-based VS or SB-VS), pharmacophore-based VS (PB-VS), and docking-based VS (DB-VS) methods. In this approach, the three VS methods are applied in an increasing order of complexity so that the first filter (SB-VS) is fast and simple, while successive ones (PB-VS and DB-VS) are more time-consuming but are applied only to a small subset of the entire database. Evaluation of this approach indicates that it can be used to screen a large chemical library rapidly with a high hit rate and a high enrichment factor. This approach was then applied to screen several large chemical libraries, including PubChem, Specs, and Enamine as well as an in-house database. From the final hits, 47 compounds were selected for further in vitro Pim-1 inhibitory assay, and 15 compounds show nanomolar level or low micromolar inhibition potency against Pim-1. In particular, four of them were found to have new scaffolds which have potential for the chemical development of Pim-1 inhibitors.

  10. The influence of the "cage" effect on the mechanism of reversible bimolecular multistage chemical reactions proceeding from different sites in solutions.

    PubMed

    Doktorov, Alexander B

    2016-08-28

    Manifestations of the "cage" effect at the encounters of reactants have been theoretically treated on the example of multistage reactions (including bimolecular exchange reactions as elementary stages) proceeding from different active sites in liquid solutions. It is shown that for reactions occurring near the contact of reactants, consistent consideration of quasi-stationary kinetics of such multistage reactions (possible in the framework of the encounter theory only) can be made on the basis of chemical concepts of the "cage complex," just as in the case of one-site model described in the literature. Exactly as in the one-site model, the presence of the "cage" effect gives rise to new channels of reactant transformation that cannot result from elementary event of chemical conversion for the given reaction mechanism. Besides, the multisite model demonstrates new (as compared to one-site model) features of multistage reaction course.

  11. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination

    PubMed Central

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J.; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-01-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes. PMID:27545955

  12. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination

    NASA Astrophysics Data System (ADS)

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J.; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-08-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes.

  13. Multistage stereotactic radiosurgery for large cerebral arteriovenous malformations using the Gamma Knife platform.

    PubMed

    Ding, Chuxiong; Hrycushko, Brian; Whitworth, Louis; Li, Xiang; Nedzi, Lucien; Weprin, Bradley; Abdulrahman, Ramzi; Welch, Babu; Jiang, Steve B; Wardak, Zabi; Timmerman, Robert D

    2017-10-01

    Radiosurgery is an established technique to treat cerebral arteriovenous malformations (AVMs). Obliteration of larger AVMs (> 10-15 cm 3 or diameter > 3 cm) in a single session is challenging with current radiosurgery platforms due to toxicity. We present a novel technique of multistage stereotactic radiosurgery (SRS) for large intracranial arteriovenous malformations (AVM) using the Gamma Knife system. Eighteen patients with large (> 10-15 cm 3 or diameter > 3 cm) AVMs, which were previously treated using a staged SRS technique on the Cyberknife platform, were retrospectively selected for this study. The AVMs were contoured and divided into 3-8 subtargets to be treated sequentially in a staged approach at half to 4 week intervals. The prescription dose ranged from 15 Gy to 20 Gy, depending on the subtarget number, volume, and location. Gamma Knife plans using multiple collimator settings were generated and optimized. The coordinates of each shot from the initial plan covering the total AVM target were extracted based on their relative positions within the frame system. The shots were regrouped based on their location with respect to the subtarget contours to generate subplans for each stage. The delivery time of each shot for a subtarget was decay corrected with 60 Co for staging the treatment course to generate the same dose distribution as that planned for the total AVM target. Conformality indices and dose-volume analysis were performed to evaluate treatment plans. With the shot redistribution technique, the composite dose for the multistaged treatment of multiple subtargets is equivalent to the initial plan for total AVM target. Gamma Knife plans resulted in an average PTV coverage of 96.3 ± 0.9% and a PITV of 1.23 ± 0.1. The resulting Conformality indices, V 12Gy and R 50 dose spillage values were 0.76 ± 0.05, 3.4 ± 1.8, and 3.1 ± 0.5 respectively. The Gamma Knife system can deliver a multistaged conformal dose to treat large AVMs when correcting for translational setup errors of each shot at each staged treatment. © 2017 American Association of Physicists in Medicine.

  14. Multi-Stage System for Automatic Target Recognition

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Lu, Thomas T.; Ye, David; Edens, Weston; Johnson, Oliver

    2010-01-01

    A multi-stage automated target recognition (ATR) system has been designed to perform computer vision tasks with adequate proficiency in mimicking human vision. The system is able to detect, identify, and track targets of interest. Potential regions of interest (ROIs) are first identified by the detection stage using an Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter combined with a wavelet transform. False positives are then eliminated by the verification stage using feature extraction methods in conjunction with neural networks. Feature extraction transforms the ROIs using filtering and binning algorithms to create feature vectors. A feedforward back-propagation neural network (NN) is then trained to classify each feature vector and to remove false positives. The system parameter optimizations process has been developed to adapt to various targets and datasets. The objective was to design an efficient computer vision system that can learn to detect multiple targets in large images with unknown backgrounds. Because the target size is small relative to the image size in this problem, there are many regions of the image that could potentially contain the target. A cursory analysis of every region can be computationally efficient, but may yield too many false positives. On the other hand, a detailed analysis of every region can yield better results, but may be computationally inefficient. The multi-stage ATR system was designed to achieve an optimal balance between accuracy and computational efficiency by incorporating both models. The detection stage first identifies potential ROIs where the target may be present by performing a fast Fourier domain OT-MACH filter-based correlation. Because threshold for this stage is chosen with the goal of detecting all true positives, a number of false positives are also detected as ROIs. The verification stage then transforms the regions of interest into feature space, and eliminates false positives using an artificial neural network classifier. The multi-stage system allows tuning the detection sensitivity and the identification specificity individually in each stage. It is easier to achieve optimized ATR operation based on its specific goal. The test results show that the system was successful in substantially reducing the false positive rate when tested on a sonar and video image datasets.

  15. Pathways between Acculturation and Health: Does the Measure Matter?

    ERIC Educational Resources Information Center

    Miranda, Patricia Y.; Gonzalez, Hector M.; Tarraf, Wassim

    2011-01-01

    The purpose of this study was to assess the association between acculturation and functional health using multiple proxies of acculturation to examine explanatory pathways to clarify disparate health findings. A population-based cross-sectional, multistage probability sample from the Hispanic Established Populations for the Epidemiologic Studies…

  16. Identification of triacylglycerol using automated annotation of high resolution multistage mass spectral trees.

    PubMed

    Wang, Xiupin; Peng, Qingzhi; Li, Peiwu; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen; Zhang, Liangxiao

    2016-10-12

    High complexity of identification for non-target triacylglycerols (TAGs) is a major challenge in lipidomics analysis. To identify non-target TAGs, a powerful tool named accurate MS(n) spectrometry generating so-called ion trees is used. In this paper, we presented a technique for efficient structural elucidation of TAGs on MS(n) spectral trees produced by LTQ Orbitrap MS(n), which was implemented as an open source software package, or TIT. The TIT software was used to support automatic annotation of non-target TAGs on MS(n) ion trees from a self-built fragment ion database. This database includes 19108 simulate TAG molecules from a random combination of fatty acids and corresponding 500582 self-built multistage fragment ions (MS ≤ 3). Our software can identify TAGs using a "stage-by-stage elimination" strategy. By utilizing the MS(1) accurate mass and referenced RKMD, the TIT software can discriminate unique elemental composition candidates. The regiospecific isomers of fatty acyl chains will be distinguished using MS(2) and MS(3) fragment spectra. We applied the algorithm to the selection of 45 TAG standards and demonstrated that the molecular ions could be 100% correctly assigned. Therefore, the TIT software could be applied to TAG identification in complex biological samples such as mouse plasma extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Biological Insights From 108 Schizophrenia-Associated Genetic Loci

    PubMed Central

    Ripke, Stephan; Neale, Benjamin M; Corvin, Aiden; Walters, James TR; Farh, Kai-How; Holmans, Peter A; Lee, Phil; Bulik-Sullivan, Brendan; Collier, David A; Huang, Hailiang; Pers, Tune H; Agartz, Ingrid; Agerbo, Esben; Albus, Margot; Alexander, Madeline; Amin, Farooq; Bacanu, Silviu A; Begemann, Martin; Belliveau, Richard A; Bene, Judit; Bergen, Sarah E; Bevilacqua, Elizabeth; Bigdeli, Tim B; Black, Donald W; Bruggeman, Richard; Buccola, Nancy G; Buckner, Randy L; Byerley, William; Cahn, Wiepke; Cai, Guiqing; Campion, Dominique; Cantor, Rita M; Carr, Vaughan J; Carrera, Noa; Catts, Stanley V; Chambert, Kimberley D; Chan, Raymond CK; Chan, Ronald YL; Chen, Eric YH; Cheng, Wei; Cheung, Eric FC; Chong, Siow Ann; Cloninger, C Robert; Cohen, David; Cohen, Nadine; Cormican, Paul; Craddock, Nick; Crowley, James J; Curtis, David; Davidson, Michael; Davis, Kenneth L; Degenhardt, Franziska; Del Favero, Jurgen; Demontis, Ditte; Dikeos, Dimitris; Dinan, Timothy; Djurovic, Srdjan; Donohoe, Gary; Drapeau, Elodie; Duan, Jubao; Dudbridge, Frank; Durmishi, Naser; Eichhammer, Peter; Eriksson, Johan; Escott-Price, Valentina; Essioux, Laurent; Fanous, Ayman H; Farrell, Martilias S; Frank, Josef; Franke, Lude; Freedman, Robert; Freimer, Nelson B; Friedl, Marion; Friedman, Joseph I; Fromer, Menachem; Genovese, Giulio; Georgieva, Lyudmila; Giegling, Ina; Giusti-Rodríguez, Paola; Godard, Stephanie; Goldstein, Jacqueline I; Golimbet, Vera; Gopal, Srihari; Gratten, Jacob; de Haan, Lieuwe; Hammer, Christian; Hamshere, Marian L; Hansen, Mark; Hansen, Thomas; Haroutunian, Vahram; Hartmann, Annette M; Henskens, Frans A; Herms, Stefan; Hirschhorn, Joel N; Hoffmann, Per; Hofman, Andrea; Hollegaard, Mads V; Hougaard, David M; Ikeda, Masashi; Joa, Inge; Julià, Antonio; Kahn, René S; Kalaydjieva, Luba; Karachanak-Yankova, Sena; Karjalainen, Juha; Kavanagh, David; Keller, Matthew C; Kennedy, James L; Khrunin, Andrey; Kim, Yunjung; Klovins, Janis; Knowles, James A; Konte, Bettina; Kucinskas, Vaidutis; Kucinskiene, Zita Ausrele; Kuzelova-Ptackova, Hana; Kähler, Anna K; Laurent, Claudine; Lee, Jimmy; Lee, S Hong; Legge, Sophie E; Lerer, Bernard; Li, Miaoxin; Li, Tao; Liang, Kung-Yee; Lieberman, Jeffrey; Limborska, Svetlana; Loughland, Carmel M; Lubinski, Jan; Lönnqvist, Jouko; Macek, Milan; Magnusson, Patrik KE; Maher, Brion S; Maier, Wolfgang; Mallet, Jacques; Marsal, Sara; Mattheisen, Manuel; Mattingsdal, Morten; McCarley, Robert W; McDonald, Colm; McIntosh, Andrew M; Meier, Sandra; Meijer, Carin J; Melegh, Bela; Melle, Ingrid; Mesholam-Gately, Raquelle I; Metspalu, Andres; Michie, Patricia T; Milani, Lili; Milanova, Vihra; Mokrab, Younes; Morris, Derek W; Mors, Ole; Murphy, Kieran C; Murray, Robin M; Myin-Germeys, Inez; Müller-Myhsok, Bertram; Nelis, Mari; Nenadic, Igor; Nertney, Deborah A; Nestadt, Gerald; Nicodemus, Kristin K; Nikitina-Zake, Liene; Nisenbaum, Laura; Nordin, Annelie; O’Callaghan, Eadbhard; O’Dushlaine, Colm; O’Neill, F Anthony; Oh, Sang-Yun; Olincy, Ann; Olsen, Line; Van Os, Jim; Pantelis, Christos; Papadimitriou, George N; Papiol, Sergi; Parkhomenko, Elena; Pato, Michele T; Paunio, Tiina; Pejovic-Milovancevic, Milica; Perkins, Diana O; Pietiläinen, Olli; Pimm, Jonathan; Pocklington, Andrew J; Powell, John; Price, Alkes; Pulver, Ann E; Purcell, Shaun M; Quested, Digby; Rasmussen, Henrik B; Reichenberg, Abraham; Reimers, Mark A; Richards, Alexander L; Roffman, Joshua L; Roussos, Panos; Ruderfer, Douglas M; Salomaa, Veikko; Sanders, Alan R; Schall, Ulrich; Schubert, Christian R; Schulze, Thomas G; Schwab, Sibylle G; Scolnick, Edward M; Scott, Rodney J; Seidman, Larry J; Shi, Jianxin; Sigurdsson, Engilbert; Silagadze, Teimuraz; Silverman, Jeremy M; Sim, Kang; Slominsky, Petr; Smoller, Jordan W; So, Hon-Cheong; Spencer, Chris C A; Stahl, Eli A; Stefansson, Hreinn; Steinberg, Stacy; Stogmann, Elisabeth; Straub, Richard E; Strengman, Eric; Strohmaier, Jana; Stroup, T Scott; Subramaniam, Mythily; Suvisaari, Jaana; Svrakic, Dragan M; Szatkiewicz, Jin P; Söderman, Erik; Thirumalai, Srinivas; Toncheva, Draga; Tosato, Sarah; Veijola, Juha; Waddington, John; Walsh, Dermot; Wang, Dai; Wang, Qiang; Webb, Bradley T; Weiser, Mark; Wildenauer, Dieter B; Williams, Nigel M; Williams, Stephanie; Witt, Stephanie H; Wolen, Aaron R; Wong, Emily HM; Wormley, Brandon K; Xi, Hualin Simon; Zai, Clement C; Zheng, Xuebin; Zimprich, Fritz; Wray, Naomi R; Stefansson, Kari; Visscher, Peter M; Adolfsson, Rolf; Andreassen, Ole A; Blackwood, Douglas HR; Bramon, Elvira; Buxbaum, Joseph D; Børglum, Anders D; Cichon, Sven; Darvasi, Ariel; Domenici, Enrico; Ehrenreich, Hannelore; Esko, Tõnu; Gejman, Pablo V; Gill, Michael; Gurling, Hugh; Hultman, Christina M; Iwata, Nakao; Jablensky, Assen V; Jönsson, Erik G; Kendler, Kenneth S; Kirov, George; Knight, Jo; Lencz, Todd; Levinson, Douglas F; Li, Qingqin S; Liu, Jianjun; Malhotra, Anil K; McCarroll, Steven A; McQuillin, Andrew; Moran, Jennifer L; Mortensen, Preben B; Mowry, Bryan J; Nöthen, Markus M; Ophoff, Roel A; Owen, Michael J; Palotie, Aarno; Pato, Carlos N; Petryshen, Tracey L; Posthuma, Danielle; Rietschel, Marcella; Riley, Brien P; Rujescu, Dan; Sham, Pak C; Sklar, Pamela; St Clair, David; Weinberger, Daniel R; Wendland, Jens R; Werge, Thomas; Daly, Mark J; Sullivan, Patrick F; O’Donovan, Michael C

    2014-01-01

    Summary Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here, we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain providing biological plausibility for the findings. Many findings have the potential to provide entirely novel insights into aetiology, but associations at DRD2 and multiple genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that play important roles in immunity, providing support for the hypothesized link between the immune system and schizophrenia. PMID:25056061

  18. Mars integrated transportation system multistage Mars mission

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In accordance with the objective of the Mars Integrated Transport System (MITS) program, the Multistage Mars Mission (MSMM) design team developed a profile for a manned mission to Mars. The purpose of the multistage mission is to send a crew of five astronauts to the martian surface by the year 2019. The mission continues man's eternal quest for exploration of new frontiers. This mission has a scheduled duration of 426 days that includes experimentation en route as well as surface exploration and experimentation. The MSMM is also designed as a foundation for a continuing program leading to the colonization of the planet Mars.

  19. [Advances in studies on multi-stage countercurrent extraction technology in traditional Chinese medicine].

    PubMed

    Xie, Zhi-Peng; Liu, Xue-Song; Chen, Yong; Cai, Ming; Qu, Hai-Bin; Cheng, Yi-Yu

    2007-05-01

    Multi-stage countercurrent extraction technology, integrating solvent extraction, repercolation with dynamic and countercurrent extraction, is a novel extraction technology for the traditional Chinese medicine. This solvent-saving, energy-saving and high-extraction-efficiency technology can at the most drive active compounds to diffuse from the herbal materials into the solvent stage by stage by creating concentration differences between the herbal materials and the solvents. This paper reviewed the basic principle, the influence factors and the research progress and trends of the equipments and the application of the multi-stage countercurrent extraction.

  20. Full 3D Analysis of the GE90 Turbofan Primary Flowpath

    NASA Technical Reports Server (NTRS)

    Turner, Mark G.

    2000-01-01

    The multistage simulations of the GE90 turbofan primary flowpath components have been performed. The multistage CFD code, APNASA, has been used to analyze the fan, fan OGV and booster, the 10-stage high-pressure compressor and the entire turbine system of the GE90 turbofan engine. The code has two levels of parallel, and for the 18 blade row full turbine simulation has 87.3 percent parallel efficiency with 121 processors on an SGI ORIGIN. Grid generation is accomplished with the multistage Average Passage Grid Generator, APG. Results for each component are shown which compare favorably with test data.

  1. Remote sensing of effects of land-use practices on water quality. [environmental surveys using Landsat satellites

    NASA Technical Reports Server (NTRS)

    Graves, D. H.

    1975-01-01

    Research efforts are presented for the use of remote sensing in environmental surveys in Kentucky. Ground truth parameters were established that represent the vegetative cover of disturbed and undisturbed watersheds in the Cumberland Plateau of eastern Kentucky. Several water quality parameters were monitored of the watersheds utilized in the establishment of ground truth data. The capabilities of multistage-multispectral aerial photography and satellite imagery were evaluated in detecting various land use practices. The use of photographic signatures of known land use areas utilizing manually-operated spot densitometers was studied. The correlation of imagery signature data to water quality data was examined. Potential water quality predictions were developed from forested and nonforested watersheds based upon the above correlations. The cost effectiveness of predicting water quality values was evaluated using multistage and satellite imagery sampling techniques.

  2. Noise reduction techniques for Bayer-matrix images

    NASA Astrophysics Data System (ADS)

    Kalevo, Ossi; Rantanen, Henry

    2002-04-01

    In this paper, some arrangements to apply Noise Reduction (NR) techniques for images captured by a single sensor digital camera are studied. Usually, the NR filter processes full three-color component image data. This requires that raw Bayer-matrix image data, available from the image sensor, is first interpolated by using Color Filter Array Interpolation (CFAI) method. Another choice is that the raw Bayer-matrix image data is processed directly. The advantages and disadvantages of both processing orders, before (pre-) CFAI and after (post-) CFAI, are studied with linear, multi-stage median, multistage median hybrid and median-rational filters .The comparison is based on the quality of the output image, the processing power requirements and the amount of memory needed. Also the solution, which improves preservation of details in the NR filtering before the CFAI, is proposed.

  3. Smart RTI: A Next-Generation Approach to Multilevel Prevention

    PubMed Central

    FUCHS, DOUGLAS; FUCHS, LYNN S.; COMPTON, DONALD L.

    2012-01-01

    During the past decade, responsiveness to intervention (RTI) has become popular among many practitioners as a means of transforming schooling into a multilevel prevention system. Popularity aside, its successful implementation requires ambitious intent, a comprehensive structure, and coordinated service delivery. An effective RTI also depends on building-based personnel with specialized expertise at all levels of the prevention system. Most agree on both its potential for strengthening schooling and its heavy demand on practitioners. In this article, we describe Smart RTI, which we define as making efficient use of school resources while maximizing students' opportunities for success. In light of findings from recent research, we discuss three important features of Smart RTI: (a) multistage screening to identify risk, (b) multistage assessment to determine appropriate levels of instruction, and (c) a role for special education that supports prevention. PMID:22736805

  4. SOX OUT ON A LIMB (LIMESTONE INJECTION MULTISTAGE BURNER)

    EPA Science Inventory

    The paper describes the most recent results from the Limestone Injection Multistage Burner (LIMB) program, covering results from the wall-fired demonstration. Tests were conducted to determine the efficacy of commercial calcium hydroxide (Ca(OH)2) and of calcium-lignosulfonate-mo...

  5. DEVELOPMENTS IN LIMB (LIMESTONE INJECTION MULTISTAGE BURNER) TECHNOLOGY

    EPA Science Inventory

    The paper describes the most recent results from the Limestone Injection Multistage Burner (LIMB) program, results from the wall-fired demonstration. Tests were conducted to determine the efficacy of commercial calcium hydroxide--Ca(OH)2--supplied by Marblehead Lime Co. and of ca...

  6. Performance of the full-scale biological nutrient removal plant at Noosa in Queensland, Australia: nutrient removal and disinfection.

    PubMed

    Urbain, V; Wright, P; Thomas, M

    2001-01-01

    Stringent effluent quality guidelines are progressively implemented in coastal and sensitive areas in Australia. Biological Nutrient Removal (BNR) plants are becoming a standard often including a tertiary treatment for disinfection. The BNR plant in Noosa - Queensland is designed to produce a treated effluent with less than 5 mg/l of BOD5, 5 mg/l of total nitrogen, 1 mg/l of total phosphorus, 5 mg/l of suspended solids and total coliforms of less than 10/100 ml. A flexible multi-stage biological process with a prefermentation stage, followed by sand filtration and UV disinfection was implemented to achieve this level of treatment. Acetic acid is added for phosphorus removal because: i) the volatile fatty acids (VFA) concentration in raw wastewater varies a lot, and ii) the prefermenter had to be turned off due to odor problems on the primary sedimentation tanks. An endogenous anoxic zone was added to the process to further reduce the nitrate concentration. This resulted in some secondary P-release events, a situation that happens when low nitrate and low phosphorus objectives are targeted. Long-term performance data and specific results on nitrogen removal and disinfection are presented in this paper.

  7. Development of novel general equation for multistage epicyclic gearset with corrected teeth: non-constrained approach

    NASA Astrophysics Data System (ADS)

    Kijanka, Piotr; Jablonski, Adam; Dziedziech, Kajetan; Dworakowski, Ziemowit; Uhl, Tadeusz

    2016-04-01

    A large number of commercial systems for condition monitoring of most common planetary gearboxes used in wind turbines and mining machinery have been developed for years. However nowadays, multistage constructions are encountered in industries. These are not necessarily planetary, but generally epicyclic. Current state of the art, according to the authors knowledge, does not give general equations for a case where multistage systems are considered, where some of the gears consist all moving parts. Hence, currently available CMS systems are not suitable for condition monitoring of these kinds of systems. The paper presents a new general equation, which allows calculating the characteristic frequencies of any kind of multistage gear sets, as a result of theoretical investigation. Illustrated solution does not assume a fixed speed of any element. Moreover, presented equation takes into account corrected teeth, making developed equations most general from all available in tribology science. Presented scientific development is currently implemented in a modern European CMS.

  8. On use of the multistage dose-response model for assessing laboratory animal carcinogenicity

    PubMed Central

    Nitcheva, Daniella; Piegorsch, Walter W.; West, R. Webster

    2007-01-01

    We explore how well a statistical multistage model describes dose-response patterns in laboratory animal carcinogenicity experiments from a large database of quantal response data. The data are collected from the U.S. EPA’s publicly available IRIS data warehouse and examined statistically to determine how often higher-order values in the multistage predictor yield significant improvements in explanatory power over lower-order values. Our results suggest that the addition of a second-order parameter to the model only improves the fit about 20% of the time, while adding even higher-order terms apparently does not contribute to the fit at all, at least with the study designs we captured in the IRIS database. Also included is an examination of statistical tests for assessing significance of higher-order terms in a multistage dose-response model. It is noted that bootstrap testing methodology appears to offer greater stability for performing the hypothesis tests than a more-common, but possibly unstable, “Wald” test. PMID:17490794

  9. Multistage Polymeric Lens Structures Integrated into Silica Waveguides

    NASA Astrophysics Data System (ADS)

    Tate, Atsushi; Suzuki, Takanori; Tsuda, Hiroyuki

    2006-08-01

    A waveguide lens, composed of multistage polymer-filled thin grooves in a silica planar lightwave circuit (PLC) is proposed and a low-loss structure has been designed. A waveguide lens in a silica slab waveguide has been fabricated using reactive ion etching (RIE) and formed by filling with polymer. Both an imagding optical system and a Fourier-transform optical system can be configured in a PLC using a waveguide lens. It renders the PLC functional and its design flexible. To obtain a shorter focal length with a low insertion loss, it is more effective to use a multistage lens structure. An imaging optical system and a Fourier-transform optical system with a focal length of less than 1000 μm were fabricated in silica waveguides using a multistage lens structure. The lens imaging waveguides incorporate a 16-24-stage lens, with insertion losses of 4-7 dB. A 4 × 4 optical coupler, using a Fourier-transform optical system, utilizes a 6-stage lens with losses of 2-4 dB.

  10. Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachate.

    PubMed

    Moreira, Francisca C; Soler, J; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-09-15

    The current study has proved the technical feasibility of including electrochemical advanced oxidation processes (EAOPs) in a multistage strategy for the remediation of a sanitary landfill leachate that embraced: (i) first biological treatment to remove the biodegradable organic fraction, oxidize ammonium and reduce alkalinity, (ii) coagulation of the bio-treated leachate to precipitate humic acids and particles, followed by separation of the clarified effluent, and (iii) oxidation of the resulting effluent by an EAOP to degrade the recalcitrant organic matter and increase its biodegradability so that a second biological process for removal of biodegradable organics and nitrogen content could be applied. The influence of current density on an UVA photoelectro-Fenton (PEF) process was firstly assessed. The oxidation ability of various EAOPs such as electro-Fenton (EF) with two distinct initial total dissolved iron concentrations ([TDI]0), PEF and solar PEF (SPEF) was further evaluated and these processes were compared with their analogous chemical ones. A detailed assessment of the two first treatment stages was made and the biodegradability enhancement during the SPEF process was determined by a Zahn-Wellens test to define the ideal organics oxidation state to stop the EAOP and apply the second biological treatment. The best current density was 200 mA cm(-2) for a PEF process using a BDD anode, [TDI]0 of 60 mg L(-1), pH 2.8 and 20 °C. The relative oxidation ability of EAOPs increased in the order EF with 12 mg [TDI]0 L(-1) < EF with 60 mg [TDI]0 L(-1) < PEF with 60 mg [TDI]0 L(-1) ≤ SPEF with 60 mg [TDI]0 L(-1), using the abovementioned conditions. While EF process was much superior to the Fenton one, the superiority of PEF over photo-Fenton was less evident and SPEF attained similar degradation to solar photo-Fenton. To provide a final dissolved organic carbon (DOC) of 163 mg L(-1) to fulfill the discharge limits into the environment after a second biological process, 6.2 kJ L(-1) UV energy and 36 kWh m(-3) electrical energy were consumed using SPEF with a BDD anode at 200 mA cm(-2), 60 mg [TDI]0 L(-1), pH 2.8 and 20 °C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Multistage Electrophoretic Separators

    NASA Technical Reports Server (NTRS)

    Thomas, Nathan; Doyle, John F.; Kurk, Andy; Vellinger, John C.; Todd, Paul

    2006-01-01

    A multistage electrophoresis apparatus has been invented for use in the separation of cells, protein molecules, and other particles and solutes in concentrated aqueous solutions and suspensions. The design exploits free electrophoresis but overcomes the deficiencies of prior free-electrophoretic separators by incorporating a combination of published advances in mathematical modeling of convection, sedimentation, electro-osmotic flow, and the sedimentation and aggregation of droplets. In comparison with other electrophoretic separators, these apparatuses are easier to use and are better suited to separation in relatively large quantities characterized in the art as preparative (in contradistinction to smaller quantities characterized in the art as analytical). In a multistage electrophoretic separator according to the invention, an applied vertical steady electric field draws the electrically charged particles of interest from within a cuvette to within a collection cavity that has been moved into position of the cuvette. There are multiple collection cavities arranged in a circle; each is aligned with the cuvette for a prescribed short time. The multistage, short-migration-path character of the invention solves, possibly for the first time, the fluid-instability problems associated with free electrophoresis. The figure shows a prototype multistage electrophoretic separator that includes four sample stations and five collection stages per sample. At each sample station, an aqueous solution or suspension containing charged species to be separated is loaded into a cuvette, which is machined into a top plate. The apparatus includes a lower plate, into which 20 collection cavities have been milled. Each cavity is filled with an electrophoresis buffer solution. For the collection of an electrophoretic fraction, the lower plate is rotated to move a designated collection cavity into alignment with the opening of the cuvette. An electric field is then applied between a non-gassing electrode in the collection cavity and an electrolyte compartment, which is separated from the cuvette by a semipermeable membrane. The electrolyte is refreshed by circulation by use of a peristaltic pump. In subsequent steps, the lower plate is rotated to collect other electrophoretic fractions. Later, the collected fractions are removed from the collection cavities through ports that have threaded plugs. The base of the apparatus contains power supplies and a computer interface. The design includes provisions for monitoring and feedback control of cavity position, electric field, and temperature. The operation of the apparatus can easily be automated, as demonstrated by use of software that has already been written for this purpose.

  12. Numerical solutions of 2-D multi-stage rotor/stator unsteady flow interactions

    NASA Astrophysics Data System (ADS)

    Yang, R.-J.; Lin, S.-J.

    1991-01-01

    The Rai method of single-stage rotor/stator flow interaction is extended to handle multistage configurations. In this study, a two-dimensional Navier-Stokes multi-zone approach was used to investigate unsteady flow interactions within two multistage axial turbines. The governing equations are solved by an iterative, factored, implicit finite-difference, upwind algorithm. Numerical accuracy is checked by investigating the effect of time step size, the effect of subiteration in the Newton-Raphson technique, and the effect of full viscous versus thin-layer approximation. Computer results compared well with experimental data. Unsteady flow interactions, wake cutting, and the associated evolution of vortical entities are discussed.

  13. Multi-stage decoding of multi-level modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao; Costello, Daniel J., Jr.

    1991-01-01

    Various types of multi-stage decoding for multi-level modulation codes are investigated. It is shown that if the component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. Particularly, it is shown that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum soft-decision decoding of the code is very small, only a fraction of dB loss in signal to noise ratio at a bit error rate (BER) of 10(exp -6).

  14. Shock and vibration response of multistage structure

    NASA Technical Reports Server (NTRS)

    Lee, S. Y.; Liyeos, J. G.; Tang, S. S.

    1968-01-01

    Study of the shock and vibration response of a multistage structure employed analytically, lumped-mass, continuous-beam, multimode, and matrix-iteration methods. The study was made on the load paths, transmissibility, and attenuation properties along a longitudinal axis of a long, slender structure with increasing degree of complexity.

  15. Automated Simultaneous Assembly for Multistage Testing

    ERIC Educational Resources Information Center

    Breithaupt, Krista; Ariel, Adelaide; Veldkamp, Bernard P.

    2005-01-01

    This article offers some solutions used in the assembly of the computerized Uniform Certified Public Accountancy (CPA) licensing examination as practical alternatives for operational programs producing large numbers of forms. The Uniform CPA examination was offered as an adaptive multistage test (MST) beginning in April of 2004. Examples of…

  16. Microfiltration of thin stillage: Process simulation and economic analyses

    USDA-ARS?s Scientific Manuscript database

    In plant scale operations, multistage membrane systems have been adopted for cost minimization. We considered design optimization and operation of a continuous microfiltration (MF) system for the corn dry grind process. The objectives were to develop a model to simulate a multistage MF system, optim...

  17. 40 CFR 600.316-08 - Multistage manufacture.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Multistage manufacture. 600.316-08 Section 600.316-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Labeling § 600.316-08...

  18. 40 CFR 600.316-08 - Multistage manufacture.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Multistage manufacture. 600.316-08 Section 600.316-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Labeling § 600.316-08...

  19. 40 CFR 600.316-08 - Multistage manufacture.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Multistage manufacture. 600.316-08 Section 600.316-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Labeling § 600.316-08...

  20. Advances in the application of genetic manipulation methods to apicomplexan parasites.

    PubMed

    Suarez, C E; Bishop, R P; Alzan, H F; Poole, W A; Cooke, B M

    2017-10-01

    Apicomplexan parasites such as Babesia, Theileria, Eimeria, Cryptosporidium and Toxoplasma greatly impact animal health globally, and improved, cost-effective measures to control them are urgently required. These parasites have complex multi-stage life cycles including obligate intracellular stages. Major gaps in our understanding of the biology of these relatively poorly characterised parasites and the diseases they cause severely limit options for designing novel control methods. Here we review potentially important shared aspects of the biology of these parasites, such as cell invasion, host cell modification, and asexual and sexual reproduction, and explore the potential of the application of relatively well-established or newly emerging genetic manipulation methods, such as classical transfection or gene editing, respectively, for closing important gaps in our knowledge of the function of specific genes and proteins, and the biology of these parasites. In addition, genetic manipulation methods impact the development of novel methods of control of the diseases caused by these economically important parasites. Transient and stable transfection methods, in conjunction with whole and deep genome sequencing, were initially instrumental in improving our understanding of the molecular biology of apicomplexan parasites and paved the way for the application of the more recently developed gene editing methods. The increasingly efficient and more recently developed gene editing methods, in particular those based on the CRISPR/Cas9 system and previous conceptually similar techniques, are already contributing to additional gene function discovery using reverse genetics and related approaches. However, gene editing methods are only possible due to the increasing availability of in vitro culture, transfection, and genome sequencing and analysis techniques. We envisage that rapid progress in the development of novel gene editing techniques applied to apicomplexan parasites of veterinary interest will ultimately lead to the development of novel and more efficient methods for disease control. Published by Elsevier Ltd.

  1. Stall/surge dynamics of a multi-stage air compressor in response to a load transient of a hybrid solid oxide fuel cell-gas turbine system

    NASA Astrophysics Data System (ADS)

    Azizi, Mohammad Ali; Brouwer, Jacob

    2017-10-01

    A better understanding of turbulent unsteady flows in gas turbine systems is necessary to design and control compressors for hybrid fuel cell-gas turbine systems. Compressor stall/surge analysis for a 4 MW hybrid solid oxide fuel cell-gas turbine system for locomotive applications is performed based upon a 1.7 MW multi-stage air compressor. Control strategies are applied to prevent operation of the hybrid SOFC-GT beyond the stall/surge lines of the compressor. Computational fluid dynamics tools are used to simulate the flow distribution and instabilities near the stall/surge line. The results show that a 1.7 MW system compressor like that of a Kawasaki gas turbine is an appropriate choice among the industrial compressors to be used in a 4 MW locomotive SOFC-GT with topping cycle design. The multi-stage radial design of the compressor enhances the ability of the compressor to maintain air flow rate during transient step-load changes. These transient step-load changes are exhibited in many potential applications for SOFC/GT systems. The compressor provides sustained air flow rate during the mild stall/surge event that occurs due to the transient step-load change that is applied, indicating that this type of compressor is well-suited for this hybrid application.

  2. Catalytic multi-stage process for hydroconversion and refining hydrocarbon feeds

    DOEpatents

    Comolli, Alfred G.; Lee, Lap-Keung

    2001-01-01

    A multi-stage catalytic hydrogenation and hydroconversion process for heavy hydrocarbon feed materials such as coal, heavy petroleum fractions, and plastic waste materials. In the process, the feedstock is reacted in a first-stage, back-mixed catalytic reactor with a highly dispersed iron-based catalyst having a powder, gel or liquid form. The reactor effluent is pressure-reduced, vapors and light distillate fractions are removed overhead, and the heavier liquid fraction is fed to a second stage back-mixed catalytic reactor. The first and second stage catalytic reactors are operated at 700-850.degree. F. temperature, 1000-3500 psig hydrogen partial pressure and 20-80 lb./hr per ft.sup.3 reactor space velocity. The vapor and light distillates liquid fractions removed from both the first and second stage reactor effluent streams are combined and passed to an in-line, fixed-bed catalytic hydrotreater for heteroatom removal and for producing high quality naphtha and mid-distillate or a full-range distillate product. The remaining separator bottoms liquid fractions are distilled at successive atmospheric and vacuum pressures, low and intermediate-boiling hydrocarbon liquid products are withdrawn, and heavier distillate fractions are recycled and further upgraded to provide additional low-boiling hydrocarbon liquid products. This catalytic multistage hydrogenation process provides improved flexibility for hydroprocessing the various carbonaceous feedstocks and adjusting to desired product structures and for improved economy of operations.

  3. System and method for air temperature control in an oxygen transport membrane based reactor

    DOEpatents

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  4. System and method for temperature control in an oxygen transport membrane based reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Sean M.

    A system and method for temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  5. Multi-stage volcanic island flank collapses with coeval explosive caldera-forming eruptions.

    PubMed

    Hunt, James E; Cassidy, Michael; Talling, Peter J

    2018-01-18

    Volcanic flank collapses and explosive eruptions are among the largest and most destructive processes on Earth. Events at Mount St. Helens in May 1980 demonstrated how a relatively small (<5 km 3 ) flank collapse on a terrestrial volcano could immediately precede a devastating eruption. The lateral collapse of volcanic island flanks, such as in the Canary Islands, can be far larger (>300 km 3 ), but can also occur in complex multiple stages. Here, we show that multistage retrogressive landslides on Tenerife triggered explosive caldera-forming eruptions, including the Diego Hernandez, Guajara and Ucanca caldera eruptions. Geochemical analyses were performed on volcanic glasses recovered from marine sedimentary deposits, called turbidites, associated with each individual stage of each multistage landslide. These analyses indicate only the lattermost stages of subaerial flank failure contain materials originating from respective coeval explosive eruption, suggesting that initial more voluminous submarine stages of multi-stage flank collapse induce these aforementioned explosive eruption. Furthermore, there are extended time lags identified between the individual stages of multi-stage collapse, and thus an extended time lag between the initial submarine stages of failure and the onset of subsequent explosive eruption. This time lag succeeding landslide-generated static decompression has implications for the response of magmatic systems to un-roofing and poses a significant implication for ocean island volcanism and civil emergency planning.

  6. Enhancing the Skill-Building Phase of Introductory Organic Chemistry Lab through a Reflective Peer Review Structure

    ERIC Educational Resources Information Center

    Pontrello, Jason K.

    2016-01-01

    Introductory organic laboratory courses frequently begin with a set of activities built around developing basic experimental skills and techniques, often with guided-inquiry components. A sequence of skill-based activities is described to promote reflection, analysis of, and interpersonal communication around science. A multistage process was used…

  7. Evaluating the Content Validity of Multistage-Adaptive Tests

    ERIC Educational Resources Information Center

    Crotts, Katrina; Sireci, Stephen G.; Zenisky, April

    2012-01-01

    Validity evidence based on test content is important for educational tests to demonstrate the degree to which they fulfill their purposes. Most content validity studies involve subject matter experts (SMEs) who rate items that comprise a test form. In computerized-adaptive testing, examinees take different sets of items and test "forms"…

  8. Nd : glass rod laser with an output energy of 500 J

    NASA Astrophysics Data System (ADS)

    Shaykin, A. A.; Kuzmin, A. A.; Shaikin, I. A.; Burdonov, K. F.; Khazanov, E. A.

    2016-04-01

    The energy of two orthogonally polarised pulses injected into an available multistage amplifier based on neodymium phosphate glass rods was increased from 300 to 500 J (in both pulses). The second output pulse with an energy of 200 J will be used to pump an additional parametric amplifier of a petawatt laser.

  9. The Development of MST Test Information for the Prediction of Test Performances

    ERIC Educational Resources Information Center

    Park, Ryoungsun; Kim, Jiseon; Chung, Hyewon; Dodd, Barbara G.

    2017-01-01

    The current study proposes novel methods to predict multistage testing (MST) performance without conducting simulations. This method, called MST test information, is based on analytic derivation of standard errors of ability estimates across theta levels. We compared standard errors derived analytically to the simulation results to demonstrate the…

  10. Effectiveness of Family, Child, and Family-Child Based Intervention on ADHD Symptoms of Students with Disabilities

    ERIC Educational Resources Information Center

    Malekpour, Mokhtar; Aghababaei, Sara; Hadi, Samira

    2014-01-01

    The aim of the present study was to investigate and compare the effectiveness of family, child, and family-child based intervention on the rate of ADHD symptoms in third grade students. The population for this study was all of students with ADHD diagnoses in the city of Isfahan, Iran. The multistage random sampling method was used to select the 60…

  11. A Multi-Stage Reverse Logistics Network Problem by Using Hybrid Priority-Based Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Eun; Gen, Mitsuo; Rhee, Kyong-Gu

    Today remanufacturing problem is one of the most important problems regarding to the environmental aspects of the recovery of used products and materials. Therefore, the reverse logistics is gaining become power and great potential for winning consumers in a more competitive context in the future. This paper considers the multi-stage reverse Logistics Network Problem (m-rLNP) while minimizing the total cost, which involves reverse logistics shipping cost and fixed cost of opening the disassembly centers and processing centers. In this study, we first formulate the m-rLNP model as a three-stage logistics network model. Following for solving this problem, we propose a Genetic Algorithm pri (GA) with priority-based encoding method consisting of two stages, and introduce a new crossover operator called Weight Mapping Crossover (WMX). Additionally also a heuristic approach is applied in the 3rd stage to ship of materials from processing center to manufacturer. Finally numerical experiments with various scales of the m-rLNP models demonstrate the effectiveness and efficiency of our approach by comparing with the recent researches.

  12. a Fractal Analysis for Net Present Value of Multi-Stage Hydraulic Fractured Horizontal Well

    NASA Astrophysics Data System (ADS)

    Lu, Hong-Lin; Zhang, Ji-Jun; Tan, Xiao-Hua; Li, Xiao-Ping; Zhao, Jia-Hui

    Because of the low permeability, multi-stage hydraulic fractured horizontal wells (MHFHWs) occupy a dominant position among production wells in tight gas reservoir. However, net present value (NPV) estimation method for MHFHW in tight gas reservoirs often ignores the effect of heterogeneity in microscopic pore structure. Apart from that, a new fractal model is presented for NPV of MHFHW, based on the fractal expressions of formation parameters. First, with the aid of apparent permeability model, a pseudo pressure expression considering both reservoir fractal features and slippage effect is derived, contributing to establish the productivity model. Secondly, economic assessment method is built based on the fractal productivity model, in order to obtain the NPV of MHFHW. Thirdly, the type curves are illustrated and the influences of different fractal parameters are discussed. The pore fractal dimensions Df and the capillary tortuosity fractal dimensions DT have significant effects on the NPV of an MHFHW. Finally, the proposed model in this paper provides a new methodology for analyzing and predicting the NPV of an MHFHW and may be conducive to a better understanding of the optimal design of MHFHW.

  13. Multistage morphological segmentation of bright-field and fluorescent microscopy images

    NASA Astrophysics Data System (ADS)

    Korzyńska, A.; Iwanowski, M.

    2012-06-01

    This paper describes the multistage morphological segmentation method (MSMA) for microscopic cell images. The proposed method enables us to study the cell behaviour by using a sequence of two types of microscopic images: bright field images and/or fluorescent images. The proposed method is based on two types of information: the cell texture coming from the bright field images and intensity of light emission, done by fluorescent markers. The method is dedicated to the image sequences segmentation and it is based on mathematical morphology methods supported by other image processing techniques. The method allows for detecting cells in image independently from a degree of their flattening and from presenting structures which produce the texture. It makes use of some synergic information from the fluorescent light emission image as the support information. The MSMA method has been applied to images acquired during the experiments on neural stem cells as well as to artificial images. In order to validate the method, two types of errors have been considered: the error of cell area detection and the error of cell position using artificial images as the "gold standard".

  14. Multi-stage learning for robust lung segmentation in challenging CT volumes.

    PubMed

    Sofka, Michal; Wetzl, Jens; Birkbeck, Neil; Zhang, Jingdan; Kohlberger, Timo; Kaftan, Jens; Declerck, Jérôme; Zhou, S Kevin

    2011-01-01

    Simple algorithms for segmenting healthy lung parenchyma in CT are unable to deal with high density tissue common in pulmonary diseases. To overcome this problem, we propose a multi-stage learning-based approach that combines anatomical information to predict an initialization of a statistical shape model of the lungs. The initialization first detects the carina of the trachea, and uses this to detect a set of automatically selected stable landmarks on regions near the lung (e.g., ribs, spine). These landmarks are used to align the shape model, which is then refined through boundary detection to obtain fine-grained segmentation. Robustness is obtained through hierarchical use of discriminative classifiers that are trained on a range of manually annotated data of diseased and healthy lungs. We demonstrate fast detection (35s per volume on average) and segmentation of 2 mm accuracy on challenging data.

  15. Analysis of fatigue reliability for high temperature and high pressure multi-stage decompression control valve

    NASA Astrophysics Data System (ADS)

    Yu, Long; Xu, Juanjuan; Zhang, Lifang; Xu, Xiaogang

    2018-03-01

    Based on stress-strength interference theory to establish the reliability mathematical model for high temperature and high pressure multi-stage decompression control valve (HMDCV), and introduced to the temperature correction coefficient for revising material fatigue limit at high temperature. Reliability of key dangerous components and fatigue sensitivity curve of each component are calculated and analyzed by the means, which are analyzed the fatigue life of control valve and combined with reliability theory of control valve model. The impact proportion of each component on the control valve system fatigue failure was obtained. The results is shown that temperature correction factor makes the theoretical calculations of reliability more accurate, prediction life expectancy of main pressure parts accords with the technical requirements, and valve body and the sleeve have obvious influence on control system reliability, the stress concentration in key part of control valve can be reduced in the design process by improving structure.

  16. Feeding styles of caregivers of children 6-23 months of age in Derashe special district, Southern Ethiopia.

    PubMed

    Wondafrash, Mekitie; Amsalu, Tseganeh; Woldie, Mirkuzie

    2012-03-23

    Apart from basic determinants, appropriate child care practices are important in prevention of growth faltering and undernutrition. Providing safe and appropriate quality complementary foods is crucial to child growth and development. However, some children in low-income communities grow normally mainly due to proper caregiver feeding behaviors. Hence, the objective of this study was to determine caregivers' feeding styles as well as to indentify predictors in Derashe special district, Southern Ethiopia. A community based cross-sectional study design was employed in the seven randomly selected Kebeles (smallest administrative unit) of Derashe special district. A total of 826 caregivers provided data pertaining to socio-demographic variables. However, 764 caregivers had complete data for the outcome variable (caregiver feeding style). A multistage stratified sampling technique was used to identify study subjects. An adapted Caregiver's Feeding Styles Questionnaire (CFSQ) was used to gather information about caregivers' feeding styles. Multivariate multinomial logistic regression was employed to identify predictors of caregivers' feeding style. The majority (80.6%) of caregivers were biological mothers. Nearly seventy-six percent of the caregivers practiced a responsive feeding style. Caregivers other than the biological mother favoured a laissez-faire feeding style, while caregivers residing in rural Kebeles were more responsive. Caregivers with a breastfeeding frequency of more than eight times predicted both laissez-faire (RRR = 1.88; 95% CI = 1.03-3.41) and controlling (RRR = 1.7; 95% CI = 1.02-2.85) feeding styles as compared to responsive feeding. Responsive feeding was the commonest style practiced by the caregivers. Many of the caregivers who were rural residents and birth parents have been responsive in child feeding. The instruments needed to be validated in the Ethiopian context and an additional prospective study based on direct observation of caregiver-child interactions is recommended.

  17. Identifying significant gene‐environment interactions using a combination of screening testing and hierarchical false discovery rate control

    PubMed Central

    Shen, Li; Saykin, Andrew J.; Williams, Scott M.; Moore, Jason H.

    2016-01-01

    ABSTRACT Although gene‐environment (G× E) interactions play an important role in many biological systems, detecting these interactions within genome‐wide data can be challenging due to the loss in statistical power incurred by multiple hypothesis correction. To address the challenge of poor power and the limitations of existing multistage methods, we recently developed a screening‐testing approach for G× E interaction detection that combines elastic net penalized regression with joint estimation to support a single omnibus test for the presence of G× E interactions. In our original work on this technique, however, we did not assess type I error control or power and evaluated the method using just a single, small bladder cancer data set. In this paper, we extend the original method in two important directions and provide a more rigorous performance evaluation. First, we introduce a hierarchical false discovery rate approach to formally assess the significance of individual G× E interactions. Second, to support the analysis of truly genome‐wide data sets, we incorporate a score statistic‐based prescreening step to reduce the number of single nucleotide polymorphisms prior to fitting the first stage penalized regression model. To assess the statistical properties of our method, we compare the type I error rate and statistical power of our approach with competing techniques using both simple simulation designs as well as designs based on real disease architectures. Finally, we demonstrate the ability of our approach to identify biologically plausible SNP‐education interactions relative to Alzheimer's disease status using genome‐wide association study data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). PMID:27578615

  18. KINETIC STUDIES RELATED TO THE LIMB (LIMESTONE INJECTION MULTISTAGE BURNER) BURNER

    EPA Science Inventory

    The report gives results of theoretical and experimental studies of subjects related to the limestone injection multistage burner (LIMB). The main findings include data on the rate of evolution of H2S from different coals and on the dependence of the rate of evolution on the dist...

  19. Optimal Testlet Pool Assembly for Multistage Testing Designs

    ERIC Educational Resources Information Center

    Ariel, Adelaide; Veldkamp, Bernard P.; Breithaupt, Krista

    2006-01-01

    Computerized multistage testing (MST) designs require sets of test questions (testlets) to be assembled to meet strict, often competing criteria. Rules that govern testlet assembly may dictate the number of questions on a particular subject or may describe desirable statistical properties for the test, such as measurement precision. In an MST…

  20. Multi-stage Continuous Culture Fermentation of Glucose-Xylose Mixtures to Fuel Ethanol using Genetically Engineered Saccharomyces cerevisiae 424A

    EPA Science Inventory

    Multi-stage continuous (chemostat) culture fermentation (MCCF) with variable fermentor volumes was carried out to study utilizing glucose and xylose for ethanol production by means of mixed sugar fermentation (MSF). Variable fermentor volumes were used to enable enhanced sugar u...

  1. Ontology-Driven Search and Triage: Design of a Web-Based Visual Interface for MEDLINE.

    PubMed

    Demelo, Jonathan; Parsons, Paul; Sedig, Kamran

    2017-02-02

    Diverse users need to search health and medical literature to satisfy open-ended goals such as making evidence-based decisions and updating their knowledge. However, doing so is challenging due to at least two major difficulties: (1) articulating information needs using accurate vocabulary and (2) dealing with large document sets returned from searches. Common search interfaces such as PubMed do not provide adequate support for exploratory search tasks. Our objective was to improve support for exploratory search tasks by combining two strategies in the design of an interactive visual interface by (1) using a formal ontology to help users build domain-specific knowledge and vocabulary and (2) providing multi-stage triaging support to help mitigate the information overload problem. We developed a Web-based tool, Ontology-Driven Visual Search and Triage Interface for MEDLINE (OVERT-MED), to test our design ideas. We implemented a custom searchable index of MEDLINE, which comprises approximately 25 million document citations. We chose a popular biomedical ontology, the Human Phenotype Ontology (HPO), to test our solution to the vocabulary problem. We implemented multistage triaging support in OVERT-MED, with the aid of interactive visualization techniques, to help users deal with large document sets returned from searches. Formative evaluation suggests that the design features in OVERT-MED are helpful in addressing the two major difficulties described above. Using a formal ontology seems to help users articulate their information needs with more accurate vocabulary. In addition, multistage triaging combined with interactive visualizations shows promise in mitigating the information overload problem. Our strategies appear to be valuable in addressing the two major problems in exploratory search. Although we tested OVERT-MED with a particular ontology and document collection, we anticipate that our strategies can be transferred successfully to other contexts. ©Jonathan Demelo, Paul Parsons, Kamran Sedig. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 02.02.2017.

  2. Ontology-Driven Search and Triage: Design of a Web-Based Visual Interface for MEDLINE

    PubMed Central

    2017-01-01

    Background Diverse users need to search health and medical literature to satisfy open-ended goals such as making evidence-based decisions and updating their knowledge. However, doing so is challenging due to at least two major difficulties: (1) articulating information needs using accurate vocabulary and (2) dealing with large document sets returned from searches. Common search interfaces such as PubMed do not provide adequate support for exploratory search tasks. Objective Our objective was to improve support for exploratory search tasks by combining two strategies in the design of an interactive visual interface by (1) using a formal ontology to help users build domain-specific knowledge and vocabulary and (2) providing multi-stage triaging support to help mitigate the information overload problem. Methods We developed a Web-based tool, Ontology-Driven Visual Search and Triage Interface for MEDLINE (OVERT-MED), to test our design ideas. We implemented a custom searchable index of MEDLINE, which comprises approximately 25 million document citations. We chose a popular biomedical ontology, the Human Phenotype Ontology (HPO), to test our solution to the vocabulary problem. We implemented multistage triaging support in OVERT-MED, with the aid of interactive visualization techniques, to help users deal with large document sets returned from searches. Results Formative evaluation suggests that the design features in OVERT-MED are helpful in addressing the two major difficulties described above. Using a formal ontology seems to help users articulate their information needs with more accurate vocabulary. In addition, multistage triaging combined with interactive visualizations shows promise in mitigating the information overload problem. Conclusions Our strategies appear to be valuable in addressing the two major problems in exploratory search. Although we tested OVERT-MED with a particular ontology and document collection, we anticipate that our strategies can be transferred successfully to other contexts. PMID:28153818

  3. Multistage open-tube trap for enrichment of part-per-trillion trace components of low-pressure (below 27-kPa) air samples

    NASA Technical Reports Server (NTRS)

    Ohara, D.; Vo, T.; Vedder, J. F.

    1985-01-01

    A multistage open-tube trap for cryogenic collection of trace components in low-pressure air samples is described. The open-tube design allows higher volumetric flow rates than densely packed glass-bead traps commonly reported and is suitable for air samples at pressures below 27 kPa with liquid nitrogen as the cryogen. Gas blends containing 200 to 2500 parts per trillion by volume each of ethane and ethene were sampled and hydrocarbons were enriched with 100 + or - 4 percent trap efficiency. The multistage design is more efficient than equal-length open-tube traps under the conditions of the measurements.

  4. Limitations Of The Current State Space Modelling Approach In Multistage Machining Processes Due To Operation Variations

    NASA Astrophysics Data System (ADS)

    Abellán-Nebot, J. V.; Liu, J.; Romero, F.

    2009-11-01

    The State Space modelling approach has been recently proposed as an engineering-driven technique for part quality prediction in Multistage Machining Processes (MMP). Current State Space models incorporate fixture and datum variations in the multi-stage variation propagation, without explicitly considering common operation variations such as machine-tool thermal distortions, cutting-tool wear, cutting-tool deflections, etc. This paper shows the limitations of the current State Space model through an experimental case study where the effect of the spindle thermal expansion, cutting-tool flank wear and locator errors are introduced. The paper also discusses the extension of the current State Space model to include operation variations and its potential benefits.

  5. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module

    PubMed Central

    Lee, Hyunjae; Song, Changyeong; Hong, Yong Seok; Kim, Min Sung; Cho, Hye Rim; Kang, Taegyu; Shin, Kwangsoo; Choi, Seung Hong; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2017-01-01

    Electrochemical analysis of sweat using soft bioelectronics on human skin provides a new route for noninvasive glucose monitoring without painful blood collection. However, sweat-based glucose sensing still faces many challenges, such as difficulty in sweat collection, activity variation of glucose oxidase due to lactic acid secretion and ambient temperature changes, and delamination of the enzyme when exposed to mechanical friction and skin deformation. Precise point-of-care therapy in response to the measured glucose levels is still very challenging. We present a wearable/disposable sweat-based glucose monitoring device integrated with a feedback transdermal drug delivery module. Careful multilayer patch design and miniaturization of sensors increase the efficiency of the sweat collection and sensing process. Multimodal glucose sensing, as well as its real-time correction based on pH, temperature, and humidity measurements, maximizes the accuracy of the sensing. The minimal layout design of the same sensors also enables a strip-type disposable device. Drugs for the feedback transdermal therapy are loaded on two different temperature-responsive phase change nanoparticles. These nanoparticles are embedded in hyaluronic acid hydrogel microneedles, which are additionally coated with phase change materials. This enables multistage, spatially patterned, and precisely controlled drug release in response to the patient’s glucose level. The system provides a novel closed-loop solution for the noninvasive sweat-based management of diabetes mellitus. PMID:28345030

  6. Multi-stage flash degaser

    DOEpatents

    Rapier, P.M.

    1980-06-26

    A multi-stage flash degaser is incorporated in an energy conversion system having a direct-contact, binary-fluid heat exchanger to remove essentially all of the noncondensable gases from geothermal brine ahead of the direct-contact binary-fluid heat exchanger in order that the heat exchanger and a turbine and condenser of the system can operate at optimal efficiency.

  7. Panel Design Variations in the Multistage Test Using the Mixed-Format Tests

    ERIC Educational Resources Information Center

    Kim, Jiseon; Chung, Hyewon; Dodd, Barbara G.; Park, Ryoungsun

    2012-01-01

    This study compared various panel designs of the multistage test (MST) using mixed-format tests in the context of classification testing. Simulations varied the design of the first-stage module. The first stage was constructed according to three levels of test information functions (TIFs) with three different TIF centers. Additional computerized…

  8. A Multi-Stage Maturity Model for Long-Term IT Outsourcing Relationship Success

    ERIC Educational Resources Information Center

    Luong, Ming; Stevens, Jeff

    2015-01-01

    The Multi-Stage Maturity Model for Long-Term IT Outsourcing Relationship Success, a theoretical stages-of-growth model, explains long-term success in IT outsourcing relationships. Research showed the IT outsourcing relationship life cycle consists of four distinct, sequential stages: contract, transition, support, and partnership. The model was…

  9. Development of JSTAMP-Works/NV and HYSTAMP for Multipurpose Multistage Sheet Metal Forming Simulation

    NASA Astrophysics Data System (ADS)

    Umezu, Yasuyoshi; Watanabe, Yuko; Ma, Ninshu

    2005-08-01

    Since 1996, Japan Research Institute Limited (JRI) has been providing a sheet metal forming simulation system called JSTAMP-Works packaged the FEM solvers of LS-DYNA and JOH/NIKE, which might be the first multistage system at that time and has been enjoying good reputation among users in Japan. To match the recent needs, "faster, more accurate and easier", of process designers and CAE engineers, a new metal forming simulation system JSTAMP-Works/NV is developed. The JSTAMP-Works/NV packaged the automatic healing function of CAD and had much more new capabilities such as prediction of 3D trimming lines for flanging or hemming, remote control of solver execution for multi-stage forming processes and shape evaluation between FEM and CAD. On the other way, a multi-stage multi-purpose inverse FEM solver HYSTAMP is developed and will be soon put into market, which is approved to be very fast, quite accurate and robust. Lastly, authors will give some application examples of user defined ductile damage subroutine in LS-DYNA for the estimation of material failure and springback in metal forming simulation.

  10. The influence of the "cage effect" on the mechanism of reversible bimolecular multistage chemical reactions in solutions.

    PubMed

    Doktorov, Alexander B

    2015-08-21

    Manifestations of the "cage effect" at the encounters of reactants are theoretically treated by the example of multistage reactions in liquid solutions including bimolecular exchange reactions as elementary stages. It is shown that consistent consideration of quasi-stationary kinetics of multistage reactions (possible only in the framework of the encounter theory) for reactions proceeding near reactants contact can be made on the basis of the concepts of a "cage complex." Though mathematically such a consideration is more complicated, it is more clear from the standpoint of chemical notions. It is established that the presence of the "cage effect" leads to some important effects not inherent in reactions in gases or those in solutions proceeding in the kinetic regime, such as the appearance of new transition channels of reactant transformation that cannot be caused by elementary event of chemical conversion for the given mechanism of reaction. This results in that, for example, rate constant values of multistage reaction defined by standard kinetic equations of formal chemical kinetics from experimentally measured kinetics can differ essentially from real values of these constants.

  11. Spectroscopic characterization of DOM and the nitrogen removal mechanism during wastewater reclamation plant.

    PubMed

    Wang, Lei; Li, Ying-Jun; Xiong, Ying; Tan, Wen-Bing; Zhang, Lie-Yu; Li, Xiang; Wang, Xiao-Shu; Xu, Jian-Feng; Li, Tong-Tong; Wang, Jin-Sheng; Cai, Ming-Xuan; Xi, Bei-Dou; Wang, Di-Hua

    2017-01-01

    The performance of the Sha-he wastewater reclamation plant was evaluated in this study. To remove residual nitrogen after Anaerobic-Anoxic-Oxic (A2O) treatment, three multistage Anoxic-Oxic (A/O) were added to investigate the nitrogen removal efficiency and its mechanism. In addition, the constituents and evolution of dissolved organic matter (DOM) during wastewater reclamation was also investigated using a method combining fluorescence spectroscopy with fluorescence regional integration (FRI). The results suggested that multistage A/O treatment can effectively improve the nitrogen removal ability under low concentrations of carbon sources. The total nitrogen (TN) exhibits significantly positive correlation with fulvic acid-like materials and humic acid-like materials. The correlation coefficient for TN and fulvic acid-like substances (R2 = 0.810, P < 0.01) removal was greater than that of humic acid-like substances (R2 = 0.636, P < 0.05). The results indicate that nitrogen removal may be achieved with the fulvic-like and humic-like substances, and the removal effects were higher by fulvic acid-like substances than humic-like substances, mostly due to that the latter were relatively more difficult to be utilized as carbon source during the nitrogen removal process. The effluent water quality of biological treatment reached the first grade A standard of "Cities sewage treatment plant pollutant discharge standard" (GB18918-2002). In addition, the effluent from the membrane bioreactor reached the "Standards of reclaimed water quality" (SL368-2006).

  12. Spectroscopic characterization of DOM and the nitrogen removal mechanism during wastewater reclamation plant

    PubMed Central

    Wang, Lei; Li, Ying-Jun; Xiong, Ying; Tan, Wen-Bing; Zhang, Lie-Yu; Li, Xiang; Wang, Xiao-Shu; Xu, Jian-feng; Li, Tong-Tong; Wang, Jin-Sheng; Cai, Ming-Xuan; Xi, Bei-Dou; Wang, Di-Hua

    2017-01-01

    The performance of the Sha-he wastewater reclamation plant was evaluated in this study. To remove residual nitrogen after Anaerobic-Anoxic-Oxic (A2O) treatment, three multistage Anoxic-Oxic (A/O) were added to investigate the nitrogen removal efficiency and its mechanism. In addition, the constituents and evolution of dissolved organic matter (DOM) during wastewater reclamation was also investigated using a method combining fluorescence spectroscopy with fluorescence regional integration (FRI). The results suggested that multistage A/O treatment can effectively improve the nitrogen removal ability under low concentrations of carbon sources. The total nitrogen (TN) exhibits significantly positive correlation with fulvic acid-like materials and humic acid-like materials. The correlation coefficient for TN and fulvic acid-like substances (R2 = 0.810, P < 0.01) removal was greater than that of humic acid-like substances (R2 = 0.636, P < 0.05). The results indicate that nitrogen removal may be achieved with the fulvic-like and humic-like substances, and the removal effects were higher by fulvic acid-like substances than humic-like substances, mostly due to that the latter were relatively more difficult to be utilized as carbon source during the nitrogen removal process. The effluent water quality of biological treatment reached the first grade A standard of “Cities sewage treatment plant pollutant discharge standard” (GB18918-2002). In addition, the effluent from the membrane bioreactor reached the “Standards of reclaimed water quality” (SL368-2006). PMID:29149172

  13. Multistage Computerized Adaptive Testing with Uniform Item Exposure

    ERIC Educational Resources Information Center

    Edwards, Michael C.; Flora, David B.; Thissen, David

    2012-01-01

    This article describes a computerized adaptive test (CAT) based on the uniform item exposure multi-form structure (uMFS). The uMFS is a specialization of the multi-form structure (MFS) idea described by Armstrong, Jones, Berliner, and Pashley (1998). In an MFS CAT, the examinee first responds to a small fixed block of items. The items comprising…

  14. Principles of Stagewise Separation Process Calculations: A Simple Algebraic Approach Using Solvent Extraction.

    ERIC Educational Resources Information Center

    Crittenden, Barry D.

    1991-01-01

    A simple liquid-liquid equilibrium (LLE) system involving a constant partition coefficient based on solute ratios is used to develop an algebraic understanding of multistage contacting in a first-year separation processes course. This algebraic approach to the LLE system is shown to be operable for the introduction of graphical techniques…

  15. Hybrid Computerized Adaptive Testing: From Group Sequential Design to Fully Sequential Design

    ERIC Educational Resources Information Center

    Wang, Shiyu; Lin, Haiyan; Chang, Hua-Hua; Douglas, Jeff

    2016-01-01

    Computerized adaptive testing (CAT) and multistage testing (MST) have become two of the most popular modes in large-scale computer-based sequential testing. Though most designs of CAT and MST exhibit strength and weakness in recent large-scale implementations, there is no simple answer to the question of which design is better because different…

  16. Texas School Survey of Substance Abuse: Grades 7-12. 1992.

    ERIC Educational Resources Information Center

    Liu, Liang Y.; Fredlund, Eric V.

    The 1992 Texas School Survey results for secondary students are based on data collected from a sample of 73,073 students in grades 7 through 12. Students were randomly selected from school districts throughout the state using a multi-stage probability design. The procedure ensured that students living in metropolitan and rural areas of Texas are…

  17. Socioeconomic Situations of the Elderly within the Context of Millennium Development Goals (MDGs) in Nigeria

    ERIC Educational Resources Information Center

    Wahab, Elias Olukorede

    2011-01-01

    It is still unknown how the MDGs have impacted the socioeconomic situations of the elderly in Nigeria. This has become essential to appraise the attainability of the MDGs in Nigeria. Quantitative data were collected through an individual-based questionnaire. Multistage sampling was employed to select local government areas, enumeration areas, and…

  18. Self-similar grid patterns in free-space shuffle-exchange networks

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.

    1993-12-01

    Self-similar grid patterns are proposed as an alternative to rectangular grid, array optoelectronic sources, and detectors of smart pixels. For shuffle based multistage interconnection networks, it is suggested that smart pixel should not be arrayed on a rectangular grid and that smart pixel unit cell should be the kernel of a self-similar grid pattern.

  19. Detailed Maintenance Planning for Military Systems with Random Lead Times and Cannibalization

    DTIC Science & Technology

    2014-12-01

    relativement aux systèmes d’entretien. Prendre les meilleures décisions possible signifie ici de trouver un équilibre entre les coûts d’exploitation et la...Multistage Stochastic Programming: A Scenario Tree Based Approach to Planning under Uncertainty, In Sucar, L. E., Morales , E. F., and Hoey, J

  20. A Population-Based Study of Job Stress in Mexican Americans, Non-Hispanic Blacks, and Non-Hispanic Whites

    ERIC Educational Resources Information Center

    Perez, Norma; Franzini, Luisa; Freeman, Daniel H.; Ju, Hyunsu; Peek, Kristen

    2011-01-01

    There is little known about the association between socioeconomic status and job stress in Mexican Americans. To address this issue, data were originated on a community level using personal interviews from working Mexican Americans using a multistage probability sample. In this study we described the population's sociodemographic characteristics,…

  1. Do Human-Figure Drawings of Children and Adolescents Mirror Their Cognitive Style and Self-Esteem?

    ERIC Educational Resources Information Center

    Dey, Anindita; Ghosh, Paromita

    2016-01-01

    The investigation probed relationships among human-figure drawing, field-dependent-independent cognitive style and self-esteem of 10-15 year olds. It also attempted to predict human-figure drawing scores of participants based on their field-dependence-independence and self-esteem. Area, stratified and multi-stage random sampling were used to…

  2. An Investigation on Computer-Adaptive Multistage Testing Panels for Multidimensional Assessment

    ERIC Educational Resources Information Center

    Wang, Xinrui

    2013-01-01

    The computer-adaptive multistage testing (ca-MST) has been developed as an alternative to computerized adaptive testing (CAT), and been increasingly adopted in large-scale assessments. Current research and practice only focus on ca-MST panels for credentialing purposes. The ca-MST test mode, therefore, is designed to gauge a single scale. The…

  3. The Empirical Selection of Anchor Items Using a Multistage Approach

    ERIC Educational Resources Information Center

    Craig, Brandon

    2017-01-01

    The purpose of this study was to determine if using a multistage approach for the empirical selection of anchor items would lead to more accurate DIF detection rates than the anchor selection methods proposed by Kopf, Zeileis, & Strobl (2015b). A simulation study was conducted in which the sample size, percentage of DIF, and balance of DIF…

  4. A Fair Comparison of the Performance of Computerized Adaptive Testing and Multistage Adaptive Testing

    ERIC Educational Resources Information Center

    Wang, Keyin

    2017-01-01

    The comparison of item-level computerized adaptive testing (CAT) and multistage adaptive testing (MST) has been researched extensively (e.g., Kim & Plake, 1993; Luecht et al., 1996; Patsula, 1999; Jodoin, 2003; Hambleton & Xing, 2006; Keng, 2008; Zheng, 2012). Various CAT and MST designs have been investigated and compared under the same…

  5. "MSTGen": Simulated Data Generator for Multistage Testing

    ERIC Educational Resources Information Center

    Han, Kyung T.

    2013-01-01

    Multistage testing, or MST, was developed as an alternative to computerized adaptive testing (CAT) for applications in which it is preferable to administer a test at the level of item sets (i.e., modules). As with CAT, the simulation technique in MST plays a critical role in the development and maintenance of tests. "MSTGen," a new MST…

  6. A Comparison of IRT Proficiency Estimation Methods under Adaptive Multistage Testing

    ERIC Educational Resources Information Center

    Kim, Sooyeon; Moses, Tim; Yoo, Hanwook

    2015-01-01

    This inquiry is an investigation of item response theory (IRT) proficiency estimators' accuracy under multistage testing (MST). We chose a two-stage MST design that includes four modules (one at Stage 1, three at Stage 2) and three difficulty paths (low, middle, high). We assembled various two-stage MST panels (i.e., forms) by manipulating two…

  7. Identifying Differential Item Functioning in Multi-Stage Computer Adaptive Testing

    ERIC Educational Resources Information Center

    Gierl, Mark J.; Lai, Hollis; Li, Johnson

    2013-01-01

    The purpose of this study is to evaluate the performance of CATSIB (Computer Adaptive Testing-Simultaneous Item Bias Test) for detecting differential item functioning (DIF) when items in the matching and studied subtest are administered adaptively in the context of a realistic multi-stage adaptive test (MST). MST was simulated using a 4-item…

  8. SSAIS: A Program to Assess Adverse Impact in Multistage Selection Decisions

    ERIC Educational Resources Information Center

    De Corte, Wilfried

    2004-01-01

    The article describes a Windows program to estimate the expected value and sampling distribution function of the adverse impact ratio for general multistage selections. The results of the program can also be used to predict the risk that a future selection decision will result in an outcome that reflects the presence of adverse impact. The method…

  9. The Effects of Routing and Scoring within a Computer Adaptive Multi-Stage Framework

    ERIC Educational Resources Information Center

    Dallas, Andrew

    2014-01-01

    This dissertation examined the overall effects of routing and scoring within a computer adaptive multi-stage framework (ca-MST). Testing in a ca-MST environment has become extremely popular in the testing industry. Testing companies enjoy its efficiency benefits as compared to traditionally linear testing and its quality-control features over…

  10. Fractional Multistage Hydrothermal Liquefaction of Biomass and Catalytic Conversion into Hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortright, Randy; Rozmiarek, Robert; Dally, Brice

    2017-08-31

    The objective of this project was to develop an improved multistage process for the hydrothermal liquefaction (HTL) of biomass to serve as a new front-end, deconstruction process ideally suited to feed Virent’s well-proven catalytic technology, which is already being scaled up. This process produced water soluble, partially de-oxygenated intermediates that are ideally suited for catalytic finishing to fungible distillate hydrocarbons. Through this project, Virent, with its partners, demonstrated the conversion of pine wood chips to drop-in hydrocarbon distillate fuels using a multi-stage fractional conversion system that is integrated with Virent’s BioForming® process. The majority of work was in the liquefactionmore » task and included temperature scoping, solvent optimization, and separations.« less

  11. Hypoplastic left heart syndrome - a review of supportive percutaneous treatment.

    PubMed

    Moszura, Tomasz; Góreczny, Sebastian; Dryżek, Paweł

    2014-01-01

    Due to the complex anatomical and haemodynamic consequences of hypoplastic left heart syndrome (HLHS), patients with the condition require multistage surgical and supportive interventional treatment. Percutaneous interventions may be required between each stage of surgical palliation, sometimes simultaneously with surgery as hybrid interventions, or after completion of multistage treatment. Recent advances in the field of interventional cardiology, including new devices and techniques, have significantly contributed to improving results of multistage HLHS palliation. Knowledge of the potential interventional options as well as the limitation of percutaneous interventions will enable the creation of safe and effective treatment protocols in this highly challenging group of patients. In this comprehensive review we discuss the types, goals, and potential complications of transcatheter interventions in patients with HLHS.

  12. Cell source determines the immunological impact of biomimetic nanoparticles.

    PubMed

    Evangelopoulos, Michael; Parodi, Alessandro; Martinez, Jonathan O; Yazdi, Iman K; Cevenini, Armando; van de Ven, Anne L; Quattrocchi, Nicoletta; Boada, Christian; Taghipour, Nima; Corbo, Claudia; Brown, Brandon S; Scaria, Shilpa; Liu, Xuewu; Ferrari, Mauro; Tasciotti, Ennio

    2016-03-01

    Recently, engineering the surface of nanotherapeutics with biologics to provide them with superior biocompatibility and targeting towards pathological tissues has gained significant popularity. Although the functionalization of drug delivery vectors with cellular materials has been shown to provide synthetic particles with unique biological properties, these approaches may have undesirable immunological repercussions upon systemic administration. Herein, we comparatively analyzed unmodified multistage nanovectors and particles functionalized with murine and human leukocyte cellular membrane, dubbed Leukolike Vectors (LLV), and the immunological effects that may arise in vitro and in vivo. Previously, LLV demonstrated an avoidance of opsonization and phagocytosis, in addition to superior targeting of inflammation and prolonged circulation. In this work, we performed a comprehensive evaluation of the importance of the source of cellular membrane in increasing their systemic tolerance and minimizing an inflammatory response. Time-lapse microscopy revealed LLV developed using a cellular coating derived from a murine (i.e., syngeneic) source resulted in an active avoidance of uptake by macrophage cells. Additionally, LLV composed of a murine membrane were found to have decreased uptake in the liver with no significant effect on hepatic function. As biomimicry continues to develop, this work demonstrates the necessity to consider the source of biological material in the development of future drug delivery carriers. Copyright © 2015. Published by Elsevier Ltd.

  13. A Modeling Insight into Adipose-Derived Stem Cell Myogenesis.

    PubMed

    Deshpande, Rajiv S; Grayson, Warren L; Spector, Alexander A

    2015-01-01

    Adipose-derived stem cells (ASCs) are clinically important in regenerative medicine as they are relatively easy to obtain, are characterized by low morbidity, and can differentiate into myogenic progenitor cells. Although studies have elucidated the principal markers, PAX7, Desmin, MyoD, and MHC, the underlying mechanisms are not completely understood. This motivates the application of computational methods to facilitate greater understanding of such processes. In the following, we present a multi-stage kinetic model comprising a system of ordinary differential equations (ODEs). We sought to model ASC differentiation using data from a static culture, where no strain is applied, and a dynamic culture, where 10% strain is applied. The coefficients of the equations have been modulated by those experimental data points. To correctly represent the trajectories, various switches and a feedback factor based on total cell number have been introduced to better represent the biology of ASC differentiation. Furthermore, the model has then been applied to predict ASC fate for strains different from those used in the experimental conditions and for times longer than the duration of the experiment. Analysis of the results reveals unique characteristics of ASC myogenesis under dynamic conditions of the applied strain.

  14. Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology

    NASA Astrophysics Data System (ADS)

    Jiang, Jingkun; Chen, Da-Ren; Biswas, Pratim

    2007-07-01

    A flame aerosol reactor (FLAR) was developed to synthesize nanoparticles with desired properties (crystal phase and size) that could be independently controlled. The methodology was demonstrated for TiO2 nanoparticles, and this is the first time that large sets of samples with the same size but different crystal phases (six different ratios of anatase to rutile in this work) were synthesized. The degree of TiO2 nanoparticle agglomeration was determined by comparing the primary particle size distribution measured by scanning electron microscopy (SEM) to the mobility-based particle size distribution measured by online scanning mobility particle spectrometry (SMPS). By controlling the flame aerosol reactor conditions, both spherical unagglomerated particles and highly agglomerated particles were produced. To produce monodisperse nanoparticles, a high throughput multi-stage differential mobility analyser (MDMA) was used in series with the flame aerosol reactor. Nearly monodisperse nanoparticles (geometric standard deviation less than 1.05) could be collected in sufficient mass quantities (of the order of 10 mg) in reasonable time (1 h) that could be used in other studies such as determination of functionality or biological effects as a function of size.

  15. Instructive microenvironments in skin wound healing: Biomaterials as signal releasing platforms.

    PubMed

    Castaño, Oscar; Pérez-Amodio, Soledad; Navarro-Requena, Claudia; Mateos-Timoneda, Miguel Ángel; Engel, Elisabeth

    2018-04-05

    Skin wound healing aims to repair and restore tissue through a multistage process that involves different cells and signalling molecules that regulate the cellular response and the dynamic remodelling of the extracellular matrix. Nowadays, several therapies that combine biomolecule signals (growth factors and cytokines) and cells are being proposed. However, a lack of reliable evidence of their efficacy, together with associated issues such as high costs, a lack of standardization, no scalable processes, and storage and regulatory issues, are hampering their application. In situ tissue regeneration appears to be a feasible strategy that uses the body's own capacity for regeneration by mobilizing host endogenous stem cells or tissue-specific progenitor cells to the wound site to promote repair and regeneration. The aim is to engineer instructive systems to regulate the spatio-temporal delivery of proper signalling based on the biological mechanisms of the different events that occur in the host microenvironment. This review describes the current state of the different signal cues used in wound healing and skin regeneration, and their combination with biomaterial supports to create instructive microenvironments for wound healing. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Functioning efficiency of intermediate coolers of multistage steam-jet ejectors of steam turbines

    NASA Astrophysics Data System (ADS)

    Aronson, K. E.; Ryabchikov, A. Yu.; Brodov, Yu. M.; Zhelonkin, N. V.; Murmanskii, I. B.

    2017-03-01

    Designs of various types of intermediate coolers of multistage ejectors are analyzed and thermal effectiveness and gas-dynamic resistance of coolers are estimated. Data on quantity of steam condensed from steam-air mixture in stage I of an ejector cooler was obtained on the basis of experimental results. It is established that the amount of steam condensed in the cooler constitutes 0.6-0.7 and is almost independent of operating steam pressure (and, consequently, of steam flow) and air amount in steam-air mixture. It is suggested to estimate the amount of condensed steam in a cooler of stage I based on comparison of computed and experimental characteristics of stage II. Computation taking this hypothesis for main types of mass produced multistage ejectors into account shows that 0.60-0.85 of steam amount should be condensed in stage I of the cooler. For ejectors with "pipe-in-pipe" type coolers (EPO-3-200) and helical coolers (EO-30), amount of condensed steam may reach 0.93-0.98. Estimation of gas-dynamic resistance of coolers shows that resistance from steam side in coolers with built-in and remote pipe bundle constitutes 100-300 Pa. Gas-dynamic resistance of "pipein- pipe" and helical type coolers is significantly higher (3-6 times) compared with pipe bundle. However, performance by "dry" (atmospheric) air is higher for ejectors with relatively high gas-dynamic resistance of coolers than those with low resistance at approximately equal operating flow values of ejectors.

  17. Young adults' decision making surrounding heavy drinking: a multi-staged model of planned behaviour.

    PubMed

    Northcote, Jeremy

    2011-06-01

    This paper examines the real life contexts in which decisions surrounding heavy drinking are made by young adults (that is, on occasions when five or more alcoholic drinks are consumed within a few hours). It presents a conceptual model that views such decision making as a multi-faceted and multi-staged process. The mixed method study draws on purposive data gathered through direct observation of eight social networks consisting of 81 young adults aged between 18 and 25 years in Perth, Western Australia, including in-depth interviews with 31 participants. Qualitative and some basic quantitative data were gathered using participant observation and in-depth interviews undertaken over an eighteen month period. Participants explained their decision to engage in heavy drinking as based on a variety of factors. These elements relate to socio-cultural norms and expectancies that are best explained by the theory of planned behaviour. A framework is proposed that characterises heavy drinking as taking place in a multi-staged manner, with young adults having: 1. A generalised orientation to the value of heavy drinking shaped by wider influences and norms; 2. A short-term orientation shaped by situational factors that determines drinking intentions for specific events; and 3. An evaluative orientation shaped by moderating factors. The value of qualitative studies of decision making in real life contexts is advanced to complement the mostly quantitative research that dominates research on alcohol decision making. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Catalytic multi-stage liquefaction of coal at HTI: Bench-scale studies in coal/waste plastics coprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, V.R.; Lee, L.K.; Stalzer, R.H.

    1995-12-31

    The development of Catalytic Multi-Stage Liquefaction (CMSL) at HTI has focused on both bituminous and sub-bituminous coals using laboratory, bench and PDU scale operations. The crude oil equivalent cost of liquid fuels from coal has been curtailed to about $30 per barrel, thus achieving over 30% reduction in the price that was evaluated for the liquefaction technologies demonstrated in the late seventies and early eighties. Contrary to the common belief, the new generation of catalytic multistage coal liquefaction process is environmentally very benign and can produce clean, premium distillates with a very low (<10ppm) heteroatoms content. The HTI Staff hasmore » been involved over the years in process development and has made significant improvements in the CMSL processing of coals. A 24 month program (extended to September 30, 1995) to study novel concepts, using a continuous bench scale Catalytic Multi-Stage unit (30kg coal/day), has been initiated since December, 1992. This program consists of ten bench-scale operations supported by Laboratory Studies, Modelling, Process Simulation and Economic Assessments. The Catalytic Multi-Stage Liquefaction is a continuation of the second generation yields using a low/high temperature approach. This paper covers work performed between October 1994- August 1995, especially results obtained from the microautoclave support activities and the bench-scale operations for runs CMSL-08 and CMSL-09, during which, coal and the plastic components for municipal solid wastes (MSW) such as high density polyethylene (HDPE)m, polypropylene (PP), polystyrene (PS), and polythylene terphthlate (PET) were coprocessed.« less

  19. Multistage point relascope and randomized branch sampling for downed coarse woody debris estimation

    Treesearch

    Jeffrey H. Gove; Mark J. Ducey; Harry T. Valentine

    2002-01-01

    New sampling methods have recently been introduced that allow estimation of downed coarse woody debris using an angle gauge, or relascope. The theory behind these methods is based on sampling straight pieces of downed coarse woody debris. When pieces deviate from this ideal situation, auxillary methods must be employed. We describe a two-stage procedure where the...

  20. Vibration based condition monitoring of a multistage epicyclic gearbox in lifting cranes

    NASA Astrophysics Data System (ADS)

    Assaad, Bassel; Eltabach, Mario; Antoni, Jérôme

    2014-01-01

    This paper proposes a model-based technique for detecting wear in a multistage planetary gearbox used by lifting cranes. The proposed method establishes a vibration signal model which deals with cyclostationary and autoregressive models. First-order cyclostationarity is addressed by the analysis of the time synchronous average (TSA) of the angular resampled vibration signal. Then an autoregressive model (AR) is applied to the TSA part in order to extract a residual signal containing pertinent fault signatures. The paper also explores a number of methods commonly used in vibration monitoring of planetary gearboxes, in order to make comparisons. In the experimental part of this study, these techniques are applied to accelerated lifetime test bench data for the lifting winch. After processing raw signals recorded with an accelerometer mounted on the outside of the gearbox, a number of condition indicators (CIs) are derived from the TSA signal, the residual autoregressive signal and other signals derived using standard signal processing methods. The goal is to check the evolution of the CIs during the accelerated lifetime test (ALT). Clarity and fluctuation level of the historical trends are finally considered as a criteria for comparing between the extracted CIs.

  1. The New Performance Calculation Method of Fouled Axial Flow Compressor

    PubMed Central

    Xu, Hong

    2014-01-01

    Fouling is the most important performance degradation factor, so it is necessary to accurately predict the effect of fouling on engine performance. In the previous research, it is very difficult to accurately model the fouled axial flow compressor. This paper develops a new performance calculation method of fouled multistage axial flow compressor based on experiment result and operating data. For multistage compressor, the whole compressor is decomposed into two sections. The first section includes the first 50% stages which reflect the fouling level, and the second section includes the last 50% stages which are viewed as the clean stage because of less deposits. In this model, the performance of the first section is obtained by combining scaling law method and linear progression model with traditional stage stacking method; simultaneously ambient conditions and engine configurations are considered. On the other hand, the performance of the second section is calculated by averaged infinitesimal stage method which is based on Reynolds' law of similarity. Finally, the model is successfully applied to predict the 8-stage axial flow compressor and 16-stage LM2500-30 compressor. The change of thermodynamic parameters such as pressure ratio, efficiency with the operating time, and stage number is analyzed in detail. PMID:25197717

  2. Planning and processing multistage samples with a computer program—MUST.

    Treesearch

    John W. Hazard; Larry E. Stewart

    1974-01-01

    A computer program was written to handle multistage sampling designs in insect populations. It is, however, general enough to be used for any population where the number of stages does not exceed three. The program handles three types of sampling situations, all of which assume equal probability sampling. Option 1 takes estimates of sample variances, costs, and either...

  3. A Multi-Stage Longitudinal Comparative Design Stage II Evaluation of the Changing Lives Program: The Life Course Interview (RDA-LCI)

    ERIC Educational Resources Information Center

    Arango, Lisa Lewis; Kurtines, William M.; Montgomery, Marilyn J.; Ritchie, Rachel

    2008-01-01

    The study reported in this article, a Multi-Stage Longitudinal Comparative Design Stage II evaluation conducted as a planned preliminary efficacy evaluation (psychometric evaluation of measures, short-term controlled outcome studies, etc.) of the Changing Lives Program (CLP), provided evidence for the reliability and validity of the qualitative…

  4. Suicide Prevention among High School Students: Evaluation of a Nonrandomized Trial of a Multi-Stage Suicide Screening Program

    ERIC Educational Resources Information Center

    Torcasso, Gina; Hilt, Lori M.

    2017-01-01

    Background: Suicide is a leading cause of death among youth. Suicide screening programs aim to identify mental health issues and prevent death by suicide. Objective: The present study evaluated outcomes of a multi-stage screening program implemented over 3 school years in a moderately-sized Midwestern high school. Methods: One hundred ninety-three…

  5. Multi-stage flash degaser

    DOEpatents

    Rapier, Pascal M.

    1982-01-01

    A multi-stage flash degaser (18) is incorporated in an energy conversion system (10) having a direct-contact, binary-fluid heat exchanger to remove essentially all of the noncondensable gases from geothermal brine ahead of the direct-contact binary-fluid heat exchanger (22) in order that the heat exchanger (22) and a turbine (48) and condenser (32) of the system (10) can operate at optimal efficiency.

  6. Architecture of the parallel hierarchical network for fast image recognition

    NASA Astrophysics Data System (ADS)

    Timchenko, Leonid; Wójcik, Waldemar; Kokriatskaia, Natalia; Kutaev, Yuriy; Ivasyuk, Igor; Kotyra, Andrzej; Smailova, Saule

    2016-09-01

    Multistage integration of visual information in the brain allows humans to respond quickly to most significant stimuli while maintaining their ability to recognize small details in the image. Implementation of this principle in technical systems can lead to more efficient processing procedures. The multistage approach to image processing includes main types of cortical multistage convergence. The input images are mapped into a flexible hierarchy that reflects complexity of image data. Procedures of the temporal image decomposition and hierarchy formation are described in mathematical expressions. The multistage system highlights spatial regularities, which are passed through a number of transformational levels to generate a coded representation of the image that encapsulates a structure on different hierarchical levels in the image. At each processing stage a single output result is computed to allow a quick response of the system. The result is presented as an activity pattern, which can be compared with previously computed patterns on the basis of the closest match. With regard to the forecasting method, its idea lies in the following. In the results synchronization block, network-processed data arrive to the database where a sample of most correlated data is drawn using service parameters of the parallel-hierarchical network.

  7. Analysis of non-enzymatically glycated peptides: neutral-loss-triggered MS3 versus multi-stage activation tandem mass spectrometry

    PubMed Central

    Zhang, Qibin; Petyuk, Vladislav A.; Schepmoes, Athena A.; Orton, Daniel J.; Monroe, Matthew E.; Yang, Feng; Smith, Richard D.; Metz, Thomas O.

    2009-01-01

    Non-enzymatic glycation of tissue proteins has important implications in the development of complications of diabetes mellitus. While electron transfer dissociation (ETD) has been shown to outperform collision-induced dissociation (CID) in sequencing glycated peptides by tandem mass spectrometry, ETD instrumentation is not yet widely available and often suffers from significantly lower sensitivity than CID. In this study, we evaluated different advanced CID techniques (i.e., neutral-loss-triggered MS3 and multi-stage activation) during liquid chromatography/multi-stage mass spectrometric (LC/MSn) analyses of Amadori-modified peptides enriched from human serum glycated in vitro. During neutral-loss-triggered MS3 experiments, MS3 scans triggered by neutral losses of 3 H2O or 3 H2O + HCHO produced similar results in terms of glycated peptide identifications. However, neutral losses of 3 H2O resulted in significantly more glycated peptide identifications during multi-stage activation experiments. Overall, the multi-stage activation approach produced more glycated peptide identifications, while the neutral-loss-triggered MS3 approach resulted in much higher specificity. Both techniques are viable alternatives to ETD for identifying glycated peptides. PMID:18763275

  8. Stator Indexing in Multistage Compressors

    NASA Technical Reports Server (NTRS)

    Barankiewicz, Wendy S.

    1997-01-01

    The relative circumferential location of stator rows (stator indexing) is an aspect of multistage compressor design that has not yet been explored for its potential impact on compressor aerodynamic performance. Although the inlet stages of multistage compressors usually have differing stator blade counts, the aft stages of core compressors can often have stage blocks with equal stator blade counts in successive stages. The potential impact of stator indexing is likely greatest in these stages. To assess the performance impact of stator indexing, researchers at the NASA Lewis Research Center used the 4 ft diameter, four-stage NASA Low Speed Axial Compressor for detailed experiments. This compressor has geometrically identical stages that can circumferentially index stator rows relative to each other in a controlled manner; thus it is an ideal test rig for such investigations.

  9. Calculation of recovery plasticity in multistage hot forging under isothermal conditions.

    PubMed

    Zhbankov, Iaroslav G; Perig, Alexander V; Aliieva, Leila I

    2016-01-01

    A widely used method for hot forming steels and alloys, especially heavy forging, is the process of multistage forging with pauses between stages. The well-known effect which accompanies multistage hot forging is metal plasticity recovery in comparison with monotonic deformation. A method which takes into consideration the recovery of plasticity in pauses between hot deformations of a billet under isothermal conditions is proposed. This method allows the prediction of billet forming limits as a function of deformation during the forging stage and the duration of the pause between the stages. This method takes into account the duration of pauses between deformations and the magnitude of subdivided deformations. A hot isothermal upsetting process with pauses was calculated by the proposed method. Results of the calculations have been confirmed with experimental data.

  10. Multi-stage methodology to detect health insurance claim fraud.

    PubMed

    Johnson, Marina Evrim; Nagarur, Nagen

    2016-09-01

    Healthcare costs in the US, as well as in other countries, increase rapidly due to demographic, economic, social, and legal changes. This increase in healthcare costs impacts both government and private health insurance systems. Fraudulent behaviors of healthcare providers and patients have become a serious burden to insurance systems by bringing unnecessary costs. Insurance companies thus develop methods to identify fraud. This paper proposes a new multistage methodology for insurance companies to detect fraud committed by providers and patients. The first three stages aim at detecting abnormalities among providers, services, and claim amounts. Stage four then integrates the information obtained in the previous three stages into an overall risk measure. Subsequently, a decision tree based method in stage five computes risk threshold values. The final decision stating whether the claim is fraudulent is made by comparing the risk value obtained in stage four with the risk threshold value from stage five. The research methodology performs well on real-world insurance data.

  11. Centrifugal and Axial Pump Design and Off-Design Performance Prediction

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1995-01-01

    A meanline pump-flow modeling method has been developed to provide a fast capability for modeling pumps of cryogenic rocket engines. Based on this method, a meanline pump-flow code PUMPA was written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The design-point rotor efficiency and slip factors are obtained from empirical correlations to rotor-specific speed and geometry. The pump code can model axial, inducer, mixed-flow, and centrifugal pumps and can model multistage pumps in series. The rapid input setup and computer run time for this meanline pump flow code make it an effective analysis and conceptual design tool. The map-generation capabilities of the code provide the information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of PUMPA permit the user to do parametric design space exploration of candidate pump configurations and to provide head-flow maps for engine system evaluation.

  12. A theory of post-stall transients in multistage axial compression systems

    NASA Technical Reports Server (NTRS)

    Moore, F. K.; Greitzer, E. M.

    1985-01-01

    A theory is presented for post stall transients in multistage axial compressors. The theory leads to a set of coupled first-order ordinary differential equations capable of describing the growth and possible decay of a rotating-stall cell during a compressor mass-flow transient. These changing flow features are shown to have a significant effect on the instantaneous compressor pumping characteristic during unsteady operation, and henace on the overall system behavior. It is also found from the theory that the ultimate mode of system response, stable rotating stall or surge, depends not only on the B parameter but also on other parameters, such as the compressor length-to-diameter ratio. Small values of this latter quantity tend to favor the occurrence of surge, as do large values of B. A limited parametric study is carried out to show the impact of the different system features on transient behavior. Based on analytical and numerical results, several specific topics are suggested for future research on post-stall transients.

  13. Automotive System for Remote Surface Classification.

    PubMed

    Bystrov, Aleksandr; Hoare, Edward; Tran, Thuy-Yung; Clarke, Nigel; Gashinova, Marina; Cherniakov, Mikhail

    2017-04-01

    In this paper we shall discuss a novel approach to road surface recognition, based on the analysis of backscattered microwave and ultrasonic signals. The novelty of our method is sonar and polarimetric radar data fusion, extraction of features for separate swathes of illuminated surface (segmentation), and using of multi-stage artificial neural network for surface classification. The developed system consists of 24 GHz radar and 40 kHz ultrasonic sensor. The features are extracted from backscattered signals and then the procedures of principal component analysis and supervised classification are applied to feature data. The special attention is paid to multi-stage artificial neural network which allows an overall increase in classification accuracy. The proposed technique was tested for recognition of a large number of real surfaces in different weather conditions with the average accuracy of correct classification of 95%. The obtained results thereby demonstrate that the use of proposed system architecture and statistical methods allow for reliable discrimination of various road surfaces in real conditions.

  14. Automotive System for Remote Surface Classification

    PubMed Central

    Bystrov, Aleksandr; Hoare, Edward; Tran, Thuy-Yung; Clarke, Nigel; Gashinova, Marina; Cherniakov, Mikhail

    2017-01-01

    In this paper we shall discuss a novel approach to road surface recognition, based on the analysis of backscattered microwave and ultrasonic signals. The novelty of our method is sonar and polarimetric radar data fusion, extraction of features for separate swathes of illuminated surface (segmentation), and using of multi-stage artificial neural network for surface classification. The developed system consists of 24 GHz radar and 40 kHz ultrasonic sensor. The features are extracted from backscattered signals and then the procedures of principal component analysis and supervised classification are applied to feature data. The special attention is paid to multi-stage artificial neural network which allows an overall increase in classification accuracy. The proposed technique was tested for recognition of a large number of real surfaces in different weather conditions with the average accuracy of correct classification of 95%. The obtained results thereby demonstrate that the use of proposed system architecture and statistical methods allow for reliable discrimination of various road surfaces in real conditions. PMID:28368297

  15. Multistage switching hardware and software implementations for student experiment purpose

    NASA Astrophysics Data System (ADS)

    Sani, A.; Suherman

    2018-02-01

    Current communication and internet networks are underpinned by the switching technologies that interconnect one network to the others. Students’ understanding on networks rely on how they conver the theories. However, understanding theories without touching the reality may exert spots in the overall knowledge. This paper reports the progress of the multistage switching design and implementation for student laboratory activities. The hardware and software designs are based on three stages clos switching architecture with modular 2x2 switches, controlled by an arduino microcontroller. The designed modules can also be extended for batcher and bayan switch, and working on circuit and packet switching systems. The circuit analysis and simulation show that the blocking probability for each switch combinations can be obtained by generating random or patterned traffics. The mathematic model and simulation analysis shows 16.4% blocking probability differences as the traffic generation is uniform. The circuits design components and interfacing solution have been identified to allow next step implementation.

  16. Multi-stage combustion using nitrogen-enriched air

    DOEpatents

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  17. Paleo- and Neoproterozoic magmatic and tectonometamorphic evolution of the Isla Cristalina de Rivera (Nico Pérez Terrane, Uruguay)

    NASA Astrophysics Data System (ADS)

    Oyhantçabal, Pedro; Wagner-Eimer, Martin; Wemmer, Klaus; Schulz, Bernhard; Frei, Robert; Siegesmund, Siegfried

    2012-10-01

    The Isla Cristalina de Rivera crystalline complex in northeastern Uruguay underwent a multistage magmatic and metamorphic evolution. Based on SHRIMP U-Pb zircon, Th-U-Pb monazite (CHIME-EPMA method) and K-Ar age data from key units several events can be recognized: (1) multistage magmatism at 2,171-2,114 Ma, recorded on zircon of the granulitic orthogneisses and their 2,093-2,077 Ma overgrowths; (2) a distinct amphibolite facies metamorphism at ~1,980 Ma, recorded by monazite; (3) greenschist facies reworking and shearing at ca. 606 Ma (monazite and K-Ar on muscovite) along the Rivera Shear Zone, and finally (4) intrusion of the post-tectonic Sobresaliente and Las Flores granites at around 585 Ma. Lithological similarities, geographic proximity and coeval magmatic and metamorphic events indicate a similar tectonometamorphic evolution for the Isla Cristalina de Rivera, the Valentines Block in Uruguay and the Santa María Chico Granulitic Complex in southern Brazil, since at least 2.1 Ga.

  18. Prevalence and correlates of coronary heart disease: first population-based study in Lebanon.

    PubMed

    Zeidan, Rouba Karen; Farah, Rita; Chahine, Mirna N; Asmar, Roland; Hosseini, Hassan; Salameh, Pascale; Pathak, Atul

    2016-01-01

    Lebanon is experiencing a growing epidemic of coronary heart diseases (CHDs), as most low- and middle-income countries currently are. However, this growth can be attenuated if effective preventive strategies are adopted. To provide the first national population-based prevalence of CHD and to describe the profile of Lebanese adults with prevalent CHD. We carried out a cross-sectional study using a multistage cluster sample across Lebanon. We interviewed residents aged 40 years and older using a questionnaire that captured the presence of CHDs and their risk factors (RFs). Our study showed that 13.4% of the Lebanese population aged ≥40 years suffer from a prevalent CHD. CHD seemed to appear more prematurely than in developed countries, and males seemed to be more subject to CHD than females until a certain age. CHD was associated with older age, male sex, a lower economic situation, hypercholesterolemia, hypertension, having a family history of premature cardiovascular diseases, and suffering from diabetes. However, smoking and waist circumference did not seem to have an independent effect on CHD, but rather an effect mediated by biological RFs. This is the first nationwide endeavor conducted in Lebanon to assess the prevalence of CHD. This study also confirms the relevance of the classic RFs of CHD and their applicability to the Lebanese population, thus allowing for prevention strategies.

  19. Linearly Adjustable International Portfolios

    NASA Astrophysics Data System (ADS)

    Fonseca, R. J.; Kuhn, D.; Rustem, B.

    2010-09-01

    We present an approach to multi-stage international portfolio optimization based on the imposition of a linear structure on the recourse decisions. Multiperiod decision problems are traditionally formulated as stochastic programs. Scenario tree based solutions however can become intractable as the number of stages increases. By restricting the space of decision policies to linear rules, we obtain a conservative tractable approximation to the original problem. Local asset prices and foreign exchange rates are modelled separately, which allows for a direct measure of their impact on the final portfolio value.

  20. Research on Aero-Thermodynamic Distortion Induced Structural Dynamic Response of Multi-Stage Compressor Blading.

    DTIC Science & Technology

    1988-01-15

    However. only very engineering limited experimental data exists to assess the Director, Thermal Sciences and range of validity and to direct the... experimental results of Goldstein et. al. "A 1111 and also the Navier Stokes numerical solutions of Morihara 1121. Diffuser The predicted stream function...Unsteady Aerodynamic Interactions in a Multistage Compressor............................................................ 53 I APPENDIX VI. Experimental

  1. Body Mass and Circumference of Upper Arm Are Associated with Race Performance in Ultraendurance Runners in a Multistage Race--The Isarrun 2006

    ERIC Educational Resources Information Center

    Knechtle, Beat; Duff, Brida; Welzel, Ulrich; Kohler, Gotz

    2009-01-01

    In the present study, we investigated the association of anthropometric parameters with race performance in ultraendurance runners in a multistage ultraendurance run, in which athletes had to run 338 km within 5 consecutive days. In 17 male successful finishers, calculations of body mass, body height, skinfold thicknesses, extremity circumference,…

  2. Multistage aerospace craft. [perspective drawings of conceptual design

    NASA Technical Reports Server (NTRS)

    Kelly, D. L. (Inventor)

    1973-01-01

    A conceptual design of a multi-stage aerospace craft is presented. Two perspective views of the vehicle are developed to show the two component configuration with delta wing, four vertical tail surfaces, tricycle landing gear, and two rocket exhaust nozzles at the rear of the fuselage. Engines for propulsion in the atmosphere are mounted on the fuselage in front of the wing root attachment.

  3. Preliminary Experience with High Response Pressure Measurements in a Multistage, High Speed Compressor

    DTIC Science & Technology

    1988-05-01

    MEASUREMENTS IN A MULTISTAGE, HIGH SPEED COMPRESSOR by M. A. Cherrett J. D. Bryce SUMMARY The investigation of unsteady aerodynamic phenomena within high...X Vli 1. Siurii-nue. Initials 9Ia. Author 2 9b. Authors 3. 4 ... 10. Date l’ag,- ReI\\ ’ Cherrett , M.A. Bryce, J.D. May i 4 1988 4 It I

  4. The task of validation of gas-dynamic characteristics of a multistage centrifugal compressor for a natural gas booster compressor station

    NASA Astrophysics Data System (ADS)

    Danilishin, A. M.; Kozhukhov, Y. V.; Neverov, V. V.; Malev, K. G.; Mironov, Y. R.

    2017-08-01

    The aim of this work is the validation study for the numerical modeling of characteristics of a multistage centrifugal compressor for natural gas. In the research process was the analysis used grid interfaces and software systems. The result revealed discrepancies between the simulated and experimental characteristics and outlined the future work plan.

  5. Conceptually new deltanoids (vitamin D analogs) inhibit multistage skin tumorigenesis.

    PubMed

    Kensler, T W; Dolan, P M; Gange, S J; Lee, J K; Wang, Q; Posner, G H

    2000-07-01

    Development of vitamin D analogs (deltanoids) as chemopreventive agents requires separation of desirable antiproliferative and pro-differentiating activities from the undesirable calcemic activity also found in the hormone calcitriol (1 alpha, 25-dihydroxyvitamin D(3)). Therefore, several conceptually new deltanoids were synthesized with modifications to the 1alpha- and/or 25-hydroxyl groups, positions traditionally considered essential for stimulating biological responses. In this study, 1 beta-hydroxymethyl-3-epi-25-hydroxyvitamin D(3), a non-calcemic CH(2) homolog of the natural hormone with antiproliferative activity in vitro, was ineffective as an inhibitor of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced induction of ornithine decarboxylase activity in mouse epidermis. However, a hybrid analog incorporating not only the calcemia-ablating 1 beta-hydroxymethyl alteration, but potentiating C,D ring 16-unsaturation and side chain 24,24-fluorination and 26, 27-homologation was found to be as effective as calcitriol. Several non-calcemic 24- or 25-t-butyl sulfones, some containing side chain fluorination but all lacking the 25-hydroxyl group, were also shown to be active in this assay. Three sulfones and the 1 beta-hydroxymethyl hybrid were evaluated as inhibitors of multistage carcinogenesis in mouse skin. Female CD-1 mice were initiated with a single dose of 7,12-dimethylbenz[a]anthracene and then promoted twice weekly for 20 weeks with TPA. Deltanoids were applied topically 30 min before TPA. Unlike calcitriol, none of the atypical deltanoids affected body weight gain in these animals. Minimal effects on urinary calcium excretion were observed following chronic treatment with these analogs. All deltanoids inhibited the incidence and multiplicity of papilloma formation, with the hybrid analog showing the greatest efficacy. With this deltanoid, tumor incidence was significantly reduced by 28% and tumor multiplicity by 63%. These results, coupled with the rich chemical diversity available in side chain sulfur-containing deltanoids, particularly when combined with A ring modifications such as 1 beta-hydroxylalkyl groups, provide important new advances in the fundamental understanding of chemical structure-biological activity relationships as well as more potent and safe vitamin D analogs for cancer chemoprevention and other medicinal uses.

  6. Multi-stage 3D-2D registration for correction of anatomical deformation in image-guided spine surgery

    NASA Astrophysics Data System (ADS)

    Ketcha, M. D.; De Silva, T.; Uneri, A.; Jacobson, M. W.; Goerres, J.; Kleinszig, G.; Vogt, S.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2017-06-01

    A multi-stage image-based 3D-2D registration method is presented that maps annotations in a 3D image (e.g. point labels annotating individual vertebrae in preoperative CT) to an intraoperative radiograph in which the patient has undergone non-rigid anatomical deformation due to changes in patient positioning or due to the intervention itself. The proposed method (termed msLevelCheck) extends a previous rigid registration solution (LevelCheck) to provide an accurate mapping of vertebral labels in the presence of spinal deformation. The method employs a multi-stage series of rigid 3D-2D registrations performed on sets of automatically determined and increasingly localized sub-images, with the final stage achieving a rigid mapping for each label to yield a locally rigid yet globally deformable solution. The method was evaluated first in a phantom study in which a CT image of the spine was acquired followed by a series of 7 mobile radiographs with increasing degree of deformation applied. Second, the method was validated using a clinical data set of patients exhibiting strong spinal deformation during thoracolumbar spine surgery. Registration accuracy was assessed using projection distance error (PDE) and failure rate (PDE  >  20 mm—i.e. label registered outside vertebra). The msLevelCheck method was able to register all vertebrae accurately for all cases of deformation in the phantom study, improving the maximum PDE of the rigid method from 22.4 mm to 3.9 mm. The clinical study demonstrated the feasibility of the approach in real patient data by accurately registering all vertebral labels in each case, eliminating all instances of failure encountered in the conventional rigid method. The multi-stage approach demonstrated accurate mapping of vertebral labels in the presence of strong spinal deformation. The msLevelCheck method maintains other advantageous aspects of the original LevelCheck method (e.g. compatibility with standard clinical workflow, large capture range, and robustness against mismatch in image content) and extends capability to cases exhibiting strong changes in spinal curvature.

  7. Long-term Outcomes With Planned Multistage Reduced Dose Repeat Stereotactic Radiosurgery for Treatment of Inoperable High-Grade Arteriovenous Malformations: An Observational Retrospective Cohort Study.

    PubMed

    Marciscano, Ariel E; Huang, Judy; Tamargo, Rafael J; Hu, Chen; Khattab, Mohamed H; Aggarwal, Sameer; Lim, Michael; Redmond, Kristin J; Rigamonti, Daniele; Kleinberg, Lawrence R

    2017-07-01

    There is no consensus regarding the optimal management of inoperable high-grade arteriovenous malformations (AVMs). This long-term study of 42 patients with high-grade AVMs reports obliteration and adverse event (AE) rates using planned multistage repeat stereotactic radiosurgery (SRS). To evaluate the efficacy and safety of multistage SRS with treatment of the entire AVM nidus at each treatment session to achieve complete obliteration of high-grade AVMs. Patients with high-grade Spetzler-Martin (S-M) III-V AVMs treated with at least 2 multistage SRS treatments from 1989 to 2013. Clinical outcomes of obliteration rate, minor/major AEs, and treatment characteristics were collected. Forty-two patients met inclusion criteria (n = 26, S-M III; n = 13, S-M IV; n = 3, S-M V) with a median follow-up was 9.5 yr after first SRS. Median number of SRS treatment stages was 2, and median interval between stages was 3.5 yr. Twenty-two patients underwent pre-SRS embolization. Complete AVM obliteration rate was 38%, and the median time to obliteration was 9.7 yr. On multivariate analysis, higher S-M grade was significantly associated ( P = .04) failure to achieve obliteration. Twenty-seven post-SRS AEs were observed, and the post-SRS intracranial hemorrhage rate was 0.027 events per patient year. Treatment of high-grade AVMs with multistage SRS achieves AVM obliteration in a meaningful proportion of patients with acceptable AE rates. Lower obliteration rates were associated with higher S-M grade and pre-SRS embolization. This approach should be considered with caution, as partial obliteration does not protect from hemorrhage. Copyright © 2017 by the Congress of Neurological Surgeons

  8. Lung cancer cell lines: Useless artifacts or invaluable tools for medical science?

    PubMed Central

    Gazdar, Adi F.; Gao, Boning; Minna, John D.

    2011-01-01

    Multiple cell lines (estimated at 300–400) have been established from human small cell (SCLC) and non-small cell lung cancers (NSCLC). These cell lines have been widely dispersed to and used by the scientific community worldwide, with over 8000 citations resulting from their study. However, there remains considerable skepticism on the part of the scientific community as to the validity of research resulting from their use. These questions center around the genomic instability of cultured cells, lack of differentiation of cultured cells and absence of stromal–vascular–inflammatory cell compartments. In this report we discuss the advantages and disadvantages of the use of cell lines, address the issues of instability and lack of differentiation. Perhaps the most important finding is that every important, recurrent genetic and epigenetic change including gene mutations, deletions, amplifications, translocations and methylation-induced gene silencing found in tumors has been identified in cell lines and vice versa. These “driver mutations” represented in cell lines offer opportunities for biological characterization and application to translational research. Another potential shortcoming of cell lines is the difficulty of studying multistage pathogenesis in vitro.To overcome this problem, we have developed cultures from central and peripheral airways that serve as models for the multistage pathogenesis of tumors arising in these two very different compartments. Finally the issue of cell line contamination must be addressed and safeguarded against. A full understanding of the advantages and shortcomings of cell lines is required for the investigator to derive the maximum benefit from their use. PMID:20079948

  9. Aerodynamic Design Study of Advanced Multistage Axial Compressor

    NASA Technical Reports Server (NTRS)

    Larosiliere, Louis M.; Wood, Jerry R.; Hathaway, Michael D.; Medd, Adam J.; Dang, Thong Q.

    2002-01-01

    As a direct response to the need for further performance gains from current multistage axial compressors, an investigation of advanced aerodynamic design concepts that will lead to compact, high-efficiency, and wide-operability configurations is being pursued. Part I of this report describes the projected level of technical advancement relative to the state of the art and quantifies it in terms of basic aerodynamic technology elements of current design systems. A rational enhancement of these elements is shown to lead to a substantial expansion of the design and operability space. Aerodynamic design considerations for a four-stage core compressor intended to serve as a vehicle to develop, integrate, and demonstrate aerotechnology advancements are discussed. This design is biased toward high efficiency at high loading. Three-dimensional blading and spanwise tailoring of vector diagrams guided by computational fluid dynamics (CFD) are used to manage the aerodynamics of the high-loaded endwall regions. Certain deleterious flow features, such as leakage-vortex-dominated endwall flow and strong shock-boundary-layer interactions, were identified and targeted for improvement. However, the preliminary results were encouraging and the front two stages were extracted for further aerodynamic trimming using a three-dimensional inverse design method described in part II of this report. The benefits of the inverse design method are illustrated by developing an appropriate pressure-loading strategy for transonic blading and applying it to reblade the rotors in the front two stages of the four-stage configuration. Multistage CFD simulations based on the average passage formulation indicated an overall efficiency potential far exceeding current practice for the front two stages. Results of the CFD simulation at the aerodynamic design point are interrogated to identify areas requiring additional development. In spite of the significantly higher aerodynamic loadings, advanced CFD-based tools were able to effectively guide the design of a very efficient axial compressor under state-of-the-art aeromechanical constraints.

  10. Private Universities in Kenya Seek Alternative Ways to Manage Change in Teacher Education Curriculum in Compliance with the Commission for University Education Reforms

    ERIC Educational Resources Information Center

    Amimo, Catherine Adhiambo

    2016-01-01

    This study investigated management of change in teacher education curriculum in Private universities in Kenya. The study employed a concurrent mixed methods design that is based on the use of both quantitative and qualitative approaches. A multi-stage sampling process which included purposive, convenience, cluster, and snowball sampling methods…

  11. Analytical study of effect of casing treatment on performance of a multistage compressor

    NASA Technical Reports Server (NTRS)

    Snyder, R. W.; Blade, R. J.

    1972-01-01

    The simulation was based on individual stage pressure and efficiency maps. These maps were modified to account for casing treatment effects on the individual stage characteristics. The individual stage maps effects on overall compressor performance were observed. The results show that to improve the performance of the compressor in its normal operating range, casing treatment of the rear stages is required.

  12. A Gender Based Study on Job Satisfaction among Higher Secondary School Heads in Khyber Pakhtunkhwa, (Pakistan)

    ERIC Educational Resources Information Center

    Mumtaz, Safina; Suleman, Qaiser; Ahmad, Zubair

    2016-01-01

    The purpose of the study was to analyze and compare the job satisfaction with twenty dimensions of male and female higher secondary school heads in Khyber Pakhtunkhwa. A total of 108 higher secondary school heads were selected from eleven districts as sample through multi-stage sampling technique in which 66 were male and 42 were female. The study…

  13. Disdrometer-based C-Band Radar Quantitative Precipitation Estimation (QPE) in a highly complex terrain region in tropical Colombia.

    NASA Astrophysics Data System (ADS)

    Sepúlveda, J.; Hoyos Ortiz, C. D.

    2017-12-01

    An adequate quantification of precipitation over land is critical for many societal applications including agriculture, hydroelectricity generation, water supply, and risk management associated with extreme events. The use of rain gauges, a traditional method for precipitation estimation, and an excellent one, to estimate the volume of liquid water during a particular precipitation event, does not allow to fully capture the highly spatial variability of the phenomena which is a requirement for almost all practical applications. On the other hand, the weather radar, an active remote sensing sensor, provides a proxy for rainfall with fine spatial resolution and adequate temporary sampling, however, it does not measure surface precipitation. In order to fully exploit the capabilities of the weather radar, it is necessary to develop quantitative precipitation estimation (QPE) techniques combining radar information with in-situ measurements. Different QPE methodologies are explored and adapted to local observations in a highly complex terrain region in tropical Colombia using a C-Band radar and a relatively dense network of rain gauges and disdrometers. One important result is that the expressions reported in the literature for extratropical locations are not representative of the conditions found in the tropical region studied. In addition to reproducing the state-of-the-art techniques, a new multi-stage methodology based on radar-derived variables and disdrometer data is proposed in order to achieve the best QPE possible. The main motivation for this new methodology is based on the fact that most traditional QPE methods do not directly take into account the different uncertainty sources involved in the process. The main advantage of the multi-stage model compared to traditional models is that it allows assessing and quantifying the uncertainty in the surface rain rate estimation. The sub-hourly rainfall estimations using the multi-stage methodology are realistic compared to observed data in spite of the many sources of uncertainty including the sampling volume, the different physical principles of the sensors, the incomplete understanding of the microphysics of precipitation and, the most important, the rapidly varying droplet size distribution.

  14. Multistage Schemes with Multigrid for Euler and Navier-Strokes Equations: Components and Analysis

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Turkel, Eli

    1997-01-01

    A class of explicit multistage time-stepping schemes with centered spatial differencing and multigrids are considered for the compressible Euler and Navier-Stokes equations. These schemes are the basis for a family of computer programs (flow codes with multigrid (FLOMG) series) currently used to solve a wide range of fluid dynamics problems, including internal and external flows. In this paper, the components of these multistage time-stepping schemes are defined, discussed, and in many cases analyzed to provide additional insight into their behavior. Special emphasis is given to numerical dissipation, stability of Runge-Kutta schemes, and the convergence acceleration techniques of multigrid and implicit residual smoothing. Both the Baldwin and Lomax algebraic equilibrium model and the Johnson and King one-half equation nonequilibrium model are used to establish turbulence closure. Implementation of these models is described.

  15. Multi-stage learning aids applied to hands-on software training.

    PubMed

    Rother, Kristian; Rother, Magdalena; Pleus, Alexandra; Upmeier zu Belzen, Annette

    2010-11-01

    Delivering hands-on tutorials on bioinformatics software and web applications is a challenging didactic scenario. The main reason is that trainees have heterogeneous backgrounds, different previous knowledge and vary in learning speed. In this article, we demonstrate how multi-stage learning aids can be used to allow all trainees to progress at a similar speed. In this technique, the trainees can utilize cards with hints and answers to guide themselves self-dependently through a complex task. We have successfully conducted a tutorial for the molecular viewer PyMOL using two sets of learning aid cards. The trainees responded positively, were able to complete the task, and the trainer had spare time to respond to individual questions. This encourages us to conclude that multi-stage learning aids overcome many disadvantages of established forms of hands-on software training.

  16. Spatiotemporal multistage consensus clustering in molecular dynamics studies of large proteins.

    PubMed

    Kenn, Michael; Ribarics, Reiner; Ilieva, Nevena; Cibena, Michael; Karch, Rudolf; Schreiner, Wolfgang

    2016-04-26

    The aim of this work is to find semi-rigid domains within large proteins as reference structures for fitting molecular dynamics trajectories. We propose an algorithm, multistage consensus clustering, MCC, based on minimum variation of distances between pairs of Cα-atoms as target function. The whole dataset (trajectory) is split into sub-segments. For a given sub-segment, spatial clustering is repeatedly started from different random seeds, and we adopt the specific spatial clustering with minimum target function: the process described so far is stage 1 of MCC. Then, in stage 2, the results of spatial clustering are consolidated, to arrive at domains stable over the whole dataset. We found that MCC is robust regarding the choice of parameters and yields relevant information on functional domains of the major histocompatibility complex (MHC) studied in this paper: the α-helices and β-floor of the protein (MHC) proved to be most flexible and did not contribute to clusters of significant size. Three alleles of the MHC, each in complex with ABCD3 peptide and LC13 T-cell receptor (TCR), yielded different patterns of motion. Those alleles causing immunological allo-reactions showed distinct correlations of motion between parts of the peptide, the binding cleft and the complementary determining regions (CDR)-loops of the TCR. Multistage consensus clustering reflected functional differences between MHC alleles and yields a methodological basis to increase sensitivity of functional analyses of bio-molecules. Due to the generality of approach, MCC is prone to lend itself as a potent tool also for the analysis of other kinds of big data.

  17. A sequence-based hybrid predictor for identifying conformationally ambivalent regions in proteins.

    PubMed

    Liu, Yu-Cheng; Yang, Meng-Han; Lin, Win-Li; Huang, Chien-Kang; Oyang, Yen-Jen

    2009-12-03

    Proteins are dynamic macromolecules which may undergo conformational transitions upon changes in environment. As it has been observed in laboratories that protein flexibility is correlated to essential biological functions, scientists have been designing various types of predictors for identifying structurally flexible regions in proteins. In this respect, there are two major categories of predictors. One category of predictors attempts to identify conformationally flexible regions through analysis of protein tertiary structures. Another category of predictors works completely based on analysis of the polypeptide sequences. As the availability of protein tertiary structures is generally limited, the design of predictors that work completely based on sequence information is crucial for advances of molecular biology research. In this article, we propose a novel approach to design a sequence-based predictor for identifying conformationally ambivalent regions in proteins. The novelty in the design stems from incorporating two classifiers based on two distinctive supervised learning algorithms that provide complementary prediction powers. Experimental results show that the overall performance delivered by the hybrid predictor proposed in this article is superior to the performance delivered by the existing predictors. Furthermore, the case study presented in this article demonstrates that the proposed hybrid predictor is capable of providing the biologists with valuable clues about the functional sites in a protein chain. The proposed hybrid predictor provides the users with two optional modes, namely, the high-sensitivity mode and the high-specificity mode. The experimental results with an independent testing data set show that the proposed hybrid predictor is capable of delivering sensitivity of 0.710 and specificity of 0.608 under the high-sensitivity mode, while delivering sensitivity of 0.451 and specificity of 0.787 under the high-specificity mode. Though experimental results show that the hybrid approach designed to exploit the complementary prediction powers of distinctive supervised learning algorithms works more effectively than conventional approaches, there exists a large room for further improvement with respect to the achieved performance. In this respect, it is of interest to investigate the effects of exploiting additional physiochemical properties that are related to conformational ambivalence. Furthermore, it is of interest to investigate the effects of incorporating lately-developed machine learning approaches, e.g. the random forest design and the multi-stage design. As conformational transition plays a key role in carrying out several essential types of biological functions, the design of more advanced predictors for identifying conformationally ambivalent regions in proteins deserves our continuous attention.

  18. Multi-stage depressed collector for small orbit gyrotrons

    DOEpatents

    Singh, Amarjit; Ives, R. Lawrence; Schumacher, Richard V.; Mizuhara, Yosuke M.

    1998-01-01

    A multi-stage depressed collector for receiving energy from a small orbit gyrating electron beam employs a plurality of electrodes at different potentials for sorting the individual electrons on the basis of their total energy level. Magnetic field generating coils, for producing magnetic fields and magnetic iron for magnetic field shaping produce adiabatic and controlled non-adiabatic transitions of the incident electron beam to further facilitate the sorting.

  19. Multi-stage depressed collector for small orbit gyrotrons

    DOEpatents

    Singh, A.; Ives, R.L.; Schumacher, R.V.; Mizuhara, Y.M.

    1998-07-14

    A multi-stage depressed collector for receiving energy from a small orbit gyrating electron beam employs a plurality of electrodes at different potentials for sorting the individual electrons on the basis of their total energy level. Magnetic field generating coils, for producing magnetic fields and magnetic iron for magnetic field shaping produce adiabatic and controlled non-adiabatic transitions of the incident electron beam to further facilitate the sorting. 9 figs.

  20. The automated multi-stage substructuring system for NASTRAN

    NASA Technical Reports Server (NTRS)

    Field, E. I.; Herting, D. N.; Herendeen, D. L.; Hoesly, R. L.

    1975-01-01

    The substructuring capability developed for eventual installation in Level 16 is now operational in a test version of NASTRAN. Its features are summarized. These include the user-oriented, Case Control type control language, the automated multi-stage matrix processing, the independent direct access data storage facilities, and the static and normal modes solution capabilities. A complete problem analysis sequence is presented with card-by-card description of the user input.

  1. Multi-stage, isothermal CO preferential oxidation reactor

    DOEpatents

    Skala, Glenn William; Brundage, Mark A.; Borup, Rodney Lynn; Pettit, William Henry; Stukey, Kevin; Hart-Predmore, David James; Fairchok, Joel

    2000-01-01

    A multi-stage, isothermal, carbon monoxide preferential oxidation (PrOx) reactor comprising a plurality of serially arranged, catalyzed heat exchangers, each separated from the next by a mixing chamber for homogenizing the gases exiting one heat exchanger and entering the next. In a preferred embodiment, at least some of the air used in the PrOx reaction is injected directly into the mixing chamber between the catalyzed heat exchangers.

  2. Performance Evaluation of Reduced-Chord Rotor Blading as Applied to J73 Two-Stage Turbine

    NASA Technical Reports Server (NTRS)

    Schurn, Harold J.

    1957-01-01

    The multistage turbine from the J73 turbojet engine has previously been investigated with standard and with reduced-chord rotor blading in order to determine the individual performance characteristics of each configuration over a range of over-all pressure ratio and speed. Because both turbine configurations exhibited peak efficiencies of over 90 percent, and because both units had relatively wide efficient operating ranges, it was considered of interest to determine the performance of the first stage of the turbine as a separate component. Accordingly, the standard-bladed multistage turbine was modified by removing the second-stage rotor disk and stator and altering the flow passage so that the first stage of the unit could be operated independently. The modified single-stage turbine was then operated over a range of stage pressure ratio and speed. The single-stage turbine operated at a peak brake internal efficiency of over 90 percent at an over-all stage pressure ratio of 1.4 and at 90 percent of design equivalent speed. Furthermore, the unit operated at high efficiencies over a relatively wide operating range. When the single-stage results were compared with the multistage results at the design operating point, it was found that the first stage produced approximately half the total multistage-turbine work output.

  3. Negative ion electrospray ionization mass spectrometry of nucleoside phosphoramidate monoesters: elucidation of novel rearrangement mechanisms by multistage mass spectrometry incorporating in-source deuterium labelling.

    PubMed

    Xu, Peng-Xiang; Hu, An-Fu; Hu, Dan; Gao, Xiang; Zhao, Yu-Fen

    2008-10-01

    Several O-2',3'-isopropylideneuridine-O-5'-phosphoramidate monoesters were synthesized and analyzed by negative ion electrospray ionization tandem mass spectrometry (ESI-MS(n)). Two kinds of novel rearrangement reactions were observed due to the difference in the amino acid in the nucleoside phosphoramidate monoesters, and possible mechanisms were proposed. One involves a five-membered cyclic transition state. The other is formation of a stable five-membered ring intermediate by Michael addition. Results were confirmed by tandem mass spectrometry and isotopically labeled hydrogen atoms. Furthermore, the internal hydrogen exchange between active hydrogen and methyl acrylate in the heated capillary of the mass spectrometer was found. The characteristic fragmentation behavior in ESI-MS may be used to monitor this kind of compounds in the biological metabolism.

  4. Effectiveness of Item Response Theory (IRT) Proficiency Estimation Methods under Adaptive Multistage Testing. Research Report. ETS RR-15-11

    ERIC Educational Resources Information Center

    Kim, Sooyeon; Moses, Tim; Yoo, Hanwook Henry

    2015-01-01

    The purpose of this inquiry was to investigate the effectiveness of item response theory (IRT) proficiency estimators in terms of estimation bias and error under multistage testing (MST). We chose a 2-stage MST design in which 1 adaptation to the examinees' ability levels takes place. It includes 4 modules (1 at Stage 1, 3 at Stage 2) and 3 paths…

  5. Efficient Multi-Stage Time Marching for Viscous Flows via Local Preconditioning

    NASA Technical Reports Server (NTRS)

    Kleb, William L.; Wood, William A.; vanLeer, Bram

    1999-01-01

    A new method has been developed to accelerate the convergence of explicit time-marching, laminar, Navier-Stokes codes through the combination of local preconditioning and multi-stage time marching optimization. Local preconditioning is a technique to modify the time-dependent equations so that all information moves or decays at nearly the same rate, thus relieving the stiffness for a system of equations. Multi-stage time marching can be optimized by modifying its coefficients to account for the presence of viscous terms, allowing larger time steps. We show it is possible to optimize the time marching scheme for a wide range of cell Reynolds numbers for the scalar advection-diffusion equation, and local preconditioning allows this optimization to be applied to the Navier-Stokes equations. Convergence acceleration of the new method is demonstrated through numerical experiments with circular advection and laminar boundary-layer flow over a flat plate.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doktorov, Alexander B., E-mail: doktorov@kinetics.nsc.ru

    Manifestations of the “cage” effect at the encounters of reactants have been theoretically treated on the example of multistage reactions (including bimolecular exchange reactions as elementary stages) proceeding from different active sites in liquid solutions. It is shown that for reactions occurring near the contact of reactants, consistent consideration of quasi-stationary kinetics of such multistage reactions (possible in the framework of the encounter theory only) can be made on the basis of chemical concepts of the “cage complex,” just as in the case of one-site model described in the literature. Exactly as in the one-site model, the presence of themore » “cage” effect gives rise to new channels of reactant transformation that cannot result from elementary event of chemical conversion for the given reaction mechanism. Besides, the multisite model demonstrates new (as compared to one-site model) features of multistage reaction course.« less

  7. An integrated experimental and theoretical reaction path search: analyses of the multistage reaction of an ionized diethylether dimer involving isomerization, proton transfer, and dissociation.

    PubMed

    Matsuda, Yoshiyuki; Xie, Min; Fujii, Asuka

    2018-05-30

    An ionization-induced multistage reaction of an ionized diethylether (DEE) dimer involving isomerization, proton transfer, and dissociation is investigated by combining infrared (IR) spectroscopy, tandem mass spectrometry, and a theoretical reaction path search. The vertically-ionized DEE dimer isomerizes to a hydrogen-bonded cluster of protonated DEE and the [DEE-H] radical through barrierless intermolecular proton transfer from the CH bond of the ionized moiety. This isomerization process is confirmed by IR spectroscopy and the theoretical reaction path search. The multiple dissociation pathways following the isomerization are analyzed by tandem mass spectrometry. The isomerized cluster dissociates stepwise into a [protonated DEE-acetaldehyde (AA)] cluster, protonated DEE, and protonated AA. The structure of the fragment ion is also analyzed by IR spectroscopy. The reaction map of the multistage processes is revealed through a harmony of these experimental and theoretical methods.

  8. An inexact multistage fuzzy-stochastic programming for regional electric power system management constrained by environmental quality.

    PubMed

    Fu, Zhenghui; Wang, Han; Lu, Wentao; Guo, Huaicheng; Li, Wei

    2017-12-01

    Electric power system involves different fields and disciplines which addressed the economic system, energy system, and environment system. Inner uncertainty of this compound system would be an inevitable problem. Therefore, an inexact multistage fuzzy-stochastic programming (IMFSP) was developed for regional electric power system management constrained by environmental quality. A model which concluded interval-parameter programming, multistage stochastic programming, and fuzzy probability distribution was built to reflect the uncertain information and dynamic variation in the case study, and the scenarios under different credibility degrees were considered. For all scenarios under consideration, corrective actions were allowed to be taken dynamically in accordance with the pre-regulated policies and the uncertainties in reality. The results suggest that the methodology is applicable to handle the uncertainty of regional electric power management systems and help the decision makers to establish an effective development plan.

  9. General theory of multistage geminate reactions of isolated pairs of reactants. I. Kinetic equations.

    PubMed

    Doktorov, Alexander B; Kipriyanov, Alexey A

    2014-05-14

    General matrix approach to the consideration of multistage geminate reactions of isolated pairs of reactants depending on reactant mobility is formulated on the basis of the concept of "effective" particles. Various elementary reactions (stages of multistage reaction including physicochemical processes of internal quantum state changes) proceeding with the participation of isolated pairs of reactants (or isolated reactants) are taken into account. Investigation has been made in terms of kinetic approach implying the derivation of general (matrix) kinetic equations for local and mean probabilities of finding any of the reaction species in the sample under study (or for local and mean concentrations). The recipes for the calculation of kinetic coefficients of the equations for mean quantities in terms of relative coordinates of reactants have been formulated in the general case of inhomogeneous reacting systems. Important specific case of homogeneous reacting systems is considered.

  10. Assessment of Energy Storage Technologies for Army Facilities.

    DTIC Science & Technology

    1986-05-01

    units, and the other on tandem units with separate multistage pump and Pelton impulse turbine . The third scheme was a double-drop type based on the...used to drive the turbine /generator. Exhaust gas from the low-pressure turbine may be used to preheat inlet air to the high-pressure turbine . Storage...for firing CAES plant turbines . A Battelle publication summarizes reservoir stability criteria and research directed toward minimizing or eliminating

  11. Manmade target extraction based on multistage decision and its application for change detection in polarimetric synthetic aperture radar image

    NASA Astrophysics Data System (ADS)

    Cong, Runmin; Han, Ping; Li, Chongyi; He, Jiaji; Zhang, Zaiji

    2016-09-01

    Targets of interest are different in various applications in which manmade targets, such as aircraft, ships, and buildings, are given more attention. Manmade target extraction methods using synthetic aperture radar (SAR) images are designed in response to various demands, which include civil uses, business purposes, and military industries. This plays an increasingly vital role in monitoring, military reconnaissance, and precision strikes. Achieving accurate and complete results through traditional methods is becoming more challenging because of the scattered complexity of polarization in polarimetric synthetic aperture radar (PolSAR) image. A multistage decision-based method is proposed composed of power decision, dominant scattering mechanism decision, and reflection symmetry decision. In addition, the theories of polarimetric contrast enhancement, generalized Y decomposition, and maximum eigenvalue ratio are applied to assist the decision. Fully PolSAR data are adopted to evaluate and verify the approach. Experimental results show that the method can achieve an effective result with a lower false alarm rate and clear contours. Finally, on this basis, a universal framework of change detection for manmade targets is presented as an application of our method. Two sets of measured data are also used to evaluate and verify the effectiveness of the change-detection algorithm.

  12. Plant flavonoids in cancer chemoprevention: role in genome stability.

    PubMed

    George, Vazhappilly Cijo; Dellaire, Graham; Rupasinghe, H P Vasantha

    2017-07-01

    Carcinogenesis is a multistage process that involves a series of events comprising of genetic and epigenetic changes leading to the initiation, promotion and progression of cancer. Chemoprevention is referred to as the use of nontoxic natural compounds, synthetic chemicals or their combinations to intervene in multistage carcinogenesis. Chemoprevention through diet modification, i.e., increased consumption of plant-based food, has emerged as a most promising and potentially cost-effective approach to reducing the risk of cancer. Flavonoids are naturally occurring polyphenols that are ubiquitous in plant-based food such as fruits, vegetables and teas as well as in most medicinal plants. Over 10,000 flavonoids have been characterized over the last few decades. Flavonoids comprise of several subclasses including flavonols, flavan-3-ols, anthocyanins, flavanones, flavones, isoflavones and proanthocyanidins. This review describes the most efficacious plant flavonoids, including luteolin, epigallocatechin gallate, quercetin, apigenin and chrysin; their hormetic effects; and the molecular basis of how these flavonoids contribute to the chemoprevention with a focus on protection against DNA damage caused by various carcinogenic factors. The present knowledge on the role of flavonoids in chemoprevention can be used in developing effective dietary strategies and natural health products targeted for cancer chemoprevention. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Reassembly of S-layer proteins

    NASA Astrophysics Data System (ADS)

    Pum, Dietmar; Sleytr, Uwe B.

    2014-08-01

    Crystalline bacterial cell surface layers (S-layers) represent the outermost cell envelope component in a broad range of bacteria and archaea. They are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. They are highly porous protein mesh works with unit cell sizes in the range of 3 to 30 nm, and pore sizes of 2 to 8 nm. S-layers are usually 5 to 20 nm thick (in archaea, up to 70 nm). S-layer proteins are one of the most abundant biopolymers on earth. One of their key features, and the focus of this review, is the intrinsic capability of isolated native and recombinant S-layer proteins to form self-assembled mono- or double layers in suspension, at solid supports, the air-water interface, planar lipid films, liposomes, nanocapsules, and nanoparticles. The reassembly is entropy-driven and a fascinating example of matrix assembly following a multistage, non-classical pathway in which the process of S-layer protein folding is directly linked with assembly into extended clusters. Moreover, basic research on the structure, synthesis, genetics, assembly, and function of S-layer proteins laid the foundation for their application in novel approaches in biotechnology, biomimetics, synthetic biology, and nanotechnology.

  14. Feeding styles of caregivers of children 6-23 months of age in Derashe special district, Southern Ethiopia

    PubMed Central

    2012-01-01

    Background Apart from basic determinants, appropriate child care practices are important in prevention of growth faltering and undernutrition. Providing safe and appropriate quality complementary foods is crucial to child growth and development. However, some children in low-income communities grow normally mainly due to proper caregiver feeding behaviors. Hence, the objective of this study was to determine caregivers' feeding styles as well as to indentify predictors in Derashe special district, Southern Ethiopia. Methods A community based cross-sectional study design was employed in the seven randomly selected Kebeles (smallest administrative unit) of Derashe special district. A total of 826 caregivers provided data pertaining to socio-demographic variables. However, 764 caregivers had complete data for the outcome variable (caregiver feeding style). A multistage stratified sampling technique was used to identify study subjects. An adapted Caregiver's Feeding Styles Questionnaire (CFSQ) was used to gather information about caregivers' feeding styles. Multivariate multinomial logistic regression was employed to identify predictors of caregivers' feeding style. Results The majority (80.6%) of caregivers were biological mothers. Nearly seventy-six percent of the caregivers practiced a responsive feeding style. Caregivers other than the biological mother favoured a laissez-faire feeding style, while caregivers residing in rural Kebeles were more responsive. Caregivers with a breastfeeding frequency of more than eight times predicted both laissez-faire (RRR = 1.88; 95% CI = 1.03-3.41) and controlling (RRR = 1.7; 95% CI = 1.02-2.85) feeding styles as compared to responsive feeding. Conclusion Responsive feeding was the commonest style practiced by the caregivers. Many of the caregivers who were rural residents and birth parents have been responsive in child feeding. The instruments needed to be validated in the Ethiopian context and an additional prospective study based on direct observation of caregiver-child interactions is recommended. PMID:22439749

  15. Expedited quantification of mutant ribosomal RNA by binary deoxyribozyme (BiDz) sensors.

    PubMed

    Gerasimova, Yulia V; Yakovchuk, Petro; Dedkova, Larisa M; Hecht, Sidney M; Kolpashchikov, Dmitry M

    2015-10-01

    Mutations in ribosomal RNA (rRNA) have traditionally been detected by the primer extension assay, which is a tedious and multistage procedure. Here, we describe a simple and straightforward fluorescence assay based on binary deoxyribozyme (BiDz) sensors. The assay uses two short DNA oligonucleotides that hybridize specifically to adjacent fragments of rRNA, one of which contains a mutation site. This hybridization results in the formation of a deoxyribozyme catalytic core that produces the fluorescent signal and amplifies it due to multiple rounds of catalytic action. This assay enables us to expedite semi-quantification of mutant rRNA content in cell cultures starting from whole cells, which provides information useful for optimization of culture preparation prior to ribosome isolation. The method requires less than a microliter of a standard Escherichia coli cell culture and decreases analysis time from several days (for primer extension assay) to 1.5 h with hands-on time of ∼10 min. It is sensitive to single-nucleotide mutations. The new assay simplifies the preliminary analysis of RNA samples and cells in molecular biology and cloning experiments and is promising in other applications where fast detection/quantification of specific RNA is required. © 2015 Gerasimova et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. Near-Infrared Imaging Method for the In Vivo Assessment of the Biodistribution of Nanoporous Silicon Particles

    PubMed Central

    Tasciotti, Ennio; Godin, Biana; Martinez, Jonathan O.; Chiappini, Ciro; Bhavane, Rohan; Liu, Xuewu; Ferrari, Mauro

    2011-01-01

    In the development of new nanoparticle-based technologies for therapeutic and diagnostic purposes, understanding the fate of nanoparticles in the body is crucial. We recently developed a multistage vector delivery system comprising biodegradable and biocompatible nanoporous silicon particles (first-stage microparticles [S1MPs]) able to host, protect, and deliver second-stage therapeutic and diagnostic nanoparticles (S2NPs) on intravenous injection. This delivery system aims at sequentially overcoming the biologic barriers en route to the target delivery site by separating and assigning tasks to the coordinated logic-embedded vectors constituting it. In this work, by conjugating a near-infrared dye on the surface of the S1MP without compromising the porous structure and potential loading of S2NPs, we were able to monitor the in vivo distribution of S1MPs in healthy mice using an optical imaging system. It was observed that particles predominantly accumulated in the liver and spleen at the end of 24 hours. Further quantification of S1MPs in the major organs of the animals by elemental analysis of silicon using inductively coupled plasma-atomic electron spectroscopy verified the accuracy of in vivo near-infrared imaging as a tool for evaluation of nanovector biodistribution. PMID:21303615

  17. Studies of an extensively axisymmetric rocket based combined cycle (RBCC) engine powered single-stage-to-orbit (SSTO) vehicle

    NASA Technical Reports Server (NTRS)

    Foster, Richard W.; Escher, William J. D.; Robinson, John W.

    1989-01-01

    The present comparative performance study has established that rocket-based combined cycle (RBCC) propulsion systems, when incorporated by essentially axisymmetric SSTO launch vehicle configurations whose conical forebody maximizes both capture-area ratio and total capture area, are capable of furnishing payload-delivery capabilities superior to those of most multistage, all-rocket launchers. Airbreathing thrust augmentation in the rocket-ejector mode of an RBCC powerplant is noted to make a major contribution to final payload capability, by comparison to nonair-augmented rocket engine propulsion systems.

  18. Using Fourier transform IR spectroscopy to analyze biological materials

    PubMed Central

    Baker, Matthew J; Trevisan, Júlio; Bassan, Paul; Bhargava, Rohit; Butler, Holly J; Dorling, Konrad M; Fielden, Peter R; Fogarty, Simon W; Fullwood, Nigel J; Heys, Kelly A; Hughes, Caryn; Lasch, Peter; Martin-Hirsch, Pierre L; Obinaju, Blessing; Sockalingum, Ganesh D; Sulé-Suso, Josep; Strong, Rebecca J; Walsh, Michael J; Wood, Bayden R; Gardner, Peter; Martin, Francis L

    2015-01-01

    IR spectroscopy is an excellent method for biological analyses. It enables the nonperturbative, label-free extraction of biochemical information and images toward diagnosis and the assessment of cell functionality. Although not strictly microscopy in the conventional sense, it allows the construction of images of tissue or cell architecture by the passing of spectral data through a variety of computational algorithms. Because such images are constructed from fingerprint spectra, the notion is that they can be an objective reflection of the underlying health status of the analyzed sample. One of the major difficulties in the field has been determining a consensus on spectral pre-processing and data analysis. This manuscript brings together as coauthors some of the leaders in this field to allow the standardization of methods and procedures for adapting a multistage approach to a methodology that can be applied to a variety of cell biological questions or used within a clinical setting for disease screening or diagnosis. We describe a protocol for collecting IR spectra and images from biological samples (e.g., fixed cytology and tissue sections, live cells or biofluids) that assesses the instrumental options available, appropriate sample preparation, different sampling modes as well as important advances in spectral data acquisition. After acquisition, data processing consists of a sequence of steps including quality control, spectral pre-processing, feature extraction and classification of the supervised or unsupervised type. A typical experiment can be completed and analyzed within hours. Example results are presented on the use of IR spectra combined with multivariate data processing. PMID:24992094

  19. Development of Optical Crystals for High Power and Tunable Visible and Infrared Light Generation

    DTIC Science & Technology

    2015-02-11

    ultra high chemical purity (5N), 95% isotopically enriched 6Li was purified in a multi-stage vacuum distillation process previously reported by...enriched 6Li was purified in a multi-stage vacuum distillation process previously reported by Stowe et al.[4]. 6LiIn alloy was synthesized in a... quantum mechanics, it has been determined that atoms, molecules, ions have discrete energy levels. Therefore there exists allowed atomic transitions

  20. Removal of hazardous gaseous pollutants from industrial flue gases by a novel multi-stage fluidized bed desulfurizer.

    PubMed

    Mohanty, C R; Adapala, Sivaji; Meikap, B C

    2009-06-15

    Sulfur dioxide and other sulfur compounds are generated as primary pollutants from the major industries such as sulfuric acid plants, cupper smelters, catalytic cracking units, etc. and cause acid rain. To remove the SO(2) from waste flue gas a three-stage counter-current multi-stage fluidized bed adsorber was developed as desulfurization equipment and operated in continuous bubbling fluidization regime for the two-phase system. This paper represents the desulfurization of gas mixtures by chemical sorption of sulfur dioxide on porous granular calcium oxide particles in the reactor at ambient temperature. The advantages of the multi-stage fluidized bed reactor are of high mass transfer and high gas-solid residence time that can enhance the removal of acid gas at low temperature by dry method. Experiments were carried out in the bubbling fluidization regime supported by visual observation. The effects of the operating parameters such as sorbent (lime) flow rate, superficial gas velocity, and the weir height on SO(2) removal efficiency in the multistage fluidized bed are reported. The results have indicated that the removal efficiency of the sulfur dioxide was found to be 65% at high solid flow rate (2.0 kg/h) corresponding to lower gas velocity (0.265 m/s), wier height of 70 mm and SO(2) concentration of 500 ppm at room temperature.

  1. Transformer-Feedback Interstage Bandwidth Enhancement for MMIC Multistage Amplifiers

    NASA Astrophysics Data System (ADS)

    Nikandish, Gholamreza; Medi, Ali

    2015-02-01

    The transformer-feedback (TRFB) interstage bandwidth enhancement technique for broadband multistage amplifiers is presented. Theory of the TRFB bandwidth enhancement and the design conditions for maximum bandwidth, maximally flat gain, and maximally flat group delay are provided. It is shown that the TRFB bandwidth enhancement can provide higher bandwidth compared to the conventional techniques based on reactive impedance matching networks. A three-stage low-noise amplifier (LNA) monolithic microwave integrated circuit with the TRFB between its consecutive stages is designed and implemented in a 0.1- μm GaAs pHEMT process. The TRFB is realized by coupling between the drain bias lines of transistors. The reuse of bias lines leads to bandwidth enhancement without increasing the chip area and power consumption. The LNA features average gain of 23 dB and 3-dB bandwidth of 11-39 GHz. It provides a noise figure of 2.1-3.0 dB and an output 1-dB compression point of 8.6 dBm, while consuming 40 mA of current from a 2-V supply.

  2. A new multistage groundwater transport inverse method: presentation, evaluation, and implications

    USGS Publications Warehouse

    Anderman, Evan R.; Hill, Mary C.

    1999-01-01

    More computationally efficient methods of using concentration data are needed to estimate groundwater flow and transport parameters. This work introduces and evaluates a three‐stage nonlinear‐regression‐based iterative procedure in which trial advective‐front locations link decoupled flow and transport models. Method accuracy and efficiency are evaluated by comparing results to those obtained when flow‐ and transport‐model parameters are estimated simultaneously. The new method is evaluated as conclusively as possible by using a simple test case that includes distinct flow and transport parameters, but does not include any approximations that are problem dependent. The test case is analytical; the only flow parameter is a constant velocity, and the transport parameters are longitudinal and transverse dispersivity. Any difficulties detected using the new method in this ideal situation are likely to be exacerbated in practical problems. Monte‐Carlo analysis of observation error ensures that no specific error realization obscures the results. Results indicate that, while this, and probably other, multistage methods do not always produce optimal parameter estimates, the computational advantage may make them useful in some circumstances, perhaps as a precursor to using a simultaneous method.

  3. A multi-stage traveling-wave thermoacoustically-driven refrigeration system operating at liquefied natural gas temperature

    NASA Astrophysics Data System (ADS)

    Luo, K.; Sun, D. M.; Zhang, J.; Shen, Q.; Zhang, N.

    2017-12-01

    This study proposes a multi-stage travelling-wave thermoacoustically refrigeration system (TAD-RS) operating at liquefied natural gas temperature, which consists of two thermoacoustic engines (TAE) and one thermoacoustic refrigerator (TAR) in a closed-loop configuration. Three thermoacoustic units connect each other through a resonance tube of small cross-sectional area, achieving “self-matching” for efficient thermoacoustic conversion. Based on the linear thermoacoustic theory, a model of the proposed system has been built by using DeltaEC program to show the acoustic field characteristics and performance. It is shown that with pressurized 5 MPa helium as working gas, the TAEs are able to build a stable and strong acoustic field with a frequency of about 85 Hz. When hot end temperature reaches 923 K, this system can provide about 1410 W cooling power at 110 K with an overall exergy efficiency of 15.5%. This study indicates a great application prospect of TAD-RS in the field of natural gas liquefaction with a large cooling capacity and simple structure.

  4. A new method for assessing the contribution of Primary Biological Atmospheric Particles to the mass concentration of the atmospheric aerosol.

    PubMed

    Perrino, Cinzia; Marcovecchio, Francesca

    2016-02-01

    Primary Biologic Atmospheric Particles (PBAPs) constitute an interesting and poorly investigated component of the atmospheric aerosol. We have developed and validated a method for evaluating the contribution of overall PBAPs to the mass concentration of atmospheric particulate matter (PM). The method is based on PM sampling on polycarbonate filters, staining of the collected particles with propidium iodide, observation at epifluorescence microscope and calculation of the bioaerosol mass using a digital image analysis software. The method has been also adapted to the observation and quantification of size-segregated aerosol samples collected by multi-stage impactors. Each step of the procedure has been individually validated. The relative repeatability of the method, calculated on 10 pairs of atmospheric PM samples collected side-by-side, was 16%. The method has been applied to real atmospheric samples collected in the vicinity of Rome, Italy. Size distribution measurements revealed that PBAPs was mainly in the coarse fraction of PM, with maxima in the range 5.6-10 μm. 24-h samples collected during different period of the year have shown that the concentration of bioaerosol was in the range 0.18-5.3 μg m(-3) (N=20), with a contribution to the organic matter in PM10 in the range 0.5-31% and to the total mass concentration of PM10 in the range 0.3-18%. The possibility to determine the concentration of total PBAPs in PM opens up interesting perspectives in terms of studying the health effects of these components and of increasing our knowledge about the composition of the organic fraction of the atmospheric aerosol. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Three-dimensional Aerodynamic Instability in Multi-stage Axial Compressors

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth (Technical Monitor); Tan, Choon-Sooi

    2003-01-01

    Four separate tasks are reported. The first task: A Computational Model for Short Wavelength Stall Inception and Development In Multi-Stage Compressors; the second task: Three-dimensional Rotating Stall Inception and Effects of Rotating Tip Clearance Asymmetry in Axial Compressors; the third task:Development of an Effective Computational Methodology for Body Force Representation of High-speed Rotor 37; and the fourth task:Development of Circumferential Inlet Distortion through a Representative Eleven Stage High-speed axial compressor. The common theme that threaded throughout these four tasks is the conceptual framework that consists of quantifying flow processes at the fadcompressor blade passage level to define the compressor performance characteristics needed for addressing physical phenomena such compressor aerodynamic instability and compressor response to flow distoriton with length scales larger than compressor blade-to-blade spacing at the system level. The results from these two levels can be synthesized to: (1) simulate compressor aerodynamic instability inception local to a blade rotor tip and its development from a local flow event into the nonlinear limit cycle instability that involves the entire compressor as was demonstrated in the first task; (2) determine the conditions under which compressor stability assessment based on two-dimensional model may not be adequate and the effects of self-induced flow distortion on compressor stability limit as in the second task; (3) quantify multistage compressor response to inlet distortion in stagnation pressure as illustrated in the fourth task; and (4) elucidate its potential applicability for compressor map generation under uniform as well as non-uniform inlet flow given three-dimensional Navier-Stokes solution for each individual blade row as was demonstrated in the third task.

  6. Three-Dimensional Aerodynamic Instabilities In Multi-Stage Axial Compressors

    NASA Technical Reports Server (NTRS)

    Tan, Choon S.; Gong, Yifang; Suder, Kenneth L. (Technical Monitor)

    2001-01-01

    This thesis presents the conceptualization and development of a computational model for describing three-dimensional non-linear disturbances associated with instability and inlet distortion in multistage compressors. Specifically, the model is aimed at simulating the non-linear aspects of short wavelength stall inception, part span stall cells, and compressor response to three-dimensional inlet distortions. The computed results demonstrated the first-of-a-kind capability for simulating short wavelength stall inception in multistage compressors. The adequacy of the model is demonstrated by its application to reproduce the following phenomena: (1) response of a compressor to a square-wave total pressure inlet distortion; (2) behavior of long wavelength small amplitude disturbances in compressors; (3) short wavelength stall inception in a multistage compressor and the occurrence of rotating stall inception on the negatively sloped portion of the compressor characteristic; (4) progressive stalling behavior in the first stage in a mismatched multistage compressor; (5) change of stall inception type (from modal to spike and vice versa) due to IGV stagger angle variation, and "unique rotor tip incidence" at these points where the compressor stalls through short wavelength disturbances. The model has been applied to determine the parametric dependence of instability inception behavior in terms of amplitude and spatial distribution of initial disturbance, and intra-blade-row gaps. It is found that reducing the inter-blade row gaps suppresses the growth of short wavelength disturbances. It is also concluded from these parametric investigations that each local component group (rotor and its two adjacent stators) has its own instability point (i.e. conditions at which disturbances are sustained) for short wavelength disturbances, with the instability point for the compressor set by the most unstable component group. For completeness, the methodology has been extended to describe finite amplitude disturbances in high-speed compressors. Results are presented for the response of a transonic compressor subjected to inlet distortions.

  7. MULTIPLE INPUT BINARY ADDER EMPLOYING MAGNETIC DRUM DIGITAL COMPUTING APPARATUS

    DOEpatents

    Cooke-Yarborough, E.H.

    1960-12-01

    A digital computing apparatus is described for adding a plurality of multi-digit binary numbers. The apparatus comprises a rotating magnetic drum, a recording head, first and second reading heads disposed adjacent to the first and second recording tracks, and a series of timing signals recorded on the first track. A series of N groups of digit-representing signals is delivered to the recording head at time intervals corresponding to the timing signals, each group consisting of digits of the same significance in the numbers, and the signal series is recorded on the second track of the drum in synchronism with the timing signals on the first track. The multistage registers are stepped cyclically through all positions, and each of the multistage registers is coupled to the control lead of a separate gate circuit to open the corresponding gate at only one selected position in each cycle. One of the gates has its input coupled to the bistable element to receive the sum digit, and the output lead of this gate is coupled to the recording device. The inputs of the other gates receive the digits to be added from the second reading head, and the outputs of these gates are coupled to the adding register. A phase-setting pulse source is connected to each of the multistage registers individually to step the multistage registers to different initial positions in the cycle, and the phase-setting pulse source is actuated each N time interval to shift a sum digit to the bistable element, where the multistage register coupled to bistable element is operated by the phase- setting pulse source to that position in its cycle N steps before opening the first gate, so that this gate opens in synchronism with each of the shifts to pass the sum digits to the recording head.

  8. The Indian Council of Medical Research–India Diabetes (ICMR–INDIAB) Study: Methodological Details

    PubMed Central

    Anjana, Ranjit Mohan; Pradeepa, Rajendra; Deepa, Mohan; Datta, Manjula; Sudha, Vasudevan; Unnikrishnan, Ranjit; Nath, Lalith M; Das, Ashok Kumar; Madhu, Sri Venkata; Rao, Paturi Vishnupriya; Shukla, Deepak Kumar; Kaur, Tanvir; Ali, Mohammed K; Mohan, Viswanathan

    2011-01-01

    Background Currently available estimates of diabetes prevalence in India are based on published data derived from very few studies. The Indian Council of Medical Research–India Diabetes (ICMR–INDIAB) study is a community-based survey conceived with the aim of obtaining the prevalence rates of diabetes in India as a whole, covering all 28 states, the National Capital Territory of Delhi, and two of the union territories in the mainland of India, with a total sample size of 124,000 individuals. Methods A stratified multistage sampling design has been used. In all study subjects, a structured questionnaire was administered and anthropometric parameters and blood pressure were measured. Fasting capillary blood glucose was first determined using a glucose meter. An oral glucose load was then administered to all subjects except those with self-reported diabetes, and the 2 h post-load capillary blood glucose was estimated. In every fifth subject, a fasting venous sample was collected for measurement of lipids and creatinine, a resting 12-lead electrocardiogram was performed, and dietary assessment questionnaire was administered. In all diabetic subjects, an additional diabetes questionnaire was used and a fasting venous sample drawn for glycated hemoglobin. Results All biological samples collected were analyzed in a central laboratory. All data collected were stored electronically. Quality control was achieved through multiple tiers of checks. Conclusions The ICMR–INDIAB study is the first of its kind attempting to provide accurate and comprehensive state- and national-level data on diabetes prevalence in India. PMID:21880233

  9. Development of a Multistage Reliability-Based Design Optimization Method

    DTIC Science & Technology

    2014-01-01

    expressed using Eq. (7), where nx is the number of design variables P a0 þ Xnx i¼1 aini þ bið Þxi 0 " # a (7) Figures 3(a)–3(c) illustrates the...constraint equation can be expressed in the gen- eral form of Eq. (16), where again nx is the number of design variables P a0;j þ Xnx i¼1 ai;jnixi

  10. In situ crosslinked smart polypeptide nanoparticles for multistage responsive tumor-targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Yi, Huqiang; Liu, Peng; Sheng, Nan; Gong, Ping; Ma, Yifan; Cai, Lintao

    2016-03-01

    Smart tumor-targeted drug delivery is crucial for improving the effect of chemotherapy and reducing the adverse effects. Here, we synthesized a smart polypeptide copolymer based on n-butylamine-poly(l-lysine)-b-poly(l-cysteine) (PLL-PLC) with functionalization of folic acid (FA) and 1,2-dicarboxylic-cyclohexene anhydride (DCA) for multistage responsive tumor-targeted drug delivery. The copolymers (FA-PLL(DCA)-PLC) spontaneously crosslinked in situ to form redox and pH dual responsive FA-PLL(DCA)-PLC nanoparticles (FD-NPs), which had a reversible zeta potential around -30 mV at pH 7.4, but switched to +15 mV at pH 5.0. Moreover, FD-NPs effectively loaded DOX with a loading capacity at 15.7 wt%. At pH 7.4, only 24.5% DOX was released within 60 h. However, at pH 5.0, the presence of 10 mM DTT dramatically accelerated DOX release with over 90% of DOX released within 10 h. Although the FD-NPs only enhanced DOX uptake in FA receptor positive (FR+) cancer cells at pH 7.4, a weak acidic condition promoted FD-NP-facilitated DOX uptake in both FR+ HeLa and FR- A549 cells, as well as significantly improving cellular binding and end/lysosomal escape. In vivo studies in a HeLa cancer model demonstrated that the charge-reversible FD-NPs delivered DOX into tumors more effectively than charge-irreversible nanoparticles. Hence, these multistage responsive FD-NPs would serve as highly efficient drug vectors for targeted cancer chemotherapy.Smart tumor-targeted drug delivery is crucial for improving the effect of chemotherapy and reducing the adverse effects. Here, we synthesized a smart polypeptide copolymer based on n-butylamine-poly(l-lysine)-b-poly(l-cysteine) (PLL-PLC) with functionalization of folic acid (FA) and 1,2-dicarboxylic-cyclohexene anhydride (DCA) for multistage responsive tumor-targeted drug delivery. The copolymers (FA-PLL(DCA)-PLC) spontaneously crosslinked in situ to form redox and pH dual responsive FA-PLL(DCA)-PLC nanoparticles (FD-NPs), which had a reversible zeta potential around -30 mV at pH 7.4, but switched to +15 mV at pH 5.0. Moreover, FD-NPs effectively loaded DOX with a loading capacity at 15.7 wt%. At pH 7.4, only 24.5% DOX was released within 60 h. However, at pH 5.0, the presence of 10 mM DTT dramatically accelerated DOX release with over 90% of DOX released within 10 h. Although the FD-NPs only enhanced DOX uptake in FA receptor positive (FR+) cancer cells at pH 7.4, a weak acidic condition promoted FD-NP-facilitated DOX uptake in both FR+ HeLa and FR- A549 cells, as well as significantly improving cellular binding and end/lysosomal escape. In vivo studies in a HeLa cancer model demonstrated that the charge-reversible FD-NPs delivered DOX into tumors more effectively than charge-irreversible nanoparticles. Hence, these multistage responsive FD-NPs would serve as highly efficient drug vectors for targeted cancer chemotherapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07348k

  11. Optimization of the propulsion for multistage solid rocket motor launchers

    NASA Astrophysics Data System (ADS)

    Calabro, M.; Dufour, A.; Macaire, A.

    2002-02-01

    Some tools focused on a rapid multidisciplinary optimization capability for multistage launch vehicle design were developed at EADS-LV. These tools may be broken down into two categories, those related to propulsion design optimization and a computer code devoted to trajectories and under constraints optimization. Both are linked in order to obtain optimal vehicle design after an iterative process. After a description of the two categories tools, an example of application is given on a small space launcher.

  12. Multi-stage rescheduling of generation, load shedding and short-term transmission capacity for emergency state control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krogh, B.; Chow, J.H.; Javid, H.S.

    1983-05-01

    A multi-stage formulation of the problem of scheduling generation, load shedding and short term transmission capacity for the alleviation of a viability emergency is presented. The formulation includes generation rate of change constraints, a linear network solution, and a model of the short term thermal overload capacity of transmission lines. The concept of rotating transmission line overloads for emergency state control is developed. The ideas are illustrated by a numerical example.

  13. Investigating Robustness of Item Response Theory Proficiency Estimators to Atypical Response Behaviors under Two-Stage Multistage Testing. ETS GRE® Board Research Report. ETS GRE®-16-03. ETS Research Report No. RR-16-22

    ERIC Educational Resources Information Center

    Kim, Sooyeon; Moses, Tim

    2016-01-01

    The purpose of this study is to evaluate the extent to which item response theory (IRT) proficiency estimation methods are robust to the presence of aberrant responses under the "GRE"® General Test multistage adaptive testing (MST) design. To that end, a wide range of atypical response behaviors affecting as much as 10% of the test items…

  14. Factors Associated with HIV Viral Load in a Respondent Driven Sample in Los Angeles

    PubMed Central

    King, WD; Larkins, S; Hucks-Ortiz, C; Wang, J; Gorbach, P; Veniegas, R; Shoptaw, S

    2008-01-01

    This study used a modified version of the Behavioral Model for Vulnerable Populations to examine the predisposing, enabling, and need factors associated with detectable viral load (VL). HIV status was measured using saliva and confirmed by blood. Of 835 persons enrolled, 193 were HIV positive and provided VL counts. A multistage logistic regression demonstrated that the predisposing factors of homelessness and recent substance abuse, particularly methamphetamine abuse, had a negative association with VL. The negative association of homelessness was lessened with the introduction of enabling and need utilization factors in the model. In contrast, the negative association with recent substance abuse on VL was sustained in the final model. Provision of HIV care and medications attenuated the negative association of homelessness within this sample. Guided policy to address substance abuse among those who are HIV positive is needed to improve biological outcomes. PMID:18064555

  15. Vibration-based angular speed estimation for multi-stage wind turbine gearboxes

    NASA Astrophysics Data System (ADS)

    Peeters, Cédric; Leclère, Quentin; Antoni, Jérôme; Guillaume, Patrick; Helsen, Jan

    2017-05-01

    Most processing tools based on frequency analysis of vibration signals are only applicable for stationary speed regimes. Speed variation causes the spectral content to smear, which encumbers most conventional fault detection techniques. To solve the problem of non-stationary speed conditions, the instantaneous angular speed (IAS) is estimated. Wind turbine gearboxes however are typically multi-stage gearboxes, consisting of multiple shafts, rotating at different speeds. Fitting a sensor (e.g. a tachometer) to every single stage is not always feasible. As such there is a need to estimate the IAS of every single shaft based on the vibration signals measured by the accelerometers. This paper investigates the performance of the multi-order probabilistic approach for IAS estimation on experimental case studies of wind turbines. This method takes into account the meshing orders of the gears present in the system and has the advantage that a priori it is not necessary to associate harmonics with a certain periodic mechanical event, which increases the robustness of the method. It is found that the MOPA has the potential to easily outperform standard band-pass filtering techniques for speed estimation. More knowledge of the gearbox kinematics is beneficial for the MOPA performance, but even with very little knowledge about the meshing orders, the MOPA still performs sufficiently well to compete with the standard speed estimation techniques. This observation is proven on two different data sets, both originating from vibration measurements on the gearbox housing of a wind turbine.

  16. Towards the development of a novel construction solid waste (CSW) based constructed wetland system for tertiary treatment of secondary sewage effluents.

    PubMed

    Yang, Y; Zhang, L; Zhao, Y Q; Wang, S P; Guo, X C; Guo, Y; Wang, L; Ren, Y X; Wang, X C

    2011-01-01

    This study was conducted to examine the possibility of using construction solid waste (CSW), an inevitable by-product of the construction and demolition process, as the main substrate in a laboratory scale multi-stage constructed wetland system (CWs) to improve phosphorus (P) removal from secondary sewage effluent. A tidal-flow operation strategy was employed to enhance the wetland aeration. This will stimulate aerobic biological processes and benefit the organic pollutants decomposition and nitrification process for ammoniacal-nitrogen (NH(+)(4)-N) removal. The results showed that the average P concentration in the secondary sewage effluent was reduced from 1.90 mg-P/L to 0.04 mg-P/L. CSW presents excellent P removal performance. The average NH(+)(4)-N concentration was reduced from 9.94 mg-N/L to 1.0 mg-N/L through nitrification in the system. The concentration of resultant nitrite and nitrate in the effluent of the CSW based CWs ranged from 0.1 to 2.4 mg-N/L and 0.01 to 0.8 mg-N/L, respectively. The outcome of this study has shown that CSW can be successfully used to act as main substrate in CWs. The application of CSW based CWs on improving N and P removals from secondary sewage effluent presents a win-win scenario. Such the reuse of CSW will benefit both the CSW disposal and nutrient control from wastewater. More significantly, such the application can transfer the CSW from a 'waste' to 'useful' material and can ease the pressure of construction waste solid management. Meanwhile, the final effluent from the CSW-based CWs can be used as non-potable water source in landscape irrigation, agriculture and industrial process.

  17. Systematic assessment of cervical cancer initiation and progression uncovers genetic panels for deep learning-based early diagnosis and proposes novel diagnostic and prognostic biomarkers.

    PubMed

    Long, Nguyen Phuoc; Jung, Kyung Hee; Yoon, Sang Jun; Anh, Nguyen Hoang; Nghi, Tran Diem; Kang, Yun Pyo; Yan, Hong Hua; Min, Jung Eun; Hong, Soon-Sun; Kwon, Sung Won

    2017-12-12

    Although many outstanding achievements in the management of cervical cancer (CxCa) have obtained, it still imposes a major burden which has prompted scientists to discover and validate new CxCa biomarkers to improve the diagnostic and prognostic assessment of CxCa. In this study, eight different gene expression data sets containing 202 cancer, 115 cervical intraepithelial neoplasia (CIN), and 105 normal samples were utilized for an integrative systems biology assessment in a multi-stage carcinogenesis manner. Deep learning-based diagnostic models were established based on the genetic panels of intrinsic genes of cervical carcinogenesis as well as on the unbiased variable selection approach. Survival analysis was also conducted to explore the potential biomarker candidates for prognostic assessment. Our results showed that cell cycle, RNA transport, mRNA surveillance, and one carbon pool by folate were the key regulatory mechanisms involved in the initiation, progression, and metastasis of CxCa. Various genetic panels combined with machine learning algorithms successfully differentiated CxCa from CIN and normalcy in cross-study normalized data sets. In particular, the 168-gene deep learning model for the differentiation of cancer from normalcy achieved an externally validated accuracy of 97.96% (99.01% sensitivity and 95.65% specificity). Survival analysis revealed that ZNF281 and EPHB6 were the two most promising prognostic genetic markers for CxCa among others. Our findings open new opportunities to enhance current understanding of the characteristics of CxCa pathobiology. In addition, the combination of transcriptomics-based signatures and deep learning classification may become an important approach to improve CxCa diagnosis and management in clinical practice.

  18. Systematic assessment of cervical cancer initiation and progression uncovers genetic panels for deep learning-based early diagnosis and proposes novel diagnostic and prognostic biomarkers

    PubMed Central

    Long, Nguyen Phuoc; Jung, Kyung Hee; Yoon, Sang Jun; Anh, Nguyen Hoang; Nghi, Tran Diem; Kang, Yun Pyo; Yan, Hong Hua; Min, Jung Eun; Hong, Soon-Sun; Kwon, Sung Won

    2017-01-01

    Although many outstanding achievements in the management of cervical cancer (CxCa) have obtained, it still imposes a major burden which has prompted scientists to discover and validate new CxCa biomarkers to improve the diagnostic and prognostic assessment of CxCa. In this study, eight different gene expression data sets containing 202 cancer, 115 cervical intraepithelial neoplasia (CIN), and 105 normal samples were utilized for an integrative systems biology assessment in a multi-stage carcinogenesis manner. Deep learning-based diagnostic models were established based on the genetic panels of intrinsic genes of cervical carcinogenesis as well as on the unbiased variable selection approach. Survival analysis was also conducted to explore the potential biomarker candidates for prognostic assessment. Our results showed that cell cycle, RNA transport, mRNA surveillance, and one carbon pool by folate were the key regulatory mechanisms involved in the initiation, progression, and metastasis of CxCa. Various genetic panels combined with machine learning algorithms successfully differentiated CxCa from CIN and normalcy in cross-study normalized data sets. In particular, the 168-gene deep learning model for the differentiation of cancer from normalcy achieved an externally validated accuracy of 97.96% (99.01% sensitivity and 95.65% specificity). Survival analysis revealed that ZNF281 and EPHB6 were the two most promising prognostic genetic markers for CxCa among others. Our findings open new opportunities to enhance current understanding of the characteristics of CxCa pathobiology. In addition, the combination of transcriptomics-based signatures and deep learning classification may become an important approach to improve CxCa diagnosis and management in clinical practice. PMID:29312619

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qibin; Petyuk, Vladislav A.; Schepmoes, Athena A.

    Non-enzymatic glycation of tissue proteins has important implications in the development of complications of diabetes mellitus. While electron transfer dissociation (ETD) has been shown to outperform collision-induced dissociation (CID) in sequencing glycated peptides by tandem mass spectrometry, ETD instrumentation is not yet available in all laboratories. In this study, we evaluated different advanced CID techniques (i.e., neutral-loss triggered MS3 and multi-stage activation) during LC-MSn analyses of Amadori-modified peptides enriched from human serum glycated in vitro. During neutral-loss triggered MS3 experiments, MS3 scans triggered by neutral-losses of 3 H2O or 3 H2O + HCHO produced similar results in terms of glycatedmore » peptide identifications. However, neutral losses of 3 H2O resulted in significantly more glycated peptide identifications during multi-stage activation experiments. Overall, the multi-stage activation approach produced more glycated peptide identifications, while the neutral-loss triggered MS3 approach resulted in much higher specificity. Both techniques offer a viable alternative to ETD for identifying glycated peptides when that method is unavailable.« less

  20. An analytic-geometric model of the effect of spherically distributed injection errors for Galileo and Ulysses spacecraft - The multi-stage problem

    NASA Technical Reports Server (NTRS)

    Longuski, James M.; Mcronald, Angus D.

    1988-01-01

    In previous work the problem of injecting the Galileo and Ulysses spacecraft from low earth orbit into their respective interplanetary trajectories has been discussed for the single stage (Centaur) vehicle. The central issue, in the event of spherically distributed injection errors, is what happens to the vehicle? The difficulties addressed in this paper involve the multi-stage problem since both Galileo and Ulysses will be utilizing the two-stage IUS system. Ulysses will also include a third stage: the PAM-S. The solution is expressed in terms of probabilities for total percentage of escape, orbit decay and reentry trajectories. Analytic solutions are found for Hill's Equations of Relative Motion (more recently called Clohessy-Wiltshire Equations) for multi-stage injections. These solutions are interpreted geometrically on the injection sphere. The analytic-geometric models compare well with numerical solutions, provide insight into the behavior of trajectories mapped on the injection sphere and simplify the numerical two-dimensional search for trajectory families.

  1. Optimization Strategies for Single-Stage, Multi-Stage and Continuous ADRs

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.

    2014-01-01

    Adiabatic Demagnetization Refrigerators (ADR) have many advantages that are prompting a resurgence in their use in spaceflight and laboratory applications. They are solid-state coolers capable of very high efficiency and very wide operating range. However, their low energy storage density translates to larger mass for a given cooling capacity than is possible with other refrigeration techniques. The interplay between refrigerant mass and other parameters such as magnetic field and heat transfer points in multi-stage ADRs gives rise to a wide parameter space for optimization. This paper first presents optimization strategies for single ADR stages, focusing primarily on obtaining the largest cooling capacity per stage mass, then discusses the optimization of multi-stage and continuous ADRs in the context of the coordinated heat transfer that must occur between stages. The goal for the latter is usually to obtain the largest cooling power per mass or volume, but there can also be many secondary objectives, such as limiting instantaneous heat rejection rates and producing intermediate temperatures for cooling of other instrument components.

  2. A Multistage Fluidized Bed for the Deep Removal of Sour Gases: Proof of Concept and Tray Efficiencies

    PubMed Central

    2018-01-01

    Currently there are significant amounts of natural gas that cannot be produced and treated to meet pipeline specifications, because that would not be economically viable. This work investigates a bench scale multistage fluidized bed (MSFB) with shallow beds for sour gas removal from natural gas using a commercially available supported amine sorbent. A MSFB is regarded as a promising adsorber type for deep sour gas removal to parts per million concentrations. A series of experiments was conducted using carbon dioxide as sour gas and nitrogen to mimic natural gas. Removal below 3 mol ppm was successfully demonstrated. This indicates that gas bypassing is minor (that is, good gas–solid contacting) and that apparent adsorption kinetics are fast for the amine sorbent applied. Tray efficiencies for a chemisorption/adsorption system were reported for one of the first times. Current experiments performed at atmospheric pressure strongly indicate that deep removal is possible at higher pressures in a multistage fluidized bed. PMID:29606794

  3. Multi-stage circulating fluidized bed syngas cooling

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Guan, Xiaofeng; Peng, WanWang

    2016-10-11

    A method and apparatus for cooling hot gas streams in the temperature range 800.degree. C. to 1600.degree. C. using multi-stage circulating fluid bed (CFB) coolers is disclosed. The invention relates to cooling the hot syngas from coal gasifiers in which the hot syngas entrains substances that foul, erode and corrode heat transfer surfaces upon contact in conventional coolers. The hot syngas is cooled by extracting and indirectly transferring heat to heat transfer surfaces with circulating inert solid particles in CFB syngas coolers. The CFB syngas coolers are staged to facilitate generation of steam at multiple conditions and hot boiler feed water that are necessary for power generation in an IGCC process. The multi-stage syngas cooler can include internally circulating fluid bed coolers, externally circulating fluid bed coolers and hybrid coolers that incorporate features of both internally and externally circulating fluid bed coolers. Higher process efficiencies can be realized as the invention can handle hot syngas from various types of gasifiers without the need for a less efficient precooling step.

  4. A Multistage Fluidized Bed for the Deep Removal of Sour Gases: Proof of Concept and Tray Efficiencies.

    PubMed

    Driessen, Rick T; Bos, Martin J; Brilman, Derk W F

    2018-03-21

    Currently there are significant amounts of natural gas that cannot be produced and treated to meet pipeline specifications, because that would not be economically viable. This work investigates a bench scale multistage fluidized bed (MSFB) with shallow beds for sour gas removal from natural gas using a commercially available supported amine sorbent. A MSFB is regarded as a promising adsorber type for deep sour gas removal to parts per million concentrations. A series of experiments was conducted using carbon dioxide as sour gas and nitrogen to mimic natural gas. Removal below 3 mol ppm was successfully demonstrated. This indicates that gas bypassing is minor (that is, good gas-solid contacting) and that apparent adsorption kinetics are fast for the amine sorbent applied. Tray efficiencies for a chemisorption/adsorption system were reported for one of the first times. Current experiments performed at atmospheric pressure strongly indicate that deep removal is possible at higher pressures in a multistage fluidized bed.

  5. Coadministration of iRGD with Multistage Responsive Nanoparticles Enhanced Tumor Targeting and Penetration Abilities for Breast Cancer Therapy.

    PubMed

    Hu, Chuan; Yang, Xiaotong; Liu, Rui; Ruan, Shaobo; Zhou, Yang; Xiao, Wei; Yu, Wenqi; Yang, Chuanyao; Gao, Huile

    2018-06-21

    Limited tumor targeting and poor penetration of nanoparticles are two major obstacles to improving the outcome of tumor therapy. Herein, coadministration of tumor-homing peptide iRGD and multistage-responsive penetrating nanoparticles for the treatment of breast cancer are reported. This multistage-responsive nanoparticle, IDDHN, was comprised of an NO donor-modified hyaluronic acid (HN) shell and a small-sized dendrimer, namely, dendri-graft-l-lysine conjugated with doxorubicin and indocyanine (IDD). The results showed that IDDHN could be degraded rapidly from about 330 nm to a smaller size that was in a size range of 35 to 150 nm (most at 35-60 nm) after hyaluronidase (HAase) incubation for 4 h; in vitro cellular uptake demonstrated that iRGD could mediate more endocytosis of IDDHN into 4T1 cells, which was attributed to the overexpression of α v β 3 integrin receptor. Multicellular spheroids penetration results showed synergistically enhanced deeper distribution of IDDHN into tumors, with the presence of iRGD, HAase incubation, and NO release upon laser irradiation. In vivo imaging indicated that coadministration with iRGD markedly enhanced the tumor targeting and penetration abilities of IDDHN. Surprisingly, coadministration of IDDHN with iRGD plus 808 nm laser irradiation nearly suppressed all tumor growth. These results systematically revealed the excellent potential of coadministration of iRGD with multistage-responsive nanoparticles for enhancing drug delivery efficiency and overcoming the 4T1 breast cancer.

  6. Long-term mental wellbeing of adolescents and young adults diagnosed with venous thromboembolism: results from a multistage mixed methods study.

    PubMed

    Højen, A A; Sørensen, E E; Dreyer, P S; Søgaard, M; Larsen, T B

    2017-12-01

    Essentials Long-term mental wellbeing of adolescents and young adults with venous thromboembolism is unclear. This multistage mixed methods study was based on Danish nationwide registry data and interviews. Mental wellbeing is negatively impacted in the long-term and uncertainty of recurrence is pivotal. The perceived health threat is more important than disease severity for long-term mental wellbeing. Background Critical and chronic illness in youth can lead to impaired mental wellbeing. Venous thromboembolism (VTE) is a potentially traumatic and life-threatening condition. Nonetheless, the long-term mental wellbeing of adolescents and young adults (AYAS) with VTE is unclear. Objectives To investigate the long-term mental wellbeing of AYAS (aged 13-33 years) diagnosed with VTE. Methods We performed a multistage mixed method study based on data from the Danish nationwide health registries, and semistructured interviews with 12 AYAS diagnosed with VTE. An integrated mixed methods interpretation of the findings was conducted through narrative weaving and joint displays. Results The integrated mixed methods interpretation showed that the mental wellbeing of AYAS with VTE had a chronic perspective, with a persistently higher risk of psychotropic drug purchase among AYAS with a first-time diagnosis of VTE than among sex-matched and age-matched population controls and AYAS with a first-time diagnosis of insulin-dependent diabetes mellitus. Impaired mental wellbeing was largely connected to a fear of recurrence and concomitant uncertainty. Therefore, it was important for the long-term mental wellbeing to navigate uncertainty. The perceived health threat played a more profound role in long-term mental wellbeing than disease severity, as the potential life threat was the pivot which pointed back to the initial VTE and forward to the perception of future health threat and the potential risk of dying of a recurrent event. Conclusion Our findings show that the long-term mental wellbeing of AYAS diagnosed with VTE is negatively affected, and highlights these patients' need for adequate support. © 2017 International Society on Thrombosis and Haemostasis.

  7. Watchdog Sensor Network with Multi-Stage RF Signal Identification and Cooperative Intrusion Detection

    DTIC Science & Technology

    2012-03-01

    detection and physical layer authentication in mobile Ad Hoc networks and wireless sensor networks (WSNs) have been investigated. Résume Le rapport...IEEE 802.16 d and e (WiMAX); (b) IEEE 802.11 (Wi-Fi) family of a, b, g, n, and s (c) Sensor networks based on IEEE 802.15.4: Wireless USB, Bluetooth... sensor network are investigated for standard compatible wireless signals. The proposed signal existence detection and identification process consists

  8. A Parallel Neuromorphic Text Recognition System and Its Implementation on a Heterogeneous High-Performance Computing Cluster

    DTIC Science & Technology

    2013-01-01

    M. Ahmadi, and M. Shridhar, “ Handwritten Numeral Recognition with Multiple Features and Multistage Classifiers,” Proc. IEEE Int’l Symp. Circuits...ARTICLE (Post Print) 3. DATES COVERED (From - To) SEP 2011 – SEP 2013 4. TITLE AND SUBTITLE A PARALLEL NEUROMORPHIC TEXT RECOGNITION SYSTEM AND ITS...research in computational intelligence has entered a new era. In this paper, we present an HPC-based context-aware intelligent text recognition

  9. Report to Congress on the Strategic Defense System Architecture

    DTIC Science & Technology

    1988-01-01

    1 25 B. Architecture Analysis - Phase I 25 C. Architecture Work - Follow-on 25 ANNEX A Figures 26 0, LIST OF ACRONYMS ABM Antiballistic Missile ALS...vehicles greater mass and complexity. 5. EXOATMOSPHERIC REENTRY VEHICLE INTERCEPTOR SYTEM V A ground-based, multistage missile that would use hit-to-kill...velocity change to heavy decoys. The GBL’s greatest potential as an antiballistic missile ( ABM ) system element is in a synergistic mix of SBI and GBL

  10. A New Finite Difference Q-compensated RTM Algorithm in Tilted Transverse Isotropic (TTI) Media

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Hu, W.; Ning, J.

    2017-12-01

    Attenuating anisotropic geological body is difficult to image with conventional migration methods. In such kind of scenarios, recorded seismic data suffer greatly from both amplitude decay and phase distortion, resulting in degraded resolution, poor illumination and incorrect migration depth in imaging results. To efficiently obtain high quality images, we propose a novel TTI QRTM algorithm based on Generalized Standard Linear Solid model combined with a unique multi-stage optimization technique to simultaneously correct the decayed amplitude and the distorted phase velocity. Numerical tests (shown in the figure) demonstrate that our TTI QRTM algorithm effectively corrects migration depth, significantly improves illumination, and enhances resolution within and below the low Q regions. The result of our new method is very close to the reference RTM image, while QRTM without TTI cannot get a correct image. Compared to the conventional QRTM method based on a pseudo-spectral operator for fractional Laplacian evaluation, our method is more computationally efficient for large scale applications and more suitable for GPU acceleration. With the current multi-stage dispersion optimization scheme, this TTI QRTM method best performs in the frequency range 10-70 Hz, and could be used in a wider frequency range. Furthermore, as this method can also handle frequency dependent Q, it has potential to be applied in imaging deep structures where low Q exists, such as subduction zones, volcanic zones or fault zones with passive source observations.

  11. Large cooling differentials and high heat flux capability with p-type Bi2Te3/Sb2Te3 and n-type Bi2Te3/Bi2SexTe3-x Superlattice Thermoelectric Devices

    NASA Astrophysics Data System (ADS)

    Bulman, Gary; Siivola, Ed; Wiitala, Ryan; Grant, Brian; Pierce, Jonathan; Venkatasubramanian, Rama

    2007-03-01

    Thin film superlattice (SL) based thermoelectric (TE) devices offer the potential for improved efficiency and high heat flux cooling over conventional bulk materials. Recently, we have demonstrated external cooling of 55K and heat pumping capacity of 128 W/cm^2. These high heat fluxes in thin film devices, while attractive for cooling hot-spots in electronics, also make the device performance sensitive to various thermal resistances in the device structure. We will discuss advances in the cooling performance of Bi2Te3-based SL TE devices and describe a method to extract device material parameters, including thermal resistance, from measurements of their δT-I-V characteristics. These parameters will be compared to values obtained through Hall and Seebeck coefficient measurement on epitaxial materials. Results will be presented for both single couple and multi-couple modules, as well as multi-stage cascaded devices made with these materials. Single stage cooling couples with δTmax of 57.8K (Tc˜242K) and multi-stage modules with δTmax˜92.2K (Tc˜209K) have been measured. G.E. Bulman, E. Siivola, B. Shen and R. Venkatasubramanian, Appl. Phys. Lett. 89, 122117 (2006).

  12. Multi-stage pulse tube cryocooler with acoustic impedance constructed to reduce transient cool down time and thermal loss

    NASA Technical Reports Server (NTRS)

    Gedeon, David R. (Inventor); Wilson, Kyle B. (Inventor)

    2008-01-01

    The cool down time for a multi-stage, pulse tube cryocooler is reduced by configuring at least a portion of the acoustic impedance of a selected stage, higher than the first stage, so that it surrounds the cold head of the selected stage. The surrounding acoustic impedance of the selected stage is mounted in thermally conductive connection to the warm region of the selected stage for cooling the acoustic impedance and is fabricated of a high thermal diffusivity, low thermal radiation emissivity material, preferably aluminum.

  13. Nuclear pursuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-05-01

    This table lists quantities of warheads (in stockpile, peak number per year, total number built, number of known test explosions), weapon development milestones (developers of the atomic bomb and hydrogen bomb, date of first operational ICBM, first nuclear-powered naval SSN in service, first MIRVed missile deployed), and testing milestones (first fission test, type of boosted fission weapon, multistage thermonuclear test, number of months from fission bomb to multistage thermonuclear bomb, etc.), and nuclear infrastructure (assembly plants, plutonium production reactors, uranium enrichment plants, etc.). Countries included in the tally are the United States, Soviet Union, Britain, France, and China.

  14. Core compressor exit stage study. Volume 2: Data and performance report for the baseline configuration

    NASA Technical Reports Server (NTRS)

    Wisler, D. C.

    1980-01-01

    The objective of the program is to develop rear stage blading designs that have lower losses in their endwall boundary layer regions. The overall technical approach in this efficiency improvement program utilized General Electric's Low Speed Research Compressor as the principal investigative tool. Tests were conducted in two ways: using four identical stages of blading so that test data would be obtained in a true multistage environment and using a single stage of blading so that comparison with the multistage test results could be made.

  15. A multistage time-stepping scheme for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Turkel, E.

    1985-01-01

    A class of explicit multistage time-stepping schemes is used to construct an algorithm for solving the compressible Navier-Stokes equations. Flexibility in treating arbitrary geometries is obtained with a finite-volume formulation. Numerical efficiency is achieved by employing techniques for accelerating convergence to steady state. Computer processing is enhanced through vectorization of the algorithm. The scheme is evaluated by solving laminar and turbulent flows over a flat plate and an NACA 0012 airfoil. Numerical results are compared with theoretical solutions or other numerical solutions and/or experimental data.

  16. Rapid Growth of Large Single-Crystalline Graphene via Second Passivation and Multistage Carbon Supply.

    PubMed

    Lin, Li; Sun, Luzhao; Zhang, Jincan; Sun, Jingyu; Koh, Ai Leen; Peng, Hailin; Liu, Zhongfan

    2016-06-01

    A second passivation and a multistage carbon-source supply (CSS) allow a 50-fold enhancement of the growth rate of large single-crystalline graphene with a record growth rate of 101 μm min(-1) , almost 10 times higher than for pure copper. To this end the CSS is tailored at separate stages of graphene growth on copper foil, combined with an effective suppression of new spontaneous nucleation via second passivation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Multi-stage tandem mass spectrometric analysis of novel β-cyclodextrin-substituted and novel bis-pyridinium gemini surfactants designed as nanomedical drug delivery agents.

    PubMed

    Donkuru, McDonald; Chitanda, Jackson M; Verrall, Ronald E; El-Aneed, Anas

    2014-04-15

    This study aimed at evaluating the collision-induced dissociation tandem mass spectrometric (CID-MS/MS) fragmentation patterns of novel β-cyclodextrin-substituted- and bis-pyridinium gemini surfactants currently being explored as nanomaterial drug delivery agents. In the β-cyclodextrin-substituted gemini surfactants, a β-cyclodextrin ring is grafted onto an N,N-bis(dimethylalkyl)-α,ω-aminoalkane-diammonium moiety using variable succinyl linkers. In contrast, the bis-pyridinium gemini surfactants are based on a 1,1'-(1,1'-(ethane-1,2-diylbis(sulfanediyl))bis(alkane-2,1-diyl))dipyridinium template, defined by two symmetrical N-alkylpyridinium parts connected through a fixed ethane dithiol spacer. Detection of the precursor ion [M](2+) species of the synthesized compounds and the determination of mass accuracies were conducted using a QqTOF-MS instrument. A multi-stage tandem MS analysis of the detected [M](2+) species was conducted using the QqQ-LIT-MS instrument. Both instruments were equipped with an electrospray ionization (ESI) source. Abundant precursor ion [M](2+) species were detected for all compounds at sub-1 ppm mass accuracies. The β-cyclodextrin-substituted compounds, fragmented via two main pathways: Pathway 1: the loss of one head-tail region produces a [M-(N(Me)2-R)](2+) ion, from which sugar moieties (Glc) are sequentially cleaved; Pathway 2: both head-tail regions are lost to give [M-2(N(Me)2-R)](+), followed by consecutive loss of Glc units. Alternatively, the cleavage of the Glc units could also have occurred simultaneously. Nevertheless, the fragmentation evolved around the quaternary ammonium cations, with characteristic cleavage of Glc moieties. For the bis-pyridinium gemini compounds, they either lost neutral pyridine(s) to give doubly charged ions (Pathway A) or formed complementary pyridinium alongside other singly charged ions (Pathway B). Similar to β-cyclodextrin-substituted compounds, the fragmentation was centered on the pyridinium functional groups. The MS(n) analyses of these novel gemini surfactants, reported here for the first time, revealed diagnostic ions for each compound, with a universal fragmentation pattern for each compound series. The diagnostic ions will be employed within liquid chromatography (LC)/MS/MS methods for screening, identification, and quantification of these compounds within biological samples. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Peptide fingerprinting of the sea anemone Heteractis magnifica mucus revealed neurotoxins, Kunitz-type proteinase inhibitors and a new β-defensin α-amylase inhibitor.

    PubMed

    Sintsova, Oksana; Gladkikh, Irina; Chausova, Victoria; Monastyrnaya, Margarita; Anastyuk, Stanislav; Chernikov, Oleg; Yurchenko, Ekaterina; Aminin, Dmitriy; Isaeva, Marina; Leychenko, Elena; Kozlovskaya, Emma

    2018-02-20

    Sea anemone mucus, due to its multiple and vital functions, is a valuable substance for investigation of new biologically active peptides. In this work, compounds of Heteractis magnifica mucus were separated by multistage liquid chromatography and resulting fractions were analyzed by MALDI-TOF MS. Peptide maps constructed according to the molecular masses and hydrophobicity showed presence of 326 both new and known peptides. Several major peptides from mucus were identified, including the sodium channel toxin RpII isolated earlier from H. magnifica, and four Kunitz-type proteinase inhibitors identical to H. crispa ones. Kunitz-type transcript diversity was studied and sequences of mature peptides were deduced. New β-defensin α-amylase inhibitor, a homolog of helianthamide from Stichodactyla helianthus, was isolated and structurally characterized. Overall, H. magnifica is a source of biologically active peptides with great pharmacological potential. Proteinase and α-amylase inhibitors along with toxins are major components of H. magnifica mucus which play an important role in the successful existence of sea anemones. Obtained peptide maps create a basis for more accurate identification of peptides during future transcriptomic/genomic studies of sea anemone H. magnifica. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Full-scale experiences of nitrogen removal of fish-processing wastewater with flotation and anoxic-aerobic activated sludge system.

    PubMed

    Steinke, M; Barjenbruch, M

    2010-01-01

    This article presents full scale experience of one of the largest fish-processing factories in Europe with a production capacity of about 50,000 tons herring per year and a maximum daily wastewater discharge of 1,500 m(3). The wastewater treatment plant is the only direct discharger in the fish-processing industry in Germany. Thus, very low effluent values have to be keep in, especially the nitrogen reduction has to be operated during the whole year even when the temperature is low. The central point of the multi-stage WWTP (about 90,000 PE) is the biological nutrient removal (BNR) with pre-denitrification. The wastewater pre-treatment with sieves (0.8 mm) and a two staged flotation reduces the nitrogen load - mainly the particle bounded fraction - but the optimal nutrient ratios for biological treatment need to be observed. The activated sludge system has maximum OLR of 0.12 g COD/(g MLSS d) and NLR of 0.015 g TN/(g MLSS d) but a "Stand-By"-Operation with periods without wastewater influent is unavoidable. Discontinuous operating is one problem. The dependence on temperature as one of the main influences of nitrification-activity is the second point. The article gives an overview about the start-up and the optimisation of the process.

  20. Multistage leaching of metals from spent lithium ion battery waste using electrochemically generated acidic lixiviant.

    PubMed

    Boxall, N J; Adamek, N; Cheng, K Y; Haque, N; Bruckard, W; Kaksonen, A H

    2018-04-01

    Lithium ion battery (LIB) waste contains significant valuable resources that could be recovered and reused to manufacture new products. This study aimed to develop an alternative process for extracting metals from LIB waste using acidic solutions generated by electrolysis for leaching. Results showed that solutions generated by electrolysis of 0.5 M NaCl at 8 V with graphite or mixed metal oxide (MMO) electrodes were weakly acidic and leach yields obtained under single stage (batch) leaching were poor (<10%). This was due to the highly acid-consuming nature of the battery waste. Multistage leaching with the graphite electrolyte solution improved leach yields overall, but the electrodes corroded over time. Though yields obtained with both electrolyte leach solutions were low when compared to the 4 M HCl control, there still remains potential to optimise the conditions for the generation of the acidic anolyte solution and the solubilisation of valuable metals from the LIB waste. A preliminary value proposition indicated that the process has the potential to be economically feasible if leach yields can be improved, especially based on the value of recoverable cobalt and lithium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Thermodynamic performance of multi-stage gradational lead screw vacuum pump

    NASA Astrophysics Data System (ADS)

    Zhao, Fan; Zhang, Shiwei; Sun, Kun; Zhang, Zhijun

    2018-02-01

    As a kind of dry mechanical vacuum pump, the twin-screw vacuum pump has an outstanding pumping performance during operation, widely used in the semiconductor industry. Compared with the constant lead screw (CLS) vacuum pump, the gradational lead screw (GLS) vacuum pump is more popularly applied in recent years. Nevertheless, not many comparative studies on the thermodynamic performance of GLS vacuum pump can be found in the literature. Our study focuses on one type of GLS vacuum pump, the multi-stage gradational lead screw (MGLS) vacuum pump, gives a detailed description of its construction and illustrates it with the drawing. Based on the structural analysis, the thermodynamic procedure is divided into four distinctive processes, including sucking process, transferring (compressing) process, backlashing process and exhausting process. The internal mechanism of each process is qualitatively illustrated and the mathematical expressions of seven thermodynamic parameters are given under the ideal situation. The performance curves of MGLS vacuum pump are plotted by MATLAB software and compared with those of the CLS vacuum pump in the same case. The results can well explain why the MGLS vacuum pump has more favorable pumping performance than the CLS vacuum pump in saving energy, reducing noise and heat dissipation.

  2. New generation of universal modeling for centrifugal compressors calculation

    NASA Astrophysics Data System (ADS)

    Galerkin, Y.; Drozdov, A.

    2015-08-01

    The Universal Modeling method is in constant use from mid - 1990th. Below is presented the newest 6th version of the Method. The flow path configuration of 3D impellers is presented in details. It is possible to optimize meridian configuration including hub/shroud curvatures, axial length, leading edge position, etc. The new model of vaned diffuser includes flow non-uniformity coefficient based on CFD calculations. The loss model was built from the results of 37 experiments with compressors stages of different flow rates and loading factors. One common set of empirical coefficients in the loss model guarantees the efficiency definition within an accuracy of 0.86% at the design point and 1.22% along the performance curve. The model verification was made. Four multistage compressors performances with vane and vaneless diffusers were calculated. As the model verification was made, four multistage compressors performances with vane and vaneless diffusers were calculated. Two of these compressors have quite unusual flow paths. The modeling results were quite satisfactory in spite of these peculiarities. One sample of the verification calculations is presented in the text. This 6th version of the developed computer program is being already applied successfully in the design practice.

  3. Mean Line Pump Flow Model in Rocket Engine System Simulation

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Lavelle, Thomas M.

    2000-01-01

    A mean line pump flow modeling method has been developed to provide a fast capability for modeling turbopumps of rocket engines. Based on this method, a mean line pump flow code PUMPA has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The pump code can model axial flow inducers, mixed-flow and centrifugal pumps. The code can model multistage pumps in series. The code features rapid input setup and computer run time, and is an effective analysis and conceptual design tool. The map generation capability of the code provides the map information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of the code permit parametric design space exploration of candidate pump configurations and provide pump performance data for engine system evaluation. The PUMPA code has been integrated with the Numerical Propulsion System Simulation (NPSS) code and an expander rocket engine system has been simulated. The mean line pump flow code runs as an integral part of the NPSS rocket engine system simulation and provides key pump performance information directly to the system model at all operating conditions.

  4. Large-scale multi-stage constructed wetlands for secondary effluents treatment in northern China: Carbon dynamics.

    PubMed

    Wu, Haiming; Fan, Jinlin; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan

    2018-02-01

    Multi-stage constructed wetlands (CWs) have been proved to be a cost-effective alternative in the treatment of various wastewaters for improving the treatment performance as compared with the conventional single-stage CWs. However, few long-term full-scale multi-stage CWs have been performed and evaluated for polishing effluents from domestic wastewater treatment plants (WWTP). This study investigated the seasonal and spatial dynamics of carbon and the effects of the key factors (input loading and temperature) in the large-scale seven-stage Wu River CW polishing domestic WWTP effluents in northern China. The results indicated a significant improvement in water quality. Significant seasonal and spatial variations of organics removal were observed in the Wu River CW with a higher COD removal efficiency of 64-66% in summer and fall. Obvious seasonal and spatial variations of CH 4 and CO 2 emissions were also found with the average CH 4 and CO 2 emission rates of 3.78-35.54 mg m -2 d -1 and 610.78-8992.71 mg m -2 d -1 , respectively, while the higher CH 4 and CO 2 emission flux was obtained in spring and summer. Seasonal air temperatures and inflow COD loading rates significantly affected organics removal and CH 4 emission, but they appeared to have a weak influence on CO 2 emission. Overall, this study suggested that large-scale Wu River CW might be a potential source of GHG, but considering the sustainability of the multi-stage CW, the inflow COD loading rate of 1.8-2.0 g m -2 d -1 and temperature of 15-20 °C may be the suitable condition for achieving the higher organics removal efficiency and lower greenhouse gases (GHG) emission in polishing the domestic WWTP effluent. The obtained knowledge of the carbon dynamics in large-scale Wu River CW will be helpful for understanding the carbon cycles, but also can provide useful field experience for the design, operation and management of multi-stage CW treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Protocol for a multicentre, multistage, prospective study in China using system-based approaches for consistent improvement in surgical safety.

    PubMed

    Yu, Xiaochu; Jiang, Jingmei; Liu, Changwei; Shen, Keng; Wang, Zixing; Han, Wei; Liu, Xingrong; Lin, Guole; Zhang, Ye; Zhang, Ying; Ma, Yufen; Bo, Haixin; Zhao, Yupei

    2017-06-15

    Surgical safety has emerged as a crucial global health issue in the past two decades. Although several safety-enhancing tools are available, the pace of large-scale improvement remains slow, especially in developing countries such as China. The present project (Modern Surgery and Anesthesia Safety Management System Construction and Promotion) aims to develop and validate system-based integrated approaches for reducing perioperative deaths and complications using a multicentre, multistage design. The project involves collection of clinical and outcome information for 1 20 000 surgical inpatients at four regionally representative academic/teaching general hospitals in China during three sequential stages: preparation and development, effectiveness validation and improvement of implementation for promotion. These big data will provide the evidence base for the formulation, validation and improvement processes of a system-based stratified safety intervention package covering the entire surgical pathway. Attention will be directed to managing inherent patient risks and regulating medical safety behaviour. Information technology will facilitate data collection and intervention implementation, provide supervision mechanisms and guarantee transfer of key patient safety messages between departments and personnel. Changes in rates of deaths, surgical complications during hospitalisation, length of stay, system adoption and implementation rates will be analysed to evaluate effectiveness and efficiency. This study was approved by the institutional review boards of Peking Union Medical College Hospital, First Hospital of China Medical University, Qinghai Provincial People's Hospital, Xiangya Hospital Central South University and the Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences. Study findings will be disseminated via peer-reviewed journals, conference presentations and patent papers. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Pulse shaping system research of CdZnTe radiation detector for high energy x-ray diagnostic

    NASA Astrophysics Data System (ADS)

    Li, Miao; Zhao, Mingkun; Ding, Keyu; Zhou, Shousen; Zhou, Benjie

    2018-02-01

    As one of the typical wide band-gap semiconductor materials, the CdZnTe material has high detection efficiency and excellent energy resolution for the hard X-ray and the Gamma ray. The generated signal of the CdZnTe detector needs to be transformed to the pseudo-Gaussian pulse with a small impulse-width to remove noise and improve the energy resolution by the following nuclear spectrometry data acquisition system. In this paper, the multi-stage pseudo-Gaussian shaping-filter has been investigated based on the nuclear electronic principle. The optimized circuit parameters were also obtained based on the analysis of the characteristics of the pseudo-Gaussian shaping-filter in our following simulations. Based on the simulation results, the falling-time of the output pulse was decreased and faster response time can be obtained with decreasing shaping-time τs-k. And the undershoot was also removed when the ratio of input resistors was set to 1 to 2.5. Moreover, a two stage sallen-key Gaussian shaping-filter was designed and fabricated by using a low-noise voltage feedback operation amplifier LMH6628. A detection experiment platform had been built by using the precise pulse generator CAKE831 as the imitated radiation pulse which was equivalent signal of the semiconductor CdZnTe detector. Experiment results show that the output pulse of the two stage pseudo-Gaussian shaping filter has minimum 200ns pulse width (FWHM), and the output pulse of each stage was well consistent with the simulation results. Based on the performance in our experiment, this multi-stage pseudo-Gaussian shaping-filter can reduce the event-lost caused by pile-up in the CdZnTe semiconductor detector and improve the energy resolution effectively.

  7. Protocol for a multicentre, multistage, prospective study in China using system-based approaches for consistent improvement in surgical safety

    PubMed Central

    Yu, Xiaochu; Jiang, Jingmei; Liu, Changwei; Shen, Keng; Wang, Zixing; Han, Wei; Liu, Xingrong; Lin, Guole; Zhang, Ye; Zhang, Ying; Ma, Yufen; Bo, Haixin; Zhao, Yupei

    2017-01-01

    Introduction Surgical safety has emerged as a crucial global health issue in the past two decades. Although several safety-enhancing tools are available, the pace of large-scale improvement remains slow, especially in developing countries such as China. The present project (Modern Surgery and Anesthesia Safety Management System Construction and Promotion) aims to develop and validate system-based integrated approaches for reducing perioperative deaths and complications using a multicentre, multistage design. Methods and analysis The project involves collection of clinical and outcome information for 1 20 000 surgical inpatients at four regionally representative academic/teaching general hospitals in China during three sequential stages: preparation and development, effectiveness validation and improvement of implementation for promotion. These big data will provide the evidence base for the formulation, validation and improvement processes of a system-based stratified safety intervention package covering the entire surgical pathway. Attention will be directed to managing inherent patient risks and regulating medical safety behaviour. Information technology will facilitate data collection and intervention implementation, provide supervision mechanisms and guarantee transfer of key patient safety messages between departments and personnel. Changes in rates of deaths, surgical complications during hospitalisation, length of stay, system adoption and implementation rates will be analysed to evaluate effectiveness and efficiency. Ethics and dissemination This study was approved by the institutional review boards of Peking Union Medical College Hospital, First Hospital of China Medical University, Qinghai Provincial People’s Hospital, Xiangya Hospital Central South University and the Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences. Study findings will be disseminated via peer-reviewed journals, conference presentations and patent papers. PMID:28619774

  8. pH multistage responsive micellar system with charge-switch and PEG layer detachment for co-delivery of paclitaxel and curcumin to synergistically eliminate breast cancer stem cells.

    PubMed

    Yang, Zhe; Sun, Na; Cheng, Rui; Zhao, Chenyang; Liu, Zerong; Li, Xian; Liu, Jie; Tian, Zhongmin

    2017-12-01

    Several studies have demonstrated that cancer stem cells (CSCs) are responsible for replenishing bulk tumor cells, generating new tumors and causing metastasis and relapse. Although combination therapy with multiple chemotherapeutics is considered to be a promising approach for simultaneously eliminating non-CSCs and CSCs, it is difficult to deliver drugs into the inner region of a solid tumor where the CSCs are located due to a lack of capillaries. Here, we synthesized a pH-sensitive polymer, poly(ethylene glycol)-benzoic imine-poly(γ-benzyl-l-aspartate)-b-poly(1-vinylimidazole) block copolymer (PPBV), to develop a pH multistage responsive micellar system for co-delivering paclitaxel and curcumin and synergistically eliminating breast cancer stem cells (bCSCs) and non-bCSCs. This pH multistage responsive micellar system could intelligently switch its surface charge from neutral to positive, de-shield its PEG layer and reduce its size after long-circulation and extravasation from leaky blood vessels at tumor sites, thus facilitating their cellular uptake and deep tumor penetration. These advantages were also beneficial for the combinational therapy efficacy of PTX and CUR to reach the maximum level and achieve superior tumor inhibition activity and effective bCSCs-killing capacity in vivo. Consequently, this pH multistage responsive micellar system is a powerful platform for collaborative therapy with PTX and CUR to simultaneously eliminate bCSCs and non-CSCs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Novel product ions of 2-aminoanilide and benzimidazole Ag(I) complexes using electrospray ionization with multi-stage tandem mass spectrometry.

    PubMed

    Johnson, Byron S; Burinsky, David J; Burova, Svetlana A; Davis, Roman; Fitzgerald, Russ N; Matsuoka, Richard T

    2012-05-15

    The 2-aminoaniline scaffold is of significant value to the pharmaceutical industry and is embedded in a number of pharmacophores including 2-aminoanilides and benzimidazoles. A novel application of coordination ion spray mass spectrometry (CIS-MS) for interrogating the silver ion (Ag(+)) complexes of a homologous series of these compounds using multi-stage tandem mass spectrometry is described. Unlike the ubiquitous alkali metal ion complexes, Ag(+) complexes of 2-aminoanilides and benzimidazoles were found to yield [M - H](+) ions in significant abundance via gas-phase elimination of the metal hydride (AgH) resulting in unique product ion cascades. Sample introduction was by liquid chromatography with mass spectrometry analysis performed on a hybrid linear ion trap/orbitrap instrument capable of high-resolution measurements. Rigorous structural characterization by multi-stage tandem mass spectrometry using [M +  H](+), [M - H](-) and [M - H](+) precursor ions derived from ESI and CIS experiments was performed for the homologous series of 2-aminoanilide and benzimidazole compounds. A full tabular comparison of structural information resulting from these product ion cascades was produced. Multi-stage tandem mass spectrometry of [M - H](+) ions resulting from Ag(+) complexes of 2-aminoanilides and benzimidazoles in CIS-MS experiments produced unique product ion cascades that exhibited complementary structural information to that obtained from tandem mass spectrometry of [M  +  H](+) and [M - H](-) ions by electrospray ionization (ESI). These observations may be broadly applicable to other compounds that are observed to form Ag(+) complexes and eliminate AgH. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Chaotic Time Series Analysis Method Developed for Stall Precursor Identification in High-Speed Compressors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A new technique for rotating stall precursor identification in high-speed compressors has been developed at the NASA Lewis Research Center. This pseudo correlation integral method uses a mathematical algorithm based on chaos theory to identify nonlinear dynamic changes in the compressor. Through a study of four various configurations of a high-speed compressor stage, a multistage compressor rig, and an axi-centrifugal engine test, this algorithm, using only a single pressure sensor, has consistently predicted the onset of rotating stall.

  11. Picosecond x-ray streak cameras

    NASA Astrophysics Data System (ADS)

    Averin, V. I.; Bryukhnevich, Gennadii I.; Kolesov, G. V.; Lebedev, Vitaly B.; Miller, V. A.; Saulevich, S. V.; Shulika, A. N.

    1991-04-01

    The first multistage image converter with an X-ray photocathode (UMI-93 SR) was designed in VNIIOFI in 1974 [1]. The experiments carried out in IOFAN pointed out that X-ray electron-optical cameras using the tube provided temporal resolution up to 12 picoseconds [2]. The later work has developed into the creation of the separate streak and intensifying tubes. Thus, PV-003R tube has been built on base of UMI-93SR design, fibre optically connected to PMU-2V image intensifier carrying microchannel plate.

  12. Design of penicillin fermentation process simulation system

    NASA Astrophysics Data System (ADS)

    Qi, Xiaoyu; Yuan, Zhonghu; Qi, Xiaoxuan; Zhang, Wenqi

    2011-10-01

    Real-time monitoring for batch process attracts increasing attention. It can ensure safety and provide products with consistent quality. The design of simulation system of batch process fault diagnosis is of great significance. In this paper, penicillin fermentation, a typical non-linear, dynamic, multi-stage batch production process, is taken as the research object. A visual human-machine interactive simulation software system based on Windows operation system is developed. The simulation system can provide an effective platform for the research of batch process fault diagnosis.

  13. Estimation and Selection via Absolute Penalized Convex Minimization And Its Multistage Adaptive Applications

    PubMed Central

    Huang, Jian; Zhang, Cun-Hui

    2013-01-01

    The ℓ1-penalized method, or the Lasso, has emerged as an important tool for the analysis of large data sets. Many important results have been obtained for the Lasso in linear regression which have led to a deeper understanding of high-dimensional statistical problems. In this article, we consider a class of weighted ℓ1-penalized estimators for convex loss functions of a general form, including the generalized linear models. We study the estimation, prediction, selection and sparsity properties of the weighted ℓ1-penalized estimator in sparse, high-dimensional settings where the number of predictors p can be much larger than the sample size n. Adaptive Lasso is considered as a special case. A multistage method is developed to approximate concave regularized estimation by applying an adaptive Lasso recursively. We provide prediction and estimation oracle inequalities for single- and multi-stage estimators, a general selection consistency theorem, and an upper bound for the dimension of the Lasso estimator. Important models including the linear regression, logistic regression and log-linear models are used throughout to illustrate the applications of the general results. PMID:24348100

  14. Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling.

    PubMed

    Amulya, K; Jukuri, Srinivas; Venkata Mohan, S

    2015-01-01

    Polyhydroxyalkanoates (PHA) production was evaluated in a multistage operation using food waste as a renewable feedstock. The first step involved the production of bio-hydrogen (bio-H2) via acidogenic fermentation. Volatile fatty acid (VFA) rich effluent from bio-H2 reactor was subsequently used for PHA production, which was carried out in two stages, Stage II (culture enrichment) and Stage III (PHA production). PHA-storing microorganisms were enriched in a sequencing batch reactor (SBR), operated at two different cycle lengths (CL-24; CL-12). Higher polymer recovery as well as VFA removal was achieved in CL-12 operation both in Stage II (16.3% dry cell weight (DCW); VFA removal, 84%) and Stage III (23.7% DCW; VFA removal, 88%). The PHA obtained was a co-polymer [P(3HB-co-3HV)] of PHB and PHV. The results obtained indicate that this integrated multistage process offers new opportunities to further leverage large scale PHA production with simultaneous waste remediation in the framework of biorefinery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Study on casing treatment and stator matching on multistage fan

    NASA Astrophysics Data System (ADS)

    Wu, Chuangliang; Yuan, Wei; Deng, Zhe

    2017-10-01

    Casing treatments are required for expanding the stall margin of multi-stage high-load turbofans designed with high blade-tip Mach numbers and high leakage flow. In the case of a low mass flow, the casing treatment effectively reduces the blockages caused by the leakage flow and enlarges the stall margin. However, in the case of a high mass flow, the casing treatment affects the overall flow capacity of the fan, the thrust when operating at the high speeds usually required by design-point specifications. Herein, we study a two-stage high-load fan with three-dimensional numerical simulations. We use the simulation results to propose a scheme that enlarges the stall margin of multistage high-load fans without sacrificing the flow capacity when operating with a large mass flow. Furthermore, a circumferential groove casing treatment is used and adjustments are made to the upstream stator angle to match the casing treatment. The stall margin is thus increased to 16.3%, with no reduction in the maximum mass flow rate or the design thrust performance.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doktorov, Alexander B., E-mail: doktorov@kinetics.nsc.ru

    Manifestations of the “cage effect” at the encounters of reactants are theoretically treated by the example of multistage reactions in liquid solutions including bimolecular exchange reactions as elementary stages. It is shown that consistent consideration of quasi-stationary kinetics of multistage reactions (possible only in the framework of the encounter theory) for reactions proceeding near reactants contact can be made on the basis of the concepts of a “cage complex.” Though mathematically such a consideration is more complicated, it is more clear from the standpoint of chemical notions. It is established that the presence of the “cage effect” leads to somemore » important effects not inherent in reactions in gases or those in solutions proceeding in the kinetic regime, such as the appearance of new transition channels of reactant transformation that cannot be caused by elementary event of chemical conversion for the given mechanism of reaction. This results in that, for example, rate constant values of multistage reaction defined by standard kinetic equations of formal chemical kinetics from experimentally measured kinetics can differ essentially from real values of these constants.« less

  17. Damage pattern as a function of radiation quality and other factors.

    PubMed

    Burkart, W; Jung, T; Frasch, G

    1999-01-01

    An understanding of damage pattern in critical cellular structures such as DNA is an important prerequisite for a mechanistic assessment of primary radiation damage, its possible repair, and the propagation of residual changes in somatic and germ cells as potential contributors to disease or ageing. Important quantitative insights have been made recently on the distribution in time and space of critical lesions from direct and indirect action of ionizing radiation on mammalian cells. When compared to damage from chemicals or from spontaneous degradation, e.g. depurination or base deamination in DNA, the potential of even low-LET radiation to create local hot spots of damage from single particle tracks is of utmost importance. This has important repercussions on inferences from critical biological effects at high dose and dose rate exposure situations to health risks at chronic, low-level exposures as experienced in environmental and controlled occupational settings. About 10,000 DNA lesions per human cell nucleus and day from spontaneous degradation and chemical attack cause no apparent effect, but a dose of 4 Gy translating into a similar number of direct and indirect DNA breaks induces acute lethality. Therefore, single lesions cannot explain the high efficiency of ionizing radiation in the induction of mutation, transformation and loss of proliferative capacity. Clustered damage leading to poorly repairable double-strand breaks or even more complex local DNA degradation, correlates better with fixed damage and critical biological endpoints. A comparison with other physical, chemical and biological agents indicates that ionizing radiation is indeed set apart from these by its unique micro- and nano-dosimetric traits. Only a few other agents such as bleomycin have a similar potential to cause complex damage from single events. However, in view of the multi-stage mechanism of carcinogenesis, it is still an open question whether dose-effect linearity for complex primary DNA damage and resulting fixed critical cellular lesions translate into linearity for radiation-induced cancer. To solve this enigma, a quantitative assessment of all genotoxic and harmful non-genotoxic agents affecting the human body would be needed.

  18. Porous silicon advances in drug delivery and immunotherapy

    PubMed Central

    Savage, D; Liu, X; Curley, S; Ferrari, M; Serda, RE

    2013-01-01

    Biomedical applications of porous silicon include drug delivery, imaging, diagnostics and immunotherapy. This review summarizes new silicon particle fabrication techniques, dynamics of cellular transport, advances in the multistage vector approach to drug delivery, and the use of porous silicon as immune adjuvants. Recent findings support superior therapeutic efficacy of the multistage vector approach over single particle drug delivery systems in mouse models of ovarian and breast cancer. With respect to vaccine development, multivalent presentation of pathogen-associated molecular patterns on the particle surface creates powerful platforms for immunotherapy, with the porous matrix able to carry both antigens and immune modulators. PMID:23845260

  19. Rotating stall investigation of 0.72 hub-tip ratio single-stage compressor

    NASA Technical Reports Server (NTRS)

    Graham, Robert W; Prian, Vasily D

    1954-01-01

    The rotating stall characteristics of a 0.72 hub-tip ratio, single-stage compressor were investigated. The stage was a 14-inch-diameter replica of the fourth stage of an experimental multistage compressor. No similarity existed between the frequency and propagation rate of the stall patterns observed in the single-stage replica and those observed in the multistage compressor after the fourth stage. A fatigue failure of the rotor blades occurred during the testing which was attributed to a resonance between the stall frequency and the natural bending frequency of the blades.

  20. Utilization of parallel processing in solving the inviscid form of the average-passage equation system for multistage turbomachinery

    NASA Technical Reports Server (NTRS)

    Mulac, Richard A.; Celestina, Mark L.; Adamczyk, John J.; Misegades, Kent P.; Dawson, Jef M.

    1987-01-01

    A procedure is outlined which utilizes parallel processing to solve the inviscid form of the average-passage equation system for multistage turbomachinery along with a description of its implementation in a FORTRAN computer code, MSTAGE. A scheme to reduce the central memory requirements of the program is also detailed. Both the multitasking and I/O routines referred to are specific to the Cray X-MP line of computers and its associated SSD (Solid-State Disk). Results are presented for a simulation of a two-stage rocket engine fuel pump turbine.

  1. Operation of staged membrane oxidation reactor systems

    DOEpatents

    Repasky, John Michael

    2012-10-16

    A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

  2. Faultfinder: A diagnostic expert system with graceful degradation for onboard aircraft applications

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy H.; Schutte, Paul C.; Palmer, Michael T.; Ricks, Wendell R.

    1988-01-01

    A research effort was conducted to explore the application of artificial intelligence technology to automation of fault monitoring and diagnosis as an aid to the flight crew. Human diagnostic reasoning was analyzed and actual accident and incident cases were reconstructed. Based on this analysis and reconstruction, diagnostic concepts were conceived and implemented for an aircraft's engine and hydraulic subsystems. These concepts are embedded within a multistage approach to diagnosis that reasons about time-based, causal, and qualitative information, and enables a certain amount of graceful degradation. The diagnostic concepts are implemented in a computer program called Faultfinder that serves as a research prototype.

  3. High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Bai, ZengLiang; Wang, XuYang; Yang, ShenShen; Li, YongMin

    2016-01-01

    Efficient reconciliation is a crucial step in continuous variable quantum key distribution. The progressive-edge-growth (PEG) algorithm is an efficient method to construct relatively short block length low-density parity-check (LDPC) codes. The qua-sicyclic construction method can extend short block length codes and further eliminate the shortest cycle. In this paper, by combining the PEG algorithm and qua-si-cyclic construction method, we design long block length irregular LDPC codes with high error-correcting capacity. Based on these LDPC codes, we achieve high-efficiency Gaussian key reconciliation with slice recon-ciliation based on multilevel coding/multistage decoding with an efficiency of 93.7%.

  4. Solvent-assisted multistage nonequilibrium electron transfer in rigid supramolecular systems: Diabatic free energy surfaces and algorithms for numerical simulations

    NASA Astrophysics Data System (ADS)

    Feskov, Serguei V.; Ivanov, Anatoly I.

    2018-03-01

    An approach to the construction of diabatic free energy surfaces (FESs) for ultrafast electron transfer (ET) in a supramolecule with an arbitrary number of electron localization centers (redox sites) is developed, supposing that the reorganization energies for the charge transfers and shifts between all these centers are known. Dimensionality of the coordinate space required for the description of multistage ET in this supramolecular system is shown to be equal to N - 1, where N is the number of the molecular centers involved in the reaction. The proposed algorithm of FES construction employs metric properties of the coordinate space, namely, relation between the solvent reorganization energy and the distance between the two FES minima. In this space, the ET reaction coordinate zn n' associated with electron transfer between the nth and n'th centers is calculated through the projection to the direction, connecting the FES minima. The energy-gap reaction coordinates zn n' corresponding to different ET processes are not in general orthogonal so that ET between two molecular centers can create nonequilibrium distribution, not only along its own reaction coordinate but along other reaction coordinates too. This results in the influence of the preceding ET steps on the kinetics of the ensuing ET. It is important for the ensuing reaction to be ultrafast to proceed in parallel with relaxation along the ET reaction coordinates. Efficient algorithms for numerical simulation of multistage ET within the stochastic point-transition model are developed. The algorithms are based on the Brownian simulation technique with the recrossing-event detection procedure. The main advantages of the numerical method are (i) its computational complexity is linear with respect to the number of electronic states involved and (ii) calculations can be naturally parallelized up to the level of individual trajectories. The efficiency of the proposed approach is demonstrated for a model supramolecular system involving four redox centers.

  5. An indirect continuous running multistage field test: the Université de Montréal track test.

    PubMed

    Léger, L; Boucher, R

    1980-06-01

    The object of this study was to report on the validity and reliability of the Université de Montréal Track Test (UM-TT). The UM-TT is a continuous maximal indirect multistage running field test based on the energy cost of running. The first stage is set at a walking speed that requires 5 Mets; thereafter the speed is increased by 1 Met every two minutes. In order to assess the validity of the UM-TT, 25 subjects, 24.4 +/- 2.8 years old (X +/- SD) had their VO2max predicted with the UM-TT and measured directly with a running multistage treadmill test. Averages (+/- SD) were not significantly different (61.5 +/- 10.6 and 61.4 +/- 10.9 ml O2 . kg-1 . min-1, respectively), other statistics being r = 0.96, delta = 0.09 +/- 2.90 ml O2 . kg-1 . min-1 and Syx = 2.81 ml O2 . kg-1 . min-1. Seven males, 20.6 +/- 1.0 years old, had also their VO2max measured directly during the UM-TT. Comparison of predicted and directly measured VO2max yielded similar results: 70.0 +/- 4.5 and 70.7 +/- 6.0 ml O2 . kg-1 . min-1, respectively with r = 0.66, delta = 0.67 +/- 4.53 and Syx = 3.71. Reliability of the UM-TT was assessed by repeating the test twice on 60 subjects (49 males and 11 females; 39 subjects below 30 years old and 21, above; and 30 subjects below and above 15 Mets). Results were as follows: X +/- SD = 54.1 +/- 8.2 and 54.2 +/- 8.5, r = 0.97, delta 0.11 +/- 1.92, and Syx = 1.92. Similar reliability trends were observed for each one of the subgroups of subjects. It is concluded that the UM-TT is valid and reliable to estimate the VO2max of trained and untrained young and middle-age males and females.

  6. Performance Improvement of a Return Channel in a Multistage Centrifugal Compressor Using Multiobjective Optimization.

    PubMed

    Nishida, Yoshifumi; Kobayashi, Hiromi; Nishida, Hideo; Sugimura, Kazuyuki

    2013-05-01

    The effect of the design parameters of a return channel on the performance of a multistage centrifugal compressor was numerically investigated, and the shape of the return channel was optimized using a multiobjective optimization method based on a genetic algorithm to improve the performance of the centrifugal compressor. The results of sensitivity analysis using Latin hypercube sampling suggested that the inlet-to-outlet area ratio of the return vane affected the total pressure loss in the return channel, and that the inlet-to-outlet radius ratio of the return vane affected the outlet flow angle from the return vane. Moreover, this analysis suggested that the number of return vanes affected both the loss and the flow angle at the outlet. As a result of optimization, the number of return vane was increased from 14 to 22 and the area ratio was decreased from 0.71 to 0.66. The radius ratio was also decreased from 2.1 to 2.0. Performance tests on a centrifugal compressor with two return channels (the original design and optimized design) were carried out using two-stage test apparatus. The measured flow distribution exhibited a swirl flow in the center region and a reversed swirl flow near the hub and shroud sides. The exit flow of the optimized design was more uniform than that of the original design. For the optimized design, the overall two-stage efficiency and pressure coefficient were increased by 0.7% and 1.5%, respectively. Moreover, the second-stage efficiency and pressure coefficient were respectively increased by 1.0% and 3.2%. It is considered that the increase in the second-stage efficiency was caused by the increased uniformity of the flow, and the rise in the pressure coefficient was caused by a decrease in the residual swirl flow. It was thus concluded from the numerical and experimental results that the optimized return channel improved the performance of the multistage centrifugal compressor.

  7. Simulation of a multistage fractured horizontal well in a water-bearing tight fractured gas reservoir under non-Darcy flow

    NASA Astrophysics Data System (ADS)

    Zhang, Rui-Han; Zhang, Lie-Hui; Wang, Rui-He; Zhao, Yu-Long; Huang, Rui

    2018-06-01

    Reservoir development for unconventional resources such as tight gas reservoirs is in increasing demand due to the rapid decline of production in conventional reserves. Compared with conventional reservoirs, fluid flow in water-bearing tight gas reservoirs is subject to more nonlinear multiphase flow and gas slippage in nano/micro matrix pores because of the strong collisions between rock and gas molecules. Economic gas production from tight gas reservoirs depends on extensive application of water-based hydraulic fracturing of horizontal wells, associated with non-Darcy flow at a high flow rate, geomechanical stress sensitivity of un-propped natural fractures, complex flow geometry and multiscale heterogeneity. How to efficiently and accurately predict the production performance of a multistage fractured horizontal well (MFHW) is challenging. In this paper, a novel multicontinuum, multimechanism, two-phase simulator is established based on unstructured meshes and the control volume finite element method to analyze the production performance of MFHWs. The multiple interacting continua model and discrete fracture model are coupled to integrate the unstimulated fractured reservoir, induced fracture networks (stimulated reservoir volumes, SRVs) and irregular discrete hydraulic fractures. Several simulations and sensitivity analyses are performed with the developed simulator for determining the key factors affecting the production performance of MFHWs. Two widely applied fracturing models, classic hydraulic fracturing which generates long double-wing fractures and the volumetric fracturing aimed at creating large SRVs, are compared to identify which of them can make better use of tight gas reserves.

  8. The effect of modified ijuk fibers to crystallinity of polypropylene composite

    NASA Astrophysics Data System (ADS)

    Prabowo, I.; Nur Pratama, J.; Chalid, M.

    2017-07-01

    Nowadays, plastics becomes concern associated with its degradation and environmental issues. It has led studies to develop an environmental-friendly material. To minimize the impact of those problems, recently the usage of natural fibers as a filler are introduced because of biodegradability and availability. The promising natural fiber is “ijuk” fiber from Arenga pinnata plant as a filler and polypropylene (PP) polymer as a matrix. Unfortunately, the natural fibers and polymers have the different properties on which polymers are polar while natural fibers are non-polar so that reducing the compatibility and resulting the poor crystallinity. To enhance the compatibility and crystallinity, ijuk fibers were prepared by multistage treatments including alkalinization with 5 and 10% sodium hydroxide (NaOH), oxidation with 3 and 6% sodium hypochlorite (NaClO) and hydrolysis with 20% sulphuric acid (H2SO4) in sequences. The purposes of multistage treatments are to remove the components such as lignin, wax, hemicellulose, to cause an oxidative fragmentation of remaining lignin and to annihilate the amorphous parts respectively. Fourier-Transform Infrared (FTIR) confirms the compatibility meanwhile Differential Scanning Calorimetry (DSC) reveals the crystallinity and Scanning Electron Microscope (SEM) displays surface morphology of polypropylene. The experiments were revealing that the effects of “ijuk” fibers by the multistage treatments of 5 and 10% NaOH resulting the crystallinity of polypropylene around 31.2 and 27.64% respectively compared to the crystallinity before adding the “ijuk” fibers for 16.8%. It indicates that the entire treatments increasing the compatibility and crystallinity of polypropylene. In addition, the use of 5% NaOH offers the better crystallinity than non-treated polypropylene. The experiments conclude that by adding alkalinized “ijuk” fibers of multistage treatments can increase the compatibility and crystallinity of polypropylene.

  9. The characteristics and controlling factor of the multi-stage eogenetic karst in the Longwangmiao Foramtion in Lower Cambrian, western Central Yangtze Block, SW China

    NASA Astrophysics Data System (ADS)

    Lu, C.

    2017-12-01

    This study utilized field outcrops, thin sections, geochemical data, and GR logging curves to investigate the development model of paleokarst within the Longwangmiao Formation in the Lower Cambrian, western Central Yangtze Block, SW China. The Longwangmiao Formation, which belongs to a third-order sequence, consists of four forth-order sequences and is located in the uppermost part of the Lower Cambrian. The vertical variations of the δ13C and δ18O values indicate the existence of multi-stage eogenetic karst events. The eogenetic karst event in the uppermost part of the Longwangmiao Formation is recognized by the dripstones developed within paleocaves, vertical paleoweathering crust with four zones (bedrock, a weak weathering zone, an intense weathering zone and a solution collapsed zone), two generations of calcsparite cement showing bright luminescence and a zonation from nonluminescent to bright to nonluminescent, two types breccias (matrix-rich clast-supported chaotic breccia and matrix-supported chaotic breccia) and rundkarren. The episodic variations of stratiform dissolution vugs and breccias in vertical, and facies-controlled dissolution and filling features indicated the development of multi-stages eogenetic karst. The development of the paleokarst model is controlled by multi-level sea-level changes. The long eccentricity cycle dictates the fluctuations of the forth-order sea-level, generating multi-stage eogenetic karst events. The paleokarst model is an important step towards better understanding the link between the probably orbitally forced sea-level oscillations and eogenetic karst in the Lower Cambrian. According to this paleokarst model, hydrocarbon exploration should focus on both the karst highlands and the karst transitional zone.

  10. Nonlinear electro-optic tuning of plasmonic nano-filter

    NASA Astrophysics Data System (ADS)

    Kotb, Rehab; Ismail, Yehea; Swillam, Mohamed A.

    2015-03-01

    Efficient, easy and accurate tuning techniques to a plasmonic nano-filter are investigated. The proposed filter supports both blue and red shift in the resonance wavelength. By varying the refractive index with a very small change (in the order of 10-3), the resonance wavelength can be controlled efficiently. Using Pockels material, an electrical tuning to the response of the filter is demonstrated. In addition, the behavior of the proposed filter can be controlled optically using Kerr material. A new approach of multi-stage electro-optic controlling is introduced. By cascading two stages and filling the first stage with pockels material and the second stage with kerr material, the output response of the second stage can be controlled by controlling the output response of the first stage electrically. Due to the sharp response of the proposed filter, 60nm shift in the resonance wavelength per 10 voltages is achieved. This nano-filter has compact size, low loss, sharp response and wide range of tunabilty which is highly demandable in many biological and sensing applications.

  11. Particle swarm optimization of ascent trajectories of multistage launch vehicles

    NASA Astrophysics Data System (ADS)

    Pontani, Mauro

    2014-02-01

    Multistage launch vehicles are commonly employed to place spacecraft and satellites in their operational orbits. If the rocket characteristics are specified, the optimization of its ascending trajectory consists of determining the optimal control law that leads to maximizing the final mass at orbit injection. The numerical solution of a similar problem is not trivial and has been pursued with different methods, for decades. This paper is concerned with an original approach based on the joint use of swarming theory and the necessary conditions for optimality. The particle swarm optimization technique represents a heuristic population-based optimization method inspired by the natural motion of bird flocks. Each individual (or particle) that composes the swarm corresponds to a solution of the problem and is associated with a position and a velocity vector. The formula for velocity updating is the core of the method and is composed of three terms with stochastic weights. As a result, the population migrates toward different regions of the search space taking advantage of the mechanism of information sharing that affects the overall swarm dynamics. At the end of the process the best particle is selected and corresponds to the optimal solution to the problem of interest. In this work the three-dimensional trajectory of the multistage rocket is assumed to be composed of four arcs: (i) first stage propulsion, (ii) second stage propulsion, (iii) coast arc (after release of the second stage), and (iv) third stage propulsion. The Euler-Lagrange equations and the Pontryagin minimum principle, in conjunction with the Weierstrass-Erdmann corner conditions, are employed to express the thrust angles as functions of the adjoint variables conjugate to the dynamics equations. The use of these analytical conditions coming from the calculus of variations leads to obtaining the overall rocket dynamics as a function of seven parameters only, namely the unknown values of the initial state and costate components, the coast duration, and the upper stage thrust duration. In addition, a simple approach is introduced and successfully applied with the purpose of satisfying exactly the path constraint related to the maximum dynamical pressure in the atmospheric phase. The basic version of the swarming technique, which is used in this research, is extremely simple and easy to program. Nevertheless, the algorithm proves to be capable of yielding the optimal rocket trajectory with a very satisfactory numerical accuracy.

  12. Porous silicon advances in drug delivery and immunotherapy.

    PubMed

    Savage, David J; Liu, Xuewu; Curley, Steven A; Ferrari, Mauro; Serda, Rita E

    2013-10-01

    Biomedical applications of porous silicon include drug delivery, imaging, diagnostics and immunotherapy. This review summarizes new silicon particle fabrication techniques, dynamics of cellular transport, advances in the multistage vector approach to drug delivery, and the use of porous silicon as immune adjuvants. Recent findings support superior therapeutic efficacy of the multistage vector approach over single particle drug delivery systems in mouse models of ovarian and breast cancer. With respect to vaccine development, multivalent presentation of pathogen-associated molecular patterns on the particle surface creates powerful platforms for immunotherapy, with the porous matrix able to carry both antigens and immune modulators. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. The utilization of parallel processing in solving the inviscid form of the average-passage equation system for multistage turbomachinery

    NASA Technical Reports Server (NTRS)

    Mulac, Richard A.; Celestina, Mark L.; Adamczyk, John J.; Misegades, Kent P.; Dawson, Jef M.

    1987-01-01

    A procedure is outlined which utilizes parallel processing to solve the inviscid form of the average-passage equation system for multistage turbomachinery along with a description of its implementation in a FORTRAN computer code, MSTAGE. A scheme to reduce the central memory requirements of the program is also detailed. Both the multitasking and I/O routines referred to in this paper are specific to the Cray X-MP line of computers and its associated SSD (Solid-state Storage Device). Results are presented for a simulation of a two-stage rocket engine fuel pump turbine.

  14. A planning and scheduling lexicon

    NASA Technical Reports Server (NTRS)

    Cruz, Jennifer W.; Eggemeyer, William C.

    1989-01-01

    A lexicon related to mission planning and scheduling for spacecraft is presented. Planning and scheduling work is known as sequencing. Sequencing is a multistage process of merging requests from both the science and engineering arenas to accomplish the objectives defined in the requests. The multistage process begins with the creation of science and engineering goals, continues through their integration into the sequence, and eventually concludes with command execution onboard the spacecraft. The objective of this publication is to introduce some formalism into the field of spacecraft sequencing-system technology. This formalism will make it possible for researchers and potential customers to communicate about system requirements and capabilities in a common language.

  15. Experimental and theoretical rotordynamic stiffness coefficients for a three-stage brush seal

    NASA Astrophysics Data System (ADS)

    Pugachev, A. O.; Deckner, M.

    2012-08-01

    Experimental and theoretical results are presented for a multistage brush seal. Experimental stiffness is obtained from integrating circumferential pressure distribution measured in seal cavities. A CFD analysis is used to predict seal performance. Bristle packs are modeled by the porous medium approach. Leakage is predicted well by the CFD method. Theoretical stiffness coefficients are in reasonable agreement with the measurements. Experimental results are also compared with a three-teeth-on-stator labyrinth seal. The multistage brush seal gives about 60% leakage reduction over the labyrinth seal. Rotordynamic stiffness coefficients are also improved: the brush seal has positive direct stiffness and smaller cross-coupled stiffness.

  16. Multistage adsorption of diffusing macromolecules and viruses

    NASA Astrophysics Data System (ADS)

    Chou, Tom; D'Orsogna, Maria R.

    2007-09-01

    We derive the equations that describe adsorption of diffusing particles onto a surface followed by additional surface kinetic steps before being transported across the interface. Multistage surface kinetics occurs during membrane protein insertion, cell signaling, and the infection of cells by virus particles. For example, viral entry into healthy cells is possible only after a series of receptor and coreceptor binding events occurs at the cellular surface. We couple the diffusion of particles in the bulk phase with the multistage surface kinetics and derive an effective, integrodifferential boundary condition that contains a memory kernel embodying the delay induced by the surface reactions. This boundary condition takes the form of a singular perturbation problem in the limit where particle-surface interactions are short ranged. Moreover, depending on the surface kinetics, the delay kernel induces a nonmonotonic, transient replenishment of the bulk particle concentration near the interface. The approach generalizes that of Ward and Tordai [J. Chem. Phys. 14, 453 (1946)] and Diamant and Andelman [Colloids Surf. A 183-185, 259 (2001)] to include surface kinetics, giving rise to qualitatively new behaviors. Our analysis also suggests a simple scheme by which stochastic surface reactions may be coupled to deterministic bulk diffusion.

  17. The general theory of multistage geminate reactions of isolated pairs of reactants. III. Two-stage reversible dissociation in geminate reaction A + A ↔ C ↔ B + B.

    PubMed

    Kipriyanov, Alexey A; Kipriyanov, Alexander A; Doktorov, Alexander B

    2016-04-14

    Specific two-stage reversible reaction A + A ↔ C ↔ B + B of the decay of species C reactants by two independent transition channels is considered on the basis of the general theory of multistage reactions of isolated pairs of reactants. It is assumed that at the initial instant of time, the reacting system contains only reactants C. The employed general approach has made it possible to consider, in the general case, the inhomogeneous initial distribution of reactants, and avoid application of model concepts of a reaction system structure (i.e., of the structure of reactants and their molecular mobility). Slowing of multistage reaction kinetics as compared to the kinetics of elementary stages is established and physically interpreted. To test approximations (point approximation) used to develop a universal kinetic law, a widely employed specific model of spherical particles with isotropic reactivity diffusing in solution is applied. With this particular model as an example, ultimate kinetics of chemical conversion of reactants is investigated. The question concerning the depths of chemical transformation at which long-term asymptotes are reached is studied.

  18. The general theory of multistage geminate reactions of isolated pairs of reactants. III. Two-stage reversible dissociation in geminate reaction A + A↔C↔B + B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kipriyanov, Alexey A.; Kipriyanov, Alexander A.; Doktorov, Alexander B.

    2016-04-14

    Specific two-stage reversible reaction A + A↔C↔B + B of the decay of species C reactants by two independent transition channels is considered on the basis of the general theory of multistage reactions of isolated pairs of reactants. It is assumed that at the initial instant of time, the reacting system contains only reactants C. The employed general approach has made it possible to consider, in the general case, the inhomogeneous initial distribution of reactants, and avoid application of model concepts of a reaction system structure (i.e., of the structure of reactants and their molecular mobility). Slowing of multistage reactionmore » kinetics as compared to the kinetics of elementary stages is established and physically interpreted. To test approximations (point approximation) used to develop a universal kinetic law, a widely employed specific model of spherical particles with isotropic reactivity diffusing in solution is applied. With this particular model as an example, ultimate kinetics of chemical conversion of reactants is investigated. The question concerning the depths of chemical transformation at which long-term asymptotes are reached is studied.« less

  19. Self-catalyzed growth of S layers via an amorphous-to-crystalline transition limited by folding kinetics.

    PubMed

    Chung, Sungwook; Shin, Seong-Ho; Bertozzi, Carolyn R; De Yoreo, James J

    2010-09-21

    The importance of nonclassical, multistage crystallization pathways is increasingly evident from theoretical studies on colloidal systems and experimental investigations of proteins and biomineral phases. Although theoretical predictions suggest that proteins follow these pathways as a result of fluctuations that create unstable dense-liquid states, microscopic studies indicate these states are long-lived. Using in situ atomic force microscopy to follow 2D assembly of S-layer proteins on supported lipid bilayers, we have obtained a molecular-scale picture of multistage protein crystallization that reveals the importance of conformational transformations in directing the pathway of assembly. We find that monomers with an extended conformation first form a mobile adsorbed phase, from which they condense into amorphous clusters. These clusters undergo a phase transition through S-layer folding into crystalline clusters composed of compact tetramers. Growth then proceeds by formation of new tetramers exclusively at cluster edges, implying tetramer formation is autocatalytic. Analysis of the growth kinetics leads to a quantitative model in which tetramer creation is rate limiting. However, the estimated barrier is much smaller than expected for folding of isolated S-layer proteins, suggesting an energetic rationale for this multistage pathway.

  20. Effect of a multistage ultraendurance triathlon on aldosterone, vasopressin, extracellular water and urine electrolytes.

    PubMed

    Knechtle, B; Morales, N P Hernández; González, E Ruvalcaba; Gutierrez, A A Aguirre; Sevilla, J Noriega; Gómez, R Amézquita; Robledo, A R Estrada; Rodríguez, A L Marroquín; Fraire, O Salas; Andonie, J L; Lopez, L C; Kohler, G; Rosemann, T

    2012-02-01

    Prolonged endurance exercise over several days induces increase in extracellular water (ECW). We aimed to investigate an association between the increase in ECW and the change in aldosterone and vasopressin in a multistage ultraendurance triathlon, the 'World Challenge Deca Iron Triathlon' with 10 Ironman triathlons within 10 days. Before and after each Ironman, body mass, ECW, urinary [Na(+)], urinary [K(+)], urinary specific gravity, urinary osmolality and aldosterone and vasopressin in plasma were measured. The 11 finishers completed the total distance of 38 km swimming, 1800 km cycling and 422 km running within 145.5 (18.8) hours and 25 (22) minutes. ECW increased by 0.9 (1.1) L from 14.6 (1.5) L prerace to 15.5 (1.9) L postrace (P < 0.0001). Aldosterone increased from 70.8 (104.5) pg/mL to 102.6 (104.6) pg/mL (P = 0.033); vasopressin remained unchanged. The increase in ECW was related neither to postrace aldosterone nor to postrace vasopressin. In conclusion, ECW and aldosterone increased after this multistage ultraendurance triathlon, but vasopressin did not. The increase in ECW and the increase in aldosterone were not associated.

  1. Multistage bioassociation of uranium onto an extremely halophilic archaeon revealed by a unique combination of spectroscopic and microscopic techniques

    DOE PAGES

    Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; ...

    2016-12-27

    The interactions of two extremely halophilic archaea with uranium were investigated in this paper at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, themore » involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Finally, our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization.« less

  2. Treatment of wastewater containing a large amount of suspended solids by a novel multi-staged UASB reactor.

    PubMed

    Uemura, S; Harada, H; Ohashi, A; Torimura, S

    2005-12-01

    Treatment of artificial wastewater containing a large amount of suspended solids comprised of soybean processing waste and pig fodder was studied using a novel multi-staged upflow anaerobic sludge blanket reactor. The reactor consisted of three compartments, each containing a gas solid separator. The wastewater had chemical oxygen demand of approximately 21600 mg l(-1), suspended solids of 12800 mg l(-1), and an ammonia concentration of 945 mg l(-1). A continuous experiment without effluent circulation showed that the multi-staged reactor was not that effective for the treatment of wastewater containing a large amount of suspended solids. However, operation of the reactor with circulation of effluent enabled the reactor to achieve organic removal of 85% and approximately 70% methane conversion at loading rates of between 4.0 to 5.4 kg-chemical oxygen demand per cubic meter per day, meaning that the reactor was more effective when effluent was circulated. Morphological investigation revealed that the crude fiber in the sludge was partially degraded and that it had many small depressions on its surface. Evolved biogas may have become caught in these depressions of the fibers and caused washout of the sludge.

  3. Multistage bioassociation of uranium onto an extremely halophilic archaeon revealed by a unique combination of spectroscopic and microscopic techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bader, Miriam; Müller, Katharina; Foerstendorf, Harald

    The interactions of two extremely halophilic archaea with uranium were investigated in this paper at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, themore » involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Finally, our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization.« less

  4. Multistage bioassociation of uranium onto an extremely halophilic archaeon revealed by a unique combination of spectroscopic and microscopic techniques.

    PubMed

    Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; Drobot, Björn; Schmidt, Matthias; Musat, Niculina; Swanson, Juliet S; Reed, Donald T; Stumpf, Thorsten; Cherkouk, Andrea

    2017-04-05

    The interactions of two extremely halophilic archaea with uranium were investigated at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, the involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization. Copyright © 2016. Published by Elsevier B.V.

  5. Multi-Stage Metering Mechanism for Transplanting of Vegetable Seedlings in Paper Pots

    NASA Astrophysics Data System (ADS)

    Nandede, B. M.; Raheman, H.

    2015-12-01

    A multi-stage rotating cup type metering mechanism was developed for transplanting of vegetable seedlings of tomato, brinjal and chili raised in paper pots. The developed setup consisted of a seedling feeding wheel, metering wheel, fixed slotted plate, seedling delivery tube, furrow opener, furrow closer and a power transmission system. Its evaluation was carried out with pot seedlings of tomato, brinjal and chili of 8-11 cm height at five forward speeds (0.6, 0.9, 1.2, 2.2 and 3.2 km/h) and two plant spacings (45 and 60 cm) in controlled soil bin condition. The mean values of feeding efficiency, conveying efficiency, planting efficiency and overall efficiency of the multistage metering unit were observed to be higher than 90 % for forward speeds of 0.6 to 2.2 km/h. With further increase in speed to 3.2 km/h, the feeding and conveying efficiency were observed to be higher than 90 %, whereas, the planting efficiency drastically reduced to around 50 % due to the problem in getting the pot seedlings vertically in the furrow. Also the seedlings were falling into the furrow at an angle greater than 70° to the vertical, hence not suitable for transplanting.

  6. Separation Control in a Multistage Compressor Using Impulsive Surface Injection

    NASA Technical Reports Server (NTRS)

    Wundrow, David W.; Braunscheidel, Edward P.; Culley, Dennis E.; Bright, Michelle M.

    2006-01-01

    Control of flow separation using impulsive surface injection is investigated within the multistage environment of a low speed axial-flow compressor. Measured wake profiles behind a set of embedded stator vanes treated with suction-surface injection indicate significant reduction in flow separation at a variety of injection-pulse repetition rates and durations. The corresponding total pressure losses across the vanes reveal a bank of repetition rates at each pulse duration where the separation control remains nearly complete. This persistence allows for demands on the injected-mass delivery system to be economized while still achieving effective flow control. The response of the stator-vane boundary layers to infrequently applied short injection pulses is described in terms of the periodic excitation of turbulent strips whose growth and propagation characteristics dictate the lower bound on the band of optimal pulse repetition rates. The eventual falloff in separation control at higher repetition rates is linked to a competition between the benefits of pulse-induced mixing and the aggravation caused by the periodic introduction of low-momentum fluid. Use of these observations for impulsive actuator design is discussed and their impact on modeling the time-average effect of impulsive surface injection for multistage steady-flow simulation is considered.

  7. Multi-Stage Open Peer Review: Scientific Evaluation Integrating the Strengths of Traditional Peer Review with the Virtues of Transparency and Self-Regulation

    PubMed Central

    Pöschl, Ulrich

    2012-01-01

    The traditional forms of scientific publishing and peer review do not live up to all demands of efficient communication and quality assurance in today’s highly diverse and rapidly evolving world of science. They need to be advanced and complemented by interactive and transparent forms of review, publication, and discussion that are open to the scientific community and to the public. The advantages of open access, public peer review, and interactive discussion can be efficiently and flexibly combined with the strengths of traditional scientific peer review. Since 2001 the benefits and viability of this approach are clearly demonstrated by the highly successful interactive open access journal Atmospheric Chemistry and Physics (ACP, www.atmos-chem-phys.net) and a growing number of sister journals launched and operated by the European Geosciences Union (EGU, www.egu.eu) and the open access publisher Copernicus (www.copernicus.org). The interactive open access journals are practicing an integrative multi-stage process of publication and peer review combined with interactive public discussion, which effectively resolves the dilemma between rapid scientific exchange and thorough quality assurance. Key features and achievements of this approach are: top quality and impact, efficient self-regulation and low rejection rates, high attractivity and rapid growth, low costs, and financial sustainability. In fact, ACP and the EGU interactive open access sister journals are by most if not all standards more successful than comparable scientific journals with traditional or alternative forms of peer review (editorial statistics, publication statistics, citation statistics, economic costs, and sustainability). The high efficiency and predictive validity of multi-stage open peer review have been confirmed in a series of dedicated studies by evaluation experts from the social sciences, and the same or similar concepts have recently also been adopted in other disciplines, including the life sciences and economics. Multi-stage open peer review can be flexibly adjusted to the needs and peculiarities of different scientific communities. Due to the flexibility and compatibility with traditional structures of scientific publishing and peer review, the multi-stage open peer review concept enables efficient evolution in scientific communication and quality assurance. It has the potential for swift replacement of hidden peer review as the standard of scientific quality assurance, and it provides a basis for open evaluation in science. PMID:22783183

  8. Leaving home: how older adults prepare for intensive volunteering.

    PubMed

    Cheek, Cheryl; Piercy, Kathleen W; Grainger, Sarah

    2015-03-01

    Using the concepts in the Fogg Behavioral Model, 37 volunteers aged 50 and older described their preparation for intensive volunteering with faith-based organizations. Their multistage preparation process included decision points where respondents needed to choose whether to drop out or continue preparation. Ability was a stronger determinant of serving than motivation, particularly in terms of health and finances. This model can facilitate understanding of the barriers to volunteering and aid organizations in tailoring support at crucial points for potential older volunteers in intensive service. © The Author(s) 2013.

  9. A miniature Hopkinson experiment device based on multistage reluctance coil electromagnetic launch.

    PubMed

    Huang, Wenkai; Huan, Shi; Xiao, Ying

    2017-09-01

    A set of seven-stage reluctance miniaturized Hopkinson bar electromagnetic launcher has been developed in this paper. With the characteristics of high precision, small size, and little noise pollution, the device complies with the requirements of miniaturized Hopkinson bar for high strain rate. The launcher is a seven-stage accelerating device up to 65.5 m/s. A high performance microcontroller is used to control accurately the discharge of capacitor sets, by means of which the outlet velocity of the projectile can be controlled within a certain velocity range.

  10. A miniature Hopkinson experiment device based on multistage reluctance coil electromagnetic launch

    NASA Astrophysics Data System (ADS)

    Huang, Wenkai; Huan, Shi; Xiao, Ying

    2017-09-01

    A set of seven-stage reluctance miniaturized Hopkinson bar electromagnetic launcher has been developed in this paper. With the characteristics of high precision, small size, and little noise pollution, the device complies with the requirements of miniaturized Hopkinson bar for high strain rate. The launcher is a seven-stage accelerating device up to 65.5 m/s. A high performance microcontroller is used to control accurately the discharge of capacitor sets, by means of which the outlet velocity of the projectile can be controlled within a certain velocity range.

  11. GPU Acceleration of DSP for Communication Receivers.

    PubMed

    Gunther, Jake; Gunther, Hyrum; Moon, Todd

    2017-09-01

    Graphics processing unit (GPU) implementations of signal processing algorithms can outperform CPU-based implementations. This paper describes the GPU implementation of several algorithms encountered in a wide range of high-data rate communication receivers including filters, multirate filters, numerically controlled oscillators, and multi-stage digital down converters. These structures are tested by processing the 20 MHz wide FM radio band (88-108 MHz). Two receiver structures are explored: a single channel receiver and a filter bank channelizer. Both run in real time on NVIDIA GeForce GTX 1080 graphics card.

  12. Identification of a New Susceptibility Locus for Systemic Lupus Erythematosus on Chromosome 12 in Individuals of European Ancestry

    PubMed Central

    Demirci, F. Yesim; Wang, Xingbin; Kelly, Jennifer A.; Morris, David L.; Barmada, M. Michael; Feingold, Eleanor; Kao, Amy H.; Sivils, Kathy L.; Bernatsky, Sasha; Pineau, Christian; Clarke, Ann; Ramsey-Goldman, Rosalind; Vyse, Timothy J.; Gaffney, Patrick M.; Manzi, Susan; Kamboh, M. Ilyas

    2016-01-01

    Objective Genome-wide association studies (GWASs) in individuals of European ancestry identified a number of systemic lupus erythematosus (SLE) susceptibility loci using earlier versions of high-density genotyping platforms. Follow-up studies on suggestive GWAS regions using larger samples and more markers identified additional SLE loci in European-descent subjects. Here we report the results of a multi-stage study that we performed to identify novel SLE loci. Methods In Stage 1, we conducted a new GWAS of SLE in a North American case-control sample of European ancestry (n=1,166) genotyped on Affymetrix Genome-Wide Human SNP Array 6.0. In Stage 2, we further investigated top new suggestive GWAS hits by in silico evaluation and meta-analysis using an additional dataset of European-descent subjects (>2,500 individuals), followed by replication of top meta-analysis findings in another dataset of European-descent subjects (>10,000 individuals) in Stage 3. Results As expected, our GWAS revealed most significant associations at the major histocompatibility complex locus (6p21), which easily surpassed genome-wide significance threshold (P<5×10−8). Several other SLE signals/loci previously implicated in Caucasians and/or Asians were also supported in Stage 1 discovery sample and strongest signals were observed at 2q32/STAT4 (P=3.6×10−7) and at 8p23/BLK (P=8.1×10−6). Stage 2 meta-analyses identified a new genome-wide significant SLE locus at 12q12 (meta P=3.1×10−8), which was replicated in Stage 3. Conclusion Our multi-stage study identified and replicated a new SLE locus that warrants further follow-up in additional studies. Publicly available databases suggest that this new SLE signal falls within a functionally relevant genomic region and near biologically important genes. PMID:26316170

  13. Controllability in Multi-Stage Laser Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Barada, D.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Li, X. F.; Yu, Q.

    2015-11-01

    The present paper shows a concept for a future laser ion accelerator, which should have an ion source, ion collimators, ion beam bunchers and ion post acceleration devices. Based on the laser ion accelerator components, the ion particle energy and the ion energy spectrum are controlled, and a future compact laser ion accelerator would be designed for ion cancer therapy or for ion material treatment. In this study each component is designed to control the ion beam quality. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching are successfully realized by a multi-stage laser-target interaction. A combination of each component provides a high controllability of the ion beam quality to meet variable requirements in various purposes in the laser ion accelerator. The work was partly supported by MEXT, JSPS, ASHULA project/ ILE, Osaka University, CORE (Center for Optical Research and Education, Utsunomiya University, Japan), Fudan University and CDI (Creative Dept. for Innovation) in CCRD, Utsunomiya University.

  14. Multi-stage robust scheme for citrus identification from high resolution airborne images

    NASA Astrophysics Data System (ADS)

    Amorós-López, Julia; Izquierdo Verdiguier, Emma; Gómez-Chova, Luis; Muñoz-Marí, Jordi; Zoilo Rodríguez-Barreiro, Jorge; Camps-Valls, Gustavo; Calpe-Maravilla, Javier

    2008-10-01

    Identification of land cover types is one of the most critical activities in remote sensing. Nowadays, managing land resources by using remote sensing techniques is becoming a common procedure to speed up the process while reducing costs. However, data analysis procedures should satisfy the accuracy figures demanded by institutions and governments for further administrative actions. This paper presents a methodological scheme to update the citrus Geographical Information Systems (GIS) of the Comunidad Valenciana autonomous region, Spain). The proposed approach introduces a multi-stage automatic scheme to reduce visual photointerpretation and ground validation tasks. First, an object-oriented feature extraction process is carried out for each cadastral parcel from very high spatial resolution (VHR) images (0.5m) acquired in the visible and near infrared. Next, several automatic classifiers (decision trees, multilayer perceptron, and support vector machines) are trained and combined to improve the final accuracy of the results. The proposed strategy fulfills the high accuracy demanded by policy makers by means of combining automatic classification methods with visual photointerpretation available resources. A level of confidence based on the agreement between classifiers allows us an effective management by fixing the quantity of parcels to be reviewed. The proposed methodology can be applied to similar problems and applications.

  15. Handwritten numeral databases of Indian scripts and multistage recognition of mixed numerals.

    PubMed

    Bhattacharya, Ujjwal; Chaudhuri, B B

    2009-03-01

    This article primarily concerns the problem of isolated handwritten numeral recognition of major Indian scripts. The principal contributions presented here are (a) pioneering development of two databases for handwritten numerals of two most popular Indian scripts, (b) a multistage cascaded recognition scheme using wavelet based multiresolution representations and multilayer perceptron classifiers and (c) application of (b) for the recognition of mixed handwritten numerals of three Indian scripts Devanagari, Bangla and English. The present databases include respectively 22,556 and 23,392 handwritten isolated numeral samples of Devanagari and Bangla collected from real-life situations and these can be made available free of cost to researchers of other academic Institutions. In the proposed scheme, a numeral is subjected to three multilayer perceptron classifiers corresponding to three coarse-to-fine resolution levels in a cascaded manner. If rejection occurred even at the highest resolution, another multilayer perceptron is used as the final attempt to recognize the input numeral by combining the outputs of three classifiers of the previous stages. This scheme has been extended to the situation when the script of a document is not known a priori or the numerals written on a document belong to different scripts. Handwritten numerals in mixed scripts are frequently found in Indian postal mails and table-form documents.

  16. The Linear Quadratic Gaussian Multistage Game with Nonclassical Information Pattern Using a Direct Solution Method

    NASA Astrophysics Data System (ADS)

    Clemens, Joshua William

    Game theory has application across multiple fields, spanning from economic strategy to optimal control of an aircraft and missile on an intercept trajectory. The idea of game theory is fascinating in that we can actually mathematically model real-world scenarios and determine optimal decision making. It may not always be easy to mathematically model certain real-world scenarios, nonetheless, game theory gives us an appreciation for the complexity involved in decision making. This complexity is especially apparent when the players involved have access to different information upon which to base their decision making (a nonclassical information pattern). Here we will focus on the class of adversarial two-player games (sometimes referred to as pursuit-evasion games) with nonclassical information pattern. We present a two-sided (simultaneous) optimization solution method for the two-player linear quadratic Gaussian (LQG) multistage game. This direct solution method allows for further interpretation of each player's decision making (strategy) as compared to previously used formal solution methods. In addition to the optimal control strategies, we present a saddle point proof and we derive an expression for the optimal performance index value. We provide some numerical results in order to further interpret the optimal control strategies and to highlight real-world application of this game-theoretic optimal solution.

  17. Trend and current practices of palm oil mill effluent polishing: Application of advanced oxidation processes and their future perspectives.

    PubMed

    Bello, Mustapha Mohammed; Abdul Raman, Abdul Aziz

    2017-08-01

    Palm oil processing is a multi-stage operation which generates large amount of effluent. On average, palm oil mill effluent (POME) may contain up to 51, 000 mg/L COD, 25,000 mg/L BOD, 40,000 TS and 6000 mg/L oil and grease. Due to its potential to cause environmental pollution, palm oil mills are required to treat the effluent prior to discharge. Biological treatments using open ponding system are widely used for POME treatment. Although these processes are capable of reducing the pollutant concentrations, they require long hydraulic retention time and large space, with the effluent frequently failing to satisfy the discharge regulation. Due to more stringent environmental regulations, research interest has recently shifted to the development of polishing technologies for the biologically-treated POME. Various technologies such as advanced oxidation processes, membrane technology, adsorption and coagulation have been investigated. Among these, advanced oxidation processes have shown potentials as polishing technologies for POME. This paper offers an overview on the POME polishing technologies, with particularly emphasis on advanced oxidation processes and their prospects for large scale applications. Although there are some challenges in large scale applications of these technologies, this review offers some perspectives that could help in overcoming these challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Malaria vaccines and human immune responses.

    PubMed

    Long, Carole A; Zavala, Fidel

    2016-08-01

    Despite reductions in malaria episodes and deaths over the past decade, there is still significant need for more effective tools to combat this serious global disease. The positive results with the Phase III trial of RTS,S directed to the circumsporozoite protein of Plasmodium falciparum have established that a vaccine against malaria can provide partial protection to children in endemic areas, but its limited efficacy and relatively short window of protection mandate that new generations of more efficacious vaccines must be sought. Evidence shows that anti-parasite immune responses can control infection against other stages as well, but translating these experimental findings into vaccines for blood stages has been disappointing and clinical efforts to test a transmission blocking vaccine are just beginning. Difficulties include the biological complexity of the organism with a large array of stage-specific genes many of which in the erythrocytic stages are antigenically diverse. In addition, it appears necessary to elicit high and long-lasting antibody titers, address the redundant pathways of merozoite invasion, and still seek surrogate markers of protective immunity. Most vaccine studies have focused on a single or a few antigens with an apparent functional role, but this is likely to be too restrictive, and broad, multi-antigen, multi-stage vaccines need further investigation. Finally, novel tools and biological insights involving parasite sexual stages and the mosquito vector will provide new avenues for reducing or blocking malaria transmission. Published by Elsevier Ltd.

  19. Research on Multi - Person Parallel Modeling Method Based on Integrated Model Persistent Storage

    NASA Astrophysics Data System (ADS)

    Qu, MingCheng; Wu, XiangHu; Tao, YongChao; Liu, Ying

    2018-03-01

    This paper mainly studies the multi-person parallel modeling method based on the integrated model persistence storage. The integrated model refers to a set of MDDT modeling graphics system, which can carry out multi-angle, multi-level and multi-stage description of aerospace general embedded software. Persistent storage refers to converting the data model in memory into a storage model and converting the storage model into a data model in memory, where the data model refers to the object model and the storage model is a binary stream. And multi-person parallel modeling refers to the need for multi-person collaboration, the role of separation, and even real-time remote synchronization modeling.

  20. PCF based high power narrow line width pulsed fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, H.; Yan, P.; Xiao, Q.; Wang, Y.; Gong, M.

    2012-09-01

    Based on semiconductor diode seeded multi-stage cascaded fiber amplifiers, we have obtained 88-W average power of a 1063-nm laser with high repetition rate of up to 1.5 MHz and a constant 2-ns pulse duration. No stimulated Brillouin scattering pulse or optical damage occurred although the maximum pulse peak power has exceeded 112 kW. The output laser exhibits excellent beam quality (M2x = 1.24 and M2y = 1.18), associated with a spectral line width as narrow as 0.065 nm (FWHM). Additionally, we demonstrate high polarization extinction ratio of 18.4 dB and good pulse stabilities superior to 1.6 % (RMS).

  1. Health and human rights in Chin State, Western Burma: a population-based assessment using multistaged household cluster sampling.

    PubMed

    Sollom, Richard; Richards, Adam K; Parmar, Parveen; Mullany, Luke C; Lian, Salai Bawi; Iacopino, Vincent; Beyrer, Chris

    2011-02-08

    The Chin State of Burma (also known as Myanmar) is an isolated ethnic minority area with poor health outcomes and reports of food insecurity and human rights violations. We report on a population-based assessment of health and human rights in Chin State. We sought to quantify reported human rights violations in Chin State and associations between these reported violations and health status at the household level. Multistaged household cluster sampling was done. Heads of household were interviewed on demographics, access to health care, health status, food insecurity, forced displacement, forced labor, and other human rights violations during the preceding 12 months. Ratios of the prevalence of household hunger comparing exposed and unexposed to each reported violation were estimated using binomial regression, and 95% confidence intervals (CIs) were constructed. Multivariate models were done to adjust for possible confounders. Overall, 91.9% of households (95% CI 89.7%-94.1%) reported forced labor in the past 12 months. Forty-three percent of households met FANTA-2 (Food and Nutrition Technical Assistance II project) definitions for moderate to severe household hunger. Common violations reported were food theft, livestock theft or killing, forced displacement, beatings and torture, detentions, disappearances, and religious and ethnic persecution. Self reporting of multiple rights abuses was independently associated with household hunger. Our findings indicate widespread self-reports of human rights violations. The nature and extent of these violations may warrant investigation by the United Nations or International Criminal Court. Please see later in the article for the Editors' Summary.

  2. A three-talk model for shared decision making: multistage consultation process

    PubMed Central

    Durand, Marie Anne; Song, Julia; Aarts, Johanna; Barr, Paul J; Berger, Zackary; Cochran, Nan; Frosch, Dominick; Galasiński, Dariusz; Gulbrandsen, Pål; Han, Paul K J; Härter, Martin; Kinnersley, Paul; Lloyd, Amy; Mishra, Manish; Perestelo-Perez, Lilisbeth; Scholl, Isabelle; Tomori, Kounosuke; Trevena, Lyndal; Witteman, Holly O; Van der Weijden, Trudy

    2017-01-01

    Objectives To revise an existing three-talk model for learning how to achieve shared decision making, and to consult with relevant stakeholders to update and obtain wider engagement. Design Multistage consultation process. Setting Key informant group, communities of interest, and survey of clinical specialties. Participants 19 key informants, 153 member responses from multiple communities of interest, and 316 responses to an online survey from medically qualified clinicians from six specialties. Results After extended consultation over three iterations, we revised the three-talk model by making changes to one talk category, adding the need to elicit patient goals, providing a clear set of tasks for each talk category, and adding suggested scripts to illustrate each step. A new three-talk model of shared decision making is proposed, based on “team talk,” “option talk,” and “decision talk,” to depict a process of collaboration and deliberation. Team talk places emphasis on the need to provide support to patients when they are made aware of choices, and to elicit their goals as a means of guiding decision making processes. Option talk refers to the task of comparing alternatives, using risk communication principles. Decision talk refers to the task of arriving at decisions that reflect the informed preferences of patients, guided by the experience and expertise of health professionals. Conclusions The revised three-talk model of shared decision making depicts conversational steps, initiated by providing support when introducing options, followed by strategies to compare and discuss trade-offs, before deliberation based on informed preferences. PMID:29109079

  3. Health and Human Rights in Chin State, Western Burma: A Population-Based Assessment Using Multistaged Household Cluster Sampling

    PubMed Central

    Sollom, Richard; Richards, Adam K.; Parmar, Parveen; Mullany, Luke C.; Lian, Salai Bawi; Iacopino, Vincent; Beyrer, Chris

    2011-01-01

    Background The Chin State of Burma (also known as Myanmar) is an isolated ethnic minority area with poor health outcomes and reports of food insecurity and human rights violations. We report on a population-based assessment of health and human rights in Chin State. We sought to quantify reported human rights violations in Chin State and associations between these reported violations and health status at the household level. Methods and Findings Multistaged household cluster sampling was done. Heads of household were interviewed on demographics, access to health care, health status, food insecurity, forced displacement, forced labor, and other human rights violations during the preceding 12 months. Ratios of the prevalence of household hunger comparing exposed and unexposed to each reported violation were estimated using binomial regression, and 95% confidence intervals (CIs) were constructed. Multivariate models were done to adjust for possible confounders. Overall, 91.9% of households (95% CI 89.7%–94.1%) reported forced labor in the past 12 months. Forty-three percent of households met FANTA-2 (Food and Nutrition Technical Assistance II project) definitions for moderate to severe household hunger. Common violations reported were food theft, livestock theft or killing, forced displacement, beatings and torture, detentions, disappearances, and religious and ethnic persecution. Self reporting of multiple rights abuses was independently associated with household hunger. Conclusions Our findings indicate widespread self-reports of human rights violations. The nature and extent of these violations may warrant investigation by the United Nations or International Criminal Court. Please see later in the article for the Editors' Summary PMID:21346799

  4. Multistage Stochastic Programming and its Applications in Energy Systems Modeling and Optimization

    NASA Astrophysics Data System (ADS)

    Golari, Mehdi

    Electric energy constitutes one of the most crucial elements to almost every aspect of life of people. The modern electric power systems face several challenges such as efficiency, economics, sustainability, and reliability. Increase in electrical energy demand, distributed generations, integration of uncertain renewable energy resources, and demand side management are among the main underlying reasons of such growing complexity. Additionally, the elements of power systems are often vulnerable to failures because of many reasons, such as system limits, weak conditions, unexpected events, hidden failures, human errors, terrorist attacks, and natural disasters. One common factor complicating the operation of electrical power systems is the underlying uncertainties from the demands, supplies and failures of system components. Stochastic programming provides a mathematical framework for decision making under uncertainty. It enables a decision maker to incorporate some knowledge of the intrinsic uncertainty into the decision making process. In this dissertation, we focus on application of two-stage and multistage stochastic programming approaches to electric energy systems modeling and optimization. Particularly, we develop models and algorithms addressing the sustainability and reliability issues in power systems. First, we consider how to improve the reliability of power systems under severe failures or contingencies prone to cascading blackouts by so called islanding operations. We present a two-stage stochastic mixed-integer model to find optimal islanding operations as a powerful preventive action against cascading failures in case of extreme contingencies. Further, we study the properties of this problem and propose efficient solution methods to solve this problem for large-scale power systems. We present the numerical results showing the effectiveness of the model and investigate the performance of the solution methods. Next, we address the sustainability issue considering the integration of renewable energy resources into production planning of energy-intensive manufacturing industries. Recently, a growing number of manufacturing companies are considering renewable energies to meet their energy requirements to move towards green manufacturing as well as decreasing their energy costs. However, the intermittent nature of renewable energies imposes several difficulties in long term planning of how to efficiently exploit renewables. In this study, we propose a scheme for manufacturing companies to use onsite and grid renewable energies provided by their own investments and energy utilities as well as conventional grid energy to satisfy their energy requirements. We propose a multistage stochastic programming model and study an efficient solution method to solve this problem. We examine the proposed framework on a test case simulated based on a real-world semiconductor company. Moreover, we evaluate long-term profitability of such scheme via so called value of multistage stochastic programming.

  5. A NGS approach to the encrusting Mediterranean sponge Crella elegans (Porifera, Demospongiae, Poecilosclerida): transcriptome sequencing, characterization and overview of the gene expression along three life cycle stages.

    PubMed

    Pérez-Porro, A R; Navarro-Gómez, D; Uriz, M J; Giribet, G

    2013-05-01

    Sponges can be dominant organisms in many marine and freshwater habitats where they play essential ecological roles. They also represent a key group to address important questions in early metazoan evolution. Recent approaches for improving knowledge on sponge biological and ecological functions as well as on animal evolution have focused on the genetic toolkits involved in ecological responses to environmental changes (biotic and abiotic), development and reproduction. These approaches are possible thanks to newly available, massive sequencing technologies-such as the Illumina platform, which facilitate genome and transcriptome sequencing in a cost-effective manner. Here we present the first NGS (next-generation sequencing) approach to understanding the life cycle of an encrusting marine sponge. For this we sequenced libraries of three different life cycle stages of the Mediterranean sponge Crella elegans and generated de novo transcriptome assemblies. Three assemblies were based on sponge tissue of a particular life cycle stage, including non-reproductive tissue, tissue with sperm cysts and tissue with larvae. The fourth assembly pooled the data from all three stages. By aggregating data from all the different life cycle stages we obtained a higher total number of contigs, contigs with blast hit and annotated contigs than from one stage-based assemblies. In that multi-stage assembly we obtained a larger number of the developmental regulatory genes known for metazoans than in any other assembly. We also advance the differential expression of selected genes in the three life cycle stages to explore the potential of RNA-seq for improving knowledge on functional processes along the sponge life cycle. © 2013 Blackwell Publishing Ltd.

  6. Multistage Magnetic Separator of Cells and Proteins

    NASA Technical Reports Server (NTRS)

    Barton, Ken; Ainsworth, Mark; Daily, Bruce; Dunn, Scott; Metz, Bill; Vellinger, John; Taylor, Brock; Meador, Bruce

    2005-01-01

    The multistage electromagnetic separator for purifying cells and magnetic particles (MAGSEP) is a laboratory apparatus for separating and/or purifying particles (especially biological cells) on the basis of their magnetic susceptibility and magnetophoretic mobility. Whereas a typical prior apparatus based on similar principles offers only a single stage of separation, the MAGSEP, as its full name indicates, offers multiple stages of separation; this makes it possible to refine a sample population of particles to a higher level of purity or to categorize multiple portions of the sample on the basis of magnetic susceptibility and/or magnetophoretic mobility. The MAGSEP includes a processing unit and an electronic unit coupled to a personal computer. The processing unit includes upper and lower plates, a plate-rotation system, an electromagnet, an electromagnet-translation system, and a capture-magnet assembly. The plates are bolted together through a roller bearing that allows the plates to rotate with respect to each other. An interface between the plates acts as a seal for separating fluids. A lower cuvette can be aligned with as many as 15 upper cuvette stations for fraction collection during processing. A two-phase stepping motor drives the rotation system, causing the upper plate to rotate for the collection of each fraction of the sample material. The electromagnet generates a magnetic field across the lower cuvette, while the translation system translates the electromagnet upward along the lower cuvette. The current supplied to the electromagnet, and thus the magnetic flux density at the pole face of the electromagnet, can be set at a programmed value between 0 and 1,400 gauss (0.14 T). The rate of translation can be programmed between 5 and 2,000 m/s so as to align all sample particles in the same position in the cuvette. The capture magnet can be a permanent magnet. It is mounted on an arm connected to a stepping motor. The stepping motor rotates the arm to position the capture magnet above the upper cuvette into which a fraction of the sample is collected. The electronic unit includes a power switch, power-supply circuitry that accepts 110-Vac input power, an RS-232 interface, and status lights. The personal computer runs the MAGSEP software and controls the operation of the MAGSEP through the RS-232 interface. The status of the power, the translating electromagnet, the capture magnet, and the rotation of the upper plate are indicated in a graphical user interface on the computer screen.

  7. Prefire identification for pulse-power systems

    DOEpatents

    Longmire, J.L.; Thuot, M.E.; Warren, D.S.

    1982-08-23

    Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.

  8. Prefire identification for pulse power systems

    DOEpatents

    Longmire, Jerry L.; Thuot, Michael E.; Warren, David S.

    1985-01-01

    Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.

  9. Aerodynamic and heat transfer analysis of the low aspect ratio turbine

    NASA Astrophysics Data System (ADS)

    Sharma, O. P.; Nguyen, P.; Ni, R. H.; Rhie, C. M.; White, J. A.

    1987-06-01

    The available two- and three-dimensional codes are used to estimate external heat loads and aerodynamic characteristics of a highly loaded turbine stage in order to demonstrate state-of-the-art methodologies in turbine design. By using data for a low aspect ratio turbine, it is found that a three-dimensional multistage Euler code gives good averall predictions for the turbine stage, yielding good estimates of the stage pressure ratio, mass flow, and exit gas angles. The nozzle vane loading distribution is well predicted by both the three-dimensional multistage Euler and three-dimensional Navier-Stokes codes. The vane airfoil surface Stanton number distributions, however, are underpredicted by both two- and three-dimensional boundary value analysis.

  10. Status of EPA's (Environmental Protection Agency's) LIMB (Limestone Injection Multistage Burner) demonstration program at Ohio Edison's Edgewater Unit 4. Report for September-December 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendriks, R.V.; Nolan, P.S.

    1987-01-01

    The paper describes and discusses the key design features of the retrofit of EPA's Limestone Injection Multistage Burner (LIMB) system to an operating, wall-fired utility boiler at Ohio Edison's Edgewater Station. It further describes results of the pertinent projects in EPA's LIMB program and shows how these results were used as the basis for the design of the system. The full-scale demonstration is expected to prove the effectiveness and cost of the LIMB concept for use on large-scale utility boilers. The equipment is now being installed at Edgewater, with system start-up scheduled for May 1987.

  11. Core compressor exit stage study. Volume 4: Data and performance report for the best stage configuration

    NASA Technical Reports Server (NTRS)

    Wisler, D. C.

    1981-01-01

    The core compressor exit stage study program develops rear stage blading designs that have lower losses in their endwall boundary layer regions. The test data and performance results for the best stage configuration consisting of Rotor-B running with Stator-B are described. The technical approach in this efficiency improvement program utilizes a low speed research compressor. Tests were conducted in two ways: (1) to use four identical stages of blading to obtain test data in a true multistage environment and (2) to use a single stage of blading to compare with the multistage test results. The effects of increased rotor tip clearances and circumferential groove casing treatment are evaluated.

  12. A Review of the Suppression of Secondary Electron Emission from the Electrodes of Multistage Collectors

    NASA Technical Reports Server (NTRS)

    Dayton, James A., Jr.

    1998-01-01

    A review is presented of more than 20 years of research conducted at NASA Lewis Research Center on the suppression of secondary electron emission (SEE) for the enhancement of the efficiency of vacuum electron devices with multistage depressed collectors. This paper will include a description of measurement techniques, data from measurements of SEE on a variety of materials of engineering interest and methods of surface treatment for the suppression of SEE. In the course of this work the lowest secondary electron yield ever reported was achieved for ion textured graphite, and, in a parallel line of research, the highest yield was obtained for chemical vapor deposited thin diamond films.

  13. Turbomachinery CFD on parallel computers

    NASA Technical Reports Server (NTRS)

    Blech, Richard A.; Milner, Edward J.; Quealy, Angela; Townsend, Scott E.

    1992-01-01

    The role of multistage turbomachinery simulation in the development of propulsion system models is discussed. Particularly, the need for simulations with higher fidelity and faster turnaround time is highlighted. It is shown how such fast simulations can be used in engineering-oriented environments. The use of parallel processing to achieve the required turnaround times is discussed. Current work by several researchers in this area is summarized. Parallel turbomachinery CFD research at the NASA Lewis Research Center is then highlighted. These efforts are focused on implementing the average-passage turbomachinery model on MIMD, distributed memory parallel computers. Performance results are given for inviscid, single blade row and viscous, multistage applications on several parallel computers, including networked workstations.

  14. A Plasmodium Promiscuous T Cell Epitope Delivered within the Ad5 Hexon Protein Enhances the Protective Efficacy of a Protein Based Malaria Vaccine.

    PubMed

    Fonseca, Jairo Andres; Cabrera-Mora, Monica; Kashentseva, Elena A; Villegas, John Paul; Fernandez, Alejandra; Van Pelt, Amelia; Dmitriev, Igor P; Curiel, David T; Moreno, Alberto

    2016-01-01

    A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR) of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity and protective efficacy of adenoviral based malaria vaccines.

  15. A shirt containing multistage phase change material and active cooling components was associated with increased exercise capacity in a hot, humid environment.

    PubMed

    McFarlin, Brian K; Henning, Andrea L; Venable, Adam S; Williams, Randall R; Best Sampson, Jill N

    2016-08-01

    Recent advances in clothing design include the incorporation of phase change materials (PCM) and other active cooling components (ACC) to provide better body heat dissipation. The purpose of this study was to determine the effect of wearing a shirt containing multistage PCM/ACC on exercise capacity at low (5.0), moderate-high (7.5) and extreme (9.0) levels of the physiological strain index (PSI). Fourteen individuals tested two shirts (control vs. cooling) during 45-min of interval running in a hot, humid (35 ± 1 °C; 55 ± 6% RH) environment. The cooling shirt resulted in an 8% improvement in exercise capacity at a PSI of 7.5 (p < 0.05). The observed increase in exercise capacity would likely translate to a significant improvement in exercise performance. More research is needed to determine a best practice approach for the use of cooling clothing as a counter to exercise-induced heat exposure. Practitioner Summary: In this report, we demonstrate that when forced to exercise in a hot, humid environment, an individual's exercise capacity may increase by as much as 8% when wearing a shirt composed of multistage phase change material and active cooling components.

  16. The multilayer nanoparticles for deep penetration of docetaxel into tumor parenchyma to overcome tumor microenvironment.

    PubMed

    Khaliq, Nisar Ul; Park, Dal Yong; Lee, Jae Young; Joo, Yeonhee; Oh, Keun Sang; Kim, Jung Seok; Kim, Jin-Seok; Kim, In-San; Kwon, Ick Chan; Yuk, Soon Hong

    2016-10-01

    Deep penetration of the anticancer drug, docetaxel (DTX), into tumor parenchyma was demonstrated to achieve improved chemotherapy. For this purpose, a multistage nanostructure was designed and characterized using the multilayer nanoparticles (NPs). The multilayer NPs had a core/shell structure. The core was composed of the DTX-loaded Pluronic NPs (diameter: 12nm) that were transferred into the inner side of vesicles to form the vesicle NPs. Förster resonance energy transfer (FRET) in the NPs was observed to verify the incorporation of the DTX-loaded Pluronic NPs into the inner side of the vesicles during the formation of the vesicle NPs. Subsequently, the vesicle NPs were stabilized through Pluronic-lipid bilayer interaction to form the multilayer NPs. To examine the morphology and size distribution of the multilayer NPs, transmittance electron microscopy and dynamic light scattering were used. In vitro release behavior and toxicity were observed to verify the functionality of the multilayer NPs as nanocarriers for cancer therapy. Multistage functionality was evaluated by cellular uptake and tissue distribution behaviors of the multilayer NPs. The biodistribution of the multilayer NPs and their antitumor efficacy were also observed to understand the role of multistage functionality for improved chemotherapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Pollutant removal in a multi-stage municipal wastewater treatment system comprised of constructed wetlands and a maturation pond, in a temperate climate.

    PubMed

    Rivas, A; Barceló-Quintal, I; Moeller, G E

    2011-01-01

    A multi-stage municipal wastewater treatment system is proposed to comply with Mexican standards for discharge into receiving water bodies. The system is located in Santa Fe de la Laguna, Mexico, an area with a temperate climate. It was designed for 2,700 people equivalent (259.2 m3/d) and consists of a preliminary treatment, a septic tank as well as two modules operating in parallel, each consisting of a horizontal subsurface-flow wetland, a maturation pond and a vertical flow polishing wetland. After two years of operation, on-site research was performed. An efficient biochemical oxygen demand (BOD5) (94-98%), chemical oxygen demand (91-93%), total suspended solids (93-97%), total Kjeldahl nitrogen (56-88%) and fecal coliform (4-5 logs) removal was obtained. Significant phosphorus removal was not accomplished in this study (25-52%). Evapotranspiration was measured in different treatment units. This study demonstrates that during the dry season wastewater treatment by this multi-stage system cannot comply with the limits established by Mexican standards for receiving water bodies type 'C'. However, it has demonstrated the system's potential for less restrictive uses such as agricultural irrigation, recreation and provides the opportunity for wastewater treatment in rural areas without electric energy.

  18. Selection of the optimal completion of horizontal wells with multi-stage hydraulic fracturing of the low-permeable formation, field C

    NASA Astrophysics Data System (ADS)

    Bozoev, A. M.; Demidova, E. A.

    2016-03-01

    At the moment, many fields of Western Siberia are in the later stages of development. In this regard, the multilayer fields are actually involved in the development of hard to recover reserves by conducting well interventions. However, most of these assets may not to be economical profitable without application of horizontal drilling and multi-stage hydraulic fracturing treatment. Moreover, location of frac ports in relative to each other, number of stages, volume of proppant per one stage are the main issues due to the fact that the interference effect could lead to the loss of oil production. The optimal arrangement of horizontal wells with multi-stage hydraulic fracture was defined in this paper. Several analytical approaches have been used to predict the started oil flow rate and chose the most appropriate for field C reservoir J1. However, none of the analytical equations could not take into account the interference effect and determine the optimum number of fractures. Therefore, the simulation modelling was used. Finally, the universal equation is derived for this field C, the reservoir J1. This tool could be used to predict the flow rate of the horizontal well with hydraulic fracturing treatment on the qualitative level without simulation model.

  19. Towards Optimal Design of Cancer Nanomedicines: Multi-stage Nanoparticles for the Treatment of Solid Tumors.

    PubMed

    Stylianopoulos, Triantafyllos; Economides, Eva-Athena; Baish, James W; Fukumura, Dai; Jain, Rakesh K

    2015-09-01

    Conventional drug delivery systems for solid tumors are composed of a nano-carrier that releases its therapeutic load. These two-stage nanoparticles utilize the enhanced permeability and retention (EPR) effect to enable preferential delivery to tumor tissue. However, the size-dependency of the EPR, the limited penetration of nanoparticles into the tumor as well as the rapid binding of the particles or the released cytotoxic agents to cancer cells and stromal components inhibit the uniform distribution of the drug and the efficacy of the treatment. Here, we employ mathematical modeling to study the effect of particle size, drug release rate and binding affinity on the distribution and efficacy of nanoparticles to derive optimal design rules. Furthermore, we introduce a new multi-stage delivery system. The system consists of a 20-nm primary nanoparticle, which releases 5-nm secondary particles, which in turn release the chemotherapeutic drug. We found that tuning the drug release kinetics and binding affinities leads to improved delivery of the drug. Our results also indicate that multi-stage nanoparticles are superior over two-stage nano-carriers provided they have a faster drug release rate and for high binding affinity drugs. Furthermore, our results suggest that smaller nanoparticles achieve better treatment outcome.

  20. Direct Numerical Simulation of Turbulent Multi-Stage Autoignition Relevant to Engine Conditions

    NASA Astrophysics Data System (ADS)

    Chen, Jacqueline

    2017-11-01

    Due to the unrivaled energy density of liquid hydrocarbon fuels combustion will continue to provide over 80% of the world's energy for at least the next fifty years. Hence, combustion needs to be understood and controlled to optimize combustion systems for efficiency to prevent further climate change, to reduce emissions and to ensure U.S. energy security. In this talk I will discuss recent progress in direct numerical simulations of turbulent combustion focused on providing fundamental insights into key `turbulence-chemistry' interactions that underpin the development of next generation fuel efficient, fuel flexible engines for transportation and power generation. Petascale direct numerical simulation (DNS) of multi-stage mixed-mode turbulent combustion in canonical configurations have elucidated key physics that govern autoignition and flame stabilization in engines and provide benchmark data for combustion model development under the conditions of advanced engines which operate near combustion limits to maximize efficiency and minimize emissions. Mixed-mode combustion refers to premixed or partially-premixed flames propagating into stratified autoignitive mixtures. Multi-stage ignition refers to hydrocarbon fuels with negative temperature coefficient behavior that undergo sequential low- and high-temperature autoignition. Key issues that will be discussed include: 1) the role of mixing in shear driven turbulence on the dynamics of multi-stage autoignition and cool flame propagation in diesel environments, 2) the role of thermal and composition stratification on the evolution of the balance of mixed combustion modes - flame propagation versus spontaneous ignition - which determines the overall combustion rate in autoignition processes, and 3) the role of cool flames on lifted flame stabilization. Finally prospects for DNS of turbulent combustion at the exascale will be discussed in the context of anticipated heterogeneous machine architectures. sponsored by DOE Office of Basic Energy Sciences and computing resources provided by the Oakridge Leadership Computing Facility through the DOE INCITE Program.

  1. Increase in fluoroscopic radiation dose in successive sessions of multistage Onyx embolization of brain arteriovenous malformations compared with the first session.

    PubMed

    Sheen, Jae Jon; Jiang, Yuan Yuan; Kim, Young Eun; Maeng, Jun Young; Kim, Tae-Il; Lee, Deok Hee

    2018-03-23

    Onyx embolization is a treatment for brain arteriovenous malformations (AVMs). However, multistage embolization usually involves the presence of radiodense Onyx cast from the previous sessions, which may influence the fluoroscopic radiation dose. We compared the fluoroscopic dose between the initial and final embolization sessions. From January 2014 to September 2016, 18 patients underwent multistage Onyx embolization (more than twice) for brain AVMs. The total fluoroscopic duration (minutes), dose-area product (DAP, Gy×cm 2 ), and cumulative air kerma (CAK, mGy) of both the frontal and lateral planes were obtained. We compared the frontal and lateral fluoroscopic dose rates (dose/time) of the final embolization session with those of the initial session. The relationship between the injected Onyx volume and radiation dose was tested. The initial and final procedures on the frontal plane showed significantly different fluoroscopic dose rates (DAP: initial 0.668 Gy×cm 2 /min, final 0.848 Gy×cm 2 /min, P=0.02; CAK: initial 12.7 mGy/min, final 23.1 mGy/min, P=0.007). Those on the lateral plane also showed a similar pattern (DAP: initial 0.365 Gy×cm 2 /min, final 0.519 Gy×cm 2 /min, P=0.03; CAK: initial 6.2 mGy/min, final 12.9 mGy/min, P=0.01). The correlation between the cumulative Onyx volume (vials) and radiation dose ratio of both planes showed an increasing trend (rho 0.4325-0.7053; P=0.0011-0.0730). Owing to the automatic exposure control function during fluoroscopy, successive Onyx embolization procedures increase the fluoroscopic radiation dose in multistage brain AVM embolization because of the presence of radiodense Onyx mass. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Reconstruction of multistage massive rock slope failure: Polymethodical approach in Lake Oeschinen (CH)

    NASA Astrophysics Data System (ADS)

    Knapp, Sibylle; Gilli, Adrian; Anselmetti, Flavio S.; Hajdas, Irka

    2016-04-01

    Lateglacial and Holocene rock-slope failures occur often as multistage failures where paraglacial adjustment and stress adaptation are hypothesised to control stages of detachment. However, we have only limited datasets to reconstruct detailed stages of large multistage rock-slope failures, and still aim at improving our models in terms of geohazard assessment. Here we use lake sediments, well-established for paleoclimate and paleoseismological reconstruction, with a focus on the reconstruction of rock-slope failures. We present a unique inventory from Lake Oeschinen (Bernese Alps, Switzerland) covering about 2.4 kyrs of rock-slope failure history. The lake sediments have been analysed using sediment-core analysis, radiocarbon dating and seismic-to-core and core-to-core correlations, and these were linked to historical and meteorological records. The results imply that the lake is significantly younger than the ~9 kyrs old Kandersteg rock avalanche (Tinner et al., 2005) and shows multiple rock-slope failures, two of which could be C14-dated. Several events detached from the same area potentially initiated by prehistoric earthquakes (Monecke et al., 2006) and later from stress relaxation processes. The data imply unexpected short recurrence rates that can be related to certain detachment scarps and also help to understand the generation of a historical lake-outburst flood. Here we show how polymethodical analysis of lake sediments can help to decipher massive multistage rock-slope failure. References Monecke, K., Anselmetti, F.S., Becker, A., Schnellmann, M., Sturm, M., Giardini, D., 2006. Earthquake-induced deformation structures in lake deposits: A Late Pleistocene to Holocene paleoseismic record for Central Switzerland. Eclogae Geologicae Helvetiae, 99(3), 343-362. Tinner, W., Kaltenrieder, P., Soom, M., Zwahlen, P., Schmidhalter, M., Boschetti, A., Schlüchter, C., 2005. Der nacheiszeitliche Bergsturz im Kandertal (Schweiz): Alter und Auswirkungen auf die damalige Umwelt. Eclogae Geologicae Helvetiae, 98(1), 83-95.

  3. Single-Staged Compared With Multi-Staged PCI in Multivessel NSTEMI Patients: The SMILE Trial.

    PubMed

    Sardella, Gennaro; Lucisano, Luigi; Garbo, Roberto; Pennacchi, Mauro; Cavallo, Erika; Stio, Rocco Edoardo; Calcagno, Simone; Ugo, Fabrizio; Boccuzzi, Giacomo; Fedele, Francesco; Mancone, Massimo

    2016-01-26

    A lack of clarity exists about the role of complete coronary revascularization in patients presenting with non-ST-segment elevation myocardial infarction. The aim of our study was to compare long-term outcomes in terms of major adverse cardiovascular and cerebrovascular events of 2 different complete coronary revascularization strategies in patients with non-ST-segment elevation myocardial infarction and multivessel coronary artery disease: 1-stage percutaneous coronary intervention (1S-PCI) during the index procedure versus multistage percutaneous coronary intervention (MS-PCI) complete coronary revascularization during the index hospitalization. In the SMILE (Impact of Different Treatment in Multivessel Non ST Elevation Myocardial Infarction Patients: One Stage Versus Multistaged Percutaneous Coronary Intervention) trial, 584 patients were randomly assigned in a 1:1 manner to 1S-PCI or MS-PCI. The primary study endpoint was the incidence of major adverse cardiovascular and cerebrovascular events, which were defined as cardiac death, death, reinfarction, rehospitalization for unstable angina, repeat coronary revascularization (target vessel revascularization), and stroke at 1 year. The occurrence of the primary endpoint was significantly lower in the 1-stage group (1S-PCI: n = 36 [13.63%] vs. MS-PCI: n = 61 [23.19%]; hazard ratio [HR]: 0.549 [95% confidence interval (CI): 0.363 to 0.828]; p = 0.004). The 1-year rate of target vessel revascularization was significantly higher in the MS-PCI group (1S-PCI: n = 22 [8.33%] vs. MS-PCI: n = 40 [15.20%]; HR: 0.522 [95% CI: 0.310 to 0.878]; p = 0.01; p log-rank = 0.013). When the analyses were limited to cardiac death (1S-PCI: n = 9 [3.41%] vs. MS-PCI: n = 14 [5.32%]; HR: 0.624 [95% CI: 0.270 to 1.441]; p = 0.27) and myocardial infarction (1S-PCI: n = 7 [2.65%] vs. MS-PCI: n = 10 [3.80%]; HR: 0.678 [95% CI: 0.156 to 2.657]; p = 0.46), no significant differences were observed between groups. In multivessel non-ST-segment elevation myocardial infarction patients, complete 1-stage coronary revascularization is superior to multistage PCI in terms of major adverse cardiovascular and cerebrovascular events. (Impact of Different Treatment in Multivessel Non ST Elevation Myocardial Infarction [NSTEMI] One Stage Versus Multistaged Percutaneous Coronary Intervention [PCI] [SMILE]: NCT01478984). Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  4. Simulation of 3-D viscous compressible flow in multistage turbomachinery by finite element methods

    NASA Astrophysics Data System (ADS)

    Sleiman, Mohamad

    1999-11-01

    The flow in a multistage turbomachinery blade row is compressible, viscous, and unsteady. Complex flow features such as boundary layers, wake migration from upstream blade rows, shocks, tip leakage jets, and vortices interact together as the flow convects through the stages. These interactions contribute significantly to the aerodynamic losses of the system and degrade the performance of the machine. The unsteadiness also leads to blade vibration and a shortening of its life. It is therefore difficult to optimize the design of a blade row, whether aerodynamically or structurally, in isolation, without accounting for the effects of the upstream and downstream rows. The effects of axial spacing, blade count, clocking (relative position of follow-up rotors with respect to wakes shed by upstream ones), and levels of unsteadiness may have a significance on performance and durability. In this Thesis, finite element formulations for the simulation of multistage turbomachinery are presented in terms of the Reynolds-averaged Navier-Stokes equations for three-dimensional steady or unsteady, viscous, compressible, turbulent flows. Three methodologies are presented and compared. First, a steady multistage analysis using a a-mixing- plane model has been implemented and has been validated against engine data. For axial machines, it has been found that the mixing plane simulation methods match very well the experimental data. However, the results for a centrifugal stage, consisting of an impeller followed by a vane diffuser of equal pitch, show flagrant inconsistency with engine performance data, indicating that the mixing plane method has been found to be inappropriate for centrifugal machines. Following these findings, a more complete unsteady multistage model has been devised for a configuration with equal number of rotor and stator blades (equal pitches). Non-matching grids are used at the rotor-stator interface and an implicit interpolation procedure devised to ensure continuity of fluxes across. This permits the rotor and stator equations to be solved in a fully- coupled manner, allowing larger time steps in attaining a time-periodic solution. This equal pitch approach has been validated on the complex geometry of a centrifugal stage. Finally, for a stage configuration with unequal pitches, the time-inclined method, developed by Giles (1991) for 2-D viscous compressible flow, has been extended to 3-D and formulated in terms of the physical solution vector U, rather than Q, a non-physical one. The method has been evaluated for unsteady flow through a rotor blade passage of the power turbine of a turboprop.

  5. Changes in Cartilage Biomarker Levels During a Transcontinental Multistage Footrace Over 4486 km.

    PubMed

    Mündermann, Annegret; Klenk, Christopher; Billich, Christian; Nüesch, Corina; Pagenstert, Geert; Schmidt-Trucksäss, Arno; Schütz, Uwe

    2017-09-01

    Cartilage turnover and load-induced tissue changes are frequently assessed by quantifying concentrations of cartilage biomarkers in serum. To date, information on the effects of ultramarathon running on articular cartilage is scarce. Serum concentrations of cartilage oligomeric matrix protein (COMP), matrix metalloproteinase (MMP)-1, MMP-3, MMP-9, COL2-3/4C long mono (C2C), procollagen type II C-terminal propeptide (CPII), and C2C:CPII will increase throughout a multistage ultramarathon. Descriptive laboratory study. Blood samples were collected from 36 runners (4 female; mean age, 49.0 ± 10.7 years; mean body mass index, 23.1 ± 2.3 kg/m 2 [start] and 21.4 ± 1.9 kg/m 2 [finish]) before (t 0 ) and during (t 1 : 1002 km; t 2 : 2132 km; t 3 : 3234 km; t 4 : 4039 km) a 4486-km multistage ultramarathon. Serum COMP, MMP-1, MMP-3, MMP-9, C2C, and CPII levels were assessed using commercial enzyme-linked immunosorbent assays. Linear mixed models were used to detect significant changes in serum biomarker levels over time with the time-varying covariates of body weight, running speed, and daily running time. Serum concentrations of COMP, MMP-9, and MMP-3 changed significantly throughout the multistage ultramarathon. On average, concentrations increased during the first measurement interval (MI1: t 1 -t 0 ) by 22.5% for COMP (95% CI, 0.29-0.71 ng/mL), 22.3% for MMP-3 (95% CI, 0.24-15.37 ng/mL), and 95.6% for MMP-9 (95% CI, 81.7-414.5 ng/mL) and remained stable throughout MI2, MI3, and MI4. Serum concentrations of MMP-1, C2C, CPII, and C2C:CPII did not change significantly throughout the multistage ultramarathon. Changes in MMP-3 were statistically associated with changes in COMP throughout the ultramarathon race (MMP-3: Wald Z = 3.476, P = .001). Elevated COMP levels indicate increased COMP turnover in response to extreme running, and the association between load-induced changes in MMP-3 and changes in COMP suggests the possibility that MMP-3 may be involved in the degradation of COMP. These results suggest that articular cartilage is able to adapt even to extreme physical activity, possibly explaining why the risk of degenerative joint disease is not elevated in the running population.

  6. Multi-stage versus single-stage inflation and deflation cycle for alternating low pressure air mattresses to prevent pressure ulcers in hospitalised patients: a randomised-controlled clinical trial.

    PubMed

    Demarré, L; Beeckman, D; Vanderwee, K; Defloor, T; Grypdonck, M; Verhaeghe, S

    2012-04-01

    The duration and the amount of pressure and shear must be reduced in order to minimize the risk of pressure ulcer development. Alternating low pressure air mattresses with multi-stage inflation and deflation cycle of the air cells have been developed to relieve pressure by sequentially inflating and deflating the air cells. Evidence about the effectiveness of this type of mattress in clinical practice is lacking. This study aimed to compare the effectiveness of an alternating low pressure air mattress that has a standard single-stage inflation and deflation cycle of the air cells with an alternating low pressure air mattress with multi-stage inflation and deflation cycle of the air cells. A randomised controlled trial was performed in a convenience sample of 25 wards in five hospitals in Belgium. In total, 610 patients were included and randomly assigned to the experimental group (n=298) or the control group (n=312). In the experimental group, patients were allocated to an alternating low pressure air mattress with multi-stage inflation and deflation cycle of the air cells. In the control group, patients were allocated to an alternating low pressure air mattress with a standard single-stage inflation and deflation cycle of the air cells. The outcome was defined as cumulative pressure ulcer incidence (Grade II-IV). An intention-to-treat analysis was performed. There was no significant difference in cumulative pressure ulcer incidence (Grade II-IV) between both groups (Exp.=5.7%, Contr.=5.8%, p=0.97). When patients developed a pressure ulcer, the median time was 5.0 days in the experimental group (IQR=3.0-8.5) and 8.0 days in the control group (IQR=3.0-8.5) (Mann-Whitney U-test=113, p=0.182). The probability to remain pressure ulcer free during the observation period in this trial did not differ significantly between the experimental group and the control group (log-rank χ(2)=0.013, df=1, p=0.911). An alternating low pressure air mattress with multi-stage inflation and deflation of the air cells does not result in a significantly lower pressure ulcer incidence compared to an alternating low pressure air mattress with a standard single-stage inflation and deflation cycle of the air cells. Both alternating mattress types are equally effective to prevent pressure ulcer development. © 2011 Elsevier Ltd. All rights reserved.

  7. A coaxial-output capacitor-loaded annular pulse forming line.

    PubMed

    Li, Rui; Li, Yongdong; Su, Jiancang; Yu, Binxiong; Xu, Xiudong; Zhao, Liang; Cheng, Jie; Zeng, Bo

    2018-04-01

    A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the pulse rise time is about 5 ns.

  8. A coaxial-output capacitor-loaded annular pulse forming line

    NASA Astrophysics Data System (ADS)

    Li, Rui; Li, Yongdong; Su, Jiancang; Yu, Binxiong; Xu, Xiudong; Zhao, Liang; Cheng, Jie; Zeng, Bo

    2018-04-01

    A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the pulse rise time is about 5 ns.

  9. Multistaged stokes injected Raman capillary waveguide amplifier

    DOEpatents

    Kurnit, Norman A.

    1980-01-01

    A multistaged Stokes injected Raman capillary waveguide amplifier for providing a high gain Stokes output signal. The amplifier uses a plurality of optically coupled capillary waveguide amplifiers and one or more regenerative amplifiers to increase Stokes gain to a level sufficient for power amplification. Power amplification is provided by a multifocused Raman gain cell or a large diameter capillary waveguide. An external source of CO.sub.2 laser radiation can be injected into each of the capillary waveguide amplifier stages to increase Raman gain. Devices for injecting external sources of CO.sub.2 radiation include: dichroic mirrors, prisms, gratings and Ge Brewster plates. Alternatively, the CO.sub.2 input radiation to the first stage can be coupled and amplified between successive stages.

  10. [HPLC-ESI-MS(n) analysis of the water soluble extracts of Fructus Choerospondiatis].

    PubMed

    Shi, Run-ju; Dai, Yun; Fang, Min-feng; Zhao, Xin; Zheng, Jian-bin; Zheng, Xiao-hui

    2007-03-01

    To establish an HPLC-ESI-MS(n) method for analyzing the chemical ingredients in the water soluble extracts of Fructus Choerospondiatis. Water-solvable extracts of Fructus Choerospondiatis are obtained by heating recirculation. Multi-stage reaction mode (MRM) of the HPLC-ESI-MS(n) was used to determine the content of Gallic acid, the MS(n) technology was used to obtain the information of characteristic multistage fragment ions so as to identify the chemical structure of peaks in the total current spectrum. Eleven compounds were identified, and one of them is a new unknown ingredient. The method, which has high recovery and specificity, can offer the experimental evidences for the further research of the chemical ingredients extracted from the Fructus Choerospondiatis.

  11. Improving adsorption cryocoolers by multi-stage compression and reducing void volume

    NASA Technical Reports Server (NTRS)

    Bard, S.

    1986-01-01

    It is shown that the performance of gas adsorption cryocoolers is greatly improved by using adsorbents with low void volume within and between individual adsorbent particles (reducing void volumes in plumbing lines), and by compressing the working fluid in more than one stage. Refrigerator specific power requirements and compressor volumetric efficiencies are obtained in terms of adsorbent and plumbing line void volumes and operating pressures for various charcoal adsorbents using an analytical model. Performance optimization curves for 117.5 and 80 K charcoal/nitrogen adsorption cryocoolers are given for both single stage and multistage compressor systems, and compressing the nitrogen in two stages is shown to lower the specific power requirements by 18 percent for the 117.5 K system.

  12. Design and experimental evaluation of compact radial-inflow turbines

    NASA Technical Reports Server (NTRS)

    Fredmonski, A. J.; Huber, F. W.; Roelke, R. J.; Simonyi, S.

    1991-01-01

    The application of a multistage 3D Euler solver to the aerodynamic design of two compact radial-inflow turbines is presented, along with experimental results evaluating and validating the designs. The objectives of the program were to design, fabricate, and rig test compact radial-inflow turbines with equal or better efficiency relative to conventional designs, while having 40 percent less rotor length than current traditionally-sized radial turbines. The approach to achieving these objectives was to apply a calibrated 3D multistage Euler code to accurately predict and control the high rotor flow passage velocities and high aerodynamic loadings resulting from the reduction in rotor length. A comparison of the advanced compact designs to current state-of-the-art configurations is presented.

  13. Passive gas-gap heat switch for adiabatic demagnetization refrigerator

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J. (Inventor); Di Pirro, Michael J. (Inventor)

    2005-01-01

    A passive gas-gap heat switch for use with a multi-stage continuous adiabatic demagnetization refrigerator (ADR). The passive gas-gap heat switch turns on automatically when the temperature of either side of the switch rises above a threshold value and turns off when the temperature on either side of the switch falls below this threshold value. One of the heat switches in this multistage process must be conductive in the 0.25? K to 0.3? K range. All of the heat switches must be capable of switching off in a short period of time (1-2 minutes), and when off to have a very low thermal conductance. This arrangement allows cyclic cooling cycles to be used without the need for separate heat switch controls.

  14. A multi-stage oil-water-separating process design for the sea oil spill recovery robot

    NASA Astrophysics Data System (ADS)

    Zhang, Min-ge; Wu, Jian-guo; Lin, Xinhua; Wang, Xiao-ming

    2018-03-01

    Oil spill have the most common pollution to the marine ecological environment. In the late stage of physical method recovery, because of the thin oil and the strong sea breeze, the recovery vessels has low efficiency and high energy consumption. This paper develops a multi-stage oil-water-separating process carried by the sea oil spill recovery robot in severe conditions. This design consists of three separation process, among which both the first and third process adopt corrugated sheets horizontal oil-water separator, while the second is hydraulic rotary breaker. This design also equiptment with rectifier and cyclone separator and other important components. This process has high flexibility and high recovery efficiency. The implement effect is significant.

  15. Simulated dynamic response of a multi-stage compressor with variable molecular weight flow medium

    NASA Technical Reports Server (NTRS)

    Babcock, Dale A.

    1995-01-01

    A mathematical model of a multi-stage compressor with variable molecular weight flow medium is derived. The modeled system consists of a five stage, six cylinder, double acting, piston type compressor. Each stage is followed by a water cooled heat exchanger which serves to transfer the heat of compression from the gas. A high molecular weight gas (CFC-12) mixed with air in varying proportions is introduced to the suction of the compressor. Condensation of the heavy gas may occur in the upper stage heat exchangers. The state equations for the system are integrated using the Advanced Continuous Simulation Language (ACSL) for determining the system's dynamic and steady state characteristics under varying operating conditions.

  16. Computations of unsteady multistage compressor flows in a workstation environment

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen L.

    1992-01-01

    High-end graphics workstations are becoming a necessary tool in the computational fluid dynamics environment. In addition to their graphic capabilities, workstations of the latest generation have powerful floating-point-operation capabilities. As workstations become common, they could provide valuable computing time for such applications as turbomachinery flow calculations. This report discusses the issues involved in implementing an unsteady, viscous multistage-turbomachinery code (STAGE-2) on workstations. It then describes work in which the workstation version of STAGE-2 was used to study the effects of axial-gap spacing on the time-averaged and unsteady flow within a 2 1/2-stage compressor. The results included time-averaged surface pressures, time-averaged pressure contours, standard deviation of pressure contours, pressure amplitudes, and force polar plots.

  17. Generation of High Pressure Oxygen via Electrochemical Pumping in a Multi-stage Electrolysis Stack

    NASA Technical Reports Server (NTRS)

    Setlock, John A (Inventor); Green, Robert D (Inventor); Farmer, Serene (Inventor)

    2016-01-01

    An oxygen pump can produce high-purity high-pressure oxygen. Oxygen ions (O.sup.2-) are electrochemically pumped through a multi-stage electrolysis stack of cells. Each cell includes an oxygen-ion conducting solid-state electrolyte between cathode and anode sides. Oxygen dissociates into the ions at the cathode side. The ions migrate across the electrolyte and recombine at the anode side. An insulator is between adjacent cells to electrically isolate each individual cell. Each cell receives a similar volt potential. Recombined oxygen from a previous stage can diffuse through the insulator to reach the cathode side of the next stage. Each successive stage similarly incrementally pressurizes the oxygen to produce a final elevated pressure.

  18. Generation of High Pressure Oxygen via Electrochemical Pumping in a Multi-Stage Electrolysis Stack

    NASA Technical Reports Server (NTRS)

    Setlock, John A (Inventor); Green, Robert D (Inventor); Farmer, Serene (Inventor)

    2017-01-01

    An oxygen pump can produce high-purity high-pressure oxygen. Oxygen ions (O(2-)) are electrochemically pumped through a multi-stage electrolysis stack of cells. Each cell includes an oxygen-ion conducting solid-state electrolyte between cathode and anode sides. Oxygen dissociates into the ions at the cathode side. The ions migrate across the electrolyte and recombine at the anode side. An insulator is between adjacent cells to electrically isolate each individual cell. Each cell receives a similar volt potential. Recombined oxygen from a previous stage can diffuse through the insulator to reach the cathode side of the next stage. Each successive stage similarly incrementally pressurizes the oxygen to produce a final elevated pressure.

  19. Soft x-ray plasma-based seeded multistage amplification chain.

    PubMed

    Oliva, Eduardo; Fajardo, Marta; Li, Lu; Sebban, Stephane; Ros, David; Zeitoun, Philippe

    2012-10-15

    To date, plasma-based soft x-ray lasers have demonstrated experimentally 1 μJ, 1 ps (1 MW) pulses. This Letter reports extensive study using time-dependant Maxwell-Bloch code of seeding millimeter scale plasmas that store more than 100 mJ in population inversion. Direct seeding of these plasmas has to overcome very strong amplified spontaneous emission (ASE) as well as prevent wake-field amplification. Below 100 nJ injected energy, seed produces pulses with picosecond duration. To overcome this limitation, a new scheme has been studied, taking advantage of a plasma preamplifier that dramatically increases the seed energy prior to entering the main plasma amplifier leading to ASE and wake-free, fully coherent 21.6 μJ, 80 fs pulses (0.27 GW).

  20. Carbon reactivation kinetics in the base of heterojunction GaInP-GaAs bipolar transistors

    NASA Astrophysics Data System (ADS)

    Mimila-Arroyo, J.; Bland, S. W.; Chevallier, J.

    2002-05-01

    The reactivation kinetics of carbon acceptors in the base region of GaInP/GaAs heterojunction bipolar transistors was studied. The reactivation was achieved by ex situ thermal annealing, through a multistage annealing experiment where the carrier concentration was monitored at each stage. Results indicate that carbon reactivation follows a first-order kinetics process in which the activation energy appears to be the sum of the energy needed to debond the hydrogen from the carbon-hydrogen complex, and the energy necessary to overcome the electrostatic junction barrier. The reactivation constant is thermally activated with an activation energy of 2.83 eV and an attempt frequency of 1.2×1013 s-1.

  1. Integrated butanol recovery for an advanced biofuel: current state and prospects.

    PubMed

    Xue, Chuang; Zhao, Jing-Bo; Chen, Li-Jie; Bai, Feng-Wu; Yang, Shang-Tian; Sun, Jian-Xin

    2014-04-01

    Butanol has recently gained increasing interest due to escalating prices in petroleum fuels and concerns on the energy crisis. However, the butanol production cost with conventional acetone-butanol-ethanol fermentation by Clostridium spp. was higher than that of petrochemical processes due to the low butanol titer, yield, and productivity in bioprocesses. In particular, a low butanol titer usually leads to an extremely high recovery cost. Conventional biobutanol recovery by distillation is an energy-intensive process, which has largely restricted the economic production of biobutanol. This article thus reviews the latest studies on butanol recovery techniques including gas stripping, liquid-liquid extraction, adsorption, and membrane-based techniques, which can be used for in situ recovery of inhibitory products to enhance butanol production. The productivity of the fermentation system is improved efficiently using the in situ recovery technology; however, the recovered butanol titer remains low due to the limitations from each one of these recovery technologies, especially when the feed butanol concentration is lower than 1 % (w/v). Therefore, several innovative multi-stage hybrid processes have been proposed and are discussed in this review. These hybrid processes including two-stage gas stripping and multi-stage pervaporation have high butanol selectivity, considerably higher energy and production efficiency, and should outperform the conventional processes using single separation step or method. The development of these new integrated processes will give a momentum for the sustainable production of industrial biobutanol.

  2. [German national consensus on wound documentation of leg ulcer : Part 1: Routine care - standard dataset and minimum dataset].

    PubMed

    Heyer, K; Herberger, K; Protz, K; Mayer, A; Dissemond, J; Debus, S; Augustin, M

    2017-09-01

    Standards for basic documentation and the course of treatment increase quality assurance and efficiency in health care. To date, no standards for the treatment of patients with leg ulcers are available in Germany. The aim of the study was to develop standards under routine conditions in the documentation of patients with leg ulcers. This article shows the recommended variables of a "standard dataset" and a "minimum dataset". Consensus building among experts from 38 scientific societies, professional associations, insurance and supply networks (n = 68 experts) took place. After conducting a systematic international literature research, available standards were reviewed and supplemented with our own considerations of the expert group. From 2012-2015 standards for documentation were defined in multistage online visits and personal meetings. A consensus was achieved for 18 variables for the minimum dataset and 48 variables for the standard dataset in a total of seven meetings and nine online Delphi visits. The datasets involve patient baseline data, data on the general health status, wound characteristics, diagnostic and therapeutic interventions, patient reported outcomes, nutrition, and education status. Based on a multistage continuous decision-making process, a standard in the measurement of events in routine care in patients with a leg ulcer was developed.

  3. Multi-Stage Structural Transformations in Zero-Strain Lithium Titanate Unveiled by in Situ X-ray Absorption Fingerprints

    DOE PAGES

    Zhang, Wei; Topsakal, Mehmet; Cama, Christina; ...

    2017-10-13

    Zero-strain electrodes, such as spinel lithium titanate (Li 4/3Ti 5/3O 4), are appealing for application in batteries due to their negligible volume change and extraordinary stability upon repeated charge/discharge cycles. On the other hand, this same property makes it challenging to probe their structural changes during the electrochemical reaction. In this paper, we report in situ studies of lithiation-driven structural transformations in Li 4/3Ti 5/3O 4 via a combination of X-ray absorption spectroscopy and ab initio calculations. Based on excellent agreement between computational and experimental spectra of Ti K-edge, we identified key spectral features as fingerprints for quantitative assessment ofmore » structural evolution at different length scales. Results from this study indicate that, despite the small variation in the crystal lattice during lithiation, pronounced structural transformations occur in Li 4/3Ti 5/3O 4, both locally and globally, giving rise to a multi-stage kinetic process involving mixed quasi-solid solution/macroscopic two-phase transformations over a wide range of Li concentrations. Finally, this work highlights the unique capability of combining in situ core-level spectroscopy and first-principles calculations for probing Li-ion intercalation in zero-strain electrodes, which is crucial to designing high-performance electrode materials for long-life batteries.« less

  4. Planning Risk-Based SQC Schedules for Bracketed Operation of Continuous Production Analyzers.

    PubMed

    Westgard, James O; Bayat, Hassan; Westgard, Sten A

    2018-02-01

    To minimize patient risk, "bracketed" statistical quality control (SQC) is recommended in the new CLSI guidelines for SQC (C24-Ed4). Bracketed SQC requires that a QC event both precedes and follows (brackets) a group of patient samples. In optimizing a QC schedule, the frequency of QC or run size becomes an important planning consideration to maintain quality and also facilitate responsive reporting of results from continuous operation of high production analytic systems. Different plans for optimizing a bracketed SQC schedule were investigated on the basis of Parvin's model for patient risk and CLSI C24-Ed4's recommendations for establishing QC schedules. A Sigma-metric run size nomogram was used to evaluate different QC schedules for processes of different sigma performance. For high Sigma performance, an effective SQC approach is to employ a multistage QC procedure utilizing a "startup" design at the beginning of production and a "monitor" design periodically throughout production. Example QC schedules are illustrated for applications with measurement procedures having 6-σ, 5-σ, and 4-σ performance. Continuous production analyzers that demonstrate high σ performance can be effectively controlled with multistage SQC designs that employ a startup QC event followed by periodic monitoring or bracketing QC events. Such designs can be optimized to minimize the risk of harm to patients. © 2017 American Association for Clinical Chemistry.

  5. Multi-stage ranking of emergency technology alternatives for water source pollution accidents using a fuzzy group decision making tool.

    PubMed

    Qu, Jianhua; Meng, Xianlin; You, Hong

    2016-06-05

    Due to the increasing number of unexpected water source pollution events, selection of the most appropriate disposal technology for a specific pollution scenario is of crucial importance to the security of urban water supplies. However, the formulation of the optimum option is considerably difficult owing to the substantial uncertainty of such accidents. In this research, a multi-stage technical screening and evaluation tool is proposed to determine the optimal technique scheme, considering the areas of pollutant elimination both in drinking water sources and water treatment plants. In stage 1, a CBR-based group decision tool was developed to screen available technologies for different scenarios. Then, the threat degree caused by the pollution was estimated in stage 2 using a threat evaluation system and was partitioned into four levels. For each threat level, a corresponding set of technique evaluation criteria weights was obtained using Group-G1. To identify the optimization alternatives corresponding to the different threat levels, an extension of TOPSIS, a multi-criteria interval-valued trapezoidal fuzzy decision making technique containing the four arrays of criteria weights, to a group decision environment was investigated in stage 3. The effectiveness of the developed tool was elaborated by two actual thallium-contaminated scenarios associated with different threat levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A smart polymeric platform for multistage nucleus-targeted anticancer drug delivery.

    PubMed

    Zhong, Jiaju; Li, Lian; Zhu, Xi; Guan, Shan; Yang, Qingqing; Zhou, Zhou; Zhang, Zhirong; Huang, Yuan

    2015-10-01

    Tumor cell nucleus-targeted delivery of antitumor agents is of great interest in cancer therapy, since the nucleus is one of the most frequent targets of drug action. Here we report a smart polymeric conjugate platform, which utilizes stimulus-responsive strategies to achieve multistage nuclear drug delivery upon systemic administration. The conjugates composed of a backbone based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer and detachable nucleus transport sub-units that sensitive to lysosomal enzyme. The sub-units possess a biforked structure with one end conjugated with the model drug, H1 peptide, and the other end conjugated with a novel pH-responsive targeting peptide (R8NLS) that combining the strength of cell penetrating peptide and nuclear localization sequence. The conjugates exhibited prolonged circulation time and excellent tumor homing ability. And the activation of R8NLS in acidic tumor microenvironment facilitated tissue penetration and cellular internalization. Once internalized into the cell, the sub-units were unleashed for nuclear transport through nuclear pore complex. The unique features resulted in 50-fold increase of nuclear drug accumulation relative to the original polymer-drug conjugates in vitro, and excellent in vivo nuclear drug delivery efficiency. Our report provides a strategy in systemic nuclear drug delivery by combining the microenvironment-responsive structure and detachable sub-units. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Users manual for updated computer code for axial-flow compressor conceptual design

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1992-01-01

    An existing computer code that determines the flow path for an axial-flow compressor either for a given number of stages or for a given overall pressure ratio was modified for use in air-breathing engine conceptual design studies. This code uses a rapid approximate design methodology that is based on isentropic simple radial equilibrium. Calculations are performed at constant-span-fraction locations from tip to hub. Energy addition per stage is controlled by specifying the maximum allowable values for several aerodynamic design parameters. New modeling was introduced to the code to overcome perceived limitations. Specific changes included variable rather than constant tip radius, flow path inclination added to the continuity equation, input of mass flow rate directly rather than indirectly as inlet axial velocity, solution for the exact value of overall pressure ratio rather than for any value that met or exceeded it, and internal computation of efficiency rather than the use of input values. The modified code was shown to be capable of computing efficiencies that are compatible with those of five multistage compressors and one fan that were tested experimentally. This report serves as a users manual for the revised code, Compressor Spanline Analysis (CSPAN). The modeling modifications, including two internal loss correlations, are presented. Program input and output are described. A sample case for a multistage compressor is included.

  8. Microfluidic assembly of monodisperse multistage pH-responsive polymer/porous silicon composites for precisely controlled multi-drug delivery.

    PubMed

    Liu, Dongfei; Zhang, Hongbo; Herranz-Blanco, Bárbara; Mäkilä, Ermei; Lehto, Vesa-Pekka; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-05-28

    We report an advanced drug delivery platform for combination chemotherapy by concurrently incorporating two different drugs into microcompoistes with ratiometric control over the loading degree. Atorvastatin and celecoxib were selected as model drugs due to their different physicochemical properties and synergetic effect on colorectal cancer prevention and inhibition. To be effective in colorectal cancer prevention and inhibition, the produced microcomposite contained hypromellose acetate succinate, which is insoluble in acidic conditions but highly dissolving at neutral or alkaline pH conditions. Taking advantage of the large pore volume of porous silicon (PSi), atorvastatin was firstly loaded into the PSi matrix, and then encapsulated into the pH-responsive polymer microparticles containing celecoxib by microfluidics in order to obtain multi-drug loaded polymer/PSi microcomposites. The prepared microcomposites showed monodisperse size distribution, multistage pH-response, precise ratiometric controlled loading degree towards the simultaneously loaded drug molecules, and tailored release kinetics of the loaded cargos. This attractive microcomposite platform protects the payloads from being released at low pH-values, and enhances their release at higher pH-values, which can be further used for colon cancer prevention and treatment. Overall, the pH-responsive polymer/PSi-based microcomposite can be used as a universal platform for the delivery of different drug molecules for combination therapy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Multi-Stage Structural Transformations in Zero-Strain Lithium Titanate Unveiled by in Situ X-ray Absorption Fingerprints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei; Topsakal, Mehmet; Cama, Christina

    Zero-strain electrodes, such as spinel lithium titanate (Li 4/3Ti 5/3O 4), are appealing for application in batteries due to their negligible volume change and extraordinary stability upon repeated charge/discharge cycles. On the other hand, this same property makes it challenging to probe their structural changes during the electrochemical reaction. In this paper, we report in situ studies of lithiation-driven structural transformations in Li 4/3Ti 5/3O 4 via a combination of X-ray absorption spectroscopy and ab initio calculations. Based on excellent agreement between computational and experimental spectra of Ti K-edge, we identified key spectral features as fingerprints for quantitative assessment ofmore » structural evolution at different length scales. Results from this study indicate that, despite the small variation in the crystal lattice during lithiation, pronounced structural transformations occur in Li 4/3Ti 5/3O 4, both locally and globally, giving rise to a multi-stage kinetic process involving mixed quasi-solid solution/macroscopic two-phase transformations over a wide range of Li concentrations. Finally, this work highlights the unique capability of combining in situ core-level spectroscopy and first-principles calculations for probing Li-ion intercalation in zero-strain electrodes, which is crucial to designing high-performance electrode materials for long-life batteries.« less

  10. A multistage selective weighting method for improved microwave breast tomography.

    PubMed

    Shahzad, Atif; O'Halloran, Martin; Jones, Edward; Glavin, Martin

    2016-12-01

    Microwave tomography has shown potential to successfully reconstruct the dielectric properties of the human breast, thereby providing an alternative to other imaging modalities used in breast imaging applications. Considering the costly forward solution and complex iterative algorithms, computational complexity becomes a major bottleneck in practical applications of microwave tomography. In addition, the natural tendency of microwave inversion algorithms to reward high contrast breast tissue boundaries, such as the skin-adipose interface, usually leads to a very slow reconstruction of the internal tissue structure of human breast. This paper presents a multistage selective weighting method to improve the reconstruction quality of breast dielectric properties and minimize the computational cost of microwave breast tomography. In the proposed two stage approach, the skin layer is approximated using scaled microwave measurements in the first pass of the inversion algorithm; a numerical skin model is then constructed based on the estimated skin layer and the assumed dielectric properties of the skin tissue. In the second stage of the algorithm, the skin model is used as a priori information to reconstruct the internal tissue structure of the breast using a set of temporal scaling functions. The proposed method is evaluated on anatomically accurate MRI-derived breast phantoms and a comparison with the standard single-stage technique is presented. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Coarse-grained models of key self-assembly processes in HIV-1

    NASA Astrophysics Data System (ADS)

    Grime, John

    Computational molecular simulations can elucidate microscopic information that is inaccessible to conventional experimental techniques. However, many processes occur over time and length scales that are beyond the current capabilities of atomic-resolution molecular dynamics (MD). One such process is the self-assembly of the HIV-1 viral capsid, a biological structure that is crucial to viral infectivity. The nucleation and growth of capsid structures requires the interaction of large numbers of capsid proteins within a complicated molecular environment. Coarse-grained (CG) models, where degrees of freedom are removed to produce more computationally efficient models, can in principle access large-scale phenomena such as the nucleation and growth of HIV-1 capsid lattice. We report here studies of the self-assembly behaviors of a CG model of HIV-1 capsid protein, including the influence of the local molecular environment on nucleation and growth processes. Our results suggest a multi-stage process, involving several characteristic structures, eventually producing metastable capsid lattice morphologies that are amenable to subsequent capsid dissociation in order to transmit the viral infection.

  12. Solubilization of human cells by the styrene-maleic acid copolymer: Insights from fluorescence microscopy.

    PubMed

    Dörr, Jonas M; van Coevorden-Hameete, Marleen H; Hoogenraad, Casper C; Killian, J Antoinette

    2017-11-01

    Extracting membrane proteins from biological membranes by styrene-maleic acid copolymers (SMAs) in the form of nanodiscs has developed into a powerful tool in membrane research. However, the mode of action of membrane (protein) solubilization in a cellular context is still poorly understood and potential specificity for cellular compartments has not been investigated. Here, we use fluorescence microscopy to visualize the process of SMA solubilization of human cells, exemplified by the immortalized human HeLa cell line. Using fluorescent protein fusion constructs that mark distinct subcellular compartments, we found that SMA solubilizes membranes in a concentration-dependent multi-stage process. While all major intracellular compartments were affected without a strong preference, plasma membrane solubilization was found to be generally slower than the solubilization of organelle membranes. Interestingly, some plasma membrane-localized proteins were more resistant against solubilization than others, which might be explained by their presence in specific membrane domains with differing properties. Our results support the general applicability of SMA for the isolation of membrane proteins from different types of (sub)cellular membranes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Illuminating the Reaction Pathways of Viromimetic Assembly.

    PubMed

    Cingil, Hande E; Boz, Emre B; Biondaro, Giovanni; de Vries, Renko; Cohen Stuart, Martien A; Kraft, Daniela J; van der Schoot, Paul; Sprakel, Joris

    2017-04-05

    The coassembly of well-defined biological nanostructures relies on a delicate balance between attractive and repulsive interactions between biomolecular building blocks. Viral capsids are a prototypical example, where coat proteins exhibit not only self-interactions but also interact with the cargo they encapsulate. In nature, the balance between antagonistic and synergistic interactions has evolved to avoid kinetic trapping and polymorphism. To date, it has remained a major challenge to experimentally disentangle the complex kinetic reaction pathways that underlie successful coassembly of biomolecular building blocks in a noninvasive approach with high temporal resolution. Here we show how macromolecular force sensors, acting as a genome proxy, allow us to probe the pathways through which a viromimetic protein forms capsids. We uncover the complex multistage process of capsid assembly, which involves recruitment and complexation, followed by allosteric growth of the proteinaceous coat. Under certain conditions, the single-genome particles condense into capsids containing multiple copies of the template. Finally, we derive a theoretical model that quantitatively describes the kinetics of recruitment and growth. These results shed new light on the origins of the pathway complexity in biomolecular coassembly.

  14. Multistage Force Amplification of Piezoelectric Stacks

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Siochi, Emilie J. (Inventor); Zuo, Lei (Inventor); Jiang, Xiaoning (Inventor); Kang, Jin Ho (Inventor)

    2015-01-01

    Embodiments of the disclosure include an apparatus and methods for using a piezoelectric device, that includes an outer flextensional casing, a first cell and a last cell serially coupled to each other and coupled to the outer flextensional casing such that each cell having a flextensional cell structure and each cell receives an input force and provides an output force that is amplified based on the input force. The apparatus further includes a piezoelectric stack coupled to each cell such that the piezoelectric stack of each cell provides piezoelectric energy based on the output force for each cell. Further, the last cell receives an input force that is the output force from the first cell and the last cell provides an output apparatus force In addition, the piezoelectric energy harvested is based on the output apparatus force. Moreover, the apparatus provides displacement based on the output apparatus force.

  15. Enhanced performance of macrophage-encapsulated nanoparticle albumin-bound-paclitaxel in hypo-perfused cancer lesions

    NASA Astrophysics Data System (ADS)

    Leonard, Fransisca; Curtis, Louis T.; Yesantharao, Pooja; Tanei, Tomonori; Alexander, Jenolyn F.; Wu, Min; Lowengrub, John; Liu, Xuewu; Ferrari, Mauro; Yokoi, Kenji; Frieboes, Hermann B.; Godin, Biana

    2016-06-01

    Hypovascularization in tumors such as liver metastases originating from breast and other organs correlates with poor chemotherapeutic response and higher mortality. Poor prognosis is linked to impaired transport of both low- and high-molecular weight drugs into the lesions and to high washout rate. Nanoparticle albumin-bound-paclitaxel (nAb-PTX) has demonstrated benefits in clinical trials when compared to paclitaxel and docetaxel. However, its therapeutic efficacy for breast cancer liver metastasis is disappointing. As macrophages are the most abundant cells in the liver tumor microenvironment, we design a multistage system employing macrophages to deliver drugs into hypovascularized metastatic lesions, and perform in vitro, in vivo, and in silico evaluation. The system encapsulates nAb-PTX into nanoporous biocompatible and biodegradable multistage vectors (MSV), thus promoting nAb-PTX retention in macrophages. We develop a 3D in vitro model to simulate clinically observed hypo-perfused tumor lesions surrounded by macrophages. This model enables evaluation of nAb-PTX and MSV-nab PTX efficacy as a function of transport barriers. Addition of macrophages to this system significantly increases MSV-nAb-PTX efficacy, revealing the role of macrophages in drug transport. In the in vivo model, a significant increase in macrophage number, as compared to unaffected liver, is observed in mice, confirming the in vitro findings. Further, a mathematical model linking drug release and retention from macrophages is implemented to project MSV-nAb-PTX efficacy in a clinical setting. Based on macrophage presence detected via liver tumor imaging and biopsy, the proposed experimental/computational approach could enable prediction of MSV-nab PTX performance to treat metastatic cancer in the liver.Hypovascularization in tumors such as liver metastases originating from breast and other organs correlates with poor chemotherapeutic response and higher mortality. Poor prognosis is linked to impaired transport of both low- and high-molecular weight drugs into the lesions and to high washout rate. Nanoparticle albumin-bound-paclitaxel (nAb-PTX) has demonstrated benefits in clinical trials when compared to paclitaxel and docetaxel. However, its therapeutic efficacy for breast cancer liver metastasis is disappointing. As macrophages are the most abundant cells in the liver tumor microenvironment, we design a multistage system employing macrophages to deliver drugs into hypovascularized metastatic lesions, and perform in vitro, in vivo, and in silico evaluation. The system encapsulates nAb-PTX into nanoporous biocompatible and biodegradable multistage vectors (MSV), thus promoting nAb-PTX retention in macrophages. We develop a 3D in vitro model to simulate clinically observed hypo-perfused tumor lesions surrounded by macrophages. This model enables evaluation of nAb-PTX and MSV-nab PTX efficacy as a function of transport barriers. Addition of macrophages to this system significantly increases MSV-nAb-PTX efficacy, revealing the role of macrophages in drug transport. In the in vivo model, a significant increase in macrophage number, as compared to unaffected liver, is observed in mice, confirming the in vitro findings. Further, a mathematical model linking drug release and retention from macrophages is implemented to project MSV-nAb-PTX efficacy in a clinical setting. Based on macrophage presence detected via liver tumor imaging and biopsy, the proposed experimental/computational approach could enable prediction of MSV-nab PTX performance to treat metastatic cancer in the liver. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07796f

  16. Simulator for beam-based LHC collimator alignment

    NASA Astrophysics Data System (ADS)

    Valentino, Gianluca; Aßmann, Ralph; Redaelli, Stefano; Sammut, Nicholas

    2014-02-01

    In the CERN Large Hadron Collider, collimators need to be set up to form a multistage hierarchy to ensure efficient multiturn cleaning of halo particles. Automatic algorithms were introduced during the first run to reduce the beam time required for beam-based setup, improve the alignment accuracy, and reduce the risk of human errors. Simulating the alignment procedure would allow for off-line tests of alignment policies and algorithms. A simulator was developed based on a diffusion beam model to generate the characteristic beam loss signal spike and decay produced when a collimator jaw touches the beam, which is observed in a beam loss monitor (BLM). Empirical models derived from the available measurement data are used to simulate the steady-state beam loss and crosstalk between multiple BLMs. The simulator design is presented, together with simulation results and comparison to measurement data.

  17. [The relationship between community resilience and adolescent smoking behavior].

    PubMed

    Márton, Albert-Lőrincz; Enikő, Albert-Lőrincz; Gergely, Barna; Krisztina, Bernáth; Ildikó, Gáspárik; Béla, Szabó

    2016-01-01

    Our study investigates the theoretical and practical relationship between community resilience and adolescent smoking behavior, based on the assumption that experiencing the supportive, protective and regulatory power of local communities and neighborhoods influences adolescent smoking behavior, it delays the early testing and it reduces the prevalence of regular smoking. The study is based on an ongoing research related to smoking prevention. Empirical, self-administered questionnaire based study, random, stratified, multistage sample, delivered in Mureş, Harghita and Covasna Counties, Romania. The community relationship showed significant association with the smoking behavior, the risk of smoking was higher among those young people who had less contact with the local community. There was a significantly lower number of regular smokers among those adolescents who perceived restrictions by their family and community in relation to smoking and those with higher social capital.

  18. Wavelength-tunable filter utilizing non-cyclic arrayed waveguide grating to create colorless, directionless, contentionless ROADMs

    NASA Astrophysics Data System (ADS)

    Niwa, Masaki; Takashina, Shoichi; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-ichi; Watanabe, Toshio

    2015-01-01

    With the continuous increase in Internet traffic, reconfigurable optical add-drop multiplexers (ROADMs) have been widely adopted in the core and metro core networks. Current ROADMs, however, allow only static operation. To realize future dynamic optical-network services, and to minimize any human intervention in network operation, the optical signal add/drop part should have colorless/directionless/contentionless (C/D/C) capabilities. This is possible with matrix switches or a combination of splitter-switches and optical tunable filters. The scale of the matrix switch increases with the square of the number of supported channels, and hence, the matrix-switch-based architecture is not suitable for creating future large-scale ROADMs. In contrast, the numbers of splitter ports, switches, and tunable filters increase linearly with the number of supported channels, and hence the tunable-filter-based architecture will support all future traffic. So far, we have succeeded in fabricating a compact tunable filter that consists of multi-stage cyclic arrayed-waveguide gratings (AWGs) and switches by using planar-lightwave-circuit (PLC) technologies. However, this multistage configuration suffers from large insertion loss and filter narrowing. Moreover, power-consuming temperature control is necessary since it is difficult to make cyclic AWGs athermal. We propose here novel tunable-filter architecture that sandwiches a single-stage non-cyclic athermal AWG having flatter-topped passbands between small-scale switches. With this configuration, the optical tunable filter attains low insertion loss, large passband bandwidths, low power consumption, compactness, and high cost-effectiveness. A prototype is monolithically fabricated with PLC technologies and its excellent performance is experimentally confirmed utilizing 80-channel 30-GBaud dual-polarization quadrature phase-shift-keying (QPSK) signals.

  19. Process simulation and dynamic control for marine oily wastewater treatment using UV irradiation.

    PubMed

    Jing, Liang; Chen, Bing; Zhang, Baiyu; Li, Pu

    2015-09-15

    UV irradiation and advanced oxidation processes have been recently regarded as promising solutions in removing polycyclic aromatic hydrocarbons (PAHs) from marine oily wastewater. However, such treatment methods are generally not sufficiently understood in terms of reaction mechanisms, process simulation and process control. These deficiencies can drastically hinder their application in shipping and offshore petroleum industries which produce bilge/ballast water and produced water as the main streams of marine oily wastewater. In this study, the factorial design of experiment was carried out to investigate the degradation mechanism of a typical PAH, namely naphthalene, under UV irradiation in seawater. Based on the experimental results, a three-layer feed-forward artificial neural network simulation model was developed to simulate the treatment process and to forecast the removal performance. A simulation-based dynamic mixed integer nonlinear programming (SDMINP) approach was then proposed to intelligently control the treatment process by integrating the developed simulation model, genetic algorithm and multi-stage programming. The applicability and effectiveness of the developed approach were further tested though a case study. The experimental results showed that the influences of fluence rate and temperature on the removal of naphthalene were greater than those of salinity and initial concentration. The developed simulation model could well predict the UV-induced removal process under varying conditions. The case study suggested that the SDMINP approach, with the aid of the multi-stage control strategy, was able to significantly reduce treatment cost when comparing to the traditional single-stage process optimization. The developed approach and its concept/framework have high potential of applicability in other environmental fields where a treatment process is involved and experimentation and modeling are used for process simulation and control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Multistage electrotherapy delivered through chronically-implanted leads terminates atrial fibrillation with lower energy than a single biphasic shock.

    PubMed

    Janardhan, Ajit H; Gutbrod, Sarah R; Li, Wenwen; Lang, Di; Schuessler, Richard B; Efimov, Igor R

    The goal of this study was to develop a low-energy, implantable device-based multistage electrotherapy (MSE) to terminate atrial fibrillation (AF). Previous attempts to perform cardioversion of AF by using an implantable device were limited by the pain caused by use of a high-energy single biphasic shock (BPS). Transvenous leads were implanted into the right atrium (RA), coronary sinus, and left pulmonary artery of 14 dogs. Self-sustaining AF was induced by 6 ± 2 weeks of high-rate RA pacing. Atrial defibrillation thresholds of standard versus experimental electrotherapies were measured in vivo and studied by using optical imaging in vitro. The mean AF cycle length (CL) in vivo was 112 ± 21 ms (534 beats/min). The impedances of the RA-left pulmonary artery and RA-coronary sinus shock vectors were similar (121 ± 11 Ω vs. 126 ± 9 Ω; p = 0.27). BPS required 1.48 ± 0.91 J (165 ± 34 V) to terminate AF. In contrast, MSE terminated AF with significantly less energy (0.16 ± 0.16 J; p < 0.001) and significantly lower peak voltage (31.1 ± 19.3 V; p < 0.001). In vitro optical imaging studies found that AF was maintained by localized foci originating from pulmonary vein-left atrium interfaces. MSE Stage 1 shocks temporarily disrupted localized foci; MSE Stage 2 entrainment shocks continued to silence the localized foci driving AF; and MSE Stage 3 pacing stimuli enabled consistent RA-left atrium activation until sinus rhythm was restored. Low-energy MSE significantly reduced the atrial defibrillation thresholds compared with BPS in a canine model of AF. MSE may enable painless, device-based AF therapy. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  1. Multistage Electrotherapy Delivered Through Chronically-Implanted Leads Terminates Atrial Fibrillation With Lower Energy Than a Single Biphasic Shock

    PubMed Central

    Janardhan, Ajit H.; Gutbrod, Sarah R.; Li, Wenwen; Lang, Di; Schuessler, Richard B.; Efimov, Igor R.

    2014-01-01

    Objectives The goal of this study was to develop a low-energy, implantable device–based multistage electrotherapy (MSE) to terminate atrial fibrillation (AF). Background Previous attempts to perform cardioversion of AF by using an implantable device were limited by the pain caused by use of a high-energy single biphasic shock (BPS). Methods Transvenous leads were implanted into the right atrium (RA), coronary sinus, and left pulmonary artery of 14 dogs. Self-sustaining AF was induced by 6 ± 2 weeks of high-rate RA pacing. Atrial defibrillation thresholds of standard versus experimental electrotherapies were measured in vivo and studied by using optical imaging in vitro. Results The mean AF cycle length (CL) in vivo was 112 ± 21 ms (534 beats/min). The impedances of the RA–left pulmonary artery and RA–coronary sinus shock vectors were similar (121 ± 11 Ω vs. 126 ± 9 Ω; p = 0.27). BPS required 1.48 ± 0.91 J (165 ± 34 V) to terminate AF. In contrast, MSE terminated AF with significantly less energy (0.16 ± 0.16 J; p < 0.001) and significantly lower peak voltage (31.1 ± 19.3 V; p < 0.001). In vitro optical imaging studies found that AF was maintained by localized foci originating from pulmonary vein–left atrium interfaces. MSE Stage 1 shocks temporarily disrupted localized foci; MSE Stage 2 entrainment shocks continued to silence the localized foci driving AF; and MSE Stage 3 pacing stimuli enabled consistent RA–left atrium activation until sinus rhythm was restored. Conclusions Low-energy MSE significantly reduced the atrial defibrillation thresholds compared with BPS in a canine model of AF. MSE may enable painless, device-based AF therapy. PMID:24076284

  2. A three-talk model for shared decision making: multistage consultation process.

    PubMed

    Elwyn, Glyn; Durand, Marie Anne; Song, Julia; Aarts, Johanna; Barr, Paul J; Berger, Zackary; Cochran, Nan; Frosch, Dominick; Galasiński, Dariusz; Gulbrandsen, Pål; Han, Paul K J; Härter, Martin; Kinnersley, Paul; Lloyd, Amy; Mishra, Manish; Perestelo-Perez, Lilisbeth; Scholl, Isabelle; Tomori, Kounosuke; Trevena, Lyndal; Witteman, Holly O; Van der Weijden, Trudy

    2017-11-06

    Objectives  To revise an existing three-talk model for learning how to achieve shared decision making, and to consult with relevant stakeholders to update and obtain wider engagement. Design  Multistage consultation process. Setting  Key informant group, communities of interest, and survey of clinical specialties. Participants  19 key informants, 153 member responses from multiple communities of interest, and 316 responses to an online survey from medically qualified clinicians from six specialties. Results  After extended consultation over three iterations, we revised the three-talk model by making changes to one talk category, adding the need to elicit patient goals, providing a clear set of tasks for each talk category, and adding suggested scripts to illustrate each step. A new three-talk model of shared decision making is proposed, based on "team talk," "option talk," and "decision talk," to depict a process of collaboration and deliberation. Team talk places emphasis on the need to provide support to patients when they are made aware of choices, and to elicit their goals as a means of guiding decision making processes. Option talk refers to the task of comparing alternatives, using risk communication principles. Decision talk refers to the task of arriving at decisions that reflect the informed preferences of patients, guided by the experience and expertise of health professionals. Conclusions  The revised three-talk model of shared decision making depicts conversational steps, initiated by providing support when introducing options, followed by strategies to compare and discuss trade-offs, before deliberation based on informed preferences. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Hierarchical Cu precipitation in lamellated steel after multistage heat treatment

    NASA Astrophysics Data System (ADS)

    Liu, Qingdong; Gu, Jianfeng

    2017-09-01

    The hierarchical distribution of Cu-rich precipitates (CRPs) and related partitioning and segregation behaviours of solute atoms were investigated in a 1.54 Cu-3.51 Ni (wt.%) low-carbon high-strength low-alloy (HSLA) steel after multistage heat treatment by using the combination of electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and atom probe tomography (APT). Intercritical tempering at 725 °C of as-quenched lathlike martensitic structure leads to the coprecipitation of CRPs at the periphery of a carbide precipitate which is possibly in its paraequilibrium state due to distinct solute segregation at the interface. The alloyed carbide and CRPs provide constituent elements for each other and make the coprecipitation thermodynamically favourable. Meanwhile, austenite reversion occurs to form fresh secondary martensite (FSM) zone where is rich in Cu and pertinent Ni and Mn atoms, which gives rise to a different distributional morphology of CRPs with large size and high density. In addition, conventional tempering at 500 °C leads to the formation of nanoscale Cu-rich clusters in α-Fe matrix. As a consequence, three populations of CRPs are hierarchically formed around carbide precipitate, at FSM zone and in α-Fe matrix. The formation of different precipitated features can be turned by controlling diffusion pathways of related solute atoms and further to tailor mechanical properties via proper multistage heat treatments.

  4. Experimental and Model Studies on Continuous Separation of 2-Phenylpropionic Acid Enantiomers by Enantioselective Liquid-Liquid Extraction in Centrifugal Contactor Separators.

    PubMed

    Feng, Xiaofeng; Tang, Kewen; Zhang, Pangliang; Yin, Shuangfeng

    2016-03-01

    Multistage enantioselective liquid-liquid extraction (ELLE) of 2-phenylpropionic acid (2-PPA) enantiomers using hydroxypropyl-β-cyclodextrin (HP-β-CD) as extractant was studied experimentally in a counter-current cascade of centrifugal contactor separators (CCSs). Performance of the process was evaluated by purity (enantiomeric excess, ee) and yield (Y). A multistage equilibrium model was established on the basis of single-stage model for chiral extraction of 2-PPA enantiomers and the law of mass conservation. A series of experiments on the extract phase/washing phase ratio (W/O ratio), extractant concentration, the pH value of aqueous phase, and the number of stages was conducted to verify the multistage equilibrium model. It was found that model predictions were in good agreement with the experimental results. The model was applied to predict and optimize the symmetrical separation of 2-PPA enantiomers. The optimal conditions for symmetric separation involves a W/O ratio of 0.6, pH of 2.5, and HP-β-CD concentration of 0.1 mol L(-1) at a temperature of 278 K, where eeeq (equal enantiomeric excess) can reach up to 37% and Yeq (equal yield) to 69%. By simulation and optimization, the minimum number of stages was evaluated at 98 and 106 for eeeq > 95% and eeeq > 97%. © 2016 Wiley Periodicals, Inc.

  5. A novel multi-stage direct contact membrane distillation module: Design, experimental and theoretical approaches.

    PubMed

    Lee, Jung-Gil; Kim, Woo-Seung; Choi, June-Seok; Ghaffour, Noreddine; Kim, Young-Deuk

    2016-12-15

    An economic desalination system with a small scale and footprint for remote areas, which have a limited and inadequate water supply, insufficient water treatment and low infrastructure, is strongly demanded in the desalination markets. Here, a direct contact membrane distillation (DCMD) process has the simplest configuration and potentially the highest permeate flux among all of the possible MD processes. This process can also be easily instituted in a multi-stage manner for enhanced compactness, productivity, versatility and cost-effectiveness. In this study, an innovative, multi-stage, DCMD module under countercurrent-flow configuration is first designed and then investigate both theoretically and experimentally to identify its feasibility and operability for desalination application. Model predictions and measured data for mean permeate flux are compared and shown to be in good agreement. The effect of the number of module stages on the mean permeate flux, performance ratio and daily water production of the MDCMD system has been theoretically identified at inlet feed and permeate flow rates of 1.5 l/min and inlet feed and permeate temperatures of 70 °C and 25 °C, respectively. The daily water production of a three-stage DCMD module with a membrane area of 0.01 m 2  at each stage is found to be 21.5 kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Generation Expansion Planning With Large Amounts of Wind Power via Decision-Dependent Stochastic Programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Yiduo; Zheng, Qipeng P.; Wang, Jianhui

    Power generation expansion planning needs to deal with future uncertainties carefully, given that the invested generation assets will be in operation for a long time. Many stochastic programming models have been proposed to tackle this challenge. However, most previous works assume predetermined future uncertainties (i.e., fixed random outcomes with given probabilities). In several recent studies of generation assets' planning (e.g., thermal versus renewable), new findings show that the investment decisions could affect the future uncertainties as well. To this end, this paper proposes a multistage decision-dependent stochastic optimization model for long-term large-scale generation expansion planning, where large amounts of windmore » power are involved. In the decision-dependent model, the future uncertainties are not only affecting but also affected by the current decisions. In particular, the probability distribution function is determined by not only input parameters but also decision variables. To deal with the nonlinear constraints in our model, a quasi-exact solution approach is then introduced to reformulate the multistage stochastic investment model to a mixed-integer linear programming model. The wind penetration, investment decisions, and the optimality of the decision-dependent model are evaluated in a series of multistage case studies. The results show that the proposed decision-dependent model provides effective optimization solutions for long-term generation expansion planning.« less

  7. CFD-Modeling of the Multistage Gasifier Capacity of 30 KW

    NASA Astrophysics Data System (ADS)

    Levin, A. A.; Kozlov, A. N.; Svishchev, D. A.; Donskoy, I. G.

    2017-11-01

    Single-stage fuel gasification processes have been developed and widely studied in Russia and abroad throughout the 20th century. They are fundamental to the creation and design of modern gas generator equipment. Many studies have shown that single-stage gasification process, have already reached the limit of perfection, which was a significant improvement in their performance becomes impossible and unprofitable. The most fully meet modern technical requirements of multistage gasification technology. In the first step of the process, is organized allothermic biomass pyrolysis using heat of exhaust gas and generating power plant. At this stage, the yield of volatile products (gas and tar) of fuel. In the second step, the layer of fuel is, the tar is decomposed by the action of hot air and steam, steam-gas mixture is formed further reacts with the charcoal in the third process stage. The paper presents a model developed by the authors of the multi-stage gasifier for wood chips. The model is made with the use of CFD-modeling software package (COMSOL Multiphisics). To describe the kinetics of wood pyrolysis and gasification of charcoal studies were carried out using a set of simultaneous thermal analysis. For this complex developed original methods of interpretation of measurements, including methods of technical analysis of fuels and determine the parameters of the detailed kinetics and mechanism of pyrolysis.

  8. Securing stent during multi-stage laryngotracheoplasty--an evolved technique.

    PubMed

    Siegel, Bianca; Bent, John P

    2015-09-01

    Multi-stage laryngotracheoplasty (LTP) typically requires a stent be secured to the airway for 2-6 weeks. Our technique has evolved over time to securing the stent to the strap muscles and tying a series of knots long enough to leave the suture tail protruding through the skin incision, which simplifies stent removal. Retrospective chart review. Twenty-four patients underwent multi-stage LTP at our institution from 2007 to 2013. Eight patients were excluded from the study because they either did not have a stent placed (n=4), or they had a t-tube placed which was not sutured in place (n=4). Of the remaining 16 patients, 62.5% (n=10) had their stent secured via sutures which were buried below the skin, and 37.5% (n=6) via a long suture tail which was left protruding through the end of the skin incision. An incision was required for stent removal 100% of buried sutures patients, and 33% of exposed suture patients (p=0.0009). Average operative time for stent removal was 60min in the buried sutures group, and 25min in the exposed sutures group (p=0.0075). Securing stents via an exposed suture technique decreases the need for making a skin incision during the second stage of the operation, and significantly decreases the operative time of the second stage. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Forced response unsteady aerodynamics in a multistage compressor

    NASA Astrophysics Data System (ADS)

    Capece, Vincent Ralph

    The fundamental flow physics of the unsteady aerodynamics associated with forced vibrations in turbomachinery are investigated. Unique data are obtained through a series of experiments in a three stage axial flow research compressor which quantify the unsteady harmonic gust interaction phenomena over a range of operating and geometric conditions at high values of reduced frequency. In these experiments the effects of the following on the stator vane unsteady aerodynamics were quantified: (1) the steady aerodynamic loading, (2) the detailed waveform of the aerodynamic forcing function, including the chordwise and transverse gust components, (3) multistage blade row interactions, and (4) the solidity, ranging from a design value of 1.09 to an isolated airfoil. In addition, the effect of flow separation on the unsteady aerodynamics of an isolated airfoil was also investigated.

  10. The design and development of transonic multistage compressors

    NASA Technical Reports Server (NTRS)

    Ball, C. L.; Steinke, R. J.; Newman, F. A.

    1988-01-01

    The development of the transonic multistage compressor is reviewed. Changing trends in design and performance parameters are noted. These changes are related to advances in compressor aerodynamics, computational fluid mechanics and other enabling technologies. The parameters normally given to the designer and those that need to be established during the design process are identified. Criteria and procedures used in the selection of these parameters are presented. The selection of tip speed, aerodynamic loading, flowpath geometry, incidence and deviation angles, blade/vane geometry, blade/vane solidity, stage reaction, aerodynamic blockage, inlet flow per unit annulus area, stage/overall velocity ratio, and aerodynamic losses are considered. Trends in these parameters both spanwise and axially through the machine are highlighted. The effects of flow mixing and methods for accounting for the mixing in the design process are discussed.

  11. Least reliable bits coding (LRBC) for high data rate satellite communications

    NASA Technical Reports Server (NTRS)

    Vanderaar, Mark; Budinger, James; Wagner, Paul

    1992-01-01

    LRBC, a bandwidth efficient multilevel/multistage block-coded modulation technique, is analyzed. LRBC uses simple multilevel component codes that provide increased error protection on increasingly unreliable modulated bits in order to maintain an overall high code rate that increases spectral efficiency. Soft-decision multistage decoding is used to make decisions on unprotected bits through corrections made on more protected bits. Analytical expressions and tight performance bounds are used to show that LRBC can achieve increased spectral efficiency and maintain equivalent or better power efficiency compared to that of BPSK. The relative simplicity of Galois field algebra vs the Viterbi algorithm and the availability of high-speed commercial VLSI for block codes indicates that LRBC using block codes is a desirable method for high data rate implementations.

  12. Multistage Fuzzy Decision Making in Bilateral Negotiation with Finite Termination Times

    NASA Astrophysics Data System (ADS)

    Richter, Jan; Kowalczyk, Ryszard; Klusch, Matthias

    In this paper we model the negotiation process as a multistage fuzzy decision problem where the agents preferences are represented by a fuzzy goal and fuzzy constraints. The opponent is represented by a fuzzy Markov decision process in the form of offer-response patterns which enables utilization of limited and uncertain information, e.g. the characteristics of the concession behaviour. We show that we can obtain adaptive negotiation strategies by only using the negotiation threads of two past cases to create and update the fuzzy transition matrix. The experimental evaluation demonstrates that our approach is adaptive towards different negotiation behaviours and that the fuzzy representation of the preferences and the transition matrix allows for application in many scenarios where the available information, preferences and constraints are soft or imprecise.

  13. Comparisons of angularly and spectrally resolved Bremsstrahlung measurements to two-dimensional multi-stage simulations of short-pulse laser-plasma interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C. D.; Kemp, A. J.; Pérez, F.

    2013-05-15

    A 2-D multi-stage simulation model incorporating realistic laser conditions and a fully resolved electron distribution handoff has been developed and compared to angularly and spectrally resolved Bremsstrahlung measurements from high-Z planar targets. For near-normal incidence and 0.5-1 × 10{sup 20} W/cm{sup 2} intensity, particle-in-cell (PIC) simulations predict the existence of a high energy electron component consistently directed away from the laser axis, in contrast with previous expectations for oblique irradiation. Measurements of the angular distribution are consistent with a high energy component when directed along the PIC predicted direction, as opposed to between the target normal and laser axis asmore » previously measured.« less

  14. Kinetic analysis of non-isothermal solid-state reactions: multi-stage modeling without assumptions in the reaction mechanism.

    PubMed

    Pomerantsev, Alexey L; Kutsenova, Alla V; Rodionova, Oxana Ye

    2017-02-01

    A novel non-linear regression method for modeling non-isothermal thermogravimetric data is proposed. Experiments for several heating rates are analyzed simultaneously. The method is applicable to complex multi-stage processes when the number of stages is unknown. Prior knowledge of the type of kinetics is not required. The main idea is a consequent estimation of parameters when the overall model is successively changed from one level of modeling to another. At the first level, the Avrami-Erofeev functions are used. At the second level, the Sestak-Berggren functions are employed with the goal to broaden the overall model. The method is tested using both simulated and real-world data. A comparison of the proposed method with a recently published 'model-free' deconvolution method is presented.

  15. Removal of oxides of nitrogen from gases in multi-stage coal combustion

    DOEpatents

    Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.

    1998-01-13

    Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor. 2 figs.

  16. Evaluation of usefulness of Skylab EREP S-190 and S-192 imagery in multistage forest surveys

    NASA Technical Reports Server (NTRS)

    Langley, P. G. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A unique digital timber volume estimation system with digital data for two ERTS-1 MSS bands was tested. The system was tested on a 64-square mile area in Northern California's Trinity Alps. The outcome of a systematic experiment in which possible combinations of the two bands (MSS 5 and 7) were tried, showed than an estimated gain in precision of 50% can be obtained in a multistage sampling design. Especially the difference between the two bands proved to be of major importance for the estimation of biomass in the form of timber volume. Identical tests as the one performed will be conducted with various S-192 bands when the digital data become available.

  17. Removal of oxides of nitrogen from gases in multi-stage coal combustion

    DOEpatents

    Mollot, Darren J.; Bonk, Donald L.; Dowdy, Thomas E.

    1998-01-01

    Polluting NO.sub.x gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO.sub.x gases are removed is directed to introducing NO.sub.x -free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.

  18. Application of Aeroelastic Solvers Based on Navier Stokes Equations

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2001-01-01

    The propulsion element of the NASA Advanced Subsonic Technology (AST) initiative is directed towards increasing the overall efficiency of current aircraft engines. This effort requires an increase in the efficiency of various components, such as fans, compressors, turbines etc. Improvement in engine efficiency can be accomplished through the use of lighter materials, larger diameter fans and/or higher-pressure ratio compressors. However, each of these has the potential to result in aeroelastic problems such as flutter or forced response. To address the aeroelastic problems, the Structural Dynamics Branch of NASA Glenn has been involved in the development of numerical capabilities for analyzing the aeroelastic stability characteristics and forced response of wide chord fans, multi-stage compressors and turbines. In order to design an engine to safely perform a set of desired tasks, accurate information of the stresses on the blade during the entire cycle of blade motion is required. This requirement in turn demands that accurate knowledge of steady and unsteady blade loading is available. To obtain the steady and unsteady aerodynamic forces for the complex flows around the engine components, for the flow regimes encountered by the rotor, an advanced compressible Navier-Stokes solver is required. A finite volume based Navier-Stokes solver has been developed at Mississippi State University (MSU) for solving the flow field around multistage rotors. The focus of the current research effort, under NASA Cooperative Agreement NCC3- 596 was on developing an aeroelastic analysis code (entitled TURBO-AE) based on the Navier-Stokes solver developed by MSU. The TURBO-AE code has been developed for flutter analysis of turbomachine components and delivered to NASA and its industry partners. The code has been verified. validated and is being applied by NASA Glenn and by aircraft engine manufacturers to analyze the aeroelastic stability characteristics of modem fans, compressors and turbines.

  19. Developing "My Asthma Diary": a process exemplar of a patient-driven arts-based knowledge translation tool.

    PubMed

    Archibald, Mandy M; Hartling, Lisa; Ali, Samina; Caine, Vera; Scott, Shannon D

    2018-06-05

    Although it is well established that family-centered education is critical to managing childhood asthma, the information needs of parents of children with asthma are not being met through current educational approaches. Patient-driven educational materials that leverage the power of the storytelling and the arts show promise in communicating health information and assisting in illness self-management. However, such arts-based knowledge translation approaches are in their infancy, and little is known about how to develop such tools for parents. This paper reports on the development of "My Asthma Diary" - an innovative knowledge translation tool based on rigorous research evidence and tailored to parents' asthma-related information needs. We used a multi-stage process to develop four eBook prototypes of "My Asthma Diary." We conducted formative research on parents' information needs and identified high quality research evidence on childhood asthma, and used these data to inform the development of the asthma eBooks. We established interdisciplinary consulting teams with health researchers, practitioners, and artists to help iteratively create the knowledge translation tools. We describe the iterative, transdisciplinary process of developing asthma eBooks which incorporates: (I) parents' preferences and information needs on childhood asthma, (II) quality evidence on childhood asthma and its management, and (III) the engaging and informative powers of storytelling and visual art as methods to communicate complex health information to parents. We identified four dominant methodological and procedural challenges encountered during this process: (I) working within an inter-disciplinary team, (II) quantity and ordering of information, (III) creating a composite narrative, and (IV) balancing actual and ideal management scenarios. We describe a replicable and rigorous multi-staged approach to developing a patient-driven, creative knowledge translation tool, which can be adapted for use with different populations and contexts. We identified specific procedural and methodological challenges that others conducting comparable work should consider, particularly as creative, patient-driven knowledge translation strategies continue to emerge across health disciplines.

  20. Structural characterization and identification of biflavones in Selaginella tamariscina by liquid chromatography-diode-array detection/electrospray ionization tandem mass spectrometry.

    PubMed

    Zhang, Yi-Xuan; Li, Qiu-Yue; Yan, Li-Li; Shi, Yue

    2011-08-15

    Biflavonoids, a special class of flavonoids, are widely distributed in gymnosperm plants and have various biological activities. They are also major bioactive ingredients in Selaginella tamariscina. In this work, we report the use of high-performance liquid chromatography with a diode-array detector (HPLC-DAD) and electrospray ionization multi-stage tandem mass spectrometry (ESI-MS(n)) to study the fragmentation behavior of three main types of biflavonoids using seven biflavonoid reference compounds and analyze the biflavonoids in Selaginella tamariscina. The most useful fragmentations in terms of structural identification are those involving the C-ring cleavage of biflavonoids. For amentoflavone-type biflavonoids (containing flavonoid parts I and II), fragmentation on the flavonoid part II at positions 1/3 and 0/4 are the primary pathways, whereas the chances are greater for C-ring cleavage fragmentation occurring on flavonoid part I at positions 1/3 and 1/4 for robustaflavone-type biflavonoids. However, the predominant diagnostic ions of the specific C-O-C-connected hinokiflavone-type biflavonoids are a series of ions resulting from the rupture of the connective C-O bond. Based on the fragmentation patterns of these reference compounds, 17 biflavonoids were identified in an extract of Selaginella tamariscina, three of which have not been previously reported as constituents of this plant. This study provides a powerful approach for the online structural elucidation and identification of different types of biflavonoids and positional isomers from Selaginella tamariscina and other biflavonoids distributed in related plants and prescriptions. Copyright © 2011 John Wiley & Sons, Ltd.

Top