Sample records for biomass program annual

  1. 78 FR 11622 - Request for Proposals: 2013 Hazardous Fuels Woody Biomass Utilization Grant Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... the grant officer to the applicant. Grants can be for two years from the date of award. Written annual financial performance reports and semi-annual project performance reports are required and shall be submitted to the appropriate grant officer. A grant awarded under this program will generate an IRS Form...

  2. Sustainable Transportation Program 2011 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, Kathi H

    2012-06-01

    Highlights of selected research and development efforts at Oak Ridge National Laboratory funded by the Vehicle Technologies Program, Biomass Program, and Hydrogen and Fuel Cells Program of the Department of Energy, Office of Energy Efficiency and Renewable Energy; and the Department of Transportation.

  3. Environmental Sciences Division annual progress report for period ending September 30, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auerbach, S.I.; Reichle, D.E.

    1982-04-01

    Research programs from the following sections and programs are summarized: aquatic ecology, environmental resources, earth sciences, terrestrial ecology, advanced fossil energy program, toxic substances program, environmental impacts program, biomass, low-level waste research and development program, US DOE low-level waste management program, and waste isolation program.

  4. Impacts of management practices on bioenergy feedstock yield and economic feasibility on Conservation Reserve Program grasslands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Eric K.; Aberle, Ezra; Chen, Chengci

    Perennial grass mixtures planted on Conservation Reserve Program (CRP) land are a potential source of dedicated bioenergy feedstock. Long-term nitrogen (N) and harvest management are critical factors for maximizing biomass yield while maintaining the longevity of grass stands. A six-year farm-scale study was conducted to understand the impact of weather variability on biomass yield, determine optimal N fertilization and harvest timing management practices for sustainable biomass production, and estimate economic viability at six CRP sites in the United States. Precipitation during the growing season was a critical factor for annual biomass production across all regions, and annual biomass production wasmore » severely reduced when growing season precipitation was below 50% of average. The N rate of 112 kg ha -1 produced the highest biomass yield at each location. Harvest timing resulting in the highest biomass yield was site-specific and was a factor of predominant grass type, seasonal precipitation, and the number of harvests taken per year. The use of N fertilizer for yield enhancement unambiguously increased the cost of biomass regardless of the harvest timing for all six sites. The breakeven price of biomass at the farmgate ranged from 37 dollars to 311 dollars Mg -1 depending on the rate of N application, timing of harvesting, and location when foregone opportunity costs were not considered. Breakeven prices ranged from 69 dollars to 526 dollars Mg -1 when the loss of CRP land rental payments was included as an opportunity cost. Annual cost of the CRP to the federal government could be reduced by over 8% in the states included in this study; however, this would require the biomass price to be much higher than in the case where the landowner receives the CRP land rent. Lastly, this field research demonstrated the importance of long-term, farm-scale research for accurate estimation of biomass feedstock production and economic viability from perennial grasslands.« less

  5. Impacts of management practices on bioenergy feedstock yield and economic feasibility on Conservation Reserve Program grasslands

    DOE PAGES

    Anderson, Eric K.; Aberle, Ezra; Chen, Chengci; ...

    2015-12-21

    Perennial grass mixtures planted on Conservation Reserve Program (CRP) land are a potential source of dedicated bioenergy feedstock. Long-term nitrogen (N) and harvest management are critical factors for maximizing biomass yield while maintaining the longevity of grass stands. A six-year farm-scale study was conducted to understand the impact of weather variability on biomass yield, determine optimal N fertilization and harvest timing management practices for sustainable biomass production, and estimate economic viability at six CRP sites in the United States. Precipitation during the growing season was a critical factor for annual biomass production across all regions, and annual biomass production wasmore » severely reduced when growing season precipitation was below 50% of average. The N rate of 112 kg ha -1 produced the highest biomass yield at each location. Harvest timing resulting in the highest biomass yield was site-specific and was a factor of predominant grass type, seasonal precipitation, and the number of harvests taken per year. The use of N fertilizer for yield enhancement unambiguously increased the cost of biomass regardless of the harvest timing for all six sites. The breakeven price of biomass at the farmgate ranged from 37 dollars to 311 dollars Mg -1 depending on the rate of N application, timing of harvesting, and location when foregone opportunity costs were not considered. Breakeven prices ranged from 69 dollars to 526 dollars Mg -1 when the loss of CRP land rental payments was included as an opportunity cost. Annual cost of the CRP to the federal government could be reduced by over 8% in the states included in this study; however, this would require the biomass price to be much higher than in the case where the landowner receives the CRP land rent. Lastly, this field research demonstrated the importance of long-term, farm-scale research for accurate estimation of biomass feedstock production and economic viability from perennial grasslands.« less

  6. Environmental Sciences Division annual progress report for period ending September 30, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-04-01

    This annual report summarizes activities in the Aquatic Ecology, Earth Sciences, Environmental Analyses, and Terrestrial Ecology sections, as well as in the Fossil Energy, Biomass, Low-Level Waste Research and Management, and Global Carbon Cycle Programs. Separate abstracts have been prepared for each section. (ACR)

  7. Multi-Scale Mapping of Vegetation Biomass

    NASA Astrophysics Data System (ADS)

    Hudak, A. T.; Fekety, P.; Falkowski, M. J.; Kennedy, R. E.; Crookston, N.; Smith, A. M.; Mahoney, P.; Glenn, N. F.; Dong, J.; Kane, V. R.; Woodall, C. W.

    2016-12-01

    Vegetation biomass mapping at multiple scales is important for carbon inventory and monitoring, reporting, and verification (MRV). Project-level lidar collections allow biomass estimation with high confidence where associated with field plot measurements. Predictive models developed from such datasets are customarily used to generate landscape-scale biomass maps. We tested the feasibility of predicting biomass in landscapes surveyed with lidar but without field plots, by withholding plot datasets from a reduced model applied to the landscapes, and found support for a generalized model in the northern Idaho ecoregion. We are also upscaling a generalized model to all forested lands in Idaho. Our regional modeling approach is to sample the 30-m biomass predictions from the landscape-scale maps and use them to train a regional biomass model, using Landsat time series, topographic derivatives, and climate variables as predictors. Our regional map validation approach is to aggregate the regional, annual biomass predictions to the county level and compare them to annual county-level biomass summarized independently from systematic, field-based, annual inventories conducted by the US Forest Inventory and Analysis (FIA) Program nationally. A national-scale forest cover map generated independently from 2010 PALSAR data at 25-m resolution is being used to mask non-forest pixels from the aggregations. Effects of climate change on future regional biomass stores are also being explored, using biomass estimates projected from stand-level inventory data collected in the National Forests and comparing them to FIA plot data collected independently on public and private lands, projected under the same climate change scenarios, with disturbance trends extracted from the Landsat time series. Our ultimate goal is to demonstrate, focusing on the ecologically diverse Northwest region of the USA, a carbon monitoring system (CMS) that is accurate, objective, repeatable, and transparent.

  8. Compilation of 1989 Annual Reports of the Navy ELF Communications System Ecological Monitoring Program. Volume 1. Tabs A, B

    DTIC Science & Technology

    1990-08-01

    data collected in the course of forest vegetation studies. Knowledge of litter biomass production and nutrient content conversely provide one I link...system influences on such factors as solar radiation in the understory or soil nutrient status that may be affected by overstory biomass . The...amounts of red pine biomass in the plantation. Table 1.5 shows the increasing trends of average height and basal diameter of red pine at the three sites

  9. Compilation of 1988 Annual Reports of the Navy ELF (Extremely Low Frequency) Communications System Ecological Monitoring Program. Volume 1

    DTIC Science & Technology

    1989-08-01

    studies. Knowledge of litter biomass production and nutrient content conversely provide one link between the overstory and forest floor components of...system influences on such factors as solar radiation in the understory or soil nutrient status that may be affected by overstory biomass . The...should be sensitive to possible ELF related changes in the canopy of the hardwood stand. I Reduction of foliage biomass or changes in the timing of leaf

  10. Advanced concepts in biomass production and pretreatment. Annual report, April 1986-March 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiler, E.A.; Miller, F.R.; Dominy, R.E.

    1987-04-01

    The objective of the research is to develop an integrated system for methane production utilizing terrestrial biomass as the feedstock. The report provides specifics of research activities in the Texas A and M biomass program sponsored by Gas Research Institute and co-funded by Texas Agricultural Experiment Station. Researchers in the program include plant geneticists, plant physiologists, chemists, agronomists, ruminant physiologists, agricultural engineers, biochemical engineers, and agricultural economists. Major research emphases are genetic manipulation, physiology and production systems, harvesting, storage, processing and conversion systems, inhibitors, and economic and system analyses. During the past year, increasing emphasis was placed on the biologicalmore » pretreatment aspects of the program because of the critical importance of the area to the improved efficiency of the overall system. In the breeding, tissue culture, and production programs, continued substantial progress was made in identifying and characterizing sorghums that will produce high biomass yields and have improved lodging resistance and high uniformity. Economic and systems analyses provided important information regarding optimal overall systems.« less

  11. Vision for the Future of FIA: Paean to Progress, Possibilities, and Partners

    Treesearch

    Susan L. King; Charles T. Scott

    2006-01-01

    The Forest Inventory and Analysis (FIA) program of the U.S. Department of Agriculture Forest Service has made significant progress implementing the annualized inventory in 46 States in 2004. Major increases in program performance included the availability of plot data and the plots? corresponding approximate coordinates. A mill site study and biomass models were used...

  12. Integrated strategic and tactical biomass-biofuel supply chain optimization.

    PubMed

    Lin, Tao; Rodríguez, Luis F; Shastri, Yogendra N; Hansen, Alan C; Ting, K C

    2014-03-01

    To ensure effective biomass feedstock provision for large-scale biofuel production, an integrated biomass supply chain optimization model was developed to minimize annual biomass-ethanol production costs by optimizing both strategic and tactical planning decisions simultaneously. The mixed integer linear programming model optimizes the activities range from biomass harvesting, packing, in-field transportation, stacking, transportation, preprocessing, and storage, to ethanol production and distribution. The numbers, locations, and capacities of facilities as well as biomass and ethanol distribution patterns are key strategic decisions; while biomass production, delivery, and operating schedules and inventory monitoring are key tactical decisions. The model was implemented to study Miscanthus-ethanol supply chain in Illinois. The base case results showed unit Miscanthus-ethanol production costs were $0.72L(-1) of ethanol. Biorefinery related costs accounts for 62% of the total costs, followed by biomass procurement costs. Sensitivity analysis showed that a 50% reduction in biomass yield would increase unit production costs by 11%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. An empirical model for estimating annual consumption by freshwater fish populations

    USGS Publications Warehouse

    Liao, H.; Pierce, C.L.; Larscheid, J.G.

    2005-01-01

    Population consumption is an important process linking predator populations to their prey resources. Simple tools are needed to enable fisheries managers to estimate population consumption. We assembled 74 individual estimates of annual consumption by freshwater fish populations and their mean annual population size, 41 of which also included estimates of mean annual biomass. The data set included 14 freshwater fish species from 10 different bodies of water. From this data set we developed two simple linear regression models predicting annual population consumption. Log-transformed population size explained 94% of the variation in log-transformed annual population consumption. Log-transformed biomass explained 98% of the variation in log-transformed annual population consumption. We quantified the accuracy of our regressions and three alternative consumption models as the mean percent difference from observed (bioenergetics-derived) estimates in a test data set. Predictions from our population-size regression matched observed consumption estimates poorly (mean percent difference = 222%). Predictions from our biomass regression matched observed consumption reasonably well (mean percent difference = 24%). The biomass regression was superior to an alternative model, similar in complexity, and comparable to two alternative models that were more complex and difficult to apply. Our biomass regression model, log10(consumption) = 0.5442 + 0.9962??log10(biomass), will be a useful tool for fishery managers, enabling them to make reasonably accurate annual population consumption predictions from mean annual biomass estimates. ?? Copyright by the American Fisheries Society 2005.

  14. Compilation of 1991 Annual Report of the Navy ELF Communications System Ecological Monitoring Program. Volume 1. Tabs A-B

    DTIC Science & Technology

    1992-08-01

    radiation in the understory or soil nutrient status that may be affected by overstory biomass . The initiation and schedule of each phase of the...possible ELF induced changes in the canopy of the hardwood stand. Reduction of foliage biomass or changes in the timing of leaf expansion would alter...of total N and climate related variables. Backaround The conversion of organically bound N to inorganic N (mineralization) describes two distinct

  15. Cindy Gerk | NREL

    Science.gov Websites

    results, and working closely with industry and DOE serving as a Project Leader and a Principal Investigator Management of reporting requirements to DOE for financial forecasts, milestone reports, and annual operating plans Management of communications projects for the NREL Biomass program and Bioenergy

  16. 76 FR 30276 - Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Annual Specifications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... on formulas applied to current biomass estimates. Conversely, annual biomass estimates are not... sardine biomass estimate of 537,173 mt. When this biomass estimate is applied to the harvest control rule... adoption by the Council as the best available science for the management of Pacific sardine in 2011. Other...

  17. Herbaceous crops for energy in Italy: Present status of the research program promoted by ENEL (Italian Electric Company)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schenone, G.

    The paper presents a synthesis of the main results of the research program promoted by ENEL (Italian Electric Company) on herbaceous energy crops. The objective of the program is to evaluate the potentials of different species and cultivars for biomass fuel production in Italy. For the most promising species, all the links of the chain from cultivation to delivery at the plant gate at the lowest possible cost have to be organized. So far the following species gave annual productivities above 20 dry tons/ha: fiber sorghum (Sorghum sp.); miscanthus (Miscanthus sinensis); and giant reed (Arundo donax). The highest biomass yields,more » well above 40 dry tons/ha in several trials, were given by giant reed.« less

  18. Missouri's forest resources, 2005

    Treesearch

    W. Keith Moser; Mark H. Hansen; Gary J. Brand; Thomas B. Treiman

    2007-01-01

    The U.S. Forest Service, Northern Research Station's Forest Inventory and Analysis program is continuing its annual inventory of Missouri's forest resources. This report presents estimates of area, volume, and biomass using data for 2005, and growth, removals, and mortality using data for the most recent remeasurement period. Estimates from this inventory...

  19. Forecasting fish biomasses, densities, productions, and bioaccumulation potentials of mid-atlantic wadeable streams.

    PubMed

    Barber, M Craig; Rashleigh, Brenda; Cyterski, Michael J

    2016-01-01

    Regional fishery conditions of Mid-Atlantic wadeable streams in the eastern United States are estimated using the Bioaccumulation and Aquatic System Simulator (BASS) bioaccumulation and fish community model and data collected by the US Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP). Average annual biomasses and population densities and annual productions are estimated for 352 randomly selected streams. Realized bioaccumulation factors (BAF) and biomagnification factors (BMF), which are dependent on these forecasted biomasses, population densities, and productions, are also estimated by assuming constant water exposures to methylmercury and tetra-, penta-, hexa-, and hepta-chlorinated biphenyls. Using observed biomasses, observed densities, and estimated annual productions of total fish from 3 regions assumed to support healthy fisheries as benchmarks (eastern Tennessee and Catskill Mountain trout streams and Ozark Mountains smallmouth bass streams), 58% of the region's wadeable streams are estimated to be in marginal or poor condition (i.e., not healthy). Using simulated BAFs and EMAP Hg fish concentrations, we also estimate that approximately 24% of the game fish and subsistence fishing species that are found in streams having detectable Hg concentrations would exceed an acceptable human consumption criterion of 0.185 μg/g wet wt. Importantly, such streams have been estimated to represent 78.2% to 84.4% of the Mid-Atlantic's wadeable stream lengths. Our results demonstrate how a dynamic simulation model can support regional assessment and trends analysis for fisheries. © 2015 SETAC.

  20. Combining ground-based measurements and satellite-based spectral vegetation indices to track biomass accumulation in post-fire chaparral

    NASA Astrophysics Data System (ADS)

    Uyeda, K. A.; Stow, D. A.; Roberts, D. A.; Riggan, P. J.

    2015-12-01

    Multi-temporal satellite imagery can provide valuable information on patterns of vegetation growth over large spatial extents and long time periods, but corresponding ground-referenced biomass information is often difficult to acquire, especially at an annual scale. In this study, I test the relationship between annual biomass estimated using shrub growth rings and metrics of seasonal growth derived from Moderate Resolution Imaging Spectroradiometer (MODIS) spectral vegetation indices (SVIs) for a small area of southern California chaparral to evaluate the potential for mapping biomass at larger spatial extents. The site had most recently burned in 2002, and annual biomass accumulation measurements were available from years 5 - 11 post-fire. I tested metrics of seasonal growth using six SVIs (Normalized Difference Vegetation Index, Enhanced Vegetation Index, Soil Adjusted Vegetation Index, Normalized Difference Water Index, Normalized Difference Infrared Index 6, and Vegetation Atmospherically Resistant Index). While additional research would be required to determine which of these metrics and SVIs are most promising over larger spatial extents, several of the seasonal growth metrics/ SVI combinations have a very strong relationship with annual biomass, and all SVIs have a strong relationship with annual biomass for at least one of the seasonal growth metrics.

  1. Estimation of optimal biomass fraction measuring cycle formunicipal solid waste incineration facilities in Korea.

    PubMed

    Kang, Seongmin; Cha, Jae Hyung; Hong, Yoon-Jung; Lee, Daekyeom; Kim, Ki-Hyun; Jeon, Eui-Chan

    2018-01-01

    This study estimates the optimum sampling cycle using a statistical method for biomass fraction. More than ten samples were collected from each of the three municipal solid waste (MSW) facilities between June 2013 and March 2015 and the biomass fraction was analyzed. The analysis data were grouped into monthly, quarterly, semi-annual, and annual intervals and the optimum sampling cycle for the detection of the biomass fraction was estimated. Biomass fraction data did not show a normal distribution. Therefore, the non-parametric Kruskal-Wallis test was applied to compare the average values for each sample group. The Kruskal-Wallis test results showed that the average monthly, quarterly, semi-annual, and annual values for all three MSW incineration facilities were equal. Therefore, the biomass fraction at the MSW incineration facilities should be calculated on a yearly cycle which is the longest period of the temporal cycles tested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The effect of blurred plot coordinates on interpolating forest biomass: a case study

    Treesearch

    J. W. Coulston

    2004-01-01

    Interpolated surfaces of forest attributes are important analytical tools and have been used in risk assessments, forest inventories, and forest health assessments. The USDA Forest Service Forest Inventory and Analysis program (FIA) annually collects information on forest attributes in a consistent fashion nation-wide. Users of these data typically perform...

  3. Ethanol annual report FY 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Texeira, R.H.; Goodman, B.J.

    This report summarizes the research progress and accomplishments of the US Department of Energy (DOE) Ethanol from Biomass Program, field managed by the Solar Energy Research Institute, during FY 1990. The report includes an overview of the entire program and summaries of individual research projects. These projects are grouped into the following subject areas: technoeconomic analysis; pretreatment; cellulose conversion; xylose fermentation; and lignin conversion. Individual papers have been indexed separately for inclusion on the data base.

  4. 50 CFR 648.55 - Framework adjustments to management measures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... criteria. Rotational Closures should be considered where projected annual change in scallop biomass is... annual change in scallop biomass is less than 15 percent. (b) The preparation of the SAFE Report shall... calculate the stock biomass and fishing mortality for the entire unit stock and consider all sources of...

  5. Investigating organic matter in Fanno Creek, Oregon, Part 1 of 3: estimating annual foliar biomass for a deciduous-dominant urban riparian corridor

    USGS Publications Warehouse

    Sobieszczyk, Steven; Keith, Mackenzie K.; Rounds, Stewart A.; Goldman, Jami H.

    2014-01-01

    For this study, we explored the amount, type, and distribution of foliar biomass that is deposited annually as leaf litter to Fanno Creek and its floodplain in Portland, Oregon, USA. Organic matter is a significant contributor to the decreased dissolved oxygen concentrations observed in Fanno Creek each year and leaf litter is amongst the largest sources of organic matter to the stream channel and floodplain. Using a combination of field measurements and light detection and ranging (LiDAR) point cloud data, the annual foliar biomass was estimated for 13 stream reaches along the creek. Biomass estimates were divided into two sets: (1) the annual foliage available from the entire floodplain overstory canopy, and (2) the annual foliage overhanging the stream, which likely contributes leaf litter directly to the creek each year. Based on these computations, an estimated 991 (±22%) metric tons (tonnes, t) of foliar biomass is produced annually above the floodplain, with about 136 t (±24%) of that foliage falling directly into Fanno Creek. The distribution of foliar biomass varies by reach, with between 150 and 640 t/km2 produced along the floodplain and between 400 and 1100 t/km2 available over the channel. Biomass estimates vary by reach based primarily on the density of tree cover, with forest-dominant reaches containing more mature deciduous trees with broader tree canopies than either wetland or urban-dominant reaches, thus supplying more organic material to the creek. By quantifying the foliar biomass along Fanno Creek we have provided a reach-scale assessment of terrestrial organic matter loading, thereby providing land managers useful information for planning future restoration efforts.

  6. Investigating organic matter in Fanno Creek, Oregon, Part 1 of 3: Estimating annual foliar biomass for a deciduous-dominant urban riparian corridor

    NASA Astrophysics Data System (ADS)

    Sobieszczyk, Steven; Keith, Mackenzie K.; Rounds, Stewart A.; Goldman, Jami H.

    2014-11-01

    For this study, we explored the amount, type, and distribution of foliar biomass that is deposited annually as leaf litter to Fanno Creek and its floodplain in Portland, Oregon, USA. Organic matter is a significant contributor to the decreased dissolved oxygen concentrations observed in Fanno Creek each year and leaf litter is amongst the largest sources of organic matter to the stream channel and floodplain. Using a combination of field measurements and light detection and ranging (LiDAR) point cloud data, the annual foliar biomass was estimated for 13 stream reaches along the creek. Biomass estimates were divided into two sets: (1) the annual foliage available from the entire floodplain overstory canopy, and (2) the annual foliage overhanging the stream, which likely contributes leaf litter directly to the creek each year. Based on these computations, an estimated 991 (±22%) metric tons (tonnes, t) of foliar biomass is produced annually above the floodplain, with about 136 t (±24%) of that foliage falling directly into Fanno Creek. The distribution of foliar biomass varies by reach, with between 150 and 640 t/km2 produced along the floodplain and between 400 and 1100 t/km2 available over the channel. Biomass estimates vary by reach based primarily on the density of tree cover, with forest-dominant reaches containing more mature deciduous trees with broader tree canopies than either wetland or urban-dominant reaches, thus supplying more organic material to the creek. By quantifying the foliar biomass along Fanno Creek we have provided a reach-scale assessment of terrestrial organic matter loading, thereby providing land managers useful information for planning future restoration efforts.

  7. Bidirectional recovery patterns of Mojave Desert vegetation in an aqueduct pipeline corridor after 36 years: II. Annual plants

    USGS Publications Warehouse

    Berry, Kristin H.; Mack, Jeremy S.; Weigand, James F.; Gowan, Timothy A.; LaBerteaux, Denise

    2015-01-01

    We studied recovery of winter annual plants in a 97-m wide disturbed aqueduct corridor in the Mojave Desert 36 years after construction. We established plots at 0, 20, and 40 m from the road verge at the corridor center and at 100 m in undisturbed vegetation. We recorded 47 annual species, of which 41 were native and six were exotic. Exotic species composed from 64 to 91% of total biomass. We describe a bilateral process of recovery: from the road verge to the outward edge of the corridor and from undisturbed habitat into the corridor. Native annual plants significantly increased in richness from road verge to undisturbed vegetation, but not in density, biomass, or cover. In contrast, exotic annual plants increased in density, biomass, cover and richness with increasing distance from the road verge. The species of colonizing shrubs and type of canopy cover affected density, biomass, and richness of annuals. Species composition of native annuals differed significantly by distance, suggesting secondary succession. In general, native annuals were closer to achieving recovery on the 40-m plots than at the road verge. Recovery estimates were in centuries and dependent on location, canopy type, and whether considering all annuals or natives only.

  8. Controlling cheatgrass in winter range to restore habitat and endemic fire

    Treesearch

    Jennifer L. Vollmer; Joseph G. Vollmer

    2008-01-01

    Habitat managers can better prepare a program for prescribed burns, wildfire management, and maximum forage biomass by understanding the response of key shrubs to the tools utilized to reduce cheatgrass (Bromus spp.) competition. Application of Plateau® herbicide, prior to annual brome germination, at rates up to 8 oz/acre with or without surfactant...

  9. Physiological variation among native and exotic winter annual plants associated with microbiotic crusts in the Mojave Desert

    USGS Publications Warehouse

    DeFalco, L.A.; Detling, J.K.; Tracy, C.R.; Warren, S.D.

    2001-01-01

    Microbiotic crusts are important components of many aridland soils. Research on crusts typically focuses on the increase in soil fertility due to N-fixing micro-organisms, the stabilization of soils against water and wind erosion and the impact of disturbance on N-cycling. The effect of microbiotic crusts on the associated plant community has received little attention. We quantified the influence of crusts on the production, species diversity, nutrient content and water relations of winter annual plant species associated with microbiotic soil crusts in the northeast Mojave Desert. Shoot biomass of winter annuals was 37% greater and plant density was 77% greater on crusts than were biomass and density on soils lacking crust cover (=bare soils). This greater production of annuals on crusts was likely due to enhanced soil conditions including an almost two-fold increase in soil organic matter and inorganic N compared to bare soils. Crusted soils also had 53% greater volumetric water content than bare soils during November and December, the time when winter annuals become established. As plant development progressed into spring, however, soil water availability decreased: More negative plant xylem water potentials were associated with greater plant biomass on crusted soils. Plants associated with microbiotic soil crusts had lower concentrations of N in shoots (mg N g-1 dry mass). However, total shoot N (mg N m-2) was the same in plants growing on the different soil types when biomass production peaked in April. Shoots had similar patterns in their concentration and content of P. Species diversity of annuals was not statistically different between the two soil types. Yet, while native annuals comprised the greatest proportion of shoot biomass on bare soils, exotic forbs and grasses produced more biomass on crusts. Total shoot nutrient content (biomass x concentration) of the two exotic annual species examined was dramatically greater on crusts than bare soils; only one native species had greater shoot content of N and P when growing on crusts than bare soils. Microbiotic crusts appear to increase site fertility in the northeast Mojave Desert, but nutrients and water distributed within a greater biomass of annual plants growing on microbiotic crusts likely resulted in lower concentrations of nutrients in plant tissue and lower xylem pressure potentials than plants growing on bare soils. Exotic annuals growing on crusts appear to respond to the higher N availability by growing faster, potentially outcompeting native annual species.

  10. Physiological variation among native and exotic winter annuals associated with microphytic soil crusts in the Mojave Desert

    USGS Publications Warehouse

    DeFalco, Lesley; Detling, James K.; Tracy, C. Richard; Warren, Steven D.

    2001-01-01

    Microbiotic crusts are important components of many aridland soils. Research on crusts typically focuses on the increase in soil fertility due to N-fixing micro-organisms, the stabilization of soils against water and wind erosion and the impact of disturbance on N-cycling. The effect of microbiotic crusts on the associated plant community has received little attention. We quantified the influence of crusts on the production, species diversity, nutrient content and water relations of winter annual plant species associated with microbiotic soil crusts in the northeast Mojave Desert. Shoot biomass of winter annuals was 37% greater and plant density was 77% greater on crusts than were biomass and density on soils lacking crust cover (=bare soils). This greater production of annuals on crusts was likely due to enhanced soil conditions including an almost two-fold increase in soil organic matter and inorganic N compared to bare soils. Crusted soils also had 53% greater volumetric water content than bare soils during November and December, the time when winter annuals become established. As plant development progressed into spring, however, soil water availability decreased: More negative plant xylem water potentials were associated with greater plant biomass on crusted soils. Plants associated with microbiotic soil crusts had lower concentrations of N in shoots (mg N g−1 dry mass). However, total shoot N (mg N m−2) was the same in plants growing on the different soil types when biomass production peaked in April. Shoots had similar patterns in their concentration and content of P. Species diversity of annuals was not statistically different between the two soil types. Yet, while native annuals comprised the greatest proportion of shoot biomass on bare soils, exotic forbs and grasses produced more biomass on crusts. Total shoot nutrient content (biomass×concentration) of the two exotic annual species examined was dramatically greater on crusts than bare soils; only one native species had greater shoot content of N and P when growing on crusts than bare soils. Microbiotic crusts appear to increase site fertility in the northeast Mojave Desert, but nutrients and water distributed within a greater biomass of annual plants growing on microbiotic crusts likely resulted in lower concentrations of nutrients in plant tissue and lower xylem pressure potentials than plants growing on bare soils. Exotic annuals growing on crusts appear to respond to the higher N availability by growing faster, potentially outcompeting native annual species.

  11. Biomass and nutrient allocation strategies in a desert ecosystem in the Hexi Corridor, northwest China.

    PubMed

    Zhang, Ke; Su, YongZhong; Yang, Rong

    2017-07-01

    The allocation of biomass and nutrients in plants is a crucial factor in understanding the process of plant structures and dynamics to different environmental conditions. In this study, we present a comprehensive scaling analysis of data from a desert ecosystem to determine biomass and nutrient (carbon (C), nitrogen (N), and phosphorus (P)) allocation strategies of desert plants from 40 sites in the Hexi Corridor. We found that the biomass and levels of C, N, and P storage were higher in shoots than in roots. Roots biomass and nutrient storage were concentrated at a soil depth of 0-30 cm. Scaling relationships of biomass, C storage, and P storage between shoots and roots were isometric, but that of N storage was allometric. Results of a redundancy analysis (RDA) showed that soil nutrient densities were the primary factors influencing biomass and nutrient allocation, accounting for 94.5% of the explained proportion. However, mean annual precipitation was the primary factor influencing the roots biomass/shoots biomass (R/S) ratio. Furthermore, Pearson's correlations and regression analyses demonstrated that although the biomass and nutrients that associated with functional traits primarily depended on soil conditions, mean annual precipitation and mean annual temperature had greater effects on roots biomass and nutrient storage.

  12. Estimating annual bole biomass production using uncertainty analysis

    Treesearch

    Travis J. Woolley; Mark E. Harmon; Kari B. O' Connell

    2007-01-01

    Two common sampling methodologies coupled with a simple statistical model were evaluated to determine the accuracy and precision of annual bole biomass production (BBP) and inter-annual variability estimates using this type of approach. We performed an uncertainty analysis using Monte Carlo methods in conjunction with radial growth core data from trees in three Douglas...

  13. Annual variation in reproductive success and biomass of the major macrozoobenthic species living in a tidal flat area of the Wadden Sea

    NASA Astrophysics Data System (ADS)

    Beukema, J. J.

    Annual variation in recruitment and biomass was studied during 13 years for the 5 species contributing most to total zoobenthic biomass in a tidal flat area in the westernmost part of the Wadden Sea. In all of these species annual biomass values tended to be more stable than numbers of recruits. In Cerastoderma edule and in Mytilus edulis recruitment variability was high, and was passed on almost completely to biomass, probably as a consequence of rapid juvenile growth and a high mortality, also in the adult stage, leaving few year-classes in the population. In Arenicola marina and in Mya arenaria biomass values varied much less than recruit numbers. Both species showed a low adult mortality rate with many year-classes present in the population, holding many old and heavy specimens that dominated biomass. Macoma balathica took an intermediate position in these respects. Recruitment was relatively stable in Arenicola and was probably controlled by the high numbers of adults. Recruitment variability was fairly low too in Macoma, but in this species juvenile mortality appeared to be directly related to their own density. Successful and poor years for recruitment were roughly the same for the 4 bivalve species. Particularly heavy spatfall was found during the summer following the severe 1978-1979 winter. Such synchronized recruitment does not fully add to variability in annual biomass values as the time needed for the recruted cohorts to reach maximum biomass values differs greatly between most of the high-biomass species.

  14. Marine biomass program: plant breeding and genetics. Annual report, September 1984-December 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neushul, M.; Harger, B.W.W.; Lewis, R.J.

    1986-03-01

    By building on past efforts and adding to the data base that has been assembled, and through collaborative research with others, progress has been made toward the long-term goal of growing macroalgae in the sea as a future source of substitute natural gas. It is encouraging that the authors program is being emulated in Japan and Sweden, and that there is growing interest in using the unique GRI kelp seedstock collection by workers in Germany, Japan, Alaska, Oregon, California, and elsewhere. This annual report discusses progress made in propagating kelps, and the floating gulf-weed, Sargassum. Work on kelp genetics hasmore » revealed high levels of compatability between species and genera, based on 166 hybridization tests.« less

  15. SPRUCE Epiphytic Lichen Annual Biomass Growth in Experimental Plots, 2013-2016.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.J.; Nelson, P.R.; Jovan, S.

    This data set provides annual biomass growth rates of epiphytic lichen transplants in the SPRUCE experimental plots at the S1 Bog of the Marcell Experimental Forest. Epiphytic lichens (Evernia mesomorpha, a boreal forest indicator species) were collected at S1 Bog outside the experimental enclosures and mounted on Picea mariana branches inside the 10 experimental enclosures and the 2 ambient plots without enclosures using transplant techniques. Lichen transplants were weighed annually, in August of 2013-2016, to measure biomass growth rates as a function of experimental temperature and CO2 treatments.

  16. Combining ground-based measurements and MODIS-based spectral vegetation indices to track biomass accumulation in post-fire chaparral

    Treesearch

    Kellie A. Uyeda; Douglas A. Stow; Dar A. Roberts; Philip J. Riggan

    2017-01-01

    Multi-temporal satellite imagery can provide valuable information on the patterns of vegetation growth over large spatial extents and long time periods, but corresponding ground-referenced biomass information is often difficult to acquire, especially at an annual scale. In this study, we test the relationship between annual biomass estimated using shrub growth rings...

  17. Biomass Production of 12-Year-Old Intensively Cultured Larix Eurolepis

    Treesearch

    Jerry Zavitkovski; Terry Strong

    1984-01-01

    Between 9 and 12 years Larix eurolepis grew annually about 1.3 m in height and 0.6 cm in diameter. In plots with 0.8 to 1.5 m(2) of growing space, total woody biomass increased from 70.1 to 98.8 mt/ha, and the mean annual biomass increment from 7.8 to 8.2 mt/ha.

  18. Biomass burning contributions to urban aerosols in a coastal Mediterranean city.

    PubMed

    Reche, C; Viana, M; Amato, F; Alastuey, A; Moreno, T; Hillamo, R; Teinilä, K; Saarnio, K; Seco, R; Peñuelas, J; Mohr, C; Prévôt, A S H; Querol, X

    2012-06-15

    Mean annual biomass burning contributions to the bulk particulate matter (PM(X)) load were quantified in a southern-European urban environment (Barcelona, Spain) with special attention to typical Mediterranean winter and summer conditions. In spite of the complexity of the local air pollution cocktail and the expected low contribution of biomass burning emissions to PM levels in Southern Europe, the impact of these emissions was detected at an urban background site by means of tracers such as levoglucosan, K(+) and organic carbon (OC). The significant correlation between levoglucosan and OC (r(2)=0.77) and K(+) (r(2)=0.65), as well as a marked day/night variability of the levoglucosan levels and levoglucosan/OC ratios was indicative of the contribution from regional scale biomass burning emissions during night-time transported by land breezes. In addition, on specific days (21-22 March), the contribution from long-range transported biomass burning aerosols was detected. Quantification of the contribution of biomass burning aerosols to PM levels on an annual basis was possible by means of the Multilinear Engine (ME). Biomass burning emissions accounted for 3% of PM(10) and PM(2.5) (annual mean), while this percentage increased up to 5% of PM(1). During the winter period, regional-scale biomass burning emissions (agricultural waste burning) were estimated to contribute with 7±4% of PM(2.5) aerosols during night-time (period when emissions were clearly detected). Long-range transported biomass burning aerosols (possibly from forest fires and/or agricultural waste burning) accounted for 5±2% of PM(2.5) during specific episodes. Annually, biomass burning emissions accounted for 19%-21% of OC levels in PM(10), PM(2.5) and PM(1). The contribution of this source to K(+) ranged between 48% for PM(10) and 97% for PM(1) (annual mean). Results for K(+) from biomass burning evidenced that this tracer is mostly emitted in the fine fraction, and thus coarse K(+) could not be taken as an appropriate tracer of biomass burning. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Can native annual forbs reduce Bromus tectorum biomass and indirectly facilitate establishment of a native perennial grass?

    Treesearch

    Elizabeth A. Leger; Erin M. Goergen; Tara Forbis de Queiroz

    2014-01-01

    Restoration is challenging in systems invaded by competitive, disturbance oriented plants, but greater success may be achieved by mimicking natural successional processes and including disturbanceoriented natives in a seed mix. We asked whether seven native annual forbs from the Great Basin Desert, USA, were capable of reducing biomass of the invasive annual grass...

  20. A comparison of two above-ground biomass estimation techniques integrating satellite-based remotely sensed data and ground data for tropical and semiarid forests in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Iiames, J. S.; Riegel, J.; Lunetta, R.

    2013-12-01

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA) program. The U.S. Environmental Protection Agency (EPA) estimated above-ground forest biomass implementing methodology first posited by the Woods Hole Research Center developed for conterminous United States (National Biomass and Carbon Dataset [NBCD2000]). For EPA's effort, spatial predictor layers for above-ground biomass estimation included derived products from the U.S. Geologic Survey (USGS) National Land Cover Dataset 2001 (NLCD) (landcover and canopy density), the USGS Gap Analysis Program (forest type classification), the USGS National Elevation Dataset, and the NASA Shuttle Radar Topography Mission (tree heights). In contrast, the U.S. Forest Service (USFS) biomass product integrated FIA ground-based data with a suite of geospatial predictor variables including: (1) the Moderate Resolution Imaging Spectrometer (MODIS)-derived image composites and percent tree cover; (2) NLCD land cover proportions; (3) topographic variables; (4) monthly and annual climate parameters; and (5) other ancillary variables. Correlations between both data sets were made at variable watershed scales to test level of agreement. Notice: This work is done in support of EPA's Sustainable Healthy Communities Research Program. The U.S EPA funded and conducted the research described in this paper. Although this work was reviewed by the EPA and has been approved for publication, it may not necessarily reflect official Agency policy. Mention of any trade names or commercial products does not constitute endorsement or recommendation for use.

  1. NREL: International Activities - Biomass Resource Assessment

    Science.gov Websites

    Biomass Resource Assessment Map showing annual productivity of marginal lands in APEC economies . Biomass resource assessments quantify the existing or potential biomass material in a given area. Biomass biomass resources could be used to produce power, heat, transportation fuels, and various chemical

  2. Measuring and modeling carbon stock change estimates for US forests and uncertainties from apparent inter-annual variability

    Treesearch

    James E. Smith; Linda S. Heath

    2015-01-01

    Our approach is based on a collection of models that convert or augment the USDA Forest Inventory and Analysis program survey data to estimate all forest carbon component stocks, including live and standing dead tree aboveground and belowground biomass, forest floor (litter), down deadwood, and soil organic carbon, for each inventory plot. The data, which include...

  3. The limited contribution of large trees to annual biomass production in an old-growth tropical forest.

    PubMed

    Ligot, Gauthier; Gourlet-Fleury, Sylvie; Ouédraogo, Dakis-Yaoba; Morin, Xavier; Bauwens, Sébastien; Baya, Fidele; Brostaux, Yves; Doucet, Jean-Louis; Fayolle, Adeline

    2018-04-16

    Although the importance of large trees regarding biodiversity and carbon stock in old-growth forests is undeniable, their annual contribution to biomass production and carbon uptake remains poorly studied at the stand level. To clarify the role of large trees in biomass production, we used data of tree growth, mortality, and recruitment monitored during 20 yr in 10 4-ha plots in a species-rich tropical forest (Central African Republic). Using a random block design, three different silvicultural treatments, control, logged, and logged + thinned, were applied in the 10 plots. Annual biomass gains and losses were analyzed in relation to the relative biomass abundance of large trees and by tree size classes using a spatial bootstrap procedure. Although large trees had high individual growth rates and constituted a substantial amount of biomass, stand-level biomass production decreased with the abundance of large trees in all treatments and plots. The contribution of large trees to annual stand-level biomass production appeared limited in comparison to that of small trees. This pattern did not only originate from differences in abundance of small vs. large trees or differences in initial biomass stocks among tree size classes, but also from a reduced relative growth rate of large trees and a relatively constant mortality rate among tree size classes. In a context in which large trees are increasingly gaining attention as being a valuable and a key structural characteristic of natural forests, the present study brought key insights to better gauge the relatively limited role of large trees in annual stand-level biomass production. In terms of carbon uptake, these results suggest, as already demonstrated, a low net carbon uptake of old-growth forests in comparison to that of logged forests. Tropical forests that reach a successional stage with relatively high density of large trees progressively cease to be carbon sinks as large trees contribute sparsely or even negatively to the carbon uptake at the stand level. © 2018 by the Ecological Society of America.

  4. Challenges and models in supporting logistics system design for dedicated-biomass-based bioenergy industry.

    PubMed

    Zhu, Xiaoyan; Li, Xueping; Yao, Qingzhu; Chen, Yuerong

    2011-01-01

    This paper analyzed the uniqueness and challenges in designing the logistics system for dedicated biomass-to-bioenergy industry, which differs from the other industries, due to the unique features of dedicated biomass (e.g., switchgrass) including its low bulk density, restrictions on harvesting season and frequency, content variation with time and circumambient conditions, weather effects, scattered distribution over a wide geographical area, and so on. To design it, this paper proposed a mixed integer linear programming model. It covered from planting and harvesting switchgrass to delivering to a biorefinery and included the residue handling, concentrating on integrating strategic decisions on the supply chain design and tactical decisions on the annual operation schedules. The present numerical examples verified the model and demonstrated its use in practice. This paper showed that the operations of the logistics system were significantly different for harvesting and non-harvesting seasons, and that under the well-designed biomass logistics system, the mass production with a steady and sufficient supply of biomass can increase the unit profit of bioenergy. The analytical model and practical methodology proposed in this paper will help realize the commercial production in biomass-to-bioenergy industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. The carbon cycle and hurricanes in the United States between 1900 and 2011.

    PubMed

    Dahal, Devendra; Liu, Shuguang; Oeding, Jennifer

    2014-06-06

    Hurricanes cause severe impacts on forest ecosystems in the United States. These events can substantially alter the carbon biogeochemical cycle at local to regional scales. We selected all tropical storms and more severe events that made U.S. landfall between 1900 and 2011 and used hurricane best track database, a meteorological model (HURRECON), National Land Cover Database (NLCD), U. S. Department of Agirculture Forest Service biomass dataset, and pre- and post-MODIS data to quantify individual event and annual biomass mortality. Our estimates show an average of 18.2 TgC/yr of live biomass mortality for 1900-2011 in the US with strong spatial and inter-annual variability. Results show Hurricane Camille in 1969 caused the highest aboveground biomass mortality with 59.5 TgC. Similarly 1954 had the highest annual mortality with 68.4 TgC attributed to landfalling hurricanes. The results presented are deemed useful to further investigate historical events, and the methods outlined are potentially beneficial to quantify biomass loss in future events.

  6. Genetic Regulation of Grass Biomass Accumulation and Biological Conversion Quality (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazen, Sam

    2013-03-01

    Sam Hazen of the University of Massachusetts on "Genetic Regulation of Grass Biomass Accumulation and Biological Conversion Quality" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, CA.

  7. Independent Assessment of Technology Characterizations to Support the Biomass Program Annual State-of-Technology Assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, B.

    2011-03-01

    This report discusses an investigation that addressed two thermochemical conversion pathways for the production of liquid fuels and addressed the steps to the process, the technology providers, a method for determining the state of technology and a tool to continuously assess the state of technology. This report summarizes the findings of the investigation as well as recommendations for improvements for future studies.

  8. Estimating the carbon dynamics of South Korean forests from 1954 to 2012

    NASA Astrophysics Data System (ADS)

    Lee, J.; Yoon, T. K.; Han, S.; Kim, S.; Yi, M. J.; Park, G. S.; Kim, C.; Son, Y. M.; Kim, R.; Son, Y.

    2014-09-01

    Forests play an important role in the global carbon (C) cycle, and the South Korean forests also contribute to this global C cycle. While the South Korean forest ecosystem was almost completely destroyed by exploitation and the Korean War, it has successfully recovered because of national-scale reforestation programs since 1973. There have been several studies on the estimation of C stocks and balances over the past decades in the South Korean forests. However, a retrospective long-term study that includes biomass and dead organic matter C and validates dead organic matter C is still lacking. Accordingly, we estimated the C stocks and their changes of both biomass and dead organic matter C during the 1954-2012 period using a process-based model, the Korean Forest Soil Carbon model, and the 5th South Korean national forest inventory (NFI) report. Validation processes were also conducted based on the 5th NFI and statistical data. Simulation results showed that the biomass C stocks increased from 36.4 to 440.4 Tg C at a rate of 7.0 Tg C yr-1 during the period 1954-2012. The dead organic matter C stocks increased from 386.0 to 463.1 Tg C at a rate of 1.3 Tg C yr-1 during the same period. The estimates of biomass and dead organic matter C stocks agreed well with observed C stock data. The annual net biome production (NBP) during the period 1954-2012 was 141.3 g C m-2 yr-1, which increased from -8.8 g C m-2 yr-1 in 1955 to 436.6 g C m-2 yr-1 in 2012. Because of the small forested area, the South Korean forests had a comparatively lower contribution to the annual C sequestration by global forests. In contrast, because of the extensive reforestation programs, the NBP of South Korean forests was much higher than those of other countries. Our results could provide the forest C dynamics in South Korean forests before and after the onset of reforestation programs.

  9. Biogeographical patterns of biomass allocation in leaves, stems, and roots in China's forests.

    PubMed

    Zhang, Hao; Wang, Kelin; Xu, Xianli; Song, Tongqing; Xu, Yanfang; Zeng, Fuping

    2015-11-03

    To test whether there are general patterns in biomass partitioning in relation to environmental variation when stand biomass is considered, we investigated biomass allocation in leaves, stems, and roots in China's forests using both the national forest inventory data (2004-2008) and our field measurements (2011-2012). Distribution patterns of leaf, stem, and root biomass showed significantly different trends according to latitude, longitude, and altitude, and were positively and significantly correlated with stand age and mean annual precipitation. Trade-offs among leaves, stems, and roots varied with forest type and origin and were mainly explained by stand biomass. Based on the constraints of stand biomass, biomass allocation was also influenced by forest type, origin, stand age, stand density, mean annual temperature, precipitation, and maximum temperature in the growing season. Therefore, after stand biomass was accounted for, the residual variation in biomass allocation could be partially explained by stand characteristics and environmental factors, which may aid in quantifying carbon cycling in forest ecosystems and assessing the impacts of climate change on forest carbon dynamics in China.

  10. Biogeographical patterns of biomass allocation in leaves, stems, and roots in China’s forests

    PubMed Central

    Zhang, Hao; Wang, Kelin; Xu, Xianli; Song, Tongqing; Xu, Yanfang; Zeng, Fuping

    2015-01-01

    To test whether there are general patterns in biomass partitioning in relation to environmental variation when stand biomass is considered, we investigated biomass allocation in leaves, stems, and roots in China’s forests using both the national forest inventory data (2004–2008) and our field measurements (2011–2012). Distribution patterns of leaf, stem, and root biomass showed significantly different trends according to latitude, longitude, and altitude, and were positively and significantly correlated with stand age and mean annual precipitation. Trade-offs among leaves, stems, and roots varied with forest type and origin and were mainly explained by stand biomass. Based on the constraints of stand biomass, biomass allocation was also influenced by forest type, origin, stand age, stand density, mean annual temperature, precipitation, and maximum temperature in the growing season. Therefore, after stand biomass was accounted for, the residual variation in biomass allocation could be partially explained by stand characteristics and environmental factors, which may aid in quantifying carbon cycling in forest ecosystems and assessing the impacts of climate change on forest carbon dynamics in China. PMID:26525117

  11. Tapping the Molecular Potential of Microalgae to Produce Biomass (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Sayre, Richard; Kyrpides, Nikos

    2018-05-03

    Richard Sayre, from Los Alamos National Laboratory, presents a talk titled "Tapping the Molecular Potential of Microalgae to Produce Biomass" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  12. Tapping the Molecular Potential of Microalgae to Produce Biomass (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayre, Richard; Kyrpides, Nikos

    2012-03-22

    Richard Sayre, from Los Alamos National Laboratory, presents a talk titled "Tapping the Molecular Potential of Microalgae to Produce Biomass" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  13. MODIS Based Estimation of Forest Aboveground Biomass in China.

    PubMed

    Yin, Guodong; Zhang, Yuan; Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

  14. MODIS Based Estimation of Forest Aboveground Biomass in China

    PubMed Central

    Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha−1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y−1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y−1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y−1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests. PMID:26115195

  15. ESTIMATION OF SURPLUS BIOMASS OF CLUPEIDS IN SMITH MOUNTAIN LAKE, VIRGINIA

    EPA Science Inventory

    Mean annual estimates of surplus biomass of alewife Alosa pseudoharengus and gizzard shad Dorosoma cepedianum in Smith Mountain Lake, Virginia, were calculated using data on the biomass, growth, and mortality of each clupeid species. Surplus biomass, defined as production over a...

  16. Estimating the carbon dynamics of South Korean forests from 1954 to 2012

    NASA Astrophysics Data System (ADS)

    Lee, J.; Yoon, T. K.; Han, S.; Kim, S.; Yi, M. J.; Park, G. S.; Kim, C.; Kim, R.; Son, Y.

    2014-03-01

    Forests play an important role in the global carbon (C) cycle, and the South Korean forests also contribute to this global C cycle. While the South Korean forest ecosystem was almost completely destroyed by exploitation and the Korean War, it has successfully recovered because of national-scale reforestation programs since 1973. There have been several studies on the estimation of C stocks and balances in the South Korean forests over the past decades. However, a retrospective long-term study including biomass and dead organic matter (DOM) C and validating DOM C is still insufficient. Accordingly, we estimated the C stocks and balances of both biomass and DOM C during 1954-2012 using a~process-based model, the Korean Forest Soil Carbon model, and the 5th Korean National Forest Inventory (NFI) report. Validation processes were also conducted based on the 5th NFI and statistical data. Simulation results showed that the biomass C stocks increased from 36.4 to 440.4 Tg C and sequestered C at a rate of 7.0 Tg C yr-1 during 1954-2012. The DOM C stocks increased from 386.0 to 463.1 Tg C and sequestered C at a rate of 1.3 Tg C yr-1 during the same period. The estimates of biomass and DOM C stocks agreed well with observed C stock data. The annual net biome production (NBP) during 1954-2012 was 141.3 g C m-2 yr-1, which increased from -8.8 to 436.6 g C m-2 yr-1 in 1955 and 2012, respectively. Compared to forests in other countries and global forests, the annual C sink rate of South Korean forests was much lower, but the NBP was much higher. Our results could provide the forest C dynamics in South Korean forests before and after the onset of reforestation programs.

  17. Sensitivity of growth and biomass allocation patterns to increasing nitrogen: a comparison between ephemerals and annuals in the Gurbantunggut Desert, north-western China

    PubMed Central

    Zhou, Xiaobing; Zhang, Yuanming; Niklas, Karl J.

    2014-01-01

    Background and Aims Biomass accumulation and allocation patterns are critical to quantifying ecosystem dynamics. However, these patterns differ among species, and they can change in response to nutrient availability even among genetically related individuals. In order to understand this complexity further, this study examined three ephemeral species (with very short vegetative growth periods) and three annual species (with significantly longer vegetative growth periods) in the Gurbantunggut Desert, north-western China, to determine their responses to different nitrogen (N) supplements under natural conditions. Methods Nitrogen was added to the soil at rates of 0, 0·5, 1·0, 3·0, 6·0 and 24·0 g N m−2 year−1. Plants were sampled at various intervals to measure relative growth rate and shoot and root dry mass. Key Results Compared with annuals, ephemerals grew more rapidly, increased shoot and root biomass with increasing N application rates and significantly decreased root/shoot ratios. Nevertheless, changes in the biomass allocation of some species (i.e. Erodium oxyrrhynchum) in response to the N treatment were largely a consequence of changes in overall plant size, which was inconsistent with an optimal partitioning model. An isometric log shoot vs. log root scaling relationship for the final biomass harvest was observed for each species and all annuals, while pooled data of three ephemerals showed an allometric scaling relationship. Conclusions These results indicate that ephemerals and annuals differ observably in their biomass allocation patterns in response to soil N supplements, although an isometric log shoot vs. log root scaling relationship was maintained across all species. These findings highlight that different life history strategies behave differently in response to N application even when interspecific scaling relationships remain nearly isometric. PMID:24287812

  18. Dominance and environmental correlates of alien annual plants in the Mojave Desert, USA

    USGS Publications Warehouse

    Brooks, M.L.; Berry, K.H.

    2006-01-01

    Land managers are concerned about the negative effects of alien annual plants on native plants, threatened and endangered species such as the desert tortoise (Gopherus agassizii), and ecosystem integrity in the Mojave Desert. Management of alien plants is hampered by a lack of information regarding the dominance and environmental correlates of these species. The results of this study indicate that alien plant species comprised a small fraction of the total annual plant flora, but most of the annual plant community biomass. When rainfall was high in 1995, aliens comprised 6% of the flora and 66% of the biomass. When rainfall was low in 1999, aliens comprised 27% of the flora and 91% of the biomass. Bromus rubens, Schismus spp. (S. arabicus and S. barbatus), and Erodium cicutarium were the predominant alien species during both years, comprising 99% of the alien biomass. B. rubens was more abundant in relatively mesic microhabitats beneath shrub canopies and at higher elevations above 800-1000 m, whereas Schismus spp. and E. cicutarium were more abundant in the relatively arid interspaces between shrubs, and, for Schismus spp., at lower elevations as well. Disturbance variables were more reliable indicators of alien dominance than were productivity or native plant diversity variables, although relationships often varied between years of contrasting rainfall. The strongest environmental correlates occurred between dirt road density and alien species richness and biomass of E. cicutarium, and between frequency and size of fires and biomass of B. rubens.

  19. Intra-annual changes in biomass, carbon, and nitrogen dynamics at 4-year old switchgrass field trials in West Tennessee, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garten, Jr, C. T.; Smith, Jeffery L.; Tyler, Donald D.

    2010-02-15

    Switchgrass is a potential bioenergy crop that could promote soil C sequestration in some environments. We compared four cultivars on a well-drained Alfisol to test for differences in biomass, C, and N dynamics during the fourth growing season. There was no difference (P > 0.05) among cultivars and no significant cultivar x time interaction in analyses of dry mass, C stocks, or N stocks in aboveground biomass and surface litter. At the end of the growing season, mean (±SE) aboveground biomass was 2.1±0.13 kg m-2, and surface litter dry mass was approximately 50% of aboveground biomass. Prior to harvest, themore » live root:shoot biomass ratio was 0.76. There was no difference (P > 0.05) among cultivars for total biomass, C, and N stocks belowground. Total belowground biomass (90-cm soil depth) as well as coarse (greater than or equal to 1 mm diameter) and fine (< 1 mm diameter) live root biomass increased from April to October. Dead roots were less than 7% of live root biomass to a depth of 90 cm. Net production of total belowground biomass (505 ±132 g m-2) occurred in the last half of the growing season. The increase in total live belowground biomass (426 ±139 g m-2) was more or less evenly divided among rhizomes, coarse, and fine roots. The N budget for annual switchgrass production was closely balanced with 6.3 g N m-2 removed by harvest of aboveground biomass and 6.7 g N m-2 supplied by fertilization. At the location of our study in west Tennessee, intra-annual changes in biomass, C, and N stocks belowground were of greater importance to crop management for C sequestration than were differences among cultivars.« less

  20. The community structure and seasonal dynamics of plankton in Bange Lake, northern Tibet, China

    NASA Astrophysics Data System (ADS)

    Zhao, Wen; Zhao, Yuanyi; Wang, Qiaohan; Zheng, Mianping; Wei, Jie; Wang, Shan

    2016-11-01

    The seasonal variations in biomass, abundance, and species composition of plankton in relation to hydrography were studied in the saline Bange Lake, northern Tibet, China. Sampling was carried out between one to three times per month from May 2001 to July 2002. Salinity ranged from 14 to 146. The air and water temperature exhibited a clear seasonal pattern, and mean annual temperatures were approximately 4.8°C and 7.3°C, respectively. The lowest water temperature occurred in winter from December to March at -2°C and the highest in June and July at 17.7°C. Forty-one phytoplankton taxa, 21 zooplankton, and 5 benthic or facultative zooplankton were identified. The predominant phytoplankton species were Gloeothece linearis, Oscillatoria tenuis, Gloeocapsa punctata, Ctenocladus circinnatus, Dunaliella salina, and Spirulina major. The predominant zooplankton species included Holophrya actra, Brachionus plicatilis, Daphniopsis tibetana, Cletocamptus dertersi, and Arctodiaptomus salinus. The mean annual total phytoplankton density and biomass for the entire lake were 4.52×107 cells/L and 1.60 mg/L, respectively. The annual mean zooplankton abundance was 52, 162, 322, and 57, 144 ind./L, in the three sublakes. The annual mean total zooplankton biomass in Lakes 1-3 was 1.23, 9.98, and 2.13 mg/L, respectively. The annual mean tychoplankton abundances in Bg1, 2, and 3 were 47, 67, and 654 ind./L. The annual mean tychoplankton biomass was 2.36, 0.16, and 2.03 mg/L, respectively. The zooplankton biomass (including tychoplankton) in the lake was 9.11 mg/L. The total number of plankton species in the salt lake was significantly negatively correlated with salinity.

  1. The Carbon Cycle and Hurricanes in the United States between 1900 and 2011

    PubMed Central

    Dahal, Devendra; Liu, Shuguang; Oeding, Jennifer

    2014-01-01

    Hurricanes cause severe impacts on forest ecosystems in the United States. These events can substantially alter the carbon biogeochemical cycle at local to regional scales. We selected all tropical storms and more severe events that made U.S. landfall between 1900 and 2011 and used hurricane best track database, a meteorological model (HURRECON), National Land Cover Database (NLCD), U. S. Department of Agirculture Forest Service biomass dataset, and pre- and post-MODIS data to quantify individual event and annual biomass mortality. Our estimates show an average of 18.2 TgC/yr of live biomass mortality for 1900–2011 in the US with strong spatial and inter-annual variability. Results show Hurricane Camille in 1969 caused the highest aboveground biomass mortality with 59.5 TgC. Similarly 1954 had the highest annual mortality with 68.4 TgC attributed to landfalling hurricanes. The results presented are deemed useful to further investigate historical events, and the methods outlined are potentially beneficial to quantify biomass loss in future events. PMID:24903486

  2. The carbon cycle and hurricanes in the United States between 1900 and 2011

    USGS Publications Warehouse

    Dahal, Devendra; Liu, Shu-Guang; Oeding, Jennifer

    2014-01-01

    Hurricanes cause severe impacts on forest ecosystems in the United States. These events can substantially alter the carbon biogeochemical cycle at local to regional scales. We selected all tropical storms and more severe events that made U.S. landfall between 1900 and 2011 and used hurricane best track database, a meteorological model (HURRECON), National Land Cover Database (NLCD), U. S. Department of Agirculture Forest Service biomass dataset, and pre- and post-MODIS data to quantify individual event and annual biomass mortality. Our estimates show an average of 18.2 TgC/yr of live biomass mortality for 1900–2011 in the US with strong spatial and inter-annual variability. Results show Hurricane Camille in 1969 caused the highest aboveground biomass mortality with 59.5 TgC. Similarly 1954 had the highest annual mortality with 68.4 TgC attributed to landfalling hurricanes. The results presented are deemed useful to further investigate historical events, and the methods outlined are potentially beneficial to quantify biomass loss in future events.

  3. 40 CFR 80.1426 - How are RINs generated and assigned to batches of renewable fuel by renewable fuel producers or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... annual covercrops Fermentation using natural gas, biomass, or biogas for process energy 6 F Biodiesel...-Esterification Hydrotreating Excluding processes that co-process renewable biomass and petroleum 4 G Biodiesel... Biodiesel, renewable diesel, jet fuel and heating oil Soy bean oil; Oil from annual covercrops; Algal oil...

  4. Litterfall in the hardwood forest of a minor alluvial-floodplain

    Treesearch

    Calvin E. Meier; John A. Stanturf; Emile S. Gardiner

    2006-01-01

    within mature deciduous forests, annual development of foliar biomass is a major component of aboveground net primary production and nutrient demand. As litterfall, this same foliage becomes a dominant annual transfer of biomass and nutrients to the detritus pathway. We report litterfall transfers of a mature bottomland hardwood forest in a minor alluvial-floodplain...

  5. Biomass and bioethanol production from Miscanthus x giganteus in Arkansas, USA

    USDA-ARS?s Scientific Manuscript database

    Plants fix about 56 billion tons of CO2 and produce more than 170 billion tons of biomass annually, with cell walls representing about 70% of that biomass. This biomass represents a massive source of stored solar energy. Globally, a major technological goal is cost-effective lignocellulosic ethanol ...

  6. The annual cycles of phytoplankton biomass

    USGS Publications Warehouse

    Winder, M.; Cloern, J.E.

    2010-01-01

    Terrestrial plants are powerful climate sentinels because their annual cycles of growth, reproduction and senescence are finely tuned to the annual climate cycle having a period of one year. Consistency in the seasonal phasing of terrestrial plant activity provides a relatively low-noise background from which phenological shifts can be detected and attributed to climate change. Here, we ask whether phytoplankton biomass also fluctuates over a consistent annual cycle in lake, estuarine-coastal and ocean ecosystems and whether there is a characteristic phenology of phytoplankton as a consistent phase and amplitude of variability. We compiled 125 time series of phytoplankton biomass (chloro-phyll a concentration) from temperate and subtropical zones and used wavelet analysis to extract their dominant periods of variability and the recurrence strength at those periods. Fewer than half (48%) of the series had a dominant 12-month period of variability, commonly expressed as the canonical spring-bloom pattern. About 20 per cent had a dominant six-month period of variability, commonly expressed as the spring and autumn or winter and summer blooms of temperate lakes and oceans. These annual patterns varied in recurrence strength across sites, and did not persist over the full series duration at some sites. About a third of the series had no component of variability at either the six-or 12-month period, reflecting a series of irregular pulses of biomass. These findings show that there is high variability of annual phytoplankton cycles across ecosystems, and that climate-driven annual cycles can be obscured by other drivers of population variability, including human disturbance, aperiodic weather events and strong trophic coupling between phytoplankton and their consumers. Regulation of phytoplankton biomass by multiple processes operating at multiple time scales adds complexity to the challenge of detecting climate-driven trends in aquatic ecosystems where the noise to signal ratio is high. ?? 2010 The Royal Society.

  7. Early understory biomass response to organic matter removal and soil compaction

    Treesearch

    Felix Jr. Ponder

    2008-01-01

    In the Missouri Ozarks, 6 and 8 years after treatment, understory biomass differences between bole only harvesting (BO) and whole-tree plus forest floor harvesting were not different; neither were there understory biomass differences between no compaction and severe compaction. Separation of the biomass into broad species categories (trees, shrubs, annuals, perennials...

  8. 40 CFR 98.33 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... you co-fire biomass fuels with fossil fuels, report CO2 emissions from the combustion of biomass... quarterly totals are summed to determine the annual CO2 mass emissions. (vii) If both biomass and fossil... by 1.1 to convert it to metric tons. (D) If both biomass and fossil fuel are combusted during the...

  9. Remote sensing of biomass and annual net aerial primary productivity of a salt marsh

    NASA Technical Reports Server (NTRS)

    Hardisky, M. A.; Klemas, V.; Daiber, F. C.; Roman, C. T.

    1984-01-01

    Net aerial primary productivity is the rate of storage of organic matter in above-ground plant issues exceeding the respiratory use by the plants during the period of measurement. It is pointed out that this plant tissue represents the fixed carbon available for transfer to and consumption by the heterotrophic organisms in a salt marsh or the estuary. One method of estimating annual net aerial primary productivity (NAPP) required multiple harvesting of the marsh vegetation. A rapid nondestructive remote sensing technique for estimating biomass and NAPP would, therefore, be a significant asset. The present investigation was designed to employ simple regression models, equating spectral radiance indices with Spartina alterniflora biomass to nondestructively estimate salt marsh biomass. The results of the study showed that the considered approach can be successfully used to estimate salt marsh biomass.

  10. 78 FR 49411 - Denial of Petitions for Reconsideration of Regulation of Fuels and Fuel Additives: 2013 Biomass...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ...-AR55 Denial of Petitions for Reconsideration of Regulation of Fuels and Fuel Additives: 2013 Biomass... Fuel Additives: 2013 Biomass-Based Diesel Renewable Fuel Volume. DATES: EPA's denials of the petitions... requires that EPA determine the applicable volume of biomass-based diesel to be used in setting annual...

  11. Annual cycles of phytoplankton biomass in the subarctic Atlantic and Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Westberry, Toby K.; Schultz, Patrick; Behrenfeld, Michael J.; Dunne, John P.; Hiscock, Michael R.; Maritorena, Stephane; Sarmiento, Jorge L.; Siegel, David A.

    2016-02-01

    High-latitude phytoplankton blooms support productive fisheries and play an important role in oceanic uptake of atmospheric carbon dioxide. In the subarctic North Atlantic Ocean, blooms are a recurrent feature each year, while in the eastern subarctic Pacific only small changes in chlorophyll (Chl) are seen over the annual cycle. Here we show that when evaluated using phytoplankton carbon biomass (Cphyto) rather than Chl, an annual bloom in the North Pacific is evident and can even rival blooms observed in the North Atlantic. The annual increase in subarctic Pacific phytoplankton biomass is not readily observed in the Chl record because it is paralleled by light- and nutrient-driven decreases in cellular pigment levels (Cphyto:Chl). Specifically, photoacclimation and iron stress effects on Cphyto:Chl oppose the biomass increase, leading to only modest changes in bulk Chl. The magnitude of the photoacclimation effect is quantified using descriptors of the near-surface light environment and a photophysiological model. Iron stress effects are diagnosed from satellite chlorophyll fluorescence data. Lastly, we show that biomass accumulation in the Pacific is slower than that in the Atlantic but is closely tied to similar levels of seasonal nutrient uptake in both basins. Annual cycles of satellite-derived Chl and Cphyto are reproduced by in situ autonomous profiling floats. These results contradict the long-standing paradigm that environmental conditions prevent phytoplankton accumulation in the subarctic Northeast Pacific and suggest a greater seasonal decoupling between phytoplankton growth and losses than traditionally implied. Further, our results highlight the role of physiological processes in shaping bulk properties, such as Chl, and their interpretation in studies of ocean ecosystem dynamics and climate change.

  12. Reproductive Allocation of Biomass and Nitrogen in Annual and Perennial Lesquerella Crops

    PubMed Central

    PLOSCHUK, E. L.; SLAFER, G. A.; RAVETTA, D. A.

    2005-01-01

    • Background and Aims The use of perennial crops could contribute to increase agricultural sustainability. However, almost all of the major grain crops are herbaceous annuals and opportunities to replace them with more long-lived perennials have been poorly explored. This follows the presumption that the perennial life cycle is associated with a lower potential yield, due to a reduced allocation of biomass to grains. The hypothesis was tested that allocation to perpetuation organs in the perennial L. mendocina would not be directly related to a lower allocation to seeds. • Methods Two field experiments were carried on with the annual Lesquerella fendleri and the iteroparous perennial L. mendocina, two promising oil-seed crops for low-productivity environments, subjected to different water and nitrogen availability. • Key Results Seed biomass allocation was similar for both species, and unresponsive to water and nitrogen availability. Greater root and vegetative shoot allocation in the perennial was counterbalanced by a lower allocation to other reproductive structures compared with the annual Lesquerella. Allometric relationships revealed that allocation differences between the annual and the perennial increased linearly with plant size. The general allocation patterns for nitrogen did not differ from those of biomass. However, nitrogen concentrations were higher in the vegetative shoot and root of L. mendocina than of L. fendleri but remained stable in seeds of both species. • Conclusions It is concluded that vegetative organs are more hierarchically important sinks in L. mendocina than in the annual L. fendleri, but without disadvantages in seed hierarchy. PMID:15863469

  13. Climate Change and Algal Blooms =

    NASA Astrophysics Data System (ADS)

    Lin, Shengpan

    Algal blooms are new emerging hazards that have had important social impacts in recent years. However, it was not very clear whether future climate change causing warming waters and stronger storm events would exacerbate the algal bloom problem. The goal of this dissertation was to evaluate the sensitivity of algal biomass to climate change in the continental United States. Long-term large-scale observations of algal biomass in inland lakes are challenging, but are necessary to relate climate change to algal blooms. To get observations at this scale, this dissertation applied machine-learning algorithms including boosted regression trees (BRT) in remote sensing of chlorophyll-a with Landsat TM/ETM+. The results show that the BRT algorithm improved model accuracy by 15%, compared to traditional linear regression. The remote sensing model explained 46% of the total variance of the ground-measured chlorophyll- a in the first National Lake Assessment conducted by the US Environmental Protection Agency. That accuracy was ecologically meaningful to study climate change impacts on algal blooms. Moreover, the BRT algorithm for chlorophyll- a would not have systematic bias that is introduced by sediments and colored dissolved organic matter, both of which might change concurrently with climate change and algal blooms. This dissertation shows that the existing atmospheric corrections for Landsat TM/ETM+ imagery might not be good enough to improve the remote sensing of chlorophyll-a in inland lakes. After deriving long-term algal biomass estimates from Landsat TM/ETM+, time series analysis was used to study the relations of climate change and algal biomass in four Missouri reservoirs. The results show that neither temperature nor precipitation was the only factor that controlled temporal variation of algal biomass. Different reservoirs, even different zones within the same reservoir, responded differently to temperature and precipitation changes. These findings were further tested in 1157 lakes across the continental United States. The results show that mean annual algal biomass generally increased with annual temperature. Greater increase was found in lakes with more nutrients. Mean annual algal biomass generally decreased with annual total precipitation. In both the "low" and the "high" greenhouse-gas emission scenarios, mean annual algal biomass in lakes generally increased with climate change, and greater increases are predicted from the high emission scenario.

  14. Effects of climate and lifeform on dry matter yield (epsilon) from simulations using BIOME BGC. [ecosystem process model for vegetation biomass production using daily absorbed photosynthetically active radiation

    NASA Technical Reports Server (NTRS)

    Hunt, E. R., Jr.; Running, Steven W.

    1992-01-01

    An ecosystem process simulation model, BIOME-BGC, is used in a sensitivity analysis to determine the factors that may cause the dry matter yield (epsilon) and annual net primary production to vary for different ecosystems. At continental scales, epsilon is strongly correlated with annual precipitation. At a single location, year-to-year variation in net primary production (NPP) and epsilon is correlated with either annual precipitation or minimum air temperatures. Simulations indicate that forests have lower epsilon than grasslands. The most sensitive parameter affecting forest epsilon is the total amount of living woody biomass, which affects NPP by increasing carbon loss by maintenance respiration. A global map of woody biomass should significantly improve estimates of global NPP using remote sensing.

  15. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Conversion Pathway: Biological Conversion of Sugars to Hydrocarbons The 2017 Design Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Kenney; Kara G. Cafferty; Jacob J. Jacobson

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL conducted a campaign to quantify the economics and sustainability of moving biomass from standing in the field or stand to the throat of the biomass conversion process. The goal of this program wasmore » to establish the current costs based on conventional equipment and processes, design improvements to the current system, and to mark annual improvements based on higher efficiencies or better designs. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $35/dry ton. This goal was successfully achieved in 2012 by implementing field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. Looking forward to 2017, the programmatic target is to supply biomass to the conversion facilities at a total cost of $80/dry ton and on specification with in-feed requirements. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, abundant, low-cost feedstock. If this goal is not achieved, biofuel plants are destined to be small and/or clustered in select regions of the country that have a lock on low-cost feedstock. To put the 2017 cost target into perspective of past accomplishments of the cellulosic ethanol pathway, the $80 target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets. The 2012 $35 programmatic target included only logistics costs with a limited focus on biomass quality« less

  16. Using simple environmental variables to estimate below-ground productivity in grasslands

    USGS Publications Warehouse

    Gill, R.A.; Kelly, R.H.; Parton, W.J.; Day, K.A.; Jackson, R.B.; Morgan, J.A.; Scurlock, J.M.O.; Tieszen, L.L.; Castle, J.V.; Ojima, D.S.; Zhang, X.S.

    2002-01-01

    In many temperate and annual grasslands, above-ground net primary productivity (NPP) can be estimated by measuring peak above-ground biomass. Estimates of below-ground net primary productivity and, consequently, total net primary productivity, are more difficult. We addressed one of the three main objectives of the Global Primary Productivity Data Initiative for grassland systems to develop simple models or algorithms to estimate missing components of total system NPP. Any estimate of below-ground NPP (BNPP) requires an accounting of total root biomass, the percentage of living biomass and annual turnover of live roots. We derived a relationship using above-ground peak biomass and mean annual temperature as predictors of below-ground biomass (r2 = 0.54; P = 0.01). The percentage of live material was 0.6, based on published values. We used three different functions to describe root turnover: constant, a direct function of above-ground biomass, or as a positive exponential relationship with mean annual temperature. We tested the various models against a large database of global grassland NPP and the constant turnover and direct function models were approximately equally descriptive (r2 = 0.31 and 0.37), while the exponential function had a stronger correlation with the measured values (r2 = 0.40) and had a better fit than the other two models at the productive end of the BNPP gradient. When applied to extensive data we assembled from two grassland sites with reliable estimates of total NPP, the direct function was most effective, especially at lower productivity sites. We provide some caveats for its use in systems that lie at the extremes of the grassland gradient and stress that there are large uncertainties associated with measured and modelled estimates of BNPP.

  17. Effect of D2O on growth properties and chemical structure of annual ryegrass (Lolium multiflorum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Barbara R; Bali, Garima; Reeves, David T

    2014-01-01

    In present paper, we report the production and detailed structural analysis of deuterium-enriched rye grass (Lolium multiflorum) for neutron scattering experiments. An efficient method to produce deuterated biomass was developed by designing hydroponic perfusion chambers. In preliminary studies, the partial deuterated rye samples were grown in increasing levels of D2O to study the seed germination and the level of deuterium incorporation as a function of D2O concentration. Solution NMR method indicated 36.9 % deuterium incorporation in 50 % D2O grown annual rye samples and further significant increase in the deuterium incorporation level was observed by germinating the rye seedlings inmore » H2O and growing in 50 % D2O inside the perfusion chambers. Moreover, in an effort to compare the substrate characteristics related to enzymatic hydrolysis on deuterated and protiated version of biomass, annual rye grown in 50 % D2O was selected for detailed biomass characterization studies. The compositional analyses, degree of polymerization and cellulose crystallinity were compared with its protiated control. The cellulose molecular weight indicated slight variation with deuteration; however, hemicellulose molecular weights and cellulose crystallinity remain unaffected with the deuteration. Besides the minor differences in biomass components, the development of deuterated biomass for neutron scattering application is essential to understand the complex biomass conversion processes.« less

  18. Distribution, abundance and productivity of benthic invertebrates at the Berg River estuary, South Africa

    NASA Astrophysics Data System (ADS)

    Kalejta, B.; Hockey, P. A. R.

    1991-08-01

    Twenty-five benthic invertebrate species were identified from samples taken monthly over 17 months at four sites on the Berg River estuary, South Africa. Gastropods and polychaetes dominated the macrofauna in terms of both numbers and biomass. Abundance of the dominant species fluctuated in response to seasonal growth of eelgrass Zostera capensis and filamentous alga Cladophora sp. Differences in distributions of invertebrates on the estuary were attributed to differences in physical properties of the substratum and in vegetation cover. Hydrobia sp., Ceratonereis erythraeensis and C. keiskama were the most important species in terms of biomass and accounted for an average of 75% of total biomass at all study sites. Biomass peaked during the austral winter, early spring and again in autumn. An increase in biomass in winter was due to somatic production, whereas spring and autumn increases were attributed to recruitment of juveniles following reproduction. Mean annual biomass for the whole estuary was 19·36 g m -2, and mean annual production 87·58 g m -2 year -1, yielding a net P/B ratio of 4·52. Production and P/B ratios of invertebrates in estuaries and coastal lagoons at temperate and subtropical latitudes were positively correlated with mean annual ambient temperature and negatively with distance from the equator. Production data are lacking from tropical estuaries.

  19. 50 CFR 660.508 - Annual specifications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... quotas for all AMS from the estimated biomass and the formulas in the FMP. (b) Harvest guidelines or... status of AMS and MS; (2) The estimated biomass on which the harvest guideline or quota was determined... biomass and the harvest guideline or quota will be reviewed and public comments received. This meeting...

  20. 50 CFR 660.508 - Annual specifications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... quotas for all AMS from the estimated biomass and the formulas in the FMP. (b) Harvest guidelines or... status of AMS and MS; (2) The estimated biomass on which the harvest guideline or quota was determined... biomass and the harvest guideline or quota will be reviewed and public comments received. This meeting...

  1. Projections of emissions from burning of biomass foruse in studies of global climate and atmospheric chemistry

    Treesearch

    Darold E. Ward; Weimin Hao

    1991-01-01

    Emissions of trace gases and particulate matter from burning of biomass are generally factored into global climate models. Models for improving the estimates of the global annual release of emissions from biomass fires are presented. Estimates of total biomass consumed on a global basis range from 2 to 10 Pg (1 petagram = 1015 g) per year. New...

  2. Projected and actual biomass production of 2- to 10- year-old intensively cultured Populus 'Tristis # 1'

    Treesearch

    J. Zavitkovski

    1983-01-01

    Intensively cultured plantations of Populus 'Tristis # 1' produce more than 10 mt/ha/year of woody biomass at most spacings as long as they are harvested when mean annual biomass increment (MABI) culminates. In addition, fully stocked plantations produce up to 4.4 mt/ha of leaf litter. Plantations of other poplar clones produce about 30% more woody biomass,...

  3. Biomass Estimation for some Shrubs from Northeastern Minnesota

    Treesearch

    David F. Grigal; Lewis F. Ohmann

    1977-01-01

    Biomass prediction equations were developed for 23 northeastern Minnesota shrub species. The allowmetric function was used to predict leaf, current annual woody twig, stem, and total woody biomass (dry grass), using stem diameter class estimated to the nearest 0.25 cm class at 15 cm above ground level as the independent variable.

  4. 76 FR 66192 - Fisheries of the Northeastern United States; Monkfish; Framework Adjustment 7

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... with the new annual catch target, and establishes revised biomass reference points for the Northern and... biomass reference points in the Monkfish FMP to be consistent with the results of SARC 50. Approved... SARC 50 report, the Southern Demersal Working Group recommended an approach that would set biomass...

  5. 40 CFR 80.1403 - Which fuels are not subject to the 20% GHG thresholds?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... construction after December 19, 2007, and are fired with natural gas, biomass, or a combination thereof, the... are fired with natural gas, biomass, or a combination thereof at all times the facility operated... produced through processes fired with natural gas, biomass, or any combination thereof. (e) The annual...

  6. Mercury emissions from biomass burning in China.

    PubMed

    Huang, Xin; Li, Mengmeng; Friedli, Hans R; Song, Yu; Chang, Di; Zhu, Lei

    2011-11-01

    Biomass burning covers open fires (forest and grassland fires, crop residue burning in fields, etc.) and biofuel combustion (crop residues and wood, etc., used as fuel). As a large agricultural country, China may produce large quantities of mercury emissions from biomass burning. A new mercury emission inventory in China is needed because previous studies reflected outdated biomass burning with coarse resolution. Moreover, these studies often adopted the emission factors (mass of emitted species per mass of biomass burned) measured in North America. In this study, the mercury emissions from biomass burning in China (excluding small islands in the South China Sea) were estimated, using recently measured mercury concentrations in various biomes in China as emission factors. Emissions from crop residues and fuelwood were estimated based on annual reports distributed by provincial government. Emissions from forest and grassland fires were calculated by combining moderate resolution imaging spectroradiometer (MODIS) burned area product with combustion efficiency (ratio of fuel consumption to total available fuels) considering fuel moisture. The average annual emission from biomass burning was 27 (range from 15.1 to 39.9) Mg/year. This inventory has high spatial resolution (1 km) and covers a long period (2000-2007), making it useful for air quality modeling.

  7. Regional assessment of woody biomass physical availability as an energy feedstock for combined combustion in the US northern region

    Treesearch

    Michael E. Goerndt; Francisco X. Aguilar; Patrick Miles; Stephen Shifley; Nianfu Song; Hank Stelzer

    2012-01-01

    Woody biomass is a renewable energy feedstock with the potential to reduce current use of nonrenewable fossil fuels. We estimated the physical availability of woody biomass for cocombustion at coal-fired electricity plants in the 20-state US northern region. First, we estimated the total amount of woody biomass needed to replace total annual coal-based electricity...

  8. Maintaining environmental quality while expanding biomass production: Sub-regional U.S. policy simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egbendewe-Mondzozo, Aklesso; Swinton, S.; Izaurralde, Roberto C.

    2013-03-01

    This paper evaluates environmental policy effects on ligno-cellulosic biomass production and environ- mental outcomes using an integrated bioeconomic optimization model. The environmental policy integrated climate (EPIC) model is used to simulate crop yields and environmental indicators in current and future potential bioenergy cropping systems based on weather, topographic and soil data. The crop yield and environmental outcome parameters from EPIC are combined with biomass transport costs and economic parameters in a representative farmer profit-maximizing mathematical optimization model. The model is used to predict the impact of alternative policies on biomass production and environmental outcomes. We find that without environmental policy,more » rising biomass prices initially trigger production of annual crop residues, resulting in increased greenhouse gas emissions, soil erosion, and nutrient losses to surface and ground water. At higher biomass prices, perennial bioenergy crops replace annual crop residues as biomass sources, resulting in lower environmental impacts. Simulations of three environmental policies namely a carbon price, a no-till area subsidy, and a fertilizer tax reveal that only the carbon price policy systematically mitigates environmental impacts. The fertilizer tax is ineffectual and too costly to farmers. The no-till subsidy is effective only at low biomass prices and is too costly to government.« less

  9. The consequences of global biomass burning

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    Global biomass burning encompasses forest burning for land clearing, the annual burning of grasslands, the annual burning of agricultural stubble and waste after harvests, and the burning of wood as fuel. These activities generate CO2, CH4 and other hydrocarbons, CO, H2, NO, NH3, and CH3Cl; of these, CO, CH4 and the hydrocarbons, and NO, are involved in the photochemical production of tropospheric O3, while NO is transformed to NO2 and then to nitric acid, which falls as acid rain. Biomass burning is also a major source of atmospheric particulates and aerosols which affect the transmission of incoming solar radiation and outgoing IR radiation through the atmosphere, with significant climatic effects.

  10. Biomass of freshwater turtles: a geographic comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, J.D.; Greene, J.L.; Gibbons, J.W.

    1986-01-01

    Standing crop biomass of freshwater turtles and minimum annual biomass of egg production were calculated for marsh and farm pond habitats in South Caroling and in Michigan. The species in South Carolina included Chelydra serpentina, Deirochelys reticularia, Kinosternon subrubrum, Pseudemys floridana, P. scripta and Sternotherus odoratus. The species in Michigan were Chelydra serpentina, Chrysemys picta and Emydoidea blandingi. Biomass was also determined for a single species population of P. scripta on a barrier island near Charleston, South Carolina. Population density and biomass of Pseudemys scripta in Green Pond on Capers Island were higher than densities and biomass of the entiremore » six-species community studied on the mainland. In both the farm pond and marsh habitat in South Carolina P. scripta was the numerically dominant species and had the highest biomass. In Michigan, Chrysemys picta was the numerically dominant species; however, the biomass of Chelydra serpentina was higher. The three-species community in Michigan in two marshes (58 kg ha/sup -1/ and 46 kg ha/sup -1/) and farm ponds (23 kg ha/sup -1/) had lower biomasses than did the six-species community in a South Carolina marsh (73 kg/sup -1/). Minimum annual egg production by all species in South Carolina averaged 1.93 kg ha/sup -1/ and in Michigan averaged 2.89 kg ha/sup -1/ of marsh.« less

  11. Demographic drivers of tree biomass change during secondary succession in northeastern Costa Rica.

    PubMed

    Rozendaal, Danae M A; Chazdon, Robin L

    2015-03-01

    Second-growth tropical forests are an important global carbon sink. As current knowledge on biomass accumulation during secondary succession is heavily based on chronosequence studies, direct estimates of annual rates of biomass accumulation in monitored stands are largely unavailable. We evaluated the contributions of tree diameter increment, recruitment, and mortality to annual tree biomass change during succession for three groups of tree species: second-growth (SG) specialists, generalists, and old-growth (OG) specialists. We monitored six second-growth tropical forests that varied in stand age and two old-growth forests in northeastern Costa Rica. We monitored these over a period of 8 to 16 years. To assess rates of biomass change during secondary succession, we compared standing biomass and biomass dynamics between second-growth forest stages and old-growth forest, and evaluated the effect of stand age on standing biomass and biomass dynamics in second-growth forests. Standing tree biomass increased with stand age during succession, whereas the rate of biomass change decreased. Biomass change was largely driven by tree diameter increment and mortality, with a minor contribution from recruitment. The relative importance of these demographic drivers shifted over succession. Biomass gain due to tree diameter increment decreased with stand age, whereas biomass loss due to mortality increased. In the age range of our second-growth forests, 10-41 years, SG specialists dominated tree biomass in second-growth forests. SG specialists, and to a lesser extent generalists, also dominated stand-level biomass increase due to tree diameter increment, whereas SG specialists largely accounted for decreases in biomass due to mortality. Our results indicate that tree growth is largely driving biomass dynamics early in succession, whereas both growth and mortality are important later in succession. Biomass dynamics are largely accounted for by a few SG specialists and one generalist species, Pentaclethra macroloba. To assess the generality of our results, similar long-term studies should be compared across tropical forest landscapes.

  12. Emergent Hydrological Regimes in Amazonia Determine Vegetation Productivity and Structure.

    NASA Astrophysics Data System (ADS)

    Ahlström, A.; Canadell, J.; Schurgers, G.; Berry, J. A.; Guan, K.; Jackson, R. B.

    2016-12-01

    The Amazon rain forest has a disproportionate significance for global CO2 storage and biodiversity. Earth system models (ESMs) that estimate future climate and vegetation show little agreement in simulations in Amazonia. Here we show that evapotranspiration (ET), gross primary productivity (GPP) and above ground biomass in both models and empirical data align on an emergent hydrologically determined relationship that describes a functional relationship with annual precipitation (P). The physical relationship describes the potential for plant productivity and has a breakpoint at 2000 mm annual precipitation, where the system transitions between water and radiation limitation of annual ET. While ESM GPP is generally underestimated due to a low-bias in their internally generated P, their response to annual precipitation generally matches empirical data. It is different for biomass: ESMs show some ability in capturing biomass levels in the energy-limited wet hydrological regime above 2000 mm annual precipitation but they do not fully capture the biomass structure tipping point found in empirical data at the hydrological regime breakpoint that coincide with the forest-savanna transition. This discrepancy is likely due to the relatively simple representation of disturbances, primarily fires, and vegetation dynamics found in ESMs, and implies that ESMs likely overestimate the resilience to a potential future drying of the Amazon. Future elevated CO2 may increase plant water use efficiency and shift GPP upwards, but it will not affect the breakpoint between the regimes or the susceptibility of the forest which are both determined by precipitation and its role in determining the hydrological regime. This analysis reconciles and explains the findings of many studies on the Amazon. Our results suggests that future Amazonian biomass is governed by changes in precipitation, vegetation dynamics and disturbances, none of which are well predicted and represented by ESMs. Improvements of these processes are the most pressing challenges for more accurate future predictions on the fate of the Amazon and the global tropics.

  13. Effects of habitat on stand productivity in the White Mountains of New Hampshire

    Treesearch

    William B. Leak

    1979-01-01

    Mean annual biomass production of sapling stands was higher on washed tills, which have a hardwood climax, than on habitats having a softwood climax. However, biomass production of poletimber stands did not differ significantly among habitats. Apparently, differences among habitats in characteristics species composition tends to mask differences in biomass productivity...

  14. Reproductive allocation strategies in desert and Mediterranean populations of annual plants grown with and without water stress.

    PubMed

    Aronson, J; Kigel, J; Shmida, A

    1993-03-01

    Reproductive effort (relative allocation of biomass to diaspore production) was compared in matched pairs of Mediterranean and desert populations of three unrelated annual species, Erucaria hispanica (L.) Druce, Bromus fasciculatus C. Presl. and Brachypodium distachyon (L.) Beauv., grown under high and low levels of water availability in a common-environment experiment. Desert populations in all three species showed higher reproductive effort than corresponding Mediterranean populations, as expressed by both a reproductive index (RI= reproductive biomass/vegetative biomass), and a reproductive efficiency index (REI=number of diaspores/total plant biomass). Moreover, in E. hispanica and Brachypodium distachyon, inter-populational differences in reproductive effort were greater under water stress, the main limiting factor for plant growth in the desert. These results indicate that variability in reproductive effort in response to drought is a critical and dynamic component of life history strategies in annual species in heterogeneous, unpredictable xeric environments. When subjected to water stress the Mediterranean populations of E. hispanica and B. distachyon showed greater plasticity (e.g. had a greater reduction) in reproductive effort than the desert populations, while in Bromus fasciculatus both populations showed similar amounts of plasticity.

  15. Inter-annual changes of Biomass Burning and Desert Dust and their impact over East Asia

    NASA Astrophysics Data System (ADS)

    DONG, X.; Fu, J. S.; Huang, K.

    2014-12-01

    Impact of mineral dust and biomass burning aerosols on air quality has been well documented in the last few decades, but the knowledge about their interactions with anthropogenic emission and their impacts on regional climate is very limited (IPCC, 2007). While East Asia is greatly affected by dust storms in spring from Taklamakan and Gobi deserts (Huang et al., 2010; Li et al., 2012), it also suffers from significant biomass burning emission from Southeast Asia during the same season. Observations from both surface monitoring and satellite data indicated that mineral dust and biomass burning aerosols may approach to coastal area of East Asia simultaneously, thus have a very unique impact on the local atmospheric environment and regional climate. In this study, we first investigated the inter-annual variations of biomass burning and dust aerosols emission for 5 consecutive years from 2006-2010 to estimate the upper and lower limits and correlation with meteorology conditions, and then evaluate their impacts with a chemical transport system. Our preliminary results indicated that biomass burning has a strong correlation with precipitation over Southeast Asia, which could drive the emission varying from 542 Tg in 2008 to 945 Tg in 2010, according to FLAMBE emission inventory (Reid et al., 2009). Mineral dust also demonstrated a strong dependence on wind filed. These inter-annual/annual variations will also lead to different findings and impacts on air quality in East Asia. Reference: Huang, K., et al. (2010), Mixing of Asian dust with pollution aerosol and the transformation of aerosol components during the dust storm over China in spring 2007, Journal of Geophysical Research-Atmospheres, 115. IPCC (2007), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, New York. Li, J., et al. (2012), Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: a model case study of a super-duststorm in March 2010, Atmospheric Chemistry and Physics, 12, 7591-7607.

  16. Biomass burning losses of carbon estimated from ecosystem modeling and satellite data analysis for the Brazilian Amazon region

    NASA Astrophysics Data System (ADS)

    Potter, Christopher; Brooks Genovese, Vanessa; Klooster, Steven; Bobo, Matthew; Torregrosa, Alicia

    To produce a new daily record of gross carbon emissions from biomass burning events and post-burning decomposition fluxes in the states of the Brazilian Legal Amazon (Instituto Brasileiro de Geografia e Estatistica (IBGE), 1991. Anuario Estatistico do Brasil, Vol. 51. Rio de Janeiro, Brazil pp. 1-1024). We have used vegetation greenness estimates from satellite images as inputs to a terrestrial ecosystem production model. This carbon allocation model generates new estimates of regional aboveground vegetation biomass at 8-km resolution. The modeled biomass product is then combined for the first time with fire pixel counts from the advanced very high-resolution radiometer (AVHRR) to overlay regional burning activities in the Amazon. Results from our analysis indicate that carbon emission estimates from annual region-wide sources of deforestation and biomass burning in the early 1990s are apparently three to five times higher than reported in previous studies for the Brazilian Legal Amazon (Houghton et al., 2000. Nature 403, 301-304; Fearnside, 1997. Climatic Change 35, 321-360), i.e., studies which implied that the Legal Amazon region tends toward a net-zero annual source of terrestrial carbon. In contrast, our analysis implies that the total source fluxes over the entire Legal Amazon region range from 0.2 to 1.2 Pg C yr -1, depending strongly on annual rainfall patterns. The reasons for our higher burning emission estimates are (1) use of combustion fractions typically measured during Amazon forest burning events for computing carbon losses, (2) more detailed geographic distribution of vegetation biomass and daily fire activity for the region, and (3) inclusion of fire effects in extensive areas of the Legal Amazon covered by open woodland, secondary forests, savanna, and pasture vegetation. The total area of rainforest estimated annually to be deforested did not differ substantially among the previous analyses cited and our own.

  17. Ecosystem relevance of variable jellyfish biomass in the Irish Sea between years, regions and water types

    NASA Astrophysics Data System (ADS)

    Bastian, Thomas; Lilley, Martin K. S.; Beggs, Steven E.; Hays, Graeme C.; Doyle, Thomas K.

    2014-08-01

    Monitoring the abundance and distribution of taxa is essential to assess their contribution to ecosystem processes. For marine taxa that are difficult to study or have long been perceived of little ecological importance, quantitative information is often lacking. This is the case for jellyfish (medusae and other gelatinous plankton). In the present work, 4 years of scyphomedusae by-catch data from the 2007-2010 Irish Sea juvenile gadoid fish survey were analysed with three main objectives: (1) to provide quantitative and spatially-explicit species-specific biomass data, for a region known to have an increasing trend in jellyfish abundance; (2) to investigate whether year-to-year changes in catch-biomass are due to changes in the numbers or in the size of medusa (assessed as the mean mass per individual), and (3) to determine whether inter-annual variation patterns are consistent between species and water masses. Scyphomedusae were present in 97% of samples (N = 306). Their overall annual median catch-biomass ranged from 0.19 to 0.92 g m-3 (or 8.6 to 42.4 g m-2). Aurelia aurita and Cyanea spp. (Cyanea lamarckii and Cyanea capillata) made up 77.7% and 21.5% of the total catch-biomass respectively, but species contributions varied greatly between sub-regions and years. No consistent pattern was detected between the distribution and inter-annual variations of the two genera, and contrasting inter-annual patterns emerged when considering abundance either as biomass or as density. Significantly, A. aurita medusae were heavier in stratified than in mixed waters, which we hypothesize may be linked to differences in timing and yield of primary and secondary productions between water masses. These results show the vulnerability of time-series from bycatch datasets to phenological changes and highlight the importance of taking species- and population-specific distribution patterns into account when integrating jellyfish into ecosystem models.

  18. The economic prospects of cellulosic biomass for biofuel production

    NASA Astrophysics Data System (ADS)

    Kumarappan, Subbu

    Alternative fuels for transportation have become the focus of intense policy debate and legislative action due to volatile oil prices, an unstable political environment in many major oil producing regions, increasing global demand, dwindling reserves of low-cost oil, and concerns over global warming. A major potential source of alternative fuels is biofuels produced from cellulosic biomass, which have a number of potential benefits. Recognizing these potential advantages, the Energy Independence and Security Act of 2007 has mandated 21 billion gallons of cellulosic/advanced biofuels per year by 2022. The United States needs 220-300 million tons of cellulosic biomass per year from the major sources such as agricultural residues, forestry and mill residues, herbaceous resources, and waste materials (supported by Biomass Crop Assistance Program) to meet these biofuel targets. My research addresses three key major questions concerning cellulosic biomass supply. The first paper analyzes cellulosic biomass availability in the United States and Canada. The estimated supply curves show that, at a price of 100 per ton, about 568 million metric tons of biomass is available in the United States, while 123 million metric tons is available in Canada. In fact, the 300 million tons of biomass required to meet EISA mandates can be supplied at a price of 50 per metric ton or lower. The second paper evaluates the farmers' perspective in growing new energy crops, such as switchgrass and miscanthus, in prime cropland, in pasture areas, or on marginal lands. My analysis evaluates how the farmers' returns from energy crops compare with those from other field crops and other agricultural land uses. The results suggest that perennial energy crops yielding at least 10 tons per acre annually will be competitive with a traditional corn-soybean rotation if crude oil prices are high (ranging from 88-178 per barrel over 2010-2019). If crude oil prices are low, then energy crops will not be competitive with existing crops, and additional subsidy support would be required. Among the states in the eastern half of US, the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, and Virginia are found to be economically more suitable to cultivate perennial energy crops. The third paper estimates the optimal feedstock composition of annual and perennial feedstocks from a biorefinery's perspective. The objective function of the optimization model is to minimize the cumulative costs covering harvesting, transport, storage, and GHG costs, of biomass procurement over a biorefinery's productive period of 20 years subject to various constraints on land availability, feedstock availability, processing capacity, contracting needs and storage. The results suggest that the economic tradeoff is between higher production costs for dedicated energy crops and higher collection and transport costs for agricultural residues; the delivered costs of biomass drives the results. These tradeoffs are reflected in optimal spatial planting pattern as preferred by the biorefinery: energy crops are grown in fields closer to the biorefinery and agricultural residues can be sourced from fields farther away from the biorefinery. The optimization model also provides useful insights into the price premiums paid for annual and perennial feedstocks. For the parameters used in the case study, the energy crop price premium ranges from 2 to 8 per ton for fields located within a 10 mile radius. For agricultural residues, the price premiums range from 5 to 16 per ton within a 10-20 mile radius.

  19. Biomass production by fescue and switchgrass alone and in mixed swards with legumes. Final project report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, M.

    In assessing the role of biomass in alleviating potential global warming, the absence of information on the sustainability of biomass production on soils of limited agricultural potential is cited as a major constraint to the assessment of the role of biomass. Research on the sustainability of yields, recycling of nutrients, and emphasis on reduced inputs of agricultural chemicals in the production of biomass are among the critical research needs to clarify optimum cropping practice in biomass production. Two field experiments were conducted between 1989 and 1993. One study evaluated biomass production and composition of switchgrass (Panicum virgatum L.) grown alonemore » and with bigflower vetch (Vicia grandiflora L.) and the other assessed biomass productivity and composition of tall fescue (Festuca arundinacea Schreb.) grown alone and with perennial legumes. Switchgrass received 0, 75 or 150 kg ha{sup {minus}1} of N annually as NH{sub 4}NO{sub 3} or was interseeded with vetch. Tall fescue received 0, 75, 150 or 225 kg ha{sup {minus}1} of N annually or was interseeded with alfalfa (Medicago L.) or birdsfoot trefoil (Lotus corniculatus L.). It is hoped that production systems can be designed to produce high yields of biomass with minimal inputs of fertilizer N. Achievement of this goal would reduce the potential for movement of NO{sub 3} and other undesirable N forms outside the biomass production system into the environment. In addition, management systems involving legumes could reduce the cost of biomass production.« less

  20. Nitrogen limitation, 15N tracer retention, and growth response in intact and Bromus tectorum-invaded Artemisia tridentata ssp. wyomingensis communities

    USGS Publications Warehouse

    Witwicki, Dana L.; Doescher, Paul S.; Pyke, David A.; DeCrappeo, Nicole M.; Perakis, Steven S.

    2012-01-01

    Annual grass invasion into shrub-dominated ecosystems is associated with changes in nutrient cycling that may alter nitrogen (N) limitation and retention. Carbon (C) applications that reduce plant-available N have been suggested to give native perennial vegetation a competitive advantage over exotic annual grasses, but plant community and N retention responses to C addition remain poorly understood in these ecosystems. The main objectives of this study were to (1) evaluate the degree of N limitation of plant biomass in intact versus B. tectorum-invaded sagebrush communities, (2) determine if plant N limitation patterns are reflected in the strength of tracer 15N retention over two growing seasons, and (3) assess if the strength of plant N limitation predicts the efficacy of carbon additions intended to reduce soil N availability and plant growth. Labile C additions reduced biomass of exotic annual species; however, growth of native A. tridentata shrubs also declined. Exotic annual and native perennial plant communities had divergent responses to added N, with B. tectorum displaying greater ability to use added N to rapidly increase aboveground biomass, and native perennials increasing their tissue N concentration but showing little growth response. Few differences in N pools between the annual and native communities were detected. In contrast to expectations, however, more 15N was retained over two growing seasons in the invaded annual grass than in the native shrub community. Our data suggest that N cycling in converted exotic annual grasslands of the northern Intermountain West, USA, may retain N more strongly than previously thought.

  1. 40 CFR 80.1426 - How are RINs generated and assigned to batches of renewable fuel by renewable fuel producers or...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fermentation using natural gas, biomass, or biogas for process energy 6 Biodiesel, and renewable diesel Soy... renewable biomass and petroleum 4 Biodiesel Canola oil Trans-Esterification using natural gas or biomass for process energy 4 Biodiesel, and renewable diesel Soy bean oil;Oil from annual covercrops; Algal oil...

  2. 40 CFR 80.1426 - How are RINs generated and assigned to batches of renewable fuel by renewable fuel producers or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fermentation using natural gas, biomass, or biogas for process energy 6 Biodiesel, and renewable diesel Soy... renewable biomass and petroleum 4 Biodiesel Canola oil Trans-Esterification using natural gas or biomass for process energy 4 Biodiesel, and renewable diesel Soy bean oil;Oil from annual covercrops; Algal oil...

  3. Multiresource Inventories: Woody Biomass in North Carolina

    Treesearch

    Noel D. Cost

    1986-01-01

    North Carolina's 31.2 million acres of land area support 1.7 billion tons of woody biomass. Of this total, 94 percent is on timberland, 3 percent on nonforest areas, and 3 percent on reserved timberland and woodland areas. Over the next two decades, more than 12.8 million tons of woody biomass could be harvested annually from timberland without adversely...

  4. Quantifying allometric model uncertainty for plot-level live tree biomass stocks with a data-driven, hierarchical framework

    Treesearch

    Brian J. Clough; Matthew B. Russell; Grant M. Domke; Christopher W. Woodall

    2016-01-01

    Accurate uncertainty assessments of plot-level live tree biomass stocks are an important precursor to estimating uncertainty in annual national greenhouse gas inventories (NGHGIs) developed from forest inventory data. However, current approaches employed within the United States’ NGHGI do not specifically incorporate methods to address error in tree-scale biomass...

  5. Temporal changes of soil respiration under different tree species.

    PubMed

    Akburak, Serdar; Makineci, Ender

    2013-04-01

    Soil respiration rates were measured monthly (from April 2007 to March 2008) under four adjacent coniferous plantation sites [Oriental spruce (Picea orientalis L.), Austrian pine (Pinus nigra Arnold), Turkish fir (Abies bornmulleriana L.), and Scots pine (Pinus sylvestris L.)] and adjacent natural Sessile oak forest (Quercus petraea L.) in Belgrad Forest-Istanbul/Turkey. Also, soil moisture, soil temperature, and fine root biomass were determined to identify the underlying environmental variables among sites which are most likely causing differences in soil respiration. Mean annual soil moisture was determined to be between 6.3 % and 8.1 %, and mean annual temperature ranged from 13.0°C to 14.2°C under all species. Mean annual fine root biomass changed between 368.09 g/m(2) and 883.71 g/m(2) indicating significant differences among species. Except May 2007, monthly soil respiration rates show significantly difference among species. However, focusing on tree species, differences of mean annual respiration rates did not differ significantly. Mean annual soil respiration ranged from 0.56 to 1.09 g C/m(2)/day. The highest rates of soil respiration reached on autumn months and the lowest rates were determined on summer season. Soil temperature, soil moisture, and fine root biomass explain mean annual soil respiration rates at the highest under Austrian pine (R (2) = 0.562) and the lowest (R (2) = 0.223) under Turkish fir.

  6. Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010.

    PubMed

    Song, Xiao-Peng; Huang, Chengquan; Saatchi, Sassan S; Hansen, Matthew C; Townshend, John R

    2015-01-01

    Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates-critical inputs for setting reference emission levels for REDD+-are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010. We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25 M ha•yr(-1) and 0.18 ± 0.07 Pg C•yr(-1) respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha(-1), ~11% lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha(-1)). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha(-1)•yr(-1) from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts.

  7. Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010

    PubMed Central

    Song, Xiao-Peng; Huang, Chengquan; Saatchi, Sassan S.; Hansen, Matthew C.; Townshend, John R.

    2015-01-01

    Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates―critical inputs for setting reference emission levels for REDD+―are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010. We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25 M ha•yr−1 and 0.18 ± 0.07 Pg C•yr−1 respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha−1, ~11% lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha−1). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha−1•yr−1 from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts. PMID:25951328

  8. 75 FR 6263 - Biomass Crop Assistance Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... Part II Department of Agriculture Commodity Credit Corporation 7 CFR Part 1450 Biomass Crop... RIN 0560-AH92 Biomass Crop Assistance Program AGENCY: Commodity Credit Corporation and Farm Service... to implement the new Biomass Crop Assistance Program (BCAP) authorized by the Food, Conservation, and...

  9. Marine biomass: New York State species and site studies. Annual report December 1982-November 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKay, L.B.

    1983-11-01

    The Energy Authority has been conducting tests since 1979 in an effort to develop a feasible system for the production in Long Island Sound of marine biomass from indigenous macroalgae for economically competitive conversion to synthetic natural gas. During 1983 this goal was brought closer to realization when a 120 x 41 foot seaweed test farm was placed in 60 feet of water in Long Island Sound. The structure is basically a flexible wire cable and rope grid, buoyed at the surface and moored to the bottom of the Sound. It is suitable for cultivating seaweeds that attach themselves tomore » surfaces such as the brown kelp, Laminaria saccharina. The test farm design was chosen from among four previously developed by the engineering team. An ongoing program is taking place in Long Island Sound to test the strength of the structure and to obtain information on plants growing in the structure. The program will test the strain on the lines, corrosion on metal parts, and available light and temperature at various times. Also, since 1982, bioengineering tests have focused on biofouling experiments, and seaweed and rope strength tests. The report also includes discussion of a laboratory research program focused on seeding techniques and strain selection.« less

  10. Multiresource inventories: woody biomass in Virginia

    Treesearch

    Noel D. Cost

    1988-01-01

    Virginia's 25 .. 4 million acres of land area support 1.5 billion J tons of woody biomass. Of this total, 93 percent is on timberland, I 5 percent on reserved timberland and woodland areas, and 2 percent I on nonforest areas. Over the next two decades, more than 9 million I t tons of woody biomass could be harvested annually from timberland I I without adversely...

  11. 40 CFR 98.36 - Data reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fossil fuels only, the annual CO2 emissions for all fuels combined. Reporting CO2 emissions by type of fuel is not required. (ii) For units that burn both fossil fuels and biomass, the annual CO2 emissions from combustion of all fossil fuels combined and the annual CO2 emissions from combustion of all...

  12. Ecosystem energetic implications of parasite and free-living biomass in three estuaries

    USGS Publications Warehouse

    Kuris, Armand M.; Hechinger, Ryan F.; Shaw, Jenny C.; Whitney, Kathleen L.; Aguirre-Macedo, Leopoldina; Boch, Charlie A.; Dobson, Andrew P.; Dunham, Eleca J.; Fredensborg, Brian L.; Huspeni, Todd C.; Lorda, Julio; Mababa, Luzviminda; Mancini, Frank T.; Mora, Adrienne B.; Pickering, Maria; Talhouk, Nadia L.; Torchin, Mark E.; Lafferty, Kevin D.

    2008-01-01

    Parasites can have strong impacts but are thought to contribute little biomass to ecosystems. We quantified the biomass of free-living and parasitic species in three estuaries on the Pacific coast of California and Baja California. Here we show that parasites have substantial biomass in these ecosystems. We found that parasite biomass exceeded that of top predators. The biomass of trematodes was particularly high, being comparable to that of the abundant birds, fishes, burrowing shrimps and polychaetes. Trophically transmitted parasites and parasitic castrators subsumed more biomass than did other parasitic functional groups. The extended phenotype biomass controlled by parasitic castrators sometimes exceeded that of their uninfected hosts. The annual production of free-swimming trematode transmission stages was greater than the combined biomass of all quantified parasites and was also greater than bird biomass. This biomass and productivity of parasites implies a profound role for infectious processes in these estuaries.

  13. Iowa's forest resources in 2003

    Treesearch

    Earl C. Leatherberry; Gary J. Brand; Steve Pennington

    2005-01-01

    Reports the initial results of all five annual panels (1999-2003) of the fourth inventory of Iowa`s forest resources, the first annual inventory of the State. Includes information on forest area; volume; biomass; growth, mortality, and removals; and health.

  14. Minnesota's forest resources in 2003

    Treesearch

    Patrick D. Miles; Gary J. Brand; Manfred E. Mielke

    2005-01-01

    Reports the results of all five annual panels (1999-2003) of the sixth inventory of Minnesota's forest resources, the first annual inventory of the State. Includes information on forest area; volume; biomass; growth, removals, and mortality; and forest health.

  15. Effectiveness of Biomass Harvesting from Stormwater Detention Areas in Reducing Phosphorus Discharges

    NASA Astrophysics Data System (ADS)

    Shukla, A.; Shukla, S.

    2014-12-01

    Stormwater Detention Areas (SDAs) in agricultural landscapes are considered to be the most important Best Management Practice by state agencies in Florida. Two main processes responsible for Phosphorus (P) retention in SDAs are soil adsorption and plant uptake. Long term pumping of agricultural drainage may saturate the SDA's soil with P which can put these systems at the risk of becoming a source of P. Given that these systems already occupy part of the farmland and are costly to build, interventions are needed to sustain SDAs as a sink of P. Soil and vegetation P content at two SDAs (SDA1 and 2) in south Florida was quantified in addition to inflow and outflow P loads. Analyses showed that soil was saturated with limited to no P adsorption capacity remaining. Negative Soil Phosphorus Storage Capacity (SPSC) indicated that soil was at a risk of P release. Given these conditions, the only avenue to remove P from SDAs without any potentially undesirable ecological impacts, was biomass harvesting. At SDA1, results showed that harvesting the aboveground biomass would result in 19% extra P retention if the current vegetation (Para grass, Brachiaria mutica) is harvested. Given that aboveground tissue P content of Para grass is very low, replacing it with another native grass (Maidencane, Panicum hemitomon) and harvesting it annually could retain most of the incoming P load. A similar analysis showed that at SDA2, almost 40% additional P could be retained by harvesting aboveground biomass of the dominant vegetation (Torpedo Grass, Panicum repens and Smartweed, Polygonum hydropiperoides). A spatial analysis in conjunction with SPSC values and aboveground plant P indicated that biomass harvesting can transform both the SDAs from a source to sink in 2 to 3 years. A fifty year net present value analysis showed that overall it is an economically feasible strategy with an average annual benefit of 3,223 and 34,825 for SDA1 and 2, respectively. Harvesting aboveground biomass has the potential to become a part of "payment for environmental services" program and is one of the less intensive methods to sustain SDAs as a net sink of P in the long-term without causing detrimental effects to the downstream ecology.

  16. Combining Drought Survival via Summer Dormancy and Annual Biomass Productivity in Dactylis glomerata L.

    PubMed Central

    Kallida, Rajae; Zhouri, Latifa; Volaire, Florence; Guerin, Adrien; Julier, Bernadette; Shaimi, Naima; Fakiri, Malika; Barre, Philippe

    2016-01-01

    Under Mediterranean climates, the best strategy to produce rain-fed fodder crops is to develop perennial drought resistant varieties. Summer dormancy present in native germplasm has been shown to confer a high level of survival under severe drought. Nevertheless it has also been shown to be negatively correlated with annual biomass productivity. The aim of this study was to analyze the correlations between summer dormancy and annual biomass productivity related traits and to identify quantitative trait loci (QTL) for these traits in a progeny of a summer dormant cocksfoot parent (Kasbah) and a summer active parent (Medly). A total of 283 offspring and the parents were phenotyped for summer dormancy, plant growth rate (PGR) and heading date in Morocco and for maximum leaf elongation rate (LERm) in France. The individuals were genotyped with a total of 325 markers including 59 AFLP, 64 SSR, and 202 DArT markers. The offspring exhibited a large quantitative variation for all measured traits. Summer dormancy showed a negative correlation with both PGR (-0.34 p < 0.005) and LERm (-0.27 p < 0.005). However, genotypes with both a high level of summer dormancy and a high level of PGR were detected in the progeny. One genetic map per parent was built with a total length of 377 and 423 cM for Kasbah and Medly, respectively. Both different and co-localized QTL for summer dormancy and PGR were identified. These results demonstrate that it should be possible to create summer dormant cocksfoot varieties with a high annual biomass productivity. PMID:26904054

  17. Combining Drought Survival via Summer Dormancy and Annual Biomass Productivity in Dactylis glomerata L.

    PubMed

    Kallida, Rajae; Zhouri, Latifa; Volaire, Florence; Guerin, Adrien; Julier, Bernadette; Shaimi, Naima; Fakiri, Malika; Barre, Philippe

    2016-01-01

    Under Mediterranean climates, the best strategy to produce rain-fed fodder crops is to develop perennial drought resistant varieties. Summer dormancy present in native germplasm has been shown to confer a high level of survival under severe drought. Nevertheless it has also been shown to be negatively correlated with annual biomass productivity. The aim of this study was to analyze the correlations between summer dormancy and annual biomass productivity related traits and to identify quantitative trait loci (QTL) for these traits in a progeny of a summer dormant cocksfoot parent (Kasbah) and a summer active parent (Medly). A total of 283 offspring and the parents were phenotyped for summer dormancy, plant growth rate (PGR) and heading date in Morocco and for maximum leaf elongation rate (LERm) in France. The individuals were genotyped with a total of 325 markers including 59 AFLP, 64 SSR, and 202 DArT markers. The offspring exhibited a large quantitative variation for all measured traits. Summer dormancy showed a negative correlation with both PGR (-0.34 p < 0.005) and LERm (-0.27 p < 0.005). However, genotypes with both a high level of summer dormancy and a high level of PGR were detected in the progeny. One genetic map per parent was built with a total length of 377 and 423 cM for Kasbah and Medly, respectively. Both different and co-localized QTL for summer dormancy and PGR were identified. These results demonstrate that it should be possible to create summer dormant cocksfoot varieties with a high annual biomass productivity.

  18. From berries to blocks: carbon stock quantification of a California vineyard.

    PubMed

    Morandé, Jorge Andres; Stockert, Christine M; Liles, Garrett C; Williams, John N; Smart, David R; Viers, Joshua H

    2017-12-01

    Quantifying terrestrial carbon (C) stocks in vineyards represents an important opportunity for estimating C sequestration in perennial cropping systems. Considering 7.2 M ha are dedicated to winegrape production globally, the potential for annual C capture and storage in this crop is of interest to mitigate greenhouse gas emissions. In this study, we used destructive sampling to measure C stocks in the woody biomass of 15-year-old Cabernet Sauvignon vines from a vineyard in California's northern San Joaquin Valley. We characterize C stocks in terms of allometric variation between biomass fractions of roots, aboveground wood, canes, leaves and fruits, and then test correlations between easy-to-measure variables such as trunk diameter, pruning weights and harvest weight to vine biomass fractions. Carbon stocks at the vineyard block scale were validated from biomass mounds generated during vineyard removal. Total vine C was estimated at 12.3 Mg C ha -1 , of which 8.9 Mg C ha -1 came from perennial vine biomass. Annual biomass was estimated at 1.7 Mg C ha -1 from leaves and canes and 1.7 Mg C ha -1 from fruit. Strong, positive correlations were found between the diameter of the trunk and overall woody C stocks (R 2  = 0.85), pruning weights and leaf and fruit C stocks (R 2  = 0.93), and between fruit weight and annual C stocks (R 2  = 0.96). Vineyard C partitioning obtained in this study provides detailed C storage estimations in order to understand the spatial and temporal distribution of winegrape C. Allometric equations based on simple and practical biomass and biometric measurements could enable winegrape growers to more easily estimate existing and future C stocks by scaling up from berries and vines to vineyard blocks.

  19. Relationships between annual plant productivity, nitrogen deposition and fire size in low-elevation California desert scrub

    USGS Publications Warehouse

    Rao, Leela E.; Matchett, John R.; Brooks, Matthew L.; Johns, Robert; Minnich, Richard A.; Allen, Edith B.

    2014-01-01

    Although precipitation is correlated with fire size in desert ecosystems and is typically used as an indirect surrogate for fine fuel load, a direct link between fine fuel biomass and fire size has not been established. In addition, nitrogen (N) deposition can affect fire risk through its fertilisation effect on fine fuel production. In this study, we examine the relationships between fire size and precipitation, N deposition and biomass with emphasis on identifying biomass and N deposition thresholds associated with fire spreading across the landscape. We used a 28-year fire record of 582 burns from low-elevation desert scrub to evaluate the relationship of precipitation, N deposition and biomass with the distribution of fire sizes using quantile regression. We found that models using annual biomass have similar predictive ability to those using precipitation and N deposition at the lower to intermediate portions of the fire size distribution. No distinct biomass threshold was found, although within the 99th percentile of the distribution fire size increased with greater than 125 g m–2 of winter fine fuel production. The study did not produce an N deposition threshold, but did validate the value of 125 g m–2 of fine fuel for spread of fires.

  20. Temporal variation of biomass and productivity of Thalassia testudinum (Hydrocharitaceae) in Venezuela, Southern Caribbean.

    PubMed

    Pérez, Daisy; Guevara, Marcel; Bone, David

    2006-06-01

    Annual biomass and productivity of Thalassia testudinum were determined during a year at a seagrass bed located in the Parque Nacional Morrocoy, Venezuela. Leaf, rhizome and root biomass were determined monthly, together with short-shoot density, from February 1992 to January 1993, from nine replicated core samples. Productivity was measured using the methodology by Zieman (1974) with minor modifications, and leaf turnover rate was calculated. Leaf biomass values ranged between 101.73 dry g m(-2) in February and 178.11 dry g m(-2) in August. Productivity ranged from 1.69 dry g m(-2) d(-1) in April and October to 3.30 dry g m(-2) d(-1) in July, showing two annual peaks: one in July and one in March. The leaf turnover rate showed the highest value in June (2.41% d(-1)) and the lowest in May (1.23% d(-1)). Sampling time differences in leaf biomass, productivity and turnover rate were statistically significant. Short-shoot density values varied between 811.10 shoots m(-2) in April and 1226.08 shoots m(-2) in December, but the differences were not significant along the year. These results indicated seasonal trends for leaf biomass, productivity and turnover rate of T. testudinum in the Southern Caribbean (latitude 10 degrees N).

  1. Annual and interannual variations of phytoplankton pigment concentration and upwelling along the Pacific equator

    NASA Technical Reports Server (NTRS)

    Halpern, David; Feldman, Gene C.

    1994-01-01

    The following variables along the Pacific equator from 145 deg E to 95 deg W were employed: surface layer phytoplankton pigment concentrations derived from Nimbus 7 coastal zone color scanner (CZCS) measurements of ocean color radiances; vertical velocities simulated at the 90-m bottom of the euphotic layer from a wind-driven ocean general circulation model; and nitrate concentrations estimated from model-simulated temperature. The upward flux of nitrate into the euphotic layer was calculated from the simulated vertical motion and nitrate concentration. The CZCS-derived phytoplankton pigment concentration was uniform from 175 deg to 95 deg W. Longitudinal profiles of upwelling, phytoplankton biomass, and 90-m nitrate flux were of different shapes. The small annual cycles of the phytoplankton pigment and nitrate flux were in phase: increased phytoplankton biomass was associated with increased upward nitrate flux, but the phase was not consistent with the annual cycles of the easterly wind or of the upwelling intensity. Variation of phytoplankton pigment concentration was greater during El Nino than during the annual cycle. The substantially reduced phytoplankton pigment concentration observed during El Nino was associated with smaller upward nitrate flux. Phytoplankton biomass during non-El Nino conditions was not related to nitrate flux into the euphotic layer.

  2. Patterns and drivers of soil microbial communities in temperate grasslands on the Mongolian plateau

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Hu, H.; Hao, B.; Liu, Y.; Chen, Y.; Ma, W.

    2016-12-01

    Soil microorganisms play key roles in regulating many important ecosystem processes. However, our understanding of the patterns and drivers of soil microbial communities at the regional scale remains limited. In this study, on the basis of phospholipid fatty acid (PLFA) analysis, we investigated large-scale patterns and drivers of soil microbial communities using data from 78 sites between two depths (0-10 cm and 10-20 cm) within three major grassland types (desert steppe, typical steppe, and meadow steppe) on the Mongolian Plateau. Our findings demonstrated that, at the regional scale, the total soil microbial biomass, fungal biomass, bacterial biomass, and actinomycete biomass in Inner Mongolian temperate grasslands were all positively associated with mean annual precipitation (MAP), soil organic carbon (SOC), soil total nitrogen (TN), C:N ratio, plant aboveground biomass (AGB), and plant species richness (SR), but negatively correlated with mean annual temperature (MAT), soil bulk density (BD), and soil pH in both depths, except actinomycete biomass with MAP and BD in 10-20 cm. A stepwise regression analysis revealed that soil microbial community variations in Inner Mongolian temperate grasslands were mainly explained by C : N ratio in 0-10 cm, but by SR (total soil microbial biomass, fungal biomass, and actinomycete biomass) and MAT (bacterial biomass) in 10-20 cm. Our findings strongly indicate that the dominant drivers of spatial variations in soil microbial communities between 0-10 cm and 10-20 cm in the Inner Mongolia grasslands are significantly different, with edaphic factors (e.g., C: N ratio) in 0-10 cm but climatic (e.g, MAT) and/or biotic (e.g, SR) in 10-20 cm.

  3. Missouri's forest resources in 2003

    Treesearch

    W. Keith; Moser; Treiman, Thomas Treiman, Thomas; Bruce Moltzan; Robert Lawrence; Gary J. Brand; Gary J. Brand

    2005-01-01

    Reports the initial results of all five annual panels (1999-2003) of the fifth inventory of Missouri`s forest resources, the first annual inventory of the State. Includes information on forest area; volume; biomass; growth, removals, and mortality; and forest health.

  4. Assessing the potential for fish predation to impact zebra mussels (Dreissena polymorpha): Insight from bioenergetics models

    USGS Publications Warehouse

    Eggleton, M.A.; Miranda, L.E.; Kirk, J.P.

    2004-01-01

    Rates of annual food consumption and biomass were modeled for several fish species across representative rivers and lakes in eastern North America. Results were combined to assess the relative potential of fish predation to impact zebra mussels (Dreissena polymorpha). Predicted annual food consumption by fishes in southern waters was over 100% greater than that in northern systems because of warmer annual water temperatures and presumed increases in metabolic demand. Although generally increasing with latitude, biomasses of several key zebra mussel fish predators did not change significantly across latitudes. Biomasses of some less abundant fish predators did increase significantly with latitude, but increases were not of the magnitude to offset predicted decreases in food consumption. Our results generally support the premise that fishes in rivers and lakes of the southern United States (U.S.) have inherently greater potential to impact zebra mussels by predation. Our simulations may provide a partial explanation of why zebra mussel invasions have not been as rapid and widespread in southern U.S. waters compared to the Great Lakes region. ?? Blackwell Munksgaard, 2004.

  5. Forest resources of the Hoosier National Forest, 2005

    Treesearch

    Christoper W. Woodall; Judith A. Perez; Thomas R. Thake

    2007-01-01

    The first annual inventory of the Hoosier National Forest reports more than 200,000 forest land acres dominated by oaks, maples, and hickories with annual growth exceeding annual mortality by a factor of seven. When compared to forests in the rest of Indiana, the Hoosier's forests are on average older, have greater biomass per acre, and possess a greater...

  6. 78 FR 36117 - Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Annual Specifications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... regulations require NMFS to set these annual catch levels for the Pacific sardine fishery based on the annual... HG, the primary management target for the fishery, for the current fishing season. The HG is based... Fisheries Science Center and the resulting Pacific sardine biomass estimate of 659,539 mt. Based on the...

  7. Interannual control of plankton communities by deep winter mixing and prey/predator interactions in the NW Mediterranean: Results from a 30-year 3D modeling study

    NASA Astrophysics Data System (ADS)

    Auger, P. A.; Ulses, C.; Estournel, C.; Stemmann, L.; Somot, S.; Diaz, F.

    2014-05-01

    A realistic modeling approach is designed to address the role of winter mixing on the interannual variability of plankton dynamics in the north-western (NW) Mediterranean basin. For the first time, a high-resolution coupled hydrodynamic-biogeochemical model (Eco3m-S) covering a 30-year period (1976-2005) is validated on available in situ and satellite data for the NW Mediterranean. In this region, cold, dry winds in winter often lead to deep convection and strong upwelling of nutrients into the euphotic layer. High nutrient contents at the end of winter then support the development of a strong spring bloom of phytoplankton. Model results indicate that annual primary production is not affected by winter mixing due to seasonal balance (minimum in winter and maximum in spring). However, the total annual water column-integrated phytoplankton biomass appears to be favored by winter mixing because zooplankton grazing activity is low in winter and early spring. This reduced grazing is explained here by the rarefaction of prey due to both light limitation and the effect of mixing-induced dilution on prey/predator interactions. A negative impact of winter mixing on winter zooplankton biomass is generally simulated except for mesozooplankton. This difference is assumed to stem from the lower parameterized mortality, top trophic position and detritivorous diet of mesozooplankton in the model. Moreover, model suggests that the variability of annual mesozooplankton biomass is principally modulated by the effects of winter mixing on winter biomass. Thus, interannual variability of winter nutrient contents in the euphotic layer, resulting from winter mixing, would control spring primary production and thus annual mesozooplankton biomass. Our results show a bottom-up control of mesozooplankton communities, as observed at a coastal location of the Ligurian Sea.

  8. Functional Group, Biomass, and Climate Change Effects on Ecological Drought in Semiarid Grasslands

    NASA Astrophysics Data System (ADS)

    Wilson, S. D.; Schlaepfer, D. R.; Bradford, J. B.; Lauenroth, W. K.; Duniway, M. C.; Hall, S. A.; Jamiyansharav, K.; Jia, G.; Lkhagva, A.; Munson, S. M.; Pyke, D. A.; Tietjen, B.

    2018-03-01

    Water relations in plant communities are influenced both by contrasting functional groups (grasses and shrubs) and by climate change via complex effects on interception, uptake, and transpiration. We modeled the effects of functional group replacement and biomass increase, both of which can be outcomes of invasion and vegetation management, and climate change on ecological drought (soil water potential below which photosynthesis stops) in 340 semiarid grassland sites over 30 year periods. Relative to control vegetation (climate and site-determined mixes of functional groups), the frequency and duration of drought were increased by shrubs and decreased by annual grasses. The rankings of shrubs, control vegetation, and annual grasses in terms of drought effects were generally consistent in current and future climates, suggesting that current differences among functional groups on drought effects predict future differences. Climate change accompanied by experimentally increased biomass (i.e., the effects of invasions that increase community biomass or management that increases productivity through fertilization or respite from grazing) increased drought frequency and duration and advanced drought onset. Our results suggest that the replacement of perennial temperate semiarid grasslands by shrubs, or increased biomass, can increase ecological drought in both current and future climates.

  9. Functional group, biomass, and climate change effects on ecological drought in semiarid grasslands

    USGS Publications Warehouse

    Wilson, Scott D.; Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, William K.; Duniway, Michael C.; Hall, Sonia A.; Jamiyansharav, Khishigbayar; Jia, Gensuo; Lkhagva, Ariuntsetseg; Munson, Seth M.; Pyke, David A.; Tietjen, Britta

    2018-01-01

    Water relations in plant communities are influenced both by contrasting functional groups (grasses, shrubs) and by climate change via complex effects on interception, uptake and transpiration. We modelled the effects of functional group replacement and biomass increase, both of which can be outcomes of invasion and vegetation management, and climate change on ecological drought (soil water potential below which photosynthesis stops) in 340 semiarid grassland sites over 30‐year periods. Relative to control vegetation (climate and site‐determined mixes of functional groups), the frequency and duration of drought were increased by shrubs and decreased by annual grasses. The rankings of shrubs, control vegetation, and annual grasses in terms of drought effects were generally consistent in current and future climates, suggesting that current differences among functional groups on drought effects predict future differences. Climate change accompanied by experimentally‐increased biomass (i.e. the effects of invasions that increase community biomass, or management that increases productivity through fertilization or respite from grazing) increased drought frequency and duration, and advanced drought onset. Our results suggest that the replacement of perennial temperate semiarid grasslands by shrubs, or increased biomass, can increase ecological drought both in current and future climates.

  10. Energy sorghum--a genetic model for the design of C4 grass bioenergy crops.

    PubMed

    Mullet, John; Morishige, Daryl; McCormick, Ryan; Truong, Sandra; Hilley, Josie; McKinley, Brian; Anderson, Robert; Olson, Sara N; Rooney, William

    2014-07-01

    Sorghum is emerging as an excellent genetic model for the design of C4 grass bioenergy crops. Annual energy Sorghum hybrids also serve as a source of biomass for bioenergy production. Elucidation of Sorghum's flowering time gene regulatory network, and identification of complementary alleles for photoperiod sensitivity, enabled large-scale generation of energy Sorghum hybrids for testing and commercial use. Energy Sorghum hybrids with long vegetative growth phases were found to accumulate more than twice as much biomass as grain Sorghum, owing to extended growing seasons, greater light interception, and higher radiation use efficiency. High biomass yield, efficient nitrogen recycling, and preferential accumulation of stem biomass with low nitrogen content contributed to energy Sorghum's elevated nitrogen use efficiency. Sorghum's integrated genetics-genomics-breeding platform, diverse germplasm, and the opportunity for annual testing of new genetic designs in controlled environments and in multiple field locations is aiding fundamental discovery, and accelerating the improvement of biomass yield and optimization of composition for biofuels production. Recent advances in wide hybridization between Sorghum and other C4 grasses could allow the deployment of improved genetic designs of annual energy Sorghums in the form of wide-hybrid perennial crops. The current trajectory of energy Sorghum genetic improvement indicates that it will be possible to sustainably produce biofuels from C4 grass bioenergy crops that are cost competitive with petroleum-based transportation fuels. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The main objectives of the 3rd Annual Biomass Energy Systems Conference were (1) to review the latest research findings in the clean fuels from biomass field, (2) to summarize the present engineering and economic status of Biomass Energy Systems, (3) to encourage interaction and information exchange among people working or interested in the field, and (4) to identify and discuss existing problems relating to ongoing research and explore opportunities for future research. Abstracts for each paper presented were edited separately. (DC)

  12. Influence of forage sorghum systems under different tillage practices on microbial biomass and soil C/N pools

    USDA-ARS?s Scientific Manuscript database

    Sorghum has become a popular annual forage and silage crop in the Southern Great Plains. Most sorghum hybrids require higher nitrogen fertilization for sustainable biomass production and subsequent removal for grazing or hay. Higher nitrogen application and monoculture sorghum systems can negatively...

  13. Lake Roosevelt Fisheries Evaluation Program, Part B; Limnology, Primary Production, and Zooplankton in Lake Roosevelt, Washington, 1998 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shields, John; Spotts, Jim; Underwood, Keith

    2002-11-01

    The Lake Roosevelt Fisheries Evaluation Program is the result of a merger between two projects, the Lake Roosevelt Monitoring Program (BPA No. 8806300) and the Lake Roosevelt Data Collection Project (BPA No. 9404300). These projects were merged in 1996 to continue work historically completed under the separate projects, and is now referred to as the Lake Roosevelt Fisheries Evaluation Program. The 1998 Annual Report, Part B. Limnology, Primary Production, and Zooplankton in Lake Roosevelt, Washington examined the limnology, primary production, and zooplankton at eleven locations throughout the reservoir. The 1998 research protocol required a continuation of the more complete examinationmore » of limnological parameters in Lake Roosevelt that began in 1997. Phytoplankton and periphyton speciation, phytoplankton and periphyton chlorophyll a analysis, complete zooplankton biomass analysis by taxonomic group, and an increased number of limnologic parameters (TDG, TDS, etc.) were examined and compared with 1997 results. Total dissolved gas levels were greatly reduced in 1998, compared with 1997, likely resulting from the relatively normal water year experienced in 1998. Mean water temperatures were similar to what was observed in past years, with a maximum of 22.7 C and a minimum of 2.6 C. Oxygen concentrations were also relatively normal, with a maximum of 16.6 mg/L, and a minimum of 0.9 mg/L. Phytoplankton in Lake Roosevelt was primarily composed of microplankton (29.6%), Cryptophyceae (21.7%), and Bacillriophyceae (17.0 %). Mean total phytoplankton chlorophyll a maximum concentration occurred in May (3.53 mg/m{sup 3}), and the minimum in January (0.39 mg/m{sup 3}). Phytoplankton chlorophyll a concentrations appear to be influenced by hydro-operations and temperature. Trophic status as indicated by phytoplankton chlorophyll a concentrations place Lake Roosevelt in the oligomesotrophic range. Periphyton colonization rates and biovolume were significantly greater at a depth of 1.5 m (5 ft) when compared with a 4.6 m (15 ft) depth, and during the shorter incubation periods (two and four weeks). Mean zooplankton densities were greatest for Copepoda (88 %), then Daphnia spp. (10%) and other Cladocera (2.1%), while the zooplankton biomass assessment indicated Daphnia spp. had the greatest biomass (53.6%), then Copepoda (44.0%) and other Cladocera (2.5%). Mean overall zooplankton densities were the lowest observed since 1991. The cause was unclear, but may have been an artifact of human error. It seems unlikely that hydro-operations played a significant part in the reduction of zooplankton in light of the relatively friendly water year of 1998.« less

  14. Remote sensing investigations of wetland biomass and productivity for global biosystems research

    NASA Technical Reports Server (NTRS)

    Klemas, V.

    1986-01-01

    The relationship between spectral radiance and plant canopy biomass was studied in wetlands. Spectroradiometer data was gathered on Thematic Mapper wavebands 3, 4, and 5, and correlated with canopy and edaphic factors determined by harvesting. The relationship between spectral radiance and plant canopy biomass for major salt and brackish canopy types was determined. Algorithms were developed for biomass measurement in mangrove swamps. The influence of latitudinal variability in canopy structure on biomass assessment of selected plants was investigated. Brackish marsh biomass estimates were obtained from low altitude aircraft and compared with ground measurements. Annual net aerial primary productivity estimates computed from spectral radiance data were compiled for a Spartina alterniflora marsh. Spectral radiance data were expressed as vegetation or infrared index values. Biomass estimates computed from models were in close agreement with biomass estimates determined from harvests.

  15. Micro-phytoplankton community structure in the coastal upwelling zone off Concepción (central Chile): Annual and inter-annual fluctuations in a highly dynamic environment

    NASA Astrophysics Data System (ADS)

    Anabalón, V.; Morales, C. E.; González, H. E.; Menschel, E.; Schneider, W.; Hormazabal, S.; Valencia, L.; Escribano, R.

    2016-12-01

    An intensification of upwelling-favorable winds in recent decades has been detected in some of the main eastern boundary current systems, especially at higher latitudes, but the response of coastal phytoplankton communities in the Humboldt Current System (HCS) remains unknown. At higher latitudes in the HCS (35-40°S), strong seasonality in wind-driven upwelling during spring-summer coincides with an annual increase in coastal chlorophyll-a and primary production, and a dominance of micro-phytoplankton. In order to understand the effects of potential upwelling intensification on the micro-phytoplankton community in this region, annual and inter-annual variability in its structure (total and taxa-specific abundance and biomass) and its association with oceanographic fluctuations were analyzed using in situ time series data (2002-2009) from a shelf station off Concepcion (36.5°S). At the annual scale, total mean abundance and biomass, attributed to a few dominant diatom taxa, were at least one order of magnitude greater during spring-summer than autumn-winter, in association with changes in upwelling and surface salinity and temperature, whereas macro-nutrient concentrations remained relatively high all the year. At the inter-annual scale, total abundance and biomass decreased during the upwelling season of the 2006-2009 period compared with the 2002-2006 period, notably due to lower abundances of Skeletonema and Leptocylindrus, but the relative dominance of a few taxa was maintained. The 2006-2009 period was characterized by higher upwelling intensity, colder and higher salinity waters, and changes in nutrient concentrations and ratios compared with the first period. The inter-annual changes in the micro-phytoplankton community were mostly associated with changes in surface salinity and temperature (changes in upwelling intensity) but also with changes in Si/N and N/P, which relate to other land-derived processes.

  16. In the aftermath of PURPA: The future of the biomass energy industry in Maine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, S.J.; Connors, J.F.

    During the 1980`s the biomass power industry in Maine grew to nearly 500 MW of installed capacity in 21 cogeneration and stand alone plants. By 1992 these plants consumed four million tons of woody fuels annually, while providing 25% of the states` electricity supply. Moreover, this new industry supported over 2500 jobs throughout rural Maine, generated substantial local property taxes and provided a critically need management option for forest management and mill waste disposal. All of this capacity was developed by non-utility generators as Qualifying Facilities (QF) under PURPA rules. Most power contracts were fixed price, must take agreements guidedmore » by avoided cost calculations that assumed high future costs for energy alternatives. Circumstances have changed. Historically low oil prices, economic recession, and rising electricity rates have made biomass fueled power plants some of the most expensive sources of electricity on the power grid. Utilities are responding to rising rates, to public and political pressure to control costs and lower rates by seeking to renegotiate or buy out power contracts and closing biomass plants. While there are strong demands to control electricity costs, there are equally strong concerns about losing the benefits that accrue from the use of indigenous renewable resources. This article evaluates the actions of Maine utilities, independent power producers, the Maine Public Utilities Commission, and the Main Legislature related to PURPA contracts and their likely effects on the future of the biomass power industry in Maine. In particular, we will describe Maine`s new Electric Rate Stabilization Program and subsequent efforts of the Executive Branch to mediate a compromise solution in one case of a utility buy out of a biomass power plant.« less

  17. Sustainable fuel for the transportation sector

    PubMed Central

    Agrawal, Rakesh; Singh, Navneet R.; Ribeiro, Fabio H.; Delgass, W. Nicholas

    2007-01-01

    A hybrid hydrogen-carbon (H2CAR) process for the production of liquid hydrocarbon fuels is proposed wherein biomass is the carbon source and hydrogen is supplied from carbon-free energy. To implement this concept, a process has been designed to co-feed a biomass gasifier with H2 and CO2 recycled from the H2-CO to liquid conversion reactor. Modeling of this biomass to liquids process has identified several major advantages of the H2CAR process. (i) The land area needed to grow the biomass is <40% of that needed by other routes that solely use biomass to support the entire transportation sector. (ii) Whereas the literature estimates known processes to be able to produce ≈30% of the United States transportation fuel from the annual biomass of 1.366 billion tons, the H2CAR process shows the potential to supply the entire United States transportation sector from that quantity of biomass. (iii) The synthesized liquid provides H2 storage in an open loop system. (iv) Reduction to practice of the H2CAR route has the potential to provide the transportation sector for the foreseeable future, using the existing infrastructure. The rationale of using H2 in the H2CAR process is explained by the significantly higher annualized average solar energy conversion efficiency for hydrogen generation versus that for biomass growth. For coal to liquids, the advantage of H2CAR is that there is no additional CO2 release to the atmosphere due to the replacement of petroleum with coal, thus eliminating the need to sequester CO2. PMID:17360377

  18. Sustainable fuel for the transportation sector.

    PubMed

    Agrawal, Rakesh; Singh, Navneet R; Ribeiro, Fabio H; Delgass, W Nicholas

    2007-03-20

    A hybrid hydrogen-carbon (H(2)CAR) process for the production of liquid hydrocarbon fuels is proposed wherein biomass is the carbon source and hydrogen is supplied from carbon-free energy. To implement this concept, a process has been designed to co-feed a biomass gasifier with H(2) and CO(2) recycled from the H(2)-CO to liquid conversion reactor. Modeling of this biomass to liquids process has identified several major advantages of the H(2)CAR process. (i) The land area needed to grow the biomass is <40% of that needed by other routes that solely use biomass to support the entire transportation sector. (ii) Whereas the literature estimates known processes to be able to produce approximately 30% of the United States transportation fuel from the annual biomass of 1.366 billion tons, the H(2)CAR process shows the potential to supply the entire United States transportation sector from that quantity of biomass. (iii) The synthesized liquid provides H(2) storage in an open loop system. (iv) Reduction to practice of the H(2)CAR route has the potential to provide the transportation sector for the foreseeable future, using the existing infrastructure. The rationale of using H(2) in the H(2)CAR process is explained by the significantly higher annualized average solar energy conversion efficiency for hydrogen generation versus that for biomass growth. For coal to liquids, the advantage of H(2)CAR is that there is no additional CO(2) release to the atmosphere due to the replacement of petroleum with coal, thus eliminating the need to sequester CO(2).

  19. Environmental and economic evaluation of bioenergy in Ontario, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yimin Zhang; Shiva Habibi; Heather L. MacLean

    2007-08-15

    We examined life cycle environmental and economic implications of two near-term scenarios for converting cellulosic biomass to energy, generating electricity from cofiring biomass in existing coal power plants, and producing ethanol from biomass in stand-alone facilities in Ontario, Canada. The study inventories near-term biomass supply in the province, quantifies environmental metrics associated with the use of agricultural residues for producing electricity and ethanol, determines the incremental costs of switching from fossil fuels to biomass, and compares the cost-effectiveness of greenhouse gas (GHG) and air pollutant emissions abatement achieved through the use of the bioenergy. Implementing a biomass cofiring rate of 10% in existing coal-fired power plants would reduce annual GHG emissions by 2.3 million metric tons (t) of CO{sub 2} equivalent (7% of the province's coal power plant emissions). The substitution of gasoline with ethanol/gasoline blends would reduce annual provincial light-duty vehicle fleet emissions between 1.3 and 2.5 million t of CO{sub 2} equivalent (3.5-7% of fleet emissions). If biomass sources other than agricultural residues were used, additional emissions reductions could be realized. At current crude oil prices (more » $70/barrel) and levels of technology development of the bioenergy alternatives, the biomass electricity cofiring scenario analyzed is more cost-effective for mitigating GHG emissions ($$22/t of CO{sub 2} equivalent for a 10% cofiring rate) than the stand-alone ethanol production scenario ($$92/t of CO{sub 2} equivalent). 67 refs., 5 figs., 7 tabs.« less

  20. Looking for age-related growth decline in natural forests: unexpected biomass patterns from tree rings and simulated mortality

    USGS Publications Warehouse

    Foster, Jane R.; D'Amato, Anthony W.; Bradford, John B.

    2014-01-01

    Forest biomass growth is almost universally assumed to peak early in stand development, near canopy closure, after which it will plateau or decline. The chronosequence and plot remeasurement approaches used to establish the decline pattern suffer from limitations and coarse temporal detail. We combined annual tree ring measurements and mortality models to address two questions: first, how do assumptions about tree growth and mortality influence reconstructions of biomass growth? Second, under what circumstances does biomass production follow the model that peaks early, then declines? We integrated three stochastic mortality models with a census tree-ring data set from eight temperate forest types to reconstruct stand-level biomass increments (in Minnesota, USA). We compared growth patterns among mortality models, forest types and stands. Timing of peak biomass growth varied significantly among mortality models, peaking 20–30 years earlier when mortality was random with respect to tree growth and size, than when mortality favored slow-growing individuals. Random or u-shaped mortality (highest in small or large trees) produced peak growth 25–30 % higher than the surviving tree sample alone. Growth trends for even-aged, monospecific Pinus banksiana or Acer saccharum forests were similar to the early peak and decline expectation. However, we observed continually increasing biomass growth in older, low-productivity forests of Quercus rubra, Fraxinus nigra, and Thuja occidentalis. Tree-ring reconstructions estimated annual changes in live biomass growth and identified more diverse development patterns than previous methods. These detailed, long-term patterns of biomass development are crucial for detecting recent growth responses to global change and modeling future forest dynamics.

  1. Dynamics of size-fractionated phytoplankton biomass in a monsoonal estuary: Patterns and drivers for seasonal and spatial variability

    NASA Astrophysics Data System (ADS)

    Rajaneesh, K. M.; Mitbavkar, Smita; Anil, Arga Chandrashekar

    2018-07-01

    Phytoplankton size-fractionated biomass is an important determinant of the type of food web functioning in aquatic ecosystems. Knowledge about the effect of seasonal salinity gradient on the size-fractionated biomass dynamics is still lacking, especially in tropical estuaries experiencing monsoon. The phytoplankton size-fractionated chlorophyll a biomass (>3 μm and <3 μm) and picophytoplankton community structure were characterized in the monsoonal Zuari estuary, along the west coast of India, from October 2010 to September 2011 across the salinity gradient (0-35). On an annual scale, >3 μm size-fraction was the major contributor to the total phytoplankton chlorophyll a biomass with the ephemeral dominance of <3 μm size-fraction. During monsoon season, freshwater runoff and shorter water residence time resulted in a size-independent response. The lowest annual chlorophyll a biomass concentration of both size-fractions showed signs of recovery with increasing salinity downstream towards the end of the monsoon season. In contrast, the chlorophyll a biomass response was size-dependent during the non-monsoon seasons with the sporadic dominance (>50%) of <3 μm chlorophyll a biomass during high water temperature episodes from downstream to middle estuary during pre-monsoon and at low salinity and high nutrient conditions upstream during post-monsoon. These conditions also influenced the picophytoplankton community structure with picoeukaryotes dominating during the pre-monsoon, phycoerythrin containing Synechococcus during the monsoon and phycocyanin containing Synechococcus during the post-monsoon. This study highlights switching over of dominance in size-fractionated phytoplankton chlorophyll a biomass at intra, inter-seasonal and spatial scales which will likely govern the estuarine trophodynamics.

  2. Biomass Program 2007 Accomplishments - Full Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2009-10-27

    The Office of Energy Efficiency and Renewable Energy's (EERE’s) Biomass Program works with industry, academia and its national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. This document provides Program accomplishments for 2007.

  3. Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature

    PubMed Central

    Cayuela, Luis; González-Caro, Sebastián; Aldana, Ana M.; Stevenson, Pablo R.; Phillips, Oliver; Cogollo, Álvaro; Peñuela, Maria C.; von Hildebrand, Patricio; Jiménez, Eliana; Melo, Omar; Londoño-Vega, Ana Catalina; Mendoza, Irina; Velásquez, Oswaldo; Fernández, Fernando; Serna, Marcela; Velázquez-Rua, Cesar; Benítez, Doris; Rey-Benayas, José M.

    2017-01-01

    Understanding and predicting the likely response of ecosystems to climate change are crucial challenges for ecology and for conservation biology. Nowhere is this challenge greater than in the tropics as these forests store more than half the total atmospheric carbon stock in their biomass. Biomass is determined by the balance between biomass inputs (i.e., growth) and outputs (mortality). We can expect therefore that conditions that favor high growth rates, such as abundant water supply, warmth, and nutrient-rich soils will tend to correlate with high biomass stocks. Our main objective is to describe the patterns of above ground biomass (AGB) stocks across major tropical forests across climatic gradients in Northwestern South America. We gathered data from 200 plots across the region, at elevations ranging between 0 to 3400 m. We estimated AGB based on allometric equations and values for stem density, basal area, and wood density weighted by basal area at the plot-level. We used two groups of climatic variables, namely mean annual temperature and actual evapotranspiration as surrogates of environmental energy, and annual precipitation, precipitation seasonality, and water availability as surrogates of water availability. We found that AGB is more closely related to water availability variables than to energy variables. In northwest South America, water availability influences carbon stocks principally by determining stand structure, i.e. basal area. When water deficits increase in tropical forests we can expect negative impact on biomass and hence carbon storage. PMID:28301482

  4. Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature.

    PubMed

    Álvarez-Dávila, Esteban; Cayuela, Luis; González-Caro, Sebastián; Aldana, Ana M; Stevenson, Pablo R; Phillips, Oliver; Cogollo, Álvaro; Peñuela, Maria C; von Hildebrand, Patricio; Jiménez, Eliana; Melo, Omar; Londoño-Vega, Ana Catalina; Mendoza, Irina; Velásquez, Oswaldo; Fernández, Fernando; Serna, Marcela; Velázquez-Rua, Cesar; Benítez, Doris; Rey-Benayas, José M

    2017-01-01

    Understanding and predicting the likely response of ecosystems to climate change are crucial challenges for ecology and for conservation biology. Nowhere is this challenge greater than in the tropics as these forests store more than half the total atmospheric carbon stock in their biomass. Biomass is determined by the balance between biomass inputs (i.e., growth) and outputs (mortality). We can expect therefore that conditions that favor high growth rates, such as abundant water supply, warmth, and nutrient-rich soils will tend to correlate with high biomass stocks. Our main objective is to describe the patterns of above ground biomass (AGB) stocks across major tropical forests across climatic gradients in Northwestern South America. We gathered data from 200 plots across the region, at elevations ranging between 0 to 3400 m. We estimated AGB based on allometric equations and values for stem density, basal area, and wood density weighted by basal area at the plot-level. We used two groups of climatic variables, namely mean annual temperature and actual evapotranspiration as surrogates of environmental energy, and annual precipitation, precipitation seasonality, and water availability as surrogates of water availability. We found that AGB is more closely related to water availability variables than to energy variables. In northwest South America, water availability influences carbon stocks principally by determining stand structure, i.e. basal area. When water deficits increase in tropical forests we can expect negative impact on biomass and hence carbon storage.

  5. High carbon losses due to recent cropland expansion in the United States

    NASA Astrophysics Data System (ADS)

    Spawn, S.; Lark, T.; Gibbs, H.

    2017-12-01

    Land conversion for agriculture in the United States has reached record highs in recent years. From 2008 to 2012 nearly 30,000 square kilometers of previously un-cultivated land were converted to agricultural land use with much of this expansion occurring on grasslands (77%) and shrublands (8%). To understand the effects of this conversion on global C cycling, we created novel, spatially explicit biomass maps for these biomes by combining existing satellite data products with models derived from field measurements. We then estimated changes in existing C stocks by combining our derived data with existing Landsat-scale data on land cover, land conversion, forest biomass and soil organic carbon (C) stocks. We find that conversion results in annual C losses of approximately 25 Tg C from US terrestrial ecosystems. Nationwide, roughly 80% of total emissions result from committed soil organic C losses. While biomass losses from expansion into forests and wetlands are disproportionately high per unit area, the vast majority of C losses occurred in grassland ecosystems, with grassland roots representing close to 70% of total biomass losses across all biomes. C losses are partially offset each year by agricultural abandonment which we estimate could sequester as much as 15 Tg C, annually. Taken together, we find that US agricultural expansion results in net annual emissions of 10 Tg C which is nearly 30% of emissions from existing US croplands. Our estimate is comparable to a recent analogous estimate for conversion of the Brazilian Cerrado and is equivalent to 10% of annual C losses from pantropical deforestation, suggesting that the effects of US cropland expansion could be globally significant.

  6. Plant community, primary productivity, and environmental conditions following wetland re-establishment in the Sacramento-San Joaquin Delta, California

    USGS Publications Warehouse

    Miller, R.L.; Fujii, R.

    2010-01-01

    Wetland restoration can mitigate aerobic decomposition of subsided organic soils, as well as re-establish conditions favorable for carbon storage. Rates of carbon storage result from the balance of inputs and losses, both of which are affected by wetland hydrology. We followed the effect of water depth (25 and 55 cm) on the plant community, primary production, and changes in two re-established wetlands in the Sacramento San-Joaquin River Delta, California for 9 years after flooding to determine how relatively small differences in water depth affect carbon storage rates over time. To estimate annual carbon inputs, plant species cover, standing above- and below-ground plant biomass, and annual biomass turnover rates were measured, and allometric biomass models for Schoenoplectus (Scirpus) acutus and Typha spp., the emergent marsh dominants, were developed. As the wetlands developed, environmental factors, including water temperature, depth, and pH were measured. Emergent marsh vegetation colonized the shallow wetland more rapidly than the deeper wetland. This is important to potential carbon storage because emergent marsh vegetation is more productive, and less labile, than submerged and floating vegetation. Primary production of emergent marsh vegetation ranged from 1.3 to 3.2 kg of carbon per square meter annually; and, mid-season standing live biomass represented about half of the annual primary production. Changes in species composition occurred in both submerged and emergent plant communities as the wetlands matured. Water depth, temperature, and pH were lower in areas with emergent marsh vegetation compared to submerged vegetation, all of which, in turn, can affect carbon cycling and storage rates. ?? Springer Science+Business Media B.V. 2009.

  7. A survey of bioenergy research in Forest Service Research and Development

    Treesearch

    Alan W. Rudie; Carl J. Houtman; Les Groom; David L. Nicholls; Junyong Zhu

    2016-01-01

    Forest biomass represents 25–30 % of the annual biomass available in the USA for conversion into bio-based fuels, bio-based chemicals, and bioproducts in general. The USDA Forest Service Research and Development (R&D) has been focused on producing products from forest biomass since its inception in 1905, with direct combustion, solid sawn lumber, pulp and paper...

  8. Biomass production of 4- to 9-year-old intensively cultured Larix eurolepis grown in

    Treesearch

    J. Zavitkovski; Allen L. Lundgren; Terry Strong

    1983-01-01

    Intensively cultured Larix eurolepis at age 9 averaged 7.6 m in height and, depending on the spacing, 2.3 to 6.4 cm in d.b.h. The total stem-branch biomass for all spacing tested (0.1 to 1.5 m2) averaged 67 mt/ha and the mean annual biomass increment 7.4 mt/ha. The "Scotch Plaid" design appears suitable for comparative studies dealing with spacing and...

  9. Quantifying Vegetation Composition, Structure and Dynamics in Selected Australian Ecosystems: Science to Management

    NASA Astrophysics Data System (ADS)

    Phinn, S. R.; Scarth, P.; Armston, J.; Witte, C.; Danaher, T.; Flood, N.; Gill, T.; Lucas, R.

    2011-12-01

    Management of Australian ecosystems is carried out by state governments using information derived from satellite image data. The state of Queensland covers approximately 1.8 x 10^6 km^2 and uses satellite remote sensing and field survey programs to support legislated environmental monitoring, management and compliance activities.This poster outlines how the Joint Remote Sensing Research Program(JRSRP)delivered satellite image based data sets to address these activities by mapping foliage projective cover, vegetation height and biomass. Foliage projective cover (FPC), the vertically projected percentage cover of photosynthetic foliage of all strata, is produced from Landsat TM/ETM data using 88 scenes and over 1700 field sites. The JRSRP enabled government staff to be seconded to a university research group to work on the project, and the university provided postdoctoral and graduate student support. The JRSRP activities focussed on geometric and topographic corrections, BRDF corrections and time-series based approaches for correcting the archive of field survey and Landsat TM/ETM+ images. This has now progressed to a program using the entire Landsat TM/ETM+ archive on an annual basis and annual state-wide field survey data. The Landsat TM/ETM+ calibrations have been a critical input to the Landsat program's global vicarious calibration activities. Vegetation height is a critical parameter required for a range of state-wide activities and can be mapped accurately from field plots to regional areas using airborne Lidar. To develop statewide height estimates, an approach was developed using Icesat and existing vegetation community maps. By aggregating the spaceborne Icesat full waveform data within the mapped vegetation structure polygons it was possible to retrieve vegetation vertical structure information continuously across the landscape. This was used to derive mean canopy and understorey height, depth and density across Queensland, which was validated using airborne lidar data provided by the JRSRP. Biomass mapping is emerging as a critical environmental parameter for local, state and national agencies in Australia. Staff from JRSRP developed an approach with University of Aberystwyth in Wales, through JAXA's Kyoto and Carbon initiative, for acquiring ALOS PALSAR L-band image data, conducting geometric and radiometric corrections, and normalising for significant scene to scene differences in soil and vegetation moisture content. This pre-processing of 31 image strip time-series generated state-wide mosaics for Queensland that were then used with 1815 field survey sites collected across the state to produce a state-wide biomass estimation model for L-HV data, providing estimates for both remnant and non-remnant forests, with saturation at 263 Mg.Ha^-1 for 20% estimation error. The Joint Remote Sensing Research Program has enabled a sound approach to research and development for validated operational applications.

  10. BANR: A Program to Predict Biomass Yield and Nutrient Withdrawal by Harvest of Southern Hardwood Stands

    Treesearch

    John K. Francis

    1986-01-01

    Intensive harvest of southern hardwoods can yield biomass in a greatly varied mix. This causes variation in the withdrawal rates of nutrients. A need exists for a computer program to perform biomass and nutrient content calculations on diverse stands. such a program BANR (Biomass And Nutrient Removal) - is described in this paper. It was written for the Hewlett-Packard...

  11. What drives uncertainty in model diagnoses of carbon dynamics in southern US forests: climate, vegetation, disturbance, or model parameters?

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Gu, H.; Williams, C. A.

    2017-12-01

    Results from terrestrial carbon cycle models have multiple sources of uncertainty, each with its behavior and range. Their relative importance and how they combine has received little attention. This study investigates how various sources of uncertainty propagate, temporally and spatially, in CASA-Disturbance (CASA-D). CASA-D simulates the impact of climatic forcing and disturbance legacies on forest carbon dynamics with the following steps. Firstly, we infer annual growth and mortality rates from measured biomass stocks (FIA) over time and disturbance (e.g., fire, harvest, bark beetle) to represent annual post-disturbance carbon fluxes trajectories across forest types and site productivity settings. Then, annual carbon fluxes are estimated from these trajectories by using time since disturbance which is inferred from biomass (NBCD 2000) and disturbance maps (NAFD, MTBS and ADS). Finally, we apply monthly climatic scalars derived from default CASA to temporally distribute annual carbon fluxes to each month. This study assesses carbon flux uncertainty from two sources: driving data including climatic and forest biomass inputs, and three most sensitive parameters in CASA-D including maximum light use efficiency, temperature sensitivity of soil respiration (Q10) and optimum temperature identified by using EFAST (Extended Fourier Amplitude Sensitivity Testing). We quantify model uncertainties from each, and report their relative importance in estimating forest carbon sink/source in southeast United States from 2003 to 2010.

  12. Weed interference with peppermint (Mentha x piperita L.) and spearmint (Mentha spicata L.) crops under different herbicide treatments: effects on biomass and essential oil yield.

    PubMed

    Karkanis, Anestis; Lykas, Christos; Liava, Vasiliki; Bezou, Anna; Petropoulos, Spyridon; Tsiropoulos, Nikolaos

    2018-01-01

    'Minor crops' such as spearmint and peppermint are high added value crops, despite the fact that their production area is comparably small worldwide. The main limiting factor in mint commercial cultivation is weed competition. Thus, field experiments were carried out to evaluate the effects of weed interference on growth, biomass and essential oil yield in peppermint and spearmint under different herbicide treatments. The application of pendimethalin and oxyfluorfen provided better control of annual weeds resulting in higher crop yield. Additionally, when treated with herbicides both crops were more competitive against annual weeds in the second year than in the first year. All pre-emergence herbicides increased biomass yield, since pendimethalin, linuron and oxyfluorfen reduced the density of annual weeds by 71-92%, 63-74% and 86-95%, respectively. Weed interference and herbicide application had no effect on essential oil content; however, a relatively strong impact on essential oil production per cultivated area unit was observed, mainly due to the adverse effect of weed interference on plant growth. Considering that pendimethalin and oxyfluorfen were effective against annual weeds in both spearmint and peppermint crops, these herbicides should be included in integrated weed management systems for better weed management in mint crops. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Power and limitation of soil properties as predictors of variation in peak plant biomass in a northern mixed-grass prairie

    USDA-ARS?s Scientific Manuscript database

    Soil properties are thought to affect annual plant productivity in rangelands, and thus soil variables that are consistently correlated with variation in plant biomass may be general indicators of rangeland health. Here we measured several soil properties (e.g. aggregate stability, organic carbon, ...

  14. TROPHIC DYNAMICS OF STRIPED BASS IN SMITH MOUNTAIN LAKE, VIRGINIA

    EPA Science Inventory

    We examined the adequacy of the forage base to meet demand of striped bass in Smith Mountain Lake, Virginia. In regards to prey supply, mean alewife biomass from 1993-1998 was 37 kg/ha and mean gizzard shad biomass from 1990-1997 was 112 kg/ha. Mean annual alewife surplus produ...

  15. Liquid Fuels from Lignins: Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chum, H. L.; Johnson, D. K.

    1986-01-01

    This task was initiated to assess the conversion of lignins into liquid fuels, primarily of lignins relevant to biomass-to-ethanol conversion processes. The task was composed of a literature review of this area and an experimental part to obtain pertinent data on the conversion of lignins germane to biomass-to-ethanol conversion processes.

  16. Marine biomass: New York State species and site studies. Annual report 1 Dec 80-30 Nov 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Squires, D.F.; McKay, L.; Peterson, J.M.

    1982-03-01

    This report presents the results of laboratory and field tests conducted on nine indigenous New York seaweeds surveyed as potential feedstocks for methanogenesis. In addition, various offshore locations near Long Island were valuated for their potential use as sites for large-scale marine biomass experiments.

  17. Global biomass burning - Atmospheric, climatic, and biospheric implications

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    On a global scale, the total biomass consumed by annual burning is about 8680 million tons of dry material; the estimated total biomass consumed by the burning of savanna grasslands, at 3690 million tons/year, exceeds all other biomass burning (BMB) components. These components encompass agricultural wastes burning, forest burning, and fuel wood burning. BMB is not restricted to the tropics, and is largely anthropogenic. Satellite measurements indicate significantly increased tropospheric concentrations of CO and ozone associated with BMB. BMB significantly enhances the microbial production and emission of NO(x) from soils, and of methane from wetlands.

  18. Strategies to control a common carp population by pulsed commercial harvest

    USGS Publications Warehouse

    Colvin, Michael E.; Pierce, Clay; Stewart, Timothy W.; Grummer, Scott E.

    2012-01-01

    Commercial fisheries are commonly used to manage nuisance fishes in freshwater systems, but such efforts are often unsuccessful. Strategies for successfully controlling a nuisance population of common carp Cyprinus carpio by pulsed commercial harvest were evaluated with a combination of (1) field sampling, (2) population estimation and CPUE indexing, and (3) simulation using an exponential semidiscrete biomass dynamics model (SDBDM). The range of annual fishing mortalities (F) that resulted in successful control (F = 0.244–0.265) was narrow. Common carp biomass dynamics were sensitive to unintentional underharvest due to high rates of surplus production and a biomass doubling time of 2.7 years. Simulations indicated that biomanipulation never achieved successful control unless supplemental fishing mortality was imposed. Harvest of a majority of annual production was required to achieve successful control, as indicated by the ecotrophic coefficient (EC). Readily available biomass data and tools such as SDBDMs and ECs can be used in an adaptive management framework to successfully control common carp and other nuisance fishes by pulsed commercial fishing.

  19. Abundance and biomass of herbivorous zooplankton off Kingston, Jamaica, with estimates of their annual production

    NASA Astrophysics Data System (ADS)

    Clarke, Cheryl; Roff, John C.

    1990-10-01

    During 1985-1986 weekly collections of zooplankton were made off Lime Cay, Jamaica, which is representative of the cays area off southern Jamaica. The dominant (non-copepod) herbivorous taxa, Larvacea, Thaliacea, Cladocera and Pteropoda, were enumerated, and their daily biomasses were estimated by direct weighing or from length-weight regressions. The dominant taxa, in abundance, were the Oikopleuridae and Fritillaridae (49·8% and 35·8%, respectively), but the dominant taxon in terms of biomass was Thalia democratica-on average 75·2% of the total. These herbivorous taxa generally exhibited pronounced variations in abundance which, with the exception of an inverse relationship between Fritillaria spp. and the picoplankton, were not correlated with any size fraction of the phytoplankton. Calculations suggest that, in total, these "other" herbivorous groups may equal the copepods in terms of annual production, and may on occasions exceed them by nearly three-fold.

  20. 75 FR 66201 - Biomass Crop Assistance Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... Part III Department of Agriculture Commodity Credit Corporation 7 CFR Part 1450 Biomass Crop... Part 1450 RIN 0560-AH92 Biomass Crop Assistance Program AGENCY: Commodity Credit Corporation and Farm Service Agency, USDA. ACTION: Final rule. SUMMARY: This rule implements the new Biomass Crop Assistance...

  1. Remote Sensing of Coastal Wetlands Biomass Using Thematic Mapper Wavebands. [Lewes, Delaware

    NASA Technical Reports Server (NTRS)

    Hardisky, M. A.; Klemas, V.

    1985-01-01

    Spectral data, simulating thematic mapper bands 3, 4 and 5 were gathered in salt and brackish marshes using a hand-held radiometer. Simple regression models were developed equating spectral radiance indicies with total live biomass for S. alterniflora in a salt marsh and for a variety of plant species in a brackish marsh. Models were then tested and compared to harvest estimates of biomass. In the salt marsh, biomass estimates from spectral data were similar to harvest biomass estimates during most of the growing season. Estimates of annual net aerial primary productivity calculated from spectral data were within 21% of production estimated from harvest data. During August, biomass estimates from spectral data in the brackish marsh were similar to biomass estimated by harvesting techniques but not always comparable at other times in the growing season.

  2. 50 CFR 648.54 - State waters exemption.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... conservation program that does not jeopardize the biomass and fishing mortality/effort limit objectives of the... of those states have a scallop conservation program that does not jeopardize the biomass and fishing... that the state's conservation program jeopardizes the biomass and fishing mortality/effort limit...

  3. 50 CFR 648.54 - State waters exemption.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... conservation program that does not jeopardize the biomass and fishing mortality/effort limit objectives of the... of those states have a scallop conservation program that does not jeopardize the biomass and fishing... that the state's conservation program jeopardizes the biomass and fishing mortality/effort limit...

  4. 50 CFR 648.54 - State waters exemption.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... conservation program that does not jeopardize the biomass and fishing mortality/effort limit objectives of the... of those states have a scallop conservation program that does not jeopardize the biomass and fishing... that the state's conservation program jeopardizes the biomass and fishing mortality/effort limit...

  5. 50 CFR 648.54 - State waters exemption.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... conservation program that does not jeopardize the biomass and fishing mortality/effort limit objectives of the... of those states have a scallop conservation program that does not jeopardize the biomass and fishing... that the state's conservation program jeopardizes the biomass and fishing mortality/effort limit...

  6. Primary production in a tropical large lake: the role of phytoplankton composition.

    PubMed

    Darchambeau, F; Sarmento, H; Descy, J-P

    2014-03-01

    Phytoplankton biomass and primary production in tropical large lakes vary at different time scales, from seasons to centuries. We provide a dataset made of 7 consecutive years of phytoplankton biomass and production in Lake Kivu (Eastern Africa). From 2002 to 2008, bi-weekly samplings were performed in a pelagic site in order to quantify phytoplankton composition and biomass, using marker pigments determined by HPLC. Primary production rates were estimated by 96 in situ (14)C incubations. A principal component analysis showed that the main environmental gradient was linked to a seasonal variation of the phytoplankton assemblage, with a clear separation between diatoms during the dry season and cyanobacteria during the rainy season. A rather wide range of the maximum specific photosynthetic rate (PBm) was found, ranging between 1.15 and 7.21 g carbong(-1)chlorophyll ah(-1), and was best predicted by a regression model using phytoplankton composition as an explanatory variable. The irradiance at the onset of light saturation (Ik) ranged between 91 and 752 μE m(-2)s(-1) and was linearly correlated with the mean irradiance in the mixed layer. The inter-annual variability of phytoplankton biomass and production was high, ranging from 53 to 100 mg chlorophyll am(-2) (annual mean) and from 143 to 278 g carbon m(-2)y(-1), respectively. The degree of seasonal mixing determined annual production, demonstrating the sensitivity of tropical lakes to climate variability. A review of primary production of other African great lakes allows situating Lake Kivu productivity in the same range as that of lakes Tanganyika and Malawi, even if mean phytoplankton biomass was higher in Lake Kivu. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Linking phenology and biomass productivity in South Dakota mixed-grass prairie

    USGS Publications Warehouse

    Rigge, Matthew; Smart, Alexander; Wylie, Bruce; Gilmanov, Tagir; Johnson, Patricia

    2013-01-01

    Assessing the health of rangeland ecosystems based solely on annual biomass production does not fully describe plant community condition; the phenology of production can provide inferences on species composition, successional stage, and grazing impacts. We evaluate the productivity and phenology of western South Dakota mixed-grass prairie using 2000 to 2008 Moderate Resolution Imaging Spectrometer (MODIS) normalized difference vegetation index (NDVI) satellite imagery at 250 m spatial resolution. Growing season NDVI images were integrated weekly to produce time-integrated NDVI (TIN), a proxy of total annual biomass production, and integrated seasonally to represent annual production by cool (C3) and warm (C4) season species. Additionally, a variety of phenological indicators including cool season percentage of TIN were derived from the seasonal profiles of NDVI. Cool season percentage and TIN were combined to generate vegetation classes, which served as proxies of plant community condition. TIN decreased with precipitation from east to west across the study area. Alternatively, cool season percentage increased from east to west, following patterns related to the reliability (interannual coefficient of variation [CV]) and quantity of mid-summer precipitation. Cool season TIN averaged 76.8% of total. Seasonal accumulation of TIN corresponded closely (R2 > 0.90) to that of gross photosynthesis data from a carbon flux tower. Field-collected biomass and community composition data were strongly related to the TIN and cool season percentage products. The patterns of vegetation classes were responsive to topographic, edaphic, and land management influences on plant communities. Accurate maps of biomass production, cool/warm season composition, and vegetation classes can improve the efficiency of land management by adjusting stocking rates and season of use to maximize rangeland productivity and achieve conservation objectives. Further, our results clarify the spatial and temporal dynamics of phenology and TIN in mixed-grass prairie.

  8. Fate of fish production in a seasonally flooded saltmarsh

    USGS Publications Warehouse

    Stevens, Philip W.; Montague, C.L.; Sulak, K.J.

    2006-01-01

    Although saltmarshes are thought to enhance the productivity of open estuarine waters, the mechanism by which energy transfer occurs has been debated for decades. One possible mechanism is the transfer of saltmarsh production to estuarine waters by vagile fishes and invertebrates. Monthly estimates of fish standing stock, net fish ingress, and predation were used to develop a biomass budget to estimate annual production of fishes and the relative yield to predatory fish, birds, and direct migration to the estuary. Annual production of saltmarsh fishes was estimated to be 31.0 g m-2 saltmarsh, which falls within the range of previously reported values for estuarine fish communities. The relative yields were 12 to 20% to piscivorous fishes, 8 to 13% to piscivorous birds, and 18 to 29% to export. Annual export of fish biomass was 5.6 g fish m-2 saltmarsh, representing about 1 to 2% of saltmarsh primary production. Saltmarsh fishes convert marsh production to high-quality vagile biomass (fishes concentrate energy, protein, and nutrients as body mass) and move this readily useable production to the estuary, providing an efficient link between saltmarshes and estuarine predators. ?? Inter-Research 2006.

  9. Annual boom-bust cycles of polar phytoplankton biomass revealed by space-based lidar

    NASA Astrophysics Data System (ADS)

    Behrenfeld, Michael J.; Hu, Yongxiang; O'Malley, Robert T.; Boss, Emmanuel S.; Hostetler, Chris A.; Siegel, David A.; Sarmiento, Jorge L.; Schulien, Jennifer; Hair, Johnathan W.; Lu, Xiaomei; Rodier, Sharon; Scarino, Amy Jo

    2017-02-01

    Polar plankton communities are among the most productive, seasonally dynamic and rapidly changing ecosystems in the global ocean. However, persistent cloud cover, periods of constant night and prevailing low solar elevations in polar regions severely limit traditional passive satellite ocean colour measurements and leave vast areas unobserved for many consecutive months each year. Consequently, our understanding of the annual cycles of polar plankton and their interannual variations is incomplete. Here we use space-borne lidar observations to overcome the limitations of historical passive sensors and report a decade of uninterrupted polar phytoplankton biomass cycles. We find that polar phytoplankton dynamics are categorized by `boom-bust' cycles resulting from slight imbalances in plankton predator-prey equilibria. The observed seasonal-to-interannual variations in biomass are predicted by mathematically modelled rates of change in phytoplankton division. Furthermore, we find that changes in ice cover dominated variability in Antarctic phytoplankton stocks over the past decade, whereas ecological processes were the predominant drivers of change in the Arctic. We conclude that subtle and environmentally driven imbalances in polar food webs underlie annual phytoplankton boom-bust cycles, which vary interannually at each pole.

  10. Variation in the establishment of a non-native annual grass influences competitive interactions with Mojave Desert perennials

    USGS Publications Warehouse

    DeFalco, L.A.; Fernandez, G.C.J.; Nowak, R.S.

    2007-01-01

    Competition between native and non-native species can change the composition and structure of plant communities, but in deserts, the highly variable timing of resource availability also influences non-native plant establishment, thus modulating their impacts on native species. In a field experiment, we varied densities of the non-native annual grass Bromus madritensis ssp. rubens around individuals of three native Mojave Desert perennials-Larrea tridentata, Achnatherum hymenoides, and Pleuraphis rigida-in either winter or spring. For comparison, additional plots were prepared for the same perennial species and seasons, but with a mixture of native annual species as neighbors. Growth of perennials declined when Bromus was established in winter because Bromus stands had 2-3 months of growth and high water use before perennial growth began. However, water potentials for the perennials were not significantly reduced, suggesting that direct competition for water may not be the major mechanism driving reduced perennial growth. The impact of Bromus on Larrea was lower than for the two perennial grasses, likely because Larrea maintains low growth rates throughout the year, even after Bromus has completed its life cycle. This result contrasts with the perennial grasses, whose phenology completely overlaps with (Achnatherum) or closely follows (Pleuraphis) that of Bromus. In comparison, Bromus plants established in spring were smaller than those established in winter and thus did not effectively reduce growth of the perennials. Growth of perennials with mixed annuals as neighbors also did not differ from those with Bromus neighbors of equivalent biomass, but stands of these native annuals did not achieve the high biomass of Bromus stands that were necessary to reduce perennial growth. Seed dormancy and narrow requirements for seedling survivorship of native annuals produce densities and biomass lower than those achieved by Bromus; thus, impacts of native Mojave Desert annuals on perennials are expected to be lower than those of Bromus. ?? 2006 Springer Science+Business Media B.V.

  11. Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert

    USGS Publications Warehouse

    Brooks, Matthew L.

    2003-01-01

    1. Deserts are one of the least invaded ecosystems by plants, possibly due to naturally low levels of soil nitrogen. Increased levels of soil nitrogen caused by atmospheric nitrogen deposition may increase the dominance of invasive alien plants and decrease the diversity of plant communities in desert regions, as it has in other ecosystems. Deserts should be particularly susceptible to even small increases in soil nitrogen levels because the ratio of increased nitrogen to plant biomass is higher compared with most other ecosystems.2. The hypothesis that increased soil nitrogen will lead to increased dominance by alien plants and decreased plant species diversity was tested in field experiments using nitrogen additions at three sites in the in the Mojave Desert of western North America.3. Responses of alien and native annual plants to soil nitrogen additions were measured in terms of density, biomass and species richness. Effects of nitrogen additions were evaluated during 2 years of contrasting rainfall and annual plant productivity. The rate of nitrogen addition was similar to published rates of atmospheric nitrogen deposition in urban areas adjacent to the Mojave Desert (3·2 g N m−2 year−1). The dominant alien species included the grasses Bromus madritensis ssp. rubens and Schismus spp. (S. arabicus and S. barbatus) and the forb Erodium cicutarium.4. Soil nitrogen addition increased the density and biomass of alien annual plants during both years, but decreased density, biomass and species richness of native species only during the year of highest annual plant productivity. The negative response of natives may have been due to increased competitive stress for soil water and other nutrients caused by the increased productivity of aliens.5. The effects of nitrogen additions were significant at both ends of a natural nutrient gradient, beneath creosote bush Larrea tridentata canopies and in the interspaces between them, although responses varied among individual alien species. The positive effects of nitrogen addition were highest in the beneath-canopy for B. rubens and in interspaces for Schismus spp. and E. cicutarium.6. The results indicated that increased levels of soil nitrogen from atmospheric nitrogen deposition or from other sources could increase the dominance of alien annual plants and possibly promote the invasion of new species in desert regions. Increased dominance by alien annuals may decrease the diversity of native annual plants, and increased biomass of alien annual grasses may also increase the frequency of fire.7. Although nitrogen deposition cannot be controlled by local land managers, the managers need to understand its potential effects on plant communities and ecosystem properties, in particular how these effects may interact with land-use activities that can be managed at the local scale. These interactions are currently unknown, and hinder the ability of managers to make appropriate land-use decisions related to nitrogen deposition in desert ecosystems.8. Synthesis and applications. The effects of nitrogen deposition on invasive alien plants should be considered when deciding where to locate new conservation areas, and in evaluating the full scope of ecological effects of new projects that would increase nitrogen deposition rates.

  12. Mushroom biomass and diversity are driven by different spatio-temporal scales along Mediterranean elevation gradients

    NASA Astrophysics Data System (ADS)

    Alday, Josu G.; Martínez de Aragón, Juan; de-Miguel, Sergio; Bonet, José Antonio

    2017-04-01

    Mushrooms are important non-wood-forest-products in many Mediterranean ecosystems, being highly vulnerable to climate change. However, the ecological scales of variation of mushroom productivity and diversity, and climate dependence has been usually overlooked due to a lack of available data. We determined the spatio-temporal variability of epigeous sporocarps and the climatic factors driving their fruiting to plan future sustainable management of wild mushrooms production. We collected fruiting bodies in Pinus sylvestris stands along an elevation gradient for 8 consecutive years. Overall, sporocarp biomass was mainly dependent on inter-annual variations, whereas richness was more spatial-scale dependent. Elevation was not significant, but there were clear elevational differences in biomass and richness patterns between ectomycorrhizal and saprotrophic guilds. The main driver of variation was late-summer-early-autumn precipitation. Thus, different scale processes (inter-annual vs. spatial-scale) drive sporocarp biomass and diversity patterns; temporal effects for biomass and ectomycorrhizal fungi vs. spatial scale for diversity and saprotrophic fungi. The significant role of precipitation across fungal guilds and spatio-temporal scales indicates that it is a limiting resource controlling sporocarp production and diversity in Mediterranean regions. The high spatial and temporal variability of mushrooms emphasize the need for long-term datasets of multiple spatial points to effectively characterize fungal fruiting patterns.

  13. Grazing effects on aboveground primary production and root biomass of early-seral, mid-seral, and undisturbed semiarid grassland

    USGS Publications Warehouse

    Milchunas, D.G.; Vandever, M.W.

    2013-01-01

    Annual/perennial and tall/short plant species differentially dominate early to late successional shortgrass steppe communities. Plant species can have different ratios of above-/below-ground biomass distributions and this can be modified by precipitation and grazing. We compared grazing effects on aboveground production and root biomass in early- and mid-seral fields and undisturbed shortgrass steppe. Production averaged across four years and grazed and ungrazed treatments were 246, 134, and 102 g m−2 yr−1 for the early-, mid-seral, and native sites, respectively, while root biomass averaged 358, 560, and 981 g m−2, respectively. Early- and mid-seral communities provided complimentary forage supplies but at the cost of root biomass. Grazing increased, decreased, or had no effect on aboveground production in early-, mid-seral, and native communities, and had no effect on roots in any. Grazing had some negative effects on early spring forage species, but not in the annual dominated early-seral community. Dominant species increased with grazing in native communities with a long evolutionary history of grazing by large herbivores, but had no effects on the same species in mid-seral communities. Effects of grazing in native communities in a region cannot necessarily be used to predict effects at other seral stages.

  14. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    USGS Publications Warehouse

    Costanza, Jennifer; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime

    2015-01-01

    We linked state-and-transition simulation models (STSMs) with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS) was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  15. Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).

    PubMed

    Balch, Jennifer K; Nagy, R Chelsea; Archibald, Sally; Bowman, David M J S; Moritz, Max A; Roos, Christopher I; Scott, Andrew C; Williamson, Grant J

    2016-06-05

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  16. Global combustion: the connection between fossil fuel and biomass burning emissions (1997–2010)

    PubMed Central

    Balch, Jennifer K.; Nagy, R. Chelsea; Archibald, Sally; Moritz, Max A.; Williamson, Grant J.

    2016-01-01

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997–2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216509

  17. The Study of Biomass Emissions for Defining Radiative Forcing of Climate

    NASA Technical Reports Server (NTRS)

    Penner, Joyce; Mishchenko, Michael I. (Technical Monitor)

    2003-01-01

    Accurate quantification of the amounts of trace gases and particulate matter emitted from vegetation fires and other sources of biomass burning (agricultural waste and biofuels) on a regional and global basis is required by a number of users, including scientists studying a wide range of atmospheric processes, national governments who are required to report greenhouse gas emissions, and those interested in quantifying the sources of air pollution that affect human health at regional scales. Over the past decade, improvements in the ability to detect and map fires using a number of different satellite systems have been achieved, largely through efforts coordinated through working groups organized by the IGBP Data and Information System and Global Observation of Forest Cover (GOFC) projects. In addition, significant advances and improvement in or understanding of the emissions factors for biomass burning in different biomes has resulted through efforts by the Biomass Burning Experiment (BIBEX) organized through the International Global Atmospheric Chemistry project. A number of satellite-based fire data products have been generated, and a number of new products will shortly be available. These new data products will provide the basis for estimating emissions from biomass burning on a global basis. However, a number of issues remain concerning the availability of other data sets needed to generate these estimates. Recognizing these issues, the GOFC-Fire Satellite Validation Workshop (held in Lisbon, Portugal on 9-11 July 2001), recommended that a workshop focusing on Improving Global Estimates of Atmospheric Emissions from Biomass Burning be organized. This workshop was held from 17- 19 July 2002 on the campus of the University of Maryland, College Park, Maryland. This workshop served as the annual meeting of the GOFC/GOLD-Fire Program. The overall goals of the meeting were to review the information products generated from satellite imagery and other sources that are currently available for developing emission estimates from biomass burning, evaluate areas where improved or additional products would be beneficial, and recommend products for use by the atmospheric science community.

  18. The perpetual state of emergency that sacrifices protected areas in a changing climate.

    PubMed

    Twidwell, Dirac; Wonkka, Carissa L; Bielski, Christine H; Allen, Craig R; Angeler, David G; Drozda, Jacob; Garmestani, Ahjond S; Johnson, Julia; Powell, Larkin A; Roberts, Caleb P

    2018-02-23

    A modern challenge for conservation biology is to assess the consequences of policies that adhere to assumptions of stationarity (e.g., historic norms) in an era of global environmental change. Such policies may result in unexpected and surprising levels of mitigation given future climate-change trajectories, especially as agriculture looks to protected areas to buffer against production losses during periods of environmental extremes. We assessed the potential impact of climate-change scenarios on the rates at which grasslands enrolled in the Conservation Reserve Program (CRP) are authorized for emergency harvesting (i.e., biomass removal) for agricultural use, which can occur when precipitation for the previous 4 months is below 40% of the normal or historical mean precipitation for that 4-month period. We developed and analyzed scenarios under the condition that policy will continue to operate under assumptions of stationarity, thereby authorizing emergency biomass harvesting solely as a function of precipitation departure from historic norms. Model projections showed the historical likelihood of authorizing emergency biomass harvesting in any given year in the northern Great Plains was 33.28% based on long-term weather records. Emergency biomass harvesting became the norm (>50% of years) in the scenario that reflected continued increases in emissions and a decrease in growing-season precipitation, and areas in the Great Plains with higher historical mean annual rainfall were disproportionately affected and were subject to a greater increase in emergency biomass removal. Emergency biomass harvesting decreased only in the scenario with rapid reductions in emissions. Our scenario-impact analysis indicated that biomass from lands enrolled in the CRP would be used primarily as a buffer for agriculture in an era of climatic change unless policy guidelines are adapted or climate-change projections significantly depart from the current consensus. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  19. Changes in the biomass and species composition of macroalgae in a eutrophic estuary

    NASA Astrophysics Data System (ADS)

    Lavery, Paul S.; Lukatelich, R. J.; McComb, A. J.

    1991-07-01

    More than 20 years of data are presented on the macroalgal biomass, species composition and water quality of Peel-Harvey estuary in south-western Australia. The occurrence of macroalgal blooms was a sudden event in the late 1960s, and appears to have resulted from nutrient availability surpassing a threshold of some kind. Cladophora dominated the system until 1979 and appears to have had a competitive advantage in deep-water areas because of its morphology. A catastrophic event compounded by a series of unfavourable conditions resulted in the loss of Cladophora from the deep areas and its estuary-wide replacement by Chaetomorpha, which was more competitive in the shallows. Since 1979, changes in water quality have been reflected in changes in biomass and species composition in the system. Average annual biomass is linearly related to average light attenuation over the summer growth period. Periods of high nutrient concentrations favour Ulva and Enteromorpha, while Chaetomorpha resumes dominance during periods of lower mean nutrient concentrations. Nutrient concentrations appear to be more influential on an inter-annual than seasonal scale, except in the case of Ulva which, on the basis of tissue N and P concentrations, is seasonally nitrogen-limited. Light attenuation appears to have seasonal and long-term effects. The data support the hypothesis of other workers that inter-annual differences in hydrographic events and phytoplankton dynamics influence macroalgal dynamics. The concept is examined further in light of this extensive database.

  20. 77 FR 10718 - Request for Proposals: 2012 Hazardous Fuels Woody Biomass Utilization Grant Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ... DEPARTMENT OF AGRICULTURE Forest Service Request for Proposals: 2012 Hazardous Fuels Woody Biomass Utilization Grant Program AGENCY: Forest Service, USDA. ACTION: Notice; Correction. SUMMARY: The Department of... Biomass Coordinator as listed in the addresses above or contact Susan LeVan-Green, Program Manager of the...

  1. Monthly Densified Biomass Fuel Report

    EIA Publications

    2017-01-01

    This report results from a new EIA survey launched in January 2016. The survey collects information on wood pellet and other densified biomass fuel production, sales, and inventory levels from approximately 90 operating pellet fuel manufacturing facilities in the United States. Facilities with an annual capacity of 10,000 tons or more per year are required to report monthly.

  2. Belowground Processes in Nitrogen Fertilized Cottonwood and Loblolly Pine Plantations

    Treesearch

    Kye-Han Lee; Shibu Jose

    2004-01-01

    We measured soil respiration, fine root biomass production, and microbial biomass along a fertilization gradient (0, 56, 112, and 224 kg N ha-1 per year) in 7-year-old cottonwood and loblolly pine plantations, established on a well-drained, Redbay sandy loam (a fine-loamy, siliceous, thermic Rhodic Paleudlt), in northwest Florida. Annual soil...

  3. Effects of stand development and weather on monthly leaf biomass dynamics of a loblolly pine (Pinus taeda L.) stand

    Treesearch

    P.M. Dougherty; T.C. Hennessey; Stanley J. Zarnoch; P.t> Stenberg; R.T. Holeman; R.F. Witter

    1995-01-01

    Annual leaf biomass production, monthly needle accretion and monthly needlefall were measured in an 1l- to 17-year-old thinned stand of loblolly pine. Initial thinning levels were 7.8 m2 ha-1, 12.6 m2 ha-1, and 25.5 m2 ha-1...

  4. Biomass conversion to high value chemicals: from furfural to chiral hydrofuroins in two steps.

    PubMed

    Kabro, Anzhelika; Escudero-Adán, Eduardo C; Grushin, Vladimir V; van Leeuwen, Piet W N M

    2012-08-03

    Catalytic asymmetric transfer hydrogenation of rac-furoin and furil produces hydrofuroin with up to 99% ee and 9:1 dr. This reaction provides an exceptionally easy access to optically active hydrofuroins in two straightforward steps from biomass-derived furfural (global production 200,000-300,000 t annually) using benzoin condensation.

  5. Forest productivity predicts invertebrate biomass and ovenbird (Seriurus Aurocapillus) reproduction in Appalachian landscapes

    Treesearch

    Steven W. Seagle; Brian R. Sturtevant

    2005-01-01

    Forest-floor detrital food webs are sustained by annual inputs of leaf fall. However, it is unknown whether this bottom-up effect extends to vertebrates feeding on the detrital food web. We hypothesized that reproductive success of Ovenbirds (Seiurus aurocapillus L.) is a function of acroinvertebrate biomass within the detrital food web, and that...

  6. Zoobenthic biomass limited by phytoplankton abundance: evidence from parallel changes in two long-term data series in the Wadden Sea

    NASA Astrophysics Data System (ADS)

    Beukema, J. J.; Cadée, G. C.; Dekker, R.

    2002-10-01

    We address the question of whether year-to-year variability in pelagic algal food supply can explain long-term variability in macrozoobenthic biomass in an estuarine area. Starting in the early 1970s, quantitative data were frequently collected in standardized ways in the western part of the Dutch Wadden Sea on (1) concentrations of phytoplankton species and chlorophyll (and rates of primary production) in the main tidal inlet (Marsdiep) and (2) numerical densities and biomass of macrozoobenthic animals (and growth rates in a few species) in a nearby extensive tidal-flat area (Balgzand). In both data series, the most distinctive feature was a sudden change that took place around 1980, viz. a rather sudden and persisting doubling of concentrations of chlorophyll and algal cells and of primary production rates, as well as of numerical densities and biomass of zoobenthos. From these parallel changes we hypothesise that algal food largely determines the abundance of zoobenthos in the Wadden Sea. The following observations substantiate this hypothesis: (1) the significant correlation between annual mean values of chlorophyll concentration and overall mean numerical density and biomass of zoobenthos (as estimated after an appropriate time lag), (2) the observed limitation of zoobenthic biomass doubling (after the doubling of food supply) to areas with already high biomass values (where food demand was high and food could therefore be in short supply), (3) the limitation of a strong response to changes in food supply to functional groups that are directly dependent on algal food, i.e. suspension and deposit feeders, as opposed to carnivores, (4) the significant correlation between annual growth rates in Macoma balthica and food supply in the growing season, particularly in areas close to the tidal inlet where food concentrations were monitored. Some other factors were identified that could decisively influence zoobenthic abundance locally and/or temporarily. Harsh environmental conditions will have limited zoobenthic biomass in extreme areas such as the upper part of the intertidal and areas exposed to strong currents and wave action. Severe winters temporarily reduced the abundance of several sensitive (southern) species, including most of the infaunal and epifaunal predators. Even stronger temporary and local reductions of zoobenthic biomass occurred as a consequence of fishery activities for such benthic species as cockles, mussels and lugworms. Recovery after temporary biomass reductions was generally rapid, but late-winter values of total-Balgzand zoobenthos biomass never exceeded an upper level of 45 g AFDW per m 2 probably set by maximal annual rates of primary production of between 400 and 500 g C per m 2.

  7. Costs of Producing Biomass from Riparian Buffer Strips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turhollow, A.

    2000-09-01

    Nutrient runoff from poultry litter applied to agricultural fields in the Delmarva Peninsula contributes to high nutrient loadings in Chesapeake Bay. One potential means of ameliorating this problem is the use of riparian buffer strips. Riparian buffer strips intercept overland flows of water, sediments, nutrients, and pollutants; and ground water flows of nutrients and pollutants. Costs are estimated for three biomass systems grown on buffer strips: willow planted at a density of 15,300 trees/ha (6200 trees/acre); poplar planted at a density of 1345 trees/ha (545 trees/acre); and switchgrass. These costs are estimated for five different scenarios: (1) total economic costs,more » where everything is costed [cash costs, noncash costs (e.g., depreciation), land rent, labor]; (2) costs with Conservation Reserve Program (CRP) payments (which pays 50% of establishment costs and an annual land rent); (3) costs with enhanced CRP payments (which pays 95% of establishment costs and an annual payment of approximately 170% of land rent for trees and 150% of land rent for grasses); (4) costs when buffer strips are required, but harvest of biomass is not required [costs borne by biomass are for yield enhancing activities (e.g., fertilization), harvest, and transport]; and (5) costs when buffer strips are required. and harvest of biomass is required to remove nutrients (costs borne by biomass are for yield enhancing activities and transport). CRP regulations would have to change to allow harvest. Delivered costs of willow, poplar, and switchgrass [including transportation costs of $0.38/GJ ($0.40/million Btu) for switchgrass and $0.57/GJ ($0.60/million Btu) for willow and poplar] at 11.2 dry Mg/ha-year (5 dry tons/acre-year) for the five cost scenarios listed above are [$/GJ ($million BIN)]: (1) 3.30-5.45 (3.45-5.75); (2) 2.30-3.80 (2.45-4.00); (3) 1.70-2.45 (1.80-2.60); (4) l-85-3.80 (1.95-4.05); and (5) 0.80-1.50 (0.85-1.60). At yields of 15.7 to 17.9 GJ/ha-year (7 to 8 dry tons/acre-year), lower willow and poplar establishment costs, transportation costs of $0.30 to $0.45/GJ ($0.30-$0.50/million Btu), and lower willow and poplar harvest costs, total economic costs for willow (19-year stand life), poplar, and switchgrass are $2.35 to $2.6O/GJ ($2.50 to $2.75/million Btu). The potential production of biomass from riparian buffer strips in the Delmarva Peninsula ranges from 190,000 to 380,000 Mg (2 10,000 to 420,000 dry tons) per year.« less

  8. Biomass measurement from LANDSAT: Drought and energy applications

    NASA Technical Reports Server (NTRS)

    Maxwell, E. L.

    1981-01-01

    The theory supporting the use of vegetation indices derived from LANDSAT data for the direct measurement of biomass is reviewed. The use of multispectral data to measure biomass is a natural and viable application since the photosynthetic production of biomass gives vegetation its unique spectral properties. Vegetation indices also perform a normalization function which tends to make them insensitive to atmospheric and soil color variations. Optical and digital LANDSAT products are discussed relative to the use of vegetation indices to monitor drought impact. Based on results obtained in Colorado, operational use of LANDSAT to monitor drought is cost effective, practical and ready for implementation today. The direct measurement of biomass energy resources may also benefit from LANDSAT technology. Measurement of total biomass and annual primary production may be feasible. Identification of that component of biomass resources available for energy use will require other sources of information, however.

  9. Climate-simulated raceway pond culturing: quantifying the maximum achievable annual biomass productivity of Chlorella sorokiniana in the contiguous USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huesemann, M.; Chavis, A.; Edmundson, S.

    Chlorella sorokiniana (DOE 1412) emerged as one of the most promising microalgae strains from the NAABB consortium project, with a remarkable doubling time under optimal conditions of 2.57 hr-1. However, its maximum achievable annual biomass productivity in outdoor ponds in the contiguous United States remained unknown. In order to address this knowledge gap, this alga was cultured in indoor LED-lighted and temperature-controlled raceways in nutrient replete freshwater (BG-11) medium at pH 7 under conditions simulating the daily sunlight intensity and water temperature fluctuations during three seasons in Southern Florida, an optimal outdoor pond culture location for this organism identified bymore » biomass growth modeling. Prior strain characterization indicated that the average maximum specific growth rate (µmax) at 36 ºC declined continuously with pH, with µmax corresponding to 5.92, 5.83, 4.89, and 4.21 day-1 at pH 6, 7, 8, and 9, respectively. In addition, the maximum specific growth rate declined nearly linearly with increasing salinity until no growth was observed above 35 g/L NaCl. In the climate-simulated culturing studies, the volumetric ash-free dry weight-based biomass productivities during the linear growth phase were 57, 69, and 97 mg/L-day for 30-year average light and temperature simulations for January (winter), March (spring), and July (summer), respectively, which corresponds to average areal productivities of 11.6, 14.1, and 19.9 g/m2-day at a constant pond depth of 20.5 cm. The photosynthetic efficiencies (PAR) in the three climate-simulated pond culturing experiments ranged from 4.1 to 5.1%. The annual biomass productivity was estimated as ca. 15 g/m2-day, nearly double the U.S. Department of Energy (DOE) 2015 State of Technology annual cultivation productivity of 8.5 g/m2-day, but this is still significantly below the projected 2022 target of ca. 25 g/m2-day (U.S. DOE, 2016) for economic microalgal biofuel production, indicating the need for additional research in strain biology and system engineering.« less

  10. International energy annual 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The International Energy Annual presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 220 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy reported in the International Energy Annual includes hydroelectric power and geothermal, solar, and wind electric power. Also included are biomass electric power for Brazil and the US, and biomass, geothermal, and solar energy produced in the US and not used for electricity generation. Thismore » report is published to keep the public and other interested parties fully informed of primary energy supplies on a global basis. The data presented have been largely derived from published sources. The data have been converted to units of measurement and thermal values (Appendices E and F) familiar to the American public. 93 tabs.« less

  11. Accounting for Carbon Dioxide Emissions from Biomass Energy Combustion (released in AEO2010)

    EIA Publications

    2010-01-01

    Carbon Dioxide (CO2) emissions from the combustion of biomass to produce energy are excluded from the energy-related CO2 emissions reported in Annual Energy Outlook 2010. According to current international convention, carbon released through biomass combustion is excluded from reported energy-related emissions. The release of carbon from biomass combustion is assumed to be balanced by the uptake of carbon when the feedstock is grown, resulting in zero net emissions over some period of time]. However, analysts have debated whether increased use of biomass energy may result in a decline in terrestrial carbon stocks, leading to a net positive release of carbon rather than the zero net release assumed by its exclusion from reported energy-related emissions.

  12. Biomass [updated

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turhollow Jr, Anthony F

    2016-01-01

    Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in themore » forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.« less

  13. 76 FR 65493 - Draft Environmental Assessment; Giant Miscanthus in REPREVE Renewables, LLC Project Areas Under...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... the Biomass Crop Assistance Program AGENCY: Commodity Credit Corporation, USDA. ACTION: Notice of... project areas in Georgia, North Carolina and South Carolina as part of the Biomass Crop Assistance Program... the Biomass Crop Assistance Program (BCAP). BCAP is authorized by Title IX of the Food, Conservation...

  14. Remote sensing of coastal wetlands biomass using Thematic Mapper wavebands

    NASA Technical Reports Server (NTRS)

    Hardisky, M. A.; Klemas, V.

    1985-01-01

    Spectral data, simulating thematic mapper bands 3, 4 and 5 are gathered in salt and brackish marshes using a hand-held radiometer. Simple regression models are developed equating spectral radiance indices with total live biomass for S. alterniflora in a salt marsh and for a variety of plant species in a brackish marsh. Models are then tested using an independent set of data and compared to harvest estimates of biomass. In the salt marsh, biomass estimates from spectral data are similar to harvest biomass estimates during most of the growing season. Estimates of annual net aerial primary productivity calculated from spectral data are within 21% of production estimated from harvest data. During August, biomass estimates from spectral data in the brackish marsh are similar to biomass estimated by harvesting techniques. At other times during the growing season, spectral data estimates of biomass are not always comparable to harvest biomass estimates. Reasonable estimates of wetlands biomass are possible during the peak of the growing season (August) using spectral data similar to thematic mapper bands 3, 4 and 5 gathered with hand-held radiometers.

  15. Flows, droughts, and aliens: factors affecting the fish assemblage in a Sierra Nevada, California, stream.

    PubMed

    Kiernan, Joseph D; Moyle, Peter B

    2012-06-01

    The fishes of Martis Creek, in the Sierra Nevada of California (USA), were sampled at four sites annually over 30 years, 1979-2008. This long-term data set was used to examine (1) the persistence and stability of the Martis Creek fish assemblage in the face of environmental stochasticity; (2) whether native and alien fishes responded differently to a natural hydrologic regime (e.g., timing and magnitude of high and low flows); and (3) the importance of various hydrologic and physical habitat variables in explaining the abundances of native and alien fish species through time. Our results showed that fish assemblages were persistent at all sample sites, but individual species exhibited marked interannual variability in density, biomass, and relative abundance. The density and biomass of native fishes generally declined over the period of study, whereas most alien species showed no significant long-term trends. Only alien rainbow trout increased in both density and biomass at all sites over time. Redundancy analysis identified three hydrologic variables (annual 7-day minimum discharge, maximum winter discharge, and number of distinct winter floods) and two habitat variables (percentage of pool habitat and percentage of gravel substrate) that each explained a significant portion of the annual variation in fish assemblage structure. For alien taxa, their proportional contribution to the total fish assemblage was inversely related to mean annual streamflow, one-day maximum discharge in both winter and spring, and the frequency of springtime floods. Results of this study highlight the need for continuous annual monitoring of streams with highly variable flow regimes to evaluate shifts in fish community structure. Apparent successes or failures in stream management may appear differently depending on the time series of available data.

  16. Can rising CO2 concentrations in the atmosphere mitigate the impact of drought years on tree growth?

    NASA Astrophysics Data System (ADS)

    Achim, Alexis; Plumpton, Heather; Auty, David; Ogee, Jerome; MacCarthy, Heather; Bert, Didier; Domec, Jean-Christophe; Oren, Ram; Wingate, Lisa

    2015-04-01

    Atmospheric CO2 concentrations and nitrogen deposition rates have increased substantially over the last century and are expected to continue unabated. As a result, terrestrial ecosystems will experience warmer temperatures and some may even experience droughts of a more intense and frequent nature that could lead to widespread forest mortality. Thus there is mounting pressure to understand and predict how forest growth will be affected by such environmental interactions in the future. In this study we used annual tree growth data from the Duke Free Air CO2 Enrichment (FACE) experiment to determine the effects of elevated atmospheric CO2 concentration (+200 ppm) and Nitrogen fertilisation (11.2 g of N m-2 yr-1) on the stem biomass increments of mature loblolly pine (Pinus taeda L.) trees from 1996 to 2010. A non-linear mixed-effects model was developed to provide estimates of annual ring specific gravity in all trees using cambial age and annual ring width as explanatory variables. Elevated CO2 did not have a significant effect on annual ring specific gravity, but N fertilisation caused a slight decrease of approximately 2% compared to the non-fertilised in both the ambient and CO2-elevated plots. When basal area increments were multiplied by wood specific gravity predictions to provide estimates of stem biomass, there was a 40% increase in the CO2-elevated plots compared to those in ambient conditions. This difference remained relatively stable until the application of the fertilisation treatment, which caused a further increase in biomass increments that peaked after three years. Unexpectedly the magnitude of this second response was similar in the CO2-elevated and ambient plots (about 25% in each after 3 years), suggesting that there was no interaction between the concentration of CO2 and the availability of soil N on biomass increments. Importantly, during drier years when annual precipitation was less than 1000 mm we observed a significant decrease in annual increments across all treatments. However, the relative difference in growth between CO2-elevated and ambient plots was greater during drought years, providing evidence that tree growth in the future might become less sensitive to water shortages under elevated CO2 conditions.

  17. Environmental and economic evaluation of bioenergy in Ontario, Canada.

    PubMed

    Zhang, Yimin; Habibi, Shiva; MacLean, Heather L

    2007-08-01

    We examined life cycle environmental and economic implications of two near-term scenarios for converting cellulosic biomass to energy, generating electricity from cofiring biomass in existing coal power plants, and producing ethanol from biomass in stand-alone facilities in Ontario, Canada. The study inventories near-term biomass supply in the province, quantifies environmental metrics associated with the use of agricultural residues for producing electricity and ethanol, determines the incremental costs of switching from fossil fuels to biomass, and compares the cost-effectiveness of greenhouse gas (GHG) and air pollutant emissions abatement achieved through the use of the bioenergy. Implementing a biomass cofiring rate of 10% in existing coal-fired power plants would reduce annual GHG emissions by 2.3 million metric tons (t) of CO2 equivalent (7% of the province's coal power plant emissions). The substitution of gasoline with ethanol/gasoline blends would reduce annual provincial lightduty vehicle fleet emissions between 1.3 and 2.5 million t of CO2 equivalent (3.5-7% of fleet emissions). If biomass sources other than agricultural residues were used, additional emissions reductions could be realized. At current crude oil prices ($70/barrel) and levels of technology development of the bioenergy alternatives, the biomass electricity cofiring scenario analyzed is more cost-effective for mitigating GHG emissions ($22/t of CO2 equivalent for a 10% cofiring rate) than the stand-alone ethanol production scenario ($92/t of CO2 equivalent). The economics of biomass cofiring benefits from existing capital, whereas the cellulosic ethanol scenario does not. Notwithstanding this result, there are several factors that increase the attractiveness of ethanol. These include uncertainty in crude oil prices, potential for marked improvements in cellulosic ethanol technology and economics, the province's commitment to 5% ethanol content in gasoline, the possibility of ethanol production benefiting from existing capital, and there being few alternatives for moderate-to-large-scale GHG emissions reductions in the transportation sector.

  18. Hairy vetch biomass across the eastern United States: Effects of latitude, seeding rate and date, and termination timing

    USDA-ARS?s Scientific Manuscript database

    Hairy vetch (Vicia villosa Roth) is a winter annual legume cover crop that is often grown because it can provide a substantial amount of N to the following cash crop. Nitrogen accumulation is dependent on biomass production, which in turn is affected by climate, seeding rate and date, and timing of ...

  19. Intra-Annual Changes in Biomass, Carbon, and Nitrogen Dynamics at 4-Year Old Switchgrass Field Trials in West Tennessee, USA

    USDA-ARS?s Scientific Manuscript database

    Switchgrass is a potential bioenergy crop that could promote soil C sequestration in some environments. We compared four switchgrass cultivars on a well-drained Alfisol to test for differences in biomass, C, and N dynamics during the fourth growing season. There was no difference (P >0.05) among cul...

  20. 40 CFR 80.1426 - How are RINs generated and assigned to batches of renewable fuel by renewable fuel producers or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... process energy 6 F Biodiesel, renewable diesel, jet fuel and heating oil Soy bean oil; Oil from annual... biomass and petroleum 4 G Biodiesel, heating oil Canola/Rapeseed oil Trans-Esterification using natural gas or biomass for process energy 4 H Biodiesel, renewable diesel, jet fuel and heating oil Soy bean...

  1. Biomass and Nutrient Accumulation in a Cottonwood Plantation - The First Four Years

    Treesearch

    John K. Francis; James B. Baker

    1981-01-01

    For the first 4 years, height increment of an eastern cottonwood plantation on a clayey soil was greatest in the first growing season; diameter growth was greatest in the second growing season; and annual production of biomass was greatest in the third year. Nitrogen, phosphorus, and possibly magnesium are translocated from leaves into bark and other tissue before leaf...

  2. A Moored System for Understanding the Temporal Variability of Prey Fields of Deep Diving Predators off Cape Hatteras and Response to Gulf Stream Fronts

    DTIC Science & Technology

    2015-09-30

    Number: N000141310686 http://superpod.ml.duke.edu/ LONG-TERM GOALS Fisheries acoustics are routinely used for biomass and abundance surveys and...will be required every 10-12 months), allowing us to address the seasonality and the inter-annual variability in prey biomass and density in

  3. Updating FRCS, the Fuel Reduction Cost Simulator, for national biomass assessments

    Treesearch

    Dennis Dykstra; Bruce Hartsough; Bryce. Stokes

    2009-01-01

    In 2005 the USDA and DOE jointly published a report concluding that it would be technically feasible to supply a billion dry tons of biomass annually from farms and forests throughout the United States in support of an emerging bioenergy and bioproducts industry. The report was criticized because it defined "supply" largely in terms of physical availability...

  4. Biomass Allocation Patterns across China’s Terrestrial Biomes

    PubMed Central

    Wang, Limei; Li, Longhui; Chen, Xi; Tian, Xin; Wang, Xiaoke; Luo, Geping

    2014-01-01

    Root to shoot ratio (RS) is commonly used to describe the biomass allocation between below- and aboveground parts of plants. Determining the key factors influencing RS and interpreting the relationship between RS and environmental factors is important for biological and ecological research. In this study, we compiled 2088 pairs of root and shoot biomass data across China’s terrestrial biomes to examine variations in the RS and its responses to biotic and abiotic factors including vegetation type, soil texture, climatic variables, and stand age. The median value of RS (RSm) for grasslands, shrublands, and forests was 6.0, 0.73, and 0.23, respectively. The range of RS was considerably wide for each vegetation type. RS values for all three major vegetation types were found to be significantly correlated to mean annual precipitation (MAP) and potential water deficit index (PWDI). Mean annual temperature (MAT) also significantly affect the RS for forests and grasslands. Soil texture and forest origin altered the response of RS to climatic factors as well. An allometric formula could be used to well quantify the relationship between aboveground and belowground biomass, although each vegetation type had its own inherent allometric relationship. PMID:24710503

  5. Annual warm-season grasses vary for forage yield, quality, and competitiveness with weeds

    USDA-ARS?s Scientific Manuscript database

    Warm-season annual grasses may be suitable as herbicide-free forage crops. A two-year field study was conducted to determine whether tillage system and nitrogen (N) fertilizer application method influenced crop and weed biomass, water use, water use efficiency (WUE), and forage quality of three war...

  6. Hairy vetch seedbank persistence and implications for cover crop management

    USDA-ARS?s Scientific Manuscript database

    Hairy vetch (Vicia villosa Roth) is a fast growing, winter hardy annual legume that can produce shoot biomass levels upwards of 6500 kg ha-1. This cover crop is well suited for summer annual grain rotations, as it fixes considerable amounts of nitrogen, reduces erosion through rapid ground cover, an...

  7. Utilization of biocatalysts in cellulose waste minimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, J.; Evans, B.R.

    1996-09-01

    Cellulose, a polymer of glucose, is the principal component of biomass and, therefore, a major source of waste that is either buried or burned. Examples of biomass waste include agricultural crop residues, forestry products, and municipal wastes. Recycling of this waste is important for energy conservation as well as waste minimization and there is some probability that in the future biomass could become a major energy source and replace fossil fuels that are currently used for fuels and chemicals production. It has been estimated that in the United States, between 100-450 million dry tons of agricultural waste are produced annually,more » approximately 6 million dry tons of animal waste, and of the 190 million tons of municipal solid waste (MSW) generated annually, approximately two-thirds is cellulosic in nature and over one-third is paper waste. Interestingly, more than 70% of MSW is landfilled or burned, however landfill space is becoming increasingly scarce. On a smaller scale, important cellulosic products such as cellulose acetate also present waste problems; an estimated 43 thousand tons of cellulose ester waste are generated annually in the United States. Biocatalysts could be used in cellulose waste minimization and this chapter describes their characteristics and potential in bioconversion and bioremediation processes.« less

  8. Early post-fire succession in California chaparral: changes in diversity, density, cover, and biomass

    USGS Publications Warehouse

    Guo, Q.

    2001-01-01

    For four consecutive years, following the fires in November 1993, temporal variations in species richness, cover and biomass of component plant groups in early post-fire chaparral succession were monitored on different aspects at the Stunt Ranch Santa Monica Mountains Reserve, southern California. Plant groups were categorized based on growth form, life form, ability to fix nitrogen, geographic origin and regeneration strategies. North-facing slopes exhibited higher species richness, higher species turnover rate over time and faster vegetation recovery in terms of biomass accumulation and return to pre-fire species composition. This was probably due to higher species richness and biomass of nitrogen-fixing species found on north-facing slopes in comparison to south-facing slopes. On both north- and south-facing slopes, annuals had the highest species turnover rate, followed by herbaceous perennials and shrubs. In the first four post-fire years, annual species were the largest floristic group, but herbaceous perennials and shrubs were the major contributors to community biomass. Nitrogen-fixing species and exotics contributed significantly to early post-fire community structure. Although the general trends in post-fire succession are clear in terms of temporal changes in the relative proportions of different plant groups, environmental variation and the nature of plant life histories of component species, especially dominant species, could alter such trends significantly.

  9. Early post-fire succession in California chaparral: Changes in diversity, density, cover and biomass

    USGS Publications Warehouse

    Guo, Q.

    2001-01-01

    For four consecutive years, following the fires in November 1993, temporal variations in species richness, cover and biomass of component plant groups in early post-fire chaparral succession were monitored on different aspects at the Stunt Ranch Santa Monica Mountains Reserve, southern California. Plant groups were categorized based on growth form, life form, ability to fix nitrogen, geographic origin and regeneration strategies. North-facing slopes exhibited higher species richness, higher species turnover rate over time and faster vegetation recovery in terms of biomass accumulation and return to pre-fire species composition. This was probably due to higher species richness and biomass of nitrogen-fixing species found on north-facing slopes in comparison to south-facing slopes. On both north- and south-facing slopes, annuals had the highest species turnover rate, followed by herbaceous perennials and shrubs. In the first four post-fire years, annual species were the largest floristic group, but herbaceous perennials and shrubs were the major contributors to community biomass. Nitrogen-fixing species and exotics contributed significantly to early post-fire community structure. Although the general trends in post-fire succession are clear in terms of temporal changes in the relative proportions of different plant groups, environmental variation and the nature of plant life histories of component species, especially dominant species, could alter such trends significantly.

  10. Evaluating the Potential Efficacy of Invasive Lionfish (Pterois volitans) Removals

    PubMed Central

    Barbour, Andrew B.; Allen, Michael S.; Frazer, Thomas K.; Sherman, Krista D.

    2011-01-01

    The lionfish, Pterois volitans (Linnaeus) and Pterois miles (Bennett), invasion of the Western Atlantic Ocean, Caribbean Sea and Gulf of Mexico has the potential to alter aquatic communities and represents a legitimate ecological concern. Several local removal programs have been initiated to control this invasion, but it is not known whether removal efforts can substantially reduce lionfish numbers to ameliorate these concerns. We used an age-structured population model to evaluate the potential efficacy of lionfish removal programs and identified critical data gaps for future studies. We used high and low estimates for uncertain parameters including: length at 50% vulnerability to harvest (Lvul), instantaneous natural mortality (M), and the Goodyear compensation ratio (CR). The model predicted an annual exploitation rate between 35 and 65% would be required to cause recruitment overfishing on lionfish populations for our baseline parameter estimates for M and CR (0.5 and 15). Lionfish quickly recovered from high removal rates, reaching 90% of unfished biomass six years after a 50-year simulated removal program. Quantifying lionfish natural mortality and the size-selective vulnerability to harvest are the most important knowledge gaps for future research. We suggest complete eradication of lionfish through fishing is unlikely, and substantial reduction of adult abundance will require a long-term commitment and may be feasible only in small, localized areas where annual exploitation can be intense over multiple consecutive years. PMID:21572951

  11. Evaluating the potential efficacy of invasive lionfish (Pterois volitans) removals.

    PubMed

    Barbour, Andrew B; Allen, Micheal S; Allen, Michael S; Frazer, Thomas K; Sherman, Krista D

    2011-05-10

    The lionfish, Pterois volitans (Linnaeus) and Pterois miles (Bennett), invasion of the Western Atlantic Ocean, Caribbean Sea and Gulf of Mexico has the potential to alter aquatic communities and represents a legitimate ecological concern. Several local removal programs have been initiated to control this invasion, but it is not known whether removal efforts can substantially reduce lionfish numbers to ameliorate these concerns. We used an age-structured population model to evaluate the potential efficacy of lionfish removal programs and identified critical data gaps for future studies. We used high and low estimates for uncertain parameters including: length at 50% vulnerability to harvest (L(vul)), instantaneous natural mortality (M), and the Goodyear compensation ratio (CR). The model predicted an annual exploitation rate between 35 and 65% would be required to cause recruitment overfishing on lionfish populations for our baseline parameter estimates for M and CR (0.5 and 15). Lionfish quickly recovered from high removal rates, reaching 90% of unfished biomass six years after a 50-year simulated removal program. Quantifying lionfish natural mortality and the size-selective vulnerability to harvest are the most important knowledge gaps for future research. We suggest complete eradication of lionfish through fishing is unlikely, and substantial reduction of adult abundance will require a long-term commitment and may be feasible only in small, localized areas where annual exploitation can be intense over multiple consecutive years.

  12. Ozone and nitrogen effects on yield and nutritive quality of the annual legume Trifolium cherleri

    NASA Astrophysics Data System (ADS)

    Sanz, J.; González-Fernández, I.; Calvete-Sogo, H.; Lin, J. S.; Alonso, R.; Muntifering, R.; Bermejo, V.

    2014-09-01

    Two independent experiments were performed in an Open-Top Chamber facility to determine the response of biomass and nutritive quality of the annual legume Trifolium cherleri to increased levels of ozone (O3) and nitrogen (N) deposition, two main drivers of global change. Plants growing in pots were exposed to three O3 treatments: charcoal-filtered air (CFA); non-filtered air, reproducing ambient O3 levels of the site (NFA); and non-filtered air supplemented with 40 nl l-1 (NFA+). Nitrogen was added in biweekly doses to achieve final doses of 5 (N5), 15 (N15) and 30 kg ha-1 (N30), reproducing the N deposition range in the Iberian Peninsula. Ozone negatively affected all the growth-related parameters and increased plant senescent biomass. The pollutant affected subterranean biomass to a greater extent than aerial biomass, resulting in altered aerial/subterranean ratio. Effects in the second experiment followed the same pattern as in the first, but were of lesser magnitude. However, these differences between assays could not be explained adequately by the absorbed O3 fluxes (Phytotoxic Ozone Dose, POD). Concentrations of cell-wall constituents related to nutritive quality increased with the O3 exposure, reducing the Relative Food Value index (RFV) that indicates decreased nutritive quality of the forage. Nitrogen stimulated all growth-related parameters, but increased the aboveground biomass more than the subterranean biomass. No effects of N fertilizer were detected for the nutritive quality parameters. A significant interaction between O3 and N was found in the second experiment. N further enhanced the increase of senescent biomass caused by O3. Results indicate that O3 is a potentially significant environmental stress factor in terms of structure and diversity of Mediterranean pastures.

  13. Vertical distribution of fish biomass in Lake Superior: Implications for day bottom trawl surveys

    USGS Publications Warehouse

    Stockwell, J.D.; Yule, D.L.; Hrabik, T.R.; Adams, J.V.; Gorman, O.T.; Holbrook, B.V.

    2007-01-01

    Evaluation of the biases in sampling methodology is essential for understanding the limitations of abundance and biomass estimates of fish populations. Estimates from surveys that rely solely on bottom trawls may be particularly vulnerable to bias if pelagic fish are numerous. We evaluated the variability in the vertical distribution of fish biomass during the U.S. Geological Survey's annual spring bottom trawl survey of Lake Superior using concurrent hydroacoustic observations to (1) test the assumption that fish are generally demersal during the day and (2) evaluate the potential for predictive models to improve bottom trawl–determined biomass estimates. Our results indicate that the assumption that fish exhibit demersal behavior during the annual spring bottom trawl survey in Lake Superior is unfounded. Bottom trawl biomass (BBT) estimates (mean ± SE) for species known to exhibit pelagic behavior (cisco Coregonus artedi, bloater C. hoyi, kiyi C. kiyi, and rainbow smelt Osmerus mordax; 3.01 ± 0.73 kg/ha) were not significantly greater than mean acoustic pelagic zone biomass (BAPZ) estimates (6.39 ± 2.03 kg/ha). Mean BAPZ estimates were 1.6- to 4.8-fold greater than mean BBT estimates over 4 years of sampling. The relationship between concurrent BAPZ and BBT estimates was marginally significant and highly variable. Predicted BAPZ estimates using cross-validation models were sensitive to adjustments for back-transforming from the logarithmic to the linear scale and poorly corresponded to observed BAPZ estimates. We conclude that statistical models to predict BAPZ from day BBT cannot be developed. We propose that night sampling with multiple gears will be necessary to generate better biomass estimates for management needs.

  14. Effects of simulated daily precipitation patterns on annual plant populations depend on life stage and climatic region.

    PubMed

    Köchy, Martin

    2008-03-27

    To improve the understanding of consequences of climate change for annual plant communities, I used a detailed, grid-based model that simulates the effect of daily rainfall variability on individual plants in five climatic regions on a gradient from 100 to 800 mm mean annual precipitation (MAP). The model explicitly considers moisture storage in the soil. I manipulated daily rainfall variability by changing the daily mean rain (DMR, rain volume on rainy days averaged across years for each day of the year) by +/- 20%. At the same time I adjusted intervals appropriately between rainy days for keeping the mean annual volume constant. In factorial combination with changing DMR I also changed MAP by +/- 20%. Increasing MAP generally increased water availability, establishment, and peak shoot biomass. Increasing DMR increased the time that water was continuously available to plants in the upper 15 to 30 cm of the soil (longest wet period, LWP). The effect of DMR diminished with increasing humidity of the climate. An interaction between water availability and density-dependent germination increased the establishment of seedlings in the arid region, but in the more humid regions the establishment of seedlings decreased with increasing DMR. As plants matured, competition among individuals and their productivity increased, but the size of these effects decreased with the humidity of the regions. Therefore, peak shoot biomass generally increased with increasing DMR but the effect size diminished from the semiarid to the mesic Mediterranean region. Increasing DMR reduced via LWP the annual variability of biomass in the semiarid and dry Mediterranean regions. More rainstorms (greater DMR) increased the recharge of soil water reservoirs in more arid sites with consequences for germination, establishment, productivity, and population persistence. The order of magnitudes of DMR and MAP overlapped partially so that their combined effect is important for projections of climate change effects on annual vegetation.

  15. 76 FR 38548 - Competitive and Noncompetitive Nonformula Federal Assistance Programs-Administrative Provisions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ...] Competitive and Noncompetitive Nonformula Federal Assistance Programs--Administrative Provisions for Biomass... Biomass Research and Development Initiative (BRDI). This document contains minor changes to those... a joint Biomass Research and Development Initiative (BRDI) under which competitively awarded grants...

  16. 75 FR 33497 - Competitive and Noncompetitive Nonformula Federal Assistance Programs-Administrative Provisions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-14

    ...] Competitive and Noncompetitive Nonformula Federal Assistance Programs--Administrative Provisions for Biomass... specific administrative requirements for the Biomass Research and Development Initiative (BRDI) to... and carry out a joint Biomass Research and Development Initiative (BRDI) under which competitively...

  17. Population Dynamics and Parasite Load of a Foraminifer on Its Antarctic Scallop Host with Their Carbonate Biomass Contributions.

    PubMed

    Hancock, Leanne G; Walker, Sally E; Pérez-Huerta, Alberto; Bowser, Samuel S

    2015-01-01

    We studied the population dynamics and parasite load of the foraminifer Cibicides antarcticus on its host the Antarctic scallop Adamussium colbecki from three localities differing by sea ice cover within western McMurdo Sound, Ross Sea, Antarctica: Explorers Cove, Bay of Sails and Herbertson Glacier. We also estimated CaCO3 biomass and annual production for both species. Cibicides populations varied by locality, valve type, and depth. Explorers Cove with multiannual sea ice had larger populations than the two annual sea ice localities, likely related to differences in nutrients. Populations were higher on Adamussium top valves, a surface that is elevated above the sediment. Depth did not affect Cibicides distributions except at Bay of Sails. Cibicides parasite load (the number of complete boreholes in Adamussium valves) varied by locality between 2% and 50%. For most localities the parasite load was < 20%, contrary to a previous report that ~50% of Cibicides were parasitic. The highest and lowest parasite load occurred at annual sea ice localities, suggesting that sea ice condition is not important. Rather, the number of adults that are parasitic could account for these differences. Cibicides bioerosion traces were categorized into four ontogenetic stages, ranging from newly attached recruits to parasitic adults. These traces provide an excellent proxy for population structure, revealing that Explorers Cove had a younger population than Bay of Sails. Both species are important producers of CaCO3. Cibicides CaCO3 biomass averaged 47-73 kg ha(-1) and Adamussium averaged 4987-6806 kg ha(-1) by locality. Annual production rates were much higher. Moreover, Cibicides represents 1.0-2.3% of the total host-parasite CaCO3 biomass. Despite living in the coldest waters on Earth, these species can contribute a substantial amount of CaCO3 to the Ross Sea and need to be incorporated into food webs, ecosystem models, and carbonate budgets for Antarctica.

  18. Biomass and productivity of fishes in estuaries: a South African case study.

    PubMed

    Whitfield, A K

    2016-10-01

    Estuaries are well known for their role as nutrient and detrital sinks that stimulate high levels of both primary and secondary production which, in turn, support a large biomass of fishes per unit area. This study reviews available information on coastal fish biomasses (g m -2 wet mass) and productivity (g m -2 wet mass year -1 ) in order to place South African data on these topics into a global perspective. Using biogeographic fish productivity estimates, together with estuarine water area, the approximate annual teleost production in South African estuaries was calculated at 585, 1706 and 13 904 t in the cool temperate, warm temperate and subtropical regions, respectively. Total annual fish production in estuaries on the subcontinent is conservatively estimated at 16 195 t, but this figure is likely to fluctuate widely, depending on recruitment success and annual environmental conditions pertaining to these systems. Approximately 2000 t of fish are estimated to be harvested by fishing activities in South African estuaries each year, which represents c. 12% of annual fish production. Although this figure may appear sustainable, the reality is that there are a few heavily targeted estuary-associated marine species at the top of the food chain that are being overexploited by both anglers and subsistence fishermen. Natural mortalities due to piscivorous fish and bird predation has been estimated at c. 3% of total fish biomass per month in the East Kleinemonde Estuary, but this figure will vary considerably depending on bird abundance and foraging patterns along the coast. In contrast to catches made by the fishermen, piscivorous fishes and birds are targeting mainly juvenile marine fish and small estuarine resident species that are very abundant and generally low down in the food web. © 2016 The Fisheries Society of the British Isles.

  19. Population Dynamics and Parasite Load of a Foraminifer on Its Antarctic Scallop Host with Their Carbonate Biomass Contributions

    PubMed Central

    Pérez-Huerta, Alberto; Bowser, Samuel S.

    2015-01-01

    We studied the population dynamics and parasite load of the foraminifer Cibicides antarcticus on its host the Antarctic scallop Adamussium colbecki from three localities differing by sea ice cover within western McMurdo Sound, Ross Sea, Antarctica: Explorers Cove, Bay of Sails and Herbertson Glacier. We also estimated CaCO3 biomass and annual production for both species. Cibicides populations varied by locality, valve type, and depth. Explorers Cove with multiannual sea ice had larger populations than the two annual sea ice localities, likely related to differences in nutrients. Populations were higher on Adamussium top valves, a surface that is elevated above the sediment. Depth did not affect Cibicides distributions except at Bay of Sails. Cibicides parasite load (the number of complete boreholes in Adamussium valves) varied by locality between 2% and 50%. For most localities the parasite load was < 20%, contrary to a previous report that ~50% of Cibicides were parasitic. The highest and lowest parasite load occurred at annual sea ice localities, suggesting that sea ice condition is not important. Rather, the number of adults that are parasitic could account for these differences. Cibicides bioerosion traces were categorized into four ontogenetic stages, ranging from newly attached recruits to parasitic adults. These traces provide an excellent proxy for population structure, revealing that Explorers Cove had a younger population than Bay of Sails. Both species are important producers of CaCO3. Cibicides CaCO3 biomass averaged 47-73 kg ha-1 and Adamussium averaged 4987-6806 kg ha-1 by locality. Annual production rates were much higher. Moreover, Cibicides represents 1.0-2.3% of the total host-parasite CaCO3 biomass. Despite living in the coldest waters on Earth, these species can contribute a substantial amount of CaCO3 to the Ross Sea and need to be incorporated into food webs, ecosystem models, and carbonate budgets for Antarctica. PMID:26186724

  20. Electricity from biomass: A development strategy

    NASA Astrophysics Data System (ADS)

    1992-04-01

    The purpose of this document is to review the current status of biomass power technology and to evaluate the future directions for development that could significantly enhance the contribution of biomass power to U.S. production of electricity. This document reviews the basic principles of biomass electric systems, the previous contributions of industry and the National Biomass Energy Programs to technology development, and the options for future technology development. It discusses the market for biomass electric technology and future needs for electric power production to help establish a market-oriented development strategy. It projects trends in the performance and cost of the technology and examines the changing dynamics of the power generation market place to evaluate specific opportunities for biomass power development. In a separate document, the Biomass Power Program Five Year R&D Plan, the details of schedules, funding, and roles of participating R&D organizations within the R&D program funded by the U.S. Department of Energy (DOE) are presented. In evaluating the future directions for research and development, two cases are examined.

  1. Comparative abundance and distribution of major filter-feeders in the Antarctic pelagic zone

    NASA Astrophysics Data System (ADS)

    Voronina, N. M.

    1998-11-01

    The filter-feeding plankton, herbivorous copepods, salps and euphausiids, form the basic level of metazoans in the Antarctic pelagic trophic web. This paper sets out to determine the comparative share of these taxonomic groups in the total biomass and annual production. Their most abundant representatives, four copepod species ( Calanus propinquus, Calanoides acutus, Rhincalanus gigas and Metridia gerlachei), all salps and krill Euphausia superba were studied. For the first two groups net samples from six Russian expeditions in different sectors of the Antarctic were used. In total 752 samples from 118 stations were considered. The mean fresh biomass of filter-feeding copepods in the 0-1500 m layer was 18.0 g m -2 and in the entire Antarctic 576 10 6 t. The biomass of salps in comparatively restricted rich regions exceeded 500 g m -2 and in the remaining area was 1.2±0.8 g m -2, giving a total quantity of 882 10 6 t. The krill abundance estimation was based on published data, using a map of its quantitative distribution compiled from commercial trawling made by Soviet fishing and scientific ships during 17 seasons [Parfenovich, S.S., 1980. O zakonomernostyakh razmeshcheniya i regionalnoi differentsiatsii mestoskoplenii krilya v Yuzhnom Okeane. VNIRO, Moskva, in Russian.]. Three main zones based on commercial characteristics were determined by this author: (1) zone of regular occurrence of dense concentrations; (2) zone of rare occurrence of concentrations; (3) zone of low-abundance dispersed krill. All available data on E. superba biomass in the Antarctic were grouped together according to these zones and their means were calculated. The biomass of krill was found to be 60.1±11.2, 3.3±1.3 and 0.8±0.4 g m -2 fresh mass in zones 1, 2 and 3, respectively, with a total of 272 10 6 t. All estimates are compared with the literature data and their validity is discussed. For the annual production determinations the obtained biomass characteristics were multiplied by published P/B coefficients. For the copepods its value was taken as 4.4 and for krill as 0.79. The total annual production of copepods was estimated as 2534 10 6 t and that of krill as 215 10 6 t (fresh mass). Salp production could not be evaluated, for lack of a sufficient database. In terms of fresh mass, the main share of filter-feeder biomass on the entire Antarctic scale belongs to salps, due to their local maxima; the second place belongs to copepods and krill comes in the third position. But after recalculation in terms of dry mass, copepods shift to the first place and salps to the last. The annual production of copepods significantly exceeds that of krill.

  2. 2007 Biomass Program Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    The Biomass Program is actively working with public and private partners to meet production and technology needs. With the corn ethanol market growing steadily, researchers are unlocking the potential of non-food biomass sources, such as switchgrass and forest and agricultural residues. In this way, the Program is helping to ensure that cost-effective technologies will be ready to support production goals for advanced biofuels.

  3. Herbivory and Competition of Tibetan Steppe Vegetation in Winter Pasture: Effects of Livestock Exclosure and Plateau Pika Reduction

    PubMed Central

    Harris, Richard B.; Wenying, Wang; Badinqiuying; Smith, Andrew T.

    2015-01-01

    Rangeland degradation has been identified as a serious concern in alpine regions of western China on the Qinghai-Tibetan plateau (QTP). Numerous government-sponsored programs have been initiated, including many that feature long-term grazing prohibitions and some that call for eliminating pastoralism altogether. As well, government programs have long favored eliminating plateau pikas (Ochotona curzoniae), assumed to contribute to degraded conditions. However, vegetation on the QTP evolved in the presence of herbivory, suggesting that deleterious effects from grazing are, to some extent, compensated for by reduced plant-plant competition. We examined the dynamics of common steppe ecosystem species as well as physical indicators of rangeland stress by excluding livestock and reducing pika abundance on experimental plots, and following responses for 4 years. We established 12 fenced livestock exclosures within pastures grazed during winter by local pastoralists, and removed pikas on half of these. We established paired, permanent vegetation plots within and outside exclosures and measured indices of erosion and biomass of common plant species. We observed modest restoration of physical site conditions (reduced bare soil, erosion, greater vegetation cover) with both livestock exclusion and pika reduction. As expected in areas protected from grazing, we observed a reduction in annual productivity of plant species avoided by livestock and assumed to compete poorly when protected from grazing. Contrary to expectation, we observed similar reductions in annual productivity among palatable, perennial graminoids under livestock exclusion. The dominant grass, Stipa purpurea, displayed evidence of density-dependent growth, suggesting that intra-specific competition exerted a regulatory effect on annual production in the absence of grazing. Complete grazing bans on winter pastures in steppe habitats on the QTP may assist in the recovery of highly eroded pastures, but may not increase annual vegetative production. PMID:26208005

  4. Herbivory and Competition of Tibetan Steppe Vegetation in Winter Pasture: Effects of Livestock Exclosure and Plateau Pika Reduction.

    PubMed

    Harris, Richard B; Wenying, Wang; Badinqiuying; Smith, Andrew T; Bedunah, Donald J

    2015-01-01

    Rangeland degradation has been identified as a serious concern in alpine regions of western China on the Qinghai-Tibetan plateau (QTP). Numerous government-sponsored programs have been initiated, including many that feature long-term grazing prohibitions and some that call for eliminating pastoralism altogether. As well, government programs have long favored eliminating plateau pikas (Ochotona curzoniae), assumed to contribute to degraded conditions. However, vegetation on the QTP evolved in the presence of herbivory, suggesting that deleterious effects from grazing are, to some extent, compensated for by reduced plant-plant competition. We examined the dynamics of common steppe ecosystem species as well as physical indicators of rangeland stress by excluding livestock and reducing pika abundance on experimental plots, and following responses for 4 years. We established 12 fenced livestock exclosures within pastures grazed during winter by local pastoralists, and removed pikas on half of these. We established paired, permanent vegetation plots within and outside exclosures and measured indices of erosion and biomass of common plant species. We observed modest restoration of physical site conditions (reduced bare soil, erosion, greater vegetation cover) with both livestock exclusion and pika reduction. As expected in areas protected from grazing, we observed a reduction in annual productivity of plant species avoided by livestock and assumed to compete poorly when protected from grazing. Contrary to expectation, we observed similar reductions in annual productivity among palatable, perennial graminoids under livestock exclusion. The dominant grass, Stipa purpurea, displayed evidence of density-dependent growth, suggesting that intra-specific competition exerted a regulatory effect on annual production in the absence of grazing. Complete grazing bans on winter pastures in steppe habitats on the QTP may assist in the recovery of highly eroded pastures, but may not increase annual vegetative production.

  5. 76 FR 35318 - Competitive and Noncompetitive Nonformula Federal Assistance Programs-Administrative Provisions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ...] Competitive and Noncompetitive Nonformula Federal Assistance Programs--Administrative Provisions for Biomass..., without change, an interim rule containing a set of specific administrative requirements for the Biomass... Biomass Research and Development Initiative (BRDI) under which competitively awarded grants, contracts...

  6. Carbon and nitrogen distribution in oak-hickory forests distributed along a productivity gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reber, R.T.; Kaczmarek, D.J.; Pope, P.E.

    1993-12-31

    Biomass, carbon and nitrogen pools were determined for oak-hickory forests of varying productivity. Little information of this type is available for the central hardwood region. Six oak-hickory dominated forests were chosen to represent a range in potential site productivity as influenced by soil type, amount of recyclable nutrients and available water. Biomass, carbon and nitrogen storage were determined for the following components: above ground standing biomass, fine root biomass, forest floor organic layers and litterfall. As site sequestered at each site was dependent more on the amount of living biomass at each site Litterfall, to some extent, increased with increasingmore » site productivity. As potential site productivity decreased, total fine root biomass increased. The data suggest that as site quality decreased fine root production and turnover may become as important in nutrient cycling as annual litterfall.« less

  7. Biomass District Heat System for Interior Rural Alaska Villages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, William A.; Parker, Charles R.

    2014-09-01

    Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dotsmore » of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the “right sized” harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.« less

  8. Integrating field plots, lidar, and landsat time series to provide temporally consistent annual estimates of biomass from 1990 to present

    Treesearch

    Warren B. Cohen; Hans-Erik Andersen; Sean P. Healey; Gretchen G. Moisen; Todd A. Schroeder; Christopher W. Woodall; Grant M. Domke; Zhiqiang Yang; Robert E. Kennedy; Stephen V. Stehman; Curtis Woodcock; Jim Vogelmann; Zhe Zhu; Chengquan Huang

    2015-01-01

    We are developing a system that provides temporally consistent biomass estimates for national greenhouse gas inventory reporting to the United Nations Framework Convention on Climate Change. Our model-assisted estimation framework relies on remote sensing to scale from plot measurements to lidar strip samples, to Landsat time series-based maps. As a demonstration, new...

  9. Trends in standing biomass in Interior West forests: Reassessing baseline data from periodic inventories

    Treesearch

    Sara A. Goeking

    2012-01-01

    Trends in U.S. forest biomass and carbon are assessed using Forest Inventory and Analysis (FIA) data relative to baseline assessments from the 1990s. The integrity of baseline data varies by state and depends largely on the comparability of periodic versus annual forest inventory data. In most states in the Interior West FIA region, the periodic inventory's sample...

  10. Carbon dioxide emissions and energy balance closure before, during, and after biomass burning in mid-South rice fields

    NASA Astrophysics Data System (ADS)

    Fong, B.; Adviento-Borbe, A.; Reba, M. L.; Runkle, B.; Suvocarev, K.

    2017-12-01

    Biomass burning or field burning is a crop management practice that removes rice straw, reduces tillage, controls pests and releases nutrients for the next cropping season. Current field burning emissions are not included in agricultural field annual emissions largely because of the lack of studies, especially on the field scale. Field burning measurements are important for greenhouse gas emission inventories and quantifying the annual carbon footprint of rice. Paired eddy covariance systems were used to measure energy balance, CO2 fluxes, and H2O fluxes in mid-South US rice fields (total area of 25 ha) before, during and after biomass burning for 20 days after harvest. During the biomass burning, air temperatures increased 29°C, while ambient CO2 concentration increased from 402 to 16,567 ppm and H2O concentrations increased from 18.73 to 25.62 ppt. For the burning period, 67-86 kg CO2 ha-1 period-1 was emitted calculated by integrating fluxes over the biomass burning event. However, the estimated emission using aboveground biomass and combustion factors was calculated as 11,733 kg CO2 ha-1 period-1. Part of the difference could be attributed to sensor sensitivity decreasing 80% during burning for two minutes due to smoke. Net ecosystem exchange (NEE) increased by a factor of two, 1.14 before burning to 2.44 μmol m-2 s-1 possibly due to greater reduction of plant material and photosynthesis following burning. This study highlights the contribution of rice straw burning to total CO2 emissions from rice production.

  11. Adding net growth, removals, and mortality estimates for biomass and carbon in FIADB

    Treesearch

    Jeffery A. Turner

    2015-01-01

    Traditional growth, removals, and mortality (GRM) estimates produced from Forest Inventory and Analysis (FIA) periodic inventories were limited to changes in volume on timberland. Estimates on forestland were added in the east as the first installment of annual inventory plots was remeasured. The western FIA units have begun annual remeasurement, precipitating the need...

  12. 40 CFR 98.36 - Data reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... measured by the CEMS consists entirely of non-biogenic CO2 (i.e., CO2 from fossil fuel combustion plus, if... tons of CO2e. If any of the units burn both fossil fuels and biomass, report also the annual CO2 emissions from combustion of all fossil fuels combined and annual CO2 emissions from combustion of all...

  13. The Role of Mycorrhizal Fungi in Ecosystem Energetics.

    DTIC Science & Technology

    1982-03-01

    16 The Mycorrhizal Subsystem and its Effect on Production ........ .................... 19 A Four-Pathway Food Chain Model ... ........... ... 22...69 1. Effect of Inoculation with Mycorrhizal Fungi on Production of Plant Biomass Over Time ..... ............... ... 69 2... Effect of Inoculation with Mycorrhizal Fungi on Annual Plant Production and Partitioning of Annual Plant Produc- tion to Stem, Branches, and Needles

  14. Modeling mangrove biomass using remote sensing based age and growth estimates

    NASA Astrophysics Data System (ADS)

    Lagomasino, D.; Fatoyinbo, T. E.; Feliciano, E. A.; Lee, S. K.; Trettin, C.; Mangora, M.; Rahman, M.

    2016-12-01

    Mangroves are highly regarded coastal forests because of their ecosystem services and high carbon storage potential. In addition, these forests can develop rapidly in locations where congenial environmental conditions and sediment supply are available. Monitoring the growth and age of developing mangrove forests is crucial for sustainable management and estimating carbon stocks. Combining imagery from radar and optical satellites (e.g., TanDEM-X and Landsat), we can estimate young mangrove growth and age at regional and continental scales. We used TanDEM-X radar interferometry for modeling canopy height in 2013 and Landsat to measure land cover change from 1990 to 2013. Annual NDVI composites were determined for each calendar year between 1990 and 2013. New land areas gained from the transition of water to vegetation were determined by the differences in annual NDVI composites and the reference year 2013. The year of the greatest NDVI difference that met the threshold criteria was used as the initial tree height (0 m). Annual canopy height growth rates were estimated by the duration between land generation times and 2013 canopy height models derived from TanDEM-X and very-high resolution optical data. In this presentation, we compare growth rates and biomass accumulation in mangrove forests at four river deltas; the Zambezi (Mozambique), Rufiji (Tanzania), Ganges (Bangladesh), and Mekong (Vietnam). The spatial patterns of growth rates coincided with characteristic successional paradigms and stream morphology, where the maximum growth rates typically occurred along prograding creek banks. Initial comparisons between height-only and growth-age biomass indicate that the latter tend to overestimate biomass for younger forest stands of similar height. Both the vertical (e.g., canopy height) and horizontal (e.g., expansion) growth rates measured from remote sensing can garner important information regarding mangrove succession and primary productivity. Continued research will combine mangrove growth-age and biomass modeling in other mangrove ecosystems order to resolve the development patterns between different geomorphologies.

  15. An estimated 400-800 million tons of prey are annually killed by the global spider community.

    PubMed

    Nyffeler, Martin; Birkhofer, Klaus

    2017-04-01

    Spiders have been suspected to be one of the most important groups of natural enemies of insects worldwide. To document the impact of the global spider community as insect predators, we present estimates of the biomass of annually killed insect prey. Our estimates assessed with two different methods suggest that the annual prey kill of the global spider community is in the range of 400-800 million metric tons (fresh weight), with insects and collembolans composing >90% of the captured prey. This equals approximately 1‰ of the global terrestrial net primary production. Spiders associated with forests and grasslands account for >95% of the annual prey kill of the global spider community, whereas spiders in other habitats are rather insignificant contributors over a full year. The spider communities associated with annual crops contribute less than 2% to the global annual prey kill. This, however, can be partly explained by the fact that annual crop fields are "disturbed habitats" with a low buildup of spider biomass and that agrobiont spiders often only kill prey over short time periods in a year. Our estimates are supported by the published results of exclusion experiments, showing that the number of herbivorous/detritivorous insects and collembolans increased significantly after spider removal from experimental plots. The presented estimates of the global annual prey kill and the relative contribution of spider predation in different biomes improve the general understanding of spider ecology and provide a first assessment of the global impact of this very important predator group.

  16. An estimated 400-800 million tons of prey are annually killed by the global spider community

    NASA Astrophysics Data System (ADS)

    Nyffeler, Martin; Birkhofer, Klaus

    2017-04-01

    Spiders have been suspected to be one of the most important groups of natural enemies of insects worldwide. To document the impact of the global spider community as insect predators, we present estimates of the biomass of annually killed insect prey. Our estimates assessed with two different methods suggest that the annual prey kill of the global spider community is in the range of 400-800 million metric tons (fresh weight), with insects and collembolans composing >90% of the captured prey. This equals approximately 1‰ of the global terrestrial net primary production. Spiders associated with forests and grasslands account for >95% of the annual prey kill of the global spider community, whereas spiders in other habitats are rather insignificant contributors over a full year. The spider communities associated with annual crops contribute less than 2% to the global annual prey kill. This, however, can be partly explained by the fact that annual crop fields are "disturbed habitats" with a low buildup of spider biomass and that agrobiont spiders often only kill prey over short time periods in a year. Our estimates are supported by the published results of exclusion experiments, showing that the number of herbivorous/detritivorous insects and collembolans increased significantly after spider removal from experimental plots. The presented estimates of the global annual prey kill and the relative contribution of spider predation in different biomes improve the general understanding of spider ecology and provide a first assessment of the global impact of this very important predator group.

  17. Optimal foraging of a herbivorous lizard, the green iguana in a seasonal environment.

    PubMed

    van Marken Lichtenbelt, Wouter D

    1993-08-01

    Food selection was studied in free living green iguanas (Iguana iguana) throughout the year in a semiarid environment, Curaçao (Netherlands Antilles). Food intake was determined by direct observations and converted into biomass intake. Comparison between intake and biomass availability of the various food items revealed that the lizards were selective, and that changes in seasonal food availability led to periodic switching of food plants. The extent to which nutrient constraints determine iguana feeding ecology was investigated. Potential constraints were the requirements for water, digestible crude protein, and metabolizable energy. By using a linear programming model that incorporates characteristics of the food (chemical composition, energy content, item size) and requirements and constraints of the green iguanas (nutrient and energy requirements digestive tract capacity, feeding rate) it was possible to identify which factors determine food choice over the year. During the dry period, when the iguanas had no access to drinking water they consumed flowers to increase water intake, though the amount of flowers consumed was too low to cover maintenance requirements for either energy or protein. After the young leaf flush, following the early rains in May, the biomass increased, free surface water was available during showers, and the linear programming solutions indicate that food selection conformed to the protein maximization criterion. Reproduction in green iguanas shows an annual cycle, in which oviposition takes place at the end of the dry season, when intake is below maintenance levels. Females show a 8-10 month gap between acquisition of most of the protein required for egg synthesis and the act of laying. Thus, as in avian and mammalian herbivores, food availability during a period prior to the energy and protein demanding reproductive season of iguanas determines reproductive success.

  18. A Phenological Timetable of Oak Growth under Experimental Drought and Air Warming

    PubMed Central

    Kuster, Thomas M.; Dobbertin, Matthias; Günthardt-Goerg, Madeleine S.; Schaub, Marcus; Arend, Matthias

    2014-01-01

    Climate change is expected to increase temperature and decrease summer precipitation in Central Europe. Little is known about how warming and drought will affect phenological patterns of oaks, which are considered to possess excellent adaptability to these climatic changes. Here, we investigated bud burst and intra-annual shoot growth of Quercus robur, Q. petraea and Q. pubescens grown on two different forest soils and exposed to air warming and drought. Phenological development was assessed over the course of three growing seasons. Warming advanced bud burst by 1–3 days °C−1 and led to an earlier start of intra-annual shoot growth. Despite this phenological shift, total time span of annual growth and shoot biomass were not affected. Drought changed the frequency and intensity of intra-annual shoot growth and advanced bud burst in the subsequent spring of a severe summer drought by 1–2 days. After re-wetting, shoot growth recovered within a few days, demonstrating the superior drought tolerance of this tree genus. Our findings show that phenological patterns of oaks are modified by warming and drought but also suggest that ontogenetic factors and/or limitations of water and nutrients counteract warming effects on the biomass and the entire span of annual shoot growth. PMID:24586988

  19. Overview of IEA biomass combustion activities

    NASA Astrophysics Data System (ADS)

    Hustad, J. E.

    1994-07-01

    The objectives of the International Energy Agency (IEA) bioenergy program are: (1) to encourage cooperative research, development and use of energy and the increased utilization of alternatives to oil; and (2) to establish increased program and project cooperation between participants in the whole field of bioenergy. There are four Task Annexes to the Implementing Agreement during the period 1992-1994: Efficient and Environmentally Sound Biomass Production Systems; Harvesting and Supply of Woody Biomass for Energy; Biomass Utilization; and Conversion of Municipal Solid Waste Feedstock to Energy. The report describes the following biomass combustion activities during the period 1992-1994: Round robin test of a wood stove; Emissions from biomass combustion; A pilot project cofiring biomass with oil to reduce SO2 emissions; Small scale biomass chip handling; Energy from contaminated wood waste combustion; Modeling of biomass combustion; Wood chip cogeneration; Combustion of wet biomass feedstocks, ash reinjection and carbon burnout; Oxidation of wet biomass; Catalytic combustion in small wood burning appliances; Characterization of biomass fuels and ashes; Measurement techniques (FTIR).

  20. Global biomass burning - Atmospheric, climatic, and biospheric implications

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1990-01-01

    Topics discussed at the March 1990 American Geophysical Union's Conference on biomass burning which was attended by more than 175 participants representing 19 countries are presented. Conference highlights include discussion of remote sensing data concerning biomass burning (BB), gaseous and particle emissions resulting from BB in the tropics, BB in temperate and boreal ecosystems, the historic and prehistoric perspectives on BB, BB and global budgets for carbon, nitrogen, and oxygen, and the BB and the greenhouse effect. Global estimates of annual amounts of biomass burning and of the resulting release of carbon to the atmosphere and the mean gaseous emission ratios for fires in wetlands, chaparral, and boreal ecosystems are given. An overview is presented of some conference discussions including global burning from 1850-1980, the global impact of biomass burning, the great Chinese/Soviet fire of 1987, and burning and biogenic emissions.

  1. Non-pulp utilization of above-ground biomass of mixed-species forests of small trees

    Treesearch

    P. Koch

    1982-01-01

    This soulution propose to rehabilitate annually- by clear felling, site preparation, and planting- 25,000 acres of level to rolling land averaging about490 cubic feet per acre of stemwood in small hardwood trees 5 inches in diameter at breast height (dbh) and larger, and of many species, plus all equal volume of above-ground biomass in stembark and tops, and in trees...

  2. Validation databases for simulation models: aboveground biomass and net primary productive, (NPP) estimation using eastwide FIA data

    Treesearch

    Jennifer C. Jenkins; Richard A. Birdsey

    2000-01-01

    As interest grows in the role of forest growth in the carbon cycle, and as simulation models are applied to predict future forest productivity at large spatial scales, the need for reliable and field-based data for evaluation of model estimates is clear. We created estimates of potential forest biomass and annual aboveground production for the Chesapeake Bay watershed...

  3. Techno-economic analysis of wood biomass boilers for the greenhouse industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chau, J.; Sowlati, T.; Sokhansanj, Shahabaddine

    2009-01-01

    The objective of this study is to perform a techno-economic analysis on a typical wood pellet and wood residue boiler for generation of heat to an average-sized greenhouse in British Columbia. The variables analyzed included greenhouse size and structure, boiler efficiency, fuel types, and source of carbon dioxide (CO2) for crop fertilization. The net present value (NPV) show that installing a wood pellet or a wood residue boiler to provide 40% of the annual heat demand is more economical than using a natural gas boiler to provide all the heat at a discount rate of 10%. For an assumed lifespanmore » of 25 years, a wood pellet boiler system could generate NPV of C$259,311 without electrostatic precipitator (ESP) and C$74,695 with ESP, respectively. While, installing a wood residue boiler with or without an ESP could provide NPV of C$919,922 or C$1,104,538, respectively. Using a wood biomass boiler could also eliminate over 3000 tonne CO2 equivalents of greenhouse gases annually. Wood biomass combustion generates more particulate matters than natural gas combustion. However, an advanced emission control system could significantly reduce particulate matters emission from wood biomass combustion which would bring the particulate emission to a relatively similar level as for natural gas.« less

  4. Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaofeng; Schimel, Joshua; Thornton, Peter E

    2014-01-01

    Microbial assimilation of soil organic carbon is one of the fundamental processes of global carbon cycling and it determines the magnitude of microbial biomass in soils. Mechanistic understanding of microbial assimilation of soil organic carbon and its controls is important for to improve Earth system models ability to simulate carbon-climate feedbacks. Although microbial assimilation of soil organic carbon is broadly considered to be an important parameter, it really comprises two separate physiological processes: one-time assimilation efficiency and time-dependent microbial maintenance energy. Representing of these two mechanisms is crucial to more accurately simulate carbon cycling in soils. In this study, amore » simple modeling framework was developed to evaluate the substrate and environmental controls on microbial assimilation of soil organic carbon using a new term: microbial annual active period (the length of microbes remaining active in one year). Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality (lower C:N ratio) leads to higher ratio of microbial carbon to soil organic carbon and vice versa. Increases in microbial annual active period from zero stimulate microbial assimilation of soil organic carbon; however, when microbial annual active period is longer than an optimal threshold, increasing this period decreases microbial biomass. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global dataset at the biome-level. The modeling framework of microbial assimilation of soil organic carbon and its controls developed in this study offers an applicable ways to incorporate microbial contributions to the carbon cycling into Earth system models for simulating carbon-climate feedbacks and to explain global patterns of microbial biomass.« less

  5. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    NASA Astrophysics Data System (ADS)

    Strada, Susanna; Unger, Nadine

    2016-04-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (anthropogenic, biomass burning, and non-biomass burning) are investigated by performing sensitivity experiments. The model framework includes all known light and meteorological responses of photosynthesis, but uses fixed canopy structures and phenology. On a global scale, our results show that global land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ˜ 9 %. At a regional scale, GPP and isoprene emission show a robust but opposite sensitivity to pollution aerosols in regions where forested canopies dominate. In eastern North America and Eurasia, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +5-8 % on an annual average. In the northwestern Amazon Basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the northwestern Amazon Basin during the dry-fire season (+5-8 %). The prevailing mechanism varies across regions: light scattering dominates in eastern North America, while a reduction in direct radiation dominates in Europe and China. Aerosol-induced GPP productivity increases in the Amazon and central Africa include an additional positive feedback from reduced canopy temperatures in response to increases in canopy conductance. In Eurasia and northeastern China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on an annual average. Future research needs to incorporate the indirect effects of aerosols and possible feedbacks from dynamic carbon allocation and phenology.

  6. Inter-annual variability of NDVI in response to long-term warming and fertilization in wet sedge and tussock tundra.

    PubMed

    Boelman, Natalie T; Stieglitz, Marc; Griffin, Kevin L; Shaver, Gaius R

    2005-05-01

    This study explores the relationship between the normalized difference vegetation index (NDVI) and aboveground plant biomass for tussock tundra vegetation and compares it to a previously established NDVI-biomass relationship for wet sedge tundra vegetation. In addition, we explore inter-annual variation in NDVI in both these contrasting vegetation communities. All measurements were taken across long-term experimental treatments in wet sedge and tussock tundra communities at the Toolik Lake Long Term Ecological Research (LTER) site, in northern Alaska. Over 15 years (for wet sedge tundra) and 14 years (for tussock tundra), N and P were applied in factorial experiments (N, P and N+P), air temperature was increased using greenhouses with and without N+P fertilizer, and light intensity was reduced by 50% using shade cloth. during the peak growing seasons of 2001, 2002, and 2003, NDVI measurements were made in both the wet sedge and tussock tundra experimental treatment plots, creating a 3-year time series of inter-annual variation in NDVI. We found that: (1) across all tussock experimental tundra treatments, NDVI is correlated with aboveground plant biomass (r2 = 0.59); (2) NDVI-biomass relationships for tussock and wet sedge tundra communities are community specific, and; (3) NDVI values for tussock tundra communities are typically, but not always, greater than for wet sedge tundra communities across all experimental treatments. We suggest that differences between the response of wet sedge and tussock tundra communities in the same experimental treatments result from the contrasting degree of heterogeneity in species and functional types that characterize each of these Arctic tundra vegetation communities.

  7. The California Biomass Crop Adoption Model estimates biofuel feedstock crop production across diverse agro-ecological zones within the state, under different future climates

    NASA Astrophysics Data System (ADS)

    Kaffka, S.; Jenner, M.; Bucaram, S.; George, N.

    2012-12-01

    Both regulators and businesses need realistic estimates for the potential production of biomass feedstocks for biofuels and bioproducts. This includes the need to understand how climate change will affect mid-tem and longer-term crop performance and relative advantage. The California Biomass Crop Adoption Model is a partial mathematical programming optimization model that estimates the profit level needed for new crop adoption, and the crop(s) displaced when a biomass feedstock crop is added to the state's diverse set of cropping systems, in diverse regions of the state. Both yield and crop price, as elements of profit, can be varied. Crop adoption is tested against current farmer preferences derived from analysis of 10 years crop production data for all crops produced in California, collected by the California Department of Pesticide Regulation. Analysis of this extensive data set resulted in 45 distinctive, representative farming systems distributed across the state's diverse agro-ecological regions. Estimated yields and water use are derived from field trials combined with crop simulation, reported elsewhere. Crop simulation is carried out under different weather and climate assumptions. Besides crop adoption and displacement, crop resource use is also accounted, derived from partial budgets used for each crop's cost of production. Systematically increasing biofuel crop price identified areas of the state where different types of crops were most likely to be adopted. Oilseed crops like canola that can be used for biodiesel production had the greatest potential to be grown in the Sacramento Valley and other northern regions, while sugar beets (for ethanol) had the greatest potential in the northern San Joaquin Valley region, and sweet sorghum in the southern San Joaquin Valley. Up to approximately 10% of existing annual cropland in California was available for new crop adoption. New crops are adopted if the entire cropping system becomes more profitable. In particular, canola production resulted in less overall water use but increased farm profits. Most crop substitutions were resource neutral. If future climate is drier, more winter annual crops like canola are likely to be adopted. Crop displacement is also important for determining market-mediated effects of biomass crop production. Correctly estimating crop displacement at the local scale greatly improves upon estimates for indirect land use change derived from the macro-scale PE and CGE models currently used by US EPA and the California Air Resources Board.

  8. 40 CFR 98.36 - Data reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... consists entirely of non-biogenic CO2 (i.e., CO2 from fossil fuel combustion plus, if applicable, CO2 from... of each gas and in metric tons of CO2e. If any of the units burn both fossil fuels and biomass, report also the annual CO2 emissions from combustion of all fossil fuels combined and annual CO2...

  9. 40 CFR 98.36 - Data reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... consists entirely of non-biogenic CO2 (i.e., CO2 from fossil fuel combustion plus, if applicable, CO2 from... of each gas and in metric tons of CO2e. If any of the units burn both fossil fuels and biomass, report also the annual CO2 emissions from combustion of all fossil fuels combined and annual CO2...

  10. 40 CFR 98.36 - Data reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... consists entirely of non-biogenic CO2 (i.e., CO2 from fossil fuel combustion plus, if applicable, CO2 from... gas and in metric tons of CO2e. If any of the units burn both fossil fuels and biomass, report also the annual CO2 emissions from combustion of all fossil fuels combined and annual CO2 emissions from...

  11. North Dakota's forest resources in 2005

    Treesearch

    David E. Haugen; Gary J. Brand; Michael Kangas

    2006-01-01

    This report completes the first 5 years of the annual forest inventory in North Dakota and presents estimates of forest area, volume, and biomass for 2005. It is part of the national effort of annual forest inventory authorized by the 1998 Farm Bill. Sine the third forest inventory, in 1994, total forest land area has increased by 51,000 acres. Private forest land...

  12. Nitrogen Recycling and Flowering Time in Perennial Bioenergy Crops

    PubMed Central

    Schwartz, Christopher; Amasino, Richard

    2013-01-01

    Perennials have a number of traits important for profitability and sustainability of a biofuel crop. Perennialism is generally defined as the ability to grow and reproduce in multiple years. In temperate climates, many perennial plants enter dormancy during winter and recycle nutrients, such as nitrogen, to below ground structures for the next growing season. Nitrogen is expensive to produce and application of nitrogen increases the potent greenhouse gas NOx. Perennial bioenergy crops have been evaluated for biomass yields with nitrogen fertilization, location, year, and genotype as variables. Flowering time and dormancy are closely related to the N recycling program. Substantial variation for flowering time and dormancy has been identified in the switchgrass (Panicum virgatum L.) species, which provides a source to identify the genetic components of N recycling, and for use in breeding programs. Some studies have addressed recycling specifically, but flowering time and developmental differences were largely ignored, complicating interpretation of the results. Future studies on recycling need to appreciate plant developmental stage to allow comparison between experiments. A perennial/annual model(s) and more environmentally controlled experiments would be useful to determine the genetic components of nitrogen recycling. Increasing biomass yield per unit of nitrogen by maximizing recycling might mean the difference for profitability of a biofuel crop and has the added benefit of minimizing negative environmental effects from agriculture. PMID:23626592

  13. Intraguild Predation Dynamics in a Lake Ecosystem Based on a Coupled Hydrodynamic-Ecological Model: The Example of Lake Kinneret (Israel).

    PubMed

    Makler-Pick, Vardit; Hipsey, Matthew R; Zohary, Tamar; Carmel, Yohay; Gal, Gideon

    2017-03-29

    The food web of Lake Kinneret contains intraguild predation (IGP). Predatory invertebrates and planktivorous fish both feed on herbivorous zooplankton, while the planktivorous fish also feed on the predatory invertebrates. In this study, a complex mechanistic hydrodynamic-ecological model, coupled to a bioenergetics-based fish population model (DYCD-FISH), was employed with the aim of revealing IGP dynamics. The results indicate that the predation pressure of predatory zooplankton on herbivorous zooplankton varies widely, depending on the season. At the time of its annual peak, it is 10-20 times higher than the fish predation pressure. When the number of fish was significantly higher, as occurs in the lake after atypical meteorological years, the effect was a shift from a bottom-up controlled ecosystem, to the top-down control of planktivorous fish and a significant reduction of predatory and herbivorous zooplankton biomass. Yet, seasonally, the decrease in predatory-zooplankton biomass was followed by a decrease in their predation pressure on herbivorous zooplankton, leading to an increase of herbivorous zooplankton biomass to an extent similar to the base level. The analysis demonstrates the emergence of non-equilibrium IGP dynamics due to intra-annual and inter-annual changes in the physico-chemical characteristics of the lake, and suggests that IGP dynamics should be considered in food web models in order to more accurately capture mass transfer and trophic interactions.

  14. 50 CFR 403.02 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... largest supportable within the ecosystem to the population level that results in maximum net productivity. Maximum net productivity is the greatest net annual increment in population numbers or biomass resulting...

  15. The microcomputer scientific software series 5: the BIOMASS user's guide.

    Treesearch

    George E. Host; Stephen C. Westin; William G. Cole; Kurt S. Pregitzer

    1989-01-01

    BIOMASS is an interactive microcomputer program that uses allometric regression equations to calculate aboveground biomass of common tree species of the Lake States. The equations are species-specific and most use both diameter and height as independent variables. The program accommodates fixed area and variable radius sample designs and produces both individual tree...

  16. 75 FR 42745 - Production Incentives for Cellulosic Biofuels: Notice of Program Intent

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... gives notice that the Office of Biomass Program, in the Office of Energy Efficiency and Renewable Energy...: Questions may be directed to: Mr. Neil Rossmeissl, Office of the Biomass Program, U.S. Department of Energy...

  17. Dissecting variation in biomass conversion factors across China's forests: implications for biomass and carbon accounting.

    PubMed

    Luo, Yunjian; Zhang, Xiaoquan; Wang, Xiaoke; Ren, Yin

    2014-01-01

    Biomass conversion factors (BCFs, defined as the ratios of tree components (i.e. stem, branch, foliage and root), as well as aboveground and whole biomass of trees to growing stock volume, Mg m-3) are considered as important parameters in large-scale forest biomass carbon estimation. To date, knowledge of possible sources of the variation in BCFs is still limited at large scales. Using our compiled forest biomass dataset of China, we presented forest type-specific values of BCFs, and examined the variation in BCFs in relation to forest type, stand development and environmental factors (climate and soil fertility). BCFs exhibited remarkable variation across forest types, and also were significantly related to stand development (especially growing stock volume). BCFs (except Stem BCF) had significant relationships with mean annual temperature (MAT) and mean annual precipitation (MAP) (P<0.001). Climatic data (MAT and MAP) collectively explained 10.0-25.0% of the variation in BCFs (except Stem BCFs). Moreover, stronger climatic effects were found on BCFs for functional components (i.e. branch, foliage and root) than BCFs for combined components (i.e. aboveground section and whole trees). A general trend for BCFs was observed to decrease and then increase from low to high soil fertility. When qualitative soil fertility and climatic data (MAT and MAP) were combined, they explained 14.1-29.7% of the variation in in BCFs (except Stem BCFs), adding only 4.1-4.9% than climatic data used. Therefore, to reduce the uncertainty induced by BCFs in forest carbon estimates, we should apply values of BCFs for a specified forest type, and also consider climatic and edaphic effects, especially climatic effect, in developing predictive models of BCFs (except Stem BCF).

  18. Sample size and the detection of a hump-shaped relationship between biomass and species richness in Mediterranean wetlands

    USGS Publications Warehouse

    Espinar, J.L.

    2006-01-01

    Questions: What is the observed relationship between biomass and species richness across both spatial and temporal scales in communities of submerged annual macrophytes? Does the number of plots sampled affect detection of hump-shaped pattern? Location: Don??ana National Park, southwestern Spain. Methods: A total of 102 plots were sampled during four hydrological cycles. In each hydrological cycle, the plots were distributed randomly along an environmental flooding gradient in three contrasted microhabitats located in the transition zone just below the upper marsh. In each plot (0.5 m x 0.5 m), plant density and above- and below-ground biomass of submerged vegetation were measured. The hump-shaped model was tested by using a generalized linear model (GLM). A bootstrap procedure was used to test the effect of the number of plots on the ability to detect hump-shaped patterns. Result: The area exhibited low species density with a range of 1 - 9 species and low values of biomass with a range of 0.2 - 87.6 g-DW / 0.25 m2. When data from all years and all microhabitats were combined, the relationships between biomass and species richness showed a hump-shaped pattern. The number of plots was large enough to allow detection of the hump-shaped pattern across microhabitats but it was too small to confirm the hump-shaped pattern within each individual microhabitat. Conclusion: This study provides evidence of hump-shaped patterns across microhabitats when GLM analysis is used. In communities of submerged annual macrophytes in Mediterranean wetlands, the highest species density occurs in intermediate values of biomass. The bootstrap procedure indicates that the number of plots affects the detection of hump-shaped patterns. ?? IAVS; Opulus Press.

  19. Dissecting Variation in Biomass Conversion Factors across China’s Forests: Implications for Biomass and Carbon Accounting

    PubMed Central

    Wang, Xiaoke; Ren, Yin

    2014-01-01

    Biomass conversion factors (BCFs, defined as the ratios of tree components (i.e. stem, branch, foliage and root), as well as aboveground and whole biomass of trees to growing stock volume, Mg m−3) are considered as important parameters in large-scale forest biomass carbon estimation. To date, knowledge of possible sources of the variation in BCFs is still limited at large scales. Using our compiled forest biomass dataset of China, we presented forest type-specific values of BCFs, and examined the variation in BCFs in relation to forest type, stand development and environmental factors (climate and soil fertility). BCFs exhibited remarkable variation across forest types, and also were significantly related to stand development (especially growing stock volume). BCFs (except Stem BCF) had significant relationships with mean annual temperature (MAT) and mean annual precipitation (MAP) (P<0.001). Climatic data (MAT and MAP) collectively explained 10.0–25.0% of the variation in BCFs (except Stem BCFs). Moreover, stronger climatic effects were found on BCFs for functional components (i.e. branch, foliage and root) than BCFs for combined components (i.e. aboveground section and whole trees). A general trend for BCFs was observed to decrease and then increase from low to high soil fertility. When qualitative soil fertility and climatic data (MAT and MAP) were combined, they explained 14.1–29.7% of the variation in in BCFs (except Stem BCFs), adding only 4.1–4.9% than climatic data used. Therefore, to reduce the uncertainty induced by BCFs in forest carbon estimates, we should apply values of BCFs for a specified forest type, and also consider climatic and edaphic effects, especially climatic effect, in developing predictive models of BCFs (except Stem BCF). PMID:24728222

  20. Limits to CO2-Neutrality of Burning Wood. (Review)

    NASA Astrophysics Data System (ADS)

    Abolins, J.; Gravitis, J.

    2016-08-01

    Consumption of wood as a source of energy is discussed with respect to efficiency and restraints to ensure sustainability of the environment on the grounds of a simple analytical model describing dynamics of biomass accumulation in forest stands - a particular case of the well-known empirical Richards' equation. Amounts of wood harvested under conditions of maximum productivity of forest land are presented in units normalised with respect to the maximum of the mean annual increment and used to determine the limits of CO2-neutrality. The ecological "footprint" defined by the area of growing stands necessary to absorb the excess amount of CO2 annually released from burning biomass is shown to be equal to the land area of a plantation providing sustainable supply of fire-wood.

  1. Does prescribed fire benefit wetland vegetation?

    USGS Publications Warehouse

    Flores, C.; Bounds, D.L.; Ruby, D.E.

    2011-01-01

    The effects of fire on wetland vegetation in the mid-Atlantic region of the United States are poorly known, despite the historical use of fire by federal, state, and private landowners in the Chesapeake Bay Region. Prescribed fire is widely used by land managers to promote vegetation that is beneficial to migratory waterfowl, muskrats, and other native wildlife and to reduce competition from less desirable plant species. We compared vegetative response to two fire rotations, annual burns and 3-year burns, and two control sites, Control 1 and Control 2. We tested the effects of fire within six tidal marsh wetlands at Blackwater National Wildlife Refuge and Fishing Bay Wildlife Management Area in Maryland. We examined changes in total live biomass (all species), total stem density, litter, and changes in live biomass and stem density of four dominant wetland plant species (11 variables). Our results suggest that annual prescribed fires will decrease the accumulation of litter, increase the biomass and stem densities of some wetland plants generally considered less desirable for wildlife, and have little or no effect on other wetland plants previously thought to benefit from fire. ?? 2011 US Government.

  2. Comparison of calculation methods for estimating annual carbon stock change in German forests under forest management in the German greenhouse gas inventory.

    PubMed

    Röhling, Steffi; Dunger, Karsten; Kändler, Gerald; Klatt, Susann; Riedel, Thomas; Stümer, Wolfgang; Brötz, Johannes

    2016-12-01

    The German greenhouse gas inventory in the land use change sector strongly depends on national forest inventory data. As these data were collected periodically 1987, 2002, 2008 and 2012, the time series on emissions show several "jumps" due to biomass stock change, especially between 2001 and 2002 and between 2007 and 2008 while within the periods the emissions seem to be constant due to the application of periodical average emission factors. This does not reflect inter-annual variability in the time series, which would be assumed as the drivers for the carbon stock changes fluctuate between the years. Therefore additional data, which is available on annual basis, should be introduced into the calculations of the emissions inventories in order to get more plausible time series. This article explores the possibility of introducing an annual rather than periodical approach to calculating emission factors with the given data and thus smoothing the trajectory of time series for emissions from forest biomass. Two approaches are introduced to estimate annual changes derived from periodic data: the so-called logging factor method and the growth factor method. The logging factor method incorporates annual logging data to project annual values from periodic values. This is less complex to implement than the growth factor method, which additionally adds growth data into the calculations. Calculation of the input variables is based on sound statistical methodologies and periodically collected data that cannot be altered. Thus a discontinuous trajectory of the emissions over time remains, even after the adjustments. It is intended to adopt this approach in the German greenhouse gas reporting in order to meet the request for annually adjusted values.

  3. Biomass for energy in the European Union - a review of bioenergy resource assessments

    PubMed Central

    2012-01-01

    This paper reviews recent literature on bioenergy potentials in conjunction with available biomass conversion technologies. The geographical scope is the European Union, which has set a course for long term development of its energy supply from the current dependence on fossil resources to a dominance of renewable resources. A cornerstone in European energy policies and strategies is biomass and bioenergy. The annual demand for biomass for energy is estimated to increase from the current level of 5.7 EJ to 10.0 EJ in 2020. Assessments of bioenergy potentials vary substantially due to methodological inconsistency and assumptions applied by individual authors. Forest biomass, agricultural residues and energy crops constitute the three major sources of biomass for energy, with the latter probably developing into the most important source over the 21st century. Land use and the changes thereof is a key issue in sustainable bioenergy production as land availability is an ultimately limiting factor. PMID:22546368

  4. Alternative Renewable Biomass Tracking Program Document under the Renewable Fuel Standard Program

    EPA Pesticide Factsheets

    The approval letters that EPA approves a company's biomass tracking program meeting all the requirements outlined in 40 CFR part 80.1454, including elements determined necessary to achieve the level of quality assurance required under the regulation list.

  5. Process evaluation of the Regional Biomass Energy Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, C.R.; Brown, M.A.; Perlack, R.D.

    1994-03-01

    The U.S. Department of Energy (DOE) established the Regional Biomass Energy Program (RBEP) in 1983 to increase the production and use of biomass energy resources. Through the creation of five regional program (the Great Lakes, Northeast, Pacific Northwest, Southeast, and West), the RBEP focuses on regionally specific needs and opportunities. In 1992, Oak Ridge National (ORNL) conducted a process evaluation of the RBEP Program designed to document and explain the development of the goals and strategies of the five regional programs; describe the economic and market context surrounding commercialization of bioenergy systems; assess the criteria used to select projects; describemore » experiences with cost sharing; identify program accomplishments in the transfer of information and technology; and offer recommendations for program improvement.« less

  6. [Fine root biomass and production of four vegetation types in Loess Plateau, China].

    PubMed

    Deng, Qiang; Li, Ting; Yuan, Zhi-You; Jiao, Feng

    2014-11-01

    Fine roots (≤ 2 mm) play a major role in biogeochemical cycling in ecosystems. By the methods of soil cores and ingrowth soil cores, we studied the biomass and annual production of fine roots in 0-40 cm soil layers of four main vegetation types, i. e. , Robinia pseudoacacia plantation, deciduous shrubs, abandoned grassland, and Artemisia desertorum community in Loess Plateau, China. The spatial patterns of fine root biomass and production were negatively associated with latitudes. The fine root biomass in the 0-40 cm soil layer was in the order of deciduous shrubs (220 g · m(-2)), R. pseudoacacia plantation (163 g · m(-2)), abandoned grassland (162 g · m(-2)) and A. desertorum community (79 g · m(-2)). The proportion of ≤ 1 mm fine root biomass (74.1%) in the 0-40 cm soil layer of abandoned grassland was significantly higher than those in the other three vegetation types. The fine root biomass of the four vegetation types was mainly distributed in the 0-10 cm soil layer and decreased with soil depth. The proportion of fine root biomass (44.1%) in the 0-10 cm soil layer of abandoned grassland was significantly higher than those in other three vegetation types. The fine root productions of four vegetation types were in the order of abandoned grassland (315 g · m(-2) · a(-1)) > deciduous shrubs (249 g · m(-2) a(-1)) > R. pseudoacacia plantation (219 g · m(-2) · a(-1)) > A. desertorum community (115 g · m(-2) · a(-1)), and mainly concentrated in the 0-10 cm top soil layer and decreased with the soil depth. The proportion of the annual production (40.4%) in the 0-10 cm soil layer was the highest in abandoned grassland. Fine roots of abandoned grassland turned over faster than those from the other three vegetation types.

  7. SERI Biomass Program

    NASA Astrophysics Data System (ADS)

    Bergeron, P. W.; Corder, R. E.; Hill, A. M.; Lindsey, H.; Lowenstein, M. Z.

    1983-02-01

    The biomass with which this report is concerned includes aquatic plants, which can be converted into liquid fuels and chemicals; organic wastes (crop residues as well as animal and municipal wastes), from which biogas can be produced via anerobic digestion; and organic or inorganic waste streams, from which hydrogen can be produced by photobiological processes. The Biomass Program Office supports research in three areas which, although distinct, all use living organisms to create the desired products. The Aquatic Species Program (ASP) supports research on organisms that are themselves processed into the final products, while the Anaerobic Digestion (ADP) and Photo/Biological Hydrogen Program (P/BHP) deals with organisms that transform waste streams into energy products. The P/BHP is also investigating systems using water as a feedstock and cell-free systems which do not utilize living organisms. This report summarizes the progress and research accomplishments of the SERI Biomass Program during FY 1982.

  8. Differential changes in production measures for an estuarine-resident sparid in deep and shallow waters following increases in hypoxia

    NASA Astrophysics Data System (ADS)

    Cottingham, Alan; Hall, Norman G.; Hesp, S. Alex; Potter, Ian C.

    2018-03-01

    This study determined how productivity measures for a fish species in different water depths of an estuary changed in response to the increase in hypoxia in deep waters, which had previously been shown to occur between 1993-95 and 2007-11. Annual data on length and age compositions, body mass, growth, abundance, biomass, production and production to biomass ratio (P/B) were thus determined for the estuarine-resident Acanthopagrus butcheri in nearshore shallow (<2 m) and offshore deep waters (2-6 m) of the upper Swan River Estuary in those two periods. Length and age compositions imply that the increase in hypoxia was accompanied by the distribution of the majority of the older and larger A. butcheri changing from deep to shallow waters, where the small fish typically reside. Annual densities, biomass and production in shallow waters of <0.02 fish m-2, 2-4 g m-2 and ∼2 g m-2 y-1 in the earlier period were far lower than the 0.1-0.2 fish m-2, 8-15 g m-2 and 5-10 g m-2 y-1 in the later period, whereas the reverse trend occurred in deep waters, with values of 6-9 fish net-1, 2000-3900 g net-1, 900-1700 g net-1 y-1 in the earlier period vs < 1.5 fish net-1, ∼110 g net-1 and 27-45 g net-1 y-1 in the later period. Within the later period, and in contrast to the trends with annual abundance and biomass, the production in shallow waters was least during 2008/09, rather than greatest, reflecting the slow growth in that particularly cool year. The presence of substantial aggregations of both small and large fish in shallow waters accounts for the abundance, biomass and production in those waters increasing between those periods and thus, through a density-dependent effect, provide a basis for the overall reduction in growth. In marked contrast to the trends with the other three production measures, annual production to biomass ratios (P/B) in shallow waters in the two years in the earlier period, and in three of the four years of the later period, fell within the same range, i.e. 0.6-0.9 y-1, but was only 0.2 y-1 in 2008/09, reflecting the poor growth in that year. This emphasises the need to obtain data on P/B for a number of years when considering the implications of the typical P/B for a species in an estuary, in which environmental conditions and the growth of a species can fluctuate markedly between years.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, J.E.; Swift, D.M.; Hart, T.C.

    Landsat multi-spectral scanner (MSS) imagery was used to develop a vegetation type-biomass map of the 84,000 Km/sup 2/ Turkana District, Kenya. NOAA satellite advanced very high resolution radiometry (AVHRR) imagery was overlaid on the MSS map to trace the seasonal and annual dynamics of vegetation communities used by Turkana pastoral nomads, 1981-1984. Four regions (sub-sectional territories) were compared with respect to peak herbaceous biomass, woody canopy cover, and seasonal fluxes in total green biomass. Results demonstrated major variations among regions and between wet and dry season ranges within regions. Pastoral land use patterns appear to minimize effects of seasonal vegetationmore » fluxes on livestock herds.« less

  10. Michigan's forest resources in 2003

    Treesearch

    Earl C. Leatherberry; David Haugen; Gary J. Brand

    2005-01-01

    Reports the initial results of the first four annual panels (2000-2003) of the sixth forest inventory of Michigan. Includes information on forest area; volume; biomass; growth, removals, and mortality; and forest health.

  11. Climatic impact on community of filamentous macroalgae in the Neva estuary (eastern Baltic Sea).

    PubMed

    Gubelit, Yulia I

    2015-02-15

    In presented study the impact of climatic factors and North Atlantic Oscillation (NAO) on macroalgal community was analysed. Also the factors influencing algal community were defined with help of Principal Component and Classification analysis. It was found that climatic impact may depend on habitat features and that on different sites biomass of macroalgae correlated with different weather factors. Wind and surf may affect biomass of macroalgae adversely on some sites and at the same time on other sites they may accumulate biomass, transferring it is from adjacent areas. High direct correlation with temperature was found on sites which were protected from surf and had no stagnant events. Seasonal biomass inversely significantly correlated with average seasonal wind speed and annual NAO-index. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Relationships of Biomass with Environmental Factors in the Grassland Area of Hulunbuir, China

    PubMed Central

    Liu, Miao; Liu, Guohua; Gong, Li; Wang, Dongbo; Sun, Jian

    2014-01-01

    Many studies have focused on the relationship between vegetation biomass and environmental factors in grassland. However, several questions remain to be answered, especially with regards to the spatial pattern of vegetation biomass. Thus, the distributed mechanism will be explored in the present study. Here, plant biomass was measured at 23 sites along a transect survey during the peak growing season in 2006. The data were analyzed with a classification and regression tree (CART) model. The structural equation modeling (SEM) was conducted to explicitly evaluate the both direct and indirect effects of these critical environmental elements on vegetation biomass. The results demonstrated that mean annual temperature (MAT) affected aboveground biomass (AGB) scored at −0.811 (P<0.05). The direct effect of MAT on belowground biomass (BGB) was −0.490 (P<0.05). The results were determined by SEM. Our results indicate that AGB and BGB in semi-arid ecosystems is strongly affected by precipitation and temperature. Future work shall attempt to take into account the integrated effects of precipitation and temperature. Meanwhile, partitioning the influences of environmental variations and vegetation types are helpful in illuminating the internal mechanism of biomass distribution. PMID:25032808

  13. Relationships of biomass with environmental factors in the grassland area of Hulunbuir, China.

    PubMed

    Liu, Miao; Liu, Guohua; Gong, Li; Wang, Dongbo; Sun, Jian

    2014-01-01

    Many studies have focused on the relationship between vegetation biomass and environmental factors in grassland. However, several questions remain to be answered, especially with regards to the spatial pattern of vegetation biomass. Thus, the distributed mechanism will be explored in the present study. Here, plant biomass was measured at 23 sites along a transect survey during the peak growing season in 2006. The data were analyzed with a classification and regression tree (CART) model. The structural equation modeling (SEM) was conducted to explicitly evaluate the both direct and indirect effects of these critical environmental elements on vegetation biomass. The results demonstrated that mean annual temperature (MAT) affected aboveground biomass (AGB) scored at -0.811 (P<0.05). The direct effect of MAT on belowground biomass (BGB) was -0.490 (P<0.05). The results were determined by SEM. Our results indicate that AGB and BGB in semi-arid ecosystems is strongly affected by precipitation and temperature. Future work shall attempt to take into account the integrated effects of precipitation and temperature. Meanwhile, partitioning the influences of environmental variations and vegetation types are helpful in illuminating the internal mechanism of biomass distribution.

  14. Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada's boreal forests.

    PubMed

    Chen, Han Y H; Luo, Yong

    2015-10-01

    Biomass change of the world's forests is critical to the global carbon cycle. Despite storing nearly half of global forest carbon, the boreal biome of diverse forest types and ages is a poorly understood component of the carbon cycle. Using data from 871 permanent plots in the western boreal forest of Canada, we examined net annual aboveground biomass change (ΔAGB) of four major forest types between 1958 and 2011. We found that ΔAGB was higher for deciduous broadleaf (DEC) (1.44 Mg ha(-1)  year(-1) , 95% Bayesian confidence interval (CI), 1.22-1.68) and early-successional coniferous forests (ESC) (1.42, CI, 1.30-1.56) than mixed forests (MIX) (0.80, CI, 0.50-1.11) and late-successional coniferous (LSC) forests (0.62, CI, 0.39-0.88). ΔAGB declined with forest age as well as calendar year. After accounting for the effects of forest age, ΔAGB declined by 0.035, 0.021, 0.032 and 0.069 Mg ha(-1)  year(-1) per calendar year in DEC, ESC, MIX and LSC forests, respectively. The ΔAGB declines resulted from increased tree mortality and reduced growth in all forest types except DEC, in which a large biomass loss from mortality was accompanied with a small increase in growth. With every degree of annual temperature increase, ΔAGB decreased by 1.00, 0.20, 0.55 and 1.07 Mg ha(-1)  year(-1) in DEC, ESC, MIX and LSC forests, respectively. With every cm decrease of annual climatic moisture availability, ΔAGB decreased 0.030, 0.045 and 0.17 Mg ha(-1)  year(-1) in ESC, MIX and LSC forests, but changed little in DEC forests. Our results suggest that persistent warming and decreasing water availability have profound negative effects on forest biomass in the boreal forests of western Canada. Furthermore, our results indicate that forest responses to climate change are strongly dependent on forest composition with late-successional coniferous forests being most vulnerable to climate changes in terms of aboveground biomass. © 2015 John Wiley & Sons Ltd.

  15. North Dakota's forest resources in 2003

    Treesearch

    David Haugen; Gary Brand; Michael Kangas

    2005-01-01

    Reports the results of the first through third annual panels (2001-2003) of the fourth inventory of North Dakota. Includes information on forest area; volume; biomass; growth, removals, and mortality; and forest health.

  16. Long-term grazing effects on vegetation characteristics and soil properties in a semiarid grassland, northern China.

    PubMed

    Zhang, Jing; Zuo, Xiaoan; Zhou, Xin; Lv, Peng; Lian, Jie; Yue, Xiyuan

    2017-05-01

    Understanding the responses of vegetation characteristics and soil properties to grazing disturbance is useful for grassland ecosystem restoration and management in semiarid areas. Here, we examined the effects of long-term grazing on vegetation characteristics, soil properties, and their relationships across four grassland types (meadow, Stipa steppe, scattered tree grassland, and sandy grassland) in the Horqin grassland, northern China. Our results showed that grazing greatly decreased vegetation cover, aboveground plant biomass, and root biomass in all four grassland types. Plant cover and aboveground biomass of perennials were decreased by grazing in all four grasslands, whereas grazing increased the cover and biomass of shrubs in Stipa steppe and of annuals in scattered tree grassland. Grazing decreased soil carbon and nitrogen content in Stipa steppe and scattered tree grassland, whereas soil bulk density showed the opposite trend. Long-term grazing significantly decreased soil pH and electrical conductivity (EC) in annual-dominated sandy grassland. Soil moisture in fenced and grazed grasslands decreased in the following order of meadow, Stipa steppe, scattered tree grassland, and sandy grassland. Correlation analyses showed that aboveground plant biomass was significantly positively associated with the soil carbon and nitrogen content in grazed and fenced grasslands. Species richness was significantly positively correlated with soil bulk density, moisture, EC, and pH in fenced grasslands, but no relationship was detected in grazed grasslands. These results suggest that the soil carbon and nitrogen content significantly maintains ecosystem function in both fenced and grazed grasslands. However, grazing may eliminate the association of species richness with soil properties in semiarid grasslands.

  17. Carbon emissions from deforestation and forest fragmentation in the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Numata, Izaya; Cochrane, Mark A.; Souza, Carlos M., Jr.; Sales, Marcio H.

    2011-10-01

    Forest-fragmentation-related edge effects are one of the major causes of forest degradation in Amazonia and their spatio-temporal dynamics are highly influenced by annual deforestation patterns. Rapid biomass collapse due to edge effects in forest fragments has been reported in the Brazilian Amazon; however the collective impacts of this process on Amazonian carbon fluxes are poorly understood. We estimated biomass loss and carbon emissions from deforestation and forest fragmentation related to edge effects on the basis of the INPE (Brazilian National Space Research Institute) PRODES deforestation data and forest biomass volume data. The areas and ages of edge forests were calculated annually and the corresponding biomass loss and carbon emissions from these forest edges were estimated using published rates of biomass decay and decomposition corresponding to the areas and ages of edge forests. Our analysis estimated carbon fluxes from deforestation (4195 Tg C) and edge forest (126-221 Tg C) for 2001-10 in the Brazilian Amazon. The impacts of varying rates of deforestation on regional forest fragmentation and carbon fluxes were also investigated, with the focus on two periods: 2001-5 (high deforestation rates) and 2006-10 (low deforestation rates). Edge-released carbon accounted for 2.6-4.5% of deforestation-related carbon emissions. However, the relative importance of carbon emissions from forest fragmentation increased from 1.7-3.0% to 3.3-5.6% of the respective deforestation emissions between the two contrasting deforestation rates. Edge-related carbon fluxes are of increasing importance for basin-wide carbon accounting, especially as regards ongoing reducing emissions from deforestation and forest degradation (REDD) efforts in Brazilian Amazonia.

  18. Fossil and Nonfossil Sources of Organic and Elemental Carbon Aerosols in the Outflow from Northeast China.

    PubMed

    Zhang, Yan-Lin; Kawamura, Kimitaka; Agrios, Konstantinos; Lee, Meehye; Salazar, Gary; Szidat, Sönke

    2016-06-21

    Source quantification of carbonaceous aerosols in the Chinese outflow regions still remains uncertain despite their high mass concentrations. Here, we unambiguously quantified fossil and nonfossil contributions to elemental carbon (EC) and organic carbon (OC) of total suspended particles (TSP) from a regional receptor site in the outflow of Northeast China using radiocarbon measurement. OC and EC concentrations were lower in summer, representing mainly marine air, than in other seasons, when air masses mostly traveled over continental regions in Mongolia and northeast China. The annual-mean contribution from fossil-fuel combustion to EC was 76 ± 11% (0.1-1.3 μg m(-3)). The remaining 24 ± 11% (0.03-0.42 μg m(-3)) was attributed to biomass burning, with slightly higher contribution in the cold period (∼31%) compared to the warm period (∼21%) because of enhanced emissions from regional biomass combustion sources in China. OC was generally dominated by nonfossil sources, with an annual average of 66 ± 11% (0.5-2.8 μg m(-3)), approximately half of which was apportioned to primary biomass-burning sources (34 ± 6%). In winter, OC almost equally originated from primary OC (POC) emissions and secondary OC (SOC) formation from fossil fuel and biomass-burning sources. In contrast, summertime OC was dominated by primary biogenic emissions as well as secondary production from biogenic and biomass-burning sources, but fossil-derived SOC was the smallest contributor. Distinction of POC and SOC was performed using primary POC-to-EC emission ratios separated for fossil and nonfossil emissions.

  19. Overview of feedstock research in the United States, Canada, and Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrell, J.; Tardif, M.L.; Couto, L.

    1993-12-31

    This is an overview of the current biomass feedstock efforts in Brazil, Canada, and the United States. The report from Brazil provides an historical perspective of incentive programs, the charcoal and fuelwood energy programs, the alcohol program, and other biomass energy efforts. The efforts in Brazil, particularly with the sugar cane to ethanol and the charcoal and fuelwood programs, dwarfs other commercial biomass systems in the Americas. One of the bright spots in the future is the Biomass Integrated Gasification/Gas Turbine Electricity Project initially funded in 1992. The sugar cane-based ethanol industry continues to develop higher yielding cane varieties andmore » more efficient microorganisms to convert the sugar cane carbohydrates into alcohol. In Canada a number of important institutions and enterprises taking part in the economical development of the country are involved in biomass research and development including various aspects of the biomass such as forestry, agricultural, industrial, urban, food processing, fisheries and peat bogs. Biomass feedstock research in the United States is evolving to reflect Department of Energy priorities. Greater emphasis is placed on leveraging research with the private sector contributing a greater share of funds, for both research and demonstration projects. The feedstock program, managed by ORNL, is focused on limited model species centered at a regional level using a multidisciplinary approach. Activities include a stronger emphasis on emerging environmental issues such as biodiversity, sustainability and habitat management. DOE also is a supporter of the National Biofuels Roundtable, which is developing principles for producing biomass energy in an economically viable and ecologically sound manner. Geographical Information Systems are also being developed as tools to quantify and characterize the potential supply of energy crops in various regions.« less

  20. Research Extension and Education Programs on Bio-based Energy Technologies and Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Sam; Harper, David; Womac, Al

    2010-03-02

    The overall objectives of this project were to provide enhanced educational resources for the general public, educational and development opportunities for University faculty in the Southeast region, and enhance research knowledge concerning biomass preprocessing and deconstruction. All of these efforts combine to create a research and education program that enhances the biomass-based industries of the United States. This work was broken into five primary objective areas: • Task A - Technical research in the area of biomass preprocessing, analysis, and evaluation. • Tasks B&C - Technical research in the areas of Fluidized Beds for the Chemical Modification of Lignocellulosic Biomassmore » and Biomass Deconstruction and Evaluation. • Task D - Analyses for the non-scientific community to provides a comprehensive analysis of the current state of biomass supply, demand, technologies, markets and policies; identify a set of feasible alternative paths for biomass industry development and quantify the impacts associated with alternative path. • Task E - Efforts to build research capacity and develop partnerships through faculty fellowships with DOE national labs The research and education programs conducted through this grant have led to three primary results. They include: • A better knowledge base related to and understanding of biomass deconstruction, through both mechanical size reduction and chemical processing • A better source of information related to biomass, bioenergy, and bioproducts for researchers and general public users through the BioWeb system. • Stronger research ties between land-grant universities and DOE National Labs through the faculty fellowship program. In addition to the scientific knowledge and resources developed, funding through this program produced a minimum of eleven (11) scientific publications and contributed to the research behind at least one patent.« less

  1. Preface and brief synthesis for the FOODBANCS volume

    NASA Astrophysics Data System (ADS)

    Smith, Craig R.; DeMaster, David J.

    2008-11-01

    In this volume we present results from the FOODBANCS Project, which examined the fate and benthic community impact of summer bloom material on the West Antarctic Peninsula shelf floor. The project involved a 5-cruise, 15-month time-series program in which sediment-trap moorings, core sampling, radiochemical profiling, sediment respirometry, bottom photography, and bottom trawling were used to evaluate: (1) seafloor deposition and lability of POC, (2) patterns of labile POC consumption and sediment mixing by benthos, and (3) seasonal and inter-annual variations in biotic abundance, biomass, reproductive condition, recruitment, and sediment community respiration. We find that the seafloor flux and accumulation of particulate organic carbon on the West Antarctic Peninsula shelf exhibit intense seasonal and interannual variability. Nonetheless, many key benthic processes, including organic-matter degradation, bioturbation, deposit feeding, and faunal abundance, reproduction and recruitment, show relatively muted response to this intense seasonal and inter-annual variability in export flux. We thus hypothesize that benthic ecosystems on the Antarctic shelf act as "low-pass" filters, and may be extremely useful in resolving the impacts of climatic change over periods of years to decades in Antarctic Peninsula region.

  2. Effects of Climate on the Zooplankton of the California Current

    NASA Astrophysics Data System (ADS)

    Lavaniegos, B. E.

    2007-05-01

    Almost six decades of sampling of the California Current system, carried out by the CalCOFI program (California Cooperative Fisheries Investigation) complemented by a decade of observations from the IMECOCAL program (Investigaciones Mexicanas de la Corriente de California), have revealed changing patterns in zooplankton abundances, species composition, and distributions over interannual through multidecadal time scales. Interannual changes associated with ENSO variability are manifested as strong but transitory perturbations in the mean annual cycle in seasonal abundances (and distributions) of particular species. An investigation of longer- term change, limited to the region off southern California, shows a persistent decline in zooplankton volumes (a proxy for overall biomass of macrozooplankton) between 1977 and 1998 that is considered to be a response to the well documented shift in basin-scale climate forcing that occurred in 1976-77. Further examination of this decline in zooplankton volumes indicates that it was due principally to the disappearance of several salp species after 1977. Other species and functional groups did not decline after the change in climate regime, while some species have followed persistent secular trends that appear to be associated more with the phenomenon of long-term global warming. Differences in the regional responses to climate change throughout the California Current system have also been observed recently in the spatial distribution of zooplankton biomass and changes in latitudinal ranges of certain species. For example, zooplankton biomass in the Baja California region show typical values for the 1997-98 El Niño that were followed by a decrease during the sharp transition to the cool La Niña conditions in 1999. This contrasts with the nearby region off southern California that was characterized by reduced biomass during the El Niño period and the subsequent recovery during the La Niña. Another regional contrast in zooplankton distribution observed recently was the significant presence of subarctic euphausiid species off Baja California during July 2005, while the krill collapsed in the region off Oregon in the same period. It is reasonable to suspect that regional contrasts in the zooplankton abundance and species distributions may increase as a response to latitudinal shifts in habitat character due to global warming.

  3. Rand Project Air Force Annual Report 2011

    DTIC Science & Technology

    2011-01-01

    types of biomass ) or from nonpetroleum fossil fuels (such as coal or natural gas). The Air Force has played a leading role in DoD efforts to evaluate...coal gasification and centers on the Fischer-Tropsch fuel production method. The Fischer-Tropsch method has been recently updated through the...configured to accept a combination of coal and biomass and to capture and sequester nearly all the CO2 generated at the plant site. Thus, within a few

  4. An annual cycle of phytoplankton biomass in the Arabian Sea, 1994 1995, as determined by moored optical sensors

    NASA Astrophysics Data System (ADS)

    Kinkade, C. S.; Marra, J.; Dickey, T. D.; Weller, R.

    A surface-to-bottom mooring in the central Arabian Sea (15.5°N, 61.5°E) deployed from October 1994 to October 1995, included fluorometers, PAR irradiance sensors, Lu 683 sensors, and a spectral radiometer. An annual cycle of phytoplankton biomass was determined by transforming signals from the optical sensors into chlorophyll a (chl a). Half-yearly phytoplankton blooms with water-column stratification were observed near the end of each monsoon, as well as biomass increases in response to mesoscale flow features. During the Northeast Monsoon, the integrate water-column chl a rose from 15 to 25 mg m -2, while during the Southwest Monsoon, chl a increased from 15 to a maximum >40 mg m -2. We present an empirical relationship between the ratio of downwelling Ed443/ Ed550 (blue to green wavelength ratio) and integral euphotic zone chl a determined by moored fluorometers ( r2=0.73). There is a more significant relationship between Ed443/ Ed550 measured at one depth in the water column (65 m) and the average vertical attenuation coefficient for PAR (K PAR) between 0 and 65 m ( r2=0.845). Because biofouling was a significant problem at times, data return from any one sensor was incomplete. However, optical sensor/data intercomparison helped fill gaps while permitting investigation of the temporal variability in observed phytoplankton biomass.

  5. Weed suppression greatly increased by plant diversity in intensively managed grasslands: A continental-scale experiment.

    PubMed

    Connolly, John; Sebastià, Maria-Teresa; Kirwan, Laura; Finn, John Anthony; Llurba, Rosa; Suter, Matthias; Collins, Rosemary P; Porqueddu, Claudio; Helgadóttir, Áslaug; Baadshaug, Ole H; Bélanger, Gilles; Black, Alistair; Brophy, Caroline; Čop, Jure; Dalmannsdóttir, Sigridur; Delgado, Ignacio; Elgersma, Anjo; Fothergill, Michael; Frankow-Lindberg, Bodil E; Ghesquiere, An; Golinski, Piotr; Grieu, Philippe; Gustavsson, Anne-Maj; Höglind, Mats; Huguenin-Elie, Olivier; Jørgensen, Marit; Kadziuliene, Zydre; Lunnan, Tor; Nykanen-Kurki, Paivi; Ribas, Angela; Taube, Friedhelm; Thumm, Ulrich; De Vliegher, Alex; Lüscher, Andreas

    2018-03-01

    Grassland diversity can support sustainable intensification of grassland production through increased yields, reduced inputs and limited weed invasion. We report the effects of diversity on weed suppression from 3 years of a 31-site continental-scale field experiment.At each site, 15 grassland communities comprising four monocultures and 11 four-species mixtures based on a wide range of species' proportions were sown at two densities and managed by cutting. Forage species were selected according to two crossed functional traits, "method of nitrogen acquisition" and "pattern of temporal development".Across sites, years and sown densities, annual weed biomass in mixtures and monocultures was 0.5 and 2.0 t  DM ha -1 (7% and 33% of total biomass respectively). Over 95% of mixtures had weed biomass lower than the average of monocultures, and in two-thirds of cases, lower than in the most suppressive monoculture (transgressive suppression). Suppression was significantly transgressive for 58% of site-years. Transgressive suppression by mixtures was maintained across years, independent of site productivity.Based on models, average weed biomass in mixture over the whole experiment was 52% less (95% confidence interval: 30%-75%) than in the most suppressive monoculture. Transgressive suppression of weed biomass was significant at each year across all mixtures and for each mixture.Weed biomass was consistently low across all mixtures and years and was in some cases significantly but not largely different from that in the equiproportional mixture. The average variability (standard deviation) of annual weed biomass within a site was much lower for mixtures (0.42) than for monocultures (1.77). Synthesis and applications . Weed invasion can be diminished through a combination of forage species selected for complementarity and persistence traits in systems designed to reduce reliance on fertiliser nitrogen. In this study, effects of diversity on weed suppression were consistently strong across mixtures varying widely in species' proportions and over time. The level of weed biomass did not vary greatly across mixtures varying widely in proportions of sown species. These diversity benefits in intensively managed grasslands are relevant for the sustainable intensification of agriculture and, importantly, are achievable through practical farm-scale actions.

  6. A New Synthetic Global Biomass Carbon Map for the year 2010

    NASA Astrophysics Data System (ADS)

    Spawn, S.; Lark, T.; Gibbs, H.

    2017-12-01

    Satellite technologies have facilitated a recent boom in high resolution, large-scale biomass estimation and mapping. These data are the input into a wide range of global models and are becoming the gold standard for required national carbon (C) emissions reporting. Yet their geographical and/or thematic scope may exclude some or all parts of a given country or region. Most datasets tend to focus exclusively on forest biomass. Grasslands and shrublands generally store less C than forests but cover nearly twice as much global land area and may represent a significant portion of a given country's biomass C stock. To address these shortcomings, we set out to create synthetic, global above- and below-ground biomass maps that combine recently-released satellite based data of standing forest biomass with novel estimates for non-forest biomass stocks that are typically neglected. For forests we integrated existing publicly available regional, global and biome-specific biomass maps and modeled below ground biomass using empirical relationships described in the literature. For grasslands, we developed models for both above- and below-ground biomass based on NPP, mean annual temperature and precipitation to extrapolate field measurements across the globe. Shrubland biomass was extrapolated from existing regional biomass maps using environmental factors to generate the first global estimate of shrub biomass. Our new synthetic map of global biomass carbon circa 2010 represents an update to the IPCC Tier-1 Global Biomass Carbon Map for the Year 2000 (Ruesch and Gibbs, 2008) using the best data currently available. In the absence of a single seamless remotely sensed map of global biomass, our synthetic map provides the only globally-consistent source of comprehensive biomass C data and is valuable for land change analyses, carbon accounting, and emissions modeling.

  7. Biomass and productivity of three phytoplankton size classes in San Francisco Bay.

    USGS Publications Warehouse

    Cole, B.E.; Cloern, J.E.; Alpine, A.E.

    1986-01-01

    The 5-22 mu m size accounted for 40-50% of annual production in each embayment, but production by phytoplanton >22 mu m ranged from 26% in the S reach to 54% of total phytoplankton production in the landward embayment of the N reach. A productivity index is derived that predicts daily productivity for each size class as a function of ambient irradiance and integrated chlorophyll a in the photic zone. For the whole phytoplankton community and for each size class, this index was constant at approx= 0.76 g C m-2 (g chlorophyll a Einstein)-1. The annual means of maximum carbon assimilation numbers were usually similar for the three size classes. Spatial and temporal variations in size-fractionated productivity are primarily due to differences in biomass rather than size-dependent carbon assimilation rates. -from Authors

  8. Intraguild Predation Dynamics in a Lake Ecosystem Based on a Coupled Hydrodynamic-Ecological Model: The Example of Lake Kinneret (Israel)

    PubMed Central

    Makler-Pick, Vardit; Hipsey, Matthew R.; Zohary, Tamar; Carmel, Yohay; Gal, Gideon

    2017-01-01

    The food web of Lake Kinneret contains intraguild predation (IGP). Predatory invertebrates and planktivorous fish both feed on herbivorous zooplankton, while the planktivorous fish also feed on the predatory invertebrates. In this study, a complex mechanistic hydrodynamic-ecological model, coupled to a bioenergetics-based fish population model (DYCD-FISH), was employed with the aim of revealing IGP dynamics. The results indicate that the predation pressure of predatory zooplankton on herbivorous zooplankton varies widely, depending on the season. At the time of its annual peak, it is 10–20 times higher than the fish predation pressure. When the number of fish was significantly higher, as occurs in the lake after atypical meteorological years, the effect was a shift from a bottom-up controlled ecosystem, to the top-down control of planktivorous fish and a significant reduction of predatory and herbivorous zooplankton biomass. Yet, seasonally, the decrease in predatory-zooplankton biomass was followed by a decrease in their predation pressure on herbivorous zooplankton, leading to an increase of herbivorous zooplankton biomass to an extent similar to the base level. The analysis demonstrates the emergence of non-equilibrium IGP dynamics due to intra-annual and inter-annual changes in the physico-chemical characteristics of the lake, and suggests that IGP dynamics should be considered in food web models in order to more accurately capture mass transfer and trophic interactions. PMID:28353646

  9. Current ozone levels threaten gross primary production and yield of Mediterranean annual pastures and nitrogen modulates the response

    NASA Astrophysics Data System (ADS)

    Calvete-Sogo, Héctor; Elvira, Susana; Sanz, Javier; González-Fernández, Ignacio; García-Gómez, Héctor; Sánchez-Martín, Laura; Alonso, Rocío; Bermejo-Bermejo, Victoria

    2014-10-01

    Pastures are among the most important ecosystems in Europe considering their biodiversity and distribution area. However, their response to increasing tropospheric ozone (O3) and nitrogen (N) deposition, two of the main drivers of global change, is still uncertain. A new Open-Top Chamber (OTC) experiment was performed in central Spain, aiming to study annual pasture response to O3 and N in close to natural growing conditions. A mixture of six species of three representative families was sowed in the field. Plants were exposed for 40 days to four O3 treatments: filtered air, non-filtered air (NFA) reproducing ambient levels and NFA supplemented with 20 and 40 nl l-1 O3. Three N treatments were considered to reach the N integrated doses of “background”, +20 or +40 kg N ha-1. Ozone significantly reduced green and total aboveground biomass (maximum reduction 25%) and increased the senescent biomass (maximum increase 40%). Accordingly, O3 decreased community Gross Primary Production due to both a global reduction of ecosystem CO2 exchange and an increase of ecosystem respiration. Nitrogen could partially counterbalance O3 effects on aboveground biomass when the levels of O3 were moderate, but at the same time O3 exposure reduced the fertilization effect of higher N availability. Therefore, O3 must be considered as a stress factor for annual pastures in the Mediterranean areas.

  10. Uncertainty assessment of source attribution of PM(2.5) and its water-soluble organic carbon content using different biomass burning tracers in positive matrix factorization analysis--a case study in Beijing, China.

    PubMed

    Tao, Jun; Zhang, Leiming; Zhang, Renjian; Wu, Yunfei; Zhang, Zhisheng; Zhang, Xiaoling; Tang, Yixi; Cao, Junji; Zhang, Yuanhang

    2016-02-01

    Daily PM2.5 samples were collected at an urban site in Beijing during four one-month periods in 2009-2010, with each period in a different season. Samples were subject to chemical analysis for various chemical components including major water-soluble ions, organic carbon (OC) and water-soluble organic carbon (WSOC), element carbon (EC), trace elements, anhydrosugar levoglucosan (LG), and mannosan (MN). Three sets of source profiles of PM2.5 were first identified through positive matrix factorization (PMF) analysis using single or combined biomass tracers - non-sea salt potassium (nss-K(+)), LG, and a combination of nss-K(+) and LG. The six major source factors of PM2.5 included secondary inorganic aerosol, industrial pollution, soil dust, biomass burning, traffic emission, and coal burning, which were estimated to contribute 31±37%, 39±28%, 14±14%, 7±7%, 5±6%, and 4±8%, respectively, to PM2.5 mass if using the nss-K(+) source profiles, 22±19%, 29±17%, 20±20%, 13±13%, 12±10%, and 4±6%, respectively, if using the LG source profiles, and 21±17%, 31±18%, 19±19%, 11±12%, 14±11%, and 4±6%, respectively, if using the combined nss-K(+) and LG source profiles. The uncertainties in the estimation of biomass burning contributions to WSOC due to the different choices of biomass burning tracers were around 3% annually and up to 24% seasonally in terms of absolute percentage contributions, or on a factor of 1.7 annually and up to a factor of 3.3 seasonally in terms of the actual concentrations. The uncertainty from the major source (e.g. industrial pollution) was on a factor of 1.9 annually and up to a factor of 2.5 seasonally in the estimated WSOC concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Environmental Sciences Division annual progress report for period ending September 30, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-04-01

    The Environmental Sciences Division (ESD) of Oak Ridge National Laboratory (ORNL) conducts research on the environmental aspects of existing and emerging energy systems and applies this information to ensure that technology development and energy use are consistent with national environmental health and safety goals. Offering an interdisciplinary resource of staff and facilities to address complex environmental problems, the division is currently providing technical leadership for major environmental issues of national concern: (1) acidic deposition and related environmental effects, (2) effects of increasing concentrations of atmospheric CO{sub 2} and the resulting climatic changes to ecosystems and natural and physical resources, (3)more » hazardous chemical and radioactive waste disposal and remediation research and development, and (4) development of commercial biomass energy production systems. This progress report outlines ESD's accomplishments in these and other areas in FY 1990. Individual reports are processed separately for the data bases in the following areas: ecosystem studies; environmental analyses; environmental toxicology; geosciences; technical and administrative support; biofuels feedstock development program; carbon dioxide information analysis and research program; and environmental waste program.« less

  12. High-resolution (30 m), annual (1986 - 2010) carbon stocks and fluxes for southeastern US forests derived from remote sensing, inventory data, and a carbon cycle model

    NASA Astrophysics Data System (ADS)

    Gu, H.; Zhou, Y.; Williams, C. A.

    2016-12-01

    Disturbance events are highly heterogeneous in space and time, impacting forest carbon dynamics and challenging the quantification and reporting of carbon stocks and flux. This study documents annual carbon stocks and fluxes from 1986 and 2010 mapped at 30-m resolution across southeastern US forests, characterizing how they respond to disturbances and ensuing regrowth. Forest inventory data (FIA) are used to parameterize a carbon cycle model (CASA) to represent post-disturbance carbon trajectories of carbon pools and fluxes for harvest, fire and bark beetle disturbances of varying severity and across forest types and site productivity settings. Time since disturbance at 30 meters is inferred from two remote-sensing data sources: disturbance year (NAFD, MTBS and ADS) and biomass (NBCD 2000) intersected with inventory-derived curves of biomass accumulation with stand age. All of these elements are combined to map carbon stocks and fluxes at a 30-m resolution for the year 2010, and to march backward in time for continuous, annual reporting. Results include maps of annual carbon stocks and fluxes for forests of the southeastern US, and analysis of spatio-temporal patterns of carbon sources/sinks at local and regional scales.

  13. Biomass to Liquid Fuels and Electrical Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Steven; McDonald, Timothy; Gallagher, Thomas

    This research program provided data on immediate applicability of forest biomass production and logistics models. Also, the research further developed and optimized fractionation techniques that can be used to separate biomass feedstocks into their basic chemical constituents. Finally, additional research established systematic techniques to determine economically feasible technologies for production of biomass-derived synthesis gases that will be used for clean, renewable power generation and for production of liquid transportation fuels. Moreover, this research program continued our efforts to educate the next generation of engineers and scientists needed to implement these technologies.

  14. Biomass Logistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Richard Hess; Kevin L. Kenney; William A. Smith

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements inmore » quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.« less

  15. The Impacts of the Woody Biomass Utilization Grant Program in Eastern Oregon and Eastern Arizona

    Treesearch

    Emily Jane Davis; Yeon-Su Kim; Cassandra Moseley; Max Niel Sen-Pincus; Ted Bilek

    2014-01-01

    From 2005–10, the USDA Forest Service’s Woody Biomass Utilization Grant program provided grants for equipment acquisition and technical assistance to rural businesses and other entities. These grants were intended to encourage enterprise development, address market barriers to biomass utilization (ranging from small-diameter sawtimber to chips and logging residues),...

  16. 40 CFR 256.05 - Annual work program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Annual work program. 256.05 Section..., Definitions § 256.05 Annual work program. (a) The annual work program submitted for financial assistance under... Administrator and the State shall agree on the contents of the annual work program. The Administrator will...

  17. 40 CFR 256.05 - Annual work program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Annual work program. 256.05 Section..., Definitions § 256.05 Annual work program. (a) The annual work program submitted for financial assistance under... Administrator and the State shall agree on the contents of the annual work program. The Administrator will...

  18. Timber harvest as the predominant disturbance regime in northeastern U.S. forests: Effects of harvest intensification

    USGS Publications Warehouse

    Brown, Michelle L.; Canham, Charles D.; Murphy, Lora; Donovan, Therese M.

    2018-01-01

    Harvesting is the leading cause of adult tree mortality in forests of the northeastern United States. While current rates of timber harvest are generally sustainable, there is considerable pressure to increase the contribution of forest biomass to meet renewable energy goals. We estimated current harvest regimes for different forest types and regions across the U.S. states of New York, Vermont, New Hampshire, and Maine using data from the U.S. Forest Inventory and Analysis Program. We implemented the harvest regimes in SORTIE‐ND, an individual‐based model of forest dynamics, and simulated the effects of current harvest regimes and five additional harvest scenarios that varied by harvest frequency and intensity over 150 yr. The best statistical model for the harvest regime described the annual probability of harvest as a function of forest type/region, total plot basal area, and distance to the nearest improved road. Forests were predicted to increase in adult aboveground biomass in all harvest scenarios in all forest type and region combinations. The magnitude of the increase, however, varied dramatically—increasing from 3% to 120% above current landscape averages as harvest frequency and intensity decreased. The variation can be largely explained by the disproportionately high harvest rates estimated for Maine as compared with the rest of the region. Despite steady biomass accumulation across the landscape, stands that exhibited old‐growth characteristics (defined as ≥300 metric tons of biomass/hectare) were rare (8% or less of stands). Intensified harvest regimes had little effect on species composition due to widespread partial harvesting in all scenarios, resulting in dominance by late‐successional species over time. Our analyses indicate that forest biomass can represent a sustainable, if small, component of renewable energy portfolios in the region, although there are tradeoffs between carbon sequestration in forest biomass and sustainable feedstock supply. Integrating harvest regimes into a disturbance theory framework is critical to understanding the dynamics of forested landscapes, especially given the predominance of logging as a disturbance agent and the increasing pressure to meet renewable energy needs.

  19. Analyzing spatial and temporal trends in Aboveground Biomass within the Acadian New England Forests using the complete Landsat Archive

    NASA Astrophysics Data System (ADS)

    Kilbride, J. B.; Fraver, S.; Ayrey, E.; Weiskittel, A.; Braaten, J.; Hughes, J. M.; Hayes, D. J.

    2017-12-01

    Forests within the New England states and Canadian Maritime provinces, here described as the Acadian New England (ANE) forests, have undergone substantial disturbances due to insect, fire, and anthropogenic factors. Through repeated satellite observations captures by USGS's Landsat program, 45 years of disturbance information can be incorporated into modeling efforts to better understand the spatial and temporal trends in forest above ground biomass (AGB). Using Google's Earth Engine, annual mosaics were developed for the ANE study area and then disturbance and recovery metrics were developed using the temporal segmentation algorithm VeRDET. Normalization procedures were developed to incorporate the Landsat Multispectral Scanner (MSS, 1972 - 1985) data alongside the modern era of Landsat Thematic Mapper (TM, 1984-2013), Enhanced Thematic Mapper plus (ETM+, 1999 - present), and Operational Land Imager (OLI, 2013- present) data products. This has enabled the creation of a dataset with an unprecedented spatial and temporal view of forest landscape change. Model training was performed using was the Forest Inventory Analysis (FIA) and New Brunswick Permanent Sample Plot data datasets. Modeling was performed using parametric techniques such as mixed effects models and non-parametric techniques such as k-NN imputation and generalized boosted regression. We compare the biomass estimate and model accuracy to other inventory and modeling studies produced within this study area. The spatial and temporal patterns of stock changes are analyzed against resource policy, land ownership changes, and forest management.

  20. 7 CFR 1450.101 - Qualified biomass conversion facility.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Qualified biomass conversion facility. 1450.101... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching Payments § 1450.101 Qualified biomass conversion facility. (a) To be considered a...

  1. 7 CFR 1450.101 - Qualified biomass conversion facility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Qualified biomass conversion facility. 1450.101... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching Payments § 1450.101 Qualified biomass conversion facility. (a) To be considered a...

  2. 7 CFR 1450.101 - Qualified biomass conversion facility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Qualified biomass conversion facility. 1450.101... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching Payments § 1450.101 Qualified biomass conversion facility. (a) To be considered a...

  3. Assessment Planning and Evaluation of Renewable Energy Resources: an Interactive Computer Assisted Procedure. [hydroelectricity, biomass, and windpower in the Pittsfield metropolitan region, Massachusetts

    NASA Technical Reports Server (NTRS)

    Aston, T. W.; Fabos, J. G.; Macdougall, E. B.

    1982-01-01

    Adaptation and derivation were used to develop a procedure for assessing the availability of renewable energy resources on the landscape while simultaneously accounting for the economic, legal, social, and environmental issues required. Done in a step-by-step fashion, the procedure can be used interactively at the computer terminals. Its application in determining the hydroelectricity, biomass, and windpower in a 40,000 acre study area of Western Massachusetts shows that: (1) three existing dam sites are physically capable of being retrofitted for hydropower; (2) each of three general areas has a mean annual windspeed exceeding 14 mph and is conductive to windpower; and (3) 20% of the total land area consists of prime agricultural biomass while 30% of the area is prime forest biomass land.

  4. Lake Roosevelt Fisheries Evaluation Program; Limnological and Fisheries Monitoring, Annual Report 2000.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Chuck; Scofield, Ben; Pavlik, Deanne

    2003-03-01

    A slightly dryer than normal year yielded flows in Lake Roosevelt that were essentially equal to the past ten year average. Annual mean inflow and outflow were 3,160.3 m3/s and 3,063.4 m3/s respectively. Mean reservoir elevation was 387.2 m above sea level at the Grand Coulee Dam forebay. The forebay elevation was below the mean elevation for a total of 168 days. During the first half of the 2000 forebay elevation changed at a rate of 0.121 m/d and during the last half changed at a rate of 0.208 m/d. The higher rate of elevation change earlier in the yearmore » is due to the drawdown to accommodate spring runoff. Mean annual water retention time was 40 days. Annual mean total dissolved gas was 108%. Total dissolved gas was greatest at upriver locations (110% = US/Canada Border annual mean) and decreased moving toward Grand Coulee Dam (106% = Grand Coulee Dam Forebay annual mean). Total dissolved gas was greatest in May (122% reservoir wide monthly mean). Gas bubble trauma was observed in 16 fish primarily largescale suckers and was low in severity. Reservoir wide mean temperatures were greatest in August (19.5 C) and lowest in January (5.5 C). The Spokane River and Sanpoil River Arms experienced higher temperatures than the mainstem reservoir. Brief stratification was observed at the Sanpoil River shore location in July. Warm water temperatures in the Spokane Arm contributed to low dissolved oxygen concentrations in August (2.6 mg/L at 33 m). However, decomposition of summer algal biomass was likely the main cause of depressed dissolved oxygen concentrations. Otherwise, dissolved oxygen profiles were relatively uniform throughout the water column across other sampling locations. Annual mean Secchi depth throughout the reservoir was 5.7 m. Nutrient concentrations were generally low, however, annual mean total phosphorus (0.016 mg/L) was in the mesotrophic range. Annual mean total nitrogen was in the meso-oligotrophic range. Total nitrogen to total phosphorus ratios were large (31:1 annual mean) likely indicating phosphorus limitations to phytoplankton.« less

  5. Effects of planting density and genotype on canopy size, canopy structure, and growth of 25-year-old loblolly pine stands in southeastern Oklahoma

    Treesearch

    Thomas C. Hennessey; Rodney E. Will; Thomas B. Lynch; Robert Heinemann; Randal Holeman; Dennis Wilson; Keith Anderson; Gregory Campbell

    2013-01-01

    Leaf biomass and its display within the canopy are important driving variables of stand growth because they reflect a tree or stand’s capacity to intercept radiation, reduce carbon dioxide, and transpire water. We determined the effects of planting density (4- by 4-, 6- by 6-, 8- by 8-, and 10- by 10-foot spacing) on annual needle fall biomass, intercepted radiation,...

  6. Constraining the Carbon Cycle through Tree Rings: A Case Study of the Valles Caldera, NM

    NASA Astrophysics Data System (ADS)

    Alexander, M. R.; Babst, F.; Moore, D. J.; Trouet, V.

    2013-12-01

    Terrestrial ecosystems take up approximately 120 Gt of carbon as Gross Primary Productivity (GPP) from the atmosphere annually, but it is challenging to track the allocation of that carbon throughout the biosphere. Here, we combine eddy covariance measurements of net carbon uptake with above ground biomass increments derived from tree-ring data to better understand the interannual variability associated with biomass accumulation. In the summer of 2012, we collected tree cores near two eddy covariance towers in the Jemez Mountains of northern New Mexico. One tower was located in an upper elevation mixed-conifer forest, and the other in a lower elevation Pinus ponderosa forest. Our analysis shows that the annual above ground biomass increment accounted for approximately 40% of the GPP at the lower elevation Pinus ponderosa site and approximately 70% of GPP at the upper elevation mixed-conifer site. We have also used the above ground biomass increment to constrain the Simple Photosynthesis EvapoTranspiration (SiPNET) model to gain a better understanding of allocation within the forest. Tree growth at both elevations was negatively influenced by spring (March-June) temperature and positively by cool season (October-April) precipitation and warm (May-September) and cool season PDSI. We also analyzed the six most extreme temperature and moisture (PDSI) years of the record to determine the response of productivity to climatic forcing. During the driest years, biomass production was reduced by 40% at the upper elevation site and 43% at the lower elevation site. During the hottest years of the record the biomass decreased 28% at the upper site and 45% at the lower site. Our results indicate that tree rings can be used to effectively constrain the above ground biomass component of a forest's carbon budget and to estimate allocation of carbon to woody biomass as a function of climate. However, many variables remain unknown. The combined results of the extreme year analyses and the derived biomass increments illustrate that the forests at the Valles Caldera are considerably less productive during years of extreme drought and warmer than average temperatures. With future projections calling for consecutive years of extreme conditions in the American Southwest, this could have a substantial effect on the overall productivity of these forests.

  7. Genotypic Diversity for Biomass Accumulation and Shoot-Root Allometry in the Grass Brachypodium distachyon

    NASA Astrophysics Data System (ADS)

    Jansson, C.; Handakumbura, P. P.; Fortin, D.; Stanfill, B.; Rivas-Ubach, A.

    2017-12-01

    Predicting carbon uptake, assimilation and allocation for current and future biogeographical environments, including climate, is critical for our ability to select and/or design plant genotypes to meet increasing demand for plant biomass going into food, feed and energy production, while at the same time maintain or increase soil organic matter (SOM for soil fertility and carbon storage, and reduce emission of greenhouse gasses. As has been demonstrated for several plant species allometric relationships may differ between plant genotypes. Exploring plant genotypic diversity for biomass accumulation and allometry will potentially enable selection of genotypes with high CO2 assimilation and favorable allocation of recent photosynthate into above-ground and below-ground biomass. We are investigating genotypic diversity for PFTs in natural accessions of the annual C3 grass Brachypodium distachyon under current and future climate scenarios and how genotypic diversity correlates with metabolite profiles in aboveground and below-ground biomass. In the current study, we compare effects from non-stressed and drought conditions on biomass accumulation and shoot-root allometry.

  8. Transport and scavenging of biomass burning aerosols in the maritime continent

    NASA Astrophysics Data System (ADS)

    Lee, H. H.; Wang, C.

    2014-12-01

    Biomass burning frequently occurs in summertime over the maritime continent, especially in Malaysia peninsula, Sumatra, and Borneo. Under certain weather conditions, particulate matters emitted from such fires cause degrade of air quality and thus occurrence of often weekly long haze in downwind locations such as Singapore. It is possible that these biomass burning aerosols may have influenced convective clouds in the maritime continent though such cases have not been well simulated and understood. In order to improve understanding of the spatiotemporal coverage and influence of biomass burning aerosols in the maritime continent, we have used the Weather Research and Forecasting (WRF) model to study the transport of biomass burning aerosols from Malaysia peninsula, Sumatra, and Borneo, using biomass burning emissions from the Fire INventory from NCAR (FINN) version 1.0. We choose to use emissions from the month of August because the annual emissions peak often occurs within this month. Based on a multi-year ensemble simulation, we have examined the influences of various meteorological regimes on the aerosol transport and wet removal.

  9. Community composition, abundance and biomass of zooplankton in Zhangzi Island waters, Northern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Yin, Jiehui; Zhang, Guangtao; Li, Chaolun; Wang, Shiwei; Zhao, Zengxia; Wan, Aiyong

    2017-09-01

    Samples were collected monthly from the sea area around Zhangzi Island, northern Yellow Sea, from July 2009 to June 2010. Vertical net towing was used to examine spatial and temporal variability in zooplankton abundance and biomass. Overall, Calanus sinicus and Saggita crassa were the dominant species found during the study period, while the amphipod Themisto gracilipes was dominant in winter and spring. Vast numbers of the ctenophore species of the genus Beroe were found in October and November. It was not possible to count them, but they constituted a large portion of the total zooplankton biomass. Zooplankton species diversity was highest in October, and species evenness was highest in April. Zooplankton abundance (non-jellyfish) and biomass were highest in June and lowest in August, with annual averages of 131.3 ind./m³ and 217.5 mg/m³, respectively. Water temperature may be responsible for the variations in zooplankton abundance and biomass. Beroe biomass was negatively correlated with other zooplankton abundance. Longterm investigations will be carried out to learn more about the influence of the environment on zooplankton assemblages.

  10. IMPROVING BIOMASS LOGISTICS COST WITHIN AGRONOMIC SUSTAINABILITY CONSTRAINTS AND BIOMASS QUALITY TARGETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Richard Hess; Kevin L. Kenney; Christopher T. Wright

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements inmore » quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.« less

  11. The annual planktonic protist community structure in an ice-free high Arctic fjord (Adventfjorden, West Spitsbergen)

    NASA Astrophysics Data System (ADS)

    Kubiszyn, A. M.; Wiktor, J. M.; Wiktor, J. M.; Griffiths, C.; Kristiansen, S.; Gabrielsen, T. M.

    2017-05-01

    We investigated the size and trophic structure of the annual planktonic protist community structure in the ice-free Adventfjorden in relation to environmental factors. Our high-resolution (weekly to monthly) study was conducted in 2012, when warm Atlantic water was advected into the fjord in winter and summer. We observed a distinct seasonality in the protist communities. The winter protist community was characterised by extremely low levels of protist abundance and biomass (primarily Dinophyceae, Ciliophora and Bacillariophyceae) in a homogenous water column. In the second half of April, the total protist abundance and biomass rapidly increased, thus initiating the spring bloom in a still well-mixed water column. The spring bloom was initially dominated by the prymnesiophyte Phaeocystis pouchetii and Bacillariophyceae (primarily from the genera Thalassiosira, Fragilariopsis and Chaetoceros) and was later strictly dominated by Phaeocystis colonies. When the bloom terminated in mid-June, the community shifted towards flagellates (Dinophyceae, Ciliophora, Cryptophyceae and nanoflagellates 3-7 μm in size) in a stratified, nutrient-depleted water column. Decreases in the light intensity decreased the protist abundance and biomass, and the fall community (Dinophyceae, Cryptophyceae and Bacillariophyceae) was followed by the winter community.

  12. The Influence of Rainfall, Vegetation, Elephants and People on Fire Frequency of Miombo Woodlands, Northern Mozambique

    NASA Astrophysics Data System (ADS)

    Ribeiro, N. S.; Okin, G. S.; Shugart, H. H.; Swap, R. J.

    2008-12-01

    Miombo woodlands are important in southern Africa as they occupy over 50% of the land and, their good and services support a large proportion of people in the region. Anthropogenic fires occur in miombo every year especially in the dry season (May - October). This study explores the influence of annual rainfall, elephant density, human density and corridors, and vegetation on the fire frequency. It was carried out in Niassa Reserve located in northern Mozambique, the largest and more pristine conservation area of miombo woodlands in the world. We used a time series analysis and statistical t-test of MODIS-derived Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) to explore the relationship between biomass and fire frequency. The influence of rainfall, elephants, people and vegetation on fire return was explored using a stepwise logistic regression analysis. The results of this study indicate that fire frequency is higher in places with high biomass at beginning of the dry season. In these areas fire seems to be more intense and to strongly reduce biomass in the late dry season. Land cover is the strongest predictor of fire frequency, but elephant density, annual rainfall and human corridors are also important.

  13. The influence of rainfall, vegetation, elephants and people on fire frequency of miombo woodlands, northern Mozambique

    NASA Astrophysics Data System (ADS)

    Ribeiro, N. S.; Okin, G. S.; Shugart, H.; Swap, R.

    2007-12-01

    Miombo woodlands are important in southern Africa as they occupy over 50% of the land and, their good and services support a large proportion of people in the region. Anthropogenic fires occur in miombo every year especially in the dry season (May - October). This study explores the influence of annual rainfall, elephant density, human density and corridors, and vegetation on the fire frequency. It was carried out in Niassa Reserve located in northern Mozambique, the largest and more pristine conservation area of miombo woodlands in the world. We used a time series analysis and statistical t-test of MODIS-derived Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) to explore the relationship between biomass and fire frequency. The influence of rainfall, elephants, people and vegetation on fire return was explored using a stepwise logistic regression analysis. The results of this study indicate that fire frequency is higher in places with high biomass at beginning of the dry season. In these areas fire seems to be more intense and to strongly reduce biomass in the late dry season. Land cover is the strongest predictor of fire frequency, but elephant density, annual rainfall and human corridors are also important.

  14. The contribution of local and transport processes to phytoplankton biomass variability over different timescales in the Upper James River, Virginia

    NASA Astrophysics Data System (ADS)

    Qin, Qubin; Shen, Jian

    2017-09-01

    Although both local processes (photosynthesis, respiration, grazing, and settling), and transport processes (advective transport and diffusive transport) significantly affect local phytoplankton dynamics, it is difficult to separate their contributions and to investigate the relative importance of each process to the local variability of phytoplankton biomass over different timescales. A method of using the transport rate is introduced to quantify the contribution of transport processes. By combining the time-varying transport rate and high-frequency observed chlorophyll a data, we can explicitly examine the impact of local and transport processes on phytoplankton biomass over a range of timescales from hourly to annually. For the Upper James River, results show that the relative importance of local and transport processes differs on different timescales. Local processes dominate phytoplankton variability on daily to weekly timescales, whereas the contribution of transport processes increases on seasonal to annual timescales and reaches equilibrium with local processes. With the use of the transport rate and high-frequency chlorophyll a data, a method similar to the open water oxygen method for metabolism is also presented to estimate phytoplankton primary production.

  15. Assessing the role of federal community assistance programs to develop biomass utilization capacity in the Western United States

    Treesearch

    Dennis R. Becker; Mark Nechodom; Adam Barnett; Tad Mason; Eini C. Lowell; John Shelly; Dean Graham

    2008-01-01

    As forest biomass utilization becomes cost effective to harvest, more areas at risk of catastrophic wildfire can be thinned of dense brush and small-diameter trees. In an effort to increase biomass utilization, the USDA Forest Service granted more than $36 million in National Fire Plan-Economic Action Program funds in the Western United States during fiscal years 2001...

  16. Relative importance of P and N in macrophyte and epilithic algae biomass in a wastewater-impacted oligotrophic river.

    PubMed

    Taube, Nadine; He, Jianxun; Ryan, M Cathryn; Valeo, Caterina

    2016-08-01

    The role of nutrient loading on biomass growth in wastewater-impacted rivers is important in order to effectively optimize wastewater treatment to avoid excessive biomass growth in the receiving water body. This paper directly relates wastewater treatment plant (WWTP) effluent nutrients (including ammonia (NH3-N), nitrate (NO3-N) and total phosphorus (TP)) to the temporal and spatial distribution of epilithic algae and macrophyte biomass in an oligotrophic river. Annual macrophyte biomass, epilithic algae data and WWTP effluent nutrient data from 1980 to 2012 were statistically analysed. Because discharge can affect aquatic biomass growth, locally weighted scatterplot smoothing (LOWESS) was used to remove the influence of river discharge from the aquatic biomass (macrophytes and algae) data before further analysis was conducted. The results from LOWESS indicated that aquatic biomass did not increase beyond site-specific threshold discharge values in the river. The LOWESS-estimated biomass residuals showed a variable response to different nutrients. Macrophyte biomass residuals showed a decreasing trend concurrent with enhanced nutrient removal at the WWTP and decreased effluent P loading, whereas epilithic algae biomass residuals showed greater response to enhanced N removal. Correlation analysis between effluent nutrient concentrations and the biomass residuals (both epilithic algae and macrophytes) suggested that aquatic biomass is nitrogen limited, especially by NH3-N, at most sampling sites. The response of aquatic biomass residuals to effluent nutrient concentrations did not change with increasing distance to the WWTP but was different for P and N, allowing for additional conclusions about nutrient limitation in specific river reaches. The data further showed that the mixing process between the effluent and the river has an influence on the spatial distribution of biomass growth.

  17. The Influences of Drought and Land-Cover Conversion on Inter-Annual Variation of NPP in the Three-North Shelterbelt Program Zone of China Based on MODIS Data

    PubMed Central

    Wu, Chaoyang; Zhang, Bing; Huete, Alfredo; Zhang, Xiaoyang; Sun, Rui; Lei, Liping; Huang, Wenjing; Liu, Liangyun; Liu, Xinjie; Li, Jun; Luo, Shezhou; Fang, Bin

    2016-01-01

    Terrestrial ecosystems greatly contribute to carbon (C) emission reduction targets through photosynthetic C uptake.Net primary production (NPP) represents the amount of atmospheric C fixed by plants and accumulated as biomass. The Three-North Shelterbelt Program (TNSP) zone accounts for more than 40% of China’s landmass. This zone has been the scene of several large-scale ecological restoration efforts since the late 1990s, and has witnessed significant changes in climate and human activities.Assessing the relative roles of different causal factors on NPP variability in TNSP zone is very important for establishing reasonable local policies to realize the emission reduction targets for central government. In this study, we examined the relative roles of drought and land cover conversion(LCC) on inter-annual changes of TNSP zone for 2001–2010. We applied integrated correlation and decomposition analyses to a Standardized Evapotranspiration Index (SPEI) and MODIS land cover dataset. Our results show that the 10-year average NPP within this region was about 420 Tg C. We found that about 60% of total annual NPP over the study area was significantly correlated with SPEI (p<0.05). The LCC-NPP relationship, which is especially evident for forests in the south-central area, indicates that ecological programs have a positive impact on C sequestration in the TNSP zone. Decomposition analysis generally indicated that the contributions of LCC, drought, and other Natural or Anthropogenic activities (ONA) to changes in NPP generally had a consistent distribution pattern for consecutive years. Drought and ONA contributed about 74% and 23% to the total changes in NPP, respectively, and the remaining 3% was attributed to LCC. Our results highlight the importance of rainfall supply on NPP variability in the TNSP zone. PMID:27348303

  18. Biomass Program 2007 Program Peer Review - Feedstock Platform Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Feedstock Platform Portfolio Peer Review held on August 21st through 23rd in Washington D.C.

  19. Association between the use of biomass fuels on respiratory health of workers in food catering enterprises in Nairobi Kenya

    PubMed Central

    Keraka, Margaret; Ochieng, Carolyne; Engelbrecht, Jacobus; Hongoro, Charles

    2013-01-01

    Introduction Indoor air pollution from biomass fuel use has been found to be responsible for more than 1.6 million annual deaths and 2.7% of the global burden of disease. This makes it the second biggest environmental contributor to ill health, behind unsafe water and sanitation. Methods The main objective of this study was to investigate if there was any association between use of bio-fuels in food catering enterprises and respiratory health of the workers. A cross-sectional design was employed, and data collected using Qualitative and quantitative techniques. Results The study found significantly higher prevalence of respiratory health outcomes among respondents in enterprises using biomass fuels compared to those using processed fuels. Biomass fuels are thus a major public health threat to workers in this sub-sector, and urgent intervention is required. Conclusion The study recommends a switch from biomass fuels to processed fuels to protect the health of the workers. PMID:23898361

  20. Association between the use of biomass fuels on respiratory health of workers in food catering enterprises in Nairobi Kenya.

    PubMed

    Keraka, Margaret; Ochieng, Carolyne; Engelbrecht, Jacobus; Hongoro, Charles

    2013-01-01

    Indoor air pollution from biomass fuel use has been found to be responsible for more than 1.6 million annual deaths and 2.7% of the global burden of disease. This makes it the second biggest environmental contributor to ill health, behind unsafe water and sanitation. The main objective of this study was to investigate if there was any association between use of bio-fuels in food catering enterprises and respiratory health of the workers. A cross-sectional design was employed, and data collected using Qualitative and quantitative techniques. The study found significantly higher prevalence of respiratory health outcomes among respondents in enterprises using biomass fuels compared to those using processed fuels. Biomass fuels are thus a major public health threat to workers in this sub-sector, and urgent intervention is required. The study recommends a switch from biomass fuels to processed fuels to protect the health of the workers.

  1. Agricultural residue availability in the United States.

    PubMed

    Haq, Zia; Easterly, James L

    2006-01-01

    The National Energy Modeling System (NEMS) is used by the Energy Information Administration (EIA) to forecast US energy production, consumption, and price trends for a 25-yr-time horizon. Biomass is one of the technologies within NEMS, which plays a key role in several scenarios. An endogenously determined biomass supply schedule is used to derive the price-quantity relationship of biomass. There are four components to the NEMS biomass supply schedule including: agricultural residues, energy crops, forestry residues, and urban wood waste/mill residues. The EIA's Annual Energy Outlook 2005 includes updated estimates of the agricultural residue portion of the biomass supply schedule. The changes from previous agricultural residue supply estimates include: revised assumptions concerning corn stover and wheat straw residue availabilities, inclusion of non-corn and non-wheat agricultural residues (such as barley, rice straw, and sugarcane bagasse), and the implementation of assumptions concerning increases in no-till farming. This article will discuss the impact of these changes on the supply schedule.

  2. First-year establishment, biomass and seed production of early vs. late seral natives in two medusahead (Taeniatherum caput-meducae) invaded soils

    Treesearch

    Shauna M. Uselman; Keirith A. Snyder; Elizabeth A. Leger; Sara E. Duke

    2014-01-01

    Re-seeding efforts to restore or rehabilitate Great Basin rangelands invaded by exotic annual grasses are expensive and have generally achieved limited success. There is a need to identify new strategies to improve restoration outcomes. We tested the performance of a native early seral seed mix (annual forbs, early seral grasses and shrubs) with that of a native late...

  3. Facilitation or Competition? Tree Effects on Grass Biomass across a Precipitation Gradient

    PubMed Central

    Moustakas, Aristides; Kunin, William E.; Cameron, Tom C.; Sankaran, Mahesh

    2013-01-01

    Savanna ecosystems are dominated by two distinct plant life forms, grasses and trees, but the interactions between them are poorly understood. Here, we quantified the effects of isolated savanna trees on grass biomass as a function of distance from the base of the tree and tree height, across a precipitation gradient in the Kruger National Park, South Africa. Our results suggest that mean annual precipitation (MAP) mediates the nature of tree-grass interactions in these ecosystems, with the impact of trees on grass biomass shifting qualitatively between 550 and 737 mm MAP. Tree effects on grass biomass were facilitative in drier sites (MAP≤550 mm), with higher grass biomass observed beneath tree canopies than outside. In contrast, at the wettest site (MAP = 737 mm), grass biomass did not differ significantly beneath and outside tree canopies. Within this overall precipitation-driven pattern, tree height had positive effect on sub-canopy grass biomass at some sites, but these effects were weak and not consistent across the rainfall gradient. For a more synthetic understanding of tree-grass interactions in savannas, future studies should focus on isolating the different mechanisms by which trees influence grass biomass, both positively and negatively, and elucidate how their relative strengths change over broad environmental gradients. PMID:23451137

  4. Approval Letter for an Alternative Renewable Biomass Tracking Program

    EPA Pesticide Factsheets

    This January 27, 2015 letter and decision document from EPA approves the Argentine Chamber of Biofuel's (CARBIO) Alternate Biomass Traking Program meeting all the requirements outlined in 40 CFR § 80.1454, including elements determined necessary to achieve

  5. Region-wide ecological responses of arid Wyoming big sagebrush communities to fuel treatments

    USGS Publications Warehouse

    Pyke, David A.; Shaff, Scott E.; Lindgren, Andrew I.; Schupp, Eugene W.; Doescher, Paul S.; Chambers, Jeanne C.; Burnham, Jeffrey S.; Huso, Manuela M.

    2014-01-01

    If arid sagebrush ecosystems lack resilience to disturbances or resistance to annual invasives, then alternative successional states dominated by annual invasives, especially cheatgrass (Bromus tectorum L.), are likely after fuel treatments. We identified six Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis Beetle & Young) locations (152–381 mm precipitation) that we believed had sufficient resilience and resistance for recovery. We examined impacts of woody fuel reduction (fire, mowing, the herbicide tebuthiuron, and untreated controls, all with and without the herbicide imazapic) on short-term dominance of plant groups and on important land health parameters with the use of analysis of variance (ANOVA). Fire and mowing reduced woody biomass at least 85% for 3 yr, but herbaceous fuels were reduced only by fire (72%) and only in the first year. Herbaceous fuels produced at least 36% more biomass with mowing than untreated areas during posttreatment years. Imazapic only reduced herbaceous biomass after fires (34%). Tebuthiuron never affected herbaceous biomass. Perennial tall grass cover was reduced by 59% relative to untreated controls in the first year after fire, but it recovered by the second year. Cover of all remaining herbaceous groups was not changed by woody fuel treatments. Only imazapic reduced significantly herbaceous cover. Cheatgrass cover was reduced at least 63% with imazapic for 3 yr. Imazapic reduced annual forb cover by at least 45%, and unexpectedly, perennial grass cover by 49% (combination of tall grasses and Sandberg bluegrass [Poa secunda J. Presl.]). Fire reduced density of Sandberg bluegrass between 40% and 58%, decreased lichen and moss cover between 69% and 80%, and consequently increased bare ground between 21% and 34% and proportion of gaps among perennial plants > 2 m (at least 28% during the 3 yr). Fire, mowing, and imazapic may be effective in reducing fuels for 3 yr, but each has potentially undesirable consequences on plant communities.

  6. Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities.

    PubMed

    Blank, Peter J; Williams, Carol L; Sample, David W; Meehan, Timothy D; Turner, Monica G

    2016-01-01

    Increased demand and government mandates for bioenergy crops in the United States could require a large allocation of agricultural land to bioenergy feedstock production and substantially alter current landscape patterns. Incorporating bioenergy landscape design into land-use decision making could help maximize benefits and minimize trade-offs among alternative land uses. We developed spatially explicit landscape scenarios of increased bioenergy crop production in an 80-km radius agricultural landscape centered on a potential biomass-processing energy facility and evaluated the consequences of each scenario for bird communities. Our scenarios included conversion of existing annual row crops to perennial bioenergy grasslands and conversion of existing grasslands to annual bioenergy row crops. The scenarios explored combinations of four biomass crop types (three potential grassland crops along a gradient of plant diversity and one annual row crop [corn]), three land conversion percentages to bioenergy crops (10%, 20%, or 30% of row crops or grasslands), and three spatial configurations of biomass crop fields (random, clustered near similar field types, or centered on the processing plant), yielding 36 scenarios. For each scenario, we predicted the impact on four bird community metrics: species richness, total bird density, species of greatest conservation need (SGCN) density, and SGCN hotspots (SGCN birds/ha ≥ 2). Bird community metrics consistently increased with conversion of row crops to bioenergy grasslands and consistently decreased with conversion of grasslands to bioenergy row crops. Spatial arrangement of bioenergy fields had strong effects on the bird community and in some cases was more influential than the amount converted to bioenergy crops. Clustering grasslands had a stronger positive influence on the bird community than locating grasslands near the central plant or at random. Expansion of bioenergy grasslands onto marginal agricultural lands will likely benefit grassland bird populations, and bioenergy landscapes could be designed to maximize biodiversity benefits while meeting targets for biomass production.

  7. Energy from biomass and wastes V; Proceedings of the Fifth Symposium, Lake Buena Vista, FL, January 26-30, 1981

    NASA Astrophysics Data System (ADS)

    Papers are presented in the areas of biomass production and procurement, biomass and waste combustion, gasification processes, liquefaction processes, environmental effects and government programs. Specific topics include a water hyacinth wastewater treatment system with biomass production, the procurement of wood as an industrial fuel, the cofiring of densified refuse-derived fuel and coal, the net energy production in anaerobic digestion, photosynthetic hydrogen production, the steam gasification of manure in a fluidized bed, and biomass hydroconversion to synthetic fuels. Attention is also given to the economics of deriving alcohol for power applications from grain, ethanol fermentation in a yeast-immobilized column fermenter, a solar-fired biomass flash pyrolysis reactor, particulate emissions from controlled-air modular incinerators, and the DOE program for energy recovery from urban wastes.

  8. Ecosystem and Community Responses to Rainfall Manipulations in Shrublands Depends on Dominant Vegetation Cover

    NASA Astrophysics Data System (ADS)

    Esch, E. H.; Lipson, D.; Kim, J. B.; Cleland, E. E.

    2014-12-01

    Southern California is predicted to face decreasing precipitation with increased interannual variability in the coming century. Native shrublands in this area are increasingly invaded by exotic annual grasses, though invasion dynamics can vary by rainfall scenario, with wet years generally associated with high invasion pressure. Interplay between rainfall and invasion scenarios can influence carbon stocks and community composition. Here we asked how invasion alters ecosystem and community responses in drought versus high rainfall scenarios, as quantified by community identity, biomass production, and the normalized difference vegetation index (NDVI). To do this, we performed a rainfall manipulation experiment with paired plots dominated either by native shrubs or exotic herbaceous species, subjected to treatments of 50%, 100%, or 150% of ambient rainfall. The study site was located in a coastal sage scrub ecosystem, with patches dominated by native shrubs and exotic grasses located in San Diego County, USA. During two growing seasons, we found that native, herbaceous biomass production was significantly affected by rainfall treatment (p<0.05 for both years), though was not affected by dominant community composition. Photosynthetic biomass production of shrub species also varied by treatment (p=0.035). Exotic biomass production showed a significant interaction between dominant community composition and rainfall treatment, and both individual effects (p<0.001 for all). NDVI showed similar results, but also indicated the importance of rainfall timing on overall biomass production between years. Community composition data showed certain species, of both native and exotic identities, segregating by treatment. These results indicate that exotic species are more sensitive to rainfall, and that increased rainfall may promote greater carbon storage in annual dominated communities when compared to shrub dominated communities in high rainfall years, but with drought, this trend is reversed.

  9. Long-term analysis of spatio-temporal patterns in population dynamics and demography of juvenile Pinfish (Lagodon rhomboides)

    NASA Astrophysics Data System (ADS)

    Chacin, D. H.; Switzer, T. S.; Ainsworth, C. H.; Stallings, C. D.

    2016-12-01

    In estuarine systems, proximity to the ocean has the potential to directly and indirectly drive patterns of fish distribution and population dynamics. To test this hypothesis, we conducted a comprehensive analysis of fisheries-independent data and quantified patterns of density, biomass, and growth rates of juvenile Pinfish (Lagodon rhomboides) across spatial and temporal scales in Tampa Bay, Florida, USA. Spatially, the highest density and biomass were found in the outermost regions (closest to the Gulf of Mexico) of the Bay, and these patterns were generally consistent temporally. Inter-annually, Pinfish density and biomass were the highest during periods coinciding with favorable oceanographic conditions (e.g., anomalously intense and prolonged upwelling) for across-shelf transport of larvae from spawning grounds in the Gulf to Tampa Bay. Intra-annually, density and biomass were the highest during spring and summer likely due to the combined effects of spawning timing (and delivery of new settlers), and high somatic growth fueled by increased secondary and primary productivity. Declines in density and biomass during the late summer through early winter were possibly due to high post-settlement mortality and egress to offshore habitats. Pinfish increased predictably in size across the months of the calendar year, and tended to be larger and grew faster in the innermost regions of the Bay, which were located farthest from the Gulf. Pinfish density was related to the proximity to the Gulf of Mexico, with the outermost regions of the Bay having greater seagrass cover, higher salinity, and being closer to the offshore larval pool where spawning occurs. Thus, this study provided evidence that distance to the ocean was an important driver of biotic and abiotic factors that influenced Pinfish demographic rates across spatial and temporal scales in the largest estuary in Florida.

  10. Burrowing mayflies (Hexagenia) as indicators of ecosystem health

    USGS Publications Warehouse

    Edsall, Thomas A.

    2001-01-01

    Three State of the Lakes Ecosystem Conferences have been held since 1996 to encourage the development of Great Lakes indicators of ecosystem health for use in reporting on progress in restoring and maintaining the chemical, physical and biological integrity of the Great Lakes ecosystem. Here we report on the development of an indicator based on burrowing mayflies , Hexagenia (Ephemeroptera: Ephemeridae), using production and biomass as the indicator metrics. Burrowing mayflies were selected because they (1) were historically abundant in unpolluted, soft-bottomed mesotrophic habitats throughout the Great Lakes, (2) are intolerant of and were extirpated by pollution in most of those habitats during the 1940s to1950s, (3) have shown the ability to recover in one of those habitats following pollution abatement, (4) are ecologically important as bioturbators of lakebed sediments and as trophic integrators that link detrital energy resources directly to fishes that feed preferentially on them, and (5) have highly visible mating flights, which carry the message directly to an informed public that the source water body is healthy. In addition, their annual production can be estimated from their mean annual biomass by the sizefrequency method. Productivity and biomass can also could be estimated with a 'cohort-direct' method, using the biomass of mature nymphs collected in May or early June from the cohort that is about to emerge as subimagos in late June or early July. Although both the size-frequency and cohort-direct methods provide reliable estimates of productivity and biomass, the latter method greatly reduces sample collection and processing effort and thus makes it feasible to use Hexagenia as an indicator of ecosystem health in surveys requiring the collection of large numbers of samples.

  11. Seasonal and inter-annual variation in occurrence and biomass of rooted macrophytes and drift algae in shallow bays

    NASA Astrophysics Data System (ADS)

    Berglund, J.; Mattila, J.; Rönnberg, O.; Heikkilä, J.; Bonsdorff, E.

    2003-04-01

    Submerged rooted macrophytes and drift algae were studied in shallow (0-1 m) brackish soft-bottom bays in the Åland Islands, N Baltic Sea, in 1997-2000. The study was performed by aerial photography and ground-truth sampling and the compatibility of the methods was evaluated. The study provided quantitative results on seasonal and inter-annual variation in growth, distribution and biomass of submerged macrophytes and drift algae. On an average, 18 submerged macrophyte species occurred in the studied bays. The most common species, by weight and occurrence, were Chara aspera, Cladophora glomerata, Pilayella littoralis and Potamogeton pectinatus. Filamentous green algae constituted 45-70% of the biomass, charophytes 25-40% and vascular plants 3-18%. A seasonal pattern with a peak in biomass in July-August was found and the mean biomass was negatively correlated with exposure. There were statistically significant differences in coverage among years, and among levels of exposure. The coverage was highest when exposure was low. Both sheltered and exposed bays were influenced by drift algae (30 and 60% occurrence in July-August) and there was a positive correlation between exposure and occurrence of algal accumulations. At exposed sites, most of the algae had drifted in from other areas, while at sheltered ones they were mainly of local origin. Data obtained by aerial photography and ground-truth sampling showed a high concordance, but aerial photography gave a 9% higher estimate than the ground-truth samples. The results can be applied in planning of monitoring and management strategies for shallow soft-bottom areas under potential threat of drift algae.

  12. Environmental drivers of mesozooplankton biomass variability in the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Valencia, Bellineth; Landry, Michael R.; Décima, Moira; Hannides, Cecelia C. S.

    2016-12-01

    The environmental drivers of zooplankton variability are poorly explored for the central subtropical Pacific, where a direct bottom-up food-web connection is suggested by increasing trends in primary production and mesozooplankton biomass at station ALOHA (A Long-term Oligotrophic Habitat Assessment) over the past 20 years (1994-2013). Here we use generalized additive models (GAMs) to investigate how these trends relate to the major modes of North Pacific climate variability. A GAM based on monthly mean data explains 43% of the temporal variability in mesozooplankton biomass with significant influences from primary productivity (PP), sea surface temperature (SST), North Pacific Gyre Oscillation (NPGO), and El Niño. This result mainly reflects the seasonal plankton cycle at station ALOHA, in which increasing light and SST lead to enhanced nitrogen fixation, productivity, and zooplankton biomass during summertime. Based on annual mean data, GAMs for two variables suggest that PP and 3-4 year lagged NPGO individually account for 40% of zooplankton variability. The full annual mean GAM explains 70% of variability of zooplankton biomass with significant influences from PP, 4 year lagged NPGO, and 4 year lagged Pacific Decadal Oscillation (PDO). The NPGO affects wind stress, sea surface height, and subtropical gyre circulation and has been linked to mideuphotic zone anomalies in salinity and PP at station ALOHA. Our study broadens the known impact of this climate mode on plankton dynamics in the North Pacific. While lagged transport effects are also evident for subtropical waters, our study highlights a strong coupling between zooplankton fluctuations and PP, which differs from the transport-dominated climate influences that have been found for North Pacific boundary currents.

  13. Incorrect interpretation of carbon mass balance biases global vegetation fire emission estimates.

    PubMed

    Surawski, N C; Sullivan, A L; Roxburgh, S H; Meyer, C P Mick; Polglase, P J

    2016-05-05

    Vegetation fires are a complex phenomenon in the Earth system with many global impacts, including influences on global climate. Estimating carbon emissions from vegetation fires relies on a carbon mass balance technique that has evolved with two different interpretations. Databases of global vegetation fire emissions use an approach based on 'consumed biomass', which is an approximation to the biogeochemically correct 'burnt carbon' approach. Here we show that applying the 'consumed biomass' approach to global emissions from vegetation fires leads to annual overestimates of carbon emitted to the atmosphere by 4.0% or 100 Tg compared with the 'burnt carbon' approach. The required correction is significant and represents ∼9% of the net global forest carbon sink estimated annually. Vegetation fire emission studies should use the 'burnt carbon' approach to quantify and understand the role of this burnt carbon, which is not emitted to the atmosphere, as a sink enriched in carbon.

  14. Landsat Time-series for the Masses: Predicting Wood Biomass Growth from Tree-rings Using Departures from Mean Phenology in Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Foster, J. R.; D'Amato, A. W.; Itter, M.; Reinikainen, M.; Curzon, M.

    2017-12-01

    The terrestrial carbon cycle is perturbed when disturbances remove leaf biomass from the forest canopy during the growing season. Changes in foliar biomass arise from defoliation caused by insects, disease, drought, frost or human management. As ephemeral disturbances, these often go undetected and their significance to models that predict forest growth from climatic drivers remains unknown. Here, we seek to distinguish the roles of weather vs. canopy disturbance on forest growth by using dense Landsat time-series to quantify departures in mean phenology that in turn predict changes in leaf biomass. We estimated a foliar biomass index (FBMI) from 1984-2016, and predict plot-level wood growth over 28 years on 156 tree-ring monitoring plots in Minnesota, USA. We accessed the entire Landsat archive (sensors 4, 5 & 7) to compute FBMI using Google Earth Engine's cloud computing platform (GEE). GEE allows this pixel-level approach to be applied at any location; a feature we demonstrate with published wood-growth data from flux tower sites. Our Bayesian models predicted biomass changes from tree-ring plots as a function of Landsat FBMI and annual climate data. We expected model parameters to vary by tree functional groups defined by differences in xylem anatomy and leaf longevity, two traits with linkages to phenology, as reported in a recent review. We found that Landsat FBMI was a surprisingly strong predictor of aggregate wood-growth, explaining up to 80% of annual growth variation for some deciduous plots. Growth responses to canopy disturbance varied among tree functional groups, and the importance of some seasonal climate metrics diminished or changed sign when FBMI was included (e.g. fall and spring climatic water deficit), while others remained unchanged (current and lagged summer deficit). Insights emerging from these models can clear up sources of persistent uncertainty and open a new frontier for models of forest productivity.

  15. Climate-related variation in plant peak biomass and growth phenology across Pacific Northwest tidal marshes

    NASA Astrophysics Data System (ADS)

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.

    2018-03-01

    The interannual variability of tidal marsh plant phenology is largely unknown and may have important ecological consequences. Marsh plants are critical to the biogeomorphic feedback processes that build estuarine soils, maintain marsh elevation relative to sea level, and sequester carbon. We calculated Tasseled Cap Greenness, a metric of plant biomass, using remotely sensed data available in the Landsat archive to assess how recent climate variation has affected biomass production and plant phenology across three maritime tidal marshes in the Pacific Northwest of the United States. First, we used clipped vegetation plots at one of our sites to confirm that tasseled cap greenness provided a useful measure of aboveground biomass (r2 = 0.72). We then used multiple measures of biomass each growing season over 20-25 years per study site and developed models to test how peak biomass and the date of peak biomass varied with 94 climate and sea-level metrics using generalized linear models and Akaike Information Criterion (AIC) model selection. Peak biomass was positively related to total annual precipitation, while the best predictor for date of peak biomass was average growing season temperature, with the peak 7.2 days earlier per degree C. Our study provides insight into how plants in maritime tidal marshes respond to interannual climate variation and demonstrates the utility of time-series remote sensing data to assess ecological responses to climate stressors.

  16. Shift in soil microbial communities with shrub encroachment in Inner Mongolia grasslands, China

    NASA Astrophysics Data System (ADS)

    Shen, H.; Li, H.; Zhang, J.; Hu, H.; Chen, L.; Zhu, Y.; Fang, J.

    2017-12-01

    The ongoing expansion of shrub encroachment into grasslands represents a unique form of land cover change. How this process affects soil microbial communities is poorly understood. In this study, we aim to assess the effects of shrub encroachment on soil microbial biomass, abundance and composition by comparing data between shrub patches and neighboring herb patches in shrub-encroached grasslands (SEGs) in Inner Mongolia, China. Fourteen SEG sites from two ecosystem types (typical and desert grasslands) were investigated. The phospholipid fatty acid (PLFA) method was used to analyze the composition and biomass of the soil microbial community. Our results showed that the top-soil microbial biomass and abundances of gram-negative bacteria, arbuscular mycorrhizal fungi, and actinomycetes were significantly higher in shrub patches than in herb patches in both typical and desert grasslands (P < 0.05). The fungi to bacteria ratio was significantly higher in shrub patches than in herb patches in desert grassland (P < 0.05). The microbial biomass was positively associated with mean annual precipitation, total nitrogen and available phosphorus, and negatively associated with mean annual temperature. Our results also indicated that the variation in microbial composition was largely explained by edaphic factors, followed by climate factors. In conclusion, shrub encroachment in Inner Mongolia grasslands has significantly influenced the structure and abundance of soil microbial communities, which makes the microbial communities toward a fresh organic carbon-based structure. This study highlights the importance of edaphic and climate factors in microbial community shifts in SEGs.

  17. Temporal and spatial patterns of phytoplankton production in Tomales Bay, California, U.S.A.

    USGS Publications Warehouse

    Cole, B.E.

    1989-01-01

    Primary productivity in the water column was measured 14 times between April 1985 and April 1986 at three sites in Tomales Bay, California, USA The conditions at these three stations encompassed the range of hydrographic conditions, phytoplankton biomass, phytoplankton community composition, and turbidity typical of this coastal embayment. Linear regression of the measured daily carbon uptake against the composite parameter B Zp Io (where B is the average phytoplankton biomass in the photic zone; Zp is the photic depth; and Io is the daily surface insolation) indicates that 90% of the variability in primary productivity is explained by variations in phytoplankton biomass and light availability. The linear function derived using Tomales Bay data is essentially the same as that which explains more than 80% of the variation in productivity in four other estuarine systems. Using the linear function and measured values for B, Zp, and Io, the daily photic-zone productivity was estimated for 10 sites at monthly intervals over the annual period. The average daily photic-zone productivity for the 10 sites ranged from 0??2 to 2??2 g C m-2. The bay-wide average annual primary productivity in the water column was 400 g C m-2, with most of the uptake occuring in spring and early summer. Spatial and temporal variations in primary productivity were similar to variations in phytoplankton biomass. Productivity was highest in the seaward and central regions of the bay and lowest in the shallow landward region. ?? 1989.

  18. Estimation of alewife biomass in Lake Michigan, 1967-1978

    USGS Publications Warehouse

    Hatch, Richard W.; Haack, Paul M.; Brown, Edward H.

    1981-01-01

    The buildup of salmonid populations in Lake Michigan through annual stockings of hatchery-reared fish may become limited by the quantity of forage fish, mainly alewives Alosa pseudoharengus, available for food. As a part of a continuing examination of salmonid predator-prey relations in Lake Michigan, we traced changes in alewife biomass estimated from bottom-trawl surveys conducted in late October and early November 1967–1978. Weight of adult alewives trawled per 0.5 hectare of bottom (10-minute drag) at 16 depths along eight transects between 1973 and 1977 formed a skewed distribution: 72 of 464 drags caught no alewives; 89 drags caught less than 1 kg; and 2 drags caught more than 100 kg (maximum 159 kg). Analysis of variance in normalized catch per tow indicated highly significant differences between the main effects of years and depths, and highly significant differences in the interactions of years and transects, years and depths, and transects and depths. Five geographic and depth strata, formed by combining parts of transects wherein mean catch rate did not differ significantly, were the basis for calculating annual estimates of adult alewife biomass (with 90% confidence intervals). Estimated biomass of alewives (±90% confidence limits) in Lake Michigan proper (Green Bay and Grand Traverse Bay excluded) rose gradually from 46,000 (±9,000) t in 1967 to 114,000 (±17,000) t in 1973, declined to 45,000 (±8,000) t in 1977, and rose to 77,000 (±19,000) t in 1978.

  19. Verification of the Jenkins and FIA sapling biomass equations for hardwood species in Maine

    Treesearch

    Andrew S. Nelson; Aaron R. Weiskittel; Robert G. Wagner; Michael R. Saunders

    2012-01-01

    In 2009, the Forest Inventory and Analysis Program (FIA) updated its biomass estimation protocols by switching to the component ratio method to estimate biomass of medium and large trees. Additionally, FIA switched from using regional equations to the current FIA aboveground sapling biomass equations that predict woody sapling (2.5 to 12.4 cm d.b.h.) biomass using the...

  20. Using New Remotely-sensed Biomass To Estimate Co2 Fluxes Over Siberia

    NASA Astrophysics Data System (ADS)

    Lafont, S.; Kergoat, L.; Dedieu, G.; Le Toan, T.

    Two european programs recently focused on Siberia. The first one, Eurosiberian Car- bonflux was a faisability study for an observation system of the regional CO2 fluxes. The second one, SIBERIA was a big effort to develop and validate a biomass map on Siberia using radar data from satelltes (J-ERS, ERS). Here, we extend the simula- tion of NPP performed for the first program by using the biomass data of the second program. The TURC model, used here, is a global NPP model, based on light use efficiency, where photosynthetic assimilation is driven by satellite vegetation index, and au- totrophic respiration is driven by biomass. In this study, we will present a n´ zoom z on siberian region. The TURC model was run with a fine resolution (few kilometers) and a daily time step. We will discuss the impact of a new biomass dataset description on Net Primary Pro- ductivity (NPP) and CO2 fluxes estimation.

  1. The feasibility of producing adequate feedstock for year–round cellulosic ethanol production in an intensive agricultural fuelshed

    USGS Publications Warehouse

    Uden, Daniel R.; Mitchell, Rob B.; Allen, Craig R.; Guan, Qingfeng; McCoy, Tim D.

    2013-01-01

    To date, cellulosic ethanol production has not been commercialized in the United States. However, government mandates aimed at increasing second-generation biofuel production could spur exploratory development in the cellulosic ethanol industry. We conducted an in-depth analysis of the fuelshed surrounding a starch-based ethanol plant near York, Nebraska that has the potential for cellulosic ethanol production. To assess the feasibility of supplying adequate biomass for year-round cellulosic ethanol production from residual maize (Zea mays) stover and bioenergy switchgrass (Panicum virgatum) within a 40-km road network service area of the existing ethanol plant, we identified ∼14,000 ha of marginally productive cropland within the service area suitable for conversion from annual rowcrops to switchgrass and ∼132,000 ha of maize-enrolled cropland from which maize stover could be collected. Annual maize stover and switchgrass biomass supplies within the 40-km service area could range between 429,000 and 752,000 metric tons (mT). Approximately 140–250 million liters (l) of cellulosic ethanol could be produced, rivaling the current 208 million l annual starch-based ethanol production capacity of the plant. We conclude that sufficient quantities of biomass could be produced from maize stover and switchgrass near the plant to support year-round cellulosic ethanol production at current feedstock yields, sustainable removal rates and bioconversion efficiencies. Modifying existing starch-based ethanol plants in intensive agricultural fuelsheds could increase ethanol output, return marginally productive cropland to perennial vegetation, and remove maize stover from productive cropland to meet feedstock demand.

  2. Alfalfa Responses to Gypsum Application Measured Using Undisturbed Soil Columns

    PubMed Central

    Tirado-Corbalá, Rebecca; Slater, Brian K.; Dick, Warren A.; Barker, Dave

    2017-01-01

    Gypsum is an excellent source of Ca and S, both of which are required for crop growth. Large amounts of by-product gypsum [Flue gas desulfurization gypsum-(FGDG)] are produced from coal combustion in the United States, but only 4% is used for agricultural purposes. The objective of this study was to evaluate the effects of (1) untreated, (2) short-term (4-year annual applications of gypsum totaling 6720 kg ha−1), and (3) long-term (12-year annual applications of gypsum totaling 20,200 kg ha−1) on alfalfa (Medicago sativa L.) growth and nutrient uptake, and gypsum movement through soil. The study was conducted in a greenhouse using undisturbed soil columns of two non-sodic soils (Celina silt loam and Brookston loam). Aboveground growth of alfalfa was not affected by gypsum treatments when compared with untreated (p > 0.05). Total root biomass (0–75 cm) for both soils series was significantly increased by gypsum application (p = 0.04), however, increased root growth was restricted to 0–10 cm depth. Soil and plant analyses indicated no unfavorable environmental impact from of the 4-year and 12-year annual application of FGDG. We concluded that under sufficient water supply, by-product gypsum is a viable source of Ca and S for land application that might benefit alfalfa root growth, but has less effect on aboveground alfalfa biomass production. Undisturbed soil columns were a useful adaptation of the lysimeter method that allowed detailed measurements of alfalfa nutrient uptake, root biomass, and yield and nutrient movement in soil. PMID:28696383

  3. Regional Rates of Young US Forest Growth Estimated From Annual Landsat Disturbance History and IKONOS Stereo Imagery

    NASA Technical Reports Server (NTRS)

    Neigh, Christopher S. R.; Masek, Jeffrey G.; Bourget, Paul; Rishmawi, Khaldoun; Zhao, Feng; Huang, Chengquan; Cook, Bruce D.; Nelson, Ross

    2015-01-01

    Forests of the Contiguous United States (CONUS) have been found to be a large contributor to the global atmospheric carbon sink. The magnitude and nature of this sink is still uncertain and recent studies have sought to define the dynamics that control its strength and longevity. The Landsat series of satellites has been a vital resource to understand the long-term changes in land cover that can impact ecosystem function and terrestrial carbonstock. We combine annual Landsat forest disturbance history from 1985 to 2011 with single date IKONOS stereoimagery to estimate the change in young forest canopy height and above ground live dry biomass accumulation for selected sites in the CONUS. Our approach follows an approximately linear growth rate following clearing over short intervals and does not estimate the distinct non-linear growth rate over longer intervals.We produced canopy height models by differencing digital surface models estimated from IKONOS stereo pairs with national elevation data (NED). Correlations between height and biomass were established independently using airborne LiDAR, and then applied to the IKONOS-estimated canopy height models. Graphing current biomass against time since disturbance provided biomass accumulation rates. For 20 study sites distributed across five regions of the CONUS, 19 showed statistically significant recovery trends (p is less than 0.001) with canopy growth from 0.26 m yr-1to 0.73 m yr-1. Above ground live dry biomass (AGB) density accumulation ranged from 1.31 t/ha yr-1 to 12.47 t/ha yr-1. Mean forest AGB accumulationwas 6.31 t/ha yr-1 among all sites with significant growth trends. We evaluated the accuracy of our estimates by comparing to field estimated site index curves of growth, airborne LiDAR data, and independent model predictions of C accumulation. Growth estimates found with this approach are consistent with site index curves and total biomass estimates fall within the range of field estimates. This is aviable approach to estimate forest biomass accumulation in regions with clear-cut harvest disturbances.

  4. Temporal dynamics of estuarine phytoplankton: A case study of San Francisco Bay

    USGS Publications Warehouse

    Cloern, J.E.; Cole, B.E.; Wong, R.L.J.; Alpine, A.E.

    1985-01-01

    Detailed surveys throughout San Francisco Bay over an annual cycle (1980) show that seasonal variations of phytoplankton biomass, community composition, and productivity can differ markedly among estuarine habitat types. For example, in the river-dominated northern reach (Suisun Bay) phytoplankton seasonality is characterized by a prolonged summer bloom of netplanktonic diatoms that results from the accumulation of suspended particulates at the convergence of nontidal currents (i.e. where residence time is long). Here turbidity is persistently high such that phytoplankton growth and productivity are severely limited by light availability, the phytoplankton population turns over slowly, and biological processes appear to be less important mechanisms of temporal change than physical processes associated with freshwater inflow and turbulent mixing. The South Bay, in contrast, is a lagoon-type estuary less directly coupled to the influence of river discharge. Residence time is long (months) in this estuary, turbidity is lower and estimated rates of population growth are high (up to 1-2 doublings d-1), but the rapid production of phytoplankton biomass is presumably balanced by grazing losses to benthic herbivores. Exceptions occur for brief intervals (days to weeks) during spring when the water column stratifies so that algae retained in the surface layer are uncoupled from benthic grazing, and phytoplankton blooms develop. The degree of stratification varies over the neap-spring tidal cycle, so the South Bay represents an estuary where (1) biological processes (growth, grazing) and a physical process (vertical mixing) interact to cause temporal variability of phytoplankton biomass, and (2) temporal variability is highly dynamic because of the short-term variability of tides. Other mechanisms of temporal variability in estuarine phytoplankton include: zooplankton grazing, exchanges of microalgae between the sediment and water column, and horizontal dispersion which transports phytoplankton from regions of high productivity (shallows) to regions of low productivity (deep channels). Multi-year records of phytoplankton biomass show that large deviations from the typical annual cycles observed in 1980 can occur, and that interannual variability is driven by variability of annual precipitation and river discharge. Here, too, the nature of this variability differs among estuary types. Blooms occur only in the northern reach when river discharge falls within a narrow range, and the summer biomass increase was absent during years of extreme drought (1977) or years of exceptionally high discharge (1982). In South Bay, however, there is a direct relationship between phytoplankton biomass and river discharge. As discharge increases so does the buoyancy input required for density stratification, and wet years are characterized by persistent and intense spring blooms. ?? 1985 Dr W. Junk Publishers.

  5. Missouri's forest resources in 2004

    Treesearch

    W. Keith Moser; Mark H. Hansen; Thomas Treiman; Bruce Moltzan; Robert Lawrence; Gary J. Brand

    2006-01-01

    Reports the initial results of five annual panels (2000-2004) of the inventory of Missouri's forest resources and one panel (2004) of growth, removals, and mortality. Includes information on forest area, number of trees, volume, biomass, growth, removals, mortality, and forest health.

  6. Indiana's forest resources in 2004

    Treesearch

    Christopher Woodall; Gary Brand; Joey Gallion

    2006-01-01

    Reports the initial results of five annual panels (2000-2004) of the inventory of Indiana's forest resources and one panel (2004) of growth, removals, and mortality. Includes information on forest area, number of trees, volume, biomass, growth, removals, mortality, and forest health.

  7. Annual fire and mowing alter biomass, depth distribution, and C and N content of roots in soil in tallgrass prairie

    Treesearch

    D.J. Kitchen; J.M. Blair; M.A. Callaham

    2009-01-01

    Management practices, such as fire andmowing, can affect the distribution and quality of roots and soil C and N in grasslands. We examined long-term (13 years) effects of annual fire and mowing on fine (<2 mm) roots and soil C and N content in a native tallgrass prairie at Konza Prairie Biological Station in northeastern Kansas, USA. Using 90 cm deep soil cores...

  8. The place of algae in agriculture: policies for algal biomass production.

    PubMed

    Trentacoste, Emily M; Martinez, Alice M; Zenk, Tim

    2015-03-01

    Algae have been used for food and nutraceuticals for thousands of years, and the large-scale cultivation of algae, or algaculture, has existed for over half a century. More recently algae have been identified and developed as renewable fuel sources, and the cultivation of algal biomass for various products is transitioning to commercial-scale systems. It is crucial during this period that institutional frameworks (i.e., policies) support and promote development and commercialization and anticipate and stimulate the evolution of the algal biomass industry as a source of renewable fuels, high value protein and carbohydrates and low-cost drugs. Large-scale cultivation of algae merges the fundamental aspects of traditional agricultural farming and aquaculture. Despite this overlap, algaculture has not yet been afforded a position within agriculture or the benefits associated with it. Various federal and state agricultural support and assistance programs are currently appropriated for crops, but their extension to algal biomass is uncertain. These programs are essential for nascent industries to encourage investment, build infrastructure, disseminate technical experience and information, and create markets. This review describes the potential agricultural policies and programs that could support algal biomass cultivation, and the barriers to the expansion of these programs to algae.

  9. Predicting tree biomass growth in the temperate-boreal ecotone: is tree size, age, competition or climate response most important?

    USGS Publications Warehouse

    Foster, Jane R.; Finley, Andrew O.; D'Amato, Anthony W.; Bradford, John B.; Banerjee, Sudipto

    2016-01-01

    As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2and thereby slow rising CO2 concentrations. Forests’ ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals’ size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species likeAcer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92–95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses related to climate change alone.

  10. Combined effects of precipitation and nitrogen deposition on native and invasive winter annual production in California deserts.

    PubMed

    Rao, Leela E; Allen, Edith B

    2010-04-01

    Primary production in deserts is limited by soil moisture and N availability, and thus is likely to be influenced by both anthropogenic N deposition and precipitation regimes altered as a consequence of climate change. Invasive annual grasses are particularly responsive to increases in N and water availabilities, which may result in competition with native forb communities. Additionally, conditions favoring increased invasive grass production in arid and semi-arid regions can increase fire risk, negatively impacting woody vegetation that is not adapted to fire. We conducted a seeded garden experiment and a 5-year field fertilization experiment to investigate how winter annual production is altered by increasing N supply under a range of water availabilities. The greatest production of invasive grasses and native forbs in the garden experiment occurred under the highest soil N (inorganic N after fertilization = 2.99 g m(-2)) and highest watering regime, indicating these species are limited by both water and N. A classification and regression tree (CART) analysis on the multi-year field fertilization study showed that winter annual biomass was primarily limited by November-December precipitation. Biomass exceeded the threshold capable of carrying fire when inorganic soil N availability was at least 3.2 g m(-2) in piñon-juniper woodland. Due to water limitation in creosote bush scrub, biomass exceeded the fire threshold only under very wet conditions regardless of soil N status. The CART analyses also revealed that percent cover of invasive grasses and native forbs is primarily dependent on the timing and amount of precipitation and secondarily dependent on soil N and site-specific characteristics. In total, our results indicate that areas of high N deposition will be susceptible to grass invasion, particularly in wet years, potentially reducing native species cover and increasing the risk of fire.

  11. Predicting tree biomass growth in the temperate-boreal ecotone: Is tree size, age, competition, or climate response most important?

    PubMed

    Foster, Jane R; Finley, Andrew O; D'Amato, Anthony W; Bradford, John B; Banerjee, Sudipto

    2016-06-01

    As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2 and thereby slow rising CO2 concentrations. Forests' ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals' size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species like Acer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92-95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses related to climate change alone. © 2015 John Wiley & Sons Ltd.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Carl

    In the summer of 2006 the Green Institute started the study for the RockTenn paper mill that would evaluate the economics and supply chain reliability of wood waste and other clean biomass as a fuel for the facility. The Green Institute obtained sponsorship from a broad coalition representing the community and the project team included other consultants and university researchers specializing in biomass issues. The final product from the project was a report to: 1) assess the availability of clean biomass fuel for use at the Rock-Tenn site; 2) roughly estimate costs at various annual usage quantities; and 3) developmore » the building blocks for a supply chain procurement plan. The initial report was completed and public presentations on the results were completed in spring of 2007.« less

  13. Design of a biomass-to-biorefinery logistics system through bio-inspired metaheuristic optimization considering multiple types of feedstocks

    NASA Astrophysics Data System (ADS)

    Trueba, Isidoro

    Bioenergy has become an important alternative source of energy to alleviate the reliance on petroleum energy. Bioenergy offers significant potential to mitigate climate change by reducing life-cycle greenhouse gas emissions relative to fossil fuels. The Energy Independence and Security Act mandate the use of 21 billion gallons of advanced biofuels including 16 billion gallons of cellulosic biofuels by the year 2022. It is clear that Biomass can make a substantial contribution to supplying future energy demand in a sustainable way. However, the supply of sustainable energy is one of the main challenges that mankind will face over the coming decades. For instance, many logistical challenges will be faced in order to provide an efficient and reliable supply of quality feedstock to biorefineries. 700 million tons of biomass will be required to be sustainably delivered to biorefineries annually to meet the projected use of biofuels by the year of 2022. This thesis is motivated by the urgent need of advancing knowledge and understanding of the highly complex biofuel supply chain. While corn ethanol production has increased fast enough to keep up with the energy mandates, production of biofuels from different types of feedstocks has also been incremented. A number of pilot and demonstration scale advanced biofuel facilities have been set up, but commercial scale facilities are yet to become operational. Scaling up this new biofuel sector poses significant economic and logistical challenges for regional planners and biofuel entrepreneurs in terms of feedstock supply assurance, supply chain development, biorefinery establishment, and setting up transport, storage and distribution infrastructure. The literature also shows that the larger cost in the production of biomass to ethanol originates from the logistics operation therefore it is essential that an optimal logistics system is designed in order to keep low the costs of producing ethanol and make possible the shift from fossil fuels to biofuels. In many ways biomass is a unique renewable resource. It can be stored and transported relatively easily in contrast to renewable options such as wind and solar, which create intermittent electrical power that requires immediate consumption and a connection to the grid. This thesis presents two different models for the design optimization of a biomass-to-biorefinery logistics system through bio-inspired metaheuristic optimization considering multiple types of feedstocks. This work compares the performance and solutions obtained by two types of metaheuristic approaches; genetic algorithm and ant colony optimization. Compared to rigorous mathematical optimization methods or iterative algorithms, metaheuristics do not guarantee that a global optimal solution can be found on some class of problems. Problems with similar characteristics to the one presented in this thesis have been previously solved using linear programming, integer programming and mixed integer programming methods. However, depending on the type of problem, these mathematical or complete methods might need exponential computation time in the worst-case. This often leads to computation times too high for practical purposes. Therefore, this thesis develops two types of metaheuristic approaches for the design optimization of a biomass-to-biorefinery logistics system considering multiple types of feedstocks and shows that metaheuristics are highly suitable to solve hard combinatorial optimization problems such as the one addressed in this research work.

  14. BIMOMASS GASIFICATION PILOT PLANT STUDY

    EPA Science Inventory

    The report gives results of a gasification pilot program using two biomass feedstocks: bagasse pellets and wood chips. he object of the program was to determine the properties of biomass product gas and its suitability as a fuel for gas-turbine-based power generation cycles. he f...

  15. Biomass Research Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenney, Kevin; Wright, Christopher; Shelton-Davis,

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  16. Biomass Research Program

    ScienceCinema

    Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

    2017-12-09

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  17. Proposed Volume Standards for 2018, and the Biomass-Based Diesel Volume for 2019

    EPA Pesticide Factsheets

    EPA proposed volume requirements under the Renewable Fuel Standard (RFS) program for 2018 for cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel, and biomass-based diesel for 2019 under the RFS.

  18. Genetic Improvement of Switchgrass and Other Herbaceous Plants for Use as Biomass Fuel Feedstock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, K.P.

    2001-01-11

    It should be highly feasible to genetically modify the feedstock quality of switchgrass and other herbaceous plants using both conventional and molecular breeding techniques. Effectiveness of breeding to modify herbages of switchgrass and other perennial and annual herbaceous species has already been demonstrated. The use of molecular markers and transformation technology will greatly enhance the capability of breeders to modify the plant structure and cell walls of herbaceous plants. It will be necessary to monitor gene flow to remnant wild populations of plants and have strategies available to curtail gene flow if it becomes a potential problem. It also willmore » be necessary to monitor plant survival and long-term productivity as affected by genetic changes that improve forage quality. Information on the conversion processes that will be used and the biomass characteristics that affect conversion efficiency and rate is absolutely essential as well as information on the relative economic value of specific traits. Because most forage or biomass quality characteristics are highly affected by plant maturity, it is suggested that plant material of specific maturity stages be used in research to determining desirable feedstock quality characteristics. Plant material could be collected at various stages of development from an array of environments and storage conditions that could be used in conversion research. The same plant material could be used to develop NIRS calibrations that could be used by breeders in their selection programs and also to develop criteria for a feedstock quality assessment program. Breeding for improved feedstock quality will likely affect the rate of improvement of biomass production per acre. If the same level of resources are used, multi-trait breeding simply reduces the selection pressure and hence the breeding progress that can be made for a single trait unless all the traits are highly correlated. Since desirable feedstock traits are likely to be similar to IVDMD, it is likely that they will not be highly positively correlated with yield. Hence to achieve target yields and improve specific quality traits, it will likely be necessary to increase the resources available to plant breeders. Marker assisted selection will be extremely useful in breeding for quality traits, particularly for traits that can be affected by modifying a few genes. Genetic markers are going to be needed for monitoring gene flow to wild populations. Transformation will be a very useful tool for determining the affects of specific genes on biomass feedstock quality.« less

  19. CHEMICAL FIXATION OF CO2 IN COAL COMBUSTION PRODUCTS AND RECYCLING THROUGH BIOSYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Henry Copeland; Paul Pier; Samantha Whitehead

    2003-12-15

    This Annual Technical Progress Report presents the principle results in enhanced growth of algae using coal combustion products as a catalyst to increase bicarbonate levels in solution. A co-current reactor is present that increases the gas phase to bicarbonate transfer rate by a factor of five to nine. The bicarbonate concentration at a given pH is approximately double that obtained using a control column of similar construction. Algae growth experiments were performed under laboratory conditions to obtain baseline production rates and to perfect experimental methods. The final product of this initial phase in algae production is presented. Algal growth canmore » be limited by several factors, including the level of bicarbonate available for photosynthesis, the pH of the growth solution, nutrient levels, and the size of the cell population, which determines the available space for additional growth. In order to supply additional CO2 to increase photosynthesis and algal biomass production, fly ash reactor has been demonstrated to increase the available CO2 in solution above the limits that are achievable with dissolved gas alone. The amount of dissolved CO2 can be used to control pH for optimum growth. Periodic harvesting of algae can be used to maintain algae in the exponential, rapid growth phase. An 800 liter scale up demonstrated that larger scale production is possible. The larger experiment demonstrated that indirect addition of CO2 is feasible and produces significantly less stress on the algal system. With better harvesting methods, nutrient management, and carbon dioxide management, an annual biomass harvest of about 9,000 metric tons per square kilometer (36 MT per acre) appears to be feasible. To sequester carbon, the algal biomass needs to be placed in a permanent location. If drying is undesirable, the biomass will eventually begin to aerobically decompose. It was demonstrated that algal biomass is a suitable feed to an anaerobic digester to produce methane. The remaining carbonaceous material is essentially bio-inactive and is permanently sequestered. The feasibility of using algae to convert carbon dioxide to a biomass has been demonstrated. This biomass provides a sustainable means to produce methane, ethanol, and/or bio diesel. The first application of concept demonstrated by the project could be to use algal biomass production to capture carbon dioxide associated with ethanol production.« less

  20. Dynamics of Aviation Biofuel Investment, Incentives, and Market Growth: An Exploration Using the Biomass Scenario Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vimmerstedt, Laura; Newes, Emily

    The Federal Aviation Administration promotes the development of an aviation biofuel market, and has pursued a goal of 1 billion gallons of production annually by 2018. Although this goal is unlikely to be met, this analysis applies the Biomass Scenario Model to explore conditions affecting market growth, and identifies policy incentive and oil price conditions under which this level of production might occur, and by what year. Numerous combinations of conditions that are more favorable than current conditions can reach the goal before 2030.

  1. Biomass Energy Data Book: Edition 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Lynn L; Boundy, Robert Gary; Perlack, Robert D

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of the Biomass Program and the Office of Planning, Budget and Analysis in the Department of Energy's Energy Efficiency and Renewable Energy (EERE) program. Designed for use as a desk-top reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use. This is the first edition of the Biomass Energy Data Book and is currently only available online in electronic format.more » There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass is a section on biofuels which covers ethanol, biodiesel and BioOil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is about the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also three appendices which include measures of conversions, biomass characteristics and assumptions for selected tables and figures. A glossary of terms and a list of acronyms are also included for the reader's convenience.« less

  2. Biomass Energy Data Book: Edition 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Lynn L; Boundy, Robert Gary; Badger, Philip C

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the second edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sectionsmore » to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, assumptions for selected tables and figures, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.« less

  3. Biomass Energy Data Book: Edition 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boundy, Robert Gary; Davis, Stacy Cagle

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the third edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sectionsmore » to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.« less

  4. Biomass Energy Data Book: Edition 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boundy, Robert Gary; Diegel, Susan W; Wright, Lynn L

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sectionsmore » to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also two appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.« less

  5. External benefits of biomass-e in Spain: an economic valuation.

    PubMed

    Soliño, Mario

    2010-03-01

    This article analyses the willingness to pay for a program that promotes the production of electricity from forest biomass, instead of that based on fossil fuels. The program decreases greenhouse gas emissions, reduces the pressure on non-renewable resources, lowers the risk of summer forest fires, creates employment in rural areas. Results from a choice experiment show that consumers are willing to pay a higher price for electricity in order to obtain the external benefits of the substitution. Respondents attach a higher value to programs that decrease the pressure of non-renewable resources and the risk of forest fires. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  6. Evaluating factors driving population densities of mayfly nymphs in Western Lake Erie

    USGS Publications Warehouse

    Stapanian, Martin A.; Kocovsky, Patrick; Bodamer Scarbro, Betsy L.

    2017-01-01

    Mayfly (Hexagenia spp.) nymphs have been widely used as indicators of water and substrate quality in lakes. Thermal stratification and the subsequent formation of benthic hypoxia may result in nymph mortality. Our goal was to identify potential associations between recent increases in temperature and eutrophication, which exacerbate hypoxic events in lakes, and mayfly populations in Lake Erie. Nymphs were collected during April–May 1999–2014. We used wind and temperature data to calculate four measures of thermal stratification, which drives hypoxic events, during summers of 1998–2013. Bottom trawl data collected during August 1998–2013 were used to estimate annual biomass of fishes known to be predators of mayfly nymphs. We used Akaike's Information Criterion to identify the best one- and two-predictor regression models of annual population densities (N/m2) of age-1 and age-2 nymphs, in which candidate predictors included the four measures of stratification, predator fish biomass, competition, and population densities of age-2 (for age-1) and age-1 (for age-2) nymphs from the previous year. Densities of both age classes of nymphs declined over the time series. Population densities of age-1 and age-2 nymphs from the previous year best predicted annual population densities of nymphs of both age classes. However, hypoxic conditions (indicated by stratification) and predation both had negative effects on annual population density of mayflies. Compared with predation, hypoxia had an inconsistent effect on annual nymph density. The increases in temperature and eutrophication in Lake Erie, which exacerbate hypoxic events, may have drastic effects on the mayfly populations.

  7. Iowa's forest resources in 2004

    Treesearch

    Susan J. Crocker; W. Keith Moser; Gary J. Brand; Aron Flickinger

    2006-01-01

    Reports analysis of data for five annual panels (2000-2004) of inventory of Iowa's forest resources and one panel (1999 to 2004) of growth, removals, and mortality. Includes information on fores area, number of trees, volume, biomass growth, removals, mortality, and forest health.

  8. Indiana's forest resources in 2005

    Treesearch

    Christopher Woodall; Gary Brand; Joey Gallion

    2006-01-01

    Reports the initial results of five annual panels (2001-2005) of the inventory of Indiana's forest resources and two panels (2004 and 2005) of growth, removals, and mortality. Includes information on forest area, number of trees, volume, biomass, growth, removals, mortality, and forest health.

  9. From phytoaccumulation to post-harvest use of water fern for landfill management.

    PubMed

    Song, Uhram; Kim, Dae Won; Waldman, Bruce; Lee, Eun Ju

    2016-11-01

    We examined the potential of Azolla japonica as a remediating plant for leachate channels and post-accumulation use as fertilizer for landfill slope. The harvested biomass of Azolla after one month grown in leachate was 254% that of the initial biomass and the predicted annual harvestable biomass of Azolla using a growth model was 32 times that of the initial biomass. Na, Fe, Mn, Mg, and P were accumulated in Azolla at very high concentrations. Such rapid increase of biomass and high accumulation rates suggest that this plant could be an excellent remediating plant. The post-harvest use of Azolla as compost was studied for the management and use of phytoaccumulating Azolla. Metal contents of Azolla compost were below permissible limits for co-composting material. Nitrogen, organic matter, P, and Mg content of the Azolla compost improved the soil condition of the landfill and enhanced ecophysiological responses of the plants. The application of Azolla compost can improve management of sanitary landfills, including the restoration of vegetation. Considering its ease of harvesting, high accumulation rates, harvestable biomass and suitability for composting, Azolla can provide a suitable solution for sustainable management of leachate channels and landfill slopes. Copyright © 2016. Published by Elsevier Ltd.

  10. A Connection between Colony Biomass and Death in Caribbean Reef-Building Corals

    PubMed Central

    Thornhill, Daniel J.; Rotjan, Randi D.; Todd, Brian D.; Chilcoat, Geoff C.; Iglesias-Prieto, Roberto; Kemp, Dustin W.; LaJeunesse, Todd C.; Reynolds, Jennifer McCabe; Schmidt, Gregory W.; Shannon, Thomas; Warner, Mark E.; Fitt, William K.

    2011-01-01

    Increased sea-surface temperatures linked to warming climate threaten coral reef ecosystems globally. To better understand how corals and their endosymbiotic dinoflagellates (Symbiodinium spp.) respond to environmental change, tissue biomass and Symbiodinium density of seven coral species were measured on various reefs approximately every four months for up to thirteen years in the Upper Florida Keys, United States (1994–2007), eleven years in the Exuma Cays, Bahamas (1995–2006), and four years in Puerto Morelos, Mexico (2003–2007). For six out of seven coral species, tissue biomass correlated with Symbiodinium density. Within a particular coral species, tissue biomasses and Symbiodinium densities varied regionally according to the following trends: Mexico≥Florida Keys≥Bahamas. Average tissue biomasses and symbiont cell densities were generally higher in shallow habitats (1–4 m) compared to deeper-dwelling conspecifics (12–15 m). Most colonies that were sampled displayed seasonal fluctuations in biomass and endosymbiont density related to annual temperature variations. During the bleaching episodes of 1998 and 2005, five out of seven species that were exposed to unusually high temperatures exhibited significant decreases in symbiotic algae that, in certain cases, preceded further decreases in tissue biomass. Following bleaching, Montastraea spp. colonies with low relative biomass levels died, whereas colonies with higher biomass levels survived. Bleaching- or disease-associated mortality was also observed in Acropora cervicornis colonies; compared to A. palmata, all A. cervicornis colonies experienced low biomass values. Such patterns suggest that Montastraea spp. and possibly other coral species with relatively low biomass experience increased susceptibility to death following bleaching or other stressors than do conspecifics with higher tissue biomass levels. PMID:22216307

  11. Inter-annual variations of CO2 observed by commercial airliner in the CONTRAIL project

    NASA Astrophysics Data System (ADS)

    Sawa, Yousuke; Machida, Toshinobu; Matsueda, Hidekazu; Niwa, Yosuke; Umezawa, Taku

    2016-04-01

    Since 2005, we have conducted an observation program for greenhouse gases using the passenger aircraft of the Japan Airlines named Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL). Over the past 10 years, successful operation of Continuous CO2 Measuring Equipment (CME) has delivered more than 6 million in-situ CO2 data from about 12000 flights between Japan and Europe, Australia, North America, or Asia. The large number of CME data enable us to well characterize spatial distributions and seasonal changes of CO2 in wide regions of the globe especially the Asia-Pacific regions. While the mean growth rates for the past 10 years were about 2 ppm/year, large growth rates of about 3 ppm/year were found in the wide latitudinal bands from 30S to 70N from the second half of 2012 to the first half of 2013. The multiyear data sets have the potential to help understand the global/regional CO2 budget. One good example is the significant inter-annual difference in CO2 vertical profiles observed over Singapore between October 2014 and October 2015, which is attributable to the massive biomass burnings in Indonesia in 2015.

  12. Caribbean-wide, long-term study of seagrass beds reveals local variations, shifts in community structure and occasional collapse.

    PubMed

    van Tussenbroek, Brigitta I; Cortés, Jorge; Collin, Rachel; Fonseca, Ana C; Gayle, Peter M H; Guzmán, Hector M; Jácome, Gabriel E; Juman, Rahanna; Koltes, Karen H; Oxenford, Hazel A; Rodríguez-Ramirez, Alberto; Samper-Villarreal, Jimena; Smith, Struan R; Tschirky, John J; Weil, Ernesto

    2014-01-01

    The CARICOMP monitoring network gathered standardized data from 52 seagrass sampling stations at 22 sites (mostly Thalassia testudinum-dominated beds in reef systems) across the Wider Caribbean twice a year over the period 1993 to 2007 (and in some cases up to 2012). Wide variations in community total biomass (285 to >2000 g dry m(-2)) and annual foliar productivity of the dominant seagrass T. testudinum (<200 and >2000 g dry m(-2)) were found among sites. Solar-cycle related intra-annual variations in T. testudinum leaf productivity were detected at latitudes > 16°N. Hurricanes had little to no long-term effects on these well-developed seagrass communities, except for 1 station, where the vegetation was lost by burial below ∼1 m sand. At two sites (5 stations), the seagrass beds collapsed due to excessive grazing by turtles or sea-urchins (the latter in combination with human impact and storms). The low-cost methods of this regional-scale monitoring program were sufficient to detect long-term shifts in the communities, and fifteen (43%) out of 35 long-term monitoring stations (at 17 sites) showed trends in seagrass communities consistent with expected changes under environmental deterioration.

  13. Climate-related variation in plant peak biomass and growth phenology across Pacific Northwest tidal marshes

    USGS Publications Warehouse

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.

    2018-01-01

    The interannual variability of tidal marsh plant phenology is largely unknown and may have important ecological consequences. Marsh plants are critical to the biogeomorphic feedback processes that build estuarine soils, maintain marsh elevation relative to sea level, and sequester carbon. We calculated Tasseled Cap Greenness, a metric of plant biomass, using remotely sensed data available in the Landsat archive to assess how recent climate variation has affected biomass production and plant phenology across three maritime tidal marshes in the Pacific Northwest of the United States. First, we used clipped vegetation plots at one of our sites to confirm that tasseled cap greenness provided a useful measure of aboveground biomass (r2 = 0.72). We then used multiple measures of biomass each growing season over 20–25 years per study site and developed models to test how peak biomass and the date of peak biomass varied with 94 climate and sea-level metrics using generalized linear models and Akaike Information Criterion (AIC) model selection. Peak biomass was positively related to total annual precipitation, while the best predictor for date of peak biomass was average growing season temperature, with the peak 7.2 days earlier per degree C. Our study provides insight into how plants in maritime tidal marshes respond to interannual climate variation and demonstrates the utility of time-series remote sensing data to assess ecological responses to climate stressors.

  14. Biomass Burning Emissions – The Importance of Reducing Uncertainties for Improved Regulatory Decision; an EPA Perspective

    EPA Science Inventory

    Biomass burning emissions from wildland and prescribed fires can have far reaching impacts in several of EPA’s regulatory programs under the Clean Air Act, ultimately affecting decisions on actions taken under State Implementation Plans (SIPs), and programs such as Visibility and...

  15. Abiotic factors influencing biomass accumulation of green tide causing Ulva spp. on Pyropia culture rafts in the Yellow Sea, China.

    PubMed

    Keesing, John K; Liu, Dongyan; Shi, Yajun; Wang, Yujue

    2016-04-15

    Annually recurrent green-tides in the Yellow Sea have been shown to result from direct disposal into the sea of fouling Ulva from Pyropia aquaculture. The role abiotic factors play in Ulva biomass accumulation on rafts was studied to find ways to mitigate this problem. Dissolved inorganic nitrogen (DIN) was very high at all sites, but the highest Ulva biomass was associated with the lowest DIN and anthropogenic N. Under luxuriant background nutrient conditions, variability in temperature and periods of emersion, rather than pH, light and salinity determined Ulva biomass. Two dominant species of Ulva displayed differing tolerances to temperature and desiccation which helped explain why Ulva prolifera dominates floating green-tides. Rather than trying to mitigate green-tides only by reducing nutrient pollution, an earlier harvest of Pyropia in southern Jiangsu Province especially before temperatures increase greatly above 10°C during April, could reduce the biomass of U. prolifera disposed from rafts. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  16. 7 CFR 1450.104 - Signup.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching Payments... biomass conversion facility. The application must be submitted to the FSA county office and approved by CCC before any payment is made by the qualified biomass conversion facility for the eligible material...

  17. 7 CFR 1450.104 - Signup.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching Payments... biomass conversion facility. The application must be submitted to the FSA county office and approved by CCC before any payment is made by the qualified biomass conversion facility for the eligible material...

  18. 7 CFR 1450.104 - Signup.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching Payments... biomass conversion facility. The application must be submitted to the FSA county office and approved by CCC before any payment is made by the qualified biomass conversion facility for the eligible material...

  19. 7 CFR 1450.104 - Signup.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching Payments... biomass conversion facility. The application must be submitted to the FSA county office and approved by CCC before any payment is made by the qualified biomass conversion facility for the eligible material...

  20. Putney Basketville Site Biomass CHP Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunsberger, Randolph; Mosey, Gail

    2013-10-01

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response Center for Program Analysis developed the RE-Powering America's Land initiative to reuse contaminated sites for renewable energy generation when aligned with the community's vision for the site. The Putney, Vermont, Basketville site, formerly the location of a basket-making facility and a paper mill andwoolen mill, was selected for a feasibility study under the program. Biomass was chosen as the renewable energy resource based on abundant woody-biomass resources available in the area. Biomass combined heat and power (CHP) was selected as the technology due to nearby loads, includingmore » Putney Paper and Landmark College.« less

  1. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, R.; Kinchin, C.; Markham, J.

    2014-09-11

    The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.

  2. Energy Conversion and Storage Program

    NASA Astrophysics Data System (ADS)

    Cairns, E. J.

    1993-06-01

    This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

  3. Lakewide estimates of alewife biomass and Chinook salmon abundance and consumption in Lake Ontario, 1989–2005: implications for prey fish sustainability

    USGS Publications Warehouse

    Murry, Brent A.; Connerton, Michael J.; O'Gorman, Robert; Stewart, Donald J.; Ringlerd, Neil H.

    2010-01-01

    Stocking levels of Chinook salmon Oncorhynchus tshawytscha for Lake Ontario have been highly controversial since the early 1990s, largely because of uncertainties about lakewide abundance and rates of prey consumption. Previous estimates have focused on years before 1995; since then, however, the Lake Ontario ecosystem has undergone substantial changes, and there is new evidence of extensive natural recruitment. Presented here are new abundance estimates of Chinook salmon and alewives Alosa pseudoharengus in Lake Ontario and a reevaluation of the potential risk of alewife population collapse. We found that Lake Ontario has been supporting, on average (1989–2005), 1.83 × 106 (range, 1.08 × 106 to 3.24 × 106) Chinook salmon of ages 1–4, amounting to a mean annual biomass of 11.33 × 103 metric tons (range, 5.83 × 103 to 23.04 × 103 metric tons). During the same period (1989–2005), the lake supported an alewife biomass of 173.66 × 103 metric tons (range, 62.37 × 103 to 345.49 × 103 metric tons); Chinook salmon of ages 1–4 consumed, on average, 22% (range, 11–44%) of the alewife biomass annually. Because our estimates probably underestimate total consumption and because Chinook salmon are only one of several salmonine species that depend on alewives, predation pressure on the Lake Ontario alewife population may be high enough to raise concerns about long-term stability of this predator–prey system.

  4. Nutrient Distribution Indicated Whole-Tree Harvesting as a Possible Factor Restricting the Sustainable Productivity of a Poplar Plantation System in China

    PubMed Central

    Ge, Xiaomin; Tian, Ye; Tang, Luozhong

    2015-01-01

    We evaluated the biomass and contents of five major macronutrients (N, P, K, Ca and Mg) in 10-year-old poplar trees (Populus deltoids Bartr. cv. “Lux”), and determined their nutrient use efficiencies (NUEs) at Zhoushan Forestry Farm (32°20′ N, 119°40′ E), Jiangsu province, in eastern China. The above- and below-ground biomass of poplar trees was 161.7 t ha-1, of which 53.3% was stemwood. The nutrient contents in the aboveground part were as follows: 415.1 kg N ha-1, 29.7 kg P ha-1, 352.0 kg K ha-1, 1083.0 kg Ca ha-1, and 89.8 kg Mg ha-1. The highest nutrient contents were in stembark, followed by branches, roots, stemwood, and foliage. The NUEs of the aboveground parts of poplar for N, P, K, Ca and Mg were 0.313, 4.377, 0.369, 0.120, 1.448 t dry biomass kg-1 nutrient, respectively, while those of stemwood were 1.294, 33.154, 1.253, 0.667, and 3.328 t dry biomass kg-1, respectively. The cycling coefficients, defined as the percentage of annual nutrient return in annual nutrient uptake, of N, P, K, Ca and Mg for the aboveground part were 87, 95, 69, 92, and 84%, respectively. Based on the NUE and nutrient cycling characteristics, shifting from whole-tree harvesting to stemwood-only harvesting and appropriately extending the harvest rotation could prevent site deterioration and support sustainable productivity of poplar plantation systems. PMID:25992549

  5. A new NDVI measure that overcomes data sparsity in cloud-covered regions predicts annual variation in ground-based estimates of high arctic plant productivity

    NASA Astrophysics Data System (ADS)

    Rune Karlsen, Stein; Anderson, Helen B.; van der Wal, René; Bremset Hansen, Brage

    2018-02-01

    Efforts to estimate plant productivity using satellite data can be frustrated by the presence of cloud cover. We developed a new method to overcome this problem, focussing on the high-arctic archipelago of Svalbard where extensive cloud cover during the growing season can prevent plant productivity from being estimated over large areas. We used a field-based time-series (2000-2009) of live aboveground vascular plant biomass data and a recently processed cloud-free MODIS-Normalised Difference Vegetation Index (NDVI) data set (2000-2014) to estimate, on a pixel-by-pixel basis, the onset of plant growth. We then summed NDVI values from onset of spring to the average time of peak NDVI to give an estimate of annual plant productivity. This remotely sensed productivity measure was then compared, at two different spatial scales, with the peak plant biomass field data. At both the local scale, surrounding the field data site, and the larger regional scale, our NDVI measure was found to predict plant biomass (adjusted R 2 = 0.51 and 0.44, respectively). The commonly used ‘maximum NDVI’ plant productivity index showed no relationship with plant biomass, likely due to some years having very few cloud-free images available during the peak plant growing season. Thus, we propose this new summed NDVI from onset of spring to time of peak NDVI as a proxy of large-scale plant productivity for regions such as the Arctic where climatic conditions restrict the availability of cloud-free images.

  6. Drier climate and productivity of operational poplar plantation - four years of throughfall exclusion experiment

    NASA Astrophysics Data System (ADS)

    Orsag, M.; Fischer, M.; Trnka, M.

    2016-12-01

    The production of woody biomass in short rotation woody coppice (SRWC) is considered as a suitable source of renewable energy for climate conditions prevailing in central European countries. The productivity of SRWC is largely dependent on the environmental conditions and the biomass yield can be severely compromised when water supply is limited. One of the climate change consequences predicted for Central Europe is the increasing frequency and duration of drought spells as a result of increased air temperature and temporally uneven distribution of precipitation. Therefore, a small-scale rain-throughfall exclusion experiment was established in 2011 in an operational SRWC plantation (hybrid poplar NM6) in the Bohemian-Moravian highlands (Czech Republic). Three times replicated experimental block comprised a treatment with 70 % rain-throughfall exclusion (R) and an adjacent control treatment (C) of the same size (25 m2). Above-ground biomass productivity (ABP) and soil moisture patterns were measured and evaluated during growing seasons 2011-2015. We observed high heterogeneity of soil moisture among blocks, resulting in high variability in ABP. The treatment effect was more pronounced with increasing seasonal precipitation. Generally, the R treatments showed lower ABP by 8.4 %, higher mortality by 6.7 % and strong competitive relationships among neighboring trees, which led to formation of few dominant trees, comprising 30 % of the total biomass at particular plot, accounting for 50 % of the annual ABP per 25 m2 plot. Our results suggests considerable resilience of hybrid poplar NM6 to decreased soil-water availability over long-term, while keeping minimal annual ABP of about 4.5 ton hectare (dry matter).

  7. 7 CFR 1450.202 - Project area selection criteria.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM...) The dry tons of renewable biomass projected to be available from sources other than the eligible crops... opportunity for producers and local investors to participate in the ownership of the biomass conversion...

  8. 7 CFR 1450.202 - Project area selection criteria.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM...) The dry tons of renewable biomass projected to be available from sources other than the eligible crops... opportunity for producers and local investors to participate in the ownership of the biomass conversion...

  9. 7 CFR 1450.202 - Project area selection criteria.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM...) The dry tons of renewable biomass projected to be available from sources other than the eligible crops... opportunity for producers and local investors to participate in the ownership of the biomass conversion...

  10. 7 CFR 1450.202 - Project area selection criteria.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM...) The dry tons of renewable biomass projected to be available from sources other than the eligible crops... opportunity for producers and local investors to participate in the ownership of the biomass conversion...

  11. Annual primary production: Patterns and mechanisms of change in a nutrient-rich tidal ecosystem

    USGS Publications Warehouse

    Jassby, Alan D.; Cloern, James E.; Cole, B.E.

    2002-01-01

    Although nutrient supply often underlies long-term changes in aquatic primary production, other regulatory processes can be important. The Sacramento-San Joaquin River Delta, a complex of tidal waterways forming the landward portion of the San Francisco Estuary, has ample nutrient supplies, enabling us to examine alternate regulatory mechanisms over a 21-yr period. Delta-wide primary productivity was reconstructed from historical water quality data for 1975–1995. Annual primary production averaged 70 g C m−2, but it varied by over a factor of five among years. At least four processes contributed to this variability: (1) invasion of the clam Potamocorbula amurensis led to a persistent decrease in phytoplankton biomass (chlorophyll a) after 1986; (2) a long-term decline in total suspended solids—probably at least partly because of upstream dam construction—increased water transparency and phytoplankton growth rate; (3) river inflow, reflecting climate variability, affected biomass through fluctuations in flushing and growth rates through fluctuations in total suspended solids; and (4) an additional pathway manifesting as a long-term decline in winter phytoplankton biomass has been identified, but its genesis is uncertain. Overall, the Delta lost 43% in annual primary production during the period. Given the evidence for food limitation of primary consumers, these findings provide a partial explanation for widespread Delta species declines over the past few decades. Turbid nutrient-rich systems such as the Delta may be inherently more variable than other tidal systems because certain compensatory processes are absent. Comparisons among systems, however, can be tenuous because conclusions about the magnitude and mechanisms of variability are dependent on length of data record.  

  12. Deforestation and greenhouse gas emissions associated with fuelwood consumption of the brick making industry in Sudan.

    PubMed

    Alam, Syed Ashraful; Starr, Mike

    2009-01-01

    The study focuses on the role of the fired clay brick making industry (BMI) on deforestation and greenhouse gas (GHG) emissions in Sudan. The BMI is based on numerous kilns that use biomass fuel, mainly wood which is largely harvested unsustainably. This results in potential deforestation and land degradation. Fuelwood consumption data was collected using interviews and questionnaires from 25 BMI enterprises in three administrative regions, namely Khartoum, Kassala and Gezira. Annual fuelwood consumption data (t dm yr(-1)) was converted into harvested biomass (m(3)) using a wood density value of 0.65 t dm m(-3). For annual GHG estimations, the methodological approach outlined by the Intergovernmental Panel on Climate Change (IPCC) was used. According to our results, the annual deforestation associated with the BMI for the whole of Sudan is 508.4x10(3) m(3) of wood biomass, including 267.6x10(3) m(3) round wood and 240.8x10(3) m(3) branches and small trees. Total GHG emissions from the Sudanese BMI are estimated at 378028 t CO(2), 15554 t CO, 1778 t CH(4), 442 t NO(X), 288 t NO and 12 t N(2)O per annum. The combined CO(2)-equivalent (global warming potential for 100-year time horizon) of the GHG emissions (excluding NO(X) and NO) is 455666 t yr(-1). While these emissions form only a small part of Sudan's total GHG emissions, the associated deforestation and land degradation is of concern and effort should be made for greater use of sustainable forest resources and management.

  13. Response of shoal grass, Halodule wrightii, to extreme winter conditions in the Lower Laguna Madre, Texas

    USGS Publications Warehouse

    Hicks, D.W.; Onuf, C.P.; Tunnell, J.W.

    1998-01-01

    Effects of a severe freeze on the shoal grass, Halodule wrightii, were documented through analysis of temporal and spatial trends in below-ground biomass. The coincidence of the second lowest temperature (-10.6??C) in 107 years of record, 56 consecutive hours below freezing, high winds and extremely low water levels exposed the Laguna Madre, TX, to the most severe cold stress in over a century. H. wrightii tolerated this extreme freeze event. Annual pre- and post-freeze surveys indicated that below-ground biomass estimated from volume was Unaffected by the freeze event. Nor was there any post-freeze change in biomass among intertidal sites directly exposed to freezing air temperatures relative to subtidal sites which remained submerged during the freezing period.

  14. Energy Potential of Biomass from Conservation Grasslands in Minnesota, USA

    PubMed Central

    Jungers, Jacob M.; Fargione, Joseph E.; Sheaffer, Craig C.; Wyse, Donald L.; Lehman, Clarence

    2013-01-01

    Perennial biomass from grasslands managed for conservation of soil and biodiversity can be harvested for bioenergy. Until now, the quantity and quality of harvestable biomass from conservation grasslands in Minnesota, USA, was not known, and the factors that affect bioenergy potential from these systems have not been identified. We measured biomass yield, theoretical ethanol conversion efficiency, and plant tissue nitrogen (N) as metrics of bioenergy potential from mixed-species conservation grasslands harvested with commercial-scale equipment. With three years of data, we used mixed-effects models to determine factors that influence bioenergy potential. Sixty conservation grassland plots, each about 8 ha in size, were distributed among three locations in Minnesota. Harvest treatments were applied annually in autumn as a completely randomized block design. Biomass yield ranged from 0.5 to 5.7 Mg ha−1. May precipitation increased biomass yield while precipitation in all other growing season months showed no affect. Averaged across all locations and years, theoretical ethanol conversion efficiency was 450 l Mg−1 and the concentration of plant N was 7.1 g kg−1, both similar to dedicated herbaceous bioenergy crops such as switchgrass. Biomass yield did not decline in the second or third year of harvest. Across years, biomass yields fluctuated 23% around the average. Surprisingly, forb cover was a better predictor of biomass yield than warm-season grass with a positive correlation with biomass yield in the south and a negative correlation at other locations. Variation in land ethanol yield was almost exclusively due to variation in biomass yield rather than biomass quality; therefore, efforts to increase biomass yield might be more economical than altering biomass composition when managing conservation grasslands for ethanol production. Our measurements of bioenergy potential, and the factors that control it, can serve as parameters for assessing the economic viability of harvesting conservation grasslands for bioenergy. PMID:23577208

  15. Influence of corn residue harvest management on grain, stover, and energy yields

    USDA-ARS?s Scientific Manuscript database

    Economic, environmental, and energy independence issues are contributing to rising fossil fuel prices, petroleum supply concerns, and a growing interest in biomass feedstocks as renewable energy sources. Potential feedstocks include perennial grasses, timber, and annual grain crops with our focus be...

  16. Distribution of energy content in corn plants as influenced by corn residue management

    USDA-ARS?s Scientific Manuscript database

    Economic, environmental, climate change and energy independence issues are contributing to rising fossil fuel prices and creating a growing interest in the development and utilization of biomass feedstocks for renewable energy. Potential feedstocks include perennial grasses, timber, and annual grain...

  17. CHIRONOMID EMERGENCE AND RELATIVE EMERGENT BIOMASS FROM TWO ALABAMA STREAMS

    EPA Science Inventory

    Chironomid pupal exuviae were sampled monthly using drift nets and hand sieves over an annual cycle from Hendrick Mill Branch (HMB; Blount County, AL) and Payne Creek (PC; Hale County, AL). Taxon richness, community composition, and emergence phonologies were similar despite mar...

  18. Large-scale synchronization of annual recruitment success and stock size in Wadden Sea populations of the mussel Mytilus edulis L.

    NASA Astrophysics Data System (ADS)

    Beukema, J. J.; Dekker, R.; van Stralen, M. R.; de Vlas, J.

    2015-12-01

    Simultaneous abundance or shortage of mussels over vast areas may seriously affect fishery as well as shellfish-eating birds. We studied synchrony in annual recruit numbers and stock sizes (biomass) of mussels on the base of long-term observations in various parts of the Dutch (and German) Wadden Sea, including regular monitoring on Balgzand (a 50-km2 tidal flat area) and published or unpublished records for other parts of the Wadden Sea. Annual records for 37 years of mussel seed abundance in the eastern and western half of the Dutch Wadden Sea proved to be mutually well correlated and were also significantly correlated with annually assessed numerical densities of mussel recruits on Balgzand. The scarce long-term series available on mussel biomass pointed to significantly positive correlations between stock sizes on Balgzand and those in the northern German Wadden Sea, at about 300 km distance. The incidence of severe winters, which occurrence is synchronized over areas in the order of thousands of km, is identified as the dominant causative factor behind Wadden Sea-wide recruitment synchrony. Severe winters are known to reduce abundance of predators on tiny bivalve spat, and this process may overrule local processes causing abundance variation in bivalves. As such extreme winters are infrequent (usually only one or two per decade), sensible studies on the phenomenon of synchronization in abundance of Wadden Sea bivalves should be based on data series of sufficient length, covering decades.

  19. Impacts of disturbance history on annual carbon stocks and fluxes in southeastern US forests during 1986-2010 using remote sensing, forest inventory data, and a carbon cycle model

    NASA Astrophysics Data System (ADS)

    Gu, H.; Zhou, Y.; Williams, C. A.

    2017-12-01

    Accurate assessment of forest carbon storage and uptake is central to policymaking aimed at mitigating climate change and understanding the role forests play in the global carbon cycle. Disturbance events are highly heterogeneous in space and time, impacting forest carbon dynamics and challenging the quantification and reporting of carbon stocks and fluxes. This study documents annual carbon stocks and fluxes from 1986 and 2010 mapped at 30-m resolution across southeastern US forests, characterizing how they respond to disturbances and ensuing regrowth. Forest inventory data (FIA) are used to parameterize a carbon cycle model (CASA) to represent post-disturbance carbon trajectories of carbon pools and fluxes with time following harvest, fire and bark beetle disturbances of varying severity and across forest types and site productivity settings. Time since disturbance at 30 meters is inferred from two remote-sensing data sources: disturbance year (NAFD, MTBS and ADS) and biomass (NBCD 2000) intersected with FIA-derived curves of biomass accumulation with stand age. All of these elements are combined to map carbon stocks and fluxes at a 30-m resolution for the year 2010, and to march backward in time for continuous, annual reporting. Results include maps of annual carbon stocks and fluxes for forests of the southeastern US, and analysis of spatio-temporal patterns of carbon sources/sinks at local and regional scales.

  20. Food and biomass potential of Prunus virginiana L. (chokecherry).

    PubMed

    Wang, Sunmin; Young, Lester; Faye, Amberly; Li, Bonnie; Clancy, Johanna; Bors, Bob; Reaney, Martin

    2012-03-14

    Prunus virginiana L. (chokecherry) fruit has potential to provide both food and energy and as annual yield of biomass and energy are much greater than annual crops such as canola and wheat. We determined chokecherry fruit weight fractions as well as pit and extracted seed oil concentrations and fatty acid composition. Gross energy for each of the fractions was determined, as were carbon and nitrogen content. Extrapolation of these data suggests that gross energy from pits alone over a 24-year period (890 GJ·ha(-1)) is equivalent to that from an entire canola/wheat rotation (850 GJ·ha(-1)). After maturity, pulp contributes an additional 1130 GJ·ha(-1) over 21 years from ~3.4 t·ha(-1)·year(-1) (dw), while wood from pruning could add another 60 GJ·ha(-1)·year(-1). Over this time period, chokecherry would produce 1.5-2.5 times the amount of oil produced by a canola/wheat rotation.

  1. Incorrect interpretation of carbon mass balance biases global vegetation fire emission estimates

    PubMed Central

    Surawski, N. C.; Sullivan, A. L.; Roxburgh, S. H.; Meyer, C.P. Mick; Polglase, P. J.

    2016-01-01

    Vegetation fires are a complex phenomenon in the Earth system with many global impacts, including influences on global climate. Estimating carbon emissions from vegetation fires relies on a carbon mass balance technique that has evolved with two different interpretations. Databases of global vegetation fire emissions use an approach based on ‘consumed biomass', which is an approximation to the biogeochemically correct ‘burnt carbon' approach. Here we show that applying the ‘consumed biomass' approach to global emissions from vegetation fires leads to annual overestimates of carbon emitted to the atmosphere by 4.0% or 100 Tg compared with the ‘burnt carbon' approach. The required correction is significant and represents ∼9% of the net global forest carbon sink estimated annually. Vegetation fire emission studies should use the ‘burnt carbon' approach to quantify and understand the role of this burnt carbon, which is not emitted to the atmosphere, as a sink enriched in carbon. PMID:27146785

  2. Feasibility Study of Grid Connected PV-Biomass Integrated Energy System in Egypt

    NASA Astrophysics Data System (ADS)

    Barakat, Shimaa; Samy, M. M.; Eteiba, Magdy B.; Wahba, Wael Ismael

    2016-10-01

    The aim of this paper is to present a feasibility study of a grid connected photovoltaic (PV) and biomass Integrated renewable energy (IRE) system providing electricity to rural areas in the Beni Suef governorate, Egypt. The system load of the village is analyzed through the environmental and economic aspects. The model has been designed to provide an optimal system configuration based on daily data for energy availability and demands. A case study area, Monshaet Taher village (29° 1' 17.0718"N, 30° 52' 17.04"E) is identified for economic feasibility in this paper. HOMER optimization model plan imputed from total daily load demand, 2,340 kWh/day for current energy consuming of 223 households with Annual Average Insolation Incident on a Horizontal Surface of 5.79 (kWh/m2/day) and average biomass supplying 25 tons / day. It is found that a grid connected PV-biomass IRE system is an effective way of emissions reduction and it does not increase the investment of the energy system.

  3. Autotrophic processes in meromictic Big Soda Lake, Nevada.

    USGS Publications Warehouse

    Cloern, J.E.; Cole, B.E.; Oremland, R.S.

    1983-01-01

    Daily rates of oxygenic photosynthesis (OP) by phytoplankton, anoxygenic photosynthesis (AP) by purple sulfur bacteria, and chemoautotrophic productivity (CP = dark CO2 assimilation) were measured once each season. Total daily productivity and the relative importance of each autotrophic process varied with seasonal changes in vertical mixing, light availability, and the biomass of phototrophs. Daily productivity was highest (2830 mg C.m-2) and was dominated by OP in winter when the mixolimnion was isothermal, the biomass of phytoplankton was high, and the biomass of purple sulfur bacteria was low. During the summer-fall period of thermal stratification, phytoplankton biomass decreased, a plate of purple sulfur bacteria formed below the oxycline, and daily rates of dark CO2 assimilation (CP = 390-680 mg C.m-2) exceeded phototrophic productivity (OP + AP = 200-370 mg C.m-2). Total annual productivity was approx 500 g C.m-2, of which 60% was produced by phytoplankton (mostly in winter), 30% by chemoautotrophs (nitrifying and sulfur-oxidizing bacteria), and only 10% by photosynthetic bacteria. -Authors

  4. Edge effects on growth and biomass partitioning of an Amazonian understory herb (Heliconia acuminata; Heliconiaceae).

    PubMed

    Bruna, Emilio M; de Andrade, Ana Segalin

    2011-10-01

    After deforestation, environmental changes in the remaining forest fragments are often most intense near the forest edge, but few studies have evaluated plant growth or plasticity of plant growth in response to edge effects. In a 2-year common garden experiment, we compared biomass allocation and growth of Heliconia acuminata with identical genotypes grown in 50 × 35 m common gardens on a 25-year-old edge and in a forest interior site. Genetically identical plants transplanted to the forest edge and understory exhibited different patterns of growth and biomass allocation. However, individuals with identical genotypes in the same garden often had very different responses. Plants on forest edges also had higher growth rates and increased biomass at the end of the experiment, almost certainly due to the increased light on the forest edge. With over 70000 km of forest edge created annually in the Brazilian Amazon, phenotypic plasticity may play an important role in mediating plant responses to these novel environmental conditions.

  5. FETC/EPRI Biomass Cofiring Cooperative Agreement. Quarterly technical report, April 1-June 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, E.; Tillman, D.

    1997-12-01

    The FETC/EPRI Biomass Cofiring Program has accelerated the pace of cofiring development by increasing the testing activities plus the support activities for interpreting test results. Past tests conducted and analyzed include the Allen Fossil Plant and Seward Generating Station programs. On-going tests include the Colbert Fossil Plant precommercial test program, the Greenidge Station commercialization program, and the Blount St. Station switchgrass program. Tests in the formative stages included the NIPSCO cofiring test at Michigan City Generating Station. Analytical activities included modeling and related support functions required to analyze the cofiring test results, and to place those results into context. Amongmore » these activities is the fuel availability study in the Pittsburgh, PA area. This study, conducted for Duquesne Light, supports their initial investigation into reburn technology using wood waste as a fuel. This Quarterly Report, covering the third quarter of the FETC/EPRI Biomass Cofiring Program, highlights the progress made on the 16 projects funded under this cooperative agreement.« less

  6. Forecasting tidal marsh elevation and habitat change through fusion of Earth observations and a process model

    USGS Publications Warehouse

    Byrd, Kristin B.; Windham-Myers, Lisamarie; Leeuw, Thomas; Downing, Bryan D.; Morris, James T.; Ferner, Matthew C.

    2016-01-01

    Reducing uncertainty in data inputs at relevant spatial scales can improve tidal marsh forecasting models, and their usefulness in coastal climate change adaptation decisions. The Marsh Equilibrium Model (MEM), a one-dimensional mechanistic elevation model, incorporates feedbacks of organic and inorganic inputs to project elevations under sea-level rise scenarios. We tested the feasibility of deriving two key MEM inputs—average annual suspended sediment concentration (SSC) and aboveground peak biomass—from remote sensing data in order to apply MEM across a broader geographic region. We analyzed the precision and representativeness (spatial distribution) of these remote sensing inputs to improve understanding of our study region, a brackish tidal marsh in San Francisco Bay, and to test the applicable spatial extent for coastal modeling. We compared biomass and SSC models derived from Landsat 8, DigitalGlobe WorldView-2, and hyperspectral airborne imagery. Landsat 8-derived inputs were evaluated in a MEM sensitivity analysis. Biomass models were comparable although peak biomass from Landsat 8 best matched field-measured values. The Portable Remote Imaging Spectrometer SSC model was most accurate, although a Landsat 8 time series provided annual average SSC estimates. Landsat 8-measured peak biomass values were randomly distributed, and annual average SSC (30 mg/L) was well represented in the main channels (IQR: 29–32 mg/L), illustrating the suitability of these inputs across the model domain. Trend response surface analysis identified significant diversion between field and remote sensing-based model runs at 60 yr due to model sensitivity at the marsh edge (80–140 cm NAVD88), although at 100 yr, elevation forecasts differed less than 10 cm across 97% of the marsh surface (150–200 cm NAVD88). Results demonstrate the utility of Landsat 8 for landscape-scale tidal marsh elevation projections due to its comparable performance with the other sensors, temporal frequency, and cost. Integration of remote sensing data with MEM should advance regional projections of marsh vegetation change by better parameterizing MEM inputs spatially. Improving information for coastal modeling will support planning for ecosystem services, including habitat, carbon storage, and flood protection.

  7. Full GHG balance of a drained fen peatland cropped to spring barley and reed canary grass using comparative assessment of CO2 fluxes.

    PubMed

    Karki, Sandhya; Elsgaard, Lars; Kandel, Tanka P; Lærke, Poul Erik

    2015-03-01

    Empirical greenhouse gas (GHG) flux estimates from diverse peatlands are required in order to derive emission factors for managed peatlands. This study on a drained fen peatland quantified the annual GHG balance (Carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4), and C exported in crop yield) from spring barley (SB) and reed canary grass (RCG) using static opaque chambers for GHG flux measurements and biomass yield for indirectly estimating gross primary production (GPP). Estimates of ecosystem respiration (ER) and GPP were compared with more advanced but costly and labor-intensive dynamic chamber studies. Annual GHG balance for the two cropping systems was 4.0 ± 0.7 and 8.1 ± 0.2 Mg CO2-Ceq ha(-1) from SB and RCG, respectively (mean ± standard error, n = 3). Annual CH4 emissions were negligible (<0.006 Mg CO2-Ceq ha(-1)), and N2O emissions contributed only 4-13 % of the full GHG balance (0.5 and 0.3 Mg CO2-Ceq ha(-1) for SB and RCG, respectively). The statistical significance of low CH4 and N2O fluxes was evaluated by a simulation procedure which showed that most of CH4 fluxes were within the range that could arise from random variation associated with actual zero-flux situations. ER measured by static chamber and dynamic chamber methods was similar, particularly when using nonlinear regression techniques for flux calculations. A comparison of GPP derived from aboveground biomass and from measuring net ecosystem exchange (NEE) showed that GPP estimation from biomass might be useful, or serve as validation, for more advanced flux measurement methods. In conclusion, combining static opaque chambers for measuring ER of CO2 and CH4 and N2O fluxes with biomass yield for GPP estimation worked well in the drained fen peatland cropped to SB and RCG and presented a valid alternative to estimating the full GHG balance by dynamic chambers.

  8. 14 CFR 120.119 - Annual reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS DRUG AND ALCOHOL TESTING PROGRAM Drug Testing Program Requirements § 120.119 Annual reports. (a) Annual reports of testing results must... holder shall submit an annual report each year. (2) Each entity conducting a drug testing program under...

  9. 14 CFR 120.119 - Annual reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS DRUG AND ALCOHOL TESTING PROGRAM Drug Testing Program Requirements § 120.119 Annual reports. (a) Annual reports of testing results must... holder shall submit an annual report each year. (2) Each entity conducting a drug testing program under...

  10. 14 CFR 120.119 - Annual reports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS DRUG AND ALCOHOL TESTING PROGRAM Drug Testing Program Requirements § 120.119 Annual reports. (a) Annual reports of testing results must... holder shall submit an annual report each year. (2) Each entity conducting a drug testing program under...

  11. 14 CFR 120.119 - Annual reports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS DRUG AND ALCOHOL TESTING PROGRAM Drug Testing Program Requirements § 120.119 Annual reports. (a) Annual reports of testing results must... holder shall submit an annual report each year. (2) Each entity conducting a drug testing program under...

  12. 14 CFR 120.119 - Annual reports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS DRUG AND ALCOHOL TESTING PROGRAM Drug Testing Program Requirements § 120.119 Annual reports. (a) Annual reports of testing results must... holder shall submit an annual report each year. (2) Each entity conducting a drug testing program under...

  13. 7 CFR 1450.211 - BCAP contract.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Establishment... biomass conversion facility does not become fully or partially operational. (g) Contracts may be...

  14. 7 CFR 1450.211 - BCAP contract.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Establishment... biomass conversion facility does not become fully or partially operational. (g) Contracts may be...

  15. 7 CFR 1450.211 - BCAP contract.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Establishment... biomass conversion facility does not become fully or partially operational. (g) Contracts may be...

  16. 7 CFR 1450.211 - BCAP contract.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Establishment... biomass conversion facility does not become fully or partially operational. (g) Contracts may be...

  17. Shifts in biomass and productivity for a subtropical dry forest in response to simulated elevated hurricane disturbances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holm, Jennifer A.; Van Bloem, Skip J.; Larocque, Guy R.

    Caribbean tropical forests are subject to hurricane disturbances of great variability. In addition to natural storm incongruity, climate change can alter storm formation, duration, frequency, and intensity. This model -based investigation assessed the impacts of multiple storms of different intensities and occurrence frequencies on the long-term dynamics of subtropical dry forests in Puerto Rico. Using the previously validated individual-based gap model ZELIG-TROP, we developed a new hurricane damage routine and parameterized it with site- and species-specific hurricane effects. A baseline case with the reconstructed historical hurricane regime represented the control condition. Ten treatment cases, reflecting plausible shifts in hurricane regimes,more » manipulated both hurricane return time (i.e. frequency) and hurricane intensity. The treatment-related change in carbon storage and fluxes were reported as changes in aboveground forest biomass (AGB), net primary productivity (NPP), and in the aboveground carbon partitioning components, or annual carbon accumulation (ACA). Increasing the frequency of hurricanes decreased aboveground biomass by between 5% and 39%, and increased NPP between 32% and 50%. Decadal-scale biomass fluctuations were damped relative to the control. In contrast, increasing hurricane intensity did not create a large shift in the long-term average forest structure, NPP, or ACA from that of historical hurricane regimes, but produced large fluctuations in biomass. Decreasing both the hurricane intensity and frequency by 50% produced the highest values of biomass and NPP. For the control scenario and with increased hurricane intensity, ACA was negative, which indicated that the aboveground forest components acted as a carbon source. However, with an increase in the frequency of storms or decreased storms, the total ACA was positive due to shifts in leaf production, annual litterfall, and coarse woody debris inputs, indicating a carbon sink into the forest over the long-term. The carbon loss from each hurricane event, in all scenarios, always recovered over sufficient time. Our results suggest that subtropical dry forests will remain resilient to hurricane disturbance. However carbon stocks will decrease if future climates increase hurricane frequency by 50% or more.« less

  18. Effects of habitat management treatments on plant community composition and biomass in a Montane wetland

    USGS Publications Warehouse

    Austin, J.E.; Keough, J.R.; Pyle, W.H.

    2007-01-01

    Grazing and burning are commonly applied practices that can impact the diversity and biomass of wetland plant communities. We evaluated the vegetative response of wetlands and adjacent upland grasslands to four treatment regimes (continuous idle, fall prescribed burning followed by idle, annual fall cattle grazing, and rotation of summer grazing and idle) commonly used by the U.S. Fish and Wildlife Service. Our study area was Grays Lake, a large, montane wetland in southeastern Idaho that is bordered by extensive wet meadows. We identified seven plant cover types, representing the transition from dry meadow to deep wetland habitats: mixed deep marsh, spikerush slough, Baltic rush (Juncus balticus), moist meadow, alkali, mesic meadow, and dry meadow. We compared changes in community composition and total aboveground biomass of each plant cover type between 1998, when all units had been idled for three years, and 1999 (1 yr post-treatment) and 2000 (2 yr post-treatment). Analysis using non-metric multidimensional scaling indicated that compositional changes varied among cover types, treatments, and years following treatment. Treatment-related changes in community composition were greatest in mixed deep marsh, Baltic rush, and mesic meadow. In mixed deep marsh and Baltic rush, grazing and associated trampling contributed to changes in the plant community toward more open water and aquatic species and lower dominance of Baltic rush; grazing and trampling also seemed to contribute to increased cover in mesic meadow. Changing hydrological conditions, from multiple years of high water to increasing drought, was an important factor influencing community composition and may have interacted with management treatments. Biomass differed among treatments and between years within cover types. In the wettest cover types, fall burning and grazing rotation treatments had greater negative impact on biomass than the idle treatment, but in drier cover types, summer grazing stimulated biomass production. Our results illustrate the spatial and temporal complexity of the transition between dry meadow and wetland habitats, and variable interactions among plant communities, treatments, and annual wetland conditions. ?? 2007, The Society of Wetland Scientists.

  19. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    NASA Astrophysics Data System (ADS)

    van der Werf, G. R.; Peters, W.; van Leeuwen, T. T.; Giglio, L.

    2012-08-01

    Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. Here we have analyzed how emissions from several biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO) and its isotopic signature measured at South Pole station (SPO). Based on estimates of contemporary fire emissions and the TM5 chemical transport model, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g. fuelwood burning) and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture matching current levels despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the current situation; we show that the majority of savannas have not burned in the past 10 yr, even in Africa which is considered "the burning continent". Our new modelling results, together with existing literature, indicate that no definitive conclusions can be drawn about unprecedentedly high or low biomass burning rates from current data analyses.

  20. Shifts in biomass and productivity for a subtropical dry forest in response to simulated elevated hurricane disturbances

    NASA Astrophysics Data System (ADS)

    Holm, Jennifer A.; Van Bloem, Skip J.; Larocque, Guy R.; Shugart, Herman H.

    2017-02-01

    Caribbean tropical forests are subject to hurricane disturbances of great variability. In addition to natural storm incongruity, climate change can alter storm formation, duration, frequency, and intensity. This model-based investigation assessed the impacts of multiple storms of different intensities and occurrence frequencies on the long-term dynamics of subtropical dry forests in Puerto Rico. Using the previously validated individual-based gap model ZELIG-TROP, we developed a new hurricane damage routine and parameterized it with site- and species-specific hurricane effects. A baseline case with the reconstructed historical hurricane regime represented the control condition. Ten treatment cases, reflecting plausible shifts in hurricane regimes, manipulated both hurricane return time (i.e. frequency) and hurricane intensity. The treatment-related change in carbon storage and fluxes were reported as changes in aboveground forest biomass (AGB), net primary productivity (NPP), and in the aboveground carbon partitioning components, or annual carbon accumulation (ACA). Increasing the frequency of hurricanes decreased aboveground biomass by between 5% and 39%, and increased NPP between 32% and 50%. Decadal-scale biomass fluctuations were damped relative to the control. In contrast, increasing hurricane intensity did not create a large shift in the long-term average forest structure, NPP, or ACA from that of historical hurricane regimes, but produced large fluctuations in biomass. Decreasing both the hurricane intensity and frequency by 50% produced the highest values of biomass and NPP. For the control scenario and with increased hurricane intensity, ACA was negative, which indicated that the aboveground forest components acted as a carbon source. However, with an increase in the frequency of storms or decreased storms, the total ACA was positive due to shifts in leaf production, annual litterfall, and coarse woody debris inputs, indicating a carbon sink into the forest over the long-term. The carbon loss from each hurricane event, in all scenarios, always recovered over sufficient time. Our results suggest that subtropical dry forests will remain resilient to hurricane disturbance. However carbon stocks will decrease if future climates increase hurricane frequency by 50% or more.

  1. Net ecosystem productivity and carbon dynamics of the traditionally managed Imperata grasslands of North East India.

    PubMed

    Pathak, Karabi; Malhi, Yadvinder; Sileshi, G W; Das, Ashesh Kumar; Nath, Arun Jyoti

    2018-09-01

    There have been few comprehensive descriptions of how fire management and harvesting affect the carbon dynamics of grasslands. Grasslands dominated by the invasive weed Imperata cylindrica are considered as environmental threats causing low land productivity throughout the moist tropical regions in Asia. Imperata grasslands in North East India are unique in that they are traditionally managed and culturally important in the rural landscapes. Given the importance of fire in the management of Imperata grassland, we aimed to assess (i) the seasonal pattern of biomass production, (ii) the eventual pathways for the produced biomass, partitioned between in situ decomposition, harvesting and combustion, and (iii) the effect of customary fire management on the ecosystem carbon cycle. Comparatively high biomass production was recorded during pre-monsoon (154 g m -2  month -1 ) and monsoon (214 g m -2  month -1 ) compared to the post-monsoon (91 g m -2  month -1 ) season, and this is attributed to nutrient return into the soil immediately after fire in February. Post fire effects might have killed roots and rhizomes leading to high belowground litter production 30-35 g m -2 during March to August. High autotrophic respiration was recorded during March-July, which was related to high belowground biomass production (35-70 g m -2 ) during that time. Burning removed all the surface litter in March and this appeared to hinder surface decomposition and result in low heterotrophic respiration. Annual total biomass carbon production was estimated at 886 g C m -2 . Annual harvest of biomass (estimated at 577 g C m -2 ) was the major pathway for carbon fluxes from the system. Net ecosystem production (NEP) of Imperata grassland was estimated at 91 g C m -2  yr -1 indicating that these grasslands are a net sink of CO 2 , although this is greatly influenced by weather and fire management. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  2. Shifts in biomass and productivity for a subtropical dry forest in response to simulated elevated hurricane disturbances

    DOE PAGES

    Holm, Jennifer A.; Van Bloem, Skip J.; Larocque, Guy R.; ...

    2017-02-07

    Caribbean tropical forests are subject to hurricane disturbances of great variability. In addition to natural storm incongruity, climate change can alter storm formation, duration, frequency, and intensity. This model -based investigation assessed the impacts of multiple storms of different intensities and occurrence frequencies on the long-term dynamics of subtropical dry forests in Puerto Rico. Using the previously validated individual-based gap model ZELIG-TROP, we developed a new hurricane damage routine and parameterized it with site- and species-specific hurricane effects. A baseline case with the reconstructed historical hurricane regime represented the control condition. Ten treatment cases, reflecting plausible shifts in hurricane regimes,more » manipulated both hurricane return time (i.e. frequency) and hurricane intensity. The treatment-related change in carbon storage and fluxes were reported as changes in aboveground forest biomass (AGB), net primary productivity (NPP), and in the aboveground carbon partitioning components, or annual carbon accumulation (ACA). Increasing the frequency of hurricanes decreased aboveground biomass by between 5% and 39%, and increased NPP between 32% and 50%. Decadal-scale biomass fluctuations were damped relative to the control. In contrast, increasing hurricane intensity did not create a large shift in the long-term average forest structure, NPP, or ACA from that of historical hurricane regimes, but produced large fluctuations in biomass. Decreasing both the hurricane intensity and frequency by 50% produced the highest values of biomass and NPP. For the control scenario and with increased hurricane intensity, ACA was negative, which indicated that the aboveground forest components acted as a carbon source. However, with an increase in the frequency of storms or decreased storms, the total ACA was positive due to shifts in leaf production, annual litterfall, and coarse woody debris inputs, indicating a carbon sink into the forest over the long-term. The carbon loss from each hurricane event, in all scenarios, always recovered over sufficient time. Our results suggest that subtropical dry forests will remain resilient to hurricane disturbance. However carbon stocks will decrease if future climates increase hurricane frequency by 50% or more.« less

  3. SPRUCE S1 Bog Vegetation Allometric and Biomass Data: 2010-2011

    DOE Data Explorer

    Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Brice, D. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Garten, C. T. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hook, L. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Phillips, J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Todd, D. E. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.

    2012-01-01

    This data set reports the results of measurements on sampled aboveground tissues of trees (Picea mariana and Larix laricina), shrubs (Ledum, Chamaedaphne, and Vaccinium), and ground layer vegetation (all species) of the S1 Bog located in areas adjacent to planned experimental study plots. Ground layer vegetation was sampled from both hummocks and hollows, within a 0.25 m2 plot, to evaluate total standing biomass of bog vegetation at or near the peak of annual production. Vegetation was harvested, processed, and measured in July of 2010 and again in June of 2011.

  4. Solar Program Assessment: Environmental Factors - Fuels from Biomass.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    The purpose of this report is to present and prioritize the major environmental issues associated with the further development of biomass production and biomass conversion systems. To provide a background for this environmental analysis, the basic concepts of the technology are reviewed, as are resource requirements. The potential effects of this…

  5. Southern Hemisphere Carbon Monoxide Inferannual Variability Observed by Terra/Measurement of Pollution in the Troposphere (MOPITT)

    NASA Technical Reports Server (NTRS)

    Edwards, D. P.; Petron, G.; Novelli, P. C.; Emmons, L. K.; Gille, J. C.; Drummond, J. R.

    2010-01-01

    Biomass burning is an annual occurrence in the tropical southern hemisphere (SH) and represents a major source of regional pollution. Vegetation fires emit carbon monoxide (CO), which due to its medium lifetime is an excellent tracer of tropospheric transport. CO is also one of the few tropospheric trace gases currently observed from satellite and this provides long-term global measurements. In this paper, we use the 5 year CO data record from the Measurement Of Pollution In The Troposphere (MOPITT) instrument to examine the inter-annual variability of the SH CO loading and show how this relates to climate conditions which determine the intensity of fire sources. The MOPITT observations show an annual austral springtime peak in the SH zonal CO loading each year with dry-season biomass burning emissions in S. America, southern Africa, the Maritime Continent, and northwestern Australia. Although fires in southern Africa and S. America typically produce the greatest amount of CO, the most significant inter-annual variation is due to varying fire activity and emissions from the Maritime Continent and northern Australia. We find that this variation in turn correlates well with the El Nino Southern Oscillation precipitation index. Between 2000 and 2005, emissions were greatest in late 2002 and an inverse modeling of the MOPITT data using the MOZART chemical transport model estimates the southeast Asia regional fire source for the year August 2002 to September 2003 to be 52 Tg CO. Comparison of the MOPITT retrievals and NOAA surface network measurements indicate that the latter do not fully capture the inter-annual variability or the seasonal range of the CO zonal average concentration due to biases associated with atmospheric and geographic sampling.

  6. Density dependence and phenological mismatch: consequences for growth and survival of sub-arctic nesting Canada Geese

    USGS Publications Warehouse

    Brook, Rodney W.; Leafloor, James O.; Douglas, David C.; Abraham, Kenneth F.

    2015-01-01

    The extent to which species are plastic in the timing of their reproductive events relative to phenology suggests how change might affect their demography. An ecological mismatch between the timing of hatch for avian species and the peak availability in quality and quantity of forage for rapidly growing offspring might ultimately affect recruitment to the breeding population unless individuals can adjust the timing of breeding to adapt to changing phenology. We evaluated effects of goose density, hatch timing relative to forage plant phenology, and weather indices on annual growth of pre-fledging Canada geese (Branta canadensis) from 1993-2010 at Akimiski Island, Nunavut. We found effects of both density and hatch timing relative to forage plant phenology; the earlier that eggs hatched relative to forage plant phenology, the larger the mean gosling size near fledging. Goslings were smallest in years when hatch was latest relative to forage plant phenology, and when local abundance of breeding adults was highest. We found no evidence for a trend in relative hatch timing, but it was apparent that in early springs, Canada geese tended to hatch later relative to vegetation phenology, suggesting that geese were not always able to adjust the timing of nesting as rapidly as vegetation phenology was advanced. Analyses using forage biomass information revealed a positive relationship between gosling size and per capita biomass availability, suggesting a causal mechanism for the density effect. The effects of weather parameters explained additional variation in mean annual gosling size, although total June and July rainfall had a small additive effect on gosling size. Modelling of annual first year survival probability using mean annual gosling size as an annual covariate revealed a positive relationship, suggesting that reduced gosling growth negatively impacts recruitment.

  7. Impacts of urban forests on offsetting carbon emissions from industrial energy use in Hangzhou, China.

    PubMed

    Zhao, Min; Kong, Zheng-hong; Escobedo, Francisco J; Gao, Jun

    2010-01-01

    This study quantified carbon storage and sequestration by urban forests and carbon emissions from energy consumption by several industrial sources in Hangzhou, China. Carbon (C) storage and sequestration were quantified using urban forest inventory data and by applying volume-derived biomass equations and other models relating net primary productivity (NPP) and mean annual biomass increments. Industrial energy use C emissions were estimated by accounting for fossil fuel use and assigning C emission factors. Total C storage by Hangzhou's urban forests was estimated at 11.74 Tg C, and C storage per hectare was 30.25 t C. Carbon sequestration by urban forests was 1,328, 166.55 t C/year, and C sequestration per ha was 1.66 t C/ha/year. Carbon emissions from industrial energy use in Hangzhou were 7 Tg C/year. Urban forests, through sequestration, annually offset 18.57% of the amount of carbon emitted by industrial enterprises, and store an amount of C equivalent to 1.75 times the amount of annual C emitted by industrial energy uses within the city. Management practices for improving Hangzhou's urban forests function of offsetting C emissions from energy consumption are explored. These results can be used to evaluate the urban forests' role in reducing atmospheric carbon dioxide. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Genetic Improvements in Rice Yield and Concomitant Increases in Radiation- and Nitrogen-Use Efficiency in Middle Reaches of Yangtze River

    PubMed Central

    Zhu, Guanglong; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Nie, Lixiao; Wang, Fei

    2016-01-01

    The yield potential of rice (Oryza sativa L.) has experienced two significant growth periods that coincide with the introduction of semi-dwarfism and the utilization of heterosis. In present study, we determined the annual increase in the grain yield of rice varieties grown from 1936 to 2005 in Middle Reaches of Yangtze River and examined the contributions of RUE (radiation-use efficiency, the conversion efficiency of pre-anthesis intercepted global radiation to biomass) and NUE (nitrogen-use efficiency, the ratio of grain yield to aboveground N accumulation) to these improvements. An examination of the 70-year period showed that the annual gains of 61.9 and 75.3 kg ha−1 in 2013 and 2014, respectively, corresponded to an annual increase of 1.18 and 1.16% in grain yields, respectively. The improvements in grain yield resulted from increases in the harvest index and biomass, and the sink size (spikelets per panicle) was significantly enlarged because of breeding for larger panicles. Improvements were observed in RUE and NUE through advancements in breeding. Moreover, both RUE and NUE were significantly correlated with the grain yield. Thus, our study suggests that genetic improvements in rice grain yield are associated with increased RUE and NUE. PMID:26876641

  9. The Economic and Workforce Development Program (ED>Net) Annual Report, 2001-02 [and] Addendum to FY 01-02 Annual Report.

    ERIC Educational Resources Information Center

    California Community Colleges, Sacramento. Economic Development Coordination Network (EDNet).

    This document contains an annual report and its addendum from the Economic and Workforce Development Program of California Community Colleges. The annual report provides an overview of the Program's evaluation processes, regional centers, short-term projects, legislation, strategic plan, etc. It also provides vital facts about the program such as…

  10. An integrated assessment of the potential of agricultural and forestry residues for energy production in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Ji; Zhang, Aiping; Lam, Shu Kee

    Biomass has been widely recognized as an important energy source with high potential to reduce greenhouse gas emissions while minimizing environmental pollution. In this study, we employ the Global Change Assessment Model to estimate the potential of agricultural and forestry residue biomass for energy production in China. Potential availability of residue biomass as an energy source was analyzed for the 21st century under different climate policy scenarios. Currently, the amount of total annual residue biomass, averaged over 2003-2007, is around 15519PJ in China, consisting of 10818PJ from agriculture residues (70%) and 4701PJ forestry residues (30%). We estimate that 12693PJ ofmore » the total biomass is available for energy production, with 66% derived from agricultural residue and 34% from forestry residue. Most of the available residue is from south central China (3347PJ), east China (2862PJ) and south-west China (2229PJ), which combined exceeds 66% of the total national biomass. Under the reference scenario without carbon tax, the potential availability of residue biomass for energy production is projected to be 3380PJ by 2050 and 4108PJ by 2095, respectively. When carbon tax is imposed, biomass availability increases substantially. For the CCS 450ppm scenario, availability of biomass increases to 9002PJ (2050) and 11524PJ (2095), respectively. For the 450ppm scenario without CCS, 9183 (2050) and 11150PJ (2095) residue biomass, respectively, is projected to be available. Moreover, the implementation of CCS will have a little impact on the supply of residue biomass after 2035. Our results suggest that residue biomass has the potential to be an important component in China's sustainable energy production portfolio. As a low carbon emission energy source, climate change policies that involve carbon tariff and CCS technology promote the use of residue biomass for energy production in a low carbon-constrained world.« less

  11. Effects of the age class distributions of the temperate and boreal forests on the global CO2 source-sink function

    NASA Astrophysics Data System (ADS)

    Kohlmaier, G. H.; Häger, Ch.; Würth, G.; Lüdeke, M. K. B.; Ramge, P.; Badeck, F.-W.; Kindermann, J.; Lang, T.

    1995-02-01

    The rôle of the temperate and boreal forests as a global CO2 source or sink is examined, both for the present time and for the next hundred years. The results of the Forest Resource Assessment for 1990 of the Economic Comission for Europe and the Food and Agricultural Organisation of the United Nations (1992) serve as the main database in this study. Out of the estimated total area of approximately 20106 km2 of forests and wooded lands in the temperate and boreal zone only approximately fifty percent is documented within the category of exploitable forests, which are examined in detail here. In this study, a general formalism of the time evolution of an ensemble of forests within an ecological province is developed using the formalism of the Leslie matrix. This matrix can be formulated if the age class dependent mortalities which arise from the disturbances are known. A distinction is made between the natural disturbances by fire, wind throw and insect infestations and disturbances introduced through harvesting of timber. Through the use of Richards growth function each age class of a given biome is related to the corresponding biomass and annual increment. The data reported on the mean net annual increment and on the mean biomass serve to calibrate the model. The difference of the reported net annual increment and annual fellings of approximately 550 106 m3 roundwood correspond to a sink of 210-330 Mt of carbon per year excluding any changes in the soil balance. It could be shown that the present distribution of forest age classes for the United States, Canada, Europe, or the former Soviet Union does not correspond to a quasi-stationary state, in which biomass is accumulated only due to a stimulated growth under enhanced atmospheric CO2 levels. The present CO2 sink function will not persist in the next century, if harvesting rates increase with 0.5% annually or even less. The future state will also be influenced by the effect of the greenhouse climate, the impact of which may range from a stimulating effect on growth, which is calculated by the Frankfurt biosphere model, up to a transitional negative effect through a shift in vegetation zones.

  12. Comparative analysis of heat pump and biomass boiler for small detached house heating

    NASA Astrophysics Data System (ADS)

    Olkowski, Tomasz; Lipiński, Seweryn; Olędzka, Aneta

    2017-10-01

    The purpose of the work is to answer the question - which of the two selected heat sources is more economically beneficial for small detached house: heat pump or biomass boiler fuelled with wood-pellets? The comparative analysis of these sources was carried out to discuss the issue. First, cost of both, equipment and operation of selected heat systems were analysed. Additionally, CO2 emission levels associated with these heat systems were determined. The comparative analysis of the costs of both considered heat systems showed that equipment cost of heat pump system is considerably bigger than the cost of biomass boiler system. The comparison of annual operation costs showed that heat pump operation cost is slightly lower than operation cost of biomass boiler. The analysis of above results shows that lower operation cost of heat pump in comparison with biomass boiler cost lets qualify heat pump as more economically justified only after 38 years of work. For both analysed devices, CO2 emission levels were determined. The considerations take into account the fact that heat pump consumes electricity. It is mostly generated through combustion of coal in Poland. The results show that in Poland biomass boiler can be described as not only more economically justified system but also as considerably more ecological.

  13. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 1: Cost of feedstock supply logistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokhansanj, Shahabaddine; Mani, Sudhagar; Togore, Sam

    2010-01-01

    Supply of corn stover to produce heat and power for a typical 170 dam3 dry mill ethanol plant is proposed. The corn ethanol plant requires 5.6 MW of electricity and 52.3 MW of process heat, which creates the annual stover demand of as much as 140 Gg. The corn stover supply system consists of collection, preprocessing, transportation and on-site fuel storage and preparation to produce heat and power for the ethanol plant. Economics of the entire supply system was conducted using the Integrated Biomass Supply Analysis and Logistics (IBSAL) simulation model. Corn stover was delivered in three formats (square bales,more » dry chops and pellets) to the combined heat and power plant. Delivered cost of biomass ready to be burned was calculated at 73 $ Mg-1 for bales, 86 $ Mg-1 for pellets and 84 $ Mg-1 for field chopped biomass. Among the three formats of stover supply systems, delivered cost of pelleted biomass was the highest due to high pelleting cost. Bulk transport of biomass in the form of chops and pellets can provide a promising future biomass supply logistic system in the US, if the costs of pelleting and transport are minimized.« less

  14. 50 CFR 403.02 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... Maximum net productivity is the greatest net annual increment in population numbers or biomass resulting... term species includes any population stock. (b) Optimum Sustainable Population or OSP means a population size which falls within a range from the population level of a given species or stock which is the...

  15. 50 CFR 403.02 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... Maximum net productivity is the greatest net annual increment in population numbers or biomass resulting... term species includes any population stock. (b) Optimum Sustainable Population or OSP means a population size which falls within a range from the population level of a given species or stock which is the...

  16. 50 CFR 403.02 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... Maximum net productivity is the greatest net annual increment in population numbers or biomass resulting... term species includes any population stock. (b) Optimum Sustainable Population or OSP means a population size which falls within a range from the population level of a given species or stock which is the...

  17. 50 CFR 403.02 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... Maximum net productivity is the greatest net annual increment in population numbers or biomass resulting... term species includes any population stock. (b) Optimum Sustainable Population or OSP means a population size which falls within a range from the population level of a given species or stock which is the...

  18. Aboveground biomass and leaf area index (LAI) mapping for Niassa Reserve, northern Mozambique

    NASA Astrophysics Data System (ADS)

    Ribeiro, Natasha S.; Saatchi, Sassan S.; Shugart, Herman H.; Washington-Allen, Robert A.

    2008-09-01

    Estimations of biomass are critical in miombo woodlands because they represent the primary source of goods and services for over 80% of the population in southern Africa. This study was carried out in Niassa Reserve, northern Mozambique. The main objectives were first to estimate woody biomass and Leaf Area Index (LAI) using remotely sensed data [RADARSAT (C-band, λ = 5.7-cm)] and Landsat ETM+ derived Normalized Difference Vegetation Index (NDVI) and Simple Ratio (SR) calibrated by field measurements and, second to determine, at both landscape and plot scales, the environmental controls (precipitation, woody cover density, fire and elephants) of biomass and LAI. A land-cover map (72% overall accuracy) was derived from the June 2004 ETM+ mosaic. Field biomass and LAI were correlated with RADARSAT backscatter (rbiomass = 0.65, rLAI = 0.57, p < 0.0001) from July 2004, NDVI (rbiomass = 0.30, rLAI = 0.35; p < 0.0001) and SR (rbiomass = 0.36, rLAI = 0.40, p < 0.0001). A jackknife stepwise regression technique was used to develop the best predictive models for biomass (biomass = -5.19 + 0.074 * radarsat + 1.56 * SR, r2 = 0.55) and LAI (LAI = -0.66 + 0.01 * radarsat + 0.22 * SR, r2 = 0.45). Biomass and LAI maps were produced with an estimated peak of 18 kg m-2 and 2.80 m2 m-2, respectively. On the landscape-scale, both biomass and LAI were strongly determined by mean annual precipitation (F = 13.91, p = 0.0002). On the plot spatial scale, woody biomass was significantly determined by fire frequency, and LAI by vegetation type.

  19. Biomass Program 2007 Program Peer Review - Full Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This document summarizes the comments provided by the peer reviewers at the U.S. Department of Energy (DOE) Biomass Program’s Peer Review meeting, held on November 14-15, 2007 in Baltimore, MD and Platform Reviews conducted over the summer of 2007. The Platform Reviews provide evaluations of the Program’s projects in applied research, development, and demonstration.

  20. 7 CFR 1450.106 - Payments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching Payments... the qualified biomass conversion facility for the market-based sale of eligible material in an amount...

  1. 7 CFR 1450.106 - Payments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching Payments... the qualified biomass conversion facility for the market-based sale of eligible material in an amount...

  2. 7 CFR 1450.106 - Payments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching Payments... the qualified biomass conversion facility for the market-based sale of eligible material in an amount...

  3. 7 CFR 1450.102 - Eligible material owner.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching... restore ecosystem health. (b) A qualified biomass conversion facility that meets the requirements of...

  4. 7 CFR 1450.106 - Payments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching Payments... the qualified biomass conversion facility for the market-based sale of eligible material in an amount...

  5. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Cyd E.

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know,more » in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.« less

  6. Climate-mediated dance of the plankton

    NASA Astrophysics Data System (ADS)

    Behrenfeld, Michael J.

    2014-10-01

    Climate change will unquestionably influence global ocean plankton because it directly impacts both the availability of growth-limiting resources and the ecological processes governing biomass distributions and annual cycles. Forecasting this change demands recognition of the vital, yet counterintuitive, attributes of the plankton world. The biomass of photosynthetic phytoplankton, for example, is not proportional to their division rate. Perhaps more surprising, physical processes (such as deep vertical mixing) can actually trigger an accumulation in phytoplankton while simultaneously decreasing their division rates. These behaviours emerge because changes in phytoplankton division rates are paralleled by proportional changes in grazing, viral attack and other loss rates. Here I discuss this trophic dance between predators and prey, how it dictates when phytoplankton biomass remains constant or achieves massive blooms, and how it can determine even the sign of change in ocean ecosystems under a warming climate.

  7. An Inclusive Investigation on Conceivable Performance of Rice Straw Incinerated Electricity Generation

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Subhadeep; Mohanta, Subhajit

    2018-06-01

    Biomass energy is one of the potential renewable energy sources which occupy 77% of the available natural resources of the world. In India, agro residues constitute a major part of the total annual production of the biomass resource. Rice is the major crop in India that leaves substantial quantity of straw in the field. 34% of rice straw residue produced in the country is surplus and is either left in the field as uncollected or to a large extent open-field burnt. Thus, the unutilized rice straw is found promising for heat and power generation either through incineration (direct combustion) or thermo chemical conversion. This present work envisages the comprehensive performative evaluation of a rice straw supported biomass incineration power plant mainly through plant performance characterization, plant economics, and co-firing issues with emission analysis.

  8. An Inclusive Investigation on Conceivable Performance of Rice Straw Incinerated Electricity Generation

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Subhadeep; Mohanta, Subhajit

    2018-03-01

    Biomass energy is one of the potential renewable energy sources which occupy 77% of the available natural resources of the world. In India, agro residues constitute a major part of the total annual production of the biomass resource. Rice is the major crop in India that leaves substantial quantity of straw in the field. 34% of rice straw residue produced in the country is surplus and is either left in the field as uncollected or to a large extent open-field burnt. Thus, the unutilized rice straw is found promising for heat and power generation either through incineration (direct combustion) or thermo chemical conversion. This present work envisages the comprehensive performative evaluation of a rice straw supported biomass incineration power plant mainly through plant performance characterization, plant economics, and co-firing issues with emission analysis.

  9. 7 CFR 1450.100 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching Payments... for the sale and delivery of such eligible material to a qualified biomass conversion facility, may be...

  10. 7 CFR 1450.100 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching Payments... for the sale and delivery of such eligible material to a qualified biomass conversion facility, may be...

  11. 7 CFR 1450.100 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching Payments... for the sale and delivery of such eligible material to a qualified biomass conversion facility, may be...

  12. 7 CFR 1450.100 - General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching Payments... for the sale and delivery of such eligible material to a qualified biomass conversion facility, may be...

  13. Litter fall from shrubs in the northern Majove Desert

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strojan, C.L.; Turner,F.B.; Castetter, R.

    1979-10-01

    Plant litter was collected in traps from 8 to 10 replicates each of Ambrosia dumosa, Ephedra nevadensis, Krameria parvifolia, Larrea tradentata, Lycium andersonii, and Lycium pallidum in Rock Valley, southern Nevada, USA. Collections were made at biweekly to monthly intervals from 1975 to 1977 and handsorted into leaves, stems, flowers, and fruits. Litter fall was generally correlated with annual rainfall, which was low in 1975 (62 mm), high in 1976 (223 mm), and close to the longterm mean in 1977 (141 mm). Leaves were generally the largest litter category, followed by stems, fruits, and flowers. Large sample variations were found,more » particularly for reproductive parts. Aboveground litter fall from the six species, which comprise approx. = 82% of pernnial plant biomass and approx. = 81% of shrub cover in Rock Valley, was about 117 kg/ha in 1975 and 318 kg/ha in 1976. Total aboveground litter fall for Rock Valley (all perennial and annual plants) was estimated to be 194 kg/ha in 1975 and 530 kg/ha in 1976. Distinct litter fall patterns occurred for shrub species and litter categories. Most litter fell during the summer months, with individual species peaks reflecting particular phenologies. Significant amounts of live aboveground biomass were shed as litter. Amounts of litter from the six species ranged from 7 to 83% of their respective live aboveground biomass.« less

  14. Cheaper fuel and higher health costs among the poor in rural Nepal.

    PubMed

    Pant, Krishna Prasad

    2012-05-01

    Biomass fuels are used by the majority of resource poor households in low-income countries. Though biomass fuels, such as dung-briquette and firewood are apparently cheaper than the modern fuels indoor pollution from burning biomass fuels incurs high health costs. But, the health costs of these conventional fuels, mostly being indirect, are poorly understood. To address this gap, this study develops probit regression models using survey data generated through interviews from households using either dung-briquette or biogas as the primary source of fuel for cooking. The study investigates factors affecting the use of dung-briquette, assesses its impact on human health, and estimates the associated household health costs. Analysis suggests significant effects of dung-briquette on asthma and eye diseases. Despite of the perception of it being a cheap fuel, the annual health cost per household due to burning dung-briquette (US$ 16.94) is 61.3% higher than the annual cost of biogas (US$ 10.38), an alternative cleaner fuel for rural households. For reducing the use of dung-briquette and its indirect health costs, the study recommends three interventions: (1) educate women and aboriginal people, in particular, and make them aware of the benefits of switching to biogas; (2) facilitate tree planting in communal as well as private lands; and (3) create rural employment and income generation opportunities.

  15. Feasibility analysis for biomass cogeneration at the Fort Apache Timber Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittier, J.; Hasse, S.; Tomberlin, G.

    1996-12-31

    The Fort Apache Timber Company (FATCO) is a wholly-owned tribal enterprise of the White Mountain Apache Tribe (WMAT). WMAT officials are concerned about fuel buildup on the forest floor and the potential for catastrophic forests fires. Cogeneration is viewed as one means to effectively utilize biomass from the forest to reduce the chance of forest fires. FATCO presently spends approximately $1.6 million per year for electricity service from Navopache Electric Cooperative, Inc. for three sites. Peak demand is approximately 3.9 MW and the annual load factor is slightly under 50 percent. The blended cost of electricity is approximately $0.089 /more » kWh at the main mill. Biomass resources for fuel purposes may be obtained both from mill operations and from the forest operations. For many years FATCO has burned its wood residues to supply steam for dry kilns. It is estimated that a total of 125,778 bone dry tons (bdt) per year are available for fuel. A twenty year economic analysis model was used to evaluate the cogeneration potential. The model performs annual cash flow calculations to arrive at three measures of economic vitality: (1) Net Present Value (NPV), (2) levelized cost per kWh, and (3) Year 2 Return on Investment (ROI). Results of the analysis are positive for several scenarios.« less

  16. 40 CFR 97.120 - General CAIR NOX Annual Trading Program permit requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false General CAIR NOX Annual Trading... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.120 General CAIR NOX Annual Trading Program permit requirements. (a) For...

  17. 40 CFR 96.120 - General CAIR NOX Annual Trading Program permit requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false General CAIR NOX Annual Trading... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.120 General CAIR NOX Annual Trading Program permit...

  18. 40 CFR 96.120 - General CAIR NOX Annual Trading Program permit requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false General CAIR NOX Annual Trading... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.120 General CAIR NOX Annual Trading Program permit...

  19. 40 CFR 97.120 - General CAIR NOX Annual Trading Program permit requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false General CAIR NOX Annual Trading... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.120 General CAIR NOX Annual Trading Program permit requirements. (a) For...

  20. 40 CFR 97.120 - General CAIR NOX Annual Trading Program permit requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false General CAIR NOX Annual Trading... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.120 General CAIR NOX Annual Trading Program permit requirements. (a) For...

  1. 40 CFR 97.120 - General CAIR NOX Annual Trading Program permit requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false General CAIR NOX Annual Trading... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.120 General CAIR NOX Annual Trading Program permit requirements. (a) For...

  2. 40 CFR 96.120 - General CAIR NOX Annual Trading Program permit requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false General CAIR NOX Annual Trading... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO 2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.120 General CAIR NOX Annual Trading Program permit...

  3. 40 CFR 96.120 - General CAIR NOX Annual Trading Program permit requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false General CAIR NOX Annual Trading... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.120 General CAIR NOX Annual Trading Program permit...

  4. 40 CFR 97.120 - General CAIR NOX Annual Trading Program permit requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false General CAIR NOX Annual Trading... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.120 General CAIR NOX Annual Trading Program permit requirements. (a) For...

  5. 40 CFR 96.120 - General CAIR NOX Annual Trading Program permit requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false General CAIR NOX Annual Trading... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.120 General CAIR NOX Annual Trading Program permit...

  6. Competitiveness of biomass-fueled electrical power plants.

    Treesearch

    Bruce A. McCarl; Darius M. Adams; Ralph J. Alig; John T. Chmelik

    2000-01-01

    One way countries like the United States can comply with suggested rollbacks in greenhouse gas emissions is by employing power plants fueled with biomass. We examine the competitiveness of biomass-based fuel for electrical power as opposed to coal using a mathematical programming structure. We consider fueling power plants from milling residues, whole trees, logging...

  7. 76 FR 52851 - Revision of Delegations of Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... responsibilities for carrying out the biomass research and development authorities in section 9008 of the Farm... (formerly the Biomass Research and Development Act of 2000) (7 U.S.C. 8108), as added by section 9001(a) of...)(cci). The authority to administer the grants program known as the Biomass Research and Development...

  8. 76 FR 19741 - Draft Environmental Assessment; Giant Miscanthus in Arkansas, Missouri, Ohio, and Pennsylvania

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... Aloterra Energy and MFA Oil Biomass Company (project sponsors) proposed project areas in Arkansas, Missouri, Ohio, and Pennsylvania as part of the Biomass Crop Assistance Program (BCAP). This notice provides a... Energy and MFA Oil Biomass Company submitted a proposal to FSA to establish BCAP project areas in...

  9. 40 CFR 80.1451 - What are the reporting requirements under the RFS program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... biofuel, biomass-based diesel, advanced biofuel, renewable fuel, and cellulosic diesel), retired for...) used for each batch meets the definition of renewable biomass as defined in § 80.1401. (P) Producers of... thinnings from forestlands or biomass obtained from areas at risk of wildfire must submit quarterly reports...

  10. 75 FR 59622 - Supplemental Determination for Renewable Fuels Produced Under the Final RFS2 Program From Canola Oil

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... also finalizes our regulatory determination that canola oil biodiesel meets the biomass-based diesel... biodiesel fuel to generate biomass-based diesel Renewable Identification Numbers (RINs), providing that the fuel meets other definitional criteria for renewable fuel (e.g., produced from renewable biomass as...

  11. Sun Grant Initiative Regional Biomass Feedstock Partnership Competitive Grants Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, Vance

    The Sun Grant Initiative partnered with the US Department of Energy (DOE) in 2008 to create the Regional Biomass Feedstock Partnership Competitive Grants Program. The overall goal of this project was to utilize congressionally directed funds to leverage the North Central Regional Sun Grant’s Competitive Grant program at South Dakota State University (SDSU) to address key issues and research gaps related to development of the bioeconomy. Specific objectives of this program were to: 1. Identify research projects through a Regional Competitive Grants program that were relevant to the sustainable production, harvest, transport, delivery, and processing/conversion of cost-competitive, domestically grown biomass.more » 2. Build local expertise and capacity at the North Central Regional Sun Grant Center at SDSU through an internal selection of key bioenergy research projects. To achieve these, three nationwide Request for Applications (RFA) were developed: one each in 2008, 2009, and 2010. Internal, capacity building projects at SDSU were also selected during each one of these RFAs. In 2013 and 2015, two additional Proof of Concept RFAs were developed for internal SDSU projects. Priority areas for each RFA were 1) Biomass feedstock logistics including biomass harvesting, handling, transportation, storage, and densification; 2) Sustainable biomass feedstock production systems including biomass crop development, production, and life-cycle analysis; 3) Biomass production systems that optimize biomass feedstock yield and economic return across a diverse landscape while minimizing negative effects on the environment and food/feed production; and 4) Promotion of knowledge-based economic development in science and technology and to advance commercialization of inventions that meet the mission of the Sun Grant Initiative. A total of 33 projects were selected for funding through this program. Final reports for each of these diverse projects are included in this summary report. Projects funded under this award have contributed significantly to and advanced the bioeconomy body of knowledge. Specifically, no fewer than 109 peer-reviewed publications, 2 patents, 4 invention disclosures, 5 book chapters, 30 conference papers, 224 professional presentations, 31 outreach publications, and 1 website have been generated. This contribution to the scientific community (peer-reviewed literature, presentations, etc.) and to the public (outreach publications, websites, etc.) has been significant. In addition, a number of projects funded through this award included significant industry involvement and support both in terms of funding (both in-kind and direct) and input. Key industry stakeholders included AGCO, Alliant Energy, Applied Nanofilms, Archer Daniels Midland, ConocoPhillips, DuPont-Danisco Cellulosic Ethanol, EcoSun Prairie Farm, Federal Machine Co., Hawkeye Renewables, John Deere, Mendel, SD Innovation Partners, and Thermo-Ag.« less

  12. Geographical variation in oligochaete density and biomass in subtropical mangrove wetlands of China

    NASA Astrophysics Data System (ADS)

    Chen, Xinwei; Cai, Lizhe; Zhou, Xiping; Rao, Yiyong

    2017-10-01

    Oligochaetes play an important role in nutrient cycling and energy flow in benthic food webs as well as in mangrove wetlands. However, they have not been as extensively studied as other macrofaunal groups such as polychaetes, gastropods, bivalves, and crustaceans. Under the assumption that oligochaete density and biomass obey specific geographical distribution patterns in subtropical mangrove wetlands of China, we investigated these two parameters in the Luoyang Estuary of Quanzhou Bay, Zhangjiang Estuary and Gaoqiao mangrove wetlands. A geographical gradient in oligochaete density was present in Aegiceras corniculatum and Kandelia obovata habitats, whereby it decreased from lower latitudes to higher latitudes. Further, ANOVA tests on oligochaete distribution revealed that both oligochaete density and biomass were significantly influenced by region, season and region × season at the A. corniculatum and K. obovata habitats. The annual average oligochaete density and biomass at the A. corniculatum habitat were higher than that at the K. obovata habitat, in both the Luoyang and Zhangjiang estuaries. There were significant correlations between oligochaete density and biomass and sediment particle size parameters, confirming that sand, silt, and clay contents were the key environmental factors affecting oligochaete distribution.

  13. Cover crops influence soil microorganisms and phytoextraction of copper from a moderately contaminated vineyard.

    PubMed

    Mackie, K A; Schmidt, H P; Müller, T; Kandeler, E

    2014-12-01

    We investigated the ability of summer (Avena sativa [oat], Trifolium incarnatum [crimson clover], Chenopodium [goosefoot]) and winter (Vicia villosa [hairy vetch], Secale Cereale L. [Rye], Brassica napus L. partim [rape]) cover crops, including a mixed species treatment, to extract copper from an organic vineyard soil in situ and the microbial communities that may support it. Clover had the highest copper content (14.3mgCukg(-1) DM). However, it was the amount of total biomass production that determined which species was most effective at overall copper removal per hectare. The winter crop rye produced significantly higher amounts of biomass (3532kgDMha(-1)) and, therefore, removed significantly higher amounts of copper (14,920mgCuha(-1)), despite less accumulation of copper in plant shoots. The maximum annual removal rate, a summation of best performing summer and winter crops, would be 0.033kgCuha(-1)y(-1). Due to this low annual extraction efficiency, which is less than the 6kgCuha(-1)y(-1) permitted for application, phytoextraction cannot be recommended as a general method of copper extraction from vineyards. Copper concentration did not influence aboveground or belowground properties, as indicated by sampling at two distances from the grapevine row with different soil copper concentrations. Soil microorganisms may have become tolerant to the copper levels at this site. Microbial biomass and soil enzyme activities (arylsulfatase and phosphatase) were instead driven by seasonal fluxes of resource pools. Gram+ bacteria were associated with high soil moisture, while fungi seemed to be driven by extractable carbon, which was linked to high plant biomass. There was no microbial group associated with the increased phytoextraction of copper. Moreover, treatment did not influence the abundance, activity or community structure of soil microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Combining Telephone Surveys and Fishing Catches Self-Report: The French Sea Bass Recreational Fishery Assessment

    PubMed Central

    Rocklin, Delphine; Levrel, Harold; Drogou, Mickaël; Herfaut, Johanna; Veron, Gérard

    2014-01-01

    Fisheries statistics are known to be underestimated, since they are mainly based on information about commercial fisheries. However, various types of fishing activities exist and evaluating them is necessary for implementing effective management plans. This paper assesses the characteristics and catches of the French European sea bass recreational fishery along the Atlantic coasts, through the combination of large-scale telephone surveys and fishing diaries study. Our results demonstrated that half of the total catches (mainly small fish) were released at sea and that the mean length of a kept sea bass was 46.6 cm. We highlighted different patterns of fishing methods and type of gear used. Catches from boats were greater than from the shore, both in abundance and biomass, considering mean values per fishing trip as well as CPUE. Spearfishers caught the highest biomass of sea bass per fishing trip, but the fishing rod with lure was the most effective type of gear in terms of CPUE. Longlines had the highest CPUE value in abundance but not in biomass: they caught numerous but small sea bass. Handlines were less effective, catching few sea bass in both abundance and biomass. We estimated that the annual total recreational sea bass catches was 3,173 tonnes of which 2,345 tonnes were kept. Since the annual commercial catches landings were evaluated at 5,160 tonnes, recreational landings represent 30% of the total fishing catches on the Atlantic coasts of France. Using fishers' self-reports was a valuable way to obtain new information on data-poor fisheries. Our results underline the importance of evaluating recreational fishing as a part of the total amount of fisheries catches. More studies are critically needed to assess overall fish resources caught in order to develop effective fishery management tools. PMID:24489885

  15. Combining telephone surveys and fishing catches self-report: the French sea bass recreational fishery assessment.

    PubMed

    Rocklin, Delphine; Levrel, Harold; Drogou, Mickaël; Herfaut, Johanna; Veron, Gérard

    2014-01-01

    Fisheries statistics are known to be underestimated, since they are mainly based on information about commercial fisheries. However, various types of fishing activities exist and evaluating them is necessary for implementing effective management plans. This paper assesses the characteristics and catches of the French European sea bass recreational fishery along the Atlantic coasts, through the combination of large-scale telephone surveys and fishing diaries study. Our results demonstrated that half of the total catches (mainly small fish) were released at sea and that the mean length of a kept sea bass was 46.6 cm. We highlighted different patterns of fishing methods and type of gear used. Catches from boats were greater than from the shore, both in abundance and biomass, considering mean values per fishing trip as well as CPUE. Spearfishers caught the highest biomass of sea bass per fishing trip, but the fishing rod with lure was the most effective type of gear in terms of CPUE. Longlines had the highest CPUE value in abundance but not in biomass: they caught numerous but small sea bass. Handlines were less effective, catching few sea bass in both abundance and biomass. We estimated that the annual total recreational sea bass catches was 3,173 tonnes of which 2,345 tonnes were kept. Since the annual commercial catches landings were evaluated at 5,160 tonnes, recreational landings represent 30% of the total fishing catches on the Atlantic coasts of France. Using fishers' self-reports was a valuable way to obtain new information on data-poor fisheries. Our results underline the importance of evaluating recreational fishing as a part of the total amount of fisheries catches. More studies are critically needed to assess overall fish resources caught in order to develop effective fishery management tools.

  16. Fire-induced Carbon Emissions and Regrowth Uptake in Western U.S. Forests: Documenting Variation Across Forest Types, Fire Severity, and Climate Regions

    NASA Technical Reports Server (NTRS)

    Ghimire, Bardan; Williams, Christopher A.; Collatz, George James; Vanderhoof, Melanie

    2012-01-01

    The forest area in the western United States that burns annually is increasing with warmer temperatures, more frequent droughts, and higher fuel densities. Studies that examine fire effects for regional carbon balances have tended to either focus on individual fires as examples or adopt generalizations without considering how forest type, fire severity, and regional climate influence carbon legacies. This study provides a more detailed characterization of fire effects and quantifies the full carbon impacts in relation to direct emissions, slow release of fire-killed biomass, and net carbon uptake from forest regrowth. We find important variations in fire-induced mortality and combustion across carbon pools (leaf, live wood, dead wood, litter, and duff) and across low- to high-severity classes. This corresponds to fire-induced direct emissions from 1984 to 2008 averaging 4 TgC/yr and biomass killed averaging 10.5 TgC/yr, with average burn area of 2723 sq km/yr across the western United States. These direct emission and biomass killed rates were 1.4 and 3.7 times higher, respectively, for high-severity fires than those for low-severity fires. The results show that forest regrowth varies greatly by forest type and with severity and that these factors impose a sustained carbon uptake legacy. The western U.S. fires between 1984 and 2008 imposed a net source of 12.3 TgC/yr in 2008, accounting for both direct fire emissions (9.5 TgC/yr) and heterotrophic decomposition of fire-killed biomass (6.1 TgC yr1) as well as contemporary regrowth sinks (3.3 TgC/yr). A sizeable trend exists toward increasing emissions as a larger area burns annually.

  17. Soil disturbance alters plant community composition and decreases mycorrhizal carbon allocation in a sandy grassland.

    PubMed

    Schnoor, Tim Krone; Mårtensson, Linda-Maria; Olsson, Pål Axel

    2011-11-01

    We have studied how disturbance by ploughing and rotavation affects the carbon (C) flow to arbuscular mycorrhizal (AM) fungi in a dry, semi-natural grassland. AM fungal biomass was estimated using the indicator neutral lipid fatty acid (NLFA) 16:1ω5, and saprotrophic fungal biomass using NLFA 18:2ω6,9. We labeled vegetation plots with (13)CO(2) and studied the C flow to the signature fatty acids as well as uptake and allocation in plants. We found that AM fungal biomass in roots and soil decreased with disturbance, while saprotrophic fungal biomass in soil was not influenced by disturbance. Rotavation decreased the (13)C enrichment in NLFA 16:1ω5 in soil, but (13)C enrichment in the AM fungal indicator NLFA 16:1ω5 in roots or soil was not influenced by any other disturbance. In roots, (13)C enrichment was consistently higher in NLFA 16:1ω5 than in crude root material. Grasses (mainly Festuca brevipila) decreased as a result of disturbance, while non-mycorrhizal annual forbs increased. This decreases the potential for mycorrhizal C sequestration and may have been the main reason for the reduced mycorrhizal C allocation found in disturbed plots. Disturbance decreased the soil ammonium content but did not change the pH, nitrate or phosphate availability. The overall effect of disturbance on C allocation was that more of the C in AM fungal mycelium was directed to the external phase. Furthermore, the functional identity of the plants seemed to play a minor role in the C cycle as no differences were seen between different groups, although annuals contained less AM fungi than the other groups.

  18. Numerical simulation of a hybrid CSP/Biomass 5 MWel power plant

    NASA Astrophysics Data System (ADS)

    Soares, João; Oliveira, Armando

    2017-06-01

    The fundamental benefit of using renewable energy systems is undeniable since they rely on a source that will not run out. Nevertheless, they strongly depend on meteorological conditions (solar, wind, etc.), leading to uncertainty of instantaneous energy supply and consequently to grid connection issues. An interesting concept is renewable hybridisation. This consists in the strategic combination of different renewable sources in the power generation portfolio by taking advantage of each technology. Hybridisation of concentrating solar power with biomass denotes a powerful way of assuring system stability and reliability. The main advantage is dispatchability through the whole extent of the operating range. Regarding concentrating solar power heat transfer fluid, direct steam generation is one of the most interesting concepts. Nevertheless, it presents itself technical challenges that are mostly related to the two-phase fluid flow in horizontal pipes, as well as the design of an energy storage system. Also, the use of reheat within the turbine is usually indirectly addressed, hindering system efficiency. These challenges can be addressed through hybridisation with biomass. In this paper, a hybrid renewable electricity generation system is presented. The system relies on a combination of solar and biomass sources to drive a 5 MWel steam turbine. System performance is analysed through numerical simulation using Ebsilon professional software. The use of direct reheat in the turbine is addressed. Results show that hybridisation results in an enhancement of system dispatchability and generation stability. Furthermore, hybridisation enhanced the annual solar field and power block efficiencies, and thus the system annual efficiency (from 7.6% to 20%). The use of direct reheat eliminates steam wetness in the last turbine stage and also improves system efficiency.

  19. Energy from biomass — Some basic physical and related considerations

    NASA Astrophysics Data System (ADS)

    Gloyne, R. W.

    1983-09-01

    The production of vegetable matter (biomass) by photosynthesis is determined by species and by meteorological factors (especially, but not exclusively, solar radiation). Annual net primary production of land-based biomass corresponds to only about 1/1000 of the intercepted irradiation at ground level, but even so, is 10 times the world's estimated energy needs. The exploitation of this energy potential at any one place is critically influenced by the economic, political and social factors, amongst which are the competition from agriculture (especially food crops), forestry, industrial and urban (including leisure) needs for land and resources. Social factors (e.g. population and population density) also constitute prime influences. Strategies for utilisation range from the cultivation of special energy crops (readily conceivable on the American/ Australasian continents); to the more efficient manipulation of current land-use patterns (including “opportunity” cropping); to the more effective exploitation of biologi cal wastes (e.g. methane from sewage), probably the only immediately practical possibility in any densely populated and highly industrialised country. The spatial pattern of solar irradiation at ground level is complex. In the summer, total daily irradiation in continental high latitudes can exceed that in maritime temperate regions; and this combined with species differences and the almost infinite variety of shape and orientation of plant parts, result in a photosynthetic production of biomass which does not conform completely to a zonal pattern, but in broad terms annual dry matter production varies from a few kg/ha in Arctic Tundra to tens of tonnes in temperate latitudes rising to nearly 100 t/ha for perennial tropical crops. If a species could be developed to grow throughout the year at the current seasonal rate, a yield of 150 t/yr, ha) seems possible.

  20. 76 FR 71559 - Acid Rain Program: Notice of Annual Adjustment Factors for Excess Emissions Penalty

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9494-6] Acid Rain Program: Notice of Annual Adjustment... annual adjustment factors for excess emissions penalty. SUMMARY: The Acid Rain Program under title IV of... emissions for sources that do not meet their annual Acid Rain emissions limitations. This notice states the...

  1. 78 FR 64496 - Acid Rain Program: Notice of Annual Adjustment Factors for Excess Emissions Penalty

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9902-14-OAR] Acid Rain Program: Notice of Annual Adjustment... annual adjustment factors for excess emissions penalty. SUMMARY: The Acid Rain Program under title IV of... emissions for sources that do not meet their annual Acid Rain emissions limitations. This notice states the...

  2. Biomass Increases Go under Cover: Woody Vegetation Dynamics in South African Rangelands

    PubMed Central

    Mograbi, Penelope J.; Knapp, David E.; Martin, Roberta E.; Main, Russell

    2015-01-01

    Woody biomass dynamics are an expression of ecosystem function, yet biomass estimates do not provide information on the spatial distribution of woody vegetation within the vertical vegetation subcanopy. We demonstrate the ability of airborne light detection and ranging (LiDAR) to measure aboveground biomass and subcanopy structure, as an explanatory tool to unravel vegetation dynamics in structurally heterogeneous landscapes. We sampled three communal rangelands in Bushbuckridge, South Africa, utilised by rural communities for fuelwood harvesting. Woody biomass estimates ranged between 9 Mg ha-1 on gabbro geology sites to 27 Mg ha-1 on granitic geology sites. Despite predictions of woodland depletion due to unsustainable fuelwood extraction in previous studies, biomass in all the communal rangelands increased between 2008 and 2012. Annual biomass productivity estimates (10–14% p.a.) were higher than previous estimates of 4% and likely a significant contributor to the previous underestimations of modelled biomass supply. We show that biomass increases are attributable to growth of vegetation <5 m in height, and that, in the high wood extraction rangeland, 79% of the changes in the vertical vegetation subcanopy are gains in the 1-3m height class. The higher the wood extraction pressure on the rangelands, the greater the biomass increases in the low height classes within the subcanopy, likely a strong resprouting response to intensive harvesting. Yet, fuelwood shortages are still occurring, as evidenced by the losses in the tall tree height class in the high extraction rangeland. Loss of large trees and gain in subcanopy shrubs could result in a structurally simple landscape with reduced functional capacity. This research demonstrates that intensive harvesting can, paradoxically, increase biomass and this has implications for the sustainability of ecosystem service provision. The structural implications of biomass increases in communal rangelands could be misinterpreted as woodland recovery in the absence of three-dimensional, subcanopy information. PMID:25969985

  3. Experimental Constraints on Iron Mobilization into Biomass Burning Aerosols

    NASA Astrophysics Data System (ADS)

    Sherry, A. M.; Romaniello, S. J.; Herckes, P.; Anbar, A. D.

    2017-12-01

    Atmospheric deposition of iron (Fe) can limit marine primary productivity and, therefore, carbon dioxide uptake. Recent modeling studies suggest that biomass burning aerosols may contribute a significant amount of soluble Fe to the surface ocean. To address this hypothesis, we collected foliage samples from species representative of several biomes impacted by severe fire events. Existing studies of burn-induced trace element mobilization have often collected both entrained soil particles along with material from burning biomass, making it difficult to determine the actual source of aerosolized trace metals. In order to better constrain the importance of biomass vs. entrained soil as a source of trace metals in burn aerosols, we conducted burn experiments using soil-free foliage representative of a variety of fire-impacted ecosystems. The resulting burn aerosols were collected in two stages (PM > 2.5 μm and PM < 2.5 μm) on cellulose filters using a high-volume air sampler equipped an all-Teflon impactor. Unburned foliage and burn aerosols were analyzed for Fe and other trace metals using inductively coupled plasma mass spectrometry (ICP-MS). Our results show that 0.06-0.86 % of Fe in plant biomass is likely mobilized as atmospheric aerosols during biomass burning events, depending on the type of foliage. We used these results and estimates of annual global wildfire area to estimate the impact of biomass burning aerosols on total atmospheric Fe flux to the ocean. We estimate that biomass-derived Fe likely contributes 3% of the total soluble Fe flux from aerosols. Prior studies, which implicitly included both biomass and soil-derived Fe, concluded that biomass burning contributed as much as 7% of the total marine soluble Fe flux from aerosols. Together, these studies suggest that biomass and fire-entrained soil probably contribute equally to the total fire-derived Fe aerosol flux. Further study of solubility differences between plant- and soil-derived Fe is needed to improve estimates of the soluble Fe contribution from biomass burning to the marine soluble Fe flux.

  4. 7 CFR 1450.102 - Eligible material owner.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching... qualified biomass conversion facility that meets the requirements of paragraph (a) of this section may be...

  5. 7 CFR 1450.102 - Eligible material owner.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching... qualified biomass conversion facility that meets the requirements of paragraph (a) of this section may be...

  6. 7 CFR 1450.102 - Eligible material owner.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching... qualified biomass conversion facility that meets the requirements of paragraph (a) of this section may be...

  7. Crop residues for advanced biofuels workshop: A synposis

    USDA-ARS?s Scientific Manuscript database

    Crop residues are being harvested for a variety of purposes including their use as livestock feed and to produce advanced biofuels. Crop residue harvesting, by definition, reduces the potential annual carbon input to the soil from aboveground biomass but does not affect input from plant roots. The m...

  8. MODIS EVI as a proxy for net primary production across precipitation regimes

    USDA-ARS?s Scientific Manuscript database

    Above ground net primary production (ANPP) is a measure of the rate of photosynthesis in an ecosystem, and is indicative of its biomass productivity. Prior studies have reported a relationship between ANPP and annual precipitation which converged across biomes in dry years. This deserves further s...

  9. Spring nitrogen fertilization of ryegrass-bermudagrass for phytoremediation of phosphorus-enriched soils

    USDA-ARS?s Scientific Manuscript database

    Nitrogen fertilization of forage grasses is critical for optimizing biomass and utilization of manure soil nutrients. Field studies were conducted in 2007-09 to determine the effects of spring N fertilization on amelioration of high soil P when cool-season, annual ryegrass (Lolium multiflorum L.) is...

  10. Effects of Habitat Management Treatments on Plant Community Composition and Biomass in a Montane Wetland

    EPA Science Inventory

    We evaluated the vegetative response of wetlands and adjacent upland grasslands to four treatment regimes (continuous idle, fall prescribed burning followed by idle, annual fall cattle grazing, and rotation of summer grazing and idle) commonly used by the USGS. . . Our results il...

  11. High-throughput profiling and analysis of plant responses over time to abiotic stress

    USDA-ARS?s Scientific Manuscript database

    Energy sorghum (Sorghum bicolor (L.) Moench) is a rapidly growing, high-biomass, annual crop prized for abiotic stress tolerance. Measuring genotype-by-environment (G x E) interactions remains a progress bottleneck. High throughput phenotyping within controlled environments has been proposed as a po...

  12. Variability in oak forest herb layer communities

    Treesearch

    J. R. McClenahen; R. P. Long

    1995-01-01

    This study evaluates forest herb-layer sensitivity to annual-scale environmental fluctuation. Specific objectives were to determine the between-year variation in herb-layer community biomass, and to contrast and evaluate the temporal stability of spatial relationships in herb-layer community structure and composition between successive years. Aboveground dry weights of...

  13. METHANOL PRODUCTION FROM BIOMASS AND NATURAL GAS AS TRANSPORTATION FUEL

    EPA Science Inventory

    Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (i) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the U.S., (ii) minimizes em...

  14. Roadmap for Agriculture Biomass Feedstock Supply in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Richard Hess; Thomas D. Foust; Reed Hoskinson

    2003-11-01

    The Biomass Research and Development Technical Advisory Committee established a goal that biomass will supply 5% of the nation’s power, 20% of its transportation fuels, and 25% of its chemicals by 2030. These combined goals are approximately equivalent to 30% of the country’s current petroleum consumption. The benefits of a robust biorefinery industry supplying this amount of domestically produced power, fuels, and products are considerable, including decreased demand for imported oil, revenue to the depressed agricultural industry, and revitalized rural economies. A consistent supply of highquality, low-cost feedstock is vital to achieving this goal. This biomass roadmap defines the researchmore » and development (R&D) path to supplying the feedstock needs of the biorefinery and to achieving the important national goals set for biomass. To meet these goals, the biorefinery industry must be more sustainable than the systems it will replace. Sustainability hinges on the economic profitability of all participants, on environmental impact of every step in the process, and on social impact of the product and its production. In early 2003, a series of colloquies were held to define and prioritize the R&D needs for supplying feedstock to the biorefinery in a sustainable manner. These colloquies involved participants and stakeholders in the feedstock supply chain, including growers, transporters, equipment manufacturers, and processors as well as environmental groups and others with a vested interest in ensuring the sustainability of the biorefinery. From this series of colloquies, four high-level strategic goals were set for the feedstock area: • Biomass Availability – By 2030, 1 billion dry tons of lignocellulosic feedstock is needed annually to achieve the power, fuel, and chemical production goals set by the Biomass Research and Development Technology Advisory Production Committee • Sustainability – Production and use of the 1 billion dry tons annually must be accomplished in a sustainable manner • Feedstock Infrastructure – An integrated feedstock supply system must be developed and implemented that can serve the feedstock needs of the biorefinery at the cost, quality, and consistency of the set targets • System Profitability – Economic profitability and sustainability need to be ensured for all required participants in the feedstock supply system. For each step in the biomass supply process—production, harvesting and collection, storage, preprocessing, system integration, and transportation—this roadmap addresses the current technical situations, performance targets, technical barriers, R&D needs, and R&D priorities to overcome technical barriers and achieve performance targets. Crop residue biomass is an attractive starting feedstock, which shows the best near-term promise as a biorefinery feedstock. Because crop residue is a by-product of grain production, it is an abundant, underutilized, and low cost biomass resource. Corn stover and cereal straw are the two most abundant crop residues available in the United States. Therefore, this roadmap focuses primarily on the R&D needed for using these biomass sources as viable biorefinery feedstocks. However, achieving the goal of 1 billion dry tons of lignocellulosic feedstock will require the use of other biomass sources such as dedicated energy crops. In the long term, the R&D needs identified in this roadmap will need to accommodate these other sources of biomass as well.« less

  15. Euphausiids in the eastern Bering Sea: A synthesis of recent studies of euphausiid production, consumption and population control

    NASA Astrophysics Data System (ADS)

    Hunt, George L.; Ressler, Patrick H.; Gibson, Georgina A.; De Robertis, Alex; Aydin, Kerim; Sigler, Michael F.; Ortiz, Ivonne; Lessard, Evelyn J.; Williams, Benjamin C.; Pinchuk, Alexei; Buckley, Troy

    2016-12-01

    Euphausiids are an important component of the eastern Bering Sea marine ecosystem. We synthesized information on the ecological roles of two species, Thysanoessa raschii, which predominates over the Middle and Inner Shelf Domains, and Thysanoessa inermis, which predominates over the Outer Shelf Domain. Although estimates of euphausiid biomass across the shelf are not well constrained, we estimated that, between April and July, 2004-2010, euphausiid biomass was 3.08-5.25 g C m-2 on the outer shelf and 1.95-3.92 g C m-2 on the middle shelf. Modeled estimates of euphausiid production, for spring and summer combined, varied between 0.043 g C m-2 d-1 and 0.051 g C m-2 d-1, depending on location, with a mean of 0.048 g C m-2 d-1. Recently reported field measurements of annual primary production over the southeastern Bering Sea in 2008-2009 vary between 0.06 and 6.65 g C m-2 d-1, with a mean of 1.262 g C m-2 d-1±2.049 g C m-2 d-1 in spring and summer combined, a level sufficient to support euphausiids, at least on an annualized basis. Walleye pollock (Gadus chalcogrammus, hereafter pollock) is the single most important consumer of euphausiids over the eastern Bering Sea shelf. We estimated that pollock consumed between 0.0042 and 0.019.7 g C m-2 d-1 of euphausiids, depending on year, with a mean of 0.011 g C m-2 d-1 in summer averaged over 1999-2009. This consumption is equivalent to between 17% and 29% of summer euphausiid production, depending on location. Over the period for which data were available (2004-2012), we observed a strong negative relationship between euphausiid biomass as determined in acoustic surveys and pollock biomass as estimated in the eastern Bering Sea pollock stock assessment (r2=0.82). During this time period, sea-surface temperature was the second strongest predictor of euphausiid biomass, (r2=0.63). However, for the period 2004-2010, bottom temperature (r2=0.94) was the strongest predictor, followed by pollock biomass from the pollock stock assessment (r2=0.82), and sea-surface temperature (r2=0.81). Mean pollock density in the acoustic surveys was not a powerful predictor of euphausiid biomass during either period. In spatially explicit multiple regression analyses for the periods 2004-2012 and 2004-2010 those formulations that included sea-surface and bottom temperatures as well as survey estimates of pollock had the greatest explanatory value. However, when either or both temperature terms were dropped, the explanatory value of the models dropped considerably. When pollock biomass was dropped from the models, there was little change in explanatory value compared to the full model. Euphausiid production and pollock consumption data coupled with a negative relationship between euphausiid biomass and stock assessment estimates of pollock biomass indicate a top-down predation effect. However, strong negative relationships between euphausiid biomass and water temperatures indicate the influence of a bottom-up mechanism. The apparent differences in these results may relate to the different spatial and temporal scales used to assess the pollock biomass used in the analyses. Alternatively, euphausiid biomass may be strongly controlled during a restricted portion of the year, such as spring, if critical food needs are not met in some years. We lack the data necessary to resolve these alternative hypotheses.

  16. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots.

    PubMed

    Reich, Peter B; Luo, Yunjian; Bradford, John B; Poorter, Hendrik; Perry, Charles H; Oleksyn, Jacek

    2014-09-23

    Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics.

  17. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots

    PubMed Central

    Reich, Peter B.; Luo, Yunjian; Bradford, John B.; Poorter, Hendrik; Perry, Charles H.; Oleksyn, Jacek

    2014-01-01

    Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics. PMID:25225412

  18. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots

    USGS Publications Warehouse

    Reich, Peter B.; Lou, Yunjian; Bradford, John B.; Poorter, Hendrik; Perry, Charles H.; Oleksyn, Jacek

    2014-01-01

    Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics.

  19. Spatio-temporal changes in biomass carbon sinks in China's forests from 1977 to 2008.

    PubMed

    Guo, Zhaodi; Hu, Huifeng; Li, Pin; Li, Nuyun; Fang, Jingyun

    2013-07-01

    Forests play a leading role in regional and global carbon (C) cycles. Detailed assessment of the temporal and spatial changes in C sinks/sources of China's forests is critical to the estimation of the national C budget and can help to constitute sustainable forest management policies for climate change. In this study, we explored the spatio-temporal changes in forest biomass C stocks in China between 1977 and 2008, using six periods of the national forest inventory data. According to the definition of the forest inventory, China's forest was categorized into three groups: forest stand, economic forest, and bamboo forest. We estimated forest biomass C stocks for each inventory period by using continuous biomass expansion factor (BEF) method for forest stands, and the mean biomass density method for economic and bamboo forests. As a result, China's forests have accumulated biomass C (i.e., biomass C sink) of 1896 Tg (1 Tg=10(12) g) during the study period, with 1710, 108 and 78 Tg C in forest stands, and economic and bamboo forests, respectively. Annual forest biomass C sink was 70.2 Tg C a(-1), offsetting 7.8% of the contemporary fossil CO2 emissions in the country. The results also showed that planted forests have functioned as a persistent C sink, sequestrating 818 Tg C and accounting for 47.8% of total C sink in forest stands, and that the old-, mid- and young-aged forests have sequestrated 930, 391 and 388 Tg C from 1977 to 2008. Our results suggest that China's forests have a big potential as biomass C sink in the future because of its large area of planted forests with young-aged growth and low C density.

  20. Energy efficiency analysis: biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems.

    PubMed

    Huang, Wei-Dong; Zhang, Y-H Percival

    2011-01-01

    Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.

Top