Science.gov

Sample records for biology ccr national

  1. Milligram production and biological activity characterization of the human chemokine receptor CCR3.

    PubMed

    Wang, Mingqing; Ge, Baosheng; Li, Renmin; Wang, Xiaoqiang; Lao, Jun; Huang, Fang

    2013-01-01

    Human chemokine receptor CCR3 (hCCR3) belongs to the G protein-coupled receptors (GPCRs) superfamily of membrane proteins and plays major roles in allergic diseases and angiogenesis. In order to study the structural and functional mechanism of hCCR3, it is essential to produce pure protein with biological functions on a milligram scale. Here we report the expression of hCCR3 gene in a tetracycline-inducible stable mammalian cell line. A cell clone with high hCCR3 expression was selected from 46 stably transfected cell clones and from this cell line pure hCCR3 on a milligram scale was obtained after two-step purification. Circular dichroism spectrum with a characteristic shape and magnitude for α-helix indicated proper folding of hCCR3 after purification. The biological activity of purified hCCR3 was verified by its high binding affinity with its endogenous ligands CCL11 and CCL24, with K D in the range of 10(-8) M to 10(-6) M.

  2. CEPPAD, CAMMICE, and RAPID (CCR) Data from Los Alamos National Laboratory (LANL)

    DOE Data Explorer

    The Comprehensive Energetic Particle and Pitch Angle Distribution (CEPPAD) Experiment, the Charge and Mass Magnetospheric Ion Composition Experiment (CAMMICE), and the experiment for Research with Adaptive Particle Imaging Detectors (RAPID) refer to specific instruments mounted on the Polar satellite launched by NASA in February of 1996 and the Cluster II spacecraft launched in 2000 under the auspices of the European Space Operations Centre (ESOC), Germany. All three instruments are participating in the International Solar Terrestrial Physics Program (ISTP), to which the Global Geospace Science Program (GGSP) is the U.S. contribution. The CCR Science Team is composed of members of three instrument teams on the ISTP satellites POLAR and CLUSTER. DOE's Los Alamos National Laboratory is part of that team, and the CCR website is maintained at LANL. CCR Summary Data Plots are available from the LANL website through either the specialized browser or as digitized data from an anonymous FTP. ISTP data of various kinds can be obtained from NASA at http://pwg.gsfc.nasa.gov/istp/

  3. The Rheumatoid Arthritis Risk Variant CCR6DNP Regulates CCR6 via PARP-1

    PubMed Central

    Li, Gang; Cunin, Pierre; Wu, Di; Diogo, Dorothée; Yang, Yu; Okada, Yukinori; Plenge, Robert M.

    2016-01-01

    Understanding the implications of genome-wide association studies (GWAS) for disease biology requires both identification of causal variants and definition of how these variants alter gene function. The non-coding triallelic dinucleotide polymorphism CCR6DNP is associated with risk for rheumatoid arthritis, and is considered likely causal because allelic variation correlates with expression of the chemokine receptor CCR6. Using transcription activator-like effector nuclease (TALEN) gene editing, we confirmed that CCR6DNP regulates CCR6. To identify the associated transcription factor, we applied a novel assay, Flanking Restriction Enhanced Pulldown (FREP), to identify specific association of poly (ADP-ribose) polymerase 1 (PARP-1) with CCR6DNP consistent with the established allelic risk hierarchy. Correspondingly, manipulation of PARP-1 expression or activity impaired CCR6 expression in several lineages. These findings show that CCR6DNP is a causal variant through which PARP-1 regulates CCR6, and introduce a highly efficient approach to interrogate non-coding genetic polymorphisms associated with human disease. PMID:27626929

  4. The Rheumatoid Arthritis Risk Variant CCR6DNP Regulates CCR6 via PARP-1.

    PubMed

    Li, Gang; Cunin, Pierre; Wu, Di; Diogo, Dorothée; Yang, Yu; Okada, Yukinori; Plenge, Robert M; Nigrovic, Peter A

    2016-09-01

    Understanding the implications of genome-wide association studies (GWAS) for disease biology requires both identification of causal variants and definition of how these variants alter gene function. The non-coding triallelic dinucleotide polymorphism CCR6DNP is associated with risk for rheumatoid arthritis, and is considered likely causal because allelic variation correlates with expression of the chemokine receptor CCR6. Using transcription activator-like effector nuclease (TALEN) gene editing, we confirmed that CCR6DNP regulates CCR6. To identify the associated transcription factor, we applied a novel assay, Flanking Restriction Enhanced Pulldown (FREP), to identify specific association of poly (ADP-ribose) polymerase 1 (PARP-1) with CCR6DNP consistent with the established allelic risk hierarchy. Correspondingly, manipulation of PARP-1 expression or activity impaired CCR6 expression in several lineages. These findings show that CCR6DNP is a causal variant through which PARP-1 regulates CCR6, and introduce a highly efficient approach to interrogate non-coding genetic polymorphisms associated with human disease.

  5. The strength of the chemotactic response to a CCR5 binding chemokine is determined by the level of cell surface CCR5 density.

    PubMed

    Desmetz, Caroline; Lin, Yea-Lih; Mettling, Clément; Portalès, Pierre; Rabesandratana, Herisoa; Clot, Jacques; Corbeau, Pierre

    2006-12-01

    We have shown that the intensity of expression of the C-C chemokine receptor CCR5 at the single CD4(+) cell level strongly determines the efficiency of its function as a coreceptor for human immunodeficiency virus type 1. By analogy, we examined if the number of CCR5 molecules at the cell surface might determine its chemotactic response to CCR5 ligands. To test this hypothesis, we measured by flow cytometry the migration of primary human T cells towards the CCR5-binding chemokine CCL5 in vitro. First, we observed a dose-dependent blockage of this migration exerted by an anti-CCR5 monoclonal antibody. Second, we sorted peripheral blood mononuclear cells into five subpopulations expressing various cell surface CCR5 densities, and observed a correlation between the intensity of migration towards CCL5 and the level of CCR5 expression on these subpopulations. Third, we transduced CCR5(+) peripheral blood mononuclear cells with the CCR5 gene, and observed that the CCR5 over-expression induced an over-migration towards CCL5. Finally, we observed in healthy donors a correlation between the chemotactic response of peripheral blood CD8(+) T cell to CCL5 and their level of surface CCR5 expression. T-cell surface CCR5 density, which is constant over time for a given individual, but varies drastically among individuals, might therefore be an important personal determinant of T-cell migration in many biological situations where CCR5-binding chemokines play a role, such as graft rejection, T helper 1-mediated auto-immune diseases, and infectious diseases involving CCR5. Moreover, our data highlight the therapeutic potential of CCR5 antagonists in these situations.

  6. Commentary: Biochemistry and Molecular Biology Educators Launch National Network

    ERIC Educational Resources Information Center

    Bailey, Cheryl; Bell, Ellis; Johnson, Margaret; Mattos, Carla; Sears, Duane; White, Harold B.

    2010-01-01

    The American Society of Biochemistry and Molecular Biology (ASBMB) has launched an National Science Foundation (NSF)-funded 5 year project to support biochemistry and molecular biology educators learning what and how students learn. As a part of this initiative, hundreds of life scientists will plan and develop a rich central resource for…

  7. Structural biology research at the National Synchroton Light Source

    SciTech Connect

    1996-05-01

    The world`s foremost facility for scientific research using x-rays and ultraviolet and infrared radiation is operated by the national synchrotron Light Source Department. This year alone, a total of 2200 guest researchers performed experiments at the world`s largest source of synchrotron light. Researchers are trying to define the three- dimensional structures of biological macromolecules to create a map of life, a guide for exploring the biological and chemical interactions of the vast variety of molecules found in living organisms. Studies in structural biology may lead to new insights into how biological systems are formed and nourished, how they survive and grow, how they are damaged and die. This document discusses some the the structural biological research done at the National Synchrotron Light Source.

  8. Information technology developments within the national biological information infrastructure

    USGS Publications Warehouse

    Cotter, G.; Frame, M.T.

    2000-01-01

    Looking out an office window or exploring a community park, one can easily see the tremendous challenges that biological information presents the computer science community. Biological information varies in format and content depending whether or not it is information pertaining to a particular species (i.e. Brown Tree Snake), or a specific ecosystem, which often includes multiple species, land use characteristics, and geospatially referenced information. The complexity and uniqueness of each individual species or ecosystem do not easily lend themselves to today's computer science tools and applications. To address the challenges that the biological enterprise presents the National Biological Information Infrastructure (NBII) (http://www.nbii.gov) was established in 1993. The NBII is designed to address these issues on a National scale within the United States, and through international partnerships abroad. This paper discusses current computer science efforts within the National Biological Information Infrastructure Program and future computer science research endeavors that are needed to address the ever-growing issues related to our Nation's biological concerns.

  9. CCR3 and choroidal neovascularization.

    PubMed

    Li, Yiwen; Huang, Deqiang; Xia, Xin; Wang, Zhengying; Luo, Lingyu; Wen, Rong

    2011-02-15

    Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the elderly in industrialized countries. The "wet" AMD, characterized by the development of choroidal neovacularization (CNV), could result in rapid and severe loss of central vision. The critical role of vascular endothelial growth factor A (VEGF-A) in CNV development has been established and VEGF-A neutralization has become the standard care for wet AMD. Recently, CCR3 was reported to play an important role in CNV development and that CCR3 targeting was reported to be superior to VEGF-A targeting in CNV suppression. We investigated the role of CCR3 in CNV development using the Matrigel induced CNV and found that in both rats and mice, CNV was well-developed in the control eyes as well as in eyes treated with CCR3 antagonist SB328437 or CCR3 neutralizing antibodies. No statistically significant difference in CNV areas was found between the control and SB328437 or CCR3-ab treated eyes. Immunostaining showed no specific expression of CCR3 in or near CNV. In contrast, both VEGF-A neutralizing antibodies and rapamycin significantly suppressed CNV. These results indicate that CCR3 plays no significant role in CNV development and question the therapeutic approach of CCR3 targeting to suppress CNV. On the other hand, our data support the therapeutic strategies of VEGF-A and mTOR (mammalian target of rapamycin) targeting for CNV.

  10. The Simbios National Center: Systems Biology in Motion

    PubMed Central

    Schmidt, Jeanette P.; Delp, Scott L.; Sherman, Michael A.; Taylor, Charles A.; Pande, Vijay S.; Altman, Russ B.

    2010-01-01

    Physics-based simulation is needed to understand the function of biological structures and can be applied across a wide range of scales, from molecules to organisms. Simbios (the National Center for Physics-Based Simulation of Biological Structures, http://www.simbios.stanford.edu/) is one of seven NIH-supported National Centers for Biomedical Computation. This article provides an overview of the mission and achievements of Simbios, and describes its place within systems biology. Understanding the interactions between various parts of a biological system and integrating this information to understand how biological systems function is the goal of systems biology. Many important biological systems comprise complex structural systems whose components interact through the exchange of physical forces, and whose movement and function is dictated by those forces. In particular, systems that are made of multiple identifiable components that move relative to one another in a constrained manner are multibody systems. Simbios’ focus is creating methods for their simulation. Simbios is also investigating the biomechanical forces that govern fluid flow through deformable vessels, a central problem in cardiovascular dynamics. In this application, the system is governed by the interplay of classical forces, but the motion is distributed smoothly through the materials and fluids, requiring the use of continuum methods. In addition to the research aims, Simbios is working to disseminate information, software and other resources relevant to biological systems in motion. PMID:20107615

  11. Characterization of the "CCR5" Chemokine Receptor Gene

    ERIC Educational Resources Information Center

    Thomas, John C.

    2004-01-01

    The life cycle of retroviruses is an essential topic of modern cell biology instruction. Furthermore, the process of HIV viral entry into the cell is a question of great interest in basic and clinical biology. This paper describes how students can easily recover their own DNA, amplify a portion of the "CCR5" chemokine receptor gene, characterize…

  12. The National Biological Information Infrastructure: Coming of age

    USGS Publications Warehouse

    Cotter, G.; Frame, M.; Sepic, R.; Zolly, L.

    2000-01-01

    Coordinated by the US Geological Survey, the National Biological Information Infrastructure (NBII) is a Web-based system that provides increased access to data and information on the nation's biological resources. The NBII can be viewed from a variety of perspectives. This article - an individual case study and not a broad survey with extensive references to the literature - addresses the structure of the NBII related to thematic sections, infrastructure sections and place-based sections, and other topics such as the Integrated Taxonomic Information System (one of our more innovative tools) and the development of our controlled vocabulary.

  13. Status and trends of the nation's biological resources

    USGS Publications Warehouse

    Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    This report is a comprehensive summary of the status and trends of our nation’s biological resources. The report describes the major processes and factors affecting biological resources, and it treats regional status and trends. Authors of the chapters and boxes in this two-volume report were drawn from federal and state agencies, universities, and private organizations, reflecting the U.S. Geological Survey’s national partnership approach to providing comprehensive, reliable information about our biological resources. Following scientific tradition, each chapter and box was peer-reviewed by anonymous scientific reviewers.

  14. Secondary Biology Textbooks and National Standards for English Learners

    ERIC Educational Resources Information Center

    Smith, Leigh K.; Hanks, Joseph H.; Erickson, Lynette B.

    2017-01-01

    Given secondary teachers' dependence on textbooks for curricular and instructional guidance, the challenges introduced by increasingly diverse classrooms in the United States, and national efforts to provide equitable access to science for all students, this study examined the alignment between three popular high school biology textbooks and the…

  15. Establishing a national biological laboratory safety and security monitoring program.

    PubMed

    Blaine, James W

    2012-12-01

    The growing concern over the potential use of biological agents as weapons and the continuing work of the Biological Weapons Convention has promoted an interest in establishing national biological laboratory biosafety and biosecurity monitoring programs. The challenges and issues that should be considered by governments, or organizations, embarking on the creation of a biological laboratory biosafety and biosecurity monitoring program are discussed in this article. The discussion focuses on the following questions: Is there critical infrastructure support available? What should be the program focus? Who should be monitored? Who should do the monitoring? How extensive should the monitoring be? What standards and requirements should be used? What are the consequences if a laboratory does not meet the requirements or is not willing to comply? Would the program achieve the results intended? What are the program costs? The success of a monitoring program can depend on how the government, or organization, responds to these questions.

  16. The CCR6/CCL20 Chemokine Axis in HIV Immunity and Pathogenesis.

    PubMed

    Lee, Adrian Yong Sing; Körner, Heinrich

    2016-12-21

    Recent studies in human immunodeficiency virus (HIV) have garnered interest for the role of CC chemokine receptor 6 (CCR6) and its known ligands, CCL20 and human β-defensins, in viral entry, dissemination and anti-viral immunity. Several studies have suggested that CCR6 may also act as a weak co-receptor of HIV entry, in addition to the canonical CXCR4 and CCR5.However, the pathogenic significance has yet to be demonstrated as the observations for preferential infection of CD4+CCR6+ over CD4+CCR6¯ T cells appear to be independent of CCR6 expression. This indicates means for preferential infection other than CCR6 co-receptor use. Attention has also turned to the inadvertent role for the CCR6/CCL20 axis in attracting key immune cells, including TH17 cells and DCs, to sites of infection and propagating the virus to other sites of the body. This review article will summarise the latest evidence that the CCR6/CCL20 chemokine axis is playing an important role in HIV pathogenesis and immunity. Further work with in vivo studies are needed to establish the biological, and hence, therapeutic, significance of these findings.

  17. Discovery of a Potent and Orally Bioavailable CCR2 and CCR5 Dual Antagonist

    PubMed Central

    2009-01-01

    This report describes the discovery of a potent, orally bioavailable CC chemokine receptor 2 (CCR2) antagonist which, while optimized for CCR2 potency, also had potent CC chemokine receptor 5 (CCR5) activity.

  18. CCR5 and HIV infection.

    PubMed

    Blanpain, Cédric; Libert, Frédérick; Vassart, Gilbert; Parmentier, Marc

    2002-01-01

    Chemokines and chemokine receptors play a crucial role in the trafficking of leukocyte populations across the body, and are involved in the development of a large variety of human diseases. CCR5 is the main coreceptor used by macrophage (M)-tropic strains of human immunodeficiency virus type 1 (HIV-1) and HIV-2, which are responsible for viral transmission. CCR5 therefore plays an essential role in HIV pathogenesis. A number of inflammatory CC-chemokines, including MIP-1 alpha, MIP-1 beta, RANTES, MCP-2, and HCC-1[9-74] act as CCR5 agonists, while MCP-3 is a natural antagonist of the receptor. CCR5 is mainly expressed in memory T-cells, macrophages, and immature dendritic cells, and is upregulated by proinflammatory cytokines. It is coupled to the Gi class of heterotrimeric G-proteins, and inhibits cAMP production, stimulates Ca2+ release, and activates PI3-kinase and MAP kinases, as well as other tyrosine kinase cascades. A mutant allele of CCR5, CCR5 delta 32 is frequent in populations of European origin, and encodes a nonfunctional truncated protein that is not transported to the cell surface. Homozygotes for the delta 32 allele exhibit a strong, although incomplete, resistance to HIV infection, whereas heterozygotes display delayed progression to acquired immunodeficiency syndrome (AIDS). Many other alleles, affecting the primary structure of CCR5 or its promoter have been described, some of which lead to nonfunctional receptors or otherwise influence AIDS progression. CCR5 is considered as a drug target in the field of HIV, but also in a growing number of inflammatory diseases. Modified chemokines, monoclonal antibodies and small chemical antagonists, as well as a number of gene therapy approaches have been developed in this frame.

  19. CCR9 in cancer: oncogenic role and therapeutic targeting.

    PubMed

    Tu, Zhenbo; Xiao, Ruijing; Xiong, Jie; Tembo, Kingsley M; Deng, Xinzhou; Xiong, Meng; Liu, Pan; Wang, Meng; Zhang, Qiuping

    2016-02-16

    Cancer is currently one of the leading causes of death worldwide and is one of the most challenging major public health problems. The main challenges faced by clinicians in the management and treatment of cancer mainly arise from difficulties in early diagnosis and the emergence of tumor chemoresistance and metastasis. The structures of chemokine receptor 9 (CCR9) and its specific ligand chemokine ligand 25 (CCL25) have been elucidated, and, interestingly, a number of studies have demonstrated that CCR9 is a potential tumor biomarker in diagnosis and therapy, as it has been found to be highly expressed in a wide range of cancers. This expression pattern suggests that CCR9 may participate in many important biological activities involved in cancer progression. Researchers have shown that CCR9 that has been activated by its specific ligand CCL25 can interact with many signaling pathways, especially those involved in tumor chemoresistance and metastasis. This review, therefore, focuses on CCR9 induction activity and summarizes what is currently known regarding its role in cancers and its potential application in tumor-targeted therapy.

  20. National Aeronautics and Space Administration Biological Specimen Repository

    NASA Technical Reports Server (NTRS)

    McMonigal, Kathleen A.; Pietrzyk, Robert a.; Johnson, Mary Anne

    2008-01-01

    The National Aeronautics and Space Administration Biological Specimen Repository (Repository) is a storage bank that is used to maintain biological specimens over extended periods of time and under well-controlled conditions. Samples from the International Space Station (ISS), including blood and urine, will be collected, processed and archived during the preflight, inflight and postflight phases of ISS missions. This investigation has been developed to archive biosamples for use as a resource for future space flight related research. The International Space Station (ISS) provides a platform to investigate the effects of microgravity on human physiology prior to lunar and exploration class missions. The storage of crewmember samples from many different ISS flights in a single repository will be a valuable resource with which researchers can study space flight related changes and investigate physiological markers. The development of the National Aeronautics and Space Administration Biological Specimen Repository will allow for the collection, processing, storage, maintenance, and ethical distribution of biosamples to meet goals of scientific and programmatic relevance to the space program. Archiving of the biosamples will provide future research opportunities including investigating patterns of physiological changes, analysis of components unknown at this time or analyses performed by new methodologies.

  1. Elucidating a Key Anti-HIV-1 and Cancer-Associated Axis: The Structure of CCL5 (Rantes) in Complex with CCR5

    NASA Astrophysics Data System (ADS)

    Tamamis, Phanourios; Floudas, Christodoulos A.

    2014-06-01

    CCL5 (RANTES) is an inflammatory chemokine which binds to chemokine receptor CCR5 and induces signaling. The CCL5:CCR5 associated chemotactic signaling is of critical biological importance and is a potential HIV-1 therapeutic axis. Several studies provided growing evidence for the expression of CCL5 and CCR5 in non-hematological malignancies. Therefore, the delineation of the CCL5:CCR5 complex structure can pave the way for novel CCR5-targeted drugs. We employed a computational protocol which is primarily based on free energy calculations and molecular dynamics simulations, and report, what is to our knowledge, the first computationally derived CCL5:CCR5 complex structure which is in excellent agreement with experimental findings and clarifies the functional role of CCL5 and CCR5 residues which are associated with binding and signaling. A wealth of polar and non-polar interactions contributes to the tight CCL5:CCR5 binding. The structure of an HIV-1 gp120 V3 loop in complex with CCR5 has recently been derived through a similar computational protocol. A comparison between the CCL5 : CCR5 and the HIV-1 gp120 V3 loop : CCR5 complex structures depicts that both the chemokine and the virus primarily interact with the same CCR5 residues. The present work provides insights into the blocking mechanism of HIV-1 by CCL5.

  2. A national comparison of biochemistry and molecular biology capstone experiences.

    PubMed

    Aguanno, Ann; Mertz, Pamela; Martin, Debra; Bell, Ellis

    2015-01-01

    Recognizing the increasingly integrative nature of the molecular life sciences, the American Society for Biochemistry and Molecular Biology (ASBMB) recommends that Biochemistry and Molecular Biology (BMB) programs develop curricula based on concepts, content, topics, and expected student outcomes, rather than courses. To that end, ASBMB conducted a series of regional workshops to build a BMB Concept Inventory containing validated assessment tools, based on foundational and discipline-specific knowledge and essential skills, for the community to use. A culminating activity, which integrates the educational experience, is often part of undergraduate molecular life science programs. These "capstone" experiences are commonly defined as an attempt to measure student ability to synthesize and integrate acquired knowledge. However, the format, implementation, and approach to outcome assessment of these experiences are quite varied across the nation. Here we report the results of a nation-wide survey on BMB capstone experiences and discuss this in the context of published reports about capstones and the findings of the workshops driving the development of the BMB Concept Inventory. Both the survey results and the published reports reveal that, although capstone practices do vary, certain formats for the experience are used more frequently and similarities in learning objectives were identified. The use of rubrics to measure student learning is also regularly reported, but details about these assessment instruments are sparse in the literature and were not a focus of our survey. Finally, we outline commonalities in the current practice of capstones and suggest the next steps needed to elucidate best practices.

  3. A national facility for biological cryo-electron microscopy

    SciTech Connect

    Saibil, Helen R.; Grünewald, Kay; Stuart, David I.

    2015-01-01

    This review provides a brief update on the use of cryo-electron microscopy for integrated structural biology, along with an overview of the plans for the UK national facility for electron microscopy being built at the Diamond synchrotron. Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback.

  4. T-Cell surface CCR5 density is not correlated with hepatitis severity in hepatitis C virus/HIV-coinfected individuals: implications for the therapeutic use of CCR5 antagonists.

    PubMed

    Vincent, Thierry; Portales, Pierre; Baillat, Vincent; de Boever, Corinne Merle; Le Moing, Vincent; Vidal, Michèle; Ducos, Jacques; Clot, Jacques; Reynes, Jacques; Corbeau, Pierre

    2005-03-01

    CCR5 antagonists represent promising anti-HIV agents. Yet, if the CCR5 chemokine receptor plays a positive role in hepatitis C virus (HCV) infection, CCR5 antagonists might be contraindicated in HCV/HIV-coinfected subjects. Therefore, we tested the hypothesis that the level of T-cell surface CCR5 expression, which might determine the intensity of HCV-specific T-cell recruitment into the liver, and thereby the efficiency of the anti-HCV response, could determine HCV disease evolution. For this purpose, we compared CCR5 density, measured by quantitative flow cytometry at the surface of nonactivated (human leukocyte antigen-D-related [HLA-DR]-) T cells of 51 HCV/HIV patients, with HCV load, serum aminotransferase levels, and liver histology (inflammatory activity, fibrosis, and rate of fibrosis progression). DR-CD4+ T-cell surface CCR5 density, which correlated with DR-CD8+ T-cell surface CCR5 density and was stable over time in HCV/HIV-coinfected individuals, did not correlate with any of the biologic parameters of HCV infection analyzed and was not linked to the capacity to clear the virus. In conclusion, we failed to demonstrate any impact of interindividual variability in T-cell surface CCR5 density on HCV infection, which would have argued against the use of CCR5 antagonists in HIV/HCV-coinfected subjects.

  5. A national facility for biological cryo-electron microscopy.

    PubMed

    Saibil, Helen R; Grünewald, Kay; Stuart, David I

    2015-01-01

    Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback.

  6. A national facility for biological cryo-electron microscopy

    PubMed Central

    Saibil, Helen R.; Grünewald, Kay; Stuart, David I.

    2015-01-01

    Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback. PMID:25615867

  7. CCR5 as a potential target in cancer therapy: inhibition or stimulation?

    PubMed

    González-Martin, Alicia; Mira, Emilia; Mañes, Santos

    2012-11-01

    Extensive evidence implicates CCR5 and its ligands in the biology of tumors, although there is considerable controversy regarding the role of this chemokine receptor in cancer progression. The discrepancies between the pro- and anti-tumor effects of CCR5 might derive from its expression by cell types with opposing functions in tumor progression and the context in which tumors originate. We propose that CCR5 is necessary for optimal activation of the adaptive immune response to tumors, and for the success of certain immunotherapeutic strategies. Since efficient activation of T cell responses has broad implications in the success of some chemoand radiotherapy protocols, activation of CCR5, rather than its inhibition, might provide new therapeutic opportunities for cancer treatment.

  8. Chemokine CCR3 ligands-binding peptides derived from a random phage-epitope library.

    PubMed

    Houimel, Mehdi; Mazzucchelli, Luca

    2013-01-01

    Eosinophils are major effectors cells implicated in a number of chronic inflammatory diseases in humans, particularly bronchial asthma and allergic rhinitis. The human chemokine receptor C-C receptor 3 (hCCR3) provides a mechanism for the recruitment of eosinophils into tissue and thus has recently become an attractive biological target for therapeutic intervention. In order to develop peptides antagonists of hCCR3-hCCL11 (human eotaxin) interactions, a random bacteriophage hexapeptide library was used to map structural features of hCCR3 by determining the epitopes of neutralizing anti-hCCR3 mAb 7B11. This mAb t is selective for hCCR3 and exhibit potent antagonist activity in receptor binding and functional assays. After three rounds of biopanning, four mAb7B11-binding peptides were identified from a 6-mer linear peptide library. The phage bearing the peptides showed specific binding to immobilized mAb 7B11 with over 94% of phages bound being competitively inhibited by free synthetic peptides. In FACScan analysis all selected phage peptides were able to strongly inhibit the binding of mAb 7B11 to hCCR3-transfected preB-300-19 murine cells. Furthermore, synthetic peptides of the corresponding phage epitopes were effective in blocking the antibody-hCCR3 interactions and to inhibit the binding of hCCL11 to hCCR3 transfectants. Chemically synthesized peptides CKGERF, FERKGK, SSMKVK and RHVSSQ, effectively competed for (125)I-hCCL11 binding to hCCR3 with IC(50) ranging from 3.5 to 9.7μM. Calcium release and chemotaxis of hCCR3 transfectants or human eosinophils were inhibited by all peptides in a dose-dependent manner. Furthermore, they showed inhibitory effects on chemotaxis of human eosinophils induced by hCCL11, hCCL5, hCCL7, hCCL8, and hCCL24. Specificities of all selected peptides were assessed with hCXCR1, hCXCR2, hCXCR3, and hCCR5 receptors. Peptides CKGERF and FERKGK showed inhibitory effects on eosinophil chemotaxis in a murine model of mCCL11-induced

  9. Testing the Capacity of the National Biological Dose Response Plan (NBDRP) EX40801

    DTIC Science & Technology

    2009-11-01

    Testing the capacity of the National Biological Dose Response Plan (NBDRP) EX40801 Ruth Wilkins, James McNamee, Hillary...2. REPORT TYPE 3. DATES COVERED 4. TITLE AND SUBTITLE Testing the capacity of the National Biological Dose Response Plan (NBDRP) EX40801 5a...Report July 2009 Page 2 of 11 Testing the capacity of the NBDRP

  10. The frequency of CCR5 promoter polymorphisms and CCR5 Δ 32 mutation in Iranian populations.

    PubMed

    Zare-Bidaki, Mohammad; Karimi-Googheri, Masoud; Hassanshahi, Gholamhossein; Zainodini, Nahid; Arababadi, Mohammad Kazemi

    2015-04-01

    Evidence showed that chemokines serve as pro-migratory factors for immune cells. CCL3, CCL4 and CCL5, as the main CC chemokines subfamily members, activate immune cells through binding to CC chemokine receptor 5 or CCR5. Macrophages, NK cells and T lymphocytes express CCR5 and thus, affected CCR5 expression or functions could be associated with altered immune responses. Deletion of 32 base pairs (Δ 32) in the exon 1 of the CCR5 gene, which is known as CCR5 Δ 32 mutation causes down regulation and malfunction of the molecule. Furthermore, it has been evidenced that three polymorphisms in the promoter region of CCR5 modulate its expression. Altered CCR5 expression in microbial infection and immune related diseases have been reported by several researchers but the role of CCR5 promoter polymorphisms and CCR5 Δ 32 mutation in Iranian patients suffering from these diseases are controversial. Due to the fact that Iranian people have different genetic backgrounds compared to other ethnics, hence, CCR5 promoter polymorphisms and CCR5 32 mutation association with the diseases may be different in Iranian patients. Therefore, this review addresses the most recent information regarding the prevalence as well as association of the mutation and polymorphisms in Iranian patients with microbial infection and immune related diseases as along with normal population.

  11. CCR2, CCR5, and CXCL12 variation and HIV/AIDS in Papua New Guinea.

    PubMed

    Mehlotra, Rajeev K; Hall, Noemi B; Bruse, Shannon E; John, Bangan; Blood Zikursh, Melinda J; Stein, Catherine M; Siba, Peter M; Zimmerman, Peter A

    2015-12-01

    Polymorphisms in chemokine receptors, serving as HIV co-receptors, and their ligands are among the well-known host genetic factors associated with susceptibility to HIV infection and/or disease progression. Papua New Guinea (PNG) has one of the highest adult HIV prevalences in the Asia-Pacific region. However, information regarding the distribution of polymorphisms in chemokine receptor (CCR5, CCR2) and chemokine (CXCL12) genes in PNG is very limited. In this study, we genotyped a total of nine CCR2-CCR5 polymorphisms, including CCR2 190G >A, CCR5 -2459G >A and Δ32, and CXCL12 801G >A in PNG (n=258), North America (n=184), and five countries in West Africa (n=178). Using this data, we determined previously characterized CCR5 haplotypes. In addition, based on the previously reported associations of CCR2 190, CCR5 -2459, CCR5 open reading frame, and CXCL12 801 genotypes with HIV acquisition and/or disease progression, we calculated composite full risk scores, considering both protective as well as susceptibility effects of the CXCL12 801 AA genotype. We observed a very high frequency of the CCR5 -2459A allele (0.98) in the PNG population, which together with the absence of Δ32 resulted in a very high frequency of the HHE haplotype (0.92). These frequencies were significantly higher than in any other population (all P-values<0.001). Regardless of whether we considered the CXCL12 801 AA genotype protective or susceptible, the risk scores were significantly higher in the PNG population compared with any other population (all P-values<0.001). The results of this study provide new insights regarding CCR5 variation in the PNG population, and suggest that the collective variation in CCR2, CCR5, and CXCL12 may increase the risk of HIV/AIDS in a large majority of Papua New Guineans.

  12. Genetic variation at the chemokine receptors CCR5/CCR2 in myocardial infarction.

    PubMed

    González, P; Alvarez, R; Batalla, A; Reguero, J R; Alvarez, V; Astudillo, A; Cubero, G I; Cortina, A; Coto, E

    2001-06-01

    Our objective was to examine the association between myocardial infarction (MI) and two DNA-polymorphisms at the proinflammatory chemokine receptors CCR2 (I64V) and CCR5 (32 bp deletion, (Delta)ccr5), defining if these polymorphisms influence the age for the onset of MI. A total of 214 patients with an age at the first MI episode <55 years, 96 patients that suffered the first MI episode when older than 60 years, and 360 population controls were polymerase chain reaction genotyped for the CCR2-V64I and CCR5-Delta32/wt polymorphisms. Patients and controls were male from the same Caucasian population (Asturias, northern Spain). The frequency of the Deltaccr5 allele was significantly higher in controls compared to patients <55 years (P = 0.004), or in patients >60 years compared to patients <55 years (P = 0.002). Taking the patients >60 years as the reference group, non-carriers of the (Delta)ccr5-allele would have a three-fold higher risk of suffering an episode of MI at <55 years of age (OR = 3.06; 95% CI = 1.46-6.42). Gene and genotype frequencies for the CCR2 polymorphism did not differ between patients <55 years and controls or patients >60 years. Our data suggest that the variation at the CCR5 gene could modulate the age at the onset of MI. Patients carrying the (Delta)ccr5-allele would be protected against an early episode of MI. CCR5 and the CCR5-ligands are expressed by cells in the arteriosclerotic plaque. Thus, the protective role of (Delta)ccr5 could be a consequence of an attenuated inflammatory response, that would determine a slower progression of the arteriosclerotic lesion among (Delta)ccr5-carriers. Our work suggests that the pharmacological blockade of CCR5 could be a valuable therapy in the treatment of MI.

  13. A National Comparison of Biochemistry and Molecular Biology Capstone Experiences

    ERIC Educational Resources Information Center

    Aguanno, Ann; Mertz, Pamela; Martin, Debra; Bell, Ellis

    2015-01-01

    Recognizing the increasingly integrative nature of the molecular life sciences, the "American Society for Biochemistry and Molecular Biology" (ASBMB) recommends that Biochemistry and Molecular Biology (BMB) programs develop curricula based on concepts, content, topics, and expected student outcomes, rather than courses. To that end,…

  14. Effects of chemokine receptor signalling on cognition-like, emotion-like and sociability behaviours of CCR6 and CCR7 knockout mice.

    PubMed

    Jaehne, E J; Baune, B T

    2014-03-15

    Inflammation is regarded as an important mechanism of neuropsychiatric disorders. Chemokines, which are a part of the immune system, have effects on various aspects of brain function, but little is known about their effects on behaviour. We have compared the cognition-like behaviour (learning and spatial memory) of CCR6(-/-) and CCR7(-/-) mice with wild type (WT) C57BL/6 mice, in the Barnes maze, as well as a range of other behaviours, including exploratory, anxiety and depression-like behaviour, using a battery of tests. Levels of cytokines TNF-α, IL-1β and IL-6 were also measured. In the Barnes maze, CCR7(-/-) mice were shown to take longer to learn the location of the escape box on the 1st of 4 days of training. In the behavioural battery, CCR6(-/-) mice showed higher locomotor activity and lower anxiety in the open field test, and a lack of preference for social novelty in a sociability test. CCR7(-/-) mice behaved much like WT mice, although showed higher anxiety in Elevated Zero Maze. While baseline saccharin preference in a 2-bottle choice test, a test for anhedonia depression-like behaviour, was equal in all strains at baseline, weekly tests showed that both CCR6(-/-) and CCR7(-/-) mice developed a decreased preference for saccharin compared to WT over time. There were no differences between strains in any of the cytokines measured. These results suggest that chemokine receptors may play a role in cognition and learning behaviour, as well as anxiety and other behaviours, although the biological mechanisms are still unclear.

  15. Maternal separation modifies behavioural and neuroendocrine responses to stress in CCR7 deficient mice.

    PubMed

    Harrison, Emma L; Jaehne, Emily J; Jawahar, M Catharine; Corrigan, Frances; Baune, Bernhard T

    2014-04-15

    Alterations in immune function of various humoral and cellular factors, including chemokines, secondary to early stress may play a role in the enhanced vulnerability to psychiatric conditions in those with a history of childhood adversity. C57BL/6 (WT) mice and mice deficient for the chemokine receptor type 7 (CCR7(-/-)) were used to determine the effects of maternal separation on a range of behaviours and the biological stress response. Unpredictable maternal separation (MS) was conducted for 3h daily from postnatal day 1 to 14, with subsequent behavioural testing at 10 weeks of age. Corticosterone was quantified in 11-week-old mice. Maternally separated (MS) CCR7(-/-), but not WT mice, displayed reduced interest in social novelty compared to CCR7(-/-) naïve mice. Separated CCR7(-/-) mice also exhibited significantly lower serum corticosterone concentrations compared to non-separated mice. CCR7(-/-) mice spent less time in the centre during an open field test and more time in the closed arm of the elevated zero maze compared to their wild-type (WT) controls suggesting they were more anxious, however, no difference was observed between MS and control mice in either strain or test. Together these findings suggest that CCR7 is involved in mediating social behaviour and stress response following maternal separation, whereas other behaviours such as anxiety appear to be modified by CCR7 independent of maternal separation. The observed altered cell-mediated immune function possibly underlying the behavioural and neuroendocrine differences in CCR7(-/-) mice following maternal separation requires further investigation.

  16. CCR3 is a therapeutic and diagnostic target for neovascular age-related macular degeneration

    PubMed Central

    Takeda, Atsunobu; Baffi, Judit Z.; Kleinman, Mark E.; Cho, Won Gil; Nozaki, Miho; Yamada, Kiyoshi; Kaneko, Hiroki; Albuquerque, Romulo J.C.; Dridi, Sami; Saito, Kuniharu; Raisler, Brian J.; Budd, Steven J.; Geisen, Pete; Munitz, Ariel; Ambati, Balamurali K.; Green, Martha G.; Ishibashi, Tatsuro; Wright, John D.; Humbles, Alison A.; Gerard, Craig J.; Ogura, Yuichiro; Pan, Yuzhen; Smith, Justine R.; Grisanti, Salvatore; Hartnett, M. Elizabeth; Rothenberg, Marc E.; Ambati, Jayakrishna

    2009-01-01

    Age-related macular degeneration (AMD), a leading cause of blindness worldwide, is as prevalent as cancer in industrialized nations. Most blindness in AMD results from invasion of the retina by choroidal neovascularization (CNV). We report that the eosinophil/mast cell chemokine receptor CCR3 is specifically expressed in CNV endothelial cells in humans with AMD, and that, despite the expression of its ligands eotaxin-1, -2, and -3, neither eosinophils nor mast cells are present in human CNV. Genetic or pharmacological targeting of CCR3 or eotaxins inhibited injury-induced CNV in mice. CNV suppression by CCR3 blockade was due to direct inhibition of endothelial cell proliferation, and was uncoupled from inflammation as it occurred in mice lacking eosinophils or mast cells and was independent of macrophage and neutrophil recruitment. CCR3 blockade was more effective at reducing CNV than vascular endothelial growth factor-A (VEGF-A) neutralization, which is currently in clinical use, and, unlike VEGF-A blockade, not toxic to the mouse retina. In vivo imaging with CCR3-targeting quantum dots located spontaneous CNV invisible to standard fluorescein angiography in mice before retinal invasion. CCR3 targeting might reduce vision loss due to AMD through early detection and therapeutic angioinhibition. PMID:19525930

  17. CCR3 is a target for age-related macular degeneration diagnosis and therapy.

    PubMed

    Takeda, Atsunobu; Baffi, Judit Z; Kleinman, Mark E; Cho, Won Gil; Nozaki, Miho; Yamada, Kiyoshi; Kaneko, Hiroki; Albuquerque, Romulo J C; Dridi, Sami; Saito, Kuniharu; Raisler, Brian J; Budd, Steven J; Geisen, Pete; Munitz, Ariel; Ambati, Balamurali K; Green, Martha G; Ishibashi, Tatsuro; Wright, John D; Humbles, Alison A; Gerard, Craig J; Ogura, Yuichiro; Pan, Yuzhen; Smith, Justine R; Grisanti, Salvatore; Hartnett, M Elizabeth; Rothenberg, Marc E; Ambati, Jayakrishna

    2009-07-09

    Age-related macular degeneration (AMD), a leading cause of blindness worldwide, is as prevalent as cancer in industrialized nations. Most blindness in AMD results from invasion of the retina by choroidal neovascularisation (CNV). Here we show that the eosinophil/mast cell chemokine receptor CCR3 is specifically expressed in choroidal neovascular endothelial cells in humans with AMD, and that despite the expression of its ligands eotaxin-1, -2 and -3, neither eosinophils nor mast cells are present in human CNV. Genetic or pharmacological targeting of CCR3 or eotaxins inhibited injury-induced CNV in mice. CNV suppression by CCR3 blockade was due to direct inhibition of endothelial cell proliferation, and was uncoupled from inflammation because it occurred in mice lacking eosinophils or mast cells, and was independent of macrophage and neutrophil recruitment. CCR3 blockade was more effective at reducing CNV than vascular endothelial growth factor A (VEGF-A) neutralization, which is in clinical use at present, and, unlike VEGF-A blockade, is not toxic to the mouse retina. In vivo imaging with CCR3-targeting quantum dots located spontaneous CNV invisible to standard fluorescein angiography in mice before retinal invasion. CCR3 targeting might reduce vision loss due to AMD through early detection and therapeutic angioinhibition.

  18. Genotypes of CCR2 and CCR5 chemokine receptors in human myasthenia gravis.

    PubMed

    Zhao, Xiaoyan; Gharizadeh, Baback; Hjelmström, Peter; Pirskanen, Ritva; Nyrén, Pål; Lefvert, Ann-Kari; Ghaderi, Mehran

    2003-11-01

    The aim of this study was to examine the association of human autoimmune myasthenia gravis (MG) with two DNA polymorphisms of the chemokine receptors CCR5-Delta 32 and CCR2-64I. CCR2 and CCR5 interact primarily with the human CC family ligands CCL2 (formerly called monocyte chemoattractant protein; MCP-1), CCL3 and CCL4 (macrophage inflammatory protein-1 alpha and -1 beta; MIP-1 alpha/beta), and their main function is to recruit leukocytes from circulation into the tissues, thus playing an important role in human inflammatory disorders. A PCR-based genotyping method was used to determine the genetic variation at the CCR5 gene and an automated real-time Pyrosequencing technology was employed for the analysis of G right curved arrow A point mutation at the CCR2 gene. Results obtained from 158 patients and 272 healthy controls demonstrate no evidence of association between genetic variants of CCR2 and CCR5 with MG and its clinical manifestations. CCR2-64I and CCR5-Delta 32 genotypes are thus unlikely to be involved in protection or predisposition to MG.

  19. Genetic polymorphism of chemokine receptors CCR2 and CCR5 in Swedish cervical cancer patients.

    PubMed

    Zheng, Biying; Wiklund, Fredrik; Gharizadeh, Baback; Sadat, Mehdi; Gambelunghe, Giovanni; Hallmans, Göran; Dillner, Joakim; Wallin, Keng-Ling; Ghaderi, Mehran

    2006-01-01

    Chemokines are chemotactic cytokines that orchestrate leukocyte trafficking in tissues, thus, playing an important role in regulation of immunological processes. The aim of this study was to investigate the association of human papillomavirus (HPV) infection and cervical cancer with two DNA polymorphisms of the chemokine receptors CCR5-delta32 and CCR2-64I. The study material consisted of 50 cervical intraepithelial neoplasia (CIN) cases and 50 of age and sampling-date matched controls, 100 invasive cervix cancer cases and 100 of their corresponding matched disease-free controls. Pyrosequencing was employed to genotype the CCR2-64I polymorphism. CCR5-delta32 was genotyped using standard PCR fragment length analysis. The frequencies of CCR2 and CCR5 genotypes from 150 patients and 150 healthy controls were representative of the general population according to the Hardy-Weinberg equilibrium analysis. Risk association was computed with conditional logistic regression analysis. HPV-positive individuals with the rare CCR5deelta32/delta32 genotype have a risk of 4.58 (CI = 0.40-52.64, p-value = 0.045) compare to HPV negative group. The delta-32 mutation on the CCR locus is imperceptibly associated with increased risk of HPV infection. In total, cervical neoplasia was not associated with genetic polymorphism of CCR2 and CCR5.

  20. Information science and technology developments within the National Biological Information Infrastructure

    USGS Publications Warehouse

    Frame, M.T.; Cotter, G.; Zolly, L.; Little, J.

    2002-01-01

    Whether your vantage point is that of an office window or a national park, your view undoubtedly encompasses a rich diversity of life forms, all carefully studied or managed by some scientist, resource manager, or planner. A few simple calculations - the number of species, their interrelationships, and the many researchers studying them - and you can easily see the tremendous challenges that the resulting biological data presents to the information and computer science communities. Biological information varies in format and content: it may pertain to a particular species or an entire ecosystem; it can contain land use characteristics, and geospatially referenced information. The complexity and uniqueness of each individual species or ecosystem do not easily lend themselves to today's computer science tools and applications. To address the challenges that the biological enterprise presents, the National Biological Information Infrastructure (NBII) (http://www.nbii.gov) was established in 1993 on the recommendation of the National Research Council (National Research Council 1993). The NBII is designed to address these issues on a national scale, and through international partnerships. This paper discusses current information and computer science efforts within the National Biological Information Infrastructure Program, and future computer science research endeavors that are needed to address the ever-growing issues related to our nation's biological concerns. ?? 2003 by The Haworth Press, Inc. All rights reserved.

  1. Human eosinophils express functional CCR7.

    PubMed

    Akuthota, Praveen; Ueki, Shigeharu; Estanislau, Jessica; Weller, Peter F

    2013-06-01

    Human eosinophils display directed chemotactic activity toward an array of soluble chemokines. Eosinophils have been observed to migrate to draining lymph nodes in experimental models of allergic inflammation, yet it is unknown whether eosinophils express CCR7, a key chemokine receptor in coordinating leukocyte trafficking to lymph nodes. The purpose of this study is to demonstrate expression of CCR7 by human eosinophils and functional responses to CCL19 and CCL21, the known ligands of CCR7. Human eosinophils were purified by negative selection from healthy donors. CCR7 expression of freshly purified, unstimulated eosinophils and of IL-5-primed eosinophils was determined by flow cytometry and Western blot. Chemotaxis to CCL19 and CCL21 was measured in transwell assays. Shape changes to CCL19 and CCL21 were analyzed by flow cytometry and microscopy. Calcium fluxes of fluo-4 AM-loaded eosinophils were recorded by flow cytometry after chemokine stimulation. ERK phosphorylation of CCL19- and CCL21-stimulated eosinophils was measured by Western blot and Luminex assay. Human eosinophils expressed CCR7 as demonstrated by flow cytometry and Western blots. Eosinophils exhibited detectable cell surface expression of CCR7. IL-5-primed eosinophils exhibited chemotaxis toward CCL19 and CCL21 in a dose-dependent fashion. Upon stimulation with CCL19 or CCL21, IL-5-primed eosinophils demonstrated dose-dependent shape changes with polarization of F-actin and exhibited calcium influxes. Finally, primed eosinophils stimulated with CCL19 or CCL21 exhibited increased phosphorylation of ERK in response to both CCR7 ligands. We demonstrate that human eosinophils express CCR7 and have multipotent responses to the known ligands of CCR7.

  2. Exploration of Bivalent Ligands Targeting Putative Mu Opioid Receptor and Chemokine Receptor CCR5 Dimerization

    PubMed Central

    Arnatt, Christopher K.; Falls, Bethany A.; Yuan, Yunyun; Raborg, Thomas J.; Masvekar, Ruturaj R.; El-Hage, Nazira; Selley, Dana E.; Nicola, Anthony V.; Knapp, Pamela E.; Hauser, Kurt F.; Zhang, Yan

    2016-01-01

    Modern antiretroviral therapies have provided HIV-1 infected patients longer lifespans and better quality of life. However, several neurological complications are now being seen in these patients due to HIV-1 associated injury of neurons by infected microglia and astrocytes. In addition, these effects can be further exacerbated with opiate use and abuse. One possible mechanism for such potentiation effects of opiates is the interaction of the mu opioid receptor (MOR) with the chemokine receptor CCR5 (CCR5), a known HIV-1 co-receptor, to form MOR-CCR5 heterodimer. In an attempt to understand this putative interaction and its relevance to neuroAIDS, we designed and synthesized a series of bivalent ligands targeting the putative CCR5-MOR heterodimer. To understand how these bivalent ligands may interact with the heterodimer, biological studies including calcium mobilization inhibition, binding affinity, HIV-1 invasion, and cell fusion assays were applied. In particular, HIV-1 infection assays using human peripheral blood mononuclear cells, macrophages, and astrocytes revealed a notable synergy in activity for one particular bivalent ligand. Further, a molecular model of the putative CCR5-MOR heterodimer was constructed, docked with the bivalent ligand, and molecular dynamics simulations of the complex was performed in a membrane-water system to help understand the biological observation. PMID:27720326

  3. The Biological Consequences of Nuclear War: Initiating National Case Studies.

    ERIC Educational Resources Information Center

    Harwell, Mark A.; Freeman, Ann C.

    1988-01-01

    Describes the second volume of the environmental consequences of nuclear war (ENUWAR) study of the Scientific Committee on Problems of the Environment (SCOPE) which involves the potential consequences for the Earth's biological systems. Discusses case studies in areas where the indirect effects of nuclear war would be the greatest danger. (CW)

  4. Polymorphism of CC chemokine receptors CCR2 and CCR5 in Crohn's disease.

    PubMed

    Herfarth, H; Pollok-Kopp, B; Göke, M; Press, A; Oppermann, M

    2001-06-01

    Crohn's disease (CD) is a chronic inflammatory disease of the intestine that is characterized by mononuclear cell infiltration and a predominant Th1 lymphocyte response. We tested the hypothesis that CC chemokine receptors CCR2 and CCR5 might be important in the regulation of the intestinal immune response in this disease, and we speculated that carriers of a defective 32 base pair deletion mutant of CCR5, CCR5Delta32, which results in a non-functional receptor, might be protected from CD. Using polymerase chain reaction (PCR) and PCR restriction fragment length polymorphism (PCR-RFLP) gene frequencies of CCR5Delta32 and of CCR2-641 (replacement of valine-64 by isoleucine in the CCR2 gene) in healthy controls (n=346) and in CD patients (n=235) were determined. In CD patients, subgroup phenotypic analyses were performed according to the Vienna classification. The overall gene frequency of CCR5Delta32 (9.8%) and CCR2-641 (7.6%) in CD patients did not deviate significantly from healthy controls (9.2 and 8.2%, respectively), nor did we observe a significant deviation from the predicted Hardy-Weinberg distribution. No significant differences in the CD phenotype classification for the different CCR5 and CCR2 alleles were observed, except for a trend to disease sparing of the upper gastrointestinal tract (carrier frequency 0 versus 19.6%, Delta=1 9.6%, P=0.079) as well as a more stricturing disease behaviour (23.5 versus 16.2%, Delta=7.3%, P=0.136) in carriers of the mutant CCR5Delta32 allele. These results indicate that the different CCR5 but not CCR2 alleles may influence disease behaviour and thereby contribute to the observed heterogeneity of CD. However, the associations observed are limited and await replication in other datasets. CCR2 and CCR5 polymorphisms are unlikely to be important determinants of overall disease susceptibility.

  5. Field Trip to Kazdagi National Park: Views of Prospective Biology Teachers

    ERIC Educational Resources Information Center

    Çetin, Gülcan

    2014-01-01

    The purpose of the study was to investigate the views of the prospective biology teachers about the field trip to Kazdagi National Park. Participants were 12 prospective Biology teachers studying in Necatibey Faculty of Education in Balikesir University, Turkey. A semi-structured interview form was used as a data collection instrument. Data were…

  6. Structural biology facilities at Brookhaven National Laboratory`s high flux beam reactor

    SciTech Connect

    Korszun, Z.R.; Saxena, A.M.; Schneider, D.K.

    1994-12-31

    The techniques for determining the structure of biological molecules and larger biological assemblies depend on the extent of order in the particular system. At the High Flux Beam Reactor at the Brookhaven National Laboratory, the Biology Department operates three beam lines dedicated to biological structure studies. These beam lines span the resolution range from approximately 700{Angstrom} to approximately 1.5{Angstrom} and are designed to perform structural studies on a wide range of biological systems. Beam line H3A is dedicated to single crystal diffraction studies of macromolecules, while beam line H3B is designed to study diffraction from partially ordered systems such as biological membranes. Beam line H9B is located on the cold source and is designed for small angle scattering experiments on oligomeric biological systems.

  7. Influence of nucleotide polymorphisms in the CCR2 gene and the CCR5 promoter on the expression of cell surface CCR5 and CXCR4.

    PubMed

    Shieh, B; Liau, Y E; Hsieh, P S; Yan, Y P; Wang, S T; Li, C

    2000-09-01

    Polymorphisms in the CCR2 gene (CCR2-64I) and the CCR5 promoter (pCCR5-59029G) have been correlated with slower HIV-1 disease progression. How these polymorphisms influence the rate of AIDS progression has remained unclear. We have therefore investigated whether these nucleotide polymorphisms will reduce the expression levels of surface CCR5 and CXCR4, and thus lead to slower AIDS progression. For this, a cohort of Chinese volunteers in Taiwan was subjected to the determination of CCR2 and pCCR5 genotypes followed by analysis of the surface CCR5 and CXCR4 expression on five cell types derived from peripheral blood mononuclear cells by flow cytometry. Several significant associations were detected between genotypes and expression levels of the proteins. The most important finding was that an increased number of CD4(+) cells expressing CCR5 correlated with pCCR5-59029A homozygosity without the interference of both the CCR2-64 and the CCR5 delta 32 (deleted 32 bp) mutations (P: = 0.0453), which is consistent with the previous data on the association of the genotype to AIDS progression. Since different genetic polymorphisms co-exist in human beings, the rate of AIDS progression as well as the risk of rheumatoid arthritis may be governed by the interplay of the array of nucleotide changes and their affected proteins.

  8. The Danish National Registry for Biological Therapy in Inflammatory Bowel Disease

    PubMed Central

    Larsen, Lone; Jensen, Michael Dam; Larsen, Michael Due; Nielsen, Rasmus Gaardskær; Thorsgaard, Niels; Vind, Ida; Wildt, Signe; Kjeldsen, Jens

    2016-01-01

    Aim The aims of The Danish National Registry for Biological Therapy in Inflammatory Bowel Disease are to ensure that biological therapy and the clinical management of patients with inflammatory bowel disease (IBD) receiving biological treatment are in accordance with the national clinical guidelines and, second, the database allows register-based clinical epidemiological research. Study population The study population comprises all Danish patients with IBD (both children and adults) with ulcerative colitis, Crohn’s disease, and IBD unclassified who receive biological therapy. Patients will be enrolled consecutively when biological treatment is initiated. Main variables The variables in the database are: diagnosis, time of diagnosis, disease manifestation, indication for biological therapy, previous biological and nonbiological therapy, date of visit, clinical indices, physician’s global assessment, pregnancy and breastfeeding (women), height (children), weight, dosage (current biological agent), adverse events, surgery, endoscopic procedures, and radiology. Descriptive data Eleven clinical indicators have been selected to monitor the quality of biological treatment. For each indicator, a standard has been defined based on the available evidence. National results will be published in an annual report and local results on a quarterly basis. The indicators will be reported as department-specific proportions with 95% confidence intervals, and the national average will be provided for comparison. An estimated 1,200–1,300 new biological therapies are initiated each year in Danish patients with IBD. Conclusion The database will be available for research during 2016. Data will be made available by The Danish Clinical Registries (www.rkkp.dk). PMID:27822107

  9. Folding of newly translated membrane protein CCR5 is assisted by the chaperonin GroEL-GroES

    PubMed Central

    Chi, Haixia; Wang, Xiaoqiang; Li, Jiqiang; Ren, Hao; Huang, Fang

    2015-01-01

    The in vitro folding of newly translated human CC chemokine receptor type 5 (CCR5), which belongs to the physiologically important family of G protein-coupled receptors (GPCRs), has been studied in a cell-free system supplemented with the surfactant Brij-35. The freshly synthesized CCR5 can spontaneously fold into its biologically active state but only slowly and inefficiently. However, on addition of the GroEL-GroES molecular chaperone system, the folding of the nascent CCR5 was significantly enhanced, as was the structural stability and functional expression of the soluble form of CCR5. The chaperonin GroEL was partially effective on its own, but for maximum efficiency both the GroEL and its GroES lid were necessary. These results are direct evidence for chaperone-assisted membrane protein folding and therefore demonstrate that GroEL-GroES may be implicated in the folding of membrane proteins. PMID:26585937

  10. Folding of newly translated membrane protein CCR5 is assisted by the chaperonin GroEL-GroES

    NASA Astrophysics Data System (ADS)

    Chi, Haixia; Wang, Xiaoqiang; Li, Jiqiang; Ren, Hao; Huang, Fang

    2015-11-01

    The in vitro folding of newly translated human CC chemokine receptor type 5 (CCR5), which belongs to the physiologically important family of G protein-coupled receptors (GPCRs), has been studied in a cell-free system supplemented with the surfactant Brij-35. The freshly synthesized CCR5 can spontaneously fold into its biologically active state but only slowly and inefficiently. However, on addition of the GroEL-GroES molecular chaperone system, the folding of the nascent CCR5 was significantly enhanced, as was the structural stability and functional expression of the soluble form of CCR5. The chaperonin GroEL was partially effective on its own, but for maximum efficiency both the GroEL and its GroES lid were necessary. These results are direct evidence for chaperone-assisted membrane protein folding and therefore demonstrate that GroEL-GroES may be implicated in the folding of membrane proteins.

  11. Folding of newly translated membrane protein CCR5 is assisted by the chaperonin GroEL-GroES.

    PubMed

    Chi, Haixia; Wang, Xiaoqiang; Li, Jiqiang; Ren, Hao; Huang, Fang

    2015-11-20

    The in vitro folding of newly translated human CC chemokine receptor type 5 (CCR5), which belongs to the physiologically important family of G protein-coupled receptors (GPCRs), has been studied in a cell-free system supplemented with the surfactant Brij-35. The freshly synthesized CCR5 can spontaneously fold into its biologically active state but only slowly and inefficiently. However, on addition of the GroEL-GroES molecular chaperone system, the folding of the nascent CCR5 was significantly enhanced, as was the structural stability and functional expression of the soluble form of CCR5. The chaperonin GroEL was partially effective on its own, but for maximum efficiency both the GroEL and its GroES lid were necessary. These results are direct evidence for chaperone-assisted membrane protein folding and therefore demonstrate that GroEL-GroES may be implicated in the folding of membrane proteins.

  12. CCR5 polymorphism and plague resistance in natural populations of the black rat in Madagascar.

    PubMed

    Tollenaere, C; Rahalison, L; Ranjalahy, M; Rahelinirina, S; Duplantier, J-M; Brouat, C

    2008-12-01

    Madagascar remains one of the world's largest plague foci. The black rat, Rattus rattus, is the main reservoir of plague in rural areas. This species is highly susceptible to plague in plague-free areas (low-altitude regions), whereas rats from the plague focus areas (central highlands) have evolved a disease-resistance polymorphism. We used the candidate gene CCR5 to investigate the genetic basis of plague resistance in R. rattus. We found a unique non-synonymous substitution (H184R) in a functionally important region of the gene. We then compared (i) CCR5 genotypes of dying and surviving plague-challenged rats and (ii) CCR5 allelic frequencies in plague focus and plague-free populations. Our results suggested a higher prevalence of the substitution in resistant animals compared to susceptible individuals, and a tendency for higher frequencies in plague focus areas compared to plague-free areas. Therefore, the CCR5 polymorphism may be involved in Malagasy black rat plague resistance. CCR5 and other undetermined plague resistance markers may provide useful biological information about host evolution and disease dynamics.

  13. Differential ligand-signaling network of CCL19/CCL21-CCR7 system.

    PubMed

    Raju, Rajesh; Gadakh, Sachin; Gopal, Priyanka; George, Bijesh; Advani, Jayshree; Soman, Sowmya; Prasad, T S K; Girijadevi, Reshmi

    2015-01-01

    Chemokine (C-C motif) receptor 7 (CCR7), a class A subtype G-Protein Coupled Receptor (GPCR), is involved in the migration, activation and survival of multiple cell types including dendritic cells, T cells, eosinophils, B cells, endothelial cells and different cancer cells. Together, CCR7 signaling system has been implicated in diverse biological processes such as lymph node homeostasis, T cell activation, immune tolerance, inflammatory response and cancer metastasis. CCL19 and CCL21, the two well-characterized CCR7 ligands, have been established to be differential in their signaling through CCR7 in multiple cell types. Although the differential ligand signaling through single receptor have been suggested for many receptors including GPCRs, there exists no resource or platform to analyse them globally. Here, first of its kind, we present the cell-type-specific differential signaling network of CCL19/CCL21-CCR7 system for effective visualization and differential analysis of chemokine/GPCR signaling. Database URL: http:// www. netpath. org/ pathways? path_ id= NetPath_ 46.

  14. Enhanced CCR5+/CCR3+ T helper cell ratio in patients with active cutaneous lupus erythematosus.

    PubMed

    Freutel, S; Gaffal, E; Zahn, S; Bieber, T; Tüting, T; Wenzel, J

    2011-10-01

    Cutaneous lupus erythematosus (CLE) is characterized by enhanced interferon α (IFNα) levels in serum and in tissue. Since IFNα promotes a Th1-biased immune response, we hypothesized that a Th1-associated chemokine receptor profile should be a typical finding in patients with active CLE. Therefore, peripheral blood mononuclear cells were isolated from patients with different CLE subsets (n = 15), healthy controls (n = 13) and patients under immunotherapy with IFNα (n = 7). T helper cells were analysed by flow cytometry for the expression of the chemokines receptor CCR5, indicative for Th1 cells, and of CCR3, indicating Th2. In addition, intracellular levels of the type I IFN-inducible MxA protein were measured. Patients with widespread active CLE skin lesions had a significantly increased expression of CCR5, whereas expression of CCR3 was decreased when compared with healthy controls. MxA expression was significantly enhanced in all investigated CLE subtypes, with the highest levels in patients with widespread skin lesions. The enhanced CCR5/CCR3 ratio closely correlated with the MxA levels in peripheral lymphocytes and with disease activity. Our analyses revealed that active CLE is associated with a systemic type I IFN effect that appears to induce a shift towards a Th1-associated chemokine receptor profile. The CCR5/CCR3 T-helper cell ratio might therefore represent an indirect marker for the disease activity in CLE.

  15. The CCL2/CCR2 Axis Affects Transmigration and Proliferation but Not Resistance to Chemotherapy of Acute Myeloid Leukemia Cells

    PubMed Central

    Macanas-Pirard, Patricia; Quezada, Thomas; Navarrete, Leonardo; Broekhuizen, Richard; Leisewitz, Andrea; Nervi, Bruno; Ramírez, Pablo A.

    2017-01-01

    Acute myeloid leukemia (AML) has a high mortality rate despite chemotherapy and transplantation. Both CXCR4/SDF-1 and VLA-4/VCAM1 axes are involved in leukemia protection but little is known about the role of CCL2/CCR2 in AML biology and protection against chemotherapy. We measured CCR2 expression in AML cell lines and primary AML cells by flow cytometry (FCM), real time PCR (RT-PCR) and western blot (WB). CCL2 production was quantified by solid phase ELISA in peripheral blood (PB) and bone marrow (BM) serum. We measured chemotaxis in a transwell system with different concentrations of CCL2/CCR2 blockers; cell cycle with BrDU and propidium iodide and proliferation with yellow tetrazolium MTT. We determined synergy in in vitro cell apoptosis combining chemotherapy and CCL2/CCR2 blockade. Finally, we performed chemoprotection studies in an in vivo mouse model. Of 35 patients, 23 (65%) expressed CCR2 by FCM in PB. Two cell lines expressed high levels of CCR2 (THP-1 and murine AML). RT-PCR and WB confirmed CCR2 production. CCL2 solid phase ELISA showed significantly lower levels of CCL2 in PB and BM compared to normal controls. Chemotaxis experiments confirmed a dose-dependent migration in AML primary cells expressing CCR2 and THP-1 cells. A significant inhibition of transmigration was seen after CCL2/CCR2 blockade. Proliferation of CCR2+ AML cell lines was slightly increased (1.4-fold) after axis stimulation. We observed a non-significant increase in phase S THP-1 cells exposed to CCL2 and a concomitant decrease of cells in G1. The chemotherapy studies did not show a protective effect of CCL2 on cytarabine-induced apoptosis or synergy with chemotherapy after CCL2/CCR2 blockade both in vitro and in vivo. In conclusion, CCL2/CCR2 axis is expressed in the majority of monocytoid AML blasts. The axis is involved in cell trafficking and proliferation but no in vitro and in vivo chemotherapy protective effect was seen. PMID:28045930

  16. Biological infrared microspectroscopy at the National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Miller, Lisa M.; Carr, G. Lawrence; Williams, Gwyn P.; Sullivan, Michael; Chance, Mark R.

    2000-06-01

    Beamline U2B at the National Synchrotron Light Source has been designed and built as an infrared beamline dedicated to the study of biomedical problems. In 1997, the horizontal and vertical acceptances of Beamline U2B were increased in order to increase the overall flux of the beamline. A wedged, CVD diamond window separates the UHV vacuum of the VUV ring from the rough vacuum of the beamline. The endstation consists of a Nicolet Magna 860 step-scan FTIR and a NicPlan infrared microscope. The spectrometer is equipped with beamsplitter/detector combinations that permit data collection in the mid-and far-infrared regions. We have also made provisions for mounting an external detector (e.g. bolometer) for far infrared microspectroscopy. Thus far, Beamline U2B has been used to (1) perform chemical imaging of bone tissue and brain cells to address issues related to bone disease and epilepsy, respectively, and (2) examine time-resolved protein structure in the sub-millisecond folding of cytochrome c.

  17. Study on CCR5 analogs and affinity peptides.

    PubMed

    Wu, Yingping; Deng, Riqiang; Wu, Wenyan

    2012-03-01

    The G protein-coupled receptor of human chemokine receptor 5 (CCR5) is a key target in the human immunodeficiency virus (HIV) infection process due to its major involvement in binding to the HIV type 1 (HIV-1) envelope glycoprotein gp120 and facilitating virus entry into the cells. The identification of naturally occurring CCR5 mutations (especially CCR5 delta-32) has allowed us to address the CCR5 molecule as a promising target to prevent or resist HIV infection in vivo. To obtain high-affinity peptides that can be used to block CCR5, CCR5 analogs with high conformational similarity are required. In this study, two recombinant proteins named CCR5 N-Linker-E2 and CCR5 mN-E1-E2 containing the fragments of the CCR5 N-terminal, the first extracellular loop or the second extracellular loop are cloned from a full-length human CCR5 cDNA. The recombinant human CCR5 analogs with self-cleavage activity of the intein Mxe or Ssp in the vector pTwinI were then produced with a high-yield expression and purification system in Escherichia coli. Experiments of extracellular epitope-activity identification (such as immunoprecipitation and indirective/competitive enzyme-linked immunosorbent assay) confirmed the close similarity between the epitope activity of the CCR5 analogs and that of the natural CCR5, suggesting the applicability of the recombinant CCR5 analogs as antagonists of the chemokine ligands. Subsequent screening of high-affinity peptides from the phage random-peptides library acquired nine polypeptides, which could be used as CCR5 peptide antagonists. The CCR5 analogs and affinity peptides elucidated in this paper provide us with a basis for further study of the mechanism of inhibition of HIV-1 infection.

  18. Distribution of CCR5-Delta 32 and CCR2-64I alleles in an Argentine Amerindian population.

    PubMed

    Mangano, A; Theiler, G; Sala, L; Capucchio, M; Fainboim, L; Sen, L

    2001-08-01

    In order to evaluate the frequency distributions of CCR5-Delta 32 and CCR2-64I polymorphisms in an Amerindian population, we tested a total of 42 Chiriguanos individuals that are aboriginal inhabitants of the north west of Argentina. Only one carried the CCR5-Delta 32 allele (0.0238), while 17 out of 35 carried the CCR2-64I mutation, including one homozygous for the mutated allele (0.2571). Although the cohort studied is considered highly endogamic, the HLA genotyping revealed that 8 out of 42 subjects had a gene flow from Caucasian populations. The only heterozygous CCR5+/Delta 32 found and three heterozygous CCR2+/64I belonged to the admix group. In conclusion, the protective deletion CCR5-Delta 32 is practically absent in Chiriguanos whereas the CCR2-64I allele is highly frequent.

  19. The essential roles of CCR7 in epithelial-to-mesenchymal transition induced by hypoxia in epithelial ovarian carcinomas.

    PubMed

    Cheng, Shaomei; Han, Lin; Guo, Jingyan; Yang, Qing; Zhou, Jianfang; Yang, Xiangshan

    2014-12-01

    The chemokine receptor CCR7 and its ligands CCL19/21 mediate the tumor mobility, invasion, and metastasis (Wu et al. Curr Pharm Des. 15:742-57, 2009). Hypoxia induced epithelial-to-mesenchymal transition (EMT) to facilitate the tumor biology. Here, we addressed the roles of CCR7 in epithelial ovarian carcinoma tissues and hypoxia-induced serous papillary cystic adenocarcinoma (SKOV-3) EMT. The expression level of CCR7 protein was analyzed by immunohistochemistry in 30 specimens of epithelial ovarian carcinomas. Western blot was used to investigate the expression of hypoxia-induced CCR7, HIF-1α, and EMT markers (N-cadherin, Snail, MMP-9). In addition, wound healing and Transwell assay were introduced to observe the capacity of migration and invasiveness. Our data showed CCR7 expression was observed in 22 cases of tissues and closely associated with lymph node metastasis and FIGO stage (III + IV). At 6, 12, 24, and 36 h following hypoxia, CCR7 and HIF-1α proteins were both obviously upregulated in a time-dependent method, compared with normal oxygen. In vitro, SKOV-3 expressed N-cadherin, Snail, and MMP-9 once either CCL21 stimulation or hypoxia induction, while hypoxia accompanied with CCL21 induction exhibited strongest upregulation of N-cadherin, Snail, and MMP-9 proteins. Besides, wound healing and Transwell assay further identified that hypoxia with CCL21 stimulation can remarkably promote cell migration and invasiveness. Taken together, CCR7 can constitutively express in epithelial ovarian carcinomas and be induced rapidly in response to hypoxia, which indeed participates in EMT development and prompts the cell migration and invasion. Thus, this study suggested that the epithelial ovarian cancer invasion and metastasis can be inhibited by antagonizing CCR7.

  20. Upregulated expression of CCR3 in rheumatoid arthritis and CCR3-dependent activation of fibroblast-like synoviocytes.

    PubMed

    Liu, Xin; Zhang, Huiyun; Chang, Xin; Shen, Jirong; Zheng, Wenjiao; Xu, Yanan; Wang, Junling; Gao, Wei; He, Shaoheng

    2017-02-01

    It is recognized that CC chemokine receptor 3 (CCR3) is associated with numerous inflammatory conditions and fibroblast-like synoviocyte (FLS) invasiveness correlates with articular damage in rheumatoid arthritis (RA). However, little is known of the expression and action of CCR3 on FLS in RA. In the present study, we investigated the expression of CCR3 on dispersed synovial tissue and peripheral blood cells in RA and influence of eotaxin-1 on FLS functions by using flow cytometry analysis, FLS challenge, and real-time PCR techniques. The results showed that approximately 7.0 % dispersed synovial cells are CCR3+ cells. Among those CCR3+ cells, 38.1, 23.8, and 20.6 % cells are CD90+CD14-CD3- (representing FLS), CD14+, and CD8+ cells, respectively, indicating that FLS is one of the major populations of CCR3+ cells in the synovial tissue of RA. In peripheral blood, CD14+ CCR3+ cells are elevated, but CD8+CCR3+ cells are reduced in RA. It was found that eotaxin-1 induced upregulated expression of CCR3 and matrix metalloproteinase (MMP)-9 messenger RNAs (mRNAs) in FLS. Since an antagonist of CCR3 suppressed the action of eotaxin-1, the event appeared CCR3 dependent. Moreover, we observed that interleukin (IL)-1β induced markedly enhanced eotaxin-1 release from FLS, but TNF-α reduced eotaxin-1 release at 12 and 24 h following incubation. In conclusion, enhanced expression of CCR3 on synovial cells and increased levels of eotaxin-1 in plasma and synovial fluid (SF) of RA indicate that CCR3-mediated mechanisms may play an important role in RA. Blockage of eotaxin-1 provoked CCR3 and MMP-9 expression in FLS by antagonist of CCR3, implicating that anti-CCR3 agents may have therapeutic use for RA.

  1. A small molecule antagonist of chemokine receptors CCR1 and CCR3. Potent inhibition of eosinophil function and CCR3-mediated HIV-1 entry.

    PubMed

    Sabroe, I; Peck, M J; Van Keulen, B J; Jorritsma, A; Simmons, G; Clapham, P R; Williams, T J; Pease, J E

    2000-08-25

    We describe a small molecule chemokine receptor antagonist, UCB35625 (the trans-isomer J113863 published by Banyu Pharmaceutical Co., patent WO98/04554), which is a potent, selective inhibitor of CCR1 and CCR3. Nanomolar concentrations of UCB35625 were sufficient to inhibit eosinophil shape change responses to MIP-1alpha, MCP-4, and eotaxin, while greater concentrations could inhibit the chemokine-induced internalization of both CCR1 and CCR3. UCB35625 also inhibited the CCR3-mediated entry of the human immunodeficiency virus-1 primary isolate 89.6 into the glial cell line, NP-2 (IC(50) = 57 nm). Chemotaxis of transfected cells expressing either CCR1 or CCR3 was inhibited by nanomolar concentrations of the compound (IC(50) values of CCR1-MIP-1alpha = 9.6 nm, CCR3-eotaxin = 93.7 nm). However, competitive ligand binding assays on the same transfectants revealed that considerably larger concentrations of UCB35625 were needed for effective ligand displacement than were needed for the inhibition of receptor function. Thus, it appears that the compound may interact with a region present in both receptors that inhibits the conformational change necessary to initiate intracellular signaling. By virtue of its potency at the two major eosinophil chemokine receptors, UCB35625 is a prototypic therapy for the treatment of eosinophil-mediated inflammatory disorders, such as asthma and as an inhibitor of CCR3-mediated human immunodeficiency virus-1 entry.

  2. Biological assessment for the effluent reduction program, Los Alamos National Laboratory, Los Alamos, New Mexico

    SciTech Connect

    Cross, S.P.

    1996-08-01

    This report describes the biological assessment for the effluent recution program proposed to occur within the boundaries of Los Alamos National Laboratory. Potential effects on wetland plants and on threatened and endangered species are discussed, along with a detailed description of the individual outfalls resulting from the effluent reduction program.

  3. Meeting Report: The 2004 National Academies Summer Institute on Undergraduate Education in Biology

    ERIC Educational Resources Information Center

    Wood, William B.; Handelsman, Jo

    2004-01-01

    This article reports on the 2004 National Academies Summer Institutes on Undergraduate Education in Biology. The second Summer Institute was held at UW-Madison on August 16-20, 2004. There were three dominant themes of the meeting: (1) active learning--ways to promote interactive student engagement during class in place of standard lectures; (2)…

  4. RE: National Alliance of Forest Owner's Response to Center for Biological Diversity's Request for Correction

    EPA Pesticide Factsheets

    Letter from the National Alliance of Forest Owners requesting the EPA consider its previous response to EPA's Call for Information on Greenhouse Gas Emissions Associated with Bioenergy and Other Biogenic Sources and consider the Center for Biological Diversity's assertions without merit.

  5. Soil biological indicators of soil health for a national soil health assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil is one of our nation's most valuable resources that provides life-sustaining functions. Billions of organisms live belowground and perform critical soil processes to support plant, animal, and human health aboveground. By shifting our view of soils from an inert growing material to a biological...

  6. A polymorphism in CCR1/CCR3 is associated with narcolepsy.

    PubMed

    Toyoda, Hiromi; Miyagawa, Taku; Koike, Asako; Kanbayashi, Takashi; Imanishi, Aya; Sagawa, Yohei; Kotorii, Nozomu; Kotorii, Tatayu; Hashizume, Yuji; Ogi, Kimihiro; Hiejima, Hiroshi; Kamei, Yuichi; Hida, Akiko; Miyamoto, Masayuki; Imai, Makoto; Fujimura, Yota; Tamura, Yoshiyuki; Ikegami, Azusa; Wada, Yamato; Moriya, Shunpei; Furuya, Hirokazu; Takeuchi, Masaki; Kirino, Yohei; Meguro, Akira; Remmers, Elaine F; Kawamura, Yoshiya; Otowa, Takeshi; Miyashita, Akinori; Kashiwase, Koichi; Khor, Seik-Soon; Yamasaki, Maria; Kuwano, Ryozo; Sasaki, Tsukasa; Ishigooka, Jun; Kuroda, Kenji; Kume, Kazuhiko; Chiba, Shigeru; Yamada, Naoto; Okawa, Masako; Hirata, Koichi; Mizuki, Nobuhisa; Uchimura, Naohisa; Shimizu, Tetsuo; Inoue, Yuichi; Honda, Yutaka; Mishima, Kazuo; Honda, Makoto; Tokunaga, Katsushi

    2015-10-01

    Etiology of narcolepsy-cataplexy involves multiple genetic and environmental factors. While the human leukocyte antigen (HLA)-DRB1*15:01-DQB1*06:02 haplotype is strongly associated with narcolepsy, it is not sufficient for disease development. To identify additional, non-HLA susceptibility genes, we conducted a genome-wide association study (GWAS) using Japanese samples. An initial sample set comprising 409 cases and 1562 controls was used for the GWAS of 525,196 single nucleotide polymorphisms (SNPs) located outside the HLA region. An independent sample set comprising 240 cases and 869 controls was then genotyped at 37 SNPs identified in the GWAS. We found that narcolepsy was associated with a SNP in the promoter region of chemokine (C-C motif) receptor 1 (CCR1) (rs3181077, P=1.6×10(-5), odds ratio [OR]=1.86). This rs3181077 association was replicated with the independent sample set (P=0.032, OR=1.36). We measured mRNA levels of candidate genes in peripheral blood samples of 38 cases and 37 controls. CCR1 and CCR3 mRNA levels were significantly lower in patients than in healthy controls, and CCR1 mRNA levels were associated with rs3181077 genotypes. In vitro chemotaxis assays were also performed to measure monocyte migration. We observed that monocytes from carriers of the rs3181077 risk allele had lower migration indices with a CCR1 ligand. CCR1 and CCR3 are newly discovered susceptibility genes for narcolepsy. These results highlight the potential role of CCR genes in narcolepsy and support the hypothesis that patients with narcolepsy have impaired immune function.

  7. Neutron Imaging at the Oak Ridge National Laboratory: Application to Biological Research

    SciTech Connect

    Bilheux, Hassina Z; Cekanova, Maria; Bilheux, Jean-Christophe; Bailey, William Barton; Keener, Wylie S; Davis, Larry E; Herwig, Kenneth W

    2014-01-01

    The Oak Ridge National Laboratory Neutron Sciences Directorate (NScD) has recently installed a neutron imaging beamline at the High Flux Isotope Reactor (HFIR) cold guide hall. The CG-1D beamline supports a broad range of user research spanning from engineering to material research, energy storage, additive manufacturing, vehicle technologies, archaeology, biology, and plant physiology. The beamline performance (spatial resolution, field of view, etc.) and its utilization for biological research are presented. The NScD is also considering a proposal to build the VENUS imaging beamline (beam port 10) at the Spallation Neutron Source (SNS). Unlike CG-1D which provides cold neutrons, VENUS will offer a broad range of neutron wavelengths, from epithermal to cold, and enhanced contrast mechanisms. This new capability will also enable the imaging of thicker biological samples than is currently available at CG-1D. A brief overview of the VENUS capability for biological research is discussed.

  8. CCR2+CCR5+ T Cells Produce Matrix Metalloproteinase-9 and Osteopontin in the Pathogenesis of Multiple Sclerosis

    PubMed Central

    Sato, Wakiro; Tomita, Atsuko; Ichikawa, Daijyu; Lin, Youwei; Kishida, Hitaru; Miyake, Sachiko; Ogawa, Masafumi; Okamoto, Tomoko; Murata, Miho; Kuroiwa, Yoshiyuki

    2012-01-01

    Multiple sclerosis (MS) is a demyelinating disease of the CNS that is presumably mediated by CD4+ autoimmune T cells. Although both Th1 and Th17 cells have the potential to cause inflammatory CNS pathology in rodents, the identity of pathogenic T cells remains unclear in human MS. Given that each Th cell subset preferentially expresses specific chemokine receptors, we were interested to know whether T cells defined by a particular chemokine receptor profile play an active role in the pathogenesis of MS. In this article, we report that CCR2+CCR5+ T cells constitute a unique population selectively enriched in the cerebrospinal fluid of MS patients during relapse but not in patients with other neurologic diseases. After polyclonal stimulation, the CCR2+CCR5+ T cells exhibited a distinct ability to produce matrix metalloproteinase-9 and osteopontin, which are involved in the CNS pathology of MS. Furthermore, after TCR stimulation, the CCR2+CCR5+ T cells showed a higher invasive potential across an in vitro blood–brain barrier model compared with other T cells. Of note, the CCR2+CCR5+ T cells from MS patients in relapse are reactive to myelin basic protein, as assessed by production of IFN-γ. We also demonstrated that the CCR6−, but not the CCR6+, population within CCR2+CCR5+ T cells was highly enriched in the cerebrospinal fluid during MS relapse (p < 0.0005) and expressed higher levels of IFN-γ and matrix metalloproteinase-9. Taken together, we propose that autoimmune CCR2+CCR5+CCR6− Th1 cells play a crucial role in the pathogenesis of MS. PMID:23071279

  9. Role of CCR5, CCR2 and SDF-1 gene polymorphisms in a population of HIV-1 infected individuals.

    PubMed

    Mazzucchelli, R; Corvasce, S; Violin, M; Riva, C; Bianchi, R; Dehò, L; Velleca, R; Cibella, J; Bada, M; Moroni, M; Galli, M; Balotta, C

    2001-01-01

    The finding that in addition to CD4 molecule HIV-1 uses, CCR5 or CXCR4 receptors to enter target cells prompted the research to identify polymorphisms in coreceptor genes affecting disease progression. In this study we analyzed the prevalence of CCR5-delta32, CCR2-641 and SDF1-3'A alleles in a highly selected group of 42 Long-Term Nonprogressors (LTNPs) compared to 112 subjects with a typical course of HIV-1 infection (TPs) and 117 healthy controls (HCs). In addition, we correlated CCR5, CCR2 and SDF-1 genotypes with molecular indexes of HIV-1 replication, cell-free RNA and both unspliced (US) and multiply spliced (MS) intracellular transcripts, to investigate the role of the mutant alleles in determining a long-term nonprogressive course of HIV-1 disease. Our results indicate a significantly higher prevalence of CCR5-delta32 allele in LTNPs compared to TPs (p=0.0434), while the proportions of CCR2-64I and SDF1-3'A alleles were comparable between the two groups. However, SDF-1 wild type LTNP subjects showed significantly lower levels of HIV-1 genomic RNA, US and MS transcripts than SDF1-3'A heterozygous ones (p=0.0021, 0.016, 0.0031, respectively), whereas both CCR5 and CCR2 wild type individuals had similar rates of viral replication compared to CCR5-delta32 and CCR2-64I heterozygous ones. CCR5, CCR2 and SDF-1 combined genotypes were also studied and this analysis did not identify a specific protective cluster of alleles in LTNPs. Taken together, our results indicate that genetic background involving CCR5, CCR2 and SDF-1 alleles may play a limited role in the natural history of HIV-1 infection.

  10. Building on the Ccr4-Not architecture.

    PubMed

    Villanyi, Zoltan; Collart, Martine A

    2016-10-01

    In a recent issue of Nature Communications Ukleja and co-workers reported a cryo-EM 3D reconstruction of the Ccr4-Not complex from Schizosaccharomyces pombe with an immunolocalization of the different subunits. The newly gained architectural knowledge provides cues to apprehend the functional diversity of this major eukaryotic regulator. Indeed, in the cytoplasm alone, Ccr4-Not regulates translational repression, decapping and deadenylation, and the Not module additionally plays a positive role in translation. The spatial distribution of the subunits within the structure is compatible with a model proposing that the Ccr4-Not complex interacts with the 5' and 3' ends of target mRNAs, allowing different functional modules of the complex to act at different stages of the translation process, possibly within a circular constellation of the mRNA. This work opens new avenues, and reveals important gaps in our understanding regarding structure and mode of function of the Ccr4-Not complex that need to be addressed in the future.

  11. Increasing the efficacy of radiotherapy by modulating the CCR2/CCR5 chemokine axes

    PubMed Central

    Connolly, Kelli A.; Belt, Brian A.; Figueroa, Nathania M.; Murthy, Aditi; Patel, Ankit; Kim, Minsoo; Lord, Edith M.; Linehan, David C.; Gerber, Scott A.

    2016-01-01

    Although radiotherapy (RT) is widely used to control tumor growth across many cancer types, there is a relatively high incidence of RT failure exhibited by tumor recurrence, therefore a clear need exists to achieve improved effectiveness of RT. The RT-elicited immune response largely impacts the efficacy of RT and includes immune cells that kill tumor cells, but also immunosuppressive cells, which dampen anti-tumor immunity. Using murine models in which syngeneic tumor cell lines (Colon38, Glioma261, Line1) are grown intramuscularly and treated with 15 Gy local RT, we assessed the effects of RT on both the systemic and intratumoral immune response. Here we demonstrate that RT stimulates increased production of two chemokines, CCL2 and CCL5, at the tumor site. Further, that this leads to increased CCR2+ CCR5+ monocytes in circulation and subsequently alters the intratumoral immune infiltrate favoring the largely immunosuppressive CCR2+ CCR5+ monocytes. Importantly, a CCR2/CCR5 antagonist administered daily (15 mg/kg subcutaneously) starting two days prior to RT reduces both circulating and intratumoral monocytes resulting in increased efficacy of RT in radioresponsive tumors. Overall, these data have important implications for the mechanism of RT and present a means to improve RT efficacy across many cancer types. PMID:27852031

  12. CCR5 and CCR3 expression on T CD3+ lymphocytes from HIV/Leishmania co-infected subjects.

    PubMed

    Nigro, L; Rizzo, M L; Vancheri, C; La Rosa, R; Mastruzzo, C; Tomaselli, V; Ragusa, A; Manuele, R; Cacopardo, B

    2007-12-01

    CC chemokine receptor 5 (CCR5) and CC chemokine receptor 3 (CCR3) are membrane-bound proteins involved in HIV-1 entry into susceptible cells. All T lymphocyte subsets display CCR5 and CCR3 on their membrane surface. T helper 1 cells are known to express CCR5 but not CCR3, and most of T cells expressing CCR3 are T helper 2. This study aimed to assess the expression of CCR5 and CCR3 on peripheral blood CD3+ T lymphocytes of HIV-Leishmania co-infected individuals. A total of 36 subjects were enrolled; nine had HIV-Leishmania co-infection; nine were HIV-infected without Leishmania, nine had visceral leishmaniasis without HIV co-infection and nine were healthy blood donors. HIV-Leishmania co-infected subjects showed a significantly higher rate of CCR5+CD3+ T lymphocytes in comparison with the other studied groups. The higher rate of CD3+ T-cells expressing CCR5 found in HIV-Leishmania co-infected subjects may be related to the role of Leishmania as an enhancer of the progression to AIDS.

  13. Beyond the known functions of the CCR4-NOT complex in gene expression regulatory mechanisms: New structural insights to unravel CCR4-NOT mRNA processing machinery.

    PubMed

    Ukleja, Marta; Valpuesta, José María; Dziembowski, Andrzej; Cuellar, Jorge

    2016-10-01

    Large protein assemblies are usually the effectors of major cellular processes. The intricate cell homeostasis network is divided into numerous interconnected pathways, each controlled by a set of protein machines. One of these master regulators is the CCR4-NOT complex, which ultimately controls protein expression levels. This multisubunit complex assembles around a scaffold platform, which enables a wide variety of well-studied functions from mRNA synthesis to transcript decay, as well as other tasks still being identified. Solving the structure of the entire CCR4-NOT complex will help to define the distribution of its functions. The recently published three-dimensional reconstruction of the complex, in combination with the known crystal structures of some of the components, has begun to address this. Methodological improvements in structural biology, especially in cryoelectron microscopy, encourage further structural and protein-protein interaction studies, which will advance our comprehension of the gene expression machinery.

  14. Engagement and disarmament: A US National Security Strategy for biological weapons of mass destruction. Strategy research project

    SciTech Connect

    Moilanen, J.H.; McIntyre, A.J.; Johnson, D.V.

    1995-04-18

    The specter of biological weapons -- one of the three weapons of mass destruction (WMD) -- is an unusual and extraordinary threat to the national security of the United States. Since the U.S. unilaterally renounced biological warfare in 1969, biotechnology advances, aggressive nation-states, and terrorism have complicated a precarious balance of world and regional stability. U.S. shortfalls in biological warfare preparedness during the Persian Gulf War may convince potential adversaries that the U.S. is incapable of protecting its vital interests from biological assault. This paper examines the menace of biological weapons and global challenges to nonproliferation and counterproliferation. Analysis concludes that the United States can dissuade, deter, and defend against biological warfare and terrorism with an integrated national security strategy for Biological Weapons Engagement and Disarmament.

  15. The carboxyl terminus of the chemokine receptor CCR3 contains distinct domains which regulate chemotactic signaling and receptor down-regulation in a ligand-dependent manner.

    PubMed

    Sabroe, Ian; Jorritsma, Annelies; Stubbs, Victoria E L; Xanthou, Georgina; Jopling, Louise A; Ponath, Paul D; Williams, Timothy J; Murphy, Philip M; Pease, James E

    2005-04-01

    The chemokine receptor CCR3 regulates the chemotaxis of leukocytes implicated in allergic disease, such as eosinophils. Incubation of eosinophils with CCL11, CCL13 or CCL5 resulted in a rapid decrease of cell-surface CCR3 which was replicated using CCR3 transfectants. Progressive truncation of the CCR3 C terminus by 15 amino acids produced three constructs, Delta340, Delta325 and Delta310. Delta340 and Delta325 were able to bind CCL11 with affinities similar to wild-type CCR3. Delta340 transfectants exhibited enhanced migration and reduced receptor down-regulation in response to CCL11 and CCL13. Delta325 transfectants displayed chemotactic responses to CCL11 and CCL13 similar to wild-type CCR3, and had impaired down-regulation when stimulated with CCL13 but not CCL11. In contrast, neither the Delta325 nor Delta340 truncation affected chemotaxis or receptor down-regulation induced by CCL5. Delta310 transfectants bound CCL11 poorly and were biologically inactive. Inhibitors of p38 mitogen-activated protein kinase and PI3-kinase antagonized eosinophil shape change responses and chemotaxis of transfectants to CCL11 and CCL13. In contrast, shape change but not chemotaxis was sensitive to inhibition of the extracellular signal-regulated kinase kinase pathway suggesting differential regulation of the two responses. Thus, the CCR3 C terminus contains distinct domains responsible for the regulation of receptor desensitization and for coupling to chemotactic responses.

  16. The National Biological Information Infrastructure as an E-Government tool

    USGS Publications Warehouse

    Sepic, R.; Kase, K.

    2002-01-01

    Coordinated by the U.S. Geological Survey (USGS), the National Biological Information Infrastructure (NBII) is a Web-based system that provides access to data and information on the nation's biological resources. Although it was begun in 1993, predating any formal E-Government initiative, the NBII typifies the E-Government concepts outlined in the President's Management Agenda, as well as in the proposed E-Government Act of 2002. This article-an individual case study and not a broad survey with extensive references to the literature-explores the structure and operation of the NBII in relation to several emerging trends in E-Government: end-user focus, defined and scalable milestones, public-private partnerships, alliances with stakeholders, and interagency cooperation. ?? 2002 Elsevier Science Inc. All rights reserved.

  17. Class B β-arrestin2-dependent CCR5 signalosome retention with natural antibodies to CCR5.

    PubMed

    Venuti, Assunta; Pastori, Claudia; Pennisi, Rosamaria; Riva, Agostino; Sciortino, Maria Teresa; Lopalco, Lucia

    2016-12-23

    CCR5 stimulation with natural ligands, such as RANTES, classically induces short-term internalization with transient activation of β-arrestins and rapidly recycling on the cell surface. Here we discovered that, in T cells, natural CCR5 antibodies induce a CCR5-negative phenotype with the involvement of β-arrestin2, which leads to the formation of a stable CCR5 signalosome with both β-arrestin2 and ERK1. The activation of β-arrestin2 is necessary to CCR5 signaling for the signalosome formation and stabilization. When all stimuli were washed out, β-arrestin1 silencing favors the activity of β-arrestin2 for the CCR5 signalosome retention. Interestingly, CCR5 turn from Class A trafficking pattern, normally used for its internalization with natural modulating molecules (i.e. RANTES), into a long lasting Class B type specifically induced by stimulation with natural anti-CCR5 antibodies. This new CCR5 pathway is relevant not only to study in depth the molecular basis of all pathologies where CCR5 is involved but also to generate new antidody-based therapeutics.

  18. Class B β-arrestin2-dependent CCR5 signalosome retention with natural antibodies to CCR5

    PubMed Central

    Venuti, Assunta; Pastori, Claudia; Pennisi, Rosamaria; Riva, Agostino; Sciortino, Maria Teresa; Lopalco, Lucia

    2016-01-01

    CCR5 stimulation with natural ligands, such as RANTES, classically induces short-term internalization with transient activation of β-arrestins and rapidly recycling on the cell surface. Here we discovered that, in T cells, natural CCR5 antibodies induce a CCR5-negative phenotype with the involvement of β-arrestin2, which leads to the formation of a stable CCR5 signalosome with both β-arrestin2 and ERK1. The activation of β-arrestin2 is necessary to CCR5 signaling for the signalosome formation and stabilization. When all stimuli were washed out, β-arrestin1 silencing favors the activity of β-arrestin2 for the CCR5 signalosome retention. Interestingly, CCR5 turn from Class A trafficking pattern, normally used for its internalization with natural modulating molecules (i.e. RANTES), into a long lasting Class B type specifically induced by stimulation with natural anti-CCR5 antibodies. This new CCR5 pathway is relevant not only to study in depth the molecular basis of all pathologies where CCR5 is involved but also to generate new antidody-based therapeutics. PMID:28008933

  19. German National Proficiency Scales in Biology: Internal Structure, Relations to General Cognitive Abilities and Verbal Skills

    PubMed Central

    KÖLLER, OLAF

    2016-01-01

    ABSTRACT National and international large‐scale assessments (LSA) have a major impact on educational systems, which raises fundamental questions about the validity of the measures regarding their internal structure and their relations to relevant covariates. Given its importance, research on the validity of instruments specifically developed for LSA is still sparse, especially in science and its subdomains biology, chemistry, and physics. However, policy decisions for the improvement of educational quality based on LSA can only be helpful if valid information on students’ achievement levels is provided. In the present study, the nature of the measurement instruments based on the German Educational Standards in Biology is examined. On the basis of data from 3,165 students in Grade 10, we present dimensional analyses and report the relationship between different subdimensions of biology literacy and cognitive covariates such as general cognitive abilities and verbal skills. A theory‐driven two‐dimensional model fitted the data best. Content knowledge and scientific inquiry, two subdimensions of biology literacy, are highly correlated and show differential correlational patterns to the covariates. We argue that the underlying structure of biology should be incorporated into curricula, teacher training and future assessments. PMID:27818532

  20. German National Proficiency Scales in Biology: Internal Structure, Relations to General Cognitive Abilities and Verbal Skills.

    PubMed

    Kampa, Nele; Köller, Olaf

    2016-09-01

    National and international large-scale assessments (LSA) have a major impact on educational systems, which raises fundamental questions about the validity of the measures regarding their internal structure and their relations to relevant covariates. Given its importance, research on the validity of instruments specifically developed for LSA is still sparse, especially in science and its subdomains biology, chemistry, and physics. However, policy decisions for the improvement of educational quality based on LSA can only be helpful if valid information on students' achievement levels is provided. In the present study, the nature of the measurement instruments based on the German Educational Standards in Biology is examined. On the basis of data from 3,165 students in Grade 10, we present dimensional analyses and report the relationship between different subdimensions of biology literacy and cognitive covariates such as general cognitive abilities and verbal skills. A theory-driven two-dimensional model fitted the data best. Content knowledge and scientific inquiry, two subdimensions of biology literacy, are highly correlated and show differential correlational patterns to the covariates. We argue that the underlying structure of biology should be incorporated into curricula, teacher training and future assessments.

  1. NO gas loss from biologically crusted soils in Canyonlands National Park, Utah

    USGS Publications Warehouse

    Barger, N.N.; Belnap, J.; Ojima, D.S.; Mosier, A.

    2005-01-01

    In this study, we examined N gas loss as nitric oxide (NO) from N-fixing biologically crusted soils in Canyonlands National Park, Utah. We hypothesized that NO gas loss would increase with increasing N fixation potential of the biologically crusted soil. NO fluxes were measured from biologically crusted soils with three levels of N fixation potential (Scytonema-Nostoc-Collema spp. (dark)>Scytonema-Nostoc-Microcoleus spp. (medium)>Microcoleus spp. (light)) from soil cores and field chambers. In both cores and field chambers there was a significant effect of crust type on NO fluxes, but this was highly dependent on season. NO fluxes from field chambers increased with increasing N fixation potential of the biologically crusted soils (dark>medium>light) in the summer months, with no differences in the spring and autumn. Soil chlorophyllasis Type a content (an index of N fixation potential), percent N, and temperature explained 40% of the variability in NO fluxes from our field sites. Estimates of annual NO loss from dark and light crusts was 0.04-0.16 and 0.02-0.11-N/ha/year. Overall, NO gas loss accounts for approximately 3-7% of the N inputs via N fixation in dark and light biologically crusted soils. Land use practices have drastically altered biological soil crusts communities over the past century. Livestock grazing and intensive recreational use of public lands has resulted in a large scale conversion of dark cyanolichen crusts to light cyanobacterial crusts. As a result, changes in biologically crusted soils in arid and semi-arid regions of the western US may subsequently impact regional NO loss. ?? Springer 2005.

  2. Phosphorylation of filamin A regulates chemokine receptor CCR2 recycling.

    PubMed

    Pons, Mònica; Izquierdo, Ismael; Andreu-Carbó, Mireia; Garrido, Georgina; Planagumà, Jesús; Muriel, Olivia; Del Pozo, Miguel A; Geli, M Isabel; Aragay, Anna M

    2017-01-15

    Proper endosomal trafficking of ligand-activated G-protein-coupled receptors (GPCRs) is essential to spatiotemporally tune their physiological responses. For the monocyte chemoattractant receptor 2 (CCR2B; one of two isoforms encoded by CCR2), endocytic recycling is important to sustain monocyte migration, whereas filamin A (FLNa) is essential for CCL2-induced monocyte migration. Here, we analyze the role of FLNa in the trafficking of CCR2B along the endocytic pathway. In FLNa-knockdown cells, activated CCR2B accumulated in enlarged EEA-1-positive endosomes, which exhibited slow movement and fast fluorescence recovery, suggesting an imbalance between receptor entry and exit rates. Utilizing super-resolution microscopy, we observed that FLNa-GFP, CCR2B and β2-adrenergic receptor (β2AR) were present in actin-enriched endosomal microdomains. Depletion of FLNa decreased CCR2B association with these microdomains and concomitantly delayed CCR2B endosomal traffic, without apparently affecting the number of microdomains. Interestingly, CCR2B and β2AR signaling induced phosphorylation of FLNa at residue S2152, and this phosphorylation event was contributes to sustain receptor recycling. Thus, our data strongly suggest that CCR2B and β2AR signals to FLNa to stimulate its endocytosis and recycling to the plasma membrane.

  3. Simbios: an NIH national center for physics-based simulation of biological structures.

    PubMed

    Delp, Scott L; Ku, Joy P; Pande, Vijay S; Sherman, Michael A; Altman, Russ B

    2012-01-01

    Physics-based simulation provides a powerful framework for understanding biological form and function. Simulations can be used by biologists to study macromolecular assemblies and by clinicians to design treatments for diseases. Simulations help biomedical researchers understand the physical constraints on biological systems as they engineer novel drugs, synthetic tissues, medical devices, and surgical interventions. Although individual biomedical investigators make outstanding contributions to physics-based simulation, the field has been fragmented. Applications are typically limited to a single physical scale, and individual investigators usually must create their own software. These conditions created a major barrier to advancing simulation capabilities. In 2004, we established a National Center for Physics-Based Simulation of Biological Structures (Simbios) to help integrate the field and accelerate biomedical research. In 6 years, Simbios has become a vibrant national center, with collaborators in 16 states and eight countries. Simbios focuses on problems at both the molecular scale and the organismal level, with a long-term goal of uniting these in accurate multiscale simulations.

  4. Ecotoxicological evaluation of area 9 landfill at Crab Orchard National Wildlife Refuge: Biological impact and residues

    SciTech Connect

    McKee, M.J.

    1992-10-01

    Polychlorinated biphenyls (PCBs) and lead were investigated in soil and biota at Crab Orchard National Wildlife Refuge (CONWR) and related to biological effects. PCBs were rapidly mobilized from the soil into the terrestrial food chain as evidenced by high residue levels in adult beetles, caged house crickets, and white-footed mice. Bioaccumulation of lead was not observed in invertebrates, but was observed in white-footed mice. Invertebrate abundance and biomarkers were evaluated for signs of toxic response to soil contaminants. The control site and the Area 9 Landfill did not differ in abundance of five common terrestrial invertebrate families. The absence of detectable biological effects in invertebrates shows that these animals can tolerate relatively high environmental concentrations of these contaminants. The intensive use of Area 9 Landfill by invertebrates and their apparent tolerance of soil contaminants eludes to the importance of chemical transfer to higher trophic levels, especially for PCBs.

  5. Attenuation of rodent neuropathic pain by an orally active peptide, RAP-103, which potently blocks CCR2- and CCR5-mediated monocyte chemotaxis and inflammation.

    PubMed

    Padi, Satyanarayana S V; Shi, Xiang Q; Zhao, Yuan Q; Ruff, Michael R; Baichoo, Noel; Pert, Candace B; Zhang, Ji

    2012-01-01

    Chemokine signaling is important in neuropathic pain, with microglial cells expressing CCR2 playing a well-established key role. DAPTA, a HIV gp120-derived CCR5 entry inhibitor, has been shown to inhibit CCR5-mediated monocyte migration and to attenuate neuroinflammation. We report here that as a stabilized analog of DAPTA, the short peptide RAP-103 exhibits potent antagonism for both CCR2 (half maximal inhibitory concentration [IC50] 4.2 pM) and CCR5 (IC50 0.18 pM) in monocyte chemotaxis. Oral administration of RAP-103 (0.05-1 mg/kg) for 7 days fully prevents mechanical allodynia and inhibits the development of thermal hyperalgesia after partial ligation of the sciatic nerve in rats. Administered from days 8 to 12, RAP-103 (0.2-1 mg/kg) reverses already established hypersensitivity. RAP-103 relieves behavioral hypersensitivity, probably through either or both CCR2 and CCR5 blockade, because by using genetically deficient animals, we demonstrated that in addition to CCR2, CCR5 is also required for the development of neuropathic pain. Moreover, RAP-103 is able to reduce spinal microglial activation and monocyte infiltration, and to inhibit inflammatory responses evoked by peripheral nerve injury that cause chronic pain. Our findings suggest that targeting CCR2/CCR5 should provide greater efficacy than targeting CCR2 or CCR5 alone, and that dual CCR2/CCR5 antagonist RAP-103 has the potential for broad clinical use in neuropathic pain treatment.

  6. Downregulation of CCR1 inhibits human hepatocellular carcinoma cell invasion

    SciTech Connect

    Wu Xiaofeng; Fan Jia; E-mail: jiafan99@yahoo.com; Wang Xiaoying; Zhou Jian; Qiu Shuangjian; Yu Yao; Liu Yinkun; Tang Zhaoyou

    2007-04-20

    CC chemokine receptor 1 (CCR1) has an important role in the recruitment of leukocytes to the site of inflammation. The migration and metastasis of tumor cells shares many similarities with leukocyte trafficking, which is mainly regulated by chemokine receptor-ligand interactions. CCR1 is highly expressed in hepatocellular carcinoma (HCC) cells and tissues with unknown functions. In this study, we silenced CCR1 expression in the human HCC cell line HCCLM3 using artificial microRNA (miRNA)-mediated RNA interference (RNAi) and examined the invasiveness and proliferation of CCR1-silenced HCCLM3 cells and the matrix metalloproteinase (MMP) activity. The miRNA-mediated knockdown expression of CCR1 significantly inhibited the invasive ability of HCCLM3 cells, but had only a minor effect on the cellular proliferation rate. Moreover, CCR1 knockdown significantly reduced the secretion of MMP-2. Together, these findings indicate that CCR1 has an important role in HCCLM3 invasion and that CCR1 might be a new target of HCC treatment.

  7. Identification of a sulfonamide series of CCR2 antagonists.

    PubMed

    Peace, Simon; Philp, Joanne; Brooks, Carl; Piercy, Val; Moores, Kitty; Smethurst, Chris; Watson, Steve; Gaines, Simon; Zippoli, Mara; Mookherjee, Claudette; Ife, Robert

    2010-07-01

    A series of sulfonamide CCR2 antagonists was identified by high-throughput screening. Management of molecular weight and physical properties, in particular moderation of lipophilicity and study of pK(a), yielded highly potent CCR2 antagonists exhibiting good pharmacokinetic properties and improved potency in the presence of human plasma.

  8. A Simplified Technique for Evaluating Human "CCR5" Genetic Polymorphism

    ERIC Educational Resources Information Center

    Falteisek, Lukáš; Cerný, Jan; Janštová, Vanda

    2013-01-01

    To involve students in thinking about the problem of AIDS (which is important in the view of nondecreasing infection rates), we established a practical lab using a simplified adaptation of Thomas's (2004) method to determine the polymorphism of HIV co-receptor CCR5 from students' own epithelial cells. CCR5 is a receptor involved in inflammatory…

  9. CCR2 and CCR5 genes polymorphisms in benign prostatic hyperplasia and prostate cancer.

    PubMed

    Zambra, Francis Maria Báo; Biolchi, Vanderlei; Brum, Ilma Simoni; Chies, José Artur Bogo

    2013-08-01

    Benign prostatic hyperplasia (BPH) and prostate cancer (PCa) are two chronic conditions, very common in aged men, that have been associated to inflammatory process. Chemokines and their receptors are recognized as critical mediators of inflammatory responses, they regulate immune cell migration and are implicated in tumor pathogenesis. The impact of two chemokine receptor gene polymorphisms, CCR2-64I (rs1799864) and CCR5-Δ32 (rs333), was evaluated in BPH and PCa. 385 DNA samples (130 BPH, 136 PCa, 119 healthy control) were genotyped. The allele frequencies were similar among control, BPH and PCa groups. Median of serum PSA levels was different between groups: 0.79, 1.45 and 6.91 ng/mL in control, BPH and PCa groups, respectively (all p<0.001). The prostate volume median was 20.00 cm(3) in the control group, thus, lower than BPH (35.35 cm(3)) and PCa (35.80 cm(3)) (both p<0.001), nevertheless no statistical significant difference was observed between BPH and PCa patients (p=0.172). Remarkably, CCR2-64I was a protective factor to PCa when compared with BPH (OR=0.550; 95%CI=0.311-0.975), although the statistically significant difference was lost after correction for multiple comparisons. No significant associations of CCR5-Δ32 variant were observed with BPH, PCa or PCa clinicopathologic status. Our data suggest the influence of CCR2-64I variant in the development of prostate cancer.

  10. Extracellular disulfide bridges serve different purposes in two homologous chemokine receptors, CCR1 and CCR5.

    PubMed

    Rummel, Pia C; Thiele, Stefanie; Hansen, Lærke S; Petersen, Trine P; Sparre-Ulrich, Alexander H; Ulven, Trond; Rosenkilde, Mette M

    2013-09-01

    In addition to the 7 transmembrane receptor (7TM)-conserved disulfide bridge between transmembrane (TM) helix 3 and extracellular loop (ECL)-2, chemokine receptors (CCR) contain a disulfide bridge between the N terminus and what previously was believed to be ECL-3. Recent crystal and NMR structures of the CXC chemokine receptors (CXCR) CXCR4 and CXCR1, combined with structural analysis of all endogenous chemokine receptors indicate that this chemokine receptor-conserved bridge in fact connects the N terminus to the top of TM-7. By employing chemokine ligands that mainly target extracellular receptor regions and small-molecule ligands that predominantly interact with residues in the main binding crevice, we show that the 7TM-conserved bridge is essential for all types of ligand-mediated activation, whereas the chemokine-conserved bridge is dispensable for small-molecule activation in CCR1. However, in striking contrast to previous studies in other chemokine receptors, high-affinity CCL3 chemokine binding was maintained in the absence of either bridge. In the highly related CCR5, a completely different dependency was observed as neither activation nor binding of the same chemokines was retained in the absence of either bridge. In contrast, both bridges were dispensable for activation by the same small molecules. This indicates that CCR5 activity is independent of extracellular regions, whereas in CCR1 the preserved folding of ECL-2 is necessary for activation. These results indicate that conserved structural features in a receptor subgroup do not necessarily provide specific traits for the whole subgroup but rather provide unique traits to the single receptors.

  11. First annual report on the Biological Monitoring and Abatement Program at Oak Ridge National Laboratory

    SciTech Connect

    Loar, J. M.; Adams, S. M.; Blaylock, B. G.; Boston, H. L.; Frank, M. L.; Garten, C. T.; Houston, M. A.; Kimmel, B. L.; Ryon, M. G.; Smith, J. G.; Southworth, G. R.; Stewart, A. J.; Walton, B. T.; Berry, J. B.; Talmage, S. S.; Amano, H.; Jimenez, B. D.; Kitchings, J. T.; Meyers-Schoene, L.; Mohrbacher, D. A.; Olsen, C. R.

    1992-08-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the first of a series of annual reports presenting the results of BMAP, describes studies that were conducted from March through December 1986.

  12. A Model of Federal Interagency Cooperation: The National Interagency Confederation for Biological Research

    PubMed Central

    Wright, Mary; Clifford Lane, H.; Schoomaker, Eric B.

    2014-01-01

    The terrorist attacks of September 11 and the anthrax mailings a month later prompted a sweeping response by the federal government to improve the preparedness of the US to meet the potential threat posed by a terrorist using a biological agent. This response transcended traditional interagency boundaries, creating new opportunities while producing unique fiscal and leadership challenges. The National Interagency Confederation for Biological Research has made significant progress over the past 12 years because of its ability to adapt to the need for interagency cooperation and overcome many of these challenges. As construction of the National Interagency Biodefense Campus at Fort Detrick nears completion, the US has the capability to pursue a unique whole-of-government approach to the development of medical measures to counter the threat of bioterrorism. In addition to the high-level support of many in the federal government, the key success factors for this effort have been (1) a critical mass of leaders with the right leadership characteristics, (2) development of a compelling vision and accompanying narrative understood and articulated by all partnering organizations, and (3) recognition of the need for a partnership office to do the important communication and collaboration work in the organization to synchronize the information available to all the partners. The major barrier to interagency cooperative efforts of this kind is the inability to comingle funds from different appropriations. PMID:24819736

  13. The impact of the United Nations Convention on Biological Diversity on natural products research.

    PubMed

    Cragg, Gordon M; Katz, Flora; Newman, David J; Rosenthal, Joshua

    2012-12-01

    The discovery and development of novel, biologically active agents from natural sources, whether they be drugs, agrochemicals or other bioactive entities, involve a high level of interdisciplinary as well as international collaboration. Such collaboration, particularly at the international level, requires the careful negotiation of collaborative agreements protecting the rights of all parties, with special attention being paid to the rights of host (source) country governments, communities and scientific organizations. While many biodiversity-rich source countries currently might not have the necessary resources for in-country drug discovery and advanced development, they provide valuable opportunities for collaboration in this endeavor with research organizations from more high-income nations. This chapter discusses the experiences of the US National Cancer Institute and the US government-sponsored International Cooperative Biodiversity Groups program in the establishment of international agreements in the context of the Convention of Biological Diversity's objectives of promoting fair and equitable collaboration with multiple parties in many countries, and includes some specific lessons of value in developing such collaborations.

  14. A model of federal interagency cooperation: the National Interagency Confederation for Biological Research.

    PubMed

    Gilman, James K; Wright, Mary; Clifford Lane, H; Schoomaker, Eric B

    2014-01-01

    The terrorist attacks of September 11 and the anthrax mailings a month later prompted a sweeping response by the federal government to improve the preparedness of the US to meet the potential threat posed by a terrorist using a biological agent. This response transcended traditional interagency boundaries, creating new opportunities while producing unique fiscal and leadership challenges. The National Interagency Confederation for Biological Research has made significant progress over the past 12 years because of its ability to adapt to the need for interagency cooperation and overcome many of these challenges. As construction of the National Interagency Biodefense Campus at Fort Detrick nears completion, the US has the capability to pursue a unique whole-of-government approach to the development of medical measures to counter the threat of bioterrorism. In addition to the high-level support of many in the federal government, the key success factors for this effort have been (1) a critical mass of leaders with the right leadership characteristics, (2) development of a compelling vision and accompanying narrative understood and articulated by all partnering organizations, and (3) recognition of the need for a partnership office to do the important communication and collaboration work in the organization to synchronize the information available to all the partners. The major barrier to interagency cooperative efforts of this kind is the inability to comingle funds from different appropriations.

  15. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE PAGES

    Unkefer, Clifford Jay; Sayre, Richard Thomas; Magnuson, Jon K.; ...

    2016-06-21

    In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortium began, little was known about the molecular basis of algal biomass or oil production. Very few algal genome sequences were available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played by metabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oilmore » yields were in their infancy. Genome sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. Our review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels.« less

  16. Nation-Based Occurrence and Endogenous Biological Reduction of Mycotoxins in Medicinal Herbs and Spices

    PubMed Central

    Do, Kee Hun; An, Tae Jin; Oh, Sang-Keun; Moon, Yuseok

    2015-01-01

    Medicinal herbs have been increasingly used for therapeutic purposes against a diverse range of human diseases worldwide. Moreover, the health benefits of spices have been extensively recognized in recent studies. However, inevitable contaminants, including mycotoxins, in medicinal herbs and spices can cause serious problems for humans in spite of their health benefits. Along with the different nation-based occurrences of mycotoxins, the ultimate exposure and toxicities can be diversely influenced by the endogenous food components in different commodities of the medicinal herbs and spices. The phytochemicals in these food stuffs can influence mold growth, mycotoxin production and biological action of the mycotoxins in exposed crops, as well as in animal and human bodies. The present review focuses on the occurrence of mycotoxins in medicinal herbs and spices and the biological interaction between mold, mycotoxin and herbal components. These networks will provide insights into the methods of mycotoxin reduction and toxicological risk assessment of mycotoxin-contaminated medicinal food components in the environment and biological organisms. PMID:26473926

  17. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts

    SciTech Connect

    Unkefer, Clifford Jay; Sayre, Richard Thomas; Magnuson, Jon K.; Anderson, Daniel B.; Baxter, Ivan; Blaby, Ian K.; Brown, Judith K.; Carleton, Michael; Cattolico, Rose Ann; Dale, Taraka T.; Devarenne, Timothy P.; Downes, C. Meghan; Dutcher, Susan K.; Fox, David Thomas; Goodenough, Ursula; Jaworski, Jan; Holladay, Jonathan E.; Kramer, David M.; Koppisch, Andrew Thomas; Lipton, Mary S.; Marrone, Babetta Louise; McCormick, Margaret; Molnar, Istvan; Mott, John Blaine; Ogden, Kimberly L.; Panisko, Ellen A.; Pellegrini, Matteo; Polle, Juergen; Richardson, James W.; Sabarsky, Martin; Starkenburg, Shawn Robert; Stormo, Gary D.; Teshima, Munehiro; Twary, Scott Nicholas; Unkefer, Pat J.; Yuan, Joshua S.; Olivares, Jose Antonio

    2016-06-21

    In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortium began, little was known about the molecular basis of algal biomass or oil production. Very few algal genome sequences were available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played by metabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oil yields were in their infancy. Genome sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. Our review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels.

  18. Nation-Based Occurrence and Endogenous Biological Reduction of Mycotoxins in Medicinal Herbs and Spices.

    PubMed

    Do, Kee Hun; An, Tae Jin; Oh, Sang-Keun; Moon, Yuseok

    2015-10-14

    Medicinal herbs have been increasingly used for therapeutic purposes against a diverse range of human diseases worldwide. Moreover, the health benefits of spices have been extensively recognized in recent studies. However, inevitable contaminants, including mycotoxins, in medicinal herbs and spices can cause serious problems for humans in spite of their health benefits. Along with the different nation-based occurrences of mycotoxins, the ultimate exposure and toxicities can be diversely influenced by the endogenous food components in different commodities of the medicinal herbs and spices. The phytochemicals in these food stuffs can influence mold growth, mycotoxin production and biological action of the mycotoxins in exposed crops, as well as in animal and human bodies. The present review focuses on the occurrence of mycotoxins in medicinal herbs and spices and the biological interaction between mold, mycotoxin and herbal components. These networks will provide insights into the methods of mycotoxin reduction and toxicological risk assessment of mycotoxin-contaminated medicinal food components in the environment and biological organisms.

  19. Development of Tetravalent, Bispecific CCR5 Antibodies with Antiviral Activity against CCR5 Monoclonal Antibody-Resistant HIV-1 Strains▿

    PubMed Central

    Schanzer, Jürgen; Jekle, Andreas; Nezu, Junichi; Lochner, Adriane; Croasdale, Rebecca; Dioszegi, Marianna; Zhang, Jun; Hoffmann, Eike; Dormeyer, Wilma; Stracke, Jan; Schäfer, Wolfgang; Ji, Changhua; Heilek, Gabrielle; Cammack, Nick; Brandt, Michael; Umana, Pablo; Brinkmann, Ulrich

    2011-01-01

    In this study, we describe novel tetravalent, bispecific antibody derivatives that bind two different epitopes on the HIV coreceptor CCR5. The basic protein formats that we applied were derived from Morrison-type bispecific antibodies: whole IgGs to which we connected single-chain antibodies (scFvs) via (Gly4Ser)n sequences at either the C or N terminus of the light chain or heavy chain. By design optimization, including disulfide stabilization of scFvs or introduction of 30-amino-acid linkers, stable molecules could be obtained in amounts that were within the same range as or no less than 4-fold lower than those observed with monoclonal antibodies in transient expression assays. In contrast to monospecific CCR5 antibodies, bispecific antibody derivatives block two alternative docking sites of CCR5-tropic HIV strains on the CCR5 coreceptor. Consequently, these molecules showed 18- to 57-fold increased antiviral activities compared to the parent antibodies. Most importantly, one prototypic tetravalent CCR5 antibody had antiviral activity against virus strains resistant to the single parental antibodies. In summary, physical linkage of two CCR5 antibodies targeting different epitopes on the HIV coreceptor CCR5 resulted in tetravalent, bispecific antibodies with enhanced antiviral potency against wild-type and CCR5 antibody-resistant HIV-1 strains. PMID:21300827

  20. Chemokine CCL28 induces apoptosis of decidual stromal cells via binding CCR3/CCR10 in human spontaneous abortion.

    PubMed

    Sun, Chan; Zhang, Yuan-Yuan; Tang, Chuan-Ling; Wang, Song-Cun; Piao, Hai-Lan; Tao, Yu; Zhu, Rui; Du, Mei-Rong; Li, Da-Jin

    2013-10-01

    Spontaneous abortion is the most common complication of pregnancy. Immune activation and the subsequent inflammation-induced tissue injury are often observed at the maternal-fetal interface as the final pathological assault in recurrent spontaneous abortion. However, the precise mechanisms responsible for spontaneous abortion involving inflammation are not fully understood. Chemokine CCL28 and its receptors CCR3 and CCR10 are important regulators in inflammatory process. Here, we examined the expression of CCL28 and its receptors in decidual stromal cells (DSCs) by immunochemistry and flow cytometry (FCM), and compared their expression level in DSCs from normal pregnancy versus spontaneous abortion, and their relationship to inflammatory cytokines production by DSCs. We further analyzed regulation of the pro-inflammatory cytokines on CCL28 expression in DSCs by real-time polymerase chain reaction, In-cell Western and FCM. The effects of CCL28-CCR3/CCR10 interaction on DSC apoptosis was investigated by Annexin V staining and FCM analysis or DAPI staining and nuclear morphology. Higher levels of the inflammatory cytokines interleukin (IL)-1β, IL-17A and tumor necrosis factor-α, and increased CCR3/CCR10 expression were observed in DSCs from spontaneous abortion compared with normal pregnancy. Treatment with inflammatory cytokines differently affected CCL28 and CCR3/CCR10 expression in DSCs. Human recombinant CCL28 promoted DSC apoptosis, which was eliminated by pretreatment with neutralizing antibodies against CCR3/CCR10 and CCL28. However, CCL28 did not affect DSC growth. These results suggest that the inflammation-promoted up-regulation of CCL28 and its receptors interaction in DSCs is involved in human spontaneous abortion via inducing DSC apoptosis.

  1. The chemokine monocyte chemoattractant protein-1 induces functional responses through dimerization of its receptor CCR2

    PubMed Central

    Rodríguez-Frade, José Miguel; Vila-Coro, Antonio J.; Martín de Ana, Ana; Albar, Juan Pablo; Martínez-A., Carlos; Mellado, Mario

    1999-01-01

    Cytokines interact with hematopoietin superfamily receptors and stimulate receptor dimerization. We demonstrate that chemoattractant cytokines (chemokines) also trigger biological responses through receptor dimerization. Functional responses are induced after pairwise crosslinking of chemokine receptors by bivalent agonistic antichemokine receptor mAb, but not by their Fab fragments. Monocyte chemoattractant protein (MCP)-1-triggered receptor dimerization was studied in human embryonic kidney (HEK)-293 cells cotransfected with genes coding for the CCR2b receptor tagged with YSK or Myc sequences. After MCP-1 stimulation, immunoprecipitation with Myc-specific antibodies revealed YSK-tagged receptors in immunoblotting. Receptor dimerization also was validated by chemical crosslinking in both HEK-293 cells and the human monocytic cell line Mono Mac 1. Finally, we constructed a loss-of-function CCR2bY139F mutant that acted as a dominant negative, blocking signaling through the CCR2 wild-type receptor. This study provides functional support for a model in which the MCP-1 receptor is activated by ligand-induced homodimerization, allowing discussion of the similarities between bacterial and leukocyte chemotaxis. PMID:10097088

  2. Transition-ready technologies and expertise from the Chemical and Biological National Security Program at LLNL

    SciTech Connect

    Folta, P A; McBride, M T

    2006-02-22

    HSARPA has initiated a new Bioinformatics and Assay Development solicitation, BIAD2 (BAA 06-01), to address a number of technology gaps and requirements for biodetection (www.hsarpabaa.com). This solicitation will leverage the vast research and development capabilities of the private sector and academia in order to meet the needs of HSARPA and Homeland Security. In order to meet these requirements, this solicitation will: (1) Develop and validate actionable assays for the public and private sector; (2) Develop and validate new assays and novel assay methodologies to enhance existing detection systems and enable future detection platforms; (3) Develop next generation assays which are robust against novel, emerging and engineered threats; (4) Develop novel assays that detect low levels of ribonucleic acid (RNA)-based viral threats in complex backgrounds; (5) Develop novel assays to characterize the viability, degree of virulence or toxicity, and countermeasure resistance of a biological agent; and (6) Develop new bioinformatics tools to support assay development and assay validation The Lawrence Livermore National Laboratory (LLNL) Bioassays and Signature Program (BSP) develops nationally-validated detection and identification assays to cover the full range of biological threat agents, starting from human, animal, and plant pathogens on the Select Agent list. The assays that have been co-developed by the CDC and the BSP are used internationally and represent the gold standard for molecular detection of select agent pathogens for the public health community. They are also used in the DHS environmental monitoring operations such as BioWatch and DHS National Security Special Events support. These reagents have been used to process and analyze more than 5 million samples and have delivered exceptional performance for the end users, with zero false positives since their deployment. Currently, highly-multiplexed nucleic acid assays that represent the ''next-generation'' in

  3. Editing CCR5: a novel approach to HIV gene therapy.

    PubMed

    Cornu, Tatjana I; Mussolino, Claudio; Bloom, Kristie; Cathomen, Toni

    2015-01-01

    Acquired immunodeficiency syndrome (AIDS) is a life-threatening disorder caused by infection of individuals with the human immunodeficiency virus (HIV). Entry of HIV-1 into target cells depends on the presence of two surface proteins on the cell membrane: CD4, which serves as the main receptor, and either CCR5 or CXCR4 as a co-receptor. A limited number of people harbor a genomic 32-bp deletion in the CCR5 gene (CCR5∆32), leading to expression of a truncated gene product that provides resistance to HIV-1 infection in individuals homozygous for this mutation. Moreover, allogeneic hematopoietic stem cell (HSC) transplantation with CCR5∆32 donor cells seems to confer HIV-1 resistance to the recipient as well. However, since Δ32 donors are scarce and allogeneic HSC transplantation is not exempt from risks, the development of gene editing tools to knockout CCR5 in the genome of autologous cells is highly warranted. Targeted gene editing can be accomplished with designer nucleases, which essentially are engineered restriction enzymes that can be designed to cleave DNA at specific sites. During repair of these breaks, the cellular repair pathway often introduces small mutations at the break site, which makes it possible to disrupt the ability of the targeted locus to express a functional protein, in this case CCR5. Here, we review the current promise and limitations of CCR5 gene editing with engineered nucleases, including factors affecting the efficiency of gene disruption and potential off-target effects.

  4. Efficient Use of a Crude Drug/Herb Library Reveals Ephedra Herb As a Specific Antagonist for TH2-Specific Chemokine Receptors CCR3, CCR4, and CCR8.

    PubMed

    Matsuo, Kazuhiko; Koizumi, Keiichi; Fujita, Mitsugu; Morikawa, Toshio; Jo, Michiko; Shibahara, Naotoshi; Saiki, Ikuo; Yoshie, Osamu; Nakayama, Takashi

    2016-01-01

    Chemokine receptors CCR3 and CCR4 are preferentially expressed by TH2 cells, mast cells, and/or eosinophils, all of which are involved in the pathogenesis of allergic diseases. Therefore, CCR3 and CCR4 have long been highlighted as potent therapeutic targets for allergic diseases. Japanese traditional herbal medicine Kampo consists of multiple crude drugs/herbs, which further consist of numerous chemical substances. Recent studies have demonstrated that such chemical substances appear to promising sources in the development of novel therapeutic agents. Based on these findings, we hypothesize that Kampo-related crude drugs/herbs would contain chemical substances that inhibit the cell migration mediated by CCR3 and/or CCR4. To test this hypothesis, we screened 80 crude drugs/herbs to identify candidate substances using chemotaxis assay. Among those tested, Ephedra Herb inhibited the chemotaxis mediated by both CCR3 and CCR4, Cornus Fruit inhibited that mediated by CCR3, and Rhubarb inhibited that mediated by CCR4. Furthermore, Ephedra Herb specifically inhibited the chemotaxis mediated by not only CCR3 and CCR4 but CCR8, all of which are selectively expressed by TH2 cells. This result led us to speculate that ephedrine, a major component of Ephedra Herb, would play a central role in the inhibitory effects on the chemotaxis mediated by CCR3, CCR4, and CCR8. However, ephedrine exhibited little effects on the chemotaxis. Therefore, we fractionated Ephedra Herb into four subfractions and examined the inhibitory effects of each subfraction. As the results, ethyl acetate-insoluble fraction exhibited the inhibitory effects on chemotaxis and calcium mobilization mediated by CCR3 and CCR4 most significantly. In contrast, chloroform-soluble fraction exhibited a weak inhibitory effect on the chemotaxis mediated by CCR8. Furthermore, maoto, one of the Kampo formulations containing Ephedra Herb, exhibited the inhibitory effects on the chemotaxis mediated by CCR3, CCR4, and CCR8

  5. Efficient Use of a Crude Drug/Herb Library Reveals Ephedra Herb As a Specific Antagonist for TH2-Specific Chemokine Receptors CCR3, CCR4, and CCR8

    PubMed Central

    Matsuo, Kazuhiko; Koizumi, Keiichi; Fujita, Mitsugu; Morikawa, Toshio; Jo, Michiko; Shibahara, Naotoshi; Saiki, Ikuo; Yoshie, Osamu; Nakayama, Takashi

    2016-01-01

    Chemokine receptors CCR3 and CCR4 are preferentially expressed by TH2 cells, mast cells, and/or eosinophils, all of which are involved in the pathogenesis of allergic diseases. Therefore, CCR3 and CCR4 have long been highlighted as potent therapeutic targets for allergic diseases. Japanese traditional herbal medicine Kampo consists of multiple crude drugs/herbs, which further consist of numerous chemical substances. Recent studies have demonstrated that such chemical substances appear to promising sources in the development of novel therapeutic agents. Based on these findings, we hypothesize that Kampo-related crude drugs/herbs would contain chemical substances that inhibit the cell migration mediated by CCR3 and/or CCR4. To test this hypothesis, we screened 80 crude drugs/herbs to identify candidate substances using chemotaxis assay. Among those tested, Ephedra Herb inhibited the chemotaxis mediated by both CCR3 and CCR4, Cornus Fruit inhibited that mediated by CCR3, and Rhubarb inhibited that mediated by CCR4. Furthermore, Ephedra Herb specifically inhibited the chemotaxis mediated by not only CCR3 and CCR4 but CCR8, all of which are selectively expressed by TH2 cells. This result led us to speculate that ephedrine, a major component of Ephedra Herb, would play a central role in the inhibitory effects on the chemotaxis mediated by CCR3, CCR4, and CCR8. However, ephedrine exhibited little effects on the chemotaxis. Therefore, we fractionated Ephedra Herb into four subfractions and examined the inhibitory effects of each subfraction. As the results, ethyl acetate-insoluble fraction exhibited the inhibitory effects on chemotaxis and calcium mobilization mediated by CCR3 and CCR4 most significantly. In contrast, chloroform-soluble fraction exhibited a weak inhibitory effect on the chemotaxis mediated by CCR8. Furthermore, maoto, one of the Kampo formulations containing Ephedra Herb, exhibited the inhibitory effects on the chemotaxis mediated by CCR3, CCR4, and CCR8

  6. Cloning, stem cells, and the current national debate: incorporating ethics into a large introductory biology course.

    PubMed

    Fink, Rachel D

    2002-01-01

    Discussing the ethical issues involved in topics such as cloning and stem cell research in a large introductory biology course is often difficult. Teachers may be wary of presenting material biased by personal beliefs, and students often feel inhibited speaking about moral issues in a large group. Yet, to ignore what is happening "out there" beyond the textbooks and lab work is to do a disservice to students. This essay describes a semester-long project in which upperclass students presented some of the most complex and controversial ideas imaginable to introductory students by staging a mock debate and acting as members of the then newly appointed President's Council on Bioethics. Because the upperclass students were presenting the ideas of real people who play an important role in shaping national policy, no student's personal beliefs were put on the line, and many ideas were articulated. The introductory audience could accept or reject what they were hearing and learn information important for making up their own minds on these issues. This project is presented as an example of how current events can be used to put basic cell biology into context and of how exciting it can be when students teach students.

  7. Cloning, Stem Cells, and the Current National Debate: Incorporating Ethics into a Large Introductory Biology Course

    PubMed Central

    2002-01-01

    Discussing the ethical issues involved in topics such as cloning and stem cell research in a large introductory biology course is often difficult. Teachers may be wary of presenting material biased by personal beliefs, and students often feel inhibited speaking about moral issues in a large group. Yet, to ignore what is happening “out there” beyond the textbooks and lab work is to do a disservice to students. This essay describes a semester-long project in which upperclass students presented some of the most complex and controversial ideas imaginable to introductory students by staging a mock debate and acting as members of the then newly appointed President's Council on Bioethics. Because the upperclass students were presenting the ideas of real people who play an important role in shaping national policy, no student's personal beliefs were put on the line, and many ideas were articulated. The introductory audience could accept or reject what they were hearing and learn information important for making up their own minds on these issues. This project is presented as an example of how current events can be used to put basic cell biology into context and of how exciting it can be when students teach students. PMID:12669102

  8. Efficiently Maintaining a National Resource of Historical and Contemporary Biological Collections: The NHLBI Biorepository Model

    PubMed Central

    Wagner, Elizabeth L.; Marchesani, Leah; Meagher, Kevin; Giffen, Carol

    2017-01-01

    Introduction: Reducing costs by improving storage efficiency has been a focus of the National Heart, Lung, and Blood Institute (NHLBI) Biologic Specimen Repository (Biorepository) and Biologic Specimen and Data Repositories Information Coordinating Center (BioLINCC) programs for several years. Methods: Study specimen profiles were compiled using the BioLINCC collection catalog. Cost assessments and calculations on the return on investments to consolidate or reduce a collection, were developed and implemented. Results: Over the course of 8 months, the NHLBI Biorepository evaluated 35 collections that consisted of 1.8 million biospecimens. A total of 23 collections were selected for consolidation, with a total of 1.2 million specimens located in 21,355 storage boxes. The consolidation resulted in a savings of 4055 boxes of various sizes and 10.2 mechanical freezers (∼275 cubic feet) worth of space. Conclusion: As storage costs in a biorepository increase over time, the development and use of information technology tools to assess the potential advantage and feasiblity of vial consolidation can reduce maintenance expenses. PMID:28186851

  9. The biological research programme of the nuclear microprobe at the National Accelerator Centre, Faure

    NASA Astrophysics Data System (ADS)

    Prozesky, V. M.; Pineda, C. A.; Mesjasz-Przybylowicz, J.; Przybylowicz, W. J.; Churms, C. L.; Springhorn, K. A.; Moretto, Ph; Michelet, C.; Chikte, U.; Wenzl, P.

    2000-03-01

    The nuclear microprobe (NMP) unit of the National Accelerator Centre (NAC) has initiated a focused research programme on studies of biological material, ranging from applications in medicine to agriculture and botany. During this period a state-of-the-art cryo-preparation laboratory was also developed. This research programme has resulted in a wide range of projects, and has shown how well suited the NMP is for studies of biological material in general. This paper reports on some of the problems and demands in this field, as well as some of the results obtained using particle induced X-ray spectroscopy (PIXE) and Rutherford backscattering (RBS). True elemental imaging is routinely performed using the dynamic analysis (DA) method, which forms part of the GeoPIXE suite of programmes. A collaborative project, together with the CENBG group of Bordeaux-Gradignan in France, on the development of a facility with the aim of studying effects of single-events of radiation in living cells was recently established and is discussed.

  10. Biological investigations of the Sandia National Laboratories Sol se Mete Aerial Cable Facility

    SciTech Connect

    Sullivan, R.M.

    1994-10-01

    This report provides results of a comprehensive biological field survey performed on the Sandia National Laboratories Aerial Cable Facility, at the east end of Kirtland Air Force Base (KAFB), Bernalillo County, New Mexico. This survey was conducted late September through October, 1991. ACF occupies a 440-acre tract of land withdrawn by the US Forest Service (USFS) for use by KAFB, and in turn placed under operational control of SNL by the Department of Energy (DOE). All land used by SNL for ACF is part of a 15,851-acre tract of land withdrawn by the US Forest Service. In addition, a number of different organizations use the 15,851-acre area. The project area used by SNL encompasses portions of approximately six sections (3,840 acres) of US Forest Service land located within the foothills of the west side of the Manzano Mountains (East Mesa). The biological study area is used by the KAFB, the US Department of Interior, and SNL. This area includes: (1) Sol se Mete Springs and Canyon, (2) East Anchor Access Road, (3) East Anchor Site, (4) Rocket Sled Track, (5) North Arena, (6) East Instrumentation Site and Access Road, (7) West Anchor Access Road, (8) West Anchor Site, (9) South Arena, (10) Winch Sites, (11) West Instrumentation Sites, (12) Explosive Assembly Building, (13) Control Building, (14) Lurance Canyon Road and vicinity. Although portions of approximately 960 acres of withdrawn US Forest Service land have been altered, only 700 acres have been disturbed by activities associated with ACF; approximately 2,880 acres consist of natural habitat. Absence of grazing by livestock and possibly native ungulates, and relative lack of human disturbance have allowed this area to remain in a more natural vegetative state relative to the condition of private range lands throughout New Mexico. This report evaluates threatened and endangered species found on ACF, as well as a comprehensive assessment of biological habitats.

  11. Biological nitrogen fixation in acidic high-temperature geothermal springs in Yellowstone National Park, Wyoming.

    PubMed

    Hamilton, Trinity L; Lange, Rachel K; Boyd, Eric S; Peters, John W

    2011-08-01

    The near ubiquitous distribution of nifH genes in sediments sampled from 14 high-temperature (48.0-89.0°C) and acidic (pH 1.90-5.02) geothermal springs in Yellowstone National Park suggested a role for the biological reduction of dinitrogen (N(2)) to ammonia (NH(3)) (e.g. nitrogen fixation or diazotrophy) in these environments. nifH genes from these environments formed three unique phylotypes that were distantly related to acidiphilic, mesophilic diazotrophs. Acetylene reduction assays and (15) N(2) tracer studies in microcosms containing sediments sampled from acidic and high-temperature environments where nifH genes were detected confirmed the potential for biological N(2) reduction in these environments. Rates of acetylene reduction by sediment-associated populations were positively correlated with the concentration of NH(4)(+), suggesting a potential relationship between NH(4)(+) consumption and N(2) fixation activity. Amendment of microcosms with NH(4)(+) resulted in increased lag times in acetylene reduction assays. Manipulation of incubation temperature and pH in acetylene reduction assays indicated that diazotrophic populations are specifically adapted to local conditions. Incubation of sediments in the presence of a N(2) headspace yielded a highly enriched culture containing a single nifH phylotype. This phylotype was detected in all 14 geothermal spring sediments examined and its abundance ranged from ≈ 780 to ≈ 6800 copies (g dry weight sediment)(-1), suggesting that this organism may contribute N to the ecosystems. Collectively, these results for the first time demonstrate thermoacidiphilic N(2) fixation in the natural environment and extend the upper temperature for biological N(2) fixation in terrestrial systems.

  12. CCR5 inhibitors: Emerging promising HIV therapeutic strategy.

    PubMed

    Rao, Padmasri Kutikuppala Surya

    2009-01-01

    Though potent anti-HIV therapy has spectacularly reduced the morbidity and mortality of human immunodeficiency virus (HIV)-1 infection in the advanced countries, it continues to be associated with substantial toxicity, drug-drug interactions, difficulties in adherence, and abnormal cost. As a result, better effective, safe antiretroviral drugs and treatment strategies keep on to be pursued. In this process, CCR5 (chemokine receptor 5) inhibitors are a new class of antiretroviral drug used in the treatment of HIV. They are designed to prevent HIV infection of CD4 T-cells by blocking the CCR5. When the CCR5 receptor is unavailable, 'R5-tropic' HIV (the variant of the virus that is common in earlier HIV infection) cannot engage with a CD4 T-cell to infect the cell. In August 2007, the FDA approved the first chemokine (C-C motif) CCR5 inhibitor, maraviroc, for treatment-experienced patients infected with R5-using virus. Studies from different cohort in regions, affected by clad B HIV-1, demonstrate that 81-88% of HIV-1 variants in treatment naïve patients are CCR5 tropic and that virtually all the remaining variants are dual/mixed tropic i.e., are able to utilize both CCR5 and CXCR4 coreceptors. In treatment experienced patients, 49-78% of the variants are purely CCR5 tropic, 22-48% are dual/mixed tropic, and 2-5% exclusively utilize CXCR4. A 32 bp deletion in the CCR5 gene, which results in a frame shift and truncation of the normal CCR5 protein, was identified in a few persons who had remained uninfected after exposure to CCR5 tropic HIV-1 virus. This allele is common in white of European origin, with prevalence near to 10%, but is absent among East Asian, American Indian, Tamil Indian, and African ethnic groups. HIV-infected individuals, who are heterozygous for CCR5 delta 32, have slower rates of disease progression. The currently available data supports the continuation of the development of CCR5 antagonists in different settings related to HIV-1 infection. If

  13. Cloning and expression analysis of cinnamoyl-CoA reductase (CCR) genes in sorghum

    PubMed Central

    Fan, Feifei; Wang, Lihua; Zhan, Qiuwen; Wu, Peijin; Du, Junli; Yang, Xiaocui; Liu, Yanlong

    2016-01-01

    Cinnamoyl-CoA reductase (CCR) is the first enzyme in the monolignol-specific branch of the lignin biosynthetic pathway. In this research, three sorghum CCR genes including SbCCR1, SbCCR2-1 and SbCCR2-2 were cloned and characterized. Analyses of the structure and phylogeny of the three CCR genes showed evolutionary conservation of the functional domains and divergence of function. Transient expression assays in Nicotiana benthamiana leaves demonstrated that the three CCR proteins were localized in the cytoplasm. The expression analysis showed that the three CCR genes were induced by drought. But in 48 h, the expression levels of SbCCR1 and SbCCR2-2 did not differ between CK and the drought treatment; while the expression level of SbCCR2-1 in the drought treatment was higher than in CK. The expression of the SbCCR1 and SbCCR2-1 genes was not induced by sorghum aphid [Melanaphis sacchari (Zehntner)] attack, but SbCCR2-2 was significantly induced by sorghum aphid attack. It is suggested that SbCCR2-2 is involved in the process of pest defense. Absolute quantitative real-time PCR revealed that the three CCR genes were mainly expressed in lignin deposition organs. The gene copy number of SbCCR1 was significantly higher than those of SbCCR2-1 and SbCCR2-2 in the tested tissues, especially in stem. The results provide new insight into the functions of the three CCR genes in sorghum. PMID:27231650

  14. The chemokine receptor CCR7 expressed by dendritic cells: a key player in corneal and ocular surface inflammation.

    PubMed

    Saban, Daniel R

    2014-04-01

    Dendritic cells (DCs) are highly potent stimulators of the immune system, and their contribution as such to the pathogenesis of corneal and ocular surface inflammatory disease has been well established. These vigorous antigen-presenting cells are reliant upon their effective migration from peripheral tissues (e.g., those of the ocular surface) to the lymphoid organs, where immune responses are triggered and can then cause disease. The chemokine receptor CCR7 expressed on DCs has emerged as the master mediator of this highly complex migratory process, and thus it is important in causing corneal and ocular surface inflammation. Furthermore, CCR7 has received considerable attention as a potential therapeutic target, as topically instilled antagonists of this receptor are quite effective therapeutically in a mouse model of ocular allergy. These findings and more are reviewed in the current article. In addition, the understanding regarding CCR7 function in mice and humans, and the biology of DCs that populate the ocular surface are also detailed herein. The involvement of DCs and their expression of CCR7 in corneal and ocular surface diseases such as in ocular allergy, dry eye disease, immune rejection and more, are also reviewed here.

  15. Y-12 National Security Complex Biological Monitoring and Abatement Program 2007 Calendar Yeare Report

    SciTech Connect

    Peterson, M.J.; Greeley, M. S. Jr.; Morris, G. W.; Roy, W. K.; Ryan, M. G.; Smith, J. G.; Southworth, G. R.

    2008-07-01

    The National Pollutant Discharge Elimination System (NPDES) permit issued for the Oak Ridge Y-12 National Security Complex (Y-12 Complex) which became effective May 1, 2006, continued a requirement for a Biological Monitoring and Abatement Program (BMAP). The BMAP was originally developed in 1985 to demonstrate that the effluent limitations established for the Y-12 Complex protected the classified uses of the receiving stream (East Fork Poplar Creek: EFPC), in particular, the growth and propagation of aquatic life (Loar et al. 1989). The objectives of the current BMAP are similar, specifically to assess stream ecological conditions relative to regulatory limits and criteria, to assess ecological impacts as well as recovery in response to Y-12 operations, and to investigate the causes of continuing impacts. The BMAP consists of three tasks that reflect complementary approaches to evaluating the effects of the Y-12 Complex discharges on the biotic integrity of EFPC. These tasks include: (1) bioaccumulation monitoring, (2) benthic macroinvertebrate community monitoring, and (3) fish community monitoring. As required by the NPDES permit, the BMAP benthic macroinvertebrate community monitoring task includes studies to annually evaluate the receiving stream's biological integrity in comparison to TN Water Quality Criteria. BMAP monitoring is currently being conducted at five primary EFPC sites, although sites may be excluded or added depending upon the specific objectives of the various tasks. Criteria used in selecting the sites include: (1) location of sampling sites used in other studies, (2) known or suspected sources of downstream impacts, (3) proximity to U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR) boundaries, (4) appropriate habitat distribution, and (5) access. The primary sampling sites include upper EFPC at kilometers (EFKs) 24.4 and 23.4 [upstream and downstream of Lake Reality (LR) respectively]; EFK 18.7 (also EFK 18.2 and 19), located off

  16. Binding of fusion protein FLSC IgG1 to CCR5 is enhanced by CCR5 antagonist Maraviroc.

    PubMed

    Latinovic, Olga; Schneider, Kate; Szmacinski, Henryk; Lakowicz, Joseph R; Heredia, Alonso; Redfield, Robert R

    2014-12-01

    The CCR5 chemokine receptor is crucial for human immunodeficiency virus type 1 (HIV-1) infection, acting as the principal coreceptor for HIV-1 entry and transmission and is thus an attractive target for antiviral therapy. Studies have suggested that CCR5 surface density and its conformational changes subsequent to virion engagement are rate limiting for entry, and consequently, infection. Not all CCR5 antibodies inhibit HIV-1 infection, suggesting a need for more potent reagents. Here we evaluated full length single chain (FLSC) IgG1, a novel IgG-CD4-gp120(BAL) fusion protein with several characteristics that make it an attractive candidate for treatment of HIV-1 infections, including bivalency and a potentially increased serum half-life over FLSC, the parental molecule. FLSC IgG1 binds two domains on CCR5, the N-terminus and the second extracellular loop, lowering the levels of available CCR5 viral attachment sites. Furthermore, FLSC IgG1 synergizes with Maraviroc (MVC), the only licensed CCR5 antagonist. In this study, we used both microscopy and functional assays to address the mechanistic aspects of the interactions of FLSC IgG1 and MVC in the context of CCR5 conformational changes and viral infection. We used a novel stochastic optical reconstruction microscopy (STORM), based on high resolution localization of photoswitchable dyes to visualize direct contacts between FLSC IgG1 and CCR5. We compared viral entry inhibition by FLSC IgG1 with that of other CCR5 blockers and showed FLSC IgG1 to be the most potent. We also showed that lower CCR5 surface densities in HIV-1 infected primary cells result in lower FLSC IgG1 EC50 values. In addition, CCR5 binding by FLSC IgG1, but not CCR5 Ab 2D7, was significantly increased when cells were treated with MVC, suggesting MVC allosterically increases exposure of the FLSC IgG1 binding site. These data have implications for future antiviral therapy development.

  17. Partial Agonist and Biased Signaling Properties of the Synthetic Enantiomers J113863/UCB35625 at Chemokine Receptors CCR2 and CCR5.

    PubMed

    Corbisier, Jenny; Huszagh, Alexandre; Galés, Céline; Parmentier, Marc; Springael, Jean-Yves

    2017-01-13

    Biased agonism at G protein-coupled receptors constitutes a promising area of research for the identification of new therapeutic molecules. In this study we identified two novel biased ligands for the chemokine receptors CCR2 and CCR5 and characterized their functional properties. We showed that J113863 and its enantiomer UCB35625, initially identified as high affinity antagonists for CCR1 and CCR3, also bind with low affinity to the closely related receptors CCR2 and CCR5. Binding of J113863 and UCB35625 to CCR2 or CCR5 resulted in the full or partial activation of the three Gi proteins and the two Go isoforms. Unlike chemokines, the compounds did not activate G12 Binding of J113863 to CCR2 or CCR5 also induced the recruitment of β-arrestin 2, whereas UCB35625 did not. UCB35625 induced the chemotaxis of L1.2 cells expressing CCR2 or CCR5. In contrast, J113863 induced the migration of L1.2-CCR2 cells but antagonized the chemokine-induced migration of L1.2-CCR5 cells. We also showed that replacing the phenylalanine 3.33 in CCR5 TM3 by the corresponding histidine of CCR2 converts J113863 from an antagonist for cell migration and a partial agonist in other assays to a full agonist in all assays. Further analyses indicated that F3.33H substitution strongly increased the activation of G proteins and β-arrestin 2 by J113863. These results highlight the biased nature of the J113863 and UCB35625 that act either as antagonist, partial agonist, or full agonist according to the receptor, the enantiomer, and the signaling pathway investigated.

  18. Y-12 National Security Complex Biological Monitoring And Abatement Program 2008 Calendar Year Report

    SciTech Connect

    Peterson, M. J.; Greeley Jr., M. S.; Mathews, T. J.; Morris, G. W.; Roy, W. K.; Ryon, M. G.; Smith, J. G.; Southworth, G. R.

    2009-07-01

    The National Pollutant Discharge Elimination System (NPDES) permit issued for the Oak Ridge Y-12 National Security Complex (Y-12 Complex) which became effective May 1, 2006, continued a requirement for a Biological Monitoring and Abatement Program (BMAP). The BMAP was originally developed in 1985 to demonstrate that the effluent limitations established for the Y-12 Complex protected the classified uses of the receiving stream (East Fork Poplar Creek: EFPC), in particular, the growth and propagation of aquatic life (Loar et al. 1989). The objectives of the current BMAP are similar, specifically to assess stream ecological conditions relative to regulatory limits and criteria, to assess ecological impacts as well as recovery in response to Y-12 operations, and to investigate the causes of continuing impacts. The BMAP consists of three tasks that reflect complementary approaches to evaluating the effects of the Y-12 Complex discharges on the biotic integrity of EFPC. These tasks include: (1) bioaccumulation monitoring, (2) benthic macroinvertebrate community monitoring, and (3) fish community monitoring. As required by the NPDES permit, the BMAP benthic macroinvertebrate community monitoring task includes studies to annually evaluate the receiving stream's biological integrity in comparison to TN Water Quality Criteria. BMAP monitoring is currently being conducted at five primary EFPC sites, although sites may be excluded or added depending upon the specific objectives of the various tasks. Criteria used in selecting the sites include: (1) location of sampling sites used in other studies, (2) known or suspected sources of downstream impacts, (3) proximity to U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR) boundaries, (4) appropriate habitat distribution, and (5) access. The primary sampling sites include upper EFPC at kilometers (EFKs) 24.4 and 23.4 [upstream and downstream of Lake Reality (LR) respectively]; EFK 18.7 (also EFK 18.2 and 19), located off

  19. Short Communication: HIV-1 Variants That Use Mouse CCR5 Reveal Critical Interactions of gp120's V3 Crown with CCR5 Extracellular Loop 1.

    PubMed

    Platt, Emily J; Durnin, James P; Kabat, David

    2015-10-01

    The CCR5 coreceptor amino terminus and extracellular (ECL) loops 1 and 2 have been implicated in HIV-1 infections, with species differences in these regions inhibiting zoonoses. Interactions of gp120 with CD4 and CCR5 reduce constraints on metastable envelope subunit gp41, enabling gp41 conformational changes needed for infection. We previously selected HIV-1JRCSF variants that efficiently use CCR5(Δ18) with a deleted amino terminus or CCR5(HHMH) with ECL2 from an NIH/Swiss mouse. Unexpectedly, the adaptive gp120 mutations were nearly identical, suggesting that they function by weakening gp120's grip on gp41 and/or by increasing interactions with ECL1. To analyze this and further wean HIV-1 from human CCR5, we selected variants using CCR5(HMMH) with murine ECL1 and 2 sequences. HIV-1JRCSF mutations adaptive for CCR5(Δ18) and CCR5(HHMH) were generally maladaptive for CCR5(HMMH), whereas the converse was true for CCR5(HMMH) adaptations. The HIV-1JRCSF variant adapted to CCR5(HMMH) also weakly used intact NIH/Swiss mouse CCR5. Our results strongly suggest that HIV-1JRCSF makes functionally critical contacts with human ECL1 and that adaptation to murine ECL1 requires multiple mutations in the crown of gp120's V3 loop.

  20. Small molecule antagonists for chemokine CCR3 receptors.

    PubMed

    Willems, Lianne I; Ijzerman, Ad P

    2010-09-01

    The chemokine receptor CCR3 is believed to play a role in the development of allergic diseases such as asthma, atopic dermatitis, and allergic rhinitis. Despite the conflicting results that have been reported regarding the importance of eosinophils and CCR3 in allergic inflammation, inhibition of this receptor with small molecule antagonists is thought to provide a valuable approach for the treatment of these diseases. This review describes the structure-activity relationships (SAR) of small molecule CCR3 antagonists as reported in the scientific and patent literature. Various chemical classes of small molecule CCR3 antagonists have been described so far, including (bi)piperidine and piperazine derivatives, N-arylalkylpiperidine urea derivatives and (N-ureidoalkyl)benzylpiperidines, phenylalanine derivatives, morpholinyl derivatives, pyrrolidinohydroquinazolines, arylsulfonamides, amino-alkyl amides, imidazole- and pyrimidine-based antagonists, and bicyclic diamines. The (N-ureidoalkyl)benzylpiperidines are the best studied class in view of their generally high affinity and antagonizing potential. For many of these antagonists subnanomolar IC(50) values were reported for binding to CCR3 along with the ability to effectively inhibit intracellular calcium mobilization and eosinophil chemotaxis induced by CCR3 agonist ligands in vitro.

  1. CCR7-mediated migration in the thymus controls γδ T-cell development.

    PubMed

    Reinhardt, Annika; Ravens, Sarina; Fleige, Henrike; Haas, Jan D; Oberdörfer, Linda; Łyszkiewicz, Marcin; Förster, Reinhold; Prinz, Immo

    2014-05-01

    αβ T-cell development and selection proceed while thymocytes successively migrate through distinct regions of the thymus. For γδ T cells, the interplay of intrathymic migration and cell differentiation is less well understood. Here, we crossed C-C chemokine receptor (CCR)7-deficient (Ccr7(-/-) ) and CCR9-deficient mice (Ccr9(-/-) ) to mice with a TcrdH2BeGFP reporter background to investigate the impact of thymic localization on γδ T-cell development. γδ T-cell frequencies and numbers were decreased in CCR7-deficient and increased in CCR9-deficient mice. Transfer of CCR7- or CCR9-deficient BM into irradiated C57BL/6 WT recipients reproduced these phenotypes, pointing toward cell-intrinsic migration defects. Monitoring recent thymic emigrants by intrathymic labeling allowed us to identify decreased thymic γδ T-cell output in CCR7-deficient mice. In vitro, CCR7-deficient precursors showed normal γδ T-cell development. Immunohistology revealed that CCR7 and CCR9 expression was important for γδ T-cell localization within thymic medulla or cortex, respectively. However, γδ T-cell motility was unaltered in CCR7- or CCR9-deficient thymi. Together, our results suggest that proper intrathymic localization is important for normal γδ T-cell development.

  2. R5 HIV productively infects Langerhans cells, and infection levels are regulated by compound CCR5 polymorphisms.

    PubMed

    Kawamura, Tatsuyoshi; Gulden, Forrest O; Sugaya, Makoto; McNamara, David T; Borris, Debra L; Lederman, Michael M; Orenstein, Jan M; Zimmerman, Peter A; Blauvelt, Andrew

    2003-07-08

    Langerhans cells (LCs) are suspected to be initial targets for HIV after sexual exposure (by becoming infected or by capturing virus). Here, productive R5 HIV infection of LC ex vivo and LC-mediated transmission of virus to CD4+ T cells were both found to depend on CCR5. By contrast, infection of monocyte-derived dendritic cells and transfer of infection from monocyte-derived dendritic cells to CD4+ T cells were mediated by CCR5-dependent as well as DC-specific ICAM-3-grabbing nonintegrin-dependent pathways. Furthermore, in 62 healthy individuals, R5 HIV infection levels in LCs ex vivo were associated with CCR5 genotype. Specifically, genotyping for ORF Delta 32 revealed that LCs isolated from ORF Delta 32/wt individuals were significantly less susceptible to HIV when compared with LCs isolated from ORFwt/wt individuals (P = 0.016). Strikingly, further genetic analyses of the A-2459G CCR5 promoter polymorphism in ORF Delta 32/wt heterozygous individuals revealed that LCs isolated from -2459A/G + ORF Delta 32/wt individuals were markedly less susceptible to HIV than were LCs from -2459A/A + ORF Delta 32/wt individuals (P = 0.012). Interestingly, these genetic susceptibility data in LCs parallel those of genetic susceptibility studies performed in cohorts of HIV-infected individuals. Thus, we suggest that CCR5-mediated infection of LCs, and not capture of virus by LCs, provides a biologic basis for understanding certain aspects of host genetic susceptibility to initial HIV infection.

  3. Towards national mapping of aquatic condition (II): Predicting the probable biological condition of USA streams and rivers

    EPA Science Inventory

    The US EPA’s National River and Stream Assessment (NRSA) uses spatially balanced sampling to estimate the proportion of streams within the conterminous US (CONUS) that deviate from least-disturbed biological condition (BC). These assessments do not infer BC at un-sampled st...

  4. Biological Diversity, Ecological Health and Condition of Aquatic Assemblages at National Wildlife Refuges in Southern Indiana, USA

    PubMed Central

    Morris, Charles C.; Robb, Joseph R.; McCoy, William

    2015-01-01

    Abstract The National Wildlife Refuge system is a vital resource for the protection and conservation of biodiversity and biological integrity in the United States. Surveys were conducted to determine the spatial and temporal patterns of fish, macroinvertebrate, and crayfish populations in two watersheds that encompass three refuges in southern Indiana. The Patoka River National Wildlife Refuge had the highest number of aquatic species with 355 macroinvertebrate taxa, six crayfish species, and 82 fish species, while the Big Oaks National Wildlife Refuge had 163 macroinvertebrate taxa, seven crayfish species, and 37 fish species. The Muscatatuck National Wildlife Refuge had the lowest diversity of macroinvertebrates with 96 taxa and six crayfish species, while possessing the second highest fish species richness with 51 species. Habitat quality was highest in the Muscatatuck River drainage with increased amounts of forested habitats compared to the Patoka River drainage. Biological integrity of the three refuges ranked the Patoka NWR as the lowest biological integrity (mean IBI reach scores = 35 IBI points), while Big Oaks had the highest biological integrity (mean IBI reach score = 41 IBI points). The Muscatatuck NWR had a mean IBI reach score of 31 during June, which seasonally increased to a mean of 40 IBI points during summer. Watershed IBI scores and habitat condition were highest in the Big Oaks NWR. PMID:25632261

  5. Biological diversity, ecological health and condition of aquatic assemblages at national wildlife refuges in southern indiana, USA.

    PubMed

    Simon, Thomas P; Morris, Charles C; Robb, Joseph R; McCoy, William

    2015-01-01

    The National Wildlife Refuge system is a vital resource for the protection and conservation of biodiversity and biological integrity in the United States. Surveys were conducted to determine the spatial and temporal patterns of fish, macroinvertebrate, and crayfish populations in two watersheds that encompass three refuges in southern Indiana. The Patoka River National Wildlife Refuge had the highest number of aquatic species with 355 macroinvertebrate taxa, six crayfish species, and 82 fish species, while the Big Oaks National Wildlife Refuge had 163 macroinvertebrate taxa, seven crayfish species, and 37 fish species. The Muscatatuck National Wildlife Refuge had the lowest diversity of macroinvertebrates with 96 taxa and six crayfish species, while possessing the second highest fish species richness with 51 species. Habitat quality was highest in the Muscatatuck River drainage with increased amounts of forested habitats compared to the Patoka River drainage. Biological integrity of the three refuges ranked the Patoka NWR as the lowest biological integrity (mean IBI reach scores = 35 IBI points), while Big Oaks had the highest biological integrity (mean IBI reach score = 41 IBI points). The Muscatatuck NWR had a mean IBI reach score of 31 during June, which seasonally increased to a mean of 40 IBI points during summer. Watershed IBI scores and habitat condition were highest in the Big Oaks NWR.

  6. Evaluation of blood redox-balance, nitric oxide content and CCR6 rs3093024 in the genetic susceptibility during psoriasis.

    PubMed

    Matoshvili, M; Katsitadze, A; Sanikidze, T; Tophuria, D; D'Epiro, S; Richetta, A

    2015-03-01

    The aim of our study was to evaluate whether this polymorphism of CCR6 gene and oxidative stress are associated with psoriasis risk in Caucasian population. The association of the CCR6 polymorphism in the genetic susceptibility of psoriasis was performed at the Department of Dermatology and Venereology, Policlinico Umberto I of Rome (Italy). 516 participants were enrolled including 127 patients affected with psoriasis and 389 healthy controls. Cases and controls were genotyped, using a commercially available assay (Life Technologies, Carlsbad, California, USA) for CCR6 rs3093024 polymorphism. To verify the relations between genotypes and psoriasis risk we evaluated genotype frequencies for each individual DNA polymorphism in both case and control series. There were no differences in the genotype frequencies of the polymorphism between psoriasis cases and healthy controls. When patients with arthropathic psoriasis were excluded from the analysis, logistic regression showed that allele A was likely to reduce the risk of developing psoriasis in a dominant model. Logistic regression showed that male patients harboring the heterozygous genotype GA presented a reduced risk of developing psoriasis, compared with the reference GG genotype. None of the clinical features as age at onset, gender, family history of psoriasis, type of psoriasis, severity, BMI, smoking history or alcohol consumption, were associated with the genotype frequencies of the tested CCR6 polymorphism. In blood samples of patients with psoriasis intensive EPR signals of lipoperoxide (LOO.) free radicals were detected. Activity of blood SOD was significantly decreased in psoriatic patients compared to healthy controls. Activity of catalase was significantly increased in psoriatic patients, reflecting a high concentration of peroxide radicals. In blood samples of psoriatic patients decrease of free spin-trapped NO content were detected, that may be explained by biological transformation of NO into other

  7. Characterization of the CCR3 and CCR9 genes in miiuy croaker and different selection pressures imposed on different domains between mammals and teleosts.

    PubMed

    Zhu, Zhihuang; Wang, Rixin; Ren, Liping; Xu, Tianjun

    2013-12-01

    The innate immune system can recognize non-self through pattern recognition receptors and provides a first line of antimicrobial host defense. Thus innate immunity plays a very important role in resistance against major bacterial disease in vertebrates. In the innate immune responses, the chemokine receptors act as the main receptors of chemokines which are released at the sites of infection, inflammation and injury. In this study, the Miichthys miiuy CCR3 and CCR9 genes were cloned and characterized, showing that MIMI-CCR3 possesses a highly conserved DRYLA motif similar to that of other fishes. MIMI-CCR3 and CCR9 were ubiquitously expressed in all tested tissues and the expressions were significantly up-regulated after infection with Vibrio anguillarum except that of CCR9 in spleen. Evolutionary analysis showed that all the ancestral lineages of CCR3 and CCR9 in mammals and teleosts underwent positive selection, indicating that the ancestor of terrestrial animals further evolved to adapt to terrestrial environments and the continuous intrusion of microbes stimulated the evolution of CCR genes in the ancestor of teleost. Multiple ML methods were used to detect the robust candidates for sites under positive selection. In total, 11 and 8 positively selected sites were found in the subsets of current mammal and teleost CCR3 genes, and 3 and 2 sites were detected in the subsets of current mammals and teleosts in CCR9. Interestingly, for mammal CCR3 and CCR9 genes, the robust candidates of positively selected sites were mainly located in the extracellular domains which were the ligand binding and pathogen interaction regions. For teleost CCR3 and CCR9 genes, the positively selected sites were not only located in the extracellular domains but also in the C-terminal and intracellular domains, indicating mammals and teleosts experienced different selection pressures upon their N-terminus, C-terminus and intracellular loops of CCRs.

  8. Gene Editing of CCR5 in Autologous CD4 T Cells of Persons Infected with HIV

    PubMed Central

    Tebas, Pablo; Stein, David; Tang, Winson W.; Frank, Ian; Wang, Shelley Q.; Lee, Gary; Spratt, S. Kaye; Surosky, Richard T.; Giedlin, Martin A.; Nichol, Geoff; Holmes, Michael C.; Gregory, Philip D.; Ando, Dale G.; Kalos, Michael; Collman, Ronald G.; Binder-Scholl, Gwendolyn; Plesa, Gabriela; Hwang, Wei-Ting; Levine, Bruce L.; June, Carl H.

    2014-01-01

    BACKGROUND CCR5 is the major coreceptor for human immunodeficiency virus (HIV). We investigated whether site-specific modification of the gene (“gene editing”) — in this case, the infusion of autologous CD4 T cells in which the CCR5 gene was rendered permanently dysfunctional by a zinc-finger nuclease (ZFN) — is safe. METHODS We enrolled 12 patients in an open-label, nonrandomized, uncontrolled study of a single dose of ZFN-modified autologous CD4 T cells. The patients had chronic aviremic HIV infection while they were receiving highly active antiretroviral therapy. Six of them underwent an interruption in antiretroviral treatment 4 weeks after the infusion of 10 billion autologous CD4 T cells, 11 to 28% of which were genetically modified with the ZFN. The primary outcome was safety as assessed by treatment-related adverse events. Secondary outcomes included measures of immune reconstitution and HIV resistance. RESULTS One serious adverse event was associated with infusion of the ZFN-modified autologous CD4 T cells and was attributed to a transfusion reaction. The median CD4 T-cell count was 1517 per cubic millimeter at week 1, a significant increase from the preinfusion count of 448 per cubic millimeter (P<0.001). The median concentration of CCR5-modified CD4 T cells at 1 week was 250 cells per cubic millimeter. This constituted 8.8% of circulating peripheral-blood mononuclear cells and 13.9% of circulating CD4 T cells. Modified cells had an estimated mean half-life of 48 weeks. During treatment interruption and the resultant viremia, the decline in circulating CCR5-modified cells (−1.81 cells per day) was significantly less than the decline in unmodified cells (−7.25 cells per day) (P = 0.02). HIV RNA became undetectable in one of four patients who could be evaluated. The blood level of HIV DNA decreased in most patients. CONCLUSIONS CCR5-modified autologous CD4 T-cell infusions are safe within the limits of this study. (Funded by the National

  9. Biological and Environmental Research Program at Oak Ridge National Laboratory, FY 1992--1994

    SciTech Connect

    Not Available

    1992-01-01

    This report is the 1992--1994 Program Director's Overview Report for Oak Ridge National Laboratory's (ORNL's) Biological and Environmental Research (BER) Program, and as such it addresses KP-funded work at ORNL conducted during FY 1991 and in progress during FY 1992; it also serves as a planning document for the remainder of FY 1992 through FY 1994. Non-BER funded work at ORNL relevant to the mission of OHER is also discussed. The second section of the report describes ORNL facilities and resources used by the BER program. The third section addresses research management practices at ORNL. The fourth, fifth, and sixth sections address BER-funded research in progress, program accomplishments and research highlights, and program orientation for the remainder of FY 1992 through FY 1994, respectively. Work for non-BER sponsors is described in the seventh section, followed by a discussion of significant near and long-term issues facing BER work at ORNL in the eighth section. The last section provides a statistical summary of BER research at ORNL. Appendices supplement the above topics with additional detail.

  10. International and National Expert Group Evaluations: Biological/Health Effects of Radiofrequency Fields

    PubMed Central

    Vijayalaxmi; Scarfi, Maria R.

    2014-01-01

    The escalated use of various wireless communication devices, which emit non-ionizing radiofrequency (RF) fields, have raised concerns among the general public regarding the potential adverse effects on human health. During the last six decades, researchers have used different parameters to investigate the effects of in vitro and in vivo exposures of animals and humans or their cells to RF fields. Data reported in peer-reviewed scientific publications were contradictory: some indicated effects while others did not. International organizations have considered all of these data as well as the observations reported in human epidemiological investigations to set-up the guidelines or standards (based on the quality of published studies and the “weight of scientific evidence” approach) for RF exposures in occupationally exposed individuals and the general public. Scientists with relevant expertise in various countries have also considered the published data to provide the required scientific information for policy-makers to develop and disseminate authoritative health information to the general public regarding RF exposures. This paper is a compilation of the conclusions, on the biological effects of RF exposures, from various national and international expert groups, based on their analyses. In general, the expert groups suggested a reduction in exposure levels, precautionary approach, and further research. PMID:25211777

  11. International and national expert group evaluations: biological/health effects of radiofrequency fields.

    PubMed

    Vijayalaxmi; Scarfi, Maria R

    2014-09-10

    The escalated use of various wireless communication devices, which emit non-ionizing radiofrequency (RF) fields, have raised concerns among the general public regarding the potential adverse effects on human health. During the last six decades, researchers have used different parameters to investigate the effects of in vitro and in vivo exposures of animals and humans or their cells to RF fields. Data reported in peer-reviewed scientific publications were contradictory: some indicated effects while others did not. International organizations have considered all of these data as well as the observations reported in human epidemiological investigations to set-up the guidelines or standards (based on the quality of published studies and the "weight of scientific evidence" approach) for RF exposures in occupationally exposed individuals and the general public. Scientists with relevant expertise in various countries have also considered the published data to provide the required scientific information for policy-makers to develop and disseminate authoritative health information to the general public regarding RF exposures. This paper is a compilation of the conclusions, on the biological effects of RF exposures, from various national and international expert groups, based on their analyses. In general, the expert groups suggested a reduction in exposure levels, precautionary approach, and further research.

  12. Evolution, Science and Society: Evolutionary Biology and the National Research Agenda.

    ERIC Educational Resources Information Center

    Futuyma, Douglas J.; Meagher, Thomas R.

    2001-01-01

    Discusses ways of advancing understanding of evolutionary biology which seeks to explain all the characteristics of organisms. Describes the goals of evolutionary biology, why it is important, and how it contributes to society and basic science. (ASK)

  13. Inefficient entry of vicriviroc-resistant HIV-1 via the inhibitor-CCR5 complex at low cell surface CCR5 densities

    PubMed Central

    Pugach, Pavel; Ray, Neelanjana; Klasse, Per Johan; Ketas, Thomas J.; Michael, Elizabeth; Doms, Robert W.; Lee, Benhur; Moore, John P.

    2009-01-01

    HIV-1 variants resistant to small molecule CCR5 inhibitors such as vicriviroc (VVC) have modified Env complexes that can use both the inhibitor-bound and -free forms of the CCR5 co-receptor to enter target cells. However, entry via the inhibitor-CCR5 complex is inefficient in some, but not all, cell types, particularly cell lines engineered to express CCR5. We investigated the effect of increasing CCR5 expression, and hence the density of the inhibitor-CCR5 complex when a saturating inhibitor (VVC) concentration was present, by using 293-Affinofile cells, in which CCR5 expression is up-regulated by the transcriptional activator, ponasterone. When CCR5 expression was low, the resistant virus entered the target cells to a lesser extent when VVC was present than absent. However, at a higher CCR5 level, there was much less entry inhibition at a constant, saturating VVC concentration. We conclude that the relative decrease in entry of a VVC-resistant virus in some cell types results from its less efficient use of the VVC-CCR5 complex, and that increasing the CCR5 expression level can compensate for this inefficiency. PMID:19303620

  14. Post-transcriptional silencing of CCR3 downregulates IL-4 stimulated release of eotaxin-3 (CCL26) and other CCR3 ligands in alveolar type II cells.

    PubMed

    Taka, Equar; Errahali, Younes J; Abonyo, Barack O; Bauer, David M; Heiman, Ann S

    2008-12-01

    Trafficking and inflammation in airway diseases are, in part, modulated by members of the CC chemokine family, eotaxin-1 (CCL11), eotaxin-2 (CCL24), and eotaxin-3 (CCL26), which transduce signals through their CCR3 receptor. In this context, we hypothesized that transfecting alveolar type II epithelial cells with CCR3-targeted siRNA or antisense (AS-ODN) sequences will downregulate cellular synthesis and release of the primary CCR3 ligands CCL26 and CCL24 and will modulate other CCR3 ligands. The human A549 alveolar type II epithelium-like cell culture model was used for transfection and subsequent effects on CCR3 agonists. siRNAs were particularly effective. PCR showed a 60-80% decrease in mRNA and immunoblots showed up to 75-84% reduction of CCR3 in siRNA treated cells. CCR3-siRNA treatments reduced IL-4 stimulated CCL26 release and constitutive CCL24 release by 65% and 80%, respectively. Release of four additional CCR3 agonists RANTES, MCP-2, MCP-3 and MCP-4 was also significantly reduced by CCR3-siRNA treatments of the alveolar type II cells. Activation of eosinophils, assessed as superoxide anion generation, was reduced when eosinophils were treated with supernatants of A549 cells pretreated with CCR3-targeted siRNAs or AS-ODNs. Collectively, the data suggest that post-transcriptional regulation of CCR3 receptors may be a potential therapeutic approach for interrupting proinflammatory signaling.

  15. Autocrine regulation of re-epithelialization after wounding by chemokine receptors CCR1, CCR10, CXCR1, CXCR2, and CXCR3.

    PubMed

    Kroeze, Kim L; Boink, Mireille A; Sampat-Sardjoepersad, Shakun C; Waaijman, Taco; Scheper, Rik J; Gibbs, Susan

    2012-01-01

    This study identifies chemokine receptors involved in an autocrine regulation of re-epithelialization after skin tissue damage. We determined which receptors, from a panel of 13, are expressed in healthy human epidermis and which monospecific chemokine ligands, secreted by keratinocytes, were able to stimulate migration and proliferation. A reconstructed epidermis cryo(freeze)-wound model was used to assess chemokine secretion after wounding and the effect of pertussis toxin (chemokine receptor blocker) on re-epithelialization and differentiation. Chemokine receptors CCR1, CCR3, CCR4, CCR6, CCR10, CXCR1, CXCR2, CXCR3, and CXCR4 were expressed in epidermis. No expression of CCR2, CCR5, CCR7, and CCR8 was observed by either immunostaining or flow cytometry. Five chemokine receptors (CCR1, CCR10, CXCR1, CXCR2, and CXCR3) were identified, the corresponding monospecific ligands (CCL14, CCL27, CXCL8, CXCL1, CXCL10, respectively) of which were not only able to stimulate keratinocyte migration and/or proliferation but were also secreted by keratinocytes after introducing cryo-wounds into epidermal equivalents. Blocking of receptor-ligand interactions with pertussis toxin delayed re-epithelialization, but did not influence differentiation (as assessed by formation of basal layer, spinous layer, granular layer, and stratum corneum) after cryo-wounding. Taken together, these results confirm that an autocrine positive-feedback loop of epithelialization exists in order to stimulate wound closure after skin injury.

  16. CCR5 deficiency accelerates lipopolysaccharide-induced astrogliosis, amyloid-beta deposit and impaired memory function

    PubMed Central

    Hwang, Jae Yeon; Kim, Ju Hwan; Yun, Na Young; Oh, Sang Yeon; Song, Ju Kyung; Seo, Hyun Ok; Kim, Yun-Bae; Hwang, Dae Yeon; Oh, Ki-Wan; Han, Sang-Bae; Hong, Jin Tae

    2016-01-01

    Chemokine receptors are implicated in inflammation and immune responses. Neuro-inflammation is associated with activation of astrocyte and amyloid-beta (Aβ) generations that lead to pathogenesis of Alzheimer disease (AD). Previous our study showed that deficiency of CC chemokine receptor 5 (CCR5) results in activation of astrocytes and Aβ deposit, and thus memory dysfunction through increase of CC chemokine receptor 2 (CCR2) expression. CCR5 knockout mice were used as an animal model with memory dysfunction. For the purpose LPS was injected i.p. daily (0.25 mg/kg/day). The memory dysfunctions were much higher in LPS-injected CCR5 knockout mice compared to CCR5 wild type mice as well as non-injected CCR5 knockout mice. Associated with severe memory dysfuction in LPS injected CCR5 knockout mice, LPS injection significant increase expression of inflammatory proteins, astrocyte activation, expressions of β-secretase as well as Aβ deposition in the brain of CCR5 knockout mice as compared with that of CCR5 wild type mice. In CCR5 knockout mice, CCR2 expressions were high and co-localized with GFAP which was significantly elevated by LPS. Expression of monocyte chemoattractant protein-1 (MCP-1) which ligands of CCR2 also increased by LPS injection, and increment of MCP-1 expression is much higher in CCR5 knockout mice. BV-2 cells treated with CCR5 antagonist, D-ala-peptide T-amide (DAPTA) and cultured astrocytes isolated from CCR5 knockout mice treated with LPS (1 μg/ml) and CCR2 antagonist, decreased the NF-ĸB activation and Aβ level. These findings suggest that the deficiency of CCR5 enhances response of LPS, which accelerates to neuro-inflammation and memory impairment. PMID:26910914

  17. CCR5 deficiency accelerates lipopolysaccharide-induced astrogliosis, amyloid-beta deposit and impaired memory function.

    PubMed

    Hwang, Chul Ju; Park, Mi Hee; Hwang, Jae Yeon; Kim, Ju Hwan; Yun, Na Young; Oh, Sang Yeon; Song, Ju Kyung; Seo, Hyun Ok; Kim, Yun-Bae; Hwang, Dae Yeon; Oh, Ki-Wan; Han, Sang-Bae; Hong, Jin Tae

    2016-03-15

    Chemokine receptors are implicated in inflammation and immune responses. Neuro-inflammation is associated with activation of astrocyte and amyloid-beta (Aβ) generations that lead to pathogenesis of Alzheimer disease (AD). Previous our study showed that deficiency of CC chemokine receptor 5 (CCR5) results in activation of astrocytes and Aβ deposit, and thus memory dysfunction through increase of CC chemokine receptor 2 (CCR2) expression. CCR5 knockout mice were used as an animal model with memory dysfunction. For the purpose LPS was injected i.p. daily (0.25 mg/kg/day). The memory dysfunctions were much higher in LPS-injected CCR5 knockout mice compared to CCR5 wild type mice as well as non-injected CCR5 knockout mice. Associated with severe memory dysfuction in LPS injected CCR5 knockout mice, LPS injection significant increase expression of inflammatory proteins, astrocyte activation, expressions of β-secretase as well as Aβ deposition in the brain of CCR5 knockout mice as compared with that of CCR5 wild type mice. In CCR5 knockout mice, CCR2 expressions were high and co-localized with GFAP which was significantly elevated by LPS. Expression of monocyte chemoattractant protein-1 (MCP-1) which ligands of CCR2 also increased by LPS injection, and increment of MCP-1 expression is much higher in CCR5 knockout mice. BV-2 cells treated with CCR5 antagonist, D-ala-peptide T-amide (DAPTA) and cultured astrocytes isolated from CCR5 knockout mice treated with LPS (1 μg/ml) and CCR2 antagonist, decreased the NF-ĸB activation and Aβ level. These findings suggest that the deficiency of CCR5 enhances response of LPS, which accelerates to neuro-inflammation and memory impairment.

  18. CCR5 knockout suppresses experimental autoimmune encephalomyelitis in C57BL/6 mice.

    PubMed

    Gu, Sun Mi; Park, Mi Hee; Yun, Hyung Mun; Han, Sang Bae; Oh, Ki Wan; Son, Dong Ju; Yun, Jae Suk; Hong, Jin Tae

    2016-03-29

    Multiple sclerosis (MS) is an inflammatory disease in which myelin in the spinal cord is damaged. C-C chemokine receptor type 5 (CCR5) is implicated in immune cell migration and cytokine release in central nervous system (CNS). We investigated whether CCR5 plays a role in MS progression using a murine model, experimental autoimmune encephalomyelitis (EAE), in CCR5 deficient (CCR5-/-) mice. CCR5-/- and CCR5+/+ (wild-type) mice were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) followed by pertussis toxin, after which EAE paralysis was scored for 28 days. We found that clinical scoring and EAE neuropathology were lower in CCR5-/- mice than CCR5+/+ mice. Immune cells (CD3+, CD4+, CD8+, B cell, NK cell and macrophages) infiltration and astrocytes/microglial activation were attenuated in CCR5-/- mice. Moreover, levels of IL-1β, TNF-α, IFN-γ and MCP-1 cytokine levels were decreased in CCR5-/- mice spinal cord. Myelin basic protein (MBP) and CNPase were increased while NG2 and O4 were decreased in CCR5-/- mice, indicating that demyelination was suppressed by CCR5 gene deletion. These findings suggest that CCR5 is likely participating in demyelination in the spinal cord the MS development, and that it could serve as an effective therapeutic target for the treatment of MS.

  19. Frequency of the delta ccr5 deletion allele in the urban Brazilian population.

    PubMed

    Passos, G A; Picanço, V P

    1998-04-01

    Studies on screening genes conferring resistance to HIV-1 and AIDS onset have shown a direct relationship between a 32 base pair (bp) deletion in the CCR5 beta-chemokine receptor gene (delta ccr5 mutant allele) and long survival of HIV-1 infected individuals bearing this mutation. These findings led to an interest in studies of delta ccr5 allele distribution in human populations. In the present study, polymerase chain reactions (PCR) in genomic DNA samples, using specific CCR5 oligonucleotide primers surrounding the breakpoint deletion, detected a 193-bp product from the normal CCR5 allele and a 161-bp product from the 32-bp deletion allele. In an investigation of the urban Brazilian population we detected a 93% frequency of normal CCR5/CCR5 homozygous individuals and a 7% frequency of CCR5/delta ccr5 heterozygous individuals. The frequency of the delta ccr5 mutant allele in this population is 0.035; however, no homozygous delta ccr5 individual has been detected thus far. This is the first evidence for the contribution of the delta ccr5 allele to the genetic background of the urban Brazilian population, which is characterized by intense ethnic admixture. These findings open perspectives for further studies on the relationship between delta ccr5 allele frequency and AIDS onset in high-risk HIV-1 exposures individuals.

  20. CCR5 knockout suppresses experimental autoimmune encephalomyelitis in C57BL/6 mice

    PubMed Central

    Yun, Hyung Mun; Han, Sang Bae; Oh, Ki Wan; Son, Dong Ju; Yun, Jae Suk; Hong, Jin Tae

    2016-01-01

    Multiple sclerosis (MS) is an inflammatory disease in which myelin in the spinal cord is damaged. C-C chemokine receptor type 5 (CCR5) is implicated in immune cell migration and cytokine release in central nervous system (CNS). We investigated whether CCR5 plays a role in MS progression using a murine model, experimental autoimmune encephalomyelitis (EAE), in CCR5 deficient (CCR5−/−) mice. CCR5−/− and CCR5+/+ (wild-type) mice were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) followed by pertussis toxin, after which EAE paralysis was scored for 28 days. We found that clinical scoring and EAE neuropathology were lower in CCR5−/− mice than CCR5+/+ mice. Immune cells (CD3+, CD4+, CD8+, B cell, NK cell and macrophages) infiltration and astrocytes/microglial activation were attenuated in CCR5−/− mice. Moreover, levels of IL-1β, TNF-α, IFN-γ and MCP-1 cytokine levels were decreased in CCR5−/− mice spinal cord. Myelin basic protein (MBP) and CNPase were increased while NG2 and O4 were decreased in CCR5−/− mice, indicating that demyelination was suppressed by CCR5 gene deletion. These findings suggest that CCR5 is likely participating in demyelination in the spinal cord the MS development, and that it could serve as an effective therapeutic target for the treatment of MS. PMID:26985768

  1. [National preparedness for biological mass casualty event: between the devil and the deep blue sea].

    PubMed

    Eldad, Arieh

    2002-05-01

    Species of plants and animals, as well as nations of human beings were extinguished throughout the prehistory and history of this planet. One of the possible explanations for this phenomenon is a large scale epidemic of viral, bacterial or fungal infections. One well-documented example was the smallpox epidemic among native Indians of South America following the European invasion. Deliberate dissemination of disease was used as a weapon during the Middle Ages when corpses of plague casualties were thrown over the walls and into the besieged towns. The Book of Kings II, of the Bible, in chapter 19 recalls the story of 185,000 soldiers of Sennacherib that died in one night, near the walls of Jerusalem. The possibility of causing mass casualty by dissemination of infectious disease has driven countries and terrorist organizations to produce and store large quantities of bacteria or viruses. The death of thousands in the USA on September 11, 2001, demonstrated that terror has no moral prohibitions, only technical limitations. Terror organizations will not hesitate to use weapons for mass destruction to kill many, and if only few will die, it will still serve the purpose of these evil organizations: to strew panic, to destroy normal life and to increase fear and instability. Any government that faces decisions about how to be better prepared against biological warfare is pushed between the devil and the deep blue sea. On the one hand: the better we will be prepared, equipped with antibiotics and vaccines--the more lives of casualties we will be able to save. Better public education will help to reduce the damage, but, on the other hand--in order to cause more people to make the effort to equip themselves or to refresh their protective kit--we will have to increase their level of concern. In order to improve the medical education of all members of the medical teams we will have to start a broad and intense campaign, thereby taking the risk of increasing stress in the

  2. Complexity in human immunodeficiency virus type 1 (HIV-1) co-receptor usage: roles of CCR3 and CCR5 in HIV-1 infection of monocyte-derived macrophages and brain microglia.

    PubMed

    Agrawal, Lokesh; Maxwell, Christina R; Peters, Paul J; Clapham, Paul R; Liu, Sue M; Mackay, Charles R; Strayer, David S

    2009-03-01

    CCR3 has been implicated as a co-receptor for human immunodeficiency virus type 1 (HIV-1), particularly in brain microglia cells. We sought to clarify the comparative roles of CCR3 and CCR5 in the central nervous system (CNS) HIV-1 infection and the potential utility of CCR3 as a target for manipulation via gene transfer. To target CCR3, we developed a single-chain antibody (SFv) and an interfering RNA (RNAi), R3-526. Coding sequences for both were cloned into Tag-deleted SV40-dervied vectors, as these vectors transduce brain microglia and monocyte-derived macrophages (MDM) highly efficiently. These anti-CCR3 transgenes were compared to SFv-CCR5, an SFv against CCR5, and RNAi-R5, an RNAi that targets CCR5, for the ability to protect primary human brain microglia and MDM from infection with peripheral and neurotropic strains of HIV-1. Downregulation of CCR3 and CCR5 by these transgenes was independent from one another. Confocal microscopy showed that CCR3 and CCR5 co-localized at the plasma membrane with each other and with CD4. Targeting either CCR5 or CCR3 largely protected both microglia and MDM from infection by many strains of HIV-1. That is, some HIV-1 strains, isolated from either the CNS or periphery, required both CCR3 and CCR5 for optimal productive infection of microglia and MDM. Some HIV-1 strains were relatively purely CCR5-tropic. None was purely CCR3-tropic. Thus, some CNS-tropic strains of HIV-1 utilize CCR5 as a co-receptor but do not need CCR3, while for other isolates both CCR3 and CCR5 may be required.

  3. Biological Communities and Geomorphology of Patch Reefs in Biscayne National Park, Florida, U.S.A.

    USGS Publications Warehouse

    Kuffner, Ilsa B.; Brock, John C.; Grober-Dunsmore, Rikki; Hickey, T. Don; Bonito, Victor; Bracone, Jeremy E.; Wright, C. Wayne

    2008-01-01

    Coral reef ecosystem management benefits from continual, quantitative assessment of the resources being managed, plus assessment of factors that affect distribution patterns of organisms in the ecosystem. In this study, we investigated the relationships among physical, benthic, and fish variables in effort to help explain the distribution patterns of ecologically and economically important species on twelve patch reefs within Biscayne National Park (BNP), Florida, U.S.A. We visited 196 randomly-located sampling stations across twelve shallow (< 10m) patch reefs, using SCUBA to conduct our surveys. We measured physical variables (e.g., substratum type), estimated the percent cover of benthic community members (e.g., coral, algae), and counted and estimated mean size for each fish species observed. We also used high-density bathymetric data collected remotely via airborne laser surveying (Experimental Advanced Airborne Research Lidar (EAARL)) to calculate rugosity (bumpiness) of the reef habitat. Here we present our findings visually by graphing our quantitative community and physical structure data simultaneously in a GIS map format. You will see that biological organisms arrange themselves on each patch reef in a non-random manner. For example, many species of fish prefer to locate themselves in areas of the reef where the rugosity index is high. Rugose parts of the reef provide them with good hiding places from predators. These maps (and the data used to create them) are permanent records of the status of reef resources found on these twelve patch reefs in BNP as of September, 2003. The survey data found in the shapefile located on this CD product includes benthic percent cover data for algae, coral, encrusting invertebrates, and substratum type, in addition to gorgonian abundance and volume, total fish abundance and species richness, and specific counts for Acanthurids (surgeonfish), Scarids (parrotfish), Lutjanids (snappers), Haemulids (grunts), Serranids

  4. IMOS National Reference Stations: A Continental-Wide Physical, Chemical and Biological Coastal Observing System

    PubMed Central

    Lynch, Tim P.; Morello, Elisabetta B.; Evans, Karen; Richardson, Anthony J.; Rochester, Wayne; Steinberg, Craig R.; Roughan, Moninya; Thompson, Peter; Middleton, John F.; Feng, Ming; Sherrington, Robert; Brando, Vittorio; Tilbrook, Bronte; Ridgway, Ken; Allen, Simon; Doherty, Peter; Hill, Katherine; Moltmann, Tim C.

    2014-01-01

    Sustained observations allow for the tracking of change in oceanography and ecosystems, however, these are rare, particularly for the Southern Hemisphere. To address this in part, the Australian Integrated Marine Observing System (IMOS) implemented a network of nine National Reference Stations (NRS). The network builds on one long-term location, where monthly water sampling has been sustained since the 1940s and two others that commenced in the 1950s. In-situ continuously moored sensors and an enhanced monthly water sampling regime now collect more than 50 data streams. Building on sampling for temperature, salinity and nutrients, the network now observes dissolved oxygen, carbon, turbidity, currents, chlorophyll a and both phytoplankton and zooplankton. Additional parameters for studies of ocean acidification and bio-optics are collected at a sub-set of sites and all data is made freely and publically available. Our preliminary results demonstrate increased utility to observe extreme events, such as marine heat waves and coastal flooding; rare events, such as plankton blooms; and have, for the first time, allowed for consistent continental scale sampling and analysis of coastal zooplankton and phytoplankton communities. Independent water sampling allows for cross validation of the deployed sensors for quality control of data that now continuously tracks daily, seasonal and annual variation. The NRS will provide multi-decadal time series, against which more spatially replicated short-term studies can be referenced, models and remote sensing products validated, and improvements made to our understanding of how large-scale, long-term change and variability in the global ocean are affecting Australia's coastal seas and ecosystems. The NRS network provides an example of how a continental scaled observing systems can be developed to collect observations that integrate across physics, chemistry and biology. PMID:25517905

  5. IMOS National Reference Stations: a continental-wide physical, chemical and biological coastal observing system.

    PubMed

    Lynch, Tim P; Morello, Elisabetta B; Evans, Karen; Richardson, Anthony J; Rochester, Wayne; Steinberg, Craig R; Roughan, Moninya; Thompson, Peter; Middleton, John F; Feng, Ming; Sherrington, Robert; Brando, Vittorio; Tilbrook, Bronte; Ridgway, Ken; Allen, Simon; Doherty, Peter; Hill, Katherine; Moltmann, Tim C

    2014-01-01

    Sustained observations allow for the tracking of change in oceanography and ecosystems, however, these are rare, particularly for the Southern Hemisphere. To address this in part, the Australian Integrated Marine Observing System (IMOS) implemented a network of nine National Reference Stations (NRS). The network builds on one long-term location, where monthly water sampling has been sustained since the 1940s and two others that commenced in the 1950s. In-situ continuously moored sensors and an enhanced monthly water sampling regime now collect more than 50 data streams. Building on sampling for temperature, salinity and nutrients, the network now observes dissolved oxygen, carbon, turbidity, currents, chlorophyll a and both phytoplankton and zooplankton. Additional parameters for studies of ocean acidification and bio-optics are collected at a sub-set of sites and all data is made freely and publically available. Our preliminary results demonstrate increased utility to observe extreme events, such as marine heat waves and coastal flooding; rare events, such as plankton blooms; and have, for the first time, allowed for consistent continental scale sampling and analysis of coastal zooplankton and phytoplankton communities. Independent water sampling allows for cross validation of the deployed sensors for quality control of data that now continuously tracks daily, seasonal and annual variation. The NRS will provide multi-decadal time series, against which more spatially replicated short-term studies can be referenced, models and remote sensing products validated, and improvements made to our understanding of how large-scale, long-term change and variability in the global ocean are affecting Australia's coastal seas and ecosystems. The NRS network provides an example of how a continental scaled observing systems can be developed to collect observations that integrate across physics, chemistry and biology.

  6. CCR9 Antagonists in the Treatment of Ulcerative Colitis

    PubMed Central

    Bekker, Pirow; Ebsworth, Karen; Walters, Matthew J.; Berahovich, Robert D.; Ertl, Linda S.; Charvat, Trevor T.; Punna, Sreenivas; Powers, Jay P.; Campbell, James J.; Sullivan, Timothy J.; Jaen, Juan C.; Schall, Thomas J.

    2015-01-01

    While it has long been established that the chemokine receptor CCR9 and its ligand CCL25 are essential for the movement of leukocytes into the small intestine and the development of small-intestinal inflammation, the role of this chemokine-receptor pair in colonic inflammation is not clear. Toward this end, we compared colonic CCL25 protein levels in healthy individuals to those in patients with ulcerative colitis. In addition, we determined the effect of CCR9 pharmacological inhibition in the mdr1a−/− mouse model of ulcerative colitis. Colon samples from patients with ulcerative colitis had significantly higher levels of CCL25 protein compared to healthy controls, a finding mirrored in the mdr1a−/− mice. In the mdr1a−/− mice, CCR9 antagonists significantly decreased the extent of wasting and colonic remodeling and reduced the levels of inflammatory cytokines in the colon. These findings indicate that the CCR9:CCL25 pair plays a causative role in ulcerative colitis and suggest that CCR9 antagonists will provide a therapeutic benefit in patients with colonic inflammation. PMID:26457007

  7. Specificity for a CCR5 Inhibitor Is Conferred by a Single Amino Acid Residue: ROLE OF ILE198.

    PubMed

    Lau, Gloria; Labrecque, Jean; Metz, Markus; Vaz, Roy; Fricker, Simon P

    2015-04-24

    The chemokine receptors CCR5 and CCR2b share 89% amino acid homology. CCR5 is a co-receptor for HIV and CCR5 antagonists have been investigated as inhibitors of HIV infection. We describe the use of two CCR5 antagonists, Schering-C (SCH-C), which is specific for CCR5, and TAK-779, a dual inhibitor of CCR5 and CCR2b, to probe the CCR5 inhibitor binding site using CCR5/CCR2b chimeric receptors. Compound inhibition in the different chimeras was assessed by inhibition of chemokine-induced calcium flux. SCH-C inhibited RANTES (regulated on activation, normal T cell expressed and secreted) (CCL5)-mediated calcium flux on CCR5 with an IC50 of 22.8 nM but was inactive against monocyte chemoattractant protein-1 (CCL2)-mediated calcium flux on CCR2b. However, SCH-C inhibited CCL2-induced calcium flux against a CCR5/CCR2b chimera consisting of transmembrane domains IV-VI of CCR5 with an IC50 of 55 nM. A sequence comparison of CCR5 and CCR2b identified a divergent amino acid sequence located at the junction of transmembrane domain V and second extracellular loop. Transfer of the CCR5 sequence KNFQTLKIV into CCR2b conferred SCH-C inhibition (IC50 of 122 nM) into the predominantly CCR2b chimera. Furthermore, a single substitution, R206I, conferred partial but significant inhibition (IC50 of 1023 nM) by SCH-C. These results show that a limited amino acid sequence is responsible for SCH-C specificity to CCR5, and we propose a model showing the interaction with CCR5 Ile(198).

  8. CCR Certification Form for Wyoming or EPA R8 Tribal Community Water Systems

    EPA Pesticide Factsheets

    The CCR Certification Form can be used to certify that community water systems in Wyoming or on Tribal Lands in EPA Region 8 have completed and distributed their annual Consumer Confidence Report (CCR) or water quality report.

  9. 77 FR 57566 - Announcement of Public Meeting on the Consumer Confidence Report (CCR) Rule Retrospective Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-18

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Announcement of Public Meeting on the Consumer Confidence Report (CCR) Rule Retrospective Review and Request for Public Comment on Potential Approaches to Electronic Delivery of the CCR;...

  10. The CCL5/CCR5 axis promotes metastasis in basal breast cancer

    PubMed Central

    Velasco-Velázquez, Marco; Pestell, Richard G.

    2013-01-01

    Recently, we have shown that the CCL5/CCR5 axis is active in patients affected by an aggressive basal subtype of breast cancer. Using preclinical models, we have demonstrated that CCR5 promotes breast cancer invasiveness and metastatic potential, while CCR5 inhibition abrogates them. Thus, CCR5 antagonists may constitute an alternative therapeutic approach for patients affected by metastatic basal breast cancer. PMID:23734321

  11. CCR5 in recruitment and activation of myeloid-derived suppressor cells in melanoma.

    PubMed

    Umansky, Viktor; Blattner, Carolin; Gebhardt, Christoffer; Utikal, Jochen

    2017-04-05

    Malignant melanoma is characterized by the development of chronic inflammation in the tumor microenvironment, leading to the accumulation of myeloid-derived suppressor cells (MDSCs). Using ret transgenic mouse melanoma model, we found a significant migration of MDSCs expressing C-C chemokine receptor (CCR)5 into primary tumors and metastatic lymph nodes, which was correlated with tumor progression. An increased CCR5 expression on MDSCs was associated with elevated concentrations of CCR5 ligands in melanoma microenvironment. In vitro experiments showed that the upregulation of CCR5 expression on CD11b(+)Gr1(+) immature myeloid cells was induced by CCR5 ligands, IL-6, GM-CSF, and other inflammatory factors. Furthermore, CCR5(+) MDSCs infiltrating melanoma lesions displayed a stronger immunosuppressive pattern than their CCR5(-) counterparts. Targeting CCR5/CCR5 ligand signaling via a fusion protein mCCR5-Ig, which selectively binds and neutralizes all three CCR5 ligands, increased the survival of tumor-bearing mice. This was associated with a reduced migration and immunosuppressive potential of tumor MDSCs. In melanoma patients, circulating CCR5(+) MDSCs were increased as compared to healthy donors. Like in melanoma-bearing mice, we observed an enrichment of these cells and CCR5 ligands in tumors as compared to the peripheral blood. Our findings define a critical role for CCR5 not only in the recruitment but also in the activation of MDSCs in tumor lesions, suggesting that novel strategies of melanoma treatment could be based on blocking CCR5/CCR5 ligand interactions.

  12. CCR5 deficiency increased susceptibility to lipopolysaccharide-induced acute renal injury.

    PubMed

    Lee, Dong Hun; Park, Mi Hee; Hwang, Chul Ju; Hwang, Jae Yeon; Yoon, Hae Suk; Yoon, Do Young; Hong, Jin Tae

    2016-05-01

    C-C chemokine receptor 5 (CCR5) regulates leukocyte chemotaxis and activation, and its deficiency exacerbates development of nephritis. Therefore, we investigated the role of CCR5 during lipopolysaccharide (LPS)-induced acute kidney injury. CCR5-deficient (CCR5-/-) and wild-type (CCR5+/+) mice, both aged about 10 months, had acute renal injury induced by intraperitoneal injection of LPS (10 mg/kg). Compared with CCR5+/+ mice, CCR5-/- mice showed increased mortality and renal injury, including elevated creatinine and blood urea nitrogen levels, following LPS challenge. Compared to CCR5+/+ mice, CCR5-/- mice also exhibited greater increases in the serum concentrations of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β following LPS challenge. Furthermore, infiltration of macrophages and neutrophils, expression of intracellular adhesion molecule (ICAM)-1, and the number of apoptotic cells were more greatly increased by LPS treatment in CCR5-/- mice than in CCR5+/+ mice. The concentrations of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β were also significantly increased in the kidney of CCR5-/- mice after LPS challenge. Moreover, primary kidney cells from CCR5-/- mice showed greater increases in TNF-α production and p38 MAP kinase activation following treatment with LPS compared with that observed in the cells from CCR5+/+ mice. LPS-induced TNF-α production and apoptosis in the primary kidney cells from CCR5-/- mice were inhibited by treatment with p38 MAP kinase inhibitor. These results suggest that CCR5 deficiency increased the production of TNF-α following LPS treatment through increased activation of the p38 pathway in the kidney, resulting in renal apoptosis and leukocyte infiltration and led to exacerbation of LPS-induced acute kidney injury.

  13. [Research progress on role of chemokine receptor CCR3 signaling in allergic airway diseases].

    PubMed

    Xu, Yi; Liu, Yuehui

    2012-12-01

    Allergic airway diseases have been identified as chronic inflammatory diseases of respiratory membranes, characterized by infiltration of many inflammatory cells, especially eosinophils. The expression of CCR3 is abundant on the cell surface of eosinophils. Increased accumulation of CCR3-driven inflammatory cells is thought to favor the development of allergy. In this review, we survey the properties of CCR3 and its ligands and highlight the roles of CCR3 signaling in allergic airway diseases.

  14. Aire deficiency results in decreased expression of CCR4 and CCR7 ligands and in delayed migration of CD4+ thymocytes1

    PubMed Central

    Laan, Martti; Kisand, Kai; Kont, Vivian; Möll, Kaidi; Tserel, Liina; Scott, Hamish S.; Peterson, Pärt

    2009-01-01

    Autoimmune regulator (Aire) has been viewed as a central player in the induction of tolerance. This study examines, whether Aire can modulate the production of the thymic chemokines involved in cortico-medullary migration and thus play a role in intrathymic thymocyte migration and maturation. Aire deficiency resulted in reduced gene expression and protein levels of the CCR4 and CCR7 ligands in whole thymi of mice, as determined by quantitative PCR analysis and ELISA. The expression of the CCR4 ligands coincided with Aire expression in the CD80high medullary epithelial cells (mTECs), whereas the expression of the CCR7 ligands was detected in other cell populations. Also, the expression pattern of the CCR4 and CCR7 ligands follows that of Aire during postnatal but not during embryonic development. In vitro, overexpression of Aire resulted in an upregulation of selected CCR4 and CCR7 ligands, which induced selective migration of double-positive (DP) and single positive (SP) CD4+ cells. In vivo, Aire deficiency resulted in a diminished emigration of mature CD4+ T-cells from the thymi of 5-day-old mice In conclusion, Aire regulates the production of CCR4 and CCR7 ligands in mTECs and alters the coordinated maturation and migration of thymocytes. These results suggest a novel mechanism behind the Aire-dependent induction of central tolerance. PMID:19923453

  15. CCR5 in cancer immunotherapy: More than an "attractive" receptor for T cells.

    PubMed

    González-Martín, Alicia; Mira, Emilia; Mañes, Santos

    2012-01-01

    Despite intensive study, the role of CCR5 in cancer remains elusive. We showed that CCR5 expression by both CD4+ and CD8+ T cells is necessary to boost anti-tumor responses by optimizing helper-dependent CD8+ T cell priming. Our findings could have implications for cancer treatment in patients with defective CCR5 expression.

  16. Discovery and evolution of phenoxypiperidine hydroxyamide dual CCR3/H₁ antagonists. Part I.

    PubMed

    Furber, Mark; Alcaraz, Lilian; Luckhurst, Christopher; Bahl, Ash; Beaton, Haydn; Bowers, Keith; Collington, John; Denton, Rebecca; Donald, David; Kinchin, Elizabeth; MacDonald, Cathy; Rigby, Aaron; Riley, Rob; Soars, Matt; Springthorpe, Brian; Webborn, Peter

    2012-12-15

    The discovery of potent small molecule dual antagonists of the human CCR3 and H(1) receptors is described for the treatment of allergic diseases, for example, asthma and allergic rhinitis. Optimizing in vitro potency and metabolic stability, starting from a CCR1 lead compound, led to compound 20 with potent dual CCR3/H(1) activity and in vitro metabolic stability.

  17. CCR7 facilitates the pro-inflammatory function of dendritic cells in experimental leishmaniasis.

    PubMed

    Kling, J C; Darby, J; Körner, H

    2014-04-01

    Cutaneous leishmaniasis, caused by the parasite Leishmania major, results in lesions at the site of infection, which are self-healing in resistant hosts. However, in the absence of the chemokine receptor CCR7, mice are unable to heal the lesion and develop chronic disease. These B6.CCR7(-/-) mice display an increased number of Th2 cells and immunosuppressive cytokine levels, as well as more regulatory T cells. As CCR7 is expressed on activated dendritic cells (DCs), and these cells require CCR7 to migrate to the draining lymph node, we expected decreased migration of DCs into the lymph node in the absence of CCR7 during cutaneous leishmaniasis. Consequently, in an attempt to initiate a self-healing response, we adoptively transferred CCR7(+) (B6.WT) DCs into the site of infection of B6.CCR7(-/-) mice. Surprisingly, instead of healing the lesion, B6.CCR7(-/-) mice inoculated with B6.WT DCs developed augmented lesions and showed increased immunosuppression compared to control B6.CCR7(-/-) mice transferred with B6.CCR7(-/-) DCs or B6.WT mice with B6.WT DCs. Finally, B6.WT mice injected with B6.CCR7(-/-) DCs also presented delayed healing of the lesion. These results indicate that CCR7 must be expressed on DCs, as well as peripheral cells, to allow an efficient immune response to L. major.

  18. Global distribution of the CCR5 gene 32-basepair deletion.

    PubMed

    Martinson, J J; Chapman, N H; Rees, D C; Liu, Y T; Clegg, J B

    1997-05-01

    A mutant allele of the beta-chemokine receptor gene CCR5 bearing a 32-basepair (bp) deletion (denoted delta ccr5) which prevents cell invasion by the primary transmitting strain of HIV-1 has recently been characterized. Homozygotes for the mutation are resistant to infection, even after repeated high-risk exposures, but this resistance appears not to be total, as isolated cases of HIV-positive deletion homozygotes are now emerging. The consequence of the heterozygous state is not clear, but it may delay the progression to AIDS in infected individuals. A gene frequency of approximately 10% was found for delta ccr5 in populations of European descent, but no mutant alleles were reported in indigenous non-European populations. As the total number of non-European samples surveyed was small in comparison with the Europeans the global distribution of this mutation is far from clear. We have devised a rapid PCR assay for delta ccr5 and used it to screen 3,342 individuals from a globally-distributed range of populations. We find that delta ccr5 is not confined to people of European descent but is found at frequencies of 2-5% throughout Europe, the Middle East and the Indian subcontinent (Fig. 1). Isolated occurrences are seen elsewhere throughout the world, but these most likely represent recent European gene flow into the indigenous populations. The inter-population differences in delta ccr5 frequency may influence the pattern of HIV transmission and so will need to be incorporated into future predictions of HIV levels.

  19. Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Blaylock, B.G.; Boston, H.L.; Huston, M.A.; Kimmel, B.L.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Kitchings, J.T.; Olsen, C.R.

    1991-09-01

    On April 1, 1986, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge National Laboratory (ORNL) (EPA 1986). As specified in Part 3: Special Conditions (Item H) of the permit, a plan for biological monitoring of the Clinch River, White Oak Creek (WOC), Northwest Tributary (NWT) of WOC, Melton Branch (MB), Fifth Creek, and First Creek shall be submitted for approval to the US Environmental Protection Agency (EPA) and the Tennessee Department of Health and Environment (TDHE) within 90 days of the effective date of the permit. The plan, which is referred to in Part 3 (H) of the permit as the Biological Monitoring Plan and Abatement Program (BMPAP), describes characterization monitoring studies to be conducted for the duration of the permit (5 years). In order to be consistent with the terminology used for the Biological Monitoring and Abatement Programs for the Oak Ridge Y-12 Plan and the Oak Ridge K-25 Plant, BMPAP will subsequently be referred to as the Biological Monitoring and Abatement Program (BMAP). The proposed BMAP outlined in this document is based on preliminary discussions held on December 9, 1985, between staff of Martin Marietta Energy Systems, Inc. (ORNL and Central Management), the US Department of Energy (DOE), EPA, and TDHE. 232 refs., 11 figs., 7 tabs.

  20. Influence of CCR5 and CCR2 Genetic Variants in the Resistance/Susceptibility to HIV in Serodiscordant Couples from Colombia

    PubMed Central

    Zapata, Wildeman; Aguilar-Jiménez, Wbeimar; Pineda-Trujillo, Nicolás; Rojas, Winston; Estrada, Hernando

    2013-01-01

    Abstract The main genetic factor related to HIV-1 resistance is the CCR5-Δ32 mutation; however, the homozygous genotype is uncommon. The CCR5-Δ32 mutation along with single nucleotide polymorphisms (SNPs) in the CCR5 promoter and the CCR2-V64I mutation have been included in seven human haplogroups (HH) previously associated with resistance/susceptibility to HIV-1 infection and different rates of AIDS progression. Here, we determined the association of the CCR5 promoter SNPs, the CCR5-Δ32 mutation, CCR2-V64I SNP, and HH frequencies with resistance/susceptibility to HIV-1 infection in a cohort of HIV-1-serodiscordant couples from Colombia. Seventy HIV-1-exposed, but seronegative (HESN) individuals, 57 seropositives (SP), and 112 healthy controls (HC) were included. The CCR5-Δ32 mutation and CCR2-V64I SNP were identified by PCR, and the CCR5 promoter SNPs were evaluated by sequencing. None of the individuals exhibited a homozygous Δ32 genotype; the CCR2-I allele was more frequent in HESN (34%) than HC (23%) (p=0.039, OR=1.672). The frequency of the 29G allele was higher in SP than HC (p=0.003, OR=3). HHF2 showed a higher frequency in HC (19%) than SP (9%) (p=0.027), while HHG1 was more frequent in SP (11.1%) than in HC (4.2%) (p=0.019). The AGACCAC-CCR2-I-CCR5 wild-type haplotype showed a higher frequency in SP (14.2%) than in HC (3.7%) (p=0.001). In conclusion, the CCR5-Δ32 allele is not responsible for HIV-1 resistance in this HESN group; however, the CCR2-I allele could be protective, while the 29G allele might increase the likelihood of acquiring HIV-1 infection. HHG1 and the AGACCAC-CCR2-I-CCR5 wild-type haplotype might promote HIV-1 infection while HHF2 might be related to resistance. However, additional studies are required to evaluate the implications of these findings. PMID:24098976

  1. Prevalence of CCR5-Δ32 and CCR2-V64I polymorphisms in a mixed population from northeastern Brazil.

    PubMed

    Ferreira-Fernandes, H; Santos, A C C; Motta, F J N; Canalle, R; Yoshioka, F K N; Burbano, R R; Rey, J A; da Silva, B B; Pinto, G R

    2015-10-02

    Chemokines are low-molecular weight proteins that play a key role in inflammatory processes. Genomic variations in chemokine receptors are associated with the susceptibility to various diseases. Polymorphisms in chemokine receptor type 5 (CCR5)-Δ32 and CCR2-V64I are related to human immunodeficiency virus infection resistance, which has led to genetic association studies for several other diseases. Given the heterogeneous distribution of these polymorphisms in different global populations and within Brazilian populations, we analyzed the prevalence of CCR5-Δ32 and CCR2-V64I polymorphisms in a mixed population from northeastern Brazil. The study included 223 individuals from the general population of the city of Parnaíba, Piauí, who had a mean age of 73 years. Of these individuals, 37.2% were men and 62.8% were women. Polymorphisms were analyzed using DNA extracted from peripheral blood leukocytes by using polymerase chain reaction alone (CCR5-Δ32) or accompanied by restriction endonuclease digestion (CCR2-V64I). In both cases, the genotypes were determined using 8% polyacrylamide gel electrophoresis and silver nitrate staining. The population conformed to Hardy-Weinberg equilibrium for both the loci studied. No individuals were homozygous for allele-Δ32, which was present in 1.8% of the population, whereas allele-64I was present in 13.9% of the participants studied; 74.9% were homozygous for the wild-type allele, while 22.4 and 2.7% were heterozygous and homozygous for the mutant allele, respectively. Additional studies are needed to investigate the relationship between these polymorphisms and disease etiopathogenesis in reference populations.

  2. Repression of Ccr9 transcription in mouse T lymphocyte progenitors by the Notch signaling pathway.

    PubMed

    Krishnamoorthy, Veena; Carr, Tiffany; de Pooter, Renee F; Emanuelle, Akinola Olumide; Akinola, Emanuelle Olumide; Gounari, Fotini; Kee, Barbara L

    2015-04-01

    The chemokine receptor CCR9 controls the immigration of multipotent hematopoietic progenitor cells into the thymus to sustain T cell development. Postimmigration, thymocytes downregulate CCR9 and migrate toward the subcapsular zone where they recombine their TCR β-chain and γ-chain gene loci. CCR9 is subsequently upregulated and participates in the localization of thymocytes during their selection for self-tolerant receptor specificities. Although the dynamic regulation of CCR9 is essential for early T cell development, the mechanisms controlling CCR9 expression have not been determined. In this article, we show that key regulators of T cell development, Notch1 and the E protein transcription factors E2A and HEB, coordinately control the expression of Ccr9. E2A and HEB bind at two putative enhancers upstream of Ccr9 and positively regulate CCR9 expression at multiple stages of T cell development. In contrast, the canonical Notch signaling pathway prevents the recruitment of p300 to the putative Ccr9 enhancers, resulting in decreased acetylation of histone H3 and a failure to recruit RNA polymerase II to the Ccr9 promoter. Although Notch signaling modestly modulates the binding of E proteins to one of the two Ccr9 enhancers, we found that Notch signaling represses Ccr9 in T cell lymphoma lines in which Ccr9 transcription is independent of E protein function. Our data support the hypothesis that activation of Notch1 has a dominant-negative effect on Ccr9 transcription and that Notch1 and E proteins control the dynamic expression of Ccr9 during T cell development.

  3. Selected aquatic biological investigations in the Great Salt Lake basins, 1875-1998, National Water-Quality Assessment Program

    USGS Publications Warehouse

    Giddings, Elise M.P.; Stephens, Doyle W.

    1999-01-01

    This report summarizes previous investigations of aquatic biological communities, habitat, and contaminants in streams and selected large lakes within the Great Salt Lake Basins study unit as part of the U.S. Geological Survey?s National Water-Quality Assessment Program (NAWQA). The Great Salt Lake Basins study unit is one of 59 such units designed to characterize water quality through the examination of chemical, physical, and biological factors in surface and ground waters across the country. The data will be used to aid in the planning, collection, and analysis of biological information for the NAWQA study unit and to aid other researchers concerned with water quality of the study unit. A total of 234 investigations conducted during 1875-1998 are summarized in this report. The studies are grouped into three major subjects: (1) aquatic communities and habitat, (2) contamination of streambed sediments and biological tissues, and (3) lakes. The location and a general description of each study is listed. The majority of the studies focus on fish and macroinvertebrate communities. Studies of algal communities, aquatic habitat, riparian wetlands, and contamination of streambed sediment or biological tissues are less common. Areas close to the major population centers of Salt Lake City, Provo, and Logan, Utah, are generally well studied, but more rural areas and much of the Bear River Basin are lacking in detailed information, except for fish populations..

  4. HIV persists in CCR6+CD4+ T cells from colon and blood during antiretroviral therapy

    PubMed Central

    Gosselin, Annie; Wiche Salinas, Tomas Raul; Planas, Delphine; Wacleche, Vanessa S.; Zhang, Yuwei; Fromentin, Rémi; Chomont, Nicolas; Cohen, Éric A.; Shacklett, Barbara; Mehraj, Vikram; Ghali, Maged P.; Routy, Jean-Pierre; Ancuta, Petronela

    2017-01-01

    Objectives: The objective of this article is to investigate the contribution of colon and blood CD4+ T-cell subsets expressing the chemokine receptor CCR6 to HIV persistence during antiretroviral therapy. Design: Matched sigmoid biopsies and blood samples (n = 13) as well as leukapheresis (n = 20) were collected from chronically HIV-infected individuals receiving antiretroviral therapy. Subsets of CD4+ T cells with distinct differentiation/polarization profiles were identified using surface markers as follows: memory (TM, CD45RA−), central memory (TCM; CD45RA−CCR7+), effector (TEM/TM; CD45RA−CCR7−), Th17 (CCR6+CCR4+), Th1Th17 (CCR6+CXCR3+), Th1 (CCR6−CXCR3+), and Th2 (CCR6−CCR4+). Methods: We used polychromatic flow cytometry for cell sorting, nested real-time PCR for HIV DNA quantification, ELISA and flow cytometry for HIV p24 quantification. HIV reactivation was induced by TCR triggering in the presence/absence of all-trans retinoic acid. Results: Compared with blood, the frequency of CCR6+ TM was higher in the colon. In both colon and blood compartments, CCR6+ TM were significantly enriched in HIV DNA when compared with their CCR6− counterparts (n = 13). In blood, integrated HIV DNA levels were significantly enriched in CCR6+ versus CCR6− TCM of four of five individuals and CCR6+ versus CCR6− TEM of three of five individuals. Among blood TCM, Th17 and Th1Th17 contributed the most to the pool of cells harboring integrated HIV DNA despite their reduced frequency compared with Th2, which were infected the least. HIV reactivation was induced by TCR triggering and/or retinoic acid exposure at higher levels in CCR6+ versus CCR6− TM, TCM, and TEM. Conclusion: CCR6 is a marker for colon and blood CD4+ T cells enriched for replication-competent HIV DNA. Novel eradication strategies should target HIV persistence in CCR6+CD4+ T cells from various anatomic sites. PMID:27835617

  5. ACCOUNTING FOR BIOLOGICAL AND ANTHROPOGENIC FACTORS IN NATIONAL LAND-BASED CARBON BUDGETS

    EPA Science Inventory

    Efforts to quantify net greenhouse gas emissions at the national scale, as required by the United Nations Framework Convention on Climate Change, must include both industrial emissions and the net flux associated with the land base. In this study, data on current land use, rates ...

  6. Melanoma cell lysate induces CCR7 expression and in vivo migration to draining lymph nodes of therapeutic human dendritic cells.

    PubMed

    González, Fermín E; Ortiz, Carolina; Reyes, Montserrat; Dutzan, Nicolás; Patel, Vyomesh; Pereda, Cristián; Gleisner, Maria A; López, Mercedes N; Gutkind, J Silvio; Salazar-Onfray, Flavio

    2014-07-01

    We have previously reported a novel method for the production of tumour-antigen-presenting cells (referred to as TAPCells) that are currently being used in cancer therapy, using an allogeneic melanoma-derived cell lysate (referred to as TRIMEL) as an antigen provider and activation factor. It was recently demonstrated that TAPCell-based immunotherapy induces T-cell-mediated immune responses resulting in improved long-term survival of stage IV melanoma patients. Clinically, dendritic cell (DC) migration from injected sites to lymph nodes is an important requirement for an effective anti-tumour immunization. This mobilization of DCs is mainly driven by the C-C chemokine receptor type 7 (CCR7), which is up-regulated on mature DCs. Using flow cytometry and immunohistochemistry, we investigated if TRIMEL was capable of inducing the expression of the CCR7 on TAPCells and enhancing their migration in vitro, as well as their in vivo relocation to lymph nodes in an ectopic xenograft animal model. Our results confirmed that TRIMEL induces a phenotypic maturation and increases the expression of surface CCR7 on melanoma patient-derived DCs, and also on the monocytic/macrophage cell line THP-1. Moreover, in vitro assays showed that TRIMEL-stimulated DCs and THP-1 cells were capable of migrating specifically in the presence of the CCR7 ligand CCL19. Finally, we demonstrated that TAPCells could migrate in vivo from the injection site into the draining lymph nodes. This work contributes to an increased understanding of the biology of DCs produced ex vivo allowing the design of new strategies for effective DC-based vaccines for treating aggressive melanomas.

  7. An anti-CCR5 monoclonal antibody and small molecule CCR5 antagonists synergize by inhibiting different stages of human immunodeficiency virus type 1 entry

    SciTech Connect

    Safarian, Diana; Carnec, Xavier; Tsamis, Fotini; Kajumo, Francis; Dragic, Tatjana . E-mail: tdragic@aecom.yu.edu

    2006-09-01

    HIV-1 coreceptors are attractive targets for novel antivirals. Here, inhibition of entry by two classes of CCR5 antagonists was investigated. We confirmed previous findings that HIV-1 isolates vary greatly in their sensitivity to small molecule inhibitors of CCR5-mediated entry, SCH-C and TAK-779. In contrast, an anti-CCR5 monoclonal antibody (PA14) similarly inhibited entry of diverse viral isolates. Sensitivity to small molecules was V3 loop-dependent and inversely proportional to the level of gp120 binding to CCR5. Moreover, combinations of the MAb and small molecules were highly synergistic in blocking HIV-1 entry, suggesting different mechanisms of action. This was confirmed by time course of inhibition experiments wherein the PA14 MAb and small molecules were shown to inhibit temporally distinct stages of CCR5 usage. We propose that small molecules inhibit V3 binding to the second extracellular loop of CCR5, whereas PA14 preferentially inhibits subsequent events such as CCR5 recruitment into the fusion complex or conformational changes in the gp120-CCR5 complex that trigger fusion. Importantly, our findings suggest that combinations of CCR5 inhibitors with different mechanisms of action will be central to controlling HIV-1 infection and slowing the emergence of resistant strains.

  8. CCR5 promoter activity correlates with HIV disease progression by regulating CCR5 cell surface expression and CD4 T cell apoptosis.

    PubMed

    Joshi, Anjali; Punke, Erin B; Sedano, Melina; Beauchamp, Bethany; Patel, Rima; Hossenlopp, Cassady; Alozie, Ogechika K; Gupta, Jayanta; Mukherjee, Debabrata; Garg, Himanshu

    2017-03-22

    CCR5 is the major co-receptor for HIV and polymorphisms in the CCR5 gene as well as promoter region that alter cell surface expression have been associated with disease progression. We determined the relationship between CCR5 promoter polymorphisms and CD4 decline and other immunopathological features like immune activation and CD4+ T cell apoptosis in HIV patients. CCR5 promoter haplotype HHC was significantly associated with higher CD4 counts in patients. The relative promoter activity (RPA) of each haplotype was determined in vitro and combined promoter activity based on both alleles (CRPA) was assigned to each patients. Interestingly, CCR5 CRPA correlated inversely with CD4 counts and CD4:CD8 ratio specifically in viremic patients. In normal individuals, the CRPA correlated with the number of CCR5+ CD4+ T cells in the peripheral blood suggesting an effect on CCR5 expression. In a subset of high viremic patients harboring R5 tropic HIV, there was a strong correlation between CCR5 CRPA and both CD4 counts and CD4 T cell apoptosis. Our study demonstrates that, CCR5 promoter polymorphisms correlate with CD4 T cell loss possibly by regulating CD4 T cell apoptosis in HIV patients. Furthermore, assigning CRPAs to each patient is a new method of translating genotype to phenotype.

  9. 2 CFR 25.310 - Central Contractor Registration (CCR).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 2 Grants and Agreements 1 2013-01-01 2013-01-01 false Central Contractor Registration (CCR). 25.310 Section 25.310 Grants and Agreements Office of Management and Budget Guidance for Grants and Agreements OFFICE OF MANAGEMENT AND BUDGET GOVERNMENTWIDE GUIDANCE FOR GRANTS AND AGREEMENTS...

  10. 2 CFR 25.310 - Central Contractor Registration (CCR).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 2 Grants and Agreements 1 2014-01-01 2014-01-01 false Central Contractor Registration (CCR). 25.310 Section 25.310 Grants and Agreements Office of Management and Budget Guidance for Grants and Agreements OFFICE OF MANAGEMENT AND BUDGET GOVERNMENTWIDE GUIDANCE FOR GRANTS AND AGREEMENTS...

  11. 2 CFR 25.310 - Central Contractor Registration (CCR).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 2 Grants and Agreements 1 2012-01-01 2012-01-01 false Central Contractor Registration (CCR). 25.310 Section 25.310 Grants and Agreements Office of Management and Budget Guidance for Grants and Agreements OFFICE OF MANAGEMENT AND BUDGET GOVERNMENTWIDE GUIDANCE FOR GRANTS AND AGREEMENTS...

  12. 2 CFR 25.310 - Central Contractor Registration (CCR).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 2 Grants and Agreements 1 2011-01-01 2011-01-01 false Central Contractor Registration (CCR). 25.310 Section 25.310 Grants and Agreements Office of Management and Budget Guidance for Grants and Agreements OFFICE OF MANAGEMENT AND BUDGET GOVERNMENTWIDE GUIDANCE FOR GRANTS AND AGREEMENTS...

  13. The Ccr4-Not Complex: Architecture and Structural Insights.

    PubMed

    Collart, Martine A; Panasenko, Olesya O

    2017-01-01

    The Ccr4-Not complex is an essential multi-subunit protein complex that plays a fundamental role in eukaryotic mRNA metabolism and has a multitude of different roles that impact eukaryotic gene expression . It has a conserved core of three Not proteins, the Ccr4 protein, and two Ccr4 associated factors, Caf1 and Caf40. A fourth Not protein, Not4, is conserved, but is only a stable subunit of the complex in yeast. Certain subunits have been duplicated during evolution, with functional divergence, such as Not3 in yeast, and Ccr4 or Caf1 in human. However the complex includes only one homolog for each protein. In addition, species-specific subunits are part of the complex, such as Caf130 in yeast or Not10 and Not11 in human. Two conserved catalytic functions are associated with the complex, deadenylation and ubiquitination . The complex adopts an L-shaped structure, in which different modules are bound to a large Not1 scaffold protein. In this chapter we will summarize our current knowledge of the architecture of the complex and of the structure of its constituents.

  14. PCSK9 regulates the chemokine receptor CCR2 on monocytes.

    PubMed

    Grune, Jana; Meyborg, Heike; Bezhaeva, Taisiya; Kappert, Kai; Hillmeister, Philipp; Kintscher, Ulrich; Pieske, Burkert; Stawowy, Philipp

    2017-04-01

    Monocyte migration is a key element in atherosclerosis. LDL-C facilitates monocyte migration via induction of CCR2. PCSK9 regulates cell surface expression of the LDL-R and is expressed in vascular smooth muscle cells (VSMCs). The present study was done to investigate the regulation of PCSK9 in VSMCs and its impact on monocyte function.

  15. The role and modulation of CCR6+ Th17 cell populations in rheumatoid arthritis.

    PubMed

    Paulissen, Sandra M J; van Hamburg, Jan Piet; Dankers, Wendy; Lubberts, Erik

    2015-07-01

    The IL-17A producing T-helper-17 (Th17) cell population plays a major role in rheumatoid arthritis (RA) pathogenesis and has gained wide interest as treatment target. IL-17A expressing Th cells are characterized by the expression of the chemokine receptor CCR6 and the transcription factor RORC. In RA, CCR6+ Th cells were identified in peripheral blood, synovial fluid and inflamed synovial tissue. CCR6+ Th cells might drive the progression of an early inflammation towards a persistent arthritis. The CCR6+ Th cell population is heterogeneous and several subpopulations can be distinguished, including Th17, Th22, Th17.1 (also called non-classic Th1 cells), and unclassified or intermediate populations. Interestingly, some of these populations produce low levels of IL-17A but are still very pathogenic. Furthermore, the CCR6+ Th cells phenotype is unstable and plasticity exists between CCR6+ Th cells and T-regulatory (Treg) cells and within the CCR6+ Th cell subpopulations. In this review, characteristics of the different CCR6+ Th cell populations, their plasticity, and their potential impact on rheumatoid arthritis are discussed. Moreover, current approaches to target CCR6+ Th cells and future directions of research to find specific CCR6+ Th cell targets in the treatment of patients with RA and other CCR6+ Th cell mediated autoimmune diseases are highlighted.

  16. Highly specific blockade of CCR5 inhibits leukocyte trafficking and reduces mucosal inflammation in murine colitis.

    PubMed

    Mencarelli, Andrea; Cipriani, Sabrina; Francisci, Daniela; Santucci, Luca; Baldelli, Franco; Distrutti, Eleonora; Fiorucci, Stefano

    2016-08-05

    Targeted disruption of leukocyte trafficking to the gut represents a promising approach for the treatment of inflammatory bowel diseases (IBDs). CCR5, the shared receptor for MIP1α and β and RANTES, is expressed by multiple leukocytes. Here, we aimed to determine the role of CCR5 in mediating leukocyte trafficking in models of colitis, and evaluate the therapeutic potential of maraviroc, an orally active CCR5 antagonist used in the treatment of CCR5-tropic HIV. Acute and chronic colitis were induced by administration of DSS or TNBS to wild-type and CCR5(-/-) mice or adoptive transfer of splenic naïve CD4(+) T-cells from wild type or CCR5(-/-) mice into RAG-1(-/-). CCR5 gene ablation reduced the mucosal recruitment and activation of CCR5-bearing CD4(+) and CD11b(+) leukocytes, resulting in profound attenuation of signs and symptoms of inflammation in the TNBS and transfer models of colitis. In the DSS/TNBS colitis and in the transfer model, maraviroc attenuated development of intestinal inflammation by selectively reducing the recruitment of CCR5 bearing leukocytes. In summary, CCR5 regulates recruitment of blood leukocytes into the colon indicating that targeting CCR5 may offer therapeutic options in IBDs.

  17. Highly specific blockade of CCR5 inhibits leukocyte trafficking and reduces mucosal inflammation in murine colitis

    PubMed Central

    Mencarelli, Andrea; Cipriani, Sabrina; Francisci, Daniela; Santucci, Luca; Baldelli, Franco; Distrutti, Eleonora; Fiorucci, Stefano

    2016-01-01

    Targeted disruption of leukocyte trafficking to the gut represents a promising approach for the treatment of inflammatory bowel diseases (IBDs). CCR5, the shared receptor for MIP1α and β and RANTES, is expressed by multiple leukocytes. Here, we aimed to determine the role of CCR5 in mediating leukocyte trafficking in models of colitis, and evaluate the therapeutic potential of maraviroc, an orally active CCR5 antagonist used in the treatment of CCR5-tropic HIV. Acute and chronic colitis were induced by administration of DSS or TNBS to wild-type and CCR5−/− mice or adoptive transfer of splenic naïve CD4+ T-cells from wild type or CCR5−/− mice into RAG-1−/−. CCR5 gene ablation reduced the mucosal recruitment and activation of CCR5-bearing CD4+ and CD11b+ leukocytes, resulting in profound attenuation of signs and symptoms of inflammation in the TNBS and transfer models of colitis. In the DSS/TNBS colitis and in the transfer model, maraviroc attenuated development of intestinal inflammation by selectively reducing the recruitment of CCR5 bearing leukocytes. In summary, CCR5 regulates recruitment of blood leukocytes into the colon indicating that targeting CCR5 may offer therapeutic options in IBDs. PMID:27492684

  18. Decreased HIV Type 1 Transcription in CCR5-Δ32 Heterozygotes During Suppressive Antiretroviral Therapy

    PubMed Central

    Wang, Charlene; Abdel-Mohsen, Mohamed; Strain, Matthew C.; Lada, Steven M.; Yukl, Steven; Cockerham, Leslie R.; Pilcher, Christopher D.; Hecht, Frederick M.; Sinclair, Elizabeth; Liegler, Teri; Richman, Douglas D.; Deeks, Steven G.; Pillai, Satish K.

    2014-01-01

    Individuals who are heterozygous for the CCR5-Δ32 mutation provide a natural model to examine the effects of reduced CCR5 expression on human immunodeficiency virus (HIV) persistence. We evaluated the HIV reservoir in 18 CCR5-Δ32 heterozygotes and 54 CCR5 wild-type individuals during suppressive antiretroviral therapy. Cell-associated HIV RNA levels (P = .035), RNA to DNA transcriptional ratios (P = .013), and frequency of detectable HIV 2–long terminal repeat circular DNA (P = .013) were significantly lower in CD4+ T cells from CCR5-Δ32 heterozygotes. Cell-associated HIV RNA was significantly correlated with CCR5 surface expression on CD4+ T cells (r2 = 0.136; P = .002). Our findings suggest that curative strategies should further explore manipulation of CCR5. PMID:24935955

  19. Decreased HIV type 1 transcription in CCR5-Δ32 heterozygotes during suppressive antiretroviral therapy.

    PubMed

    Wang, Charlene; Abdel-Mohsen, Mohamed; Strain, Matthew C; Lada, Steven M; Yukl, Steven; Cockerham, Leslie R; Pilcher, Christopher D; Hecht, Frederick M; Sinclair, Elizabeth; Liegler, Teri; Richman, Douglas D; Deeks, Steven G; Pillai, Satish K

    2014-12-01

    Individuals who are heterozygous for the CCR5-Δ32 mutation provide a natural model to examine the effects of reduced CCR5 expression on human immunodeficiency virus (HIV) persistence. We evaluated the HIV reservoir in 18 CCR5-Δ32 heterozygotes and 54 CCR5 wild-type individuals during suppressive antiretroviral therapy. Cell-associated HIV RNA levels (P=.035), RNA to DNA transcriptional ratios (P=.013), and frequency of detectable HIV 2-long terminal repeat circular DNA (P=.013) were significantly lower in CD4+ T cells from CCR5-Δ32 heterozygotes. Cell-associated HIV RNA was significantly correlated with CCR5 surface expression on CD4+ T cells (r2=0.136; P=.002). Our findings suggest that curative strategies should further explore manipulation of CCR5.

  20. Retinoic acids up-regulate functional eosinophil-driving receptor CCR3.

    PubMed

    Ueki, S; Nishikawa, J; Yamauchi, Y; Konno, Y; Tamaki, M; Itoga, M; Kobayashi, Y; Takeda, M; Moritoki, Y; Ito, W; Chihara, J

    2013-07-01

    Eotaxins and their receptor CCR3 have a definitive role for tissue accumulation of eosinophils both under homeostatic and pathologic conditions. However, physiological stimuli that can up-regulate CCR3 in blood-derived human eosinophils have not been recognized. As a prior gene microarray study revealed up-regulation of CCR3 in eosinophils stimulated with retinoic acids (RAs), the expression of functional CCR3 was examined. We found that 9-cis RA and all-trans RA (ATRA) significantly induced surface CCR3 expression regardless of the presence of IL-3 or IL-5. Pharmacological manipulations with receptor-specific agonists and antagonists indicated that retinoic acid receptor-α activation is critical for CCR3 up-regulation. RA-induced CCR3 was associated with its functional capacity, in terms of the calcium mobilization and chemotactic response to eotaxin-1 (CCL11). Our study suggests an important role of vitamin A derivatives in the tissue accumulation of eosinophils.

  1. National Aeronautics and Space Administration Biological and Physical Research Enterprise Strategy

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As the 21st century begins, NASA's new Vision and Mission focuses the Agency's Enterprises toward exploration and discovery.The Biological and Physical Research Enterprise has a unique and enabling role in support of the Agency's Vision and Mission. Our strategic research seeks innovations and solutions to enable the extension of life into deep space safely and productively. Our fundamental research, as well as our research partnerships with industry and other agencies, allow new knowledge and tech- nologies to bring improvements to life on Earth. Our interdisciplinary research in the unique laboratory of microgravity addresses opportunities and challenges on our home planet as well as in space environments. The Enterprise maintains a key role in encouraging and engaging the next generation of explorers from primary school through the grad- uate level via our direct student participation in space research.The Biological and Physical Research Enterprise encompasses three themes. The biological sciences research theme investigates ways to support a safe human presence in space. This theme addresses the definition and control of physiological and psychological risks from the space environment, including radiation,reduced gravity, and isolation. The biological sciences research theme is also responsible for the develop- ment of human support systems technology as well as fundamental biological research spanning topics from genomics to ecologies. The physical sciences research theme supports research that takes advantage of the space environment to expand our understanding of the fundamental laws of nature. This theme also supports applied physical sciences research to improve safety and performance of humans in space. The research partnerships and flight support theme establishes policies and allocates space resources to encourage and develop entrepreneurial partners access to space research.Working together across research disciplines, the Biological and Physical

  2. The HIV-1 Gp120/CXCR4 axis promotes CCR7 ligand-dependent CD4 T cell migration: CCR7 homo- and CCR7/CXCR4 hetero-oligomer formation as a possible mechanism for up-regulation of functional CCR7.

    PubMed

    Hayasaka, Haruko; Kobayashi, Daichi; Yoshimura, Hiromi; Nakayama, Emi E; Shioda, Tatsuo; Miyasaka, Masayuki

    2015-01-01

    During human immunodeficiency virus (HIV) infection, enhanced migration of infected cells to lymph nodes leads to efficient propagation of HIV-1. The selective chemokine receptors, including CXCR4 and CCR7, may play a role in this process, yet the viral factors regulating chemokine-dependent T cell migration remain relatively unclear. The functional cooperation between the CXCR4 ligand chemokine CXCL12 and the CCR7 ligand chemokines CCL19 and CCL21 enhances CCR7-dependent T cell motility in vitro as well as cell trafficking into the lymph nodes in vivo. In this study, we report that a recombinant form of a viral CXCR4 ligand, X4-tropic HIV-1 gp120, enhanced the CD4 T cell response to CCR7 ligands in a manner dependent on CXCR4 and CD4, and that this effect was recapitulated by HIV-1 virions. HIV-1 gp120 significantly enhanced CCR7-dependent CD4 T cell migration from the footpad of mice to the draining lymph nodes in in vivo transfer experiments. We also demonstrated that CXCR4 expression is required for stable CCR7 expression on the CD4 T cell surface, whereas CXCR4 signaling facilitated CCR7 ligand binding to the cell surface and increased the level of CCR7 homo- as well as CXCR4/CCR7 hetero-oligomers without affecting CCR7 expression levels. Our findings indicate that HIV-evoked CXCR4 signaling promotes CCR7-dependent CD4 T cell migration by up-regulating CCR7 function, which is likely to be induced by increased formation of CCR7 homo- and CXCR4/CCR7 hetero-oligomers on the surface of CD4 T cells.

  3. Retinal Inhibition of CCR3 Induces Retinal Cell Death in a Murine Model of Choroidal Neovascularization

    PubMed Central

    Wang, Haibo; Han, Xiaokun; Gambhir, Deeksha; Becker, Silke; Kunz, Eric; Liu, Angelina Jingtong; Hartnett, M. Elizabeth

    2016-01-01

    Inhibition of chemokine C-C motif receptor 3 (CCR3) signaling has been considered as treatment for neovascular age-related macular degeneration (AMD). However, CCR3 is expressed in neural retina from aged human donor eyes. Therefore, broad CCR3 inhibition may be harmful to the retina. We assessed the effects of CCR3 inhibition on retina and choroidal endothelial cells (CECs) that develop into choroidal neovascularization (CNV). In adult murine eyes, CCR3 colocalized with glutamine-synthetase labeled Műller cells. In a murine laser-induced CNV model, CCR3 immunolocalized not only to lectin-stained cells in CNV lesions but also to the retina. Compared to non-lasered controls, CCR3 mRNA was significantly increased in laser-treated retina. An intravitreal injection of a CCR3 inhibitor (CCR3i) significantly reduced CNV compared to DMSO or PBS controls. Both CCR3i and a neutralizing antibody to CCR3 increased TUNEL+ retinal cells overlying CNV, compared to controls. There was no difference in cleaved caspase-3 in laser-induced CNV lesions or in overlying retina between CCR3i- or control-treated eyes. Following CCR3i, apoptotic inducible factor (AIF) was significantly increased and anti-apoptotic factor BCL2 decreased in the retina; there were no differences in retinal vascular endothelial growth factor (VEGF). In cultured human Műller cells exposed to eotaxin (CCL11) and VEGF, CCR3i significantly increased TUNEL+ cells and AIF but decreased BCL2 and brain derived neurotrophic factor, without affecting caspase-3 activity or VEGF. CCR3i significantly decreased AIF in RPE/choroids and immunostaining of phosphorylated VEGF receptor 2 (p-VEGFR2) in CNV with a trend toward reduced VEGF. In cultured CECs treated with CCL11 and/or VEGF, CCR3i decreased p-VEGFR2 and increased BCL2 without increasing TUNEL+ cells and AIF. These findings suggest that inhibition of retinal CCR3 causes retinal cell death and that targeted inhibition of CCR3 in CECs may be a safer if CCR3 inhibition

  4. Retinal Inhibition of CCR3 Induces Retinal Cell Death in a Murine Model of Choroidal Neovascularization.

    PubMed

    Wang, Haibo; Han, Xiaokun; Gambhir, Deeksha; Becker, Silke; Kunz, Eric; Liu, Angelina Jingtong; Hartnett, M Elizabeth

    2016-01-01

    Inhibition of chemokine C-C motif receptor 3 (CCR3) signaling has been considered as treatment for neovascular age-related macular degeneration (AMD). However, CCR3 is expressed in neural retina from aged human donor eyes. Therefore, broad CCR3 inhibition may be harmful to the retina. We assessed the effects of CCR3 inhibition on retina and choroidal endothelial cells (CECs) that develop into choroidal neovascularization (CNV). In adult murine eyes, CCR3 colocalized with glutamine-synthetase labeled Műller cells. In a murine laser-induced CNV model, CCR3 immunolocalized not only to lectin-stained cells in CNV lesions but also to the retina. Compared to non-lasered controls, CCR3 mRNA was significantly increased in laser-treated retina. An intravitreal injection of a CCR3 inhibitor (CCR3i) significantly reduced CNV compared to DMSO or PBS controls. Both CCR3i and a neutralizing antibody to CCR3 increased TUNEL+ retinal cells overlying CNV, compared to controls. There was no difference in cleaved caspase-3 in laser-induced CNV lesions or in overlying retina between CCR3i- or control-treated eyes. Following CCR3i, apoptotic inducible factor (AIF) was significantly increased and anti-apoptotic factor BCL2 decreased in the retina; there were no differences in retinal vascular endothelial growth factor (VEGF). In cultured human Műller cells exposed to eotaxin (CCL11) and VEGF, CCR3i significantly increased TUNEL+ cells and AIF but decreased BCL2 and brain derived neurotrophic factor, without affecting caspase-3 activity or VEGF. CCR3i significantly decreased AIF in RPE/choroids and immunostaining of phosphorylated VEGF receptor 2 (p-VEGFR2) in CNV with a trend toward reduced VEGF. In cultured CECs treated with CCL11 and/or VEGF, CCR3i decreased p-VEGFR2 and increased BCL2 without increasing TUNEL+ cells and AIF. These findings suggest that inhibition of retinal CCR3 causes retinal cell death and that targeted inhibition of CCR3 in CECs may be a safer if CCR3 inhibition

  5. Regional and national significance of biological nitrogen fixation by crops in the United States

    EPA Science Inventory

    Background/Questions/Methods Biological nitrogen fixation by crops (C-BNF) represents one of the largest anthropogenic inputs of reactive nitrogen (N) to land surfaces around the world. In the United States (US), existing estimates of C-BNF are uncertain because of incomplete o...

  6. CORAL REEF BIOLOGICAL CRITERIA: USING THE CLEAN WATER ACT TO PROTECT A NATIONAL TREASURE

    EPA Science Inventory

    Coral reefs are declining at unprecedented rates worldwide due to multiple interactive stressors including climate change and land-based sources of pollution. The Clean Water Act (CWA) can be a powerful legal instrument for protecting water resources, including the biological inh...

  7. Cloning, Stem Cells, and the Current National Debate: Incorporating Ethics into a Large Introductory Biology Course

    ERIC Educational Resources Information Center

    Fink, Rachel D.

    2002-01-01

    Discussing the ethical issues involved in topics such as cloning and stem cell research in a large introductory biology course is often difficult. Teachers may be wary of presenting material biased by personal beliefs, and students often feel inhibited speaking about moral issues in a large group. Yet, to ignore what is happening "out there"…

  8. The CCR4 deadenylase acts with Nanos and Pumilio in the fine-tuning of Mei-P26 expression to promote germline stem cell self-renewal.

    PubMed

    Joly, Willy; Chartier, Aymeric; Rojas-Rios, Patricia; Busseau, Isabelle; Simonelig, Martine

    2013-01-01

    Translational regulation plays an essential role in Drosophila ovarian germline stem cell (GSC) biology. GSC self-renewal requires two translational repressors, Nanos (Nos) and Pumilio (Pum), which repress the expression of differentiation factors in the stem cells. The molecular mechanisms underlying this translational repression remain unknown. Here, we show that the CCR4 deadenylase is required for GSC self-renewal and that Nos and Pum act through its recruitment onto specific mRNAs. We identify mei-P26 mRNA as a direct and major target of Nos/Pum/CCR4 translational repression in the GSCs. mei-P26 encodes a protein of the Trim-NHL tumor suppressor family that has conserved functions in stem cell lineages. We show that fine-tuning Mei-P26 expression by CCR4 plays a key role in GSC self-renewal. These results identify the molecular mechanism of Nos/Pum function in GSC self-renewal and reveal the role of CCR4-NOT-mediated deadenylation in regulating the balance between GSC self-renewal and differentiation.

  9. Epigenetic mechanisms, T-cell activation, and CCR5 genetics interact to regulate T-cell expression of CCR5, the major HIV-1 coreceptor.

    PubMed

    Gornalusse, German G; Mummidi, Srinivas; Gaitan, Alvaro A; Jimenez, Fabio; Ramsuran, Veron; Picton, Anabela; Rogers, Kristen; Manoharan, Muthu Saravanan; Avadhanam, Nymisha; Murthy, Krishna K; Martinez, Hernan; Molano Murillo, Angela; Chykarenko, Zoya A; Hutt, Richard; Daskalakis, Demetre; Shostakovich-Koretskaya, Ludmila; Abdool Karim, Salim; Martin, Jeffrey N; Deeks, Steven G; Hecht, Frederick; Sinclair, Elizabeth; Clark, Robert A; Okulicz, Jason; Valentine, Fred T; Martinson, Neil; Tiemessen, Caroline Tanya; Ndung'u, Thumbi; Hunt, Peter W; He, Weijing; Ahuja, Sunil K

    2015-08-25

    T-cell expression levels of CC chemokine receptor 5 (CCR5) are a critical determinant of HIV/AIDS susceptibility, and manifest wide variations (i) between T-cell subsets and among individuals and (ii) in T-cell activation-induced increases in expression levels. We demonstrate that a unifying mechanism for this variation is differences in constitutive and T-cell activation-induced DNA methylation status of CCR5 cis-regulatory regions (cis-regions). Commencing at an evolutionarily conserved CpG (CpG -41), CCR5 cis-regions manifest lower vs. higher methylation in T cells with higher vs. lower CCR5 levels (memory vs. naïve T cells) and in memory T cells with higher vs. lower CCR5 levels. HIV-related and in vitro induced T-cell activation is associated with demethylation of these cis-regions. CCR5 haplotypes associated with increased vs. decreased gene/surface expression levels and HIV/AIDS susceptibility magnify vs. dampen T-cell activation-associated demethylation. Methylation status of CCR5 intron 2 explains a larger proportion of the variation in CCR5 levels than genotype or T-cell activation. The ancestral, protective CCR5-HHA haplotype bears a polymorphism at CpG -41 that is (i) specific to southern Africa, (ii) abrogates binding of the transcription factor CREB1 to this cis-region, and (iii) exhibits a trend for overrepresentation in persons with reduced susceptibility to HIV and disease progression. Genotypes lacking the CCR5-Δ32 mutation but with hypermethylated cis-regions have CCR5 levels similar to genotypes heterozygous for CCR5-Δ32. In HIV-infected individuals, CCR5 cis-regions remain demethylated, despite restoration of CD4+ counts (≥800 cells per mm(3)) with antiretroviral therapy. Thus, methylation content of CCR5 cis-regions is a central epigenetic determinant of T-cell CCR5 levels, and possibly HIV-related outcomes.

  10. A role for CCR5(+)CD4 T cells in cutaneous psoriasis and for CD103(+) CCR4(+) CD8 Teff cells in the associated systemic inflammation.

    PubMed

    Sgambelluri, Francesco; Diani, Marco; Altomare, Andrea; Frigerio, Elena; Drago, Lorenzo; Granucci, Francesca; Banfi, Giuseppe; Altomare, Gianfranco; Reali, Eva

    2016-06-01

    Recent results have identified critical components of the T cell response involved in the initiation and amplification phases of psoriasis. However the link between T cell responses arising in the skin and the systemic inflammation associated with severe psoriasis is largely unknown. We hypothesized that specific subsets of memory T cells recirculating from the skin could play a role. We therefore dissected the circulating memory T cell compartment in patients by analyzing the TCM, TEM and Teff phenotype, the pattern of CCR4 and CCR5 chemokine receptor expression and the expression of the tissue homing molecule CD103. For each subset we calculated the correlation with the Psoriasis Area and Severity Index (PASI) and with the extent of systemic inflammation measured as serum level of the prototypic short pentraxin, C reactive protein (CRP). Validation was performed by comparison with gene expression data in psoriatic plaques. We found that circulating CD103(+)CCR4(+)CCR5(+) and CCR4(+)CCR6(-) CD8(+) Teff cells, were highly correlated with CRP levels as well as with the validated index PASI, reflecting a link between skin involvement and systemic inflammation in patients with severe psoriasis. In addition we observed a contraction of circulating CCR5(+) T cells in psoriasis patients, with a highly significant inverse correlation between CCR5(+)CD4 T cells and the PASI score. Increased expression of CCR5 and CCL5 genes in psoriatic skin lesions was consistent with an accumulation of CCR5(+) cells in psoriatic plaques indicating a role for CCR5/CCL5 axis in disease pathogenesis.

  11. Biological Assessment of the Continued Operation of Los Alamos National Laboratory on Federally Listed Threatened and Endangered Species

    SciTech Connect

    Hansen, Leslie A.

    2006-09-19

    This biological assessment considers the effects of continuing to operate Los Alamos National Laboratory on Federally listed threatened or endangered species, based on current and future operations identified in the 2006 Site-wide Environmental Impact Statement for the Continued Operation of Los Alamos National Laboratory (SWEIS; DOE In Prep.). We reviewed 40 projects analyzed in the SWEIS as well as two aspects on ongoing operations to determine if these actions had the potential to affect Federally listed species. Eighteen projects that had not already received U.S. Fish and Wildlife Service (USFWS) consultation and concurrence, as well as the two aspects of ongoing operations, ecological risk from legacy contaminants and the Outfall Reduction Project, were determined to have the potential to affect threatened or endangered species. Cumulative impacts were also analyzed.

  12. A Novel Role for the Receptor of the Complement Cleavage Fragment C5a, C5aR1, in CCR5-Mediated Entry of HIV into Macrophages.

    PubMed

    Moreno-Fernandez, Maria E; Aliberti, Julio; Groeneweg, Sander; Köhl, Jörg; Chougnet, Claire A

    2016-04-01

    The complement system is an ancient pattern recognition system that becomes activated during all stages of HIV infection. Previous studies have shown that C5a can enhance the infection of monocyte-derived macrophages and T cells indirectly through the production of interleukin (IL)-6 and tumor necrosis factor (TNF)-α and the attraction of dendritic cells. C5a exerts its multiple biologic functions mainly through activation of C5a receptor 1 (C5aR1). Here, we assessed the role of C5aR1 as an enhancer of CCR5-mediated HIV infection. We determined CCR5 and C5aR1 heterodimer formation in myeloid cells and the impact of C5aR1 blockade on HIV entry and genomic integration. C5aR1/CCR5 heterodimer formation was identified by immunoprecipitation and western blotting. THP-1 cells and monocyte-derived macrophages (MDM) were infected by R5 laboratory strains or HIV pseudotyped for the vesicular stomatitis virus (VSV) envelope. Levels of integrated HIV were measured by quantitative PCR after targeting of C5aR1 by a C5aR antagonist, neutralizing C5aR1 monoclonal antibody (mAb) or hC5a. C5aR1 was also silenced by specific siRNA prior to viral entry. We found that C5aR1 forms heterodimers with the HIV coreceptor CCR5 in myeloid cells. Targeting C5aR1 significantly decreased integration by R5 viruses but not by VSV-pseudotyped viruses, suggesting that C5aR1 is critical for viral entry. The level of inhibition achieved with C5aR1-blocking reagents was comparable to that of CCR5 antagonists. Mechanistically, C5aR1 targeting decreased CCR5 expression. MDM from CCR5Δ32 homozygous subjects expressed levels of C5aR1 similar to CCR5 WT individuals, suggesting that mere C5aR1 expression is not sufficient for HIV infection. HIV appeared to preferentially enter THP-1 cells expressing high levels of both C5aR1 and CCR5. Targeted reduction of C5aR1 expression in such cells reduced HIV infection by ~50%. Our data thus suggest that C5aR1 acts as an enhancer of CCR5-mediated HIV entry into

  13. Suppression of CCR impacts metabolite profile and cell wall composition in Pinus radiata tracheary elements.

    PubMed

    Wagner, Armin; Tobimatsu, Yuki; Goeminne, Geert; Phillips, Lorelle; Flint, Heather; Steward, Diane; Torr, Kirk; Donaldson, Lloyd; Boerjan, Wout; Ralph, John

    2013-01-01

    Suppression of the lignin-related gene cinnamoyl-CoA reductase (CCR) in the Pinus radiata tracheary element (TE) system impacted both the metabolite profile and the cell wall matrix in CCR-RNAi lines. UPLC-MS/MS-based metabolite profiling identified elevated levels of p-coumaroyl hexose, caffeic acid hexoside and ferulic acid hexoside in CCR-RNAi lines, indicating a redirection of metabolite flow within phenylpropanoid metabolism. Dilignols derived from coniferyl alcohol such as G(8-5)G, G(8-O-4)G and isodihydrodehydrodiconiferyl alcohol (IDDDC) were substantially depleted, providing evidence for CCR's involvement in coniferyl alcohol biosynthesis. Severe CCR suppression almost halved lignin content in TEs based on a depletion of both H-type and G-type lignin, providing evidence for CCR's involvement in the biosynthesis of both lignin types. 2D-NMR studies revealed minor changes in the H:G-ratio and consequently a largely unchanged interunit linkage distribution in the lignin polymer. However, unusual cell wall components including ferulate and unsaturated fatty acids were identified in TEs by thioacidolysis, pyrolysis-GC/MS and/or 2D-NMR in CCR-RNAi lines, providing new insights into the consequences of CCR suppression in pine. Interestingly, CCR suppression substantially promoted pyrolytic breakdown of cell wall polysaccharides, a phenotype most likely caused by the incorporation of acidic compounds into the cell wall matrix in CCR-RNAi lines.

  14. Effects of genetic variants of CCR5 chemokine receptors on oral squamous cell carcinoma.

    PubMed

    Tanyel, C R; Cincin, Z B; Gokcen-Rohlig, B; Bektas-Kayhan, K; Unur, M; Cakmakoglu, B

    2013-11-18

    We aimed to evaluate the effect of genetic variants of the chemokine C-C motif receptor (CCR5) in the pathogenesis of oral squamous cell carcinoma (OSCC). A total of 127 patients diagnosed with OSCC and 104 healthy individuals were included in the study. The polymorphisms CCR5 59029 and CCR5-delta32 were assessed with the polymerase chain reaction-restricted fragment length polymorphism (PCR-RFLP) method from peripheral blood samples of both groups. There was a statistically significant difference between the control and patient groups for CCR5 59029 A/G genotypes (P < 0.01). Individuals carrying the CCR5 59029 G allele (GG +AG genotypes) had a 2.84-fold increased risk for OSCC (P < 0.0001), and the CCR5 59029 AA genotype frequency was higher in the control group than in the patient group (P < 0.0001). The CCR5-delta 32 genotype frequencies did not differ significantly between controls and cases (P > 0.05). CCR5 59029 GG and CCR5-delta32 DD + ID genotype frequencies were significantly increased in Grade II-III OSCC patients compared with Grade I-II OSCC patients. In conclusion, these results suggested that the G allele of the CCR5 59029 polymorphism might be a risk factor due to the loss of receptor function that might cause increased inflammation leading to the development of OSCC.

  15. Molecular Gymnastics: Mechanisms of HIV-1 Resistance to CCR5 Antagonists and Impact on Virus Phenotypes.

    PubMed

    Roche, Michael; Borm, Katharina; Flynn, Jacqueline K; Lewin, Sharon R; Churchill, Melissa J; Gorry, Paul R

    2016-01-01

    Human immunodeficiency virus type 1 (HIV-1) enters host cells through the binding of its envelope glycoproteins (Env) to the host cell receptor CD4 and then subsequent binding to a chemokine coreceptor, either CCR5 or CXCR4. CCR5 antagonists are a relatively recent class addition to the armamentarium of anti-HIV-1 drugs. These compounds act by binding to a hydrophobic pocket formed by the transmembrane helices of CCR5 and altering the conformation of the extracellular domains, such that they are no longer recognized by Env. Maraviroc is the first drug within this class to be licenced for use in HIV-1 therapy regimens. HIV resistance to CCR5 antagonists occurs either through outgrowth of pre-existing CXCR4-using viruses, or through acquisition of the ability of CCR5-using HIV-1 to use the antagonist bound form of CCR5. In the latter scenario, the mechanism underlying resistance is through complex alterations in the way that resistant Envs engage CCR5. These significant changes are unlikely to occur without consequence to the viral entry phenotype and may also open up new avenues to target CCR5 antagonist resistant viruses. This review discusses the mechanism of action of CCR5 antagonists, how HIV resistance to CCR5 antagonists occurs, and the subsequent effects on Env function.

  16. Distinct CCR7 glycosylation pattern shapes receptor signaling and endocytosis to modulate chemotactic responses.

    PubMed

    Hauser, Mark A; Kindinger, Ilona; Laufer, Julia M; Späte, Anne-Katrin; Bucher, Delia; Vanes, Sarah L; Krueger, Wolfgang A; Wittmann, Valentin; Legler, Daniel F

    2016-06-01

    The homeostatic chemokines CCL19 and CCL21 and their common cognate chemokine receptor CCR7 orchestrate immune cell trafficking by eliciting distinct signaling pathways. Here, we demonstrate that human CCR7 is N-glycosylated on 2 specific residues in the N terminus and the third extracellular loop. Conceptually, CCR7 glycosylation adds steric hindrance to the receptor N terminus and extracellular loop 3, acting as a "swinging door" to regulate receptor sensitivity and cell migration. We found that freshly isolated human B cells, as well as expanded T cells, but not naïve T cells, express highly sialylated CCR7. Moreover, we identified that human dendritic cells imprint T cell migration toward CCR7 ligands by secreting enzymes that deglycosylate CCR7, thereby boosting CCR7 signaling on T cells, permitting enhanced T cell locomotion, while simultaneously decreasing receptor endocytosis. In addition, dendritic cells proteolytically convert immobilized CCL21 to a soluble form that is more potent in triggering chemotactic movement and does not desensitize the receptor. Furthermore, we demonstrate that soluble CCL21 functionally resembles neither the CCL19 nor the CCL21 phenotype but acts as a chemokine with unique features. Thus, we advance the concept of dendritic cell-dependent generation of micromilieus and lymph node conditioning by demonstrating a novel layer of CCR7 regulation through CCR7 sialylation. In summary, we demonstrate that leukocyte subsets express distinct patterns of CCR7 sialylation that contribute to receptor signaling and fine-tuning chemotactic responses.

  17. German National Proficiency Scales in Biology: Internal Structure, Relations to General Cognitive Abilities and Verbal Skills

    ERIC Educational Resources Information Center

    Kampa, Nele; Köller, Olaf

    2016-01-01

    National and international large-scale assessments (LSA) have a major impact on educational systems, which raises fundamental questions about the validity of the measures regarding their internal structure and their relations to relevant covariates. Given its importance, research on the validity of instruments specifically developed for LSA is…

  18. 2012 National Survey of Science and Mathematics Education: Status of High School Biology

    ERIC Educational Resources Information Center

    Lyons, Kiira M.

    2013-01-01

    The 2012 National Survey of Science and Mathematics Education was designed to provide up-to-date information and to identify trends in the areas of teacher background and experience, curriculum and instruction, and the availability and use of instructional resources. A total of 7,752 science and mathematics teachers in schools across the United…

  19. 2012 National Survey of Science and Mathematics Education: Compendium of Tables for High School Biology

    ERIC Educational Resources Information Center

    Horizon Research, Inc., 2013

    2013-01-01

    The 2012 National Survey of Science and Mathematics Education was designed to provide up-to-date information and to identify trends in the areas of teacher background and experience, curriculum and instruction, and the availability and use of instructional resources. This compendium, one of a series, details the results of a survey of high school…

  20. CCR2 and CCR5 genes polymorphisms in women with cervical lesions from Pernambuco, Northeast Region of Brazil: a case-control study

    PubMed Central

    dos Santos, Erinaldo Ubirajara Damasceno; de Lima, Géssica Dayane Cordeiro; Oliveira, Micheline de Lucena; Heráclio, Sandra de Andrade; da Silva, Hildson Dornelas Angelo; Crovella, Sergio; Maia, Maria de Mascena Diniz; de Souza/, Paulo Roberto Eleutério

    2016-01-01

    Polymorphisms in chemokine receptors play an important role in the progression of cervical intraepithelial neoplasia (CIN) to cervical cancer (CC). Our study examined the association of CCR2-64I (rs1799864) andCCR5-Δ32 (rs333) polymorphisms with susceptibility to develop cervical lesion (CIN and CC) in a Brazilian population. The genotyping of 139 women with cervical lesions and 151 women without cervical lesions for the CCR2-64I and CCR5-Δ32 polymorphisms were performed using polymerase chain reaction-restriction fragment length polymorphism. The individuals carrying heterozygous or homozygous genotypes (GA+AA) for CCR2-64I polymorphisms seem to be at lower risk for cervical lesion [odds ratio (OR) = 0.37, p = 0.0008)]. The same was observed for the A allele (OR = 0.39, p = 0.0002), while no association was detected (p > 0.05) with CCR5-Δ32 polymorphism. Regarding the human papillomavirus (HPV) type, patients carrying the CCR2-64Ipolymorphism were protected against infection by HPV type 16 (OR = 0.35, p = 0.0184). In summary, our study showed a protective effect ofCCR2-64I rs1799864 polymorphism against the development of cervical lesions (CIN and CC) and in the susceptibility of HPV 16 infection. PMID:26982176

  1. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity.

    PubMed

    Dorr, Patrick; Westby, Mike; Dobbs, Susan; Griffin, Paul; Irvine, Becky; Macartney, Malcolm; Mori, Julie; Rickett, Graham; Smith-Burchnell, Caroline; Napier, Carolyn; Webster, Rob; Armour, Duncan; Price, David; Stammen, Blanda; Wood, Anthony; Perros, Manos

    2005-11-01

    Maraviroc (UK-427,857) is a selective CCR5 antagonist with potent anti-human immunodeficiency virus type 1 (HIV-1) activity and favorable pharmacological properties. Maraviroc is the product of a medicinal chemistry effort initiated following identification of an imidazopyridine CCR5 ligand from a high-throughput screen of the Pfizer compound file. Maraviroc demonstrated potent antiviral activity against all CCR5-tropic HIV-1 viruses tested, including 43 primary isolates from various clades and diverse geographic origin (geometric mean 90% inhibitory concentration of 2.0 nM). Maraviroc was active against 200 clinically derived HIV-1 envelope-recombinant pseudoviruses, 100 of which were derived from viruses resistant to existing drug classes. There was little difference in the sensitivity of the 200 viruses to maraviroc, as illustrated by the biological cutoff in this assay (= geometric mean plus two standard deviations [SD] of 1.7-fold). The mechanism of action of maraviroc was established using cell-based assays, where it blocked binding of viral envelope, gp120, to CCR5 to prevent the membrane fusion events necessary for viral entry. Maraviroc did not affect CCR5 cell surface levels or associated intracellular signaling, confirming it as a functional antagonist of CCR5. Maraviroc has no detectable in vitro cytotoxicity and is highly selective for CCR5, as confirmed against a wide range of receptors and enzymes, including the hERG ion channel (50% inhibitory concentration, >10 microM), indicating potential for an excellent clinical safety profile. Studies in preclinical in vitro and in vivo models predicted maraviroc to have human pharmacokinetics consistent with once- or twice-daily dosing following oral administration. Clinical trials are ongoing to further investigate the potential of using maraviroc for the treatment of HIV-1 infection and AIDS.

  2. Chemical and biological characteristics of desert rock pools in intermittent streams of Capitol Reef National Park, Utah

    USGS Publications Warehouse

    Baron, Jill S.; LaFrancois, Toben; Kondratieff, Boris C.

    1998-01-01

    Chemical variability and biological communities of rock pools found in small desert drainage basins of Capitol Reef National Park were characterized over 8 mon in 1994. Neither flooding, drying, nor the presence or absence of surrounding vegetated wetlands had a great effect on chemical composition, which was very dilute and fluctuated somewhat in response to rain events. Neither flooding nor drying affected the composition of biological communities in the pools. Summer storms affected only a few drainages at a time, and only a few study pools of significant volume dried completely during the hot, dry summer. This suggests that only a portion of the Waterpocket Fold aquatic community is ever disturbed at a time, leaving undisturbed areas as a source of recovery. Pools bordered by vegetated wetlands always supported greater numbers of species throughout the year than those bordered only by bedrock, but the same taxa were found in both vegetated and bedrock pools. The rock pool fauna in Capitol Reef National Park appear to be resilient to climatic variability.

  3. Lack of association of CCR2-64I and CCR5-Delta 32 with type 1 diabetes and latent autoimmune diabetes in adults.

    PubMed

    Gambelunghe, Giovanni; Ghaderi, Mehran; Brozzetti, Annalisa; Del Sindaco, Paola; Gharizadeh, Babeck; Nyren, Paul; Hjelmström, Peter; Nikitina-Zake, Liene; Sanjeevi, Carani B; Falorni, Alberto

    2003-06-01

    It is well known that type 1 diabetes mellitus (T1DM) is a complex genetic disease resulting from the autoimmune destruction of pancreatic beta cells. Several genes have been associated with susceptibility and/or protection for T1DM, but the disease risk is mostly influenced by genes located in the class II region of the major histocompatibility complex. The attraction of leukocytes to tissues is essential for inflammation and the beginning of autoimmune reaction. The process is controlled by chemokines, which are chemotactic cytolines. Some studies have shown that CCR2-64I and CCR5-Delta 32 might be important for protection of susceptibility to some immunologically-mediated disorders. In the present study, we demonstrate the lack of association between CCR2-64I and CCR5-Delta 32 gene polymorphism and TIDM and we describe a new method for a simple and more precise genotyping of the CCR2 gene.

  4. Neighbourhood Socioeconomic Status and Biological “Wear & Tear” in a Nationally Representative Sample of US Adults

    PubMed Central

    Bird, Chloe E; Seeman, Teresa; Escarce, José J; Basurto-Dávila, Ricardo; Finch, Brian K; Dubowitz, Tamara; Heron, Melonie; Hale, Lauren; Merkin, Sharon Stein; Weden, Margaret; Lurie, Nicole; Alcoa, Paul O’Neill

    2012-01-01

    Objective To assess whether neighbourhood socioeconomic status (NSES) is independently associated with disparities in biological “wear and tear”—measured by allostatic load (AL)—in a nationally representative sample of U.S. adults. Design Cross-sectional study. Setting Population-based U.S. survey, the Third National Health and Nutrition Examination Survey (NHANES III), merged with U.S. Census data describing respondents’ neighbourhoods. Participants 13,184 adults from 83 counties and 1,805 census tracts who completed NHANES III interviews and medical examinations and whose residential addresses could be reliably geocoded to census tracts. Main Outcome Measures A summary measure of biological risk, incorporating nine biomarkers that together represent AL across metabolic, cardiovascular, and inflammatory subindices. Results Being male, older, having lower income, less education, being Mexican-American, and being both Black and female were all independently associated with worse AL. After adjusting for these characteristics, living in a lower SES neighbourhood was associated with worse AL (coeff. = −0.46; CI −0.079, −0.012). The relationship between NSES and AL did not vary significantly by gender or race/ethnicity. Conclusions Living in a lower SES neighbourhood in the United States is associated with significantly greater biological wear and tear as measured by AL, and this relationship is independent of individual SES characteristics. Our findings demonstrate that where one lives is independently associated with AL, thereby suggesting that policies that improve NSES may also yield health returns. PMID:19759056

  5. Oversight of Dual-Use Biological Research: The National Science Advisory Board for Biosecurity

    DTIC Science & Technology

    2006-07-10

    CRS-4 6 Janet Coleman, “NSABB Working Groups Will Begin Discussions Soon,” Research Policy ALERT, July 5, 2005. 7 Terrence M. Tumpey, Christopher F...Eugene Russo, “Biosecurity Advisory Board Considers Code of Ethics,” Research Policy ALERT, July 6, 2005. 36 For an example of research in an areas...National Biosecurity Advisory Board Members Stress Balance, International Implications,” Research Policy ALERT, July 1, 2005. Applicability to Other

  6. CCR5 Disruption in Induced Pluripotent Stem Cells Using CRISPR/Cas9 Provides Selective Resistance of Immune Cells to CCR5-tropic HIV-1 Virus.

    PubMed

    Kang, HyunJun; Minder, Petra; Park, Mi Ae; Mesquitta, Walatta-Tseyon; Torbett, Bruce E; Slukvin, Igor I

    2015-12-15

    The chemokine (C-C motif) receptor 5 (CCR5) serves as an HIV-1 co-receptor and is essential for cell infection with CCR5-tropic viruses. Loss of functional receptor protects against HIV infection. Here, we report the successful targeting of CCR5 in GFP-marked human induced pluripotent stem cells (iPSCs) using CRISPR/Cas9 with single and dual guide RNAs (gRNAs). Following CRISPER/Cas9-mediated gene editing using a single gRNA, 12.5% of cell colonies demonstrated CCR5 editing, of which 22.2% showed biallelic editing as determined by a Surveyor nuclease assay and direct sequencing. The use of dual gRNAs significantly increased the efficacy of CCR5 editing to 27% with a biallelic gene alteration frequency of 41%. To ensure the homogeneity of gene editing within cells, we used single cell sorting to establish clonal iPSC lines. Single cell-derived iPSC lines with homozygous CCR5 mutations displayed the typical characteristics of pluripotent stem cells and differentiated efficiently into hematopoietic cells, including macrophages. Although macrophages from both wild-type and CCR5-edited iPSCs supported CXCR4-tropic virus replication, macrophages from CCR5-edited iPSCs were uniquely resistant to CCR5-tropic virus challenge. This study demonstrates the feasibility of applying iPSC technology for the study of the role of CCR5 in HIV infection in vitro, and generation of HIV-resistant cells for potential therapeutic applications.

  7. Pyrrolidinyl phenylurea derivatives as novel CCR3 antagonists.

    PubMed

    Nitta, Aiko; Iura, Yosuke; Inoue, Hideki; Sato, Ippei; Morihira, Koichiro; Kubota, Hirokazu; Morokata, Tatsuaki; Takeuchi, Makoto; Ohta, Mitsuaki; Tsukamoto, Shin-ichi; Imaoka, Takayuki; Takahashi, Toshiya

    2012-11-15

    Optimization starting with our lead compound 1 (IC(50)=4.9 nM) led to the identification of pyrrolidinyl phenylurea derivatives. Further modification toward improvement of the bioavailability provided (R)-1-(1-((6-fluoronaphthalen-2-yl)methyl)pyrrolidin-3-yl)-3-(2-(2-hydroxyethoxy)phenyl)urea 32 (IC(50)=1.7 nM), a potent and orally active CCR3 antagonist.

  8. Functional characterization of CCR in birch (Betula platyphylla × Betula pendula) through overexpression and suppression analysis.

    PubMed

    Zhang, Wenbo; Wei, Rui; Chen, Su; Jiang, Jing; Li, Huiyu; Huang, Haijiao; Yang, Guang; Wang, Shuo; Wei, Hairong; Liu, Guifeng

    2015-06-01

    We cloned a Cinnamoyl-CoA Reductase gene (BpCCR1) from an apical meristem and first internode of Betula platyphylla and characterized its functions in lignin biosynthesis, wood formation and tree growth through transgenic approaches. We generated overexpression and suppression transgenic lines and analyzed them in comparison with the wild-type in terms of lignin content, anatomical characteristics, height and biomass. We found that BpCCR1 overexpression could increase lignin content up to 14.6%, and its underexpression decreased lignin content by 6.3%. Surprisingly, modification of BpCCR1 expression led to conspicuous changes in wood characteristics, including xylem vessel number and arrangement, and secondary wall thickness. The growth of transgenic trees in terms of height was also significantly influenced by the modification of BpCCR1 genes. We discuss the functions of BpCCR1 in the context of a phylogenetic tree built with CCR genes from multiple species.

  9. Allosteric Model of Maraviroc Binding to CC Chemokine Receptor 5 (CCR5)*

    PubMed Central

    Garcia-Perez, Javier; Rueda, Patricia; Alcami, Jose; Rognan, Didier; Arenzana-Seisdedos, Fernando; Lagane, Bernard; Kellenberger, Esther

    2011-01-01

    Maraviroc is a nonpeptidic small molecule human immunodeficiency virus type 1 (HIV-1) entry inhibitor that has just entered the therapeutic arsenal for the treatment of patients. We recently demonstrated that maraviroc binding to the HIV-1 coreceptor, CC chemokine receptor 5 (CCR5), prevents it from binding the chemokine CCL3 and the viral envelope glycoprotein gp120 by an allosteric mechanism. However, incomplete knowledge of ligand-binding sites and the lack of CCR5 crystal structures have hampered an in-depth molecular understanding of how the inhibitor works. Here, we addressed these issues by combining site-directed mutagenesis (SDM) with homology modeling and docking. Six crystal structures of G-protein-coupled receptors were compared for their suitability for CCR5 modeling. All CCR5 models had equally good geometry, but that built from the recently reported dimeric structure of the other HIV-1 coreceptor CXCR4 bound to the peptide CVX15 (Protein Data Bank code 3OE0) best agreed with the SDM data and discriminated CCR5 from non-CCR5 binders in a virtual screening approach. SDM and automated docking predicted that maraviroc inserts deeply in CCR5 transmembrane cavity where it can occupy three different binding sites, whereas CCL3 and gp120 lie on distinct yet overlapped regions of the CCR5 extracellular loop 2. Data suggesting that the transmembrane cavity remains accessible for maraviroc in CCL3-bound and gp120-bound CCR5 help explain our previous observation that the inhibitor enhances dissociation of preformed ligand-CCR5 complexes. Finally, we identified residues in the predicted CCR5 dimer interface that are mandatory for gp120 binding, suggesting that receptor dimerization might represent a target for new CCR5 entry inhibitors. PMID:21775441

  10. TALEN-Mediated Knockout of CCR5 Confers Protection Against Infection of Human Immunodeficiency Virus.

    PubMed

    Shi, Bingjie; Li, Juan; Shi, Xuanling; Jia, Wenxu; Wen, Yi; Hu, Xiongbing; Zhuang, Fengfeng; Xi, Jianzhong; Zhang, Linqi

    2017-02-01

    Transcription activator-like effector nuclease (TALEN) represents a valuable tool for genomic engineering due to its single-nucleotide precision, high nuclease activity, and low cytotoxicity. We report here systematic design and characterization of 28 novel TALENs targeting multiple regions of CCR5 gene (CCR5-TALEN) which encodes the co-receptor critical for entry of human immunodeficiency virus type I (HIV-1). By systemic characterization of these CCR5-TALENs, we have identified one (CCR5-TALEN-515) with higher nuclease activity, specificity, and lower cytotoxicity compared with zinc-finger nuclease (CCR5-ZFN) currently undergoing clinical trials. Sequence analysis of target cell line GHOST-CCR5-CXCR4 and human primary CD4 T cells showed that the double-strand breaks at the TALEN targeted sites resulted in truncated or nonfunctional CCR5 proteins thereby conferring protection against HIV-1 infection in vitro. None of the CCR5-TALENs had detectable levels of off-target nuclease activity against the homologous region in CCR2 although substantial level was identified for CCR5-ZFN in the primary CD4 T cells. Our results suggest that the CCR5-TALENs identified here are highly functional nucleases that produce protective genetic alterations to human CCR5. Application of these TALENs directly to the primary CD4 T cells and CD34 hematopoietic stem cells (HSCs) of infected individuals could help to create an immune system resistant to HIV-1 infection, recapitulating the success of "Berlin patient" and serving as an essential first step towards a "functional" cure of AIDS.

  11. Expansion of CCR8+ inflammatory myeloid cells in cancer patients with urothelial and renal carcinomas

    PubMed Central

    Eruslanov, Evgeniy; Stoffs, Taryn; Kim, Wan-Ju; Daurkin, Irina; Gilbert, Scott M.; Su, Li-Ming; Vieweg, Johannes; Daaka, Yehia; Kusmartsev, Sergei

    2013-01-01

    Purpose Chemokines are involved in cancer-related inflammation and malignant progression. In this study we evaluated expression of CCR8 and its natural cognate ligand CCL1 in patients with urothelial carcinomas of bladder and renal cell carcinomas. Experimental Design We examined CCR8 expression in peripheral blood and tumor tissues from patients with bladder and renal carcinomas. CCR8-positive myeloid cells were isolated from cancer tissues with magnetic beads and tested in vitro for cytokine production and ability to modulate T cell function. Results We demonstrate that monocytic and granulocytic myeloid cell subsets in peripheral blood of cancer patients with urothelial and renal carcinomas display increased expression of chemokine receptor CCR8. Up-regulated expression of CCR8 is also detected within human cancer tissues and primarily limited to tumor-associated macrophages (TAMs). When isolated, CD11b+CCR8+ cell subset produces the highest levels of pro-inflammatory and pro-angiogenic factors among intratumoral CD11b myeloid cells. Tumor-infiltrating CD11b+CCR8+ cells selectively display activated Stat3 and are capable of inducing FoxP3 expression in autologous T lymphocytes. Primary human tumors produce substantial amounts of the natural CCR8 ligand CCL1. Conclusions This study provides the first evidence that CCR8+ myeloid cell subset is expanded in cancer patients. Elevated secretion of CCL1 by tumors, increased presence of CCR8+ myeloid cells in peripheral blood and cancer tissues indicate that CCL1/CCR8 axis is a component of cancer-related inflammation and may contribute to immune evasion. Obtained results also implicate that blockade of CCR8 signals may provide an attractive strategy for therapeutic intervention in human urothelial and renal cancers. PMID:23363815

  12. The function of CCR3 on mouse bone marrow-derived mast cells in vitro.

    PubMed

    Collington, Sarah J; Westwick, John; Williams, Timothy J; Weller, Charlotte L

    2010-01-01

    The mechanisms governing the population of tissues by mast cells are not fully understood, but several studies using human mast cells have suggested that expression of the chemokine receptor CCR3 and migration to its ligands may be important. In CCR3-deficient mice, a change in mast cell tissue distribution in the airways following allergen challenge was reported compared with wild-type mice. In addition, there is evidence that CCR3 is important in mast cell maturation in mouse. In this study, bone marrow-derived mast cells (BMMCs) were cultured and CCR3 expression and the migratory response to CCR3 ligands were characterized. In addition, BMMCs were cultured from wild-type and CCR3-deficient mice and their phenotype and migratory responses were compared. CCR3 messenger RNA was detectable in BMMCs, but this was not significantly increased after activation by immunoglobulin E (IgE). CCR3 protein was not detected on BMMCs during maturation and expression could not be enhanced after IgE activation. Resting and IgE-activated immature and mature BMMCs did not migrate in response to the CCR3 ligands eotaxin- 1 and eotaxin-2. Comparing wild-type and CCR3-deficient BMMCs, there were no differences in mast cell phenotype or ability to migrate to the mast cell chemoattractants leukotriene B4 and stem cell factor. The results of this study show that CCR3 may not mediate mast cell migration in mouse BMMCs in vitro. These observations need to be considered in relation to the findings of CCR3 deficiency on mast cells in vivo.

  13. A geothermal-linked biological oasis in Yellowstone Lake, Yellowstone National Park, Wyoming.

    PubMed

    Lovalvo, D; Clingenpeel, S R; McGinnis, S; Macur, R E; Varley, J D; Inskeep, W P; Glime, J; Nealson, K; McDermott, T R

    2010-09-01

    Hundreds of active and dormant geothermal vents have been located on the floor of Yellowstone Lake, although characterization of the associated biology (macro or micro) has been extremely limited. Herein, we describe an aquatic moss (Fontinalis) colony closely associated with vent emissions that considerably exceeded known temperature maxima for this plant. Vent waters were supersaturated with CO(2), likely accommodating a CO(2) compensation point that would be expected to be quite elevated under these conditions. The moss was colonized by metazoa, including the crustaceans Hyalella and Gammarus, a segmented worm in the Lumbriculidae family, and a flatworm specimen tentatively identified as Polycelis. The presence of these invertebrates suggest a highly localized food chain that derives from the presence of geothermal inputs and thus is analogous to the deep marine vents that support significant biodiversity.

  14. Building, Using, and Maximizing the Impact of Concept Inventories in the Biological Sciences: Report on a National Science Foundation–sponsored Conference on the Construction of Concept Inventories in the Biological Sciences

    PubMed Central

    Klymkowsky, Michael; Elrod, Susan

    2007-01-01

    The meeting “Conceptual Assessment in the Biological Sciences” was held March 3–4, 2007, in Boulder, Colorado. Sponsored by the National Science Foundation and hosted by University of Colorado, Boulder's Biology Concept Inventory Team, the meeting drew together 21 participants from 13 institutions, all of whom had received National Science Foundation funding for biology education. Topics of interest included Introductory Biology, Genetics, Evolution, Ecology, and the Nature of Science. The goal of the meeting was to organize and leverage current efforts to develop concept inventories for each of these topics. These diagnostic tools are inspired by the success of the Force Concept Inventory, developed by the community of physics educators to identify student misconceptions about Newtonian mechanics. By working together, participants hope to lessen the risk that groups might develop competing rather than complementary inventories. PMID:18056297

  15. Building, using, and maximizing the impact of concept inventories in the biological sciences: report on a National Science Foundation sponsored conference on the construction of concept inventories in the biological sciences.

    PubMed

    Garvin-Doxas, Kathy; Klymkowsky, Michael; Elrod, Susan

    2007-01-01

    The meeting "Conceptual Assessment in the Biological Sciences" was held March 3-4, 2007, in Boulder, Colorado. Sponsored by the National Science Foundation and hosted by University of Colorado, Boulder's Biology Concept Inventory Team, the meeting drew together 21 participants from 13 institutions, all of whom had received National Science Foundation funding for biology education. Topics of interest included Introductory Biology, Genetics, Evolution, Ecology, and the Nature of Science. The goal of the meeting was to organize and leverage current efforts to develop concept inventories for each of these topics. These diagnostic tools are inspired by the success of the Force Concept Inventory, developed by the community of physics educators to identify student misconceptions about Newtonian mechanics. By working together, participants hope to lessen the risk that groups might develop competing rather than complementary inventories.

  16. Antifibrotic Effects of the Dual CCR2/CCR5 Antagonist Cenicriviroc in Animal Models of Liver and Kidney Fibrosis

    PubMed Central

    Lefebvre, Eric; Moyle, Graeme; Reshef, Ran; Richman, Lee P.; Thompson, Melanie; Hong, Feng; Chou, Hsin-l; Hashiguchi, Taishi; Plato, Craig; Poulin, Dominic; Richards, Toni; Yoneyama, Hiroyuki; Jenkins, Helen; Wolfgang, Grushenka; Friedman, Scott L.

    2016-01-01

    Background & Aims Interactions between C-C chemokine receptor types 2 (CCR2) and 5 (CCR5) and their ligands, including CCL2 and CCL5, mediate fibrogenesis by promoting monocyte/macrophage recruitment and tissue infiltration, as well as hepatic stellate cell activation. Cenicriviroc (CVC) is an oral, dual CCR2/CCR5 antagonist with nanomolar potency against both receptors. CVC’s anti-inflammatory and antifibrotic effects were evaluated in a range of preclinical models of inflammation and fibrosis. Methods Monocyte/macrophage recruitment was assessed in vivo in a mouse model of thioglycollate-induced peritonitis. CCL2-induced chemotaxis was evaluated ex vivo on mouse monocytes. CVC’s antifibrotic effects were evaluated in a thioacetamide-induced rat model of liver fibrosis and mouse models of diet-induced non-alcoholic steatohepatitis (NASH) and renal fibrosis. Study assessments included body and liver/kidney weight, liver function test, liver/kidney morphology and collagen deposition, fibrogenic gene and protein expression, and pharmacokinetic analyses. Results CVC significantly reduced monocyte/macrophage recruitment in vivo at doses ≥20 mg/kg/day (p < 0.05). At these doses, CVC showed antifibrotic effects, with significant reductions in collagen deposition (p < 0.05), and collagen type 1 protein and mRNA expression across the three animal models of fibrosis. In the NASH model, CVC significantly reduced the non-alcoholic fatty liver disease activity score (p < 0.05 vs. controls). CVC treatment had no notable effect on body or liver/kidney weight. Conclusions CVC displayed potent anti-inflammatory and antifibrotic activity in a range of animal fibrosis models, supporting human testing for fibrotic diseases. Further experimental studies are needed to clarify the underlying mechanisms of CVC’s antifibrotic effects. A Phase 2b study in adults with NASH and liver fibrosis is fully enrolled (CENTAUR Study 652-2-203; NCT02217475). PMID:27347680

  17. CpG methylation at GATA elements in the regulatory region of CCR3 positively correlates with CCR3 transcription.

    PubMed

    Uhm, Tae Gi; Lee, Seol Kyung; Kim, Byung Soo; Kang, Jin Hyun; Park, Choon Sik; Rhim, Tai Youn; Chang, Hun Soo; Kim, Do Jin; Chung, Il Yup

    2012-04-30

    DNA methylation may regulate gene expression by restricting the access of transcription factors. We have previously demonstrated that GATA-1 regulates the transcription of the CCR3 gene by dynamically interacting with both positively and negatively acting GATA elements of high affinity binding in the proximal promoter region including exon 1. Exon 1 has three CpG sites, two of which are positioned at the negatively acting GATA elements. We hypothesized that the methylation of these two CpGs sites might preclude GATA-1 binding to the negatively acting GATA elements and, as a result, increase the availability of GATA-1 to the positively acting GATA element, thereby contributing to an increase in GATA-1-mediated transcription of the gene. To this end, we determined the methylation of the three CpG sites by bisulfate pyrosequencing in peripheral blood eosinophils, cord blood (CB)-derived eosinophils, PBMCs, and cell lines that vary in CCR3 mRNA expression. Our results demonstrated that methylation of CpG sites at the negatively acting GATA elements severely reduced GATA-1 binding and augmented transcription activity in vitro. In agreement, methylation of these CpG sites positively correlated with CCR3 mRNA expression in the primary cells and cell lines examined. Interestingly, methylation patterns of these three CpG sites in CB-derived eosinophils mostly resembled those in peripheral blood eosinophils. These results suggest that methylation of CpG sites at the GATA elements in the regulatory regions fine-tunes CCR3 transcription.

  18. ERK1-Based Pathway as a New Selective Mechanism To Modulate CCR5 with Natural Antibodies.

    PubMed

    Venuti, Assunta; Pastori, Claudia; Siracusano, Gabriel; Riva, Agostino; Sciortino, Maria Teresa; Lopalco, Lucia

    2015-10-01

    Natural human Abs, recognizing an epitope within the first extramembrane loop of CCR5 (the main HIV coreceptor), induce a long-lasting internalization (48 h) of the protein, whereas all known CCR5 modulating molecules show a short-term kinetics (60-90 min). Despite extensive studies on the regulation of CCR5 signaling cascades, which are the effect of concomitant CCR5 internalization by exogenous stimuli such as Abs, downstream signaling continues to be poorly understood. In this article, we report a hitherto unrecognized mechanism of CCR5 modulation mediated by G protein-dependent ERK1 activity. We further demonstrate that ERK1 is localized mainly in the cytoplasmic compartment and that it interacts directly with the CCR5 protein, thus provoking possible CCR5 degradation with a subsequent de novo synthesis, and that re-expression of CCR5 on the cell membrane required several days. In contrast, the RANTES treatment induces a recovery of the receptor on the cell membrane in short-term kinetics without the involvement of de novo protein synthesis. The said new pathway could be relevant not only to better understand the molecular basis of all pathologic conditions in which CCR5 is involved but also to generate new tools to block viral infections, such as the use of recombinant Abs.

  19. Dengue virus requires the CC-chemokine receptor CCR5 for replication and infection development.

    PubMed

    Marques, Rafael E; Guabiraba, Rodrigo; Del Sarto, Juliana L; Rocha, Rebeca F; Queiroz, Ana Luiza; Cisalpino, Daniel; Marques, Pedro E; Pacca, Carolina C; Fagundes, Caio T; Menezes, Gustavo B; Nogueira, Maurício L; Souza, Danielle G; Teixeira, Mauro M

    2015-08-01

    Dengue is a mosquito-borne disease that affects millions of people worldwide yearly. Currently, there is no vaccine or specific treatment available. Further investigation on dengue pathogenesis is required to better understand the disease and to identify potential therapeutic targets. The chemokine system has been implicated in dengue pathogenesis, although the specific role of chemokines and their receptors remains elusive. Here we describe the role of the CC-chemokine receptor CCR5 in Dengue virus (DENV-2) infection. In vitro experiments showed that CCR5 is a host factor required for DENV-2 replication in human and mouse macrophages. DENV-2 infection induces the expression of CCR5 ligands. Incubation with an antagonist prevents CCR5 activation and reduces DENV-2 positive-stranded (+) RNA inside macrophages. Using an immunocompetent mouse model of DENV-2 infection we found that CCR5(-/-) mice were resistant to lethal infection, presenting at least 100-fold reduction of viral load in target organs and significant reduction in disease severity. This phenotype was reproduced in wild-type mice treated with CCR5-blocking compounds. Therefore, CCR5 is a host factor required for DENV-2 replication and disease development. Targeting CCR5 might represent a therapeutic strategy for dengue fever. These data bring new insights on the association between viral infections and the chemokine receptor CCR5.

  20. CCR5-CCL Axis in PDL during Orthodontic Biophysical Force Application.

    PubMed

    Lee, S Y; Yoo, H I; Kim, S H

    2015-12-01

    Tooth movement by application of orthodontic biophysical force primarily reflects the role of soluble molecules released from the periodontal ligament (PDL). Thus far, many factors have been reported to be involved in orthodontic tooth movement (OTM), but key molecules that orchestrate responses of periodontal tissues to biophysical force are still enigmatic. In this in vivo study, in which the upper first molars in rats were moved, differential display-polymerase chain reaction revealed that CC chemokine receptor 5 (CCR5) level was differentially increased during OTM. Strong immunoreactivity for CCR5 was found in the PDL undergoing force application. Moreover, the in vitro compression or tension force application to primary cultured human PDL cells increased the expression of CCR5 and CCR5 ligands. In vitro tension force on human PDL cells did not induce RANKL, an osteoclastogenesis-inducing factor, but did induce the upregulation of IL12, an osteoclast inhibitory factor, and osteoblast differentiation factors, including Runx2, which was attenuated under tension by CCR5 gene silencing whereas augmented with CCR5 ligands. In contrast, in vitro compression force did not induce the expression of osteoprotegerin, a decoy receptor for RANKL and Runx2, but did induce the upregulation of RANKL, which was attenuated under compression by CCR5 gene silencing. These results suggest that the CCR5-CCR5 ligands axis in PDL cells may play a crucial role in the remodeling of periodontal tissues and can be a therapeutic target for achieving efficient OTM.

  1. CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory.

    PubMed

    Zhou, Miou; Greenhill, Stuart; Huang, Shan; Silva, Tawnie K; Sano, Yoshitake; Wu, Shumin; Cai, Ying; Nagaoka, Yoshiko; Sehgal, Megha; Cai, Denise J; Lee, Yong-Seok; Fox, Kevin; Silva, Alcino J

    2016-12-20

    Although the role of CCR5 in immunity and in HIV infection has been studied widely, its role in neuronal plasticity, learning and memory is not understood. Here, we report that decreasing the function of CCR5 increases MAPK/CREB signaling, long-term potentiation (LTP), and hippocampus-dependent memory in mice, while neuronal CCR5 overexpression caused memory deficits. Decreasing CCR5 function in mouse barrel cortex also resulted in enhanced spike timing dependent plasticity and consequently, dramatically accelerated experience-dependent plasticity. These results suggest that CCR5 is a powerful suppressor for plasticity and memory, and CCR5 over-activation by viral proteins may contribute to HIV-associated cognitive deficits. Consistent with this hypothesis, the HIV V3 peptide caused LTP, signaling and memory deficits that were prevented by Ccr5 knockout or knockdown. Overall, our results demonstrate that CCR5 plays an important role in neuroplasticity, learning and memory, and indicate that CCR5 has a role in the cognitive deficits caused by HIV.

  2. The first report of CCR5 delta 32 mutant in Thai injecting drug users.

    PubMed

    Ruchusatsawat, N; Vongsheree, S; Thaisri, H; Phutiprawan, T

    2000-06-01

    CCR5, a chemokine receptor, is the principal coreceptor for macrophage-tropic HIV-1 which is the most important variant for viral transmission. It has been demonstrated that a homozygous genotype of a 32-bp deletion in CCR5 gene (delta32CCR5) shows a high degree of resistance to HIV-1 infection. To demonstrate that delta32CCR5 does exist in Thai natives, the CCR5 genotypes and allelic frequencies in 860 Thai injecting drug users (IDUs) were determined by PCR and DNA sequencing. Of these, six (0.7%) were CCR5/delta32CCR5 heterozygotes and no homozygote was found. The overall delta32CCR5 allelic frequency was 0.0035 and in HIV-1 seronegative (n = 490) and seropositive (n = 370) IDUs were 0.0051 and 0.0004, respectively, which were not significantly different (p = 0.3776). Here we report that the delta32CCR5 does exist in Thai IDUs as it is present in other human races. Such low allelic frequency may indicate that this mutation does not attribute a significant role in HIV-1 transmission in Thai IDUs.

  3. CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory

    PubMed Central

    Zhou, Miou; Greenhill, Stuart; Huang, Shan; Silva, Tawnie K; Sano, Yoshitake; Wu, Shumin; Cai, Ying; Nagaoka, Yoshiko; Sehgal, Megha; Cai, Denise J; Lee, Yong-Seok; Fox, Kevin; Silva, Alcino J

    2016-01-01

    Although the role of CCR5 in immunity and in HIV infection has been studied widely, its role in neuronal plasticity, learning and memory is not understood. Here, we report that decreasing the function of CCR5 increases MAPK/CREB signaling, long-term potentiation (LTP), and hippocampus-dependent memory in mice, while neuronal CCR5 overexpression caused memory deficits. Decreasing CCR5 function in mouse barrel cortex also resulted in enhanced spike timing dependent plasticity and consequently, dramatically accelerated experience-dependent plasticity. These results suggest that CCR5 is a powerful suppressor for plasticity and memory, and CCR5 over-activation by viral proteins may contribute to HIV-associated cognitive deficits. Consistent with this hypothesis, the HIV V3 peptide caused LTP, signaling and memory deficits that were prevented by Ccr5 knockout or knockdown. Overall, our results demonstrate that CCR5 plays an important role in neuroplasticity, learning and memory, and indicate that CCR5 has a role in the cognitive deficits caused by HIV. DOI: http://dx.doi.org/10.7554/eLife.20985.001 PMID:27996938

  4. Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis.

    PubMed

    Lionakis, Michail S; Fischer, Brett G; Lim, Jean K; Swamydas, Muthulekha; Wan, Wuzhou; Richard Lee, Chyi-Chia; Cohen, Jeffrey I; Scheinberg, Phillip; Gao, Ji-Liang; Murphy, Philip M

    2012-01-01

    Invasive candidiasis is the 4(th) leading cause of nosocomial bloodstream infection in the US with mortality that exceeds 40% despite administration of antifungal therapy; neutropenia is a major risk factor for poor outcome after invasive candidiasis. In a fatal mouse model of invasive candidiasis that mimics human bloodstream-derived invasive candidiasis, the most highly infected organ is the kidney and neutrophils are the major cellular mediators of host defense; however, factors regulating neutrophil recruitment have not been previously defined. Here we show that mice lacking chemokine receptor Ccr1, which is widely expressed on leukocytes, had selectively impaired accumulation of neutrophils in the kidney limited to the late phase of the time course of the model; surprisingly, this was associated with improved renal function and survival without affecting tissue fungal burden. Consistent with this, neutrophils from wild-type mice in blood and kidney switched from Ccr1(lo) to Ccr1(high) at late time-points post-infection, when Ccr1 ligands were produced at high levels in the kidney and were chemotactic for kidney neutrophils ex vivo. Further, when a 1∶1 mixture of Ccr1(+/+) and Ccr1(-/-) donor neutrophils was adoptively transferred intravenously into Candida-infected Ccr1(+/+) recipient mice, neutrophil trafficking into the kidney was significantly skewed toward Ccr1(+/+) cells. Thus, neutrophil Ccr1 amplifies late renal immunopathology and increases mortality in invasive candidiasis by mediating excessive recruitment of neutrophils from the blood to the target organ.

  5. CCR7 Maintains Nonresolving Lymph Node and Adipose Inflammation in Obesity.

    PubMed

    Hellmann, Jason; Sansbury, Brian E; Holden, Candice R; Tang, Yunan; Wong, Blenda; Wysoczynski, Marcin; Rodriguez, Jorge; Bhatnagar, Aruni; Hill, Bradford G; Spite, Matthew

    2016-08-01

    Accumulation of immune cells in adipose tissue promotes insulin resistance in obesity. Although innate and adaptive immune cells contribute to adipose inflammation, the processes that sustain these interactions are incompletely understood. Here we show that obesity promotes the accumulation of CD11c(+) adipose tissue immune cells that express C-C chemokine receptor 7 (CCR7) in mice and humans, and that CCR7 contributes to chronic inflammation and insulin resistance. We identified that CCR7(+) macrophages and dendritic cells accumulate in adipose tissue in close proximity to lymph nodes (LNs) (i.e., perinodal) and visceral adipose. Consistent with the role of CCR7 in regulating the migration of immune cells to LNs, obesity promoted the accumulation of CD11c(+) cells in LNs, which was prevented by global or hematopoietic deficiency of Ccr7 Obese Ccr7(-/-) mice had reduced accumulation of CD8(+) T cells, B cells, and macrophages in adipose tissue, which was associated with reduced inflammatory signaling. This reduction in maladaptive inflammation translated to increased insulin signaling and improved glucose tolerance in obesity. Therapeutic administration of an anti-CCR7 antibody phenocopied the effects of genetic Ccr7 deficiency in mice with established obesity. These results suggest that CCR7 plays a causal role in maintaining innate and adaptive immunity in obesity.

  6. CCR7 Controls Thymus Recirculation, but Not Production and Emigration, of Foxp3(+) T Cells.

    PubMed

    Cowan, Jennifer E; McCarthy, Nicholas I; Anderson, Graham

    2016-02-09

    Current models of Foxp3(+) regulatory T cell (Treg) development involve CCR7-mediated migration of thymocytes into the thymus medulla to enable essential interactions with medullary epithelium. However, increased Foxp3(+) thymic Treg numbers in Ccr7(-/-) mice challenge this view, and the role of CCR7 in Treg development, emigration, and/or recirculation is unknown. Here, we have examined CCR7 and Rag2pGFP levels during Treg development and generated Rag2pGFPCcr7(-/-) mice to study its impact on the intrathymic Treg pool. We reveal surprising developmental heterogeneity in thymocytes described as Treg precursors, showing that they contain recirculating CCR6(+)CCR7(-)Rag2pGFP(-) T cells. Although CCR7 defines bona fide Rag2GFP(+) Treg precursors, it is not required for Treg production and emigration. Rather, we show that lack of CCR7 renders the thymus more receptive to Treg thymus homing. Our study reveals a role for CCR7 in limiting Treg recirculation back to the thymus and enables separation of the mechanisms controlling Treg production and thymic recirculation.

  7. Biologics industry challenges for developing diagnostic tests for the National Veterinary Stockpile.

    PubMed

    Hardham, J M; Lamichhane, C M

    2013-01-01

    Veterinary diagnostic products generated ~$3 billion US dollars in global sales in 2010. This industry is poised to undergo tremendous changes in the next decade as technological advances move diagnostic products from the traditional laboratory-based and handheld immunologic assays towards highly technical, point of care devices with increased sensitivity, specificity, and complexity. Despite these opportunities for advancing diagnostic products, the industry continues to face numerous challenges in developing diagnostic products for emerging and foreign animal diseases. Because of the need to deliver a return on the investment, research and development dollars continue to be focused on infectious diseases that have a negative impact on current domestic herd health, production systems, or companion animal health. Overcoming the administrative, legal, fiscal, and technological barriers to provide veterinary diagnostic products for the National Veterinary Stockpile will reduce the threat of natural or intentional spread of foreign diseases and increase the security of the food supply in the US.

  8. Increased expression of chemokine receptors CCR1 and CCR3 in nasal polyps: molecular basis for recruitment of the granulocyte infiltrate.

    PubMed

    Fundová, P; Funda, D P; Kovář, D; Holý, R; Navara, M; Tlaskalová-Hogenová, H

    2013-05-01

    Inflammatory processes play an important role in the development of nasal polyps (NP), but the etiology and, to a high degree also, the pathogenesis of NP are not fully understood. The role of several cytokines and chemokines such as eotaxins, IL-4, IL-5, IL-6, IL-8, and RANTES has been reported in NP. Herewith, we investigated the expression and pattern of distribution of chemokine receptors CCR1 and CCR3 in nasal polyps. Immunohistochemical detection was carried out in frozen sections of biopsies from 22 NP and 18 nasal mucosa specimens in both the epithelial and stromal compartments. Fluorescence microscopy and computerized image analysis revealed a statistically significant increased number of CCR1 (45.2 ± 2.8 vs. 15.1 ± 1.9, p < 0.001)-positive as well as CCR3 (16.4 ± 1.4 vs. 9.7 ± 1.1, p < 0.001)-positive cells in the stroma of NP compared to nasal mucosa. In comparison to healthy nasal mucosa, increased positivity of CCR3 was detected in the epithelial compartment of NP. Our data suggest that increased expression of CCR1 and CCR3 chemokine receptors may, in accord with various chemokines, contribute to the pathogenesis of nasal polyposis by facilitating increased migration and prolonged accumulation of inflammatory cells, e.g., eosinophils, in the inflammatory infiltrate of NP.

  9. CCR4 frameshift mutation identifies a distinct group of adult T cell leukaemia/lymphoma with poor prognosis.

    PubMed

    Yoshida, Noriaki; Miyoshi, Hiroaki; Kato, Takeharu; Sakata-Yanagimoto, Mamiko; Niino, Daisuke; Taniguchi, Hiroaki; Moriuchi, Yukiyoshi; Miyahara, Masaharu; Kurita, Daisuke; Sasaki, Yuya; Shimono, Joji; Kawamoto, Keisuke; Utsunomiya, Atae; Imaizumi, Yoshitaka; Seto, Masao; Ohshima, Koichi

    2016-04-01

    Adult T cell leukaemia/lymphoma (ATLL) is an intractable T cell neoplasm caused by human T cell leukaemia virus type 1. Next-generation sequencing-based comprehensive mutation studies have revealed recurrent somatic CCR4 mutations in ATLL, although clinicopathological findings associated with CCR4 mutations remain to be delineated. In the current study, 184 cases of peripheral T cell lymphoma, including 113 cases of ATLL, were subjected to CCR4 mutation analysis. This sequence analysis identified mutations in 27% (30/113) of cases of ATLL and 9% (4/44) of cases of peripheral T cell lymphoma not otherwise specified. Identified mutations included nonsense (NS) and frameshift (FS) mutations. No significant differences in clinicopathological findings were observed between ATLL cases stratified by presence of CCR4 mutation. All ATLL cases with CCR4 mutations exhibited cell-surface CCR4 positivity. Semi-quantitative CCR4 protein analysis of immunohistochemical sections revealed higher CCR4 expression in cases with NS mutations of CCR4 than in cases with wild-type (WT) CCR4. Furthermore, among ATLL cases, FS mutation was significantly associated with a poor prognosis, compared with NS mutation and WT CCR4. These results suggest that CCR4 mutation is an important determinant of the clinical course in ATLL cases, and that NS and FS mutations of CCR4 behave differently with respect to ATLL pathophysiology.

  10. Role of effector cells (CCR7(-)CD27(-)) and effector-memory cells (CCR7(-)CD27(+)) in drug-induced maculopapular exanthema.

    PubMed

    Fernandez, T D; Torres, M J; Lopez, S; Antunez, C; Gomez, E; Del Prado, M F; Canto, G; Blanca, M; Mayorga, C

    2010-01-01

    Maculopapular exanthema (MPE) induced by drugs is a T-cell mediated reaction and effector cells may play an important role in its development. We assessed the effector and cutaneous homing phenotype in peripheral blood cells from allergic patients after drug stimulation. This study included 10 patients and 10 controls. The effector phenotype (CCR7(-)CD27(+/-)), chemokine receptors (CCR4 and CCR10), and activation (CD25(low)) and regulatory markers (CD25(high)) were measured by flow cytometry in both peripheral blood mononuclear cells (PBMCs) and CD4-T-lymphocytes. Proliferation was determined by 5-(-6)-carboxyfluorescein diacetate succinimidyl ester (CFSE) assay and the migratory capacity by a chemotaxis assay using CCL17 and CCL27. Compared to controls, CCR7(-)CD27(-) cells were increased in patients without (p=0.003) and with drug stimulation (p less than 0.001) and had significantly higher proliferation (p=0.010). CCR10 expression was increased in patients after drug stimulation in total and memory CD27(+) T-cells. Lymphocyte migration with CCL27 was higher in patients with drug stimulation (p=0.048), with a decrease in CCR7(-)CD27(-) (p less than 0.0001) and an increase in CCR7(-)CD27(+) (p=0.017). In patients, CD4-T-lymphocytes were significantly activated after drug stimulation (p less than 0.001). In conclusion, we show that effector memory CD4(+) T-cells (CCR7(-)CD27(+)) respond specifically to the drug responsible for MPE and confirm previous data about the involvement of CCR10 in cell trafficking to the skin.

  11. Biologic surveys for the Sandia National Laboratories, Coyote Canyon Test Complex, Kirtland Air Force Base, Albuquerque, New Mexico

    SciTech Connect

    Sullivan, R.M.; Knight, P.J.

    1994-05-25

    This report provides results of a comprehensive biologic survey performed in Coyote Canyon Test Complex (CCTC), Sandia National Laboratories (SNL), Bernalillo County, New Mexico, which was conducted during the spring and summer of 1992 and 1993. CCTC is sited on land owned by the Department of Energy (DOE) and Kirtland Air Force Base and managed by SNL. The survey covered 3,760 acres of land, most of which is rarely disturbed by CCTC operations. Absence of grazing by livestock and possibly native ungulates, and relative to the general condition of private range lands throughout New Mexico, and relative to other grazing lands in central New Mexico. Widely dispersed, low intensity use by SNL as well as prohibition of grazing has probably contributed to abundance of special status species such as grama grass cactus within the CCTC area. This report evaluates threatened and endangered species found in the area, as well as comprehensive assessment of biologic habitats. Included are analyses of potential impacts and mitigative measures designed to reduce or eliminate potential impacts. Included is a summary of CCTC program and testing activities.

  12. A CCL chemokine-derived peptide (CDIP-2) exerts anti-inflammatory activity via CCR1, CCR2 and CCR3 chemokine receptors: Implications as a potential therapeutic treatment of asthma.

    PubMed

    Méndez-Enríquez, E; Medina-Tamayo, J; Soldevila, G; Fortoul, T I; Anton, B; Flores-Romo, L; García-Zepeda, E A

    2014-05-01

    Allergic asthma is a chronic inflammatory disease characterized by the accumulation of eosinophils, Th2 cells and mononuclear cells in the airways, leading to changes in lung architecture and subsequently reduced respiratory function. We have previously demonstrated that CDIP-2, a chemokine derived peptide, reduced in vitro chemotaxis and decreased cellular infiltration in a murine model of allergic airway inflammation. However, the mechanisms involved in this process have not been identified yet. Now, we found that CDIP-2 reduces chemokine-mediated functions via interactions with CCR1, CCR2 and CCR3. Moreover, using bone marrow-derived eosinophils, we demonstrated that CDIP-2 modifies the calcium fluxes induced by CCL11 and down-modulated CCR3 expression. Finally, CDIP-2 treatment in a murine model of OVA-induced allergic airway inflammation reduced leukocyte recruitment and decreases production of cytokines. These data suggest that chemokine-derived peptides represent new therapeutic tools to generate more effective antiinflammatory drugs.

  13. Biological aging and social characteristics: gerontology, the Baltimore city hospitals, and the National Institutes of Health.

    PubMed

    Park, Hyung Wook

    2013-01-01

    The intramural gerontological research program in the National Institutes of Health underwent a substantial growth after its creation within the precincts of the Baltimore City Hospitals in 1940. This paper analyzes its development and the associated problems of its early years. Gerontologists aimed at improving the social and economic life of the elderly through scientific research. With this aim in mind, they conducted various investigations using the indigent aged patients of the Baltimore City Hospitals. Yet the scientists of aging, who hoped to eliminate negative social factors that might bias their research and heighten the confusion between pathology and aging per se, eventually stopped using these patients in the hospital as human subjects. Instead they sought educated affluent subjects in order to eliminate the impact of poverty. By doing so, however, they introduced a new source of social bias to their work, especially within the novel project begun in 1958, the Baltimore Longitudinal Study of Aging. This article thus examines the context of the development of gerontologists' research by analyzing their agenda, institutional environment, and research subjects in the 1940s and the 1950s.

  14. Two-stage association study in Chinese Han identifies two independent associations in CCR1/CCR3 locus as candidate for Behçet's disease susceptibility.

    PubMed

    Hou, Shengping; Xiao, Xiang; Li, Fuzhen; Jiang, Zhengxuan; Kijlstra, Aize; Yang, Peizeng

    2012-12-01

    Previous GWAS studies from Turkey suggested a potential risk locus at CCR1/CCR3 for Behçet's disease. However, this locus did not reach the GWAS significance threshold and has not yet been examined in other ethnic populations. The current study aimed to explore whether this locus was associated with Behçet's disease in Chinese Han and the functional role of the identified variants. A two-stage association study was performed in 653 patients and 1,685 controls using the iPLEX system. Real-time PCR was performed to examine the expression level of CCR1 and CCR3 genes. Haplotype analysis was used to construct the haplotype block. Logistic regression analysis was applied to calculate the independence of multiple associations. Bonferroni correction was applied to account for multiple testing. First stage analysis showed that ten SNPs, located in 3'UTR, 5'UTR in CCR1 or 5'UTR in CCR3, were significantly associated with Behçet's disease (P(c) = 0.018 to 1.3 × 10(-3)). The associations of six SNPs within this locus are independent after control for the genetic effect of rs17282391 using logistic regression analysis. Haplotype analysis identified three associated haplotypes: H3 (GTGAC), H6 (CCATTA) and H9 (CGA) (P(c) = 0.04 to 7.79 × 10(-4)). Three SNPs rs13084057, rs13092160 and rs13075270 showed consistent association in replication and combining studies (replication P(c) = 5.31 × 10(-5) to 1.44 × 10(-5); combining P(c) = 2.76 × 10(-7) to 6.50 × 10(-8)). Interestingly, eQTLs database reveals that SNP rs13092160 is eQTLs SNP, suggesting that this SNP is likely to be functional SNP that directly affects gene expression. The expression of CCR1 and CCR3 was increased in individuals with the CT genotype of rs13092160 (P < 0.05). No significant difference was found for the mRNA level of CCR1 and CCR3 between Behçet's patients and controls. These findings strongly indicate CCR1/CCR3 as a novel locus underlying Behçet's disease.

  15. Usage of the coreceptors CCR-5, CCR-3, and CXCR-4 by primary and cell line-adapted human immunodeficiency virus type 2.

    PubMed Central

    Sol, N; Ferchal, F; Braun, J; Pleskoff, O; Tréboute, C; Ansart, I; Alizon, M

    1997-01-01

    The chemokine receptors CCR-5 and CXCR-4, and possibly CCR-3, are the principal human immunodeficiency virus type 1 (HIV-1) coreceptors, apparently interacting with HIV-1 envelope, in association with CD4. Cell lines coexpressing CD4 and these chemokine receptors were infected with a panel of seven primary HIV-2 isolates passaged in peripheral blood mononuclear cells (PBMC) and three laboratory HIV-2 strains passaged in T-cell lines. The CCR-5, CCR-3, and CXCR-4 coreceptors could all be used by HIV-2. The ability to use CXCR-4 represents a major difference between HIV-2 and the closely related simian immunodeficiency viruses. Most HIV-2 strains using CCR-5 could also use CCR-3, sometimes with similar efficiencies. As observed for HIV-1, the usage of CCR-5 or CCR-3 was observed principally for HIV-2 strains derived from asymptomatic individuals, while HIV-2 strains derived from AIDS patients used CXCR-4. However, there were several exceptions, and the patterns of coreceptor usage seemed more complex for HIV-2 than for HIV-1. The two T-tropic HIV-2 strains tested used CXCR-4 and not CCR-5, while T-tropic HIV-1 can generally use both. Moreover, among five primary HIV-2 strains all unable to use CXCR-4, three could replicate in CCR-5-negative PBMC, which has not been reported for HIV-1. These observations suggest that the CCR-5 coreceptor is less important for HIV-2 than for HIV-1 and indicate that HIV-2 can use other cell entry pathways and probably other coreceptors. One HIV-2 isolate replicating in normal or CCR-5-negative PBMC failed to infect CXCR-4+ cells or the U87MG-CD4 and sMAGI cell lines, which are permissive to infection by HIV-2 but not by HIV-1. This suggests the existence of several HIV-2-specific coreceptors, which are differentially expressed in cell lines and PBMC. PMID:9343175

  16. Education, income and ethnic differences in cumulative biological risk profiles in a national sample of US adults: NHANES III (1988-1994).

    PubMed

    Seeman, Teresa; Merkin, Sharon S; Crimmins, Eileen; Koretz, Brandon; Charette, Susan; Karlamangla, Arun

    2008-01-01

    Data from the nationally representative US National Health and Nutrition Examination Survey (NHANES) III cohort were used to examine the hypothesis that socio-economic status is consistently and negatively associated with levels of biological risk, as measured by nine biological parameters known to predict health risks (diastolic and systolic blood pressure, pulse, HDL and total cholesterol, glycosylated hemoglobin, c-reactive protein, albumin and waist-hip ratio), resulting in greater cumulative burdens of biological risk among those of lower education and/or income. As hypothesized, consistent education and income gradients were seen for biological parameters reflecting cardiovascular, metabolic and inflammatory risk: those with lower education and income exhibiting greater prevalence of high-risk values for each of nine individual biological risk factors. Significant education and income gradients were also seen for summary indices reflecting cumulative burdens of cardiovascular, metabolic and inflammatory risks as well as overall total biological risks. Multivariable cumulative logistic regression models revealed that the education and income effects were each independently and negatively associated with cumulative biological risks, and that these effects remained significant independent of age, gender, ethnicity and lifestyle factors such as smoking and physical activity. There were no significant ethnic differences in the patterns of association between socio-economic status and biological risks, but older age was associated with significantly weaker education and income gradients.

  17. CCR5 small interfering RNA ameliorated joint inflammation in rats with adjuvant-induced arthritis.

    PubMed

    Duan, Hongmei; Yang, Pingting; Fang, Fang; Ding, Shuang; Xiao, Weiguo

    2014-12-01

    Rheumatoid arthritis (RA) is a systemic inflammatory disease. C-C chemokine receptor type 5 (CCR5) is found in inflamed synovium of RA patients and is necessary for formation of RA. We aimed to check whether delivery of CCR5-specific small interfering RNA (siRNA) via electroporation suppresses local inflammation in arthritis rats. Vectors encoding siRNA that target CCR5 or negative control siRNA were constructed for gene silencing and the silencing effects of suppressing CCR5 expression in synovium examined by western blot. The vector with strongest effect was delivered into the knee joint of adjuvant-induced arthritis (AIA) rats by the in vivo electroporation method 7, 10, 13, and 16 days after immunization with Complete Freund's adjuvant. During an observation of 28 days, behavior, paw swelling, arthritis and histopathologic scoring were estimated. The expression level of CCR5 in synovium was evaluated by western blot and real-time PCR. Anti-CCR5 D1 siRNA was effectively inhibited CCR5 expression in vitro. Moreover, delivery of the siRNA into inflammatory joint also suppressed the expression of CCR5 in vivo and markedly suppressed paw swelling and inflammation. Local electroporation of anti-CCR5 siRNA into the left inflamed joints could achieve the silencing of CCR5 gene and alleviate local inflammation just in the knee joint injected with siRNA other than the opposite joint. Inhibition of CCR5 expression may provide a potential for treatment of RA.

  18. Linkage of the CCR5 Delta 32 mutation with a functional polymorphism of CD45RA.

    PubMed

    Liao, H X; Montefiori, D C; Patel, D D; Lee, D M; Scott, W K; Pericak-Vance, M; Haynes, B F

    2000-07-01

    A 32-bp deletion in CCR5 (CCR5 Delta 32) confers to PBMC resistance to HIV-1 isolates that use CCR5 as a coreceptor. To study this mutation in T cell development, we have screened 571 human thymus tissues for the mutation. We identified 72 thymuses (12.6%) that were heterozygous and 2 (0.35%) that were homozygous for the CCR5 Delta 32 mutation. We found that thymocyte development was normal in both CCR5 Delta 32 heterozygous and homozygous thymuses. In 3% of thymuses we identified a functional polymorphism of CD45RA, in which cortical and medullary thymocytes failed to down-regulate the 200- and 220-kDa CD45RA isoforms during T cell development. Moreover, we found an association of this CD45 functional polymorphism in thymuses with the CCR5 Delta 32 mutation (p = 0.00258). In vitro HIV-1 infection assays with CCR5-using primary isolates demonstrated that thymocytes with the heterozygous CCR5 Delta 32 mutation produced less p24 than did CCR5 wild-type thymocytes. However, the functional CD45RA polymorphism did not alter the susceptibility of thymocytes to HIV-1 infection. Taken together, these data demonstrate association of the CCR5 Delta 32 mutation with a polymorphism in an as yet unknown gene that is responsible for the ability to down-regulate the expression of high m.w. CD45RA isoforms. Although the presence of the CCR5 Delta 32 mutation down-regulates HIV-1 infection of thymocytes, the functional CD45RA polymorphism does not alter the susceptibility of thymocytes to HIV-1 infection in vitro.

  19. Naive Treg-like CCR7(+) mononuclear cells indicate unfavorable prognosis in hepatocellular carcinoma.

    PubMed

    Shi, Jie-Yi; Duan, Meng; Sun, Qi-Man; Yang, Liuxiao; Wang, Zhi-Chao; Mynbaev, Ospan A; He, Yi-Feng; Wang, Ling-Yan; Zhou, Jian; Tang, Qi-Qun; Cao, Ya; Fan, Jia; Wang, Xiao-Ying; Gao, Qiang

    2016-07-01

    Chemokine receptor-like 1 (CCRL1) has the potential in creating a low level of CCL19 and CCL21 to hinder CCR7(+) cell tracking to tumor tissue. Previously, we found a tumor suppressive role of CCRL1 by impairing CCR7-related chemotaxis of tumor cells in human hepatocellular carcinoma (HCC). Here, we reported a contribution of CCR7(+) mononuclear cells in the tumor microenvironment to the progression of disease. Immunohistochemistry was used to investigate the distribution and clinical significance of CCR7(+) cells in a cohort of 240 HCC patients. Furthermore, the phenotype, composition, and functional status of CCR7(+) cells were determined by flow cytometry, immunofluorescence, and in vitro co-culture assays. We found that CCR7(+) mononuclear cells were dispersed around tumor tissue and negatively related to tumoral expression of CCRL1 (P < 0.001, r = 0.391). High density of CCR7(+) mononuclear cells positively correlated with the absence of tumor capsule, vascular invasion, and poor differentiation (P < 0.05). Survival analyses revealed that increased number of CCR7(+) mononuclear cells was significantly associated with worse survival and increased recurrence. We found that CCR7(+) mononuclear cells featured a naive Treg-like phenotype (CD45RA(+)CD25(+)FOXP3(+)) and possessed tumor-promoting potential by producing TGF-β1. Moreover, CCR7(+) cells were also composed of several immunocytes, a third of which were CD8(+) T cells. CCR7(+) Treg-like cells facilitate tumor growth and indicate unfavorable prognosis in HCC patients, but fortunately, their tracking to tumor tissue is under the control of CCRL1.

  20. Biological community structure on patch reefs in Biscayne National Park, FL, USA

    USGS Publications Warehouse

    Kuffner, Ilsa B.; Grober-Dunsmore, Rikki; Brock, John C.; Hickey, T. Don

    2010-01-01

    Coral reef ecosystem management benefits from continual quantitative assessment of the resources being managed, plus assessment of factors that affect distribution patterns of organisms in the ecosystem. In this study, we investigate the relationships among physical, benthic, and fish variables in an effort to help explain the distribution patterns of organisms on patch reefs within Biscayne National Park, FL, USA. We visited a total of 196 randomly selected sampling stations on 12 shallow (<10 m) patch reefs and measured physical variables (e.g., substratum rugosity, substratum type) and benthic and fish community variables. We also incorporated data on substratum rugosity collected remotely via airborne laser surveying (Experimental Advanced Airborne Research Lidar—EAARL). Across all stations, only weak relationships were found between physical, benthic cover, and fish assemblage variables. Much of the variance was attributable to a “reef effect,” meaning that community structure and organism abundances were more variable at stations among reefs than within reefs. However, when the reef effect was accounted for and removed statistically, patterns were detected. Within reefs, juvenile scarids were most abundant at stations with high coverage of the fleshy macroalgae Dictyota spp., and the calcified alga Halimeda tuna was most abundant at stations with low EAARL rugosity. Explanations for the overwhelming importance of “reef” in explaining variance in our dataset could include the stochastic arrangement of organisms on patch reefs related to variable larval recruitment in space and time and/or strong historical effects due to patchy disturbances (e.g., hurricanes, fishing), as well as legacy effects of prior residents (“priority” effects).

  1. Reproductive biology, stem cells biotechnology and regenerative medicine: a 1-day national symposium held at Shahid Sadoughi University of Medical Sciences

    PubMed Central

    Akyash, Fatemeh; Tahajjodi, Somayyeh Sadat; Sadeghian-Nodoushan, Fatemeh; Aflatoonian, Abbas; Abdoli, Ali-Mohammad; Nikukar, Habib; Aflatoonian, Behrouz

    2016-01-01

    This paper summarizes the proceedings of a 1 day national symposium entitled “Reproductive biology, stem cells biotechnology and regenerative medicine” held at Shahid Sadoughi University of Medical Sciences, Yazd, Iran on 3rd March 2016. Here, we collected the papers that presented and discussed at this meeting by specialists that currently researched about the overlaps of the fields of reproductive biology and stem cells and their applications in regenerative medicine.

  2. Elucidation of the CCR1- and CCR5-binding modes of MIP-1α by application of an NMR spectra reconstruction method to the transferred cross-saturation experiments.

    PubMed

    Yoshiura, Chie; Ueda, Takumi; Kofuku, Yutaka; Matsumoto, Masahiko; Okude, Junya; Kondo, Keita; Shiraishi, Yutaro; Shimada, Ichio

    2015-12-01

    C-C chemokine receptor 1 (CCR1) and CCR5 are involved in various inflammation and immune responses, and regulate the progression of the autoimmune diseases differently. However, the number of residues identified at the binding interface was not sufficient to clarify the differences in the CCR1- and CCR5-binding modes to MIP-1α, because the NMR measurement time for CCR1 and CCR5 samples was limited to 24 h, due to their low stability. Here we applied a recently developed NMR spectra reconstruction method, Conservation of experimental data in ANAlysis of FOuRier, to the amide-directed transferred cross-saturation experiments of chemokine receptors, CCR1 and CCR5, embedded in lipid bilayers of the reconstituted high density lipoprotein, and MIP-1α. Our experiments revealed that the residues on the N-loop and β-sheets of MIP-1α are close to both CCR1 and CCR5, and those in the C-terminal helix region are close to CCR5. These results suggest that the genetic influence of the single nucleotide polymorphisms of MIP-1α that accompany substitution of residues in the C-terminal helix region, E57 and V63, would provide clues toward elucidating how the CCR5-MIP-1α interaction affects the progress of autoimmune diseases.

  3. Plasmin induces in vivo monocyte recruitment through protease-activated receptor-1-, MEK/ERK-, and CCR2-mediated signaling.

    PubMed

    Carmo, Aline A F; Costa, Bruno R C; Vago, Juliana P; de Oliveira, Leonardo C; Tavares, Luciana P; Nogueira, Camila R C; Ribeiro, Ana Luíza C; Garcia, Cristiana C; Barbosa, Alan S; Brasil, Bruno S A F; Dusse, Luci M; Barcelos, Lucíola S; Bonjardim, Cláudio A; Teixeira, Mauro M; Sousa, Lirlândia P

    2014-10-01

    The plasminogen (Plg)/plasmin (Pla) system is associated with a variety of biological activities beyond the classical dissolution of fibrin clots, including cell migration, tissue repair, and inflammation. Although the capacity of Plg/Pla to induce cell migration is well defined, the mechanism underlying this process in vivo is elusive. In this study, we show that Pla induces in vitro migration of murine fibroblasts and macrophages (RAW 264.7) dependent on the MEK/ERK pathway and by requiring its proteolytic activity and lysine binding sites. Plasmin injection into the pleural cavity of BALB/c mice induced a time-dependent influx of mononuclear cells that was associated with augmented ERK1/2 and IκB-α phosphorylation and increased levels of CCL2 and IL-6 in pleural exudates. The inhibition of protease activity by using a serine protease inhibitor leupeptin or two structurally different protease-activated receptor-1 antagonists (SCH79797 and RWJ56110) abolished Pla-induced mononuclear recruitment and ERK1/2 and IκB-α phosphorylation. Interestingly, inhibition of the MEK/ERK pathway abolished Pla-induced CCL2 upregulation and mononuclear cell influx. In agreement with a requirement for the CCL2/CCR2 axis to Pla-induced cell migration, the use of a CCR2 antagonist (RS504393) prevented the Plg/Pla-induced recruitment of mononuclear cells to the pleural cavity and migration of macrophages at transwell plates. Therefore, Pla-induced mononuclear cell recruitment in vivo was dependent on protease-activated receptor-1 activation of the MEK/ERK/NF-κB pathway, which led to the release of CCL2 and activation of CCR2.

  4. CCR5 susceptibility to ligand-mediated down-modulation differs between human T lymphocytes and myeloid cells.

    PubMed

    Fox, James M; Kasprowicz, Richard; Hartley, Oliver; Signoret, Nathalie

    2015-07-01

    CCR5 is a chemokine receptor expressed on leukocytes and a coreceptor used by HIV-1 to enter CD4(+) T lymphocytes and macrophages. Stimulation of CCR5 by chemokines triggers internalization of chemokine-bound CCR5 molecules in a process called down-modulation, which contributes to the anti-HIV activity of chemokines. Recent studies have shown that CCR5 conformational heterogeneity influences chemokine-CCR5 interactions and HIV-1 entry in transfected cells or activated CD4(+) T lymphocytes. However, the effect of CCR5 conformations on other cell types and on the process of down-modulation remains unclear. We used mAbs, some already shown to detect distinct CCR5 conformations, to compare the behavior of CCR5 on in vitro generated human T cell blasts, monocytes and MDMs and CHO-CCR5 transfectants. All human cells express distinct antigenic forms of CCR5 not detected on CHO-CCR5 cells. The recognizable populations of CCR5 receptors exhibit different patterns of down-modulation on T lymphocytes compared with myeloid cells. On T cell blasts, CCR5 is recognized by all antibodies and undergoes rapid chemokine-mediated internalization, whereas on monocytes and MDMs, a pool of CCR5 molecules is recognized by a subset of antibodies and is not removed from the cell surface. We demonstrate that this cell surface-retained form of CCR5 responds to prolonged treatment with more-potent chemokine analogs and acts as an HIV-1 coreceptor. Our findings indicate that the regulation of CCR5 is highly specific to cell type and provide a potential explanation for the observation that native chemokines are less-effective HIV-entry inhibitors on macrophages compared with T lymphocytes.

  5. Chemokine Receptor CCR5 Antagonist Maraviroc: Medicinal Chemistry and Clinical Applications

    PubMed Central

    Xu, Guoyan G.; Guo, Jia; Wu, Yuntao

    2015-01-01

    The human immunodeficiency virus (HIV) causes acquired immumodeficiency syndrome (AIDS), one of the worst global pandemic. The virus infects human CD4 T cells and macrophages, and causes CD4 depletion. HIV enters target cells through the binding of the viral envelope glycoprotein to CD4 and the chemokine coreceptor, CXCR4 or CCR5. In particular, the CCR5-utilizing viruses predominate in the blood during the disease course. CCR5 is expressed on the surface of various immune cells including macrophages, monocytes, microglia, dendric cells, and active memory CD4 T cells. In the human population, the CCR5 genomic mutation, CCR5Δ32, is associated with relative resistance to HIV. These findings paved the way for the discovery and development of CCR5 inhibitors to block HIV transmission and replication. Maraviroc, discovered as a CCR5 antagonist, is the only CCR5 inhibitor that has been approved by both US FDA and the European Medicines Agency (EMA) for treating HIV/AIDS patients. In this review, we summarize the medicinal chemistry and clinical studies of Maraviroc. PMID:25159165

  6. CCL5/RANTES contributes to hypothalamic insulin signaling for systemic insulin responsiveness through CCR5

    PubMed Central

    Chou, Szu-Yi; Ajoy, Reni; Changou, Chun Austin; Hsieh, Ya-Ting; Wang, Yang-Kao; Hoffer, Barry

    2016-01-01

    Many neurodegenerative diseases are accompanied by metabolic disorders. CCL5/RANTES, and its receptor CCR5 are known to contribute to neuronal function as well as to metabolic disorders such as type 2 diabetes mellitus, obesity, atherosclerosis and metabolic changes after HIV infection. Herein, we found that the lack of CCR5 or CCL5 in mice impaired regulation of energy metabolism in hypothalamus. Immunostaining and co-immunoprecipitation revealed the specific expression of CCR5, associated with insulin receptors, in the hypothalamic arcuate nucleus (ARC). Both ex vivo stimulation and in vitro tissue culture studies demonstrated that the activation of insulin, and PI3K-Akt pathways were impaired in CCR5 and CCL5 deficient hypothalamus. The inhibitory phosphorylation of insulin response substrate-1 at Ser302 (IRS-1S302) but not IRS-2, by insulin was markedly increased in CCR5 and CCL5 deficient animals. Elevating CCR5/CCL5 activity induced GLUT4 membrane translocation and reduced phospho-IRS-1S302 through AMPKα-S6 Kinase. Blocking CCR5 using the antagonist, MetCCL5, abolished the de-phosphorylation of IRS-1S302 and insulin signal activation. In addition, intracerebroventricular delivery of MetCCL5 interrupted hypothalamic insulin signaling and elicited peripheral insulin responsiveness and glucose intolerance. Taken together, our data suggest that CCR5 regulates insulin signaling in hypothalamus which contributes to systemic insulin sensitivity and glucose metabolism. PMID:27898058

  7. CCL5/RANTES contributes to hypothalamic insulin signaling for systemic insulin responsiveness through CCR5.

    PubMed

    Chou, Szu-Yi; Ajoy, Reni; Changou, Chun Austin; Hsieh, Ya-Ting; Wang, Yang-Kao; Hoffer, Barry

    2016-11-29

    Many neurodegenerative diseases are accompanied by metabolic disorders. CCL5/RANTES, and its receptor CCR5 are known to contribute to neuronal function as well as to metabolic disorders such as type 2 diabetes mellitus, obesity, atherosclerosis and metabolic changes after HIV infection. Herein, we found that the lack of CCR5 or CCL5 in mice impaired regulation of energy metabolism in hypothalamus. Immunostaining and co-immunoprecipitation revealed the specific expression of CCR5, associated with insulin receptors, in the hypothalamic arcuate nucleus (ARC). Both ex vivo stimulation and in vitro tissue culture studies demonstrated that the activation of insulin, and PI3K-Akt pathways were impaired in CCR5 and CCL5 deficient hypothalamus. The inhibitory phosphorylation of insulin response substrate-1 at Ser302 (IRS-1(S302)) but not IRS-2, by insulin was markedly increased in CCR5 and CCL5 deficient animals. Elevating CCR5/CCL5 activity induced GLUT4 membrane translocation and reduced phospho-IRS-1(S302) through AMPKα-S6 Kinase. Blocking CCR5 using the antagonist, (Met)CCL5, abolished the de-phosphorylation of IRS-1(S302) and insulin signal activation. In addition, intracerebroventricular delivery of (Met)CCL5 interrupted hypothalamic insulin signaling and elicited peripheral insulin responsiveness and glucose intolerance. Taken together, our data suggest that CCR5 regulates insulin signaling in hypothalamus which contributes to systemic insulin sensitivity and glucose metabolism.

  8. Profile of State College and Career Readiness Assessments (CCR) Policy. Tennessee

    ERIC Educational Resources Information Center

    Center on Education Policy, 2011

    2011-01-01

    This individual profile provides information on Tennessee's college and career readiness assessment policy. Some of the categories presented include: (1) CCR assessment policy; (2) Purpose; (3) Major changes in CCR assessment policy since the 2009-10 school year for financial reasons; (4) State financial support for students to take the CCR…

  9. Profile of State College and Career Readiness Assessments (CCR) Policy. South Carolina

    ERIC Educational Resources Information Center

    Center on Education Policy, 2011

    2011-01-01

    This individual profile provides information on South Carolina's college and career readiness assessment policy. Some of the categories presented include: (1) CCR assessment policy; (2) Purpose; (3) Major changes in CCR assessment policy since the 2009-10 school year for financial reasons; (4) State financial support for students to take the CCR…

  10. Profile of State College and Career Readiness Assessments (CCR) Policy. California

    ERIC Educational Resources Information Center

    Center on Education Policy, 2011

    2011-01-01

    This individual profile provides information on California's college and career readiness assessment policy. Some of the categories presented include: (1) CCR assessment policy; (2) Purpose; (3) Major changes in CCR assessment policy since the 2009-10 school year for financial reasons; (4) State financial support for students to take the CCR…

  11. Profile of State College and Career Readiness Assessments (CCR) Policy. New Mexico

    ERIC Educational Resources Information Center

    Center on Education Policy, 2011

    2011-01-01

    This individual profile provides information on New Mexico's college and career readiness assessment policy. Some of the categories presented include: (1) CCR assessment policy; (2) Purpose; (3) Major changes in CCR assessment policy since the 2009-10 school year for financial reasons; (4) State financial support for students to take the CCR…

  12. Profile of State College and Career Readiness Assessments (CCR) Policy. North Dakota

    ERIC Educational Resources Information Center

    Center on Education Policy, 2011

    2011-01-01

    This individual profile provides information on North Dakota's college and career readiness assessment policy. Some of the categories presented include: (1) CCR assessment policy; (2) Purpose; (3) Major changes in CCR assessment policy since the 2009-10 school year for financial reasons; (4) State financial support for students to take the CCR…

  13. Profile of State College and Career Readiness Assessments (CCR) Policy. Alaska

    ERIC Educational Resources Information Center

    Center on Education Policy, 2011

    2011-01-01

    This individual profile provides information on Alaska's college and career readiness assessment policy. Some of the categories presented include: (1) CCR assessment policy; (2) Purpose; (3) Major changes in CCR assessment policy since the 2009-10 school year for financial reasons; (4) State financial support for students to take the CCR…

  14. Profile of State College and Career Readiness Assessments (CCR) Policy. West Virginia

    ERIC Educational Resources Information Center

    Center on Education Policy, 2011

    2011-01-01

    This individual profile provides information on West Virginia's college and career readiness assessment policy. Some of the categories presented include: (1) CCR assessment policy; (2) Purpose; (3) Major changes in CCR assessment policy since the 2009-10 school year for financial reasons; (4) State financial support for students to take the CCR…

  15. Profile of State College and Career Readiness Assessments (CCR) Policy. Alabama

    ERIC Educational Resources Information Center

    Center on Education Policy, 2011

    2011-01-01

    This individual profile provides information on Alabama's college and career readiness assessment policy. Some of the categories presented include: (1) CCR assessment policy; (2) Purpose; (3) Major changes in CCR assessment policy since the 2009-10 school year for financial reasons; (4) State financial support for students to take the CCR…

  16. Profile of State College and Career Readiness Assessments (CCR) Policy. Georgia

    ERIC Educational Resources Information Center

    Center on Education Policy, 2011

    2011-01-01

    This individual profile provides information on Georgia's college and career readiness assessment policy. Some of the categories presented include: (1) CCR assessment policy; (2) Purpose; (3) Major changes in CCR assessment policy since the 2009-10 school year for financial reasons; (4) State financial support for students to take the CCR…

  17. Profile of State College and Career Readiness Assessments (CCR) Policy. Minnesota

    ERIC Educational Resources Information Center

    Center on Education Policy, 2011

    2011-01-01

    This individual profile provides information on Minnesota's college and career readiness assessment policy. Some of the categories presented include: (1) CCR assessment policy; (2) Purpose; (3) Major changes in CCR assessment policy since the 2009-10 school year for financial reasons; (4) State financial support for students to take the CCR…

  18. Profile of State College and Career Readiness Assessments (CCR) Policy. Arkansas

    ERIC Educational Resources Information Center

    Center on Education Policy, 2011

    2011-01-01

    This individual profile provides information on Arkansas' college and career readiness assessment policy. Some of the categories presented include: (1) CCR assessment policy; (2) Purpose; (3) Major changes in CCR assessment policy since the 2009-10 school year for financial reasons; (4) State financial support for students to take the CCR…

  19. Profile of State College and Career Readiness Assessments (CCR) Policy. Florida

    ERIC Educational Resources Information Center

    Center on Education Policy, 2011

    2011-01-01

    This individual profile provides information on Florida's college and career readiness assessment policy. Some of the categories presented include: (1) CCR assessment policy; (2) Purpose; (3) Major changes in CCR assessment policy since the 2009-10 school year for financial reasons; (4) State financial support for students to take the CCR…

  20. Profile of State College and Career Readiness Assessments (CCR) Policy. Kentucky

    ERIC Educational Resources Information Center

    Center on Education Policy, 2011

    2011-01-01

    This individual profile provides information on Kentucky's college and career readiness assessment policy. Some of the categories presented include: (1) CCR assessment policy; (2) Purpose; (3) Major changes in CCR assessment policy since the 2009-10 school year for financial reasons; (4) State financial support for students to take the CCR…

  1. CCR9 Is a Key Regulator of Early Phases of Allergic Airway Inflammation

    PubMed Central

    López-Pacheco, C.; Soldevila, G.; Du Pont, G.; Hernández-Pando, R.

    2016-01-01

    Airway inflammation is the most common hallmark of allergic asthma. Chemokine receptors involved in leukocyte recruitment are closely related to the pathology in asthma. CCR9 has been described as a homeostatic and inflammatory chemokine receptor, but its role and that of its ligand CCL25 during lung inflammation remain unknown. To investigate the role of CCR9 as a modulator of airway inflammation, we established an OVA-induced allergic inflammation model in CCR9-deficient mice. Here, we report the expression of CCR9 and CCL25 as early as 6 hours post-OVA challenge in eosinophils and T-lymphocytes. Moreover, in challenged CCR9-deficient mice, cell recruitment was impaired at peribronchial and perivenular levels. OVA-administration in CCR9-deficient mice leads to a less inflammatory cell recruitment, which modifies the expression of IL-10, CCL11, and CCL25 at 24 hours after OVA challenge. In contrast, the secretion of IL-4 and IL-5 was not affected in CCR9-deficient mice compared to WT mice. These results demonstrate for the first time that CCR9 and CCL25 expressions are induced in the early stages of airway inflammation and they have an important role modulating eosinophils and lymphocytes recruitment at the first stages of inflammatory process, suggesting that they might be a potential target to regulate inflammation in asthma. PMID:27795621

  2. Chemokine receptor CCR5 antagonist maraviroc: medicinal chemistry and clinical applications.

    PubMed

    Xu, Guoyan G; Guo, Jia; Wu, Yuntao

    2014-01-01

    The human immunodeficiency virus (HIV) causes acquired immumodeficiency syndrome (AIDS), one of the worst global pandemic. The virus infects human CD4 T cells and macrophages, and causes CD4 depletion. HIV enters target cells through the binding of the viral envelope glycoprotein to CD4 and the chemokine coreceptor, CXCR4 or CCR5. In particular, the CCR5-utilizing viruses predominate in the blood during the disease course. CCR5 is expressed on the surface of various immune cells including macrophages, monocytes, microglia, dendric cells, and active memory CD4 T cells. In the human population, the CCR5 genomic mutation, CCR5Δ32, is associated with relative resistance to HIV. These findings paved the way for the discovery and development of CCR5 inhibitors to block HIV transmission and replication. Maraviroc, discovered as a CCR5 antagonist, is the only CCR5 inhibitor that has been approved by both US FDA and the European Medicines Agency (EMA) for treating HIV/AIDS patients. In this review, we summarize the medicinal chemistry and clinical studies of Maraviroc.

  3. Immunohistochemical detection of CCR2 and CX3CR1 in sepsis-induced lung injury.

    PubMed

    An, Jun-Ling; Ishida, Yuko; Kimura, Akihiko; Tsokos, Michael; Kondo, Toshikazu

    2009-11-20

    Sepsis is a systemic inflammatory disease with high mortality. In the present study, we immunohistochemically examined CCR2 and CX3CR1 expression in sepsis-induced lung injury, and discussed its availability for the postmortem diagnosis of sepsis. Lung samples were obtained from different lung lobes of nine sepsis and eight control cases with postmortem intervals between 12 and 48h. Immunohistochemically, mononuclear cells recruited into the lungs expressed CCR2 and CX3CR1 in both sepsis and non-septic groups. In double-color immunofluorescence analysis, CCR2- or CX3CR1-positive cells could be identified as CD68-positive macrophages. Moreover, most of CD68-positive macrophages expressed both CCR2 and CX3CR1. Morphometrically, the average of CCR2- and CX3CR1-positive macrophages was significantly increased in sepsis group, compared with control group (sepsis vs. control: 41.6+/-1.3% vs. 8.0+/-0.4% in CCR2; 36.2+/-1.3% vs. 9.2+/-0.4% in CX3CR1). These observations implied that CCR2- or CX3CR1-positive macrophages were recruited into the lungs under several pathological conditions. In particular, their recruitment might be more evident in sepsis. Moreover, from the forensic aspects, immunohistochemical detection of CCR2 and CX3CR1 expression in the lungs can be considered as valuable diagnostic tools for the postmortem diagnosis of sepsis.

  4. CCR6 Recruits Regulatory T Cells and Th17 Cells to the Kidney in Glomerulonephritis

    PubMed Central

    Turner, Jan-Eric; Paust, Hans-Joachim; Steinmetz, Oliver M.; Peters, Anett; Riedel, Jan-Hendrik; Erhardt, Annette; Wegscheid, Claudia; Velden, Joachim; Fehr, Susanne; Mittrücker, Hans-Willi; Tiegs, Gisa; Stahl, Rolf A.K.

    2010-01-01

    T cells recruited to the kidney contribute to tissue damage in crescentic and proliferative glomerulonephritides. Chemokines and their receptors regulate T cell trafficking, but the expression profile and functional importance of chemokine receptors for renal CD4+ T cell subsets are incompletely understood. In this study, we observed that renal FoxP3+CD4+ regulatory T cells (Tregs) and IL-17–producing CD4+ T (Th17) cells express the chemokine receptor CCR6, whereas IFNγ-producing Th1 cells are CCR6−. Induction of experimental glomerulonephritis (nephrotoxic nephritis) in mice resulted in upregulation of the only CCR6 ligand, CCL20, followed by T cell recruitment, renal tissue injury, albuminuria, and loss of renal function. CCR6 deficiency aggravated renal injury and increased mortality (from uremia) among nephritic mice. Compared with wild-type (WT) mice, CCR6 deficiency reduced infiltration of Tregs and Th17 cells but did not affect recruitment of Th1 cells in the setting of glomerulonephritis. Adoptive transfer of WT but not CCR6-deficient Tregs attenuated morphologic and functional renal injury in nephritic mice. Furthermore, reconstitution with WT Tregs protected CCR6−/− mice from aggravated nephritis. Taken together, these data suggest that CCR6 mediates renal recruitment of both Tregs and Th17 cells and that the reduction of anti-inflammatory Tregs in the presence of a fully functional Th1 response aggravates experimental glomerulonephritis. PMID:20299360

  5. Correlation between CCR7 expression and lymph node metastatic potential of human tongue carcinoma.

    PubMed

    Xia, X; Liu, K; Zhang, H; Shang, Z

    2015-01-01

    Metastasis is an important cause of cancer-related mortality. In this study, we investigated the role of CCR7 in the lymph node metastasis of tongue carcinoma. Immunohistochemistry and Western blot revealed the expression of CCR7 in tongue SCC tissues and cell lines. In addition, we examined the expression of CCL21, a ligand of CCR7, in normal and diseased lymph nodes using immunohistochemistry and/or real-time PCR. The CCR7 expression was significantly correlated with cervical lymph node metastasis, tumor staging, and histological grade (P = 0.015, 0.040, and 0.015, respectively). The multivariate analysis showed that regional lymph node metastasis, the expression of CCR7, and LVD were the independent poor prognostic factors. Knockdown of CCR7 gene resulted in a significant inhibition of migration and invasion of SCC4 cells in vitro without affecting the proliferation and apoptosis of tumor cells. Also, CCR7 knockdown obviously inhibited cervical lymph node metastasis in an animal tumor model. Our study indicated that CCR7 may play an important role in progression of tongue SCC and could be a promising target for tongue SCC therapy.

  6. CCR2 Antagonism Alters Brain Macrophage Polarization and Ameliorates Cognitive Dysfunction Induced by Traumatic Brain Injury

    PubMed Central

    Jopson, Timothy D.; Liu, Sharon; Riparip, Lara-Kirstie; Guandique, Cristian K.; Gupta, Nalin; Ferguson, Adam R.

    2015-01-01

    Traumatic brain injury (TBI) is a major risk factor for the development of multiple neurodegenerative diseases. With respect to the increasing prevalence of TBI, new therapeutic strategies are urgently needed that will prevent secondary damage to primarily unaffected tissue. Consistently, neuroinflammation has been implicated as a key mediator of secondary damage following the initial mechanical insult. Following injury, there is uncertainty regarding the role that accumulating CCR2+ macrophages play in the injury-induced neuroinflammatory sequelae and cognitive dysfunction. Using CX3CR1GFP/+CCR2RFP/+ reporter mice, we show that TBI initiated a temporally restricted accumulation of peripherally derived CCR2+ macrophages, which were concentrated in the hippocampal formation, a region necessary for learning and memory. Multivariate analysis delineated CCR2+ macrophages' neuroinflammatory response while identifying a novel therapeutic treatment window. As a proof of concept, targeting CCR2+ macrophages with CCX872, a novel Phase I CCR2 selective antagonist, significantly reduced TBI-induced inflammatory macrophage accumulation. Concomitantly, there was a significant reduction in multiple proinflammatory and neurotoxic mediators with this treatment paradigm. Importantly, CCR2 antagonism resulted in a sparing of TBI-induced hippocampal-dependent cognitive dysfunction and reduced proinflammatory activation profile 1 month after injury. Thus, therapeutically targeting the CCR2+ subset of monocytes/macrophages may provide a new avenue of clinical intervention following TBI. PMID:25589768

  7. 77 FR 5471 - Announcement of Public Meeting on the Consumer Confidence Report (CCR) Rule Retrospective Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... AGENCY 40 CFR Parts 141 and 142 Announcement of Public Meeting on the Consumer Confidence Report (CCR... Internet on February 23, 2012, to obtain stakeholder input on the Consumer Confidence Report (CCR) Rule as.... Background: Consumer Confidence Reports are a key part of the public's right-to-know as established in...

  8. Multistep continuous-flow synthesis in medicinal chemistry: discovery and preliminary structure-activity relationships of CCR8 ligands.

    PubMed

    Petersen, Trine P; Mirsharghi, Sahar; Rummel, Pia C; Thiele, Stefanie; Rosenkilde, Mette M; Ritzén, Andreas; Ulven, Trond

    2013-07-08

    A three-step continuous-flow synthesis system and its application to the assembly of a new series of chemokine receptor ligands directly from commercial building blocks is reported. No scavenger columns or solvent switches are necessary to recover the desired test compounds, which were obtained in overall yields of 49-94%. The system is modular and flexible, and the individual steps of the sequence can be interchanged with similar outcome, extending the scope of the chemistry. Biological evaluation confirmed activity on the chemokine CCR8 receptor and provided initial structure-activity-relationship (SAR) information for this new ligand series, with the most potent member displaying full agonist activity with single-digit nanomolar potency. To the best of our knowledge, this represents the first published example of efficient use of multistep flow synthesis combined with biological testing and SAR studies in medicinal chemistry.

  9. Analysis of CCR5 and SDF-1 genetic variants and HIV infection in Indian population.

    PubMed

    Gupta, A; Padh, Harish

    2015-08-01

    HIV-1 infection and progression exhibits interindividual variation. The polymorphism in the chemokine receptors CCR5 and CXCR4, the principal coreceptors for HIV-1 and their ligands like SDF-1 have a profound effect in altering the HIV-1 disease progression rate. A single nucleotide polymorphism designated SDF1-3'UTR-801G-A has been associated with resistance to HIV-1 infection or delayed progression to AIDS. In this study, the SDF1-3'A polymorphism, CCR5∆32 polymorphism and CCR5 promoter polymorphism at positions 58934 G/T, 59029 G/A, 59353 T/C, 59356 C/T, 59402 A/G and 59653 C/T were analysed in Indian population. The polymorphisms in HIV-1 patients and healthy individuals were evaluated by conventional PCR, RFLP-PCR and direct sequencing techniques. The CCR5∆32 mutant allele was found to be almost absent in Indian population. The analysis of the CCR5-59356C/T polymorphism revealed a trend towards an association of the C allele with an increased risk of HIV-1 infection. The frequency of allele CCR5-59356C was higher in HIV-1 patients (100%) as compared to healthy control subjects (89%, P = 0.003). The correlation of SDF1-3'A and CCR5 promoter CCR5-58934G/T, CCR5-59029G/A, CCR5-59353T/C, CCR5-59402 A/G and CCR5-59653C/T polymorphisms and protection to HIV-1 infection and progression to AIDS was found to be nonsignificant. Nine haplotypes with more than 1% frequency were detected but were not significant in their protective role against HIV. Comparative analysis with global populations showed a noteworthy difference in CCR5 and SDF-1 polymorphisms' frequency distribution, indicating the ethnic variability of Indians. Although susceptibility to infections cannot be completely dependent on one or few genetic variants, it is important to remember that SDF-1 and CCR5 variants have been correlated globally with HIV-1 infection and disease progression. In the light of that, higher frequency of SDF-1 variants in the Indian population is noteworthy.

  10. Enrichment separation of recombinant human CCR3 using detergent/polymer two-phase system.

    PubMed

    Ge, Baosheng; Li, Wei; Yin, Yu

    2010-03-01

    Studies on the structure and functions of membrane proteins are impeded by their lability, hydrophobicity, difficulty in purification and low yields. Human chemokine receptor 3 (CCR3) is a G protein-coupled receptor related to allergic diseases. A Triton X-100/PEG20000 two-phase system was employed for enrichment separation of CCR3 over-expressed in E. coli. Optimal CCR3 partitioning with partition coefficient around 8 was obtained at pH 7.0, ionic strength of 0.3 mol/kg and 3 h equilibration time. Total recovery of CCR3 reached 102 +/- 15%, which was much higher than 32 +/- 5% of the normally used ultracentrifugation method. The recovered CCR3 was finally purified by two chromatography steps giving a final protein of 87 kDa.

  11. Differential requirement for CCR4 and CCR7 during the development of innate and adaptive αβT cells in the adult thymus.

    PubMed

    Cowan, Jennifer E; McCarthy, Nicholas I; Parnell, Sonia M; White, Andrea J; Bacon, Andrea; Serge, Arnauld; Irla, Magali; Lane, Peter J L; Jenkinson, Eric J; Jenkinson, William E; Anderson, Graham

    2014-08-01

    αβT cell development depends upon serial migration of thymocyte precursors through cortical and medullary microenvironments, enabling specialized stromal cells to provide important signals at specific stages of their development. Although conventional αβT cells are subject to clonal deletion in the medulla, entry into the thymus medulla also fosters αβT cell differentiation. For example, during postnatal periods, the medulla is involved in the intrathymic generation of multiple αβT cell lineages, notably the induction of Foxp3(+) regulatory T cell development and the completion of invariant NKT cell development. Although migration of conventional αβT cells to the medulla is mediated by the chemokine receptor CCR7, how other T cell subsets gain access to medullary areas during their normal development is not clear. In this study, we show that combining a panel of thymocyte maturation markers with cell surface analysis of CCR7 and CCR4 identifies distinct stages in the development of multiple αβT cell lineages in the thymus. Although Aire regulates expression of the CCR4 ligands CCL17 and CCL22, we show that CCR4 is dispensable for thymocyte migration and development in the adult thymus, demonstrating defective T cell development in Aire(-/-) mice is not because of a loss of CCR4-mediated migration. Moreover, we reveal that CCR7 controls the development of invariant NKT cells by enabling their access to IL-15 trans-presentation in the thymic medulla and influences the balance of early and late intrathymic stages of Foxp3(+) regulatory T cell development. Collectively, our data identify novel roles for CCR7 during intrathymic T cell development, highlighting its importance in enabling multiple αβT cell lineages to access the thymic medulla.

  12. Emerging areas of research reported during the CDC National Conference on Pfiesteria: from biology to public health.

    PubMed

    Rubin, C; McGeehin, M A; Holmes, A K; Backer, L; Burreson, G; Earley, M C; Griffith, D; Levine, R; Litaker, W; Mei, J; Naeher, L; Needham, L; Noga, E; Poli, M; Rogers, H S

    2001-10-01

    Since its identification in 1996, the marine dinoflagellate Pfiesteria piscicida Steidinger & Burkholder has been the focus of intense scientific inquiry in disciplines ranging from estuarine ecology to epidemiology and from molecular biology to public health. Despite these research efforts, the extent of human exposure and the degree of human illness directly associated with Pfiesteria is still in the process of being defined. Unfortunately, during this same time Pfiesteria has also stimulated media coverage that in some instances jumped ahead of the science to conclude that Pfiesteria presents a widespread threat to human health. Political and economic forces also came into play when the tourism and seafood industries were adversely impacted by rumors of toxin-laden water in estuaries along the east coast of the United States. Amid this climate of evolving science and public concern, Pfiesteria has emerged as a highly controversial public health issue. In October 2000 Centers for Disease Control and Prevention sponsored the National Conference on Pfiesteria: From Biology to Public Health to bring together Pfiesteria researchers from many disparate disciplines. The goal of this meeting was to describe the state of the science and identify directions for future research. In preparation for the conference an expert peer-review panel was commissioned to review the existing literature and identify research gaps; the summary of their review is published in this monograph. During the meeting primary Pfiesteria researchers presented previously unpublished results. The majority of those presentations are included as peer-reviewed articles in this monograph. The discussion portion of the conference focused upon researcher-identified research gaps. This article details the discussion segments of the conference and makes reference to the presentations as it describes emerging areas of Pfiesteria research.

  13. Amino- and Carboxyl-Terminal CCR5 Mutations in Brazilian HIV-1-Infected Women and Homology Model of p.L55Q CCR5 Mutant.

    PubMed

    Costa, Giselle Calasans de Souza; Nunes, Marcio Roberto T; Jesus, Jaqueline Goes; Novaes, Thiago; Cardoso, Jedson Ferreira; Sousa Júnior, Edivaldo Costa; Santos, Edson de Souza; Galvão-Castro, Bernardo; Zanette, Dalila Luciola; Gonçalves, Marilda de Souza; Alcantara, Luiz Carlos Junior

    2015-07-01

    Genetic factors from an HIV-1 host can affect the rate of progression to AIDS and HIV infection. To investigate the frequency of mutations in the CCR5 gene, HIV-1 samples from infected women and uninfected individuals were selected for sequencing of the CCR5 gene regions encoding the N- and C-terminal protein domains. Physicochemical CCR5 modeling and potential protein domain analysis were performed in order to evaluate the impact of the mutations found in the properties and structure of CCR5. The p.L55Q mutation in the N-terminal protein domain was observed only in uninfected individuals, with an allelic frequency of 1.8%. Physicochemical analysis revealed that the p.L55Q mutation magnified the flexibility and accessibility profiles and the modeling of CCR5 structures showed resulting in a small deviation to the right, as well as a hydrophobic to hydrophilic property alteration. The p.L55Q mutation also resulted in a slight modification of the electrostatic load of this region. Additionally, three novel silent mutations were found at the C-terminal coding region among HIV-1-infected women. The results suggest that the p.L55Q mutation might alter CCR5 conformation. Further studies should be conducted to verify the role of this mutation in HIV-1 susceptibility.

  14. CCR6 is required for IL-23–induced psoriasis-like inflammation in mice

    PubMed Central

    Hedrick, Michael N.; Lonsdorf, Anke S.; Shirakawa, Aiko-Konno; Lee, Chyi-Chia Richard; Liao, Fang; Singh, Satya P.; Zhang, Hongwei H.; Grinberg, Alexander; Love, Paul E.; Hwang, Sam T.; Farber, Joshua M.

    2009-01-01

    Psoriasis is a common immune-mediated chronic inflammatory skin disorder, but the mechanisms of pathogenesis are still poorly understood. IL-23 is expressed in psoriatic skin, and IL-23 injection produces IL-22–dependent psoriasiform changes in mouse skin. Th17 cells produce IL-22 and display CCR6, the CCL20 receptor; CCR6+ T cells and CCL20 are abundant in psoriatic skin. We investigated a possible role for CCR6 in recruiting Th17 cells and producing psoriasiform pathology by injecting IL-23 into the skin of WT and Ccr6–/– mice. Unlike for WT mice, IL-23–injected ears of Ccr6–/– mice showed neither substantial epidermal/dermal changes nor increased Il22 mRNA expression. However, injection of IL-22 yielded equivalent psoriasiform changes in WT and Ccr6–/– mice. Surprisingly, IL-23–injected ears of WT and Ccr6–/– mice contained similar numbers of Th cells able to make IL-17A and/or IL-22. Furthermore, in ears of Rag1–/– mice, IL-23 initially induced skin changes and levels of Il22 mRNA that were indistinguishable from WT mice, revealing at least one non–T cell source for IL-22. We conclude that CCR6 is essential in a model of IL-23–induced, IL-22–mediated dermatitis, which develops in sequential T cell–independent and T cell–dependent phases. These findings reveal an expanded role for CCR6 in IL-23–related responses and identify CCR6 as a potential therapeutic target in psoriasis. PMID:19662682

  15. CCR6 is required for IL-23-induced psoriasis-like inflammation in mice.

    PubMed

    Hedrick, Michael N; Lonsdorf, Anke S; Shirakawa, Aiko-Konno; Richard Lee, Chyi-Chia; Liao, Fang; Singh, Satya P; Zhang, Hongwei H; Grinberg, Alexander; Love, Paul E; Hwang, Sam T; Farber, Joshua M

    2009-08-01

    Psoriasis is a common immune-mediated chronic inflammatory skin disorder, but the mechanisms of pathogenesis are still poorly understood. IL-23 is expressed in psoriatic skin, and IL-23 injection produces IL-22-dependent psoriasiform changes in mouse skin. Th17 cells produce IL-22 and display CCR6, the CCL20 receptor; CCR6+ T cells and CCL20 are abundant in psoriatic skin. We investigated a possible role for CCR6 in recruiting Th17 cells and producing psoriasiform pathology by injecting IL-23 into the skin of WT and Ccr6-/- mice. Unlike for WT mice, IL-23-injected ears of Ccr6-/- mice showed neither substantial epidermal/dermal changes nor increased Il22 mRNA expression. However, injection of IL-22 yielded equivalent psoriasiform changes in WT and Ccr6-/- mice. Surprisingly, IL-23-injected ears of WT and Ccr6-/- mice contained similar numbers of Th cells able to make IL-17A and/or IL-22. Furthermore, in ears of Rag1-/- mice, IL-23 initially induced skin changes and levels of Il22 mRNA that were indistinguishable from WT mice, revealing at least one non-T cell source for IL-22. We conclude that CCR6 is essential in a model of IL-23-induced, IL-22-mediated dermatitis, which develops in sequential T cell-independent and T cell-dependent phases. These findings reveal an expanded role for CCR6 in IL-23-related responses and identify CCR6 as a potential therapeutic target in psoriasis.

  16. Chemical and Biological National Security Program (CBNP) Annual Report FY2002 Overview Local Integration of NARAC With Cities (LINC)

    SciTech Connect

    Ermak, D L; Nasstrom, J S; Tull, J E; Baskett, R L; Pobanz, B; Mosley-Rovi, R

    2002-11-18

    The objective of the Local Integration of NARAC With Cities (LINC) project is to demonstrate the capability for providing local government agencies with advanced, CBNP-developed operational atmospheric plume prediction capabilities that can be seamlessly integrated with appropriate federal agency support for homeland security. LINC's approach is to integrate Lawrence Livermore National Laboratory's (LLNL) National Atmospheric Release Advisory Center (NARAC) tools and services with local emergency management and response centers. In the event of an airborne chemical or biological agent release in an urban area, large portions of the city and even the surrounding suburbs may be affected by the airborne plume, depending on the type of agent, size of release, dissemination mechanism and ambient meteorological conditions. The goal of LINC is to provide real-time predictions that would be used by emergency managers and responders (fire, police, hazmat, etc.) to map the extent and effects of hazardous airborne material. Prompt predictions are provided to guide first responders in determining protective actions to be taken (use of personal protective equipment, evacuation, sheltering in place, etc.), safe locations for incident command posts, and critical facilities that may be at risk (hospitals, schools, etc.). LINC also provides response teams from multiple jurisdictions (local, state, and federal) with tools to effectively share information regarding the areas and populations at risk. The ultimate goal of LINC is a seamless and coordinated nationwide system that integrates NARAC prediction and situation awareness resources with the appropriate local, state and federal agencies for homeland security applications ranging from planning to emergency response to consequence assessment and attribution.

  17. Spatial heterogeneity of eukaryotic microbial communities in an unstudied geothermal diatomaceous biological soil crust: Yellowstone National Park, WY, USA.

    PubMed

    Meadow, James F; Zabinski, Catherine A

    2012-10-01

    Knowledge of microbial communities and their inherent heterogeneity has dramatically increased with the widespread use of high-throughput sequencing technologies, and we are learning more about the ecological processes that structure microbial communities across a wide range of environments, as well as the relative scales of importance for describing bacterial communities in natural systems. Little work has been carried out to assess fine-scale eukaryotic microbial heterogeneity in soils. Here, we present findings from a bar-coded 18S rRNA survey of the eukaryotic microbial communities in a previously unstudied geothermal diatomaceous biological soil crust in Yellowstone National Park, WY, USA, in which we explicitly compare microbial community heterogeneity at the particle scale within soil cores. Multivariate analysis of community composition showed that while subsamples from within the same soil core clustered together, community dissimilarity between particles in the same core was high. This study describes a novel soil microbial environment and also adds to our growing understanding of microbial heterogeneity and the scales relevant to the study of soil microbial communities.

  18. Biological Risks to Public Health: Lessons from an International Conference to Inform the Development of National Risk Communication Strategies

    PubMed Central

    Bhatiasevi, Aphaluck; Chaib, Fadela; Baggio, Ombretta; Banluta, Christina; Hollenweger, Lilian; Maaroufi, Abderrahmane

    2016-01-01

    Biological risk management in public health focuses on the impact of outbreaks on health, the economy, and other systems and on ensuring biosafety and biosecurity. To address this broad range of risks, the International Health Regulations (IHR, 2005) request that all member states build defined core capacities, risk communication being one of them. While there is existing guidance on the communication process and on what health authorities need to consider to design risk communication strategies that meet the requirements on a governance level, little has been done on implementation because of a number of factors, including lack of resources (human, financial, and others) and systems to support effective and consistent capacity for risk communication. The international conference on “Risk communication strategies before, during and after public health emergencies” provided a platform to present current strategies, facilitate learning from recent outbreaks of infectious diseases, and discuss recommendations to inform risk communication strategy development. The discussion concluded with 4 key areas for improvement in risk communication: consider communication as a multidimensional process in risk communication, broaden the biomedical paradigm by integrating social science intelligence into epidemiologic risk assessments, strengthen multisectoral collaboration including with local organizations, and spearhead changes in organizations for better risk communication governance. National strategies should design risk communication to be proactive, participatory, and multisectoral, facilitating the connection between sectors and strengthening collaboration. PMID:27875654

  19. Biological Risks to Public Health: Lessons from an International Conference to Inform the Development of National Risk Communication Strategies.

    PubMed

    Dickmann, Petra; Bhatiasevi, Aphaluck; Chaib, Fadela; Baggio, Ombretta; Banluta, Christina; Hollenweger, Lilian; Maaroufi, Abderrahmane

    Biological risk management in public health focuses on the impact of outbreaks on health, the economy, and other systems and on ensuring biosafety and biosecurity. To address this broad range of risks, the International Health Regulations (IHR, 2005) request that all member states build defined core capacities, risk communication being one of them. While there is existing guidance on the communication process and on what health authorities need to consider to design risk communication strategies that meet the requirements on a governance level, little has been done on implementation because of a number of factors, including lack of resources (human, financial, and others) and systems to support effective and consistent capacity for risk communication. The international conference on "Risk communication strategies before, during and after public health emergencies" provided a platform to present current strategies, facilitate learning from recent outbreaks of infectious diseases, and discuss recommendations to inform risk communication strategy development. The discussion concluded with 4 key areas for improvement in risk communication: consider communication as a multidimensional process in risk communication, broaden the biomedical paradigm by integrating social science intelligence into epidemiologic risk assessments, strengthen multisectoral collaboration including with local organizations, and spearhead changes in organizations for better risk communication governance. National strategies should design risk communication to be proactive, participatory, and multisectoral, facilitating the connection between sectors and strengthening collaboration.

  20. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex

    PubMed Central

    Du, Hao; Zhao, Ya; He, Jinqiu; Zhang, Yao; Xi, Hairui; Liu, Mofang; Ma, Jinbiao; Wu, Ligang

    2016-01-01

    Methylation at the N6 position of adenosine (m6A) is the most abundant RNA modification within protein-coding and long noncoding RNAs in eukaryotes and is a reversible process with important biological functions. YT521-B homology domain family (YTHDF) proteins are the readers of m6A, the binding of which results in the alteration of the translation efficiency and stability of m6A-containing RNAs. However, the mechanism by which YTHDF proteins cause the degradation of m6A-containing RNAs is poorly understood. Here we report that m6A-containing RNAs exhibit accelerated deadenylation that is mediated by the CCR4–NOT deadenylase complex. We further show that YTHDF2 recruits the CCR4–NOT complex through a direct interaction between the YTHDF2 N-terminal region and the SH domain of the CNOT1 subunit, and that this recruitment is essential for the deadenylation of m6A-containing RNAs by CAF1 and CCR4. Therefore, we have uncovered the mechanism of YTHDF2-mediated degradation of m6A-containing RNAs in mammalian cells. PMID:27558897

  1. Differing requirements for CCR4, E-selectin, and α4β1 for the migration of memory CD4 and activated T cells to dermal inflammation.

    PubMed

    Gehad, Ahmed; Al-Banna, Nadia A; Vaci, Maria; Issekutz, Andrew C; Mohan, Karkada; Latta, Markus; Issekutz, Thomas B

    2012-07-01

    CCR4 on T cells is suggested to mediate skin homing in mice. Our objective was to determine the interaction of CCR4, E-selectin ligand (ESL), and α(4)β(1) on memory and activated T cells in recruitment to dermal inflammation. mAbs to rat CCR4 were developed. CCR4 was on 5-21% of memory CD4 cells, and 20% were also ESL(+). Anti-TCR-activated CD4 and CD8 cells were 40-55% CCR4(+), and ∼75% of both CCR4(+) and CCR4(-) cells were ESL(+). CCR4(+) memory CD4 cells migrated 4- to 7-fold more to dermal inflammation induced by IFN-γ, TNF, TLR agonists, and delayed-type hypersensitivity than CCR4(-) cells. CCR4(+) activated CD4 cells migrated only 5-50% more than CCR4(-) cells to these sites. E-selectin blockade inhibited ∼60% of CCR4(+) activated CD4 cell migration but was less effective on memory cells where α(4)β(1) was more important. Anti-α(4)β(1) also inhibited CCR4(-) activated CD4 cells more than CCR4(+) cells. Anti-E-selectin reduced activated CD8 more than CD4 cell migration. These findings modify our understanding of CCR4, ESL, α(4)β(1), and dermal tropism. There is no strict relationship between CCR4 and ESL for skin homing of CD4 cells, because the activation state and inflammatory stimulus are critical determinants. Dermal homing memory CD4 cells express CCR4 and depend more on α(4)β(1) than ESL. Activated CD4 cells do not require CCR4, but CCR4(+) cells are more dependent on ESL than on α(4)β(1), and CCR4(-) cells preferentially use α(4)β(1). The differentiation from activated to memory CD4 cells increases the dependence on CCR4 for skin homing and decreases the requirement for ESL.

  2. Association of TGFβ1, TNFα, CCR2 and CCR5 gene polymorphisms in type-2 diabetes and renal insufficiency among Asian Indians

    PubMed Central

    Prasad, Pushplata; Tiwari, Arun K; Kumar, KM Prasanna; Ammini, AC; Gupta, Arvind; Gupta, Rajeev; Thelma, BK

    2007-01-01

    Background Cytokines play an important role in the development of diabetic chronic renal insufficiency (CRI). Transforming growth factor β1 (TGF β1) induces renal hypertrophy and fibrosis, and cytokines like tumor necrosis factor-alpha (TNFα), chemoattractant protein-1 (MCP-1), and regulated upon activation and normal T cell expressed and secreted (RANTES) mediate macrophage infiltration into kidney. Over expression of these chemokines leads to glomerulosclerosis and interstitial fibrosis. The effect of MCP-1 and RANTES on kidney is conferred by their receptors i.e., chemokine receptor (CCR)-2 and CCR-5 respectively. We tested association of nine single nucleotide polymorphisms (SNPs) from TGFβ1, TNFα, CCR2 and CCR5 genes among individuals with type-2 diabetes with and without renal insufficiency. Methods Type-2 diabetes subjects with chronic renal insufficiency (serum creatinine ≥ 3.0 mg/dl) constituted the cases, and matched individuals with diabetes of duration ≥ 10 years and normoalbuminuria were evaluated as controls from four centres in India. Allelic and genotypic contributions of nine SNPs from TGFβ1, TNFα, CCR2 and CCR5 genes to diabetic CRI were tested by computing odds ratio (OR) and 95% confidence intervals (CI). Sub-analysis of CRI cases diabetic retinopathy status as dependent variable and SNP genotypes as independent variable in a univariate logistic regression was also performed. Results SNPs Tyr81His and Thr263Ile in TGF β1 gene were monomorphic, and Arg25Pro in TGF β1 gene and Δ32 polymorphism in CCR5 gene were minor variants (minor allele frequency <0.05) and therefore were not considered for case-control analysis. A significant allelic association of 59029G>A SNP of CCR5 gene has been observed and the allele 59029A seems to confer predisposition to development of diabetic CRI (OR 1.39; CI 1.04–1.84). In CRI subjects a compound group of genotypes "GA and AA" of SNP G>A -800 was found to confer predisposition for proliferative

  3. [Secondary effects of treatment with maraviroc and other CCR5 antagonists. Potential impact of the CCR5 blocker].

    PubMed

    Arribas López, José R

    2008-10-01

    Maraviroc is the first inhibitor of CCR5 co-receptors to be marketed as an antiretroviral. The pre-clinical studies and phase III trials have shown that it has a very favourable safety profile. No characteristic adverse effect of maraviroc has been identified. Unlike with aplaviroc, where its clinical development was stopped due to serious hepatoxicity, no increase in liver toxicity has been demonstrated in patients treated with maraviroc even if they are co-infected by hepatotropic virus. Nor was there any evidence of an increase in the incidence of neoplasms or serious infections in patients treated with maraviroc. In a study on naive patients, maraviroc produced nonsignificant changes in total cholesterol, LDL, HDL and triglycerides. Although CCR5 co-receptors play a role in the immune response of the body, it has not been shown whether individuals homozygote for its deletion (delta-32 mutation) have an increased risk of serious infections, with the possible exception of encephalitis due to the West Nile virus. However, long-term follow up is required on patients treated with to be able to rule out any increased susceptibility to infections or neoplasms.

  4. CD8 T Cells Enter the Splenic T Cell Zones Independently of CCR7, but the Subsequent Expansion and Trafficking Patterns of Effector T Cells after Infection Are Dysregulated in the Absence of CCR7 Migratory Cues.

    PubMed

    Sharma, Naveen; Benechet, Alexandre P; Lefrançois, Leo; Khanna, Kamal M

    2015-12-01

    CCR7 is an important chemokine receptor that regulates T cell trafficking and compartmentalization within secondary lymphoid organs. However, the T cell-intrinsic role of CCR7 during infection in the spleen is not well understood. This study was designed to understand how CCR7-dependent localization and migration of CD8(+) T cells in different compartments of the spleen affected the primary and recall responses after infection. To this end, we used adoptive transfer of naive Ag-specific CD8 T cells (OT-I) that either lacked CCR7 or constitutively expressed CCR7 (CD2-CCR7) in mice that were subsequently infected i.v. with Listeria monocytogenes. We show that naive CCR7(-/-)CD8(+) T cells failed to enter the T cell zone, whereas CD2-CCR7 OT-I cells were exclusively confined to the T cell zones of the spleen. Surprisingly, however, CCR7(-/-) OT-I cells entered the T cell zones after infection, but the entry and egress migratory pattern of these cells was dysregulated and very distinct compared with wild-type OT-I cells. Moreover, CCR7-deficient OT-I cells failed to expand robustly when compared with wild-type OT-I cells and were preferentially skewed toward a short-lived effector cell differentiation pattern. Interestingly, CCR7(-/-), CD2-CCR7, and wild-type OT-I memory cells responded equally well to rechallenge infection. These results highlight a novel role of CCR7 in regulating effector CD8 T cell migration in the spleen and demonstrate differential requirement of CCR7 for primary and secondary CD8 T cell responses to infection.

  5. The CCR4-NOT complex mediates deadenylation and degradation of stem cell mRNAs and promotes planarian stem cell differentiation.

    PubMed

    Solana, Jordi; Gamberi, Chiara; Mihaylova, Yuliana; Grosswendt, Stefanie; Chen, Chen; Lasko, Paul; Rajewsky, Nikolaus; Aboobaker, A Aziz

    2013-01-01

    Post-transcriptional regulatory mechanisms are of fundamental importance to form robust genetic networks, but their roles in stem cell pluripotency remain poorly understood. Here, we use freshwater planarians as a model system to investigate this and uncover a role for CCR4-NOT mediated deadenylation of mRNAs in stem cell differentiation. Planarian adult stem cells, the so-called neoblasts, drive the almost unlimited regenerative capabilities of planarians and allow their ongoing homeostatic tissue turnover. While many genes have been demonstrated to be required for these processes, currently almost no mechanistic insight is available into their regulation. We show that knockdown of planarian Not1, the CCR4-NOT deadenylating complex scaffolding subunit, abrogates regeneration and normal homeostasis. This abrogation is primarily due to severe impairment of their differentiation potential. We describe a stem cell specific increase in the mRNA levels of key neoblast genes after Smed-not1 knock down, consistent with a role of the CCR4-NOT complex in degradation of neoblast mRNAs upon the onset of differentiation. We also observe a stem cell specific increase in the frequency of longer poly(A) tails in these same mRNAs, showing that stem cells after Smed-not1 knock down fail to differentiate as they accumulate populations of transcripts with longer poly(A) tails. As other transcripts are unaffected our data hint at a targeted regulation of these key stem cell mRNAs by post-transcriptional regulators such as RNA-binding proteins or microRNAs. Together, our results show that the CCR4-NOT complex is crucial for stem cell differentiation and controls stem cell-specific degradation of mRNAs, thus providing clear mechanistic insight into this aspect of neoblast biology.

  6. The CCR4-NOT Complex Mediates Deadenylation and Degradation of Stem Cell mRNAs and Promotes Planarian Stem Cell Differentiation

    PubMed Central

    Solana, Jordi; Gamberi, Chiara; Mihaylova, Yuliana; Grosswendt, Stefanie; Chen, Chen; Lasko, Paul; Rajewsky, Nikolaus; Aboobaker, A. Aziz

    2013-01-01

    Post-transcriptional regulatory mechanisms are of fundamental importance to form robust genetic networks, but their roles in stem cell pluripotency remain poorly understood. Here, we use freshwater planarians as a model system to investigate this and uncover a role for CCR4-NOT mediated deadenylation of mRNAs in stem cell differentiation. Planarian adult stem cells, the so-called neoblasts, drive the almost unlimited regenerative capabilities of planarians and allow their ongoing homeostatic tissue turnover. While many genes have been demonstrated to be required for these processes, currently almost no mechanistic insight is available into their regulation. We show that knockdown of planarian Not1, the CCR4-NOT deadenylating complex scaffolding subunit, abrogates regeneration and normal homeostasis. This abrogation is primarily due to severe impairment of their differentiation potential. We describe a stem cell specific increase in the mRNA levels of key neoblast genes after Smed-not1 knock down, consistent with a role of the CCR4-NOT complex in degradation of neoblast mRNAs upon the onset of differentiation. We also observe a stem cell specific increase in the frequency of longer poly(A) tails in these same mRNAs, showing that stem cells after Smed-not1 knock down fail to differentiate as they accumulate populations of transcripts with longer poly(A) tails. As other transcripts are unaffected our data hint at a targeted regulation of these key stem cell mRNAs by post-transcriptional regulators such as RNA-binding proteins or microRNAs. Together, our results show that the CCR4-NOT complex is crucial for stem cell differentiation and controls stem cell-specific degradation of mRNAs, thus providing clear mechanistic insight into this aspect of neoblast biology. PMID:24367277

  7. First pharmacophore model of CCR3 receptor antagonists and its homology model-assisted, stepwise virtual screening.

    PubMed

    Jain, Vaibhav; Saravanan, Parameswaran; Arvind, Akanksha; Mohan, Chethampadi Gopi

    2011-05-01

    CCR3, a G protein-coupled receptor, plays a central role in allergic inflammation and is an important drug target for inflammatory diseases. To understand the structure-function relationship of CCR3 receptor, different computational techniques were employed, which mainly include: (i) homology modeling of CCR3 receptor, (ii) 3D-quantitative pharmacophore model of CCR3 antagonists, (iii) virtual screening of small compound databases, and (iv) finally, molecular docking at the binding site of the CCR3 receptor homology model. Pharmacophore model was developed for the first time, on a training data set of 22 CCR3 antagonists, using CATALYST HypoRefine program. Best hypothesis (Hypo1) has three different chemical features: two hydrogen-bond acceptors, one hydrophobic, and one ring aromatic. Hypo1 model was further validated using (i) 87 test set CCR3 antagonists, (ii) Cat Scramble randomization technique, and (iii) Decoy data set. Molecular docking studies were performed on modeled CCR3 receptor using 303 virtually screened hits, obtained from small compound database virtual screening. Finally, five hits were identified as potential leads against CCR3 receptor, which exhibited good estimated activities, favorable binding interactions, and high docking scores. These studies provided useful information on the structurally vital residues of CCR3 receptor involved in the antagonist binding, and their unexplored potential for the future development of potent CCR3 receptor antagonists.

  8. The rhesus macaque CCR3 chemokine receptor is a cell entry cofactor for HIV-2, but not for HIV-1.

    PubMed

    Sol, N; Tréboute, C; Gomas, E; Ferchal, F; Shacklett, B; Alizon, M

    1998-01-20

    The eotaxin receptor (CCR3) is a CD4-associated coreceptor for human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2). By comparison with other chemokine receptors, such as CCR5 and CXCR4, the primary sequences of human CCR3 and its rhesus macaque homolog were markedly different in their extracellular domains. Human CD4+ cells expressing CCR3 from either human or macaque origin could be infected by HIV-2, with apparently similar efficiency, but only cells expressing human CCR3 could be infected by HIV-1. It suggests that HIV-1 and HIV-2 envelope proteins interact differently with the CCR3 coreceptor HIV-1 could infect cells expressing chimeric human/macaque CCR3 bearing either the first and second, or the third and fourth extracellular domains of human CCR3. As previously observed for CCR5, there seems to be a certain functional redundancy between domains supporting the coreceptor activity of CCR3. In spite of their close genetic relationship to HIV-2, two macaque simian immunodeficiency virus strains were apparently unable to use the CCR3 coreceptor from either human or simian origin.

  9. Lack of protection from HIV infection by the mutant HIV coreceptor CCR5 in intravenously HIV infected hemophilia patients.

    PubMed

    Malo, A; Rommel, F; Bogner, J; Gruber, R; Schramm, W; Goebel, F D; Riethmüller, G; Wank, R

    1998-02-01

    The CCR5 chemokine receptor is an important coreceptor for macrophage-tropic HIV strains. Homozygous carriers of the mutated CCR5 receptor with a 32 bp deletion (delta 32-CCR5) are highly protected against HIV infection. A protective effect has also been described for heterozygous individuals carrying both mutated and wildtype CCR5 receptors. We compared the frequency of the mutated delta 32-CCR5 HIV coreceptor in HIV positive patients infected by sexual contact (N = 160) with intravenously HIV infected hemophilic patients (N = 84) and HIV negative individuals (N = 421). We found no protective effect of delta 32-CCR5 HIV coreceptor in hemophilic patients (p = 0.0134). If proteins of plasma concentrates would be responsible for facilitating the entry of HIV macrophages by upregulation of the CCR5 wildtype receptor it would be of therapeutical interest to identify the responsible plasma proteins.

  10. Immune Subversion by Mycobacterium tuberculosis through CCR5 Mediated Signaling: Involvement of IL-10

    PubMed Central

    Das, Shibali; Banerjee, Sayantan; Majumder, Saikat; Paul Chowdhury, Bidisha; Goswami, Avranil; Halder, Kuntal; Chakraborty, Urmita; Pal, Nishith K.; Majumdar, Subrata

    2014-01-01

    Tuberculosis is characterized by severe immunosuppression of the host macrophages, resulting in the loss of the host protective immune responses. During Mycobacterium tuberculosis infection, the pathogen modulates C-C Chemokine Receptor 5 (CCR5) to enhance IL-10 production, indicating the possible involvement of CCR5 in regulation of the host immune response. Here, we found that Mycobacterium infection significantly increased CCR5 expression in macrophages there by facilitating the activation of its downstream signaling. These events culminated in up-regulation of the immunosuppressive cytokine IL-10 production, which was further associated with the down-regulation of macrophage MHC-II expression along with the up-regulation of CCR5 expression via engagement of STAT-3 in a positive feedback loop. Treatment of macrophages with CCR5 specific siRNA abrogated the IL-10 production and restored MHCII expression. While, in vivo CCR5 silencing was also effective for the restoration of host immune responses against tuberculosis. This study demonstrated that CCR5 played a very critical role for the immune subversion mechanism employed by the pathogen. PMID:24695099

  11. HEK293T Cells Are Heterozygous for CCR5 Delta 32 Mutation.

    PubMed

    Qi, Chunxia; Jia, Xiaopeng; Lu, Lingling; Ma, Ping; Wei, Min

    2016-01-01

    C-C chemokine receptor 5 (CCR5) is a receptor for chemokines and a co-receptor for HIV-1 entry into the target CD4+ cells. CCR5 delta 32 deletion is a loss-of-function mutation, resistant to HIV-1 infection. We tried to induce the CCR5 delta 32 mutation harnessing the genome editing technique, CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR and CRISPR associated protein 9, Cas9) in the commonly used cell line human embryonic kidney HEK 293T cells. Surprisingly, we found that HEK293T cells are heterozygous for CCR5 delta 32 mutation, in contrast to the wild type CCR5 cells, human acute T cell leukemia cell line Jurkat and human breast adenocarcinoma cell line MDA-MB-231 cells. This finding indicates that at least one human cell line is heterozygous for the CCR5 delta 32 mutation. We also found that in PCR amplification, wild type CCR5 DNA and mutant delta 32 DNA can form mismatched heteroduplex and move slowly in gel electrophoresis.

  12. Critical roles of chemokine receptor CCR5 in regulating glioblastoma proliferation and invasion.

    PubMed

    Zhao, Lanfu; Wang, Yuan; Xue, Yafei; Lv, Wenhai; Zhang, Yufu; He, Shiming

    2015-11-01

    Glioblastoma (GBM) is the most prevalent malignant primary brain tumor in adults and exhibits a spectrum of aberrantly aggressive phenotype. Tumor cell proliferation and invasion are critically regulated by chemokines and their receptors. Recent studies have shown that the chemokine CCL5 and its receptor CCR5 play important roles in tumor invasion and metastasis. Nonetheless, the roles of the CCR5 in GBM still remain unclear. The present study provides the evidence that the chemokine receptor CCR5 is highly expressed and associated with poor prognosis in human GBM. Mechanistically, CCL5-CCR5 mediates activation of Akt, and subsequently induces proliferation and invasive responses in U87 and U251 cells. Moreover, down-regulation of CCR5 significantly inhibited the growth of glioma in U87 tumor xenograft mouse model. Finally, high CCR5 expression in GBM is correlated with increased p-Akt expression in patient samples. Together, these findings suggest that the CCR5 is a critical molecular event associated with gliomagenesis.

  13. Interaction of small molecule inhibitors of HIV-1 entry with CCR5

    SciTech Connect

    Seibert, Christoph . E-mail: seiberc@mail.rockefeller.edu; Ying Weiwen; Gavrilov, Svetlana; Tsamis, Fotini; Kuhmann, Shawn E.; Palani, Anandan; Tagat, Jayaram R.; Clader, John W.; McCombie, Stuart W.; Baroudy, Bahige M.; Smith, Steven O.; Dragic, Tatjana; Moore, John P.; Sakmar, Thomas P.

    2006-05-25

    The CC-chemokine receptor 5 (CCR5) is the major coreceptor for macrophage-tropic (R5) HIV-1 strains. Several small molecule inhibitors of CCR5 that block chemokine binding and HIV-1 entry are being evaluated as drug candidates. Here we define how CCR5 antagonists TAK-779, AD101 (SCH-350581) and SCH-C (SCH-351125), which inhibit HIV-1 entry, interact with CCR5. Using a mutagenesis approach in combination with a viral entry assay to provide a direct functional read out, we tested predictions based on a homology model of CCR5 and analyzed the functions of more than 30 amino acid residues. We find that a key set of aromatic and aliphatic residues serves as a hydrophobic core for the ligand binding pocket, while E283 is critical for high affinity interaction, most likely by acting as the counterion for a positively charged nitrogen atom common to all three inhibitors. These results provide a structural basis for understanding how specific antagonists interact with CCR5, and may be useful for the rational design of new, improved CCR5 ligands.

  14. HEK293T Cells Are Heterozygous for CCR5 Delta 32 Mutation

    PubMed Central

    Qi, Chunxia; Jia, Xiaopeng; Lu, Lingling; Ma, Ping; Wei, Min

    2016-01-01

    C-C chemokine receptor 5 (CCR5) is a receptor for chemokines and a co-receptor for HIV-1 entry into the target CD4+ cells. CCR5 delta 32 deletion is a loss-of-function mutation, resistant to HIV-1 infection. We tried to induce the CCR5 delta 32 mutation harnessing the genome editing technique, CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR and CRISPR associated protein 9, Cas9) in the commonly used cell line human embryonic kidney HEK 293T cells. Surprisingly, we found that HEK293T cells are heterozygous for CCR5 delta 32 mutation, in contrast to the wild type CCR5 cells, human acute T cell leukemia cell line Jurkat and human breast adenocarcinoma cell line MDA-MB-231 cells. This finding indicates that at least one human cell line is heterozygous for the CCR5 delta 32 mutation. We also found that in PCR amplification, wild type CCR5 DNA and mutant delta 32 DNA can form mismatched heteroduplex and move slowly in gel electrophoresis. PMID:27042825

  15. CCR5 Δ 32 mutation is not prevalent in Iranians with chronic HBV infection.

    PubMed

    Khorramdelazad, Hossein; Hakimizadeh, Elham; Hassanshahi, Gholamhossein; Rezayati, Mohammadtaghi; Sendi, Hossein; Arababadi, Mohammad Kazemi

    2013-06-01

    CCR5 is an important chemokine receptor involved in the recruitment of specific anti-viral immune cells (e.g., NK cells and T cytotoxic cells) to the liver. Previous studies indicated that the Δ 32 mutation in CCR5 gene led to inactivation of CCR5. Several conflicting studies have suggested that this mutation may be associated with either recovery or persistence of HBV infection. The main purpose of this study was to compare the frequency of the Δ 32 mutation within the CCR5 gene in a group of patients infected chronically with HBV with healthy individuals from South-East of Iran. Sixty patients with chronic HBV infection as well as 300 age-, and sex-match healthy individuals were enrolled in this study. Gap-PCR was applied to determine the frequency of CCR5 Δ 32 mutation in both groups. The results demonstrated that none of the patients infected with HBV carried the CCR5 Δ 32 mutation while, 3 (1%) of the healthy individuals were found to be heterozygotic for this mutation. The CCR5 Δ 32 mutation is not a prevalent mutation in either the patients infected chronically with HBV or their health counterparts in the South-East region of Iran. This may be attributed to either different genetic settings of the investigated population or lack of any significant correlation between this mutation and HBV pathogenicity.

  16. The CCR5 deletion mutation fails to protect against multiple sclerosis.

    PubMed

    Bennetts, B H; Teutsch, S M; Buhler, M M; Heard, R N; Stewart, G J

    1997-11-01

    Recent advances in the understanding and identification of chemokines and their receptors have provided evidence for their consideration as candidate loci with respect to genetic susceptibility/resistance to MS. Increased levels of the chemokine, macrophage inflammatory protein (MIP)-1 alpha, have been demonstrated in the cerebrospinal fluid of both patients with MS and mice with EAE, and anti-MIP-1 alpha antibodies have been shown to prevent EAE. Recently, a common deletion mutation in the gene for the major receptor for MIP-1 alpha, chemokine receptor 5 (CCR5) has been described. Homozygotes for the mutation fail to express this receptor. Moreover, homozygotes are highly protected against HIV infection this has potential implications for the cell entry of infectious agents in other multifactorial disease where a viral component may be involved. In view of these aspects, a group of 120 unrelated Australian relapsing remitting MS and 168 unrelated control subjects were screened for the CCR5 delta 32 mutation. There was no significant difference in the allele frequency of CCR5 delta 32 gene between the MS patients (0.1125) and the control population (0.0921). The presence of two CCR5 delta 32 homozygotes in the MS patients indicates that the absence of CCR5 is not protective against MS. These data suggest that CCR5 is not an essential component in MS expression, though this may be due to redundancy in the chemokine system where different chemokine receptors may substitute for CCR5 when it is absent.

  17. Distribution of the mutated delta 32 allele of the CCR5 gene in a Sicilian population.

    PubMed

    Sidoti, A; D'Angelo, R; Rinaldi, C; De Luca, G; Pino, F; Salpietro, C; Giunta, D E; Saltalamacchia, F; Amato, A

    2005-06-01

    The CCR5 gene encodes a cell-surface chemokine receptor molecule that serves as a co-receptor for macrophage-tropic strains of human immunodeficiency virus type 1 (HIV-1). A mutation in this gene may alter the expression or the function of the protein product, thereby altering chemokine binding and/or signalling or HIV-1 infection of cells that normally express CCR5 protein. Individuals homozygous for a 32-bp deletion allele of CCR5 (CCR5 delta32), heritable as a Mendelian trait, are relatively resistant to HIV-1 infection. The CCR5 delta32 mutation is present in the Caucasian population at different frequencies. The aim of this study was to investigate the frequency of truncated alleles of the CCR5 delta32 gene in a Sicilian population, as the interpopulation variation in CCR5 delta32 frequency may be a significant factor in the prediction of AIDS endemicity in future studies. We examined 901 healthy individuals from several Sicilian provinces. We found a mean (+/- standard deviation) delta32 allele frequency (fr) of 0.04 +/- 0.012. The highest value was observed in the province of Messina, with a mean delta32 allele frequency of 0.06 +/- 0.024, where we collected samples from a cohort of 114 HIV-1-infected individuals. The observed frequency amongst these patients was quite low (fr = 0.03 +/- 0.031) compared to the healthy population, although the difference was not statistically significant.

  18. CCR5 (chemokine receptor-5) DNA-polymorphism influences the severity of rheumatoid arthritis.

    PubMed

    Zapico, I; Coto, E; Rodríguez, A; Alvarez, C; Torre, J C; Alvarez, V

    2000-01-01

    Chemokines are critical for the inflammatory process in autoimmune diseases such as rheumatoid arthritis (RA). The chemokine receptor-5 (CCR5) mediates chemotaxis by CC-chemokines and is expressed by lymphocytes with the Th1 phenotype and monocyte/macrophages. A 32 bp deletion in the CCR5 (CCR5-delta 32 allele) abolishes receptor expression in homozygotes, while CCR5-delta 32 carriers would express less receptor than wild-type homozygotes. This polymorphism is related to the resistance to HIV-1 infection and progression towards AIDS. We hypothesized that the CCR5-delta 32 allele may modulate the severity of disease in RA. A total of 160 RA-patients (71 and 89 with severe and non-severe phenotypes, respectively) and 500 healthy individuals from the same Caucasian population (Asturias, northern Spain) were genotyped. Carriers of the CCR5-delta 32 allele were at a significantly higher frequency (P = 0.012) in non-severe compared to severe patients (17% vs 4%). Our results suggest that the CCR5-delta 32 polymorphism is a genetic marker related to the severity of RA.

  19. Pulmonary epithelial CCR3 promotes LPS-induced lung inflammation by mediating release of IL-8.

    PubMed

    Li, Bo; Dong, Chunling; Wang, Guifang; Zheng, Huiru; Wang, Xiangdong; Bai, Chunxue

    2011-09-01

    Interleukin (IL)-8 from pulmonary epithelial cells has been suggested to play an important role in the airway inflammation, although the mechanism remains unclear. We envisioned a possibility that pulmonary epithelial CCR3 could be involved in secretion and regulation of IL-8 and promote lipopolysaccharide (LPS)-induced lung inflammation. Human bronchial epithelial cell line NCI-H292 and alveolar type II epithelial cell line A549 were used to test role of CCR3 in production of IL-8 at cellular level. In vivo studies were performed on C57/BL6 mice instilled intratracheally with LPS in a model of acute lung injury (ALI). The activity of a CCR3-specific inhibitor (SB-328437) was measured in both in vitro and in vivo systems. We found that expression of CCR3 in NCI-H292 and A549 cells were increased by 23% and 16%, respectively, 24 h after the challenge with LPS. LPS increased the expression of CCR3 in NCI-H292 and A549 cells in a time-dependent manner, which was inhibited significantly by SB-328437. SB-328437 also diminished neutrophil recruitment in alveolar airspaces and improved LPS-induced ALI and production of IL-8 in bronchoalveolar lavage fluid. These results suggest that pulmonary epithelial CCR3 be involved in progression of LPS-induced lung inflammation by mediating release of IL-8. CCR3 in pulmonary epithelia may be an attractive target for development of therapies for ALI.

  20. Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis

    PubMed Central

    Blaya, Delia; Morales-Ibanez, Oriol; Coll, Mar; Millán, Cristina; Altamirano, José; Arroyo, Vicente; Caballería, Joan; Bataller, Ramón; Ginès, Pere; Sancho-Bru, Pau

    2015-01-01

    Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6-/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6-/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6-/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+) and mature dendritic (MHCII+CD11c+) cells recruitment. Clodronate depletion of macrophages in Ccr6-/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis. PMID:26691857

  1. Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis.

    PubMed

    Affò, Silvia; Rodrigo-Torres, Daniel; Blaya, Delia; Morales-Ibanez, Oriol; Coll, Mar; Millán, Cristina; Altamirano, José; Arroyo, Vicente; Caballería, Joan; Bataller, Ramón; Ginès, Pere; Sancho-Bru, Pau

    2015-01-01

    Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6-/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6-/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6-/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+) and mature dendritic (MHCII+CD11c+) cells recruitment. Clodronate depletion of macrophages in Ccr6-/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis.

  2. The chemokine receptor CCR7 promotes mammary tumorigenesis through amplification of stem-like cells.

    PubMed

    Boyle, S T; Ingman, W V; Poltavets, V; Faulkner, J W; Whitfield, R J; McColl, S R; Kochetkova, M

    2016-01-07

    The chemokine receptor CCR7 is widely implicated in breast cancer pathobiology. Although recent reports correlated high CCR7 levels with more advanced tumor grade and poor prognosis, limited in vivo data are available regarding its specific function in mammary gland neoplasia and the underlying mechanisms involved. To address these questions we generated a bigenic mouse model of breast cancer combined with CCR7 deletion, which revealed that CCR7 ablation results in a considerable delay in tumor onset as well as significantly reduced tumor burden. Importantly, CCR7 was found to exert its function by regulating mammary cancer stem-like cells in both murine and human tumors. In vivo experiments showed that loss of CCR7 activity either through deletion or pharmacological antagonism significantly decreased functional pools of stem-like cells in mouse primary mammary tumors, providing a mechanistic explanation for the tumor-promoting role of this chemokine receptor. These data characterize the oncogenic properties of CCR7 in mammary epithelial neoplasia and point to a new route for therapeutic intervention to target evasive cancer stem cells.

  3. Experimental Infection with Schistosoma mansoni in CCR5-Deficient Mice Is Associated with Increased Disease Severity, as CCR5 Plays a Role in Controlling Granulomatous Inflammation▿

    PubMed Central

    Souza, Adriano L. S.; Souza, Patrícia R. S.; Pereira, Cíntia A.; Fernandes, Adriana; Guabiraba, Rodrigo; Russo, Remo C.; Vieira, Leda Q.; Corrêa, Ary; Teixeira, Mauro M.; Negrão-Corrêa, Deborah

    2011-01-01

    The plasma level of the chemokine CCL3 is elevated in patients with chronic severe schistosomiasis mansoni. We have previously shown that CCL3−/− mice with experimental infection showed diminished pathology and worm burden compared to those of wild-type (WT) mice. To elucidate further the role of CC chemokines during schistosomiasis mansoni infection, we evaluated the course of infection in C57BL/6J mice deficient in CCR5, one of the receptors for CCL3. The CCR5 deficiency proved to be remarkably deleterious to the host, since mortality rates reached 70% at 14 weeks postinfection in CCR5−/− mice and 19% in WT mice. The increased lethality was not associated with an increased parasite burden, since similar numbers of eggs and adult worms were found in mice from both groups. Liver granulomas of chronically infected CCR5−/− mice were larger and showed greater numbers of cells and collagen deposition than liver granulomas from WT mice. This was associated with higher levels of production of intereleukin-5 (IL-5), IL-13, CCL3, and CCL5 in infected CCR5−/− mice than in infected WT mice. Moreover, at 8 weeks after infection, just before changes in pathology and mortality, the numbers of FoxP3-positive cells were lower in liver granulomas of CCR5−/− mice than in WT mice. In conclusion, the CCR5 deletion is deleterious to mice infected with Schistosoma mansoni, and this is associated with enhanced fibrosis and granulomatous inflammation. PMID:21263020

  4. CCR5 deletion protects against inflammation-associated mortality in dialysis patients.

    PubMed

    Muntinghe, Friso L H; Verduijn, Marion; Zuurman, Mike W; Grootendorst, Diana C; Carrero, Juan Jesus; Qureshi, Abdul Rashid; Luttropp, Karin; Nordfors, Louise; Lindholm, Bengt; Brandenburg, Vincent; Schalling, Martin; Stenvinkel, Peter; Boeschoten, Elisabeth W; Krediet, Raymond T; Navis, Gerjan; Dekker, Friedo W

    2009-07-01

    The CC-chemokine receptor 5 (CCR5) is a receptor for various proinflammatory chemokines, and a deletion variant of the CCR5 gene (CCR5 Delta 32) leads to deficiency of the receptor. We hypothesized that CCR5 Delta 32 modulates inflammation-driven mortality in patients with ESRD. We studied the interaction between CCR5 genotype and levels of high-sensitivity C-reactive protein (hsCRP) in 603 incident dialysis patients from the multicenter, prospective NEtherlands COoperative Study on the Adequacy of Dialysis (NECOSAD) cohort. CCR5 genotype and hsCRP levels were both available for 413 patients. During 5 yr of follow-up, 170 patients died; 87 from cardiovascular causes. Compared with the reference group of patients who had the wild-type CCR5 genotype and hsCRP 10 mg/L (n = 108) had an increased risk for mortality (HR: 1.82; 95% CI: 1.29 to 2.58). However, those carrying the deletion allele with hsCRP > 10 mg/L (n = 25) had a mortality rate similar to the reference group; this seemingly protective effect of the CCR5 deletion was even more pronounced for cardiovascular mortality. We replicated these findings in an independent Swedish cohort of 302 ESRD patients. In conclusion, the CCR5 Delta 32 polymorphism attenuates the adverse effects of inflammation on overall and cardiovascular mortality in ESRD.

  5. CCR2 deficiency prevents neuronal dysfunction and cognitive impairments induced by cranial irradiation.

    PubMed

    Belarbi, Karim; Jopson, Timothy; Arellano, Carla; Fike, John R; Rosi, Susanna

    2013-02-01

    Cranial irradiation can lead to long-lasting cognitive impairments in patients receiving radiotherapy for the treatment of malignant brain tumors. Recent studies have suggested inflammation as a major contributor to these deficits; we determined if the chemokine (C-C motif) receptor 2 (CCR2) was a mediator of cognitive impairments induced by irradiation. Two-month-old male Ccr2 knockout (-/-) and wild-type mice received 10 Gy cranial irradiation or sham-treatment. One month after irradiation, bromodeoxyuridine was injected intraperitoneally for seven consecutive days to label newly generated cells. At two months postirradiation, cognitive function was assessed by novel object recognition and Morris water maze. Our results show that CCR2 deficiency prevented hippocampus-dependent spatial learning and memory impairments induced by cranial irradiation. Hippocampal gene expression analysis showed that irradiation induced CCR2 ligands such as CCL8 and CCR2 deficiency reduced this induction. Irradiation reduced the number of adult-born neurons in both wild-type and Ccr2(-/-) mice, but the distribution pattern of the adult-born neurons through the granule cell layer was only altered in wild-type mice. Importantly, CCR2 deficiency normalized the fraction of pyramidal neurons expressing the plasticity-related immediate early gene Arc. These data offer new insight into the mechanism(s) of radiation-injury and suggest that CCR2 is a critical mediator of hippocampal neuronal dysfunction and hippocampal cognitive impairments after irradiation. Targeting CCR2 signaling could conceivably provide an effective approach to reduce or prevent the incidence and severity of this serious side effect of ionizing irradiation.

  6. CCR2 deficiency prevents neuronal dysfunction and cognitive impairments induced by cranial irradiation

    PubMed Central

    Belarbi, Karim; Jopson, Timothy; Arellano, Carla; Fike, John R.; Rosi, Susanna

    2013-01-01

    Cranial irradiation can lead to long-lasting cognitive impairments in patients receiving radiotherapy for the treatment of malignant brain tumors. Recent studies have suggested inflammation as a major contributor to these deficits; we determined if the chemokine receptor 2 (CCR2) was a mediator of cognitive impairments induced by irradiation. Two-month-old male Ccr2 knockout (−/−) and wild-type (WT) mice received 10 Gy cranial irradiation or sham-treatment. One month after irradiation, bromodeoxyuridine was injected intraperitoneally for seven consecutive days to label newly generated cells. At two months post-irradiation, cognitive function was assessed by novel object recognition and Morris water maze. Our results demonstrate that CCR2 deficiency prevented hippocampus-dependent spatial learning and memory impairments induced by cranial irradiation. Hippocampal gene expression analysis showed that irradiation induced CCR2 ligands such as CCL8, and CCR2 deficiency reduced this induction. Irradiation reduced the number of adult-born neurons in both WT and Ccr2−/− mice, but the distribution pattern of the adult-born neurons through the granule cell layer was only altered in WT mice. Importantly, CCR2 deficiency normalized the fraction of pyramidal neurons expressing the plasticity-related immediate early gene Arc. These data offer new insight into the mechanism(s) of radiation-injury and suggest that CCR2 is a critical mediator hippocampal neuronal dysfunction and hippocampal cognitive impairments after irradiation. Targeting CCR2 signaling could conceivably provide an effective approach to reduce or prevent the incidence and severity of this serious side effect of ionizing irradiation. PMID:23243025

  7. Epigenetic control of Ccr7 expression in distinct lineages of lung dendritic cells.

    PubMed

    Moran, Timothy P; Nakano, Hideki; Kondilis-Mangum, Hrisavgi D; Wade, Paul A; Cook, Donald N

    2014-11-15

    Adaptive immune responses to inhaled allergens are induced following CCR7-dependent migration of precursor of dendritic cell (pre-DC)-derived conventional DCs (cDCs) from the lung to regional lymph nodes. However, monocyte-derived (moDCs) in the lung express very low levels of Ccr7 and consequently do not migrate efficiently to LN. To investigate the molecular mechanisms that underlie this dichotomy, we studied epigenetic modifications at the Ccr7 locus of murine cDCs and moDCs. When expanded from bone marrow precursors, moDCs were enriched at the Ccr7 locus for trimethylation of histone 3 lysine 27 (H3K27me3), a modification associated with transcriptional repression. Similarly, moDCs prepared from the lung also displayed increased levels of H3K27me3 at the Ccr7 promoter compared with migratory cDCs from that organ. Analysis of DC progenitors revealed that epigenetic modification of Ccr7 does not occur early during DC lineage commitment because monocytes and pre-DCs both had low levels of Ccr7-associated H3K27me3. Rather, Ccr7 is gradually silenced during the differentiation of monocytes to moDCs. Thus, epigenetic modifications of the Ccr7 locus control the migration and therefore the function of DCs in vivo. These findings suggest that manipulating epigenetic mechanisms might be a novel approach to control DC migration and thereby improve DC-based vaccines and treat inflammatory diseases of the lung.

  8. CC-chemokine receptor 7 (CCR7) deficiency alters adipose tissue leukocyte populations in mice.

    PubMed

    Orr, Jeb S; Kennedy, Arion J; Hill, Andrea A; Anderson-Baucum, Emily K; Hubler, Merla J; Hasty, Alyssa H

    2016-09-01

    The mechanism by which macrophages and other immune cells accumulate in adipose tissue (AT) has been an area of intense investigation over the past decade. Several different chemokines and their cognate receptors have been studied for their role as chemoattractants in promoting recruitment of immune cells to AT However, it is also possible that chemoattractants known to promote clearance of immune cells from tissues to regional lymph nodes might be a critical component to overall AT immune homeostasis. In this study, we evaluated whether CCR7 influences AT macrophage (ATM) or T-cell (ATT) accumulation. CCR7(-/-) and littermate wild-type (WT) mice were placed on low-fat diet (LFD) or high-fat diet (HFD) for 16 weeks. CCR7 deficiency did not impact HFD-induced weight gain, hepatic steatosis, or glucose intolerance. Although lean CCR7(-/-) mice had an increased proportion of alternatively activated ATMs, there were no differences in ATM accumulation or polarization between HFD-fed CCR7(-/-) mice and their WT counterparts. However, CCR7 deficiency did lead to the preferential accumulation of CD8(+) ATT cells, which was further exacerbated by HFD feeding. Finally, expression of inflammatory cytokines/chemokines, such as Tnf, Il6, Il1β, Ccl2, and Ccl3, was equally elevated in AT by HFD feeding in CCR7(-/-) and WT mice, while Ifng and Il18 were elevated by HFD feeding in CCR7(-/-) but not in WT mice. Together, these data suggest that CCR7 plays a role in CD8(+)ATT cell egress, but does not influence ATM accumulation or the metabolic impact of diet-induced obesity.

  9. B-1 cells promote immunosurveillance against murine melanoma in host absence of CCR5: new perspective in autologous vaccination therapy.

    PubMed

    Vivanco, Bruno C; Viana, Jacqueline D; Perez, Elisabeth C; Konno, Fabiana T C; Guereschi, Marcia G; Xander, Patricia; Keller, Alexandre C; Lopes, José D

    2014-11-01

    Autologous vaccination with tumor-primed dendritic cells increases immune response against tumor, which seems to be improved in host absence of CCR5. Because B-1 lymphocytes modulate the activity of different immune cells, we decided to study their influence in the resistance against murine B16F10 melanoma in a CCR5 deprived environment. Adoptive transfer of peritoneal B-1 CCR5(+/+) lymphocytes to CCR5(-/-) animals inhibited the establishment of lung metastasis and melanoma cell growth, in comparison to saline-treated CCR5(-/-) mice. In loco cell analysis demonstrated that the adoptive transfer of B-1 CCR5(+/+) lymphocytes to CCR5 deficient host was associated with a more intense influx of T CD8(+) to tumor site, indicating that the presence of CCR5(+/+) B-1 cells in the tumor environment induces the migration of T CD8 CCR5(-/-) cells to the implantation site. To corroborate this idea, CCR5(-/-) mice were injected with non B-1 peritoneal cells from wild type (WT) mice before B16F10 inoculation. In this regimen, CCR5(-/-) mice were not protected from tumor growth reinforcing the idea that, in host absence of CCR5, B-1 cells are essential to confer tumor resistance. This work indicates that, in the host absence of CCR5, naive B-1 cells may activate CD8T lymphocytes thereby promoting tumor resistance. Our results strongly suggest that autologous vaccination with B-1 lymphocytes in combination with CCR5 antagonists can be an alternative approach to tumor therapy.

  10. CCR5 Polymorphism as a Protective Factor for Hepatocellular Carcinoma in Hepatitis B Virus-Infected Iranian Patients

    PubMed

    Abdolmohammadi, Reza; Shahbazi Azar, Saleh; Khosravi, Ayyoob; Shahbazi, Majid

    2016-10-01

    The CC chemokine receptor 5 (CCR5) delta 32 allele results in a nonfunctional form of the chemokine receptor and has been implicated in a variety of immune-mediated diseases. CCR5Δ32 may also predispose one to chronic liver disease or be linked with resistance to HBV infection.This study was undertaken to investigate any association between CCR5 polymorphism with resistance to hepatitis B or susceptibility to HBV infection. A total of 812 Iranian individuals were enrolled into two groups: HBV infected cases (n=357), who were HBsAg-positive, and healthy controls (n=455). We assessed polymorphisms in the CCR5 gene using specific CCR5 oligonucleotide primers surrounding the breakpoint deletion. Genotype distributions of the HBV infected cases and healthy controls were determined and compared. The CCR5/CCR5 (WW) and CCR5/ CCR5Δ32 (W/D) genotypes were found in (98%) and (2%) of HBV infected cases, respectively. The CCR5 Δ32/ Δ32genotype was not found in HBV infected cases. Genotype distributions of CCR5 in healthy controls were W/W genotype in (87.3%), W/D genotype in (11.2%) and D/D genotype in (1.5%). Heterozygosity for CCR5/ CCR5Δ32 (W/D) in healthy controls was greater than in HBV infected cases (11.2% vs 2%, p < 0.001). W/D and D/D genotypes were more prominent in healthy controls than in HBV infected cases. This study provides evidence that the CCR5Δ32 polymorphism may have a protective effect in resistance to HBV infection at least in the Iranian population.

  11. Bipiperidinyl carboxylic acid amides as potent, selective, and functionally active CCR4 antagonists.

    PubMed

    Kuhn, Cyrille F; Bazin, Marc; Philippe, Laurence; Zhang, Jiansu; Tylaska, Laurie; Miret, Juan; Bauer, Paul H

    2007-09-01

    A cell-based assay for the chemokine G-protein-coupled receptor CCR4 was developed, and used to screen a small-molecule compound collection in a multiplex format. A series of bipiperidinyl carboxylic acid amides amenable to parallel chemistry were derived that were potent and selective antagonists of CCR4. One prototype compound was shown to be active in a functional model of chemotaxis, making it a useful chemical tool to explore the role of CCR4 in asthma, allergy, diabetes, and cancer.

  12. [Topical issues of biological safety under current conditions. Part 3. Scientific provision for the national regulation of the biological safety framework in its broad interpretation].

    PubMed

    Onishchenko, G G; Smolensky, V Yu; Ezhlova, E B; Demina, Yu V; Toporkov, V P; Toporkov, A V; Lyapin, M N; Kutyrev, V V

    2014-01-01

    Consequent of investigation concerned with biological safety (BS) framework development in its broad interpretation, reflected in the Russian Federation State Acts, identified have been conceptual entity parameters of the up-to-date broad interpretation of BS, which have formed a part of the developed by the authors system for surveillance (prophylaxis, localization, indication, identification, and diagnostics) and control (prophylaxis, localization, and response/elimination) over the emergency situations of biological (sanitary-epidemiological) character. The System functionality is activated through supplying the content with information data which are concerned with monitoring and control of specific internal and external threats in the sphere of BS provision fixed in the Supplement 2 of the International Health Regulations (IHR, 2005), and with the previously characterized nomenclature of hazardous biological factors. The system is designed as a network-based research-and-practice tool for evaluation of the situation in the sphere of BS provision, as well as assessment of efficacy of management decision making as regards BS control and proper State policy implementation. Most of the system elements either directly or indirectly relate to the scope of activities conducted by Federal Service for Surveillance in the Sphere of Consumers Rights Protection and Human Welfare, being substantial argument for allocating coordination functions in the sphere of BS provision to this government agency and consistent with its function as the State Coordinator on IHR (2005). The data collected serve as materials to Draft Federal Law "Concerning biological safety provision of the population".

  13. Gene Cloning and Characterization of the Geobacillus thermoleovorans CCR11 Carboxylesterase CaesCCR11, a New Member of Family XV.

    PubMed

    Espinosa-Luna, Graciela; Sánchez-Otero, María Guadalupe; Quintana-Castro, Rodolfo; Matus-Toledo, Rodrigo Eloir; Oliart-Ros, Rosa María

    2016-01-01

    A gene encoding a carboxylesterase produced by Geobacillus thermoleovoras CCR11 was cloned in the pET-3b cloning vector, sequenced and expressed in Escherichia coli BL21(DE3). Gene sequence analysis revealed an open reading frame of 750 bp that encodes a polypeptide of 250 amino acid residues (27.3 kDa) named CaesCCR11. The enzyme showed its maximum activity at 50 °C and pH 5-8, with preference for C4 substrates, confirming its esterase nature. It displayed good resistance to temperature, pH, and the presence of organic solvents and detergents, that makes this enzyme biotechnologically applicable in the industries such as fine and oleo-chemicals, cosmetics, pharmaceuticals, organic synthesis, biodiesel production, detergents, and food industries. A 3D model of CaesCCR11 was predicted using the Bacillus sp. monoacyl glycerol lipase bMGL H-257 structure as template (PBD code 3RM3, 99 % residue identity with CaesCCR11). Based on its canonical α/β hydrolase fold composed of 7 β-strands and 6 α-helices, the α/β architecture of the cap domain, the GLSTG pentapeptide, and the formation of distinctive salt bridges, we are proposing CaesCCR11 as a new member of family XV of lipolytic enzymes.

  14. Investigation of substituent effect of 1-(3,3-diphenylpropyl)-piperidinyl phenylacetamides on CCR5 binding affinity using QSAR and virtual screening techniques

    NASA Astrophysics Data System (ADS)

    Afantitis, Antreas; Melagraki, Georgia; Sarimveis, Haralambos; Koutentis, Panayiotis A.; Markopoulos, John; Igglessi-Markopoulou, Olga

    2006-02-01

    A linear quantitative-structure activity relationship model is developed in this work using Multiple Linear Regression Analysis as applied to a series of 51 1-(3,3-diphenylpropyl)-piperidinyl phenylacetamides derivatives with CCR5 binding affinity. For the selection of the best variables the Elimination Selection-Stepwise Regression Method (ES-SWR) is utilized. The predictive ability of the model is evaluated against a set of 13 compounds. Based on the produced QSAR model and an analysis on the domain of its applicability, the effects of various structural modifications on biological activity are investigated. The study leads to a number of guanidine derivatives with significantly improved predicted activities.

  15. CCR7 expressing mesenchymal stem cells potently inhibit graft-versus-host disease by spoiling the fourth supplemental Billingham's tenet.

    PubMed

    Li, Hong; Jiang, Yan-Ming; Sun, Yan-Feng; Li, Ping; Dang, Rui-Jie; Ning, Hong-Mei; Li, Yu-Hang; Zhang, Ying-Jie; Jiang, Xiao-Xia; Guo, Xi-Min; Wen, Ning; Han, Yan; Mao, Ning; Chen, Hu; Zhang, Yi

    2014-01-01

    The clinical acute graft-versus-host disease (GvHD)-therapy of mesenchymal stem cells (MSCs) is not as satisfactory as expected. Secondary lymphoid organs (SLOs) are the major niches serve to initiate immune responses or induce tolerance. Our previous study showed that CCR7 guide murine MSC line C3H10T1/2 migrating to SLOs. In this study, CCR7 gene was engineered into murine MSCs by lentivirus transfection system (MSCs/CCR7). The immunomodulatory mechanism of MSCs/CCR7 was further investigated. Provoked by inflammatory cytokines, MSCs/CCR7 increased the secretion of nitric oxide and calmed down the T cell immune response in vitro. Immunofluorescent staining results showed that transfused MSCs/CCR7 can migrate to and relocate at the appropriate T cell-rich zones within SLOs in vivo. MSCs/CCR7 displayed enhanced effect in prolonging the survival and alleviating the clinical scores of the GvHD mice than normal MSCs. Owing to the critical relocation sites, MSCs/CCR7 co-infusion potently made the T cells in SLOs more naïve like, thus control T cells trafficking from SLOs to the target organs. Through spoiling the fourth supplemental Billingham's tenet, MSCs/CCR7 potently inhibited the development of GvHD. The study here provides a novel therapeutic strategy of MSCs/CCR7 infusion at a low dosage to give potent immunomodulatory effect for clinical immune disease therapy.

  16. Quantifying CD4/CCR5 Usage Efficiency of HIV-1 Env Using the Affinofile System.

    PubMed

    Webb, Nicholas E; Lee, Benhur

    2016-01-01

    Entry of HIV-1 into target cells involves the interaction of the HIV envelope (Env) with both a primary receptor (CD4) and a coreceptor (CXCR4 or CCR5). The relative efficiency with which a particular Env uses these receptors is a major component of cellular tropism in the context of entry and is related to a variety of pathological Env phenotypes (Chikere et al. Virology 435:81-91, 2013). The protocols outlined in this chapter describe the use of the Affinofile system, a 293-based dual-inducible cell line that expresses up to 25 distinct combinations of CD4 and CCR5, as well as the associated Viral Entry Receptor Sensitivity Assay (VERSA) metrics used to summarize the CD4/CCR5-dependent infectivity results. This system allows for high-resolution profiling of CD4 and CCR5 usage efficiency in the context of unique viral phenotypes.

  17. Development of maraviroc, a CCR5 antagonist for treatment of HIV, using a novel tropism assay.

    PubMed

    van der Ryst, Elna; Heera, Jayvant; Demarest, James; Knirsch, Charles

    2015-06-01

    Assays to identify infectious organisms are critical for diagnosis and enabling the development of therapeutic agents. The demonstration that individuals with a 32-bp deletion within the CCR5 locus were resistant to human immunodeficiency virus (HIV) infection, while those heterozygous for the mutation progressed more slowly, led to the discovery of maraviroc (MVC), a CCR5 antagonist. As MVC is only active against CCR5-tropic strains of HIV, it was critical to develop a diagnostic assay to identify appropriate patients. Trofile™, a novel phenotypic tropism assay, was used to identify patients with CCR5-tropic virus for the MVC development program. Results of these clinical studies demonstrated that the assay correctly identified patients likely to respond to MVC. Over time, the performance characteristics of the phenotypic assay were enhanced, necessitating retesting of study samples. Genotypic tropism tests that have the potential to allow for local use and more rapid turnaround times are also being developed.

  18. CCR5 blockade for neuroinflammatory diseases--beyond control of HIV.

    PubMed

    Martin-Blondel, Guillaume; Brassat, David; Bauer, Jan; Lassmann, Hans; Liblau, Roland S

    2016-02-01

    Chemokine receptors have been implicated in a wide range of CNS inflammatory diseases and have important roles in the recruitment and positioning of immune cells within tissues. Among them, the chemokine (C-C motif) receptor 5 (CCR5) can be targeted by maraviroc, a readily available and well-tolerated drug that was developed for the treatment of HIV. Correlative evidence implicates the CCR5-chemokine axis in multiple sclerosis, Rasmussen encephalitis, progressive multifocal leukoencephalopathy-associated immune reconstitution inflammatory syndrome, and infectious diseases, such as cerebral malaria and HIV-associated neurocognitive disorders. On the basis of this evidence, we postulate in this Review that CCR5 antagonists, such as maraviroc, offer neuroprotective benefits in settings in which CCR5 promotes deleterious neuroinflammation, particularly in diseases in which CD8(+) T cells seem to play a pivotal role.

  19. CCR5 Expression Levels in HIV-Uninfected Women Receiving Hormonal Contraception.

    PubMed

    Sciaranghella, Gaia; Wang, Cuiwei; Hu, Haihong; Anastos, Kathryn; Merhi, Zaher; Nowicki, Marek; Stanczyk, Frank Z; Greenblatt, Ruth M; Cohen, Mardge; Golub, Elizabeth T; Watts, D Heather; Alter, Galit; Young, Mary A; Tsibris, Athe M N

    2015-11-01

    Human immunodeficiency virus (HIV) infectivity increases as receptor/coreceptor expression levels increase. We determined peripheral CD4, CCR5, and CXCR4 expression levels in HIV-uninfected women who used depot medroxyprogesterone acetate (DMPA; n = 32), the levonorgestrel-releasing intrauterine device (LNG-IUD; n = 27), oral contraceptive pills (n = 32), or no hormonal contraception (n = 33). The use of LNG-IUD increased the proportion of CD4(+) and CD8(+) T cells that expressed CCR5; increases in the magnitude of T-cell subset CCR5 expression were observed with DMPA and LNG-IUD use (P < .01 for all comparisons). LNG-IUD and, to a lesser extent, DMPA use were associated with increased peripheral T-cell CCR5 expression.

  20. Distribution of the CCR5 gene 32-basepair deletion in 11 Chinese populations.

    PubMed

    Zhang, Chunyu; Fu, Songbin; Xue, Yali; Wang, Qi; Huang, Xiaoyi; Wang, Baiqiu; Liu, An; Ma, Linlin; Yu, Yang; Shi, Rongqian; Lv, Fuqu; Shi, Zhongcheng; Zhang, Yu; Cheng, Wenhong; Ai, Qionghua; Xu, Fang; Huang, Chengbin; Chen, Baibin; Kang, Xianghua; Sun, Yanyang; Zhang, Guiyin; Li, Pu

    2002-09-01

    A mutant allele of the chemokine receptor gene CCR5 bearing a 32-basepair deletion (delta 32CCR5) could increase the resistance to HIV-1 infection or delayed progression to AIDS. The frequency of this mutation is higher in Europeans than in Asians. To investigate the distribution of this polymorphism in China, 715 individuals from 11 Chinese populations were screened by PCR, including the Han and 10 other ethnic groups. The delta 32CCR5 gene was found in 16 individuals from 5 ethnic groups. All of them were heterozygous. The frequency of the mutant alleles of delta 32CCR5 is low in China and reflects (or might reflect) ancestral gene flow from Europe to Chinese ethnic groups and recent intermarriage within the ethnic groups.

  1. Delta 32 deletion of CCR5 gene and association with asthma or atopy.

    PubMed

    Mitchell, T J; Walley, A J; Pease, J E; Venables, P J; Wiltshire, S; Williams, T J; Cookson, W O

    2000-10-28

    The CCR5-delta32 deletion polymorphism (CCR5-delta32) was investigated for linkage and association to asthma and atopy using two panels of nuclear families containing 1284 individuals. No statistically significant linkage to asthma/wheeze or atopy was observed in either of the two panels of families. Multiallelic transmission disequilibrium tests (TDT) of the combined data found no significant association for atopy (52 independent alleles transmitted, 51 non-transmitted) or asthma/wheeze (39 transmitted, 44 non-transmitted). Although functional evidence might suggest that CCR5 is a good candidate gene for atopic asthma, this study provides no genetic evidence from CCR5-delta32 polymorphism to support this hypothesis.

  2. Design, synthesis, and structure-activity relationship of novel CCR2 antagonists.

    PubMed

    Kothandaraman, Shankaran; Donnely, Karla L; Butora, Gabor; Jiao, Richard; Pasternak, Alexander; Morriello, Gregori J; Goble, Stephen D; Zhou, Changyou; Mills, Sander G; Maccoss, Malcolm; Vicario, Pasquale P; Ayala, Julia M; Demartino, Julie A; Struthers, Mary; Cascieri, Margaret A; Yang, Lihu

    2009-03-15

    A series of novel 1-aminocyclopentyl-3-carboxyamides incorporating substituted tetrahydropyran moieties have been synthesized and subsequently evaluated for their antagonistic activity against the human CCR2 receptor. Among them analog 59 was found to posses potent antagonistic activity.

  3. Ligand-based molecular design of 4-benzylpiperidinealkylureas and amides as CCR3 antagonists.

    PubMed

    Jain, Vaibhav; Pandey, Ashish; Gupta, Shikhar; Mohan, C Gopi

    2010-04-01

    Asthma is an inflammatory disease of the lungs. Clinical studies suggest that eotaxin and chemokine receptor-3 (CCR3) play a primary role in the recruitment of eosinophils in allergic asthma. Development of novel and potent CCR3 antagonists could provide a novel mechanism for inhibition of this recruitment process, thereby preventing asthma. With the intention of designing new ligands with enhanced inhibitor potencies against CCR3, a 3D-QSAR CoMFA study was carried out on 41 4-benzylpiperidinealkylureas and amide derivatives. The best statistics of the developed CoMFA model were r (2) = 0.960, r(2)cv, n = 32 for the training set and r(2)pred, n = 9 for the test set. The generated 3D-QSAR contribution maps shed some light on the effects of the substitution pattern related to CCR3 antagonist activity.

  4. Structure of the CCR5 Chemokine Receptor-HIV Entry Inhibitor Maraviroc Complex

    SciTech Connect

    Tan, Qiuxiang; Zhu, Ya; Li, Jian; Chen, Zhuxi; Han, Gye Won; Kufareva, Irina; Li, Tingting; Ma, Limin; Fenalti, Gustavo; Li, Jing; Zhang, Wenru; Xie, Xin; Yang, Huaiyu; Jiang, Hualiang; Cherezov, Vadim; Liu, Hong; Stevens, Raymond C.; Zhao, Qiang; Wu, Beili

    2013-10-21

    The CCR5 chemokine receptor acts as a co-receptor for HIV-1 viral entry. Here we report the 2.7 angstrom–resolution crystal structure of human CCR5 bound to the marketed HIV drug maraviroc. The structure reveals a ligand-binding site that is distinct from the proposed major recognition sites for chemokines and the viral glycoprotein gp120, providing insights into the mechanism of allosteric inhibition of chemokine signaling and viral entry. A comparison between CCR5 and CXCR4 crystal structures, along with models of co-receptor–gp120-V3 complexes, suggests that different charge distributions and steric hindrances caused by residue substitutions may be major determinants of HIV-1 co-receptor selectivity. These high-resolution insights into CCR5 can enable structure-based drug discovery for the treatment of HIV-1 infection.

  5. CCR5 Expression Levels in HIV-Uninfected Women Receiving Hormonal Contraception

    PubMed Central

    Sciaranghella, Gaia; Wang, Cuiwei; Hu, Haihong; Anastos, Kathryn; Merhi, Zaher; Nowicki, Marek; Stanczyk, Frank Z.; Greenblatt, Ruth M.; Cohen, Mardge; Golub, Elizabeth T.; Watts, D. Heather; Alter, Galit; Young, Mary A.; Tsibris, Athe M. N.

    2015-01-01

    Human immunodeficiency virus (HIV) infectivity increases as receptor/coreceptor expression levels increase. We determined peripheral CD4, CCR5, and CXCR4 expression levels in HIV-uninfected women who used depot medroxyprogesterone acetate (DMPA; n = 32), the levonorgestrel-releasing intrauterine device (LNG-IUD; n = 27), oral contraceptive pills (n = 32), or no hormonal contraception (n = 33). The use of LNG-IUD increased the proportion of CD4+ and CD8+ T cells that expressed CCR5; increases in the magnitude of T-cell subset CCR5 expression were observed with DMPA and LNG-IUD use (P < .01 for all comparisons). LNG-IUD and, to a lesser extent, DMPA use were associated with increased peripheral T-cell CCR5 expression. PMID:25895986

  6. Second report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Bailey, R.D.; Blaylock, B.G.; Boston, H.L.; Cox, D.K.; Huston, M.A.; Kimmel, B.L.; Loar, J.M.; Olsen, C.R.; Ryon, M.G.; Shugart, L.R.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Talmage, S.S.; Murphy, J.B.; Valentine, C.K.; Appellanis, S.M.; Jimenez, B.D.; Huq, M.V.; Meyers-Schone, L.J.; Mohrbacher, D.A.; Olsen, C.R.; Stout, J.G.

    1992-12-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the second of a series of annual reports, described the results of BMAP studies conducted in 1987.

  7. Fourth report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect

    Loar, J.M.

    1994-04-01

    In response to a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC) and selected tributaries. BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake. The ecological characterization of the WOC watershed will provide baseline data that can be used to document the ecological effects of the water pollution control program and the remedial action program. The long-term nature of BMAP ensures that the effectiveness of remedial measures will be properly evaluated.

  8. Staphylococcus aureus Leukocidin LukED and HIV-1 gp120 Target Different Sequence Determinants on CCR5

    PubMed Central

    Tam, Kayan; Schultz, Megan; Reyes-Robles, Tamara; Vanwalscappel, Bénédicte; Horton, Joshua; Alonzo, Francis; Wu, Beili

    2016-01-01

    ABSTRACT Leukocidin ED (LukED) is a bicomponent pore-forming toxin produced by Staphylococcus aureus that lyses host cells by targeting the chemokine receptors CC chemokine receptor type 5 (CCR5), CXCR1, CXCR2, and DARC. In addition to its role as a receptor for LukED, CCR5 is the major coreceptor for primary isolates of human immunodeficiency virus type 1 (HIV-1) and has been extensively studied. To compare how LukED and HIV-1 target CCR5, we analyzed their respective abilities to use CCR5/CCR2b chimeras to mediate cytotoxicity and virus entry. These analyses showed that the second and third extracellular loops (ECL) of CCR5 are necessary and sufficient for LukED to target the receptor and promote cell lysis. In contrast, the second ECL of CCR5 is necessary but not sufficient for HIV-1 infectivity. The analysis of CCR5 point mutations showed that glycine-163 is critical for HIV-1 infectivity, while arginine-274 and aspartic acid-276 are critical for LukED cytotoxicity. Point mutations in ECL2 diminished both HIV-1 infectivity and LukED cytotoxicity. Treatment of cells with LukED did not interfere with CCR5-tropic HIV-1 infectivity, demonstrating that LukED and the viral envelope glycoprotein use nonoverlapping sites on CCR5. Analysis of point mutations in LukE showed that amino acids 64 to 69 in the rim domain are required for CCR5 targeting and cytotoxicity. Taking the results together, this study identified the molecular basis by which LukED targets CCR5, highlighting the divergent molecular interactions evolved by HIV-1 and LukED to interact with CCR5. PMID:27965453

  9. Staphylococcus aureus Leukocidin LukED and HIV-1 gp120 Target Different Sequence Determinants on CCR5.

    PubMed

    Tam, Kayan; Schultz, Megan; Reyes-Robles, Tamara; Vanwalscappel, Bénédicte; Horton, Joshua; Alonzo, Francis; Wu, Beili; Landau, Nathaniel R; Torres, Victor J

    2016-12-13

    Leukocidin ED (LukED) is a bicomponent pore-forming toxin produced by Staphylococcus aureus that lyses host cells by targeting the chemokine receptors CC chemokine receptor type 5 (CCR5), CXCR1, CXCR2, and DARC. In addition to its role as a receptor for LukED, CCR5 is the major coreceptor for primary isolates of human immunodeficiency virus type 1 (HIV-1) and has been extensively studied. To compare how LukED and HIV-1 target CCR5, we analyzed their respective abilities to use CCR5/CCR2b chimeras to mediate cytotoxicity and virus entry. These analyses showed that the second and third extracellular loops (ECL) of CCR5 are necessary and sufficient for LukED to target the receptor and promote cell lysis. In contrast, the second ECL of CCR5 is necessary but not sufficient for HIV-1 infectivity. The analysis of CCR5 point mutations showed that glycine-163 is critical for HIV-1 infectivity, while arginine-274 and aspartic acid-276 are critical for LukED cytotoxicity. Point mutations in ECL2 diminished both HIV-1 infectivity and LukED cytotoxicity. Treatment of cells with LukED did not interfere with CCR5-tropic HIV-1 infectivity, demonstrating that LukED and the viral envelope glycoprotein use nonoverlapping sites on CCR5. Analysis of point mutations in LukE showed that amino acids 64 to 69 in the rim domain are required for CCR5 targeting and cytotoxicity. Taking the results together, this study identified the molecular basis by which LukED targets CCR5, highlighting the divergent molecular interactions evolved by HIV-1 and LukED to interact with CCR5.

  10. CCR7 is mainly expressed in teleost gills, where it defines an IgD+IgM- B lymphocyte subset.

    PubMed

    Castro, Rosario; Bromage, Erin; Abós, Beatriz; Pignatelli, Jaime; González Granja, Aitor; Luque, Alfonso; Tafalla, Carolina

    2014-02-01

    Chemokine receptor CCR7, the receptor for both CCL19 and CCL21 chemokines, regulates the recruitment and clustering of circulating leukocytes to secondary lymphoid tissues, such as lymph nodes and Peyer's patches. Even though teleost fish do not have either of these secondary lymphoid structures, we have recently reported a homolog to CCR7 in rainbow trout (Oncorhynchus mykiss). In the present work, we have studied the distribution of leukocytes bearing extracellular CCR7 in naive adult tissues by flow cytometry, observing that among the different leukocyte populations, the highest numbers of cells with membrane (mem)CCR7 were recorded in the gill (7.5 ± 2% CCR7(+) cells). In comparison, head kidney, spleen, thymus, intestine, and peripheral blood possessed <5% CCR7(+) cells. When CCR7 was studied at early developmental stages, we detected a progressive increase in gene expression and protein CCR7 levels in the gills throughout development. Surprisingly, the majority of the CCR7(+) cells in the gills were not myeloid cells and did not express membrane CD8, IgM, nor IgT, but expressed IgD on the cell surface. In fact, most IgD(+) cells in the gills expressed CCR7. Intriguingly, the IgD(+)CCR7(+) population did not coexpress memIgM. Finally, when trout were bath challenged with viral hemorrhagic septicemia virus, the number of CCR7(+) cells significantly decreased in the gills while significantly increased in head kidney. These results provide evidence of the presence of a novel memIgD(+)memIgM(-) B lymphocyte subset in trout that expresses memCCR7 and responds to viral infections. Similarities with IgD(+)IgM(-) subsets in mammals are discussed.

  11. Biased small-molecule ligands for selective inhibition of HIV-1 cell entry via CCR5.

    PubMed

    Berg, Christian; Spiess, Katja; Lüttichau, Hans R; Rosenkilde, Mette M

    2016-12-01

    Since the discovery of HIV's use of CCR5 as the primary coreceptor in fusion, the focus on developing small-molecule receptor antagonists for inhibition hereof has only resulted in one single drug, Maraviroc. We therefore investigated the possibility of using small-molecule CCR5 agonists as HIV-1 fusion inhibitors. A virus-free cell-based fusion reporter assay, based on mixing "effector cells" (expressing HIV Env and luciferase activator) with "target cells" (expressing CD4, CCR5 wild type or a selection of well-described mutations, and luciferase reporter), was used as fusion readout. Receptor expression was evaluated by ELISA and fluorescence microscopy. On CCR5 WT, Maraviroc and Aplaviroc inhibited fusion with high potencies (EC 50 values of 91 and 501 nM, respectively), whereas removal of key residues for both antagonists (Glu283Ala) or Maraviroc alone (Tyr251Ala) prevented fusion inhibition, establishing this assay as suitable for screening of HIV entry inhibitors. Both ligands inhibited HIV fusion on signaling-deficient CCR5 mutations (Tyr244Ala and Trp248Ala). Moreover, the steric hindrance CCR5 mutation (Gly286Phe) impaired fusion, presumably by a direct hindrance of gp120 interaction. Finally, the efficacy switch mutation (Leu203Phe) - converting small-molecule antagonists/inverse agonists to full agonists biased toward G-protein activation - uncovered that also small-molecule agonists can function as direct HIV-1 cell entry inhibitors. Importantly, no agonist-induced receptor internalization was observed for this mutation. Our studies of the pharmacodynamic requirements for HIV-1 fusion inhibitors highlight the possibility of future development of biased ligands with selective targeting of the HIV-CCR5 interaction without interfering with the normal functionality of CCR5.

  12. Analysis of the CC chemokine receptor 5 (CCR5) delta-32 polymorphism in inflammatory bowel disease.

    PubMed

    Rector, A; Vermeire, S; Thoelen, I; Keyaerts, E; Struyf, F; Vlietinck, R; Rutgeerts, P; Van Ranst, M

    2001-03-01

    The inflammatory bowel diseases (IBD) Crohn's disease (CD) and ulcerative colitis (UC) are complex multifactorial traits involving both environmental and genetic factors. Recent studies have shown the important role of pro-inflammatory cytokines and chemokines, including RANTES, in IBD. RANTES is the natural ligand for the CC-chemokine receptor 5 (CCR5). The chromosomal location of the CCR5 gene on 3p21 coincides with an IBD-susceptibility locus identified by genome-wide scanning. A 32-bp deletion (A32) in the CCR5 gene results in a nonfunctional receptor and is found with high frequency in Caucasians. In this study, we investigated the presence of the CCR5delta32 allele in a large cohort of IBD patients and in a healthy control population. Blood samples were obtained from 538 unselected IBD cases (433 unrelated IBD patients: 289 CD, 142 UC, 2 indeterminate colitis; 105 affected first-degree relatives) and 135 unaffected first-degree family members. Of the IBD patients, 36% had familial IBD with at least two members being affected. There were no significant differences in the CCR5delta32 mutation frequency between IBD patients and healthy controls, nor between CD and UC patients. There was no correlation between the CCR5delta32 genotype and the age at IBD-diagnosis, the frequency of surgical intervention, or disease localization. Only the association between CCR5delta32 homozygosity and the presence of anal lesions in CD patients was statistically significant (P=0.007). Analysis by the transmission/disequilibrium test showed no significant transmission distortion to the probands or their clinically silent siblings. Based on these results, it is unlikely that the CCR5delta32 allele is an important marker for predisposition to IBD.

  13. I-TAC/CXCL11 is a natural antagonist for CCR5.

    PubMed

    Petkovic, Vibor; Moghini, Christian; Paoletti, Samantha; Uguccioni, Mariagrazia; Gerber, Basil

    2004-09-01

    The selective CXC chemokine receptor 3 (CXCR3) agonists, monokine induced by interferon-gamma (IFN- gamma)/CXC chemokine ligand 9 (CXCL9), IFN-inducible protein 10/CXCL10, and IFN-inducible T cell alpha chemoattractant (I-TAC)/CXCL11, attract CXCR3+ cells such as CD45RO+ T lymphocytes, B cells, and natural killer cells. Further, all three chemokines are potent, natural antagonists for chemokine receptor 3 (CCR3) and feature defensin-like, antimicrobial activities. In this study, we show that I-TAC, in addition to these effects, acts as an antagonist for CCR5. I-TAC inhibited the binding of macrophage-inflammatory protein-1alpha (MIP-1alpha)/CC chemokine ligand 3 (CCL3) to cells transfected with CCR5 and to monocytes. Furthermore, cell migration evoked by regulated on activation, normal T expressed and secreted (RANTES)/CCL5 and MIP-1beta/CCL4, the selective agonist of CCR5, was inhibited in transfected cells and monocytes, respectively. In two other functional assays, namely the release of free intracellular calcium and actin polymerization, I-TAC reduced CCR5 activities to minimal levels. Sequence and structure analyses indicate a potential role for K17, K49, and Q51 of I-TAC in CCR5 binding. Our results expand on the potential role of I-TAC as a negative modulator in leukocyte migration and activation, as I-TAC would specifically counteract the responses mediated by many "classical," inflammatory chemokines that act not only via CCR3 but via CCR5 as well.

  14. Potent heteroarylpiperidine and carboxyphenylpiperidine 1-alkyl-cyclopentane carboxamide CCR2 antagonists.

    PubMed

    Pasternak, Alexander; Goble, Stephen D; Vicario, Pasquale P; Di Salvo, Jerry; Ayala, Julia M; Struthers, Mary; DeMartino, Julie A; Mills, Sander G; Yang, Lihu

    2008-02-01

    This report describes replacement of the 4-(4-fluorophenyl)piperidine moiety in our CCR2 antagonists with 4-heteroaryl piperidine and 4-(carboxyphenyl)-piperidine subunits. Some of the resulting analogs retained potency in our CCR2 binding assay and had improved selectivity versus the I(Kr) channel; poor selectivity against I(Kr) had been a liability of earlier analogs in this series.

  15. Internalization of the chemokine receptor CCR4 can be evoked by orthosteric and allosteric receptor antagonists.

    PubMed

    Ajram, Laura; Begg, Malcolm; Slack, Robert; Cryan, Jenni; Hall, David; Hodgson, Simon; Ford, Alison; Barnes, Ashley; Swieboda, Dawid; Mousnier, Aurelie; Solari, Roberto

    2014-04-15

    The chemokine receptor CCR4 has at least two natural agonist ligands, MDC (CCL22) and TARC (CCL17) which bind to the same orthosteric site with a similar affinity. Both ligands are known to evoke chemotaxis of CCR4-bearing T cells and also elicit CCR4 receptor internalization. A series of small molecule allosteric antagonists have been described which displace the agonist ligand, and inhibit chemotaxis. The aim of this study was to determine which cellular coupling pathways are involved in internalization, and if antagonists binding to the CCR4 receptor could themselves evoke receptor internalization. CCL22 binding coupled CCR4 efficiently to β-arrestin and stimulated GTPγS binding however CCL17 did not couple to β-arrestin and only partially stimulated GTPγS binding. CCL22 potently induced internalization of almost all cell surface CCR4, while CCL17 showed only weak effects. We describe four small molecule antagonists that were demonstrated to bind to two distinct allosteric sites on the CCR4 receptor, and while both classes inhibited agonist ligand binding and chemotaxis, one of the allosteric sites also evoked receptor internalization. Furthermore, we also characterize an N-terminally truncated version of CCL22 which acts as a competitive antagonist at the orthosteric site, and surprisingly also evokes receptor internalization without demonstrating any agonist activity. Collectively this study demonstrates that orthosteric and allosteric antagonists of the CCR4 receptor are capable of evoking receptor internalization, providing a novel strategy for drug discovery against this class of target.

  16. Nf1+/- monocytes/macrophages induce neointima formation via CCR2 activation.

    PubMed

    Bessler, Waylan K; Kim, Grace; Hudson, Farlyn Z; Mund, Julie A; Mali, Raghuveer; Menon, Keshav; Kapur, Reuben; Clapp, D Wade; Ingram, David A; Stansfield, Brian K

    2016-03-15

    Persons with neurofibromatosis type 1 (NF1) have a predisposition for premature and severe arterial stenosis. Mutations in the NF1 gene result in decreased expression of neurofibromin, a negative regulator of p21(Ras), and increases Ras signaling. Heterozygous Nf1 (Nf1(+/-)) mice develop a marked arterial stenosis characterized by proliferating smooth muscle cells (SMCs) and a predominance of infiltrating macrophages, which closely resembles arterial lesions from NF1 patients. Interestingly, lineage-restricted inactivation of a single Nf1 allele in monocytes/macrophages is sufficient to recapitulate the phenotype observed in Nf1(+/-) mice and to mobilize proinflammatory CCR2+ monocytes into the peripheral blood. Therefore, we hypothesized that CCR2 receptor activation by its primary ligand monocyte chemotactic protein-1 (MCP-1) is critical for monocyte infiltration into the arterial wall and neointima formation in Nf1(+/-) mice. MCP-1 induces a dose-responsive increase in Nf1(+/-) macrophage migration and proliferation that corresponds with activation of multiple Ras kinases. In addition, Nf1(+/-) SMCs, which express CCR2, demonstrate an enhanced proliferative response to MCP-1 when compared with WT SMCs. To interrogate the role of CCR2 activation on Nf1(+/-) neointima formation, we induced neointima formation by carotid artery ligation in Nf1(+/-) and WT mice with genetic deletion of either MCP1 or CCR2. Loss of MCP-1 or CCR2 expression effectively inhibited Nf1(+/-) neointima formation and reduced macrophage content in the arterial wall. Finally, administration of a CCR2 antagonist significantly reduced Nf1(+/-) neointima formation. These studies identify MCP-1 as a potent chemokine for Nf1(+/-) monocytes/macrophages and CCR2 as a viable therapeutic target for NF1 arterial stenosis.

  17. VEGF-Production by CCR2-Dependent Macrophages Contributes to Laser-Induced Choroidal Neovascularization

    PubMed Central

    Krause, Torsten A.; Alex, Anne F.; Engel, Daniel R.; Kurts, Christian; Eter, Nicole

    2014-01-01

    Age-related macular degeneration (AMD) is the most prevalent cause of blindness in the elderly, and its exsudative subtype critically depends on local production of vascular endothelial growth factor A (VEGF). Mononuclear phagocytes, such as macrophages and microglia cells, can produce VEGF. Their precursors, for example monocytes, can be recruited to sites of inflammation by the chemokine receptor CCR2, and this has been proposed to be important in AMD. To investigate the role of macrophages and CCR2 in AMD, we studied intracellular VEGF content in a laser-induced murine model of choroidal neovascularisation. To this end, we established a technique to quantify the VEGF content in cell subsets from the laser-treated retina and choroid separately. 3 days after laser, macrophage numbers and their VEGF content were substantially elevated in the choroid. Macrophage accumulation was CCR2-dependent, indicating recruitment from the circulation. In the retina, microglia cells were the main VEGF+ phagocyte type. A greater proportion of microglia cells contained VEGF after laser, and this was CCR2-independent. On day 6, VEGF-expressing macrophage numbers had already declined, whereas numbers of VEGF+ microglia cells remained increased. Other sources of VEGF detectable by flow cytometry included in dendritic cells and endothelial cells in both retina and choroid, and Müller cells/astrocytes in the retina. However, their VEGF content was not increased after laser. When we analyzed flatmounts of laser-treated eyes, CCR2-deficient mice showed reduced neovascular areas after 2 weeks, but this difference was not evident 3 weeks after laser. In summary, CCR2-dependent influx of macrophages causes a transient VEGF increase in the choroid. However, macrophages augmented choroidal neovascularization only initially, presumably because VEGF production by CCR2-independent eye cells prevailed at later time points. These findings identify macrophages as a relevant source of VEGF in laser

  18. VEGF-production by CCR2-dependent macrophages contributes to laser-induced choroidal neovascularization.

    PubMed

    Krause, Torsten A; Alex, Anne F; Engel, Daniel R; Kurts, Christian; Eter, Nicole

    2014-01-01

    Age-related macular degeneration (AMD) is the most prevalent cause of blindness in the elderly, and its exsudative subtype critically depends on local production of vascular endothelial growth factor A (VEGF). Mononuclear phagocytes, such as macrophages and microglia cells, can produce VEGF. Their precursors, for example monocytes, can be recruited to sites of inflammation by the chemokine receptor CCR2, and this has been proposed to be important in AMD. To investigate the role of macrophages and CCR2 in AMD, we studied intracellular VEGF content in a laser-induced murine model of choroidal neovascularisation. To this end, we established a technique to quantify the VEGF content in cell subsets from the laser-treated retina and choroid separately. 3 days after laser, macrophage numbers and their VEGF content were substantially elevated in the choroid. Macrophage accumulation was CCR2-dependent, indicating recruitment from the circulation. In the retina, microglia cells were the main VEGF+ phagocyte type. A greater proportion of microglia cells contained VEGF after laser, and this was CCR2-independent. On day 6, VEGF-expressing macrophage numbers had already declined, whereas numbers of VEGF+ microglia cells remained increased. Other sources of VEGF detectable by flow cytometry included in dendritic cells and endothelial cells in both retina and choroid, and Müller cells/astrocytes in the retina. However, their VEGF content was not increased after laser. When we analyzed flatmounts of laser-treated eyes, CCR2-deficient mice showed reduced neovascular areas after 2 weeks, but this difference was not evident 3 weeks after laser. In summary, CCR2-dependent influx of macrophages causes a transient VEGF increase in the choroid. However, macrophages augmented choroidal neovascularization only initially, presumably because VEGF production by CCR2-independent eye cells prevailed at later time points. These findings identify macrophages as a relevant source of VEGF in laser

  19. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; preparation procedure for aquatic biological material determined for trace metals

    USGS Publications Warehouse

    Hoffman, Gerald L.

    1996-01-01

    A method for the chemical preparation of tissue samples that are subsequently analyzed for 22 trace metals is described. The tissue-preparation procedure was tested with three National Institute of Standards and Technology biological standard reference materials and two National Water Quality Laboratory homogenized biological materials. A low-temperature (85 degrees Celsius) nitric acid digestion followed by the careful addition of hydrogen peroxide (30-percent solution) is used to decompose the biological material. The solutions are evaporated to incipient dryness, reconstituted with 5 percent nitric acid, and filtered. After filtration the solutions were diluted to a known volume and analyzed by inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-atomic emission spectrometry (ICP-AES), and cold vapor-atomic absorption spectrophotometry (CV-AAS). Many of the metals were determined by both ICP-MS and ICP-AES. This report does not provide a detailed description of the instrumental procedures and conditions used with the three types of instrumentation for the quantitation of trace metals determined in this study. Statistical data regarding recovery, accuracy, and precision for individual trace metals determined in the biological material tested are summarized.

  20. CCR5 Targeted Cell Therapy for HIV and Prevention of Viral Escape.

    PubMed

    Hütter, Gero; Bodor, Josef; Ledger, Scott; Boyd, Maureen; Millington, Michelle; Tsie, Marlene; Symonds, Geoff

    2015-07-27

    Allogeneic transplantation with CCR5-delta 32 (CCR5-d32) homozygous stem cells in an HIV infected individual in 2008, led to a sustained virus control and probably eradication of HIV. Since then there has been a high degree of interest to translate this approach to a wider population. There are two cellular ways to do this. The first one is to use a CCR5 negative cell source e.g., hematopoietic stem cells (HSC) to copy the initial finding. However, a recent case of a second allogeneic transplantation with CCR5-d32 homozygous stem cells suffered from viral escape of CXCR4 quasi-species. The second way is to knock down CCR5 expression by gene therapy. Currently, there are five promising techniques, three of which are presently being tested clinically. These techniques include zinc finger nucleases (ZFN), clustered regularly interspaced palindromic repeats/CRISPR-associated protein 9 nuclease (CRISPR/Cas9), transcription activator-like effectors nuclease (TALEN), short hairpin RNA (shRNA), and a ribozyme. While there are multiple gene therapy strategies being tested, in this review we reflect on our current knowledge of inhibition of CCR5 specifically and whether this approach allows for consequent viral escape.

  1. Chemokine receptor CCR5 and CXCR4 might influence virus replication during IBDV infection.

    PubMed

    Ou, Changbo; Wang, Qiuxia; Yu, Yan; Zhang, Yanhong; Ma, Jinyou; Kong, Xianghui; Liu, Xingyou

    2017-03-27

    Both CCR5 and CXCR4 are important chemokine receptors and take vital role in migration, development and distribution of T cells, however, whether they will influence the process of T cell infiltration into bursa of Fabricius during infectious bursal disease virus (IBDV) infection is unclear. In the current study, CCR5 and CXCR4 antagonists, Maraviroc and AMD3100, were administrated into chickens inoculated with IBDV, and the gene levels of IBDV VP2, CCR5, CXCR4 and related cytokines were determined by real-time PCR. The results showed that large number of T cells began to migrate into the bursae on Day 3 post infection with IBDV and the mRNA of chemokine receptors CCR5 and CXCR4 began to increase on Day 1. Moreover, antagonist treatments have increased the VP2, CCR5 and CXCR4 gene transcriptions and influenced on the gene levels of IL-2, IL-6, IL-8, IFN-γ, TGF-β4, MHC-I and MDA5. In conclusion, the chemokine receptors CCR5 and CXCR4 might influence virus replication during IBDV infection and further study would focus on the interaction between chemokine receptors and their ligands.

  2. Is the CCR5 Δ 32 mutation associated with immune system-related diseases?

    PubMed

    Ghorban, Khodayar; Dadmanesh, Maryam; Hassanshahi, Gholamhossein; Momeni, Mohammad; Zare-Bidaki, Mohammad; Arababadi, Mohammad Kazemi; Kennedy, Derek

    2013-06-01

    Hypersensitivity and autoimmunity are the main features of immune system-related diseases such as type 2 diabetes (T2D), multiple sclerosis (MS), and asthma. It has been established that chemokines play key roles in the activation and regulation of immune cell migration which is important in the pathogenesis of the diseases mentioned. CC chemokines receptor 5 or CCR5 is a receptor for RANTES, MIP-1α, and MIP-1β and is expressed by several immune cells including NK cells, T lymphocytes, and macrophages. It plays key roles in the regulation of migration and activation of the immune cells during immune responses against microbe and self-antigens during autoimmunity and hypersensitivity disorders. Therefore, any alteration in the sequence of CCR5 gene or in its expression could be associated with immune system-related diseases. Previous studies revealed that a 32-base pair deletion (Δ 32) in exon 1 of the CCR5 gene led to downregulation of the gene. Previous studies demonstrated that not only CCR5 expression was altered in autoimmune and hypersensitivity disorders, but also that the mutation is associated with the diseases. This review addresses the recent information regarding the association of the CCR5 Δ 32 mutation in immune-related diseases including T2D with and without nephropathy, MS, and asthma. Based on the collected data, it seems that the CCR5 Δ 32 mutation can be considered as a risk factor for MS, but not asthma and T2D with and without nephropathy.

  3. Genotyping of the CCR5 chemokine receptor by isothermal NASBA amplification and differential probe hybridization.

    PubMed

    Romano, J W; Tetali, S; Lee, E M; Shurtliff, R N; Wang, X P; Pahwa, S; Kaplan, M H; Ginocchio, C C

    1999-11-01

    The human CCR5 chemokine receptor functions as a coreceptor with CD4 for infection by macrophage-tropic isolates of human immunodeficiency virus type 1 (HIV-1). A mutated CCR5 allele which encodes a protein that does not function as a coreceptor for HIV-1 has been identified. Thus, expression of the wild-type and/or mutation allele is relevant to determining the infectability of patient peripheral blood mononuclear cells (PBMC) and affects disease progression in vivo. We developed a qualitative CCR5 genotyping assay using NASBA, an isothermal nucleic acid amplification technology. The method involves three enzymes and two oligonucleotides and targets the CCR5 mRNA, which is expressed in PBMC at a copy number higher than 2, the number of copies of DNA present encoding the gene. The single oligonucleotide set amplifies both alleles, and genotyping is achieved by separate hybridizations of wild-type- and mutation-specific probes directly to the single-stranded RNA amplification product. Assay sensitivity and specificity were demonstrated with RNAs produced in vitro from plasmid clones bearing the DNA encoding each allele. No detectable cross-reactivity between wild-type and mutation probes was found, and 50 copies of each allele were readily detectable. Analysis of patient samples found that 20% were heterozygous and 1% were homozygous for the CCR5 mutation. Thus, NASBA is a sensitive and specific means of rapidly determining CCR5 genotype and provides several technical advantages over alternative assay systems.

  4. Genotyping of the CCR5 Chemokine Receptor by Isothermal NASBA Amplification and Differential Probe Hybridization

    PubMed Central

    Romano, Joseph W.; Tetali, Surya; Lee, Eun Mi; Shurtliff, Roxanne N.; Wang, Xue Ping; Pahwa, Savita; Kaplan, Mark H.; Ginocchio, Christine C.

    1999-01-01

    The human CCR5 chemokine receptor functions as a coreceptor with CD4 for infection by macrophage-tropic isolates of human immunodeficiency virus type 1 (HIV-1). A mutated CCR5 allele which encodes a protein that does not function as a coreceptor for HIV-1 has been identified. Thus, expression of the wild-type and/or mutation allele is relevant to determining the infectibility of patient peripheral blood mononuclear cells (PBMC) and affects disease progression in vivo. We developed a qualitative CCR5 genotyping assay using NASBA, an isothermal nucleic acid amplification technology. The method involves three enzymes and two oligonucleotides and targets the CCR5 mRNA, which is expressed in PBMC at a copy number higher than 2, the number of copies of DNA present encoding the gene. The single oligonucleotide set amplifies both alleles, and genotyping is achieved by separate hybridizations of wild-type- and mutation-specific probes directly to the single-stranded RNA amplification product. Assay sensitivity and specificity were demonstrated with RNAs produced in vitro from plasmid clones bearing the DNA encoding each allele. No detectable cross-reactivity between wild-type and mutation probes was found, and 50 copies of each allele were readily detectable. Analysis of patient samples found that 20% were heterozygous and 1% were homozygous for the CCR5 mutation. Thus, NASBA is a sensitive and specific means of rapidly determining CCR5 genotype and provides several technical advantages over alternative assay systems. PMID:10548593

  5. Chemokine receptor CCR7 and CXCR5 mRNA in chickens following inflammation or vaccination.

    PubMed

    Annamalai, T; Selvaraj, R K

    2011-08-01

    The CCR7 and CXCR5 chemokine receptor mRNA contents of different immune organs were studied in normal, healthy birds and in birds treated with either lipopolysaccharide (LPS) as a systemic inflammatory challenge or coccidial vaccine (Coccivac B; Intervet/Schering-Plough Animal Health Corp., Millsboro, DE) as an enteric vaccination challenge. The CCR7 mRNA content of the spleen of normal, healthy birds was approximately 150-fold higher than CCR7 mRNA content of any other organs studied. The CXCR5 mRNA content of the bursa of normal, healthy birds was approximately 80-fold higher than the CXCR5 mRNA content of any other organs studied. The LPS injection decreased the splenic CCR7 mRNA content by approximately 100 times and the bursal CXCR5 mRNA content by approximately 5-fold at 24 h post-LPS injection (P < 0.01). The LPS injection increased the CXCR5 content of cecal tonsils by approximately 3-fold at 24 h post-LPS injection (P < 0.05). At 10 d postvaccination, CCR7 mRNA content was approximately 15-fold higher and CXCR5 mRNA content was approximately 12-fold higher in cecal tonsils of the vaccinated group than in the control group (P < 0.01). In conclusion, CCR7 and CXCR5 mRNA levels were dependent on the immune organs and the inflammatory status of the organs in chickens.

  6. Roles of RUNX1 and PU.1 in CCR3 Transcription.

    PubMed

    Kong, Su-Kang; Kim, Byung Soo; Hwang, Sae Mi; Lee, Hyune Hwan; Chung, Il Yup

    2016-06-01

    CCR3 is a chemokine receptor that mediates the accumulation of allergic inflammatory cells, including eosinophils and Th2 cells, at inflamed sites. The regulatory sequence of the CCR3 gene, contains two Runt-related transcription factor (RUNX) 1 sites and two PU.1 sites, in addition to a functional GATA site for transactivation of the CCR3 gene. In the present study, we examined the effects of the cis-acting elements of RUNX1 and PU.1 on transcription of the gene in EoL-1 eosinophilic cells and Jurkat T cells, both of which expressed functional surface CCR3 and these two transcription factors. Introduction of RUNX1 siRNA or PU.1 siRNA resulted in a modest decrease in CCR3 reporter activity in both cell types, compared with transfection of GATA-1 siRNA. Cotransfection of the two siRNAs led to inhibition in an additive manner. EMSA analysis showed that RUNX1, in particular, bound to its binding motifs. Mutagenesis analysis revealed that all point mutants lacking RUNX1- and PU.1-binding sites exhibited reduced reporter activities. These results suggest that RUNX1 and PU.1 participate in transcriptional regulation of the CCR3 gene.

  7. Expression and prognostic significance of CCL11/CCR3 in glioblastoma.

    PubMed

    Tian, Min; Chen, Lina; Ma, Li; Wang, Dandan; Shao, Bin; Wu, Jianyu; Wu, Hangyu; Jin, Yimin

    2016-05-31

    Glioblastoma (GBM) is the most lethal primary nervous system cancer, but due to its rarity and complexity, its pathogenesis is poorly understood. To identify potential tumorigenic factors in GBM, we screened antibody-based cytokine arrays and found that CCL11 was upregulated. We then demonstrated in vitro that both CCL11 and its receptor, CCR3, were overexpressed and promoted the proliferation, migration and invasion of cancer cells. To examine the clinical significance of CCL11/CCR3, 458 GBM samples were divided into a training cohort with 225 cases and a test cohort containing 233 cases. In the training set, immunohistochemical analysis showed overexpression of CCL11 and CCR3 were correlated with unfavorable overall survival (OS). We further developed a prognostic classifier combining CCL11 and CCR3 expression and Karnofsky performance status (KPS) for predicting one-year survival in GBM patients. Receiver operating characteristic (ROC) analysis demonstrated that this predictor achieved 90.7% sensitivity and 73.4% specificity. These results were validated with the test sample set. Our findings suggest that CCL11-CCR3 binding is involved in the progression of GBM and may prompt a novel therapeutic approach. In addition, CCL11 and CCR3 expression, combined with KPS, may be used as an accurate predictor of one-year survival in GBM patients.

  8. CCR5 Targeted Cell Therapy for HIV and Prevention of Viral Escape

    PubMed Central

    Hütter, Gero; Bodor, Josef; Ledger, Scott; Boyd, Maureen; Millington, Michelle; Tsie, Marlene; Symonds, Geoff

    2015-01-01

    Allogeneic transplantation with CCR5-delta 32 (CCR5-d32) homozygous stem cells in an HIV infected individual in 2008, led to a sustained virus control and probably eradication of HIV. Since then there has been a high degree of interest to translate this approach to a wider population. There are two cellular ways to do this. The first one is to use a CCR5 negative cell source e.g., hematopoietic stem cells (HSC) to copy the initial finding. However, a recent case of a second allogeneic transplantation with CCR5-d32 homozygous stem cells suffered from viral escape of CXCR4 quasi-species. The second way is to knock down CCR5 expression by gene therapy. Currently, there are five promising techniques, three of which are presently being tested clinically. These techniques include zinc finger nucleases (ZFN), clustered regularly interspaced palindromic repeats/CRISPR-associated protein 9 nuclease (CRISPR/Cas9), transcription activator-like effectors nuclease (TALEN), short hairpin RNA (shRNA), and a ribozyme. While there are multiple gene therapy strategies being tested, in this review we reflect on our current knowledge of inhibition of CCR5 specifically and whether this approach allows for consequent viral escape. PMID:26225991

  9. Analysis of CCR7 mediated T cell transfectant migration using a microfluidic gradient generator.

    PubMed

    Wu, Xun; Wu, Jiandong; Li, Hongzhao; Legler, Daniel F; Marshall, Aaron J; Lin, Francis

    2015-04-01

    T lymphocyte migration is crucial for adaptive immunity. Manipulation of signaling molecules controlling cell migration combined with in-vitro cell migration analysis provides a powerful research approach. Microfluidic devices, which can precisely configure chemoattractant gradients and allow quantitative single cell analysis, have been increasingly applied to cell migration and chemotaxis studies. However, there are a very limited number of published studies involving microfluidic migration analysis of genetically manipulated immune cells. In this study, we describe a simple microfluidic method for quantitative analysis of T cells expressing transfected chemokine receptors and other cell migration signaling probes. Using this method, we demonstrated chemotaxis of Jurkat transfectants expressing wild-type or C-terminus mutated CCR7 within a gradient of chemokine CCL19, and characterized the difference in transfectant migration mediated by wild-type and mutant CCR7. The EGFP-tagged CCR7 allows identification of CCR7-expressing transfectants in cell migration analysis and microscopy assessment of CCR7 dynamics. Collectively, our study demonstrated the effective use of the microfluidic method for studying CCR7 mediated T cell transfectant migration. We envision this developed method will provide a useful platform to functionally test various signaling mechanisms at the cell migration level.

  10. High-level production, solubilization and purification of synthetic human GPCR chemokine receptors CCR5, CCR3, CXCR4 and CX3CR1.

    PubMed

    Ren, Hui; Yu, Daoyong; Ge, Baosheng; Cook, Brian; Xu, Zhinan; Zhang, Shuguang

    2009-01-01

    Chemokine receptors belong to a class of integral membrane G-protein coupled receptors (GPCRs) and are responsible for transmitting signals from the extracellular environment. However, the structural changes in the receptor, connecting ligand binding to G-protein activation, remain elusive for most GPCRs due to the difficulty to produce them for structural and functional studies. We here report high-level production in E.coli of 4 human GPCRs, namely chemokine receptors (hCRs) CCR5, CCR3, CXCR4 and CX3CR1 that are directly involved in HIV-1 infection, asthma and cancer metastasis. The synthetic genes of CCR5, CCR3, CXCR4 and CX3CR1 were synthesized using a two-step assembly/amplification PCR method and inserted into two different kinds of expression systems. After systematic screening of growth conditions and host strains, TB medium was selected for expression of pEXP-hCRs. The low copy number pBAD-DEST49 plasmid, with a moderately strong promoter tightly regulated by L-arabinose, proved helpful for reducing toxicity of expressed membrane proteins. The synthetic Trx-hCR fusion genes in the pBAD-DEST49 vector were expressed at high levels in the Top10 strain. After a systematic screen of 96 detergents, the zwitterionic detergents of the Fos-choline series (FC9-FC16) emerged as the most effective for isolation of the hCRs. The FC14 was selected both for solubilization from bacterial lysates and for stabilization of the Trx-hCRs during purification. Thus, the FC-14 solubilized Trx-hCRs could be purified using size exclusion chromatography as monomers and dimers with the correct apparent MW and their alpha-helical content determined by circular dichroism. The identity of two of the expressed hCRs (CCR3 and CCR5) was confirmed using immunoblots using specific monoclonal antibodies. After optimization of expression systems and detergent-mediated purification procedures, we achieved large-scale, high-level production of 4 human GPCR chemokine receptor in a two

  11. AtCCR4a and AtCCR4b are Involved in Determining the Poly(A) Length of Granule-bound starch synthase 1 Transcript and Modulating Sucrose and Starch Metabolism in Arabidopsis thaliana.

    PubMed

    Suzuki, Yuya; Arae, Toshihiro; Green, Pamela J; Yamaguchi, Junji; Chiba, Yukako

    2015-05-01

    Removing the poly(A) tail is the first and rate-limiting step of mRNA degradation and apparently an effective step not only for modulating mRNA stability but also for translation of many eukaryotic transcripts. Carbon catabolite repressor 4 (CCR4) has been identified as a major cytoplasmic deadenylase in Saccharomyces cerevisiae. The Arabidopsis thaliana homologs of the yeast CCR4, AtCCR4a and AtCCR4b, were identified by sequence-based analysis; however, their role and physiological significance in plants remain to be elucidated. In this study, we revealed that AtCCR4a and AtCCR4b are localized to cytoplasmic mRNA processing bodies, which are specific granules consisting of many enzymes involved in mRNA turnover. Double mutants of AtCCR4a and AtCCR4b exhibited tolerance to sucrose application but not to glucose. The levels of sucrose in the seedlings of the atccr4a/4b double mutants were reduced, whereas no difference was observed in glucose levels. Further, amylose levels were slightly but significantly increased in the atccr4a/4b double mutants. Consistent with this observation, we found that the transcript encoding granule-bound starch synthase 1 (GBSS1), which is responsible for amylose synthesis, is accumulated to a higher level in the atccr4a/4b double mutant plants than in the control plants. Moreover, we revealed that GBSS1 has a longer poly(A) tail in the double mutant than in the control plant, suggesting that AtCCR4a and AtCCR4b can influence the poly(A) length of transcripts related to starch metabolism. Our results collectively suggested that AtCCR4a and AtCCR4b are involved in sucrose and starch metabolism in A. thaliana.

  12. Proceedings from the National Cancer Institute's Second International Workshop on the Biology, Prevention, and Treatment of Relapse after Hematopoietic Stem Cell Transplantation: Part I. Biology of relapse after transplantation.

    PubMed

    Gress, Ronald E; Miller, Jeffrey S; Battiwalla, Minoo; Bishop, Michael R; Giralt, Sergio A; Hardy, Nancy M; Kröger, Nicolaus; Wayne, Alan S; Landau, Dan A; Wu, Catherine J

    2013-11-01

    In the National Cancer Institute's Second Workshop on the Biology, Prevention, and Treatment of Relapse after Hematopoietic Stem Cell Transplantation, the Scientific/Educational Session on the Biology of Relapse discussed recent advances in understanding some of the host-, disease-, and transplantation-related contributions to relapse, emphasizing concepts with potential therapeutic implications. Relapse after hematopoietic stem cell transplantation (HSCT) represents tumor escape, from the cytotoxic effects of the conditioning regimen and from immunologic control mediated by reconstituted lymphocyte populations. Factors influencing the biology of the therapeutic graft-versus-malignancy (GVM) effect-and relapse-include conditioning regimen effects on lymphocyte populations and homeostasis, immunologic niches, and the tumor microenvironment; reconstitution of lymphocyte populations and establishment of functional immune competence; and genetic heterogeneity within the malignancy defining potential for clonal escape. Recent developments in T cell and natural killer cell homeostasis and reconstitution are reviewed, with implications for prevention and treatment of relapse, as is the application of modern genome sequencing to defining the biologic basis of GVM, clonal escape, and relapse after HSCT.

  13. Direct and indirect pharmacological modulation of CCL2/CCR2 pathway results in attenuation of neuropathic pain - In vivo and in vitro evidence.

    PubMed

    Piotrowska, Anna; Kwiatkowski, Klaudia; Rojewska, Ewelina; Slusarczyk, Joanna; Makuch, Wioletta; Basta-Kaim, Agnieszka; Przewlocka, Barbara; Mika, Joanna

    2016-08-15

    The repeated administration of microglial inhibitor (minocycline) and CCR2 antagonist (RS504393) attenuated the neuropathic pain symptoms in rats following chronic constriction injury of the sciatic nerve, which was associated with decreased spinal microglia activation and the protein level of CCL2 and CCR2. Furthermore, in microglia primary cell cultures minocycline downregulated both CCL2 and CCR2 protein levels after lipopolysaccharide-stimulation. Additionally, in astroglia primary cell cultures minocycline decreased the expression of CCL2, but not CCR2. Our results provide new evidence that modulation of CCL2/CCR2 pathway by microglial inhibitor as well as CCR2 antagonist is effective for neuropathic pain development in rats.

  14. Cytokine-induced killer cells interact with tumor lysate-pulsed dendritic cells via CCR5 signaling.

    PubMed

    Lee, Hong Kyung; Kim, Yong Guk; Kim, Ji Sung; Park, Eun Jae; Kim, Boyeong; Park, Ki Hwan; Kang, Jong Soon; Hong, Jin Tae; Kim, Youngsoo; Han, Sang-Bae

    2016-08-10

    The antitumor activity of cytokine-induced killer (CIK) cells can be increased by co-culturing them with tumor lysate-pulsed dendritic cells (tDCs); this phenomenon has been studied mainly at the population level. Using time-lapse imaging, we examined how CIK cells gather information from tDCs at the single-cell level. tDCs highly expressed CCL5, which bound CCR5 expressed on CIK cells. tDCs strongly induced migration of Ccr5(+/+) CIK cells, but not that of Ccr5(-/-) CIK cells or Ccr5(+/+) CIK cells treated with the CCR5 antagonist Maraviroc. Individual tDCs contacted Ccr5(+/+) CIK cells more frequently and lengthily than with Ccr5(-/-) CIK cells. Consequently, tDCs increased the antitumor activity of Ccr5(+/+) CIK cells in vitro and in vivo, but did not increase that of Ccr5(-/-) CIK cells. Taken together, our data provide insight into the mechanism of CIK cell activation by tDCs at the single-cell level.

  15. Interplay between signaling via the formyl peptide receptor (FPR) and chemokine receptor 3 (CCR3) in human eosinophils.

    PubMed

    Svensson, Lena; Redvall, Elin; Johnsson, Marianne; Stenfeldt, Anna-Lena; Dahlgren, Claes; Wennerås, Christine

    2009-08-01

    Eosinophils express the chemoattractant receptors CCR3 and FPR. CCR3 binds several agonists such as eotaxin-1, -2, and -3 and RANTES, whereas the FPR binds the formylated tripeptide fMLP and a host of other ligands. The aim of this study was to investigate if there is interplay between these two receptors regarding the elicitation of migration and respiratory burst in human blood-derived eosinophils. Inhibition of the FPR with the antagonists CyH and boc-MLP abrogated the migration of eosinophils toward all of the CCR3 agonists. Similar results were seen when the FPR was desensitized with its cognate ligand, fMLP. In contrast, the respiratory burst triggered by eotaxin-1 was not inhibited by CyH. Thus, signals evoked via the FPR caused unidirectional down-regulation of CCR3-mediated chemotaxis but not respiratory burst in human eosinophils. The underlying mechanism was neither reduced ability of the CCR3 ligand eotaxin-1 to bind to CCR3 nor down-regulation of CCR3 from the cell surface. Finally, confocal microscopy and adFRET analysis ruled out homo- or heterodimer formation between FPR and/or CCR3 as an explanation for the reduction in chemotaxis via CCR3. Pharmacologic inhibition of signal transduction molecules showed that the release of free oxygen radicals in response to eotaxin-1 compared with fMLP is relatively more dependent on the p38 MAPK pathway.

  16. Chemokine receptor CCR7 regulates the intestinal TH1/TH17/Treg balance during Crohn's-like murine ileitis.

    PubMed

    McNamee, Eóin N; Masterson, Joanne C; Veny, Marisol; Collins, Colm B; Jedlicka, Paul; Byrne, Fergus R; Ng, Gordon Y; Rivera-Nieves, Jesús

    2015-06-01

    The regulation of T cell and DC retention and lymphatic egress within and from the intestine is critical for intestinal immunosurveillance; however, the cellular processes that orchestrate this balance during IBD remain poorly defined. With the use of a mouse model of TNF-driven Crohn's-like ileitis (TNF(Δ) (ARE)), we examined the role of CCR7 in the control of intestinal T cell and DC retention/egress during experimental CD. We observed that the frequency of CCR7-expressing TH1/TH17 effector lymphocytes increased during active disease in TNF(Δ) (ARE) mice and that ΔARE/CCR7(-/-) mice developed exacerbated ileitis and multiorgan inflammation, with a marked polarization and ileal retention of TH1 effector CD4(+) T cells. Furthermore, adoptive transfer of ΔARE/CCR7(-/-) effector CD4(+) into lymphopenic hosts resulted in ileo-colitis, whereas those transferred with ΔARE/CCR7(+/+) CD4(+) T cells developed ileitis. ΔARE/CCR7(-/-) mice had an acellular draining MLN, decreased CD103(+) DC, and decreased expression of RALDH enzymes and of CD4(+)CD25(+)FoxP3(+) Tregs. Lastly, a mAb against CCR7 exacerbated ileitis in TNF(Δ) (ARE) mice, phenocopying the effects of congenital CCR7 deficiency. Our data underscore a critical role for the lymphoid chemokine receptor CCR7 in orchestrating immune cell traffic and TH1 versus TH17 bias during chronic murine ileitis.

  17. Distribution of the CCR5delta32 allele (gene variant CCR5) in Rondônia, Western Amazonian region, Brazil

    PubMed Central

    de Farias, Josileide Duarte; Santos, Marlene Guimarães; de França, Andonai Krauze; Delani, Daniel; Tada, Mauro Shugiro; Casseb, Almeida Andrade; Simões, Aguinaldo Luiz; Engracia, Vera

    2012-01-01

    Since around 1723, on the occasion of its initial colonization by Europeans, Rondonia has received successive waves of immigrants. This has been further swelled by individuals from northeastern Brazil, who began entering at the beginning of the twentieth century. The ethnic composition varies across the state according to the various sites of settlement of each wave of immigrants. We analyzed the frequency of the CCR5Δ32 allele of the CCR5 chemokine receptor, which is considered a Caucasian marker, in five sample sets from the population. Four were collected in Porto Velho, the state capital and the site of several waves of migration. Of these, two, from the Hospital de Base were comprised of HB Mothers and HB Newborns presenting allele frequencies of 3.5% and 3.1%, respectively, a third from the peri-urban neighborhoods of Candelária/Bate-Estaca (1.8%), whereas a fourth, from the Research Center on Tropical Medicine/CEPEM (0.6%), was composed of malaria patients under treament. The fifth sample (3.4%) came from the inland Quilombola village of Pedras Negras. Two homozygous individuals (CCR5Δ32/CCR5Δ32) were detected among the HB Mother samples. The frequency of this allele was heterogeneous and higher where the European inflow was more pronounced. The presence of the allele in Pedras Negras revealed European miscegenation in a community largely comprising Quilombolas. PMID:22481870

  18. CCR3 Blockade Attenuates Eosinophilic Ileitis and Associated Remodeling.

    PubMed

    Masterson, Joanne C; McNamee, Eóin N; Jedlicka, Paul; Fillon, Sophie; Ruybal, Joseph; Hosford, Lindsay; Rivera-Nieves, Jesús; Lee, James J; Furuta, Glenn T

    2011-11-01

    Intestinal remodeling and stricture formation is a complication of inflammatory bowel disease (IBD) that often requires surgical intervention. Although eosinophils are associated with mucosal remodeling in other organs and are increased in IBD tissues, their role in IBD-associated remodeling is unclear. Histological and molecular features of ileitis and remodeling were assessed using immunohistochemical, histomorphometric, flow cytometric, and molecular analysis (real-time RT-PCR) techniques in a murine model of chronic eosinophilic ileitis. Collagen protein was assessed by Sircol assay. Using a spontaneous eosinophilic Crohn's-like mouse model SAMP1/SkuSlc, we demonstrate an association between ileitis progression and remodeling over the course of 40 weeks. Mucosal and submucosal eosinophilia increased over the time course and correlated with increased histological inflammatory indices. Ileitis and remodeling increased over the 40 weeks, as did expression of fibronectin. CCR3-specific antibody-mediated reduction of eosinophils resulted in significant decrease in goblet cell hyperplasia, muscularis propria hypertrophy, villus blunting, and expression of inflammatory and remodeling genes, including fibronectin. Cellularity of local mesenteric lymph nodes, including T- and B-lymphocytes, was also significantly reduced. Thus, eosinophils participate in intestinal remodeling, supporting eosinophils as a novel therapeutic target.

  19. Establishment of mouse leukemia cell lines expressing human CD4/CCR5 using lentiviral vectors.

    PubMed

    Li, Ya-Jing; ZhuGe, Fu-Yan; Zeng, Chang-Chun; He, Jin-Yang; Tan, Ning; Liang, Juan

    2017-04-01

    A low-cost rodent model of HIV infection and which presents high application value is an effective tool to investigate HIV infection and pathogenesis. However, development of such a small animal model has been hampered by the unsuitability of rodent cells for HIV-1 replication given that the retrovirus HIV-1 has high selectivity to its host cell. Our study used the mouse leukemia cell lines L615 and L1210 that were induced by murine leukemia virus and transfected with hCD4/CCR5 loaded-lentiviral vector. Lentiviral vectors containing the genes hCD4/CCR5 under the transcriptional control of cytomegalovirus promoter were designed. Transfection efficiencies of human CD4 and CCR5 in L615 and L1210 cells were analyzed by quantitative real-time polymerase chain reaction (RT-PCR) and Western blot assay. Results showed that hCD4 and CCR5 proteins were expressed on the cell surface, demonstrating that the L615 and L1210 cells were humanized and that they possess the characteristics necessary for HIV infection of human host cells. Moreover, the sensitivity of human CD4/CCR5 transgenic mouse cells to HIV infection was confirmed by RT-PCR and ELISA. Mouse leukemia cell lines that could express hCD4 and CCR5 were thus established to facilitate normal entry of HIV-1 so that a human CD4/CCR5 transgenic mice cell model can be used to investigate the transmission and pathogenesis of HIV/AIDS and potential antiviral drugs against this disease.

  20. Pharmacotherapy of HIV-1 Infection: Focus on CCR5 Antagonist Maraviroc

    PubMed Central

    Latinovic, Olga; Kuruppu, Janaki; Davis, Charles; Le, Nhut; Heredia, Alonso

    2009-01-01

    Sustained inhibition of HIV-1, the goal of antiretroviral therapy, is often impeded by the emergence of viral drug resistance. For patients infected with HIV-1 resistant to conventional drugs from the viral reverse transcriptase and protease inhibitor classes, the recently approved entry and integration inhibitors effectively suppress HIV-1 and offer additional therapeutic options. Entry inhibitors are particularly attractive because, unlike conventional antiretrovirals, they target HIV-1 extracellularly, thereby sparing cells from both viral- and drug-induced toxicities. The fusion inhibitor enfuvirtide and the CCR5 antagonist maraviroc are the first entry inhibitors licensed for patients with drug-resistant HIV-1, with maraviroc restricted to those infected with CCR5-tropic HIV-1 (R5 HIV-1) only. Vicriviroc (another CCR5 antagonist) is in Phase III clinical trials, whereas the CCR5 antibodies PRO 140 and HGS 004 are in early stages of clinical development. Potent antiviral synergy between maraviroc and CCR5 antibodies, coupled with distinct patterns of resistance, suggest their combinations might be particularly effective in patients. In addition, given that oral administration of maraviroc achieves high drug levels in cervicovaginal fluid, combinations of maraviroc and other CCR5 inhibitors could be effective in preventing HIV-1 transmission. Moreover, since CCR5 antagonists prevent rejection of transplanted organs, maraviroc could both suppress HIV-1 and prolong organ survival for the growing number of HIV-1 patients with kidney or liver failure necessitating organ transplantation. Thus, maraviroc offers an important treatment option for patients with drug-resistant R5 HIV-1, who presently account for >50% of drug-resistance cases. PMID:19920876

  1. Exacerbation of facial motoneuron loss after facial nerve axotomy in CCR3-deficient mice.

    PubMed

    Wainwright, Derek A; Xin, Junping; Mesnard, Nichole A; Beahrs, Taylor R; Politis, Christine M; Sanders, Virginia M; Jones, Kathryn J

    2009-12-11

    We have previously demonstrated a neuroprotective mechanism of FMN (facial motoneuron) survival after facial nerve axotomy that is dependent on CD4(+) Th2 cell interaction with peripheral antigen-presenting cells, as well as CNS (central nervous system)-resident microglia. PACAP (pituitary adenylate cyclase-activating polypeptide) is expressed by injured FMN and increases Th2-associated chemokine expression in cultured murine microglia. Collectively, these results suggest a model involving CD4(+) Th2 cell migration to the facial motor nucleus after injury via microglial expression of Th2-associated chemokines. However, to respond to Th2-associated chemokines, Th2 cells must express the appropriate Th2-associated chemokine receptors. In the present study, we tested the hypothesis that Th2-associated chemokine receptors increase in the facial motor nucleus after facial nerve axotomy at timepoints consistent with significant T-cell infiltration. Microarray analysis of Th2-associated chemokine receptors was followed up with real-time PCR for CCR3, which indicated that facial nerve injury increases CCR3 mRNA levels in mouse facial motor nucleus. Unexpectedly, quantitative- and co-immunofluorescence revealed increased CCR3 expression localizing to FMN in the facial motor nucleus after facial nerve axotomy. Compared with WT (wild-type), a significant decrease in FMN survival 4 weeks after axotomy was observed in CCR3(-/-) mice. Additionally, compared with WT, a significant decrease in FMN survival 4 weeks after axotomy was observed in Rag2(-/-) (recombination activating gene-2-deficient) mice adoptively transferred CD4(+) T-cells isolated from CCR3(-/-) mice, but not in CCR3(-/-) mice adoptively transferred CD4(+) T-cells derived from WT mice. These results provide a basis for further investigation into the co-operation between CD4(+) T-cell- and CCR3-mediated neuroprotection after FMN injury.

  2. Genetic variants of MCP-1 and CCR2 genes and IgA nephropathy risk

    PubMed Central

    Niu, Dan; Wei, Jiali; Wang, Li; Ge, Heng; Wang, Meng; Yu, Qiaoling; Jin, Tianbo; Tian, Tian; Dai, Zhijun; Fu, Rongguo

    2016-01-01

    Monocyte chemoattractant protein-1 (MCP-1) and its receptor CCR2 stimulate inflammation response by activating and recruiting monocytes/macrophages. MCP-1 and CCR2 polymorphisms were reported to be associated with various diseases. To explore the relationship between MCP-1 and CCR2 polymorphisms and IgA nephropathy (IgAN), we conducted this case-control study by enrolling 351 IgAN patients and 310 health controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to evaluate potential associations of MCP-1 and CCR2 polymorphisms with susceptibility and clinical parameters of IgAN. No statistical differences between IgAN group and the control group in the MCP-1 -2518 and CCR2 +190 genotypic groups were observed (P > 0.05). Individuals with MCP-1 -2518 GG genotypes had a higher blood pressure (GG vs. AA+AG: OR = 1.79, 95% CI = 1.07-2.99, P = 0.026) and Lee's grade (GG vs. AA+AG: OR = 2.05, 95% CI = 1.19-3.54, P = 0.009; GG vs. AA: OR = 2.24, 95% CI = 1.19-4.20, P = 0.01), compared with patients with AA/AG genotypes. A significant association between CCR2 +190 polymorphism and Lee's grades was observed (GA+AA vs. GG: OR = 2.66, 95% CI = 1.63-4.35, P < 0.001; GA vs. AA+GG: OR = 2.27, 95% CI = 1.39-3.70, P = 0.001). Our results indicated that MCP-1 and CCR2 polymorphisms may influence the progression of IgAN, but not increase/decrease its susceptibility. PMID:27788494

  3. Possible Impact of 190G > A CCR2 and Δ32 CCR5 Mutations on Decrease of the HBV Vaccine Immunogenicity—A Preliminary Report

    PubMed Central

    Ganczak, Maria; Skonieczna-Żydecka, Karolina; Drozd-Dąbrowska, Marzena; Adler, Grażyna

    2017-01-01

    Background: Chemokine genetic variations are involved in infectious diseases such as hepatitis B virus (HBV). Several allelic variants might, in theory, affect the outcome of vaccination. Objectives: This study was carried out to examine the associations of Δ32 CCR5 and 190G > A CCR2 polymorphisms with a response to a primary course of three HBV vaccinations. Methods: Between December 2014 and December 2016, patients from three randomly selected primary care clinics in the West Pomeranian region (Poland), 1 month after receiving the third dose of HBV vaccine, were enrolled. Enzyme-linked immunosorbent assay (ELISA) system version 3.0 was used to detect anti-HBs and anti-HBc totals. The identification of polymorphisms were performed by a polymerase chain reaction technique using a single primer extension assay. Genotype distributions of responders versus non-responders to HBV vaccination were compared on the basis of anti-HBs level. Results: In 149 patients (mean age 60 years) the mean anti-HBs level was 652.2 ± 425.9 mIU/mL (range: 0–1111.0 mIU/mL). There were 14.1% (n = 21) non-responders to the HBV vaccine (anti-HBs < 10.0 mIU/mL). The wild type/Δ32 genotype of CCR5 gene was found in 18.1% participants, and 1.3% were Δ32/Δ32 homozygotes. The frequency of allele A of the CCR2 gene was 11.1%. Lower anti-HBs levels in Δ32/Δ32 homozygotes were observed (Me = 61 mIU/mL vs. Me = 660.2 mIU/mL; p = 0.048). As age was found to be a correlate to the anti-HBs titer (r = −0.218, p = 0.0075; 95% CI: −0.366–−0.059)—an analysis of a co-variance was performed which found a statistically significant (p = 0.04) difference in anti-HBs titres between Δ32/Δ32 homozygotes and other CCR5 genotypes. The association between anti-HBs titres and CCR2 genotypes was not statistically significant. Conclusions: Our study—which is a preliminary report that suggest this topic deserves further observation with larger sample sizes, different ethnicities, and other single

  4. The crucial role of GATA-1 in CCR3 gene transcription: modulated balance by multiple GATA elements in the CCR3 regulatory region.

    PubMed

    Kim, Byung Soo; Uhm, Tae Gi; Lee, Seol Kyoung; Lee, Sin-Hwa; Kang, Jin Hyun; Park, Choon-Sik; Chung, Il Yup

    2010-12-01

    GATA-1, a zinc finger-containing transcription factor, regulates not only the differentiation of eosinophils but also the expression of many eosinophil-specific genes. In the current study, we dissected CCR3 gene expression at the molecular level using several cell types that express varying levels of GATA-1 and CCR3. Chromatin immunoprecipitation analysis revealed that GATA-1 preferentially bound to sequences in both exon 1 and its proximal intron 1. A reporter plasmid assay showed that constructs harboring exon 1 and/or intron 1 sequences retained transactivation activity, which was essentially proportional to cellular levels of endogenous GATA-1. Introduction of a dominant-negative GATA-1 or small interfering RNA of GATA-1 resulted in a decrease in transcription activity of the CCR3 reporter. Both point mutation and EMSA analyses demonstrated that although GATA-1 bound to virtually all seven putative GATA elements present in exon 1-intron 1, the first GATA site in exon 1 exhibited the highest binding affinity for GATA-1 and was solely responsible for GATA-1-mediated transactivation. The fourth and fifth GATA sites in exon 1, which were postulated previously to be a canonical double-GATA site for GATA-1-mediated transcription of eosinophil-specific genes, appeared to play an inhibitory role in transactivation, albeit with a high affinity for GATA-1. Furthermore, mutation of the seventh GATA site (present in intron 1) increased transcription, suggesting an inhibitory role. These data suggest that GATA-1 controls CCR3 transcription by interacting dynamically with the multiple GATA sites in the regulatory region of the CCR3 gene.

  5. The preferred traits of mates in a cross-national study of heterosexual and homosexual men and women: an examination of biological and cultural influences.

    PubMed

    Lippa, Richard A

    2007-04-01

    BBC Internet survey participants (119,733 men and 98,462 women) chose from a list of 23 traits those they considered first, second, and third most important in a relationship partner. Across all participants, the traits ranked most important were: intelligence, humor, honesty, kindness, overall good looks, face attractiveness, values, communication skills, and dependability. On average, men ranked good looks and facial attractiveness more important than women did (d = 0.55 and 0.36, respectively), whereas women ranked honesty, humor, kindness, and dependability more important than men did (ds = 0.23, 0.22, 0.18, and 0.15). Sexual orientation differences were smaller than sex differences in trait rankings, but some were meaningful; for example, heterosexual more than homosexual participants assigned importance to religion, fondness for children, and parenting abilities. Multidimensional scaling analyses showed that trait preference profiles clustered by participant sex, not by sexual orientation, and by sex more than by nationality. Sex-by-nation ANOVAs of individuals' trait rankings showed that sex differences in rankings of attractiveness, but not of character traits, were extremely consistent across 53 nations and that nation main effects and sex-by-nation interactions were stronger for character traits than for physical attractiveness. United Nations indices of gender equality correlated, across nations, with men's and women's rankings of character traits but not with their rankings of physical attractiveness. These results suggest that cultural factors had a relatively greater impact on men's and women's rankings of character traits, whereas biological factors had a relatively greater impact on men's and women's rankings of physical attractiveness.

  6. A system to evaluate the scientific quality of biological and restoration objectives using National Wildlife Refuge Comprehensive Conservation Plans as a case study

    USGS Publications Warehouse

    Schroeder, R.L.

    2006-01-01

    It is widely accepted that plans for restoration projects should contain specific, measurable, and science-based objectives to guide restoration efforts. The United States Fish and Wildlife Service (USFWS) is in the process of developing Comprehensive Conservation Plans (CCPs) for more than 500 units in the National Wildlife Refuge System (NWRS). These plans contain objectives for biological and ecosystem restoration efforts on the refuges. Based on USFWS policy, a system was developed to evaluate the scientific quality of such objectives based on three critical factors: (1) Is the objective specific, measurable, achievable, results-oriented, and time-fixed? (2) What is the extent of the rationale that explains the assumptions, logic, and reasoning for the objective? (3) How well was available science used in the development of the objective? The evaluation system scores each factor on a scale of 1 (poor) to 4 (excellent) according to detailed criteria. The biological and restoration objectives from CCPs published as of September 2004 (60 total) were evaluated. The overall average score for all biological and restoration objectives was 1.73. Average scores for each factor were: Factor 1-1.97; Factor 2-1.86; Factor 3-1.38. The overall scores increased from 1997 to 2004. Future restoration efforts may benefit by using this evaluation system during the process of plan development, to ensure that biological and restoration objectives are of the highest scientific quality possible prior to the implementation of restoration plans, and to allow for improved monitoring and adaptive management.

  7. Functional inhibition of chemokine receptor CCR2 by dicer-substrate-siRNA prevents pain development

    PubMed Central

    Midavaine, Élora; Dansereau, Marc-André; Tétreault, Pascal; Longpré, Jean-Michel; Jacobi, Ashley M; Rose, Scott D; Behlke, Mark A; Beaudet, Nicolas; Sarret, Philippe

    2016-01-01

    Background Accumulating evidence suggests that the C-C chemokine ligand 2 (CCL2, or monocyte chemoattractant protein 1) acts as a neuromodulator in the central nervous system through its binding to the C-C chemokine receptor 2 (CCR2). Notably, it is well established that the CCL2/CCR2 axis plays a key role in neuron-glia communication as well as in spinal nociceptive transmission. Gene silencing through RNA interference has recently emerged as a promising avenue in research and drug development, including therapeutic management of chronic pain. In the present study, we used 27-mer Dicer-substrate small interfering RNA (DsiRNA) targeting CCR2 and assessed their ability to reverse the nociceptive behaviors induced by spinal CCL2 injection or following intraplantar injection of complete Freund’s adjuvant. Results To this end, we first developed high-potency DsiRNAs designed to target different sequences distributed across the rat CCR2 (rCCR2) messenger RNA. For optimization, methyl groups were added to the two most potent DsiRNA candidates (Evader and M7 2′-O-methyl modified duplexes) in order to improve in vivo duplex stability and to reduce potential immunostimulatory activity. Our results demonstrated that all modified candidates formulated with the cell-penetrating peptide reagent Transductin showed strong RNAi activity following intrathecal delivery, exhibiting >50% rCCR2 knockdown in lumbar dorsal root ganglia. Accordingly, we found that these DsiRNA duplexes were able to reduce spinal microglia activation and were effective at blocking CCL2-induced mechanical hypersensitivity. Along with similar reductions of rCCR2 messenger RNA, both sequences and methylation patterns were similarly effective in inhibiting the CCL2 nociceptive action for the whole seven days testing period, compared to mismatch DsiRNA. DsiRNAs against CCR2 also reversed the hypernociceptive responses observed in the complete Freund’s adjuvant-induced inflammatory chronic pain model

  8. CCL3L1 gene-containing segmental duplications and polymorphisms in CCR5 affect risk of systemic lupus erythaematosus

    PubMed Central

    Mamtani, M; Rovin, B; Brey, R; Camargo, J F; Kulkarni, H; Herrera, M; Correa, P; Holliday, S; Anaya, J-M; Ahuja, S K

    2013-01-01

    Objectives There is an enrichment of immune response genes that are subject to copy number variations (CNVs). However, there is limited understanding of their impact on susceptibility to human diseases. CC chemokine ligand 3 like-1 (CCL3L1) is a potent ligand for the HIV coreceptor, CC chemokine receptor 5 (CCR5), and we have demonstrated previously an association between CCL3L1- gene containing segmental duplications and polymorphisms in CCR5 and HIV/AIDS susceptibility. Here, we determined the association between these genetic variations and risk of developing systemic lupus erythaematosus (SLE), differential recruitment of CD3+ and CD68+ leukocytes to the kidney, clinical severity of SLE reflected by autoantibody titres and the risk of renal complications in SLE. Methods We genotyped 1084 subjects (469 cases of SLE and 615 matched controls with no autoimmune disease) from three geographically distinct cohorts for variations in CCL3L1 and CCR5. Results Deviation from the average copy number of CCL3L1 found in European populations increased the risk of SLE and modified the SLE-influencing effects of CCR5 haplotypes. The CCR5 human haplogroup (HH)E and CCR5-Δ32-bearing HHG*2 haplotypes were associated with an increased risk of developing SLE. An individual’s CCL3L1–CCR5 genotype strongly predicted the overall risk of SLE, high autoantibody titres, and lupus nephritis as well as the differential recruitment of leukocytes in subjects with lupus nephritis. The CCR5 HHE/HHG*2 genotype was associated with the maximal risk of developing SLE. Conclusion CCR5 haplotypes HHE and HHG*2 strongly influence the risk of SLE. The copy number of CCL3L1 influences risk of SLE and modifies the SLE-influencing effects associated with CCR5 genotypes. These findings implicate a key role of the CCL3L1–CCR5 axis in the pathogenesis of SLE. PMID:17971457

  9. The Mammalian Sterile 20-like 1 Kinase Controls Selective CCR7-Dependent Functions in Human Dendritic Cells.

    PubMed

    Torres-Bacete, Jesús; Delgado-Martín, Cristina; Gómez-Moreira, Carolina; Simizu, Siro; Rodríguez-Fernández, José Luis

    2015-08-01

    The chemokine receptor CCR7 directs mature dendritic cells (mDCs) to the lymph nodes where these cells control the initiation of the immune response. CCR7 regulates chemotaxis, endocytosis, survival, migratory speed, and cytoarchitecture in mDCs. The molecular mechanisms used by CCR7 to regulate these functions in mDCs are not completely understood. The mammalian sterile 20-like 1 kinase (Mst1) plays a proapoptotic role under stress conditions; however, recently, it has been shown that Mst1 can also control homeostatic cell functions under normal conditions. In this study, we show that stimulation of CCR7 in mDCs induces Gαi-dependent activation of Mst1, suggesting the involvement of this kinase in the control of CCR7-dependent functions. Analysis of the mDCs in which Mst1 expression levels were reduced with small interfering RNA shows that this kinase mediates CCR7-dependent effects on cytoarchitecture, endocytosis and migratory speed but not on chemotaxis or survival. In line with these results, biochemical analysis indicates that Mst1 does not control key signaling regulators of CCR7-dependent chemotaxis or survival. In contrast, Mst1 regulates downstream of CCR7 and, of note, independently of Gα13, the RhoA pathway. Reduction of Mst1 inhibits CCR7-dependent phosphorylation of downstream targets of RhoA, including cofilin, myosin L chain, and myosin L chain phosphatase. Consistent with the role of the latter molecules as modulators of the actin cytoskeleton, mDCs with reduced Mst1 also displayed a dramatic reduction in actin barbed-end formation that could not be recovered by stimulating CCR7. The results indicate that the kinase Mst1 controls selective CCR7-dependent functions in human mDCs.

  10. Inflammatory monocytes promote progression of Duchenne muscular dystrophy and can be therapeutically targeted via CCR2.

    PubMed

    Mojumdar, Kamalika; Liang, Feng; Giordano, Christian; Lemaire, Christian; Danialou, Gawiyou; Okazaki, Tatsuma; Bourdon, Johanne; Rafei, Moutih; Galipeau, Jacques; Divangahi, Maziar; Petrof, Basil J

    2014-11-01

    Myofiber necrosis and fibrosis are hallmarks of Duchenne muscular dystrophy (DMD), leading to lethal weakness of the diaphragm. Macrophages (MPs) are required for successful muscle regeneration, but the role of inflammatory monocyte (MO)-derived MPs in either promoting or mitigating DMD is unclear. We show that DMD (mdx) mouse diaphragms exhibit greatly increased expression of CCR2 and its chemokine ligands, along with inflammatory (Ly6C(high)) MO recruitment and accumulation of CD11b(high) MO-derived MPs. Loss-of-function of CCR2 preferentially reduced this CD11b(high) MP population by impeding the release of Ly6C(high) MOs from the bone marrow but not the splenic reservoir. CCR2 deficiency also helped restore the MP polarization balance by preventing excessive skewing of MPs toward a proinflammatory phenotype. These effects were linked to amelioration of histopathological features and increased muscle strength in the diaphragm. Chronic inhibition of CCR2 signaling by mutated CCL2 secreted from implanted mesenchymal stem cells resulted in similar improvements. These data uncover a previously unrecognized role of inflammatory MOs in DMD pathogenesis and indicate that CCR2 inhibition could offer a novel strategy for DMD management.

  11. Fully Human Antagonistic Antibodies against CCR4 Potently Inhibit Cell Signaling and Chemotaxis

    PubMed Central

    Géraudie, Solène; Scheffler, Ulrike; Griep, Remko A.; Reiersen, Herald; Duncan, Alexander R.; Kiprijanov, Sergej M.

    2014-01-01

    Background CC chemokine receptor 4 (CCR4) represents a potentially important target for cancer immunotherapy due to its expression on tumor infiltrating immune cells including regulatory T cells (Tregs) and on tumor cells in several cancer types and its role in metastasis. Methodology Using phage display, human antibody library, affinity maturation and a cell-based antibody selection strategy, the antibody variants against human CCR4 were generated. These antibodies effectively competed with ligand binding, were able to block ligand-induced signaling and cell migration, and demonstrated efficient killing of CCR4-positive tumor cells via ADCC and phagocytosis. In a mouse model of human T-cell lymphoma, significant survival benefit was demonstrated for animals treated with the newly selected anti-CCR4 antibodies. Significance For the first time, successful generation of anti- G-protein coupled chemokine receptor (GPCR) antibodies using human non-immune library and phage display on GPCR-expressing cells was demonstrated. The generated anti-CCR4 antibodies possess a dual mode of action (inhibition of ligand-induced signaling and antibody-directed tumor cell killing). The data demonstrate that the anti-tumor activity in vivo is mediated, at least in part, through Fc-receptor dependent effector mechanisms, such as ADCC and phagocytosis. Anti-CC chemokine receptor 4 antibodies inhibiting receptor signaling have potential as immunomodulatory antibodies for cancer. PMID:25080123

  12. Design of a Base Station for MEMS CCR Localization in an Optical Sensor Network

    PubMed Central

    Park, Chan Gook; Jeon, Hyun Cheol; Kim, Hyoun Jin; Kim, Jae Yoon

    2014-01-01

    This paper introduces a design and implementation of a base station, capable of positioning sensor nodes using an optical scheme. The base station consists of a pulse laser module, optical detectors and beam splitter, which are mounted on a rotation-stage, and a Time to Digital Converter (TDC). The optical pulse signal transmitted to the sensor node with a Corner Cube Retro-reflector (CCR) is reflected to the base station, and the Time of Flight (ToF) data can be obtained from the two detectors. With the angle and flight time data, the position of the sensor node can be calculated. The performance of the system is evaluated by using a commercial CCR. The sensor nodes are placed at different angles from the base station and scanned using the laser. We analyze the node position error caused by the rotation and propose error compensation methods, namely the outlier sample exception and decreasing the confidence factor steadily using the recursive least square (RLS) methods. Based on the commercial CCR results, the MEMS CCR is also tested to demonstrate the compatibility between the base station and the proposed methods. The result shows that the localization performance of the system can be enhanced with the proposed compensation method using the MEMS CCR. PMID:24815681

  13. Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and T regulatory cells

    PubMed Central

    Olkhanud, Purevdorj B.; Baatar, Dolgor; Bodogai, Monica; Hakim, Fran; Gress, Ronald; Anderson, Robin L.; Deng, Jie; Xu, Mai; Briest, Susanne; Biragyn, Arya

    2009-01-01

    Cancer metastasis is a leading cause of cancer morbidity and mortality. More needs to be learned about mechanisms that control this process. In particular, the role of chemokine receptors in metastasis remains controversial. Here, using a highly metastatic breast cancer (4T1) model, we demonstrate that lung metastasis is a feature of only a proportion of the tumor cells that express CCR4. Moreover, the primary tumor growing in mammary pads activates remotely the expression of TARC/CCL17 and MDC/CCL22 in the lungs. These chemokines acting through CCR4 attract both tumor and immune cells. However, CCR4 mediated chemotaxis was not sufficient to produce metastasis, as tumor cells in the lung were efficiently eliminated by NK cells. Lung metastasis required CCR4+ Tregs which directly killed NK cells utilizing beta-galactoside-binding protein. Thus, strategies that abrogate any part of this process should improve the outcome through activation of effector cells and prevention of tumor cell migration. We confirm this prediction by killing CCR4+ cells through delivery of TARC-fused toxins or depleting Tregs and preventing lung metastasis. PMID:19567680

  14. Novel roles of the multi-functional CCR4-NOT complex in post-transcriptional regulation

    PubMed Central

    Inada, Toshifumi; Makino, Shiho

    2014-01-01

    The CCR4-NOT complex is a highly conserved specific gene silencer that also serves more general post-transcriptional functions. Specific regulatory proteins including the miRNA-induced silencing complex and its associated proteins, bind to 3’-UTR elements of mRNA and recruit the CCR4-NOT complex thereby promoting poly(A) shortening and repressing translation and/or mRNA degradation. Recent studies have shown that the CCR4-NOT complex that is tethered to mRNA by such regulator(s) represses translation and facilitates mRNA decay independent of a poly(A) tail and its shortening. In addition to deadenylase activity, the CCR4-NOT complex also has an E3 ubiquitin ligase activity and is involved in a novel protein quality control system, i.e., co-translational proteasomal-degradation of aberrant proteins. In this review, we describe recent progress in elucidation of novel roles of the multi-functional complex CCR4-NOT in post-transcriptional regulation. PMID:24904636

  15. Distinct Contributions of Neutrophils and CCR2+ Monocytes to Pulmonary Clearance of Different Klebsiella pneumoniae Strains.

    PubMed

    Xiong, Huizhong; Carter, Rebecca A; Leiner, Ingrid M; Tang, Yi-Wei; Chen, Liang; Kreiswirth, Barry N; Pamer, Eric G

    2015-09-01

    Klebsiella pneumoniae is a common respiratory pathogen, with some strains having developed broad resistance to clinically available antibiotics. Humans can become infected with many different K. pneumoniae strains that vary in genetic background, antibiotic susceptibility, capsule composition, and mucoid phenotype. Genome comparisons have revealed differences between K. pneumoniae strains, but the impact of genomic variability on immune-mediated clearance of pneumonia remains unclear. Experimental studies of pneumonia in mice have used the rodent-adapted 43816 strain of K. pneumoniae and demonstrated that neutrophils are essential for optimal host defense. It remains unclear, however, whether CCR2(+) monocytes contribute to K. pneumoniae clearance from the lung. We selectively depleted neutrophils, CCR2(+) monocytes, or both from immunocompetent mice and determined susceptibility to infection by the 43816 strain and 4 newly isolated clinical K. pneumoniae strains. The clinical K. pneumoniae strains, including one carbapenem-resistant ST258 strain, are less virulent than 43816. Optimal clearance of each of the 5 strains required either neutrophils or CCR2(+) monocytes. Selective neutrophil depletion markedly worsened infection with K. pneumoniae strain 43816 and three clinical isolates but did not increase susceptibility of mice to infection with the carbapenem-resistant K. pneumoniae ST258 strain. Depletion of CCR2(+) monocytes delayed recovery from infection with each of the 5 K. pneumoniae strains, revealing a contribution of these cells to bacterial clearance from the lung. Our findings demonstrate strain-dependent variation in the contributions of neutrophils and CCR2(+) monocytes to clearance of K. pneumoniae pulmonary infection.

  16. CCL25/CCR9 Signal Promotes Migration and Invasion in Hepatocellular and Breast Cancer Cell Lines.

    PubMed

    Zhang, Ziqi; Sun, Tong; Chen, Yuxi; Gong, Shu; Sun, Xiye; Zou, Fangdong; Peng, Rui

    2016-07-01

    Cancer is one of the most lethal diseases worldwide, and metastasis is the most common cause of patients' deaths. Identification and inhibition of markers involved in metastasis process in cancer cells are promising works to block metastasis and improve prognoses of patients. Chemokines are a superfamily of small, chemotactic cytokines, whose functions are based on interaction with corresponding receptors. It has been found that one of the functions of chemokines is to regulate migration and invasion abilities of lymphocytes, as well as cancer cells. Chemokine receptor 9 (CCR9) regulates trafficking of lymphocytes and cancer cell lines when interacting with its exclusive ligand chemokine 25 (CCL25). However, the mechanisms of CCL25/CCR9 signal that regulates metastasis of cancer cells are not completely known yet. In this study, we stimulated or inhibited CCL25/CCR9 signal in breast cancer cell line (MDA-MB-231) and hepatocellular cancer cell lines (HepG2 and HUH7), and found that CCL25/CCR9 signal resulted in different promotion of migration and invasion in different cell lines. These phenomena could be explained by selective regulation of several markers of epithelial-mesenchymal transition (EMT). Our findings suggested that CCL25/CCR9 signal may provide cancer cells with chemotactic abilities through influencing several EMT markers.

  17. Distribution of the HIV resistance CCR5-Delta32 allele among Egyptians and Syrians.

    PubMed

    Salem, Abdel-Halim; Batzer, Mark A

    2007-03-01

    A mutant allele of the beta-chemokine receptor gene CCR5 bearing a 32-basepair (bp) deletion that prevents cell invasion by the primary transmitting strain of HIV-1 has recently been characterized. Individuals homozygous for the mutation are resistant to infection, even after repeated high-risk exposure, but this resistance appears not absolute, as isolated cases of HIV-positive deletion homozygotes are emerging. The consequence of the heterozygous state is not clear, but it may delay the progression to AIDS in infected individuals. In order to evaluate the frequency distribution of CCR5-Delta32 polymorphism among Egyptians, a total of 200 individuals (154 from Ismailia and 46 from Sinai) were tested. Only two heterozygous individuals from Ismailia carried the CCR5-Delta32 allele (0.6%), and no homozygous (Delta32/Delta32) individuals were detected among the tested samples. The presence of the CCR5-Delta32 allele among Egyptians may be attributed to the admixture with people of European descent. Thus we conclude that the protective deletion CCR5-Delta32 is largely absent in the Egyptian population.

  18. Inhibition of HIV-1 infection by synthetic peptides derived CCR5 fragments

    SciTech Connect

    Imai, Masaki; Baranyi, Lajos; Okada, Noriko; Okada, Hidechika; E-mail: hiokada@med.nagoya-cu.ac.jp

    2007-02-23

    HIV-1 infection requires interaction of viral envelope protein gp160 with CD4 and a chemokine receptor, CCR5 or CXCR4 as entry coreceptor. We designed HIV-inhibitory peptides targeted to CCR5 using a novel computer program (ANTIS), which searched all possible sense-antisense amino acid pairs between proteins. Seven AHBs were found in CCR5 receptor. All AHB peptides were synthesized and tested for their ability to prevent HIV-1 infection to human T cells. A peptide fragment (LC5) which is a part of the CCR5 receptor corresponding to the loop between the fifth and sixth transmembrane regions (amino acids 222-240) proved to inhibit HIV-1{sub IIIB} infection of MT-4 cells. Interaction of these antisense peptides could be involved in sustaining HIV-1 infectivity. LC5 effectively indicated dose-dependent manner, and the suppression was enhanced additively by T20 peptide, which inhibits infection in vitro by disrupting the gp41 conformational changes necessary for membrane fusion. Thus, these results indicate that CCR5-derived AHB peptides could provide a useful tool to define the mechanism(s) of HIV infection, and may provide insight which will contribute to the development of an anti-HIV-1 reagent.

  19. CCR5 deficiency predisposes to fatal outcome in influenza virus infection.

    PubMed

    Falcon, A; Cuevas, M T; Rodriguez-Frandsen, A; Reyes, N; Pozo, F; Moreno, S; Ledesma, J; Martínez-Alarcón, J; Nieto, A; Casas, I

    2015-08-01

    Influenza epidemics affect all age groups, although children, the elderly and those with underlying medical conditions are the most severely affected. Whereas co-morbidities are present in 50% of fatal cases, 25-50% of deaths are in apparently healthy individuals. This suggests underlying genetic determinants that govern infection severity. Although some viral factors that contribute to influenza disease are known, the role of host genetic factors remains undetermined. Data for small cohorts of influenza-infected patients are contradictory regarding the potential role of chemokine receptor 5 deficiency (CCR5-Δ32 mutation, a 32 bp deletion in the CCR5 gene) in the outcome of influenza virus infection. We tested 171 respiratory samples from influenza patients (2009 pandemic) for CCR5-Δ32 and evaluated its correlation with patient mortality. CCR5-Δ32 patients (17.4%) showed a higher mortality rate than WT individuals (4.7%; P = 0.021), which indicates that CCR5-Δ32 patients are at higher risk than the normal population of a fatal outcome in influenza infection.

  20. Prevalence of mutant CCR5 allele in Slovenian HIV-1-infected and non-infected individuals.

    PubMed

    Poljak, M; Tomazic, J; Seme, K; Maticic, M; Vidmar, L

    1998-02-01

    A 32 bp deletion in the CCR5 gene designated CCR5 delta 32 has been identified recently as the cellular basis for resistance to human immunodeficiency virus type 1 (HIV-1) in some individuals which remained non-infected despite a repeated exposure to this virus. The prevalence of this deletion was examined by polymerase chain reaction (PCR) on 51 HIV-1-infected and 385 non-infected individuals from all parts of Slovenia. 84.4% of the the HIV-1-infected and 83.2% of the non-infected individuals were homozygous for wild type CCR5, and 19.6% and 16.3%, respectively, were heterozygous. No homozygous mutant genotype was observed among the HIV-1-infected patients. Of the non-infected individuals, 2 women (0.5%) were found to harbour the CCR5 delta 32/CCR5 delta 32 genotype only, which is, to the best of our knowledge, the lowest prevalence of this particular genotype found among Caucasians to date.

  1. The functions of DNA methylation by CcrM in Caulobacter crescentus: a global approach

    PubMed Central

    Gonzalez, Diego; Kozdon, Jennifer B.; McAdams, Harley H.; Shapiro, Lucy; Collier, Justine

    2014-01-01

    DNA methylation is involved in a diversity of processes in bacteria, including maintenance of genome integrity and regulation of gene expression. Here, using Caulobacter crescentus as a model, we exploit genome-wide experimental methods to uncover the functions of CcrM, a DNA methyltransferase conserved in most Alphaproteobacteria. Using single molecule sequencing, we provide evidence that most CcrM target motifs (GANTC) switch from a fully methylated to a hemi-methylated state when they are replicated, and back to a fully methylated state at the onset of cell division. We show that DNA methylation by CcrM is not required for the control of the initiation of chromosome replication or for DNA mismatch repair. By contrast, our transcriptome analysis shows that >10% of the genes are misexpressed in cells lacking or constitutively over-expressing CcrM. Strikingly, GANTC methylation is needed for the efficient transcription of dozens of genes that are essential for cell cycle progression, in particular for DNA metabolism and cell division. Many of them are controlled by promoters methylated by CcrM and co-regulated by other global cell cycle regulators, demonstrating an extensive cross talk between DNA methylation and the complex regulatory network that controls the cell cycle of C. crescentus and, presumably, of many other Alphaproteobacteria. PMID:24398711

  2. Design of a base station for MEMS CCR localization in an optical sensor network.

    PubMed

    Park, Chan Gook; Jeon, Hyun Cheol; Kim, Hyoun Jin; Kim, Jae Yoon

    2014-05-08

    This paper introduces a design and implementation of a base station, capable of positioning sensor nodes using an optical scheme. The base station consists of a pulse laser module, optical detectors and beam splitter, which are mounted on a rotation-stage, and a Time to Digital Converter (TDC). The optical pulse signal transmitted to the sensor node with a Corner Cube Retro-reflector (CCR) is reflected to the base station, and the Time of Flight (ToF) data can be obtained from the two detectors. With the angle and flight time data, the position of the sensor node can be calculated. The performance of the system is evaluated by using a commercial CCR. The sensor nodes are placed at different angles from the base station and scanned using the laser. We analyze the node position error caused by the rotation and propose error compensation methods, namely the outlier sample exception and decreasing the confidence factor steadily using the recursive least square (RLS) methods. Based on the commercial CCR results, the MEMS CCR is also tested to demonstrate the compatibility between the base station and the proposed methods. The result shows that the localization performance of the system can be enhanced with the proposed compensation method using the MEMS CCR.

  3. Noninvasive Imaging of CCR2(+) Cells in Ischemia-Reperfusion Injury After Lung Transplantation.

    PubMed

    Liu, Y; Li, W; Luehmann, H P; Zhao, Y; Detering, L; Sultan, D H; Hsiao, H-M; Krupnick, A S; Gelman, A E; Combadiere, C; Gropler, R J; Brody, S L; Kreisel, D

    2016-06-07

    Ischemia-reperfusion injury-mediated primary graft dysfunction substantially hampers short- and long-term outcomes after lung transplantation. This condition continues to be diagnosed based on oxygen exchange parameters as well as radiological appearance, and therapeutic strategies are mostly supportive in nature. Identifying patients who may benefit from targeted therapy would therefore be highly desirable. Here, we show that C-C chemokine receptor type 2 (CCR2) expression in murine lung transplant recipients promotes monocyte infiltration into pulmonary grafts and mediates graft dysfunction. We have developed new positron emission tomography imaging agents using a CCR2 binding peptide, ECLi1, that can be used to monitor inflammatory responses after organ transplantation. Both (64) Cu-radiolabeled ECL1i peptide radiotracer ((64) Cu-DOTA-ECL1i) and ECL1i-conjugated gold nanoclusters doped with (64) Cu ((64) CuAuNCs-ECL1i) showed specific detection of CCR2, which is upregulated during ischemia-reperfusion injury after lung transplantation. Due to its fast pharmacokinetics, (64) Cu-DOTA-ECL1i functioned efficiently for rapid and serial imaging of CCR2. The multivalent (64) CuAuNCs-ECL1i with extended pharmacokinetics is favored for long-term CCR2 detection and potential targeted theranostics. This imaging may be applicable for diagnostic and therapeutic purposes for many immune-mediated diseases.

  4. CCR7 deficient inflammatory Dendritic Cells are retained in the Central Nervous System

    PubMed Central

    Clarkson, Benjamin D.; Walker, Alec; Harris, Melissa G.; Rayasam, Aditya; Hsu, Martin; Sandor, Matyas; Fabry, Zsuzsanna

    2017-01-01

    Dendritic cells (DC) accumulate in the CNS during neuroinflammation, yet, how these cells contribute to CNS antigen drainage is still unknown. We have previously shown that after intracerebral injection, antigen-loaded bone marrow DC migrate to deep cervical lymph nodes where they prime antigen-specific T cells and exacerbate experimental autoimmune encephalomyelitis (EAE) in mice. Here, we report that DC migration from brain parenchyma is dependent upon the chemokine receptor CCR7. During EAE, both wild type and CCR7−/− CD11c-eYFP cells infiltrated into the CNS but cells that lacked CCR7 were retained in brain and spinal cord while wild type DC migrated to cervical lymph nodes. Retention of CCR7-deficient CD11c-eYFP cells in the CNS exacerbated EAE. These data are the first to show that CD11chigh DC use CCR7 for migration out of the CNS, and in the absence of this receptor they remain in the CNS in situ and exacerbate EAE. PMID:28216674

  5. NOX4 Regulates CCR2 and CCL2 mRNA Stability in Alcoholic Liver Disease

    PubMed Central

    Sasaki, Yu; Dehnad, Ali; Fish, Sarah; Sato, Ai; Jiang, Joy; Tian, Jijing; Schröder, Kathrin; Brandes, Ralf; Török, Natalie J.

    2017-01-01

    Recruitment of inflammatory cells is a major feature of alcoholic liver injury however; the signals and cellular sources regulating this are not well defined. C-C chemokine receptor type 2 (CCR2) is expressed by active hepatic stellate cells (HSC) and is a key monocyte recruitment signal. Activated HSC are also important sources of hydrogen peroxide resulting from the activation of NADPH oxidase 4 (NOX4). As the role of this NOX in early alcoholic liver injury has not been addressed, we studied NOX4-mediated regulation of CCR2/CCL2 mRNA stability. NOX4 mRNA was significantly induced in patients with alcoholic liver injury, and was co-localized with αSMA-expressing activated HSC. We generated HSC-specific NOX4 KO mice and these were pair-fed on alcohol diet. Lipid peroxidation have not changed significantly however, the expression of CCR2, CCL2, Ly6C, TNFα, and IL-6 was significantly reduced in NOX4HSCKO compared to fl/fl mice. NOX4 promoter was induced in HSC by acetaldehyde treatment, and NOX4 has significantly increased mRNA half-life of CCR2 and CCL2 in conjunction with Ser221 phosphorylation and cytoplasmic shuttling of HuR. In conclusion, NOX4 is induced in early alcoholic liver injury and regulates CCR2/CCL2 mRNA stability thereby promoting recruitment of inflammatory cells and production of proinflammatory cytokines. PMID:28383062

  6. HIV-1 adaptation to low levels of CCR5 results in V3 and V2 loop changes that increase envelope pathogenicity, CCR5 affinity and decrease susceptibility to Maraviroc.

    PubMed

    Garg, Himanshu; Lee, Raphael T C; Maurer-Stroh, Sebastian; Joshi, Anjali

    2016-06-01

    Variability in CCR5 levels in the human population is suggested to affect virus evolution, fitness and the course of HIV disease. We previously demonstrated that cell surface CCR5 levels directly affect HIV Envelope mediated bystander apoptosis. In this study, we attempted to understand HIV evolution in the presence of low levels of CCR5, mimicking the limiting CCR5 levels inherent to the host. HIV-1 adaptation in a T cell line expressing low levels of CCR5 resulted in two specific mutations; N302Y and E172K. The N302Y mutation led to accelerated virus replication, increase in Maraviroc IC50 and an increase in Envelope mediated bystander apoptosis in low CCR5 expressing cells. Analysis of subtype B sequences showed that N302Y is over-represented in CXCR4 tropic viruses in comparison to CCR5 tropic isolates. Considering the variability in CCR5 levels between individuals, our findings have implications for virus evolution, MVC susceptibility as well as HIV pathogenesis.

  7. CCR5 antibodies HGS004 and HGS101 preferentially inhibit drug-bound CCR5 infection and restore drug sensitivity of Maraviroc-resistant HIV-1 in primary cells

    SciTech Connect

    Latinovic, Olga; Reitz, Marvin; Le, Nhut M.; Foulke, James S.; Faetkenheuer, Gerd; Lehmann, Clara; Redfield, Robert R.; Heredia, Alonso

    2011-03-01

    R5 HIV-1 strains resistant to the CCR5 antagonist Maraviroc (MVC) can use drug-bound CCR5. We demonstrate that MVC-resistant HIV-1 exhibits delayed kinetics of coreceptor engagement and fusion during drug-bound versus free CCR5 infection of cell lines. Antibodies directed against the second extracellular loop (ECL2) of CCR5 had greater antiviral activity against MVC-bound compared to MVC-free CCR5 infection. However, in PBMCs, only ECL2 CCR5 antibodies HGS004 and HGS101, but not 2D7, inhibited infection by MVC resistant HIV-1 more potently with MVC-bound than with free CCR5. In addition, HGS004 and HGS101, but not 2D7, restored the antiviral activity of MVC against resistant virus in PBMCs. In flow cytometric studies, CCR5 binding by the HGS mAbs, but not by 2D7, was increased when PBMCs were treated with MVC, suggesting MVC increases exposure of the relevant epitope. Thus, HGS004 and HGS101 have antiviral mechanisms distinct from 2D7 and could help overcome MVC resistance.

  8. Biological inventory of anchialine pools in the Pu'uhonua o Hōnaunau National Historical Park and Pu'ukoholā Heiau National Historical Site, Hawaii Island

    USGS Publications Warehouse

    Tango, Lori K.; Foote, David; Magnacca, Karl N.; Foltz, Sarah J.; Cutler, Kerry

    2012-01-01

    Inventories for major groups of invertebrates were completed at anchialine pool complexes in Pu‘uhonua o Hōnaunau National Historical Park (PUHO) and Pu‘ukoholā Heiau National Historic Site (PUHE) on the island of Hawai‘i. Nine pools within two pool complexes were surveyed at PUHO, along with one extensive pool at the terminus of Makeāhua Gulch at PUHE. At both parks, inventories documented previously unreported diversity, with pool complexes at PUHO exhibiting greater species richness for most taxa than the pool at PUHE. Inventories at PUHO recorded five species of molluscs, four species of crustaceans (including the candidate endangered shrimp Metabetaeus lohena), two species of Orthoptera, four species of Odonata (including the candidate endangered damselfly Megalagrion xanthomelas), fourteen species of Diptera, nine taxa of plankton, and thirteen species of ants; inventories at the PUHE pool produced only one species of mollusc, two species of crustacean, at least one species of Orthoptera, four species of Odonata, thirty species of Diptera, five taxa of plankton, and four species of ants. Further survey work may be necessary to document the full diversity of pool fauna, especially in species-rich groups like the Diptera. Inventory data will be used to generate a network wide database of species presence and distribution, and will aid in developing management plans for anchialine pool resources.

  9. Biological restoration of major transportation facilities domestic demonstration and application project (DDAP): technology development at Sandia National Laboratories.

    SciTech Connect

    Ramsey, James L., Jr.; Melton, Brad; Finley, Patrick; Brockman, John; Peyton, Chad E.; Tucker, Mark David; Einfeld, Wayne; Griffith, Richard O.; Brown, Gary Stephen; Lucero, Daniel A.; Betty, Rita G.; McKenna, Sean Andrew; Knowlton, Robert G.; Ho, Pauline

    2006-06-01

    The Bio-Restoration of Major Transportation Facilities Domestic Demonstration and Application Program (DDAP) is a designed to accelerate the restoration of transportation nodes following an attack with a biological warfare agent. This report documents the technology development work done at SNL for this DDAP, which include development of the BROOM tool, an investigation of surface sample collection efficiency, and a flow cytometry study of chlorine dioxide effects on Bacillus anthracis spore viability.

  10. Involvement of Spinal CCR5/PKCγ Signaling Pathway in the Maintenance of Cancer-Induced Bone Pain.

    PubMed

    Hang, Li-Hua; Li, Shu-Na; Dan, Xiang; Shu, Wei-Wei; Luo, Hong; Shao, Dong-Hua

    2017-02-01

    Cancer-induced bone pain (CIBP) is a challenging medical problem that considerably influences cancer patients' quality of life. Currently, few treatments have been developed to conquer CIBP because of a poor understanding of the potential mechanisms. Our previous work has proved that spinal RANTES (a major ligand for CCR5) was involved in the maintenance of CIBP. In this study, we attempted to investigate whether spinal CCR5 and its downstream PKCγ pathway is involved in the maintenance of CIBP. Inoculation of Walker 256 cells into the tibia could induce a marked mechanical allodynia with concomitant upregulation of spinal CCR5 and p-PKCγ expression from day 6 to day 15 after inoculation. Spinal CCR5 was prominently expressed in microglia, and mechanical allodynia was attenuated by intrathecal injection of DAPTA (a specific antagonist of CCR5) with downregulation of spinal CCR5 and p-PKCγ expression levels at day 15 in inoculated rats. Pre-intrathecal injection of RANTES could reverse the anti-allodynia effects of DAPTA. Intrathecal administration of GF109203X (an inhibitor of PKC) could alleviate mechanical allodynia as well as decrease of spinal p-PKCγ expression level, but no influence on spinal CCR5 level. Our findings suggest that CCR5/PKCγ signaling pathway in microglia may contribute to the maintenance of CIBP in rats.

  11. Preclinical development and qualification of ZFN-mediated CCR5 disruption in human hematopoietic stem/progenitor cells.

    PubMed

    DiGiusto, David L; Cannon, Paula M; Holmes, Michael C; Li, Lijing; Rao, Anitha; Wang, Jianbin; Lee, Gary; Gregory, Philip D; Kim, Kenneth A; Hayward, Samuel B; Meyer, Kathleen; Exline, Colin; Lopez, Evan; Henley, Jill; Gonzalez, Nancy; Bedell, Victoria; Stan, Rodica; Zaia, John A

    2016-01-01

    Gene therapy for HIV-1 infection is a promising alternative to lifelong combination antiviral drug treatment. Chemokine receptor 5 (CCR5) is the coreceptor required for R5-tropic HIV-1 infection of human cells. Deletion of CCR5 renders cells resistant to R5-tropic HIV-1 infection, and the potential for cure has been shown through allogeneic stem cell transplantation with naturally occurring homozygous deletion of CCR5 in donor hematopoietic stem/progenitor cells (HSPC). The requirement for HLA-matched HSPC bearing homozygous CCR5 deletions prohibits widespread application of this approach. Thus, a strategy to disrupt CCR5 genomic sequences in HSPC using zinc finger nucleases was developed. Following discussions with regulatory agencies, we conducted IND-enabling preclinical in vitro and in vivo testing to demonstrate the feasibility and (preclinical) safety of zinc finger nucleases-based CCR5 disruption in HSPC. We report here the clinical-scale manufacturing process necessary to deliver CCR5-specific zinc finger nucleases mRNA to HSPC using electroporation and the preclinical safety data. Our results demonstrate effective biallelic CCR5 disruption in up to 72.9% of modified colony forming units from adult mobilized HSPC with maintenance of hematopoietic potential in vitro and in vivo. Tumorigenicity studies demonstrated initial product safety; further safety and feasibility studies are ongoing in subjects infected with HIV-1 (NCT02500849@clinicaltrials.gov).

  12. Preclinical development and qualification of ZFN-mediated CCR5 disruption in human hematopoietic stem/progenitor cells

    PubMed Central

    DiGiusto, David L; Cannon, Paula M; Holmes, Michael C; Li, Lijing; Rao, Anitha; Wang, Jianbin; Lee, Gary; Gregory, Philip D.; Kim, Kenneth A; Hayward, Samuel B; Meyer, Kathleen; Exline, Colin; Lopez, Evan; Henley, Jill; Gonzalez, Nancy; Bedell, Victoria; Stan, Rodica; Zaia, John A

    2016-01-01

    Gene therapy for HIV-1 infection is a promising alternative to lifelong combination antiviral drug treatment. Chemokine receptor 5 (CCR5) is the coreceptor required for R5-tropic HIV-1 infection of human cells. Deletion of CCR5 renders cells resistant to R5-tropic HIV-1 infection, and the potential for cure has been shown through allogeneic stem cell transplantation with naturally occurring homozygous deletion of CCR5 in donor hematopoietic stem/progenitor cells (HSPC). The requirement for HLA-matched HSPC bearing homozygous CCR5 deletions prohibits widespread application of this approach. Thus, a strategy to disrupt CCR5 genomic sequences in HSPC using zinc finger nucleases was developed. Following discussions with regulatory agencies, we conducted IND-enabling preclinical in vitro and in vivo testing to demonstrate the feasibility and (preclinical) safety of zinc finger nucleases-based CCR5 disruption in HSPC. We report here the clinical-scale manufacturing process necessary to deliver CCR5-specific zinc finger nucleases mRNA to HSPC using electroporation and the preclinical safety data. Our results demonstrate effective biallelic CCR5 disruption in up to 72.9% of modified colony forming units from adult mobilized HSPC with maintenance of hematopoietic potential in vitro and in vivo. Tumorigenicity studies demonstrated initial product safety; further safety and feasibility studies are ongoing in subjects infected with HIV-1 (NCT02500849@clinicaltrials.gov). PMID:27900346

  13. Characterization of developmental and stress mediated expression of cinnamoyl-CoA reductase (CCR) in kenaf (Hibiscus cannabinus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cinnamoyl-CoA reductase (CCR) is an important enzyme for lignin biosynthesis as it catalyzes the first specific committed step in monolignol biosynthesis. We have cloned a full length coding sequence of CCR from kenaf (Hibiscus cannabinus L.), which contains a 1,020-bp open reading frame (ORF), enco...

  14. Adenovirus-Mediated CCR7 and BTLA Overexpression Enhances Immune Tolerance and Migration in Immature Dendritic Cells

    PubMed Central

    Xin, Haiming; Zhu, Jinhong; Miao, Hongcheng; Gong, Zhenyu; Jiang, Xiaochen; Feng, Xiaoyan

    2017-01-01

    Our previous report revealed that immature dendritic cells (imDCs) with adenovirus-mediated CCR7 overexpression acquired an enhanced migratory ability but also exhibited the lower immune tolerance observed in more mature cells. In the present study, we aimed to investigate whether BTLA overexpression was sufficient to preserve immune tolerance in imDCs with exogenous CCR7 overexpression. Scanning electron microscopy and surface antigens analysis revealed that BTLA overexpression suppressed DC maturation, an effect further potentiated in CCR7 and BTLA cooverexpressing cells. Correspondingly, in vitro chemotaxis assays and mixed lymphocyte reactions demonstrated increased migratory potential and immune tolerance in CCR7 and BTLA coexpressing cells. Furthermore, CCR7 and BTLA cooverexpressed imDCs suppressed IFN-γ and IL-17 expression and promoted IL-4 and TGF-beta expression of lymphocyte, indicating an increase of T helper 2 (Th2) regulatory T cell (Treg). Thus, these data indicate that CCR7 and BTLA cooverexpression imparts an intermediate immune phenotype in imDCs when compared to that in CCR7- or BTLA-expressing counterparts that show a more immunocompetent or immunotolerant phenotype, respectively. All these results indicated that adenovirus-mediated CCR7 and BTLA overexpression could enhance immune tolerance and migration of imDCs. Our study provides a basis for further studies on imDCs in immune tolerance, with the goal of developing effective cellular immunotherapies for transplant recipients. PMID:28393074

  15. [CCR7 silence by siRNA inhibits proliferation, invasion and promotes apoptosis of human MG63 osteosarcoma cells].

    PubMed

    Zhang, Richun; Zhang, Hongtao; E, Zhen; Ma, Qiong; Yan, Shiju; Zhang, Enwei; Ma, Bao'an

    2016-12-01

    Objective To investigate the effect of siRNA-mediated chemokine receptor 7 (CCR7) silence on the proliferation, migration, invasion and apoptosis of human MG-63 osteosarcoma cells. Methods The study designed and synthesized siRNA targeting CCR7 (CCR7-siRNA). After MG63 cells were transfected with CCR7-siRNA, the expression of CCR7 was identified by Western blotting; cell apoptosis was detected by annexinV-FITC/PI double staining combined with flow cemetery; cell proliferation was tested by MTT assay; and cell migration and invasion abilities were examined by Transwell(TM) migration/invasion assays. Results CCR7 expression in MG63 cells was significantly inhibited after transfected with CCR7-siRNA. At the same time, cell proliferation, migration and invasion abilities were distinctly suppressed, and cell apoptosis rate increased. Conclusion Down-regulating CCR7 expression in MG63 cells could apparently inhibit cell proliferation, migration and invasion abilities of MG63 cells, and also induce cell apoptosis.

  16. Anti-infective peptide IDR-1002 augments monocyte chemotaxis towards CCR5 chemokines.

    PubMed

    Madera, Laurence; Hancock, Robert E W

    2015-08-28

    Innate defense regulator (IDR) peptides are a class of immunomodulators which enhance and modulate host innate immune responses against microbial pathogens. While IDR-mediated protection against a range of bacterial pathogens is dependent on enhanced monocyte recruitment to the site of infection, the mechanisms through which they increase monocyte trafficking remain unclear. In this study, anti-infective peptide IDR-1002 was shown to enhance monocyte chemotaxis towards chemokines CCL3 and CCL5. This enhancement correlated with the selective upregulation of CCR5 surface expression by peptide-treated monocytes. It was found that IDR-1002 enhancement of monocyte chemotaxis was fully dependent on CCR5 function. Furthermore, IDR-1002 enhanced chemokine-induced monocyte p38 MAPK phosphorylation in a CCR5-dependent fashion. Overall, these results indicate that peptide IDR-1002 can selectively influence monocyte recruitment by host chemokines through the regulation of chemokine receptors.

  17. Frequency of the CCR5-delta 32 chemokine receptor gene mutation in the Lebanese population.

    PubMed

    Karam, W; Jurjus, R; Khoury, N; Khansa, H; Assad, C; Zalloua, P; Jurjus, A

    2004-01-01

    A direct correlation between HIV infection and mutation in the chemokine receptor (CCR5) gene has been established. However, such correlation has never been investigated in Lebanon. We report the frequency of the CCR5-delta 32 mutation in a random sample of 209 healthy, HIV-1 seronegative Lebanese aged 19-68. Overall, 4.8% were heterozygous for the mutation. Homozygosity was absent from our sample. The frequency for the CCR5-delta 32 allele was 2.5%. Distribution of the mutation was unaffected by sex, age, religion or educational level. The frequency in the Lebanese population is consistent with that in the origin of the mutation in northern Europe. This could be attributed to a gene flow into the Middle East from northern Europe.

  18. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection.

    PubMed

    Wang, Weiming; Ye, Chaobaihui; Liu, Jingjing; Zhang, Di; Kimata, Jason T; Zhou, Paul

    2014-01-01

    CCR5, a coreceptor for HIV-1 entry, is a major target for drug and genetic intervention against HIV-1. Genetic intervention strategies have knocked down CCR5 expression levels by shRNA or disrupted the CCR5 gene using zinc finger nucleases (ZFN) or Transcription activator-like effector nuclease (TALEN). In the present study, we silenced CCR5 via CRISPR associated protein 9 (Cas9) and single guided RNAs (sgRNAs). We constructed lentiviral vectors expressing Cas9 and CCR5 sgRNAs. We show that a single round transduction of lentiviral vectors expressing Cas9 and CCR5 sgRNAs into HIV-1 susceptible human CD4+ cells yields high frequencies of CCR5 gene disruption. CCR5 gene-disrupted cells are not only resistant to R5-tropic HIV-1, including transmitted/founder (T/F) HIV-1 isolates, but also have selective advantage over CCR5 gene-undisrupted cells during R5-tropic HIV-1 infection. Importantly, using T7 endonuclease I assay we did not detect genome mutations at potential off-target sites that are highly homologous to these CCR5 sgRNAs in stably transduced cells even at 84 days post transduction. Thus we conclude that silencing of CCR5 via Cas9 and CCR5-specific sgRNAs could be a viable alternative strategy for engineering resistance against HIV-1.

  19. Common promoter deletion is associated with 3.9-fold differential transcription of ovine CCR5 and reduced proviral level of ovine progressive pneumonia virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CCR5 is a chemokine receptor that regulates immune cell recruitment in inflammation and serves as a coreceptor for human immunodeficiency virus (HIV). A human CCR5 coding deletion (termed delta-32) results in strong resistance to HIV infection, and polymorphisms in CCR5 regulatory regions have been ...

  20. The chemokines CCR1 and CCRL2 have a role in colorectal cancer liver metastasis.

    PubMed

    Akram, Israa G; Georges, Rania; Hielscher, Thomas; Adwan, Hassan; Berger, Martin R

    2016-02-01

    C-C chemokine receptor type 1 (CCR1) and chemokine C-C motif receptor-like 2 (CCRL2) have not yet been sufficiently investigated for their role in colorectal cancer (CRC). Here, we investigated their expression in rat and human CRC samples, their modulation of expression in a rat liver metastasis model, as well as the effects on cellular properties resulting from their knockdown. One rat and five human colorectal cancer cell lines were used. CC531 rat colorectal cells were injected via the portal vein into rats and re-isolated from rat livers after defined periods. Following mRNA isolation, the gene expression was investigated by microarray. In addition, all cell lines were screened for mRNA expression of CCR1 and CCRL2 by reverse transcription polymerase chain reaction (RT-PCR). Cell lines with detectable expression were used for knockdown experiments; and the respective influence was determined on the cells' proliferation, scratch closure, and colony formation. Finally, specimens from the primaries of 50 patients with CRC were monitored by quantitative RT-PCR for CCR1 and CCRL2 expression levels. The microarray studies showed peak increases of CCR1 and CCRL2 in the early phase of liver colonization. Knockdown was sufficient at mRNA but only moderate at protein levels and resulted in modest but significant inhibition of proliferation (p < 0.05), scratch closure, and colony formation (p < 0.05). All human CRC samples were positive for CCR1 and CCRL2 and showed a significant pairwise correlation (p < 0.0004), but there was no correlation with tumor stage or age of patients. In summary, the data point to an important role of CCR1 and CCRL2 under conditions of organ colonization and both chemokine receptors qualify as targets of treatment during early colorectal cancer liver metastasis.

  1. A Role for the Chemokine Receptor CCR6 in Mammalian Sperm Motility and Chemotaxis

    PubMed Central

    Caballero-Campo, Pedro; Buffone, Mariano G.; Benencia, Fabian; Conejo-García, José R.; Rinaudo, Paolo F.; Gerton, George L.

    2013-01-01

    Although recent evidence indicates that several chemokines and defensins, well-known as inflammatory mediators, are expressed in the male and female reproductive tracts, the location and functional significance of chemokine networks in sperm physiology and sperm reproductive tract interactions are poorly understood. To address this deficiency in our knowledge, we examined the expression and function in sperm of CCR6, a receptor common to several chemoattractant peptides, and screened several reproductive tract fluids for the presence of specific ligands. CCR6 protein is present in mouse and human sperm and mainly localized in the sperm tail with other minor patterns in sperm from mice (neck and acrosomal region) and men (neck and midpiece regions). As expected from the protein immunoblotting and immunofluorescence results, mouse Ccr6 mRNA is expressed in the testis. Furthermore, the Defb29 mRNA encoding the CCR6 ligand, β-defensin DEFB29, is expressed at high levels in the epididymis. As determined by protein chip analysis, several chemokines (including some that act through CCR6, such as CCL20/MIP-3α (formerly Macrophage Inflammatory Protein 3α) and protein hormones were present in human follicular fluid, endometrial secretions, and seminal plasma. In functional chemotaxis assays, capacitated human sperm exhibited a directional movement towards CCL20, and displayed modifications in motility parameters. Our data indicate that chemokine ligand/receptor interactions in the male and female genital tracts promote sperm motility and chemotaxis under non-inflammatory conditions. Therefore, some of the physiological reactions mediated by CCR6 ligands in male reproduction extend beyond a pro-inflammatory response and might find application in clinical reproduction and/or contraception. PMID:23765988

  2. CCR5 chemokine receptor genotype frequencies among Puerto Rican HIV-1-seropositive individuals.

    PubMed

    Gonzalez, S; Tirado, G; Revuelta, G; Yamamura, Y; Lu, Y; Nerurkar, V R; Yanagihara, R

    1998-01-01

    Some individuals remain uninfected by human immunodeficiency virus type 1 (HIV-1), despite multiple sexual contacts with subjects with confirmed HIV-1 infection. Several studies have confirmed that individuals who are homozygous for a 32 base pair (bp) deletion mutation in the chemokine receptor gene CCR5, designated as delta 32/ delta 32, are protected against HIV-1 infection. Heterozygotes of the same chemokine receptor deletion mutation are, however, not protected from acquiring HIV-1 infection but seemingly have slower progression to acquired immunodeficiency syndromes (AIDS). Genotype frequencies of the delta 32 CCR5 mutation vary markedly among different ethnic groups; heterozygosity is found in approximately 15% of Caucasians, about 5-7% of Hispanics and African Americans and 1% or less of Asians. The ethnic background of Puerto Ricans is highly complex and usually includes admixture of Caucasian, Caribbean Indian and African traits to a varying extent. This study was conducted to examine the frequencies of the delta 32 CCR5 mutation among Puerto Ricans who are infected with HIV-1. Samples were received from different geographical regions of the island. Of 377 samples tested, 94.2% were wild type (non-deletion mutant) homozygotes, 5.8% were delta 32 CCR5 heterozygotes, and none were delta 32 CCR5 homozygotes. The incidence of CCR5 delta 32/w heterozygous mutation among Puerto Ricans seems to be somewhat lower than what was reported with US Hispanics. Some age and gender associated bias of the mutation frequency were observed with the study population, the reason for which is unclear at present.

  3. Third report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Bailey, R.D.

    1994-03-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. The BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs at ORNL. These are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake (WOL). The investigation of contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system was originally a task of the BMAP but, in 1988, was incorporated into the Resource Conservation and Recovery Act Facility Investigation for the Clinch River, a separate study to assess offsite contamination from all three Department of Energy facilities in Oak Ridge.

  4. The chemokine receptor CCR5 deletion mutation is associated with MS in HLA-DR4-positive Russians.

    PubMed

    Favorova, O O; Andreewski, T V; Boiko, A N; Sudomoina, M A; Alekseenkov, A D; Kulakova, O G; Slanova, A V; Gusev, E I

    2002-11-26

    The authors studied the possible association between the presence of a 32-base pair deletion allele in CC chemokine receptor 5 gene [3p21] (CCR5 Delta 32 allele) and the occurrence of MS. The presence of CCR5 Delta 32 homozygotes among patients with MS indicates that the absence of CCR5 did not protect against MS. Moreover, the CCR5 Delta 32 mutation was associated with MS in HLA-DR4-positive Russians (p(corr) < 0.001, odds ratio [OR] = 25.0). The (CCR5 Delta 32,DR4)-positive phenotype was negatively associated with early MS onset (at ages < or = 18 years) (p = 0.0115, OR = 0.1).

  5. Persistence of dual-tropic HIV-1 in an individual homozygous for the CCR5 Delta 32 allele.

    PubMed

    Gorry, Paul R; Zhang, Chengsheng; Wu, Sam; Kunstman, Kevin; Trachtenberg, Elizabeth; Phair, John; Wolinsky, Steven; Gabuzda, Dana

    2002-05-25

    Entry of HIV-1 into a cell happens only after viral envelope glycoproteins have bound to CD4 and a chemokine receptor. Generally, macrophage-tropic strains use CCR5, and T cell-line-tropic strains use CXCR4 as coreceptors for virus entry. Dual-tropic viruses can use both CCR5 and CXCR4. About 1% of white people are homozygous for a non-functional CCR5 allele, containing a 32 base pair deletion (CCR5 Delta 32). We studied the persistence of dual-tropic HIV-1 in an individual homozygous for this deletion. Our results suggest that structural features of the HIV-1 envelope linked to CCR5 tropism could confer a selective advantage in vivo.

  6. Medicinal chemistry of small molecule CCR5 antagonists for blocking HIV-1 entry: a review of structural evolution.

    PubMed

    Tian, Ye; Zhang, Dujuan; Zhan, Peng; Liu, Xinyong

    2014-01-01

    CCR5, a member of G protein-coupled receptors superfamily, plays an important role in the HIV-1 entry process. Antagonism of this receptor finally leads to the inhibition of R5 strains of HIV entry into the human cells. The identification of CCR5 antagonists as antiviral agents will provide more option for HAART. Now, more than a decade after the first small molecule CCR5 inhibitor was discovered, great achievements have been made. In this article, we will give a brief introduction of several series of small molecule CCR5 antagonists, focused on their appealing structure evolution, essential SAR information and thereof the enlightenment of strategies on CCR5 inhibitors design.

  7. New approaches in the treatment of HIV/AIDS – focus on maraviroc and other CCR5 antagonists

    PubMed Central

    Schlecht, Hans P; Schellhorn, Sarah; Dezube, Bruce J; Jacobson, Jeffrey M

    2008-01-01

    Treatment of HIV-1 infection has produced dramatic success for many patients. Nevertheless, viral resistance continues to limit the efficacy of currently available agents in many patients. The CCR5 antagonists are a new class of antiretroviral agents that target a necessary coreceptor for viral entry of many strains of HIV-1. Recently, the first agent within this class, maraviroc, was approved by a number of regulatory agencies, including the Food and Drug Administration. Herein we review the role of the CCR5 receptor in HIV-1 infection and potential methods to target it in anti-HIV-1 therapy. We review the various categories of agents and discuss specific agents that have progressed to clinical study. We discuss in detail the recently approved, first in class CCR5 antagonist, maraviroc, and discuss aspects of resistance to CCR5 antagonism and the potential role of CCR5 antagonism in the management of HIV-1 infection. PMID:18728830

  8. Protection of macaques from vaginal SHIV challenge by an orally delivered CCR5 inhibitor.

    PubMed

    Veazey, Ronald S; Springer, Martin S; Marx, Preston A; Dufour, Jason; Klasse, Per Johan; Moore, John P

    2005-12-01

    Pre-exposure oral prophylaxis with antiviral drugs is a potential method for preventing transmission of human immunodeficiency virus type 1 (HIV-1). We show that oral delivery of CMPD167, a small molecule that binds to the CCR5 coreceptor, for 10-14 d can protect a substantial proportion of macaques from vaginal infection with a CCR5-using virus (SHIV-162P3). The macaques that became infected despite receiving CMPD167 had reduced plasma viremia levels during the earliest stages of infection.

  9. Discovery and structure-activity relationships of urea derivatives as potent and novel CCR3 antagonists.

    PubMed

    Nitta, Aiko; Iura, Yosuke; Tomioka, Hiroki; Sato, Ippei; Morihira, Koichiro; Kubota, Hirokazu; Morokata, Tatsuaki; Takeuchi, Makoto; Ohta, Mitsuaki; Tsukamoto, Shin-ichi; Imaoka, Takayuki; Takahashi, Toshiya

    2012-08-01

    The synthesis and structure-activity relationships of ureas as CCR3 antagonists are described. Optimization starting with lead compound 2 (IC(50)=190 nM) derived from initial screening hit compound 1 (IC(50)=600 nM) led to the identification of (S)-N-((1R,3S,5S)-8-((6-fluoronaphthalen-2-yl)methyl)-8-azabicyclo[3.2.1]octan-3-yl)-N-(2-nitrophenyl)pyrrolidine-1,2-dicarboxamide 27 (IC(50)=4.9 nM) as a potent CCR3 antagonist.

  10. CXCR4 and CCR7: Two eligible targets in targeted cancer therapy.

    PubMed

    Mishan, Mohammad Amir; Ahmadiankia, Naghmeh; Bahrami, Ahmad Reza

    2016-09-01

    Cancer is one of the most common cause of death in the world with high negative emotional, economic, and social impacts. Conventional therapeutic methods, including chemotherapy and radiotherapy, have not proven satisfactory and relapse is common in most cases. Recent studies have focused on targeted therapy with more precise identification and targeted attacks to the cancer cells. For this purpose, chemokine receptors are proper targets and among them, CXCR4 and CCR7, with a crucial role in cancer metastasis, are being considered as desired candidates for investigation. In this review paper, the most important experimental results are highlighted on the potential targeted therapies based on CXCR4 and CCR7 chemokine receptors.

  11. In silico characterization of binding mode of CCR8 inhibitor: homology modeling, docking and membrane based MD simulation study.

    PubMed

    Gadhe, Changdev G; Balupuri, Anand; Cho, Seung Joo

    2015-01-01

    Human CC-chemokine receptor 8 (CCR8) is a crucial drug target in asthma that belongs to G-protein-coupled receptor superfamily, which is characterized by seven transmembrane helices. To date, there is no X-ray crystal structure available for CCR8; this hampers active research on the target. Molecular basis of interaction mechanism of antagonist with CCR8 remains unclear. In order to provide binding site information and stable binding mode, we performed modeling, docking and molecular dynamics (MD) simulation of CCR8. Docking study of biaryl-ether-piperidine derivative (13C) was performed inside predefined CCR8 binding site to get the representative conformation of 13C. Further, MD simulations of receptor and complex (13C-CCR8) inside dipalmitoylphosphatidylcholine lipid bilayers were performed to explore the effect of lipids. Results analyses showed that the Gln91, Tyr94, Cys106, Val109, Tyr113, Cys183, Tyr184, Ser185, Lys195, Thr198, Asn199, Met202, Phe254, and Glu286 were conserved in both docking and MD simulations. This indicated possible role of these residues in CCR8 antagonism. However, experimental mutational studies on these identified residues could be effective to confirm their importance in CCR8 antagonism. Furthermore, calculated Coulombic interactions represented the crucial roles of Glu286, Lys195, and Tyr113 in CCR8 antagonism. Important residues identified in this study overlap with the previous non-peptide agonist (LMD-009) binding site. Though, the non-peptide agonist and currently studied inhibitor (13C) share common substructure, but they differ in their effects on CCR8. So, to get more insight into their agonist and antagonist effects, further side-by-side experimental studies on both agonist (LMD-009) and antagonist (13C) are suggested.

  12. Neutralizing antibody and anti-retroviral drug sensitivities of HIV-1 isolates resistant to small molecule CCR5 inhibitors

    SciTech Connect

    Pugach, Pavel; Ketas, Thomas J.; Michael, Elizabeth; Moore, John P.

    2008-08-01

    The small molecule CCR5 inhibitors are a new class of drugs for treating infection by human immunodeficiency virus type 1 (HIV-1). They act by binding to the CCR5 co-receptor and preventing its use during HIV-1-cell fusion. Escape mutants can be raised against CCR5 inhibitors in vitro and will arise when these drugs are used clinically. Here, we have assessed the responses of CCR5 inhibitor-resistant viruses to other anti-retroviral drugs that act by different mechanisms, and their sensitivities to neutralizing antibodies (NAbs). The rationale for the latter study is that the resistance pathway for CCR5 inhibitors involves changes in the HIV-1 envelope glycoproteins (Env), which are also targets for NAbs. The escape mutants CC101.19 and D1/85.16 were selected for resistance to AD101 and vicriviroc (VVC), respectively, from the primary R5 HIV-1 isolate CC1/85. Each escape mutant was cross-resistant to other small molecule CCR5 inhibitors (aplaviroc, maraviroc, VVC, AD101 and CMPD 167), but sensitive to protein ligands of CCR5: the modified chemokine PSC-RANTES and the humanized MAb PRO-140. The resistant viruses also retained wild-type sensitivity to the nucleoside reverse transcriptase inhibitor (RTI) zidovudine, the non-nucleoside RTI nevirapine, the protease inhibitor atazanavir and other attachment and fusion inhibitors that act independently of CCR5 (BMS-806, PRO-542 and enfuvirtide). Of note is that the escape mutants were more sensitive than the parental CC1/85 isolate to a subset of neutralizing monoclonal antibodies and to some sera from HIV-1-infected people, implying that sequence changes in Env that confer resistance to CCR5 inhibitors can increase the accessibility of some NAb epitopes. The need to preserve NAb resistance may therefore be a constraint upon how escape from CCR5 inhibitors occurs in vivo.

  13. Neutralizing antibody and anti-retroviral drug sensitivities of HIV-1 isolates resistant to small molecule CCR5 inhibitors

    PubMed Central

    Pugach, Pavel; Ketas, Thomas J.; Michael, Elizabeth; Moore, John P.

    2008-01-01

    The small molecule CCR5 inhibitors are a new class of drugs for treating infection by human immunodeficiency virus type 1 (HIV-1). They act by binding to the CCR5 co-receptor and preventing its use during HIV-1-cell fusion. Escape mutants can be raised against CCR5 inhibitors in vitro and will arise when these drugs are used clinically. Here, we have assessed the responses of CCR5 inhibitor-resistant viruses to other anti-retroviral drugs that act by different mechanisms, and their sensitivities to neutralizing antibodies (NAbs). The rationale for the latter study is that the resistance pathway for CCR5 inhibitors involves changes in the HIV-1 envelope glycoproteins (Env), which are also targets for NAbs. The escape mutants CC101.19 and D1/85.16 were selected for resistance to AD101 and vicriviroc (VVC), respectively, from the primary R5 HIV-1 isolate CC1/85. Each escape mutant was cross resistant to other small molecule CCR5 inhibitors (aplaviroc, maraviroc, VVC, AD101 and CMPD 167), but sensitive to protein ligands of CCR5: the modified chemokine PSC-RANTES and the humanized MAb PRO 140. The resistant viruses also retained wild-type sensitivity to the nucleoside reverse transcriptase inhibitor (RTI) zidovudine, the non-nucleoside RTI nevirapine, the protease inhibitor atazanavir and other attachment and fusion inhibitors that act independently of CCR5 (BMS-806, PRO-542 and enfuvirtide). Of note is that the escape mutants were more sensitive than the parental CC1/85 isolate to a subset of neutralizing monoclonal antibodies and to some sera from HIV-1-infected people, implying that sequence changes in Env that confer resistance to CCR5 inhibitors can increase the accessibility of some NAb epitopes. The need to preserve NAb resistance may therefore be a constraint upon how escape from CCR5 inhibitors occurs in vivo. PMID:18519143

  14. Depletion of host CCR7(+) dendritic cells prevented donor T cell tissue tropism in anti-CD3-conditioned recipients.

    PubMed

    He, Wei; Racine, Jeremy J; Johnston, Heather F; Li, Xiaofan; Li, Nainong; Cassady, Kaniel; Liu, Can; Deng, Ruishu; Martin, Paul; Forman, Stephen; Zeng, Defu

    2014-07-01

    We reported previously that anti-CD3 mAb treatment before hematopoietic cell transplantation (HCT) prevented graft-versus-host disease (GVHD) and preserved graft-versus-leukemia (GVL) effects in mice. These effects were associated with downregulated donor T cell expression of tissue-specific homing and chemokine receptors, marked reduction of donor T cell migration into GVHD target tissues, and deletion of CD103(+) dendritic cells (DCs) in mesenteric lymph nodes (MLN). MLN CD103(+) DCs and peripheral lymph node (PLN) DCs include CCR7(+) and CCR7(-) subsets, but the role of these DC subsets in regulating donor T cell expression of homing and chemokine receptors remain unclear. Here, we show that recipient CCR7(+), but not CCR7(-), DCs in MLN induced donor T cell expression of gut-specific homing and chemokine receptors in a retinoid acid-dependent manner. CCR7 regulated activated DC migration from tissue to draining lymph node, but it was not required for the ability of DCs to induce donor T cell expression of tissue-specific homing and chemokine receptors. Finally, anti-CD3 treatment depleted CCR7(+) but not CCR7(-) DCs by inducing sequential expansion and apoptosis of CCR7(+) DCs in MLN and PLN. Apoptosis of CCR7(+) DCs was associated with DC upregulation of Fas expression and natural killer cell but not T, B, or dendritic cell upregulation of FasL expression in the lymph nodes. These results suggest that depletion of CCR7(+) host-type DCs, with subsequent inhibition of donor T cell migration into GVHD target tissues, can be an effective approach in prevention of acute GVHD and preservation of GVL effects.

  15. Silencing of CCR7 inhibits the growth, invasion and migration of prostate cancer cells induced by VEGFC.

    PubMed

    Chi, Bao-Jin; Du, Cong-Lin; Fu, Yun-Feng; Zhang, Ya-Nan; Wang, Ru Wen

    2015-01-01

    Early in prostate cancer development, tumor cells express vascular endothelial growth factor C (VEGF-C), a secreted molecule that is important in angiogenesis progression. CC-chemokine receptor 7 (CCR7), another protein involved in angiogenesis, is strongly expressed in most human cancers, where it activated promotes tumor growth as well as favoring tumor cell invasion and migration. The present study aimed to investigate the effect of down-regulating CCR7 expression on the growth of human prostate cancer cells stimulated by VEGFC. The CCR7-specific small interfering RNA (siRNA) plasmid vector was constructed and then transfected into prostate cancer cells. The expression of CCR7 mRNA and protein was detected by quantitative polymerase chain reaction and western blot analysis, respectively. Cell proliferation, apoptosis, cell cycle distribution and cell migration were assessed following knockdown of CCR7 by RNA interference (RNAi). Western blot analysis was used to identify differentially expressed angiogenesis- and cell cycle-associated proteins in cells with silenced CCR7. The expression levels of CCR7 in prostate cancer cells transfected with siRNA were decreased, leading to a significant inhibition of prostate cancer cell proliferation, migration and invasion induced by VEGFC. Western blot analysis revealed that silencing of CCR7 may inhibit vascular endothelial growth factor, matrix metalloproteinase (MMP)-2 and MMP-9 protein expression. In conclusion, the present study demonstrated that RNAi can effectively silence CCR7 gene expression and inhibit the growth of prostate cancer cells, which indicates that there is a potential of targeting CCR7 as a novel gene therapy approach for the treatment of prostate cancer.

  16. Eosinophils Subvert Host Resistance to an Intracellular Pathogen by Instigating Non-Protective IL-4 in CCR2−/− Mice

    PubMed Central

    Verma, Akash H.; Bueter, Chelsea L.; Rothenberg, Marc E.; Deepe, George S.

    2016-01-01

    Eosinophils contribute to type II immune responses in helminth infections and allergic diseases, however, their influence on intracellular pathogens is less clear. We previously reported that CCR2−/− mice exposed to the intracellular fungal pathogen Histoplasma capsulatum exhibit dampened immunity caused by an early exaggerated IL-4 response. We sought to identify the cellular source promulgating interleukin (IL)-4 in infected mutant animals. Eosinophils were the principal instigators of non-protective IL-4 and depleting this granulocyte population improved fungal clearance in CCR2−/− animals. The deleterious impact of eosinophilia on mycosis was also recapitulated in transgenic animals overexpressing eosinophils. Mechanistic examination of IL-4 induction revealed that phagocytosis of H. capsulatum via the pattern recognition receptor complement receptor (CR) 3 triggered the heightened IL-4 response in murine eosinophils. This phenomenon was conserved in human eosinophils; exposure of cells to the fungal pathogen elicited a robust IL-4 response. Thus, our findings elucidate a detrimental attribute of eosinophil biology in fungal infections that could potentially trigger a collapse in host defenses by instigating type II immunity. PMID:27049063

  17. The FgNot3 Subunit of the Ccr4-Not Complex Regulates Vegetative Growth, Sporulation, and Virulence in Fusarium graminearum

    PubMed Central

    Bui, Duc-Cuong; Son, Hokyoung; Shin, Ji Young; Kim, Jin-Cheol; Kim, Hun; Choi, Gyung Ja; Lee, Yin-Won

    2016-01-01

    The Ccr4-Not complex is evolutionarily conserved and important for multiple cellular functions in eukaryotic cells. In this study, the biological roles of the FgNot3 subunit of this complex were investigated in the plant pathogenic fungus Fusarium graminearum. Deletion of FgNOT3 resulted in retarded vegetative growth, retarded spore germination, swollen hyphae, and hyper-branching. The ΔFgnot3 mutants also showed impaired sexual and asexual sporulation, decreased virulence, and reduced expression of genes related to conidiogenesis. Fgnot3 deletion mutants were sensitive to thermal stress, whereas NOT3 orthologs in other model eukaryotes are known to be required for cell wall integrity. We found that FgNot3 functions as a negative regulator of the production of secondary metabolites, including trichothecenes and zearalenone. Further functional characterization of other components of the Not module of the Ccr4-Not complex demonstrated that the module is conserved. Each subunit primarily functions within the context of a complex and might have distinct roles outside of the complex in F. graminearum. This is the first study to functionally characterize the Not module in filamentous fungi and provides novel insights into signal transduction pathways in fungal development. PMID:26799401

  18. CCR4-Not Complex Subunit Not2 Plays Critical Roles in Vegetative Growth, Conidiation and Virulence in Watermelon Fusarium Wilt Pathogen Fusarium oxysporum f. sp. niveum

    PubMed Central

    Dai, Yi; Cao, Zhongye; Huang, Lihong; Liu, Shixia; Shen, Zhihui; Wang, Yuyan; Wang, Hui; Zhang, Huijuan; Li, Dayong; Song, Fengming

    2016-01-01

    CCR4-Not complex is a multifunctional regulator that plays important roles in multiple cellular processes in eukaryotes. In the present study, the biological function of FonNot2, a core subunit of the CCR4-Not complex, was explored in Fusarium oxysporum f. sp. niveum (Fon), the causal agent of watermelon wilt disease. FonNot2 was expressed at higher levels in conidia and germinating conidia and during infection in Fon-inoculated watermelon roots than in mycelia. Targeted disruption of FonNot2 resulted in retarded vegetative growth, reduced conidia production, abnormal conidial morphology, and reduced virulence on watermelon. Scanning electron microscopy observation of infection behaviors and qRT-PCR analysis of in planta fungal growth revealed that the ΔFonNot2 mutant was defective in the ability to penetrate watermelon roots and showed reduced fungal biomass in root and stem of the inoculated plants. Phenotypic and biochemical analyses indicated that the ΔFonNot2 mutant displayed hypersensitivity to cell wall perturbing agents (e.g., Congo Red and Calcofluor White) and oxidative stress (e.g., H2O2 and paraquat), decreased fusaric acid content, and reduced reactive oxygen species (ROS) production during spore germination. Our data demonstrate that FonNot2 plays critical roles in regulating vegetable growth, conidiogenesis and conidia morphology, and virulence on watermelon via modulating cell wall integrity, oxidative stress response, ROS production and FA biosynthesis through the regulation of transcription of genes involved in multiple pathways. PMID:27695445

  19. Cytoplasmic deadenylase Ccr4 is required for translational repression of LRG1 mRNA in the stationary phase

    PubMed Central

    Duy, Duong Long; Suda, Yasuyuki; Irie, Kenji

    2017-01-01

    Ccr4 is a major cytoplasmic deadenylase involved in mRNA poly(A) tail shortening in Saccharomyces cerevisiae. We have previously shown that Ccr4 negatively regulates expression of LRG1 mRNA encoding a GTPase-activating protein for the small GTPase Rho1, a component of cell wall integrity pathway, and deletion of LRG1 suppresses the temperature-sensitive growth defect of the ccr4Δ mutant. We have also shown that the slow growth of the ccr4Δ mutant is suppressed by deletion of another gene, PBP1, encoding a poly(A)-binding protein (Pab1)-binding protein 1; however, the underlying mechanism still remains unknown. In this study, we investigated how ccr4Δ and pbp1Δ mutations influence on the length of poly(A) tail and LRG1 mRNA and protein levels during long-term cultivation. In the log-phase ccr4Δ mutant cells, LRG1 poly(A) tail was longer and LRG1 mRNA level was higher than those in the log-phase wild-type (WT) cells. Unexpectedly, Lrg1 protein level in the ccr4Δ mutant cells was comparable with that in WT. In the stationary-phase ccr4Δ mutant cells, LRG1 poly(A) tail length was still longer and LRG1 mRNA level was still higher than those in WT cells. In contrast to the log phase, Lrg1 protein level in the stationary-phase ccr4Δ mutant cells was maintained much higher than that in the stationary-phase WT cells. Consistently, active translating ribosomes still remained abundant in the stationary-phase ccr4Δ mutant cells, whereas they were strongly decreased in the stationary-phase WT cells. Loss of PBP1 reduced the LRG1 poly(A) tail length as well as LRG1 mRNA and protein levels in the stationary-phase ccr4Δ mutant cells. Our results suggest that Ccr4 regulates not only LRG1 mRNA level through poly(A) shortening but also the translation of LRG1 mRNA, and that Pbp1 is involved in the Ccr4-mediated regulation of mRNA stability and translation. PMID:28231297

  20. Ccr4-Not Regulates RNA Polymerase I Transcription and Couples Nutrient Signaling to the Control of Ribosomal RNA Biogenesis

    PubMed Central

    Laribee, R. Nicholas; Hosni-Ahmed, Amira; Workman, Jason J.; Chen, Hongfeng

    2015-01-01

    Ribosomal RNA synthesis is controlled by nutrient signaling through the mechanistic target of rapamycin complex 1 (mTORC1) pathway. mTORC1 regulates ribosomal RNA expression by affecting RNA Polymerase I (Pol I)-dependent transcription of the ribosomal DNA (rDNA) but the mechanisms involved remain obscure. This study provides evidence that the Ccr4-Not complex, which regulates RNA Polymerase II (Pol II) transcription, also functions downstream of mTORC1 to control Pol I activity. Ccr4-Not localizes to the rDNA and physically associates with the Pol I holoenzyme while Ccr4-Not disruption perturbs rDNA binding of multiple Pol I transcriptional regulators including core factor, the high mobility group protein Hmo1, and the SSU processome. Under nutrient rich conditions, Ccr4-Not suppresses Pol I initiation by regulating interactions with the essential transcription factor Rrn3. Additionally, Ccr4-Not disruption prevents reduced Pol I transcription when mTORC1 is inhibited suggesting Ccr4-Not bridges mTORC1 signaling with Pol I regulation. Analysis of the non-essential Pol I subunits demonstrated that the A34.5 subunit promotes, while the A12.2 and A14 subunits repress, Ccr4-Not interactions with Pol I. Furthermore, ccr4Δ is synthetically sick when paired with rpa12Δ and the double mutant has enhanced sensitivity to transcription elongation inhibition suggesting that Ccr4-Not functions to promote Pol I elongation. Intriguingly, while low concentrations of mTORC1 inhibitors completely inhibit growth of ccr4Δ, a ccr4Δ rpa12Δ rescues this growth defect suggesting that the sensitivity of Ccr4-Not mutants to mTORC1 inhibition is at least partially due to Pol I deregulation. Collectively, these data demonstrate a novel role for Ccr4-Not in Pol I transcriptional regulation that is required for bridging mTORC1 signaling to ribosomal RNA synthesis. PMID:25815716

  1. Jak3 Is Involved in Dendritic Cell Maturation and CCR7-Dependent Migration

    PubMed Central

    Rivas-Caicedo, Ana; Soldevila, Gloria; Fortoul, Teresa I.; Castell-Rodríguez, Andrés; Flores-Romo, Leopoldo; García-Zepeda, Eduardo A.

    2009-01-01

    Background CCR7-mediated signalling is important for dendritic cell maturation and homing to the lymph nodes. We have previously demonstrated that Jak3 participates in the signalling pathway of CCR7 in T lymphocytes. Methodology and Principal Findings Here, we used Jak3−/− mice to analyze the role of Jak3 in CCR7-mediated dendritic cells migration and function. First, we found no differences in the generation of DCs from Jak3−/− bone marrow progenitors, when compared to wild type cells. However, phenotypic analysis of the bone marrow derived DCs obtained from Jak3−/− mice showed reduced expression of co-stimulatory molecules compared to wild type (Jak3+/+). In addition, when we analyzed the migration of Jak3−/− and Jak3+/+ mature DCs in response to CCL19 and CCL21 chemokines, we found that the absence of Jak3 results in impaired chemotactic responses both in vitro and in vivo. Moreover, lymphocyte proliferation and contact hypersensitivity experiments showed that DC-mediated T lymphocyte activation is reduced in the absence of Jak3. Conclusion/Significance Altogether, our data provide strong evidence that Jak3 is important for DC maturation, migration and function, through a CCR7-mediated signalling pathway. PMID:19759904

  2. Ablation of type I hypersensitivity in experimental allergic conjunctivitis by eotaxin-1/CCR3 blockade

    PubMed Central

    Nakamura, Takao; Ohbayashi, Masaharu; Kuo, Chuan Hui; Komatsu, Naoki; Yakura, Keiko; Tominaga, Takeshi; Inoue, Yoshitsugu; Higashi, Hidemitsu; Murata, Meguru; Takeda, Shuzo; Fukushima, Atsuki; Liu, Fu-Tong; Rothenberg, Marc E.; Ono, Santa Jeremy

    2009-01-01

    The immune response is regulated, in part, by effector cells whose activation requires multiple signals. For example, T cells require signals emanating from the T cell antigen receptor and co-stimulatory molecules for full activation. Here, we present evidence indicating that IgE-mediated hypersensitivity reactions in vivo also require cognate signals to activate mast cells. Immediate hypersensitivity reactions in the conjunctiva are ablated in mice deficient in eotaxin-1, despite normal numbers of tissue mast cells and levels of IgE. To further define the co-stimulatory signals mediated by chemokine receptor 3 (CCR3), an eotaxin-1 receptor, effects of CCR3 blockade were tested with an allergic conjunctivitis model and in ex vivo isolated connective tissue-type mast cells. Our results show that CCR3 blockade significantly suppresses allergen-mediated hypersensitivity reactions as well as IgE-mediated mast cell degranulation. We propose that a co-stimulatory axis by CCR3, mainly stimulated by eotaxin-1, is pivotal in mast cell-mediated hypersensitivity reactions. PMID:19147836

  3. Maraviroc, a CCR5 Antagonist, Prevents Development of Hepatocellular Carcinoma in a Mouse Model

    PubMed Central

    Ochoa-Callejero, Laura; Pérez-Martínez, Laura; Rubio-Mediavilla, Susana; Oteo, José A.; Martínez, Alfredo; Blanco, José R.

    2013-01-01

    Chronic liver disease may result in a sequential progression through fibrosis, cirrhosis and lead, eventually, to hepatocellular carcinoma (HCC). Hepatic stellate cells (HSC) seem to be responsible for the fibrogenic response through the activation of an autocrine loop involving the chemokine receptor, CCR5. However, the role of CCR5 in HCC remains poorly understood. Since this receptor is also one of the main ports of entry for the human immunodeficiency virus (HIV), several CCR5 inhibitors are being used in the clinic to reduce viral load. We used one of these inhibitors, maraviroc (MVC), in a mouse model of diet-induced HCC to investigate whether this intervention would reduce disease progression. Animals treated with MVC on top of a normal control diet did not present any evidence of toxicity or any morphological change when compared with non-treated mice. Animals treated with MVC presented higher survival, less liver fibrosis, lower levels of liver injury markers and chemokines, less apoptosis, lower proliferation index, and lower tumor burden than their counterparts receiving only the hepatotoxic diet. In addition, MVC inhibits HSC activation markers such as phosphorylation of p38 and ERK, and increases hepatocyte survival. This study suggests that MVC, a well tolerated and clinically characterized drug, may be used as a preventative treatment for HCC. Clinical studies are needed to demonstrate the efficacy of this drug, or other CCR5 inhibitors, in patients with high risk of developing HCC. PMID:23326556

  4. Association analysis of a CCR5 variant with ewe lifetime production.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A deletion in the promoter region of CCR5 associates with a 50% reduction in proviral concentration (log10 env copies/microgram DNA) of ovine progressive pneumonia virus (OPPV) in sheep blood. Because OPP provirus blood concentrations correlate with the degree of histological lesions in affected ti...

  5. Association analysis of a CCR5 variant with ewe lifetime production in 3 breeds of sheep.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A deletion in the promoter region of CCR5 associates with a 50% reduction in proviral concentration (log10 env copies/microgram DNA) of ovine progressive pneumonia virus (OPPV) in blood. Nearly half of all flocks in the U.S. have at least one sheep infected with OPPV. Because OPP provirus concentr...

  6. Different neurotropic pathogens elicit neurotoxic CCR9- or neurosupportive CXCR3-expressing microglia.

    PubMed

    Li, He; Gang, Zhou; Yuling, He; Luokun, Xie; Jie, Xiong; Hao, Lei; Li, Wei; Chunsong, Hu; Junyan, Liu; Mingshen, Jiang; Youxin, Jin; Feili, Gong; Boquan, Jin; Jinquan, Tan

    2006-09-15

    What mechanism that determines microglia accomplishing destructive or constructive role in CNS remains nebulous. We report here that intracranial priming and rechallenging with Toxoplasma gondii in mice elicit neurotoxic CCR9+ Irg1+ (immunoresponsive gene 1) microglia, which render resistance to apoptosis and produce a high level of TNF-alpha; priming and rechallenging with lymphocytic choriomeningitis virus elicit neurosupportive CXCR3+ Irg1- microglia, which are sensitive to apoptosis and produce a high level of IL-10 and TGF-beta. Administration of CCR9 and/or Irg1 small interfering RNA alters the frequency and functional profiles of neurotoxic CCR9+ Irg1+ and neurosupportive CXCR3+ Irg1- microglia in vivo. Moreover, by using a series of different neurotropic pathogens, including intracellular parasites, chronic virus, bacteria, toxic substances, and CNS injury to intracranially prime and subsequent rechallenge mice, the bi-directional elicitation of microglia has been confirmed as neurotoxic CCR9+ Irg1+ and neurosupportive CXCR3+ Irg1- cells in these mouse models. These data suggest that there exist two different types of microglia, providing with a novel insight into microglial involvement in neurodegenerative and neuroinflammatory pathogenesis such as Alzheimer's disease and AIDS dementia.

  7. Hypoxia induced CCL28 promotes angiogenesis in lung adenocarcinoma by targeting CCR3 on endothelial cells.

    PubMed

    Huang, Guichun; Tao, Leilei; Shen, Sunan; Chen, Longbang

    2016-06-02

    Tumor hypoxia is one of the important features of lung adenocarcinoma. Chemokines might mediate the effects caused by tumor hypoxia. As confirmed in tumor tissue and serum of patients, CC chemokine 28 (CCL28) was the only hypoxia induced chemokine in lung adenocarcinoma cells. CCL28 could promote tube formation, migration and proliferation of endothelial cells. In addition, angiogenesis was promoted by CCL28 in the chick chorioallantoic membrane and matrigel implanted in dorsal back of athymic nude mice (CByJ.Cg-Foxn1(nu)/J). Tumors formed by lung adenocarcinoma cells with high expression of CCL28 grew faster and had a higher vascular density, whereas tumor formation rate of lung adenocarcinoma cells with CCL28 expression knockdown was quite low and had a lower vascular density. CCR3, receptor of CCL28, was highly expressed in vascular endothelial cells in lung adenocarcinoma when examining by immunohistochemistry. Further signaling pathways in endothelial cells, modulated by CCL28, were analyzed by Phosphorylation Antibody Array. CCL28/CCR3 signaling pathway could bypass that of VEGF/VEGFR on the levels of PI3K-Akt, p38 MAPK and PLC gamma. The effects could be neutralized by antibody against CCR3. In conclusion, CCL28, as a chemokine induced by tumor hypoxia, could promote angiogenesis in lung adenocarcinoma through targeting CCR3 on microvascular endothelial cells.

  8. Ablation of type I hypersensitivity in experimental allergic conjunctivitis by eotaxin-1/CCR3 blockade.

    PubMed

    Miyazaki, Dai; Nakamura, Takao; Ohbayashi, Masaharu; Kuo, Chuan Hui; Komatsu, Naoki; Yakura, Keiko; Tominaga, Takeshi; Inoue, Yoshitsugu; Higashi, Hidemitsu; Murata, Meguru; Takeda, Shuzo; Fukushima, Atsuki; Liu, Fu-Tong; Rothenberg, Marc E; Ono, Santa Jeremy

    2009-02-01

    The immune response is regulated, in part, by effector cells whose activation requires multiple signals. For example, T cells require signals emanating from the T cell antigen receptor and co-stimulatory molecules for full activation. Here, we present evidence indicating that IgE-mediated hypersensitivity reactions in vivo also require cognate signals to activate mast cells. Immediate hypersensitivity reactions in the conjunctiva are ablated in mice deficient in eotaxin-1, despite normal numbers of tissue mast cells and levels of IgE. To further define the co-stimulatory signals mediated by chemokine receptor 3 (CCR3), an eotaxin-1 receptor, effects of CCR3 blockade were tested with an allergic conjunctivitis model and in ex vivo isolated connective tissue-type mast cells. Our results show that CCR3 blockade significantly suppresses allergen-mediated hypersensitivity reactions as well as IgE-mediated mast cell degranulation. We propose that a co-stimulatory axis by CCR3, mainly stimulated by eotaxin-1, is pivotal in mast cell-mediated hypersensitivity reactions.

  9. Eotaxins and CCR3 interaction regulates the Th2 environment of cutaneous T-cell lymphoma.

    PubMed

    Miyagaki, Tomomitsu; Sugaya, Makoto; Fujita, Hideki; Ohmatsu, Hanako; Kakinuma, Takashi; Kadono, Takafumi; Tamaki, Kunihiko; Sato, Shinichi

    2010-09-01

    CC chemokine receptor 3 (CCR3), the sole receptor for eotaxins, is expressed on eosinophils and T helper type 2 (Th2) cells. In Hodgkin's disease, eotaxin-1 secreted by fibroblasts collects Th2 cells and eosinophils within the tissue. Similarly, many Th2 cells infiltrate the lesional skin of cutaneous T-cell lymphoma (CTCL). In this study, we investigated the role of eotaxins in the development of the Th2 environment of CTCL. We revealed that fibroblasts from lesional skin of CTCL expressed higher amounts of eotaxin-3 messenger RNA (mRNA) compared with those from normal skin. Lesional skin of CTCL at advanced stages contained significantly higher levels of eotaxin-3 and CCR3 mRNA, compared with early stages of CTCL. IL-4 mRNA was expressed in some cases at advanced stages. Immunohistochemistry revealed that keratinocytes, endothelial cells, and dermal fibroblasts in lesional skin of CTCL showed a stronger expression of eotaxin-3 than did normal skin. CCR3(+) lymphocytes and IL-4 expression were observed in some cases of advanced CTCL. Furthermore, both serum eotaxin-3 and eotaxin-1 levels of CTCL patients at advanced stages were significantly higher than those of healthy individuals. The concentrations of these chemokines correlated with serum soluble IL-2 receptor levels. These results suggest that interaction of eotaxins and CCR3 regulates the Th2-dominant tumor environment, which is closely related to the development of CTCL.

  10. The discovery of CCR3/H1 dual antagonists with reduced hERG risk.

    PubMed

    Bahl, Ash; Barton, Patrick; Bowers, Keith; Brough, Steven; Evans, Richard; Luckhurst, Christopher A; Mochel, Tobias; Perry, Matthew W D; Rigby, Aaron; Riley, Robert J; Sanganee, Hitesh; Sisson, Adam; Springthorpe, Brian

    2012-11-01

    A series of dual CCR3/H(1) antagonists based on a bispiperidine scaffold were discovered. Introduction of an acidic group overcame hERG liability. Bioavailability was optimised by modulation of physico-chemical properties and physical form to deliver a compound suitable for clinical evaluation.

  11. CCR7 and IRF4-dependent dendritic cells regulate lymphatic collecting vessel permeability

    PubMed Central

    Ivanov, Stoyan; Scallan, Joshua P.; Kim, Ki-Wook; Werth, Kathrin; Johnson, Michael W.; Saunders, Brian T.; Wang, Peter L.; Kuan, Emma L.; Straub, Adam C.; Ouhachi, Melissa; Weinstein, Erica G.; Williams, Jesse W.; Briseño, Carlos; Colonna, Marco; Isakson, Brant E.; Gautier, Emmanuel L.; Förster, Reinhold; Davis, Michael J.; Zinselmeyer, Bernd H.

    2016-01-01

    Lymphatic collecting vessels direct lymph into and from lymph nodes (LNs) and can become hyperpermeable as the result of a previous infection. Enhanced permeability has been implicated in compromised immunity due to reduced flow of lymph and immune cells to LNs, which are the primary site of antigen presentation to T cells. Presently, very little is known about the molecular signals that affect lymphatic collecting vessel permeability. Here, we have shown that lymphatic collecting vessel permeability is controlled by CCR7 and that the chronic hyperpermeability of collecting vessels observed in Ccr7–/– mice is followed by vessel fibrosis. Reexpression of CCR7 in DCs, however, was sufficient to reverse the development of such fibrosis. IFN regulatory factor 4–positive (IRF4+) DCs constitutively interacted with collecting lymphatics, and selective ablation of this DC subset in Cd11c-Cre Irf4fl/fl mice also rendered lymphatic collecting vessels hyperpermeable and fibrotic. Together, our data reveal that CCR7 plays multifaceted roles in regulating collecting vessel permeability and fibrosis, with one of the key players being IRF4-dependent DCs. PMID:26999610

  12. CCR7 and IRF4-dependent dendritic cells regulate lymphatic collecting vessel permeability.

    PubMed

    Ivanov, Stoyan; Scallan, Joshua P; Kim, Ki-Wook; Werth, Kathrin; Johnson, Michael W; Saunders, Brian T; Wang, Peter L; Kuan, Emma L; Straub, Adam C; Ouhachi, Melissa; Weinstein, Erica G; Williams, Jesse W; Briseño, Carlos; Colonna, Marco; Isakson, Brant E; Gautier, Emmanuel L; Förster, Reinhold; Davis, Michael J; Zinselmeyer, Bernd H; Randolph, Gwendalyn J

    2016-04-01

    Lymphatic collecting vessels direct lymph into and from lymph nodes (LNs) and can become hyperpermeable as the result of a previous infection. Enhanced permeability has been implicated in compromised immunity due to reduced flow of lymph and immune cells to LNs, which are the primary site of antigen presentation to T cells. Presently, very little is known about the molecular signals that affect lymphatic collecting vessel permeability. Here, we have shown that lymphatic collecting vessel permeability is controlled by CCR7 and that the chronic hyperpermeability of collecting vessels observed in Ccr7-/- mice is followed by vessel fibrosis. Reexpression of CCR7 in DCs, however, was sufficient to reverse the development of such fibrosis. IFN regulatory factor 4-positive (IRF4+) DCs constitutively interacted with collecting lymphatics, and selective ablation of this DC subset in Cd11c-Cre Irf4fl/fl mice also rendered lymphatic collecting vessels hyperpermeable and fibrotic. Together, our data reveal that CCR7 plays multifaceted roles in regulating collecting vessel permeability and fibrosis, with one of the key players being IRF4-dependent DCs.

  13. FOXO1 regulates dendritic cell activity through ICAM-1 and CCR7.

    PubMed

    Dong, Guangyu; Wang, Yu; Xiao, Wenmei; Pacios Pujado, Sandra; Xu, Fanxing; Tian, Chen; Xiao, E; Choi, Yongwon; Graves, Dana T

    2015-04-15

    The transcription factor FOXO1 regulates cell function and is expressed in dendritic cells (DCs). We investigated the role of FOXO1 in activating DCs to stimulate a lymphocyte response to bacteria. We show that bacteria induce FOXO1 nuclear localization through the MAPK pathway and demonstrate that FOXO1 is needed for DC activation of lymphocytes in vivo. This occurs through FOXO1 regulation of DC phagocytosis, chemotaxis, and DC-lymphocyte binding. FOXO1 induces DC activity by regulating ICAM-1 and CCR7. FOXO1 binds to the CCR7 and ICAM-1 promoters, stimulates CCR7 and ICAM-1 transcriptional activity, and regulates their expression. This is functionally important because transfection of DCs from FOXO1-deleted CD11c.Cre(+)FOXO1(L/L) mice with an ICAM-1-expressing plasmid rescues the negative effect of FOXO1 deletion on DC bacterial phagocytosis and chemotaxis. Rescue with both CCR7 and ICAM-1 reverses impaired DC homing to lymph nodes in vivo when FOXO1 is deleted. Moreover, Ab production following injection of bacteria is significantly reduced with lineage-specific FOXO1 ablation. Thus, FOXO1 coordinates upregulation of DC activity through key downstream target genes that are needed for DCs to stimulate T and B lymphocytes and generate an Ab defense to bacteria.

  14. Interfering with CCL5/CCR5 at the Tumor-Stroma Interface.

    PubMed

    Bronte, Vincenzo; Bria, Emilio

    2016-04-11

    In this issue of Cancer Cell, Halama et al. (2016) further advance chemokine interference as a therapeutic option for cancer by demonstrating the effect of CCR5 blockade in reshaping macrophage polarization toward an anti-tumor functional state in patient-derived tumor models and liver metastases of colorectal cancer patients.

  15. CCR4 promotes metastasis via ERK/NF-κB/MMP13 pathway and acts downstream of TNF-α in colorectal cancer

    PubMed Central

    Feng, Hao; Wangpu, Xiongzhi; Zhu, Congcong; Zong, Yaping; Ma, Junjun; Sun, Jing; Shen, Xiaohui; Zheng, Minhua; Lu, Aiguo

    2016-01-01

    Chemokines and chemokine receptors are causally involved in the metastasis of human malignancies. As a crucial chemokine receptor for mediating immune homeostasis, however, the role of CCR4 in colorectal cancer (CRC) remains unknown. In this study, we found that high expression of CCR4 in CRC tissues was correlated with shorter overall survival and disease free survival. In vitro and in vivo experiments revealed that silencing CCR4 attenuated the invasion and metastasis of CRC cells, whereas ectopic overexpression of CCR4 contributed to the forced metastasis of these cells. We further demonstrated that matrix metalloproteinase 13 (MMP13) played an important role in CCR4-mediated cancer cell invasion, which is up-regulated by ERK/NF-κB signaling. Positive correlation between CCR4 and MMP13 expression was also observed in CRC tissues. Moreover, our investigations showed that the level of CCR4 could be induced by TNF-α dependent of NF-κB activation in CRC cells. CCR4 might be implicated in TNF-α-regulated cancer cells metastasis. Combination of CCR4 and TNF-α is a more powerful prognostic marker for CRC patients. These findings suggest that CCR4 facilitates metastasis through ERK/NF-κB/MMP13 signaling and acts as a downstream target of TNF-α. CCR4 inhibition may be a promising therapeutic option for suppressing CRC metastasis. PMID:27356745

  16. CCR5-Δ32 Heterozygosity, HIV-1 Reservoir Size, and Lymphocyte Activation in Individuals Receiving Long-term Suppressive Antiretroviral Therapy.

    PubMed

    Henrich, Timothy J; Hanhauser, Emily; Harrison, Linda J; Palmer, Christine D; Romero-Tejeda, Marisol; Jost, Stephanie; Bosch, Ronald J; Kuritzkes, Daniel R

    2016-03-01

    We conducted a case-controlled study of the associations of CCR5-Δ32 heterozygosity with human immunodeficiency virus type 1 (HIV-1) reservoir size, lymphocyte activation, and CCR5 expression in 114 CCR5(Δ32/WT) and 177 wild-type CCR5 AIDS Clinical Trials Group participants receiving suppressive antiretroviral therapy. Overall, no significant differences were found between groups for any of these parameters. However, higher levels of CCR5 expression correlated with lower amounts of cell-associated HIV-1 RNA. The relationship between CCR5-Δ32 heterozygosity, CCR5 expression, and markers of HIV-1 persistence is likely to be complex and may be influenced by factors such as the duration of ART.

  17. CCL2/CCR2 Regulates the Tumor Microenvironment in HER-2/neu-Driven Mammary Carcinomas in Mice

    PubMed Central

    Chen, Xuguang; Wang, Yunyue; Nelson, David; Tian, Sara; Mulvey, Erin; Patel, Bhumi; Conti, Ilaria; Jaen, Juan; Rollins, Barrett J.

    2016-01-01

    Chronic inflammation is a hallmark of cancer. Inflammatory chemokines, such as C-C chemokine ligand 2 (CCL2), are often present in tumors but their roles in cancer initiation and maintenance are not clear. Here we report that CCL2 promotes mammary carcinoma development in a clinically relevant murine model of breast cancer. Targeted disruption of Ccl2 slowed the growth of activated Her2/neu-driven mammary tumors and prolonged host survival. Disruption of Ccl2 was associated with a decrease in the development and mobilization of endothelial precursor cells (EPCs) which can contribute to tumor neovascularization. In contrast, disruption of Ccr2, which encodes CCL2’s sole signaling receptor, accelerated tumor development, shortened host survival, and mobilized EPCs. However, pharmacological inhibition of CCR2 phenocopied Ccl2 disruption rather than Ccr2 disruption, suggesting that the Ccr2-/- phenotype is a consequence of unanticipated alterations not linked to intact CCL2/CCR2 signaling. Consistent with this explanation, Ccr2-/- monocytes are more divergent from wild type monocytes than Ccl2-/- monocytes in their expression of genes involved in key developmental and functional pathways. Taken together, our data suggest a tumor-promoting role for CCL2 acting through CCR2 on the tumor microenvironment and support the targeting of this chemokine/receptor pair in breast cancer. PMID:27820834

  18. CCR5 Blockade Suppresses Melanoma Development Through Inhibition of IL-6-Stat3 Pathway via Upregulation of SOCS3.

    PubMed

    Tang, Qiu; Jiang, Jun; Liu, Jian

    2015-12-01

    In order to understand how tumor cells can escape immune surveillance mechanisms and thus develop antitumor therapies, it is critically important to investigate the mechanisms by which the immune system interacts with the tumor microenvironment. In our current study, we found that chemokine receptor 5 (CCR5) neutralization resulted in reduced melanoma tumor size, decreased percentage of CD11b+ Gr-1(+) myeloid-derived suppressor cells (MDSCs), and increased proportion of cluster of differentiation (CD)3+ T cells in tumor tissues. Suppressive activity of MDSCs on CD4+ T cells and CD8+ T cell proliferation is significantly inhibited by anti-CCR5 antibody. CCR5 blockade also suppresses interleukin (IL)-6 induction, which in turn deactivates signal transducer and activator of transcription 3 (Stat3) in tumors. Furthermore, the suppressed B16 tumor growth induced by CCR5 blockade is abolished with additional administration of recombinant IL-6. CCR5 blockade also induces suppressor of cytokine signaling 3 (SOCS3) upregulations, and anti-CCR5 antibody fails to suppress expression of phospho-Stat3 (p-Stat3), matrix metallopeptidase 9 (MMP9), and IL-6 in cells transfected with SOCS3 short-interfering RNA (SiRNA). All these data suggest that CCR5 blockade suppresses melanoma development through inhibition of IL-6-Stat3 pathway via upregulation of SOCS3.

  19. Identification of potential CCR5 inhibitors through pharmacophore-based virtual screening, molecular dynamics simulation and binding free energy analysis.

    PubMed

    Wang, Juan; Shu, Mao; Wang, Yuanqiang; Hu, Yong; Wang, Yuanliang; Luo, Yanfeng; Lin, Zhihua

    2016-10-18

    CC chemokine receptor 5 (CCR5), a member of G protein-coupled receptors (GPCRs), plays a vital role in inflammatory responses to infection. Alterations in the expression of CCR5 have been correlated with disease progression in many types of cancers. The idea of using CCR5 as a target for therapeutic intervention has been demonstrated to prevent disease progression. To date, only a few compounds have been reported as CCR5 inhibitors. In this study, a series of CCR5 antagonists were used to construct pharmacophore models. Then the optimal model was utilized as a 3D query to identify novel chemical entities from structural databases. After refinement by molecular docking, drug-likeness analysis, molecular dynamics simulations (MDS) and binding free energy analysis, three potential inhibitors (25, 29 and 45) were identified. MD simulations suggested that the screened compounds retained the important common binding mode known for CCR5 inhibitors (maraviroc and nifeviroc), which occupied the bottom of a pocket and stabilized the conformation of CCR5. During the binding process, van der Waals interactions provided the substantial driving force. The most favorable contributions were from Tyr37, Trp86, Tyr89, Tyr108, Phe109, Phe112, Gln194, Thr195, Ile198, Trp248, Tyr251, Leu255, Thr259, Met279, Glu283 and Met287. The above results suggest that the hybrid strategy would provide a basis for rational drug design.

  20. Lack of Correlation Between the CCR5-Δ32 Mutation and Acute Myeloid Leukemia in Iranian Patients.

    PubMed

    Khorramdelazad, Hossein; Mortazavi, Yousef; Momeni, Mohammad; Arababadi, Mohammad Kazemi; Khandany, Behjat Kalantary; Moogooei, Mozhgan; Hassanshahi, Gholamhossein

    2015-03-01

    Chemokines and their receptors are crucially important in the pathogenesis of acute myeloblastic leukemia (AML). The CC chemokine receptor 5 (CCR5) is a specific chemokine receptor for CC chemokine ligand 3 (CCL3), CCL4 and CCL5 which all play key roles in identifying cancer properties and localization of leukemia cells. It has been demonstrated that the known mutation in CCR5 gene (CCR5-Δ32) leads to mal-expression of the receptor and affect its function. The aim of this study was to determine the rate of CCR5-Δ32 mutation within Iranian AML patients. In this study, blood samples were obtained from 60 AML patients and 300 healthy controls. The CCR5-Δ32 mutation was evaluated using Gap-PCR technique. Our results showed that CCR5-Δ32 mutation was not found in the patients, while three out of the controls had hetrozygotic form of this mutation. The rest of studied samples had the wild form of the gene. According to these findings, it can probably be concluded that the CCR5-Δ32 is not associated with susceptibility to AML in Iranian patients.

  1. First report of a healthy Indian heterozygous for delta 32 mutant of HIV-1 co-receptor-CCR5 gene.

    PubMed

    Husain, S; Goila, R; Shahi, S; Banerjea, A

    1998-01-30

    The beta-chemokine receptor, CCR5, is a major co-receptor for macrophage tropic non-syncytia-inducing isolates of HIV-1. Recently a 32 bp homozygous deletion in the coding region of CCR5 has been reported in a very small percentage (< 1%) of Caucasian individuals who remain uninfected, despite multiple exposure to the wild-type virus. This mutant allele in the heterozygous form (CCR5/32 ccr5) was readily detected in a normal unrelated Caucasian population of European heritage with varying frequencies (13-20%). However, when a large number of the non-Caucasian population (261 Africans and 423 Asians) were screened for the presence of this deleted allele, not a single case of either homozygous or heterozygous mutant for delta 32 allele of CCR5 was detected. We screened 100 normal individuals and found a single heterozygous case with an identical 32 bp deletion in CCR5 gene reported earlier, the rest possessed wild-type alleles. This deleted gene was inherited in Mendelian fashion among the family members of this individual. Thus, the frequency of this deleted allele in India among unrelated normal individuals is likely to be very low (< 1%). We observed a moderate transdominant effect of this mutant allele in a fusion assay. Finally, we show a significant inhibition of fusion of cell membranes when the 176-bp region of CCR5 was used as an antisense.

  2. Inheritance pattern of mutant human immunodeficiency virus type 1 coreceptor gene CCR5 in an Indian family.

    PubMed

    Husain, S; Goila, R; Shahi, S; Banerja, A C

    1998-01-01

    The most common form of mutation found in the CCR5 gene has been the precise 32-base pair (bp) deletion in the region corresponding to second extracellular loop of the chemokine receptor CCR5. Individuals homozygous for the delta 32 allele of CCR5 usually remain uninfected despite multiple exposures to HIV, whereas heterozygous individuals support less virus replication and show slower progression of the disease. This mutant allele in either homozygous or heterozygous form is quite common in white people of European heritage. Earlier work involving large populations of Asians and Africans failed to detect the presence of this mutant allele. We screened 145 normal unrelated healthy Indians and found one person who was heterozygous for the delta 32 allele of CCR5. We studied the inheritance of this deleted allele in this person's family. One parent, one of two sons, and the only daughter possessed this mutant allele. We cloned the entire coding region of wild-type and mutant alleles of CCR5 gene from the heterozygous individual mentioned and studied its coreceptor functions. The mutant allele had only a moderate interfering effect on coreceptor activity of the wild-type CCR5 allele in a cell fusion assay. We also report an improved method of genotyping CCR5 gene in this communication.

  3. The cellular roles of Ccr4-NOT in model and pathogenic fungi—implications for fungal virulence

    PubMed Central

    Panepinto, John C.; Heinz, Eva; Traven, Ana

    2013-01-01

    The fungal Ccr4-NOT complex has been implicated in orchestrating gene expression networks that impact on pathways key for virulence in pathogenic species. The activity of Ccr4-NOT regulates cell wall integrity, antifungal drug susceptibility, adaptation to host temperature, and the developmental switches that enable the formation of pathogenic structures, such as filamentous hyphae. Moreover, Ccr4-NOT impacts on DNA repair pathways and genome stability, opening the possibility that this gene regulator could control adaptive responses in pathogens that are driven by chromosomal alterations. Here we provide a synthesis of the cellular roles of the fungal Ccr4-NOT, focusing on pathways important for virulence toward animals. Our review is based on studies in models yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, and two species that cause serious human infections, Candida albicans and Cryptococcus neoformans. We hypothesize that the activity of Ccr4-NOT could be targeted for future antifungal drug discovery, a proposition supported by the fact that inactivation of the genes encoding subunits of Ccr4-NOT in C. albicans and C. neoformans reduces virulence in the mouse infection model. We performed bioinformatics analysis to identify similarities and differences between Ccr4-NOT subunits in fungi and animals, and discuss this knowledge in the context of future antifungal strategies. PMID:24391665

  4. Dating the origin of the CCR5-Delta32 AIDS-resistance allele by the coalescence of haplotypes.

    PubMed Central

    Stephens, J C; Reich, D E; Goldstein, D B; Shin, H D; Smith, M W; Carrington, M; Winkler, C; Huttley, G A; Allikmets, R; Schriml, L; Gerrard, B; Malasky, M; Ramos, M D; Morlot, S; Tzetis, M; Oddoux, C; di Giovine, F S; Nasioulas, G; Chandler, D; Aseev, M; Hanson, M; Kalaydjieva, L; Glavac, D; Gasparini, P; Kanavakis, E; Claustres, M; Kambouris, M; Ostrer, H; Duff, G; Baranov, V; Sibul, H; Metspalu, A; Goldman, D; Martin, N; Duffy, D; Schmidtke, J; Estivill, X; O'Brien, S J; Dean, M

    1998-01-01

    The CCR5-Delta32 deletion obliterates the CCR5 chemokine and the human immunodeficiency virus (HIV)-1 coreceptor on lymphoid cells, leading to strong resistance against HIV-1 infection and AIDS. A genotype survey of 4,166 individuals revealed a cline of CCR5-Delta32 allele frequencies of 0%-14% across Eurasia, whereas the variant is absent among native African, American Indian, and East Asian ethnic groups. Haplotype analysis of 192 Caucasian chromosomes revealed strong linkage disequilibrium between CCR5 and two microsatellite loci. By use of coalescence theory to interpret modern haplotype genealogy, we estimate the origin of the CCR5-Delta32-containing ancestral haplotype to be approximately 700 years ago, with an estimated range of 275-1,875 years. The geographic cline of CCR5-Delta32 frequencies and its recent emergence are consistent with a historic strong selective event (e.g. , an epidemic of a pathogen that, like HIV-1, utilizes CCR5), driving its frequency upward in ancestral Caucasian populations. PMID:9585595

  5. CCR7 pathway induces epithelial-mesenchymal transition through up-regulation of Snail signaling in gastric cancer.

    PubMed

    Zhang, Jianping; Zhou, Yunzhe; Yang, Yonggang

    2015-02-01

    The chemokine receptor 7 (CCR7) and Snail signaling have been linked to various types of cancers. The associations between these signalings and the epithelial-mesenchymal transition (EMT) are not clear in gastric cancer. Here, the expression of CCR7 and Snail was detected in gastric cancer by immunohistochemistry and Western blot. Meanwhile, gastric cancer cells were subjected to CCL19, si-control, and si-Snail treatment. Cell cycle, migration, and invasion were also analyzed. The expression patterns of CCR7 and Snail were similar in either gastric cancer tissues or cells. The increased expression of CCR7 was closely associated with the increased Snail expression, which both were closely correlated with metastasis, stage and differentiation, and poor prognosis. The increased p-ERK, p-AKT, Snail, and MMP9 expression and the decreased E-cadherin were confirmed in MGC803 cells in a dose-dependent manner in response to CCL19 treatment. However, the blockade of Snail abrogated the up-regulation of MMP9 and down-regulation of E-cadherin. CCR7-induced ERK and PI3K pathway regulated Snail signaling. Besides si-Snail treatment led to MGC803 cell cycle arrest and affected the migration and invasion. In conclusion, our study suggested that CCR7 promotes Snail expression to induce the EMT, resulting in cell cycle progression, migration, and invasion in gastric cancer. CCR7-Snail pathway provided more potential regimens for cancer therapy.

  6. The National Lung Matrix Trial: translating the biology of stratification in advanced non-small-cell lung cancer

    PubMed Central

    Middleton, G.; Crack, L. R.; Popat, S.; Swanton, C.; Hollingsworth, S. J.; Buller, R.; Walker, I.; Carr, T. H.; Wherton, D.; Billingham, L. J.

    2015-01-01

    Background The management of NSCLC has been transformed by stratified medicine. The National Lung Matrix Trial (NLMT) is a UK-wide study exploring the activity of rationally selected biomarker/targeted therapy combinations. Patients and methods The Cancer Research UK (CRUK) Stratified Medicine Programme 2 is undertaking the large volume national molecular pre-screening which integrates with the NLMT. At study initiation, there are eight drugs being used to target 18 molecular cohorts. The aim is to determine whether there is sufficient signal of activity in any drug–biomarker combination to warrant further investigation. A Bayesian adaptive design that gives a more realistic approach to decision making and flexibility to make conclusions without fixing the sample size was chosen. The screening platform is an adaptable 28-gene Nextera next-generation sequencing platform designed by Illumina, covering the range of molecular abnormalities being targeted. The adaptive design allows new biomarker–drug combination cohorts to be incorporated by substantial amendment. The pre-clinical justification for each biomarker–drug combination has been rigorously assessed creating molecular exclusion rules and a trumping strategy in patients harbouring concomitant actionable genetic abnormalities. Discrete routes of pathway activation or inactivation determined by cancer genome aberrations are treated as separate cohorts. Key translational analyses include the deep genomic analysis of pre- and post-treatment biopsies, the establishment of patient-derived xenograft models and longitudinal ctDNA collection, in order to define predictive biomarkers, mechanisms of resistance and early markers of response and relapse. Conclusion The SMP2 platform will provide large scale genetic screening to inform entry into the NLMT, a trial explicitly aimed at discovering novel actionable cohorts in NSCLC. Clinical Trial ISRCTN 38344105. PMID:26410619

  7. Mercury bioaccumulation studies in the National Water-Quality Assessment Program--biological data from New York and South Carolina, 2005-2009

    USGS Publications Warehouse

    Beaulieu, Karen M.; Button, Daniel T.; Eikenberry, Barbara C. Scudder; Riva-Murray, Karen; Chasar, Lia C.; Bradley, Paul M.; Burns, Douglas A.

    2012-01-01

    The U.S. Geological Survey National Water-Quality Assessment Program conducted a multidisciplinary study from 2005–09 to investigate the bioaccumulation of mercury in streams from two contrasting environmental settings. Study areas were located in the central Adirondack Mountains region of New York and the Inner Coastal Plain of South Carolina. Fish, macroinvertebrates, periphyton (attached algae and associated material), detritus, and terrestrial leaf litter were collected. Fish were analyzed for total mercury; macroinvertebrates, periphyton, and terrestrial leaf litter were analyzed for total mercury and methylmercury; and select samples of fish, macroinvertebrates, periphyton, detritus, and terrestrial leaf litter were analyzed for stable isotopes of carbon (δ13C) and nitrogen (δ15N). This report presents methodology and data on total mercury, methylmercury, stable isotopes, and other ecologically relevant measurements in biological tissues.

  8. Chemical and biological survey of lakes and streams located in the Emerald Lake watershed, Sequoia National Park. Final report, July 1984-July 1986

    SciTech Connect

    Melack, J.M.; Cooper, S.D.; Holmes, R.W.; Sickman, J.O.; Kratz, K.

    1987-02-18

    To investigate the effects or potential effects of acidification on Sierran aquatic habitats, the authors are conducting research on Emerald Lake and its inlet and outlet streams, in Sequoia National Park, California. Emerald Lake was chosen as the focus of the authors studies because it is representative of subalpine and alpine waters in the Sierra Nevada, and is located in the southwestern Sierra where acidic inputs are likely to be greater than in other areas of the Sierra Nevada. The investigations consist of two approaches: (1) A chemical and biological monitoring program and sediment analyses to provide the time series needed to distinguish the effects of anthropogenic disturbance from natural variation; and (2) experimental investigations to examine the sensitivity of aquatic communities to acidic inputs and to predict the responses of aquatic communities to increased acidification. The research reported here began in June 1984 and continued through July 1986.

  9. Proceedings from the National Cancer Institute's Second International Workshop on the Biology, Prevention, and Treatment of Relapse after Hematopoietic Stem Cell Transplantation: introduction.

    PubMed

    Wayne, Alan S; Giralt, Sergio; Kröger, Nicolaus; Bishop, Michael R

    2013-11-01

    Despite advances in hematopoietic stem cell transplantation (HSCT) for the treatment of hematologic malignancies, relapse remains the leading cause of death after transplant. Biologic and clinical investigations are needed to combat this primary cause of death after transplantation. The National Cancer Institute held international workshops in 2009 and 2012 to help address this problem. Three major initiatives for coordinated research were proposed: 1) To establish multicenter networks for basic, translational, epidemiologic and clinical research; 2) To establish a network of biorepositories for the collection of samples before and after HSCT to aid in laboratory and clinical studies; and 3) To refine, implement and study proposed definitions for disease-specific response and relapse and for monitoring of minimal residual disease. The workshop in 2012 also featured nine presentations, summaries of which follow in three manuscripts.

  10. Patient survival and safety with biologic therapy. Results of the Mexican National Registry Biobadamex 1.0.

    PubMed

    Ventura-Ríos, Lucio; Bañuelos-Ramírez, David; Hernández-Quiroz, María del Carmen; Robles-San Román, Manuel; Irazoque-Palazuelos, Fedra; Goycochea-Robles, María Victoria

    2012-01-01

    This work reports patient treatment survival and adverse events related to Biologic Therapy (BT), identified by a multicenter ambispective registry of 2047 rheumatic patients undergoing BT and including a control group of Rheumatoid Arthritis (RA) patients not using BT. The most common diagnoses were: RA 79.09%, Ankylosing Spondilytis 7.96%, Psoriatic Arthritis 4.40%, Systemic Lupus Erythematosus 3.37%, Juvenile Idiopathic Arthritis 1.17%. A secondary analysis included 1514 cases from the total sample and was performed calculating an incidence rate of any adverse events of 178 × 1000/BT patients per year vs 1009 × 1000/control group patients per year with a 1.6 RR (95% CI 1.4-1.9). For serious adverse events the RR was: 15.4 (95% CI 3.7-63.0, P<.0001). Global BT survival was 80% at 12 months, 61% at 24 months, 52% at 36 months and 45% at 48 months and SMR: 0.23 (95% CI 0.0-49.0) for BT vs 0.00 (95% CI 0.0-0.2) for the control group. In conclusion, BT was associated to a higher infection risk and adverse events, compared to other patients. Mortality using BT was not higher than expected for general population with same gender and age.

  11. Chemokine receptor CCR7 regulates the intestinal TH1/TH17/Treg balance during Crohn's-like murine ileitis

    PubMed Central

    McNamee, Eóin N.; Masterson, Joanne C.; Veny, Marisol; Collins, Colm B.; Jedlicka, Paul; Byrne, Fergus R.; Ng, Gordon Y.; Rivera-Nieves, Jesús

    2015-01-01

    The regulation of T cell and DC retention and lymphatic egress within and from the intestine is critical for intestinal immunosurveillance; however, the cellular processes that orchestrate this balance during IBD remain poorly defined. With the use of a mouse model of TNF-driven Crohn's-like ileitis (TNFΔARE), we examined the role of CCR7 in the control of intestinal T cell and DC retention/egress during experimental CD. We observed that the frequency of CCR7-expressing TH1/TH17 effector lymphocytes increased during active disease in TNFΔARE mice and that ΔARE/CCR7−/− mice developed exacerbated ileitis and multiorgan inflammation, with a marked polarization and ileal retention of TH1 effector CD4+ T cells. Furthermore, adoptive transfer of ΔARE/CCR7−/− effector CD4+ into lymphopenic hosts resulted in ileo-colitis, whereas those transferred with ΔARE/CCR7+/+ CD4+ T cells developed ileitis. ΔARE/CCR7−/− mice had an acellular draining MLN, decreased CD103+ DC, and decreased expression of RALDH enzymes and of CD4+CD25+FoxP3+ Tregs. Lastly, a mAb against CCR7 exacerbated ileitis in TNFΔARE mice, phenocopying the effects of congenital CCR7 deficiency. Our data underscore a critical role for the lymphoid chemokine receptor CCR7 in orchestrating immune cell traffic and TH1 versus TH17 bias during chronic murine ileitis. PMID:25637591

  12. The Ccr4-Pop2-NOT mRNA Deadenylase Contributes to Septin Organization in Saccharomyces cerevisiae

    PubMed Central

    Traven, Ana; Beilharz, Traude H.; Lo, Tricia L.; Lueder, Franziska; Preiss, Thomas; Heierhorst, Jörg

    2009-01-01

    In yeast, assembly of the septins at the cell cortex is required for a series of key cell cycle events: bud-site selection, the morphogenesis and mitotic exit checkpoints, and cytokinesis. Here we establish that the Ccr4-Pop2-NOT mRNA deadenylase contributes to septin organization. mRNAs encoding regulators of septin assembly (Ccd42, Cdc24, Rga1, Rga2, Bem3, Gin4, Cla4, and Elm1) presented with short poly(A) tails at steady state in wild-type (wt) cells, suggesting their translation could be restricted by deadenylation. Deadenylation of septin regulators was dependent on the major cellular mRNA deadenylase Ccr4-Pop2-NOT, whereas the alternative deadenylase Pan2 played a minor role. Consistent with deadenylation of septin regulators being important for function, deletion of deadenylase subunits CCR4 or POP2, but not PAN2, resulted in septin morphology defects (e.g., ectopic bud-localized septin rings), particularly upon activation of the Cdc28-inhibitory kinase Swe1. Aberrant septin staining was also observed in the deadenylase-dead ccr4-1 mutant, demonstrating the deadenylase activity of Ccr4-Pop2 is required. Moreover, ccr4Δ, pop2Δ, and ccr4-1 mutants showed aberrant cell morphology previously observed in septin assembly mutants and exhibited genetic interactions with mutations that compromise septin assembly (shs1Δ, cla4Δ, elm1Δ, and gin4Δ). Mutations in the Not subunits of Ccr4-Pop2-NOT, which are thought to predominantly function in transcriptional control, also resulted in septin organization defects. Therefore, both mRNA deadenylase and transcriptional functions of Ccr4-Pop2-NOT contribute to septin organization in yeast. PMID:19487562

  13. Different GATA factors dictate CCR3 transcription in allergic inflammatory cells in a cell type-specific manner.

    PubMed

    Kong, Su-Kang; Kim, Byung Soo; Uhm, Tae Gi; Lee, Wonyong; Lee, Gap Ryol; Park, Choon-Sik; Lee, Chul-Hoon; Chung, Il Yup

    2013-06-01

    The chemokine receptor CCR3 is expressed in prominent allergic inflammatory cells, including eosinophils, mast cells, and Th2 cells. We previously identified a functional GATA element within exon 1 of the CCR3 gene that is responsible for GATA-1-mediated CCR3 transcription. Because allergic inflammatory cells exhibit distinct expression patterns of different GATA factors, we investigated whether different GATA factors dictate CCR3 transcription in a cell type-specific manner. GATA-2 was expressed in EoL-1 eosinophilic cells, GATA-1 and GATA-2 were expressed in HMC-1 mast cells, and GATA-3 was preferentially expressed in Jurkat cells. Unlike a wild-type CCR3 reporter, reporters lacking the functional GATA element were not active in any of the three cell types, implying the involvement of different GATA factors in CCR3 transcription. RNA interference assays showed that small interfering RNAs specific for different GATA factors reduced CCR3 reporter activity in a cell type-specific fashion. Consistent with these findings, chromatin immunoprecipitation and EMSA analyses demonstrated cell type-specific binding of GATA factors to the functional GATA site. More importantly, specific inhibition of the CCR3 reporter activity by different GATA small interfering RNAs was well preserved in respective cell types differentiated from cord blood; in particular, GATA-3 was entirely responsible for reporter activity in Th2 cells and replaced the role predominantly played by GATA-1 and GATA-2. These results highlight a mechanistic role of GATA factors in which cell type-specific expression is the primary determinant of transcription of the CCR3 gene in major allergic inflammatory cells.

  14. Virus entry via the alternative coreceptors CCR3 and FPRL1 differs by human immunodeficiency virus type 1 subtype.

    PubMed

    Nedellec, R; Coetzer, M; Shimizu, N; Hoshino, H; Polonis, V R; Morris, L; Mårtensson, U E A; Binley, J; Overbaugh, J; Mosier, D E

    2009-09-01

    Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding to CD4 and a chemokine receptor, most commonly CCR5. CXCR4 is a frequent alternative coreceptor (CoR) in subtype B and D HIV-1 infection, but the importance of many other alternative CoRs remains elusive. We have analyzed HIV-1 envelope (Env) proteins from 66 individuals infected with the major subtypes of HIV-1 to determine if virus entry into highly permissive NP-2 cell lines expressing most known alternative CoRs differed by HIV-1 subtype. We also performed linear regression analysis to determine if virus entry via the major CoR CCR5 correlated with use of any alternative CoR and if this correlation differed by subtype. Virus pseudotyped with subtype B Env showed robust entry via CCR3 that was highly correlated with CCR5 entry efficiency. By contrast, viruses pseudotyped with subtype A and C Env proteins were able to use the recently described alternative CoR FPRL1 more efficiently than CCR3, and use of FPRL1 was correlated with CCR5 entry. Subtype D Env was unable to use either CCR3 or FPRL1 efficiently, a unique pattern of alternative CoR use. These results suggest that each subtype of circulating HIV-1 may be subject to somewhat different selective pressures for Env-mediated entry into target cells and suggest that CCR3 may be used as a surrogate CoR by subtype B while FPRL1 may be used as a surrogate CoR by subtypes A and C. These data may provide insight into development of resistance to CCR5-targeted entry inhibitors and alternative entry pathways for each HIV-1 subtype.

  15. CCR7 as a predictive biomarker associated with computed tomography for the diagnosis of lymph node metastasis in bladder carcinoma.

    PubMed

    Chen, Jinbo; Cui, Y U; Liu, Longfei; Li, Chao; Tang, Yunhua; Zhou, X U; Qi, Lin; Zu, Xiongbing

    2016-01-01

    The aim of the present study was to investigate whether the expression levels of CC-chemokine receptor 7 (CCR7) combined with computed tomography (CT) was associated with lymph node metastasis in bladder transitional cell carcinoma (BTCC). For this purpose, 115 cases of BTCC were analyzed at the Department of Urology of Xiangya Hospital, Central South University (Changsha, China). Preoperative CT scans of abdomen and pelvis, immunohistochemistry of CCR7 expression in the tumor specimens and pathological findings for lymph node metastasis were assessed. In addition, the sensitivity, specificity and accuracy of CCR7 and CT for the diagnosis of lymph node metastasis in BTCC were evaluated separately and jointly. The expression levels of CCR7 were observed to be significantly higher in BTCC than in normal controls (P<0.01). Multivariate analysis indicated that the overexpression of CCR7 was an independent predictor for lymph node metastasis in BTCC (P<0.05). The sensitivity, specificity and accuracy of CCR7 combined with CT scan for the diagnosis of lymph node metastasis in BTCC were 92.3, 83.6 and 70.0%, respectively. By contrast, the sensitivity, specificity and accuracy of CCR7 alone were 88.1, 69.9 and 76.5%, respectively, while the sensitivity, specificity and accuracy of CT alone were 52.4, 79.5 and 69.6%, respectively. The results of the present study indicated that CCR7 is an independent predictor of lymph node metastasis in BTCC. Therefore, the use of CCR7 combined with CT may improve the accuracy of the diagnosis of lymph node metastasis in BTCC.

  16. Expression of the Chemokine Receptor Gene, CCR8, is Associated with DUSP22 Rearrangements in Anaplastic Large Cell Lymphoma

    PubMed Central

    Xing, Xiaoming; Flotte, Thomas J.; Law, Mark E.; Blahnik, Anthony J.; Chng, Wee-Joo; Huang, Gaofeng; Knudson, Ryan A.; Ketterling, Rhett P.; Porcher, Julie C.; Ansell, Stephen M.; Sidhu, Jagmohan; Dogan, Ahmet; Feldman, Andrew L.

    2014-01-01

    Anaplastic large cell lymphoma (ALCL) is one of the most common T-cell non-Hodgkin lymphomas and has two main subtypes: an ALK-positive subtype characterized by ALK gene rearrangements and an ALK-negative subtype that is poorly understood. We recently identified recurrent rearrangements of the DUSP22 locus on 6p25.3 in both primary cutaneous and systemic ALK-negative ALCLs. This study aimed to determine the relationship between these rearrangements and expression of the chemokine receptor gene, CCR8. CCR8 has skin-homing properties, and has been suggested to play a role in limiting extracutaneous spread of primary cutaneous ALCLs. However, overexpression of CCR8 also has been reported in systemic ALK-negative ALCLs. As available antibodies for CCR8 have shown lack of specificity, we examined CCR8 expression using quantitative real-time PCR in frozen tissue and RNA in situ hybridization (ISH) in paraffin tissue. Both approaches showed higher CCR8 expression in ALCLs with DUSP22 rearrangements than in non-rearranged cases (PCR: 19.5-fold increase, p=0.01; ISH: 3.3-fold increase, p=0.0008). CCR8 expression was not associated with cutaneous presentation, cutaneous biopsy site, or cutaneous involvement during the disease course. These findings suggest that CCR8 expression in ALCL is more closely related to the presence of DUSP22 rearrangements than to cutaneous involvement, and that the function of CCR8 may extend beyond its skin-homing properties in this disease. This study also underscores the utility of RNA-ISH as a paraffin-based method for investigating gene expression when reliable antibodies for immunohistochemistry are not available. PMID:25390351

  17. A Review and Synthesis of the Scientific Information Related to the Biology and Management of Species of Special Concern at Cape Hatteras National Seashore, North Carolina

    USGS Publications Warehouse

    Cohen, Jonathan B.; Erwin, R. Michael; French, John B.; Marion, Jeffrey L.; Meyers, J. Michael

    2009-01-01

    The U.S. Geological Survey's Patuxent Wildlife Research Center (PWRC) conducted a study for the National Park Service (NPS) Southeast Region, Atlanta, GA, and Cape Hatteras National Seashore (CAHA) in North Carolina to review, evaluate, and summarize the available scientific information for selected species of concern at CAHA (piping plovers, sea turtles, seabeach amaranth, American oystercatchers, and colonial waterbirds). This work consisted of reviewing the scientific literature and evaluating the results of studies that examined critical life history stages of each species, and focused on the scientific findings reported that are relevant to the management of these species and their habitats at CAHA. The chapters that follow provide the results of that review separately for each species and present scientifically based options for resource management at CAHA. Although no new original research or experimental work was conducted, this synthesis of the existing information was peer reviewed by over 15 experts with familiarity with these species. This report does not establish NPS management protocols but does highlight scientific information on the biology of these species to be considered by NPS managers who make resource management decisions at CAHA. To ensure that the best available information is considered when assessing each species of interest at CAHA, this review included published research as well as practical experience of scientists and wildlife managers who were consulted in 2005. PWRC scientists evaluated the literature, consulted wildlife managers, and produced an initial draft that was sent to experts for scientific review. Revisions based on those comments were incorporated into the document. The final draft of the document was reviewed by NPS personnel to ensure that the description of the recent status and management of these species at CAHA was accurately represented and that the report was consistent with our work agreement. The following

  18. CCR7-CCL19/CCL21-regulated dendritic cells are responsible for effectiveness of sublingual vaccination.

    PubMed

    Song, Joo-Hye; Kim, Jung-Im; Kwon, Hyung-Joon; Shim, Doo-Hee; Parajuli, Nirmala; Cuburu, Nicolas; Czerkinsky, Cecil; Kweon, Mi-Na

    2009-06-01

    Our previous studies demonstrated the potential of the sublingual (s.l.) route for delivering vaccines capable of inducing mucosal as well as systemic immune responses. Those findings prompted us to attempt to identify possible inductive mechanism of s.l. vaccination for immune responses. Within 2 h after s.l. administration with cholera toxin (CT), significantly higher numbers of MHC class II(+) cells accumulated in the s.l. mucosa. Of note, there were brisk expression levels of both CCL19 and CCL21 in cervical lymph nodes (CLN) 24 h after s.l. vaccination with CT. In reconstitution experiments using OVA-specific CD4(+) or CD8(+) T cells, s.l. vaccination elicited strong Ag-specific T cell proliferation mainly in CLN. Interestingly, Ag-specific T cell proliferation completely disappeared in CD11c-depleted and CCR7(-/-) mice but not in Langerin-depleted, macrophage-depleted, and CCR6(-/-) mice. Similar to CD4(+) T cell responses, induction of Ag-specific IgG (systemic) and IgA (mucosal) Ab responses were significantly reduced in CD11c-depleted and CCR7(-/-) mice after s.l. vaccination with OVA plus CT. Although CD8alpha(-) dendritic cells ferried Ag from the s.l. mucosa, both migratory CD8alpha(-) and resident CD8alpha(+) dendritic cells were essential to prime CD4(+) T cells in the CLN. On the basis of these findings, we believe that CCR7 expressed CD8alpha(-)CD11c(+) cells ferry Ag in the s.l. mucosa, migrate into the CLN, and share the Ag with resident CD8alpha(+)CD11c(+) cells for the initiation of Ag-specific T and B cell responses following s.l. challenge. We propose that the s.l. mucosa is one of the effective mucosal inductive sites regulated by the CCR7-CCL19/CCL21 pathway.

  19. CCR7/CCL19 controls expression of EDG-1 in T cells.

    PubMed

    Shannon, Laura A; McBurney, Tiffany M; Wells, Melissa A; Roth, Megan E; Calloway, Psachal A; Bill, Charles A; Islam, Shamima; Vines, Charlotte M

    2012-04-06

    T lymphocytes circulate between the blood, tissues, and lymph. These T cells carry out immune functions, using the C-C chemokine receptor 7 (CCR7) and its cognate ligands, CCL19 and CCL21, to enter and travel through the lymph nodes. Distinct roles for each ligand in regulating T lymphocyte trafficking have remained elusive. We report that in the human T cell line HuT78 and in primary murine T lymphocytes, signaling from CCR7/CCL19 leads to increased expression and phosphorylation of extracellular signal-regulated kinase 5 (ERK5) within eight hours of stimulation. Within 48-72 h we observed peak levels of endothelial differentiation gene 1 (EDG-1), which mediates the egress of T lymphocytes from lymph nodes. The increased expression of EDG-1 was preceded by up-regulation of its transcription factor, Krüppel-like factor 2 (KLF-2). To determine the cellular effect of disrupting ERK5 signaling from CCR7, we examined the migration of ERK5(flox/flox)/Lck-Cre murine T cells to EDG-1 ligands. While CCL19-stimulated ERK5(flox/flox) naïve T cells showed increased migration to EDG-1 ligands at 48 h, the migration of ERK5(flox/flox)/Lck-Cre T cells remained at a basal level. Accordingly, we define a novel signaling pathway that controls EDG-1 up-regulation following stimulation of T cells by CCR7/CCL19. This is the first report to link the two signaling events that control migration through the lymph nodes: CCR7 mediates entry into the lymph nodes and EDG-1 signaling controls their subsequent exit.

  20. CCR2+Ly6Chi Inflammatory Monocyte Recruitment Exacerbates Acute Disability Following Intracerebral Hemorrhage

    PubMed Central

    Hammond, Matthew D.; Taylor, Roslyn A.; Mullen, Michael T.; Ai, Youxi; Aguila, Hector L.; Mack, Matthias; Kasner, Scott E.; McCullough, Louise D.

    2014-01-01

    Intracerebral hemorrhage (ICH) is a devastating type of stroke that lacks a specific treatment. An intense immune response develops after ICH, which contributes to neuronal injury, disability, and death. However, the specific mediators of inflammation-induced injury remain unclear. The objective of the present study was to determine whether blood-derived CCR2+Ly6Chi inflammatory monocytes contribute to disability. ICH was induced in mice and the resulting inflammatory response was quantified using flow cytometry, confocal microscopy, and neurobehavioral testing. Importantly, blood-derived monocytes were distinguished from resident microglia by differential CD45 staining and by using bone marrow chimeras with fluorescent leukocytes. After ICH, blood-derived CCR2+Ly6Chi inflammatory monocytes trafficked into the brain, outnumbered other leukocytes, and produced tumor necrosis factor. Ccr2−/− mice, which have few circulating inflammatory monocytes, exhibited better motor function following ICH than control mice. Chimeric mice with wild-type CNS cells and Ccr2−/− hematopoietic cells also exhibited early improvement in motor function, as did wild-type mice after inflammatory monocyte depletion. These findings suggest that blood-derived inflammatory monocytes contribute to acute neurological disability. To determine the translational relevance of our experimental findings, we examined CCL2, the principle ligand for the CCR2 receptor, in ICH patients. Serum samples from 85 patients were collected prospectively at two hospitals. In patients, higher CCL2 levels at 24 h were independently associated with poor functional outcome at day 7 after adjusting for potential confounding variables. Together, these findings suggest that inflammatory monocytes worsen early disability after murine ICH and may represent a therapeutic target for patients. PMID:24623768