NREL: Renewable Resource Data Center - Biomass Resource Data
Resource Data The following biomass resource data collections can be found in the Renewable Resource Data Center (RReDC). Current Biomass Resource Supply An estimate of biomass resources currently available by county. Projected Biomass Resource Supply An estimate of biomass resources potentially
NREL: Renewable Resource Data Center - Biomass Resource Related Links
Biomass Resource Related Links Comprehensive biomass resource information is also available from . Printable Version RReDC Home Biomass Resource Information Biomass Data Models & Tools Publications Related Links Geothermal Resource Information Solar Resource Information Wind Resource Information Did you
Assessment of Biomass Resources in Liberia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milbrandt, A.
2009-04-01
Biomass resources meet about 99.5% of the Liberian population?s energy needs so they are vital to basic welfare and economic activity. Already, traditional biomass products like firewood and charcoal are the primary energy source used for domestic cooking and heating. However, other more efficient biomass technologies are available that could open opportunities for agriculture and rural development, and provide other socio-economic and environmental benefits.The main objective of this study is to estimate the biomass resources currently and potentially available in the country and evaluate their contribution for power generation and the production of transportation fuels. It intends to inform policymore » makers and industry developers of the biomass resource availability in Liberia, identify areas with high potential, and serve as a base for further, more detailed site-specific assessments.« less
Guariento, Rafael D.; Carneiro, Luciana S.; Caliman, Adriano; Leal, João J. F.; Bozelli, Reinaldo L.; Esteves, Francisco A.
2011-01-01
Understanding the effects of predators and resources on primary producers has been a major focus of interest in ecology. Within this context, the trophic cascade concept especially concerning the pelagic zone of lakes has been the focus of the majority of these studies. However, littoral food webs could be especially interesting because base trophic levels may be strongly regulated by consumers and prone to be light limited. In this study, the availability of nutrients and light and the presence of an omnivorous fish (Hyphessobrycon bifasciatus) were manipulated in enclosures placed in a humic coastal lagoon (Cabiúnas Lagoon, Macaé – RJ) to evaluate the individual and interactive effects of resource availability (nutrients and light) and food web configuration on the biomass and stoichiometry of periphyton and benthic grazers. Our findings suggest that light and nutrients interact to determine periphyton biomass and stoichiometry, which propagates to the consumer level. We observed a positive effect of the availability of nutrients on periphytic biomass and grazers' biomass, as well as a reduction of periphytic C∶N∶P ratios and an increase of grazers' N and P content. Low light availability constrained the propagation of nutrient effects on periphyton biomass and induced higher periphytic C∶N∶P ratios. The effects of fish presence strongly interacted with resource availability. In general, a positive effect of fish presence was observed for the total biomass of periphyton and grazer's biomass, especially with high resource availability, but the opposite was found for periphytic autotrophic biomass. Fish also had a significant effect on periphyton stoichiometry, but no effect was observed on grazers' stoichiometric ratios. In summary, we observed that the indirect effect of fish predation on periphyton biomass might be dependent on multiple resources and periphyton nutrient stoichiometric variation can affect consumers' stoichiometry. PMID:21789234
Xie, Xiu-Fang; Hu, Yu-Kun; Pan, Xu; Liu, Feng-Hong; Song, Yao-Bin; Dong, Ming
2016-01-01
Resource allocation to different functions is central in life-history theory. Plasticity of functional traits allows clonal plants to regulate their resource allocation to meet changing environments. In this study, biomass allocation traits of clonal plants were categorized into absolute biomass for vegetative growth vs. for reproduction, and their relative ratios based on a data set including 115 species and derived from 139 published literatures. We examined general pattern of biomass allocation of clonal plants in response to availabilities of resource (e.g., light, nutrients, and water) using phylogenetic meta-analysis. We also tested whether the pattern differed among clonal organ types (stolon vs. rhizome). Overall, we found that stoloniferous plants were more sensitive to light intensity than rhizomatous plants, preferentially allocating biomass to vegetative growth, aboveground part and clonal reproduction under shaded conditions. Under nutrient- and water-poor condition, rhizomatous plants were constrained more by ontogeny than by resource availability, preferentially allocating biomass to belowground part. Biomass allocation between belowground and aboveground part of clonal plants generally supported the optimal allocation theory. No general pattern of trade-off was found between growth and reproduction, and neither between sexual and clonal reproduction. Using phylogenetic meta-analysis can avoid possible confounding effects of phylogeny on the results. Our results shown the optimal allocation theory explained a general trend, which the clonal plants are able to plastically regulate their biomass allocation, to cope with changing resource availability, at least in stoloniferous and rhizomatous plants. PMID:27200071
Nkambwe, Musisi; Sekhwela, Mogodisheng B M
2006-02-01
This article examines the utilization characteristics and importance of woody biomass resources in the rural-urban fringe zones of Botswana. In the literature for Africa, attention has been given to the availability and utilization of biomass in either urban or rural environments, but the rural-urban fringe has been neglected. Within southern Africa, this neglect is not justified; the rural-urban fringe, not getting the full benefits available in urban environments in Botswana, has developed problems in woody biomass availability and utilization that require close attention. In this article, socioeconomic data on the importance of woody biomass in the Batlokwa Tribal Territory, on the rural-urban fringe of Gaborone, Botswana, were collected together with ecologic data that reveal the utilization characteristics and potential for regrowth of woody biomass. The analysis of these results show that local woody biomass is very important in the daily lives of communities in the rural-urban fringe zones and that there is a high level of harvesting. However, there is no effort in planning land use in the tribal territory to either conserve this resource or provide alternatives to its utilization. The future of woody biomass resources in Botswana's rural-urban fringe is uncertain. The investigators recommend that a comprehensive policy for the development of the rural-urban fringe consider the importance of this resource. The neglect of this resource will have far-reaching implications on the livelihoods of residents as well as the environment in this zone.
Jochum, Malte; Barnes, Andrew D; Weigelt, Patrick; Ott, David; Rembold, Katja; Farajallah, Achmad; Brose, Ulrich
2017-09-01
High biodiversity and biomass of soil communities are crucial for litter decomposition in terrestrial ecosystems such as tropical forests. However, the leaf litter that these communities consume is of particularly poor quality as indicated by elemental stoichiometry. The impact of resource quantity, quality and other habitat parameters on species richness and biomass of consumer communities is often studied in isolation, although much can be learned from simultaneously studying both community characteristics. Using a dataset of 780 macro-invertebrate consumer species across 32 sites in tropical lowland rain forest and agricultural systems on Sumatra, Indonesia, we investigated the effects of basal resource stoichiometry (C:X ratios of N, P, K, Ca, Mg, Na, S in local leaf litter), litter mass (basal resource quantity and habitat space), plant species richness (surrogate for litter habitat heterogeneity), and soil pH (acidity) on consumer species richness and biomass across different consumer groups (i.e. 3 feeding guilds and 10 selected taxonomic groups). In order to distinguish the most important predictors of consumer species richness and biomass, we applied a standardised model averaging approach investigating the effects of basal resource stoichiometry, litter mass, plant species richness and soil pH on both consumer community characteristics. This standardised approach enabled us to identify differences and similarities in the magnitude and importance of such effects on consumer species richness and biomass. Across consumer groups, we found litter mass to be the most important predictor of both species richness and biomass. Resource stoichiometry had a more pronounced impact on consumer species richness than on their biomass. As expected, taxonomic groups differed in which resource and habitat parameters (basal resource stoichiometry, litter mass, plant species richness and pH) were most important for modulating their community characteristics. The importance of litter mass for both species richness and biomass indicates that these tropical consumers strongly depend on habitat space and resource availability. Our study supports previous theoretical work indicating that consumer species richness is jointly influenced by resource availability and the balanced supply of multiple chemical elements in their resources. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Biomass Data | Geospatial Data Science | NREL
Biomass Data Biomass Data These datasets detail the biomass resources available in the United Coverage File Last Updated Metadata Biomethane Zip 72.2 MB 10/30/2014 Biomethane.xml Solid Biomass Zip 69.5
Assessment of potential biomass energy production in China towards 2030 and 2050
NASA Astrophysics Data System (ADS)
Zhao, Guangling
2018-01-01
The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources production, assumptions are made regarding arable land, marginal land, crops yields, forest growth rate, and meat consumption and waste production. Four scenarios were designed to describe the potential biomass energy production to elaborate the role of biomass energy in the Chinese energy system in 2030. The assessment shows that under certain restrictions on land availability, the maximum potential biomass energy productions are estimated to be 18,833 and 24,901 PJ in 2030 and 2050.
Zhao, Yajie; Li, Zhou; Zhang, Jing; Song, Haiyan; Liang, Qianhui; Tao, Jianping; Cornelissen, Johannes H C; Liu, Jinchun
2017-04-01
Uneven soil depth and low water availability are the key limiting factors to vegetation restoration and reconstruction in limestone soils such as in vulnerable karst regions. Belowground competition will possibly increase under limited soil resources. Here, we investigate whether low resource availability (including shallow soil, low water availability, and shallow soil and low water availability combined) stimulates the competition between grasses with different root systems in karst soil, by assessing their growth response, biomass allocation, and morphological plasticity. In a full three-way factorial blocked design of soil depth by water availability by neighbor identity, we grew Festuca arundinacea (deep-rooted) and Lolium perenne (shallow-rooted) under normal versus shallow soil depth, high versus low water availability, and in monoculture (conspecific neighbor) versus mixture (neighbor of the other species). The key results were as follows: (1) total biomass and aboveground biomass in either of the species decreased with reduction of resources but were not affected by planting patterns (monoculture or mixture) even at low resource levels. (2) For F. arundinacea, root biomass, root mass fraction, total root length, and root volume were higher in mixture than in monoculture at high resource level (consistent with resource use complementarity), but lower in mixture than in monoculture at low resource levels (consistent with interspecific competition). In contrast for L. perenne, either at high or low resource level, these root traits had mostly similar values at both planting patterns. These results suggest that deep-rooted and shallow-rooted plant species can coexist in karst regions under current climatic regimes. Declining resources, due to shallow soil, a decrease in precipitation, or combined shallow soil and karst drought, increased the root competition between plants of deep-rooted and shallow-rooted species. The root systems of deep-rooted plants may be too small to get sufficient water and nutrients from dry, shallow soil, while shallow-rooted plants will maintain a dominant position with their already adaptive strategy in respect of root biomass allocation and root growth.
Biomass for energy in the European Union - a review of bioenergy resource assessments
2012-01-01
This paper reviews recent literature on bioenergy potentials in conjunction with available biomass conversion technologies. The geographical scope is the European Union, which has set a course for long term development of its energy supply from the current dependence on fossil resources to a dominance of renewable resources. A cornerstone in European energy policies and strategies is biomass and bioenergy. The annual demand for biomass for energy is estimated to increase from the current level of 5.7 EJ to 10.0 EJ in 2020. Assessments of bioenergy potentials vary substantially due to methodological inconsistency and assumptions applied by individual authors. Forest biomass, agricultural residues and energy crops constitute the three major sources of biomass for energy, with the latter probably developing into the most important source over the 21st century. Land use and the changes thereof is a key issue in sustainable bioenergy production as land availability is an ultimately limiting factor. PMID:22546368
Biomass for biorefining: Resources, allocation, utilization, and policies
USDA-ARS?s Scientific Manuscript database
The importance of biomass in the development of renewable energy, the availability and allocation of biomass, its preparation for use in biorefineries, and the policies affecting biomass are discussed in this chapter. Bioenergy development will depend on maximizing the amount of biomass obtained fro...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrnett, D. S.; Mulholland, D.; Zinsmeister, E.
One renewable energy option that states frequently consider to meet their clean energy goals is the use of biomass resources to develop bioenergy. Bioenergy includes bioheat, biopower, biofuels, and bioproducts. This document provides an overview of biomass feedstocks, basic information about biomass conversion technologies, and a discussion of benefits and challenges of bioenergy options. The Primer includes a step-wise framework, resources, and tools for determining the availability of feedstocks, assessing potential markets for biomass, and identifying opportunities for action at the state level. Each chapter contains a list of selected resources and tools that states can use to explore topicsmore » in further detail.« less
Biomass resources in California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiangco, V.M.; Sethi, P.S.
1993-12-31
The biomass resources in California which have potential for energy conversion were assessed and characterized through the project funded by the California Energy Commission and the US Department of Energy`s Western Regional Biomass Energy Program (WRBEP). The results indicate that there is an abundance of biomass resources as yet untouched by the industry due to technical, economic, and environmental problems, and other barriers. These biomass resources include residues from field and seed crops, fruit and nut crops, vegetable crops, and nursery crops; food processing wastes; forest slash; energy crops; lumber mill waste; urban wood waste; urban yard waste; livestock manure;more » and chaparral. The estimated total potential of these biomass resource is approximately 47 million bone dry tons (BDT), which is equivalent to 780 billion MJ (740 trillion Btu). About 7 million BDT (132 billion MJ or 124 trillion Btu) of biomass residue was used for generating electricity by 66 direct combustion facilities with gross capacity of about 800 MW. This tonnage accounts for only about 15% of the total biomass resource potential identified in this study. The barriers interfering with the biomass utilization both in the on-site harvesting, collection, storage, handling, transportation, and conversion to energy are identified. The question whether these barriers present significant impact to biomass {open_quotes}availability{close_quotes} and {open_quotes}sustainability{close_quotes} remains to be answered.« less
Resource Availability Alters Biodiversity Effects in Experimental Grass-Forb Mixtures.
Siebenkäs, Alrun; Schumacher, Jens; Roscher, Christiane
2016-01-01
Numerous experiments, mostly performed in particular environments, have shown positive diversity-productivity relationships. Although the complementary use of resources is discussed as an important mechanism explaining diversity effects, less is known about how resource availability controls the strength of diversity effects and how this response depends on the functional composition of plant communities. We studied aboveground biomass production in experimental monocultures, two- and four-species mixtures assembled from two independent pools of four perennial grassland species, each representing two functional groups (grasses, forbs) and two growth statures (small, tall), and exposed to different combinations of light and nutrient availability. On average, shade led to a decrease in aboveground biomass production of 24% while fertilization increased biomass production by 36%. Mixtures were on average more productive than expected from their monocultures (relative yield total, RYT>1) and showed positive net diversity effects (NE: +34% biomass increase; mixture minus mean monoculture biomass). Both trait-independent complementarity effects (TICE: +21%) and dominance effects (DE: +12%) positively contributed to net diversity effects, while trait-dependent complementarity effects were minor (TDCE: +1%). Shading did not alter diversity effects and overyielding. Fertilization decreased RYT and the proportion of biomass gain through TICE and TDCE, while DE increased. Diversity effects did not increase with species richness and were independent of functional group or growth stature composition. Trait-based analyses showed that the dominance of species with root and leaf traits related to resource conservation increased TICE. Traits indicating the tolerance of shade showed positive relationships with TDCE. Large DE were associated with the dominance of species with tall growth and low diversity in leaf nitrogen concentrations. Our field experiment shows that positive diversity effects are possible in grass-forb mixtures irrespective of differences in light availability, but that the chance for the complementary use of resources increases when nutrients are not available at excess.
Resource Availability Alters Biodiversity Effects in Experimental Grass-Forb Mixtures
Siebenkäs, Alrun; Schumacher, Jens; Roscher, Christiane
2016-01-01
Numerous experiments, mostly performed in particular environments, have shown positive diversity-productivity relationships. Although the complementary use of resources is discussed as an important mechanism explaining diversity effects, less is known about how resource availability controls the strength of diversity effects and how this response depends on the functional composition of plant communities. We studied aboveground biomass production in experimental monocultures, two- and four-species mixtures assembled from two independent pools of four perennial grassland species, each representing two functional groups (grasses, forbs) and two growth statures (small, tall), and exposed to different combinations of light and nutrient availability. On average, shade led to a decrease in aboveground biomass production of 24% while fertilization increased biomass production by 36%. Mixtures were on average more productive than expected from their monocultures (relative yield total, RYT>1) and showed positive net diversity effects (NE: +34% biomass increase; mixture minus mean monoculture biomass). Both trait-independent complementarity effects (TICE: +21%) and dominance effects (DE: +12%) positively contributed to net diversity effects, while trait-dependent complementarity effects were minor (TDCE: +1%). Shading did not alter diversity effects and overyielding. Fertilization decreased RYT and the proportion of biomass gain through TICE and TDCE, while DE increased. Diversity effects did not increase with species richness and were independent of functional group or growth stature composition. Trait-based analyses showed that the dominance of species with root and leaf traits related to resource conservation increased TICE. Traits indicating the tolerance of shade showed positive relationships with TDCE. Large DE were associated with the dominance of species with tall growth and low diversity in leaf nitrogen concentrations. Our field experiment shows that positive diversity effects are possible in grass-forb mixtures irrespective of differences in light availability, but that the chance for the complementary use of resources increases when nutrients are not available at excess. PMID:27341495
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turhollow Jr, Anthony F
2016-01-01
Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in themore » forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.« less
Environmental implications of increased biomass energy use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miles, T.R. Sr.; Miles, T.R. Jr.
1992-03-01
This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range ofmore » studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.« less
Galvez, David A.; Zhang, Bin; Najar, Ahmed
2014-01-01
Plant ecologists have debated the mechanisms used by plants to cope with the impact of herbivore damage. While plant resistance mechanisms have received much attention, plant compensatory growth as a type of plant tolerance mechanisms has been less studied. We conducted a greenhouse experiment to evaluate compensatory growth for trembling aspen (Populus tremuloides) seedlings under varying intensities and frequencies of simulated defoliation, with or without nutrient enriched media. For the purpose of this study, changes in biomass production and non-structural carbohydrate concentrations (NSC) of roots and leaves were considered compensatory responses. All defoliated seedlings showed biomass accumulation under low defoliation intensity and frequency, regardless of resource availability; however, as defoliation intensity and frequency increased, compensatory growth of seedlings was altered depending on resource availability. Seedlings in a resource-rich environment showed complete compensation, in contrast responses ranged from undercompensation to complete compensation in a resource-limited environment. Furthermore, at the highest defoliation intensity and frequency, NSC concentrations in leaves and roots were similar between defoliated and non-defoliated seedlings in a resource-rich environment; in contrast, defoliated seedlings with limited resources sustained the most biomass loss, had lower amounts of stored NSC. Using these results, we developed a new predictive framework incorporating the interactions between frequency and intensity of defoliation and resource availability as modulators of plant compensatory responses. PMID:25083352
Commercialization of fuels from Pinyon-Juniper biomass in Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, G.P.
1994-12-31
This study analyzes and defines energy applications and markets that could stimulate the commercial use of Eastern Nevada`s Pinyon-Juniper resources. The commercialization potential for producing energy from Pinyon-Juniper biomass is analyzed by examining the resource base and resource availability for a commercial harvesting and processing operation. The study considered the spectrum of available equipment and technology for carrying out harvesting and processing operations, investigated the markets that might be able to use energy products derived from Pinyon-Juniper biomass, analyzed the costs of harvesting, processing, and transporting Pinyon-Juniper fuels, and set forth a plan for developing the commercial potential of thesemore » resources. The emerging residential pellet-fuels market is a promising entry market for the commercialization of an energy from Pinyon-Juniper biomass industry in Eastern Nevada, although there are serious technical issues that may render Pinyon-Juniper biomass an unsuitable feedstock for the manufacture of pellet fuels. These issues could be investigated at a moderate cost in order to determine whether to proceed with development efforts in this direction. In the longer term, one or two biomass-fired power plants in the size range of 5-10 MW could provide a stable and predictable market for the production and utilization of fuels derived from local Pinyon-Juniper biomass resources, and would provide valuable economic and environmental benefits to the region. Municipal utility ownership of such facilities could help to enhance the economic benefits of the investments by qualifying them for federal energy credits and tax-free financing.« less
Hans-Erik Andersen; Jacob Strunk; Hailemariam Temesgen
2011-01-01
Airborne laser scanning, collected in a sampling mode, has the potential to be a valuable tool for estimating the biomass resources available to support bioenergy production in rural communities of interior Alaska. In this study, we present a methodology for estimating forest biomass over a 201,226-ha area (of which 163,913 ha are forested) in the upper Tanana valley...
Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources.
Tootell, Jesse S; Steele, Mark A
2016-05-01
Herbivore distribution can impact community structure and ecosystem function. On coral reefs, herbivores are thought to play an important role in promoting coral dominance, but how they are distributed relative to algae is not well known. Here, we evaluated whether the distribution, behavior, and condition of herbivorous fishes correlated with algal resource availability at six sites in the back reef environment of Moorea, French Polynesia. Specifically, we tested the hypotheses that increased algal turf availability would coincide with (1) increased biomass, (2) altered foraging behavior, and (3) increased energy reserves of herbivorous fishes. Fish biomass and algal cover were visually estimated along underwater transects; behavior of herbivorous fishes was quantified by observations of focal individuals; fish were collected to assess their condition; and algal turf production rates were measured on standardized tiles. The best predictor of herbivorous fish biomass was algal turf production, with fish biomass increasing with algal production. Biomass of herbivorous fishes was also negatively related to sea urchin density, suggesting competition for limited resources. Regression models including both algal turf production and urchin density explained 94 % of the variation in herbivorous fish biomass among sites spread over ~20 km. Behavioral observations of the parrotfish Chlorurus sordidus revealed that foraging area increased as algal turf cover decreased. Additionally, energy reserves increased with algal turf production, but declined with herbivorous fish density, implying that algal turf is a limited resource for this species. Our findings support the hypothesis that herbivorous fishes can spatially track algal resources on coral reefs.
Hans-Erik Andersen; Jacob Strunk; Hailemariam Temesgen
2011-01-01
Airborne laser scanning, collected in a sampling mode, has the potential to be a valuable tool for estimating the biomass resources available to support bioenergy production in rural communities of interior Alaska. In this study, we present a methodology for estimating forest biomass over a 201,226-ha area (of which 163,913 ha are forested) in the upper Tanana valley...
Biomass Maps | Geospatial Data Science | NREL
emissions from organic wastes Methane Generation Potential from Industrial, Institutional, and Commercial Organic Wastes Publications A Geographic Perspective on the Current Biomass Resource Availability in the
Biomass potential resources identification in Togean Islands, Central Sulawesi
NASA Astrophysics Data System (ADS)
Bunyamin, A.; Purnomo, D.
2017-05-01
Togean Islands is one of remote area in Central Sulawesi Province, Indonesia. Togean has been already well known for its great underwater scenery which fascinating many foreign tourists stay there. The large number of visits to Togean doesn’t mean at the same time it brings much improvement to local economy. People in Togean was used to live with limited utilities. Water and electricity are the two major problems that have been faced by the communities for many years. On the other hand, Togean has a very good potential for the development of biomass as a renewable energy source. This paper evaluated the potency of each resources using some parameters including availability, social support, technology feasibilities and sustainability aspect. Biomass potential resources that were investigated are hardwoods and forestry product, agroindustrial waste and by-products, and also household waste. Advanced analysis has concluded that the most feasible resources that eligible to be considered as future biomass resources is household waste followed by agro-industrial and agricultural waste then hardwood and forestry products.
2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langholtz, M. H.; Stokes, B. J.; Eaton, L. M.
This product builds on previous efforts, namely the 2005 Billion-Ton Study (BTS) and the 2011 U.S. Billion-Ton Update (BT2).With each report, greater perspective is gained on the potential of biomass resources to contribute to a national energy strategy. Similarly, each successive report introduces new questions regarding commercialization challenges. BTS quantified the broad biophysical potential of biomass nationally, and BT2 elucidated the potential economic availability of these resources. These reports clearly established the potential availability of up to one billion tons of biomass resources nationally. However, many questions remain, including but not limited to crop yields, climate change impacts, logistical operations,more » and systems integration across production, harvest, and conversion. The present report aims to address many of these questions through empirically modeled energy crop yields, scenario analysis of resources delivered to biorefineries, and the addition of new feedstocks. Volume 2 of the 2016 Billion-Ton Report is expected to be released by the end of 2016. It seeks to evaluate environmental sustainability indicators of select scenarios from volume 1 and potential climate change impacts on future supplies.« less
Biomass measurement from LANDSAT: Drought and energy applications
NASA Technical Reports Server (NTRS)
Maxwell, E. L.
1981-01-01
The theory supporting the use of vegetation indices derived from LANDSAT data for the direct measurement of biomass is reviewed. The use of multispectral data to measure biomass is a natural and viable application since the photosynthetic production of biomass gives vegetation its unique spectral properties. Vegetation indices also perform a normalization function which tends to make them insensitive to atmospheric and soil color variations. Optical and digital LANDSAT products are discussed relative to the use of vegetation indices to monitor drought impact. Based on results obtained in Colorado, operational use of LANDSAT to monitor drought is cost effective, practical and ready for implementation today. The direct measurement of biomass energy resources may also benefit from LANDSAT technology. Measurement of total biomass and annual primary production may be feasible. Identification of that component of biomass resources available for energy use will require other sources of information, however.
David R. Coyle; Mark D. Coleman; Doug P. Aubrey
2008-01-01
Increased forest productivity has been obtained by improving resource availability through water and nutrient amendments. However, more stress- tolerant species that have robust site requirements do not respond consistently to irrigation. An important factor contributing to robust site requirements may be the distribution of biomass belowground, yet available...
Yin, Chunying; Palmroth, Sari; Pang, Xueyong; Tang, Bo; Liu, Qing; Oren, Ram
2018-05-16
A pot experiment was conducted to investigate the effects of nitrogen (N) addition (0, 20, 40 g N m-2 year-1, N0, N20, N40, respectively) on the growth, and biomass accumulation and allocation of coniferous and deciduous (Picea asperata Mast. and Betula albosinensis Burk.) seedlings under a range of soil moisture limitation (40%, 50%, 60%, 80% and 100% of field capacity, FC). At 100% FC, growth of shade-tolerant P. asperata increased with N supply, while that of shade-intolerant B. albosinensis reached a maximum at N20, declining somewhat thereafter. At 60% FC and lower moisture content, water availability limited the growth of P. asperata seedlings, while N availability became progressively limiting to growth with moisture increasing above 60% FC. The transition from principally water-limited response to N-limited response in B. albosinensis occurred at lower moisture content. For P. asperata, these patterns reflected the responses of roots, consistent with changes in root/shoot biomass. For B. albosinensis the response reflected changes in shoot dimensions and root biomass fraction, the latter decreasing with size and foliar [N]. We are not aware of another study demonstrating such differences in the shape of the growth responses of seedlings of differing potential growth rate, across a range in belowground resource supply. The responses of leaf photosynthesis (as well as photosynthetic water and N-use efficiencies) were consistent with the observed growth response of P. asperata to water and N availability, but not of B. albosinensis, suggesting that leaf area dynamics (not measured) dominated the response of this species. Betula albosinensis, a fast-growing species, has a relative narrow range of soil water and N availability for maximum growth, achieved by preferential allocation to the shoot as resources meet the requirements at moderate N and water supply. In contrast, P. asperata increases shoot biomass progressively with increasing resources up to moderate water supply, preferentially growing more roots when resources are not limiting, suggesting that its capacity to produce shoot biomass may reach a biological limit at moderate levels of resource supply.
Development potentials and policy options of biomass in China.
Shen, Lei; Liu, Litao; Yao, Zhijun; Liu, Gang; Lucas, Mario
2010-10-01
Biomass, one of the most important renewable energies, is playing and will continue to play an important role in the future energy structure of the world. This article aims to analyze the position and role, assess the resource availability, discuss the geographic distribution, market scale and industry development, and present the policy options of biomass in China. The resource availability and geographical distribution of biomass byproducts are assessed in terms of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater. The position of biomass use for power generation is just next to hydropower among types of renewable energy in China. The potential quantity of all biomass byproducts energy in 2004 is 3511 Mtce (Mtce is the abbreviation of million tons of coal equivalents and 1 Mtce is equal to10(6) tce.), while the acquirable quantity is 460 Mtce. Biomass energy plays a critical role in rural regions of China. The geographical distribution and quantity of biomass byproducts resources depends mainly on the relationship between ecological zones and climate conditions. Our estimation shows that the total quantity of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater resources are 728, 3926, 2175, 155 and 48240 Mt (million tons), respectively. Crop residues come mainly from the provinces of Henan, Shandong, Heilongjiang, Jilin and Sichuan. All manure is mainly located in the provinces of Henan, Shandong, Sichuan, Hebei and Hunan. Forest and wood biomass byproducts are mainly produced in the provinces or autonomous regions of Tibet, Sichuan, Yunnan, Heilongjiang and Inner Mongolia, while most of municipal waste mainly comes from Guangdong, Shandong, Heilongjiang, Hubei and Jiangsu. Most of wastewater is largely discharged from advanced provinces like Guangdong, Jiangsu, Zhejiang, Shandong and Henan. Biomass byproducts' energy distribution also varies from province to province in China. Based on the analysis of the market scale and industry development, the article argues that China's biomass energy industry is still at a very early stage of development and that Feed-in Tariffs (FIT) might be the best policy option for China to promote its development of biomass energy. A successful enforcement of FIT in China needs some policy combination of special capital subsidies, R&D funding, tax incentives and pricing.
Development Potentials and Policy Options of Biomass in China
NASA Astrophysics Data System (ADS)
Shen, Lei; Liu, Litao; Yao, Zhijun; Liu, Gang; Lucas, Mario
2010-10-01
Biomass, one of the most important renewable energies, is playing and will continue to play an important role in the future energy structure of the world. This article aims to analyze the position and role, assess the resource availability, discuss the geographic distribution, market scale and industry development, and present the policy options of biomass in China. The resource availability and geographical distribution of biomass byproducts are assessed in terms of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater. The position of biomass use for power generation is just next to hydropower among types of renewable energy in China. The potential quantity of all biomass byproducts energy in 2004 is 3511 Mtce (Mtce is the abbreviation of million tons of coal equivalents and 1 Mtce is equal to106 tce.), while the acquirable quantity is 460 Mtce. Biomass energy plays a critical role in rural regions of China. The geographical distribution and quantity of biomass byproducts resources depends mainly on the relationship between ecological zones and climate conditions. Our estimation shows that the total quantity of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater resources are 728, 3926, 2175, 155 and 48240 Mt (million tons), respectively. Crop residues come mainly from the provinces of Henan, Shandong, Heilongjiang, Jilin and Sichuan. All manure is mainly located in the provinces of Henan, Shandong, Sichuan, Hebei and Hunan. Forest and wood biomass byproducts are mainly produced in the provinces or autonomous regions of Tibet, Sichuan, Yunnan, Heilongjiang and Inner Mongolia, while most of municipal waste mainly comes from Guangdong, Shandong, Heilongjiang, Hubei and Jiangsu. Most of wastewater is largely discharged from advanced provinces like Guangdong, Jiangsu, Zhejiang, Shandong and Henan. Biomass byproducts’ energy distribution also varies from province to province in China. Based on the analysis of the market scale and industry development, the article argues that China’s biomass energy industry is still at a very early stage of development and that Feed-in Tariffs (FIT) might be the best policy option for China to promote its development of biomass energy. A successful enforcement of FIT in China needs some policy combination of special capital subsidies, R&D funding, tax incentives and pricing.
Putney Basketville Site Biomass CHP Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunsberger, Randolph; Mosey, Gail
2013-10-01
The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response Center for Program Analysis developed the RE-Powering America's Land initiative to reuse contaminated sites for renewable energy generation when aligned with the community's vision for the site. The Putney, Vermont, Basketville site, formerly the location of a basket-making facility and a paper mill andwoolen mill, was selected for a feasibility study under the program. Biomass was chosen as the renewable energy resource based on abundant woody-biomass resources available in the area. Biomass combined heat and power (CHP) was selected as the technology due to nearby loads, includingmore » Putney Paper and Landmark College.« less
Chapter 3 - At the roadside: Forest resources
Bryce Stokes; Timothy G. Rials; Leonard R. Johnson; Karen L. Abt; Prakash Nepal; Kenneth E. Skog; Robert C. Abt; Lixia He; Burton C. English
2016-01-01
Chapter 3 assesses the availability of forest resources to the roadside. Not all woody feedstocks are discussed in this chapter. Logging residues and wholetree biomass are included. Other feedstock categories have been moved to chapter 5 or are redefined to be included in the whole-tree biomass category. New methodologies and data are used in the assessment to
Optimization of biomass composition explains microbial growth-stoichiometry relationships
Franklin, O.; Hall, E.K.; Kaiser, C.; Battin, T.J.; Richter, A.
2011-01-01
Integrating microbial physiology and biomass stoichiometry opens far-reaching possibilities for linking microbial dynamics to ecosystem processes. For example, the growth-rate hypothesis (GRH) predicts positive correlations among growth rate, RNA content, and biomass phosphorus (P) content. Such relationships have been used to infer patterns of microbial activity, resource availability, and nutrient recycling in ecosystems. However, for microorganisms it is unclear under which resource conditions the GRH applies. We developed a model to test whether the response of microbial biomass stoichiometry to variable resource stoichiometry can be explained by a trade-off among cellular components that maximizes growth. The results show mechanistically why the GRH is valid under P limitation but not under N limitation. We also show why variability of growth rate-biomass stoichiometry relationships is lower under P limitation than under N or C limitation. These theoretical results are supported by experimental data on macromolecular composition (RNA, DNA, and protein) and biomass stoichiometry from two different bacteria. In addition, compared to a model with strictly homeostatic biomass, the optimization mechanism we suggest results in increased microbial N and P mineralization during organic-matter decomposition. Therefore, this mechanism may also have important implications for our understanding of nutrient cycling in ecosystems.
Michael E. Goerndt; Francisco X. Aguilar; Kenneth Skog
2013-01-01
Past studies have established measures of co-firing potential at varying spatial scales to assess opportunities for renewable energy generation from woody biomass. This study estimated physical availability, within ecological and public policy constraints, and associated harvesting and delivery costs of woody biomass for co-firing in selected power plants of the...
Temporal variability in detritus resource maintains diversity of bacterial communities
NASA Astrophysics Data System (ADS)
Hiltunen, Teppo; Laakso, Jouni; Kaitala, Veijo; Suomalainen, Lotta-Riina; Pekkonen, Minna
2008-05-01
Competition theory generally predicts that diversity is maintained by temporal environmental fluctuations. One of the many suggested mechanisms for maintaining diversity in fluctuating environments is the gleaner-opportunist trade-off, whereby gleaner species have low threshold resource levels and low maximum growth rates in high resource concentration while opportunist species show opposite characteristics. We measured the growth rates of eight heterotrophic aquatic bacteria under different concentrations of chemically complex plant detritus resource. The growth rates revealed gleaner-opportunist trade-offs. The role of environmental variability in maintaining diversity was tested in a 28-day experiment with three different resource fluctuation regimes imposed on two four-species bacterial communities in microcosms. We recorded population densities with serial dilution plating and total biomass as turbidity. Changes in resource availability were measured from filter-sterilised medium by re-introducing the consumer species and recording short-term growth rates. The type of environmental variation had no effect on resource availability, which declined slowly during the experiment and differed in level between the communities. However, the slowly fluctuating environment had the highest Shannon diversity index, biomass, and coefficient of variation of biomass in both communities. We did not find a clear link between the gleaner-opportunist trade-off and diversity in fluctuating environments. Nevertheless, our results do not exclude this explanation and support the general view that temporal environmental variation maintains species diversity also in communities feeding chemically complex resource.
NREL: Renewable Resource Data Center - Biomass Resource Information
Biomass Resource Information Photo of corn stover biomass resource Corn stover The Renewable Resource Data Center (RReDC) offers a collection of data and tools to assist with biomass resource research . Learn more about RReDC's biomass resource: Data Models and tools Publications Related links Biomass
Evaluating a biomass resource: The TVA region-wide biomass resource assessment model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Downing, M.; Graham, R.L.
1993-12-31
The economic and supply structures of short rotation woody crop (SRWC) markets have not been established. Establishing the likely price and supply of SRWC biomass in a region is a complex task because biomass is not an established commodity as are oil, natural gas and coal. In this study we project the cost and supply of short-rotation woody biomass for the TVA region -- a 276 county area that includes all of Tennessee and portions of 10 contiguous states in the southeastern United States. Projected prices and quantities of SRWC are assumed to be a function of the amount andmore » quality of crop and pasture land available in a region, expected SRWC yields and production costs on differing soils and land types, and the profit that could be obtained from current conventional crop production on these same lands. Results include the supply curve of SRWC biomass that is projected to be available from the entire region, the amount and location of crop and pasture land that would be used, and the conventional agricultural crops that would be displaced as a function of SRWC production. Finally, we show the results of sensitivity analysis on the projected cost and supply of SRWC biomass. In particular, we examine the separate impacts of varying SRWC production yields.« less
Data Visualization and Geospatial Tools | Geospatial Data Science | NREL
renewable resources are available in a specific areas. General Analysis Renewable Energy Atlas View the geographic distribution of wind, solar, geothermal, hydropower, and biomass resources in the United States . Solar and Wind Energy Resource Assessment (SWERA) Model Access international renewable energy resource
Smith-Martin, Christina M; Gei, Maria G; Bergstrom, Ellie; Becklund, Kristen K; Becknell, Justin M; Waring, Bonnie G; Werden, Leland K; Powers, Jennifer S
2017-03-01
The seedling stage is particularly vulnerable to resource limitation, with potential consequences for community composition. We investigated how light and soil variation affected early growth, biomass partitioning, morphology, and physiology of 22 tree species common in tropical dry forest, including eight legumes. Our hypothesis was that legume seedlings are better at taking advantage of increased resource availability, which contributes to their successful regeneration in tropical dry forests. We grew seedlings in a full-factorial design under two light levels in two soil types that differed in nutrient concentrations and soil moisture. We measured height biweekly and, at final harvest, biomass partitioning, internode segments, leaf carbon, nitrogen, δ 13 C, and δ 15 N. Legumes initially grew taller and maintained that height advantage over time under all experimental conditions. Legumes also had the highest final total biomass and water-use efficiency in the high-light and high-resource soil. For nitrogen-fixing legumes, the amount of nitrogen derived from fixation was highest in the richer soil. Although seed mass tended to be larger in legumes, seed size alone did not account for all the differences between legumes and nonlegumes. Both belowground and aboveground resources were limiting to early seedling growth and function. Legumes may have a different regeneration niche, in that they germinate rapidly and grow taller than other species immediately after germination, maximizing their performance when light and belowground resources are readily available, and potentially permitting them to take advantage of high light, nutrient, and water availability at the beginning of the wet season. © 2017 Botanical Society of America.
Evaluation of plant biomass resources available for replacement of fossil oil
Henry, Robert J
2010-01-01
The potential of plants to replace fossil oil was evaluated by considering the scale of production required, the area of land needed and the types of plants available. High yielding crops (50 tonnes/ha) that have a high conversion efficiency (75%) would require a global land footprint of around 100 million ha to replace current (2008) oil consumption. Lower yielding or less convertible plants would require a larger land footprint. Domestication of new species as dedicated energy crops may be necessary. A systematic analysis of higher plants and their current and potential uses is presented. Plant biotechnology provides tools to improve the prospects of replacing oil with plant-derived biomass by increasing the amount of biomass produced per unit area of land and improving the composition of the biomass to increase the efficiency of conversion to biofuel and biomaterials. Options for the production of high value coproducts and the expression of processing aids such as enzymes in the plant may add further value to plants as bioenergy resources. PMID:20070873
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
There are many opportunities to leverage agricultural resources on existing lands without interfering with production of food, feed, fiber, or forest products. In the recently developed advanced biomass feedstock commercialization vision, estimates of potentially available biomass supply from agriculture are built upon the U.S. Department of Agriculture’s (USDA’s) Long-Term Forecast, ensuring that existing product demands are met before biomass crops are planted. Dedicated biomass energy crops and agricultural crop residues are abundant, diverse, and widely distributed across the United States. These potential biomass supplies can play an important role in a national biofuels commercialization strategy.
Stem growth and respiration in loblolly pine plantations differing in soil resource availability
Chris A. Maier
2001-01-01
Stem respiration and growth in 10-year-old loblolly pine (Pinus taeda L.) plantations were measured monthly during the third year of fertilization and irrigation treatments to determine whether soil resource availability differentially altered growth and respiration in stem tissue. Fertilized trees had significantly greater stem biomass, stem...
Effects of depth and crayfish size on predation risk and foraging profitability of a lotic crayfish
Flinders, C.A.; Magoulick, D.D.
2007-01-01
We conducted field surveys and experiments to determine whether observed distributions of crayfish among habitats were influenced by differential resource availability, foraging profitability, and predation rates and whether these factors differed with crayfish size and habitat depth. We sampled available food resources (detritus and invertebrates) and shelter as rock substrate in deep (>50 cm) and shallow (<30 cm) habitats. We used an enclosure-exclosure experiment to examine the effects of water depth and crayfish size on crayfish biomass and survival, and to determine whether these factors affected silt accrual, algal abundance (chlorophyll a [chl a]), and detritus and invertebrate biomass (g ash-free dry mass) differently from enclosures without crayfish. We conducted tethering experiments to assess predation on small (13-17 mm carapace length [CL]) and large (23-30 mm CL) Orconectes marchandi and to determine whether predation rates differed with water depth. Invertebrate biomass was significantly greater in shallow water than in deep water, whereas detritus biomass did not differ significantly between depths. Cobble was significantly more abundant in shallow than in deep water. Depth and crayfish size had a significant interactive effect on change in size of enclosed crayfish when CL was used as a measure of size but not when biomass was used as a measure of size. CL of small crayfish increased significantly more in enclosures in shallow than in deep water, but CL of large crayfish changed very little at either depth. Silt, chl a, and detritus biomass were significantly lower on tiles in large- than in small- and no-crayfish enclosures, and invertebrate biomass was significantly lower in large- than in no-crayfish enclosures. Significantly more crayfish were consumed in deep than in shallow water regardless of crayfish size. Our results suggest that predation and resource availability might influence the depth distribution of small and large crayfish. Small crayfish grew faster in shallow habitats where they might have had a fitness advantage caused by high prey availability and reduced predation risk. Size-dependent reduction of silt by crayfish might influence benthic habitats where large crayfish are abundant. ?? 2007 by The North American Benthological Society.
NASA Astrophysics Data System (ADS)
Ansari, Kapuli Gani Mohamed Thameemul; Lyla, Somasundharanair; Khan, Syed Ajmal; Bhadury, Punyasloke
2017-09-01
Depth and latitudinal patterns of nematode functional attributes were investigated from 35 stations of Bay of Bengal (BoB) continental shelf. We aim to address whether depth and latitudinal variations can modify nematode community structure and their functional attributes (trophic diversity, size and biomass spectra). Global trend of depth and latitudinal related variations have also been noticed from BoB shelf in terms of nematode abundance and species richness, albeit heterogeneity patterns were encountered in functional attributes. Index of trophic diversity values revealed higher trophic diversity across the BoB shelf and suggested variety of food resource availability. However, downstream analysis of trophic status showed depth and latitude specific patterns but not reflected in terms of size and biomass spectrum. The peaks at different positions clearly visualized heterogeneity in distribution patterns for both size and biomass spectrum and also there was evidence of availability of diversified food resources. Nematode biomass spectra (NBS) constructed for nematode communities showed shift in peak biomass values towards lower to moderate size classes particularly in shallower depth but did not get reflected in latitudes. However, Chennai and Parangipettai transects demonstrated shift in peak biomass values towards higher biomass classes explaining the representation of higher nematode abundance. Our findings concluded that depth and latitudes are physical variables; they may not directly affect nematode community structure and functional attributes but they might influence the other factors such as food availability, sediment deposition and settlement rate. Our observations suggest that the local factors (seasonal character) of phytodetrital food flux can be very important for shaping the nematode community structure and success of nematode functional heterogeneity patterns across the Bay of Bengal shelf.
NREL: International Activities - Biomass Resource Assessment
Biomass Resource Assessment Map showing annual productivity of marginal lands in APEC economies . Biomass resource assessments quantify the existing or potential biomass material in a given area. Biomass biomass resources could be used to produce power, heat, transportation fuels, and various chemical
Sokan-Adeaga, Adewale Allen; Ana, Godson R E E
2015-01-01
The quest for biofuels in Nigeria, no doubt, represents a legitimate ambition. This is so because the focus on biofuel production has assumed a global dimension, and the benefits that may accrue from such effort may turn out to be enormous if the preconditions are adequately satisfied. As a member of the global community, it has become exigent for Nigeria to explore other potential means of bettering her already impoverished economy. Biomass is the major energy source in Nigeria, contributing about 78% of Nigeria's primary energy supply. In this paper, a comprehensive review of the potential of biomass resources and biofuel production in Nigeria is given. The study adopted a desk review of existing literatures on major energy crops produced in Nigeria. A brief description of the current biofuel developmental activities in the country is also given. A variety of biomass resources exist in the country in large quantities with opportunities for expansion. Biomass resources considered include agricultural crops, agricultural crop residues, forestry resources, municipal solid waste, and animal waste. However, the prospects of achieving this giant stride appear not to be feasible in Nigeria. Although the focus on biofuel production may be a worthwhile endeavor in view of Nigeria's development woes, the paper argues that because Nigeria is yet to adequately satisfy the preconditions for such program, the effort may be designed to fail after all. To avoid this, the government must address key areas of concern such as food insecurity, environmental crisis, and blatant corruption in all quarters. It is concluded that given the large availability of biomass resources in Nigeria, there is immense potential for biofuel production from these biomass resources. With the very high potential for biofuel production, the governments as well as private investors are therefore encouraged to take practical steps toward investing in agriculture for the production of energy crops and the establishment of biofuel-processing plants in Nigeria.
Complementarity among four highly productive grassland species depends on resource availability.
Roscher, Christiane; Schmid, Bernhard; Kolle, Olaf; Schulze, Ernst-Detlef
2016-06-01
Positive species richness-productivity relationships are common in biodiversity experiments, but how resource availability modifies biodiversity effects in grass-legume mixtures composed of highly productive species is yet to be explicitly tested. We addressed this question by choosing two grasses (Arrhenatherum elatius and Dactylis glomerata) and two legumes (Medicago × varia and Onobrychis viciifolia) which are highly productive in monocultures and dominant in mixtures (the Jena Experiment). We established monocultures, all possible two- and three-species mixtures, and the four-species mixture under three different resource supply conditions (control, fertilization, and shading). Compared to the control, community biomass production decreased under shading (-56 %) and increased under fertilization (+12 %). Net diversity effects (i.e., mixture minus mean monoculture biomass) were positive in the control and under shading (on average +15 and +72 %, respectively) and negative under fertilization (-10 %). Positive complementarity effects in the control suggested resource partitioning and facilitation of growth through symbiotic N2 fixation by legumes. Positive complementarity effects under shading indicated that resource partitioning is also possible when growth is carbon-limited. Negative complementarity effects under fertilization suggested that external nutrient supply depressed facilitative grass-legume interactions due to increased competition for light. Selection effects, which quantify the dominance of species with particularly high monoculture biomasses in the mixture, were generally small compared to complementarity effects, and indicated that these species had comparable competitive strengths in the mixture. Our study shows that resource availability has a strong impact on the occurrence of positive diversity effects among tall and highly productive grass and legume species.
Effect of water availability on tolerance of leaf damage in tall morning glory, Ipomoea purpurea
NASA Astrophysics Data System (ADS)
Atala, Cristian; Gianoli, Ernesto
2009-03-01
Resource availability may limit plant tolerance of herbivory. To predict the effect of differential resource availability on plant tolerance, the limiting resource model (LRM) considers which resource limits plant fitness and which resource is mostly affected by herbivore damage. We tested the effect of experimental drought on tolerance of leaf damage in Ipomoea purpurea, which is naturally exposed to both leaf damage and summer drought. To seek mechanistic explanations, we also measured several morphological, allocation and gas exchange traits. In this case, LRM predicts that tolerance would be the same in both water treatments. Plants were assigned to a combination of two water treatments (control and low water) and two damage treatments (50% defoliation and undamaged). Plants showed tolerance of leaf damage, i.e., a similar number of fruits were produced by damaged and undamaged plants, only in control water. Whereas experimental drought affected all plant traits, leaf damage caused plants to show a greater leaf trichome density and reduced shoot biomass, but only in low water. It is suggested that the reduced fitness (number of fruits) of damaged plants in low water was mediated by the differential reduction of shoot biomass, because the number of fruits per shoot biomass was similar in damaged and undamaged plants. Alternative but less likely explanations include the opposing direction of functional responses to drought and defoliation, and resource costs of the damage-induced leaf trichome density. Our results somewhat challenge the LRM predictions, but further research including field experiments is needed to validate some of the preliminary conclusions drawn.
Tree seedlings respond to both light and soil nutrients in a Patagonian evergreen-deciduous forest.
Promis, Alvaro; Allen, Robert B
2017-01-01
Seedlings of co-occurring species vary in their response to resource availability and this has implications for the conservation and management of forests. Differential shade-tolerance is thought to influence seedling performance in mixed Nothofagus betuloides-Nothofagus pumilio forests of Patagonia. However, these species also vary in their soil nutrient requirements. To determine the effects of light and soil nutrient resources on small seedlings we examined responses to an experimental reduction in canopy tree root competition through root trenching and restricting soil nutrient depletion through the addition of fertilizer. To understand the effect of light these treatments were undertaken in small canopy gaps and nearby beneath undisturbed canopy with lower light levels. Seedling diameter growth was greater for N. pumilio and height growth was greater for N. betuloides. Overall, diameter and height growth were greater in canopy gaps than beneath undisturbed canopy. Such growths were also greater with fertilizer and root trenching treatments, even beneath undisturbed canopy. Seedling survival was lower under such treatments, potentially reflecting thinning facilitated by resource induced growth. Finally, above-ground biomass did not vary among species although the less shade tolerant N. pumilio had higher below-ground biomass and root to shoot biomass ratio than the more shade tolerant N. betuloides. Above- and below-ground biomass were higher in canopy gaps so that the root to shoot biomass ratio was similar to that beneath undisturbed canopy. Above-ground biomass was also higher with fertilizer and root trenching treatments and that lowered the root to shoot biomass ratio. Restricting soil nutrient depletion allowed seedlings of both species to focus their responses above-ground. Our results support a view that soil nutrient resources, as well as the more commonly studied light resources, are important to seedlings of Nothofagus species occurring on infertile soils.
Sustainable development through biomass utilization: A practical approach
Ravi Malhotra
2008-01-01
(Please note, this is an abstract only) This paper is for folks involved in community development efforts targeted towards biomass utilization. Our approach to evaluate the potential for establishing enterprises that utilize locally available forest resources is tailored specifically to the needs of the local community. We evaluate the: 1. Technical feasibility and...
Spatial and temporal dynamics of agricultural residue resources in the last 30 years in China.
Yang, Yanli; Zhang, Peidong; Yang, Xutong; Xu, Xiaoning
2016-12-01
The availability and distribution of biomass resources are important for the development of the bioenergy industry in a region. Biomass resources are abundant in China; however, the raw material is severely deficient, which makes the Chinese bioenergy industry an embarrassment and a contradiction. Unclear reserves and distribution and changing trends of biomass resources are the reason for this situation. A collection coefficient model of Chinese agricultural residue resources was established and the spatial and temporal pattern dynamics of agricultural residue resources in the last 30 years were analyzed. The results show that agricultural residue resources increased in stages from 1978 to 2011, including a rapid increase from 1978 to 1999, a significant fall from 2000 to 2004, and a slow increase from 2004 to 2011. Crops straw and livestock manure are the main ingredients of agricultural residue resources with proportions of 53-59% and 31-38%, respectively. However, the former has gradually decreased, while the latter is increasing. This mainly resulted from the strategic reorganization of the Chinese agriculture structure and the rapid development of large-scale livestock breeding and agricultural mechanization. Large regional differences existed in Chinese agricultural residue resources, and three distribution types formed, including resource-rich areas in North China, Northeast and Inner Mongolia, resource-limited areas in Central and Southwest China, and resource-poor areas along Northwest and Southeast coasts. This pattern is a reverse of the distributions of climatic conditions, water resources, economic development, human resources, and technological levels. Finally, it can be predicted that livestock manure and biomass conversion technology at low temperature will play increasingly significant roles in bioenergy industry development. © The Author(s) 2016.
NASA Technical Reports Server (NTRS)
Aston, T. W.; Fabos, J. G.; Macdougall, E. B.
1982-01-01
Adaptation and derivation were used to develop a procedure for assessing the availability of renewable energy resources on the landscape while simultaneously accounting for the economic, legal, social, and environmental issues required. Done in a step-by-step fashion, the procedure can be used interactively at the computer terminals. Its application in determining the hydroelectricity, biomass, and windpower in a 40,000 acre study area of Western Massachusetts shows that: (1) three existing dam sites are physically capable of being retrofitted for hydropower; (2) each of three general areas has a mean annual windspeed exceeding 14 mph and is conductive to windpower; and (3) 20% of the total land area consists of prime agricultural biomass while 30% of the area is prime forest biomass land.
White, K.P.; Langley, J.A.; Cahoon, D.R.; Megonigal, J.P.
2012-01-01
Plants alter biomass allocation to optimize resource capture. Plant strategy for resource capture may have important implications in intertidal marshes, where soil nitrogen (N) levels and atmospheric carbon dioxide (CO2) are changing. We conducted a factorial manipulation of atmospheric CO2 (ambient and ambient + 340 ppm) and soil N (ambient and ambient + 25 g m-2 year-1) in an intertidal marsh composed of common North Atlantic C3 and C4 species. Estimation of C3 stem turnover was used to adjust aboveground C3 productivity, and fine root productivity was partitioned into C3-C4 functional groups by isotopic analysis. The results suggest that the plants follow resource capture theory. The C3 species increased aboveground productivity under the added N and elevated CO2 treatment (P 2 alone. C3 fine root production decreased with added N (P 2 (P = 0.0481). The C4 species increased growth under high N availability both above- and belowground, but that stimulation was diminished under elevated CO2. The results suggest that the marsh vegetation allocates biomass according to resource capture at the individual plant level rather than for optimal ecosystem viability in regards to biomass influence over the processes that maintain soil surface elevation in equilibrium with sea level.
Singh, Jitendra K; Vyas, Preeti; Dubey, Anamika; Upadhyaya, Chandrama Prakash; Kothari, Richa; Tyagi, Vineet Veer; Kumar, Ashwani
2018-06-01
The future supply of energy to meet growing energy demand of rapidly exapanding populations is based on wide energy resources, particularly the renewable ones. Among all resources, lignocellulosic biomasses such as agriculture, forest, and agro-industrial residues are the most abundant and easily available bioresource for biorefineries to provide fuels, chemicals, and materials. However, pretreatment of biomass is required to overcome the physical and chemical barriers that exist in the lignin-carbohydrate composite and pretreatment facilitate the entry of biocatalysts for the conversion of biomass into fermentable sugars and other by-products. Therefore, pretreatment of the biomass is necessary prerequisite for efficient hydrolysis of lignocelluloses into different type of fermentable sugars. The physiochemical, biochemical and biological pretreatment methods are considered as most promising technologies for the biomass hydrolysis and are discussed in this review article. We also discussed the recent advancements and modern trends in pretreatment methods of lignocelluloses conversion into ethanol with special focus on fermentation methods.
Owen-Smith, Norman
2011-07-01
1. There is a pressing need for population models that can reliably predict responses to changing environmental conditions and diagnose the causes of variation in abundance in space as well as through time. In this 'how to' article, it is outlined how standard population models can be modified to accommodate environmental variation in a heuristically conducive way. This approach is based on metaphysiological modelling concepts linking populations within food web contexts and underlying behaviour governing resource selection. Using population biomass as the currency, population changes can be considered at fine temporal scales taking into account seasonal variation. Density feedbacks are generated through the seasonal depression of resources even in the absence of interference competition. 2. Examples described include (i) metaphysiological modifications of Lotka-Volterra equations for coupled consumer-resource dynamics, accommodating seasonal variation in resource quality as well as availability, resource-dependent mortality and additive predation, (ii) spatial variation in habitat suitability evident from the population abundance attained, taking into account resource heterogeneity and consumer choice using empirical data, (iii) accommodating population structure through the variable sensitivity of life-history stages to resource deficiencies, affecting susceptibility to oscillatory dynamics and (iv) expansion of density-dependent equations to accommodate various biomass losses reducing population growth rate below its potential, including reductions in reproductive outputs. Supporting computational code and parameter values are provided. 3. The essential features of metaphysiological population models include (i) the biomass currency enabling within-year dynamics to be represented appropriately, (ii) distinguishing various processes reducing population growth below its potential, (iii) structural consistency in the representation of interacting populations and (iv) capacity to accommodate environmental variation in space as well as through time. Biomass dynamics provide a common currency linking behavioural, population and food web ecology. 4. Metaphysiological biomass loss accounting provides a conceptual framework more conducive for projecting and interpreting the population consequences of climatic shifts and human transformations of habitats than standard modelling approaches. © 2011 The Author. Journal of Animal Ecology © 2011 British Ecological Society.
Sustainable Biomass Resource Development and Use | Energy Analysis | NREL
Sustainable Biomass Resource Development and Use Sustainable Biomass Resource Development and Use A sustainability analysis includes biomass resource use and impact assessment. This analysis examines how we can use existing resources in a sustainable manner. It also examines the environmental and socio-economic
Technical and economic assessment of processes for the production of butanol and acetone
NASA Technical Reports Server (NTRS)
1982-01-01
This report represents a preliminary technical and economic evaluation of a process which produces mixed solvents (butaol/acetone/ethanol) via fermentation of sugars derived from renewable biomass resources. The objective is to assess the technology of producing butanol/acetone from biomass, and select a viable process capable of serving as a base case model for technical and economic analysis. It is anticipated that the base case process developed herein can then be used as the basis for subsequent studies concerning biomass conversion processes capable of producing a wide range of chemicals. The general criteria utilized in determining the design basis for the process are profit potential and non-renewable energy displacement potential. The feedstock chosen, aspen wood, was selected from a number of potential renewable biomass resources as the most readily available in the United States and for its relatively large potential for producing reducing sugars.
Schnell, Sebastian; Altrell, Dan; Ståhl, Göran; Kleinn, Christoph
2015-01-01
In contrast to forest trees, trees outside forests (TOF) often are not included in the national monitoring of tree resources. Consequently, data about this particular resource is rare, and available information is typically fragmented across the different institutions and stakeholders that deal with one or more of the various TOF types. Thus, even if information is available, it is difficult to aggregate data into overall national statistics. However, the National Forest Monitoring and Assessment (NFMA) programme of FAO offers a unique possibility to study TOF resources because TOF are integrated by default into the NFMA inventory design. We have analysed NFMA data from 11 countries across three continents. For six countries, we found that more than 10% of the national above-ground tree biomass was actually accumulated outside forests. The highest value (73%) was observed for Bangladesh (total forest cover 8.1%, average biomass per hectare in forest 33.4 t ha(-1)) and the lowest (3%) was observed for Zambia (total forest cover 63.9%, average biomass per hectare in forest 32 t ha(-1)). Average TOF biomass stocks were estimated to be smaller than 10 t ha(-1). However, given the large extent of non-forest areas, these stocks sum up to considerable quantities in many countries. There are good reasons to overcome sectoral boundaries and to extend national forest monitoring programmes on a more systematic basis that includes TOF. Such an approach, for example, would generate a more complete picture of the national tree biomass. In the context of climate change mitigation and adaptation, international climate mitigation programmes (e.g. Clean Development Mechanism and Reduced Emission from Deforestation and Degradation) focus on forest trees without considering the impact of TOF, a consideration this study finds crucial if accurate measurements of national tree biomass and carbon pools are required.
Fuels and chemicals from biomass using solar thermal energy
NASA Technical Reports Server (NTRS)
Giori, G.; Leitheiser, R.; Wayman, M.
1981-01-01
The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.
Báez, Selene; Homeier, Jürgen
2018-01-01
Trait-response effects are critical to forecast community structure and biomass production in highly diverse tropical forests. Ecological theory and few observation studies indicate that trees with acquisitive functional traits would respond more strongly to higher resource availability than those with conservative traits. We assessed how long-term tree growth in experimental nutrient addition plots (N, P, and N + P) varied as a function of morphological traits, tree size, and species identity. We also evaluated how trait-based responses affected stand scale biomass production considering the community structure. We found that tree growth depended on interactions between functional traits and the type or combination of nutrients added. Common species with acquisitive functional traits responded more strongly to nutrient addition, mainly to N + P. Phosphorous enhanced the growth rates of species with acquisitive and conservative traits, had mostly positive effects on common species and neutral or negative effects in rare species. Moreover, trees receiving N + P grew faster irrespective of their initial size relative to trees in control or to trees in other treatment plots. Finally, species responses were highly idiosyncratic suggesting that community processes including competition and niche dimensionality may be altered under increased resource availability. We found no statistically significant effects of nutrient additions on aboveground biomass productivity because acquisitive species had a limited potential to increase their biomass, possibly due to their generally lower wood density. In contrast, P addition increased the growth rates of species characterized by more conservative resource strategies (with higher wood density) that were poorly represented in the plant community. We provide the first long-term experimental evidence that trait-based responses, community structure, and community processes modulate the effects of increased nutrient availability on biomass productivity in a tropical forest. © 2017 John Wiley & Sons Ltd.
Geospatial Analysis of Near-Term Technical Potential of BECCS in the U.S.
NASA Astrophysics Data System (ADS)
Baik, E.; Sanchez, D.; Turner, P. A.; Mach, K. J.; Field, C. B.; Benson, S. M.
2017-12-01
Atmospheric carbon dioxide (CO2) removal using bioenergy with carbon capture and storage (BECCS) is crucial for achieving stringent climate change mitigation targets. To date, previous work discussing the feasibility of BECCS has largely focused on land availability and bioenergy potential, while CCS components - including capacity, injectivity, and location of potential storage sites - have not been thoroughly considered in the context of BECCS. A high-resolution geospatial analysis of both biomass production and potential geologic storage sites is conducted to consider the near-term deployment potential of BECCS in the U.S. The analysis quantifies the overlap between the biomass resource and CO2 storage locations within the context of storage capacity and injectivity. This analysis leverages county-level biomass production data from the U.S. Department of Energy's Billion Ton Report alongside potential CO2 geologic storage sites as provided by the USGS Assessment of Geologic Carbon Dioxide Storage Resources. Various types of lignocellulosic biomass (agricultural residues, dedicated energy crops, and woody biomass) result in a potential 370-400 Mt CO2 /yr of negative emissions in 2020. Of that CO2, only 30-31% of the produced biomass (110-120 Mt CO2 /yr) is co-located with a potential storage site. While large potential exists, there would need to be more than 250 50-MW biomass power plants fitted with CCS to capture all the co-located CO2 capacity in 2020. Neither absolute injectivity nor absolute storage capacity is likely to limit BECCS, but the results show regional capacity and injectivity constraints in the U.S. that had not been identified in previous BECCS analysis studies. The state of Illinois, the Gulf region, and western North Dakota emerge as the best locations for near-term deployment of BECCS with abundant biomass, sufficient storage capacity and injectivity, and the co-location of the two resources. Future studies assessing BECCS potential should employ higher-resolution spatial datasets to identify near-term deployment opportunities, explicitly including the availability of co-located storage, regional capacity limitations, and integration of electricity produced with BECCS into local electricity grids.
BioEnergy Feasibility in South Africa
NASA Astrophysics Data System (ADS)
Hugo, Wim
2015-04-01
The BioEnergy Atlas for South Africa is the result of a project funded by the South African Department of Science and Technology, and executed by SAEON/ NRF with the assistance of a number of collaborators in academia, research institutions, and government. Now nearing completion, the Atlas provides an important input to policy and decision support in the country, significantly strengthens the availability of information resources on the topic, and provides a platform whereby current and future contributions on the subject can be managed, preserved, and disseminated. Bioenergy assessments have been characterized in the past by poor availability and quality of data, an over-emphasis on potentials and availability studies instead of feasibility assessment, and lack of comprehensive evaluation in competition with alternatives - both in respect of competing bioenergy resources and other renewable and non-renewable options. The BioEnergy Atlas in its current edition addresses some of these deficiencies, and identifies specific areas of interest where future research and effort can be directed. One can qualify the potentials and feasible options for BioEnergy exploitation in South Africa as follows: (1) Availability is not a fixed quantum. Availability of biomass and resulting energy products are sensitive to both the exclusionary measures one applies (food security, environmental, social and economic impacts) and the price at which final products will be competitive. (2) Availability is low. Even without allowing for feasibility and final product costs, the availability of biomass is low: biomass productivity in South Africa is not high by global standards due to rainfall constraints, and most arable land is used productively for food and agribusiness-related activities. This constrains the feasibility of purposely cultivated bioenergy crops. (3) Waste streams are important. There are significant waste streams from domestic solid waste and sewage, some agricultural production, and commercial forestry. The issues include the dispersed nature of some of the waste (increasing costs of transport and reducing economy of scale), and the fact that some of these are already applied in energy generation. (4) Rural firewood use is problematic. This is a significant resource, plays a large role in the energy budget of poor and rural households, and current use means that it will have little impact on the GHG emissions balance. Data availability and quality is poor, and needs improvement. (5) Process technologies are not all mature: We have investigated 52 different process technologies in respect of costs, economy of scale, energy efficiency, greenhouse gas emission and job creation impacts, and maturity of technology. Many attractive options are not mature, and unlikely to be commercially useful in the next decade - essentially excluding them from consideration for medium-term implementation. (6) Solutions are probably 'packages'. One has to balance the diversity of available resource streams and processing technologies against the need to focus resources on development of critical mass (workforce skills, support industries, expertise). Combining feedstocks and aligning with other government initiatives or subsidies can achieve such critical mass more easily. (7) Solutions must be robust in future too. Feasibility studies that focus on the current situation only ignore the fact that future sustainability is strongly dependent on assumptions on relative economic growth (influences household and industrial energy consumption, and the limiting cost for energy), cost of capital and inflation (affects choices of labour- or capital-intensive industries), exchange rates and fossil fuel prices (huge effect on selection of alternatives). (8) The most promising biomass source is medium-term mining and eradication of invasive alien plants, but this source is limited in time and, if exploited as proposed, will not be available after about 20 years. The paper discusses methodology, availability of biomass and potentials, and the feasibility results of four case studies in respect of biomass application: (1) co-firing of woody biomass for electricity generation; (2) use of sugar-producing crops for the production of fuel alcohol, (3) applications for organic components of domestic solid waste and wastewater; and (4) use of woody biomass as a feedstock for an existing GTL refinery.
NASA Astrophysics Data System (ADS)
Vafeiadou, Anna-Maria; Antoniadou, Chryssanthi; Chintiroglou, Chariton
2012-09-01
The small-scale distribution and resource utilization patterns of hermit crabs living in symbiosis with sea anemones were investigated in the Aegean Sea. Four hermit crab species, occupying shells of nine gastropod species, were found in symbiosis with the sea anemone Calliactis parasitica. Shell resource utilization patterns varied among hermit crabs, with Dardanus species utilizing a wide variety of shells. The size structure of hermit crab populations also affected shell resource utilization, with small-sized individuals inhabiting a larger variety of shells. Sea anemone utilization patterns varied both among hermit crab species and among residence shells, with larger crabs and shells hosting an increased abundance and biomass of C. parasitica. The examined biometric relationships suggested that small-sized crabs carry, proportionally to their weight, heavier shells and increased anemone biomass than larger ones. Exceptions to the above patterns are related either to local resource availability or to other environmental factors.
Exploring Bioeconomy Growth through the Public Release of the Biomass Scenario Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newes, Emily K; Biddy, Mary J; Bush, Brian W
The Biomass Scenario Model (BSM) is an important tool for exploring vibrant future bioeconomy scenarios that leverage domestic resources. Developed by NREL and BETO, this model of the domestic biofuels supply chain has been used to explore success strategies for BETO's activities towards bioeconomy growth. The BSM offers a robust test bed for detailed exploration of effects of BETO activities within the complex context of resource availability; physical, technological, and economic constraints; behavior; and policy. The public release of the model in 2017 will allow broad engagement with the theme of the conference as model users can analyze bioeconomy growth,more » domestic biomass resource use, and associated effects. The BSM is a carefully validated, state-of-the-art, dynamic model of the biomass to biofuels supply chain. Using a system dynamics simulation modeling approach, the model tracks long-term deployment of biofuels given technology development and investment, considering land availability, the competing oil market, consumer demand, and government policies over time. Sample outputs include biofuels production, feedstock use, capital investment, incentives, and costs of feedstocks and fuels. BSM scenarios reveal technological, economic, and policy challenges, as well as opportunities for dynamic growth of the bioeconomy with strategic public and private investment at key points in the system. The model logic and results have been reviewed extensively, through collaborative analysis, expert reviews and external publications (https://www.zotero.org/groups/bsm_publications/).« less
Macroalgae as a Biomass Feedstock: A Preliminary Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roesijadi, Guritno; Jones, Susanne B.; Snowden-Swan, Lesley J.
2010-09-26
A thorough of macroalgae analysis as a biofuels feedstock is warranted due to the size of this biomass resource and the need to consider all potential sources of feedstock to meet current biomass production goals. Understanding how to harness this untapped biomass resource will require additional research and development. A detailed assessment of environmental resources, cultivation and harvesting technology, conversion to fuels, connectivity with existing energy supply chains, and the associated economic and life cycle analyses will facilitate evaluation of this potentially important biomass resource.
U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Downing, Mark; Eaton, Laurence M; Graham, Robin Lambert
2011-08-01
The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence inmore » having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil prices topped $70 per barrel (bbl) and catastrophic hurricanes in the Gulf Coast shut down a significant fraction of U.S. refinery capacity. The following year, oil approached $80 per bbl due to supply concerns, as well as continued political tensions in the Middle East. The Energy Independence and Security Act of 2007 (EISA) was enacted in December of that year. By the end of December 2007, oil prices surpassed $100 per bbl for the first time, and by mid-summer 2008, prices approached $150 per bbl because of supply concerns, speculation, and weakness of the U.S. dollar. As fast as they skyrocketed, oil prices fell, and by the end of 2008, oil prices dropped below $50 per bbl, falling even more a month later due to the global economic recession. In 2009 and 2010, oil prices began to increase again as a result of a weak U.S. dollar and the rebounding of world economies.« less
Biomass Energy Data Book: Edition 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Lynn L; Boundy, Robert Gary; Perlack, Robert D
The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of the Biomass Program and the Office of Planning, Budget and Analysis in the Department of Energy's Energy Efficiency and Renewable Energy (EERE) program. Designed for use as a desk-top reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use. This is the first edition of the Biomass Energy Data Book and is currently only available online in electronic format.more » There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass is a section on biofuels which covers ethanol, biodiesel and BioOil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is about the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also three appendices which include measures of conversions, biomass characteristics and assumptions for selected tables and figures. A glossary of terms and a list of acronyms are also included for the reader's convenience.« less
Biomass Energy Data Book: Edition 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Lynn L; Boundy, Robert Gary; Badger, Philip C
The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the second edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sectionsmore » to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, assumptions for selected tables and figures, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.« less
Biomass Energy Data Book: Edition 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boundy, Robert Gary; Davis, Stacy Cagle
The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the third edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sectionsmore » to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.« less
Biomass Energy Data Book: Edition 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boundy, Robert Gary; Diegel, Susan W; Wright, Lynn L
The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sectionsmore » to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also two appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.« less
Overview of the Quality and Completeness of Resource Assessment Data for the APEC Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renne, D. S.; Pilasky, S.
1998-02-01
The availability of information and data on the renewable energy resources (solar, wind, biomass, geothermal, and hydro) for renewable energy technologies is a critical element in the successful implementation of these technologies. This paper presents a comprehensive summary of published information on these resources for each of 1 8 Asia-Pacific Economic Cooperation (APEC) economies. In the introductory sections, a discussion of the quality and completeness of this information is presented, along with recommendations on steps that need to be taken to facilitate the further development and deployment of renewable energy technologies throughout the APEC region. These sections are then followedmore » by economy-specific reviews, and a complete bibliography and summary description for each citation. The major results of this survey are that a basis for understanding renewable energy resources is currently available for essentially all the economies, although there is a significant need to apply improved and updated resource assessment techniques in most. For example, most wind resource assessments rely on data collected at national weather stations, which often results in underestimates of the true potential wind resource within an economy. As a second example, solar resource assessments in most economies rely on an analysis of very simple sunshine record data, which results in large uncertainties in accurately quantifying the resource. National surveys of biomass, geothermal, and hydro resources are often lacking; in most cases, resources for these technologies were discussed for site-specific studies only. Thus, the major recommendations in this paper are to: ( 1 ) upgrade current or install new wind and solar measurement systems at key 'benchmark' locations to provide accurate, representative information on these resources; (2) apply advanced wind and solar resource assessment tools that rely on data quality assessment procedures, the use of satellite data, and models, and that can reliably interpolate the data collected at the benchmark sites; (3) conduct national surveys of biomass, geothermal, and hydro resources uniformly and consistently; and ( 4) establish a centralized data center that provides ready access to the most up-to-date and validated renewable resource data in all APEC economies.« less
NASA Astrophysics Data System (ADS)
Stehle, Chelsea M.; Battles, Andrew C.; Sparks, Michelle N.; Johnson, Michele A.
2017-10-01
The availability of food resources can affect the size and shape of territories, as well as the behaviors used to defend territories, in a variety of animal taxa. However, individuals within a population may respond differently to variation in food availability if the benefits of territoriality vary among those individuals. For example, benefits to territoriality may differ for animals of differing sizes, because larger individuals may require greater territory size to acquire required resources, or territorial behavior may differ between the sexes if males and females defend different resources in their territories. In this study, we tested whether arthropod abundance and biomass were associated with natural variation in territory size and defense in insectivorous green anole lizards, Anolis carolinensis. Our results showed that both male and female lizards had smaller territories in a habitat with greater prey biomass than lizards in habitats with less available prey, but the rates of aggressive behaviors used to defend territories did not differ among these habitats. Further, we did not find a relationship between body size and territory size, and the sexes did not differ in their relationships between food availability and territory size or behavioral defense. Together, these results suggest that differences in food availability influenced male and female territorial strategies similarly, and that territory size may be more strongly associated with variation in food resources than social display behavior. Thus, anole investment in the behavioral defense of a territory may not vary with territory quality.
International Studies Team. Areas of Expertise Biomass resource assessment Bioenergy market analysis Project management Research Interests Sustainable biomass resource development Global natural resources and . NREL/TP-6A20-56456. Milbrandt, A., and R.P. Overend. 2011. Assessment of Biomass Resources in
NASA Astrophysics Data System (ADS)
Bhattacharjee, Subhadeep; Mohanta, Subhajit
2018-06-01
Biomass energy is one of the potential renewable energy sources which occupy 77% of the available natural resources of the world. In India, agro residues constitute a major part of the total annual production of the biomass resource. Rice is the major crop in India that leaves substantial quantity of straw in the field. 34% of rice straw residue produced in the country is surplus and is either left in the field as uncollected or to a large extent open-field burnt. Thus, the unutilized rice straw is found promising for heat and power generation either through incineration (direct combustion) or thermo chemical conversion. This present work envisages the comprehensive performative evaluation of a rice straw supported biomass incineration power plant mainly through plant performance characterization, plant economics, and co-firing issues with emission analysis.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Subhadeep; Mohanta, Subhajit
2018-03-01
Biomass energy is one of the potential renewable energy sources which occupy 77% of the available natural resources of the world. In India, agro residues constitute a major part of the total annual production of the biomass resource. Rice is the major crop in India that leaves substantial quantity of straw in the field. 34% of rice straw residue produced in the country is surplus and is either left in the field as uncollected or to a large extent open-field burnt. Thus, the unutilized rice straw is found promising for heat and power generation either through incineration (direct combustion) or thermo chemical conversion. This present work envisages the comprehensive performative evaluation of a rice straw supported biomass incineration power plant mainly through plant performance characterization, plant economics, and co-firing issues with emission analysis.
Biomass: An overview in the United States of America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, T.; Shapouri, H.
1993-12-31
Concerns about the heavy reliance on foreign sources of fossil fuels, environmental impacts of burning fossil fuels, environmental impacts of agricultural activities, the need to find sustainable renewable sources of energy, and the need for a sustainable agricultural resource base have been driving forces for the development of biomass as a source of energy. The development of biomass conversion technologies, of high-yielding herbaceous and short-rotation woody biomass crops, of high-yielding food, feed, and fiber crops, and of livestock with higher levels of feed conversion efficiencies has made the transition from total reliance on fossil fuels to utilization of renewable sourcesmore » of energy from biomass a reality. A variety of biomass conversion technologies have been developed and tested. Public utilities, private power companies, and the paper industry are interested in applying this technology. Direct burning of biomass and/or cofiring in existing facilities will reduce emissions of greenhouse and other undesirable gases. Legislation has been passed to promote biomass production and utilization for liquid fuels and electricity. Land is available. The production of short-rotation woody crops and perennial grasses provides alternatives to commodity crops to stabilize income in the agricultural sector. The production of biomass crops can also reduce soil erosion, sediment loadings to surface water, and agricultural chemical loadings to ground and surface water; provide wildlife habitat; increase income and employment opportunities in rural areas; and provide a more sustainable agricultural resource base.« less
Assessment of equine waste as a biomass resource in New York State
USDA-ARS?s Scientific Manuscript database
Equine operations may generate excessive quantities of biomass (manure and used bedding) that could either become a waste or a resource, especially when the biomass is developed as an alternative energy source. Using the generated biomass as a resource can involve a variety of approaches such as la...
A study of palm biomass processing strategy in Sarawak
NASA Astrophysics Data System (ADS)
Lee, S. J. Y.; Ng, W. P. Q.; Law, K. H.
2017-06-01
In the past decades, palm industry is booming due to its profitable nature. An environmental concern regarding on the palm industry is the enormous amount of waste produced from palm industry. The waste produced or palm biomass is one significant renewable energy source and raw material for value-added products like fiber mats, activated carbon, dried fiber, bio-fertilizer and et cetera in Malaysia. There is a need to establish the palm biomass industry for the recovery of palm biomass for efficient utilization and waste reduction. The development of the industry is strongly depending on the two reasons, the availability and supply consistency of palm biomass as well as the availability of palm biomass processing facilities. In Malaysia, the development of palm biomass industry is lagging due to the lack of mature commercial technology and difficult logistic planning as a result of scattered locality of palm oil mill, where palm biomass is generated. Two main studies have been carried out in this research work: i) industrial study of the feasibility of decentralized and centralized palm biomass processing in Sarawak and ii) development of a systematic and optimized palm biomass processing planning for the development of palm biomass industry in Sarawak, Malaysia. Mathematical optimization technique is used in this work to model the above case scenario for biomass processing to achieve maximum economic potential and resource feasibility. An industrial study of palm biomass processing strategy in Sarawak has been carried out to evaluate the optimality of centralized processing and decentralize processing of the local biomass industry. An optimal biomass processing strategy is achieved.
A Review of Barriers to and Opportunities for the Integration of Renewable Energy in the Southeast
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnell, Ben W; Hadley, Stanton W; Xu, Yan
2011-08-01
The objectives of this study were to prepare a summary report that examines the opportunities for and obstacles to the integration of renewable energy resources in the Southeast between now and the year 2030. The report, which is based on a review of existing literature regarding renewable resources in the Southeast, includes the following renewable energy resources: wind, solar, hydro, geothermal, biomass, and tidal. The evaluation was conducted by the Oak Ridge National Laboratory for the Energy Foundation and is a subjective review with limited detailed analysis. However, the report offers a best estimate of the magnitude, time frame, andmore » cost of deployment of renewable resources in the Southeast based upon the literature reviewed and reasonable engineering and economic estimates. For the purposes of this report, the Southeast is defined as the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Virginia, and West Virginia. In addition, some aspects of the report (wind and geothermal) also consider the extended Southeast, which includes Maryland, Missouri, Oklahoma, and Texas. A description of the existing base of renewable electricity installations in the region is given for each technology considered. Where available, the possible barriers and other considerations regarding renewable energy resources are listed in terms of availability, investment and maintenance costs, reliability, installation requirements, policies, and energy market. As stated above, the report is a comprehensive review of renewable energy resources in the southeastern region of United States based on a literature study that included information obtained from the Southern Bio-Power wiki, sources from the Energy Foundation, sources available to ORNL, and sources found during the review. The report consists of an executive summary, this introductory chapter describing report objectives, a chapter on analysis methods and the status of renewable resources, chapters devoted to each identified renewable resource, and a brief summary chapter. Chapter 2 on analysis methods and status summarizes the benefits of integrating renewable energy resources in the Southeast. The utilization of the existing fuels, both the fossil fuels and the renewable energy resources, is evaluated. The financial rewards of renewable resources are listed, which includes the amount of fuel imported from outside the Southeast to find the net benefit of local renewable generation, and both the typical and new green job opportunities that arise from renewable generation in the Southeast. With the load growth in the Southeast, the growth of transmission and fossil fuel generation may not meet the growing demands for energy. The load growth is estimated, and the benefits of renewable resources for solving local growing energy demands are evaluated. Chapters 3-7 discuss the key renewable energy resources in the Southeast. Six resources available in this region that are discussed are (1) wind, including both onshore and offshore; (2) solar, including passive, photovoltaic, and concentrating; (3) biomass energy, including switchgrass, biomass co-firing, wood, woody biomass, wood industry by-products (harvesting residues, mill waste, etc.), agricultural byproducts, landfill gas to energy and anaerobic digester gas; (4) hydro; and (5) geothermal. Because of limited development, ocean wave and tidal were not considered to be available in significant quantity before 2030 and are not presented in the final analysis. Estimates on the location of potential megawatt generation from these renewable resources in the Southeast are made. Each chapter will describe the existing base of the renewable electricity installations in the region now and, when available, the base of the existing manufacturing capacity in the region for renewable energy resources hardware and software. The possible barriers and considerations for renewable energy resources are presented.« less
Techno Economic Analysis of Hydrogen Production by gasification of biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis Lau
Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-productmore » of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more general term, and includes heating as well as the injection of other ''ingredients'' such as oxygen and water. Pyrolysis alone is a useful first step in creating vapors from coal or biomass that can then be processed in subsequent steps to make liquid fuels. Such products are not the objective of this project. Therefore pyrolysis was not included in the process design or in the economic analysis. High-pressure, fluidized bed gasification is best known to GTI through 30 years of experience. Entrained flow, in contrast to fluidized bed, is a gasification technology applied at much larger unit sizes than employed here. Coal gasification and residual oil gasifiers in refineries are the places where such designs have found application, at sizes on the order of 5 to 10 times larger than what has been determined for this study. Atmospheric pressure gasification is also not discussed. Atmospheric gasification has been the choice of all power system pilot plants built for biomass to date, except for the Varnamo plant in Sweden, which used the Ahlstrom (now Foster Wheeler) pressurized gasifier. However, for fuel production, the disadvantage of the large volumetric flows at low pressure leads to the pressurized gasifier being more economical.« less
USDA-ARS?s Scientific Manuscript database
Nitrogen-fixing species contribute to ecosystem nitrogen budgets, but background resource levels influence nodulation, fixation, and plant growth. We conducted a greenhouse experiment to examine the separate and interacting effects of water and N availability on biomass production, tissue N concentr...
Ethanol production from renewable resources.
Gong, C S; Cao, N J; Du, J; Tsao, G T
1999-01-01
Vast amounts of renewable biomass are available for conversion to liquid fuel, ethanol. In order to convert biomass to ethanol, the efficient utilization of both cellulose-derived and hemicellulose-derived carbohydrates is essential. Six-carbon sugars are readily utilized for this purpose. Pentoses, on the other hand, are more difficult to convert. Several metabolic factors limit the efficient utilization of pentoses (xylose and arabinose). Recent developments in the improvement of microbial cultures provide the versatility of conversion of both hexoses and pentoses to ethanol more efficiently. In addition, novel bioprocess technologies offer a promising prospective for the efficient conversion of biomass and recovery of ethanol.
H. Viana; Warren B. Cohen; D. Lopes; J. Aranha
2010-01-01
Following the European Union strategy concerning renewable energy (RE), Portugal established in their national policy programmes that the production of electrical energy from RE should reach 45% of the total supply by 2010. Since Portugal has large forest biomass resources, a significant part of this energy will be obtained from this source. In addition to the two...
An evaluation of the regional supply of biomass at three midwestern sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
English, B.C.; Dillivan, K.D.; Ojo, M.A.
1993-12-31
Research has been conducted on both the agronomy and the conversion of biomass. However, few studies have been initiated that combine the knowledge of growing biomass with site specific resource availability information. An economic appraisal of how much biomass might be grown in a specific area for a given price has only just been initiated. This paper examines the economics of introducing biomass production to three midwest representative areas centered on the following counties, Orange County, Indiana; Olmsted County, Minnesota; and Cass County, North Dakota. Using a regional linear programming model, estimates of economic feasibility as well as environmental impactsmore » are made. At a price of $53 per metric ton the biomass supplied to the plant gate is equal to 183,251 metric tons. At $62 per metric ton the biomass supply has increased to almost 1 million metric tons. The model predicts a maximum price of $88 per metric ton and at this price, 2,748,476 metric tons of biomass are produced.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
GTI
Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-productmore » of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys. design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more general term, and includes heating as well as the injection of other ''ingredients'' such as oxygen and water. Pyrolysis alone is a useful first step in creating vapors from coal or biomass that can then be processed in subsequent steps to make liquid fuels. Such products are not the objective of this project. Therefore pyrolysis was not included in the process design or in the economic analysis. High-pressure, fluidized bed gasification is best known to GTI through 30 years of experience. Entrained flow, in contrast to fluidized bed, is a gasification technology applied at much larger unit sizes than employed here. Coal gasification and residual oil gasifiers in refineries are the places where such designs have found application, at sizes on the order of 5 to 10 times larger than what has been determined for this study. Atmospheric pressure gasification is also not discussed. Atmospheric gasification has been the choice of all power system pilot plants built for biomass to date, except for the Varnamo plant in Sweden, which used the Ahlstrom (now Foster Wheeler) pressurized gasifier. However, for fuel production, the disadvantage of the large volumetric flows at low pressure leads to the pressurized gasifier being more economical.« less
The potential impacts of biomass feedstock production on water resource availability.
Stone, K C; Hunt, P G; Cantrell, K B; Ro, K S
2010-03-01
Biofuels are a major topic of global interest and technology development. Whereas bioenergy crop production is highly dependent on water, bioenergy development requires effective allocation and management of water. The objectives of this investigation were to assess the bioenergy production relative to the impacts on water resource related factors: (1) climate and weather impact on water supplies for biomass production; (2) water use for major bioenergy crop production; and (3) potential alternatives to improve water supplies for bioenergy. Shifts to alternative bioenergy crops with greater water demand may produce unintended consequences for both water resources and energy feedstocks. Sugarcane and corn require 458 and 2036 m(3) water/m(3) ethanol produced, respectively. The water requirements for corn grain production to meet the US-DOE Billion-Ton Vision may increase approximately 6-fold from 8.6 to 50.1 km(3). Furthermore, climate change is impacting water resources throughout the world. In the western US, runoff from snowmelt is occurring earlier altering the timing of water availability. Weather extremes, both drought and flooding, have occurred more frequently over the last 30 years than the previous 100 years. All of these weather events impact bioenergy crop production. These events may be partially mitigated by alternative water management systems that offer potential for more effective water use and conservation. A few potential alternatives include controlled drainage and new next-generation livestock waste treatment systems. Controlled drainage can increase water available to plants and simultaneously improve water quality. New livestock waste treatments systems offer the potential to utilize treated wastewater to produce bioenergy crops. New technologies for cellulosic biomass conversion via thermochemical conversion offer the potential for using more diverse feedstocks with dramatically reduced water requirements. The development of bioenergy feedstocks in the US and throughout the world should carefully consider water resource limitations and their critical connections to ecosystem integrity and sustainability of human food. Published by Elsevier Ltd.
Wind Generator & Biomass No-draft Gasification Hybrid
NASA Astrophysics Data System (ADS)
Hein, Matthew R.
The premise of this research is that underutilized but vast intermittent renewable energy resources, such as wind, can become more market competitive by coupling with storable renewable energy sources, like biomass; thereby creating a firm capacity resource. Specifically, the Midwest state of South Dakota has immense wind energy potential that is not used because of economic and logistic barriers of electrical transmission or storage. Coupling the state's intermittent wind resource with another of the state's energy resources, cellulosic non-food biomass, by using a wind generator and no-draft biomass gasification hybrid system will result in a energy source that is both firm and storable. The average energy content of common biomass feedstock was determined, 14.8 MJ/kg (7.153 Btu/lb), along with the assumed typical biomass conversion efficiency of the no-draft gasifier, 65%, so that an average electrical energy round trip efficiency (RTE) of 214% can be expected (i.e. One unit of wind electrical energy can produce 2.14 kWh of electrical energy stored as syngas.) from a wind generator and no-draft biomass gasification system. Wind characteristics are site specific so this analysis utilizes a synthetic wind resource to represent a statistically sound gross representation of South Dakota's wind regime based on data from the Wind Resource Assessment Network (WRAN) locations. A synthetic wind turbine generated from common wind turbine power curves and scaled to 1-MW rated capacity was utilized for this analysis in order to remove equipment bias from the results. A standard 8,760-hour BIN Analysis model was constructed within HOMER, powerful simulation software developed by the National Renewable Energy Laboratory (NREL) to model the performance of renewable power systems. It was found that the optimum configuration on a per-megawatt-transmitted basis required a wind generator (wind farm) rated capacity of 3-MW with an anticipated annual biomass feedstock of 26,132 GJ or an anticipated 1,766 tonnes of biomass. The levelized cost of electricity (COE) ranged from 65.6/GJ (236/MWh) to 208.9/GJ (752/MWh) with the price of generated electricity being most sensitive to the biomass feedstock cost and the levelized COE being significantly impacted by the high cost of compressed storage. The resulting electrical energy available to the grid has an approximate wholesale value of 13.5/GJ (48.6/MWh) based on year 2007 Midwest Reliability Organization (MRO) regional averages [1]. Therefore, the annual average wholesale value of the generated electricity is lower than the cost to produce the electricity. A significant deficiency of this simple comparison is that it does not consider the fact that the proposed wind and biomass gasification hybrid is now a dispatchable source of electricity with a near net-zero lifetime carbon footprint and storage capability. Dispatchable power can profit from market fluctuations that dramatically increase the value of available electricity so that in addition to providing base power the hybrid facility can store energy during low price points in the market and generate at full capacity during points of high prices. Any financial incentive for energy generated from reduced carbon technologies will also increase the value of electricity produced. Also, alternative operational parameters that do not require the costly storage of synthetic natural gas (SNG) will likely result in a more competitive levelized COE. Additional benefits of the system are in the flexibility of transporting wind and biomass energy produced as well as the end use of the energy. Instead of high-voltage electrical transmission a gas line can now be used to transport energy produced by the wind. Syngas can also be further processed into higher energy density liquefied syngas. Liquid fuels can then be transported via commercial freight on existing road infrastructure.
Robin J. Tausch
2015-01-01
A theoretically based analytic model of plant growth in single species conifer communities based on the species fully occupying a site and fully using the site resources is introduced. Model derivations result in a single equation simultaneously describes changes over both, different site conditions (or resources available), and over time for each variable for each...
The updated billion-ton resource assessment
Anthony Turhollow; Robert Perlack; Laurence Eaton; Matthew Langholtz; Craig Brandt; Mark Downing; Lynn Wright; Kenneth Skog; Chad Hellwinckel; Bryce Stokes; Patricia Lebow
2014-01-01
This paper summarizes the results of an update to a resource assessment, published in 2005, commonly referred to as the Billion-Ton Study (BTS). The updated results are consistent with the 2005 BTS in terms of overall magnitude. The 2005 BTS projected between 860 and 1240 Tg of biomass available in the 2050 timeframe, while the Billion-Ton Update (BT2), for a price of...
Erin Goergen; Jeanne C. Chambers; Robert Blank
2009-01-01
Nitrogen-fixing species contribute to ecosystem nitrogen budgets, but background resource levels influence nodulation, fixation, and plant growth. We conducted a greenhouse experiment to examine the separate and interacting effects of water and N availability on biomass production, tissue N concentration, nodulation, nodule activity, and rhizodeposition of ...
NASA Astrophysics Data System (ADS)
Rodríguez-Gómez, Guillermo; Palmqvist, Paul; Ros-Montoya, Sergio; Espigares, M. Patrocinio; Martínez-Navarro, Bienvenido
2017-05-01
With an age of ∼1.6-1.5 Ma, the Early Pleistocene site of Venta Micena (Orce, Baza Basin, SE Spain) has provided the large mammals assemblage of Late Villafranchian age with higher preservational completeness in Western Europe and offers a unique opportunity to analyze the food webs of the mammalian paleocommunity before the first human arrival in this continent. Taphonomic analysis of the fossil assemblage has shown evidence of carnivore involvement, particularly hyenas, in the bone accumulating process. In this study we use a mathematical approach based on Leslie matrices to quantify the biomass of ungulates available to the members of the carnivore guild as well as the pattern of resource partitioning and competition intensity among them. The results obtained show that although the biomass of primary consumers available to the secondary consumers was lower than the value expected under optimal conditions, more than half the individuals and biomass of carnivores expected would be reached, which allowed a viable ecosystem in Venta Micena. In fact, the biomass available for the members of the carnivore guild is 25-30% greater than the estimates obtained for two nearby sites, Barranco León-D and Fuente Nueva-3, which are somewhat younger (∼1.4 Ma) and preserve the oldest evidence on human presence in this region. Given that the competition intensity estimated in the carnivore guild of Venta Micena was lower than in the latter sites, this suggests that the timing of the first human dispersal in Western Europe was probably not a matter of ecological opportunity.
Forest Aboveground Biomass Estimation in the Greater Mekong, Subregion and Russian Siberia
NASA Astrophysics Data System (ADS)
Pang, Yong; Li, Zengyuan; Sun, Gouqing; Zhang, Zhiyu; Schmullius, Christiane; Meng, Shili; Ma, Zhenyu; Lu, Hao; Li, Shiming; Liu, Qingwang; Bai, Lina; Tian, Xin
2016-08-01
Forests play a vital role in sustainable development and provide a range of economic, social and environmental benefits, including essential ecosystem services such as climate change mitigation and adaptation. We summarized works in forest aboveground biomass estimation in Greater Mekong Subregion (GMS) and Russian Siberia (RuS). Both regions are rich in forest resources. These mapping and estimation works were based on multiple-source remote sensing data and some field measurements. Biomass maps were generated at 500 m and 30 m pixel size for RuS and GMS respectively. With the available of the 2015 PALSAR-2 mosaic at 25 m spacing, Sentinel-2 data at 20 m, we will work on the biomass mapping and dynamic study at higher spatial resolution.
Biorefining compounds and organocatalytic upgrading methods
Chen, Eugene Y.; Liu, Dajiang
2017-11-28
The invention provides new methods for the direct umpolung self-condensation of 5-hydroxymethylfurfural (HMF) by organocatalysis, thereby upgrading the readily available substrate into 5,5'-di(hydroxymethyl) furoin (DHMF). While many efficient catalyst systems have been developed for conversion of plant biomass resources into HMF, the invention now provides methods to convert such nonfood biomass directly into DHMF by a simple process as described herein. The invention also provides highly effective new methods for upgrading other biomass furaldehydes and related compound to liquid fuels. The methods include the organocatalytic self-condensation (umpolung) of biomass furaldehydes into (C.sub.8-C.sub.12)furoin intermediates, followed by hydrogenation, etherification or esterification into oxygenated biodiesel, or hydrodeoxygenation by metal-acid tandem catalysis into premium hydrocarbon fuels.
Biorefining compounds and organocatalytic upgrading methods
Chen, Eugene Y.; Liu, Dajiang
2016-10-18
The invention provides new methods for the direct umpolung self-condensation of 5-hydroxymethylfurfural (HMF) by organocatalysis, thereby upgrading the readily available substrate into 5,5'-di(hydroxymethyl)furoin (DHMF). While many efficient catalyst systems have been developed for conversion of plant biomass resources into HMF, the invention now provides methods to convert such nonfood biomass directly into DHMF by a simple process as described herein. The invention also provides highly effective new methods for upgrading other biomass furaldehydes and related compound to liquid fuels. The methods include the organocatalytic self-condensation (umpolung) of biomass furaldehydes into (C.sub.8-C.sub.12)furoin intermediates, followed by hydrogenation, etherification or esterification into oxygenated biodiesel, or hydrodeoxygenation by metal-acid tandem catalysis into premium hydrocarbon fuels.
NREL: Renewable Resource Data Center - Biomass Resource Models and Tools
Models and Tools The Renewable Resource Data Center (RReDC) features the following biomass models Models & Tools Publications Related Links Geothermal Resource Information Solar Resource Information
Zhang, Qian; Xu, Liming; Tang, Jianjun; Bai, Minge; Chen, Xin
2011-05-01
The biomass-density relationship (whereby the biomass of individual plants decreases as plant density increases) has generally been explained by competition for resources. Arbuscular mycorrhizal fungi (AMF) are able to affect plant interactions by mediating resource utilization, but whether this AMF-mediated interaction will change the biomass-density relationship is unclear. We conducted an experiment to test the hypothesis that AMF will shift the biomass-density relationship by affecting intraspecific competition. Four population densities (10, 100, 1,000, or 10,000 seedlings per square meter) of Medicago sativa L. were planted in field plots. Water application (1,435 or 327.7 mm/year) simulated precipitation in wet areas (sufficient water) and arid areas (insufficient water). The fungicide benomyl was applied to suppress AMF in some plots ("low-AMF" treatment) and not in others ("high-AMF" treatment). The effect of the AMF treatment on the biomass-density relationship depended on water conditions. High AMF enhanced the decrease of individual biomass with increasing density (the biomass-density line had a steeper slope) when water was sufficient but not when water was insufficient. AMF treatment did not affect plant survival rate or population size but did affect absolute competition intensity (ACI). When water was sufficient, ACI was significantly higher in the high-AMF treatment than in the low-AMF treatment, but ACI was unaffected by AMF treatment when water was insufficient. Our results suggest that AMF status did not impact survival rate and population size but did shift the biomass-density relationship via effects on intraspecific competition. This effect of AMF on the biomass-density relationship depended on the availability of water.
Biomass statistics for the Northern United States
Eric H. Wharton; Gerhard K. Raile
1984-01-01
The USDA Forest Service now estimates biomass during periodic resource inventories. Such biomass estimates quantify more of the forest resource than do traditional volume inventories that concentrate on tree boles. More than 48 percent of the aboveground tree biomass in the northern United States can be found in woody material outside of the boles. Tree biomass in the...
Assessment of Biomass Resources in Afghanistan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milbrandt, A.; Overend, R.
2011-01-01
Afghanistan is facing many challenges on its path of reconstruction and development. Among all its pressing needs, the country would benefit from the development and implementation of an energy strategy. In addition to conventional energy sources, the Afghan government is considering alternative options such as energy derived from renewable resources (wind, solar, biomass, geothermal). Biomass energy is derived from a variety of sources -- plant-based material and residues -- and can be used in various conversion processes to yield power, heat, steam, and fuel. This study provides policymakers and industry developers with information on the biomass resource potential in Afghanistanmore » for power/heat generation and transportation fuels production. To achieve this goal, the study estimates the current biomass resources and evaluates the potential resources that could be used for energy purposes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Y.K.; Chen, H.T.; Helm, R.W.
1980-01-01
A biomass allocation model has been developed to show the most profitable combination of biomass feedstocks thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating the most profitable biomass missions from a large number of potential biomass missions. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a portable micro-processor. A User's Manual for themore » system has been included in Appendix A of the report. The validity of any biomass allocation solution provided by the allocation model is dependent on the accuracy of the data base. The initial data base was constructed from values obtained from the literature, and, consequently, as more current thermochemical conversion processing and manufacturing costs and efficiencies become available, the data base should be revised. Biomass derived fuels included in the data base are the following: medium Btu gas low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil. The market sectors served by the fuels include: residential, electric utility, chemical (industrial), and transportation. Regional/seasonal costs and availabilities and heating values for 61 woody and non-woody biomass species are included. The study has included four regions in the United States which were selected because there was both an availability of biomass and a commercial demand for the derived fuels: Region I: NY, WV, PA; Region II: GA, AL, MS; Region III: IN, IL, IA; and Region IV: OR, WA.« less
NASA Astrophysics Data System (ADS)
Xu, Bingcheng; Deng, Xiping; Zhang, Suiqi; Shan, Lun
2010-10-01
Seedling biomass and allocation, transpiration water use efficiency (TWUE), and species competition between switchgrass ( Panicum virgatum L.) and milkvetch ( Astragalus adsurgens Pall.) were investigated in a pot-cultivated experiment under different levels of water availability. The experiment was conducted using a simple replacement design in which switchgrass and milkvetch were grown in growth chamber with ten seedlings per pot, in three combinations of the two species (0:10, 5:5 and 10:0). Five water treatments included sufficient water supply (HW), gradual soil drying from HW (DHW), moderate water stress (LW), gradual soil drying from LW (DLW), and re-establishment of LW conditions after 12 days of drying from LW (RLW). Water treatments were applied over a 15-day period. Biomass production and its partitioning, and TWUE were determined at the end of the experiment. Species competitive indices (competitive ratio (CR), aggressivity (A) and relative yield total (RYT)) were calculated from the biomass dry weight data for shoots, roots and total biomass. Water stress significantly reduced seedling biomass production but increased root:shoot ratios in both monocultures and mixtures. In the RLW treatment, only switchgrass monocultures displayed compensatory biomass production and TWUE, while both species demonstrated compensatory growth in the mixture. Switchgrass was the dominant species and much more aggressive than milkvetch in the LW treatment, while in the other four treatments milkvetch was the dominant species as measured by the positive value of aggressivity and higher values of CR. The total biomass RYT values of the two species were higher than 1.0, indicating some degree of resource complimentarity. In the two-species mixture, although the biomass production was lower than that of milkvetch in the monoculture, there was better TWUE, especially under low and fluctuating water availability.
ASSERT FY16 Analysis of Feedstock Companion Markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamers, Patrick; Hansen, Jason; Jacobson, Jacob J.
2016-09-01
Meeting Co-Optima biofuel production targets will require large quantities of mobilized biomass feedstock. Mobilization is of key importance as there is an abundance of biomass resources, yet little is available for purchase, let alone at desired quantity and quality levels needed for a continuous operation, e.g., a biorefinery. Therefore Co-Optima research includes outlining a path towards feedstock production at scale by understanding routes to mobilizing large quantities of biomass feedstock. Continuing along the vertically-integrated path that pioneer cellulosic biorefineries have taken will constrain the bioenergy industry to high biomass yield areas, limiting its ability to reach biofuel production at scale.more » To advance the cellulosic biofuels industry, a separation between feedstock supply and conversion is necessary. Thus, in contrast to the vertically integrated supply chain, two industries are required: a feedstock industry and a conversion industry. The split is beneficial for growers and feedstock processers as they are able to sell into multiple markets. That is, depots that produce value-add feedstock intermediates that are fully fungible in both the biofuels refining and other, so-called companion markets. As the biofuel industry is currently too small to leverage significant investment in up-stream infrastructure build-up, it requires an established (companion) market to secure demand, which de-risks potential investments and makes a build-up of processing and other logistics infrastructure more likely. A common concern to this theory however is that more demand by other markets could present a disadvantage for biofuels production as resource competition may increase prices leading to reduced availability of low-cost feedstock for biorefineries. To analyze the dynamics across multiple markets vying for the same resources, particularly the potential effects on resource price and distribution, the Companion Market Model (CMM) has been developed in this task by experts in feedstock supply chain analysis, market economics, and System Dynamics from the Idaho National Laboratory and MindsEye Computing.« less
Current development of biorefinery in China.
Tan, Tianwei; Shang, Fei; Zhang, Xu
2010-01-01
To meet the demand of its fast growing economy, China has become already the second largest buyer of crude oil. China is facing critical problems of energy shortage and environment deterioration. Rational and efficient energy use and environment protection are both getting more attention in China. Biomass energy is renewable energy made from biological sources. China's biomass resources are abundant, which could provide energy for future social and economic development. However technologies for biomass resource conversion in China are still just beginning. In this paper, current biomass resource distribution and technologies of biomass energy, including power generation, biofuel production and biomass-based chemical production are reviewed. Copyright 2010 Elsevier Inc. All rights reserved.
M.H. Langholtz; B.J. Stokes; L.M. Eaton
2016-01-01
This product builds on previous efforts, namely the 2005 Billion-Ton Study (BTS) and the 2011 U.S. Billion-Ton Update (BT2).With each report, greater perspective is gained on the potential of biomass resources to contribute to a national energy strategy. Similarly, each successive report introduces new questions regarding commercialization challenges. BTS quantified...
Manipulation of host plant biomass allocation and resource regulation by the larch bud gall midge
Yuri N. Baranchikov
1991-01-01
Intensive herbivory may influence the resources available to the next generation of herbivore in three ways: quantity may decrease, be unchanged, or increase. There are now two good examples of the last possibility. One of them concerns Monochamus beetles on firs in Siberia (Isaev et al. 1984), and the other a galling sawfly on willow in Arizona (...
Food and disturbance effects on Arctic benthic biomass and production size spectra
NASA Astrophysics Data System (ADS)
Górska, Barbara; Włodarska-Kowalczuk, Maria
2017-03-01
Body size is a fundamental biological unit that is closely coupled to key ecological properties and processes. At the community level, changes in size distributions may influence energy transfer pathways in benthic food webs and ecosystem carbon cycling; nevertheless they remain poorly explored in benthic systems, particularly in the polar regions. Here, we present the first assessment of the patterns of benthic biomass size spectra in Arctic coastal sediments and explore the effects of glacial disturbance and food availability on the partitioning of biomass and secondary productivity among size-defined components of benthic communities. The samples were collected in two Arctic fjords off west Spitsbergen (76 and 79°N), at 6 stations that represent three regimes of varying food availability (indicated by chlorophyll a concentration in the sediments) and glacial sedimentation disturbance intensity (indicated by sediment accumulation rates). The organisms were measured using image analysis to assess the biovolume, biomass and the annual production of each individual. The shape of benthic biomass size spectra at most stations was bimodal, with the location of a trough and peaks similar to those previously reported in lower latitudes. In undisturbed sediments macrofauna comprised 89% of the total benthic biomass and 56% of the total production. The lower availability of food resources seemed to suppress the biomass and secondary production across the whole size spectra (a 6-fold decrease in biomass and a 4-fold decrease in production in total) rather than reshape the spectrum. At locations where poor nutritional conditions were coupled with disturbance, the biomass was strongly reduced in selected macrofaunal size classes (class 10 and 11), while meiofaunal biomass and production were much higher, most likely due to a release from macrofaunal predation and competition pressure. As a result, the partitioning of benthic biomass and production shifted towards meiofauna (39% of biomass and 83% of production), which took over the benthic metazoan key-player role in terms of processing organic matter in sediments. Macrofaunal nematodes composed a considerable portion of the benthic community in terms of biomass (up to 9%) and production (up to 12%), but only in undisturbed sediments with high organic matter content. Our study indicates that food availability and disturbance controls the total bulk and partitioning of biomass and production among the size classes in Arctic benthic communities.
Panmictic and Clonal Evolution on a Single Patchy Resource Produces Polymorphic Foraging Guilds
Getz, Wayne M.; Salter, Richard; Lyons, Andrew J.; Sippl-Swezey, Nicolas
2015-01-01
We develop a stochastic, agent-based model to study how genetic traits and experiential changes in the state of agents and available resources influence individuals’ foraging and movement behaviors. These behaviors are manifest as decisions on when to stay and exploit a current resource patch or move to a particular neighboring patch, based on information of the resource qualities of the patches and the anticipated level of intraspecific competition within patches. We use a genetic algorithm approach and an individual’s biomass as a fitness surrogate to explore the foraging strategy diversity of evolving guilds under clonal versus hermaphroditic sexual reproduction. We first present the resource exploitation processes, movement on cellular arrays, and genetic algorithm components of the model. We then discuss their implementation on the Nova software platform. This platform seamlessly combines the dynamical systems modeling of consumer-resource interactions with agent-based modeling of individuals moving over a landscapes, using an architecture that lays transparent the following four hierarchical simulation levels: 1.) within-patch consumer-resource dynamics, 2.) within-generation movement and competition mitigation processes, 3.) across-generation evolutionary processes, and 4.) multiple runs to generate the statistics needed for comparative analyses. The focus of our analysis is on the question of how the biomass production efficiency and the diversity of guilds of foraging strategy types, exploiting resources over a patchy landscape, evolve under clonal versus random hermaphroditic sexual reproduction. Our results indicate greater biomass production efficiency under clonal reproduction only at higher population densities, and demonstrate that polymorphisms evolve and are maintained under random mating systems. The latter result questions the notion that some type of associative mating structure is needed to maintain genetic polymorphisms among individuals exploiting a common patchy resource on an otherwise spatially homogeneous landscape. PMID:26274613
Paradigm shift in plant growth control.
Körner, Christian
2015-06-01
For plants to grow they need resources and appropriate conditions that these resources are converted into biomass. While acknowledging the importance of co-drivers, the classical view is still that carbon, that is, photosynthetic CO2 uptake, ranks above any other drivers of plant growth. Hence, theory and modelling of growth traditionally is carbon centric. Here, I suggest that this view is not reflecting reality, but emerged from the availability of methods and process understanding at leaf level. In most cases, poorly understood processes of tissue formation and cell growth are governing carbon demand, and thus, CO2 uptake. Carbon can only be converted into biomass to the extent chemical elements other than carbon, temperature or cell turgor permit. Copyright © 2015. Published by Elsevier Ltd.
Development of Sustainable Landscape Designs for Improved Biomass Production in the U.S. Corn Belt
NASA Astrophysics Data System (ADS)
Bonner, Ian J.
Demand for renewable and sustainable energy options has resulted in a significant commitment by the US Government to research pathways for fuel production from biomass. The research presented in this thesis describes one potential pathway to increase the amount of biomass available for biofuel production by integrating dedicated energy crops into agricultural fields. In the first chapter an innovative landscape design method based on subfield placement of an energy crop into row crop fields in central Iowa is used to reduce financial loss for farmers, increase and diversify biomass production, and improve soil resources. The second chapter explores how subfield management decisions may be made using high fidelity data and modeling to balance concerns of primary crop production and economics. This work provides critical forward looking support to agricultural land managers and stakeholders in the biomass and bioenergy industry for pathways to improving land stewardship and energy security.
Sympatric cattle grazing and desert bighorn sheep foraging
Garrison, Kyle R.; Cain, James W.; Rominger, Eric M.; Goldstein, Elise J.
2015-01-01
Foraging behavior affects animal fitness and is largely dictated by the resources available to an animal. Understanding factors that affect forage resources is important for conservation and management of wildlife. Cattle sympatry is proposed to limit desert bighorn population performance, but few studies have quantified the effect of cattle foraging on bighorn forage resources or foraging behavior by desert bighorn. We estimated forage biomass for desert bighorn sheep in 2 mountain ranges: the cattle-grazed Caballo Mountains and the ungrazed San Andres Mountains, New Mexico. We recorded foraging bout efficiency of adult females by recording feeding time/step while foraging, and activity budgets of 3 age-sex classes (i.e., adult males, adult females, yearlings). We also estimated forage biomass at sites where bighorn were observed foraging. We expected lower forage biomass in the cattle-grazed Caballo range than in the ungrazed San Andres range and lower biomass at cattle-accessible versus inaccessible areas within the Caballo range. We predicted bighorn would be less efficient foragers in the Caballo range. Groundcover forage biomass was low in both ranges throughout the study (Jun 2012–Nov 2013). Browse biomass, however, was 4.7 times lower in the Caballo range versus the San Andres range. Bighorn in the Caballo range exhibited greater overall daily travel time, presumably to locate areas of higher forage abundance. By selecting areas with greater forage abundance, adult females in the Caballo range exhibited foraging bout efficiency similar to their San Andres counterparts but lower overall daily browsing time. We did not find a significant reduction in forage biomass at cattle-accessible areas in the Caballo range. Only the most rugged areas in the Caballo range had abundant forage, potentially a result of intensive historical livestock use in less rugged areas. Forage conditions in the Caballo range apparently force bighorn to increase foraging effort by feeding only in areas where adequate forage remains.
Withered on the stem: is bamboo a seasonally limiting resource for giant pandas?
Li, Youxu; Swaisgood, Ronald R; Wei, Wei; Nie, Yonggang; Hu, Yibo; Yang, Xuyu; Gu, Xiaodong; Zhang, Zejun
2017-04-01
In response to seasonal variation in quality and quantity of available plant biomass, herbivorous foragers may alternate among different plant resources to meet nutritional requirements. Giant pandas (Ailuropoda melanoleuca) are reliant almost exclusively on bamboo which appears omnipresent in most occupied habitat, but subtle temporal variation in bamboo quality may still govern foraging strategies, with population-level effects. In this paper, we investigated the possibility that temporal variation in the quality of this resource is involved in population regulation and examined pandas' adaptive foraging strategies in response to temporal variation in bamboo quality. Giant pandas in late winter and early spring consumed a less optimal diet in Foping Nature Reserve, as the availability of the most nutritious and preferred components and age classes of Bashania fargesii declined, suggesting that bamboo may be a seasonally limiting resource. Most panda mortalities and rescues occurred during the same period of seasonal food limitation. Our findings raised the possibility that while total bamboo biomass may not be a limiting factor, carrying capacity may be influenced by subtle seasonal variation in bamboo quality. We recommend that managers and policy-makers should consider more than just the quantity of bamboo in the understory and that carrying capacity estimates should be revised downward to reflect the fact that all bamboos are not equal.
Scott D. Roberts; Constance A. Harrington; Thomas A. Terry
2005-01-01
Decisions made during stand regeneration that affect subsequent levels of competing vegetation and residual biomass can have important short-term consequences for early stand growth, and may affect long-term site productivity. Competing vegetation clearly affects the availability of site resources such as soil moisture and nutrients. Harvest residues can also impact...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomberlin, G.; Mosey, G.
2013-03-01
Under the RE-Powering America's Land initiative, the U.S. Environmental Protection Agency (EPA) provided funding to the National Renewable Energy Laboratory (NREL) to support a feasibility study of biomass renewable energy generation at the former Farmland Industries site in Lawrence, Kansas. Feasibility assessment team members conducted a site assessment to gather information integral to this feasibility study. Information such as biomass resources, transmission availability, on-site uses for heat and power, community acceptance, and ground conditions were considered.
Environmentally sustainable production of food, feed and fuel from natural resources in the tropics.
Preston, T Reg
2009-08-01
Responding to the challenges posed by global warming, peak oil and biofuels will require a paradigm shift in the practice of agriculture and in the role of live stock within the farming system. Farming systems should aim at maximizing plant biomass production from locally available diversified resources, processing of the biomass on farm to provide food, feed and energy and recycling of all waste materials. The approach that is the subject of this paper is that the generation of electricity can be a by-product of food/feed production. The concept is the fractionation of biomass into inedible cell wall material that can be converted to an inflammable gas by gasification, the gas in turn being the source of fuel for internal combustion engines driving electrical generators. The cell contents and related structures such as tree leaves are used as human food or animal feed. As well as providing food and feed the model is highly appropriate for decentralized small scale production of electricity in rural areas. It also offers opportunities for sequestration of carbon in the form of biochar the solid residue remaining after gasification of the biomass.
Transporter engineering in biomass utilization by yeast.
Hara, Kiyotaka Y; Kobayashi, Jyumpei; Yamada, Ryosuke; Sasaki, Daisuke; Kuriya, Yuki; Hirono-Hara, Yoko; Ishii, Jun; Araki, Michihiro; Kondo, Akihiko
2017-11-01
Biomass resources are attractive carbon sources for bioproduction because of their sustainability. Many studies have been performed using biomass resources to produce sugars as carbon sources for cell factories. Expression of biomass hydrolyzing enzymes in cell factories is an important approach for constructing biomass-utilizing bioprocesses because external addition of these enzymes is expensive. In particular, yeasts have been extensively engineered to be cell factories that directly utilize biomass because of their manageable responses to many genetic engineering tools, such as gene expression, deletion and editing. Biomass utilizing bioprocesses have also been developed using these genetic engineering tools to construct metabolic pathways. However, sugar input and product output from these cells are critical factors for improving bioproduction along with biomass utilization and metabolic pathways. Transporters are key components for efficient input and output activities. In this review, we focus on transporter engineering in yeast to enhance bioproduction from biomass resources. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Resource requirements of the Pacific leatherback turtle population.
Jones, T Todd; Bostrom, Brian L; Hastings, Mervin D; Van Houtan, Kyle S; Pauly, Daniel; Jones, David R
2012-01-01
The Pacific population of leatherback sea turtles (Dermochelys coriacea) has drastically declined in the last 25 years. This decline has been linked to incidental capture by fisheries, egg and meat harvesting, and recently, to climate variability and resource limitation. Here we couple growth rates with feeding experiments and food intake functions to estimate daily energy requirements of leatherbacks throughout their development. We then estimate mortality rates from available data, enabling us to raise food intake (energy requirements) of the individual to the population level. We place energy requirements in context of available resources (i.e., gelatinous zooplankton abundance). Estimated consumption rates suggest that a single leatherback will eat upward of 1000 metric tonnes (t) of jellyfish in its lifetime (range 924-1112) with the Pacific population consuming 2.1×10(6) t of jellyfish annually (range 1.0-3.7×10(6)) equivalent to 4.2×10(8) megajoules (MJ) (range 2.0-7.4×10(8)). Model estimates suggest 2-7 yr-old juveniles comprise the majority of the Pacific leatherback population biomass and account for most of the jellyfish consumption (1.1×10(6) t of jellyfish or 2.2×10(8) MJ per year). Leatherbacks are large gelatinous zooplanktivores with consumption to biomass ratios of 96 (up to 192 if feeding strictly on low energy density Cnidarians); they, therefore, have a large capacity to impact gelatinous zooplankton landscapes. Understanding the leatherback's needs for gelatinous zooplankton, versus the availability of these resources, can help us better assess population trends and the influence of climate induced resource limitations to reproductive output.
Resource Requirements of the Pacific Leatherback Turtle Population
Jones, T. Todd; Bostrom, Brian L.; Hastings, Mervin D.; Van Houtan, Kyle S.; Pauly, Daniel; Jones, David R.
2012-01-01
The Pacific population of leatherback sea turtles (Dermochelys coriacea) has drastically declined in the last 25 years. This decline has been linked to incidental capture by fisheries, egg and meat harvesting, and recently, to climate variability and resource limitation. Here we couple growth rates with feeding experiments and food intake functions to estimate daily energy requirements of leatherbacks throughout their development. We then estimate mortality rates from available data, enabling us to raise food intake (energy requirements) of the individual to the population level. We place energy requirements in context of available resources (i.e., gelatinous zooplankton abundance). Estimated consumption rates suggest that a single leatherback will eat upward of 1000 metric tonnes (t) of jellyfish in its lifetime (range 924–1112) with the Pacific population consuming 2.1×106 t of jellyfish annually (range 1.0–3.7×106) equivalent to 4.2×108 megajoules (MJ) (range 2.0–7.4×108). Model estimates suggest 2–7 yr-old juveniles comprise the majority of the Pacific leatherback population biomass and account for most of the jellyfish consumption (1.1×106 t of jellyfish or 2.2×108 MJ per year). Leatherbacks are large gelatinous zooplanktivores with consumption to biomass ratios of 96 (up to 192 if feeding strictly on low energy density Cnidarians); they, therefore, have a large capacity to impact gelatinous zooplankton landscapes. Understanding the leatherback's needs for gelatinous zooplankton, versus the availability of these resources, can help us better assess population trends and the influence of climate induced resource limitations to reproductive output. PMID:23071518
Poeydebat, Charlotte; Carval, Dominique; de Lapeyre de Bellaire, Luc; Tixier, Philippe
2016-12-01
Agroecosystem plant diversification can enhance pest biological regulation and is a promising alternative to pesticide application. However, the costs of competition for resources between plants may exceed the benefits gained by pest regulation. To disentangle the interactions between pest regulation and competition, we developed a generic process-based approach that accounts for the effects of an associated plant and leaf and root pests on biomass production. We considered three crop-plant associations that differ in competition profiles, and we simulated biomass production under wide ranges of both pest regulation rates and resources' availability. We analyzed outputs to quantify the pest regulation service level that would be required to attain monoculture yield and other production goals. Results showed that pest regulation requirements were highly dependent on the profile of resource interception of the associated plant and on resources' availability. Pest regulation and the magnitude of competition between plants interacted in determining the balance between nitrogen and radiation uptake by the crop. Our findings suggest that productivity of diversified agroecosystems relative to monoculture should be optimized by assembling plants whose characteristics balance crops' resource acquisition. The theoretical insights from our study draw generic rules for vegetation assemblage to optimize trade-offs between pest regulation and production. Our findings and approach may have implications in understanding, theorizing and implementing agroecosystem diversification. By its generic and adaptable structure, our approach should be useful for studying the effects of diversification in many agroecosystems.
Bio-mass utilization in high pressure cogeneration boiler
NASA Astrophysics Data System (ADS)
Koundinya, Sandeep; Maria Ambrose Raj, Y.; Sreeram, K.; Divakar Shetty A., S.
2017-07-01
Coal is widely used all over the world in almost all power plants. The dependence on coal has increased enormously as the demand for electricity has reached its peak. Coal being a non-renewable source is depleting fast. We being the engineers, it's our duty to conserve the natural resources and optimize the coal consumption. In this project, we have tried to optimize the bio-mass utilization in high pressure cogeneration boiler. The project was carried in Seshasayee Paper and Boards Limited, erode related to Boiler No:10 operating at steam pressure of 105 kscg and temperature of 510°C. Available bio-mass fuels in and around the mill premises are bagasse, bagasse pith, cane trash and chipper dust. In this project, we have found out the coal equivalent replacement by the above bio-mass fuel(s) to facilitate deciding on the optimized quantity of coal that can be replaced by biomass without modifying the existing design of the plant. The dominant fuel (coal) which could be displaced with the substitute biomass fuel had been individually (biomass) analyzed.
Seeing biomass recalcitrance through fluorescence.
Auxenfans, Thomas; Terryn, Christine; Paës, Gabriel
2017-08-18
Lignocellulosic biomass is the only renewable carbon resource available in sufficient amount on Earth to go beyond the fossil-based carbon economy. Its transformation requires controlled breakdown of polymers into a set of molecules to make fuels, chemicals and materials. But biomass is a network of various inter-connected polymers which are very difficult to deconstruct optimally. In particular, saccharification potential of lignocellulosic biomass depends on several complex chemical and physical factors. For the first time, an easily measurable fluorescence properties of steam-exploded biomass samples from miscanthus, poplar and wheat straw was shown to be directly correlated to their saccharification potential. Fluorescence can thus be advantageously used as a predictive method of biomass saccharification. The loss in fluorescence occurring after the steam explosion pretreatment and increasing with pretreatment severity does not originate from the loss in lignin content, but rather from a decrease of the lignin β-aryl-ether linkage content. Fluorescence lifetime analysis demonstrates that monolignols making lignin become highly conjugated after steam explosion pretreatment. These results reveal that lignin chemical composition is a more important feature to consider than its content to understand and to predict biomass saccharification.
Flooding impacts on responses of a riparian consumer to cross-ecosystem subsidies.
Greenwood, Michelle J; McIntosh, Angus R
2008-06-01
Landscape-driven processes impact the magnitude and direction of cross-ecosystem resource subsidies, but they may also control consumers' numerical and functional responses by altering habitat availability. We investigated effects of the interaction between habitat availability and subsidy level on populations of a riparian fishing spider, Dolomedes aquaticus, using a flood disturbance gradient in the Waimakariri River catchment, New Zealand. D. aquaticus predominantly eat aquatic prey as they hunt from the water surface. However, D. aquaticus biomass peaked at rivers with intermediate flood disturbance, rather than at less flood-prone rivers where the biomass of aquatic insect prey was markedly higher. Flooding positively influenced spider habitat quality, and an experimental manipulation at stable rivers indicated that unembedded cobbles, preferred D. aquaticus habitat, were a limiting factor, preventing response to the increased prey resource at stable sites. Potential terrestrial prey abundance was low, did not vary across the disturbance gradient, and is likely to have been a much smaller component of the fishing spiders' diet than aquatic insect prey. Thus landscape-driven factors not only controlled the magnitude of resource subsidies, but also influenced the ability of consumers to respond to them by altering the physical nature of the ecosystem boundary.
NREL: Renewable Resource Data Center - Biomass Resource Publications
Marginal Lands in APEC Economies NREL Publications Database For a comprehensive list of other NREL biomass resource publications, explore NREL's Publications Database. When searching the database, search on "
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Vicki S.; Aston, John E.; Lacey, Jeffrey A.
Here, biomass cost, quality and quantity are important parameters to consider when choosing feedstocks and locations for biorefineries. Biomass cost is dependent upon type, location, quantities available in a given area and logistics costs as well the quality needed for the biorefinery. Biomass quality depends upon type, growth conditions, weather, harvesting methods, storage conditions as well as any preprocessing methods used to improve quality. Biomass quantity depends heavily on location as well as growth conditions, weather, harvesting methods and storage conditions. This study examines how all three of these parameters affect the biomass mixture that is needed in a biomassmore » depot or biorefinery to achieve the lowest cost with the highest quality and at the quantities needed for biorefinery operation. Four biomass depots were proposed in South Carolina that would each process the predominant type of biomass available in that area and each produce 200,000 tons of feedstock per year. These depots would then feed a centrally located 800,000 ton biorefinery that would convert the feedstocks to pyrolysis oil using either catalyzed or uncatalyzed fast pyrolysis. The four depots each needed to produce different blends of biomass based upon the quantities available to them but still meet the minimum quality requirements for the biorefinery. Costs were minimized by using waste biomass resources such as construction and demolition waste, logging residues and forest residuals. Depending upon the quality specification required by the biorefinery, it was necessary to utilize preprocessing methods such as air classification and acid leaching to upgrade biomass quality. In the case of uncatalyzed fast pyrolysis, all four depots could produce biomass blends that were lower cost than the the preferred pyrolysis feedstock, clean pine, and meet quality and quantity specifications. For catalyzed fast pyrolysis, three of the four depots were able to produce blends that met both quality and quantity specifications at minimum cost. The fourth depot would not be able to produce a blend meeting specifications without increasing the supply radius for the depot.« less
Thompson, Vicki S.; Aston, John E.; Lacey, Jeffrey A.; ...
2017-05-24
Here, biomass cost, quality and quantity are important parameters to consider when choosing feedstocks and locations for biorefineries. Biomass cost is dependent upon type, location, quantities available in a given area and logistics costs as well the quality needed for the biorefinery. Biomass quality depends upon type, growth conditions, weather, harvesting methods, storage conditions as well as any preprocessing methods used to improve quality. Biomass quantity depends heavily on location as well as growth conditions, weather, harvesting methods and storage conditions. This study examines how all three of these parameters affect the biomass mixture that is needed in a biomassmore » depot or biorefinery to achieve the lowest cost with the highest quality and at the quantities needed for biorefinery operation. Four biomass depots were proposed in South Carolina that would each process the predominant type of biomass available in that area and each produce 200,000 tons of feedstock per year. These depots would then feed a centrally located 800,000 ton biorefinery that would convert the feedstocks to pyrolysis oil using either catalyzed or uncatalyzed fast pyrolysis. The four depots each needed to produce different blends of biomass based upon the quantities available to them but still meet the minimum quality requirements for the biorefinery. Costs were minimized by using waste biomass resources such as construction and demolition waste, logging residues and forest residuals. Depending upon the quality specification required by the biorefinery, it was necessary to utilize preprocessing methods such as air classification and acid leaching to upgrade biomass quality. In the case of uncatalyzed fast pyrolysis, all four depots could produce biomass blends that were lower cost than the the preferred pyrolysis feedstock, clean pine, and meet quality and quantity specifications. For catalyzed fast pyrolysis, three of the four depots were able to produce blends that met both quality and quantity specifications at minimum cost. The fourth depot would not be able to produce a blend meeting specifications without increasing the supply radius for the depot.« less
NASA Astrophysics Data System (ADS)
CHOI, S.; Shi, Y.; Ni, X.; Simard, M.; Myneni, R. B.
2013-12-01
Sparseness in in-situ observations has precluded the spatially explicit and accurate mapping of forest biomass. The need for large-scale maps has raised various approaches implementing conjugations between forest biomass and geospatial predictors such as climate, forest type, soil property, and topography. Despite the improved modeling techniques (e.g., machine learning and spatial statistics), a common limitation is that biophysical mechanisms governing tree growth are neglected in these black-box type models. The absence of a priori knowledge may lead to false interpretation of modeled results or unexplainable shifts in outputs due to the inconsistent training samples or study sites. Here, we present a gray-box approach combining known biophysical processes and geospatial predictors through parametric optimizations (inversion of reference measures). Total aboveground biomass in forest stands is estimated by incorporating the Forest Inventory and Analysis (FIA) and Parameter-elevation Regressions on Independent Slopes Model (PRISM). Two main premises of this research are: (a) The Allometric Scaling and Resource Limitations (ASRL) theory can provide a relationship between tree geometry and local resource availability constrained by environmental conditions; and (b) The zeroth order theory (size-frequency distribution) can expand individual tree allometry into total aboveground biomass at the forest stand level. In addition to the FIA estimates, two reference maps from the National Biomass and Carbon Dataset (NBCD) and U.S. Forest Service (USFS) were produced to evaluate the model. This research focuses on a site-scale test of the biomass model to explore the robustness of predictors, and to potentially improve models using additional geospatial predictors such as climatic variables, vegetation indices, soil properties, and lidar-/radar-derived altimetry products (or existing forest canopy height maps). As results, the optimized ASRL estimates satisfactorily resemble the FIA aboveground biomass in terms of data distribution, overall agreement, and spatial similarity across scales. Uncertainties are quantified (ranged from 0.2 to 0.4) by taking into account the spatial mismatch (FIA plot vs. PRISM grid), heterogeneity (species composition), and an example bias scenario (= 0.2) in the root system extents.
The scaling of total parasite biomass with host body mass.
Poulin, Robert; George-Nascimento, Mario
2007-03-01
The selective pressure exerted by parasites on their hosts will to a large extent be influenced by the abundance or biomass of parasites supported by the hosts. Predicting how much parasite biomass can be supported by host individuals or populations should be straightforward: ultimately, parasite biomass must be controlled by resource supply, which is a direct function of host metabolism. Using comparative data sets on the biomass of metazoan parasites in vertebrate hosts, we determined how parasite biomass scales with host body mass. If the rate at which host resources are converted into parasite biomass is the same as that at which host resources are channelled toward host growth, then on a log-log plot parasite biomass should increase with host mass with a slope of 0.75 when corrected for operating temperature. Average parasite biomass per host scaled with host body mass at a lower rate than expected (across 131 vertebrate species, slope=0.54); this was true independently of phylogenetic influences and also within the major vertebrate groups separately. Since most host individuals in a population harbour a parasite load well below that allowed by their metabolic rate, because of the stochastic nature of infection, it is maximum parasite biomass, and not average biomass, that is predicted to scale with metabolic rate among host species. We found that maximum parasite biomass scaled isometrically (i.e., slope=1) with host body mass. Thus, larger host species can potentially support the same parasite biomass per gram of host tissues as small host species. The relationship found between maximum parasite biomass and host body mass, with its slope greater than 0.75, suggests that parasites are not like host tissues: they are able to appropriate more host resources than expected from metabolically derived host growth rates.
Regional allocation of biomass to U.S. energy demands under a portfolio of policy scenarios.
Mullins, Kimberley A; Venkatesh, Aranya; Nagengast, Amy L; Kocoloski, Matt
2014-01-01
The potential for widespread use of domestically available energy resources, in conjunction with climate change concerns, suggest that biomass may be an essential component of U.S. energy systems in the near future. Cellulosic biomass in particular is anticipated to be used in increasing quantities because of policy efforts, such as federal renewable fuel standards and state renewable portfolio standards. Unfortunately, these independently designed biomass policies do not account for the fact that cellulosic biomass can equally be used for different, competing energy demands. An integrated assessment of multiple feedstocks, energy demands, and system costs is critical for making optimal decisions about a unified biomass energy strategy. This study develops a spatially explicit, best-use framework to optimally allocate cellulosic biomass feedstocks to energy demands in transportation, electricity, and residential heating sectors, while minimizing total system costs and tracking greenhouse gas emissions. Comparing biomass usage across three climate policy scenarios suggests that biomass used for space heating is a low cost emissions reduction option, while biomass for liquid fuel or for electricity becomes attractive only as emissions reduction targets or carbon prices increase. Regardless of the policy approach, study results make a strong case for national and regional coordination in policy design and compliance pathways.
Flowering in grassland predicted by CO2 and resource effects on species aboveground biomass
USDA-ARS?s Scientific Manuscript database
Ongoing enrichment of atmospheric CO2 concentration may increase plant community productivity by changing plant community composition through direct and indirect effects on light, water, or nutrient availability. CO2 enrichment has been predicted to reduce plant reproductive allocation in herbaceou...
Managing water resources for biomass production in a biofuel economy
USDA-ARS?s Scientific Manuscript database
One goal of our national security policy is to become more energy independent using biofuels. The expanded production of agricultural crops for bioenergy production has introduced new challenges for management of water. Water availability has been widely presumed in the discussion of bioenergy crop ...
NASA Astrophysics Data System (ADS)
Barrientos, Rafael; Virgós, Emilio
2006-07-01
The common genet ( Genetta genetta) and the stone marten ( Martes foina) are two species that overlap extensively in their distribution ranges in southwest Europe. Available diet data from these species allow us to predict some interference competition for food resources in sympatric populations. We checked the food interference hypothesis in a sympatric population. The diet of both predators was analyzed through scat collection. Seasonal differences in biomass consumption were compared between both species in those items considered as key resources according to biomass consumption. Strawberry tree fruits can be considered as key resource exclusively for genets whereas fungi, blackberries and rabbits are keys for stone martens only. For other key resources consumed by both species (wood mouse and figs) we suggest that a possible mechanism to reduce diet overlap could be the sequential use of these resources: no intensive exploitation by both species of the same key resource during the same season was detected. Figs and wood mouse were used alternatively. Although strawberry tree fruits and blackberry are exclusive key resources of one of the species, their consumptions showed the same pattern. Diet niche overlap in our study is low compared with other carnivore communities suggesting that exclusive use of some key resources and sequential use of shared ones is an optimal scenario to reduce overall competition for food resources.
Hoeber, Stefanie; Fransson, Petra; Prieto-Ruiz, Inés; Manzoni, Stefano; Weih, Martin
2017-01-01
Individual plant species or genotypes often differ in their demand for nutrients; to compete in a community they must be able to acquire more nutrients (i.e., uptake efficiency) and/or use them more efficiently for biomass production than their competitors. These two mechanisms are often complementary, as there are inherent trade-offs between them. In a mixed-stand, species with contrasting nutrient use patterns interact and may use their resources to increase productivity in different ways. Under contrasting nutrient availabilities, the competitive advantages conferred by either strategy may also shift, so that the interaction between resource use strategy and resource availability ultimately determines the performance of individual genotypes in mixtures. The aim was to investigate growth and nitrogen (N) use efficiency of two willow (Salix) genotypes grown in monoculture and mixture in a fertilizer contrast. We explored the hypotheses that (1) the biomass production of at least one of the involved genotypes should be greater when grown in mixture as compared to the corresponding monoculture when nutrients are the most growth-limiting factor; and (2) the N economy of individual genotypes differs when grown in mixture compared to the corresponding monoculture. The genotypes ‘Tora’ (Salix schwerinii ×S. viminalis) and ‘Loden’ (S. dasyclados), with contrasting phenology and functional traits, were grown from cuttings in a growth container experiment under two nutrient fertilization treatments (high and low) in mono- and mixed-culture for 17 weeks. Under low nutrient level, ‘Tora’ showed a higher biomass production (aboveground biomass, leaf area productivity) and N uptake efficiency in mixture than in monoculture, whereas ‘Loden’ showed the opposite pattern. In addition, ‘Loden’ showed higher leaf N productivity but lower N uptake efficiency than ‘Tora.’ The results demonstrated that the specific functional trait combinations of individual genotypes affect their response to mixture as compared to monoculture. Plants grown in mixture as opposed to monoculture may thus increase biomass and vary in their response of N use efficiency traits. However, young plants were investigated here, and as we cannot predict mixture response in mature stands, our results need to be validated at field scale. PMID:28270828
Hoeber, Stefanie; Fransson, Petra; Prieto-Ruiz, Inés; Manzoni, Stefano; Weih, Martin
2017-01-01
Individual plant species or genotypes often differ in their demand for nutrients; to compete in a community they must be able to acquire more nutrients (i.e., uptake efficiency) and/or use them more efficiently for biomass production than their competitors. These two mechanisms are often complementary, as there are inherent trade-offs between them. In a mixed-stand, species with contrasting nutrient use patterns interact and may use their resources to increase productivity in different ways. Under contrasting nutrient availabilities, the competitive advantages conferred by either strategy may also shift, so that the interaction between resource use strategy and resource availability ultimately determines the performance of individual genotypes in mixtures. The aim was to investigate growth and nitrogen (N) use efficiency of two willow ( Salix ) genotypes grown in monoculture and mixture in a fertilizer contrast. We explored the hypotheses that (1) the biomass production of at least one of the involved genotypes should be greater when grown in mixture as compared to the corresponding monoculture when nutrients are the most growth-limiting factor; and (2) the N economy of individual genotypes differs when grown in mixture compared to the corresponding monoculture. The genotypes 'Tora' ( Salix schwerinii × S. viminalis ) and 'Loden' ( S. dasyclados ), with contrasting phenology and functional traits, were grown from cuttings in a growth container experiment under two nutrient fertilization treatments (high and low) in mono- and mixed-culture for 17 weeks. Under low nutrient level, 'Tora' showed a higher biomass production (aboveground biomass, leaf area productivity) and N uptake efficiency in mixture than in monoculture, whereas 'Loden' showed the opposite pattern. In addition, 'Loden' showed higher leaf N productivity but lower N uptake efficiency than 'Tora.' The results demonstrated that the specific functional trait combinations of individual genotypes affect their response to mixture as compared to monoculture. Plants grown in mixture as opposed to monoculture may thus increase biomass and vary in their response of N use efficiency traits. However, young plants were investigated here, and as we cannot predict mixture response in mature stands, our results need to be validated at field scale.
Modeling and Optimization of Woody Biomass Harvest and Logistics in the Northeastern United States
NASA Astrophysics Data System (ADS)
Hartley, Damon S.
World energy consumption is at an all-time high and is projected to continue growing for the foreseeable future. Currently, much of the energy that is produced comes from non-renewable fossil energy sources, which includes the burden of increased greenhouse gas emissions and the fear of energy insecurity. Woody biomass is being considered as a material that can be utilized to reduce the burden caused by fossil energy. While the technical capability to convert woody biomass to energy has been known for a long period of time, the cost of the feedstock has been considered too costly to be implemented in a large commercial scale. Increasing the use of woody biomass as an energy source requires that the supply chains are setup in a way that minimizes cost, the locational factors that lead to development are understood, the facilities are located in the most favorable locations and local resource assessments can be made. A mixed integer linear programming model to efficiently configure woody biomass supply chain configurations and optimize the harvest, extraction, transport, storage and preprocessing of the woody biomass resources to provide the lowest possible delivered price. The characteristics of woody biomass, such as spatial distribution and low bulk density, tend to make collection and transport difficult as compared to traditional energy sources. These factors, as well as others, have an adverse effect on the cost of the feedstock. The average delivered cost was found to be between 64.69-98.31 dry Mg for an annual demand of 180,000 dry Mg. The effect of resource availability and required demand was examined to determine the impact that each would have on the total cost. The use of woody biomass for energy has been suggested as a way to improve rural economies through job creation, reduction of energy costs and regional development. This study examined existing wood using bio-energy facilities in the northeastern United States to define the drivers of establishment of bio-energy projects. Using a spatial econometric framework, a spatial autoregressive probit model was estimated based on the Bayesian methods to define the factors that impact the location of wood using bio-energy facilities in the United States. Through the analysis it was found that the energy policy of the state is the biggest driver of the choice of location for bioenergy facilities. The choice of site is of great importance when trying to meet the goal of producing cost-effective biofuels, due to the spatial dispersion of the biofuels and the high proportion of total cost that is incurred by transportation to the processing facility. The proximity to the fuel supply and the resulting transportation cost are the primary concern of the operators of the facilities, although this is not the primary driver that leads to the development of these projects. In order to make these endeavors successful, there must also be buy-in from the local community and its government. Previous studies have found that in addition to the environmental benefits and improved energy security, the impact that the facilities have on the local economy, in terms of job creation, improved industrial competitiveness and regional development are key drivers of bioenergy projects. A two-stage site selection approach is developed for the siting of woody biomass facilities, which combines multi-criteria analysis with mixed integer linear programming to rank potential development sites. This approach was then applied to the siting of a Coal/Biomass to liquids plant, and was able to objectively identify the optimal location of the facility. Finally, a simulation model was developed to assess the locally available quantities and prices for biomass feedstocks. The simulation uses machine tractability in conjunction with graph theory to assess machine productivity and harvesting cost. The model was then applied to a demonstration project in which a 10,000 bbl per day Coal/Biomass to Liquid plant is being used to examine if there are sufficient feedstocks available to warrant the project. It was found that within the proposed three county procurement area that there were approximately 34% less material available than was assumed to be available from large scale feedstock data. Also, the simulation model was able to determine that the total feedstock requirement could be met at a price of 66 per dry Mg.
Cherry, Julia A; Gough, Laura
2009-09-01
Responses of aquatic macrophytes to leaf herbivory may differ from those documented for terrestrial plants, in part, because the potential to maximize growth following herbivory may be limited by the stress of being rooted in flooded, anaerobic sediments. Herbivory on aquatic macrophytes may have ecosystem consequences by altering the allocation of nutrients and production of biomass within individual plants and changing the quality and quantity of aboveground biomass available to consumers or decomposers. To test the effects of leaf herbivory on plant growth and production, herbivory of a dominant macrophyte, Nymphaea odorata, by chrysomelid beetles and crambid moths was controlled during a 2-year field experiment. Plants exposed to herbivory maintained, or tended to increase, biomass and aboveground net primary production relative to controls, which resulted in 1.5 times more aboveground primary production entering the detrital pathway of the wetland. In a complementary greenhouse experiment, the effects of simulated leaf herbivory on total plant responses, including biomass and nutrient allocation, were investigated. Plants in the greenhouse responded to moderate herbivory by maintaining aboveground biomass relative to controls, but this response occurred at the expense of belowground growth. Results of these studies suggest that N. odorata may tolerate moderate levels of herbivory by reallocating biomass and resources aboveground, which in turn influences the quantity, quality and fate of organic matter available to herbivores and decomposers.
USDA-ARS?s Scientific Manuscript database
Brachypodium distachyon (Brachypodium) has emerged as a useful model system for studying traits unique to graminaceous species, owing to its amenability to laboratory experimentation and the availability of extensive genetic and germplasm resources. We assessed the extent of natural variation for tr...
RPA Data Wiz users guide, version 1.0
Scott A. Pugh
2004-01-01
RPA Data Wiz is a computer application use to create summary tables, graphs, and maps of Resource Planning Act (RPA) Assessment forest information (English or metric units). Volumes for growing stock, live cull, dead salvable, netgrowth, and mortality can be estimated. Acreage, biomass, and tree count estimates are also available.
A Mechanistic Study of Plant and Microbial Controls over R* for Nitrogen in an Annual Grassland
Levine, Jonathan M.; HilleRisLambers, Janneke
2014-01-01
Differences in species' abilities to capture resources can drive competitive hierarchies, successional dynamics, community diversity, and invasions. To investigate mechanisms of resource competition within a nitrogen (N) limited California grassland community, we established a manipulative experiment using an R* framework. R* theory holds that better competitors within a N limited community should better depress available N in monoculture plots and obtain higher abundance in mixture plots. We asked whether (1) plant uptake or (2) plant species influences on microbial dynamics were the primary drivers of available soil N levels in this system where N structures plant communities. To disentangle the relative roles of plant uptake and microbially-mediated processes in resource competition, we quantified soil N dynamics as well as N pools in plant and microbial biomass in monoculture plots of 11 native or exotic annual grassland plants over one growing season. We found a negative correlation between plant N content and soil dissolved inorganic nitrogen (DIN, our measure of R*), suggesting that plant uptake drives R*. In contrast, we found no relationship between microbial biomass N or potential net N mineralization and DIN. We conclude that while plant-microbial interactions may have altered the overall quantity of N that plants take up, the relationship between species' abundance and available N in monoculture was largely driven by plant N uptake in this first year of growth. PMID:25170943
Global bioenergy potential from high-lignin agricultural residue
Mendu, Venugopal; Shearin, Tom; Campbell, J. Elliott; Stork, Jozsef; Jae, Jungho; Crocker, Mark; Huber, George; DeBolt, Seth
2012-01-01
Almost one-quarter of the world's population has basic energy needs that are not being met. Efforts to increase renewable energy resources in developing countries where per capita energy availability is low are needed. Herein, we examine integrated dual use farming for sustained food security and agro-bioenergy development. Many nonedible crop residues are used for animal feed or reincorporated into the soil to maintain fertility. By contrast, drupe endocarp biomass represents a high-lignin feedstock that is a waste stream from food crops, such as coconut (Cocos nucifera) shell, which is nonedible, not of use for livestock feed, and not reintegrated into soil in an agricultural setting. Because of high-lignin content, endocarp biomass has optimal energy-to-weight returns, applicable to small-scale gasification for bioelectricity. Using spatial datasets for 12 principal drupe commodity groups that have notable endocarp byproduct, we examine both their potential energy contribution by decentralized gasification and relationship to regions of energy poverty. Globally, between 24 million and 31 million tons of drupe endocarp biomass is available per year, primarily driven by coconut production. Endocarp biomass used in small-scale decentralized gasification systems (15–40% efficiency) could contribute to the total energy requirement of several countries, the highest being Sri Lanka (8–30%) followed by Philippines (7–25%), Indonesia (4–13%), and India (1–3%). While representing a modest gain in global energy resources, mitigating energy poverty via decentralized renewable energy sources is proposed for rural communities in developing countries, where the greatest disparity between societal allowances exist. PMID:22355123
Analytical Methods for Biomass Characterization during Pretreatment and Bioconversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pu, Yunqiao; Meng, Xianzhi; Yoo, Chang Geun
2016-01-01
Lignocellulosic biomass has been introduced as a promising resource for alternative fuels and chemicals because of its abundance and complement for petroleum resources. Biomass is a complex biopolymer and its compositional and structural characteristics largely vary depending on its species as well as growth environments. Because of complexity and variety of biomass, understanding its physicochemical characteristics is a key for effective biomass utilization. Characterization of biomass does not only provide critical information of biomass during pretreatment and bioconversion, but also give valuable insights on how to utilize the biomass. For better understanding biomass characteristics, good grasp and proper selection ofmore » analytical methods are necessary. This chapter introduces existing analytical approaches that are widely employed for biomass characterization during biomass pretreatment and conversion process. Diverse analytical methods using Fourier transform infrared (FTIR) spectroscopy, gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) spectroscopy for biomass characterization are reviewed. In addition, biomass accessibility methods by analyzing surface properties of biomass are also summarized in this chapter.« less
Biomass energy inventory and mapping system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasile, J.D.
1993-12-31
A four-stage biomass energy inventory and mapping system was conducted for the entire State of Ohio. The product is a set of maps and an inventory of the State of Ohio. The set of amps and an inventory of the State`s energy biomass resource are to a one kilometer grid square basis on the Universal Transverse Mercator (UTM) system. Each square kilometer is identified and mapped showing total British Thermal Unit (BTU) energy availability. Land cover percentages and BTU values are provided for each of nine biomass strata types for each one kilometer grid square. LANDSAT satellite data was usedmore » as the primary stratifier. The second stage sampling was the photointerpretation of randomly selected one kilometer grid squares that exactly corresponded to the LANDSAT one kilometer grid square classification orientation. Field sampling comprised the third stage of the energy biomass inventory system and was combined with the fourth stage sample of laboratory biomass energy analysis using a Bomb calorimeter and was then used to assign BTU values to the photointerpretation and to adjust the LANDSAT classification. The sampling error for the whole system was 3.91%.« less
Hillmann, Eva R.; DeMarco, Kristin; LaPeyre, Megan K.
2016-01-01
Coastal ecosystems are dynamic and productive areas that are vulnerable to effects of global climate change. Despite their potentially limited spatial extent, submerged aquatic vegetation (SAV) beds function in coastal ecosystems as foundation species, and perform important ecological services. However, limited understanding of the factors controlling SAV distribution and abundance across multiple salinity zones (fresh, intermediate, brackish, and saline) in the northern Gulf of Mexico restricts the ability of models to accurately predict resource availability. We sampled 384 potential coastal SAV sites across the northern Gulf of Mexico in 2013 and 2014, and examined community and species-specific SAV distribution and biomass in relation to year, salinity, turbidity, and water depth. After two years of sampling, 14 species of SAV were documented, with three species (coontail [Ceratophyllum demersum], Eurasian watermilfoil [Myriophyllum spicatum], and widgeon grass [Ruppia maritima]) accounting for 54% of above-ground biomass collected. Salinity and water depth were dominant drivers of species assemblages but had little effect on SAV biomass. Predicted changes in salinity and water depths along the northern Gulf of Mexico coast will likely alter SAV production and species assemblages, shifting to more saline and depth-tolerant assemblages, which in turn may affect habitat and food resources for associated faunal species.
An applied methodology for assessment of the sustainability of biomass district heating systems
NASA Astrophysics Data System (ADS)
Vallios, Ioannis; Tsoutsos, Theocharis; Papadakis, George
2016-03-01
In order to maximise the share of biomass in the energy supplying system, the designers should adopt the appropriate changes to the traditional systems and become more familiar with the design details of the biomass heating systems. The aim of this study is to present the development of methodology and its associated implementation in software that is useful for the design of biomass thermal conversion systems linked with district heating (DH) systems, taking into consideration the types of building structures and urban settlement layout around the plant. The methodology is based on a completely parametric logic, providing an impact assessment of variations in one or more technical and/or economic parameters and thus, facilitating a quick conclusion on the viability of this particular energy system. The essential energy parameters are presented and discussed for the design of biomass power and heat production system which are in connection with DH network, as well as for its environmental and economic evaluation (i.e. selectivity and viability of the relevant investment). Emphasis has been placed upon the technical parameters of biomass logistics, energy system's design, the economic details of the selected technology (integrated cogeneration combined cycle or direct combustion boiler), the DH network and peripheral equipment (thermal substations) and the greenhouse gas emissions. The purpose of this implementation is the assessment of the pertinent investment financial viability taking into account the available biomass feedstock, the economical and market conditions, and the capital/operating costs. As long as biomass resources (forest wood and cultivation products) are available and close to the settlement, disposal and transportation costs of biomass, remain low assuring the sustainability of such energy systems.
NASA Astrophysics Data System (ADS)
Clalüna, Aline; Baumgarten, Wibke; García Galindo, Daniel; Lenz, Klaus; Doležal, Jan; De Filippi, Federico; Lorenzo, Joaquín; Montagnoli, Louis
2017-04-01
The project greenGain is looking for solutions to increase the energy production with regional and local biomass from landscape conservation and maintenance work, which is performed in the public interest. The relevant resources analysed in the greenGain model regions are, among others, biomass residues from clearing invasive vegetation in marginal agricultural lands in Spain, and residues from abandoned vineyards and olive groves in landscape protected areas in Italy. The main target groups are regional and local players who are responsible for maintenance and conservation work and for the biomass residue management in their regions. Moreover, the focus will be on service providers - including farmers and forest owners, their associations, NGOs, energy providers and consumers. Local companies, municipalities and public authorities are collaborating to identify the still underutilised non-food biomass resources and to discuss the way to integrate them into the local and regional biomass markets. Since the start of the three year project in January 2015, the partners from Italy, Spain, Czech Republic and Germany analysed, among other, the biomass feedstock potential coming from landscape maintenance work, and assessed various technological options to utilise this type of biomass. Further, political, legal and environmental aspects as well as awareness raising and public acceptance actions regarding the energetic use of biomass from public areas were assessed. greenGain also facilitates the exchange between model regions and other similar relevant players in the EU and shares examples of good practice. General guidelines will be prepared to guarantee a wide dissemination to other regions in the EU. Thus, the project shows how to build-up reliable knowledge on local availability of this feedstock and provides know-how concerning planning, harvesting, pre-treatment, storage and sustainable conversion pathways to a wide range of stakeholders in the EU.
Biomass Resource Allocation among Competing End Uses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newes, E.; Bush, B.; Inman, D.
The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports,more » bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.« less
Kumordzi, Bright B.; Gundale, Michael J.; Nilsson, Marie-Charlotte; Wardle, David A.
2016-01-01
Most plant biomass allocation studies have focused on allocation to shoots versus roots, and little is known about drivers of allocation for aboveground plant organs. We explored the drivers of within-and between-species variation of aboveground biomass allocation across a strong environmental resource gradient, i.e., a long-term chronosequence of 30 forested islands in northern Sweden across which soil fertility and plant productivity declines while light availability increases. For each of the three coexisting dominant understory dwarf shrub species on each island, we estimated the fraction of the total aboveground biomass produced year of sampling that was allocated to sexual reproduction (i.e., fruits), leaves and stems for each of two growing seasons, to determine how biomass allocation responded to the chronosequence at both the within-species and whole community levels. Against expectations, within-species allocation to fruits was least on less fertile islands, and allocation to leaves at the whole community level was greatest on intermediate islands. Consistent with expectations, different coexisting species showed contrasting allocation patterns, with the species that was best adapted for more fertile conditions allocating the most to vegetative organs, and with its allocation pattern showing the strongest response to the gradient. Our study suggests that co-existing dominant plant species can display highly contrasting biomass allocations to different aboveground organs within and across species in response to limiting environmental resources within the same plant community. Such knowledge is important for understanding how community assembly, trait spectra, and ecological processes driven by the plant community vary across environmental gradients and among contrasting ecosystems. PMID:27270445
[Applications of GIS in biomass energy source research].
Su, Xian-Ming; Wang, Wu-Kui; Li, Yi-Wei; Sun, Wen-Xiang; Shi, Hai; Zhang, Da-Hong
2010-03-01
Biomass resources have the characteristics of widespread and dispersed distribution, which have close relations to the environment, climate, soil, and land use, etc. Geographic information system (GIS) has the functions of spatial analysis and the flexibility of integrating with other application models and algorithms, being of predominance to the biomass energy source research. This paper summarized the researches on the GIS applications in biomass energy source research, with the focus in the feasibility study of bioenergy development, assessment of biomass resources amount and distribution, layout of biomass exploitation and utilization, evaluation of gaseous emission from biomass burning, and biomass energy information system. Three perspectives of GIS applications in biomass energy source research were proposed, i. e., to enrich the data source, to improve the capacity on data processing and decision-support, and to generate the online proposal.
Fates of Chemical Elements in Biomass during Its Pyrolysis.
Liu, Wu-Jun; Li, Wen-Wei; Jiang, Hong; Yu, Han-Qing
2017-05-10
Biomass is increasingly perceived as a renewable resource rather than as an organic solid waste today, as it can be converted to various chemicals, biofuels, and solid biochar using modern processes. In the past few years, pyrolysis has attracted growing interest as a promising versatile platform to convert biomass into valuable resources. However, an efficient and selective conversion process is still difficult to be realized due to the complex nature of biomass, which usually makes the products complicated. Furthermore, various contaminants and inorganic elements (e.g., heavy metals, nitrogen, phosphorus, sulfur, and chlorine) embodied in biomass may be transferred into pyrolysis products or released into the environment, arousing environmental pollution concerns. Understanding their behaviors in biomass pyrolysis is essential to optimizing the pyrolysis process for efficient resource recovery and less environmental pollution. However, there is no comprehensive review so far about the fates of chemical elements in biomass during its pyrolysis. Here, we provide a critical review about the fates of main chemical elements (C, H, O, N, P, Cl, S, and metals) in biomass during its pyrolysis. We overview the research advances about the emission, transformation, and distribution of elements in biomass pyrolysis, discuss the present challenges for resource-oriented conversion and pollution abatement, highlight the importance and significance of understanding the fate of elements during pyrolysis, and outlook the future development directions for process control. The review provides useful information for developing sustainable biomass pyrolysis processes with an improved efficiency and selectivity as well as minimized environmental impacts, and encourages more research efforts from the scientific communities of chemistry, the environment, and energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cafferty, Kara G.; Searcy, Erin M.; Nguyen, Long
To meet Energy Independence and Security Act (EISA) cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels and access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver on-spec biomass feedstocks at preprocessing “depots”, which densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The harvesting, preprocessing, and logistics (HPL) of biomass commodity supply chains thus could introduce spatially variable environmental impacts into the biofuel life cyclemore » due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG) emissions of corn stover logisticsHPL within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. Monte Carlo simulation was used to estimate the spatial uncertainty in the HPL gate-to-gate sequence. The results show that the transport of densified biomass introduces the highest variability and contribution to the carbon footprint of the logistics HPL supply chain (0.2-13 g CO 2e/MJ). Moreover, depending upon the biomass availability and its spatial density and surrounding transportation infrastructure (road and rail), logistics HPL processes can increase the variability in life cycle environmental impacts for lignocellulosic biofuels. Within Kansas, life cycle GHG emissions could range from 24 to 41 g CO 2e/MJ depending upon the location, size and number of preprocessing depots constructed. However, this range can be minimized through optimizing the siting of preprocessing depots where ample rail infrastructure exists to supply biomass commodity to a regional biorefinery supply system« less
Cafferty, Kara G.; Searcy, Erin M.; Nguyen, Long; ...
2014-11-04
To meet Energy Independence and Security Act (EISA) cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels and access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver on-spec biomass feedstocks at preprocessing “depots”, which densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The harvesting, preprocessing, and logistics (HPL) of biomass commodity supply chains thus could introduce spatially variable environmental impacts into the biofuel life cyclemore » due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG) emissions of corn stover logisticsHPL within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. Monte Carlo simulation was used to estimate the spatial uncertainty in the HPL gate-to-gate sequence. The results show that the transport of densified biomass introduces the highest variability and contribution to the carbon footprint of the logistics HPL supply chain (0.2-13 g CO 2e/MJ). Moreover, depending upon the biomass availability and its spatial density and surrounding transportation infrastructure (road and rail), logistics HPL processes can increase the variability in life cycle environmental impacts for lignocellulosic biofuels. Within Kansas, life cycle GHG emissions could range from 24 to 41 g CO 2e/MJ depending upon the location, size and number of preprocessing depots constructed. However, this range can be minimized through optimizing the siting of preprocessing depots where ample rail infrastructure exists to supply biomass commodity to a regional biorefinery supply system« less
Jiang, Zhi-Xiang; Zheng, Hao; Li, Feng-Min; Wang, Zhen-Yu
2013-06-01
The production of biochar by pyrolysis and its application to soil can sequester the CO2 which was absorbed by plants from atmosphere into soil, in addition it can also bring multiple benefits for agriculture production. On the basis of the available potential survey of the biomass residues from agriculture and forestry section, life cycle assessment was employed to quantify the potential of biochar technology in mitigation of greenhouse gases in our country. The results showed: In China, the amount of available biomass resource was 6.04 x 10(8) t every year and its net greenhouse effect potential was 5.32 x 10(8) t CO(2e) (CO(2e): CO2 equivalent), which was equivalent to 0.88 t CO(2e) for every ton biomass. The greatest of contributor to the total potential was plant carbon sequestration in soil as the form of biochar which accounts for 73.94%, followed by production of renewable energy and its percentage was 23.85%. In summary, production of biochar from agriculture and forestry biomass residues had a significant potential for our country to struggle with the pressure of greenhouse gas emission.
The use of conservation biomass feedstocks as potential bioenergy resources in the United Kingdom.
Phillips, D; Mitchell, E J S; Lea-Langton, A R; Parmar, K R; Jones, J M; Williams, A
2016-07-01
A number of countries have introduced energy policies to reduce the emission of carbon dioxide which, in the case of bio-heat, has resulted in increased use of small wood burning stoves and boilers, particularly in Europe. There are issues surrounding the supply of sustainable wood feedstock, prompting a desire to utilise local biomass resources. This includes biomass generated through the management of natural woodlands in nature reserves and conservation areas. These management practices can also extend to other areas, such as raised bog wildernesses and estuary Reed beds. We term the biomass from this resource as conservation biomass. This study is concerned with the viability of this resource as a fuel within the United Kingdom, and combustion tests were carried out using a small domestic stove. It was concluded that there is as much as 500kty(-1) that could be used in this way. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Louisiana fuels your energy needs
NASA Astrophysics Data System (ADS)
Coleman, B.
2017-12-01
We compared energy obtained from three different biomass resources: Rice hulls, Sugarcane, and Pine bark. Using a bomb calorimeter, we combusted 0.5 g of oven-dried samples in triplicate. We calculated moisture content and determined the average calories for rice hulls, sugarcane, and pine bark to be 3.69 ± 0.09, 4.00 ± 0.08, and 4.71 ± 0.21 kcal/g, respectively. Properly combusted, pine bark can be one of the most successful and profitable renewable bioenergy resources available.
Facilitation- vs. competition-driven succession: the key role of resource-ratio.
Koffel, Thomas; Boudsocq, Simon; Loeuille, Nicolas; Daufresne, Tanguy
2018-05-02
Symbiotic nitrogen (N)-fixing plants are abundant during primary succession, as typical bedrocks lack available N. In turn, fixed N accumulates in soils through biomass turnover and recycling, favouring more nitrophilous organisms. Yet, it is unclear how this facilitation mechanism interacts with competition for other limiting nutrients such as phosphorus (P) and how this affects succession. Here, we introduce a resource-explicit, community assembly model of N-fixing species and analyze successional trajectories along resource availability gradients using contemporary niche theory. We show that facilitation-driven succession occurs under low N and high enough P availabilities, and is characterised by autogenic ecosystem development and relatively ordered trajectories. We show that late facilitation-driven succession is sensitive to catastrophic shifts, highlighting the need to invoke other mechanisms to explain ecosystem stability near the climax. Put together with competition-driven succession, these results lead to an enriched version of Tilman's resource-ratio theory of succession. © 2018 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Howard, Rebecca J.; Stagg, Camille L.; Utomo, Herry S.
2018-07-01
Increasing atmospheric carbon dioxide (CO2) concentrations are likely to influence future distributions of plants and plant community structure in many regions of the world through effects on photosynthetic rates. In recent decades the encroachment of woody mangrove species into herbaceous marshes has been documented along the U.S. northern Gulf of Mexico coast. These species shifts have been attributed primarily to rising sea levels and warming winter temperatures, but the role of elevated CO2 and water availability may become more prominent drivers of species interactions under future climate conditions. Drought has been implicated as a major factor contributing to salt marsh vegetation dieback in this region. In this greenhouse study we examined the effects of CO2 concentration (∼380 ppm, ∼700 ppm) and water regime (drought, saturated, flooded) on early growth of Avicennia germinans, a C3 mangrove species, and Spartina alterniflora, a C4 grass. Plants were grown in monocultures and in a mixed-species assemblage. We found that neither species responded to elevated CO2 over the 10-month duration of the experiment, and there were few interactions between experimental factors. Two effects of water regime were documented: lower A. germinans pneumatophore biomass under drought conditions, and lower belowground biomass under flooded conditions regardless of planting assemblage. Evidence of interspecific interactions was noted. Competition for aboveground resources (e.g., light) was indicated by lower S. alterniflora stem biomass in mixed-species assemblage compared to biomass in S. alterniflora monocultures. Pneumatophore biomass of A. germinans was reduced when grown in monoculture compared to the mixed-species assemblage, indicating competition for belowground resources. These interactions provide insight into how these species may respond following major disturbance events that lead to vegetation dieback. Site variation in propagule availability and physico-chemical conditions will determine plant community composition and structure following such disturbances when these two species co-occur.
Michael R. Vanderberg; Mary Beth Adams; Mark S. Wiseman
2012-01-01
Forests are important economic and ecological resources for both the Appalachian hardwood forest region and the country. Increased demand for woody biomass can be met, at least in part, by improved utilization of these resources. However, concerns exist about the impacts of increased intensity of woody biomass removal on the sustainability of forest ecosystems....
Biomass CHP Catalog of Technologies
This report reviews the technical and economic characterization of biomass resources, biomass preparation, energy conversion technologies, power production systems, and complete integrated CHP systems.
Wills, Bill D.; Chong, Cody D.; Wilder, Shawn M.; Eubanks, Micky D.; Holway, David A.; Suarez, Andrew V.
2015-01-01
Resource availability can determine an organism’s investment strategies for growth and reproduction. When nutrients are limited, there are potential tradeoffs between investing into offspring number versus individual offspring size. In social insects, colony investment in offspring size and number may shift in response to colony needs and the availability of food resources. We experimentally manipulated the diet of a polymorphic ant species (Solenopsis invicta) to test how access to the carbohydrate and amino acid components of nectar resources affect colony investment in worker number, body size, size distributions, and individual percent fat mass. We reared field-collected colonies on one of four macronutrient treatment supplements: water, amino acids, carbohydrates, and amino acid and carbohydrates. Having access to carbohydrates nearly doubled colony biomass after 60 days. This increase in biomass resulted from an increase in worker number and mean worker size. Access to carbohydrates also altered worker body size distributions. Finally, we found a negative relationship between worker number and size, suggesting a tradeoff in colony investment strategies. This tradeoff was more pronounced for colonies without access to carbohydrate resources. The monopolization of plant-based resources has been implicated in the ecological success of ants. Our results shed light on a possible mechanism for this success, and also have implications for the success of introduced species. In addition to increases in colony size, our results suggest that having access to plant-based carbohydrates can also result in larger workers that may have better individual fighting ability, and that can withstand greater temperature fluctuations and periods of food deprivation. PMID:26196147
Landscape prediction and mapping of game fish biomass, an ecosystem service of Michigan rivers
Esselman, Peter C.; Stevenson, R Jan; Lupi, Frank; Riseng, Catherine M.; Wiley, Michael J.
2015-01-01
The increased integration of ecosystem service concepts into natural resource management places renewed emphasis on prediction and mapping of fish biomass as a major provisioning service of rivers. The goals of this study were to predict and map patterns of fish biomass as a proxy for the availability of catchable fish for anglers in rivers and to identify the strongest landscape constraints on fish productivity. We examined hypotheses about fish responses to total phosphorus (TP), as TP is a growth-limiting nutrient known to cause increases (subsidy response) and/or decreases (stress response) in fish biomass depending on its concentration and the species being considered. Boosted regression trees were used to define nonlinear functions that predicted the standing crops of Brook Trout Salvelinus fontinalis, Brown Trout Salmo trutta, Smallmouth Bass Micropterus dolomieu, panfishes (seven centrarchid species), and Walleye Sander vitreus by using landscape and modeled local-scale predictors. Fitted models were highly significant and explained 22–56% of the variation in validation data sets. Nonlinear and threshold responses were apparent for numerous predictors, including TP concentration, which had significant effects on all except the Walleye fishery. Brook Trout and Smallmouth Bass exhibited both subsidy and stress responses, panfish biomass exhibited a subsidy response only, and Brown Trout exhibited a stress response. Maps of reach-specific standing crop predictions showed patterns of predicted fish biomass that corresponded to spatial patterns in catchment area, water temperature, land cover, and nutrient availability. Maps illustrated predictions of higher trout biomass in coldwater streams draining glacial till in northern Michigan, higher Smallmouth Bass and panfish biomasses in warmwater systems of southern Michigan, and high Walleye biomass in large main-stem rivers throughout the state. Our results allow fisheries managers to examine the biomass potential of streams, describe geographic patterns of fisheries, explore possible nutrient management targets, and identify habitats that are candidates for species management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpiscak, M.M.; Foster, K.E.; Rawles, R.L.
1981-10-01
The use of Russian thistle as an energy resource has been demonstrated. Russian thistle biomass can be harvested, stored and transported using readily available machinery. Propagation seed can be harvested, cleaned and sown using commercially available machines and traditional techniques. In addition, preliminary tests did not detect that burning Russian thistle biomass causes any major toxicological or immunological problems. Many questions remain to be answered, however, concerning use of Russian thistle as a biomass fuel. The lack of confirmed, long-term data, on the agronomics of Russian thistle makes additional research necessary. Additional data are required to produce a sound datamore » base for evaluating the economics of Russian thistle production, for improving agricultural methods, and for fully evaluating the toxic and immunologic properties of Russian thistle. In conclusion, it appears that Russian thistle biomass has a great potential for becoming a fuel source in arid areas that are lacking fossil fuel reserves or where possible reduction of environmental problems associated with the use of fossil fuels is desired. Analyses of economic and energy factors show that there is a significant net gain in energy with the production and processing of Russia thistle biomass into synthetic logs (Tumblelogs), although the cost of Tumblelogs is slightly higher than that of synthetic logs made from wood waste. 10 refs., 12 figs., 17 tabs.« less
Umek, John; Chandra, Sudeep; Rosen, Michael; Wittmann, Marion; Sullivan, Joe; Orsak, Erik
2010-01-01
Limnologists recently have developed an interest in quantifying benthic resource contributions to higher-level consumers. Much of this research focuses on natural lakes with very little research in reservoirs. In this study, we provide a contemporary snapshot of the food web structure of Lake Mead to evaluate the contribution of benthic resources to fish consumers. In addition, we document the available food to fishes on soft sediments and changes to the invertebrate community over 2 time periods. Benthic invertebrate food availability for fishes is greater in Las Vegas Bay than Overton Arm. Las Vegas Bay is dominated by oligochaetes, whose biomass increased with depth, while Overton Arm is dominated by chironomids, whose biomass did not change with depth. Diet and isotopic measurements indicate the fish community largely relies on benthic resources regardless of basin (Las Vegas Bay >80%; Overton Arm >92%); however, the threadfin shad likely contribute more to largemouth and striped bass production in Overton Arm versus Las Vegas Bay. A 2-time period analysis, pre and post quagga mussel establishment and during lake level declines, suggests there is no change in the density of benthic invertebrates in Boulder Basin, but there were greater abundances of select taxa in this basin by season and depth than in other basins. Given the potential of alterations as a result of the expansion of quagga mussel and the reliance of the fishery on benthic resources, future investigation of basin specific, benthic processes is recommended.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greg Retzlaff
In January 2006 the Smith River Rancheria (SRR), located in Smith River, California, contracted with the team of Strategic Energy Solutions (SES) and Evergreen NRG to conduct a study for the community. The objective of the study was to identify renewable generation opportunities that would facilitate Rancheria energy independence through SRR owned and operated power projects. These generation facilities were to be located either on or near the reservation. Specifically, the Rancheria was interested in the viability of generating electric power using biomass and wind fuel resources. Initial research identified that a very small portion of the community's energy couldmore » be offset by renewable energy generation due to the low solar resource in this area, and the lack of significant wind or biomass resources on or near reservation land. Some larger projects were identified which offered little or no benefit to the Rancheria. As a result, the scope of this study was changed in October 2006 to focus on energy efficiency opportunities for key reservation facilities, with a continued analysis of smaller renewable energy opportunities within reservation boundaries. The consulting team initially performed a resource analysis for biomass and solar generation opportunities in the region of the Rancheria. It was quickly concluded that none of these options would yield renewable power for the Rancheria at costs competitive with current utility sources, and that any larger installations would require substantial funding that may not be available. Having made these conclusions early on, the study effort was redirected and the team investigated each of the major Rancheria buildings to look for solar, wind and conservation opportunities. The buildings were audited for energy use and the roof areas were examined for exposure of solar radiation. Wind resources were also investigated to determine if smaller wind turbines would offer power generation at a reasonable cost.« less
USDA-ARS?s Scientific Manuscript database
Intercropping with functionally diverse crops can reduce the availability of resources that could otherwise be used by weeds. An experiment was conducted six times across the northeastern United States in 2013 and 2014 to examine the effects of functional diversity and species richness on weed suppr...
Forest Floor Decomposition Following Hurricane Litter Inputs in Several Puerto Rican Forests
Rebecca Ostertag; Frederick N. Scatena; Whendee L. Silver
2003-01-01
Hurricanes affect ecosystem processes by altering resource availability and heterogeneity, but the spatial and temporal signatures of these events on biomass and nutrient cycling processes are not well understood. We examined mass and nutrient inputs of hurricane-derived litter in six tropical forests spanning three life zones in northeastern Puerto Rico after the...
Wood fuel plentiful in West Virginia
Raymond L. Sarles
1979-01-01
Biomass estimators applied to West Virginia timber resource data indicate that 34 million tons of wood is potentially available for fuel each year. This tonnage is the annual forest growth in excess of that now harvested for roundwood products. One-half of this excess can supply more than all of the State's energy needs in the residential and commercial sectors,...
Wood energy in Alaska--case study evaluations of selected facilities
David Nicholls
2009-01-01
Biomass resources in Alaska are extensive and diverse, comprising millions of acres of standing small-diameter trees, diseased or dead trees, and trees having lowgrade timber. Limited amounts of logging and mill residues, urban wood residues, and waste products are also available. Recent wildfires in interior Alaska have left substantial volumes of burned timber,...
Potential Impact of Bioenergy Demand on the Sustainability of the Southern Forest Resource
Karen L. Abt; Robert C. Abt
2012-01-01
The use of woody biomass for the production of domestic bioenergy to meet policy-driven demands could lead to significant changes in the forest resource. These impacts may be limited if woody biomass from forests is defined as only the residues from logging. Yet, if only residue is used, the contribution of woody biomass to a renewable energy portfolio will also be...
Bubenheim, D L; Wignarajah, K
1995-01-01
Resource recovery from waste streams in a space habitat is essential to minimize the resupply burden and achieve self-sufficiency. In a Controlled Ecological Life Support System (CELSS) human wastes and inedible biomass will represent significant sources of secondary raw materials necessary for support of crop plant production (carbon, water, and inorganic plant nutrients). Incineration, pyrolysis, and water extraction have been investigated as candidate processes for recovery of these important resources from inedible biomass in a CELSS. During incineration CO2 is produced by oxidation of the organic components and this product can be directly utilized by plants. Water is concomitantly produced, requiring only a phase change for recovery. Recovery of inorganics is more difficult, requiring solubilization of the incinerator ash. The process of incineration followed by water solubilization of ash resulted in loss of 35% of the inorganics originally present in the biomass. Losses were attributed to volatilization (8%) and non-water-soluble ash (27%). All of the ash remaining following incineration could be solubilized with acid, with losses resulting from volatilization only. The recovery for individual elements varied. Elemental retention in the ash ranged from 100% of that present in the biomass for Ca, P, Mg, Na, and Si to 10% for Zn. The greatest water solubility was observed for potassium with recovery of approximately 77% of that present in the straw. Potassium represented 80% of the inorganic constituents in the wheat straw, and because of slightly greater solubility made up 86% of the water-soluble ash. Following incineration of inedible biomass from wheat, 65% of the inorganics originally present in the straw were recovered by water solubilization and 92% recovered by acid solubilization. Recovery of resources is more complex for pyrolysis and water extraction. Recovery of carbon, a resource of greater mass than the inorganic component of biomass, is more difficult following pyrolysis and water extraction of biomass. In both cases, additional processors would be required to provide products equivalent to those resulting from incineration alone. The carbon, water, and inorganic resources of inedible biomass are effectively separated and output in usable forms through incineration.
NASA Technical Reports Server (NTRS)
Bubenheim, David L.; Wignarajah, Kanapathipillai
1995-01-01
Resource recovery from waste streams in a space habitat is essential to minimize the resupply burden and achieve self-sufficiency. In a Controlled Ecological Life Support System (CELSS) human wastes and inedible biomass will represent significant sources of secondary raw materials necessary for support of crop plant production (carbon, water, and inorganic plant nutrients). Incineration, pyrolysis, and water extraction have been investigated as candidate processes for recovery of these important resources from inedible biomass in a CELSS. During incineration CO2 is produced by oxidation of the organic components and this product can be directly utilized by plants. Water is concomitantly produced, requiring only a phase change for recovery. Recovery of inorganics is more difficult, requiring solubilization of the incinerator ash. The process of incineration followed by water solubilization of ash resulted in loss of 35% of the inorganics originally present in the biomass. Losses were attributed to volatilization (8%) and non-water-soluble ash (27%). All of the ash remaining following incineration could be solubilized with acid, with losses resulting from volatilization only. The recovery for individual elements varied. Elemental retention in the ash ranged from 100% of that present in the biomass for Ca, P, Mg, Na, and Si to 10% for Zn. The greatest water solubility was observed for potassium with recovery of approximately 77% of that present in the straw. Potassium represented 80% of the inorganic constituents in the wheat straw, and because of slightly greater solubility made up 86% of the water-soluble ash. Following incineration of inedible biomass from wheat, 65% of the inorganics originally present in the straw were recovered by water solubilization and 92% recovered by acid solubilization. Recovery of resources is more complex for pyrolysis and water extraction. Recovery of carbon, a resource of greater mass than the inorganic component of biomass, is more difficult following pyrolysis and water extraction of biomass. In both cases, additional processors would be required to provide products equivalent to those resulting from incineration alone. The carbon, water, and organic resources of inedible biomass are effectively separated and output in usable forms through incineration.
Llevot, Audrey; Dannecker, Patrick-Kurt; von Czapiewski, Marc; Over, Lena C; Söyler, Zafer; Meier, Michael A R
2016-08-08
Taking advantage of the structural diversity of different biomass resources, recent efforts were directed towards the synthesis of renewable monomers and polymers, either for the substitution of petroleum-based resources or for the design of novel polymers. Not only the use of biomass, but also the development of sustainable chemical approaches is a crucial aspect for the production of sustainable materials. This review discusses the recent examples of chemical modifications and polymerizations of abundant biomass resources with a clear focus on the sustainability of the described processes. Topics such as synthetic methodology, catalysis, and development of new solvent systems or greener alternative reagents are addressed. The chemistry of vegetable oil derivatives, terpenes, lignin, carbohydrates, and sugar-based platform chemicals was selected to highlight the trends in the active field of a sustainable use of renewable resources. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Military wastes-to-energy applications
NASA Astrophysics Data System (ADS)
Kawaoka, K. E.
1980-11-01
This analysis focuses on the military waste material and byproduct stream and the potential for energy recovery and utilization. Feedstock material includes municipal-type solid waste, selected installation hazardous waste, and biomass residue. The study objectives are to (1) analyze the characteristics of the military waste stream; (2) identify potential energy recovery options; and (3) examine and assess the technical and economic feasibility and environmental and institutional impacts of various energy recovery approaches. Total energy recoverable from DOD solid waste could provide about 2 percent of DOD's facility energy demand. The energy potential available to DOD from biomass and hazardous waste was not available. Available waste-to-energy systems are thermal conversion processes such as incineration with heat recovery. The significance of this recoverable energy from military wastes is put in proper perspective when the benefits and barriers in using waste-derived energy are considered. Some of the benefits of waste-to-energy conversion are as follows: waste energy is a readily available and inexhaustible resource that greatly reduces dependence on imported energy.
McCluney, Kevin E.; Belnap, Jayne; Collins, Scott L.; González, Angélica L.; Hagen, Elizabeth M.; Holland, J. Nathaniel; Kotler, Burt P.; Maestre, Fernando T.; Smith, Stanley D.; Wolf, Blair O.
2012-01-01
Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts of our findings. Overall, we hope to stimulate and guide future research that links changes in water availability to patterns of species interactions and the dynamics of populations and communities in dryland ecosystems.
Ringselle, Björn; Prieto-Ruiz, Inés; Andersson, Lars; Aronsson, Helena; Bergkvist, Göran
2017-01-01
Background and Aims Competitive crops are a central component of resource-efficient weed control, especially for problematic perennial weeds such as Elymus repens. Competition not only reduces total weed biomass, but denial of resources can also change the allocation pattern – potentially away from the underground storage organs that make perennial weeds difficult to control. Thus, the competition mode of crops may be an important component in the design of resource-efficient cropping systems. Our aim was to determine how competition from companion crops with different modes of competition affect E. repens biomass acquisition and allocation and discuss that in relation to how E. repens responds to different levels of light and nutrient supply. Methods Greenhouse experiments were conducted with E. repens growing in interspecific competition with increasing density of perennial ryegrass or red clover, or growing at three levels of both light and nutrient supply. Key Results Elymus repens total biomass decreased with increasing biomass of the companion crop and the rate of decrease was higher with red clover than with perennial ryegrass, particularly for E. repens rhizome biomass. A reduced nutrient supply shifted E. repens allocation towards below-ground biomass while a reduced light supply shifted it towards shoot biomass. Red clover caused no change in E. repens allocation pattern, while ryegrass mostly shifted the allocation towards below-ground biomass, but the change was not correlated with ryegrass biomass. Conclusions The companion crop mode of competition influences both the suppression rate of E. repens biomass acquisition and the likelihood of shifts in E. repens biomass allocation. PMID:28025285
Effect of dry torrefaction on kinetics of catalytic pyrolysis of sugarcane bagasse
NASA Astrophysics Data System (ADS)
Daniyanto, Sutijan, Deendarlianto, Budiman, Arief
2015-12-01
Decreasing world reserve of fossil resources (i.e. petroleum oil, coal and natural gas) encourage discovery of renewable resources as subtitute for fossil resources. Biomass is one of the main natural renewable resources which is promising resource as alternate resources to meet the world's energy needs and raw material to produce chemical platform. Conversion of biomass, as source of energy, fuel and biochemical, is conducted using thermochemical process such as pyrolysis-gasification process. Pyrolysis step is an important step in the mechanism of pyrolysis - gasification of biomass. The objective of this study is to obtain the kinetic reaction of catalytic pyrolysis of dry torrified sugarcane bagasse which used Ca and Mg as catalysts. The model of kinetic reaction is interpreted using model n-order of single reaction equation of biomass. Rate of catalytic pyrolysis reaction depends on the weight of converted biomass into char and volatile matters. Based on TG/DTA analysis, rate of pyrolysis reaction is influenced by the composition of biomass (i.e. hemicellulose, cellulose and lignin) and inorganic component especially alkali and alkaline earth metallic (AAEM). From this study, it has found two equations rate of reaction of catalytic pyrolysis in sugarcane bagasse using catalysts Ca and Mg. First equation is equation of pyrolysis reaction in rapid zone of decomposition and the second equation is slow zone of decomposition. Value of order reaction for rapid decomposition is n > 1 and for slow decomposition is n<1. Constant and order of reactions for catalytic pyrolysis of dry-torrified sugarcane bagasse with presence of Ca tend to higher than that's of presence of Mg.
De Bhowmick, Goldy; Sarmah, Ajit K; Sen, Ramkrishna
2018-01-01
A constant shift of society's dependence from petroleum-based energy resources towards renewable biomass-based has been the key to tackle the greenhouse gas emissions. Effective use of biomass feedstock, particularly lignocellulosic, has gained worldwide attention lately. Lignocellulosic biomass as a potent bioresource, however, cannot be a sustainable alternative if the production cost is too high and/ or the availability is limited. Recycling the lignocellulosic biomass from various sources into value added products such as bio-oil, biochar or other biobased chemicals in a bio-refinery model is a sensible idea. Combination of integrated conversion techniques along with process integration is suggested as a sustainable approach. Introducing 'series concept' accompanying intermittent dark/photo fermentation with co-cultivation of microalgae is conceptualised. While the cost of downstream processing for a single type of feedstock would be high, combining different feedstocks and integrating them in a bio-refinery model would lessen the production cost and reduce CO 2 emission. Copyright © 2017 Elsevier Ltd. All rights reserved.
Climate-mediated dance of the plankton
NASA Astrophysics Data System (ADS)
Behrenfeld, Michael J.
2014-10-01
Climate change will unquestionably influence global ocean plankton because it directly impacts both the availability of growth-limiting resources and the ecological processes governing biomass distributions and annual cycles. Forecasting this change demands recognition of the vital, yet counterintuitive, attributes of the plankton world. The biomass of photosynthetic phytoplankton, for example, is not proportional to their division rate. Perhaps more surprising, physical processes (such as deep vertical mixing) can actually trigger an accumulation in phytoplankton while simultaneously decreasing their division rates. These behaviours emerge because changes in phytoplankton division rates are paralleled by proportional changes in grazing, viral attack and other loss rates. Here I discuss this trophic dance between predators and prey, how it dictates when phytoplankton biomass remains constant or achieves massive blooms, and how it can determine even the sign of change in ocean ecosystems under a warming climate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krummel, J.R.; Markin, J.B.; O'Neill, R.V.
Regional analyses of the interaction between human populations and natural resources must integrate landscape scale environmental problems. An approach that considers human culture, environmental processes, and resource needs offers an appropriate methodology. With this methodology, we analyze problems of food availability in African cattle-keeping societies. The analysis interrelates cattle biomass, forage availability, milk and blood production, crop yields, gathering, food subsidies, population, and variable precipitation. While an excess of cattle leads to overgrazing, cattle also serve as valuable food storage mechanisms during low rainfall periods. Food subsidies support higher population levels but do not alter drought-induced population fluctuations. Variable precipitationmore » patterns require solutions that stabilize year-to-year food production and also address problems of overpopulation.« less
Demi, Lee M; Benstead, Jonathan P; Rosemond, Amy D; Maerz, John C
2018-02-01
Ecological stoichiometry theory (EST) is a key framework for predicting how variation in N:P supply ratios influences biological processes, at molecular to ecosystem scales, by altering the availability of C, N, and P relative to organismal requirements. We tested EST predictions by fertilizing five forest streams at different dissolved molar N:P ratios (2, 8, 16, 32, 128) for two years and tracking responses of macroinvertebrate consumers to the resulting steep experimental gradient in basal resource stoichiometry (leaf litter %N, %P, and N:P). Nitrogen and P content of leaf litter, the dominant basal resource, increased in all five streams following enrichment, with steepest responses in litter %P and N:P ratio. Additionally, increases in primary consumer biomass and production occurred in all five streams following N and P enrichment (averages across all streams: biomass by 1.2×, production by 1.6×). Patterns of both biomass and production were best predicted by leaf litter N:P and %P and were unrelated to leaf litter %N. Primary consumer production increased most in streams where decreases in leaf litter N:P were largest. Macroinvertebrate predator biomass and production were also strongly positively related to litter %P, providing robust experimental evidence for the primacy of P limitation at multiple trophic levels in these ecosystems. However, production of predatory macroinvertebrates was not related directly to primary consumer production, suggesting the importance of additional controls for macroinvertebrates at upper trophic positions. Our results reveal potential drivers of animal production in detritus-based ecosystems, including the relative importance of resource quality vs. quantity. Our study also sheds light on the more general impacts of variation in N:P supply ratio on nutrient-poor ecosystems, providing strong empirical support for predictions that nutrient enrichment increases food web productivity whenever large elemental imbalances between basal resources and consumer demand are reduced. © 2017 by the Ecological Society of America.
Biomass in the manufacture of industrial products—the use of proteins and amino acids
Peter, Francisc; Sanders, Johan
2007-01-01
The depletion in fossil feedstocks, increasing oil prices, and the ecological problems associated with CO2 emissions are forcing the development of alternative resources for energy, transport fuels, and chemicals: the replacement of fossil resources with CO2 neutral biomass. Allied with this, the conversion of crude oil products utilizes primary products (ethylene, etc.) and their conversion to either materials or (functional) chemicals with the aid of co-reagents such as ammonia and various process steps to introduce functionalities such as -NH2 into the simple structures of the primary products. Conversely, many products found in biomass often contain functionalities. Therefore, it is attractive to exploit this to bypass the use, and preparation of, co-reagents as well as eliminating various process steps by utilizing suitable biomass-based precursors for the production of chemicals. It is the aim of this mini-review to describe the scope of the possibilities to generate current functionalized chemical materials using amino acids from biomass instead of fossil resources, thereby taking advantage of the biomass structure in a more efficient way than solely utilizing biomass for the production of fuels or electricity. PMID:17387469
Churski, Marcin; Bubnicki, Jakub W; Jędrzejewska, Bogumiła; Kuijper, Dries P J; Cromsigt, Joris P G M
2017-04-01
Plant biomass consumers (mammalian herbivory and fire) are increasingly seen as major drivers of ecosystem structure and function but the prevailing paradigm in temperate forest ecology is still that their dynamics are mainly bottom-up resource-controlled. Using conceptual advances from savanna ecology, particularly the demographic bottleneck model, we present a novel view on temperate forest dynamics that integrates consumer and resource control. We used a fully factorial experiment, with varying levels of ungulate herbivory and resource (light) availability, to investigate how these factors shape recruitment of five temperate tree species. We ran simulations to project how inter- and intraspecific differences in height increment under the different experimental scenarios influence long-term recruitment of tree species. Strong herbivore-driven demographic bottlenecks occurred in our temperate forest system, and bottlenecks were as strong under resource-rich as under resource-poor conditions. Increased browsing by herbivores in resource-rich patches strongly counteracted the increased escape strength of saplings in these patches. This finding is a crucial extension of the demographic bottleneck model which assumes that increased resource availability allows plants to more easily escape consumer-driven bottlenecks. Our study demonstrates that a more dynamic understanding of consumer-resource interactions is necessary, where consumers and plants both respond to resource availability. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Hyperspectral sensing of forests
NASA Astrophysics Data System (ADS)
Goodenough, David G.; Dyk, Andrew; Chen, Hao; Hobart, Geordie; Niemann, K. Olaf; Richardson, Ash
2007-11-01
Canada contains 10% of the world's forests covering an area of 418 million hectares. The sustainable management of these forest resources has become increasingly complex. Hyperspectral remote sensing can provide a wealth of new and improved information products to resource managers to make more informed decisions. Research in this area has demonstrated that hyperspectral remote sensing can be used to create more accurate products for forest inventory, forest health, foliar biochemistry, biomass, and aboveground carbon than are currently available. This paper surveys recent methods and results in hyperspectral sensing of forests and describes space initiatives for hyperspectral sensing.
Dobbs, R.C.; Barrow, W.C.; Jeske, C.W.; Dimiceli, J.; Michot, T.C.; Beck, J.W.
2009-01-01
Understanding the consequences of hurricanes on the food resources available to neotropical-nearctic migrant songbirds may provide important insight into the effects of hurricanes on migratory populations. During autumn migration 2006 we investigated the foraging ecology of two species of insectivorous migrants, Blue-gray Gnatcatcher (Polioptila caerulea) and Yellow Warbler (Dendroica petechia), and the availability of their foraging substrates and arthropod food resources in two coastal forests in western Louisiana, which were impacted to different degrees by Hurricane Rita in autumn 2005. Both migrant species attacked prey on bark substrates significantly more frequently, and on live foliage less frequently, in severely damaged forest than in lightly damaged forest (??2 tests, P < 0.05). However, both species attacked prey on bark less than expected given its availability (i.e., migrants avoided bark), and attacked prey on live foliage more than expected given its availability (i.e., migrants selected live foliage), in severely damaged forest (??2 tests, P < 0.03). Branch-clipping revealed that arthropod biomass on live hackberry (Celtis laevigata) and sweet acacia (Acacia farnesiana) branches was significantly higher in severely damaged forest than in lightly damaged forest (Mann-Whitney test, P < 0.01). However, because live foliage was significantly less available in severely damaged forest, overall food availability for migrants was lower in severely damaged forest than in lightly damaged forest. Migrant use of, and arthropod biomass on, bark and live-foliage substrates were thus dependent on the availability of those substrates, which differed between sites as a result of hurricane-related habitat disturbance. These results demonstrate that severe hurricane disturbance reduces food availability for insectivorous songbirds during migratory stopover by reducing the availability of preferred foraging substrates. ?? 2009 The Society of Wetland Scientists.
Cirocco, Robert M.; Facelli, José M.; Watling, Jennifer R.
2016-01-01
Environmental factors alter the impacts of parasitic plants on their hosts. However, there have been no controlled studies on how water availability modulates stem hemiparasites’ effects on hosts. A glasshouse experiment was conducted to investigate the association between the Australian native stem hemiparasite Cassytha pubescens and the introduced host Ulex europaeus under high (HW) and low (LW) water supply. Cassytha pubescens had a significant, negative effect on the total biomass of U. europaeus, which was more severe in HW than LW. Regardless of watering treatment, infection significantly decreased shoot and root biomass, nodule biomass, nodule biomass per unit root biomass, F v/F m, and nitrogen concentration of U. europaeus. Host spine sodium concentration significantly increased in response to infection in LW but not HW conditions. Host water potential was significantly higher in HW than in LW, which may have allowed the parasite to maintain higher stomatal conductances in HW. In support of this, the δ13C of the parasite was significantly lower in HW than in LW (and significantly higher than the host). C. pubescens also had significantly higher F v/F m and 66% higher biomass per unit host in the HW compared with the LW treatment. The data suggest that the enhanced performance of C. pubescens in HW resulted in higher parasite growth rates and thus a larger demand for resources from the host, leading to poorer host performance in HW compared with LW. C. pubescens should more negatively affect U. europaeus growth under wet conditions rather than under dry conditions in the field. PMID:26703920
NASA Astrophysics Data System (ADS)
Jones, Matthew O.; Kimball, John S.; Nemani, Ramakrishna R.
2014-12-01
Amazon forests represent nearly half of all tropical vegetation biomass and, through photosynthesis and respiration, annually process more than twice the amount of estimated carbon (CO2) from fossil fuel emissions. Yet the seasonality of Amazon canopy cover, and the extent to which seasonal fluctuations in water availability and photosynthetically available radiation influence these processes, is still poorly understood. Implementing six remotely sensed data sets spanning nine years (2003-2011), with reported field and flux tower data, we show that southern equatorial Amazon forests exhibit a distinctive seasonal signal. Seasonal timing of water availability, canopy biomass growth and net leaf flush are asynchronous in regions with short dry seasons and become more synchronous across a west-to-east longitudinal moisture gradient of increasing dry season. Forest cover is responsive to seasonal disparities in both water and solar radiation availability, temporally adjusting net leaf flush to maximize use of these generally abundant resources, while reducing drought susceptibility. An accurate characterization of this asynchronous behavior allows for improved understanding of canopy phenology across contiguous tropical forests and their sensitivity to climate variability and drought.
A Spectroscopic study on the fuel value of softwoods in relation to chemical composition
Chi-Leung So; Thomas L. Eberhardt; Les Groom; Todd F. Shupe
2012-01-01
The recent focus on bioenergy has led to interest in developing alternative technologies for assessing the fuel value of available biomass resources. In this study, both near- and mid-infrared spectroscopic datawere used to predict fuel value in relation to extractives and lignin contents for longleaf pine wood. Samples were analyzed both before and after extraction....
Marine kelp: Energy resource in the coastal zone
NASA Astrophysics Data System (ADS)
Ritschard, R. L.; Haven, K. F.
1980-11-01
The relationship on the marine biomass concept and coastal zone management plans is discussed. An ocean farm system is described. The analysis of the ocean farm system includes a decription of the types of impacts that might occur if large scale operations become available, such as the production of environmental residuals, conflicts with the fishing and shipping industries and other legal/institutional impacts.
Ringselle, Björn; Prieto-Ruiz, Inés; Andersson, Lars; Aronsson, Helena; Bergkvist, Göran
2017-02-01
Competitive crops are a central component of resource-efficient weed control, especially for problematic perennial weeds such as Elymus repens Competition not only reduces total weed biomass, but denial of resources can also change the allocation pattern - potentially away from the underground storage organs that make perennial weeds difficult to control. Thus, the competition mode of crops may be an important component in the design of resource-efficient cropping systems. Our aim was to determine how competition from companion crops with different modes of competition affect E. repens biomass acquisition and allocation and discuss that in relation to how E. repens responds to different levels of light and nutrient supply. Greenhouse experiments were conducted with E. repens growing in interspecific competition with increasing density of perennial ryegrass or red clover, or growing at three levels of both light and nutrient supply. Elymus repens total biomass decreased with increasing biomass of the companion crop and the rate of decrease was higher with red clover than with perennial ryegrass, particularly for E. repens rhizome biomass. A reduced nutrient supply shifted E. repens allocation towards below-ground biomass while a reduced light supply shifted it towards shoot biomass. Red clover caused no change in E. repens allocation pattern, while ryegrass mostly shifted the allocation towards below-ground biomass, but the change was not correlated with ryegrass biomass. The companion crop mode of competition influences both the suppression rate of E. repens biomass acquisition and the likelihood of shifts in E. repens biomass allocation. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Biomass fly ash incorporation in cement based materials =
NASA Astrophysics Data System (ADS)
Rajamma, Rejini
In recent years, pressures on global environment and energy security have led to an increasing demand on renewable energy sources, and diversification of Europe's energy supply. Among these resources the biomass could exert an important role, since it is considered a renewable and CO2 neutral energy resource once the consumption rate is lower than the growth rate, and can potentially provide energy for heat, power and transports from the same installation. Currently, most of the biomass ash produced in industrial plants is either disposed of in landfill or recycled on agricultural fields or forest, and most times this goes on without any form of control. However, considering that the disposal cost of biomass ashes are raising, and that biomass ash volumes are increasing worldwide, a sustainable ash management has to be established. The main objective of the present study is the effect of biomass fly ashes in cement mortars and concretes in order to be used as a supplementary cementitious material. The wastes analyzed in the study were collected from the fluidized bed boilers and grate boilers available in the thermal power plants and paper pulp plants situated in Portugal. The physical as well as chemical characterisations of the biomass fly ashes were investigated. The cement was replaced by the biomass fly ashes in 10, 20 and 30% (weight %) in order to investigate the fresh properties as well as the hardened properties of biomass fly ash incorporated cement mortar and concrete formulations. Expansion reactions such as alkali silica reaction (ASR), sulphate attack (external and internal) were conducted in order to check the durability of the biomass fly ash incorporated cement mortars and concretes. Alternative applications such as incorporation in lime mortars and alkali activation of the biomass fly ashes were also attempted. The biomass fly ash particles were irregular in shape and fine in nature. The chemical characterization revealed that the biomass fly ashes were similar to a class C fly ash. The mortar results showed a good scope for biomass fly ashes as supplementary cementitious materials in lower dosages (<20%). The poor workability, concerns about the organic content, alkalis, chlorides and sulphates stand as the reasons for preventing the use of biomass fly ash in high content in the cement mortars. The results obtained from the durability tests have shown a clear reduction in expansion for the biomass fly ash mortars/concretes and the binder blend made with biomass fly ash (20%) and metakaolin (10%) inhibited the ASR reaction effectively. The biomass fly ash incorporation in lime mortars did not improve the mortar properties significantly though the carbonation was enhanced in the 15-20% incorporation. The biomass fly ash metakaolin blend worked well in the alkali activated complex binder application also. Portland cement free binders (with 30-40 MPa compressive strength) were obtained on the alkali activation of biomass fly ashes (60-80%) blended with metakaolin (20-40%).
Papanikolopoulou, Lydia A; Smeti, Evangelia; Roelke, Daniel L; Dimitrakopoulos, Panayiotis G; Kokkoris, Giorgos D; Danielidis, Daniel B; Spatharis, Sofie
2018-03-01
Fluctuations in nutrient ratios over seasonal scales in aquatic ecosystems can result in overyielding, a condition arising when complementary life-history traits of coexisting phytoplankton species enables more complete use of resources. However, when nutrient concentrations fluctuate under short-period pulsed resource supply, the role of complementarity is less understood. We explore this using the framework of Resource Saturation Limitation Theory (r-strategists vs. K-strategists) to interpret findings from laboratory experiments. For these experiments, we isolated dominant species from a natural assemblage, stabilized to a state of coexistence in the laboratory and determined life-history traits for each species, important to categorize its competition strategy. Then, using monocultures we determined maximum biomass density under pulsed resource supply. These same conditions of resource supply were used with polycultures comprised of combinations of the isolated species. Our focal species were consistent of either r- or K-strategies and the biomass production achieved in monocultures depended on their efficiency to convert resources to biomass. For these species, the K-strategists were less efficient resource users. This affected biomass production in polycultures, which were characteristic of underyielding. In polycultures, K-strategists sequestered more resources than the r-strategists. This likely occurred because the intermittent periods of nutrient limitation that would have occurred just prior to the next nutrient supply pulse would have favored the K-strategists, leading to overall less efficient use of resources by the polyculture. This study provides evidence that fluctuation in resource concentrations resulting from pulsed resource supplies in aquatic ecosystems can result in phytoplankton assemblages' underyielding.
Biomass resources for energy in Ohio: The OH-MARKAL modeling framework
NASA Astrophysics Data System (ADS)
Shakya, Bibhakar
The latest reports from the Intergovernmental Panel on Climate Change have indicated that human activities are directly responsible for a significant portion of global warming trends. In response to the growing concerns regarding climate change and efforts to create a sustainable energy future, biomass energy has come to the forefront as a clean and sustainable energy resource. Biomass energy resources are environmentally clean and carbon neutral with net-zero carbon dioxide (CO2) emissions, since CO2 is absorbed or sequestered from the atmosphere during the plant growth. Hence, biomass energy mitigates greenhouse gases (GHG) emissions that would otherwise be added to the environment by conventional fossil fuels, such as coal. The use of biomass resources for energy is even more relevant in Ohio, as the power industry is heavily based on coal, providing about 90 percent of the state's total electricity while only 50 percent of electricity comes from coal at the national level. The burning of coal for electricity generation results in substantial GHG emissions and environmental pollution, which are responsible for global warming and acid rain. Ohio is currently one of the top emitters of GHG in the nation. This dissertation research examines the potential use of biomass resources by analyzing key economic, environmental, and policy issues related to the energy needs of Ohio over a long term future (2001-2030). Specifically, the study develops a dynamic linear programming model (OH-MARKAL) to evaluate biomass cofiring as an option in select coal power plants (both existing and new) to generate commercial electricity in Ohio. The OH-MARKAL model is based on the MARKAL (MARKet ALlocation) framework. Using extensive data on the power industry and biomass resources of Ohio, the study has developed the first comprehensive power sector model for Ohio. Hence, the model can serve as an effective tool for Ohio's energy planning, since it evaluates economic and environmental consequences of alternative energy scenarios for the future. The model can also be used to estimate the relative merits of various energy technologies. By developing OH-MARKAL as an empirical model, this study evaluates the prospects of biomass cofiring in Ohio to generate commercial electricity. As cofiring utilizes the existing infrastructure, it is an attractive option for utilizing biomass energy resources, with the objective of replacing non-renewable fuel (coal) with renewable and cleaner fuel (biomass). It addresses two key issues: first, the importance of diversifying the fuel resource base for the power industry; and second, the need to increase the use of biomass or renewable resources in Ohio. The results of the various model scenarios developed in this study indicate that policy interventions are necessary to make biomass co-firing competitive with coal, and that about 7 percent of electricity can be generated by using biomass feedstock in Ohio. This study recommends mandating an optimal level of a renewable portfolio standard (RPS) for Ohio to increase renewable electricity generation in the state. To set a higher goal of RPS than 7 percent level, Ohio needs to include other renewable sources such as wind, solar or hydro in its electricity generation portfolio. The results also indicate that the marginal price of electricity must increase by four fold to mitigate CO2 emissions 15 percent below the 2002 level, suggesting Ohio will also need to consider and invest in clean coal technologies and examine the option of carbon sequestration. Hence, Ohio's energy strategy should include a mix of domestic renewable energy options, energy efficiency, energy conservation, clean coal technology, and carbon sequestration options. It would seem prudent for Ohio to become proactive in reducing CO2 emissions so that it will be ready to deal with any future federal mandates, otherwise the consequences could be detrimental to the state's economy.
Beatty, William; Jay, Chadwick V.; Fischbach, Anthony S.; Grebmeier, Jacqueline M.; Taylor, Rebecca L.; Blanchard, Arny L.; Jewett, Stephen C.
2016-01-01
Sea ice dominates marine ecosystems in the Arctic, and recent reductions in sea ice may alter food webs throughout the region. Sea ice loss may also stress Pacific walruses (Odobenus rosmarus divergens), which feed on benthic macroinvertebrates in the Bering and Chukchi seas. However, no studies have examined the effects of sea ice on foraging Pacific walrus space use patterns. We tested a series of hypotheses that examined walrus foraging resource selection as a function of proximity to resting substrates and prey biomass. We quantified walrus prey biomass with 17 benthic invertebrate families, which included bivalves, polychaetes, amphipods, tunicates, and sipunculids. We included covariates for distance to sea ice and distance to land, and systematically developed a series of candidate models to examine interactions among benthic prey biomass and resting substrates. We ranked candidate models with Bayesian Information Criterion and made inferences on walrus resource selection based on the top-ranked model. Based on the top model, biomass of the bivalve family Tellinidae, distance to ice, distance to land, and the interaction of distances to ice and land all positively influenced walrus foraging resource selection. Standardized model coefficients indicated that distance to ice explained the most variation in walrus foraging resource selection followed by Tellinidae biomass. Distance to land and the interaction of distances to ice and land accounted for similar levels of variation. Tellinidae biomass likely represented an index of overall bivalve biomass, indicating walruses focused foraging in areas with elevated levels of bivalve and tellinid biomass. Our results also emphasize the importance of sea ice to walruses. Projected sea ice loss will increase the duration of the open water season in the Chukchi Sea, altering the spatial distribution of resting sites relative to current foraging areas and possibly affecting the spatial structure of benthic communities.
The role of gap phase processes in the biomass dynamics of tropical forests
Feeley, Kenneth J; Davies, Stuart J; Ashton, Peter S; Bunyavejchewin, Sarayudh; Nur Supardi, M.N; Kassim, Abd Rahman; Tan, Sylvester; Chave, Jérôme
2007-01-01
The responses of tropical forests to global anthropogenic disturbances remain poorly understood. Above-ground woody biomass in some tropical forest plots has increased over the past several decades, potentially reflecting a widespread response to increased resource availability, for example, due to elevated atmospheric CO2 and/or nutrient deposition. However, previous studies of biomass dynamics have not accounted for natural patterns of disturbance and gap phase regeneration, making it difficult to quantify the importance of environmental changes. Using spatially explicit census data from large (50 ha) inventory plots, we investigated the influence of gap phase processes on the biomass dynamics of four ‘old-growth’ tropical forests (Barro Colorado Island (BCI), Panama; Pasoh and Lambir, Malaysia; and Huai Kha Khaeng (HKK), Thailand). We show that biomass increases were gradual and concentrated in earlier-phase forest patches, while biomass losses were generally of greater magnitude but concentrated in rarer later-phase patches. We then estimate the rate of biomass change at each site independent of gap phase dynamics using reduced major axis regressions and ANCOVA tests. Above-ground woody biomass increased significantly at Pasoh (+0.72% yr−1) and decreased at HKK (−0.56% yr−1) independent of changes in gap phase but remained stable at both BCI and Lambir. We conclude that gap phase processes play an important role in the biomass dynamics of tropical forests, and that quantifying the role of gap phase processes will help improve our understanding of the factors driving changes in forest biomass as well as their place in the global carbon budget. PMID:17785266
The role of gap phase processes in the biomass dynamics of tropical forests.
Feeley, Kenneth J; Davies, Stuart J; Ashton, Peter S; Bunyavejchewin, Sarayudh; Nur Supardi, M N; Kassim, Abd Rahman; Tan, Sylvester; Chave, Jérôme
2007-11-22
The responses of tropical forests to global anthropogenic disturbances remain poorly understood. Above-ground woody biomass in some tropical forest plots has increased over the past several decades, potentially reflecting a widespread response to increased resource availability, for example, due to elevated atmospheric CO2 and/or nutrient deposition. However, previous studies of biomass dynamics have not accounted for natural patterns of disturbance and gap phase regeneration, making it difficult to quantify the importance of environmental changes. Using spatially explicit census data from large (50 ha) inventory plots, we investigated the influence of gap phase processes on the biomass dynamics of four 'old-growth' tropical forests (Barro Colorado Island (BCI), Panama; Pasoh and Lambir, Malaysia; and Huai Kha Khaeng (HKK), Thailand). We show that biomass increases were gradual and concentrated in earlier-phase forest patches, while biomass losses were generally of greater magnitude but concentrated in rarer later-phase patches. We then estimate the rate of biomass change at each site independent of gap phase dynamics using reduced major axis regressions and ANCOVA tests. Above-ground woody biomass increased significantly at Pasoh (+0.72% yr(-1)) and decreased at HKK (-0.56% yr(-1)) independent of changes in gap phase but remained stable at both BCI and Lambir. We conclude that gap phase processes play an important role in the biomass dynamics of tropical forests, and that quantifying the role of gap phase processes will help improve our understanding of the factors driving changes in forest biomass as well as their place in the global carbon budget.
Principles of commercially available pretreatment and feeding equipment for baled biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, T.; Hummelshoej, R.M.
1993-12-31
During the last 15 years, there has been a growing interest in utilizing waste biomass for energy production in Denmark. Since 1990, it has been unlawful to burn surplus straw on open land. Before the year 2000, it is intended to utilize most of the 2--3 million tons of surplus straw as an energy resource. The type of plants that were built in the beginning were combustion plants for district heating. The feeding equipment for these plants has been developed to an acceptable standard. Later, combustion plants for combined heat and power production based on a steam turbine were introduced.more » This type of plant demands a much greater continuity in the fuel flow, and the consequences of minor discontinuities are to be dropped from the grid. Gasification and pyrolysis demands a high sealing ability of the feeding equipment, because of the explosive and poisonous gas in the plant and a need for a very high continuity in the fuel feed. The first plants were built with the equipment and experiences from the farming industries, which have a long tradition in working with biomass-handling. The experiences gained with this type of equipment were not very promising, and in the early eighties, a more industrial type of biomass-handling equipment was developed. This paper presents the principles of the heavy-duty biomass pretreatment and feeding equipment that was commercially available in Denmark in May, 1993.« less
Testing assumptions for conservation of migratory shorebirds and coastal managed wetlands
Collazo, Jaime; James Lyons,; Herring, Garth
2015-01-01
Managed wetlands provide critical foraging and roosting habitats for shorebirds during migration; therefore, ensuring their availability is a priority action in shorebird conservation plans. Contemporary shorebird conservation plans rely on a number of assumptions about shorebird prey resources and migratory behavior to determine stopover habitat requirements. For example, the US Shorebird Conservation Plan for the Southeast-Caribbean region assumes that average benthic invertebrate biomass in foraging habitats is 2.4 g dry mass m−2 and that the dominant prey item of shorebirds in the region is Chironomid larvae. For effective conservation and management, it is important to test working assumptions and update predictive models that are used to estimate habitat requirements. We surveyed migratory shorebirds and sampled the benthic invertebrate community in coastal managed wetlands of South Carolina. We sampled invertebrates at three points in time representing early, middle, and late stages of spring migration, and concurrently surveyed shorebird stopover populations at approximately 7-day intervals throughout migration. We used analysis of variance by ranks to test for temporal variation in invertebrate biomass and density, and we used a model based approach (linear mixed model and Monte Carlo simulation) to estimate mean biomass and density. There was little evidence of a temporal variation in biomass or density during the course of spring shorebird migration, suggesting that shorebirds did not deplete invertebrate prey resources at our site. Estimated biomass was 1.47 g dry mass m−2 (95 % credible interval 0.13–3.55), approximately 39 % lower than values used in the regional shorebird conservation plan. An additional 4728 ha (a 63 % increase) would be required if habitat objectives were derived from biomass levels observed in our study. Polychaetes, especially Laeonereis culveri(2569 individuals m−2), were the most abundant prey in foraging habitats at our site. Polychaetes have lower caloric content than levels assumed in the regional plan; when lower caloric content and lower biomass levels are used to determine habitat objectives, an additional 6395 ha would be required (86 % increase). Shorebird conservation and management plans would benefit from considering the uncertainty in parameters used to derive habitat objectives, especially biomass and caloric content of prey resources. Iterative testing of models that are specific to the planning region will provide rapid advances for management and conservation of migratory shorebirds and coastal managed wetlands.
Biomass and Solar Technologies Lauded | News | NREL
4 » Biomass and Solar Technologies Lauded News Release: Biomass and Solar Technologies Lauded July security and reduce our reliance on foreign sources of oil." The Enzymatic Hydrolysis of Biomass Cellulose to Sugars technology is expected to allow a wide range of biomass resources to be used to produce
Ben Butler
2007-01-01
Obtaining accurate biomass measurements is often a resource-intensive task. Data collection crews often spend large amounts of time in the field clipping, drying, and weighing grasses to calculate the biomass of a given vegetation type. Such a problem is currently occurring in the Great Plains region of the Bureau of Indian Affairs. A study looked at six reservations...
Alaska Energy Inventory Project: Consolidating Alaska's Energy Resources
NASA Astrophysics Data System (ADS)
Papp, K.; Clough, J.; Swenson, R.; Crimp, P.; Hanson, D.; Parker, P.
2007-12-01
Alaska has considerable energy resources distributed throughout the state including conventional oil, gas, and coal, and unconventional coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass. While much of the known large oil and gas resources are concentrated on the North Slope and in the Cook Inlet regions, the other potential sources of energy are dispersed across a varied landscape from frozen tundra to coastal settings. Despite the presence of these potential energy sources, rural Alaska is mostly dependent upon diesel fuel for both electrical power generation and space heating needs. At considerable cost, large quantities of diesel fuel are transported to more than 150 roadless communities by barge or airplane and stored in large bulk fuel tank farms for winter months when electricity and heat are at peak demands. Recent increases in the price of oil have severely impacted the price of energy throughout Alaska, and especially hard hit are rural communities and remote mines that are off the road system and isolated from integrated electrical power grids. Even though the state has significant conventional gas resources in restricted areas, few communities are located near enough to these resources to directly use natural gas to meet their energy needs. To address this problem, the Alaska Energy Inventory project will (1) inventory and compile all available Alaska energy resource data suitable for electrical power generation and space heating needs including natural gas, coal, coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass and (2) identify locations or regions where the most economic energy resource or combination of energy resources can be developed to meet local needs. This data will be accessible through a user-friendly web-based interactive map, based on the Alaska Department of Natural Resources, Land Records Information Section's (LRIS) Alaska Mapper, Google Earth, and Terrago Technologies' GeoPDF format to display the location, type, and where applicable, a risk-weighted quantity estimate of energy resources available in a given area or site. The project will be managed and directed by the DNR Division of Geological and Geophysical Surveys DGGS over the next five years with a team composed of the Alaska Energy Authority, DNR Division of Forestry, and DNR LRIS.
Puyol, Daniel; Batstone, Damien J; Hülsen, Tim; Astals, Sergi; Peces, Miriam; Krömer, Jens O
2016-01-01
Limits in resource availability are driving a change in current societal production systems, changing the focus from residues treatment, such as wastewater treatment, toward resource recovery. Biotechnological processes offer an economic and versatile way to concentrate and transform resources from waste/wastewater into valuable products, which is a prerequisite for the technological development of a cradle-to-cradle bio-based economy. This review identifies emerging technologies that enable resource recovery across the wastewater treatment cycle. As such, bioenergy in the form of biohydrogen (by photo and dark fermentation processes) and biogas (during anaerobic digestion processes) have been classic targets, whereby, direct transformation of lipidic biomass into biodiesel also gained attention. This concept is similar to previous biofuel concepts, but more sustainable, as third generation biofuels and other resources can be produced from waste biomass. The production of high value biopolymers (e.g., for bioplastics manufacturing) from organic acids, hydrogen, and methane is another option for carbon recovery. The recovery of carbon and nutrients can be achieved by organic fertilizer production, or single cell protein generation (depending on the source) which may be utilized as feed, feed additives, next generation fertilizers, or even as probiotics. Additionlly, chemical oxidation-reduction and bioelectrochemical systems can recover inorganics or synthesize organic products beyond the natural microbial metabolism. Anticipating the next generation of wastewater treatment plants driven by biological recovery technologies, this review is focused on the generation and re-synthesis of energetic resources and key resources to be recycled as raw materials in a cradle-to-cradle economy concept.
Puyol, Daniel; Batstone, Damien J.; Hülsen, Tim; Astals, Sergi; Peces, Miriam; Krömer, Jens O.
2017-01-01
Limits in resource availability are driving a change in current societal production systems, changing the focus from residues treatment, such as wastewater treatment, toward resource recovery. Biotechnological processes offer an economic and versatile way to concentrate and transform resources from waste/wastewater into valuable products, which is a prerequisite for the technological development of a cradle-to-cradle bio-based economy. This review identifies emerging technologies that enable resource recovery across the wastewater treatment cycle. As such, bioenergy in the form of biohydrogen (by photo and dark fermentation processes) and biogas (during anaerobic digestion processes) have been classic targets, whereby, direct transformation of lipidic biomass into biodiesel also gained attention. This concept is similar to previous biofuel concepts, but more sustainable, as third generation biofuels and other resources can be produced from waste biomass. The production of high value biopolymers (e.g., for bioplastics manufacturing) from organic acids, hydrogen, and methane is another option for carbon recovery. The recovery of carbon and nutrients can be achieved by organic fertilizer production, or single cell protein generation (depending on the source) which may be utilized as feed, feed additives, next generation fertilizers, or even as probiotics. Additionlly, chemical oxidation-reduction and bioelectrochemical systems can recover inorganics or synthesize organic products beyond the natural microbial metabolism. Anticipating the next generation of wastewater treatment plants driven by biological recovery technologies, this review is focused on the generation and re-synthesis of energetic resources and key resources to be recycled as raw materials in a cradle-to-cradle economy concept. PMID:28111567
Mechanisms That Generate Resource Pulses in a Fluctuating Wetland
Botson, Bryan A.; Gawlik, Dale E.; Trexler, Joel C.
2016-01-01
Animals living in patchy environments may depend on resource pulses to meet the high energetic demands of breeding. We developed two primary a priori hypotheses to examine relationships between three categories of wading bird prey biomass and covariates hypothesized to affect the concentration of aquatic fauna, a pulsed resource for breeding wading bird populations during the dry season. The fish concentration hypothesis proposed that local-scale processes concentrate wet-season fish biomass into patches in the dry season, whereas the fish production hypothesis states that the amount of dry-season fish biomass reflects fish biomass production during the preceding wet season. We sampled prey in drying pools at 405 sites throughout the Florida Everglades between December and May from 2006–2010 to test these hypotheses. The models that explained variation in dry-season fish biomass included water-level recession rate, wet-season biomass, microtopography, submerged vegetation, and the interaction between wet-season biomass and recession rate. Crayfish (Procambarus spp.) biomass was positively associated with wet-season crayfish biomass, moderate water depth, dense submerged aquatic vegetation, thin flocculent layer and a short interval of time since the last dry-down. Grass shrimp (Palaemonetes paludosus) biomass increased with increasing rates of water level recession, supporting our impression that shrimp, like fish, form seasonal concentrations. Strong support for wet-season fish and crayfish biomass in the top models confirmed the importance of wet-season standing stock to concentrations of fish and crayfish the following dry season. Additionally, the importance of recession rate and microtopography showed that local scale abiotic factors transformed fish production into the high quality foraging patches on which apex predators depended. PMID:27448023
Zhang, Yao; Li, Yan; Xie, Jiang-Bo
2016-01-01
The response of plants to drought is controlled by the interaction between physiological regulation and morphological adjustment. Although recent studies have highlighted the long-term morphological acclimatization of plants to drought, there is still debate on how plant biomass allocation patterns respond to drought. In this study, we performed a greenhouse experiment with first-year seedlings of a desert shrub in control, drought and re-water treatments, to examine their physiological and morphological traits during drought and subsequent recovery. We found that (i) biomass was preferentially allocated to roots along a fixed allometric trajectory throughout the first year of development, irrespective of the variation in water availability; and (ii) this fixed biomass allocation pattern benefited the post-drought recovery. These results suggest that, in a stressful environment, natural selection has favoured a fixed biomass allocation pattern rather than plastic responses to environmental variation. The fixed ‘preferential allocation to root’ biomass suggests that roots may play a critical role in determining the fate of this desert shrub during prolonged drought. As the major organ for resource acquisition and storage, how the root system functions during drought requires further investigation. PMID:27073036
Evaluation on community tree plantations as sustainable source for rural bioenergy in Indonesia
NASA Astrophysics Data System (ADS)
Siregar, U. J.; Narendra, B. H.; Suryana, J.; Siregar, C. A.; Weston, C.
2017-05-01
Indonesia has forest plantation resources in rural areas far from the national electricity grid that have potential as feedstock for biomass based electricity generation. Although some fast growing tree plantations have been established for bioenergy, their sustainability has not been evaluated to date. This research aimed to evaluate the growth of several tree species, cultivated by rural communities in Jawa Island, for their sustainability as a source for bio-electricity. For each tree species the biomass was calculated from diameter and height measurements and an estimate made for potential electricity generation based on density of available biomass and calorific content. Species evaluated included Acacia mangium, A. auriculiformis, A. crasicarpa, Anthocephalus cadamba, Calliandra calothirsus, Eucalyptus camaldulensis, Falcataria moluccana, Gmelina arborea, Leucaena leucochephala and Sesbania grandiflora. Among these species Falcataria moluccana and Anthocephalus cadamba showed the best potential for bioenergy production, with up to 133.7 and 67.1 ton/ha biomass respectively, from which 160412 and 80481 Kwh of electricity respectively could be generated. Plantations of these species could potentially meet the estimated demand for biomass feedstock to produce bioenergy in many rural villages, suggesting that community plantations could sustainably provide much needed electricity.
A steady state model of agricultural waste pyrolysis: A mini review.
Trninić, M; Jovović, A; Stojiljković, D
2016-09-01
Agricultural waste is one of the main renewable energy resources available, especially in an agricultural country such as Serbia. Pyrolysis has already been considered as an attractive alternative for disposal of agricultural waste, since the technique can convert this special biomass resource into granular charcoal, non-condensable gases and pyrolysis oils, which could furnish profitable energy and chemical products owing to their high calorific value. In this regard, the development of thermochemical processes requires a good understanding of pyrolysis mechanisms. Experimental and some literature data on the pyrolysis characteristics of corn cob and several other agricultural residues under inert atmosphere were structured and analysed in order to obtain conversion behaviour patterns of agricultural residues during pyrolysis within the temperature range from 300 °C to 1000 °C. Based on experimental and literature data analysis, empirical relationships were derived, including relations between the temperature of the process and yields of charcoal, tar and gas (CO2, CO, H2 and CH4). An analytical semi-empirical model was then used as a tool to analyse the general trends of biomass pyrolysis. Although this semi-empirical model needs further refinement before application to all types of biomass, its prediction capability was in good agreement with results obtained by the literature review. The compact representation could be used in other applications, to conveniently extrapolate and interpolate these results to other temperatures and biomass types. © The Author(s) 2016.
Vandecasteele, Bart; Boogaerts, Christophe; Vandaele, Elke
2016-12-01
The question was tackled on how the green waste compost industry can optimally apply the available biomass resources for producing both bioenergy by combustion of the woody fraction, and high quality soil improvers as renewable sources of carbon and nutrients. Compost trials with removal of woody biomass before or after composting were run at 9 compost facilities during 3 seasons to include seasonal variability of feedstock. The project focused on the changes in feedstock and the effect on the end product characteristics (both compost and recovered woody biomass) of this woody biomass removal. The season of collection during the year clearly affected the biochemical and chemical characteristics of feedstock, woody biomass and compost. On one hand the effect of removal of the woody fraction before composting did not significantly affect compost quality when compared to the scenario where the woody biomass was sieved from the compost at the end of the composting process. On the other hand, quality of the woody biomass was not strongly affected by extraction before or after composting. The holocellulose:lignin ratio was used in this study as an indicator for (a) the decomposition potential of the feedstock mixture and (b) to assess the stability of the composts at the end of the process. Higher microbial activity in green waste composts (indicated by higher oxygen consumption) and thus a lower compost stability resulted in higher N immobilization in the compost. Removal of woody biomass from the green waste before composting did not negatively affect the compost quality when more intensive composting was applied. The effect of removal of the woody fraction on the characteristics of the green waste feedstock and the extracted woody biomass is depending on the season of collection. Copyright © 2016 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-11
..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-19
..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunsberger, R.; Mosey, G.
2014-04-01
The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response, in accordance with the RE-Powering America's Lands initiative, engaged the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to conduct feasibility studies to assess the viability of developing renewable energy generating facilities on contaminated sites. This site, in Limestone, Maine -- formerly the location of the Loring Air Force Base but now owned by the Aroostook Band of Micmac -- was selected for the potential to produce heating pellets from woody feedstock. Biomass was chosen as the renewable energy resource to evaluate based on abundantmore » woody-biomass resources available in the area. NREL also evaluates potential savings from converting existing Micmac property from oil-fired heating to pellet heating.« less
Comprehensive techno-economic analysis of wastewater-based algal biofuel production: A case study.
Xin, Chunhua; Addy, Min M; Zhao, Jinyu; Cheng, Yanling; Cheng, Sibo; Mu, Dongyan; Liu, Yuhuan; Ding, Rijia; Chen, Paul; Ruan, Roger
2016-07-01
Combining algae cultivation and wastewater treatment for biofuel production is considered the feasible way for resource utilization. An updated comprehensive techno-economic analysis method that integrates resources availability into techno-economic analysis was employed to evaluate the wastewater-based algal biofuel production with the consideration of wastewater treatment improvement, greenhouse gases emissions, biofuel production costs, and coproduct utilization. An innovative approach consisting of microalgae cultivation on centrate wastewater, microalgae harvest through flocculation, solar drying of biomass, pyrolysis of biomass to bio-oil, and utilization of co-products, was analyzed and shown to yield profound positive results in comparison with others. The estimated break even selling price of biofuel ($2.23/gallon) is very close to the acceptable level. The approach would have better overall benefits and the internal rate of return would increase up to 18.7% if three critical components, namely cultivation, harvest, and downstream conversion could achieve breakthroughs. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rhodes, James S., III
2007-12-01
Industrial bio-energy systems provide diverse opportunities for abating anthropogenic greenhouse gas ("GHG") emissions and for advancing other important policy objectives. The confluence of potential contributions to important social, economic, and environmental policy objectives with very real challenges to deployment creates rich opportunities for study. In particular, the analyses developed in this thesis aim to increase understanding of how industrial bio-energy may be applied to abate GHG emissions in prospective energy markets, the relative merits of alternate bio-energy systems, the extent to which public support for developing such systems is justified, and the public policy instruments that may be capable of providing such support. This objective is advanced through analysis of specific industrial bio-energy technologies, in the form of bottom-up engineering-economic analyses, to determine their economic performance relative to other mitigation options. These bottom-up analyses are used to inform parameter definitions in two higher-level stochastic models that explicitly account for uncertainty in key model parameters, including capital costs, operating and maintenance costs, and fuel costs. One of these models is used to develop supply curves for electricity generation and carbon mitigation from biomass-coal cofire in the U.S. The other is used to characterize the performance of multiple bio-energy systems in the context of a competitive market for low-carbon energy products. The results indicate that industrial bio-energy systems are capable of making a variety of potentially important contributions under scenarios that value anthropogenic GHG emissions. In the near term, cofire of available biomass in existing coal fired power plants has the potential to provide substantial emissions reductions at reasonable costs. Carbon prices between 30 and 70 per ton carbon could induce reductions in U.S. carbon emissions by 100 to 225 megatons carbon ("MtC"), equivalent to roughly 3% of U.S. GHG emissions. In the medium or longer term, integration of carbon capture and storage technologies with advanced bio-energy conversion technologies ("biomass-CCS"), in both liquid fuels production and electric sector applications, will likely be feasible. These systems are capable of generating useful energy products with negative net atmospheric carbon emissions at carbon prices between 100 and 200 per tC. Negative emissions from biomass-CCS could be applied to offset emissions sources that are difficult or expensive to abate directly. Such indirect mitigation may prove cost competitive and provide important flexibility in achieving stabilization of atmospheric GHG concentrations at desirable levels. With increasing deployments, alternate bio-energy systems will eventually compete for limited biomass resources and inputs to agricultural production--particularly land. In this context, resource allocation decisions will likely turn on the relative economic performance of alternate bio-energy systems in their respective energy markets. The relatively large uncertainty in forecasts of energy futures confounds reliable prediction of economically efficient uses for available biomass resources. High oil prices or large valuation of energy security benefits will likely enable bio-fuels production to dominate electric-sector options. In contrast, low oil prices and low valuation of energy security benefits will likely enable electric-sector applications to dominate. In the latter scenario, indirect mitigation of transportation-sector emissions via emissions offsets from electric-sector biomass-CCS could prove more efficient than direct fuel substitution with biofuels, both economically and in terms of the transportation-sector mitigation of available biomass resources [tC tbiomass-1]. The policy environment surrounding industrial bio-energy development is systematically examined. Specifically, the policy objectives that may be advanced with bio-energy and the challenges constraining deployment are examined to understand the extent to which public policy support is justified to accelerate development. Policy frameworks and specific policy instruments that have been proposed or enacted to support industrial bio-energy are evaluated to understand their current and potential future roles in shaping bio-energy development. This analysis indicates that deployment of industrial bio-energy systems to advance specified policy objectives has been compromised by inefficient and inconsistent public policies. Amending existing policies could substantially accelerate bio-energy deployment. More generally, public policies that set even prices across the economy for advancing targeted policy objectives should be developed. Industrial bio-energy systems can be expected to compete favorably in the context of such policies, including those valuing deep reductions in anthropogenic GHG emissions.
Howard, Rebecca J.; Stagg, Camille L.; Utomo, Herry S.
2018-01-01
Increasing atmospheric carbon dioxide (CO2) concentrations are likely to influence future distributions of plants and plant community structure in many regions of the world through effects on photosynthetic rates. In recent decades the encroachment of woody mangrove species into herbaceous marshes has been documented along the U.S. northern Gulf of Mexico coast. These species shifts have been attributed primarily to rising sea levels and warming winter temperatures, but the role of elevated CO2 and water availability may become more prominent drivers of species interactions under future climate conditions. Drought has been implicated as a major factor contributing to salt marsh vegetation dieback in this region. In this greenhouse study we examined the effects of CO2 concentration (∼380 ppm, ∼700 ppm) and water regime (drought, saturated, flooded) on early growth of Avicennia germinans, a C3 mangrove species, and Spartina alterniflora, a C4 grass. Plants were grown in monocultures and in a mixed-species assemblage. We found that neither species responded to elevated CO2 over the 10-month duration of the experiment, and there were few interactions between experimental factors. Two effects of water regime were documented: lower A. germinanspneumatophore biomass under drought conditions, and lower belowground biomass under flooded conditions regardless of planting assemblage. Evidence of interspecific interactions was noted. Competition for aboveground resources (e.g., light) was indicated by lower S. alterniflora stem biomass in mixed-species assemblage compared to biomass in S. alterniflora monocultures. Pneumatophore biomass of A. germinans was reduced when grown in monoculture compared to the mixed-species assemblage, indicating competition for belowground resources. These interactions provide insight into how these species may respond following major disturbance events that lead to vegetation dieback. Site variation in propagule availability and physico-chemical conditions will determine plant community composition and structure following such disturbances when these two species co-occur.
Geospatial analysis of near-term potential for carbon-negative bioenergy in the United States
Baik, Ejeong; Turner, Peter A.; Mach, Katharine J.; Field, Christopher B.; Benson, Sally M.
2018-01-01
Bioenergy with carbon capture and storage (BECCS) is a negative-emissions technology that may play a crucial role in climate change mitigation. BECCS relies on the capture and sequestration of carbon dioxide (CO2) following bioenergy production to remove and reliably sequester atmospheric CO2. Previous BECCS deployment assessments have largely overlooked the potential lack of spatial colocation of suitable storage basins and biomass availability, in the absence of long-distance biomass and CO2 transport. These conditions could constrain the near-term technical deployment potential of BECCS due to social and economic barriers that exist for biomass and CO2 transport. This study leverages biomass production data and site-specific injection and storage capacity estimates at high spatial resolution to assess the near-term deployment opportunities for BECCS in the United States. If the total biomass resource available in the United States was mobilized for BECCS, an estimated 370 Mt CO2⋅y−1 of negative emissions could be supplied in 2020. However, the absence of long-distance biomass and CO2 transport, as well as limitations imposed by unsuitable regional storage and injection capacities, collectively decrease the technical potential of negative emissions to 100 Mt CO2⋅y−1. Meeting this technical potential may require large-scale deployment of BECCS technology in more than 1,000 counties, as well as widespread deployment of dedicated energy crops. Specifically, the Illinois basin, Gulf region, and western North Dakota have the greatest potential for near-term BECCS deployment. High-resolution spatial assessment as conducted in this study can inform near-term opportunities that minimize social and economic barriers to BECCS deployment. PMID:29531081
Cirocco, Robert M; Facelli, José M; Watling, Jennifer R
2016-03-01
Environmental factors alter the impacts of parasitic plants on their hosts. However, there have been no controlled studies on how water availability modulates stem hemiparasites' effects on hosts. A glasshouse experiment was conducted to investigate the association between the Australian native stem hemiparasite Cassytha pubescens and the introduced host Ulex europaeus under high (HW) and low (LW) water supply. Cassytha pubescens had a significant, negative effect on the total biomass of U. europaeus, which was more severe in HW than LW. Regardless of watering treatment, infection significantly decreased shoot and root biomass, nodule biomass, nodule biomass per unit root biomass, F v/F m, and nitrogen concentration of U. europaeus. Host spine sodium concentration significantly increased in response to infection in LW but not HW conditions. Host water potential was significantly higher in HW than in LW, which may have allowed the parasite to maintain higher stomatal conductances in HW. In support of this, the δ(13)C of the parasite was significantly lower in HW than in LW (and significantly higher than the host). C. pubescens also had significantly higher F v/F m and 66% higher biomass per unit host in the HW compared with the LW treatment. The data suggest that the enhanced performance of C. pubescens in HW resulted in higher parasite growth rates and thus a larger demand for resources from the host, leading to poorer host performance in HW compared with LW. C. pubescens should more negatively affect U. europaeus growth under wet conditions rather than under dry conditions in the field. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Ofori, Atta; Schierholt, Antje; Becker, Heiko C
2012-02-01
Because of its high growth rate at low temperatures in early spring, there is renewed interest in Brassica rapa as a winter crop for biomass production in Europe. The available cultivars are not developed for this purpose however. An approach for breeding bioenergy cultivars of B. rapa could be to establish populations from two or more different cultivars with high combining ability. The objective of this study was to evaluate the heterosis for biomass yield in the European winter B. rapa genepool. The genetic variation and heterosis of the biomass parameters: dry matter content, fresh and dry biomass yields were investigated in three cultivars representing different eras of breeding by comparing full-sibs-within and full-sibs-between the cultivars. Field trials were performed at two locations in Germany in 2005-2006. Mean mid-parent heterosis was low with 2.5% in fresh and 3.0% in dry biomass yield in full-sibs-between cultivars. Mean values of individual crosses revealed a higher variation in mid-parent heterosis ranging from 14.6% to -7.5% in fresh biomass yield and from 19.7% to -12.7% in dry biomass yield. The low heterosis observed in hybrids between European winter cultivars can be explained by the low genetic variation between these cultivars as shown earlier with molecular markers. In conclusion, a B. rapa breeding program for biomass production in Europe should not only use European genetic resources, but should also utilize the much wider worldwide variation in this species.
Chu, Cheng-Jin; Maestre, Fernando T; Xiao, Sa; Weiner, Jacob; Wang, You-Shi; Duan, Zheng-Hu; Wang, Gang
2008-11-01
Theories based on competition for resources predict a monotonic negative relationship between population density and individual biomass in plant populations. They do not consider the role of facilitative interactions, which are known to be important in high stress environments. Using an individual-based 'zone-of-influence' model, we investigated the hypothesis that the balance between facilitative and competitive interactions determines biomass-density relationships. We tested model predictions with a field experiment on the clonal grass Elymus nutans in an alpine meadow. In the model, the relationship between mean individual biomass and density shifted from monotonic to humped as abiotic stress increased. The model results were supported by the field experiment, in which the greatest individual and population biomass were found at intermediate densities in a high-stress alpine habitat. Our results show that facilitation can affect biomass-density relationships.
Sustainable Development Strategies of Biomass Energy in Beijing
NASA Astrophysics Data System (ADS)
Zhang, H. Z.; Huang, B. R.
2017-10-01
The development of biomass energy industry can effectively improve the rural environment and alleviate the shortage of living energy in rural areas, especially in mountain areas. In order to make clear the current situation of biomass energy industry development in Beijing, this paper analyzed the status of biomass resources and biomass energy utilization and discussed the factors hindering the development of biomass energy industry in Beijing. Based on the analysis, suggestions for promoting sustainable development of Biomass Energy Industry in Beijing are put forward.
Brooks, R.A.; Sulak, K.J.
2005-01-01
Gulf sturgeon, Acipenser oxyrinchus desotoi, forage extensively in the Suwannee River estuary following emigration out of the Suwannee River, Florida. While in the estuary, juvenile Gulf sturgeon primarily feed on benthic infauna. In June-July 2002 and February-April 2003, random sites within the estuary were sampled for benthic macrofauna (2002 n = 156; 2003 n = 103). A mean abundance of 2,562 ind m-2 (SE ?? 204) was found in the summer, with significantly reduced macrofaunal abundance in the winter (mean density of 1,044 ind m-2, SE ?? 117). Benthic biomass was significantly higher in the summer with an average summer sample dry weight of 5.92 g m-2 (SE ?? 0.82) compared to 3.91 g m-2 (SE ?? 0.67) in the winter. Amphipods and polychaetes were the dominant taxa collected during both sampling periods. Three different estimates of food availability were examined taking into account principal food item information and biomass estimates. All three estimates provided a slightly different view of potential resources but were consistent in indicating that food resource values for juvenile Gulf sturgeon are spatially heterogeneous within the Suwannee River estuary. ?? 2005 Estuarine Research Federation.
USDA-ARS?s Scientific Manuscript database
Biomass represents a promising renewable energy opportunity that mayprovide a more sustainable alternative to the use of fossil resources by minimizing the net production of greenhouse gases. Yet, allometric models that allow the prediction of biomass, biomass carbon (C) and nitrogen (N) stocks rap...
biomass or other renewable resources that can be used as transportation fuel, combustion fuel, or refinery from biomass. Ethanol is ethyl alcohol derived from biomass that meets ASTM D4806-04a and federal quality requirements. Synthetic transportation fuel is a liquid fuel produced from biomass by a
Nitrogen uptake in a Tibetan grasland and implications for a vulnerable ecosystem
NASA Astrophysics Data System (ADS)
Schleuß, Per; Heitkamp, Felix; Sun, Yue; Kuzyakov, Yakov
2016-04-01
Grasslands are very important regionally and globally because they store large amounts of carbon (C) and nitrogen (N) and provide food for grazing animals. Intensive degradation of alpine grasslands in recent decades has mainly impacted the upper root-mat/soil horizon, with severe consequences for nutrient uptake in these nutrient-limited ecosystems. We used 15N labelling to identify the role of individual soil layers for N-uptake by Kobresia pygmaea. We hypothesized a very efficient N-uptake corresponding mainly to the vertical distribution of living root biomass (topsoil > subsoil). We assume that K. pygmaea develops a very dense root mat, which has to be maintained by small aboveground biomass, to enable this efficient N-uptake. Consequently, we expect a higher N-investment into roots compared to shoots. The 15N recovery in the whole plants (~70%) indicated very efficient N-uptake from the upper injection depths. The highest 15N amounts were recovered in root biomass, whereby values strongly decreased with depth. In contrast, 15N recovery in shoots was generally low (~18%) and independent of the 15N injection depth. This clearly shows that the low N demand of Kobresia shoots can be easily covered by N-uptake from any depth. Less living root biomass in lower versus upper soil was compensated by a higher specific root activity for N-uptake. The 15N allocation into roots was on average 1.7 times higher than that into shoots, which agreed well with the very high R/S ratio. Increasing root biomass is an efficient strategy of K. pygmaea to compete for belowground resources at depths and periods when resources are available. This implies high C costs to maintain root biomass (~6.0 kg DM m-2), which must be covered by a very low amount of photosynthetically active shoots (0.3 kg DM m-2). It also suggests that Kobresia grasslands react extremely sensitively towards changes in climate and management that disrupt this above-/belowground trade-off mechanism.
Yuan, Zi-Qiang; Yu, Kai-Liang; Epstein, Howard; Fang, Chao; Li, Jun-Ting; Liu, Qian-Qian; Liu, Xue-Wei; Gao, Wen-Juan; Li, Feng-Min
2016-01-15
Revegetation facilitated by legume species introduction has been used for soil erosion control on the Loess Plateau, China. However, it is still unclear how vegetation and soil resources develop during this restoration process, especially over the longer term. In this study, we investigated the changes of plant aboveground biomass, vegetation cover, species richness and density of all individuals, and soil total nitrogen, mineral nitrogen, total phosphorus and available phosphorus over 11 years from 2003 to 2013 in three treatments (natural revegetation, Medicago sativa L. introduction and Melilotus suaveolens L. introduction) on the semi-arid Loess Plateau. Medicago significantly increased aboveground biomass and vegetation cover, and soil total nitrogen and mineral nitrogen contents. The Medicago treatment had lower species richness and density of all individuals, lower soil moisture in the deep soil (i.e., 1.4-5m), and lower soil available phosphorus. Melilotus introduction significantly increased aboveground biomass in only the first two years, and it was not an effective approach to improve vegetation biomass and cover, and soil nutrients, especially in later stages of revegetation. Overall, our study suggests that M. sativa can be the preferred plant species for revegetation of degraded ecosystems on the Loess Plateau, although phosphorus fertilizer should be applied for the sustainability of the revegetation. Copyright © 2015 Elsevier B.V. All rights reserved.
Hall, Edward K.; Singer, Gabriel A.; Pölzl, Marvin; Hämmerle, Ieda; Schwarz, Christian; Daims, Holger; Maixner, Frank; Battin, Tom J.
2011-01-01
Stoichiometry of microbial biomass is a key determinant of nutrient recycling in a wide variety of ecosystems. However, little is known about the underlying causes of variance in microbial biomass stoichiometry. This is primarily because of technological constraints limiting the analysis of macromolecular composition to large quantities of microbial biomass. Here, we use Raman microspectroscopy (MS), to analyze the macromolecular composition of single cells of two species of bacteria grown on minimal media over a wide range of resource stoichiometry. We show that macromolecular composition, determined from a subset of identified peaks within the Raman spectra, was consistent with macromolecular composition determined using traditional analytical methods. In addition, macromolecular composition determined by Raman MS correlated with total biomass stoichiometry, indicating that analysis with Raman MS included a large proportion of a cell's total macromolecular composition. Growth phase (logarithmic or stationary), resource stoichiometry and species identity each influenced each organism's macromolecular composition and thus biomass stoichiometry. Interestingly, the least variable peaks in the Raman spectra were those responsible for differentiation between species, suggesting a phylogenetically specific cellular architecture. As Raman MS has been previously shown to be applicable to cells sampled directly from complex environments, our results suggest Raman MS is an extremely useful application for evaluating the biomass stoichiometry of environmental microorganisms. This includes the ability to partition microbial biomass into its constituent macromolecules and increase our understanding of how microorganisms in the environment respond to resource heterogeneity.
Hall, Edward K; Singer, Gabriel A; Pölzl, Marvin; Hämmerle, Ieda; Schwarz, Christian; Daims, Holger; Maixner, Frank; Battin, Tom J
2011-01-01
Stoichiometry of microbial biomass is a key determinant of nutrient recycling in a wide variety of ecosystems. However, little is known about the underlying causes of variance in microbial biomass stoichiometry. This is primarily because of technological constraints limiting the analysis of macromolecular composition to large quantities of microbial biomass. Here, we use Raman microspectroscopy (MS), to analyze the macromolecular composition of single cells of two species of bacteria grown on minimal media over a wide range of resource stoichiometry. We show that macromolecular composition, determined from a subset of identified peaks within the Raman spectra, was consistent with macromolecular composition determined using traditional analytical methods. In addition, macromolecular composition determined by Raman MS correlated with total biomass stoichiometry, indicating that analysis with Raman MS included a large proportion of a cell's total macromolecular composition. Growth phase (logarithmic or stationary), resource stoichiometry and species identity each influenced each organism's macromolecular composition and thus biomass stoichiometry. Interestingly, the least variable peaks in the Raman spectra were those responsible for differentiation between species, suggesting a phylogenetically specific cellular architecture. As Raman MS has been previously shown to be applicable to cells sampled directly from complex environments, our results suggest Raman MS is an extremely useful application for evaluating the biomass stoichiometry of environmental microorganisms. This includes the ability to partition microbial biomass into its constituent macromolecules and increase our understanding of how microorganisms in the environment respond to resource heterogeneity. PMID:20703314
Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability.
Mika, László T; Cséfalvay, Edit; Németh, Áron
2018-01-24
The replacement of fossil resources that currently provide more than 90% of our energy needs and feedstocks of the chemical industry in combination with reduced emission of carbon dioxide is one of the most pressing challenges of mankind. Biomass as a globally available resource has been proposed as an alternative feedstock for production of basic building blocks, which could partially or even fully replace the currently utilized fossil-based ones in well-established chemical processes. The destruction of lignocellulosic feed followed by oxygen removal from its cellulose and hemicellulose content by catalytic processes results in the formation of initial platform chemicals (IPCs). However, their sustainable production strongly depends on the availability of resources, their efficient or even industrially viable conversion processes, and replenishment time of feedstocks. Herein, we overview recent advances and developments in catalytic transformations of the carbohydrate content of lignocellulosic biomass to IPCs (i.e., ethanol, 3-hydroxypropionic acid, isoprene, succinic and levulinic acids, furfural, and 5-hydroxymethylfurfural). The mechanistic aspects, development of new catalysts, different efficiency indicators (yield and selectivity), and conversion conditions of their production are presented and compared. The potential biochemical production routes utilizing recently engineered microorganisms are reviewed, as well. The sustainability metrics that could be applied to the chemical industry (individual set of sustainability indicators, composite indices methods, material and energy flow analysis-based metrics, and ethanol equivalents) are also overviewed as well as an outlook is provided to highlight challenges and opportunities associated with this huge research area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karmis, Michael; Luttrell, Gerald; Ripepi, Nino
The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderlessmore » coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NO x, CO 2, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.« less
The energetic consequences of habitat structure for forest stream salmonids.
Naman, Sean M; Rosenfeld, Jordan S; Kiffney, Peter M; Richardson, John S
2018-05-08
1.Increasing habitat availability (i.e. habitat suitable for occupancy) is often assumed to elevate the abundance or production of mobile consumers; however, this relationship is often nonlinear (threshold or unimodal). Identifying the mechanisms underlying these nonlinearities is essential for predicting the ecological impacts of habitat change, yet the functional forms and ultimate causation of consumer-habitat relationships are often poorly understood. 2.Nonlinear effects of habitat on animal abundance may manifest through physical constraints on foraging that restrict consumers from accessing their resources. Subsequent spatial incongruence between consumers and resources should lead to unimodal or saturating effects of habitat availability on consumer production if increasing the area of habitat suitable for consumer occupancy comes at the expense of habitats that generate resources. However, the shape of this relationship could be sensitive to cross-ecosystem prey subsidies, which may be unrelated to recipient habitat structure and result in more linear habitat effects on consumer production. 3.We investigated habitat-productivity relationships for juveniles of stream-rearing Pacific salmon and trout (Oncorhynchus spp.), which typically forage in low-velocity pool habitats, while their prey (drifting benthic invertebrates) are produced upstream in high-velocity riffles. However, juvenile salmonids also consume subsidies of terrestrial invertebrates that may be independent of pool-riffle structure. 4.We measured salmonid biomass production in 13 experimental enclosures each containing a downstream pool and upstream riffle, spanning a gradient of relative pool area (14-80% pool). Increasing pool relative to riffle habitat area decreased prey abundance, leading to a nonlinear saturating effect on fish production. We then used bioenergetics model simulations to examine how the relationship between pool area and salmonid biomass is affected by varying levels of terrestrial subsidy. Simulations indicated that increasing terrestrial prey inputs linearized the effect of habitat availability on salmonid biomass, while decreasing terrestrial inputs exaggerated a 'hump-shaped' effect. 5.Our results imply that nonlinear effects of habitat availability on consumer production can arise from trade-offs between habitat suitable for consumer occupancy and habitat that generates prey. However, cross-ecosystem prey subsidies can effectively decouple this trade-off and modify consumer-habitat relationships in recipient systems. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-06-01
Forest biomass is an abundant biomass feedstock that complements the conventional forest use of wood for paper and wood materials. It may be utilized for bioenergy production, such as heat and electricity, as well as for biofuels and a variety of bioproducts, such as industrial chemicals, textiles, and other renewable materials. The resources within the 2016 Billion-Ton Report include primary forest resources, which are taken directly from timberland-only forests, removed from the land, and taken to the roadside.
Effects of dispersal on total biomass in a patchy, heterogeneous system: analysis and experiment.
Zhang, Bo; Liu, Xin; DeAngelis, Donald L.; Ni, Wei-Ming; Wang, G Geoff
2015-01-01
An intriguing recent result from mathematics is that a population diffusing at an intermediate rate in an environment in which resources vary spatially will reach a higher total equilibrium biomass than the population in an environment in which the same total resources are distributed homogeneously. We extended the current mathematical theory to apply to logistic growth and also showed that the result applies to patchy systems with dispersal among patches, both for continuous and discrete time. This allowed us to make specific predictions, through simulations, concerning the biomass dynamics, which were verified by a laboratory experiment. The experiment was a study of biomass growth of duckweed (Lemna minor Linn.), where the resources (nutrients added to water) were distributed homogeneously among a discrete series of water-filled containers in one treatment, and distributed heterogeneously in another treatment. The experimental results showed that total biomass peaked at an intermediate, relatively low, diffusion rate, higher than the total carrying capacity of the system and agreeing with the simulation model. The implications of the experiment to dynamics of source, sink, and pseudo-sink dynamics are discussed.
Code of Federal Regulations, 2010 CFR
2010-07-01
... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...
Code of Federal Regulations, 2012 CFR
2012-07-01
... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...
Code of Federal Regulations, 2011 CFR
2011-07-01
... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...
Code of Federal Regulations, 2014 CFR
2014-07-01
... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...
Code of Federal Regulations, 2013 CFR
2013-07-01
... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...
McCluney, Kevin E; Belnap, Jayne; Collins, Scott L; González, Angélica L; Hagen, Elizabeth M; Nathaniel Holland, J; Kotler, Burt P; Maestre, Fernando T; Smith, Stanley D; Wolf, Blair O
2012-08-01
Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts of our findings. Overall, we hope to stimulate and guide future research that links changes in water availability to patterns of species interactions and the dynamics of populations and communities in dryland ecosystems. © 2011 The Authors. Biological Reviews © 2011 Cambridge Philosophical Society.
Pacific walrus (Odobenus rosmarus divergens) resource selection in the northern Bering Sea
Jay, Chadwick V.; Grebmeier, Jacqueline M.; Fischbach, Anthony S.; McDonald, Trent L.; Cooper, Lee W.; Hornsby, Fawn
2014-01-01
The Pacific walrus is a large benthivore with an annual range extending across the continental shelves of the Bering and Chukchi Seas. We used a discrete choice model to estimate site selection by adult radio-tagged walruses relative to the availability of the caloric biomass of benthic infauna and sea ice concentration in a prominent walrus wintering area in the northern Bering Sea (St. Lawrence Island polynya) in 2006, 2008, and 2009. At least 60% of the total caloric biomass of dominant macroinfauna in the study area was composed of members of the bivalve families Nuculidae, Tellinidae, and Nuculanidae. Model estimates indicated walrus site selection was related most strongly to tellinid bivalve caloric biomass distribution and that walruses selected lower ice concentrations from the mostly high ice concentrations that were available to them (quartiles: 76%, 93%, and 99%). Areas with high average predicted walrus site selection generally coincided with areas of high organic carbon input identified in other studies. Projected decreases in sea ice in the St. Lawrence Island polynya and the potential for a concomitant decline of bivalves in the region could result in a northward shift in the wintering grounds of walruses in the northern Bering Sea.
The roles of community biomass and species pools in the regulation of plant diversity
Grace, J.B.
2001-01-01
Considerable debate has developed over the importance of community biomass and species pools in the regulation of community diversity. Attempts to explain patterns of plant diversity as a function of community biomass or productivity have been only partially successful and in general, have explained only a fraction of the observed variation in diversity. At the same time studies that have focused on the importance of species pools have led some to conclude that diversity is primarily regulated in the short term by the size of the species pool rather than by biotic interactions. In this paper, I explore how community biomass and species pools may work in combination to regulate diversity in herbaceous plant communities. To address this problem, I employ a simple model in which the dynamics of species richness are a function of aboveground community biomass and environmentally controlled gradients in species pools. Model results lead to two main predictions about the role of biomass regulation: (1) Seasonal dynamics of richness will tend to follow a regular oscillation, with richness rising to peak values during the early to middle portion of the growing season and then declining during the latter part of the season. (2.) Seasonal dieback of aboveground tissues facilitates the long-term maintenance of high levels of richness in the community. The persistence of aboveground tissues and accumulation of litter are especially important in limiting the number of species through the suppression of recruitment. Model results also lead to two main predictions about the role of species pools: (1) The height and position of peak richness relative to community biomass will be influenced by the rate at which the species pool increases as available soil resources increase. (2) Variations in nonresource environmental factors (e.g. soil pH or soil salinity) have the potential to regulate species pools in a way that is uncorrelated with aboveground biomass. Under extreme conditions, such nonresource effects can create a unimodal envelope of biomass-richness values. Available evidence from the literature provides partial support for these predictions, though additional data are needed to provide more convincing tests.
Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiles, Dennis L.; Jones, Susan A.; Orth, Rick J.
The purpose of this report is to assemble the information needed to estimate the significance of the opportunity for producing biofuels in the region as well as the associated challenges. The report reviews the current state of the industry, the biomass resources that are available within current production practices, and the biofuels production technology that is available within the marketplace. The report also identifys the areas in which alternative approaches or strategies, or technologoical advances, might offer an opportunity to expand the Nortwest biofuels industry beyond its current state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aubrey, Doug, P.; Coyle, David, R. Coleman, Mark, D.
2011-08-26
Nutrient acquisition of forest stands is controlled by soil resource availability and belowground production, but tree species are rarely compared in this regard. Here, we examine ecological and management implications of nitrogen (N) dynamics during early forest stand development in productive commercial tree species with narrow (Populus deltoides Bartr. and Platanus occidentalis L.) and broad (Liquidambar styraciflua L. and Pinus taeda L.) site requirements while grown with a range of nutrient and water resources. We constructed N budgets by measuring N concentration ([N]) and N content (N{sub C}) of above- and belowground perennial and ephemeral tissues, determined N uptake (N{submore » UP}), and calculated N use efficiency (NUE). Forest stands regulated [N] within species-specific operating ranges without clear temporal or treatment patterns, thus demonstrating equilibrium between tissue [N] and biomass accumulation. Forest stand N{sub C} and N{sub UP} increased with stand development and paralleled treatment patterns of biomass accumulation, suggesting productivity is tightly linked to N{sub UP}. Inclusion of above- and belowground ephemeral tissue turnover in N{sub UP} calculations demonstrated that maximum N demand for narrow-sites adapted species exceeded 200 kg N ha{sup -1} year{sup -1} while demand for broad-site adapted species was below this level. NUE was species dependent but not consistently influenced by N availability, suggesting relationships between NUE and resource availability were species dependent. Based on early stand development, species with broad site adaptability are favored for woody cropping systems because they maintain high above- and belowground productivity with minimal fertilization requirements due to higher NUE than narrow site adapted species.« less
NASA Astrophysics Data System (ADS)
Zheng, S. X.; Li, W. H.; Lan, Z. C.; Ren, H. Y.; Wang, K. B.; Bai, Y. F.
2014-09-01
Abundant evidence has shown that grazing alters plant functional traits, ecological strategies, community structure, and ecosystem functioning of grasslands. Few studies, however, have examined how plant responses to grazing are mediated by resource availability and functional group identity. We test functional trait-based mechanisms underlying the responses of different life forms to grazing and linkages to ecosystem functioning along a soil moisture gradient in the Inner Mongolia grassland. A principal component analysis (PCA) based on 9 traits × 276 species matrix showed that the plant size spectrum (i.e., individual biomass), leaf economics spectrum (leaf N content and leaf density), and light competition spectrum (height and stem-leaf biomass ratio) distinguished plant species responses to grazing. The three life forms exhibited differential strategies as indicated by trait responses to grazing. The annuals and biennials adopted grazing-tolerant strategies associated with high growth rate, reflected by high leaf N content and specific leaf area. The perennial grasses exhibited grazing-tolerant strategies associated with great regrowth capacity and high palatability scores, whereas perennial forbs showed grazing-avoidant strategies with short stature and low palatability scores. In addition, the dominant perennial bunchgrasses exhibited mixed tolerance-resistance strategies to grazing and mixed acquisitive-conservative strategies in resource utilization. Grazing increased the relative abundance of perennial forbs with low palatability in the wet and fertile meadow, but it promoted perennial grasses with high palatability in the dry and infertile typical steppe. Our findings suggest that the effects of grazing on plant functional traits are dependent on both the abiotic (e.g., soil moisture) and biotic (e.g., plant functional group identity and composition) factors. Grazing-induced shifts in functional group composition are largely dependent on resource availability, particularly water availability.
Tuber size variation and organ preformation constrain growth responses of a spring geophyte.
Werger, Marinus J A; Huber, Heidrun
2006-03-01
Functional responses to environmental variation do not only depend on the genetic potential of a species to express different trait values, but can also be limited by characteristics, such as the timing of organ (pre-) formation, aboveground longevity or the presence of a storage organ. In this experiment we tested to what degree variation in tuber size and organ preformation constrain the responsiveness to environmental quality and whether responsiveness is modified by the availability of stored resources by exposing the spring geophyte Bunium bulbocastanum to different light and nutrient regimes. Growth and biomass partitioning were affected by initial tuber size and resource availability. On average, tuber weight amounted to 60%, but never less than 30% of the total plant biomass. Initial tuber size, considered an estimate of the total carbon pool available at the onset of treatments, affected plant growth and reproduction throughout the experiment but had little effect on the responsiveness of plants to the treatments. The responsiveness was partly constrained by organ preformation: in the second year variation of leaf number was considerably larger than in the first year of the treatments. The results indicate that a spring geophyte with organ preformation has only limited possibilities to respond to short-term fluctuations of the environment, as all leaves and the inflorescence are preformed in the previous growing season and resources stored in tubers are predominantly used for survival during dormancy and are not invested into plastic adjustments to environmental quality. Such spring geophytes have only limited possibilities to buffer environmental variation. This explains their restriction to habitats characterized by predictable changes of the environmental conditions.
Habitat, not resource availability, limits consumer production in lake ecosystems
Craig, Nicola; Jones, Stuart E.; Weidel, Brian C.; Solomon, Christopher T.
2015-01-01
Food web productivity in lakes can be limited by dissolved organic carbon (DOC), which reduces fish production by limiting the abundance of their zoobenthic prey. We demonstrate that in a set of 10 small, north temperate lakes spanning a wide DOC gradient, these negative effects of high DOC concentrations on zoobenthos production are driven primarily by availability of warm, well-oxygenated habitat, rather than by light limitation of benthic primary production as previously proposed. There was no significant effect of benthic primary production on zoobenthos production after controlling for oxygen, even though stable isotope analysis indicated that zoobenthos do use this resource. Mean whole-lake zoobenthos production was lower in high-DOC lakes with reduced availability of oxygenated habitat, as was fish biomass. These insights improve understanding of lake food webs and inform management in the face of spatial variability and ongoing temporal change in lake DOC concentrations.
Saraswathi, K; Chandrasekaran, S
2016-05-01
Fuel energy demand is of great concern in recent times due to the depletion of fossil fuel resources. Biomass serves as widely available primary renewable energy source. Hence, a study was performed to assess the above-ground biomass yielding capability of fuel wood tree Prosopis juliflora in three varied ecosystems viz., coastal, fallow land and riparian ecosystems in southern districts of Tamil Nadu. The results showed that the biomass production potential and above-ground net primary productivity of P. juliflora depend on the age of the tree stands and the nature of ecosystem. A higher biomass yield was observed for P. juliflora trees with 5 to 10 years old when compared to less than 5 years of their age. Among the three ecosystems, the maximum biomass production was recorded in riparian ecosystem. The stands with less than 5-year-old P. juliflora trees gave 1.40 t/ha, and 5- to 10-year-old tree stands produced 27.69 t/ha in riparian ecosystem. Above-ground net primary productivity of both the age groups was high in fallow land ecosystem. In riparian ecosystem, the wood showed high density and low sulphur content than the other two ecosystems. Hence, P. juliflora biomass can serve as an environmentally and economically feasible fuel as well as their utilization proffers an effective means to control its invasiveness.
Electrolytic Removal of Nitrate From CELSS Crop Residues
NASA Technical Reports Server (NTRS)
Colon, Guillermo; Sager, John
1996-01-01
The controlled ecological life support system (CELSS) resource recovery system is a waste processing system using aerobic and anaerobic bioreactors to recover plant nutrients and secondary foods from inedible biomass. Crop residues contain significant amounts of nitrate which presents two problems: (1) both CELSS biomass production and resource recovery consume large quantities of nitric acid, (2) nitrate causes a variety of problems in both aerobic and anaerobic bioreactors. A technique was proposed to remove the nitrate from potato inedible biomass leachate and to satisfy the nitric acid demand using a four compartment electrolytic cell.
Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots.
Reich, Peter B; Luo, Yunjian; Bradford, John B; Poorter, Hendrik; Perry, Charles H; Oleksyn, Jacek
2014-09-23
Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics.
Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots
Reich, Peter B.; Luo, Yunjian; Bradford, John B.; Poorter, Hendrik; Perry, Charles H.; Oleksyn, Jacek
2014-01-01
Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics. PMID:25225412
Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots
Reich, Peter B.; Lou, Yunjian; Bradford, John B.; Poorter, Hendrik; Perry, Charles H.; Oleksyn, Jacek
2014-01-01
Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics.
La Pierre, Kimberly J; Smith, Melinda D
2016-02-01
Resource availability may influence invertebrate communities, with important consequences for ecosystem function, such as biomass production. We assessed: (1) the effects of experimental soil nutrient additions on invertebrate abundances and feeding rates and (2) the resultant changes in the effects of invertebrates on aboveground plant biomass at three grassland sites spanning the North American Central Plains, across which plant tissue chemistry and biomass vary. Invertebrate communities and rates of herbivory were sampled within a long-term nutrient-addition experiment established at each site along the broad Central Plains precipitation gradient. Additionally, the effects of invertebrates on aboveground plant biomass were determined under ambient and elevated nutrient conditions. At the more mesic sites, invertebrate herbivore abundances increased and their per capita rate of herbivory decreased with nutrient additions. In contrast, at the semi-arid site where plant biomass is low and plant nutrient concentrations are high, invertebrate herbivore abundances did not vary and per capita rates of herbivory increased with nutrient additions. No change in the effect of invertebrate herbivores on aboveground plant biomass was observed at any of the sites. In sum, nutrient additions induced shifts in both plant biomass and leaf nutrient content, which altered invertebrate abundances and feeding rate. However, due to the inverse relationship between changes in herbivore abundance and per capita rates of herbivory, nutrient additions did not alter the effect of invertebrates on aboveground biomass. Overall, we suggest that this inverse response of herbivore abundance and per capita feeding rate may buffer ecosystems against changes in invertebrate damage in response to fluctuations in nutrient levels.
Xinhau Zhour; James R. Brandle; Michele M. Schoeneberger; Tala Awada
2007-01-01
Multiple-stemmed tree species are often used in agricultural settings, playing a significant role in natural resource conservation and carbon sequestration. Biomass estimation, whether for modeling growth under different climate scenarios, accounting for carbon sequestered, or inclusion in natural resource inventories, requires equations that can accurately describe...
Ward, Darren M.; Nislow, Keith H.; Folt, Carol L.
2012-01-01
Low productivity in aquatic ecosystems is associated with reduced individual growth of fish and increased concentrations of methylmercury (MeHg) in fish and their prey. However, many stream-dwelling fish species can use terrestrially-derived food resources, potentially subsidizing growth at low-productivity sites, and, because terrestrial resources have lower MeHg concentrations than aquatic resources, preventing an increase in diet-borne MeHg accumulation. We used a large-scale field study to evaluate relationships among terrestrial subsidy use, growth, and MeHg concentrations in two stream-dwelling fish species across an in-stream productivity gradient. We sampled young-of-the-year brook trout (Salvelinus fontinalis) and Atlantic salmon (Salmo salar), potential competitors with similar foraging habits, from 20 study sites in streams in New Hampshire and Massachusetts that encompassed a wide range of aquatic prey biomass. Stable isotope analysis showed that brook trout used more terrestrial resources than Atlantic salmon. Over their first growing season, Atlantic salmon tended to grow larger than brook trout at sites with high aquatic prey biomass, but brook grew two-fold larger than Atlantic salmon at sites with low aquatic prey biomass. The MeHg concentrations of brook trout and Atlantic salmon were similar at sites with high aquatic prey biomass and the MeHg concentrations of both species increased at sites with low prey biomass and high MeHg in aquatic prey. However, brook trout had three-fold lower MeHg concentrations than Atlantic salmon at low-productivity, high-MeHg sites. These results suggest that differential use of terrestrial resource subsidies reversed the growth asymmetry between potential competitors across a productivity gradient and, for one species, moderated the effect of low in-stream productivity on MeHg accumulation. PMID:23166717
Qin, Zhangcai; Zhuang, Qianlai; Cai, Ximing; ...
2017-08-31
We present that bioenergy can be a promising solution to the energy, food and environment trilemma in China. Currently this coal-dependent nation is in urgent need of alternative fuels to secure its future energy and improve the environment. Biofuels derived from crop residues and bioenergy crops emerge as a great addition to renewable energy in China without compromising food production. This paper reviews bioenergy resources from existing conventional crop (e.g., corn, wheat and rice) residues and energy crops (e.g., Miscanthus) produced on marginal lands. The impacts of biofuel production on ecosystem services are also discussed in the context of biofuel'smore » life cycle. It is estimated that about 280 million metric tons (Mt) of crop residue-based biomass (or 65 Mt of ethanol) and over 150 Mt of energy crop-based ethanol can become available each year, which far exceeds current national fuel ethanol production (<2 Mt year -1) and the 2020 national target of 10 Mt year -1. Review on environmental impacts suggested that substituting fossil fuels with biofuels could significantly reduce greenhouse gas emissions and air pollution (e.g., particulate matter). However, the impacts of biofuel production on biodiversity, water quantity and quality vary greatly among biomass types, land sources and management practices. Improved agricultural management and landscape planning can be beneficial to ecosystem services. Lastly, a national investigation is desirable in China to inventory technical and economic potential of biomass feedstocks and evaluate the impacts of biofuel production on ecosystem services and the environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Zhangcai; Zhuang, Qianlai; Cai, Ximing
We present that bioenergy can be a promising solution to the energy, food and environment trilemma in China. Currently this coal-dependent nation is in urgent need of alternative fuels to secure its future energy and improve the environment. Biofuels derived from crop residues and bioenergy crops emerge as a great addition to renewable energy in China without compromising food production. This paper reviews bioenergy resources from existing conventional crop (e.g., corn, wheat and rice) residues and energy crops (e.g., Miscanthus) produced on marginal lands. The impacts of biofuel production on ecosystem services are also discussed in the context of biofuel'smore » life cycle. It is estimated that about 280 million metric tons (Mt) of crop residue-based biomass (or 65 Mt of ethanol) and over 150 Mt of energy crop-based ethanol can become available each year, which far exceeds current national fuel ethanol production (<2 Mt year -1) and the 2020 national target of 10 Mt year -1. Review on environmental impacts suggested that substituting fossil fuels with biofuels could significantly reduce greenhouse gas emissions and air pollution (e.g., particulate matter). However, the impacts of biofuel production on biodiversity, water quantity and quality vary greatly among biomass types, land sources and management practices. Improved agricultural management and landscape planning can be beneficial to ecosystem services. Lastly, a national investigation is desirable in China to inventory technical and economic potential of biomass feedstocks and evaluate the impacts of biofuel production on ecosystem services and the environment.« less
NASA Astrophysics Data System (ADS)
Alday, Josu G.; Martínez de Aragón, Juan; de-Miguel, Sergio; Bonet, José Antonio
2017-04-01
Mushrooms are important non-wood-forest-products in many Mediterranean ecosystems, being highly vulnerable to climate change. However, the ecological scales of variation of mushroom productivity and diversity, and climate dependence has been usually overlooked due to a lack of available data. We determined the spatio-temporal variability of epigeous sporocarps and the climatic factors driving their fruiting to plan future sustainable management of wild mushrooms production. We collected fruiting bodies in Pinus sylvestris stands along an elevation gradient for 8 consecutive years. Overall, sporocarp biomass was mainly dependent on inter-annual variations, whereas richness was more spatial-scale dependent. Elevation was not significant, but there were clear elevational differences in biomass and richness patterns between ectomycorrhizal and saprotrophic guilds. The main driver of variation was late-summer-early-autumn precipitation. Thus, different scale processes (inter-annual vs. spatial-scale) drive sporocarp biomass and diversity patterns; temporal effects for biomass and ectomycorrhizal fungi vs. spatial scale for diversity and saprotrophic fungi. The significant role of precipitation across fungal guilds and spatio-temporal scales indicates that it is a limiting resource controlling sporocarp production and diversity in Mediterranean regions. The high spatial and temporal variability of mushrooms emphasize the need for long-term datasets of multiple spatial points to effectively characterize fungal fruiting patterns.
The value of agricultural wetlands as invertebrate resources for wintering shorebirds
Taft, Oriane W.; Haig, Susan M.
2005-01-01
Agricultural landscapes have received little recognition for the food resources they provide to wintering waterbirds. In the Willamette Valley of Oregon, modest yet significant populations of wintering shorebirds (Charadriiformes) regularly use hundreds of dispersed wetlands on agricultural lands. Benthic invertebrates are a critical resource for the survival of overwintering shorebirds, yet the abundance of invertebrate resources in agricultural wetlands such as these has not been quantified. To evaluate the importance of agricultural wetlands to a population of wintering shorebirds, the density, biomass, and general community composition of invertebrates available to birds were quantified at a sample of Willamette Valley sites during a wet (1999–2000) and a dry winter (2000–2001). Invertebrate densities ranged among wetlands from 173 to 1925 (mean ± S.E.: 936 ± 106) individuals/m2 in the wet winter, and from 214 to 3484 (1028 ± 155) individuals/m2 in the dry winter. Total invertebrate estimated biomass among wetlands ranged from 35 to 652 (mean ± S.E.: 364 ± 35) mg/m2 in the wet winter, and from 85 to 1405 (437 ± 62) mg/m2 in the dry winter. These estimates for food abundance were comparable to that observed in some other important freshwater wintering regions in North America.
NASA Astrophysics Data System (ADS)
Farji-Brener, Alejandro G.; Lescano, María Natalia
2017-11-01
In arid environments, the high availability of sunlight due to the scarcity of trees suggests that plant competition take place mainly belowground for water and nutrients. However, the occurrence of soil disturbances that increase nutrient availability and thereby promote plant growth may enhance shoot competition between neighboring plants. We conducted a greenhouse experiment to evaluate the influence of the enriched soil patches generated by the leaf-cutting ant, Acromyrmex lobicornis, on the performance of the alien forb Carduus thoermeri (Asteraceae) under different intraspecific competition scenarios. Our results showed that substrate type and competition scenario affected mainly aboveground plant growth. As expected, plants growing without neighbors and in nutrient-rich ant refuse dumps showed more aboveground biomass than plants growing with neighbors and in nutrient-poor steppe soils. However, aboveground competition was more intense in nutrient-poor substrates: plants under shoot and full competition growing in the nutrient-rich ant refuse dumps showed higher biomass than those growing on steppe soils. Belowground biomass was similar among focal plants growing under different substrate type. Our results support the traditional view that increments in resource availability reduce competition intensity. Moreover, the fact that seedlings in this sunny habitat mainly compete aboveground illustrates how limiting factors may be scale-dependent and change in importance as plants grow.
Dielectric properties of biomass and biochar mixtures for bioenergy applications
USDA-ARS?s Scientific Manuscript database
Biomass is an abundant and renewable energy resource, which may be converted into energy-dense products through thermochemical processes such as pyrolysis and gasification. Since microwave heating depends on the dielectric properties of the biomass material, these properties were measured at freque...
NASA Astrophysics Data System (ADS)
Altimir, Nuria; Ibañez, Mercedes; Elbers, Jan; Rota, Cristina; Arias, Claudia; Carrara, Arnaud; Nogues, Salvador; Sebastia, Maria-Teresa
2013-04-01
The net ecosystem exchange (NEE) and the annual C balance of a site are in general modulated by light, temperature and availability of water and other resources to the plants. In grasslands, NEE is expected to depend strongly on the vegetation with a relationship that can be summarized by the above-ground biomass, its amount and dynamics. Any factor controlling the amount of green biomass is expected to have a strong impact on the short-term NEE, such as amount of solar radiation, water availability and grazing pressure. These controls are modulated differently depending on the plant functional type enduring them. Furthermore, as different guilds follow different functional strategies for optimization of the resources, they also present different patterns of change in their capacities such as photosynthetic fixation, belowground C allocation, and C loss via respiration. We examined these relationships at several semi-natural pastures to determine how the seasonal distribution of plant functional types is detected in the short-term ecosystem exchange and what role it plays. We have looked into these patterns to determine the general variation of key processes and whether different temporal patterns arise between different guilds. The study sites are in the Pyrenees, on the mountain pastures of La Bertolina, Alinyà, and Castellar at 1300, 1700, 1900 m a.s.l. respectively. We performed ecosystem-scale flux measurements by means of micrometeorologial stations combined with a thorough description of the vegetation including below- and above-ground biomass and leaf area as well as monitoring of natural abundance of C isotopes, discriminated by plant functional types. We present here the results of the study.
Availability of lignocellulose from forestry waste for use as a biofuel in China.
Xie, Hui; Zhang, Dong; Mao, Guotao; Wang, Fengqin; Song, Andong
2018-05-01
Biomass is a very important renewable energy and plays an important role in the energy structure of China. Here, the role of forestry waste in producing energy in China was analyzed and the availability of forestry waste for biofuel production, theoretically collectable amounts of forest biomass, and density of forestry waste were assessed. Agricultural and forestry waste are important biomass resources. The potential for using forestry waste as a low cost substrate for producing fuel ethanol using existing forestry resources and techniques was analyzed, and the feasibility of producing fuel ethanol in different Chinese provinces was assessed using the specific situation for each province. The results showed that 1081.73 × 10 6 t of forestry waste could be produced in China, and 270.43 × 10 6 t (25% of the amount that could be collected) could be used to produce fuel ethanol. Assuming 10 t of sawdust could be converted into 1 t of ethanol, 27 × 10 6 t of ethanol could be produced from forestry waste. Different provinces have different potentials for producing ethanol from forestry waste, Guangdong Province, Guangxi Province, Sichuan Province, and Yunnan Province having higher potentials than the other provinces. It was predicted that 4478 × 10 6 t of fuel ethanol could be produced from woodcraft waste by 2020, and the provinces with the most potential were found to be Fujian Province, Heilongjiang Province, Jilin Province, Shanxi Province, Sichuan Province, Xinjiang Province, and Yunnan Province. Using forestry waste to produce ethanol could alleviate the energy shortage in China.
Morgan, Hervan Marion; Bu, Quan; Liang, Jianghui; Liu, Yujing; Mao, Hanping; Shi, Aiping; Lei, Hanwu; Ruan, Roger
2017-04-01
Lignocellulosic biomass is an abundant renewable resource and can be efficiently converted into bio-energy by a bio-refinery. From the various techniques available for biomass thermo-chemical conversion; microwave assisted pyrolysis (MAP) seems to be the very promising. The principles of microwave technology were reviewed and the parameters for the efficient production of bio-oil using microwave technology were summarized. Microwave technology by itself cannot efficiently produce high quality bio-oil products, catalysts are used to improve the reaction conditions and selectivity for valued products during MAP. The catalysts used to optimize MAP are revised in the development of this article. The origins for bio-oils that are phenol rich or hydrocarbon rich are reviewed and their experimental results were summarized. The kinetics of MAP is discussed briefly in the development of the article. Future prospects and scientific development of MAP are also considered in the development of this article. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of dispersal on total biomass in a patchy, heterogeneous system: Analysis and experiment.
Zhang, Bo; Liu, Xin; DeAngelis, D L; Ni, Wei-Ming; Wang, G Geoff
2015-06-01
An intriguing recent result from mathematics is that a population diffusing at an intermediate rate in an environment in which resources vary spatially will reach a higher total equilibrium biomass than the population in an environment in which the same total resources are distributed homogeneously. We extended the current mathematical theory to apply to logistic growth and also showed that the result applies to patchy systems with dispersal among patches, both for continuous and discrete time. This allowed us to make specific predictions, through simulations, concerning the biomass dynamics, which were verified by a laboratory experiment. The experiment was a study of biomass growth of duckweed (Lemna minor Linn.), where the resources (nutrients added to water) were distributed homogeneously among a discrete series of water-filled containers in one treatment, and distributed heterogeneously in another treatment. The experimental results showed that total biomass peaked at an intermediate, relatively low, diffusion rate, higher than the total carrying capacity of the system and agreeing with the simulation model. The implications of the experiment to dynamics of source, sink, and pseudo-sink dynamics are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
Mahdavi-Arab, Nafiseh; Meyer, Sebastian T.; Mehrparvar, Mohsen; Weisser, Wolfgang W.
2014-01-01
Plant-herbivore interactions are influenced by host plant quality which in turn is affected by plant growth conditions. Competition is the major biotic and nutrient availability a major abiotic component of a plant’s growth environment. Yet, surprisingly few studies have investigated impacts of competition and nutrient availability on herbivore performance and reciprocal herbivore effects on plants. We studied growth of the specialist aphid, Macrosiphoniella tanacetaria, and its host plant tansy, Tanacetum vulgare, under experimental addition of inorganic and organic fertilizer crossed with competition by goldenrod, Solidago canadensis. Because of evidence that competition by goldenrod is mediated by allelopathic compounds, we also added a treatment with activated carbon. Results showed that fertilization increased, and competition with goldenrod decreased, plant biomass, but this was likely mediated by resource competition. There was no evidence from the activated carbon treatment that allelopathy played a role which instead had a fertilizing effect. Aphid performance increased with higher plant biomass and depended on plant growth conditions, with fertilization and AC increasing, and plant competition decreasing aphid numbers. Feedbacks of aphids on plant performance interacted with plant growth conditions in complex ways depending on the relative magnitude of the effects on plant biomass and aphid numbers. In the basic fertilization treatment, tansy plants profited from increased nutrient availability by accumulating more biomass than they lost due to an increased number of aphids under fertilization. When adding additional fertilizer, aphid numbers increased so high that tansy plants suffered and showed reduced biomass compared with controls without aphids. Thus, the ecological cost of an infestation with aphids depends on the balance of effects of growth conditions on plant and herbivore performance. These results emphasize the importance to investigate both perspectives in plant herbivore interactions and characterize the effects of growth conditions on plant and herbivore performance and their respective feedbacks. PMID:25078980
De Kauwe, Martin G; Medlyn, Belinda E; Zaehle, Sönke; Walker, Anthony P; Dietze, Michael C; Wang, Ying-Ping; Luo, Yiqi; Jain, Atul K; El-Masri, Bassil; Hickler, Thomas; Wårlind, David; Weng, Ensheng; Parton, William J; Thornton, Peter E; Wang, Shusen; Prentice, I Colin; Asao, Shinichi; Smith, Benjamin; McCarthy, Heather R; Iversen, Colleen M; Hanson, Paul J; Warren, Jeffrey M; Oren, Ram; Norby, Richard J
2014-01-01
Elevated atmospheric CO2 concentration (eCO2) has the potential to increase vegetation carbon storage if increased net primary production causes increased long-lived biomass. Model predictions of eCO2 effects on vegetation carbon storage depend on how allocation and turnover processes are represented. We used data from two temperate forest free-air CO2 enrichment (FACE) experiments to evaluate representations of allocation and turnover in 11 ecosystem models. Observed eCO2 effects on allocation were dynamic. Allocation schemes based on functional relationships among biomass fractions that vary with resource availability were best able to capture the general features of the observations. Allocation schemes based on constant fractions or resource limitations performed less well, with some models having unintended outcomes. Few models represent turnover processes mechanistically and there was wide variation in predictions of tissue lifespan. Consequently, models did not perform well at predicting eCO2 effects on vegetation carbon storage. Our recommendations to reduce uncertainty include: use of allocation schemes constrained by biomass fractions; careful testing of allocation schemes; and synthesis of allocation and turnover data in terms of model parameters. Data from intensively studied ecosystem manipulation experiments are invaluable for constraining models and we recommend that such experiments should attempt to fully quantify carbon, water and nutrient budgets. PMID:24844873
NASA Astrophysics Data System (ADS)
Eichman, Joshua David
Renewable resources including wind, solar, geothermal, biomass, hydroelectric, wave and tidal, represent an opportunity for environmentally preferred generation of electricity that also increases energy security and independence. California is very proactive in encouraging the implementation of renewable energy in part through legislation like Assembly Bill 32 and the development and execution of Renewable Portfolio Standards (RPS); however renewable technologies are not without challenges. All renewable resources have some resource limitations, be that from location, capacity, cost or availability. Technologies like wind and solar are intermittent in nature but represent one of the most abundant resources for generating renewable electricity. If RPS goals are to be achieved high levels of intermittent renewables must be considered. This work explores the effects of high penetration of renewables on a grid system, with respect to resource availability and identifies the key challenges from the perspective of the grid to introducing these resources. The HiGRID tool was developed for this analysis because no other tool could explore grid operation, while maintaining system reliability, with a diverse set of renewable resources and a wide array of complementary technologies including: energy efficiency, demand response, energy storage technologies and electric transportation. This tool resolves the hourly operation of conventional generation resources (nuclear, coal, geothermal, natural gas and hydro). The resulting behavior from introducing additional renewable resources and the lifetime costs for each technology is analyzed.
The Trophic Significance of the Indo-Pacific Humpback Dolphin, Sousa chinensis, in Western Taiwan.
Pan, Ching-Wen; Chen, Meng-Hsien; Chou, Lien-Siang; Lin, Hsing-Juh
2016-01-01
Indo-Pacific humpback dolphins (Sousa chinensis) have attracted considerable attention due to their critically endangered status and related conservation issues, but their trophic relationships and ecological significance in coastal ecosystems are poorly understood. For instance, this species is noticeably more abundant in the Xin-Huwei River Estuary (Ex) of Western Taiwan than in the nearby Zhuoshui River Estuary (Ez), though it is unclear why the distribution shows such partitioning. To explore this topic, we conducted field surveys seasonally for two years from 2012 to 2013 and constructed Ecopath models of Ex, Ez, and an offshore site (Dm) to compare energy flow within the food webs. Model comparisons showed that the availability of food resources was the main factor influencing the biomass of Indo-Pacific humpback dolphins. Specifically, its more frequent occurrence in Ex can be attributed to greater phytoplankton production and greater biomasses of macroinvertebrates and prey fish than in the other two areas. An increase in fishing activity might decrease the food availability and, consequently, the biomass of the dolphins. Although the decline in the dolphin population would increase the biomass of some prey fish species, local fishermen might not necessarily benefit from the decline due to the concurrent decrease of highly valued crabs and shrimp. Collectively, our work suggests that the Indo-Pacific humpback dolphin is a keystone species in tropical coastal waters of Taiwan, and thereby exhibit a disproportional large ecological impact given their relatively low abundance.
The Trophic Significance of the Indo-Pacific Humpback Dolphin, Sousa chinensis, in Western Taiwan
Pan, Ching-Wen; Chen, Meng-Hsien; Chou, Lien-Siang; Lin, Hsing-Juh
2016-01-01
Indo-Pacific humpback dolphins (Sousa chinensis) have attracted considerable attention due to their critically endangered status and related conservation issues, but their trophic relationships and ecological significance in coastal ecosystems are poorly understood. For instance, this species is noticeably more abundant in the Xin-Huwei River Estuary (Ex) of Western Taiwan than in the nearby Zhuoshui River Estuary (Ez), though it is unclear why the distribution shows such partitioning. To explore this topic, we conducted field surveys seasonally for two years from 2012 to 2013 and constructed Ecopath models of Ex, Ez, and an offshore site (Dm) to compare energy flow within the food webs. Model comparisons showed that the availability of food resources was the main factor influencing the biomass of Indo-Pacific humpback dolphins. Specifically, its more frequent occurrence in Ex can be attributed to greater phytoplankton production and greater biomasses of macroinvertebrates and prey fish than in the other two areas. An increase in fishing activity might decrease the food availability and, consequently, the biomass of the dolphins. Although the decline in the dolphin population would increase the biomass of some prey fish species, local fishermen might not necessarily benefit from the decline due to the concurrent decrease of highly valued crabs and shrimp. Collectively, our work suggests that the Indo-Pacific humpback dolphin is a keystone species in tropical coastal waters of Taiwan, and thereby exhibit a disproportional large ecological impact given their relatively low abundance. PMID:27780252
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... electricity from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small irrigation..., geothermal energy, solar energy, small irrigation power, municipal solid waste, qualified hydropower... from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and solar energy...
Solar Program Assessment: Environmental Factors - Fuels from Biomass.
ERIC Educational Resources Information Center
Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.
The purpose of this report is to present and prioritize the major environmental issues associated with the further development of biomass production and biomass conversion systems. To provide a background for this environmental analysis, the basic concepts of the technology are reviewed, as are resource requirements. The potential effects of this…
Cass, Cynthia L.; Lavell, Anastasiya A.; Santoro, Nicholas; ...
2016-05-26
Brachypodium distachyon ( Brachypodium) has emerged as a useful model system for studying traits unique to graminaceous species including bioenergy crop grasses owing to its amenability to laboratory experimentation and the availability of extensive genetic and germplasm resources. Considerable natural variation has been uncovered for a variety of traits including flowering time, vernalization responsiveness, and above-ground growth characteristics. However, cell wall composition differences remain underexplored. Therefore, we assessed cell wall-related traits relevant to biomass conversion to biofuels in seven Brachypodium inbred lines that were chosen based on their high level of genotypic diversity as well as available genome sequences andmore » recombinant inbred line (RIL) populations. Senesced stems plus leaf sheaths from these lines exhibited significant differences in acetyl bromide soluble lignin (ABSL), cell wall polysaccharide-derived sugars, hydroxycinnamates content, and syringyl:guaiacyl:p-hydroxyphenyl (S:G:H) lignin ratios. Free glucose, sucrose, and starch content also differed significantly in senesced stems, as did the amounts of sugars released from cell wall polysaccharides (digestibility) upon exposure to a panel of thermochemical pretreatments followed by hydrolytic enzymatic digestion. Correlations were identified between inbred line lignin compositions and plant growth characteristics such as biomass accumulation and heading date (HD), and between amounts of cell wall polysaccharides and biomass digestibility. Finally, stem cell wall p-coumarate and ferulate contents and free-sugars content changed significantly with increased duration of vernalization for some inbred lines. Taken together, these results show that Brachypodium displays substantial phenotypic variation with respect to cell wall composition and biomass digestibility, with some compositional differences correlating with growth characteristics. Moreover, besides influencing HD and biomass accumulation, vernalization was found to affect cell wall composition and free sugars accumulation in some Brachypodium inbred lines, suggesting genetic differences in how vernalization affects carbon flux to polysaccharides. Lastly, the availability of related RIL populations will allow for the genetic and molecular dissection of this natural variation, the knowledge of which may inform ways to genetically improve bioenergy crop grasses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cass, Cynthia L.; Lavell, Anastasiya A.; Santoro, Nicholas
Brachypodium distachyon ( Brachypodium) has emerged as a useful model system for studying traits unique to graminaceous species including bioenergy crop grasses owing to its amenability to laboratory experimentation and the availability of extensive genetic and germplasm resources. Considerable natural variation has been uncovered for a variety of traits including flowering time, vernalization responsiveness, and above-ground growth characteristics. However, cell wall composition differences remain underexplored. Therefore, we assessed cell wall-related traits relevant to biomass conversion to biofuels in seven Brachypodium inbred lines that were chosen based on their high level of genotypic diversity as well as available genome sequences andmore » recombinant inbred line (RIL) populations. Senesced stems plus leaf sheaths from these lines exhibited significant differences in acetyl bromide soluble lignin (ABSL), cell wall polysaccharide-derived sugars, hydroxycinnamates content, and syringyl:guaiacyl:p-hydroxyphenyl (S:G:H) lignin ratios. Free glucose, sucrose, and starch content also differed significantly in senesced stems, as did the amounts of sugars released from cell wall polysaccharides (digestibility) upon exposure to a panel of thermochemical pretreatments followed by hydrolytic enzymatic digestion. Correlations were identified between inbred line lignin compositions and plant growth characteristics such as biomass accumulation and heading date (HD), and between amounts of cell wall polysaccharides and biomass digestibility. Finally, stem cell wall p-coumarate and ferulate contents and free-sugars content changed significantly with increased duration of vernalization for some inbred lines. Taken together, these results show that Brachypodium displays substantial phenotypic variation with respect to cell wall composition and biomass digestibility, with some compositional differences correlating with growth characteristics. Moreover, besides influencing HD and biomass accumulation, vernalization was found to affect cell wall composition and free sugars accumulation in some Brachypodium inbred lines, suggesting genetic differences in how vernalization affects carbon flux to polysaccharides. Lastly, the availability of related RIL populations will allow for the genetic and molecular dissection of this natural variation, the knowledge of which may inform ways to genetically improve bioenergy crop grasses.« less
Resource-mediated indirect effects of grassland management on arthropod diversity.
Simons, Nadja K; Gossner, Martin M; Lewinsohn, Thomas M; Boch, Steffen; Lange, Markus; Müller, Jörg; Pašalić, Esther; Socher, Stephanie A; Türke, Manfred; Fischer, Markus; Weisser, Wolfgang W
2014-01-01
Intensive land use is a driving force for biodiversity decline in many ecosystems. In semi-natural grasslands, land-use activities such as mowing, grazing and fertilization affect the diversity of plants and arthropods, but the combined effects of different drivers and the chain of effects are largely unknown. In this study we used structural equation modelling to analyse how the arthropod communities in managed grasslands respond to land use and whether these responses are mediated through changes in resource diversity or resource quantity (biomass). Plants were considered resources for herbivores which themselves were considered resources for predators. Plant and arthropod (herbivores and predators) communities were sampled on 141 meadows, pastures and mown pastures within three regions in Germany in 2008 and 2009. Increasing land-use intensity generally increased plant biomass and decreased plant diversity, mainly through increasing fertilization. Herbivore diversity decreased together with plant diversity but showed no response to changes in plant biomass. Hence, land-use effects on herbivore diversity were mediated through resource diversity rather than quantity. Land-use effects on predator diversity were mediated by both herbivore diversity (resource diversity) and herbivore quantity (herbivore biomass), but indirect effects through resource quantity were stronger. Our findings highlight the importance of assessing both direct and indirect effects of land-use intensity and mode on different trophic levels. In addition to the overall effects, there were subtle differences between the different regions, pointing to the importance of regional land-use specificities. Our study underlines the commonly observed strong effect of grassland land use on biodiversity. It also highlights that mechanistic approaches help us to understand how different land-use modes affect biodiversity.
Resource-Mediated Indirect Effects of Grassland Management on Arthropod Diversity
Simons, Nadja K.; Gossner, Martin M.; Lewinsohn, Thomas M.; Boch, Steffen; Lange, Markus; Müller, Jörg; Pašalić, Esther; Socher, Stephanie A.; Türke, Manfred; Fischer, Markus; Weisser, Wolfgang W.
2014-01-01
Intensive land use is a driving force for biodiversity decline in many ecosystems. In semi-natural grasslands, land-use activities such as mowing, grazing and fertilization affect the diversity of plants and arthropods, but the combined effects of different drivers and the chain of effects are largely unknown. In this study we used structural equation modelling to analyse how the arthropod communities in managed grasslands respond to land use and whether these responses are mediated through changes in resource diversity or resource quantity (biomass). Plants were considered resources for herbivores which themselves were considered resources for predators. Plant and arthropod (herbivores and predators) communities were sampled on 141 meadows, pastures and mown pastures within three regions in Germany in 2008 and 2009. Increasing land-use intensity generally increased plant biomass and decreased plant diversity, mainly through increasing fertilization. Herbivore diversity decreased together with plant diversity but showed no response to changes in plant biomass. Hence, land-use effects on herbivore diversity were mediated through resource diversity rather than quantity. Land-use effects on predator diversity were mediated by both herbivore diversity (resource diversity) and herbivore quantity (herbivore biomass), but indirect effects through resource quantity were stronger. Our findings highlight the importance of assessing both direct and indirect effects of land-use intensity and mode on different trophic levels. In addition to the overall effects, there were subtle differences between the different regions, pointing to the importance of regional land-use specificities. Our study underlines the commonly observed strong effect of grassland land use on biodiversity. It also highlights that mechanistic approaches help us to understand how different land-use modes affect biodiversity. PMID:25188423
Rubio, K S; Ajemian, M; Stunz, G W; Palmer, T A; Lebreton, B; Beseres Pollack, J
2018-06-22
The Baffin Bay estuary is a hypersaline system in the Gulf of Mexico that supports an important recreational and commercial fishery for black drum Pogonias cromis, a benthic predator. Seasonal measurements of water quality variables, benthic macrofauna densities and biomass, and determination of P. cromis food sources using stomach-content and stable-isotope analyses were carried out to determine how P. cromis food sources change with water quality and how this may affect P. cromis diet. Gut-content analysis indicated P. cromis selectively consumed bivalves Mulinia lateralis and Anomalocardia auberiana. Isotope compositions demonstrated that P. cromis relied on these benthic food resources produced in the Baffin Bay estuary year-round. Biomass and densities of these bivalves were influenced by changes in water quality variables, particularly salinity and dissolved oxygen. Thus, this paper demonstrates the relationship between water quality variables, benthic macrofauna, and their use as food resources by a carnivorous fish species, and emphasizes the need for integrated assessments when studying the effects of water quality on ecosystem function. Holistic approaches such as these can provide important information for management and conservation of fishery resources and can improve predictions of ecosystem response to climate variability. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Olenicki, Thomas J.; Irby, Lynn R.
2005-01-01
4. Estimate annual production and standing crop available during non-growing seasons for herbaceous and shrub layers in major habitat types in the Hayden Valley. Our efforts to describe forage use by bison focused on assessing finer scale habitat use is a core summer range for bison in YNP. We also collected information on bison food habits and forage quality to begin to explain the “whys” of bison distribution. Short-term impacts of bison forage utilization were addressed by comparing standing biomass in plots protected from grazing with plots exposed to grazing. Historical data were not available to directly address long-term effects of ungulate foraging in the Hayden Valley, but we were able to indirectly assess some aspects of this question by determining the frequency of repeat grazing over a 3-year period and the rate at which trees along the margins of the Hayden Valley were being killed by bison rubbing The third objective, determining the relative efficacy of different vegetation monitoring approaches, was accomplished by comparing estimates of standing biomass and biomas: utilization obtained via conventional exclosure techniques with estimates based on remote sensing techniques (ground-based and satellite-borne multi-spectral radiometry|[MSR]). We addressed efficacy in terms of precision and accuracy of estimates, reliability, and logistical costs at different coverage scales. The fourth objective, estimation of forage available for ungulates in the Hayden Valley, was achieved using conventional exclosure methodology and remote sensing. We were able to estimate herbaceous biomass production during 3 different years. Exclosures allowed us to estimated changes instanding crop of herbaceous vegetation at the plant community (conventional cover types, moisture plant growth form groups, and communities defined by dominant graminoids) and catena (a repeating sequence of communities tied to landscape physiognomy) scales. We developed empirical approaches that allowed us to estimate standing biomass of herbaceous plants from reflectance data obtained from ground-based and satellite-borne multi-spectral radiometry (MSR) units. We demonstrated the potential to estimate biomass of shrubs using the same approaches. We did not have time and resources to complete vegetation maps that would optimize estimates from remote sources, but we have outlined procedures that can be followed in the future to obtain biomass estimates at the landscape scale.
New Prospective for Enhancement in Bioenergy Resources Through Fungal Engineering.
Azmat, Rafia; Moin, Sumeira; Saleem, Ailyan; Hamid, Neelofer; Khursheed, Anum; Ahmed, Waseem
2018-01-01
Lignin and cellulose, organic constituents of the plant or plant-based material not commonly used for feeding purpose are referred as Biomass. Patents suggest that this can be used as the best resource of renewable energy. Vesicular Arbuscular Mycorrhizae (VAM) fungi can play an effective role in biomass manufacturing through activated metabolism of the plant under dual symbiosis. During C acclimatization, mycorrhizal inoculated plants existent greater number of leaves with a height of plants as compared to non-mycorrhizal plants. The current article discloses the search of the natural resources for C assimilation into biomass using mycorrhizal symbiosis. The pot experiment was conducted in the natural environment for extraction of more bioenergy through biomass of Conocarpus erectus L under VAM (Glomus fasciculatum) inoculation in various environmental conditions with replicates. It observed that these fungal engineered plants showed distinctive prospective to offer, enhanced biomass to energy couple with a strong network for sinking CO2 from the atmosphere via strong roots and large surface area of leaves. There was an increase in biomass (9-17% respectively) of the plant under drought-VAM, VAM inoculation and VAM- enriched CO2 conditions in same period in comparison to control plants through lignin, cellulose and carbohydrate contents. It was followed by enhanced enzyme activities and nutrient ions in dual symbiosis. Coupling biomass-originated energy may recover environmental conditions and commercial value for sustainable growth in energy consumption sector. The green energy from fungal engineered plants may replace high demand of fossil fuel as a young biofuel and make the cities more productive in the fabrication of bioenergy too in the form of biomass or biofuel with C impartial atmosphere. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
The importance of the wood biomass in environment protection
NASA Astrophysics Data System (ADS)
Spîrchez, Cosmin; Lunguleasa, Aurel; Croitoru, Cǎtǎlin
2017-12-01
Biomass is a natural vegetal component. As a form of storing energy is chemical form sun, biomass is one of the most popular and universal resource on Earth. Today biomass fuel can be used for various purposes from room heating to produce electricity and fuel for cars. Biomass is presented in various form for energy, including biodegradable fraction of products, remains and waste from agricultural, forestry and industrial wood processing residues from factories paste stationery and paper, remnants of industrial.
Review of biomass as a source of energy for Poland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leszczynski, S.; Brzychczyk, P.; Sekula, R.
To the present day, biomass has not been considered as an energy source for Poland, and over 95% of energy is generated through fossil fuel combustion. However, it is necessary to search for new energy sources because of high prices of traditional energy carriers and massive environmental pollution caused by these fuels. Biomass seems to be one of the best renewable energy sources. Basic components of biomass in Poland and estimations of energetic resources of biomass are presented.
NASA Astrophysics Data System (ADS)
Ismayilova, Rubaba Mammad
The increasing U.S. dependence on imported oil; the contribution of fossil fuels to the greenhouse gas emissions and the climate change issue; the current level of energy prices and other environmental concerns have increased world interest in renewable energy sources. Biomass is a large, diverse, readily exploitable resource. This dissertation examines the biomass potential in Eastern Texas by examining a 44 county region. This examination considers the potential establishment of a 100-megawatt (MW) power plant and a 20 million gallon per year (MMGY) ethanol plant using lignocellulosic biomass. The biomass sources considered are switchgrass, sugarcane bagasse, and logging residues. In the case of electricity generation, co-firing scenarios are also investigated. The research analyzes the key indicators involved with economic costs and benefits, environmental and social impacts. The bioenergy production possibilities considered here were biofeedstock supported electric power and cellulosic ethanol production. The results were integrated into a comprehensive set of information that addresses the effects of biomass energy development in the region. The analysis indicates that none of the counties in East Texas have sufficient biomass to individually sustain either a 100% biomass fired power plant or the cellulosic ethanol plant. Such plants would only be feasible at the regional level. Co-firing biomass with coal, however, does provide a most attractive alternative for the study region. The results indicate further that basing the decision solely on economics of feedstock availability and costs would suggest that bioenergy, as a renewable energy, is not a viable energy alternative. Accounting for some environmental and social benefits accruing to the region from bioenergy production together with the feedstock economics, however, suggests that government subsidies, up to the amount of accruing benefits, could make the bioenergies an attractive business opportunity for local farmers and investors.
Optimizing pneumatic conveying of biomass materials
NASA Astrophysics Data System (ADS)
DiCianni, Matthew Edward Michael
2011-12-01
Biomass is a readily available but underutilized energy resource. One of the main challenges is the inability of biomass feed stocks like corn stover or wood chips to flow freely without intermittent jamming. This research integrated an automated pneumatic conveying system to efficiently transport biomass into a biomass reactor. Material was held in a storage container until an end effector attached to a 3-axis controller engaged the material to flow through pneumatic vacuum in the carrier fluid of air. The material was disengaged from the carrier fluid through centripetal forces induced by a cyclone separator. As the air was pulled out of the cyclone, the biomass drops out the bottom due to gravitational forces and fell into a secondary storage hopper. The second storage container was for testing purposes only, where the actual apparatus would use a vertically oriented lock hopper to feed material into the biomass reactor. In the experimental test apparatus, sensors measured the storage hopper weight (mass-flow rate), pressure drop from the blower, and input power consumption of the motor. Parameters that were adjusted during testing include pipe diameter, material type, and motor speed. Testing indicated that decreasing the motor speed below its maximum still allows for conveyance of the material without blockage forming in the piping. The data shows that the power consumption of the system can be reduced based on the size and weight of the material introduced to the conveying pipe. Also, conveying certain materials proved to be problematic with particular duct diameters. Ultimately, an optimal duct diameter that can perform efficiently for a broad range of materials was chosen for the given system. Through these improvements, the energy return on investment will be improved for biomass feed stocks, which is taking a step in the right direction to secure the nation's energy independence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
L.T. Rader
Kudzu is an exotic vine that threatens the forests of the southern U.S. Five herbicides were tested with regard to their efficacy in controlling kudzu, community recover was monitored, and interactions with planted pines were studied. The sites selected were old farm sites dominated by kudzu.These were burned following herbicide treatment. The herbicides included triclopyr, clopyralid, metsulfuron, tebuthiuron, and picloram plus 2,4-D. Pine seedlings were planted the following year. Regression equations were developed for predicting biomass and leaf area. Four distinct plant communities resulted from the treatments. The untreated check continued to be kudzu dominated. Blackberry dominated the clopyradid treatment.more » Metsulfron, trychlopyr and picloram treated sites resulted in herbaceous dominated communities. The tebuthiuron treatment maintained all vegetation low.« less
Saini, Jitendra Kumar; Saini, Reetu; Tewari, Lakshmi
2015-08-01
Production of liquid biofuels, such as bioethanol, has been advocated as a sustainable option to tackle the problems associated with rising crude oil prices, global warming and diminishing petroleum reserves. Second-generation bioethanol is produced from lignocellulosic feedstock by its saccharification, followed by microbial fermentation and product recovery. Agricultural residues generated as wastes during or after processing of agricultural crops are one of such renewable and lignocellulose-rich biomass resources available in huge amounts for bioethanol production. These agricultural residues are converted to bioethanol in several steps which are described here. This review enlightens various steps involved in production of the second-generation bioethanol. Mechanisms and recent advances in pretreatment, cellulases production and second-generation ethanol production processes are described here.
Immunological Approaches to Biomass Characterization and Utilization
Pattathil, Sivakumar; Avci, Utku; Zhang, Tiantian; Cardenas, Claudia L.; Hahn, Michael G.
2015-01-01
Plant biomass is the major renewable feedstock resource for sustainable generation of alternative transportation fuels to replace fossil carbon-derived fuels. Lignocellulosic cell walls are the principal component of plant biomass. Hence, a detailed understanding of plant cell wall structure and biosynthesis is an important aspect of bioenergy research. Cell walls are dynamic in their composition and structure, varying considerably among different organs, cells, and developmental stages of plants. Hence, tools are needed that are highly efficient and broadly applicable at various levels of plant biomass-based bioenergy research. The use of plant cell wall glycan-directed probes has seen increasing use over the past decade as an excellent approach for the detailed characterization of cell walls. Large collections of such probes directed against most major cell wall glycans are currently available worldwide. The largest and most diverse set of such probes consists of cell wall glycan-directed monoclonal antibodies (McAbs). These McAbs can be used as immunological probes to comprehensively monitor the overall presence, extractability, and distribution patterns among cell types of most major cell wall glycan epitopes using two mutually complementary immunological approaches, glycome profiling (an in vitro platform) and immunolocalization (an in situ platform). Significant progress has been made recently in the overall understanding of plant biomass structure, composition, and modifications with the application of these immunological approaches. This review focuses on such advances made in plant biomass analyses across diverse areas of bioenergy research. PMID:26579515
Tomlinson, Kyle W; van Langevelde, Frank; Ward, David; Bongers, Frans; da Silva, Dulce Alves; Prins, Herbert H T; de Bie, Steven; Sterck, Frank J
2013-08-01
Biomass partitioning for resource conservation might affect plant allometry, accounting for a substantial amount of unexplained variation in existing plant allometry models. One means of resource conservation is through direct allocation to storage in particular organs. In this study, storage allocation and biomass allometry of deciduous and evergreen tree species from seasonal environments were considered. It was expected that deciduous species would have greater allocation to storage in roots to support leaf regrowth in subsequent growing seasons, and consequently have lower scaling exponents for leaf to root and stem to root partitioning, than evergreen species. It was further expected that changes to root carbohydrate storage and biomass allometry under different soil nutrient supply conditions would be greater for deciduous species than for evergreen species. Root carbohydrate storage and organ biomass allometries were compared for juveniles of 20 savanna tree species of different leaf habit (nine evergreen, 11 deciduous) grown in two nutrient treatments for periods of 5 and 20 weeks (total dry mass of individual plants ranged from 0·003 to 258·724 g). Deciduous species had greater root non-structural carbohydrate than evergreen species, and lower scaling exponents for leaf to root and stem to root partitioning than evergreen species. Across species, leaf to stem scaling was positively related, and stem to root scaling was negatively related to root carbohydrate concentration. Under lower nutrient supply, trees displayed increased partitioning to non-structural carbohydrate, and to roots and leaves over stems with increasing plant size, but this change did not differ between leaf habits. Substantial unexplained variation in biomass allometry of woody species may be related to selection for resource conservation against environmental stresses, such as resource seasonality. Further differences in plant allometry could arise due to selection for different types of biomass allocation in response to different environmental stressors (e.g. fire vs. herbivory).
DOE Office of Scientific and Technical Information (OSTI.GOV)
David J. Muth, Jr.; Matthew H. Langholtz; Eric C. D. Tan
The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advancesmore » in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to the conversion facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muth, jr., David J.; Langholtz, Matthew H.; Tan, Eric
2014-03-31
The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advancesmore » in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to the conversion facility.« less
Modelling Water Uptake Provides a New Perspective on Grass and Tree Coexistence
2015-01-01
Root biomass distributions have long been used to infer patterns of resource uptake. These patterns are used to understand plant growth, plant coexistence and water budgets. Root biomass, however, may be a poor indicator of resource uptake because large roots typically do not absorb water, fine roots do not absorb water from dry soils and roots of different species can be difficult to differentiate. In a sub-tropical savanna, Kruger Park, South Africa, we used a hydrologic tracer experiment to describe the abundance of active grass and tree roots across the soil profile. We then used this tracer data to parameterize a water movement model (Hydrus 1D). The model accounted for water availability and estimated grass and tree water uptake by depth over a growing season. Most root biomass was found in shallow soils (0–20 cm) and tracer data revealed that, within these shallow depths, half of active grass roots were in the top 12 cm while half of active tree roots were in the top 21 cm. However, because shallow soils provided roots with less water than deep soils (20–90 cm), the water movement model indicated that grass and tree water uptake was twice as deep as would be predicted from root biomass or tracer data alone: half of grass and tree water uptake occurred in the top 23 and 43 cm, respectively. Niche partitioning was also greater when estimated from water uptake rather than tracer uptake. Contrary to long-standing assumptions, shallow grass root distributions absorbed 32% less water than slightly deeper tree root distributions when grasses and trees were assumed to have equal water demands. Quantifying water uptake revealed deeper soil water uptake, greater niche partitioning and greater benefits of deep roots than would be estimated from root biomass or tracer uptake data alone. PMID:26633177
Size, age, and habitat determine effectiveness of Palau's Marine Protected Areas
Golbuu, Yimnang; Ballesteros, Enric; Caselle, Jennifer E.; Gouezo, Marine; Olsudong, Dawnette; Sala, Enric
2017-01-01
Palau has a rich heritage of conservation that has evolved from the traditional moratoria on fishing, or “bul”, to more western Marine Protected Areas (MPAs), while still retaining elements of customary management and tenure. In 2003, the Palau Protected Areas Network (PAN) was created to conserve Palau’s unique biodiversity and culture, and is the country’s mechanism for achieving the goals of the Micronesia Challenge (MC), an initiative to conserve ≥30% of near-shore marine resources within the region by 2020. The PAN comprises a network of numerous MPAs within Palau that vary in age, size, level of management, and habitat, which provide an excellent opportunity to test hypotheses concerning MPA design and function using multiple discreet sampling units. Our sampling design provided a robust space for time comparison to evaluate the relative influence of potential drivers of MPA efficacy. Our results showed that no-take MPAs had, on average, nearly twice the biomass of resource fishes (i.e. those important commercially, culturally, or for subsistence) compared to nearby unprotected areas. Biomass of non-resource fishes showed no differences between no-take areas and areas open to fishing. The most striking difference between no-take MPAs and unprotected areas was the more than 5-fold greater biomass of piscivorous fishes in the MPAs compared to fished areas. The most important determinates of no-take MPA success in conserving resource fish biomass were MPA size and years of protection. Habitat and distance from shore had little effect on resource fish biomass. The extensive network of MPAs in Palau likely provides important conservation and tourism benefits to the Republic, and may also provide fisheries benefits by protecting spawning aggregation sites, and potentially through adult spillover. PMID:28358910
NASA Astrophysics Data System (ADS)
Reyes, J. J.; Adam, J. C.; Tague, C.
2016-12-01
Grasslands play an important role in agricultural production as forage for livestock; they also provide a diverse set of ecosystem services including soil carbon (C) storage. The partitioning of C between above and belowground plant compartments (i.e. allocation) is influenced by both plant characteristics and environmental conditions. The objectives of this study are to 1) develop and evaluate a hybrid C allocation strategy suitable for grasslands, and 2) apply this strategy to examine the importance of various parameters related to biogeochemical cycling, photosynthesis, allocation, and soil water drainage on above and belowground biomass. We include allocation as an important process in quantifying the model parameter uncertainty, which identifies the most influential parameters and what processes may require further refinement. For this, we use the Regional Hydro-ecologic Simulation System, a mechanistic model that simulates coupled water and biogeochemical processes. A Latin hypercube sampling scheme was used to develop parameter sets for calibration and evaluation of allocation strategies, as well as parameter uncertainty analysis. We developed the hybrid allocation strategy to integrate both growth-based and resource-limited allocation mechanisms. When evaluating the new strategy simultaneously for above and belowground biomass, it produced a larger number of less biased parameter sets: 16% more compared to resource-limited and 9% more compared to growth-based. This also demonstrates its flexible application across diverse plant types and environmental conditions. We found that higher parameter importance corresponded to sub- or supra-optimal resource availability (i.e. water, nutrients) and temperature ranges (i.e. too hot or cold). For example, photosynthesis-related parameters were more important at sites warmer than the theoretical optimal growth temperature. Therefore, larger values of parameter importance indicate greater relative sensitivity in adequately representing the relevant process to capture limiting resources or manage atypical environmental conditions. These results may inform future experimental work by focusing efforts on quantifying specific parameters under various environmental conditions or across diverse plant functional types.
Sources of biomass feedstock variability and the potential impact on biofuels production
Williams, C. Luke; Westover, Tyler L.; Emerson, Rachel M.; ...
2015-11-23
In this study, terrestrial lignocellulosic biomass has the potential to be a carbon neutral and domestic source of fuels and chemicals. However, the innate variability of biomass resources, such as herbaceous and woody materials, and the inconsistency within a single resource due to disparate growth and harvesting conditions, presents challenges for downstream processes which often require materials that are physically and chemically consistent. Intrinsic biomass characteristics, including moisture content, carbohydrate and ash compositions, bulk density, and particle size/shape distributions are highly variable and can impact the economics of transforming biomass into value-added products. For instance, ash content increases by anmore » order of magnitude between woody and herbaceous feedstocks (from ~0.5 to 5 %, respectively) while lignin content drops by a factor of two (from ~30 to 15 %, respectively). This increase in ash and reduction in lignin leads to biofuel conversion consequences, such as reduced pyrolysis oil yields for herbaceous products as compared to woody material. In this review, the sources of variability for key biomass characteristics are presented for multiple types of biomass. Additionally, this review investigates the major impacts of the variability in biomass composition on four conversion processes: fermentation, hydrothermal liquefaction, pyrolysis, and direct combustion. Finally, future research processes aimed at reducing the detrimental impacts of biomass variability on conversion to fuels and chemicals are proposed.« less
Mark Kimsey; Deborah Page-Dumroese; Mark Coleman
2011-01-01
Biomass harvesting for energy production and forest health can impact the soil resource by altering inherent chemical, physical and biological properties. These impacts raise concern about damaging sensitive forest soils, even with the prospect of maintaining vigorous forest growth through biomass harvesting operations. Current forest biomass harvesting research...
Biomass consumption during prescribed fires in big sagebrush ecosystems
Clinton S. Wright; Susan J. Prichard
2006-01-01
Big sagebrush (Artemisia tridentata) ecosystems typically experience stand replacing fires during which some or all of the ignited biomass is consumed. Biomass consumption is directly related to the energy released during a fire, and is an important factor that determines smoke production and the effects of fire on other resources. Consumption of...
NASA Astrophysics Data System (ADS)
Carozza, D. A.; Bianchi, D.; Galbraith, E. D.
2015-12-01
Environmental change and the exploitation of marine resources have had profound impacts on marine communities, with potential implications for ocean biogeochemistry and food security. In order to study such global-scale problems, it is helpful to have computationally efficient numerical models that predict the first-order features of fish biomass production as a function of the environment, based on empirical and mechanistic understandings of marine ecosystems. Here we describe the ecological module of the BiOeconomic mArine Trophic Size-spectrum (BOATS) model, which takes an Earth-system approach to modeling fish biomass at the global scale. The ecological model is designed to be used on an Earth System model grid, and determines size spectra of fish biomass by explicitly resolving life history as a function of local temperature and net primary production. Biomass production is limited by the availability of photosynthetic energy to upper trophic levels, following empirical trophic efficiency scalings, and by well-established empirical temperature-dependent growth rates. Natural mortality is calculated using an empirical size-based relationship, while reproduction and recruitment depend on both the food availability to larvae from net primary production and the production of eggs by mature adult fish. We describe predicted biomass spectra and compare them to observations, and conduct a sensitivity study to determine how the change as a function of net primary production and temperature. The model relies on a limited number of parameters compared to similar modeling efforts, while retaining realistic representations of biological and ecological processes, and is computationally efficient, allowing extensive parameter-space analyses even when implemented globally. As such, it enables the exploration of the linkages between ocean biogeochemistry, climate, and upper trophic levels at the global scale, as well as a representation of fish biomass for idealized studies of fisheries.
NASA Astrophysics Data System (ADS)
Carozza, David Anthony; Bianchi, Daniele; Galbraith, Eric Douglas
2016-04-01
Environmental change and the exploitation of marine resources have had profound impacts on marine communities, with potential implications for ocean biogeochemistry and food security. In order to study such global-scale problems, it is helpful to have computationally efficient numerical models that predict the first-order features of fish biomass production as a function of the environment, based on empirical and mechanistic understandings of marine ecosystems. Here we describe the ecological module of the BiOeconomic mArine Trophic Size-spectrum (BOATS) model, which takes an Earth-system approach to modelling fish biomass at the global scale. The ecological model is designed to be used on an Earth-system model grid, and determines size spectra of fish biomass by explicitly resolving life history as a function of local temperature and net primary production. Biomass production is limited by the availability of photosynthetic energy to upper trophic levels, following empirical trophic efficiency scalings, and by well-established empirical temperature-dependent growth rates. Natural mortality is calculated using an empirical size-based relationship, while reproduction and recruitment depend on both the food availability to larvae from net primary production and the production of eggs by mature adult fish. We describe predicted biomass spectra and compare them to observations, and conduct a sensitivity study to determine how they change as a function of net primary production and temperature. The model relies on a limited number of parameters compared to similar modelling efforts, while retaining reasonably realistic representations of biological and ecological processes, and is computationally efficient, allowing extensive parameter-space analyses even when implemented globally. As such, it enables the exploration of the linkages between ocean biogeochemistry, climate, and upper trophic levels at the global scale, as well as a representation of fish biomass for idealized studies of fisheries.
Soil and land management in a circular economy.
Breure, A M; Lijzen, J P A; Maring, L
2018-05-15
This article elaborates the role of soil and land management in a circular economy. The circular economy is highly dependent on the functioning of soils and land for the production of food and other biomass; the storage, filtration and transformation of many substances including water, carbon, and nitrogen; the provision of fresh mineral resources and fossil fuels; and the use of their functions as the platform for nature and human activities. Resource demand is increasing as a result of the growing human population. In addition to the shrinking availability of resources resulting from their unsustainable use in the past, our planet's diminishing potential for resource production, due to a range of reasons, is leading to resource scarcity, especially in the case of depletable resources. As an economic system that focuses on maximizing the reuse of resources and products and minimizing their depreciation, the circular economy greatly influences, and depends on, soil and land management. The concise management of the resources, land and soil is thus necessary, to make a circular economy successful. Copyright © 2017 Elsevier B.V. All rights reserved.
Cutting, Kyle A.; Anderson, Michelle L.; Beever, Erik; Schroff, Sean; Korb, Nathan; Klaphake, Eric; McWilliams, Scott R.
2016-01-01
Seasonal fluctuations in food availability can affect diets of consumers, which in turn may influence the physiological state of individuals and shape intra- and inter-specific patterns of resource use. High-elevation ecosystems often exhibit a pronounced seasonal “pulse” in productivity, although few studies document how resource use and energetic condition by avian consumers change in relation to food-resource availability in these ecosystems. We tested the hypothesis that seasonal increases (pulses) in food resources in high-elevation sagebrush ecosystems result in 2 changes after the pulse, relative to the before-pulse period: (1) reduced diet breadth of, and overlap between, 2 sympatric sparrow species; and (2) enhanced energetic condition in both species. We tracked breeding-season diets using stable isotopes and energetic condition using plasma metabolites of Brewer's Sparrows (Spizella breweri), Vesper Sparrows (Pooecetes gramineus), and their food resources during 2011, and of only Brewer's Sparrows and their food resources during 2013. We quantify diet breadth and overlap between both species, along with coincident physiological consequences of temporal changes in resource use. After invertebrate biomass increased following periods of rainfall in 2011, dietary breadth decreased by 35% in Brewer's Sparrows and by 48% in Vesper Sparrows, while dietary overlap decreased by 88%. Energetic condition of both species increased when dietary overlap was lower and diet breadth decreased, after the rapid rise of food-resource availability. However, energetic condition of Brewer's Sparrows remained constant in 2013, a year with low precipitation and lack of a strong pulse in food resources, even though the species' dietary breadth again decreased that year. Our results indicate that diet breadth and overlap in these sparrow species inhabiting sagebrush ecosystems generally varied as predicted in relation to intra- and interannual changes in food resources, and this difference in diet was associated with improved energetic condition of sparrows at least in one year.
External benefits of biomass-e in Spain: an economic valuation.
Soliño, Mario
2010-03-01
This article analyses the willingness to pay for a program that promotes the production of electricity from forest biomass, instead of that based on fossil fuels. The program decreases greenhouse gas emissions, reduces the pressure on non-renewable resources, lowers the risk of summer forest fires, creates employment in rural areas. Results from a choice experiment show that consumers are willing to pay a higher price for electricity in order to obtain the external benefits of the substitution. Respondents attach a higher value to programs that decrease the pressure of non-renewable resources and the risk of forest fires. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venteris, Erik R.; Skaggs, Richard; Wigmosta, Mark S.
Algae’s high productivity provides potential resource advantages over other fuel crops. However, demand for land, water, and nutrients must be minimized to avoid impacts on food production. We apply our national-scale, open-pond, growth and resource models to assess several biomass to fuel technological pathways based on Chlorella. We compare resource demands between hydrothermal liquefaction (HTL) and lipid extraction (LE) to meet 1.89E+10 and 7.95E+10 L yr-1 biofuel targets. We estimate nutrient demands where post-fuel biomass is consumed as co-products and recycling by anaerobic digestion (AD) or catalytic hydrothermal gasification (CHG). Sites are selected through prioritization based on fuel value relativemore » to a set of site-specific resource costs. The highest priority sites are located along the Gulf of Mexico coast, but potential sites exist nationwide. We find that HTL reduces land and freshwater consumption by up to 46% and saline groundwater by around 70%. Without recycling, nitrogen (N) and phosphorous (P) demand is reduced 33%, but is large relative to current U.S. agricultural consumption. The most nutrient-efficient pathways are LE+CHG for N and HTL+CHG for P (by 42%). Resource gains for HTL+CHG are offset by a 344% increase in N consumption relative to LE+CHG (with potential for further recycling). Nutrient recycling is essential to effective use of alternative nutrient sources. Modeling of utilization availability and costs remains, but we find that for HTL+CHG at the 7.95E+10 L yr-1 production target, municipal sources can offset 17% of N and 40% of P demand and animal manures can generally meet demands.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zygarlicke, C J; Schmidt, D D; Olson, E S
Biomass utilization is one solution to our nation’s addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area ofmore » developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nation’s reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with, or even replace, petroleum and other fossil fuels in the near future. It is a primary domestic, sustainable, renewable energy resource that can supply liquid transportation fuels, chemicals, and energy that are currently produced from fossil sources, and it is a sustainable resource for a hydrogen-based economy in the future.« less
2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy (Executive Summary)
Langholtz, Matthew; Stokes, Bryce; Eaton, Laurence
2016-10-01
We report that consumption of renewable energy in the United States is the highest in history, contributing to energy security, greenhouse gas reductions, and other social, economic, and environmental benefits. The largest single source of renewable energy is biomass, representing 3.9 quadrillion of 9.6 quadrillion British thermal units (Btu) in 2015. Biomass includes agricultural and forestry resources, municipal solid waste (MSW), and algae.
Ionic Liquids in Biomass Processing
NASA Astrophysics Data System (ADS)
Tan, Suzie Su Yin; Macfarlane, Douglas R.
Ionic liquids have been studied for their special solvent properties in a wide range of processes, including reactions involving carbohydrates such as cellulose and glucose. Biomass is a widely available and renewable resource that is likely to become an economically viable source of starting materials for chemical and fuel production, especially with the price of petroleum set to increase as supplies are diminished. Biopolymers such as cellulose, hemicellulose and lignin may be converted to useful products, either by direct functionalisation of the polymers or depolymerisation to monomers, followed by microbial or chemical conversion to useful chemicals. Major barriers to the effective conversion of biomass currently include the high crystallinity of cellulose, high reactivity of carbohydrates and lignin, insolubility of cellulose in conventional solvents, as well as heterogeneity in the native lignocellulosic materials and in lignin itself. This combination of factors often results in highly heterogeneous depolymerisation products, which make efficient separation difficult. Thus the extraction, depolymerisation and conversion of biopolymers will require novel reaction systems in order to be both economically attractive and environmentally benign. The solubility of biopolymers in ionic liquids is a major advantage of their use, allowing homogeneous reaction conditions, and this has stimulated a growing research effort in this field. This review examines current research involving the use of ionic liquids in biomass reactions, with perspectives on how it relates to green chemistry, economic viability, and conventional biomass processes.
Lu, Haifeng; Han, Ting; Zhang, Guangming; Ma, Shanshan; Zhang, Yuanhui; Li, Baoming; Cao, Wei
2018-01-01
Photosynthetic bacteria (PSB) have two sets of metabolic pathways. They can degrade pollutants through light metabolic under light-anaerobic or oxygen metabolic pathways under dark-aerobic conditions. Both metabolisms function under natural light-microaerobic condition, which demands less energy input. This work investigated the characteristics of PSB wastewater treatment process under that condition. Results showed that PSB had very strong adaptability to chemical oxygen demand (COD) concentration; with F/M of 5.2-248.5 mg-COD/mg-biomass, the biomass increased three times and COD removal reached above 91.5%. PSB had both advantages of oxygen metabolism in COD removal and light metabolism in resource recovery under natural light-microaerobic condition. For pollutants' degradation, COD, total organic carbon, nitrogen, and phosphorus removal reached 96.2%, 91.0%, 70.5%, and 92.7%, respectively. For resource recovery, 74.2% of C in wastewater was transformed into biomass. Especially, coexistence of light and oxygen promote N recovery ratio to 70.9%, higher than with the other two conditions. Further, 93.7% of N-removed was synthesized into biomass. Finally, CO 2 emission reduced by 62.6% compared with the traditional process. PSB wastewater treatment under this condition is energy-saving, highly effective, and environment friendly, and can achieve pollution control and resource recovery.
NREL: Renewable Resource Data Center - Solar Resource Publications
Publications The following links provide useful information about solar resource tools and data resources, solar data, or solar technology". Resource Assessment and Forecasting Group Publications By | 1985 | 1984 | 1983 | 1982 | 1981 | 1980 Miscellaneous Printable Version RReDC Home Biomass Resource
da Costa, Fernanda Vieira; de Queiroz, Antônio César Medeiros; Maia, Maria Luiza Bicalho; Júnior, Ronaldo Reis; Fagundes, Marcilio
2016-06-01
Plants have limited resources to invest in reproduction, vegetative growth and defense against herbivorous. Trade-off in resources allocation promotes changes in plant traits that may affect higher trophic levels. In this study, we evaluated the trade-off effect between years of high and low fruiting on the investment of resources for growth and defense, and their indirect effects on herbivory in Copaifera langsdorffii. Our questions were: (i) does the resource investment on reproduction causes a depletion in vegetative growth as predicted by the Carbon/Nutrient Balance hypothesis (CNBH), resulting in more availability of resources to be allocated for defense?, (ii) does the variation in resource allocation for growth and defense between years of high and low fruiting leads to indirect changes in herbivory? Thirty-five trees located in a Cerrado area were monitored during 2008 (year of high fruiting) and 2009 (year of no fruiting) to evaluate the differential investment in vegetative traits (biomass, growth and number of ramifications), plant defense (tannin concentration and plant hypersensitivity) and herbivory (galling attack and folivory). According to our first question, we observed that in the fruiting year, woody biomass negatively affected tannin concentration, indicating that fruit production restricted the resources that could be invested both in growth as in defense. In the same way, we observed an inter-annual variation in herbivorous attack, and found that plants with higher leaf biomass and tannin concentration, experienced higher galling attack and hypersensitive reaction, regardless years. These findings suggested that plants’ resistance to herbivory is a good proxy of plant defense and an effective defense strategy for C. langsdorffii, besides the evidence of indirect responses of the third trophic level, as postulated by the second question. In summary, the supra-annual fruiting pattern promoted several changes on plant development, demonstrating the importance of evaluating different plant traits when characterizing the vegetative investment. As expected by theory, the trade-off in resource allocation favored changes in defense compounds production and patterns of herbivory. The understanding of this important element of insect-plant interactions will be fundamental to decipher coevolutionary life histories and interactions between plant species reproduction and herbivory. Besides that, only through long-term studies we will be able to build models and develop more accurate forecasts about the factors that trigger the bottom-up effect on herbivory performance, as well the top-down effect of herbivores on plant trait evolution.
Yang, Bei-fen; Du, Le-shan; Li, Jun-min
2015-11-01
In order to find out how parasitic Cuscuta australis influences the growth and reproduction of Solidago canadensis, the effects of the parasitism of C. australis on the morphological, growth and reproductive traits of S. canadensis were examined and the relationships between the biomass and the contents of the secondary metabolites were analyzed. The results showed that the parasitism significantly reduced the plant height, basal diameter, root length, root diameter, root biomass, stem biomass, leaf biomass, total biomass, number of inflorescences branches, axis length of inflorescence, and number of inflorescence. In particular, plant height, number of inflorescence and the stem biomass of parasitized S. canadensis were only 1/2, 1/5 and 1/8 of non-parasitized plants, respectively. There was no significant difference of plant height, root length, stem biomass and total biomass between plants parasitized with high and low intensities. But the basal diameter, root volume, leaf biomass, root biomass, the number of inflorescences branches, axis length of inflorescence and number of inflorescence of S. canadensis parasitized with high intensity were significantly lower than those of plants parasitized with low intensity. The parasitism of C. australis significantly increased the tannins content in the root and the flavonoids content in the stem of S. canadensis. The biomass of S. canadensis was significantly negatively correlated with the tannin content in the root and the flavonoids content in the stem. These results indicated that the parasitism of C. australis could inhibit the growth of S. canadensis by changing the resources allocation patterns as well as reducing the resources obtained by S. canadensis.
Estimation of potential maximum biomass of trout in Wyoming streams to assist management decisions
Hubert, W.A.; Marwitz, T.D.; Gerow, K.G.; Binns, N.A.; Wiley, R.W.
1996-01-01
Fishery managers can benefit from knowledge of the potential maximum biomass (PMB) of trout in streams when making decisions on the allocation of resources to improve fisheries. Resources are most likely to he expended on streams with high PMB and with large differences between PMB and currently measured biomass. We developed and tested a model that uses four easily measured habitat variables to estimate PMB (upper 90th percentile of predicted mean bid mass) of trout (Oncorhynchus spp., Salmo trutta, and Salvelinus fontinalis) in Wyoming streams. The habitat variables were proportion of cover, elevation, wetted width, and channel gradient. The PMB model was constructed from data on 166 stream reaches throughout Wyoming and validated on an independent data set of 50 stream reaches. Prediction of PMB in combination with estimation of current biomass and information on habitat quality can provide managers with insight into the extent to which management actions may enhance trout biomass.
The woody biomass resource of Tennessee, 1989
James F. Rosson
1993-01-01
Tabulates fresh and dry biomass estimates of major trees in Tennessee by forest type, ownership, species, stand basal area, tree class, diameter, and height. Information is presented for total tree, stem, and crown components.
The woody biomass resource of Louisiana, 1991
James F. Rosson
1993-01-01
Tabulates fresh and dry biomass estimates of major trees in Louisiana by forest type, ownership, species, stand basal area, tree class, diameter, and height. Information is presented for total tree, stem, and crown components.
To The Biorefinery: Delivered Forestland and Agricultural Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-06-01
It can be challenging and costly to transport biomass feedstock supplies from the roadside, or farmgate, to a biorefinery. Given the geographic dispersion and lowbulk density of cellulosic feedstocks, cost effective scaling of commercial biorefinery operations requires overcoming many challenges. The Biomass Research and Development Board’s Feedstock Logistics Interagency Working Group identified four primary barriers related to biorefinery commercialization: • Capacity and efficiency of harvest and collection equipment • High-moisture content leading to degradation of biomass • Variable biomass quality upon arrival at the biorefinery • Costly transportation options.1 Further, feedstock supply systems do not currently mitigate risks such asmore » low crop yield, fire, or competition for resource use. Delivery and preprocessing improvements will allow for the development of a commercial-scale bioenergy industry that achieves national production and cost targets.« less
Dodrill, Michael J.; Yackulic, Charles B.; Kennedy, Theodore A.; Haye, John W
2016-01-01
The cold and clear water conditions present below many large dams create ideal conditions for the development of economically important salmonid fisheries. Many of these tailwater fisheries have experienced declines in the abundance and condition of large trout species, yet the causes of these declines remain uncertain. Here, we develop, assess, and apply a drift-foraging bioenergetics model to identify the factors limiting rainbow trout (Oncorhynchus mykiss) growth in a large tailwater. We explored the relative importance of temperature, prey quantity, and prey size by constructing scenarios where these variables, both singly and in combination, were altered. Predicted growth matched empirical mass-at-age estimates, particularly for younger ages, demonstrating that the model accurately describes how current temperature and prey conditions interact to determine rainbow trout growth. Modeling scenarios that artificially inflated prey size and abundance demonstrate that rainbow trout growth is limited by the scarcity of large prey items and overall prey availability. For example, shifting 10% of the prey biomass to the 13 mm (large) length class, without increasing overall prey biomass, increased lifetime maximum mass of rainbow trout by 88%. Additionally, warmer temperatures resulted in lower predicted growth at current and lower levels of prey availability; however, growth was similar across all temperatures at higher levels of prey availability. Climate change will likely alter flow and temperature regimes in large rivers with corresponding changes to invertebrate prey resources used by fish. Broader application of drift-foraging bioenergetics models to build a mechanistic understanding of how changes to habitat conditions and prey resources affect growth of salmonids will benefit management of tailwater fisheries.
The economic prospects of cellulosic biomass for biofuel production
NASA Astrophysics Data System (ADS)
Kumarappan, Subbu
Alternative fuels for transportation have become the focus of intense policy debate and legislative action due to volatile oil prices, an unstable political environment in many major oil producing regions, increasing global demand, dwindling reserves of low-cost oil, and concerns over global warming. A major potential source of alternative fuels is biofuels produced from cellulosic biomass, which have a number of potential benefits. Recognizing these potential advantages, the Energy Independence and Security Act of 2007 has mandated 21 billion gallons of cellulosic/advanced biofuels per year by 2022. The United States needs 220-300 million tons of cellulosic biomass per year from the major sources such as agricultural residues, forestry and mill residues, herbaceous resources, and waste materials (supported by Biomass Crop Assistance Program) to meet these biofuel targets. My research addresses three key major questions concerning cellulosic biomass supply. The first paper analyzes cellulosic biomass availability in the United States and Canada. The estimated supply curves show that, at a price of 100 per ton, about 568 million metric tons of biomass is available in the United States, while 123 million metric tons is available in Canada. In fact, the 300 million tons of biomass required to meet EISA mandates can be supplied at a price of 50 per metric ton or lower. The second paper evaluates the farmers' perspective in growing new energy crops, such as switchgrass and miscanthus, in prime cropland, in pasture areas, or on marginal lands. My analysis evaluates how the farmers' returns from energy crops compare with those from other field crops and other agricultural land uses. The results suggest that perennial energy crops yielding at least 10 tons per acre annually will be competitive with a traditional corn-soybean rotation if crude oil prices are high (ranging from 88-178 per barrel over 2010-2019). If crude oil prices are low, then energy crops will not be competitive with existing crops, and additional subsidy support would be required. Among the states in the eastern half of US, the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, and Virginia are found to be economically more suitable to cultivate perennial energy crops. The third paper estimates the optimal feedstock composition of annual and perennial feedstocks from a biorefinery's perspective. The objective function of the optimization model is to minimize the cumulative costs covering harvesting, transport, storage, and GHG costs, of biomass procurement over a biorefinery's productive period of 20 years subject to various constraints on land availability, feedstock availability, processing capacity, contracting needs and storage. The results suggest that the economic tradeoff is between higher production costs for dedicated energy crops and higher collection and transport costs for agricultural residues; the delivered costs of biomass drives the results. These tradeoffs are reflected in optimal spatial planting pattern as preferred by the biorefinery: energy crops are grown in fields closer to the biorefinery and agricultural residues can be sourced from fields farther away from the biorefinery. The optimization model also provides useful insights into the price premiums paid for annual and perennial feedstocks. For the parameters used in the case study, the energy crop price premium ranges from 2 to 8 per ton for fields located within a 10 mile radius. For agricultural residues, the price premiums range from 5 to 16 per ton within a 10-20 mile radius.
Hero T. Gollany; Brian D. Titus; D. Andrew Scott; Heidi Asbjornsen; Sigrid C. Resh; Rodney A. Chimner; Donald J. Kaczmarek; Luiz F.C. Leite; Ana C.C. Ferreira; Kenton A. Rod; Jorge Hilbert; Marcelo V. Galdos; Michelle E. Cisz
2015-01-01
Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems...
Synthetic and Biomass Alternate Fueling in Aviation
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Bushnell, Dennis M.
2009-01-01
Must use earth's most abundant natural resources - Biomass, Solar, Arid land (43%), Seawater (97%) with nutrients (80%) plus brackish waters and nutrients resolve environmental triangle of conflicts energy-food-freshwater and ultrafine particulate hazards. Requires Paradigm Shift - Develop and Use Solar* for energy; Biomass for aviation and hybrid-electric-compressed air mobility fueling with transition to hydrogen long term.
NASA Astrophysics Data System (ADS)
Wilkinson, G. M.; Emery, K.; Camacho-Ibar, V.; Pace, M.; McGlathery, K.; Sandoval Gil, J.; Hernandez-Lopez, J.
2016-02-01
Shellfish aquaculture is prominent in many coastal and estuarine environments. Filter feeding by cultured shellfish connects the benthic and pelagic environments in coastal ecosystems. Bahía San Quintín is a reverse estuary in Baja California, Mexico, where Pacific oysters (Crassostrea gigas) are cultivated. While oysters likely feed heavily on phytoplankton especially during upwelling periods, we hypothesized that other forms of organic matter available in high quantities such as seagrass (Zostera marina) and macroalgae (Ulva spp.) must also be used by the oysters, especially in the most inshore portions of the bay. We measured the carbon and hydrogen stable isotope composition of oysters and their potential food resources at upper, mid, and lower bay sites during upwelling and non-upwelling seasons and applied a Bayesian mixing model to evaluate resource use. Hydrogen isotopes provided a large separation between potential food resources. Although we did not find any strong seasonal effects due to upwelling, there was a strong spatial gradient in resource use. Phytoplankton were most important at the lower (oceanic) site (median resource use for two sampling times, 68 and 79 %) and decreased up the estuary as macroalgae became more important (43 and 56 % at the upper site). At all sites for both sampling times, seagrass was an unimportant resource for oysters. The contrast between high phytoplankton use at the lower site and increased macroalgal use at the upper site is likely due to available resource biomass. Our results illustrate the adaptability of oysters to varying resource availability and the possibility of a higher system carrying capacity than that based on phytoplankton alone given multiple potential food sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Ji; Zhang, Aiping; Lam, Shu Kee
Biomass has been widely recognized as an important energy source with high potential to reduce greenhouse gas emissions while minimizing environmental pollution. In this study, we employ the Global Change Assessment Model to estimate the potential of agricultural and forestry residue biomass for energy production in China. Potential availability of residue biomass as an energy source was analyzed for the 21st century under different climate policy scenarios. Currently, the amount of total annual residue biomass, averaged over 2003-2007, is around 15519PJ in China, consisting of 10818PJ from agriculture residues (70%) and 4701PJ forestry residues (30%). We estimate that 12693PJ ofmore » the total biomass is available for energy production, with 66% derived from agricultural residue and 34% from forestry residue. Most of the available residue is from south central China (3347PJ), east China (2862PJ) and south-west China (2229PJ), which combined exceeds 66% of the total national biomass. Under the reference scenario without carbon tax, the potential availability of residue biomass for energy production is projected to be 3380PJ by 2050 and 4108PJ by 2095, respectively. When carbon tax is imposed, biomass availability increases substantially. For the CCS 450ppm scenario, availability of biomass increases to 9002PJ (2050) and 11524PJ (2095), respectively. For the 450ppm scenario without CCS, 9183 (2050) and 11150PJ (2095) residue biomass, respectively, is projected to be available. Moreover, the implementation of CCS will have a little impact on the supply of residue biomass after 2035. Our results suggest that residue biomass has the potential to be an important component in China's sustainable energy production portfolio. As a low carbon emission energy source, climate change policies that involve carbon tariff and CCS technology promote the use of residue biomass for energy production in a low carbon-constrained world.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Algae are highly efficient at producing biomass, and they can be found all over the planet. Many use sunlight and nutrients to create biomass, which contain key components—including lipids, proteins, and carbohydrates— that can be converted and upgraded to a variety of biofuels and products. A functional algal biofuels production system requires resources such as suitable land and climate, sustainable management of water resources, a supplemental carbon dioxide (CO2) supply, and other nutrients (e.g., nitrogen and phosphorus). Algae can be an attractive feedstock for many locations in the United States because their diversity allows for highpotential biomass yields in amore » variety of climates and environments. Depending on the strain, algae can grow by using fresh, saline, or brackish water from surface water sources, groundwater, or seawater. Additionally, they can grow in water from second-use sources such as treated industrial wastewater; municipal, agricultural, or aquaculture wastewater; or produced water generated from oil and gas drilling operations.« less
Identification of wood energy resources in central Michigan
NASA Technical Reports Server (NTRS)
Hudson, W. D.; Kittleson, K.
1978-01-01
Existing biomass studies were compiled for determining their applicability in measuring forest biomass in an entirely new way. Over sixty tree-weight tables were prepared from existing tables or formulas. An estimate of forest biomass was made on a defined area by using Landsat Satellite data analysis, existing forest cover type maps and actual weighting of the entire biomass. Control plots were cruised for normal volume data and weight data, harvested and weighed to determine actual tonnage yields.
Corton, J; Donnison, I S; Patel, M; Bühle, L; Hodgson, E; Wachendorf, M; Bridgwater, A; Allison, G; Fraser, M D
2016-09-01
Waste biomass is generated during the conservation management of semi-natural habitats, and represents an unused resource and potential bioenergy feedstock that does not compete with food production. Thermogravimetric analysis was used to characterise a representative range of biomass generated during conservation management in Wales. Of the biomass types assessed, those dominated by rush ( Juncus effuses ) and bracken ( Pteridium aquilinum ) exhibited the highest and lowest volatile compositions respectively and were selected for bench scale conversion via fast pyrolysis. Each biomass type was ensiled and a sub-sample of silage was washed and pressed. Demineralization of conservation biomass through washing and pressing was associated with higher oil yields following fast pyrolysis. The oil yields were within the published range established for the dedicated energy crops miscanthus and willow. In order to examine the potential a multiple output energy system was developed with gross power production estimates following valorisation of the press fluid, char and oil. If used in multi fuel industrial burners the char and oil alone would displace 3.9 × 10 5 tonnes per year of No. 2 light oil using Welsh biomass from conservation management. Bioenergy and product development using these feedstocks could simultaneously support biodiversity management and displace fossil fuels, thereby reducing GHG emissions. Gross power generation predictions show good potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruth, M.; Mai, T.; Newes, E.
2013-03-01
The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompetemore » biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruth, M.; Mai, T.; Newes, E.
2013-03-01
The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompetemore » biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less
High-biomass C4 grasses-Filling the yield gap.
Mullet, John E
2017-08-01
A significant increase in agricultural productivity will be required by 2050 to meet the needs of an expanding and rapidly developing world population, without allocating more land and water resources to agriculture, and despite slowing rates of grain yield improvement. This review examines the proposition that high-biomass C 4 grasses could help fill the yield gap. High-biomass C 4 grasses exhibit high yield due to C 4 photosynthesis, long growth duration, and efficient capture and utilization of light, water, and nutrients. These C 4 grasses exhibit high levels of drought tolerance during their long vegetative growth phase ideal for crops grown in water-limited regions of agricultural production. The stems of some high-biomass C 4 grasses can accumulate high levels of non-structural carbohydrates that could be engineered to enhance biomass yield and utility as feedstocks for animals and biofuels production. The regulatory pathway that delays flowering of high-biomass C 4 grasses in long days has been elucidated enabling production and deployment of hybrids. Crop and landscape-scale modeling predict that utilization of high-biomass C 4 grass crops on land and in regions where water resources limit grain crop yield could increase agricultural productivity. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Connell, E. L.; Walker, D. I.
2001-09-01
Halophila ovalis occupies about 20% (461 ha) of the Swan-Canning Estuary. To assess the role of this plant in the biogeochemical cycling of the estuary, its biomass, nutrient dynamics and oxygen release from its roots to the sediment were investigated. This paper describes a conceptual model developed to extrapolate these findings to the whole estuary.The model follows changes in H. ovalis meadows in the Swan-Canning Estuary on a seasonal basis over an annual cycle. Total maximum seagrass biomass was estimated as 346 t dry weight (DW) in summer, declining in winter. In spring, although H. ovalis biomass did not increase, tissue nutrient concentrations were higher when external nutrient concentrations were high. From spring to summer, when external nutrient concentrations in the water column were severely depleted, shoot to root-rhizome biomass ratios changed from 1 : 1 in winter to 1 : 1·5 in summer. Plant tissue nutrients also decreased in root-rhizomes and increased in shoots, indicating an allocation of internal nutrient resources to the shoots for growth. Despite depletion of nitrogen in the water column, ammonium was still available in the sediment. Ammonium concentrations in the sediment porewater decreased in summer, suggesting H. ovalis meadows were a sink for ammonium. With an increase in biomass in summer, including the density of roots, oxygen release from H. ovalis roots subsequently increased. H. ovalis meadows act as a substantial sink for nutrients in the Swan-Canning Estuary in spring and summer. In winter, when there are large losses of plant biomass, H. ovalis meadows become a source of nutrients to the estuary.
Renewable Energy Opportunities Saginaw Chippewa Indian Tribe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saginaw Chippewa Indian Tribe Planning Department; Smiley, Steve; Bennett, Keith, DOE Project Officer
2008-10-22
The Saginaw Chippewa Indian Tribe has a vision to become self-sufficient in its energy needs and to maintain its culture and protect Mother Earth with respect and honor for the next seven generations. To achieve this vision, green energy sources such as solar, wind and biomass energy are the best energy paths to travel. In this feasibility study the Tribe has analyzed and provided data on the nature of the renewable resources available to the Tribe and the costs of implementing these technologies.
Dollars from Sense: The Economic Benefits of Renewable Energy
DOE R&D Accomplishments Database
1997-09-01
This document illustrates direct economic benefits, including job creation, of renewable energy technologies. Examples of electricity generation from biomass, wind power, photovoltaics, solar thermal energy, and geothermal energy are given, with emphasis on the impact of individual projects on the state and local community. Employment numbers at existing facilities are provided, including total national employment for each renewable industry where available. Renewable energy technologies offer economic advantages because they are more labor-intensive than conventional generation technologies, and they use primarily indigenous resources.
Patterns of rural household energy use: a study in the White Nile province - the Sudan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdu, A.S.E.
1985-01-01
The study investigates rural household domestic energy consumption patterns in a semiarid area of the Sudan. It describes the socioeconomic and evironmental context of energy use, provides an estimation of local woody biomass production and evaluates ecological impacts of increased energy demand on the local resource base. It is based on findings derived from field surveys, a systematic questionnaire and participant observations. Findings indicate that households procure traditional fuels by self-collection and purchases. Household members spent on average 20% of their working time gathering fuels. Generally per caput and total annual expenditure and consumption of domestic fuels are determined bymore » household size, physical availability, storage, prices, income, conservation, substitution and competition among fuel resource uses. Households spend on average 16% of their annual income on traditional fuels. Aggregation of fuels on heat equivalent basis and calculation of their contribution shows that on average firewood provides 63%, charcoal 20.7%, dung 10.4%, crop residues 3.4% and kerosene/diesel 2.5% of the total demand for domestic purposes. Estimated total household woodfuel demand exceeds woody biomass available from the local forests. This demand is presently satisfied by a net depletion of the local forests and purchases from other areas. Degradation of the resource base is further exacerbated by development of irrigation along the White Nile River, increasing livestock numbers (overgrazing) and forest clearance for rainfed cultivation. The most promising relevant and appropriate strategies to alleviate rural household domestic energy problems include: conservation of the existing forest, augmentation through village woodlots and community forestry programmes and improvements in end-use (stoves) and conversion (wood to charcoal) technologies.« less
Bibliography on Biomass Feedstock Research: 1978-2002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cushman, J.H.
2003-05-01
This report provides bibliographic citations for more than 1400 reports on biomass feedstock development published by Oak Ridge National Laboratory and its collaborators from 1978 through 2002. Oak Ridge National Laboratory is engaged in analysis of biomass resource supplies, research on the sustainability of feedstock resources, and research on feedstock engineering and infrastructure. From 1978 until 2002, Oak Ridge National Laboratory also provided technical leadership for the U.S. Department of Energy's Bioenergy Feedstock Development Program (BFDP), which supported research to identify and develop promising energy crops. This bibliography lists reports published by Oak Ridge National Laboratory and by its collaboratorsmore » in the BFDP, including graduate student theses and dissertations.« less
The theoretical limit to plant productivity.
DeLucia, Evan H; Gomez-Casanovas, Nuria; Greenberg, Jonathan A; Hudiburg, Tara W; Kantola, Ilsa B; Long, Stephen P; Miller, Adam D; Ort, Donald R; Parton, William J
2014-08-19
Human population and economic growth are accelerating the demand for plant biomass to provide food, fuel, and fiber. The annual increment of biomass to meet these needs is quantified as net primary production (NPP). Here we show that an underlying assumption in some current models may lead to underestimates of the potential production from managed landscapes, particularly of bioenergy crops that have low nitrogen requirements. Using a simple light-use efficiency model and the theoretical maximum efficiency with which plant canopies convert solar radiation to biomass, we provide an upper-envelope NPP unconstrained by resource limitations. This theoretical maximum NPP approached 200 tC ha(-1) yr(-1) at point locations, roughly 2 orders of magnitude higher than most current managed or natural ecosystems. Recalculating the upper envelope estimate of NPP limited by available water reduced it by half or more in 91% of the land area globally. While the high conversion efficiencies observed in some extant plants indicate great potential to increase crop yields without changes to the basic mechanism of photosynthesis, particularly for crops with low nitrogen requirements, realizing such high yields will require improvements in water use efficiency.
NASA Astrophysics Data System (ADS)
Chen, Jizhang; Zhou, Xiaoyan; Mei, Changtong; Xu, Junling; Zhou, Shuang; Wong, Ching-Ping
2017-02-01
As a promising renewable resource, biomass has several advantages such as wide availability, low cost, and versatility. In this study, we use peanut shell, wheat straw, rice straw, corn stalk, cotton stalk, and soybean stalk as the precursors to synthesize hierarchically porous carbon as the positive electrode material for hybrid Na-ion capacitors, aiming to establish a criterion of choosing suitable biomass precursors. The carbon derived from wood-like cotton stalk has abundant interconnected macropores, high surface area of 1994 m2 g-1, and large pore volume of 1.107 cm3 g-1, thanks to which it exhibits high reversible capacitance of 160.5 F g-1 at 0.2 A g-1 and great rate capability, along with excellent cyclability. The carbonaceous positive electrode material is combined with a Na2Ti2.97Nb0.03O7 negative electrode material to assemble a hybrid Na-ion capacitor, which delivers a high specific energy of 169.4 Wh kg-1 at 120.5 W kg-1, ranking among the best-performed hybrid ion capacitors.
Application of Remote Sensing for Forest Management in Nepal
NASA Astrophysics Data System (ADS)
Bajracharya, B.; Matin, M. A.
2016-12-01
Large area of the Hindu Kush Himalayan (HKH) region is covered by forest that is playing a vital role to address the challenges of climate change and livelihood options for a growing population. Effective management of forest cover needs establishment of regular monitoring system for forest. Supporting REDD assessment needs reliable baseline assessment of forest biomass and its monitoring at multiple scale. Adaptation of forest to climate change needs understanding vulnerability of forests and dependence of local communities on these forest. We present here different forest monitoring products developed under the SERVIR-Himalaya programme to address these issues. Landsat 30 meter images were used for decadal land cover change assessment and annual forest change hotspot monitoring. Methodology developed for biomass estimation at national and sub-national level biomass estimation. Decision support system was developed for analysis of forest vulnerability and dependence and selection of adaptation options based on resource availability. These products are forming the basis for development of an integrated system that will be very useful for comprehensive forest monitoring and long term strategy development for sustainable forest management.
Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought
Isbell, Forest; Manning, Pete; Connolly, John; Bruelheide, Helge; Ebeling, Anne; Roscher, Christiane; van Ruijven, Jasper; Weigelt, Alexandra; Wilsey, Brian; Beierkuhnlein, Carl; de Luca, Enrica; Griffin, John N.; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtech; Loreau, Michel; Meyer, Sebastian T.; Mori, Akira S.; Naeem, Shahid; Palmborg, Cecilia; Polley, H. Wayne; Reich, Peter B.; Schmid, Bernhard; Siebenkäs, Alrun; Seabloom, Eric; Thakur, Madhav P.; Tilman, David; Vogel, Anja; Eisenhauer, Nico
2016-01-01
Global change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources—soil nutrients or water—to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity–ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function. PMID:27114579
Aboveground tree biomass statistics for Maine: 1982
Eric H. Wharton; Thomas S. Frieswyk; Anne M. Malley
1985-01-01
Traditional measures of volume inadequately describe the total aboveground wood resource. The 1980-82 inventory of Maine included estimates of aboveground tree biomass on timberland. There are nearly 1,504.4 million green tons of wood and bark in all trees above the ground level, or 88.2 green tons per acre of timberland. Most of the biomass is in growing stock, but 49...
Drivers of biomass co-firing in U.S. coal-fired power plants
Michael E. Goerndt; Francisco X. Aguilar; Kenneth Skog
2013-01-01
Substantial knowledge has been generated in the U.S. about the resource base for forest and other residue-derived biomass for bioenergy including co-firing in power plants. However, a lack of understanding regarding power plant-level operations and manager perceptions of drivers of biomass co-firing remains. This study gathered information from U.S. power plant...
The Forest Biomass Resource of the United States
Noel D. Cost; James O. Howard; Bert Mead; William H. McWilliams; W. Brad Smith; Dwane D. van Hooser; Eric H. Wharton
1990-01-01
Over the last decade, biomass statistics have been published for most states. However, the existing aggregate data are either limited or out of date. The most recent statistics on biomass were for 1980 (U.S. Department of Agriculture 1981). The development of such data continues to lag even though user interest is high. This study was initiated to provide current...
Carbon-Based Nanomaterials in Biomass-Based Fuel-Fed Fuel Cells
Vestergaard, Mun’delanji C.; Tamiya, Eiichi
2017-01-01
Environmental and sustainable economical concerns are generating a growing interest in biofuels predominantly produced from biomass. It would be ideal if an energy conversion device could directly extract energy from a sustainable energy resource such as biomass. Unfortunately, up to now, such a direct conversion device produces insufficient power to meet the demand of practical applications. To realize the future of biofuel-fed fuel cells as a green energy conversion device, efforts have been devoted to the development of carbon-based nanomaterials with tunable electronic and surface characteristics to act as efficient metal-free electrocatalysts and/or as supporting matrix for metal-based electrocatalysts. We present here a mini review on the recent advances in carbon-based catalysts for each type of biofuel-fed/biofuel cells that directly/indirectly extract energy from biomass resources, and discuss the challenges and perspectives in this developing field. PMID:29125564
Carbon-Based Nanomaterials in Biomass-Based Fuel-Fed Fuel Cells.
Hoa, Le Quynh; Vestergaard, Mun'delanji C; Tamiya, Eiichi
2017-11-10
Environmental and sustainable economical concerns are generating a growing interest in biofuels predominantly produced from biomass. It would be ideal if an energy conversion device could directly extract energy from a sustainable energy resource such as biomass. Unfortunately, up to now, such a direct conversion device produces insufficient power to meet the demand of practical applications. To realize the future of biofuel-fed fuel cells as a green energy conversion device, efforts have been devoted to the development of carbon-based nanomaterials with tunable electronic and surface characteristics to act as efficient metal-free electrocatalysts and/or as supporting matrix for metal-based electrocatalysts. We present here a mini review on the recent advances in carbon-based catalysts for each type of biofuel-fed/biofuel cells that directly/indirectly extract energy from biomass resources, and discuss the challenges and perspectives in this developing field.
Gama-Rodrigues, Emanuela F; Gama-Rodrigues, Antonio Carlos; Barros, Nairam F; Moço, Maria Kellen S
2011-11-01
This study was conducted to link soil and litter microbial biomass and activity with soil and litter quality in the surface layer for different pure and mixed stands of native tree species in southeastern Bahia, Brazil. The purpose of the study was to see how strongly the differences among species and stands affect the microbiological attributes of the soil and to identify how microbial processes can be influenced by soil and litter quality. Soil and litter samples were collected from six pure and mixed stands of six hardwood species (Peltogyne angustifolia, Centrolobium robustum, Arapatiella psilophylla, Sclerolobium chrysophyllum, Cordia trichotoma, Macrolobium latifolium) native to the southeastern region of Bahia, Brazil. In plantations of native tree species in humid tropical regions, the immobilization efficiency of C and N by soil microbial biomass was strongly related to the chemical quality of the litter and to the organic matter quality of the soil. According to the variables analyzed, the mixed stand was similar to the natural forest and dissimilar to the pure stands. Litter microbial biomass represented a greater sink of C and N than soil microbial biomass and is an important contributor of resources to tropical soils having low C and N availability.
BAAD: a Biomass And Allometry Database for woody plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falster, Daniel; Duursma, Remko; Ishihara, Masae
Quantifying the amount of mass or energy invested in plant tissues is of fundamental interest across a range of disciplines, including ecology, forestry, ecosystem science, and climate change science (Niklas, 1994; Chave et al. 2005; Falster et al. 2011). The allocation of net primary production into different plant components is an important process affecting the lifetime of carbon in ecosystems, and resource use and productivity by plants (Cannell & Dewar, 1994; Litton et al. 2007; Poorter et al. 2012). While many studies in have destructively harvested woody plants in the name of science, most of these data have only beenmore » made available in the form of summary tables or figures included in publications. Until now, the raw data has resided piecemeal on the hard drives of individual scientists spread around the world. Several studies have gathered together the fitted (allometric) equations for separate datasets (Ter-Mikaelian & Korzukhin, 1997; Jenkins et al. 2003; Zianis et al. 2005; Henry et al. 2013), but none have previously attempted to organize and share the raw individual plant data underpinning these equations on a large scale. Gathered together, such data would represent an important resource for the community, meeting a widely recognised need for rich, open data resources to solve ecological problems (Costello et al. 2013; Fady et al. 2014; Harfoot & Roberts, 2014; Costello et al. 2013). We (D.S. Falster and R.A. Duursma, with the help of D.R. Barneche, R.G. FitzJohn and A. Vårhammar) set out to create such a resource, by asking authors directly whether they would be willing to make their raw data files freely available. The response was overwhelming: nearly everyone we contacted was interested to contribute their raw data. Moreover, we were invited to incorporate another compilation led by M. Ishihara and focussing on Japanese literature. As a result, we present BAAD: a Biomass And Allometry Database for woody plants, comprising data collected in 174 different published and unpublished studies.« less
NASA Astrophysics Data System (ADS)
Jones, M. O.; Kimball, J. S.; Nemani, R. R.
2015-12-01
Amazon forests represent nearly half of all tropical vegetation biomass and, through photosynthesis and respiration, annually process more than twice the amount of estimated carbon (CO2) from fossil fuel emissions. Yet the seasonality of Amazon canopy cover, and the extent to which seasonal fluctuations in water availability and photosynthetically active radiation influence these processes, is still poorly understood. Implementing six remotely sensed data sets spanning nine years (2003-2011), with reported field and flux tower data, we show that southern equatorial Amazon forests exhibit a distinctive seasonal signal. Seasonal timing of water availability, canopy biomass growth and net leaf flush are asynchronous in regions with short dry seasons and become more synchronous across a west-to-east longitudinal moisture gradient of increasing dry season length. Forest cover is responsive to seasonal disparities in both water and solar radiation availability, temporally adjusting net leaf flush to maximize use of these generally abundant resources, while reducing drought susceptibility. An accurate characterization of this asynchronous behavior allows for improved understanding of canopy phenology across contiguous tropical forests and their sensitivity to climate variability and drought. These insights can also inform land surface models to provide a more accurate representation of seasonal forest carbon allocation strategies responsive to environmental drivers.
Pepe-Ranney, Charles; Hall, Edward K.
2015-01-01
The influence of resource availability on planktonic and biofilm microbial community membership is poorly understood. Heterotrophic bacteria derive some to all of their organic carbon (C) from photoautotrophs while simultaneously competing with photoautotrophs for inorganic nutrients such as phosphorus (P) or nitrogen (N). Therefore, C inputs have the potential to shift the competitive balance of aquatic microbial communities by increasing the resource space available to heterotrophs (more C) while decreasing the resource space available to photoautotrophs (less mineral nutrients due to increased competition from heterotrophs). To test how resource dynamics affect membership of planktonic communities and assembly of biofilm communities we amended a series of flow-through mesocosms with C to alter the availability of C among treatments. Each mesocosm was fed with unfiltered seawater and incubated with sterilized microscope slides as surfaces for biofilm formation. The highest C treatment had the highest planktonic heterotroph abundance, lowest planktonic photoautotroph abundance, and highest biofilm biomass. We surveyed bacterial 16S rRNA genes and plastid 23S rRNA genes to characterize biofilm and planktonic community membership and structure. Regardless of resource additions, biofilm communities had higher alpha diversity than planktonic communities in all mesocosms. Heterotrophic plankton communities were distinct from heterotrophic biofilm communities in all but the highest C treatment where heterotrophic plankton and biofilm communities resembled each other after 17 days. Unlike the heterotrophs, photoautotrophic plankton communities were different than photoautotrophic biofilm communities in composition in all treatments including the highest C treatment. Our results suggest that although resource amendments affect community membership and structure, microbial lifestyle (biofilm vs. planktonic) has a stronger influence on community composition. PMID:26236289
Woody encroachment and its consequences on hydrological processes in the savannah
2016-01-01
Woody encroachment due to changes in climate or in the disturbance regimes (fire and herbivory) has been observed throughout the savannah biome over the last century with ecological, hydrological and socioeconomic consequences. We assessed changes in tree density and basal area and estimated changes in rain interception by the canopies across a 5-year period over a biomass gradient in Cerrado vegetation protected from fire. We modelled throughfall, stemflow and net rainfall on the basis of tree basal area (TBA). Tree density increased by an average annual rate of 6.7%, basal area at 5.7% and rain interception by the canopies at 0.6% of the gross rainfall. Independent of the vegetation structure, we found a robust relationship of 0.9% less rainfall reaching the ground as TBA increases by 1 m2 ha−1. Increases in tree biomass with woody encroachment may potentially result in less water available for uptake by plants and to recharge rivers and groundwater reserves. Given that water is a seasonally scarce resource in all savannahs, woody encroachment may threaten the ecosystem services related to water resources. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502378
Hagar, Joan C.; Dugger, Kate; Starkey, Edward E.
2007-01-01
Availability of food resources is an important factor in avian habitat selection. Food resources for terrestrial birds often are closely related to vegetation structure and composition. Identification of plant species important in supporting food resources may facilitate vegetation management to achieve objectives for providing bird habitat. We used fecal analysis to describe the diet of adult Wilson's Warblers (Wilsonia pusilla) that foraged in the understory of Douglas-fir (Pseudotsuga menziesii) forests in western Oregon during the breeding season. We sampled arthropods at the same sites where diet data were collected, and compared abundance and biomass of prey among seven common shrub species. Wilson's Warblers ate more caterpillars (Lepidoptera larvae), flies (Diptera), beetles (Coleoptera), and Homoptera than expected based on availability. Deciduous shrubs supported higher abundances of arthropod taxa and size classes used as prey by Wilson's Warblers than did evergreen shrubs. The development and maintenance of deciduous understory vegetation in conifer forests of the Pacific Northwest may be fundamental for conservation of food webs that support breeding Wilson's Warblers and other shrub-associated, insectivorous songbirds.
Arthropod prey of Wilson's Warblers in the understory of Douglas-fir forests
Hagar, J.C.; Dugger, K.M.; Starkey, E.E.
2007-01-01
Availability of food resources is an important factor in avian habitat selection. Food resources for terrestrial birds often are closely related to vegetation structure and composition. Identification of plant species important in supporting food resources may facilitate vegetation management to achieve objectives for providing bird habitat. We used fecal analysis to describe the diet of adult Wilson's Warblers (Wilsonia pusilla) that foraged in the understory of Douglas-fir (Pseudotsuga menziesii) forests in western Oregon during the breeding season. We sampled arthropods at the same sites where diet data were collected, and compared abundance and biomass of prey among seven common shrub species. Wilson's Warblers ate more caterpillars (Lepidoptera larvae), flies (Diptera), beetles (Coleoptera), and Homoptera than expected based on availability. Deciduous shrubs supported higher abundances of arthropod taxa and size classes used as prey by Wilson's Warblers than did evergreen shrubs. The development and maintenance of deciduous understory vegetation in conifer forests of the Pacific Northwest may be fundamental for conservation of food webs that support breeding Wilson's Warblers and other shrub-associated, insectivorous songbirds.
Westensee, Dirk Karl; Rumbold, Karl; Harding, Kevin G; Sheridan, Craig M; van Dyk, Lizelle D; Simate, Geoffrey S; Postma, Ferdinand
2018-10-01
South Africa has a wide range of mining activities making mineral resources important economic commodities. However, the industry is responsible for several environmental impacts; one of which is acid mine drainage (AMD). Despite several years of research, attempts to prevent AMD generation have proven to be difficult. Therefore, treatment of the resulting drainage has been common practice over the years. One of the recommended treatment methods is the use of second generation feedstocks (lignocellulosic biomass). This biomass is also acknowledged to be an important feedstock for bio-refineries as it is abundant, has a high carbon content and is available at minimal cost. It can also potentially be converted to fermentable sugars (e.g. glucose) through different treatment steps, which could further yield other valuable commodities (cellulase, poly-β-hydroxybutyric acid (PHB) and penicillin V). It is estimated by a generic flowsheet model that 7 tons of grass biomass can produce 1400 kg of glucose which can subsequently produce 205 kg, 438 kg and 270 kg of cellulase, PHB and Penicillin V, respectively. In this paper we investigate the feasibility of grass as feedstock for AMD treatment and the subsequent conversion of this acid pre-treated grass into valuable bio-products. Copyright © 2018 Elsevier B.V. All rights reserved.
The woody biomass resource of East Oklahoma, 1993
James F. Rosson
1993-01-01
Tables are presented for fresh and dry biomass estimates of major trees in east Oklahoma by forest type, ownership, species, stand basal area, tree class, diameter, and height. Information for total tree, stem, and crown components is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Joseph, M., Jr.; Jones, Robert, H.
2003-01-01
Riley, J.M. Jr., and R.H.Jones. 2003. Factors limiting regeneration of Quercus alba and Cornus florida in formerly cultivated coastal plain sites, South Carolina. For. Ecol., and Mgt. 177:571-586. To determine the extent that resources, conditions, and herbivoryy limit regeneration of Quercus alba L. and Cornus florida L. in formerly cultivated coastal plain uplands, we planted seedlings of the two species in two pine and one pine-hardwood forest understory and three adjacent clearcuts. Soil carbon and moisture, available nitrogen and phosphorous, and gap light index (GLI) were measured next to each seedling. Over two growing seasons, stem and leaf herbivory weremore » estimated and survival was recorded. At the end of 2 years, all surviving stems were harvested to determine total leaf area and 2-year biomass growth. Survival to the end of the study was not significantly different between clearcuts and understories. However, clearcuts led to significantly greater biomass growth and leaf area for both Q. alba and C. florida. Soil moisture and available nutrients were also greater in the clearcuts. Using separate multiple linear (growth) or logistic (survival) regressions for each combination of three sites, two cutting treatments and two species, we found that soil moisture significantly affected survival in 12.5% and biomass growth in 8.3% of the regressions. Light availability significantly impacted biomass growth in 16.7% of the regressions. Stem and leaf herbivory had very little impact on survival (8.3%), but when combined, these two factors significantly impacted leaf area or biomass growth in 33.3% of the regressions. Seedling responses were highly variable, and no regression model accounted for more that 70.0% of this variation. In our study, stand-scalevariation in seedling responses (especially the difference between clearcut and understory) was much greater than within-stand variation. Of the within stand factors measured, herbivory was clearly the most important. To establish these species in mesic upland coastal plain sites, we recommend planting immediately after clearcutting.« less
Root Responses to Altered Ecosystem N/P Stoichiometry in a Mediterranean Tree-Grass Ecosystem
NASA Astrophysics Data System (ADS)
Nair, Richard; Moreno, Gerado; Morris, Kendalynn; Schrumpf, Marion; Migliavacca, Mirco
2017-04-01
Biological components of the soil system (plant roots, fungi, microbes) may respond to biogeochemical drivers (e.g. nutrient status, water availability, C availability) in dissimilar ways due to differing scales, activities and access to resources. Understanding individual components and their phenology in the soil system is therefore critical to interpret overall fluxes. In seasonally dry systems, plants balance belowground investment with other growth and maintenance in life strategies where water limitations (in dry periods), nutrient limitations (in wet periods) and temperature/light limitations (in winter) interact, varying the need to invest in gaining these three resources throughout the year. Additionally, root growth may also be desynchronized with overall nutrient demand due to the ability to take up nutrients outside of seasonal periods of demand for storage and subsequent reallocation. We examined root responses to an ecosystem level stoichiometry (+N / +N+P) manipulation experiment at a highly instrumented site in a strongly seasonal semi-arid tree-grass ('dehesa') system (Majadas del Tietar, Spain). We are interested in whether root growth and phenology is affected by differing demand for nutrients/water both between sites and at tree and grass-dominated subsites. Many non-invasive, ecosystem-scale methods to measure changes in biogeochemical cycling focus only on integrated whole-system fluxes or above-ground change and it is difficult to extract a root signal. However, local soil respiration fluxes and root growth introduces a variety of method-dependent artefacts and drawbacks necessitating multiple approaches and careful interpretation. Therefore, in coordination with indirect measurements (subcanopy fluxes via eddy covariance, soil respiration chambers) we are using direct soil coring, ingrowth cores and repeatable measurements from custom-built minirhizotron systems to attempt to assess site-level variation in root biomass and phenology. In this presentation, we show initial results from manual minirhizotron measurements and direct root biomass measurements at Majadas del Tietar indicating that +N and +N+P additions are driving increased root biomass, primarily in areas of open grassland rather than under canopies. We interpret differences in root observations within the context of water, nutrient availability, whole plant and site-level trends.
Topical report on sources and systems for aquatic plant biomass as an energy resource
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldman, J.C.; Ryther, J.H.; Waaland, R.
1977-10-21
Background information is documented on the mass cultivation of aquatic plants and systems design that is available from the literature and through consultation with active research scientists and engineers. The biology of microalgae, macroalgae, and aquatic angiosperms is discussed in terms of morphology, life history, mode of existence, and ecological significance, as they relate to cultivation. The requirements for growth of these plants, which are outlined in the test, suggest that productivity rates are dependent primarily on the availability of light and nutrients. It is concluded that the systems should be run with an excess of nutrients and with lightmore » as the limiting factor. A historical review of the mass cultivation of aquatic plants describes the techniques used in commercial large-scale operations throughout the world and recent small-scale research efforts. This review presents information on the biomass yields that have been attained to date in various geographical locations with different plant species and culture conditions, emphasizing the contrast between high yields in small-scale operations and lower yields in large-scale operations.« less
Prakash Nepal; Kenneth E. Skog
2014-01-01
Use of woody biomass from sustainably managed sources to produce energy is considered an important strategy to mitigate climate change because the resource is renewable (biomass regrowth on land recaptures emitted carbon dioxide (CO2) due to biomass burning) and can substitute for fossil-fuel-based energy such as coal and natural gas. However,...
Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals.
Ruppert, Agnieszka M; Weinberg, Kamil; Palkovits, Regina
2012-03-12
In view of the diminishing oil resources and the ongoing climate change, the use of efficient and environmentally benign technologies for the utilization of renewable resources has become indispensible. Therein, hydrogenolysis reactions offer a promising possibility for future biorefinery concepts. These reactions result in the cleavage of C-C and C-O bonds by hydrogen and allow direct access to valuable platform chemicals already integrated in today's value chains. Thus, hydrogenolysis bears the potential to bridge currently available technologies and future biomass-based refinery concepts. This Review highlights past and present developments in this field, with special emphasis on the direct utilization of cellulosic feedstocks. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Community structure of grassland ground-dwelling arthropods along increasing soil salinities.
Pan, Chengchen; Feng, Qi; Liu, Jiliang; Li, Yulin; Li, Yuqiang; Yu, Xiaoya
2018-03-01
Ground-dwelling arthropod communities are influenced by numerous biotic and abiotic factors. Little is known, however, about the relative importance of vegetation structure and abiotic environmental factors on the patterns of ground-dwelling arthropod community across a wide range of soil salinities. Here, a field survey was conducted to assess the driving forces controlling ground-dwelling arthropod community in the salinized grasslands in the Hexi Corridor, Gansu Province, China. The data were analyzed by variance partitioning with canonical correspondence analysis (CCA). We found that vegetation structure and edaphic factors were at least of similar importance to the pattern of the whole ground-dwelling arthropod community. However, when all collected ground-dwelling arthropods were categorized into three trophic guilds (predators, herbivores, and decomposers), as these groups use different food sources, their populations were controlled by different driving forces. Predators and decomposers were mainly determined by biotic factors such as vegetation cover and aboveground plant biomass and herbivores by plant density and vegetation cover. Abiotic factors were also major determinants for the variation occurring in these guilds, with predators strongly affected by soil electrical conductivity (EC) and the content of fine particles (silt + clay, CS), herbivores by soil N:P, EC, and CS, and decomposers by soil EC and organic matter content (SOM). Since plant cover, density, and aboveground biomass can indicate resource availability, which are mainly constrained by soil N:P, EC, CS, and SOM, we consider that the ground-dwelling arthropod community in the salinized grasslands was mainly influenced by resource availability.
Nanostructure enzyme assemblies for biomass conversion
USDA-ARS?s Scientific Manuscript database
Biomass represents a vast resource for production of the world’s fuel and chemical feedstock needs. The use of enzymes to effect these bioconversions offers an alternative that is potentially more specific and environmentally-friendly than harsher chemical methodologies. Some species of anaerobic ...
The woody biomass resource of major tree taxa for the Midsouth States
James F. Rosson
1992-01-01
Fresh and dry biomass estimates of major trees in seven Midsouth States by forest type, ownership, species, stand basal area, tree class, diameter, and height are tabulated. Information is presented for total tree, bole, and crown components.
NREL: Renewable Resource Data Center - Wind Resource Related Links
websites. Data can be purchased from companies such as AWS TruePower and 3Tier. Note: Listing other commercial companies does not imply endorsement by NREL. . Printable Version RReDC Home Biomass Resource
Genetic Improvement of Switchgrass and Other Herbaceous Plants for Use as Biomass Fuel Feedstock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, K.P.
2001-01-11
It should be highly feasible to genetically modify the feedstock quality of switchgrass and other herbaceous plants using both conventional and molecular breeding techniques. Effectiveness of breeding to modify herbages of switchgrass and other perennial and annual herbaceous species has already been demonstrated. The use of molecular markers and transformation technology will greatly enhance the capability of breeders to modify the plant structure and cell walls of herbaceous plants. It will be necessary to monitor gene flow to remnant wild populations of plants and have strategies available to curtail gene flow if it becomes a potential problem. It also willmore » be necessary to monitor plant survival and long-term productivity as affected by genetic changes that improve forage quality. Information on the conversion processes that will be used and the biomass characteristics that affect conversion efficiency and rate is absolutely essential as well as information on the relative economic value of specific traits. Because most forage or biomass quality characteristics are highly affected by plant maturity, it is suggested that plant material of specific maturity stages be used in research to determining desirable feedstock quality characteristics. Plant material could be collected at various stages of development from an array of environments and storage conditions that could be used in conversion research. The same plant material could be used to develop NIRS calibrations that could be used by breeders in their selection programs and also to develop criteria for a feedstock quality assessment program. Breeding for improved feedstock quality will likely affect the rate of improvement of biomass production per acre. If the same level of resources are used, multi-trait breeding simply reduces the selection pressure and hence the breeding progress that can be made for a single trait unless all the traits are highly correlated. Since desirable feedstock traits are likely to be similar to IVDMD, it is likely that they will not be highly positively correlated with yield. Hence to achieve target yields and improve specific quality traits, it will likely be necessary to increase the resources available to plant breeders. Marker assisted selection will be extremely useful in breeding for quality traits, particularly for traits that can be affected by modifying a few genes. Genetic markers are going to be needed for monitoring gene flow to wild populations. Transformation will be a very useful tool for determining the affects of specific genes on biomass feedstock quality.« less
Zhang, Lei; Peng, Xinwen; Zhong, Linxin; Chua, Weitian; Xiang, Zhihua; Sun, Runcang
2017-09-18
The pertinent issue of resources shortage arising from global climate change in the recent years has accentuated the importance of materials that are environmental friendly. Despite the merits of current material like cellulose as the most abundant natural polysaccharide on earth, the incorporation of lignocellulosic biomass has the potential to value-add the recent development of cellulose-derivatives in drug delivery systems. Lignocellulosic biomass, with a hierarchical structure, comprised of cellulose, hemicellulose and lignin. As an excellent substrate that is renewable, biodegradable, biocompatible and chemically accessible for modified materials, lignocellulosic biomass sets forth a myriad of applications. To date, materials derived from lignocellulosic biomass have been extensively explored for new technological development and applications, such as biomedical, green electronics and energy products. In this review, chemical constituents of lignocellulosic biomass are first discussed before we critically examine the potential alternatives in the field of biomedical application. In addition, the pretreatment methods for extracting cellulose, hemicellulose and lignin from lignocellulosic biomass as well as their biological applications including drug delivery, biosensor, tissue engineering etc will be reviewed. It is anticipated there will be an increasing interest and research findings in cellulose, hemicellulose and lignin from natural resources, which help provide important directions for the development in biomedical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Biomass energy: Sustainable solution for greenhouse gas emission
NASA Astrophysics Data System (ADS)
Sadrul Islam, A. K. M.; Ahiduzzaman, M.
2012-06-01
Biomass is part of the carbon cycle. Carbon dioxide is produced after combustion of biomass. Over a relatively short timescale, carbon dioxide is renewed from atmosphere during next generation of new growth of green vegetation. Contribution of renewable energy including hydropower, solar, biomass and biofuel in total primary energy consumption in world is about 19%. Traditional biomass alone contributes about 13% of total primary energy consumption in the world. The number of traditional biomass energy users expected to rise from 2.5 billion in 2004 to 2.6 billion in 2015 and to 2.7 billion in 2030 for cooking in developing countries. Residential biomass demand in developing countries is projected to rise from 771 Mtoe in 2004 to 818 Mtoe in 2030. The main sources of biomass are wood residues, bagasse, rice husk, agro-residues, animal manure, municipal and industrial waste etc. Dedicated energy crops such as short-rotation coppice, grasses, sugar crops, starch crops and oil crops are gaining importance and market share as source of biomass energy. Global trade in biomass feedstocks and processed bioenergy carriers are growing rapidly. There are some drawbacks of biomass energy utilization compared to fossil fuels viz: heterogeneous and uneven composition, lower calorific value and quality deterioration due to uncontrolled biodegradation. Loose biomass also is not viable for transportation. Pelletization, briquetting, liquefaction and gasification of biomass energy are some options to solve these problems. Wood fuel production is very much steady and little bit increase in trend, however, the forest land is decreasing, means the deforestation is progressive. There is a big challenge for sustainability of biomass resource and environment. Biomass energy can be used to reduce greenhouse emissions. Woody biomass such as briquette and pellet from un-organized biomass waste and residues could be used for alternative to wood fuel, as a result, forest will be saved and sustainable carbon sink will be developed. Clean energy production from biomass (such as ethanol, biodiesel, producer gas, bio-methane) could be viable option to reduce fossil fuel consumption. Electricity generation from biomass is increasing throughout the world. Co-firing of biomass with coal and biomass combustion in power plant and CHP would be a viable option for clean energy development. Biomass can produce less emission in the range of 14% to 90% compared to emission from fossil for electricity generation. Therefore, biomass could play a vital role for generation of clean energy by reducing fossil energy to reduce greenhouse gas emissions. The main barriers to expansion of power generation from biomass are cost, low conversion efficiency and availability of feedstock. Internationalization of external cost in power generation and effective policies to improve energy security and carbon dioxide reduction is important to boost up the bio-power. In the long run, bio-power will depend on technological development and on competition for feedstock with food production and arable land use.
A high-throughput core sampling device for the evaluation of maize stalk composition
2012-01-01
Background A major challenge in the identification and development of superior feedstocks for the production of second generation biofuels is the rapid assessment of biomass composition in a large number of samples. Currently, highly accurate and precise robotic analysis systems are available for the evaluation of biomass composition, on a large number of samples, with a variety of pretreatments. However, the lack of an inexpensive and high-throughput process for large scale sampling of biomass resources is still an important limiting factor. Our goal was to develop a simple mechanical maize stalk core sampling device that can be utilized to collect uniform samples of a dimension compatible with robotic processing and analysis, while allowing the collection of hundreds to thousands of samples per day. Results We have developed a core sampling device (CSD) to collect maize stalk samples compatible with robotic processing and analysis. The CSD facilitates the collection of thousands of uniform tissue cores consistent with high-throughput analysis required for breeding, genetics, and production studies. With a single CSD operated by one person with minimal training, more than 1,000 biomass samples were obtained in an eight-hour period. One of the main advantages of using cores is the high level of homogeneity of the samples obtained and the minimal opportunity for sample contamination. In addition, the samples obtained with the CSD can be placed directly into a bath of ice, dry ice, or liquid nitrogen maintaining the composition of the biomass sample for relatively long periods of time. Conclusions The CSD has been demonstrated to successfully produce homogeneous stalk core samples in a repeatable manner with a throughput substantially superior to the currently available sampling methods. Given the variety of maize developmental stages and the diversity of stalk diameter evaluated, it is expected that the CSD will have utility for other bioenergy crops as well. PMID:22548834
A mathematical model of nutrient influence on fungal competition.
Jabed A Choudhury, M; M J Trevelyan, Philip; P Boswell, Graeme
2018-02-07
Fungi have a well-established role in nutrient cycling and are widely used as agents in biological control and in the remediation of polluted landscapes. Competition for resources between different fungal communities is common in these contexts and its outcome impacts on the success of such biotechnological applications. In this investigation a mathematical model is constructed to represent competition between two fungal colonies that have access to different resources. It is shown that the model equations display a multitude of travelling wave solutions and that the outcome of competition between two fungal biomasses can be controlled through the simple manipulation of the nutrient resources available to each. The model equations are also numerically integrated to illustrate the range of outcomes arising from fungal competition and these results are placed in context of established experimental observations. Copyright © 2017 Elsevier Ltd. All rights reserved.
NREL: Renewable Resource Data Center Home Page
energy resource data, maps, and tools. Biomass, geothermal, solar, and wind resource data for locations advantage of renewable energy technologies, but some technologies are better suited for particular areas renewable energy planning and siting. RReDC provides detailed resource information through tools, reports
Warming and Resource Availability Shift Food Web Structure and Metabolism
O'Connor, Mary I.; Piehler, Michael F.; Leech, Dina M.; Anton, Andrea; Bruno, John F.
2009-01-01
Climate change disrupts ecological systems in many ways. Many documented responses depend on species' life histories, contributing to the view that climate change effects are important but difficult to characterize generally. However, systematic variation in metabolic effects of temperature across trophic levels suggests that warming may lead to predictable shifts in food web structure and productivity. We experimentally tested the effects of warming on food web structure and productivity under two resource supply scenarios. Consistent with predictions based on universal metabolic responses to temperature, we found that warming strengthened consumer control of primary production when resources were augmented. Warming shifted food web structure and reduced total biomass despite increases in primary productivity in a marine food web. In contrast, at lower resource levels, food web production was constrained at all temperatures. These results demonstrate that small temperature changes could dramatically shift food web dynamics and provide a general, species-independent mechanism for ecological response to environmental temperature change. PMID:19707271
Green chemistry, biofuels, and biorefinery.
Clark, James H; Luque, Rafael; Matharu, Avtar S
2012-01-01
In the current climate of several interrelated impending global crises, namely, climate change, chemicals, energy, and oil, the impact of green chemistry with respect to chemicals and biofuels generated from within a holistic concept of a biorefinery is discussed. Green chemistry provides unique opportunities for innovation via product substitution, new feedstock generation, catalysis in aqueous media, utilization of microwaves, and scope for alternative or natural solvents. The potential of utilizing waste as a new resource and the development of integrated facilities producing multiple products from biomass is discussed under the guise of biorefineries. Biofuels are discussed in depth, as they not only provide fuel (energy) but are also a source of feedstock chemicals. In the future, the commercial success of biofuels commensurate with consumer demand will depend on the availability of new green (bio)chemical technologies capable of converting waste biomass to fuel in a context of a biorefinery.
Xiaoping Zhou; Miles A. Hemstrom
2010-01-01
Timber availability, aboveground tree biomass, and changes in aboveground carbon pools are important consequences of landscape management. There are several models available for calculating tree volume and aboveground tree biomass pools. This paper documents species-specific regional equations for tree volume and aboveground live tree biomass estimation that might be...
Biofuels, land, and water: a systems approach to sustainability.
Gopalakrishnan, Gayathri; Negri, M Cristina; Wang, Michael; Wu, May; Snyder, Seth W; Lafreniere, Lorraine
2009-08-01
There is a strong societal need to evaluate and understand the sustainability of biofuels, especially because of the significant increases in production mandated by many countries, including the United States. Sustainability will be a strong factor in the regulatory environment and investments in biofuels. Biomass feedstock production is an important contributor to environmental, social, and economic impacts from biofuels. This study presents a systems approach where the agricultural, energy, and environmental sectors are considered as components of a single system, and environmental liabilities are used as recoverable resources for biomass feedstock production. We focus on efficient use of land and water resources. We conducted a spatial analysis evaluating marginal land and degraded water resources to improve feedstock productivity with concomitant environmental restoration for the state of Nebraska. Results indicate that utilizing marginal land resources such as riparian and roadway buffer strips, brownfield sites, and marginal agricultural land could produce enough feedstocks to meet a maximum of 22% of the energy requirements of the state compared to the current supply of 2%. Degraded water resources such as nitrate-contaminated groundwater and wastewater were evaluated as sources of nutrients and water to improve feedstock productivity. Spatial overlap between degraded water and marginal land resources was found to be as high as 96% and could maintain sustainable feedstock production on marginal lands. Other benefits of implementing this strategy include feedstock intensification to decrease biomass transportation costs, restoration of contaminated water resources, and mitigation of greenhouse gas emissions.
WASTE COMBUSTION SYSTEM ANALYSIS
The report gives results of a study of biomass combustion alternatives. The objective was to evaluate the thermal performance and costs of available and developing biomass systems. The characteristics of available biomass fuels were reviewed, and the performance parameters of alt...
Tolerant yeast in situ detoxifies major class of toxic chemicals while producing ethanol
USDA-ARS?s Scientific Manuscript database
Renewable lignocellulosic materials contain abundant sugar source and biofuels conversion including cellulosic ethanol production from lignocellulosic biomass provides a sustainable alternative energy resource for a cleaner environment. In order to release the biomass sugars from the complex cellulo...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen, Jamie; Sokhansanj, Shahabaddine; Bi, X.T.
2009-11-01
Biorefineries or other biomass-dependent facilities require a predictable, dependable feedstock supplied over many years to justify capital investments. Determining inter-year variability in biomass availability is essential to quantifying the feedstock supply risk. Using a geographic information system (GIS) and historic crop yield data, average production was estimated for 10 sites in the Peace River region of Alberta, Canada. Four high-yielding potential sites were investigated for variability over a 20 year time-frame (1980 2000). The range of availability was large, from double the average in maximum years to nothing in minimum years. Biomass availability is a function of grain yield, themore » biomass to grain ratio, the cropping frequency, and residue retention rate to ensure future crop productivity. Storage strategies must be implemented and alternate feedstock sources identified to supply biomass processing facilities in low-yield years.« less
The Science and Application of Satellite Based Fire Radiative Energy
NASA Technical Reports Server (NTRS)
Ellicott, Evan; Vermote, Eric (Editor)
2012-01-01
The accurate measurement of ecosystem biomass is of great importance in scientific, resource management and energy sectors. In particular, biomass is a direct measurement of carbon storage within an ecosystem and of great importance for carbon cycle science and carbon emission mitigation. Remote Sensing is the most accurate tool for global biomass measurements because of the ability to measure large areas. Current biomass estimates are derived primarily from ground-based samples, as compiled and reported in inventories and ecosystem samples. By using remote sensing technologies, we are able to scale up the sample values and supply wall to wall mapping of biomass.
NASA Technical Reports Server (NTRS)
Muller, Matthew S.
1996-01-01
Controlled ecological life support systems (CELSS) may one day play an essential role in extraterrestrial colonies. Key to the success of any CELSS will be the system's ability to approach a self-supporting status through recovery and reuse of basic resources. Primary CELSS solid wastes with potential to support secondary biomass production will be inedible plant biomass and metabolic human wastes. Solid waste production is summarized and reported as 765 g N per day per person, including 300 g C and 37 g N per day per person. One Resource Recovery configuration using the bioprocessing of solid wastes into a Tilapia feed stream is examined. Based on estimated conversion efficiencies, 12 g of protein per day per person is produced as a nutrition supplement. The unique tissue composition of crops produced at the Kennedy Space Center CELSS Program highlights the need to evaluate Resource Recovery components with data generated in the CELSS environment.
NASA Astrophysics Data System (ADS)
Zaza, Fabio; Paoletti, Claudia; LoPresti, Roberto; Simonetti, Elisabetta; Pasquali, Mauro
Biomass is the renewable energy source with the most potential penetration in energy market for its positive environmental and socio-economic consequences: biomass live cycles for energy production is carbon neutral; energy crops promote alternative and productive utilizations of rural sites creating new economic opportunities; bioenergy productions promote local energy independence and global energy security defined as availability of energy resource supply. Different technologies are currently available for energy production from biomass, but a key role is played by fuel cells which have both low environmental impacts and high efficiencies. High temperature fuel cells, such as molten carbonate fuel cells (MCFC), are particularly suitable for bioenergy production because it can be directly fed with biogas: in fact, among its principal constituents, methane can be transformed to hydrogen by internal reforming; carbon dioxide is a safe diluent; carbon monoxide is not a poison, but both a fuel, because it can be discharged at the anode, and a hydrogen supplier, because it can produce hydrogen via the water-gas shift reaction. However, the utilization of biomass derived fuels in MCFC presents different problems not yet solved, such as the poisoning of the anode due to byproducts of biofuel chemical processing. The chemical compound with the major negative effects on cell performances is hydrogen sulfide. It reacts with nickel, the main anodic constituent, forming sulfides and blocking catalytic sites for electrode reactions. The aim of this work is to study the hydrogen sulfide effects on MCFC performances for defining the poisoning mechanisms of conventional nickel-based anode, recommending selection criteria of sulfur-tolerant materials, and selecting advanced anodes for MCFC fed with biogas.
Bleby, Timothy M; Colquhoun, Ian J; Adams, Mark A
2009-08-01
The aboveground architecture of Eucalyptus marginata (Jarrah) was investigated in chronosequences of young trees (2.5, 5 and 10 m height) growing in a seasonally dry climate in a natural forest environment with intact soils, and on adjacent restored bauxite mine sites on soils with highly modified A and B horizons above an intact C horizon. Compared to forest trees, trees on restored sites were much younger and faster growing, with straighter, more clearly defined main stems and deeper, narrower crowns containing a greater number of branches that were longer, thinner and more vertically angled. Trees on restored sites also had a higher fraction of biomass in leaves than forest trees, as indicated by 20-25% thicker leaves, 30-70% greater leaf area, 10-30% greater leaf area to sapwood area ratios and 5-30% lesser branch Huber values. Differences in crown architecture and biomass distribution were consistent with putatively greater soil-water, nutrient and light availability on restored sites. Our results demonstrate that under the same climatic conditions, E. marginata displays a high degree of plasticity of aboveground architecture in response to the net effects of resource availability and soil environment. These differences in architecture are likely to have functional consequences in relation to tree hydraulics and growth that, on larger scales, is likely to affect the water and carbon balances of restored forest ecosystems. This study highlights substrate as a significant determinant of tree architecture in water-limited environments. It further suggests that the architecture of young trees on restored sites may need to change again if they are to survive likely longer-term changes in resource availability.
The woody biomass resource of Arkansas, 1988
James F. Rosson
1993-01-01
Data from the 1988 Arkansas forest survey were used to derive fresh and dry biomass estimates for all trees, on timberland, greater than 1.0 inch in diameter at breast height (d.b.h). There are 383.2 million fresh tons in softwood species and 939.7 million fresh tons in hardwood species. Most of this biomass is in the stem portion of the treesâ85 percent for softwoods...
The woody biomass resource of Alabama, 1990
James F. Rosson
1993-01-01
Data from the 1990 Alabama forest survey were used to derive fresh and dry biomass estimates for all trees, on timberland, greater than 1.0 inch in diameter at breast height (d.b.h.). there are 579.8 million fresh tons in softwood species and 998.5 million fresh tons in hardwood species. Most of this biomass is in the stem portion of the trees--93 percent for softwoods...
Rodney E. Will; Nikhil Narahari; Robert O. Teskey; Barry D. Shiver; Matthew Wosotowsky
2006-01-01
Increased planting density enhances overall stand growth by increasing resource capture and use. However, planting density also may affect the proportion of biomass partitioned to stem growth, a main factor controlling stand growth and yield. During the fourth growing season, we determined the biomass partitioned to leaf, branch, stem, and fine root (> 0.5mm) of...
Callie Schweitzer; Dawn Lemke; Wubishet Tadesse; Yong Wang
2015-01-01
Forests contain a large amount of carbon (C) stored as tree biomass (above and below ground), detritus, and soil organic material. The aboveground tree biomass is the most rapid change component in this forest C pool. Thus, management of forest resources can influence the net C exchange with the atmosphere by changing the amount of C stored, particularly in landscapes...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozell, J. J.; Landucci, R.
This resource document on biomass to chemicals opportunities describes the development of a technical and market rationale for incorporating renewable feedstocks into the chemical industry in both a qualitative and quantitative sense. The term "renewable feedstock?s" can be defined to include a huge number of materials such as agricultural crops rich in starch, lignocellulosic materials (biomass), or biomass material recovered from a variety of processing wastes.
Assessment of agricultural biomass potential to electricity generation in Riau Province
NASA Astrophysics Data System (ADS)
Papilo, P.; Kusumanto, I.; Kunaifi, K.
2017-05-01
Utilization of biomass as a source of electrical power is one potential solution that can be developed in order to increase of the electrification ratio and to Achieve the national energy security. However, now it is still difficult, to Determine the amount of potential energy that can be used as an alternative power generation. Therefore, as a preliminary step to assess the feasibility of biomass development as a power generation source, an analysis of potential resources are required, especially from some of the main commodities, both of residues of agriculture and plantation. This study aims to assessing the potential of biomass-based supply from unutilized resources that can be Obtained from the residues of agricultural and plantations sectors, such as rice straw and rice husk; Dry straw and chaff of rice; corn stalks and cobs; stalks of cassava; and fiber, shell, empty fruit Bunches, kernels and liquid wastes in the palm oil factories. More research is focused on the theoretical energy potential measurements using a statistical approach which has been developed by Biomass Energy Europe (BEE). Results of the assessment has been done and showed that the total theoretical biomass energy that can be produced is equal to 77,466,754.8 Gj year -1. Theoretically, this potential is equivalent to generate electricityof year 21,518,542.8 MWh -1.
Li, Yang; Li, Xiaotong; Shen, Fei; Wang, Zhanghong; Yang, Gang; Lin, Lili; Zhang, Yanzong; Zeng, Yongmei; Deng, Shihuai
2014-01-01
Although lignocellulosic biomass has been extensively regarded as the most important resource for bioethanol, the wide application was seriously restricted by the high transportation cost of biomass. Currently, biomass densification is regarded as an acceptable solution to this issue. Herein, briquettes, pellets and their corresponding undensified biomass were pretreated by diluted-NaOH and hydrothermal method to investigate the responses of biomass densification to these typical water-involved pretreatments and subsequent enzymatic hydrolysis. The densified biomass auto-swelling was initially investigated before pretreatment. Results indicated pellets could be totally auto-swollen in an hour, while it took about 24 h for briquettes. When diluted-NaOH pretreatment was performed, biomass briquetting and pelleting improved sugar conversion rate by 20.1% and 5.5% comparing with their corresponding undensified biomass. Pelleting improved sugar conversion rate by 7.0% after hydrothermal pretreatment comparing with the undensified biomass. However, briquetting disturbed hydrothermal pretreatment resulting in the decrease of sugar conversion rate by 15.0%. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-01
This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this third volume dealmore » with Environmental Issues, Biomass Energy System Studies, and Biomass in Latin America. Concerning Environmental Issues, the following topics are emphasized: Global Climate Change, Biomass Utilization, Biofuel Test Procedures, and Commercialization of Biomass Products. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less
NASA Astrophysics Data System (ADS)
Rajan, Kalavathy
Production of fuels and chemicals from a renewable and inexpensive resource such as lignocellulosic biomass is a lucrative and sustainable option for the advanced biofuel and bio-based chemical platform. Agricultural residues constitute the bulk of potential feedstock available for cellulosic fuel production. On a global scale, rice straw is the largest source of agricultural residues and is therefore an ideal crop model for biomass deconstruction studies. Lignocellulosic biofuel production involves the processes of biomass conditioning, enzymatic saccharification, microbial fermentation and ethanol distillation, and one of the major factors affecting its techno-economic feasibility is the biomass recalcitrance to enzymatic saccharification. Preconditioning of lignocellulosic biomass, using chemical, physico-chemical, mechanical and biological pretreatments, is often practiced such that biomass becomes available to downstream processing. Pretreatments, such as dilute acid and hot water, are effective means of biomass conversion. However, despite their processing importance, preconditioning biomass also results in the production of carbohydrate and lignin degradation products that are inhibitory to downstream saccharification enzymes. The saccharification enzyme cocktail is made up of endo-cellulase, exo-cellulase and beta-glucosidase enzymes, whose role is to cleave cellulose polymers into glucose monomers. Specifically, endo-cellulase and exo-cellulase enzymes cleave cellulose chains in the middle and at the end, resulting in cellobiose molecules, which are hydrolyzed into glucose by beta-glucosidase. Unfortunately, degradation compounds generated during pretreatment inhibit the saccharification enzyme cocktail. Various research groups have identified specific classes of inhibitors formed during biomass pretreatment and have studied their inhibitory effect on the saccharification cocktail. These various research groups prepared surrogate solutions in an attempt to mimic pretreatment hydrolyzates. No group has yet attempted to elucidate the inhibitory action of compounds isolated from pretreatment hydrolyzates. Elucidating the inhibition of cellulases using actual biomass hydrolyzates would offer insights as to which inhibitors, formed during a pretreatment, are key in causing inhibition. Knowing the key inhibitor(s) would allow for the development of processing conditions that minimize their production or of their removal through hydrolyzate detoxification methods. This research has characterized various chemical compounds released during dilute acid and hot water pretreatment of rice straw and has evaluated their inhibitory effects on endo-cellulase, exo-cellulase and beta-glucosidase enzymes. The hot water pretreatment hydrolyzate, generated at 220°C and 52 min, was found to be particularly inhibitory to exo- and endo-cellulases, and was chosen for further evaluation. This hot water hydrolyzate was fractionated using centrifugal partition chromatography (CPC) and grouped into furans, organic acids, phenolics, monomeric and oligomeric sugars. When these fractions were incubated with exo-cellulase, it was determined that fractions containing acetic acid and phenolics were highly inhibitory, resulting in 92% and 87% inhibition of initial hydrolysis rates, respectively. This study proposes a new approach for identifying key inhibitory compounds in biomass prehydrolyzates, eventually paving the way for developing strategies to the improve the enzymatic saccharification efficiency of lignocellulosic biomass.
NASA Astrophysics Data System (ADS)
Kaffka, S.; Jenner, M.; Bucaram, S.; George, N.
2012-12-01
Both regulators and businesses need realistic estimates for the potential production of biomass feedstocks for biofuels and bioproducts. This includes the need to understand how climate change will affect mid-tem and longer-term crop performance and relative advantage. The California Biomass Crop Adoption Model is a partial mathematical programming optimization model that estimates the profit level needed for new crop adoption, and the crop(s) displaced when a biomass feedstock crop is added to the state's diverse set of cropping systems, in diverse regions of the state. Both yield and crop price, as elements of profit, can be varied. Crop adoption is tested against current farmer preferences derived from analysis of 10 years crop production data for all crops produced in California, collected by the California Department of Pesticide Regulation. Analysis of this extensive data set resulted in 45 distinctive, representative farming systems distributed across the state's diverse agro-ecological regions. Estimated yields and water use are derived from field trials combined with crop simulation, reported elsewhere. Crop simulation is carried out under different weather and climate assumptions. Besides crop adoption and displacement, crop resource use is also accounted, derived from partial budgets used for each crop's cost of production. Systematically increasing biofuel crop price identified areas of the state where different types of crops were most likely to be adopted. Oilseed crops like canola that can be used for biodiesel production had the greatest potential to be grown in the Sacramento Valley and other northern regions, while sugar beets (for ethanol) had the greatest potential in the northern San Joaquin Valley region, and sweet sorghum in the southern San Joaquin Valley. Up to approximately 10% of existing annual cropland in California was available for new crop adoption. New crops are adopted if the entire cropping system becomes more profitable. In particular, canola production resulted in less overall water use but increased farm profits. Most crop substitutions were resource neutral. If future climate is drier, more winter annual crops like canola are likely to be adopted. Crop displacement is also important for determining market-mediated effects of biomass crop production. Correctly estimating crop displacement at the local scale greatly improves upon estimates for indirect land use change derived from the macro-scale PE and CGE models currently used by US EPA and the California Air Resources Board.
Ransom-Jones, Emma; McCarthy, Alan J; Haldenby, Sam; Doonan, James; McDonald, James E
2017-01-01
The microbial conversion of lignocellulosic biomass for biofuel production represents a renewable alternative to fossil fuels. However, the discovery of new microbial enzymes with high activity is critical for improving biomass conversion processes. While attempts to identify superior lignocellulose-degrading enzymes have focused predominantly on the animal gut, biomass-degrading communities in landfill sites represent an unexplored resource of hydrolytic enzymes for biomass conversion. Here, to address the paucity of information on biomass-degrading microbial diversity beyond the gastrointestinal tract, cellulose (cotton) "baits" were incubated in landfill leachate microcosms to enrich the landfill cellulolytic microbial community for taxonomic and functional characterization. Metagenome and 16S rRNA gene amplicon sequencing demonstrated the dominance of Firmicutes , Bacteroidetes , Spirochaetes , and Fibrobacteres in the landfill cellulolytic community. Functional metagenome analysis revealed 8,371 carbohydrate active enzymes (CAZymes) belonging to 244 CAZyme families. In addition to observing biomass-degrading enzymes of anaerobic bacterial "cellulosome" systems of members of the Firmicutes , we report the first detection of the Fibrobacter cellulase system and the Bacteroidetes polysaccharide utilization locus (PUL) in landfill sites. These data provide evidence for the presence of multiple mechanisms of biomass degradation in the landfill microbiome and highlight the extraordinary functional diversity of landfill microorganisms as a rich source of biomass-degrading enzymes of potential biotechnological significance. IMPORTANCE The microbial conversion of lignocellulosic biomass for biofuel production represents a renewable alternative to fossil fuels. However, the discovery of new microbial enzymes with high activity is critical for improving biomass conversion processes. While attempts to identify superior lignocellulose-degrading enzymes have focused predominantly on the animal gut, biomass-degrading communities in landfill sites represent an unexplored resource of hydrolytic enzymes for biomass conversion. Here, we identified Firmicutes , Spirochaetes , and Fibrobacteres as key phyla in the landfill cellulolytic community, detecting 8,371 carbohydrate active enzymes (CAZymes) that represent at least three of the recognized strategies for cellulose decomposition. These data highlight substantial hydrolytic enzyme diversity in landfill sites as a source of new enzymes for biomass conversion.
Ransom-Jones, Emma; McCarthy, Alan J.; Haldenby, Sam; Doonan, James
2017-01-01
ABSTRACT The microbial conversion of lignocellulosic biomass for biofuel production represents a renewable alternative to fossil fuels. However, the discovery of new microbial enzymes with high activity is critical for improving biomass conversion processes. While attempts to identify superior lignocellulose-degrading enzymes have focused predominantly on the animal gut, biomass-degrading communities in landfill sites represent an unexplored resource of hydrolytic enzymes for biomass conversion. Here, to address the paucity of information on biomass-degrading microbial diversity beyond the gastrointestinal tract, cellulose (cotton) “baits” were incubated in landfill leachate microcosms to enrich the landfill cellulolytic microbial community for taxonomic and functional characterization. Metagenome and 16S rRNA gene amplicon sequencing demonstrated the dominance of Firmicutes, Bacteroidetes, Spirochaetes, and Fibrobacteres in the landfill cellulolytic community. Functional metagenome analysis revealed 8,371 carbohydrate active enzymes (CAZymes) belonging to 244 CAZyme families. In addition to observing biomass-degrading enzymes of anaerobic bacterial “cellulosome” systems of members of the Firmicutes, we report the first detection of the Fibrobacter cellulase system and the Bacteroidetes polysaccharide utilization locus (PUL) in landfill sites. These data provide evidence for the presence of multiple mechanisms of biomass degradation in the landfill microbiome and highlight the extraordinary functional diversity of landfill microorganisms as a rich source of biomass-degrading enzymes of potential biotechnological significance. IMPORTANCE The microbial conversion of lignocellulosic biomass for biofuel production represents a renewable alternative to fossil fuels. However, the discovery of new microbial enzymes with high activity is critical for improving biomass conversion processes. While attempts to identify superior lignocellulose-degrading enzymes have focused predominantly on the animal gut, biomass-degrading communities in landfill sites represent an unexplored resource of hydrolytic enzymes for biomass conversion. Here, we identified Firmicutes, Spirochaetes, and Fibrobacteres as key phyla in the landfill cellulolytic community, detecting 8,371 carbohydrate active enzymes (CAZymes) that represent at least three of the recognized strategies for cellulose decomposition. These data highlight substantial hydrolytic enzyme diversity in landfill sites as a source of new enzymes for biomass conversion. PMID:28776044
Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy.
Castro-Rodríguez, Vanessa; García-Gutiérrez, Angel; Canales, Javier; Cañas, Rafael A; Kirby, Edward G; Avila, Concepción; Cánovas, Francisco M
2016-01-01
The utilization of high amounts of nitrate fertilizers for crop yield leads to nitrate pollution of ground and surface waters. In this study, we report the assimilation and utilization of nitrate luxuriant levels, 20 times more than the highest N fertilizer application in Europe, by transgenic poplars overexpressing a cytosolic glutamine synthetase (GS1). In comparison with the wild-type controls, transgenic plants grown under high N levels exhibited increased biomass (171.6%) and accumulated higher levels of proteins, chlorophylls and total sugars such as glucose, fructose and sucrose. These plants also exhibited greater nitrogen-use efficiency particularly in young leaves, suggesting that they are able to translocate most of the resources to the above-ground part of the plant to produce biomass. The transgenic poplar transcriptome was greatly affected in response to N availability with 1237 genes differentially regulated in high N, while only 632 genes were differentially expressed in untransformed plants. Many of these genes are essential in the adaptation and response against N excess and include those involved in photosynthesis, cell wall formation and phenylpropanoid biosynthesis. Cellulose production in the transgenic plants was fivefold higher than in control plants, indicating that transgenic poplars represent a potential feedstock for applications in bioenergy. In conclusion, our results show that GS transgenic poplars can be used not only for improving growth and biomass production but also as an important resource for potential phytoremediation of nitrate pollution. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Kalogirou, S.; Wennhage, H.; Pihl, L.
2012-01-01
Quantitative sampling in combination with classification of fish species into six major feeding guilds revealed the position and contribution of non-indigenous species (NIS) in the food web of Posidonia oceanica and sandy habitats in an area of the eastern Mediterranean. In P. oceanica beds and on sandy bottoms 10 and five species, respectively, were non-indigenous fish of Indo-Pacific origin. The proportional contribution of NIS individuals on P. oceanica beds was lower than that of sandy bottoms (12.7 vs. 20.4%) a pattern that also followed for biomass (13.6 vs. 23.4%), indicating that low diverse systems may be more liable to introductions than species-rich communities. The two habitats had similar fish feeding guilds, but the biomass contribution from NIS varied within each guild, indicating different degrees of impact on the available resources. This study showed that only few non-indigenous fish species contributed to the differences in biomass between habitats. No support could be found in postulating that taxonomic affiliation could predict invasion success. Size was considered highly important due to habitat shift of species with increased size. Two of the aspects considered in this study, the chance of establishing vs. the chance of being very dominant will depend upon competitive abilities strongly coupled to size and grounds for habitat shift. However, success of establishment will also depend on appropriate food resources in the recipient community as well as competitive abilities and level of competition in the food web within habitats.
Woo, Isa; Davis, Melanie; Ellings, Christopher S.; Nakai, Glynnis; Takekawa, John Y.; De La Cruz, Susan
2018-01-01
Estuaries provide crucial foraging resources and nursery habitat for threatened populations of anadromous salmon. As such, there has been a global undertaking to restore habitat and tidal processes in modified estuaries. The foraging capacity of these ecosystems to support various species of out-migrating juvenile salmon can be quantified by monitoring benthic, terrestrial, and pelagic invertebrate prey communities. Here, we present notable trends in the availability of invertebrate prey at several sites within a restoring large river delta in Puget Sound, Washington, U.S.A. Three years after the system was returned to tidal influence, we observed substantial additions to amphipod, copepod, and cumacean abundances in newly accessible marsh channels (from 0 to roughly 5,000–75,000 individuals/m2). In the restoration area, terrestrial invertebrate colonization was dependent upon vegetative cover, with dipteran and hymenopteran biomass increasing 3-fold between 1 and 3 years post-restoration. While the overall biodiversity within the restoration area was lower than in the reference marsh, estimated biomass was comparable to or greater than that found within the other study sites. This additional prey biomass likely provided foraging benefits for juvenile Chinook, chum, and coho salmon. Primary physical drivers differed for benthic, terrestrial, and pelagic invertebrates, and these invertebrate communities are expected to respond differentially depending on organic matter exchange and vegetative colonization. Restoring estuaries may take decades to meet certain success criteria, but our study demonstrates rapid enhancements in foraging resources understood to be used for estuary-dependent wildlife.
Nebraska's forest resources in 2003
W. Keith Moser; Gary J. Brand; Mark H. Hansen; William R. Lovett
2005-01-01
Reports results of the first three yearly panels (2001-2003) of the fourth inventory of Nebraska's forest resources. Includes information on forest area; volume; biomass; growth, removals, and mortality; and forest health.
A microplate assay for quantitative evaluation of plant cell wall degrading enzymes
USDA-ARS?s Scientific Manuscript database
Developing enzyme cocktails for cellulosic biomass hydrolysis complementary to current cellulase systems is a critical step needed for economically viable biofuels production. Plant pathogenic fungi are a largely untapped resource in which to prospect for novel hydrolytic enzymes for biomass convers...
Lowrey, Joshua; Armenta, Roberto E; Brooks, Marianne S
2016-08-01
Efficient resource usage is important for cost-effective microalgae production, where the incorporation of waste streams and recycled water into the process has great potential. This study builds upon emerging research on nutrient recycling in thraustochytrid production, where waste streams are recovered after lipid extraction and recycled into future cultures. This research investigates the nitrogen flux of recycled hydrolysate derived from enzymatic lipid extraction of thraustochytrid biomass. Results indicated the proteinaceous content of the recycled hydrolysate can offset the need to supply fresh nitrogen in a secondary culture, without detrimental impact upon the produced biomass. The treatment employing the recycled hydrolysate with no nitrogen addition accumulated 14.86 g L(-1) of biomass in 141 h with 43.3 % (w/w) lipid content compared to the control which had 9.26 g L(-1) and 46.9 % (w/w), respectively. This improved nutrient efficiency and wastewater recovery represents considerable potential for enhanced resource efficiency of commercial thraustochytrid production.
Gu, Huiya; Nagle, Nick; Pienkos, Philip T; Posewitz, Matthew C
2015-05-01
In this study, the reuse of nitrogen from fuel-extracted algal residues was investigated. The alga Scenedesmus acutus was found to be able to assimilate nitrogen contained in amino acids, yeast extracts, and proteinaceous alga residuals. Moreover, these alternative nitrogen resources could replace nitrate in culturing media. The ability of S. acutus to utilize the nitrogen remaining in processed algal biomass was unique among the promising biofuel strains tested. This alga was leveraged in a recycling approach where nitrogen is recovered from algal biomass residuals that remain after lipids are extracted and carbohydrates are fermented to ethanol. The protein-rich residuals not only provided an effective nitrogen resource, but also contributed to a carbon "heterotrophic boost" in subsequent culturing, improving overall biomass and lipid yields relative to the control medium with only nitrate. Prior treatment of the algal residues with Diaion HP20 resin was required to remove compounds inhibitory to algal growth. Copyright © 2014 Elsevier Ltd. All rights reserved.
West Virginia wood waste from uncharted sources: log landings and active surface mines
Shawn T. Grushecky; Lawrence E. Osborn
2013-01-01
Traditionally, biomass availability estimates from West Virginia have focused on primary and secondary mill byproducts and logging residues. Other sources of woody biomass are available that have not been surveyed. Through a series of field studies during 2010 and 2011, biomass availability estimates were developed for surface mine sites and log landings in West...
Effects of Resource Chemistry on the Composition and Function of Stream Hyporheic Biofilms
Hall, E. K.; Besemer, K.; Kohl, L.; Preiler, C.; Riedel, K.; Schneider, T.; Wanek, W.; Battin, T. J.
2012-01-01
Fluvial ecosystems process large quantities of dissolved organic matter as it moves from the headwater streams to the sea. In particular, hyporheic sediments are centers of high biogeochemical reactivity due to their elevated residence time and high microbial biomass and activity. However, the interaction between organic matter and microbial dynamics in the hyporheic zone remains poorly understood. We evaluated how variance in resource chemistry affected the microbial community and its associated activity in experimentally grown hyporheic biofilms. To do this we fed beech leaf leachates that differed in chemical composition to a series of bioreactors filled with sediment from a sub-alpine stream. Differences in resource chemistry resulted in differences in diversity and phylogenetic origin of microbial proteins, enzyme activity, and microbial biomass stoichiometry. Specifically, increased lignin, phenolics, and manganese in a single leachate resulted in increased phenoloxidase and peroxidase activity, elevated microbial biomass carbon:nitrogen ratio, and a greater proportion of proteins of Betaproteobacteria origin. We used this model system to attempt to link microbial form (community composition and metaproteome) with function (enzyme activity) in order to better understand the mechanisms that link resource heterogeneity to ecosystem function in stream ecosystems. PMID:22347877
Addition of multiple limiting resources reduces grassland diversity.
Harpole, W Stanley; Sullivan, Lauren L; Lind, Eric M; Firn, Jennifer; Adler, Peter B; Borer, Elizabeth T; Chase, Jonathan; Fay, Philip A; Hautier, Yann; Hillebrand, Helmut; MacDougall, Andrew S; Seabloom, Eric W; Williams, Ryan; Bakker, Jonathan D; Cadotte, Marc W; Chaneton, Enrique J; Chu, Chengjin; Cleland, Elsa E; D'Antonio, Carla; Davies, Kendi F; Gruner, Daniel S; Hagenah, Nicole; Kirkman, Kevin; Knops, Johannes M H; La Pierre, Kimberly J; McCulley, Rebecca L; Moore, Joslin L; Morgan, John W; Prober, Suzanne M; Risch, Anita C; Schuetz, Martin; Stevens, Carly J; Wragg, Peter D
2016-09-01
Niche dimensionality provides a general theoretical explanation for biodiversity-more niches, defined by more limiting factors, allow for more ways that species can coexist. Because plant species compete for the same set of limiting resources, theory predicts that addition of a limiting resource eliminates potential trade-offs, reducing the number of species that can coexist. Multiple nutrient limitation of plant production is common and therefore fertilization may reduce diversity by reducing the number or dimensionality of belowground limiting factors. At the same time, nutrient addition, by increasing biomass, should ultimately shift competition from belowground nutrients towards a one-dimensional competitive trade-off for light. Here we show that plant species diversity decreased when a greater number of limiting nutrients were added across 45 grassland sites from a multi-continent experimental network. The number of added nutrients predicted diversity loss, even after controlling for effects of plant biomass, and even where biomass production was not nutrient-limited. We found that elevated resource supply reduced niche dimensionality and diversity and increased both productivity and compositional turnover. Our results point to the importance of understanding dimensionality in ecological systems that are undergoing diversity loss in response to multiple global change factors.
Effects of resource chemistry on the composition and function of stream hyporheic biofilms.
Hall, E.K.; Besemer, K.; Kohl, L.; Preiler, C.; Reidel, K.; Schneider, T.; Wanek, W.; Battin, T.J.
2012-01-01
Fluvial ecosystems process large quantities of dissolved organic matter as it moves from the headwater streams to the sea. In particular, hyporheic sediments are centers of high biogeochemical reactivity due to their elevated residence time and high microbial biomass and activity. However, the interaction between organic matter and microbial dynamics in the hyporheic zone remains poorly understood. We evaluated how variance in resource chemistry affected the microbial community and its associated activity in experimentally grown hyporheic biofilms. To do this we fed beech leaf leachates that differed in chemical composition to a series of bioreactors filled with sediment from a sub-alpine stream. Differences in resource chemistry resulted in differences in diversity and phylogenetic origin of microbial proteins, enzyme activity, and microbial biomass stoichiometry. Specifically, increased lignin, phenolics, and manganese in a single leachate resulted in increased phenoloxidase and peroxidase activity, elevated microbial biomass carbon:nitrogen ratio, and a greater proportion of proteins of Betaproteobacteria origin. We used this model system to attempt to link microbial form (community composition and metaproteome) with function (enzyme activity) in order to better understand the mechanisms that link resource heterogeneity to ecosystem function in stream ecosystems.
Massad, Tara Joy; Dyer, Lee A; Vega C, Gerardo
2012-01-01
One of the goals of chemical ecology is to assess costs of plant defenses. Intraspecific trade-offs between growth and defense are traditionally viewed in the context of the carbon-nutrient balance hypothesis (CNBH) and the growth-differentiation balance hypothesis (GDBH). Broadly, these hypotheses suggest that growth is limited by deficiencies in carbon or nitrogen while rates of photosynthesis remain unchanged, and the subsequent reduced growth results in the more abundant resource being invested in increased defense (mass-balance based allocation). The GDBH further predicts trade-offs in growth and defense should only be observed when resources are abundant. Most support for these hypotheses comes from work with phenolics. We examined trade-offs related to production of two classes of defenses, saponins (triterpenoids) and flavans (phenolics), in Pentaclethra macroloba (Fabaceae), an abundant tree in Costa Rican wet forests. We quantified physiological costs of plant defenses by measuring photosynthetic parameters (which are often assumed to be stable) in addition to biomass. Pentaclethra macroloba were grown in full sunlight or shade under three levels of nitrogen alone or with conspecific neighbors that could potentially alter nutrient availability via competition or facilitation. Biomass and photosynthesis were not affected by nitrogen or competition for seedlings in full sunlight, but they responded positively to nitrogen in shade-grown plants. The trade-off predicted by the GDBH between growth and metabolite production was only present between flavans and biomass in sun-grown plants (abundant resource conditions). Support was also only partial for the CNBH as flavans declined with nitrogen but saponins increased. This suggests saponin production should be considered in terms of detailed biosynthetic pathway models while phenolic production fits mass-balance based allocation models (such as the CNBH). Contrary to expectations based on the two defense hypotheses, trade-offs were found between defenses and photosynthesis, indicating that studies of plant defenses should include direct measures of physiological responses.
Cost analysis of aquatic biomass systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-07-25
A cost analysis of aquatic biomass systems was conducted to provide the U.S. Department of Energy with engineering cost information on which to base decisions in the area of planning and executing research and development programs dealing with aquatic biomass as an alternative energy resource. Calculations show that several hundred 100 square mile aquatic biomass farms, the size selected by DOE staff for this analysis, would be needed to provide meaningful supplies of energy. With this background, specific engineering analyses were conducted on two original design concepts for 100 square mile aquatic biomass energy farms. These systems were an open-oceanmore » system and a land-based system; outstanding experts in all aspects of this project were called upon to participate and provide information in projecting the costs for harvested aquatic biomass for these systems. It was found that the projections of costs for harvested open-ocean biomass, utilizing optimistic assumptions of scientific and engineering design parameters, appear to be above any practical costs to be considered for energy. One of the major limitations is due to the need to provide upwelled sub-surface water containing needed nutrients, for which pumping energy is required. It is concluded from this analysis that large scale land-based aquatic biomass farms may merit development, but perhaps within a much narrower range than heretofore investigated. Aquatic plants which appear to have potential for development as an energy resource are the so-called emersed plants, or angiosperms, including many types of freshwater weeds such as duckweed, Hydrilla, and water hyacinths. It is recommended that substantially greater basic and applied knowledge on these aquatic biomass are needed, especially on growth rates and nutrient requirements.« less
Multi-scale sustainability assessments for biomass-based and coal-based fuels in China.
Man, Yi; Xiao, Honghua; Cai, Wei; Yang, Siyu
2017-12-01
Transportation liquid fuels production is heavily depend on oil. In recent years, developing biomass based and coal based fuels are regarded as promising alternatives for non-petroleum based fuels in China. With the rapid growth of constructing and planning b biomass based and coal based fuels production projects, sustainability assessments are needed to simultaneously consider the resource, the economic, and the environmental factors. This paper performs multi-scale analyses on the biomass based and coal based fuels in China. The production cost, life cycle cost, and ecological life cycle cost (ELCC) of these synfuels are investigated to compare their pros to cons and reveal the sustainability. The results show that BTL fuels has high production cost. It lacks of economic attractiveness. However, insignificant resource cost and environmental cost lead to a substantially lower ELCC, which may indicate better ecological sustainability. CTL fuels, on the contrary, is lower in production cost and reliable for economic benefit. But its coal consumption and pollutant emissions are both serious, leading to overwhelming resource cost and environmental cost. A shifting from petroleum to CTL fuels could double the ELCC, posing great threat to the sustainability of the entire fuels industry. Copyright © 2017 Elsevier B.V. All rights reserved.
Pawnee Nation Energy Option Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matlock, M.; Kersey, K.; Riding In, C.
2009-07-31
In 2003, the Pawnee Nation leadership identified the need for the tribe to comprehensively address its energy issues. During a strategic energy planning workshop a general framework was laid out and the Pawnee Nation Energy Task Force was created to work toward further development of the tribe’s energy vision. The overarching goals of the “first steps” project were to identify the most appropriate focus for its strategic energy initiatives going forward, and to provide information necessary to take the next steps in pursuit of the “best fit” energy options. Based on the request of Pawnee Nation’s Energy Task Force themore » research team, consisting Tribal personnel and Summit Blue Consulting, focused on a review of renewable energy resource development potential, funding sources and utility organizational along with energy savings options. Elements of the energy demand forecasting and characterization and demand side options review remained in the scope of work, but were only addressed at a high level. Description of Activities Performed Renewable Energy Resource Development Potential The research team reviewed existing data pertaining to the availability of biomass (focusing on woody biomass, agricultural biomass/bio-energy crops, and methane capture), solar, wind and hydropower resources on the Pawnee-owned lands. Using these data, combined with assumptions about costs and revenue streams, the research team performed preliminary feasibility assessments for each resource category. The research team also reviewed available funding resources and made recommendations to Pawnee Nation highlighting those resources with the greatest potential for financially-viable development, both in the near-term and over a longer time horizon. Energy Efficiency Options While this was not a major focus of the project, the research team highlighted common strategies for reducing energy use in buildings. The team also discussed the benefits of adopting a building energy code and introduced two model energy codes Pawnee Nation should consider for adoption. Summary of Current and Expected Future Electricity Usage The research team provided a summary overview of electricity usage patterns in current buildings and included discussion of known plans for new construction. Utility Options Review Pawnee Nation electric utility options were analyzed through a four-phase process, which included: 1) summarizing the relevant utility background information; 2) gathering relevant utility assessment data; 3) developing a set of realistic Pawnee electric utility service options, and 4) analyzing the various Pawnee electric utility service options for the Pawnee Energy Team’s consideration. III. Findings and Recommendations Due to a lack of financial incentives for renewable energy, particularly at the state level, combined mediocre renewable energy resources, renewable energy development opportunities are limited for Pawnee Nation. However, near-term potential exists for development of solar hot water at the gym, and an exterior wood-fired boiler system at the tribe’s main administrative building. Pawnee Nation should also explore options for developing LFGTE resources in collaboration with the City of Pawnee. Significant potential may also exist for development of bio-energy resources within the next decade. Pawnee Nation representatives should closely monitor market developments in the bio-energy industry, establish contacts with research institutions with which the tribe could potentially partner in grant-funded research initiatives. In addition, a substantial effort by the Kaw and Cherokee tribes is underway to pursue wind development at the Chilocco School Site in northern Oklahoma where Pawnee is a joint landowner. Pawnee Nation representatives should become actively involved in these development discussions and should explore the potential for joint investment in wind development at the Chilocco site.« less
Catalytic Deoxygenation of Biomass Pyrolysis Vapors to Improve Bio-oil Stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dayton, David C.
2016-12-22
The President’s Advanced Energy Initiative called for a change in the way Americans fuel their vehicles to promote improved energy security. Increasing biofuels production from domestic lignocellulosic resources requires advanced technology development to achieve the aggressive targets set forth to reduce motor gasoline consumption by 20% in ten years (by 2017). The U.S. Department of Energy (USDOE) Office of the Biomass Program (currently Bioenergy Technologies Office) is actively funding research and development in both biochemical and thermochemical conversion technologies to accelerate the deployment of biofuels technologies in the near future to meet the goals of the Advanced Energy Initiative. Thermochemicalmore » conversion technology options include both gasification and pyrolysis to enable the developing lignocellulosic biorefineries and maximize biomass resource utilization for production of biofuels.« less
Reutilization of discarded biomass for preparing functional polymer materials.
Wang, Jianfeng; Qian, Wenzhen; He, Yufeng; Xiong, Yubing; Song, Pengfei; Wang, Rong-Min
2017-07-01
Biomass is abundant and recyclable on the earth, which has been assigned numerous roles to human beings. However, over the past decades, accompanying with the rapid expansion of man-made materials, such as alloy, plastic, synthetic rubber and fiber, a great number of natural materials had been neglected and abandoned, such as straw, which cause a waste of resource and environmental pollution. In this review, based on introducing sources of discarded biomass, the main composition and polymer chains in discarded biomass materials, the traditional treatment and novel approach for reutilization of discarded biomass were summarized. The discarded biomass mainly come from plant wastes generated in the process of agriculture and forestry production and manufacturing processes, animal wastes generated in the process of animal husbandry and fishery production as well as the residual wastes produced in the process of food processing and rural living garbage. Compared with the traditional treatment including burning, landfill, feeding and fertilizer, the novel approach for reutilization of discarded biomass principally allotted to energy, ecology and polymer materials. The prepared functional materials covered in composite materials, biopolymer based adsorbent and flocculant, carrier materials, energy materials, smart polymer materials for medical and other intelligent polymer materials, which can effectively serve the environmental management and human life, such as wastewater treatment, catalyst, new energy, tissue engineering, drug controlled release, and coating. To sum up, the renewable and biodegradable discarded biomass resources play a vital role in the sustainable development of human society, as well as will be put more emphases in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kansas' forest resources in 2003
W. Keith Moser; Robert L. Atchison; Gary J. Brand
2005-01-01
Reports the results of the first three yearly panels (2001-2003) of the fifth inventory of Kansas' forest resources. Includes information on forest area; volume; biomass; growth, removals, and mortality; and forest health.
Illinois' forest resources in 2003.
Earl C. Leatherberry; Gary J. Brand; Dick C. Little
2005-01-01
Reports the results of the first three yearly panels of the fifth inventory of the forest resources of Illinois. Includes information on forest area; volume; biomass; growth, removals, and mortality; and forest health.
NASA Astrophysics Data System (ADS)
Stringer, R. P.; Ahn, Y. K.; Chen, H. T.; Helm, R. W.; Nelson, E. T.; Shields, K. J.
1981-08-01
A biomass allocation model was developed to show the most profitable combination of biomass feedstocks, thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating which of a large number of potential biomass missions is the most profitable mission. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a microprocessor. A User's Manual for the system is included. Biomass derived fuels included in the data base are the following: medium Btu gas, low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil.
Viaene, J; Van Lancker, J; Vandecasteele, B; Willekens, K; Bijttebier, J; Ruysschaert, G; De Neve, S; Reubens, B
2016-02-01
Maintaining and increasing soil quality and fertility in a sustainable way is an important challenge for modern agriculture. The burgeoning bioeconomy is likely to put further pressure on soil resources unless they are managed carefully. Compost has the potential to be an effective soil improver because of its multiple beneficial effects on soil quality. Additionally, it fits within the bioeconomy vision because it can valorize biomass from prior biomass processing or valorize biomass unsuitable for other processes. However, compost is rarely used in intensive agriculture, especially in regions with high manure surpluses. The aim of this research is to identify the barriers to on-farm composting and the application of compost in agriculture, using a mixed method approach for the case of Flanders. The significance of the 28 identified barriers is analyzed and they are categorized as market and financial, policy and institutional, scientific and technological and informational and behavioral barriers. More specifically, the shortage of woody biomass, strict regulation, considerable financial and time investment, and lack of experience and knowledge are hindering on-farm composting. The complex regulation, manure surplus, variable availability and transport of compost, and variable compost quality and composition are barriers to apply compost. In conclusion, five recommendations are suggested that could alleviate certain hindering factors and thus increase attractiveness of compost use in agriculture. Copyright © 2015 Elsevier Ltd. All rights reserved.
Novais, Adriana; Souza, Allan T; Ilarri, Martina; Pascoal, Cláudia; Sousa, Ronaldo
2015-12-15
Resource pulses are episodes of low frequency, large magnitude and short duration that result in increased resource availability in space and time, with consequences for food web dynamics. Studies assessing the importance of resource pulses by invasive alien species in the interface between terrestrial and aquatic ecosystems are rare, especially those in the direction from water to land. This study assessed the importance of massive die-offs of the Asian clam Corbicula fluminea (Müller, 1774) as a resource pulse to the terrestrial invertebrate community after an extreme climatic event using a manipulative experiment. We used 5 levels of C. fluminea density (0, 100, 500, 1000 and 2000ind·m(-2)), with terrestrial invertebrates being censused 7, 30 and 90days after C. fluminea addition. We also assessed the possible effect of plots position, where plots that delimited the experiment were assigned as edge plots and the remaining as core plots. Clear differences were detected in abundance, biomass, richness and diversity of terrestrial invertebrates depending on the C. fluminea density, time and position. Interestingly, the highest abundance of adult Diptera was observed 7days after C. fluminea addition, whereas that of the other terrestrial invertebrates was on day 30, both with C. fluminea densities higher than 500ind·m(-2) located on the edge of the experimental design. This study highlights the importance of major resource pulses after massive die-offs of invasive bivalves, contributing with remarkable amounts of carrion for adjacent terrestrial systems. Part of this carrion can be consumed directly by a great number of invertebrate species while the remainder can enter the detrital food web. Given the high density and biomass attained by several invasive bivalves worldwide and the predicted increase in the number, intensity and magnitude of extreme climatic events, the ecological importance of this phenomenon should be further investigated. Copyright © 2015 Elsevier B.V. All rights reserved.
Mazzola, Monica B.; Chambers, Jeanne C.; Blank, Robert R.; Pyke, David A.; Schupp, Eugene W.; Allcock, Kimberly G.; Doescher, Paul S.; Nowak, Robert S.
2011-01-01
Resource availability and propagule supply are major factors influencing establishment and persistence of both native and invasive species. Increased soil nitrogen (N) availability and high propagule inputs contribute to the ability of annual invasive grasses to dominate disturbed ecosystems. Nitrogen reduction through carbon (C) additions can potentially immobilize soil N and reduce the competitiveness of annual invasive grasses. Native perennial species are more tolerant of resource limiting conditions and may benefit if N reduction decreases the competitive advantage of annual invaders and if sufficient propagules are available for their establishment. Bromus tectorum, an exotic annual grass in the sagebrush steppe of western North America, is rapidly displacing native plant species and causing widespread changes in ecosystem processes. We tested whether nitrogen reduction would negatively affect B. tectorum while creating an opportunity for establishment of native perennial species. A C source, sucrose, was added to the soil, and then plots were seeded with different densities of both B. tectorum (0, 150, 300, 600, and 1,200 viable seeds m-2) and native species (0, 150, 300, and 600 viable seeds m-2). Adding sucrose had short-term (1 year) negative effects on available nitrogen and B. tectorum density, biomass and seed numbers, but did not increase establishment of native species. Increasing propagule availability increased both B. tectorum and native species establishment. Effects of B. tectorum on native species were density dependent and native establishment increased as B. tectorum propagule availability decreased. Survival of native seedlings was low indicating that recruitment is governed by the seedling stage.
Resource availability controls fungal diversity across a plant diversity gradient
Waldrop, M.P.; Zak, D.R.; Blackwood, C.B.; Curtis, C.D.; Tilman, D.
2006-01-01
Despite decades of research, the ecological determinants of microbial diversity remain poorly understood. Here, we test two alternative hypotheses concerning the factors regulating fungal diversity in soil. The first states that higher levels of plant detritus production increase the supply of limiting resources (i.e. organic substrates) thereby increasing fungal diversity. Alternatively, greater plant diversity increases the range of organic substrates entering soil, thereby increasing the number of niches to be filled by a greater array of heterotrophic fungi. These two hypotheses were simultaneously examined in experimental plant communities consisting of one to 16 species that have been maintained for a decade. We used ribosomal intergenic spacer analysis (RISA), in combination with cloning and sequencing, to quantify fungal community composition and diversity within the experimental plant communities. We used soil microbial biomass as a temporally integrated measure of resource supply. Plant diversity was unrelated to fungal diversity, but fungal diversity was a unimodal function of resource supply. Canonical correspondence analysis (CCA) indicated that plant diversity showed a relationship to fungal community composition, although the occurrence of RISA bands and operational taxonomic units (OTUs) did not differ among the treatments. The relationship between fungal diversity and resource availability parallels similar relationships reported for grasslands, tropical forests, coral reefs, and other biotic communities, strongly suggesting that the same underlying mechanisms determine the diversity of organisms at multiple scales. ?? 2006 Blackwell Publishing Ltd/CNRS.
Defalco, Lesley A.; Bryla, David R.; Smith-Longozo, Vickie; Nowak, Robert S.
2003-01-01
Abundance of invasive plants is often attributed to their ability ot outcompete native species. We compared resource acquisition and allocation of the invasive annual grass Bromus madritensis subsp. rubens with that of two native Mojave Desert annuals, Vulpia octoflora and Descurainia pinnata, in a glasshouse experiment. Each species was grown in monoculture at two densities and two levels of N availability to compare how these annuals capture resources and to understand their relative sensitivities to environmental change. During >4 mo of growth, Bromus used water more rapidly and had greater biomass and N content than the natives, partly because of its greater root-surface area and its exploitation of deep soils. Bromus also had greater N uptake, net assimilation and transpiration rates, and canopy area than Vulpia. Resource use by Bromuswas less sensitive to changes in N availability or density than were the natives. The two native species in this study produced numerous small seeds that tended to remain dormant, thus ensuring escape of offspring from unfavorable germination conditions; Bromus produced fewer but larger seeds that readily germinated. Collectively, these traits give Bromus the potential to rapidly establish in diverse habitats of the Mojave Desert, thereby gaining an advantage over coexisting native species.
Food and processing residues in California: resource assessment and potential for power generation.
Matteson, Gary C; Jenkins, B M
2007-11-01
The California agricultural industry produces more than 350 commodities with a combined yearly value in excess of $28 billion. The processing of many of these crops results in the production of residue streams, and the food processing industry faces increasing regulatory pressure to reduce environmental impacts and provide for sustainable management and use. Surveys of food and other processing and waste management sectors combined with published state data yield a total resource in excess of 4 million metric tons of dry matter, with nearly half of this likely to be available for utilization. About two-thirds of the available resource is produced as high-moisture residues that could support 134 MWe of power generation by anaerobic digestion and other conversion techniques. The other third is generated as low-moisture materials, many of which are already employed as fuel in direct combustion biomass power plants. The cost of energy conversion remains high for biochemical systems, with tipping or disposal fees of the order of $30-50Mg(-1) required to align power costs with current market prices. Identifying ways to reduce capital and operating costs of energy conversion, extending operating seasons to increase capacity factors through centralizing facilities, combining resource streams, and monetizing environmental benefits remain important goals for restructuring food and processing waste management in the state.
NASA Astrophysics Data System (ADS)
Kline, K. L.; Eaton, L. M.; Efroymson, R.; Davis, M. R.; Dunn, J.; Langholtz, M. H.
2016-12-01
The federal government, led by the U.S. Department of Energy (DOE), quantified potential U.S. biomass resources for expanded production of renewable energy and bioproducts in the 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy (BT16) (DOE 2016). Volume 1 of the report provides analysis of projected supplies from 2015 to2040. Volume 2 (forthcoming) evaluates changes in environmental indicators for water quality and quantity, carbon, air quality, and biodiversity associated with production scenarios in BT16 volume 1. This presentation will review land-use allocations under the projected biomass production scenarios and the changes in land management that are implied, including drivers of direct and indirect LUC. National and global concerns such as deforestation and displacement of food production are addressed. The choice of reference scenario, input parameters and constraints (e.g., regarding land classes, availability, and productivity) drive LUC results in any model simulation and are reviewed to put BT16 impacts into context. The principal LUC implied in BT16 supply scenarios involves the transition of 25-to-47 million acres (net) from annual crops in 2015 baseline to perennial cover by 2040 under the base case and 3% yield growth case, respectively. We conclude that clear definitions of land parameters and effects are essential to assess LUC. A lack of consistency in parameters and outcomes of historic LUC analysis in the U.S. underscores the need for science-based approaches.
Environmental impacts of emerging biomass feedstock markets: energy, agriculture, and the farmer
The production of biofuels in the United States and elsewhere has the potential to induce major changes in rural landscapes via a burgeoning demand for biomass resources. This includes existing agricultural commodities such as corn grain for ethanol and soybean oil for biodiesel,...
Preparation, properties, and bonding utilization of pyrolysis bio-oil
USDA-ARS?s Scientific Manuscript database
The rapid increase in energy consumption, limited fossil fuel resource, and environmental concerns have stimulated the research need for biomass-derived fuels and chemicals. Pyrolysis is a thermal degradation process of biomass in the absence of oxygen. The liquid product from pyrolysis is known as ...
Limitation of Bacterial Growth by Dissolved Organic Matter and Iron in the Southern Ocean†
Church, Matthew J.; Hutchins, David A.; Ducklow, Hugh W.
2000-01-01
The importance of resource limitation in controlling bacterial growth in the high-nutrient, low-chlorophyll (HNLC) region of the Southern Ocean was experimentally determined during February and March 1998. Organic- and inorganic-nutrient enrichment experiments were performed between 42°S and 55°S along 141°E. Bacterial abundance, mean cell volume, and [3H]thymidine and [3H]leucine incorporation were measured during 4- to 5-day incubations. Bacterial biomass, production, and rates of growth all responded to organic enrichments in three of the four experiments. These results indicate that bacterial growth was constrained primarily by the availability of dissolved organic matter. Bacterial growth in the subtropical front, subantarctic zone, and subantarctic front responded most favorably to additions of dissolved free amino acids or glucose plus ammonium. Bacterial growth in these regions may be limited by input of both organic matter and reduced nitrogen. Unlike similar experimental results in other HNLC regions (subarctic and equatorial Pacific), growth stimulation of bacteria in the Southern Ocean resulted in significant biomass accumulation, apparently by stimulating bacterial growth in excess of removal processes. Bacterial growth was relatively unchanged by additions of iron alone; however, additions of glucose plus iron resulted in substantial increases in rates of bacterial growth and biomass accumulation. These results imply that bacterial growth efficiency and nitrogen utilization may be partly constrained by iron availability in the HNLC Southern Ocean. PMID:10653704
Teitel, Z; Pickup, M; Field, D L; Barrett, S C H
2016-01-01
Sexual dimorphism in resource allocation is expected to change during the life cycle of dioecious plants because of temporal differences between the sexes in reproductive investment. Given the potential for sex-specific differences in reproductive costs, resource availability may contribute to variation in reproductive allocation in females and males. Here, we used Rumex hastatulus, a dioecious, wind-pollinated annual plant, to investigate whether sexual dimorphism varies with life-history stage and nutrient availability, and determine whether allocation patterns differ depending on reproductive commitment. To examine if the costs of reproduction varied between the sexes, reproduction was either allowed or prevented through bud removal, and biomass allocation was measured at maturity. In a second experiment to assess variation in sexual dimorphism across the life cycle, and whether this varied with resource availability, plants were grown in high and low nutrients and allocation to roots, aboveground vegetative growth and reproduction were measured at three developmental stages. Males prevented from reproducing compensated with increased above- and belowground allocation to a much larger degree than females, suggesting that male reproductive costs reduce vegetative growth. The proportional allocation to roots, reproductive structures and aboveground vegetative growth varied between the sexes and among life-cycle stages, but not with nutrient treatment. Females allocated proportionally more resources to roots than males at peak flowering, but this pattern was reversed at reproductive maturity under low-nutrient conditions. Our study illustrates the importance of temporal dynamics in sex-specific resource allocation and provides support for high male reproductive costs in wind-pollinated plants. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Jonathan N.; Stokes, Bryce; Dunn, Jennifer
This study is the summation of several analyses to assess the size and benefits of a Billion Ton Bioeconomy, a vision to enable a sustainable market for producing and converting a billion tons of US biomass to bio-based energy, fuels, and products by 2030. Two alternative biomass availability scenarios in 2030, defined as the (i) Business-as-usual (598 million dry tons) and (ii) Billion Ton (1042 million dry tons), establish a range of possible outcomes for the future bioeconomy. The biomass utilized in the current (2014) (365 million dry tons) economy is estimated to displace approximately 2.4% of fossil energy consumptionmore » and avoid 116 million tons of CO 2-equivalent (CO 2e) emissions, whereas the Billion Ton bioeconomy of 2030 could displace 9.5% of fossil energy consumption and avoid as much as 446 million tons of CO 2 equivalent emissions annually. Developing the integrated systems, supply chains, and infrastructure to efficiently grow, harvest, transport, and convert large quantities of biomass in a sustainable way could support the transition to a low-carbon economy. Bio-based activities in the current (2014) economy are estimated to have directly generated more than 48 billion in revenue and 285 000 jobs. Our estimates show that developing biomass resources and addressing current limitations to achieve a Billion Ton bioeconomy could expand direct bioeconomy revenue by a factor of 5 to contribute nearly 259 billion and 1.1 million jobs to the US economy by 2030.« less
Rogers, Jonathan N.; Stokes, Bryce; Dunn, Jennifer; ...
2016-11-21
This study is the summation of several analyses to assess the size and benefits of a Billion Ton Bioeconomy, a vision to enable a sustainable market for producing and converting a billion tons of US biomass to bio-based energy, fuels, and products by 2030. Two alternative biomass availability scenarios in 2030, defined as the (i) Business-as-usual (598 million dry tons) and (ii) Billion Ton (1042 million dry tons), establish a range of possible outcomes for the future bioeconomy. The biomass utilized in the current (2014) (365 million dry tons) economy is estimated to displace approximately 2.4% of fossil energy consumptionmore » and avoid 116 million tons of CO 2-equivalent (CO 2e) emissions, whereas the Billion Ton bioeconomy of 2030 could displace 9.5% of fossil energy consumption and avoid as much as 446 million tons of CO 2 equivalent emissions annually. Developing the integrated systems, supply chains, and infrastructure to efficiently grow, harvest, transport, and convert large quantities of biomass in a sustainable way could support the transition to a low-carbon economy. Bio-based activities in the current (2014) economy are estimated to have directly generated more than 48 billion in revenue and 285 000 jobs. Our estimates show that developing biomass resources and addressing current limitations to achieve a Billion Ton bioeconomy could expand direct bioeconomy revenue by a factor of 5 to contribute nearly 259 billion and 1.1 million jobs to the US economy by 2030.« less
@nrel.gov | 303-384-6136 Research Interests Ashutosh Mittal received an M.S. in 2004 and a Ph.D. in 2007 in Laboratory (NREL), he is actively involved in research on biomass pretreatment and conversion of biomass ., Environmental Resource Engineering, SUNY, ESF, Syracuse Professional Experience Research Scientist IV, NREL
Farming strategies to feed people, facilitate essential soil services, and fuel the economy
USDA-ARS?s Scientific Manuscript database
Perennial cellulosic biomass and food crop residues are important on-farm resources, which have become potential valuable sources of income as a harvestable commodity contributing to biofuel production demands. Inputs of carbon embedded in above-ground plant biomass are a key biological energy sourc...
SHALLOW HABITATS IN TWO RHODE ISLAND SYSTEMS: I. PATTERNS OF FAUNAL BIOMASS AND DENSITY
Shallow aquatic habitats are particularly vulnerable to human impacts. To understand the resource value of these habitats, we quantified density and biomass of fishes and invertebrates in an estuarine cove (Coggeshall Cove, RI) and in a coastal lagoon (Ninigret Pond, RI). We samp...
USDA-ARS?s Scientific Manuscript database
Biomass conversion from agricultural residues is an important resource for renewable energy production. Biochar, the carbonaceous materials derived from biomass conversion, has received a great attention due to its useful applications. Combination of feedstock and thermal processing conditions produ...
Shen, Pu; Murphy, Daniel Vaughan; George, Suman J.; Lapis-Gaza, Hazel; Xu, Minggang
2016-01-01
Agricultural production can be limited by low phosphorus (P) availability, with soil P being constrained by sorption and precipitation reactions making it less available for plant uptake. There are strong links between carbon (C) and nitrogen (N) availability and P cycling within soil P pools, with microorganisms being an integral component of soil P cycling mediating the availability of P to plants. Here we tested a conceptual model that proposes (i) the addition of readily-available organic substrates would increase the size of the microbial biomass thus exhausting the pool of easily-available P and (ii) this would cause the microbial biomass to access P from more recalcitrant pools. In this model it is hypothesised that the size of the microbial population is regulating access to less available P rather than the diversity of organisms contained within this biomass. To test this hypothesis we added mixtures of simple organic compounds that reflect typical root exudates at different C:N ratios to a soil microcosm experiment and assessed changes in soil P pools, microbial biomass and bacterial diversity measures. We report that low C:N ratio (C:N = 12.5:1) artificial root exudates increased the size of the microbial biomass while high C:N ratio (C:N = 50:1) artificial root exudates did not result in a similar increase in microbial biomass. Interestingly, addition of the root exudates did not alter bacterial diversity (measured via univariate diversity indices) but did alter bacterial community structure. Where C, N and P supply was sufficient to support plant growth the increase observed in microbial biomass occurred with a concurrent increase in plant yield. PMID:27893833
Lynd; Wyman; Gerngross
1999-10-01
The application of biotechnology to the production of commodity products (fuels, chemicals, and materials) offering benefits in terms of sustainable resource supply and environmental quality is an emergent area of intellectual endeavor and industrial practice with great promise. Such "biocommodity engineering" is distinct from biotechnology motivated by health care at multiple levels, including economic driving forces, the importance of feedstocks and cost-motivated process engineering, and the scale of application. Plant biomass represents both the dominant foreseeable source of feedstocks for biotechnological processes as well as the only foreseeable sustainable source of organic fuels, chemicals, and materials. A variety of forms of biomass, notably many cellulosic feedstocks, are potentially available at a large scale and are cost-competitive with low-cost petroleum whether considered on a mass or energy basis, and in terms of price defined on a purchase or net basis for both current and projected mature technology, and on a transfer basis for mature technology. Thus the central, and we believe surmountable, impediment to more widespread application of biocommodity engineering is the general absence of low-cost processing technology. Technological and research challenges associated with converting plant biomass into commodity products are considered relative to overcoming the recalcitrance of cellulosic biomass (converting cellulosic biomass into reactive intermediates) and product diversification (converting reactive intermediates into useful products). Advances are needed in pretreatment technology to make cellulosic materials accessible to enzymatic hydrolysis, with increased attention to the fundamental chemistry operative in pretreatment processes likely to accelerate progress. Important biotechnological challenges related to the utilization of cellulosic biomass include developing cellulase enzymes and microorganisms to produce them, fermentation of xylose and other nonglucose sugars, and "consolidated bioprocessing" in which cellulase production, cellulose hydrolysis, and fermentation of soluble carbohydrates to desired products occur in a single process step. With respect to product diversification, a distinction is made between replacement of a fossil resource-derived chemical with a biomass-derived chemical of identical composition and substitution of a biomass-derived chemical with equivalent functional characteristics but distinct composition. The substitution strategy involves larger transition issues but is seen as more promising in the long term. Metabolic engineering pursuant to the production of biocommodity products requires host organisms with properties such as the ability to use low-cost substrates, high product yield, competitive fitness, and robustness in industrial environments. In many cases, it is likely to be more successful to engineer a desired pathway into an organism having useful industrial properties rather than trying to engineer such often multi-gene properties into host organisms that do not have them naturally. Identification of host organisms with useful industrial properties and development of genetic systems for these organisms is a research challenge distinctive to biocommodity engineering. Chemical catalysis and separations technologies have important roles to play in downstream processing of biocommodity products and involve a distinctive set of challenges relative to petrochemical processing. At its current nascent state of development, the definition and advancement of the biocommodity field can benefit from integration at multiple levels. These include technical issues associated with integrating unit operations with each other, integrating production of individual products into a multi-product biorefinery, and integrating biorefineries into the broader resource, economic, and environmental systems in which they function. We anticipate that coproduction of multiple products, for example, production of fuels, chemicals, power, and/or feed, is likely to be essential for economic viability. Lifecycle analysis is necessary to verify the sustainability and environmental quality benefits of a particular biocommodity product or process. We see biocommodity engineering as a legitimate focus for graduate study, which is responsive to an established personnel demand in an industry that is expected to grow in the future. Graduate study in biocommodity engineering is supported by a distinctive blend of intellectual elements, including biotechnology, process engineering, and resource and environmental systems.
Michael E. Goerndt; Francisco X. Aguilar; Patrick Miles; Stephen Shifley; Nianfu Song; Hank Stelzer
2012-01-01
Woody biomass is a renewable energy feedstock with the potential to reduce current use of nonrenewable fossil fuels. We estimated the physical availability of woody biomass for cocombustion at coal-fired electricity plants in the 20-state US northern region. First, we estimated the total amount of woody biomass needed to replace total annual coal-based electricity...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, D.; Haase, S.
2009-07-01
This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; andmore » an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.« less
Woody encroachment and its consequences on hydrological processes in the savannah.
Honda, Eliane A; Durigan, Giselda
2016-09-19
Woody encroachment due to changes in climate or in the disturbance regimes (fire and herbivory) has been observed throughout the savannah biome over the last century with ecological, hydrological and socioeconomic consequences. We assessed changes in tree density and basal area and estimated changes in rain interception by the canopies across a 5-year period over a biomass gradient in Cerrado vegetation protected from fire. We modelled throughfall, stemflow and net rainfall on the basis of tree basal area (TBA). Tree density increased by an average annual rate of 6.7%, basal area at 5.7% and rain interception by the canopies at 0.6% of the gross rainfall. Independent of the vegetation structure, we found a robust relationship of 0.9% less rainfall reaching the ground as TBA increases by 1 m(2) ha(-1) Increases in tree biomass with woody encroachment may potentially result in less water available for uptake by plants and to recharge rivers and groundwater reserves. Given that water is a seasonally scarce resource in all savannahs, woody encroachment may threaten the ecosystem services related to water resources.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'. © 2016 The Author(s).
The Overlooked Biodiversity of Flower-Visiting Invertebrates
Wardhaugh, Carl W.; Stork, Nigel E.; Edwards, Will; Grimbacher, Peter S.
2012-01-01
Estimates suggest that perhaps 40% of all invertebrate species are found in tropical rainforest canopies. Extrapolations of total diversity and food web analyses have been based almost exclusively on species inhabiting the foliage, under the assumption that foliage samples are representative of the entire canopy. We examined the validity of this assumption by comparing the density of invertebrates and the species richness of beetles across three canopy microhabitats (mature leaves, new leaves and flowers) on a one hectare plot in an Australian tropical rainforest. Specifically, we tested two hypotheses: 1) canopy invertebrate density and species richness are directly proportional to the amount of resource available; and 2) canopy microhabitats represent discrete resources that are utilised by their own specialised invertebrate communities. We show that flowers in the canopy support invertebrate densities that are ten to ten thousand times greater than on the nearby foliage when expressed on a per-unit resource biomass basis. Furthermore, species-level analyses of the beetle fauna revealed that flowers support a unique and remarkably rich fauna compared to foliage, with very little species overlap between microhabitats. We reject the hypothesis that the insect fauna on mature foliage is representative of the greater canopy community even though mature foliage comprises a very large proportion of canopy plant biomass. Although the significance of the evolutionary relationship between flowers and insects is well known with respect to plant reproduction, less is known about the importance of flowers as resources for tropical insects. Consequently, we suggest that this constitutes a more important piece of the ‘diversity jigsaw puzzle’ than has been previously recognised and could alter our understanding of the evolution of plant-herbivore interactions and food web dynamics, and provide a better foundation for accurately estimating global species richness. PMID:23029246
The overlooked biodiversity of flower-visiting invertebrates.
Wardhaugh, Carl W; Stork, Nigel E; Edwards, Will; Grimbacher, Peter S
2012-01-01
Estimates suggest that perhaps 40% of all invertebrate species are found in tropical rainforest canopies. Extrapolations of total diversity and food web analyses have been based almost exclusively on species inhabiting the foliage, under the assumption that foliage samples are representative of the entire canopy. We examined the validity of this assumption by comparing the density of invertebrates and the species richness of beetles across three canopy microhabitats (mature leaves, new leaves and flowers) on a one hectare plot in an Australian tropical rainforest. Specifically, we tested two hypotheses: 1) canopy invertebrate density and species richness are directly proportional to the amount of resource available; and 2) canopy microhabitats represent discrete resources that are utilised by their own specialised invertebrate communities. We show that flowers in the canopy support invertebrate densities that are ten to ten thousand times greater than on the nearby foliage when expressed on a per-unit resource biomass basis. Furthermore, species-level analyses of the beetle fauna revealed that flowers support a unique and remarkably rich fauna compared to foliage, with very little species overlap between microhabitats. We reject the hypothesis that the insect fauna on mature foliage is representative of the greater canopy community even though mature foliage comprises a very large proportion of canopy plant biomass. Although the significance of the evolutionary relationship between flowers and insects is well known with respect to plant reproduction, less is known about the importance of flowers as resources for tropical insects. Consequently, we suggest that this constitutes a more important piece of the 'diversity jigsaw puzzle' than has been previously recognised and could alter our understanding of the evolution of plant-herbivore interactions and food web dynamics, and provide a better foundation for accurately estimating global species richness.
NREL: Renewable Resource Data Center - Webmaster
Version RReDC Home Biomass Resource Information Geothermal Resource Information Solar Resource Information laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL U.S. Department of Energy Office of Energy Efficiency
NASA Astrophysics Data System (ADS)
Lag, A.; Gomez, I.; Navarro-Pedreño, J.; Melendez, I.; Perez Gimeno, A.; Soriano-Disla, J. M.
2010-05-01
Energy use is one of the most important current global issues. Traditional energetic resources are limited and its use generates environmental problems, i.e. Global Warming, thus it is necessary to find alternative ways to produce energy. Energy crops represent one step towards sustainability but it must be coupled with appropriate land use and management adapted to local conditions. Moreover, positive effects like soil conservation; economical improvement of rural areas and CO2 storage could be achieved. Treated sewage water and sewage sludge compost were used as low-cost inputs for nutrition and irrigation, to cultivate cardoon (Cynara cardunculus L.) a perennial Mediterranean crop. The aim of the present field experiment was to ascertain the optimum dose of compost application to obtain maximum biomass production. Four compost treatments were applied by triplicate (D1=0; D2=30; D3=50; D4=70 ton/ha) and forty eight cardoon plants were placed in each plot, 12 per treatment, in a calcareous soil (CLfv; WRB, 2006) plot, located in the South East of Spain, in semi-arid conditions. The experiment was developed for one cardoon productive cycle (one year); soil was sampled three times (October, April and July). Soil, compost and treated sewage irrigation water were analyzed (physical and chemical properties). Stalk, capitula and leave weight as well as height and total biomass production were the parameters determined for cardoon samples. Analyses of variance (ANOVA) at p=0,05 significance level were performed to detect differences among treatments for each sampling/plot and to study soil parameters evolution and biomass production for each plot/dose. Several statistical differences in soil were found between treatments for extractable zinc, magnesium and phosphorus; as well as Kjeldahl nitrogen and organic carbon due to compost application, showing a gradual increase of nutrients from D1 to D4. However, considering the evolution of soil parameters along time, pH was the only with marked and significant decreasing trend from the first to the last sampling period. Mean cardoon biomass production in D1subplot was 13 ton/ha which differed significantly from D4 production, which was about 20 ton/ha. Hence, the maximum biomass production was obtained with the maximum compost dose. The results show that compost amendment increased cardoon biomass production, probably due to the improvement of soil properties, especially plant nutrient availability. No significant differences were found in soil parameters along time, with the exception of pH. However, longer test time is needed to evaluate long term effects in soil and to check the maintenance of biomass productivity. References Fernadez J., Curt, M.D., Aguado P.L. Industrial applications of Cynara cardunculus for energy and other uses. Industrial Crops and Product 24 (2006) pp 222-229. WRB (2006). World Reference Base for Soil Resources (2nd ed.). World Soil Resources Report 103, FAO, Rome, Italy (2006) 133 pp. Casado, J.; Sellés, S.; Navarro, J.; Bustamante, M.A.; Mataix, J.; Guerrero, C.; Gomez, I. Evaluation of composted sewage sludge as nutricional source for horticulturals soils. Waste Management 26 (2006). pp 946-952. Acknowledgements: The author gratefully acknowledges the Spanish Ministry of Innovation and Science for a research fellowship (AP2007-01641).
Biomass Flow and Scavengers Use of Carcasses after Re-Colonization of an Apex Predator
Wikenros, Camilla; Sand, Håkan; Ahlqvist, Per; Liberg, Olof
2013-01-01
Background Reestablishment of apex predators influences the availability and distribution of biomass for scavengers and can therefore be an important agent for structuring species communities. We studied how the re-colonization of the Scandinavian Peninsula by wolves (Canis lupus) affected the amount and temporal variation in use of moose (Alces alces) carcasses. Methodology/Principal Findings We compared the availability of biomass from remains at wolf kills with those killed by hunters, vehicle collisions and natural death. Movement-triggered cameras monitored patterns of use on wolf kills and remains from hunter harvest by scavengers (n = 15 276) in relation to time of year, available carcass biomass, time since the death of the moose and presence of wolves. Remains from hunter harvest were the largest food source for scavengers both within wolf territories (57%) and in areas without wolves (81%). The total annual biomass available were similar in areas with (25 648 kg) and without (24 289 kg) wolves. Presence of wolves lowered the peak biomass available from hunter harvest in October (20%) and increased biomass available during December to August (38–324% per month). The probability of scavengers being present decreased faster with time at remains from hunter harvest compared to wolf kills and both the probability of being present and the number of visits by scavengers to wolf kills increased as the amount of biomass available on the carcass increased. Conclusions/Significance Wolves reduced the seasonal variation of biomass from moose carcasses and most important increased it during spring. Scavengers also visited wolf kills most frequently during spring when most scavenging species have young, which may lead to an increase in survival and/or reproductive success of scavengers within wolf territories. This applies both for abundant scavenging species that were the most frequent visitors at wolf kills and threatened scavengers with lower visit frequency. PMID:24194881
NASA Astrophysics Data System (ADS)
Stevenson, W.; Bell, S. E.; Blair, L. M.; Gove, R. M.; Little, J. R.
1981-08-01
Because of their abundant forest and agricultural biomass resources, New England and the Cornbelt are likely to grow considerably in the development of biomass energy systems during the next decade or two. Forty thousand or more permanent jobs might be created in New England's wood energy industry by the end of the century. If alcohol-fuel use continues to grow, even greater potential for employment in biomass energy exists in the Cornbelt states. The associated earnings would be quite substantial for both regions. The direct combustion of wood and activities related to alcohol-fuel production are expected to be the major contributors to biomass energy production, employment, and earnings; but other biomass systems show potential as well. Energy extraction from municipal waste, anaerobic digestion of animal manure, and other biomass conversion systems will all generate employment as they grow in use.
Stamoulis, Kostantinos A.; Friedlander, Alan M.
2013-01-01
Marine protected areas (MPAs) can benefit fisheries through export of pelagic eggs and larvae and the net emigration of adults and juveniles (spillover). Spillover was investigated for a marine protected area on the north shore of Oahu, Hawai‘i utilizing a seascape approach. This study incorporated habitat variables and underwater visual surveys of fishes and benthos measured at two distinct scales (125 m2 and 1000 m2) inside and outside the protected area at varying distance from the boundary. The relationship between fish biomass from fine-scale surveys and key habitat variables was found to account for a large portion of the variability for both resource (targeted) fish species (15%) and non-resource fish (28%). The remaining variation in resource fish biomass was significantly correlated with distance from the MPA boundary showing a decreasing gradient from inside to outside (r2 = 0.46, p = 0.001), indicating fish spillover at a local scale (p = 0.45). The evidence of spillover based on the fine-scale surveys was corroborated by results from broad-scale surveys, which also showed a significant relationship (r2 = 0.19, p < 0.01) between resource fish biomass and distance from the MPA boundary. In addition, observed spatial distribution of fishing effort was consistent with predictions that fishers respond to biomass gradients across protected area boundaries. Fish spillover can help mitigate costs associated with the establishment of marine protected areas in terms of lost fishing area and therefore have a positive effect on the attitudes of fishers toward marine reserves and marine protected areas.
Chan, Leong-Keat; Newton, Ryan J.; Sharma, Shalabh; Smith, Christa B.; Rayapati, Pratibha; Limardo, Alexander J.; Meile, Christof; Moran, Mary Ann
2012-01-01
Marine bacteria drive the biogeochemical processing of oceanic dissolved organic carbon (DOC), a 750-Tg C reservoir that is a critical component of the global C cycle. Catabolism of DOC is thought to be regulated by the biomass composition of heterotrophic bacteria, as cells maintain a C:N:P ratio of ∼50:10:1 during DOC processing. Yet a complicating factor in stoichiometry-based analyses is that bacteria can change the C:N:P ratio of their biomass in response to resource composition. We investigated the physiological mechanisms of resource-driven shifts in biomass stoichiometry in continuous cultures of the marine heterotrophic bacterium Ruegeria pomeroyi (a member of the Roseobacter clade) under four element limitation regimes (C, N, P, and S). Microarray analysis indicated that the bacterium scavenged for alternate sources of the scarce element when cells were C-, N-, or P-limited; reworked the ratios of biomolecules when C- and P- limited; and exerted tighter control over import/export and cytoplasmic pools when N-limited. Under S limitation, a scenario not existing naturally for surface ocean microbes, stress responses dominated transcriptional changes. Resource-driven changes in C:N ratios of up to 2.5-fold and in C:P ratios of up to sixfold were measured in R. pomeroyi biomass. These changes were best explained if the C and P content of the cells was flexible in the face of shifting resources but N content was not, achieved through the net balance of different transcriptional strategies. The cellular-level metabolic trade-offs that govern biomass stoichiometry in R. pomeroyi may have implications for global carbon cycling if extendable to other heterotrophic bacteria. Strong homeostatic responses to N limitation by marine bacteria would intensify competition with autotrophs. Modification of cellular inventories in C- and P-limited heterotrophs would vary the elemental ratio of particulate organic matter sequestered in the deep ocean. PMID:22783226
18 CFR 292.204 - Criteria for qualifying small power production facilities.
Code of Federal Regulations, 2010 CFR
2010-04-01
... primary energy source of the facility must be biomass, waste, renewable resources, geothermal resources... FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY REGULATORY... production facilities that use the same energy resource, are owned by the same person(s) or its affiliates...
Research Extension and Education Programs on Bio-based Energy Technologies and Products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Sam; Harper, David; Womac, Al
2010-03-02
The overall objectives of this project were to provide enhanced educational resources for the general public, educational and development opportunities for University faculty in the Southeast region, and enhance research knowledge concerning biomass preprocessing and deconstruction. All of these efforts combine to create a research and education program that enhances the biomass-based industries of the United States. This work was broken into five primary objective areas: • Task A - Technical research in the area of biomass preprocessing, analysis, and evaluation. • Tasks B&C - Technical research in the areas of Fluidized Beds for the Chemical Modification of Lignocellulosic Biomassmore » and Biomass Deconstruction and Evaluation. • Task D - Analyses for the non-scientific community to provides a comprehensive analysis of the current state of biomass supply, demand, technologies, markets and policies; identify a set of feasible alternative paths for biomass industry development and quantify the impacts associated with alternative path. • Task E - Efforts to build research capacity and develop partnerships through faculty fellowships with DOE national labs The research and education programs conducted through this grant have led to three primary results. They include: • A better knowledge base related to and understanding of biomass deconstruction, through both mechanical size reduction and chemical processing • A better source of information related to biomass, bioenergy, and bioproducts for researchers and general public users through the BioWeb system. • Stronger research ties between land-grant universities and DOE National Labs through the faculty fellowship program. In addition to the scientific knowledge and resources developed, funding through this program produced a minimum of eleven (11) scientific publications and contributed to the research behind at least one patent.« less
Lignocellulosic Biomass: A Sustainable Bioenergy Source for the Future.
Fatma, Shabih; Hameed, Amir; Noman, Muhammad; Ahmed, Temoor; Shahid, Muhammad; Tariq, Mohsin; Sohail, Imran; Tabassum, Romana
2018-01-01
Increasing population and industrialization are continuously oppressing the existing energy resources and depleting the global fuel reservoirs. The elevated pollutions from the continuous consumption of non-renewable fossil fuels also seriously contaminating the surrounding environment. The use of alternate energy sources can be an environment-friendly solution to cope these challenges. Among the renewable energy sources biofuels (biomass-derived fuels) can serve as a better alternative to reduce the reliance on non-renewable fossil fuels. Bioethanol is one of the most widely consumed biofuels of today's world. The main objective of this review is to highlight the significance of lignocellulosic biomass as a potential source for the production of biofuels like bioethanol, biodiesel or biogas. We discuss the application of various methods for the bioconversion of lignocellulosic biomass to end products i.e. biofuels. The lignocellulosic biomass must be pretreated to disintegrate lignocellulosic complexes and to expose its chemical components for downstream processes. After pretreatment, the lignocellulosic biomass is then subjected to saccharification either via acidic or enzymatic hydrolysis. Thereafter, the monomeric sugars resulted from hydrolysis step are further processed into biofuel i.e. bioethanol, biodiesel or butanol etc. through the fermentation process. The fermented impure product is then purified through the distillation process to obtain pure biofuel. Renewable energy sources represent the potential fuel alternatives to overcome the global energy crises in a sustainable and eco-friendly manner. In future, biofuels may replenish the conventional non-renewable energy resources due to their renewability and several other advantages. Lignocellulosic biomass offers the most economical biomass to generate biofuels. However, extensive research is required for the commercial production of an efficient integrated biotransformation process for the production of lignocellulose mediated biofuels. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Biomass district heating methodology and pilot installations for public buildings groups
NASA Astrophysics Data System (ADS)
Chatzistougianni, N.; Giagozoglou, E.; Sentzas, K.; Karastergios, E.; Tsiamitros, D.; Stimoniaris, D.; Stomoniaris, A.; Maropoulos, S.
2016-11-01
The objective of the paper is to show how locally available biomass can support a small-scale district heating system of public buildings, especially when taking into account energy audit in-situ measurements and energy efficiency improvement measures. The step-by-step methodology is presented, including the research for local biomass availability, the thermal needs study and the study for the biomass district heating system, with and without energy efficiency improvement measures.
Lumpy species coexistence arises robustly in fluctuating resource environments.
Sakavara, Athanasia; Tsirtsis, George; Roelke, Daniel L; Mancy, Rebecca; Spatharis, Sofie
2018-01-23
The effect of life-history traits on resource competition outcomes is well understood in the context of a constant resource supply. However, almost all natural systems are subject to fluctuations of resources driven by cyclical processes such as seasonality and tidal hydrology. To understand community composition, it is therefore imperative to study the impact of resource fluctuations on interspecies competition. We adapted a well-established resource-competition model to show that fluctuations in inflow concentrations of two limiting resources lead to the survival of species in clumps along the trait axis, consistent with observations of "lumpy coexistence" [Scheffer M, van Nes EH (2006) Proc Natl Acad Sci USA 103:6230-6235]. A complex dynamic pattern in the available ambient resources arose very early in the self-organization process and dictated the locations of clumps along the trait axis by creating niches that promoted the growth of species with specific traits. This dynamic pattern emerged as the combined result of fluctuations in the inflow of resources and their consumption by the most competitive species that accumulated the bulk of biomass early in assemblage organization. Clumps emerged robustly across a range of periodicities, phase differences, and amplitudes. Given the ubiquity in the real world of asynchronous fluctuations of limiting resources, our findings imply that assemblage organization in clumps should be a common feature in nature. Copyright © 2018 the Author(s). Published by PNAS.
Enabling the Billion-Ton Bioeconomy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumes, Harry; Csonka, Steve; Sayre, Richard
2016-08-08
The United States is rich in non-food biomass that can fuel the development of a thriving bioeconomy where renewable and sustainable resources power cars and planes instead of petroleum. The transportation and aviation industry is actively seeking ways to reduce its carbon footprint by powering planes with solid municipal waste, woody biomass, purpose-grown crops, and algae. Watch this short video to learn how biomass is being used to make our country greener, provide new employment opportunities, and reduce our dependence on foreign oil.
NASA Technical Reports Server (NTRS)
Hsu, Y.-Y.
1976-01-01
The paper discusses the U.S. resources to provide fuels from agricultural products, the present status of conversion technology of clean fuels from biomass, and a system study directed to determine the energy budget, and environmental and socioeconomic impacts. Conversion processes are discussed relative to pyrolysis and anaerobic fermentation. Pyrolysis breaks the cellulose molecules to smaller molecules under high temperature in the absence of oxygen, wheras anaerobic fermentation is used to convert biomass to methane by means of bacteria. Cost optimization and energy utilization are also discussed.
Sherman, Kenneth; Belkin, Igor M; Friedland, Kevin D; O'Reilly, John; Hyde, Kimberly
2009-06-01
Information on the effects of global climate change on trends in global fisheries biomass yields has been limited in spatial and temporal scale. Results are presented of a global study of the impact of sea surface temperature (SST) changes over the last 25 years on the fisheries yields of 63 large marine ecosystems (LMEs) that annually produce 80% of the world's marine fisheries catches. Warming trends were observed in 61 LMEs around the globe. In 18 of the LMEs, rates of SST warming were two to four times faster during the past 25 years than the globally averaged rates of SST warming reported by the Intergovernmental Panel on Climate Change in 2007. Effects of warming on fisheries biomass yields were greatest in the fast-warming northern Northeast Atlantic LMEs, where increasing trends in fisheries biomass yields were related to zooplankton biomass increases. In contrast, fisheries biomass yields of LMEs in the fast-warming, more southerly reaches of the Northeast Atlantic were declining in response to decreases in zooplankton abundance. The LMEs around the margins of the Indian Ocean, where SSTs were among the world's slowest warming, revealed a consistent pattern of fisheries biomass increases during the past 25 years, driven principally by human need for food security from fisheries resources. As a precautionary approach toward more sustainable fisheries utilization, management measures to limit the total allowable catch through a cap-and-sustain approach are suggested for the developing nations recently fishing heavily on resources of the Agulhas Current, Somali Current, Arabian Sea, and Bay of Bengal LMEs.
The woody biomass resource of Alabama
James F. Jr. Rosson; Charles E. Thomas
1986-01-01
Presents findings and analysis of woody biomass based on the fifth forest survey of Alabama (1982). The green weights by component-total, merchantable, residual, sapling, and rough and rotten-are presented by various categories such as ownership, forest type, physiographic class, size class, basal area, species, and age. After-harvest residual is also presented and...
The Status of and key barriers in lignocellulosic ethanol production : a technological perspective
J.Y. Zhu; G.S. Wang; X.J. Pan; R. Gleisner
2008-01-01
The development of biorefineries to produce fuel ethanol and commodity chemicals from lignocellulosic biomass is a potential alternative to current reliance on non-renewable resources. However, many technological barriers remain despite research progress in the past several decades. This article examines the major process barriers in biochemical conversion of biomass...
Landowners' Knowledge, Attitudes, and Aspirations towards Woody Biomass Markets in North Carolina
ERIC Educational Resources Information Center
Shaw, Jasmine; Hazel, Dennis; Bardon, Robert; Jayaratne, K. S. U.
2012-01-01
Non-industrial private forest (NIPF) landowners are often not included in discussions of emerging woody biomass markets for energy, yet they will likely be principal suppliers of the resource. Surveys administered to 475 forest landowners before and after an Extension Forestry education program in 10 counties across North Carolina indicated that…
J. E. Winandy; R. S. Williams; A. W. Rudie; R. J. Ross
2008-01-01
This chapter describes 'integrated biomass technologies', a systematic approach for maximizing value, performance, resource sustainability, and profitability in the agriculture and forest products industries. The fundamental principles of integrated biomass technologies provide a global roadmap to a bio-based economy based on the systematic use of many less-...
Nutrient uptake, biomass yield and quantitative analysis of aliphatic aldehydes in cilantro plants
USDA-ARS?s Scientific Manuscript database
The objective of this study was to evaluate the nutrient uptake, biomass production and yield of the major compounds in the essential oil of five genotypes of Coriandrum sativum L. The treatments were four accessions donated by the National Genetic Resources Advisory Council (NGRAC), U.S. Department...
Iowa's forest resources in 2003
Earl C. Leatherberry; Gary J. Brand; Steve Pennington
2005-01-01
Reports the initial results of all five annual panels (1999-2003) of the fourth inventory of Iowa`s forest resources, the first annual inventory of the State. Includes information on forest area; volume; biomass; growth, mortality, and removals; and health.
Minnesota's forest resources in 2003
Patrick D. Miles; Gary J. Brand; Manfred E. Mielke
2005-01-01
Reports the results of all five annual panels (1999-2003) of the sixth inventory of Minnesota's forest resources, the first annual inventory of the State. Includes information on forest area; volume; biomass; growth, removals, and mortality; and forest health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Richard Hess; Jacob J. Jacobson; Richard Nelson
This report updates the status of U.S. biomass resources currently and future potentials for domestic and export markets of residues, energy crops, and woody resources. Includes energy and fuel production and consumption statistics, driving policies, targets, and government investment in bioenergy industry development.
NASA Astrophysics Data System (ADS)
Nur, T. B.; Pane, Z.; Amin, M. N.
2017-03-01
Due to increasing oil and gas demand with the depletion of fossil resources in the current situation make efficient energy systems and alternative energy conversion processes are urgently needed. With the great potential of resources in Indonesia, make biomass has been considered as one of major potential fuel and renewable resource for the near future. In this paper, the potential of palm oil mill waste as a bioenergy source has been investigated. An organic Rankine cycle (ORC) small scale power plant has been preliminary designed to generate electricity. The working fluid candidates for the ORC plant based on the heat source temperature domains have been investigated. The ORC system with a regenerator has higher thermal efficiency than the basic ORC system. The study demonstrates the technical feasibility of ORC solutions in terms of resources optimizations and reducing of greenhouse gas emissions.
Biomass transformation webs provide a unified approach to consumer–resource modelling
Getz, Wayne M.
2011-01-01
An approach to modelling food web biomass flows among live and dead compartments within and among species is formulated using metaphysiological principles that characterise population growth in terms of basal metabolism, feeding, senescence and exploitation. This leads to a unified approach to modelling interactions among plants, herbivores, carnivores, scavengers, parasites and their resources. Also, dichotomising sessile miners from mobile gatherers of resources, with relevance to feeding and starvation time scales, suggests a new classification scheme involving 10 primary categories of consumer types. These types, in various combinations, rigorously distinguish scavenger from parasite, herbivory from phytophagy and detritivore from decomposer. Application of the approach to particular consumer–resource interactions is demonstrated, culminating in the construction of an anthrax-centred food web model, with parameters applicable to Etosha National Park, Namibia, where deaths of elephants and zebra from the bacterial pathogen, Bacillus anthracis, provide significant subsidies to jackals, vultures and other scavengers. PMID:21199247
Kelly, Christine A; Crampin, Amelia C; Mortimer, Kevin; Dube, Albert; Malava, Jullita; Johnston, Deborah; Unterhalter, Elaine; Glynn, Judith R
2018-01-01
Household air pollution from burning solid fuels is responsible for an estimated 2.9 million premature deaths worldwide each year and 4.5% of global disability-adjusted life years, while cooking and fuel collection pose a considerable time burden, particularly for women and children. Cleaner burning biomass-fuelled cookstoves have the potential to lower exposure to household air pollution as well as reduce fuelwood demand by increasing the combustion efficiency of cooking fires, which may in turn yield ancillary benefits in other domains. The present paper capitalises on opportunities offered by the Cooking and Pneumonia Study (CAPS), the largest randomised trial of biomass-fuelled cookstoves on health outcomes conducted to date, the design of which allows for the evaluation of additional outcomes at scale. This mixed methods study assesses the impact of cookstoves on primary school absenteeism in Karonga district, northern Malawi, in particular by conferring health and time and resource gains on young people aged 5-18. The analysis combines quantitative data from 6168 primary school students with in-depth interviews and focus group discussions carried out among 48 students in the same catchment area in 2016. Negative binomial regression models find no evidence that the cookstoves affected primary school absenteeism overall [IRR 0.92 (0.71-1.18), p = 0.51]. Qualitative analysis suggests that the cookstoves did not sufficiently improve household health to influence school attendance, while the time and resource burdens associated with cooking activities-although reduced in intervention households-were considered to be compatible with school attendance in both trial arms. More research is needed to assess whether the cookstoves influenced educational outcomes not captured by the attendance measure available, such as timely arrival to school or hours spent on homework.
Thinking about efficiency of resource use in forests
Dan Binkley; Jose Luiz Stape; Michael G. Ryan
2004-01-01
The growth of forests can be described as a function of the supply of resources, the proportion of resources captured by trees, and the efficiency with which trees use resources to fix carbon dioxide. This function can be modified to explain wood production by subtracting the allocation of biomass to other tissues and to respiration. At the scale of leaves and seconds...
Spatial modeling of potential woody biomass flow
Woodam Chung; Nathaniel Anderson
2012-01-01
The flow of woody biomass to end users is determined by economic factors, especially the amount available across a landscape and delivery costs of bioenergy facilities. The objective of this study develop methodology to quantify landscape-level stocks and potential biomass flows using the currently available spatial database road network analysis tool. We applied this...
Forest fuel reduction and biomass supply: perspectives from southern private landowners
Jianbang Gan; Adam Jarrett; Cassandra Johnson Gaither
2013-01-01
Removing excess biomass from fire-hazardous forests can serve dual purposes: enhancing the health and sustainability of forest ecosystems and supplying feedstock for energy production. The physical availability of this biomass is fairly well-known, yet availability does not necessarily translate into actual supply. We assess the perception and behavior of private...
Global Human Appropriation of Net Primary Production and Associated Resource Decoupling: 2010-2050.
Zhou, Chuanbin; Elshkaki, Ayman; Graedel, T E
2018-02-06
Human appropriation of net primary production (HANPP) methodology has previously been developed to assess the intensity of anthropogenic extraction of biomass resources. However, there is limited analysis concerning future trends of HANPP. Here we present four scenarios for global biomass demand and HANPP harv (the most key component of HANPP) from 2010 to 2050 by incorporating data on expanded historical drivers and disaggregated biomass demand (food, wood material, and fuelwood). The results show that the biomass demand has the lowest value in the equitability world scenario (an egalitarian vision) and the highest value in the security foremost scenario (an isolationist vision). The biomass demand for food and materials increases over time, while fuelwood demand decreases over time. Global HANPP harv rises to between 8.5 and 10.1 Pg C/yr in 2050 in the four scenarios, 14-35% above its value in 2010, and some 50% of HANPP harv is calculated to be crop residues, wood residues, and food losses in the future. HANPP harv in developing regions (Asia, Africa, and Latin America) increases faster than that in more-developed regions (North America and Europe), due to urbanization, population growth, and increasing income. Decoupling of HANPP harv and socioeconomic development is also discussed in this work.
Zavišić, Aljosa; Yang, Nan; Marhan, Sven; Kandeler, Ellen; Polle, Andrea
2018-01-01
Phosphorus (P) is an important nutrient, whose plant-available form phosphate is often low in natural forest ecosystems. Mycorrhizal fungi mine the soil for P and supply their host with this resource. It is unknown how ectomycorrhizal communities respond to changes in P availability. Here, we used young beech (Fagus sylvatica L.) trees in natural forest soil from a P-rich and P-poor site to investigate the impact of P amendment on soil microbes, mycorrhizas, beech P nutrition, and photosynthesis. We hypothesized that addition of P to forest soil increased P availability, thereby, leading to enhanced microbial biomass and mycorrhizal diversity in P-poor but not in P-rich soil. We expected that P amendment resulted in increased plant P uptake and enhanced photosynthesis in both soil types. Young beech trees with intact soil cores from a P-rich and a P-poor forest were kept in a common garden experiment and supplied once in fall with triple superphosphate. In the following summer, labile P in the organic layer, but not in the mineral top soil, was significantly increased in response to fertilizer treatment. P-rich soil contained higher microbial biomass than P-poor soil. P treatment had no effect on microbial biomass but influenced the mycorrhizal communities in P-poor soil and shifted their composition toward higher similarities to those in P-rich soil. Plant uptake efficiency was negatively correlated with the diversity of mycorrhizal communities and highest for trees in P-poor soil and lowest for fertilized trees. In both soil types, radioactive P tracing (H333PO4) revealed preferential aboveground allocation of new P in fertilized trees, resulting in increased bound P in xylem tissue and enhanced soluble P in bark, indicating increased storage and transport. Fertilized beeches from P-poor soil showed a strong increase in leaf P concentrations from deficient to luxurious conditions along with increased photosynthesis. Based on the divergent behavior of beech in P-poor and P-rich forest soil, we conclude that acclimation of beech to low P stocks involves dedicated mycorrhizal community structures, low P reserves in storage tissues and photosynthetic inhibition, while storage and aboveground allocation of additional P occurs regardless of the P nutritional status. PMID:29706979
Biomass Characterization | Bioenergy | NREL
analytical methods for biomass characterization available for downloading. View the Biomass Compositional Methods Molecular Beam Mass Spectrometry Photo of a man in front of multiple computer screens that present Characterization of Biomass We develop new methods and tools to understand the chemical composition of raw biomass
Taylor, Benton N; Strand, Allan E; Cooper, Emily R; Beidler, Katilyn V; Schönholz, Marcos; Pritchard, Seth G
2014-09-01
Root systems serve important roles in carbon (C) storage and resource acquisition required for the increased photosynthesis expected in CO2-enriched atmospheres. For these reasons, understanding the changes in size, distribution and tissue chemistry of roots is central to predicting the ability of forests to capture anthropogenic CO2. We sampled 8000 cm(3) soil monoliths in a pine forest exposed to 14 years of free-air-CO2-enrichment and 6 years of nitrogen (N) fertilization to determine changes in root length, biomass, tissue C : N and mycorrhizal colonization. CO2 fumigation led to greater root length (98%) in unfertilized plots, but root biomass increases under elevated CO2 were only found for roots <1 mm in diameter in unfertilized plots (59%). Neither fine root [C] nor [N] was significantly affected by increased CO2. There was significantly less root biomass in N-fertilized plots (19%), but fine root [N] and [C] both increased under N fertilization (29 and 2%, respectively). Mycorrhizal root tip biomass responded positively to CO2 fumigation in unfertilized plots, but was unaffected by CO2 under N fertilization. Changes in fine root [N] and [C] call for further study of the effects of N fertilization on fine root function. Here, we show that the stimulation of pine roots by elevated CO2 persisted after 14 years of fumigation, and that trees did not rely exclusively on increased mycorrhizal associations to acquire greater amounts of required N in CO2-enriched plots. Stimulation of root systems by CO2 enrichment was seen primarily for fine root length rather than biomass. This observation indicates that studies measuring only biomass might overlook shifts in root systems that better reflect treatment effects on the potential for soil resource uptake. These results suggest an increase in fine root exploration as a primary means for acquiring additional soil resources under elevated CO2. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Comparative study of different waste biomass for energy application.
Motghare, Kalyani A; Rathod, Ajit P; Wasewar, Kailas L; Labhsetwar, Nitin K
2016-01-01
Biomass is available in many varieties, consisting of crops as well as its residues from agriculture, forestry, and the agro-industry. These different biomass find their way as freely available fuel in rural areas but are also responsible for air pollution. Emissions from such solid fuel combustion to indoor, regional and global air pollution largely depend on fuel types, combustion device, fuel properties, fuel moisture, amount of air supply for combustion and also on climatic conditions. In both economic and environment point of view, gasification constitutes an attractive alternative for the use of biomass as a fuel, than the combustion process. A large number of studies have been reported on a variety of biomass and agriculture residues for their possible use as renewable fuels. Considering the area specific agriculture residues and biomass availability and related transportation cost, it is important to explore various local biomass for their suitability as a fuel. Maharashtra (India) is the mainstay for the agriculture and therefore, produces a significant amount of waste biomass. The aim of the present research work is to analyze different local biomass wastes for their proximate analysis and calorific value to assess their potential as fuel. The biomass explored include cotton waste, leaf, soybean waste, wheat straw, rice straw, coconut coir, forest residues, etc. mainly due to their abundance. The calorific value and the proximate analysis of the different components of the biomass helped in assessing its potential for utilization in different industries. It is observed that ash content of these biomass species is quite low, while the volatile matter content is high as compared to Indian Coal. This may be appropriate for briquetting and thus can be used as a domestic fuel in biomass based gasifier cook stoves. Utilizing these biomass species as fuel in improved cook-stove and domestic gasifier cook-stoves would be a perspective step in the rural energy and environmental sectors. This is important considering that the cleaner fuel like LPG is still not available in rural areas of many parts of the world. Copyright © 2015 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-09
...: (720) 407-0609, e-mail: [email protected] . Conventional Energy Projects (Oil, Natural Gas, Coal..., development, feasibility and market studies. Energy includes conventional energy resources (such as oil, gas, coal, uranium, and coal bed gas) and renewable energy resources (such as wind, solar, biomass, hydro...
Renewable Resource Data | Grid Modernization | NREL
, and tools related to U.S. biomass, geothermal, solar, and wind energy resources. Measurement and resource data to help energy system designers, building architects and engineers, renewable energy analysts , and others to accelerate the integration of renewable energy technologies on the grid. National Solar
An analysis of Ohio's forest resources
Donald F. Dennis; Donald F. Dennis
1983-01-01
A comprehensive analysis of the current status and trends of the forest resources of Ohio. Topics include forest area, timber volume, biomass, timber products, and growth and removals. Forest area, volume, and growth and removals are projected through 2009. Discusses water, soil, minerals, fish, wildlife, and recreation as they relate to forest resources. Also...
Large-Scale Power Production Potential on U.S. Department of Energy Lands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kandt, Alicen J.; Elgqvist, Emma M.; Gagne, Douglas A.
This report summarizes the potential for independent power producers to generate large-scale power on U.S. Department of Energy (DOE) lands and export that power into a larger power market, rather than serving on-site DOE loads. The report focuses primarily on the analysis of renewable energy (RE) technologies that are commercially viable at utility scale, including photovoltaics (PV), concentrating solar power (CSP), wind, biomass, landfill gas (LFG), waste to energy (WTE), and geothermal technologies. The report also summarizes the availability of fossil fuel, uranium, or thorium resources at 55 DOE sites.
Interactions between drought and soil biogeochemistry: scaling from molecules to meters
NASA Astrophysics Data System (ADS)
Schimel, J.; Schaeffer, S. M.
2011-12-01
Water is the perhaps the single most critical resource for life, yet most terrestrial ecosystems experience regular drought. Reduced water potential causes physiological stress; reduced diffusion limits resource availability when microbes may need resources to acclimate. Most biogeochemical models, however, have assumed that soil processes either slow down or stop during drought. But organisms survive and enzymes remain viable. In California, as soils stay dry through the long summer drought, microbial biomass actually increases and pools of extractable organic C increase, probably because extracellular enzymes continue to break down plant detritus (notably roots). Yet 14C suggests that in deeper soils, the pulse of C released on rewetting comes from pools with turnover times of as long as 800 years. What are the mechanisms that regulate these complex dynamics? They appear to involve differential moisture sensitivity for the activity of extracellular enzymes, substrate diffusion, and microbial metabolism. Rewetting not only redistributes materials made available during the drought, but it also disrupts aggregates and may make previously-protected substrates available as well. We have used several methods to simply capture these linkages between water and carbon in models that are applicable at the ecosystem scale and that could improve our ability to model biogeochemical cycles in arid and semi-arid ecosystems. One is a simple empirical modification to the DAYCENT model while the other is a mechanistic model that incorporates microbial dry-season processes.
Missouri's forest resources in 2004
W. Keith Moser; Mark H. Hansen; Thomas Treiman; Bruce Moltzan; Robert Lawrence; Gary J. Brand
2006-01-01
Reports the initial results of five annual panels (2000-2004) of the inventory of Missouri's forest resources and one panel (2004) of growth, removals, and mortality. Includes information on forest area, number of trees, volume, biomass, growth, removals, mortality, and forest health.
Missouri's forest resources in 2003
W. Keith; Moser; Treiman, Thomas Treiman, Thomas; Bruce Moltzan; Robert Lawrence; Gary J. Brand; Gary J. Brand
2005-01-01
Reports the initial results of all five annual panels (1999-2003) of the fifth inventory of Missouri`s forest resources, the first annual inventory of the State. Includes information on forest area; volume; biomass; growth, removals, and mortality; and forest health.
Indiana's forest resources in 2004
Christopher Woodall; Gary Brand; Joey Gallion
2006-01-01
Reports the initial results of five annual panels (2000-2004) of the inventory of Indiana's forest resources and one panel (2004) of growth, removals, and mortality. Includes information on forest area, number of trees, volume, biomass, growth, removals, mortality, and forest health.
Mehra, S; Morrison, P D; Coates, F; Lawrie, A C
2017-02-01
Terrestrial orchids depend on orchid mycorrhizal fungi (OMF) as symbionts for their survival, growth and nutrition. The ability of OMF from endangered orchid species to compete for available resources with OMF from common species may affect the distribution, abundance and therefore conservation status of their orchid hosts. Eight symbiotically effective OMF from endangered and more common Caladenia species were tested for their ability to utilise complex insoluble and simple soluble carbon sources produced during litter degradation by growth with different carbon sources in liquid medium to measure the degree of OMF variation with host conservation status or taxonomy. On simple carbon sources, fungal growth was assessed by biomass. On insoluble substrates, ergosterol content was assessed using ultra-performance liquid chromatography (UPLC). The OMF grew on all natural materials and complex carbon sources, but produced the greatest biomass on xylan and starch and the least on bark and chitin. On simple carbon sources, the greatest OMF biomass was measured on most hexoses and disaccharides and the least on galactose and arabinose. Only some OMF used sucrose, the most common sugar in green plants, with possible implications for symbiosis. OMF from common orchids produced more ergosterol and biomass than those from endangered orchids in the Dilatata and Reticulata groups but not in the Patersonii and Finger orchids. This suggests that differences in carbon source utilisation may contribute to differences in the distribution of some orchids, if these differences are retained on site.
NASA Astrophysics Data System (ADS)
Jaye, I. F. Md; Sadhukhan, J.; Murphy, R. J.
2018-05-01
Generating electricity from biomass are undeniably gives huge advantages to the energy security, environmental protection and the social development. Nevertheless, it always been negatively claimed as not economically competitive as compared to the conventional electricity generation system using fossil fuel. Due to the unfair subsidies given to renewable energy based fuel and the maturity of conventional electricity generation system, the commercialization of this system is rather discouraging. The uniqueness of the chemical and physical properties of the biomass and the functionality of the system are fully depending on the availability of the biomass resources, the capital expenditure of the system is relatively expensive. To remain competitive, biomass based system must be developed in their most economical form. Therefore the justification of the economies of scale of such system is become essential. This study will provide a comprehensive review of process to select an appropriate size for electricity generation plant from palm oil mill (POM) residues through the combustion of an empty fruit bunch (EFB) and biogas from the anaerobic digestion of palm oil mill effluent (POME) in Peninsular Malaysia using a mathematical model and simulation using ASPEN Plus software package. The system operated at 4 MW capacity is expected to provide a return on investment (ROI) of 20% with a payback period of 6.5 years. It is notably agreed that the correct selection of generation plant size will have a significant impact on overall economic and environmental feasibility of the system.
Malico, Isabel; Pereira, Sérgio Nepomuceno; Costa, Maria João
2017-01-01
Since black carbon concentrations are useful to reveal changes in anthropogenic activities, measurements taken from 2007 to 2015 in a Portuguese city are used to assess to which extent the ambient air was impacted by the economic crisis. The average black carbon concentrations are representative of an urban area of small size (1.3 ± 1.3 μg m -3 ). The highest concentrations are observed in the heating season, being biomass combustion one of the causes for the high values. The daily cycle of black carbon concentrations presents both morning and evening peaks, mainly due to road traffic and, in the heating season, to domestic heating as well. The yearly averaged black carbon mass concentrations decreased 33 % from 2007 to 2015, possibly due to a combination of the economic recession and environmental legislation. The reduction in road traffic led to a decrease in the daily morning peak from 2007 to 2015. This reduction was not followed by a decrease in the evening peak, explained by an increase in biomass burning. Biomass is the cheapest heating fuel in Portugal, and its consumption increased in the aftermath of the economic crisis. The use of bioenergy is an alternative to fossil fuels and presents many advantages. However, energy policies should discourage inefficient biomass burning and promote better ways of exploiting the available energy resources and emission air pollution mitigation strategies.
Humphrey, L. David; Pyke, David A.
1998-01-01
The advantages of guerrilla and phalanx growth for the guerrilla Elymus lanceolatus ssp. lanceolatus and phalanx E. l. ssp. wawawaiensis were evaluated over 2 years in two taxon mixtures with a range of densities of each subspecies and under two levels of watering. Ramet numbers and biomass of the guerrilla subspecies were higher than those of the phalanx grass in the first year but in the second year declined greatly, while the phalanx grass showed no change in biomass and an increase in ramet numbers. High neighbour densities affected the phalanx subspecies more strongly than the guerrilla subspecies in the first year, but in the second year there were few differences between subspecies. Biomass of the guerrilla grass remained greater than that of the phalanx grass but ramet numbers were similar in the second year. For both subspecies in both years, probability of flowering decreased at higher neighbour densities, indicating adaptation for competitive ability. In the first year, biomass was more strongly reduced by densities than flowering was, but in the second year, when crowding was apparently greater, flowering was more severely affected. Genet survival was high and similar for both subspecies. The presumed advantage of guerrilla subspecies in exploiting open space was supported. The guerrilla grass exploited resources more quickly in the first year by faster growth and greater ramet production, but its biomass, ramet numbers and rhizome growth, and thus its advantage, were reduced in the second year. The phalanx subspecies had slower growth, produced more ramets in later years, and delayed flowering until later years. Although less able to exploit open resources, it appeared adapted to more stressful conditions, and may be able to exploit temporal resource pulses more effectively.
The role of constructed wetlands for biomass production within the water-soil-waste nexus.
Avellan, C T; Ardakanian, R; Gremillion, P
2017-05-01
The use of constructed wetlands for water pollution control has a long standing tradition in urban, peri-urban, rural, agricultural and mining environments. The capacity of wetland plants to take up nutrients and to filter organic matter has been widely discussed and presented in diverse fora and published in hundreds of articles. In an ever increasingly complex global world, constructed wetlands not only play a role in providing safe sanitation in decentralized settings, shelter for biodiversity, and cleansing of polluted sites, in addition, they produce biomass that can be harvested and used for the production of fodder and fuel. The United Nations University Institute for Integrated Management of Material Fluxes and of Resources (UNU-FLORES) was established in December 2012 in Dresden, Germany, to assess the trade-offs between and among resources when making sustainable decisions. Against the backdrop of the Water-Energy-Food Nexus, which was introduced as a critical element for the discussions on sustainability at Rio +20, the UNU was mandated to pay critical attention to the interconnections of the underlying resources, namely, water, soil and waste. Biomass for human consumption comes in the form of food for direct use, as fodder for livestock, and as semi-woody biomass for fuelling purposes, be it directly for heating and cooking or for the production of biogas and/or biofuel. Given the universal applicability of constructed wetlands in virtually all settings, from arid to tropical, from relatively high to low nutrient loads, and from a vast variety of pollutants, we postulate that the biomass produced in constructed wetlands can be used more extensively in order to enhance the multi-purpose use of these sites.
Zhao, Xiao-Rong; Zhou, Ran; Li, Gui-Tong; Lin, Qi-Mei
2009-02-01
In an incubation test, a calcareous soil with low concentration of available P was amended with KH2PO4 (0, 25, 50, and 100 mg P x kg(-1)) and ground wheat straw (5 g C x kg(-1)), and incubated at 25 degrees C for 90 days. The aim was to investigate the change patterns of soil microbial biomass P and microbial P concentration as well as their relationships with soil available P. The results showed that both soil microbial biomass P and microbial P concentration increased with increasing inorganic P addition, with the maximum being 71.37 and 105.34 mg x kg(-1), respectively. The combined application of inorganic P (except 100 mg P x kg(-1)) and wheat straw decreased the soil microbial biomass P and microbial P concentration, being most obvious at early incubation period. Soil microbial biomass P and microbial P concentration had significant positive correlations (P < 0.05) with soil available P (R2 = 0.26 and 0.40, n = 49, respectively). The applied P could rapidly transform into microbial biomass P. The maximum apparent contribution rate of applied P to microbial biomass P was 71%. The added wheat straw could further improve the apparent contribution rate.
Material flow analysis for resource management towards resilient palm oil production
NASA Astrophysics Data System (ADS)
Kamahara, H.; Faisal, M.; Hasanudin, U.; Fujie, K.; Daimon, H.
2018-03-01
Biomass waste generated from palm oil mill can be considered not only as the feedstock of renewable energy but also as the nutrient-rich resources to produce organic fertilizer. This study explored the appropriate resource management towards resilient palm oil production by applying material flow analysis. This study was conducted based on two palm oil mills in Lampung, Indonesia. The results showed that the empty fruit bunch (EFB) has the largest potential in terms of amount and energy among the biomass waste. The results also showed that the palm oil mills themselves had already self-managed their energy consumption thatwas obtained from palm kernel shell and palm press fiber. Finally, this study recommended the several utilization options of EFB for improvement of soil sustainability to contribute towards resilient palm oil production.
Liu, Wu-Jun; Tian, Ke; He, Yan-Rong; Jiang, Hong; Yu, Han-Qing
2014-12-02
Disposal and recycling of the large scale biomass waste is of great concern. Themochemically converting the waste biomass to functional carbon nanomaterials and bio-oil is an environmentally friendly apporach by reducing greenhouse gas emissions and air pollution caused by open burning. In this work, we reported a scalable, "green" method for the synthesis of the nanofibers/mesoporous carbon composites through pyrolysis of the Fe(III)-preloaded biomass, which is controllable by adjustment of temperature and additive of catalyst. It is found that the coupled catalytic action of both Fe and Cl species is able to effectively catalyze the growth of the carbon nanofibers on the mesoporous carbon and form magnetic nanofibers/mesoporous carbon composites (M-NMCCs). The mechanism for the growth of the nanofibers is proposed as an in situ vapor deposition process, and confirmed by the XRD and SEM results. M-NMCCs can be directly used as electrode materials for electrochemical energy storage without further separation, and exhibit favorable energy storage performance with high EDLC capacitance, good retention capability, and excellent stability and durability (more than 98% capacitance retention after 10,000 cycles). Considering that biomass is a naturally abundant and renewable resource (over billions tons biomass produced every year globally) and pyrolysis is a proven technique, M-NMCCs can be easily produced at large scale and become a sustainable and reliable resource for clean energy storage.
Fossil Energy Planning for Navajo Nation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acedo, Margarita
This project includes fossil energy transition planning to find optimal solutions that benefit the Navajo Nation and stakeholders. The majority of the tribe’s budget currently comes from fossil energy-revenue. The purpose of this work is to assess potential alternative energy resources including solar photovoltaics and biomass (microalgae for either biofuel or food consumption). This includes evaluating carbon-based reserves related to the tribe’s resources including CO 2 emissions for the Four Corners generating station. The methodology for this analysis will consist of data collection from publicly available data, utilizing expertise from national laboratories and academics, and evaluating economic, health, and environmentalmore » impacts. Finally, this report will highlight areas of opportunities to implement renewable energy in the Navajo Nation by presenting the technology requirements, cost, and considerations to energy, water, and environment in an educational structure.« less
Roadmap for Agriculture Biomass Feedstock Supply in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Richard Hess; Thomas D. Foust; Reed Hoskinson
2003-11-01
The Biomass Research and Development Technical Advisory Committee established a goal that biomass will supply 5% of the nation’s power, 20% of its transportation fuels, and 25% of its chemicals by 2030. These combined goals are approximately equivalent to 30% of the country’s current petroleum consumption. The benefits of a robust biorefinery industry supplying this amount of domestically produced power, fuels, and products are considerable, including decreased demand for imported oil, revenue to the depressed agricultural industry, and revitalized rural economies. A consistent supply of highquality, low-cost feedstock is vital to achieving this goal. This biomass roadmap defines the researchmore » and development (R&D) path to supplying the feedstock needs of the biorefinery and to achieving the important national goals set for biomass. To meet these goals, the biorefinery industry must be more sustainable than the systems it will replace. Sustainability hinges on the economic profitability of all participants, on environmental impact of every step in the process, and on social impact of the product and its production. In early 2003, a series of colloquies were held to define and prioritize the R&D needs for supplying feedstock to the biorefinery in a sustainable manner. These colloquies involved participants and stakeholders in the feedstock supply chain, including growers, transporters, equipment manufacturers, and processors as well as environmental groups and others with a vested interest in ensuring the sustainability of the biorefinery. From this series of colloquies, four high-level strategic goals were set for the feedstock area: • Biomass Availability – By 2030, 1 billion dry tons of lignocellulosic feedstock is needed annually to achieve the power, fuel, and chemical production goals set by the Biomass Research and Development Technology Advisory Production Committee • Sustainability – Production and use of the 1 billion dry tons annually must be accomplished in a sustainable manner • Feedstock Infrastructure – An integrated feedstock supply system must be developed and implemented that can serve the feedstock needs of the biorefinery at the cost, quality, and consistency of the set targets • System Profitability – Economic profitability and sustainability need to be ensured for all required participants in the feedstock supply system. For each step in the biomass supply process—production, harvesting and collection, storage, preprocessing, system integration, and transportation—this roadmap addresses the current technical situations, performance targets, technical barriers, R&D needs, and R&D priorities to overcome technical barriers and achieve performance targets. Crop residue biomass is an attractive starting feedstock, which shows the best near-term promise as a biorefinery feedstock. Because crop residue is a by-product of grain production, it is an abundant, underutilized, and low cost biomass resource. Corn stover and cereal straw are the two most abundant crop residues available in the United States. Therefore, this roadmap focuses primarily on the R&D needed for using these biomass sources as viable biorefinery feedstocks. However, achieving the goal of 1 billion dry tons of lignocellulosic feedstock will require the use of other biomass sources such as dedicated energy crops. In the long term, the R&D needs identified in this roadmap will need to accommodate these other sources of biomass as well.« less
Singh, Anoop; Pant, Deepak; Korres, Nicholas E; Nizami, Abdul-Sattar; Prasad, Shiv; Murphy, Jerry D
2010-07-01
Progressive depletion of conventional fossil fuels with increasing energy consumption and greenhouse gas (GHG) emissions have led to a move towards renewable and sustainable energy sources. Lignocellulosic biomass is available in massive quantities and provides enormous potential for bioethanol production. However, to ascertain optimal biofuel strategies, it is necessary to take into account environmental impacts from cradle to grave. Life cycle assessment (LCA) techniques allow detailed analysis of material and energy fluxes on regional and global scales. This includes indirect inputs to the production process and associated wastes and emissions, and the downstream fate of products in the future. At the same time if not used properly, LCA can lead to incorrect and inappropriate actions on the part of industry and/or policy makers. This paper aims to list key issues for quantifying the use of resources and releases to the environment associated with the entire life cycle of lignocellulosic bioethanol production. Copyright 2009 Elsevier Ltd. All rights reserved.
Regulatory mechanisms for specification and patterning of plant vascular tissues.
Caño-Delgado, Ana; Lee, Ji-Young; Demura, Taku
2010-01-01
Plant vascular tissues, the conduits of water, nutrients, and small molecules, play important roles in plant growth and development. Vascular tissues have allowed plants to successfully adapt to various environmental conditions since they evolved 450 Mya. The majority of plant biomass, an important source of renewable energy, comes from the xylem of the vascular tissues. Efforts have been made to identify the underlying mechanisms of cell specification and patterning of plant vascular tissues and their proliferation. The formation of the plant vascular system is a complex process that integrates signaling and gene regulation at transcriptional and posttranscriptional levels. Recently, a wealth of molecular genetic studies and the advent of cell biology and genomic tools have enabled important progress toward understanding its underlying mechanisms. Here, we provide a comprehensive review of the cell and developmental processes of plant vascular tissue and resources recently available for studying them that will enable the discovery of new ways to develop sustainable energy using plant biomass.
Interspecific variation in resistance of two host tree species to spruce budworm
NASA Astrophysics Data System (ADS)
Fuentealba, Alvaro; Bauce, Éric
2016-01-01
Woody plants regularly sustain biomass losses to herbivorous insects. Consequently, they have developed various resistance mechanisms to cope with insect attack. However, these mechanisms of defense and how they are affected by resource availability are not well understood. The present study aimed at evaluating and comparing the natural resistance (antibiosis and tolerance) of balsam fir (Abies balsamea [L.] Mill.) and white spruce (Picea glauca [Moench) Voss] to spruce budworm, Choristoneura fumiferana (Clem.), and how drainage site quality as a component of resource availability affects the expression of resistance over time (6 years). Our results showed that there are differences in natural resistance between the two tree species to spruce budworm, but it was not significantly affected by drainage quality. Balsam fir exhibited higher foliar toxic secondary compounds concentrations than white spruce in all drainage classes, resulting in lower male pupal mass, survival and longer male developmental time. This, however, did not prevent spruce budworm from consuming more foliage in balsam fir than in white spruce. This response suggests that either natural levels of measured secondary compounds do not provide sufficient toxicity to reduce defoliation, or spruce budworm has developed compensatory mechanisms, which allow it to utilize food resources more efficiently or minimize the toxic effects that are produced by its host's defensive compounds. Larvae exhibited lower pupal mass and higher mortality in rapidly drained and subhygric sites. Drainage class also affected the amount of foliage destroyed but its impact varied over the years and was probably influenced by climatic variables. These results demonstrate the complexity of predicting the effect of resource availability on tree defenses, especially when other confounding environmental factors can affect tree resource allocation and utilization.
Does reef structure affect oyster food resources? A stable isotope assessment.
Blomberg, Brittany N; Lebreton, Benoit; Palmer, Terence A; Guillou, Gaël; Beseres Pollack, Jennifer; Montagna, Paul A
2017-06-01
As ecosystem engineers, oysters create and maintain structured habitat and can influence trophodynamics and benthic-pelagic coupling in the surrounding landscape. The physical reef structure and associated biotic parameters can affect the availability of food resources for oysters. Oysters and potential composite food sources - suspended particulate organic matter (SPOM) and surface sediment organic matter (SSOM) - were assessed using a dual stable isotope (δ 13 C, δ 15 N) approach at three reef types (natural, restored, and unconsolidated) seasonally for two years to determine if changes in physical and/or biotic parameters affected the relative availability and/or use of food resources by oysters. SPOM was more depleted in 13 C (-24.2 ± 0.6‰, mean ± SD) than SSOM (-21.2 ± 0.8‰). SPOM composition is likely dominated by autochthonous phytoplankton production, while SSOM includes trapped phytoplankton and benthic microalgae. SSOM was used by oysters in increasing proportions relative to SPOM over time at all reef types. This temporal trend is likely due to increased oyster biomass over time, promoting enhanced microphytobenthos growth through feedback effects related to oyster biodeposits. Structural differences between reef types observed in this study had no effect on food resource availability and use by oysters, indicating strong bentho-pelagic coupling likely due to shallow depths as well as strong and consistent winds. This study provides insights for restoration of oyster reefs as it highlights that food resources used by oysters remain similar among reef types despite changes in abiotic and biotic parameters among habitats and over time. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sahajpal, R.
2015-12-01
The development of renewable energy sources is an integral step towards mitigating the carbon dioxide induced component of climate change. One important renewable source is plant biomass, comprising both food crops such as corn (Zea mays) and cellulosic biomass from short-rotation woody crops (SRWC) such as hybrid-poplar (Populus spp.) and Willow (Salix spp.). Due to their market acceptability and excellent energy balance, cellulosic feedstocks represent an abundant and if managed properly, a carbon-neutral and environmentally beneficial resource. We evaluate how site variability impacts the greenhouse-gas (GHG) benefits of SRWC plantations on lands potentially suited for bioenergy feedstock production in the Lake States (Minnesota, Wisconsin, Michigan). We combine high-resolution, spatially-explicit estimates of biomass, soil organic carbon and nitrous oxide emissions for SRWC plantations from the Environmental Policy Integrated Climate (EPIC) model along with life cycle analysis results from the GREET model to determine the greenhouse-gas payback time (GPBT) or the time needed before the GHG savings due to displacement of fossil fuels exceeds the initial losses from plantation establishment. We calibrate our models using unique yield and N2O emission data from sites across the Lake states that have been converted from pasture and hayfields to SRWC plantations. Our results show a reduction of 800,000 ha in non-agricultural open land availability for biomass production, a loss of nearly 37% (see attached figure). Overall, GPBTs range between 1 and 38 years, with the longest GPBTs occurring in the northern Lake states. Initial soil nitrate levels and site drainage potential explain more than half of the variation in GPBTs. Our results indicate a rapidly closing window of opportunity to establish a sustainable cellulosic feedstock economy in the Lake States.
Shift in black rhinoceros diet in the presence of elephant: evidence for competition?
Landman, Marietjie; Schoeman, David S; Kerley, Graham I H
2013-01-01
In African large herbivore assemblages, megaherbivores dominate the biomass and utilise the greatest share of available resources. Consequently, they are considered a separate trophic guild that structures the food niches of coexisting large herbivores. However, there exists little empirical evidence on how food resources are shared within this guild, and none for direct competition for food between megaherbivores. Using the histological analysis of faeces, we explore this phenomenon for African elephant Loxodonta africana and black rhinoceros Diceros bicornis in the Addo Elephant National Park, South Africa, where the accumulated impacts of elephant have reduced browse availability. Despite being unable to generalise beyond our study sites, our observations support the predictions of competition theory (as opposed to optimality theory) by showing (1) a clear seasonal separation in resource use between these megaherbivores that increased as resource availability declined, and (2) rhinoceros changed their selectivity in the absence of elephant (using an adjacent site) by expanding and shifting their diet along the grass-browse continuum, and in relation to availability. Although black rhinoceros are generally considered strict browsers, the most significant shift in diet occurred as rhinoceros increased their preferences for grasses in the presence of elephant. We speculate that the lack of specialised grazing adaptations may increase foraging costs in rhinoceros, through reduced harvest- and handling-efficiencies of grasses. In the short-term, this may be off-set by an enhanced tolerance for low quality food and by seasonally mobilising fat reserves; however, the long-term fitness consequences require further study. Our data suggest that managing elephant at high densities may compromise the foraging opportunities of coexisting browsers. This may be particularly important in small, fenced areas and overlapping preferred habitats where impacts intensify.
Characterizing U.S. Heat Demand Market for Potential Application of Geothermal Direct Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCabe, Kevin; Gleason, Michael; Reber, Tim
In this paper, we assess the U.S. demand for low-temperature thermal energy at the county resolution for four major end-use sectors: residential buildings, commercial buildings, manufacturing facilities, and agricultural facilities. Existing, publicly available data on the U.S. thermal demand market are characterized by coarse spatial resolution, with assessments typically at the state-level or larger. For many uses, these data are sufficient; however, our research was motivated by an interest in assessing the potential demand for direct use (DU) of low-temperature (30 degrees to 150 degrees C) geothermal heat. The availability and quality of geothermal resources for DU applications are highlymore » spatially heterogeneous; therefore, to assess the potential market for these resources, it is necessary to understand the spatial variation in demand for low-temperature resources at a local resolution. This paper presents the datasets and methods we used to develop county-level estimates of the thermal demand for the residential, commercial, manufacturing, and agricultural sectors. Although this analysis was motivated by an interest in geothermal energy deployment, the results are likely to have broader applications throughout the energy industry. The county-resolution thermal demand data developed in this study for four major U.S. sectors may have far-reaching implications for building technologies, industrial processes, and various distributed renewable energy thermal resources (e.g. biomass, solar).« less
Characterizing U.S. Heat Demand for Potential Application of Geothermal Direct Use: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCabe, Kevin; Gleason, Michael; Reber, Tim
In this paper, we assess the U.S. demand for low-temperature thermal energy at the county resolution for four major end-use sectors: residential buildings, commercial buildings, manufacturing facilities, and agricultural facilities. Existing, publicly available data on the U.S. thermal demand market are characterized by coarse spatial resolution, with assessments typically at the state-level or larger. For many uses, these data are sufficient; however, our research was motivated by an interest in assessing the potential demand for direct use (DU) of low-temperature (30 degrees to 150 degrees C) geothermal heat. The availability and quality of geothermal resources for DU applications are highlymore » spatially heterogeneous; therefore, to assess the potential market for these resources, it is necessary to understand the spatial variation in demand for low-temperature resources at a local resolution. This paper presents the datasets and methods we used to develop county-level estimates of the thermal demand for the residential, commercial, manufacturing, and agricultural sectors. Although this analysis was motivated by an interest in geothermal energy deployment, the results are likely to have broader applications throughout the energy industry. The county-resolution thermal demand data developed in this study for four major U.S. sectors may have far-reaching implications for building technologies, industrial processes, and various distributed renewable energy thermal resources (e.g. biomass, solar).« less
Microwave-Assisted γ-Valerolactone Production for Biomass Lignin Extraction: A Cascade Protocol.
Tabasso, Silvia; Grillo, Giorgio; Carnaroglio, Diego; Calcio Gaudino, Emanuela; Cravotto, Giancarlo
2016-03-26
The general need to slow the depletion of fossil resources and reduce carbon footprints has led to tremendous effort being invested in creating "greener" industrial processes and developing alternative means to produce fuels and synthesize platform chemicals. This work aims to design a microwave-assisted cascade process for a full biomass valorisation cycle. GVL (γ-valerolactone), a renewable green solvent, has been used in aqueous acidic solution to achieve complete biomass lignin extraction. After lignin precipitation, the levulinic acid (LA)-rich organic fraction was hydrogenated, which regenerated the starting solvent for further biomass delignification. This process does not requires a purification step because GVL plays the dual role of solvent and product, while the reagent (LA) is a product of biomass delignification. In summary, this bio-refinery approach to lignin extraction is a cascade protocol in which the solvent loss is integrated into the conversion cycle, leading to simplified methods for biomass valorisation.
Broadbent, Arthur; Stevens, Carly J; Peltzer, Duane A; Ostle, Nicholas J; Orwin, Kate H
2018-02-01
Plant invasions and eutrophication are pervasive drivers of global change that cause biodiversity loss. Yet, how invasive plant impacts on native species, and the mechanisms underpinning these impacts, vary in relation to increasing nitrogen (N) availability remains unclear. Competition is often invoked as a likely mechanism, but the relative importance of the above and belowground components of this is poorly understood, particularly under differing levels of N availability. To help resolve these issues, we quantified the impact of a globally invasive grass species, Agrostis capillaris, on two co-occurring native New Zealand grasses, and vice versa. We explicitly separated above- and belowground interactions amongst these species experimentally and incorporated an N addition treatment. We found that competition with the invader had large negative impacts on native species growth (biomass decreased by half), resource capture (total N content decreased by up to 75%) and even nutrient stoichiometry (native species tissue C:N ratios increased). Surprisingly, these impacts were driven directly and indirectly by belowground competition, regardless of N availability. Higher root biomass likely enhanced the invasive grass's competitive superiority belowground, indicating that root traits may be useful tools for understanding invasive plant impacts. Our study shows that belowground competition can be more important in driving invasive plant impacts than aboveground competition in both low and high fertility ecosystems, including those experiencing N enrichment due to global change. This can help to improve predictions of how two key drivers of global change, plant species invasions and eutrophication, impact native species diversity.
Cumulative watershed effects of fuel management in the western United States
William J. Elliot; Ina Sue Miller; Lisa Audin
2010-01-01
Fire suppression in the last century has resulted in forests with excessive amounts of biomass, leading to more severe wildfires, covering greater areas, requiring more resources for suppression and mitigation, and causing increased onsite and offsite damage to forests and watersheds. Forest managers are now attempting to reduce this accumulated biomass by thinning,...
Biomass statistics for Vermont - 1983
Thomas S. Frieswyk; Anne M. Malley
1986-01-01
A new measure of the forest resource has been added to the fourth forest inventory of Vermont. The inventory, which was conducted in 1982-83, included estimates of aboveground tree biomass on timberland. There are approximately 413 million green tons of wood and bark in the aboveground portion of all trees, which equates to an average of 93 green tons per acre...
Modeling population dynamics and woody biomass of Alaska coastal forest
Randy L. Peterson; Jingjing Liang; Tara M. Barrett
2014-01-01
Alaska coastal forest, 6.2 million ha in size, has been managed in the past mainly through clearcutting. Declining harvest and dwindling commercial forest resources over the past 2 decades have led to increased interest in management of young-growth stands and utilization of woody biomass for bioenergy. However, existing models to support these new management systems...
Wenwu Tang; Wenpeng Feng; Meijuan Jia; Jiyang Shi; Huifang Zuo; Carl C. Trettin
2015-01-01
Mangrove forests are highly productive and have large carbon sinks while also providing numerous goods and ecosystem services. However, effective management and conservation of the mangrove forests are often dependent on spatially explicit assessments of the resource. Given the remote and highly dispersed nature of mangroves, estimation of biomass and carbon...
NASA Astrophysics Data System (ADS)
Zhao, Li; Sun, Du; Wang, Shi-Yu; Zhao, Feng-Qing
2017-06-01
In recent years, remarkable achievements in the utilization of biomass energy have been made in China. However, there are still some problems, such as irrational industry layout, immature existing market survival mechanism and lack of core competitiveness. On the basis of investigation and research, some recommendations and strategies are proposed for the development of biomass energy around Chinese Beijing-Tianjin area: scientific planning and precise laying out of biomass industry; rationalizing the relationship between government and enterprises and promoting the establishment of a market-oriented survival mechanism; combining ‘supply side’ with ‘demand side’ to optimize product structure; extending industrial chain to promote industry upgrading and sustainable development; and comprehensive co-ordinating various types of biomass resources and extending product chain to achieve better economic benefits.
Doubling the estimate of invertebrate biomass in a rainforest canopy.
Ellwood, Martin D F; Foster, William A
2004-06-03
Forest canopies represent the functional interface between 90% of the Earth's terrestrial biomass and the atmosphere and include some of the most threatened of all terrestrial ecosystems. However, we lack even a basic understanding of how the biomass of plants and animals is distributed throughout forest canopies, even though this information is vital for estimating energy flow, carbon cycling, resource use and the transfer of materials within this ecosystem. Here we measure the biomass of invertebrates living in a common rainforest epiphyte, describe a striking relationship between fern size and the biomass of animals within the ferns, and reveal that one large epiphyte may contain an invertebrate biomass similar to that found in the whole of the rest of the tree crown on which it is growing. Using these data, we show that including the fauna of these epiphytes--a neglected component in rainforest ecosystems--can more than double our estimate of the total invertebrate biomass in an entire rainforest canopy.
Iowa's forest resources in 2004
Susan J. Crocker; W. Keith Moser; Gary J. Brand; Aron Flickinger
2006-01-01
Reports analysis of data for five annual panels (2000-2004) of inventory of Iowa's forest resources and one panel (1999 to 2004) of growth, removals, and mortality. Includes information on fores area, number of trees, volume, biomass growth, removals, mortality, and forest health.
Indiana's forest resources in 2005
Christopher Woodall; Gary Brand; Joey Gallion
2006-01-01
Reports the initial results of five annual panels (2001-2005) of the inventory of Indiana's forest resources and two panels (2004 and 2005) of growth, removals, and mortality. Includes information on forest area, number of trees, volume, biomass, growth, removals, mortality, and forest health.
Gerhard K. Raile; Earl C. Leatherberry
1988-01-01
The third inventory of forest resources in Illinois shows a 1.2% increase in timberland and a 40.5% gain in growing stock volume between 1962 and 1985. Text and statistics are presented on area, volume, growth, mortality, removals, utilization, biomass, and future timber supply.
Cayuela, Luis; González-Caro, Sebastián; Aldana, Ana M.; Stevenson, Pablo R.; Phillips, Oliver; Cogollo, Álvaro; Peñuela, Maria C.; von Hildebrand, Patricio; Jiménez, Eliana; Melo, Omar; Londoño-Vega, Ana Catalina; Mendoza, Irina; Velásquez, Oswaldo; Fernández, Fernando; Serna, Marcela; Velázquez-Rua, Cesar; Benítez, Doris; Rey-Benayas, José M.
2017-01-01
Understanding and predicting the likely response of ecosystems to climate change are crucial challenges for ecology and for conservation biology. Nowhere is this challenge greater than in the tropics as these forests store more than half the total atmospheric carbon stock in their biomass. Biomass is determined by the balance between biomass inputs (i.e., growth) and outputs (mortality). We can expect therefore that conditions that favor high growth rates, such as abundant water supply, warmth, and nutrient-rich soils will tend to correlate with high biomass stocks. Our main objective is to describe the patterns of above ground biomass (AGB) stocks across major tropical forests across climatic gradients in Northwestern South America. We gathered data from 200 plots across the region, at elevations ranging between 0 to 3400 m. We estimated AGB based on allometric equations and values for stem density, basal area, and wood density weighted by basal area at the plot-level. We used two groups of climatic variables, namely mean annual temperature and actual evapotranspiration as surrogates of environmental energy, and annual precipitation, precipitation seasonality, and water availability as surrogates of water availability. We found that AGB is more closely related to water availability variables than to energy variables. In northwest South America, water availability influences carbon stocks principally by determining stand structure, i.e. basal area. When water deficits increase in tropical forests we can expect negative impact on biomass and hence carbon storage. PMID:28301482
Álvarez-Dávila, Esteban; Cayuela, Luis; González-Caro, Sebastián; Aldana, Ana M; Stevenson, Pablo R; Phillips, Oliver; Cogollo, Álvaro; Peñuela, Maria C; von Hildebrand, Patricio; Jiménez, Eliana; Melo, Omar; Londoño-Vega, Ana Catalina; Mendoza, Irina; Velásquez, Oswaldo; Fernández, Fernando; Serna, Marcela; Velázquez-Rua, Cesar; Benítez, Doris; Rey-Benayas, José M
2017-01-01
Understanding and predicting the likely response of ecosystems to climate change are crucial challenges for ecology and for conservation biology. Nowhere is this challenge greater than in the tropics as these forests store more than half the total atmospheric carbon stock in their biomass. Biomass is determined by the balance between biomass inputs (i.e., growth) and outputs (mortality). We can expect therefore that conditions that favor high growth rates, such as abundant water supply, warmth, and nutrient-rich soils will tend to correlate with high biomass stocks. Our main objective is to describe the patterns of above ground biomass (AGB) stocks across major tropical forests across climatic gradients in Northwestern South America. We gathered data from 200 plots across the region, at elevations ranging between 0 to 3400 m. We estimated AGB based on allometric equations and values for stem density, basal area, and wood density weighted by basal area at the plot-level. We used two groups of climatic variables, namely mean annual temperature and actual evapotranspiration as surrogates of environmental energy, and annual precipitation, precipitation seasonality, and water availability as surrogates of water availability. We found that AGB is more closely related to water availability variables than to energy variables. In northwest South America, water availability influences carbon stocks principally by determining stand structure, i.e. basal area. When water deficits increase in tropical forests we can expect negative impact on biomass and hence carbon storage.
Liguori, Rossana; Ventorino, Valeria; Pepe, Olimpia; Faraco, Vincenza
2016-01-01
Lignocellulosic biomasses derived from dedicated crops and agro-industrial residual materials are promising renewable resources for the production of fuels and other added value bioproducts. Due to the tolerance to a wide range of environments, the dedicated crops can be cultivated on marginal lands, avoiding conflict with food production and having beneficial effects on the environment. Besides, the agro-industrial residual materials represent an abundant, available, and cheap source of bioproducts that completely cut out the economical and environmental issues related to the cultivation of energy crops. Different processing steps like pretreatment, hydrolysis and microbial fermentation are needed to convert biomass into added value bioproducts. The reactor configuration, the operative conditions, and the operation mode of the conversion processes are crucial parameters for a high yield and productivity of the biomass bioconversion process. This review summarizes the last progresses in the bioreactor field, with main attention on the new configurations and the agitation systems, for conversion of dedicated energy crops (Arundo donax) and residual materials (corn stover, wheat straw, mesquite wood, agave bagasse, fruit and citrus peel wastes, sunflower seed hull, switchgrass, poplar sawdust, cogon grass, sugarcane bagasse, sunflower seed hull, and poplar wood) into sugars and ethanol. The main novelty of this review is its focus on reactor components and properties.
NASA Astrophysics Data System (ADS)
Tremblay, P.; Grover, R.; Maguer, J. F.; Hoogenboom, M.; Ferrier-Pagès, C.
2014-03-01
Reef-building corals live in symbiosis with dinoflagellates that translocate a large proportion of their photosynthetically fixed carbon compounds to their coral host for its own metabolism. The carbon budget and translocation rate, however, vary depending on environmental conditions, coral host species, and symbiont clade. To quantify variability in carbon translocation in response to environmental conditions, this study assessed the effect of two different irradiance levels (120 and 250 μmol photons m-2 s-1) and feeding regimes (fed with Artemia salina nauplii and unfed) on the carbon budget of the tropical coral Stylophora pistillata. For this purpose, H13CO3 --enriched seawater was used to trace the conversion of photosynthetic carbon into symbiont and coral biomass and excrete particulate organic carbon. Results showed that carbon translocation (ca. 78 %) and utilization were similar under both irradiance levels for unfed colonies. In contrast, carbon utilization by fed colonies was dependent on the growth irradiance. Under low irradiance, heterotrophy was accompanied by lower carbon translocation (71 %), higher host and symbiont biomass, and higher calcification rates. Under high irradiance, heterotrophy was accompanied by higher rates of photosynthesis, respiration, and carbon translocation (90 %) as well as higher host biomass. Hence, levels of resource sharing within coral-dinoflagellate symbioses depend critically on environmental conditions.
Idrees, Muhammad; Adnan, Ahmad; Sheikh, Shahzad; Qureshic, Fahim Ashraf
2013-01-01
The present study was conducted for the optimization of pretreatment process that was used for enzymatic hydrolysis of lignocellulosic biomass (Water Hyacinth, WH), which is a renewable resource for the production of bioethanol with decentralized availability. Response surface methodology has been employed for the optimization of temperature (oC), time (hr) and different concentrations of maleic acid (MA), sulfuric acid (SA) and phosphoric acid (PA) that seemed to be significant variables with P < 0.05. High F and R2 values and low P-value for hydrolysis yield indicated the model predictability. The pretreated biomass producing 39.96 g/l, 39.86 g/l and 37.9 g/l of reducing sugars during enzymatic hydrolysis with yield 79.93, 78.71 and 75.9 % from PA, MA and SA treated respectively. The order of catalytic effectiveness for hydrolysis yield was found to be phosphoric acid > maleic acid > sulfuric acid. Mixture of sugars was obtained during dilute acid pretreatment with glucose being the most prominent sugar while pure glucose was obtained during enzymatic hydrolysis. The resulting sugars, obtained during enzymatic hydrolysis were finally fermented to ethanol, with yield 0.484 g/g of reducing sugars which is 95 % of theoretical yield (0.51 g/g glucose) by using commercial baker's yeast (Sacchromyces cerveasiae). PMID:26417215
NASA Astrophysics Data System (ADS)
Vaglio Laurin, Gaia; Puletti, Nicola; Chen, Qi; Corona, Piermaria; Papale, Dario; Valentini, Riccardo
2016-10-01
Estimates of forest aboveground biomass are fundamental for carbon monitoring and accounting; delivering information at very high spatial resolution is especially valuable for local management, conservation and selective logging purposes. In tropical areas, hosting large biomass and biodiversity resources which are often threatened by unsustainable anthropogenic pressures, frequent forest resources monitoring is needed. Lidar is a powerful tool to estimate aboveground biomass at fine resolution; however its application in tropical forests has been limited, with high variability in the accuracy of results. Lidar pulses scan the forest vertical profile, and can provide structure information which is also linked to biodiversity. In the last decade the remote sensing of biodiversity has received great attention, but few studies focused on the use of lidar for assessing tree species richness in tropical forests. This research aims at estimating aboveground biomass and tree species richness using discrete return airborne lidar in Ghana forests. We tested an advanced statistical technique, Multivariate Adaptive Regression Splines (MARS), which does not require assumptions on data distribution or on the relationships between variables, being suitable for studying ecological variables. We compared the MARS regression results with those obtained by multilinear regression and found that both algorithms were effective, but MARS provided higher accuracy either for biomass (R2 = 0.72) and species richness (R2 = 0.64). We also noted strong correlation between biodiversity and biomass field values. Even if the forest areas under analysis are limited in extent and represent peculiar ecosystems, the preliminary indications produced by our study suggest that instrument such as lidar, specifically useful for pinpointing forest structure, can also be exploited as a support for tree species richness assessment.
Understory biomass from southern pine forests as a fuel source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ku, T.T.; Baker, J.B.
1993-12-31
The energy crisis in the US in the late 1970s led to accelerated research on renewable energy resources. The use of woody biomass, harvested from pine forests in the southern US, as a renewable energy source would not only provide an efficient energy alternative to forest industries, but its use would also reduce understory competition and accelerate growth of overstory crop trees. This study was initiated in the early 1980s to investigate the feasibility and applicability of the use of understory vegetation as a possible energy fuel resource. All woody understory vegetation [<14 cm (<5.5 in) in dbh], on 0.2more » ha (0.5 ac) plots that represented a range of stand/site conditions of pine stands located in twelve southern Arkansas counties and two northern Louisiana parishes were characterized, quantified, and harvested. Based on the biomass yield from 720 subplots nested within 40 main plots, the top five dominant species in the understory, based on number and size were: Red maple, red oaks, pines, sweetgum, and winged elm. Some other species occurring, but in smaller proportions, were flowering dogwood, beautyberry, white oaks, black gum, wax myrtle, hickories, persimmon, and ashes. Most of these species are deciduous hardwoods that provide high BTU output upon burning. The average yield of chipped understory biomass was 23.5 T/ha with no difference occurring between summer and winter harvests. A predictive model of understory biomass production was developed using a step-wise multivariate regression analysis. In relation to forest type, high density pine stands produced 53% more understory biomass than high density pine-hardwood stands. The average moisture content of biomass was significantly lower when harvested in winter than when harvested in summer.« less