New frontiers in biomedical science and engineering during 2014-2015.
Liu, Feng; Lee, Dong-Hoon; Lagoa, Ricardo; Kumar, Sandeep
2015-01-01
The International Conference on Biomedical Engineering and Biotechnology (ICBEB) is an international meeting held once a year. This, the fourth International Conference on Biomedical Engineering and Biotechnology (ICBEB2015), will be held in Shanghai, China, during August 18th-21st, 2015. This annual conference intends to provide an opportunity for researchers and practitioners at home and abroad to present the most recent frontiers and future challenges in the fields of biomedical science, biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, etc. The papers published in this issue are selected from this Conference, which witness the advances in biomedical engineering and biotechnology during 2014-2015.
Advances in biomedical engineering and biotechnology during 2013-2014.
Liu, Feng; Wang, Ying; Burkhart, Timothy A; González Penedo, Manuel Francisco; Ma, Shaodong
2014-01-01
The 3rd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2014), held in Beijing from the 25th to the 28th of September 2014, is an annual conference that intends to provide an opportunity for researchers and practitioners around the world to present the most recent advances and future challenges in the fields of biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, amongst others. The papers published in this issue are selected from this conference, which witnesses the advances in biomedical engineering and biotechnology during 2013-2014.
Mangado, Nerea; Piella, Gemma; Noailly, Jérôme; Pons-Prats, Jordi; Ballester, Miguel Ángel González
2016-01-01
Computational modeling has become a powerful tool in biomedical engineering thanks to its potential to simulate coupled systems. However, real parameters are usually not accurately known, and variability is inherent in living organisms. To cope with this, probabilistic tools, statistical analysis and stochastic approaches have been used. This article aims to review the analysis of uncertainty and variability in the context of finite element modeling in biomedical engineering. Characterization techniques and propagation methods are presented, as well as examples of their applications in biomedical finite element simulations. Uncertainty propagation methods, both non-intrusive and intrusive, are described. Finally, pros and cons of the different approaches and their use in the scientific community are presented. This leads us to identify future directions for research and methodological development of uncertainty modeling in biomedical engineering. PMID:27872840
Mangado, Nerea; Piella, Gemma; Noailly, Jérôme; Pons-Prats, Jordi; Ballester, Miguel Ángel González
2016-01-01
Computational modeling has become a powerful tool in biomedical engineering thanks to its potential to simulate coupled systems. However, real parameters are usually not accurately known, and variability is inherent in living organisms. To cope with this, probabilistic tools, statistical analysis and stochastic approaches have been used. This article aims to review the analysis of uncertainty and variability in the context of finite element modeling in biomedical engineering. Characterization techniques and propagation methods are presented, as well as examples of their applications in biomedical finite element simulations. Uncertainty propagation methods, both non-intrusive and intrusive, are described. Finally, pros and cons of the different approaches and their use in the scientific community are presented. This leads us to identify future directions for research and methodological development of uncertainty modeling in biomedical engineering.
Computer Assisted Learning for Biomedical Engineering Education: Tools
2001-10-25
COMPUTER ASSISTED LEARNING FOR BIOMEDICAL ENGINEERING EDUCATION : TOOLS Ayhan ÝSTANBULLU1 Ýnan GÜLER2 1 Department of Electronic...of Technical Education , Gazi University, 06500 Ankara, Türkiye Abstract- Interactive multimedia learning environment is being proposed...Assisted Learning (CAL) are given and some tools used in this area are explained. Together with the developments in the area of distance education
Biomedical engineering for health research and development.
Zhang, X-Y
2015-01-01
Biomedical engineering is a new area of research in medicine and biology, providing new concepts and designs for the diagnosis, treatment and prevention of various diseases. There are several types of biomedical engineering, such as tissue, genetic, neural and stem cells, as well as chemical and clinical engineering for health care. Many electronic and magnetic methods and equipments are used for the biomedical engineering such as Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI) scans, Electroencephalography (EEG), Ultrasound and regenerative medicine and stem cell cultures, preparations of artificial cells and organs, such as pancreas, urinary bladders, liver cells, and fibroblasts cells of foreskin and others. The principle of tissue engineering is described with various types of cells used for tissue engineering purposes. The use of several medical devices and bionics are mentioned with scaffold, cells and tissue cultures and various materials are used for biomedical engineering. The use of biomedical engineering methods is very important for the human health, and research and development of diseases. The bioreactors and preparations of artificial cells or tissues and organs are described here.
Status of Research in Biomedical Engineering 1968.
ERIC Educational Resources Information Center
National Inst. of General Medical Sciences (NIH), Bethesda, MD.
This status report is divided into eight sections. The first four represent the classical engineering or building aspects of bioengineering and deal with biomedical instrumentation, prosthetics, man-machine systems and computer and information systems. The next three sections are related to the scientific, intellectual and academic influence of…
State-of-the-Art Opportunities. Hispanic Special Report: Careers in Engineering.
ERIC Educational Resources Information Center
Heller, Michele
1992-01-01
Although the demand for electrical, defense, and computer science engineers has dropped sharply, opportunities exist for Hispanics in computer communication and integration, miniaturization of electronic components, environmental, and genetic and biomedical engineering. Engineers should diversify their skills to adapt to the changing field. (KS)
[Scientometrics and bibliometrics of biomedical engineering periodicals and papers].
Zhao, Ping; Xu, Ping; Li, Bingyan; Wang, Zhengrong
2003-09-01
This investigation was made to reveal the current status, research trend and research level of biomedical engineering in Chinese mainland by means of scientometrics and to assess the quality of the four domestic publications by bibliometrics. We identified all articles of four related publications by searching Chinese and foreign databases from 1997 to 2001. All articles collected or cited by these databases were searched and statistically analyzed for finding out the relevant distributions, including databases, years, authors, institutions, subject headings and subheadings. The source of sustentation funds and the related articles were analyzed too. The results showed that two journals were cited by two foreign databases and five Chinese databases simultaneously. The output of Journal of Biomedical Engineering was the highest. Its quantity of original papers cited by EI, CA and the totality of papers sponsored by funds were higher than those of the others, but the quantity and percentage per year of biomedical articles cited by EI were decreased in all. Inland core authors and institutions had come into being in the field of biomedical engineering. Their research topics were mainly concentrated on ten subject headings which included biocompatible materials, computer-assisted signal processing, electrocardiography, computer-assisted image processing, biomechanics, algorithms, electroencephalography, automatic data processing, mechanical stress, hemodynamics, mathematical computing, microcomputers, theoretical models, etc. The main subheadings were concentrated on instrumentation, physiopathology, diagnosis, therapy, ultrasonography, physiology, analysis, surgery, pathology, method, etc.
Selishchev, S V
2004-01-01
The integration results of fundamental and applied medical-and-technical research made at the chair of biomedical systems, Moscow state institute of electronic engineering (technical university--MSIEE), are described in the paper. The chair is guided in its research activity by the traditions of higher education in Russia in the field of biomedical electronics and biomedical engineering. Its activities are based on the extrapolation of methods of electronic tools, computer technologies, physics, biology and medicine with due respect being paid to the requirements of practical medicine and to topical issues of research and design.
Cloud computing applications for biomedical science: A perspective.
Navale, Vivek; Bourne, Philip E
2018-06-01
Biomedical research has become a digital data-intensive endeavor, relying on secure and scalable computing, storage, and network infrastructure, which has traditionally been purchased, supported, and maintained locally. For certain types of biomedical applications, cloud computing has emerged as an alternative to locally maintained traditional computing approaches. Cloud computing offers users pay-as-you-go access to services such as hardware infrastructure, platforms, and software for solving common biomedical computational problems. Cloud computing services offer secure on-demand storage and analysis and are differentiated from traditional high-performance computing by their rapid availability and scalability of services. As such, cloud services are engineered to address big data problems and enhance the likelihood of data and analytics sharing, reproducibility, and reuse. Here, we provide an introductory perspective on cloud computing to help the reader determine its value to their own research.
Cloud computing applications for biomedical science: A perspective
2018-01-01
Biomedical research has become a digital data–intensive endeavor, relying on secure and scalable computing, storage, and network infrastructure, which has traditionally been purchased, supported, and maintained locally. For certain types of biomedical applications, cloud computing has emerged as an alternative to locally maintained traditional computing approaches. Cloud computing offers users pay-as-you-go access to services such as hardware infrastructure, platforms, and software for solving common biomedical computational problems. Cloud computing services offer secure on-demand storage and analysis and are differentiated from traditional high-performance computing by their rapid availability and scalability of services. As such, cloud services are engineered to address big data problems and enhance the likelihood of data and analytics sharing, reproducibility, and reuse. Here, we provide an introductory perspective on cloud computing to help the reader determine its value to their own research. PMID:29902176
Teaching biomedical applications to secondary students.
Openshaw, S; Fleisher, A; Ljunggren, C
1999-01-01
Certain aspects of biomedical engineering applications lend themselves well to experimentation that can be done by high school students. This paper describes two experiments done during a six-week summer internship program in which two high school students used electrodes, circuit boards, and computers to mimic a sophisticated heart monitor and also to control a robotic car. Our experience suggests that simple illustrations of complex instrumentation can be effective in introducing adolescents to the biomedical engineering field.
ERIC Educational Resources Information Center
Journal of Engineering Education, 1972
1972-01-01
Includes abstracts of papers presented at the 80th Annual Conference of the American Society for Engineering Education. The broad areas include aerospace, affiliate and associate member council, agricultural engineering, biomedical engineering, continuing engineering studies, chemical engineering, civil engineering, computers, cooperative…
Digital Technologies Jump Start Telemedicine
ERIC Educational Resources Information Center
Pierce, Alan
2011-01-01
The technologists, research doctors, computer programmers, electrical engineers, and biomedical engineers who design and create new medical diagnostic equipment and medical treatments are now working on medical systems that use the computing power of personal computers and cell phones. For disease diagnosis, they are finding ways to shrink…
Engineering Technology Education: Bibliography 1989.
ERIC Educational Resources Information Center
Dyrud, Marilyn A., Comp.
1990-01-01
Over 200 references divided into 24 different areas are presented. Topics include administration, aeronautics, architecture, biomedical technology, CAD/CAM, civil engineering, computers, curriculum, electrical/electronics engineering, industrial engineering, industry and employment, instructional technology, laboratories, lasers, liberal studies,…
Jiehui Jiang; Yuting Zhang; Mi Zhou; Xiaosong Zheng; Zhuangzhi Yan
2017-07-01
Biomedical Engineering (BME) bachelor education aims to train qualified engineers who devote themselves to addressing biological and medical problems by integrating the technological, medical and biological knowledge. Design thinking and teamwork with other disciplines are necessary for biomedical engineers. In the current biomedical engineering education system of Shanghai University (SHU), however, such design thinking and teamwork through a practical project is lacking. This paper describes a creative "joint assignment" project in Shanghai University, China, which has provided BME bachelor students a two-year practical experience to work with students from multidisciplinary departments including sociology, mechanics, computer sciences, business and art, etc. To test the feasibility of this project, a twenty-month pilot project has been carried out from May 2015 to December 2016. The results showed that this pilot project obviously enhanced competitive power of BME students in Shanghai University, both in the capabilities of design thinking and teamwork.
Gruber, Lucinda; Griffith, Connor; Young, Ethan; Sullivan, Adriann; Schuler, Jeff; Arnold-Christian, Susan; Warren, Steve
2009-01-01
Learning experiences for middle school girls are an effective means to steer young women toward secondary engineering curricula that they might not have otherwise considered. Sponsorship of such experiences by a collegiate student group is worthwhile, as it gives the group common purpose and places college students in a position to mentor these young women. This paper addresses learning experiences in different areas of bio-medical engineering offered to middle school girls in November 2008 via a day-long workshop entitled "Engineering The Body." The Kansas State University (KSU) Student Chapter of the IEEE Engineering in Medicine and Biology Society (EMBS) worked with the KSU Women in Engineering and Science Program (WESP) to design and sponsor these experiences, which addressed the areas of joint mechanics, electrocardiograms, membrane transport, computer mouse design, and audio filters for cochlear implants. Fifty five middle-school girls participated in this event, affirming the notion that biomedical engineering appeals to young women and that early education and recruitment efforts have the potential to expand the biomedical engineering talent pool.
NASA Tech Briefs, February 2000. Volume 24, No. 2
NASA Technical Reports Server (NTRS)
2000-01-01
Topics covered include: Test and Measurement; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Bio-Medical; Mathematics and Information Sciences; Computers and Peripherals.
Camera systems in human motion analysis for biomedical applications
NASA Astrophysics Data System (ADS)
Chin, Lim Chee; Basah, Shafriza Nisha; Yaacob, Sazali; Juan, Yeap Ewe; Kadir, Aida Khairunnisaa Ab.
2015-05-01
Human Motion Analysis (HMA) system has been one of the major interests among researchers in the field of computer vision, artificial intelligence and biomedical engineering and sciences. This is due to its wide and promising biomedical applications, namely, bio-instrumentation for human computer interfacing and surveillance system for monitoring human behaviour as well as analysis of biomedical signal and image processing for diagnosis and rehabilitation applications. This paper provides an extensive review of the camera system of HMA, its taxonomy, including camera types, camera calibration and camera configuration. The review focused on evaluating the camera system consideration of the HMA system specifically for biomedical applications. This review is important as it provides guidelines and recommendation for researchers and practitioners in selecting a camera system of the HMA system for biomedical applications.
Figure mining for biomedical research.
Rodriguez-Esteban, Raul; Iossifov, Ivan
2009-08-15
Figures from biomedical articles contain valuable information difficult to reach without specialized tools. Currently, there is no search engine that can retrieve specific figure types. This study describes a retrieval method that takes advantage of principles in image understanding, text mining and optical character recognition (OCR) to retrieve figure types defined conceptually. A search engine was developed to retrieve tables and figure types to aid computational and experimental research. http://iossifovlab.cshl.edu/figurome/.
The Ten Outstanding Engineering Achievements of the Past 50 Years.
ERIC Educational Resources Information Center
Hightower, George
1984-01-01
Describes the outstanding achievement in each of 10 major engineering categories. These categories include synthetic fibers, nuclear energy, computers, solid state electronics, jet aircraft, biomedical engineering, lasers, communications satellites, the United States space program, and automation and control systems. (JN)
Cardiovascular system simulation in biomedical engineering education.
NASA Technical Reports Server (NTRS)
Rideout, V. C.
1972-01-01
Use of complex cardiovascular system models, in conjunction with a large hybrid computer, in biomedical engineering courses. A cardiovascular blood pressure-flow model, driving a compartment model for the study of dye transport, was set up on the computer for use as a laboratory exercise by students who did not have the computer experience or skill to be able to easily set up such a simulation involving some 27 differential equations running at 'real time' rate. The students were given detailed instructions regarding the model, and were then able to study effects such as those due to septal and valve defects upon the pressure, flow, and dye dilution curves. The success of this experiment in the use of involved models in engineering courses was such that it seems that this type of laboratory exercise might be considered for use in physiology courses as an adjunct to animal experiments.
NASA Tech Briefs, January 2000. Volume 24, No. 1
NASA Technical Reports Server (NTRS)
2000-01-01
Topics include: Data Acquisition; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Bio-Medical; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Information Sciences; Books and reports.
Snore related signals processing in a private cloud computing system.
Qian, Kun; Guo, Jian; Xu, Huijie; Zhu, Zhaomeng; Zhang, Gongxuan
2014-09-01
Snore related signals (SRS) have been demonstrated to carry important information about the obstruction site and degree in the upper airway of Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS) patients in recent years. To make this acoustic signal analysis method more accurate and robust, big SRS data processing is inevitable. As an emerging concept and technology, cloud computing has motivated numerous researchers and engineers to exploit applications both in academic and industry field, which could have an ability to implement a huge blue print in biomedical engineering. Considering the security and transferring requirement of biomedical data, we designed a system based on private cloud computing to process SRS. Then we set the comparable experiments of processing a 5-hour audio recording of an OSAHS patient by a personal computer, a server and a private cloud computing system to demonstrate the efficiency of the infrastructure we proposed.
The community FabLab platform: applications and implications in biomedical engineering.
Stephenson, Makeda K; Dow, Douglas E
2014-01-01
Skill development in science, technology, engineering and math (STEM) education present one of the most formidable challenges of modern society. The Community FabLab platform presents a viable solution. Each FabLab contains a suite of modern computer numerical control (CNC) equipment, electronics and computing hardware and design, programming, computer aided design (CAD) and computer aided machining (CAM) software. FabLabs are community and educational resources and open to the public. Development of STEM based workforce skills such as digital fabrication and advanced manufacturing can be enhanced using this platform. Particularly notable is the potential of the FabLab platform in STEM education. The active learning environment engages and supports a diversity of learners, while the iterative learning that is supported by the FabLab rapid prototyping platform facilitates depth of understanding, creativity, innovation and mastery. The product and project based learning that occurs in FabLabs develops in the student a personal sense of accomplishment, self-awareness, command of the material and technology. This helps build the interest and confidence necessary to excel in STEM and throughout life. Finally the introduction and use of relevant technologies at every stage of the education process ensures technical familiarity and a broad knowledge base needed for work in STEM based fields. Biomedical engineering education strives to cultivate broad technical adeptness, creativity, interdisciplinary thought, and an ability to form deep conceptual understanding of complex systems. The FabLab platform is well designed to enhance biomedical engineering education.
A summary of the research program in the broad field of electronics
NASA Technical Reports Server (NTRS)
1972-01-01
Summary reports of research projects covering solid state materials, semiconductors and devices, quantum electronics, plasmas, applied electromagnetics, electrical engineering systems to include control communication, computer and power systems, biomedical engineering and mathematical biosciences.
Simbody: multibody dynamics for biomedical research.
Sherman, Michael A; Seth, Ajay; Delp, Scott L
Multibody software designed for mechanical engineering has been successfully employed in biomedical research for many years. For real time operation some biomedical researchers have also adapted game physics engines. However, these tools were built for other purposes and do not fully address the needs of biomedical researchers using them to analyze the dynamics of biological structures and make clinically meaningful recommendations. We are addressing this problem through the development of an open source, extensible, high performance toolkit including a multibody mechanics library aimed at the needs of biomedical researchers. The resulting code, Simbody, supports research in a variety of fields including neuromuscular, prosthetic, and biomolecular simulation, and related research such as biologically-inspired design and control of humanoid robots and avatars. Simbody is the dynamics engine behind OpenSim, a widely used biomechanics simulation application. This article reviews issues that arise uniquely in biomedical research, and reports on the architecture, theory, and computational methods Simbody uses to address them. By addressing these needs explicitly Simbody provides a better match to the needs of researchers than can be obtained by adaptation of mechanical engineering or gaming codes. Simbody is a community resource, free for any purpose. We encourage wide adoption and invite contributions to the code base at https://simtk.org/home/simbody.
The University of Connecticut Biomedical Engineering Mentoring Program for high school students.
Enderle, John D; Liebler, Christopher M; Haapala, Stephenic A; Hart, James L; Thonakkaraparayil, Naomi T; Romonosky, Laura L; Rodriguez, Francisco; Trumbower, Randy D
2004-01-01
For the past four years, the Biomedical Engineering Program at the University of Connecticut has offered a summer mentoring program for high school students interested in biomedical engineering. To offer this program, we have partnered with the UConn Mentor Connection Program, the School of Engineering 2000 Program and the College of Liberal Arts and Sciences Summer Laboratory Apprentice Program. We typically have approximately 20-25 high school students learning about biomedical engineering each summer. The mentoring aspect of the program exists at many different levels, with the graduate students mentoring the undergraduate students, and these students mentoring the high school students. The program starts with a three-hour lecture on biomedical engineering to properly orient the students. An in-depth paper on an area in biomedical engineering is a required component, as well as a PowerPoint presentation on their research. All of the students build a device to record an EKG on a computer using LabView, including signal processing to remove noise. The students learn some rudimentary concepts on electrocardiography and the physiology and anatomy of the heart. The students also learn basic electronics and breadboarding circuits, PSpice, the building of a printed circuit board, PIC microcontroller, the operation of Multimeters (including the oscilloscope), soldering, assembly of the EKG device and writing LabView code to run their device on a PC. The students keep their EKG device, LabView program and a fully illustrated booklet on EKG to bring home with them, and hopefully bring back to their high school to share their experiences with other students and teachers. The students also work on several other projects during this summer experience as well as visit Hartford Hospital to learn about Clinical Engineering.
FAQ's | College of Engineering & Applied Science
zipped (compressed) format. This will help when the file is very large or created by one of the high end Milwaukee Engineer People Faculty and Staff Biomedical Engineering Civil & Environmental Engineering Computer Labs Technical Questions The labs are generally open 24/7, how will I know when a lab/system
Imaging Strategies for Tissue Engineering Applications
Nam, Seung Yun; Ricles, Laura M.; Suggs, Laura J.
2015-01-01
Tissue engineering has evolved with multifaceted research being conducted using advanced technologies, and it is progressing toward clinical applications. As tissue engineering technology significantly advances, it proceeds toward increasing sophistication, including nanoscale strategies for material construction and synergetic methods for combining with cells, growth factors, or other macromolecules. Therefore, to assess advanced tissue-engineered constructs, tissue engineers need versatile imaging methods capable of monitoring not only morphological but also functional and molecular information. However, there is no single imaging modality that is suitable for all tissue-engineered constructs. Each imaging method has its own range of applications and provides information based on the specific properties of the imaging technique. Therefore, according to the requirements of the tissue engineering studies, the most appropriate tool should be selected among a variety of imaging modalities. The goal of this review article is to describe available biomedical imaging methods to assess tissue engineering applications and to provide tissue engineers with criteria and insights for determining the best imaging strategies. Commonly used biomedical imaging modalities, including X-ray and computed tomography, positron emission tomography and single photon emission computed tomography, magnetic resonance imaging, ultrasound imaging, optical imaging, and emerging techniques and multimodal imaging, will be discussed, focusing on the latest trends of their applications in recent tissue engineering studies. PMID:25012069
Applicability Analysis of Validation Evidence for Biomedical Computational Models
Pathmanathan, Pras; Gray, Richard A.; Romero, Vicente J.; ...
2017-09-07
Computational modeling has the potential to revolutionize medicine the way it transformed engineering. However, despite decades of work, there has only been limited progress to successfully translate modeling research to patient care. One major difficulty which often occurs with biomedical computational models is an inability to perform validation in a setting that closely resembles how the model will be used. For example, for a biomedical model that makes in vivo clinically relevant predictions, direct validation of predictions may be impossible for ethical, technological, or financial reasons. Unavoidable limitations inherent to the validation process lead to challenges in evaluating the credibilitymore » of biomedical model predictions. Therefore, when evaluating biomedical models, it is critical to rigorously assess applicability, that is, the relevance of the computational model, and its validation evidence to the proposed context of use (COU). However, there are no well-established methods for assessing applicability. In this paper, we present a novel framework for performing applicability analysis and demonstrate its use with a medical device computational model. The framework provides a systematic, step-by-step method for breaking down the broad question of applicability into a series of focused questions, which may be addressed using supporting evidence and subject matter expertise. The framework can be used for model justification, model assessment, and validation planning. While motivated by biomedical models, it is relevant to a broad range of disciplines and underlying physics. Finally, the proposed applicability framework could help overcome some of the barriers inherent to validation of, and aid clinical implementation of, biomedical models.« less
Applicability Analysis of Validation Evidence for Biomedical Computational Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathmanathan, Pras; Gray, Richard A.; Romero, Vicente J.
Computational modeling has the potential to revolutionize medicine the way it transformed engineering. However, despite decades of work, there has only been limited progress to successfully translate modeling research to patient care. One major difficulty which often occurs with biomedical computational models is an inability to perform validation in a setting that closely resembles how the model will be used. For example, for a biomedical model that makes in vivo clinically relevant predictions, direct validation of predictions may be impossible for ethical, technological, or financial reasons. Unavoidable limitations inherent to the validation process lead to challenges in evaluating the credibilitymore » of biomedical model predictions. Therefore, when evaluating biomedical models, it is critical to rigorously assess applicability, that is, the relevance of the computational model, and its validation evidence to the proposed context of use (COU). However, there are no well-established methods for assessing applicability. In this paper, we present a novel framework for performing applicability analysis and demonstrate its use with a medical device computational model. The framework provides a systematic, step-by-step method for breaking down the broad question of applicability into a series of focused questions, which may be addressed using supporting evidence and subject matter expertise. The framework can be used for model justification, model assessment, and validation planning. While motivated by biomedical models, it is relevant to a broad range of disciplines and underlying physics. Finally, the proposed applicability framework could help overcome some of the barriers inherent to validation of, and aid clinical implementation of, biomedical models.« less
e-Science platform for translational biomedical imaging research: running, statistics, and analysis
NASA Astrophysics Data System (ADS)
Wang, Tusheng; Yang, Yuanyuan; Zhang, Kai; Wang, Mingqing; Zhao, Jun; Xu, Lisa; Zhang, Jianguo
2015-03-01
In order to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment, we had designed an e-Science platform for biomedical imaging research and application cross multiple academic institutions and hospitals in Shanghai and presented this work in SPIE Medical Imaging conference held in San Diego in 2012. In past the two-years, we implemented a biomedical image chain including communication, storage, cooperation and computing based on this e-Science platform. In this presentation, we presented the operating status of this system in supporting biomedical imaging research, analyzed and discussed results of this system in supporting multi-disciplines collaboration cross-multiple institutions.
A pilot biomedical engineering course in rapid prototyping for mobile health.
Stokes, Todd H; Venugopalan, Janani; Hubbard, Elena N; Wang, May D
2013-01-01
Rapid prototyping of medically assistive mobile devices promises to fuel innovation and provides opportunity for hands-on engineering training in biomedical engineering curricula. This paper presents the design and outcomes of a course offered during a 16-week semester in Fall 2011 with 11 students enrolled. The syllabus covered a mobile health design process from end-to-end, including storyboarding, non-functional prototypes, integrated circuit programming, 3D modeling, 3D printing, cloud computing database programming, and developing patient engagement through animated videos describing the benefits of a new device. Most technologies presented in this class are open source and thus provide unlimited "hackability". They are also cost-effective and easily transferrable to other departments.
NASA Astrophysics Data System (ADS)
Johnson, Amy M.; Ozogul, Gamze; DiDonato, Matt D.; Reisslein, Martin
2013-10-01
Computer-based multimedia presentations employing animated agents (avatars) can positively impact perceptions about engineering; the current research advances our understanding of this effect to pre-college populations, the main target for engineering outreach. The study examines the effectiveness of a brief computer-based intervention with animated agents in improving perceptions about engineering. Five hundred sixty-five elementary, middle-, and high-school students in the southwestern USA viewed a short computer-based multimedia overview of four engineering disciplines (electrical, chemical, biomedical, and environmental) with embedded animated agents. Students completed identical surveys measuring five subscales of engineering perceptions immediately before and after the intervention. Analyses of pre- and post-surveys demonstrated that the computer presentation significantly improved perceptions for each student group, and that effects were stronger for elementary school students, compared to middle- and high-school students.
McGregor, Carolyn; Smith, Kathleen P; Percival, Jennifer
2008-01-01
The study of women within the professions of Engineering and Computer Science has consistently been found to demonstrate women as a minority within these professions. However none of that previous work has assessed publication behaviours based on gender. This paper presents research findings on gender distribution of authors of accepted papers for the IEEE Engineering and Medicine Society annual conference for 2007 (EMBC '07) held in Lyon, France. This information is used to present a position statement of the current state of gender representation for conference publication within the domain of biomedical engineering and health informatics. Issues in data preparation resulting from the lack of inclusion of gender in information gathered from accepted authors are presented and discussed.
Computer-aided design of microvasculature systems for use in vascular scaffold production.
Mondy, William Lafayette; Cameron, Don; Timmermans, Jean-Pierre; De Clerck, Nora; Sasov, Alexander; Casteleyn, Christophe; Piegl, Les A
2009-09-01
In vitro biomedical engineering of intact, functional vascular networks, which include capillary structures, is a prerequisite for adequate vascular scaffold production. Capillary structures are necessary since they provide the elements and compounds for the growth, function and maintenance of 3D tissue structures. Computer-aided modeling of stereolithographic (STL) micro-computer tomographic (micro-CT) 3D models is a technique that enables us to mimic the design of vascular tree systems containing capillary beds, found in tissues. In our first paper (Mondy et al 2009 Tissue Eng. at press), using micro-CT, we studied the possibility of using vascular tissues to produce data capable of aiding the design of vascular tree scaffolding, which would help in the reverse engineering of a complete vascular tree system including capillary bed structures. In this paper, we used STL models of large datasets of computer-aided design (CAD) data of vascular structures which contained capillary structures that mimic those in the dermal layers of rabbit skin. Using CAD software we created from 3D STL models a bio-CAD design for the development of capillary-containing vascular tree scaffolding for skin. This method is designed to enhance a variety of therapeutic protocols including, but not limited to, organ and tissue repair, systemic disease mediation and cell/tissue transplantation therapy. Our successful approach to in vitro vasculogenesis will allow the bioengineering of various other types of 3D tissue structures, and as such greatly expands the potential applications of biomedical engineering technology into the fields of biomedical research and medicine.
The Center for Computational Biology: resources, achievements, and challenges
Dinov, Ivo D; Thompson, Paul M; Woods, Roger P; Van Horn, John D; Shattuck, David W; Parker, D Stott
2011-01-01
The Center for Computational Biology (CCB) is a multidisciplinary program where biomedical scientists, engineers, and clinicians work jointly to combine modern mathematical and computational techniques, to perform phenotypic and genotypic studies of biological structure, function, and physiology in health and disease. CCB has developed a computational framework built around the Manifold Atlas, an integrated biomedical computing environment that enables statistical inference on biological manifolds. These manifolds model biological structures, features, shapes, and flows, and support sophisticated morphometric and statistical analyses. The Manifold Atlas includes tools, workflows, and services for multimodal population-based modeling and analysis of biological manifolds. The broad spectrum of biomedical topics explored by CCB investigators include the study of normal and pathological brain development, maturation and aging, discovery of associations between neuroimaging and genetic biomarkers, and the modeling, analysis, and visualization of biological shape, form, and size. CCB supports a wide range of short-term and long-term collaborations with outside investigators, which drive the center's computational developments and focus the validation and dissemination of CCB resources to new areas and scientific domains. PMID:22081221
The Center for Computational Biology: resources, achievements, and challenges.
Toga, Arthur W; Dinov, Ivo D; Thompson, Paul M; Woods, Roger P; Van Horn, John D; Shattuck, David W; Parker, D Stott
2012-01-01
The Center for Computational Biology (CCB) is a multidisciplinary program where biomedical scientists, engineers, and clinicians work jointly to combine modern mathematical and computational techniques, to perform phenotypic and genotypic studies of biological structure, function, and physiology in health and disease. CCB has developed a computational framework built around the Manifold Atlas, an integrated biomedical computing environment that enables statistical inference on biological manifolds. These manifolds model biological structures, features, shapes, and flows, and support sophisticated morphometric and statistical analyses. The Manifold Atlas includes tools, workflows, and services for multimodal population-based modeling and analysis of biological manifolds. The broad spectrum of biomedical topics explored by CCB investigators include the study of normal and pathological brain development, maturation and aging, discovery of associations between neuroimaging and genetic biomarkers, and the modeling, analysis, and visualization of biological shape, form, and size. CCB supports a wide range of short-term and long-term collaborations with outside investigators, which drive the center's computational developments and focus the validation and dissemination of CCB resources to new areas and scientific domains.
LOCAL ORTHOGONAL CUTTING METHOD FOR COMPUTING MEDIAL CURVES AND ITS BIOMEDICAL APPLICATIONS
Einstein, Daniel R.; Dyedov, Vladimir
2010-01-01
Medial curves have a wide range of applications in geometric modeling and analysis (such as shape matching) and biomedical engineering (such as morphometry and computer assisted surgery). The computation of medial curves poses significant challenges, both in terms of theoretical analysis and practical efficiency and reliability. In this paper, we propose a definition and analysis of medial curves and also describe an efficient and robust method called local orthogonal cutting (LOC) for computing medial curves. Our approach is based on three key concepts: a local orthogonal decomposition of objects into substructures, a differential geometry concept called the interior center of curvature (ICC), and integrated stability and consistency tests. These concepts lend themselves to robust numerical techniques and result in an algorithm that is efficient and noise resistant. We illustrate the effectiveness and robustness of our approach with some highly complex, large-scale, noisy biomedical geometries derived from medical images, including lung airways and blood vessels. We also present comparisons of our method with some existing methods. PMID:20628546
Designing a hands-on brain computer interface laboratory course.
Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima
2016-08-01
Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI.
Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M; King, Andrew J; Draper, Amie J; Handen, Adam L; Fisher, Arielle M; Becich, Michael J; Dutta-Moscato, Joyeeta
2016-01-01
The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4(th) year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.
Branding the bio/biomedical engineering degree.
Voigt, Herbert F
2011-01-01
The future challenges to medical and biological engineering, sometimes referred to as biomedical engineering or simply bioengineering, are many. Some of these are identifiable now and others will emerge from time to time as new technologies are introduced and harnessed. There is a fundamental issue regarding "Branding the bio/biomedical engineering degree" that requires a common understanding of what is meant by a B.S. degree in Biomedical Engineering, Bioengineering, or Biological Engineering. In this paper we address some of the issues involved in branding the Bio/Biomedical Engineering degree, with the aim of clarifying the Bio/Biomedical Engineering brand.
Designing a Hands-On Brain Computer Interface Laboratory Course
Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima
2017-01-01
Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI. PMID:28268946
Lowe, H. J.
1993-01-01
This paper describes Image Engine, an object-oriented, microcomputer-based, multimedia database designed to facilitate the storage and retrieval of digitized biomedical still images, video, and text using inexpensive desktop computers. The current prototype runs on Apple Macintosh computers and allows network database access via peer to peer file sharing protocols. Image Engine supports both free text and controlled vocabulary indexing of multimedia objects. The latter is implemented using the TView thesaurus model developed by the author. The current prototype of Image Engine uses the National Library of Medicine's Medical Subject Headings (MeSH) vocabulary (with UMLS Meta-1 extensions) as its indexing thesaurus. PMID:8130596
Zhao, Weizhao; Li, Xiping; Chen, Hairong; Manns, Fabrice
2012-01-01
Medical Imaging is a key training component in Biomedical Engineering programs. Medical imaging education is interdisciplinary training, involving physics, mathematics, chemistry, electrical engineering, computer engineering, and applications in biology and medicine. Seeking an efficient teaching method for instructors and an effective learning environment for students has long been a goal for medical imaging education. By the support of NSF grants, we developed the medical imaging teaching software (MITS) and associated dynamic assessment tracking system (DATS). The MITS/DATS system has been applied to junior and senior medical imaging classes through a hybrid teaching model. The results show that student's learning gain improved, particularly in concept understanding and simulation project completion. The results also indicate disparities in subjective perception between junior and senior classes. Three institutions are collaborating to expand the courseware system and plan to apply it to different class settings.
Cognitive Enhancement and Education
ERIC Educational Resources Information Center
Buchanan, Allen
2011-01-01
Cognitive enhancement--augmenting normal cognitive capacities--is not new. Literacy, numeracy, computers, and the practices of science are all cognitive enhancements. Science is now making new cognitive enhancements possible. Biomedical cognitive enhancements (BCEs) include the administration of drugs, implants of genetically engineered or…
Local Orthogonal Cutting Method for Computing Medial Curves and Its Biomedical Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Xiangmin; Einstein, Daniel R.; Dyedov, Volodymyr
2010-03-24
Medial curves have a wide range of applications in geometric modeling and analysis (such as shape matching) and biomedical engineering (such as morphometry and computer assisted surgery). The computation of medial curves poses significant challenges, both in terms of theoretical analysis and practical efficiency and reliability. In this paper, we propose a definition and analysis of medial curves and also describe an efficient and robust method for computing medial curves. Our approach is based on three key concepts: a local orthogonal decomposition of objects into substructures, a differential geometry concept called the interior center of curvature (ICC), and integrated stabilitymore » and consistency tests. These concepts lend themselves to robust numerical techniques including eigenvalue analysis, weighted least squares approximations, and numerical minimization, resulting in an algorithm that is efficient and noise resistant. We illustrate the effectiveness and robustness of our approach with some highly complex, large-scale, noisy biomedical geometries derived from medical images, including lung airways and blood vessels. We also present comparisons of our method with some existing methods.« less
Education of biomedical engineering in Taiwan.
Lin, Kang-Ping; Kao, Tsair; Wang, Jia-Jung; Chen, Mei-Jung; Su, Fong-Chin
2014-01-01
Biomedical Engineers (BME) play an important role in medical and healthcare society. Well educational programs are important to support the healthcare systems including hospitals, long term care organizations, manufacture industries of medical devices/instrumentations/systems, and sales/services companies of medical devices/instrumentations/system. In past 30 more years, biomedical engineering society has accumulated thousands people hold a biomedical engineering degree, and work as a biomedical engineer in Taiwan. Most of BME students can be trained in biomedical engineering departments with at least one of specialties in bioelectronics, bio-information, biomaterials or biomechanics. Students are required to have internship trainings in related institutions out of campus for 320 hours before graduating. Almost all the biomedical engineering departments are certified by IEET (Institute of Engineering Education Taiwan), and met the IEET requirement in which required mathematics and fundamental engineering courses. For BMEs after graduation, Taiwanese Society of Biomedical Engineering (TSBME) provides many continue-learning programs and certificates for all members who expect to hold the certification as a professional credit in his working place. In current status, many engineering departments in university are continuously asked to provide joint programs with BME department to train much better quality students. BME is one of growing fields in Taiwan.
Software for biomedical engineering signal processing laboratory experiments.
Tompkins, Willis J; Wilson, J
2009-01-01
In the early 1990's we developed a special computer program called UW DigiScope to provide a mechanism for anyone interested in biomedical digital signal processing to study the field without requiring any other instrument except a personal computer. There are many digital filtering and pattern recognition algorithms used in processing biomedical signals. In general, students have very limited opportunity to have hands-on access to the mechanisms of digital signal processing. In a typical course, the filters are designed non-interactively, which does not provide the student with significant understanding of the design constraints of such filters nor their actual performance characteristics. UW DigiScope 3.0 is the first major update since version 2.0 was released in 1994. This paper provides details on how the new version based on MATLAB! works with signals, including the filter design tool that is the programming interface between UW DigiScope and processing algorithms.
Biomedical Engineering | Classification | College of Engineering & Applied
Engineering, Biomedical Engineering(414) 229-6614wjchang@uwm.eduEng & Math Sciences 1113 profile photo Malkoc, Ph.D.Visiting Assistant ProfessorBiomedical Engineering414-229-6919malkoc@uwm.eduEng & Math Engineering / Electrical Engineering(414) 229-3327misra@uwm.eduEng & Math Sciences E-314 profile photo
1996 Laboratory directed research and development annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.
This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.
Chesler, Naomi C; Barabino, Gilda; Bhatia, Sangeeta N; Richards-Kortum, Rebecca
2010-05-01
While the percentage of women in biomedical engineering is higher than in many other technical fields, it is far from being in proportion to the US population. The decrease in the proportion of women and underrepresented minorities in biomedical engineering from the bachelors to the masters to the doctoral levels is evidence of a still leaky pipeline in our discipline. In addition, the percentage of women faculty members at the assistant, associate and full professor levels remain disappointingly low even after years of improved recruitment of women into biomedical engineering at the undergraduate level. Worse, the percentage of women graduating with undergraduate degrees in biomedical engineering has been decreasing nationwide for the most recent three year span for which national data are available. Increasing diversity in biomedical engineering is predicted to have significant research and educational benefits. The barriers to women's success in biomedical engineering and strategies for overcoming these obstacles-and fixing the leaks in the pipeline-are reviewed.
Energy and technology review, July--August, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnham, A.K.
1990-01-01
This report highlights various research programs conducted at the Lab to include: defense systems, laser research, fusion energy, biomedical and environmental sciences, engineering, physics, chemistry, materials science, and computational analysis. It also contains a statement on the state of the Lab and Laboratory Administration. (JEF)
IEEE International Symposium on Biomedical Imaging.
2017-01-01
The IEEE International Symposium on Biomedical Imaging (ISBI) is a scientific conference dedicated to mathematical, algorithmic, and computational aspects of biological and biomedical imaging, across all scales of observation. It fosters knowledge transfer among different imaging communities and contributes to an integrative approach to biomedical imaging. ISBI is a joint initiative from the IEEE Signal Processing Society (SPS) and the IEEE Engineering in Medicine and Biology Society (EMBS). The 2018 meeting will include tutorials, and a scientific program composed of plenary talks, invited special sessions, challenges, as well as oral and poster presentations of peer-reviewed papers. High-quality papers are requested containing original contributions to the topics of interest including image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological, and statistical modeling. Accepted 4-page regular papers will be published in the symposium proceedings published by IEEE and included in IEEE Xplore. To encourage attendance by a broader audience of imaging scientists and offer additional presentation opportunities, ISBI 2018 will continue to have a second track featuring posters selected from 1-page abstract submissions without subsequent archival publication.
Professional Identification for Biomedical Engineers
ERIC Educational Resources Information Center
Long, Francis M.
1973-01-01
Discusses four methods of professional identification in biomedical engineering including registration, certification, accreditation, and possible membership qualification of the societies. Indicates that the destiny of the biomedical engineer may be under the control of a new profession, neither the medical nor the engineering. (CC)
Engineering β-sheet peptide assemblies for biomedical applications.
Yu, Zhiqiang; Cai, Zheng; Chen, Qiling; Liu, Menghua; Ye, Ling; Ren, Jiaoyan; Liao, Wenzhen; Liu, Shuwen
2016-03-01
Hydrogels have been widely studied in various biomedical applications, such as tissue engineering, cell culture, immunotherapy and vaccines, and drug delivery. Peptide-based nanofibers represent a promising new strategy for current drug delivery approaches and cell carriers for tissue engineering. This review focuses on the recent advances in the use of self-assembling engineered β-sheet peptide assemblies for biomedical applications. The applications of peptide nanofibers in biomedical fields, such as drug delivery, tissue engineering, immunotherapy, and vaccines, are highlighted. The current challenges and future perspectives for self-assembling peptide nanofibers in biomedical applications are discussed.
Ethical considerations for biomedical scientists and engineers: issues for the rank and file.
Kwarteng, K B
2000-01-01
Biomedical science and engineering is inextricably linked with the fields of medicine and surgery. Yet, while physicians and surgeons, nurses, and other medical professionals receive instruction in ethics during their training and must abide by certain codes of ethics during their practice, those engaged in biomedical science and engineering typically receive no formal training in ethics. In fact, the little contact that many biomedical science and engineering professionals have with ethics occurs either when they participate in government-funded research or submit articles for publication in certain journals. Thus, there is a need for biomedical scientists and engineers as a group to become more aware of ethics. Moreover, recent advances in biomedical technology and the ever-increasing use of new devices virtually guarantee that biomedical science and engineering will become even more important in the future. Although they are rarely in direct contact with patients, biomedical scientists and engineers must become aware of ethics in order to be able to deal with the complex ethical issues that arise from our society's increasing reliance on biomedical technology. In this brief communication, the need for ethical awareness among workers in biomedical science and engineering is discussed in terms of certain conflicts that arise in the workaday world of the biomedical scientist in a complex, modern society. It is also recognized that inasmuch as workers in the many branches of bioengineering are not regulated like their counterparts in medicine and surgery, perhaps academic institutions and professional societies are best equipped to heighten ethical awareness among workers in this important field.
Biomedical Engineering in Modern Society
ERIC Educational Resources Information Center
Attinger, E. O.
1971-01-01
Considers definition of biomedical engineering (BME) and how biomedical engineers should be trained. State of the art descriptions of BME and BME education are followed by a brief look at the future of BME. (TS)
Frontiers in biomedical engineering and biotechnology.
Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu
2014-01-01
The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.
Are we studying what matters? Health priorities and NIH-funded biomedical engineering research.
Rubin, Jessica B; Paltiel, A David; Saltzman, W Mark
2010-07-01
With the founding of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) in 1999, the National Institutes of Health (NIH) made explicit its dedication to expanding research in biomedical engineering. Ten years later, we sought to examine how closely federal funding for biomedical engineering aligns with U.S. health priorities. Using a publicly accessible database of research projects funded by the NIH in 2008, we identified 641 grants focused on biomedical engineering, 48% of which targeted specific diseases. Overall, we found that these disease-specific NIH-funded biomedical engineering research projects align with national health priorities, as quantified by three commonly utilized measures of disease burden: cause of death, disability-adjusted survival losses, and expenditures. However, we also found some illnesses (e.g., cancer and heart disease) for which the number of research projects funded deviated from our expectations, given their disease burden. Our findings suggest several possibilities for future studies that would serve to further inform the allocation of limited research dollars within the field of biomedical engineering.
Wisneski, Andrew D; Huang, Lixia; Hong, Bo; Wang, Xiaoqin
2011-01-01
A model for an international undergraduate biomedical engineering research exchange program is outlined. In 2008, the Johns Hopkins University in collaboration with Tsinghua University in Beijing, China established the Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research. Undergraduate biomedical engineering students from both universities are offered the opportunity to participate in research at the overseas institution. Programs such as these will not only provide research experiences for undergraduates but valuable cultural exchange and enrichment as well. Currently, strict course scheduling and rigorous curricula in most biomedical engineering programs may present obstacles for students to partake in study abroad opportunities. Universities are encouraged to harbor abroad opportunities for undergraduate engineering students, for which this particular program can serve as a model.
Schlötelburg, C; Becks, T; Stieglitz, T
2010-08-01
Biomedical engineering is characterized by the interdisciplinary co-operation of technology, science, and ways of thinking, probably more than any other technological area. The close interaction of engineering and information sciences with medicine and biology results in innovative products and methods, but also requires high standards for the interdisciplinary transfer of ideas into products for patients' benefits. This article describes the situation of biomedical engineering in Germany. It displays characteristics of the medical device industry and ranks it with respect to the international market. The research landscape is described as well as up-to-date research topics and trends. The national funding situation of research in biomedical engineering is reviewed and existing innovation barriers are discussed.
A Novel Approach to Physiology Education for Biomedical Engineering Students
ERIC Educational Resources Information Center
DiCecco, J.; Wu, J.; Kuwasawa, K.; Sun, Y.
2007-01-01
It is challenging for biomedical engineering programs to incorporate an indepth study of the systemic interdependence of cells, tissues, and organs into the rigorous mathematical curriculum that is the cornerstone of engineering education. To be sure, many biomedical engineering programs require their students to enroll in anatomy and physiology…
Abu-Faraj, Ziad O
2008-01-01
Bioengineering/Biomedical Engineering is considered amongst the most reputable fields within the global arena, and will likely be the primer for any future breakthroughs in Medicine and Biology. Bioengineering/biomedical engineering education has evolved since late 1950s and is undergoing advancement in leading academic institutions worldwide. This paper delineates an original study on the world proliferation of bioengineering/biomedical engineering education and bears the name 'Project Alexander the Great'. The initial step of the project was to survey all 10448 universities, recognized by the International Association of Universities, spread among the 193 member states of the United Nations within the six continents. The project aims at identifying, disseminating, and networking, through the world-wide-web, those institutions of higher learning that provide bioengineering/biomedical engineering education. The significance of this project is multifold: i) the inception of a web-based 'world-map' in bioengineering/biomedical engineering education for the potential international student desiring to pursue a career in this field; ii) the global networking of bioengineering/biomedical engineering academic/research programs; iii) the promotion of first-class bioengineering/biomedical engineering education and the catalysis of global proliferation of this field; iv) the erection of bridges among educational institutions, industry, and professional societies or organizations involved in Bioengineering/Biomedical Engineering; and v) the catalysis in the establishment of framework agreements for cooperation among the identified institutions offering curricula in this field. This paper presents the results obtained from Africa and North America. The whole project is due to be completed by 2009.
Biomedical engineering and the whitaker foundation: a thirty-year partnership.
Katona, Peter G
2006-06-01
The Whitaker Foundation, established in 1976, will close in 2006. It will have made awards totaling 805 million US dollars, with over 710 million US dollars in biomedical engineering. Close to 1,500 faculty members received research grants to help them establish academic careers in biomedical engineering, and over 400 graduate students received fellowship support. The Foundation also supported the enhancement or establishment of educational programs in biomedical engineering, especially encouraging the formation of departments. The number of biomedical engineering departments almost tripled during the past 10 years, now numbering close to 75. Leveraging of grants enabled the construction of 13 new buildings. With the field firmly established, the grant program supporting new faculty members will be the one missed the most. New opportunities, however, are emerging as interdisciplinary research is being embraced by both public and private funding sources. The life sciences will be increasingly incorporated into all areas of engineering, and it is expected that such "biofication" will pose both opportunities and challenges to biomedical engineering.
[Master course in biomedical engineering].
Jobbágy, Akos; Benyó, Zoltán; Monos, Emil
2009-11-22
The Bologna Declaration aims at harmonizing the European higher education structure. In accordance with the Declaration, biomedical engineering will be offered as a master (MSc) course also in Hungary, from year 2009. Since 1995 biomedical engineering course has been held in cooperation of three universities: Semmelweis University, Budapest Veterinary University, and Budapest University of Technology and Economics. One of the latter's faculties, Faculty of Electrical Engineering and Informatics, has been responsible for the course. Students could start their biomedical engineering studies - usually in parallel with their first degree course - after they collected at least 180 ECTS credits. Consequently, the biomedical engineering course could have been considered as a master course even before the Bologna Declaration. Students had to collect 130 ECTS credits during the six-semester course. This is equivalent to four-semester full-time studies, because during the first three semesters the curriculum required to gain only one third of the usual ECTS credits. The paper gives a survey on the new biomedical engineering master course, briefly summing up also the subjects in the curriculum.
Biomedical Impact in Implantable Devices-The Transcatheter Aortic Valve as an example
NASA Astrophysics Data System (ADS)
Anastasiou, Alexandros; Saatsakis, George
2015-09-01
Objective: To update of the scientific community about the biomedical engineering involvement in the implantable devices chain. Moreover the transcatheter Aortic Valve (TAV) replacement, in the field of cardiac surgery, will be analyzed as an example of contemporary implantable technology. Methods: A detailed literature review regarding biomedical engineers participating in the implantable medical product chain, starting from the design of the product till the final implantation technique. Results: The scientific role of biomedical engineers has clearly been established. Certain parts of the product chain are implemented almost exclusively by experienced biomedical engineers such as the transcatheter aortic valve device. The successful professional should have a multidisciplinary knowledge, including medicine, in order to pursue the challenges for such intuitive technology. This clearly indicates that biomedical engineers are among the most appropriate scientists to accomplish such tasks. Conclusions: The biomedical engineering involvement in medical implantable devices has been widely accepted by the scientific community, worldwide. Its important contribution, starting from the design and extended to the development, clinical trials, scientific support, education of other scientists (surgeons, cardiologists, technicians etc.), and even to sales, makes biomedical engineers a valuable player in the scientific arena. Notably, the sector of implantable devices is constantly raising, as emerging technologies continuously set up new targets.
NASA Astrophysics Data System (ADS)
2015-09-01
The International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015) took place in the Technological Educational Institute (TEI) of Athens, Greece on June 18-20, 2015 and was organized by the Department of Biomedical Engineering. The scope of the conference was to provide a forum on the latest developments in Biomedical Instrumentation and related principles of Physical and Engineering sciences. Scientists and engineers from academic, industrial and health disciplines were invited to participate in the Conference and to contribute both in the promotion and dissemination of the scientific knowledge.
New Directions for Biomedical Engineering
ERIC Educational Resources Information Center
Plonsey, Robert
1973-01-01
Discusses the definition of "biomedical engineering" and the development of educational programs in the field. Includes detailed descriptions of the roles of bioengineers, medical engineers, and chemical engineers. (CC)
Jácome, Alberto G; Fdez-Riverola, Florentino; Lourenço, Anália
2016-07-01
Text mining and semantic analysis approaches can be applied to the construction of biomedical domain-specific search engines and provide an attractive alternative to create personalized and enhanced search experiences. Therefore, this work introduces the new open-source BIOMedical Search Engine Framework for the fast and lightweight development of domain-specific search engines. The rationale behind this framework is to incorporate core features typically available in search engine frameworks with flexible and extensible technologies to retrieve biomedical documents, annotate meaningful domain concepts, and develop highly customized Web search interfaces. The BIOMedical Search Engine Framework integrates taggers for major biomedical concepts, such as diseases, drugs, genes, proteins, compounds and organisms, and enables the use of domain-specific controlled vocabulary. Technologies from the Typesafe Reactive Platform, the AngularJS JavaScript framework and the Bootstrap HTML/CSS framework support the customization of the domain-oriented search application. Moreover, the RESTful API of the BIOMedical Search Engine Framework allows the integration of the search engine into existing systems or a complete web interface personalization. The construction of the Smart Drug Search is described as proof-of-concept of the BIOMedical Search Engine Framework. This public search engine catalogs scientific literature about antimicrobial resistance, microbial virulence and topics alike. The keyword-based queries of the users are transformed into concepts and search results are presented and ranked accordingly. The semantic graph view portraits all the concepts found in the results, and the researcher may look into the relevance of different concepts, the strength of direct relations, and non-trivial, indirect relations. The number of occurrences of the concept shows its importance to the query, and the frequency of concept co-occurrence is indicative of biological relations meaningful to that particular scope of research. Conversely, indirect concept associations, i.e. concepts related by other intermediary concepts, can be useful to integrate information from different studies and look into non-trivial relations. The BIOMedical Search Engine Framework supports the development of domain-specific search engines. The key strengths of the framework are modularity and extensibilityin terms of software design, the use of open-source consolidated Web technologies, and the ability to integrate any number of biomedical text mining tools and information resources. Currently, the Smart Drug Search keeps over 1,186,000 documents, containing more than 11,854,000 annotations for 77,200 different concepts. The Smart Drug Search is publicly accessible at http://sing.ei.uvigo.es/sds/. The BIOMedical Search Engine Framework is freely available for non-commercial use at https://github.com/agjacome/biomsef. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Review of spectral imaging technology in biomedical engineering: achievements and challenges.
Li, Qingli; He, Xiaofu; Wang, Yiting; Liu, Hongying; Xu, Dongrong; Guo, Fangmin
2013-10-01
Spectral imaging is a technology that integrates conventional imaging and spectroscopy to get both spatial and spectral information from an object. Although this technology was originally developed for remote sensing, it has been extended to the biomedical engineering field as a powerful analytical tool for biological and biomedical research. This review introduces the basics of spectral imaging, imaging methods, current equipment, and recent advances in biomedical applications. The performance and analytical capabilities of spectral imaging systems for biological and biomedical imaging are discussed. In particular, the current achievements and limitations of this technology in biomedical engineering are presented. The benefits and development trends of biomedical spectral imaging are highlighted to provide the reader with an insight into the current technological advances and its potential for biomedical research.
The AIBS In Yugoslavia: Programs in Biomedical Engineering
ERIC Educational Resources Information Center
Thompson, Mary-Frances
1978-01-01
Programs in biomedical engineering have been developing worldwide since World War II. This article describes a multidisciplinary program which operates in Yugoslavia through a cooperative effort between that county and the AIBS. A major problem has been the slowness with which hospitals accept the concept of biomedical engineering. (MA)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-27
...., implants, biomaterials, surgical tools, tissue engineering, drug and gene delivery; (c) Technology to Aid... health information, and other programs with respect to biomedical imaging and engineering and associated... ceremony: October 2012, Biomedical Engineering Society Conference (exact date to be determined). FOR...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-25
... tools, tissue engineering, drug and gene delivery (c) Technology to Aid Underserved Populations and... and engineering and associated technologies and modalities with biomedical applications; and (3) to...: September 2013, Biomedical Engineering Society Conference (exact date to be announced at http://debut2013...
George, Steven C; Meyerand, M Elizabeth
2017-03-01
A department of biomedical engineering can significantly enhance the impact of their research and training programs if a productive relationship with a medical school can be established. In order to develop such a relationship, significant hurdles must be overcome. This editorial summarizes some of the major challenges and opportunities for a department of biomedical engineering as they seek to build or enhance a relationship with a medical school. The ideas were formulated by engaging the collective wisdom from the Council of Chairs of the biomedical engineering departments.
Lee, E. Sally; McDonald, David W.; Anderson, Nicholas; Tarczy-Hornoch, Peter
2008-01-01
Due to its complex nature, modern biomedical research has become increasingly interdisciplinary and collaborative in nature. Although a necessity, interdisciplinary biomedical collaboration is difficult. There is, however, a growing body of literature on the study and fostering of collaboration in fields such as computer supported cooperative work (CSCW) and information science (IS). These studies of collaboration provide insight into how to potentially alleviate the difficulties of interdisciplinary collaborative research. We, therefore, undertook a cross cutting study of science and engineering collaboratories to identify emergent themes. We review many relevant collaboratory concepts: (a) general collaboratory concepts across many domains: communication, common workspace and coordination, and data sharing and management, (b) specific collaboratory concepts of particular biomedical relevance: data integration and analysis, security structure, metadata and data provenance, and interoperability and data standards, (c) environmental factors that support collaboratories: administrative and management structure, technical support, and available funding as critical environmental factors, and (d) future considerations for biomedical collaboration: appropriate training and long-term planning. In our opinion, the collaboratory concepts we discuss can guide planning and design of future collaborative infrastructure by biomedical informatics researchers to alleviate some of the difficulties of interdisciplinary biomedical collaboration. PMID:18706852
Biomedical engineering education through global engineering teams.
Scheffer, C; Blanckenberg, M; Garth-Davis, B; Eisenberg, M
2012-01-01
Most industrial projects require a team of engineers from a variety of disciplines. The team members are often culturally diverse and geographically dispersed. Many students do not acquire sufficient skills from typical university courses to function efficiently in such an environment. The Global Engineering Teams (GET) programme was designed to prepare students such a scenario in industry. This paper discusses five biomedical engineering themed projects completed by GET students. The benefits and success of the programme in educating students in the field of biomedical engineering are discussed.
Special Issue: 3D Printing for Biomedical Engineering.
Chua, Chee Kai; Yeong, Wai Yee; An, Jia
2017-02-28
Three-dimensional (3D) printing has a long history of applications in biomedical engineering. The development and expansion of traditional biomedical applications are being advanced and enriched by new printing technologies. New biomedical applications such as bioprinting are highly attractive and trendy. This Special Issue aims to provide readers with a glimpse of the recent profile of 3D printing in biomedical research.
Dynamic and rheological properties of soft biological cell suspensions
Yazdani, Alireza; Li, Xuejin
2016-01-01
Quantifying dynamic and rheological properties of suspensions of soft biological particles such as vesicles, capsules, and red blood cells (RBCs) is fundamentally important in computational biology and biomedical engineering. In this review, recent studies on dynamic and rheological behavior of soft biological cell suspensions by computer simulations are presented, considering both unbounded and confined shear flow. Furthermore, the hemodynamic and hemorheological characteristics of RBCs in diseases such as malaria and sickle cell anemia are highlighted. PMID:27540271
Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T.; Becich, Michael J.
2014-01-01
This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics will be critical to assuring their success as leaders in the era of big data and personalized medicine. PMID:24860688
Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J
2014-01-01
This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics will be critical to assuring their success as leaders in the era of big data and personalized medicine.
Technological Innovations from NASA
NASA Technical Reports Server (NTRS)
Pellis, Neal R.
2006-01-01
The challenge of human space exploration places demands on technology that push concepts and development to the leading edge. In biotechnology and biomedical equipment development, NASA science has been the seed for numerous innovations, many of which are in the commercial arena. The biotechnology effort has led to rational drug design, analytical equipment, and cell culture and tissue engineering strategies. Biomedical research and development has resulted in medical devices that enable diagnosis and treatment advances. NASA Biomedical developments are exemplified in the new laser light scattering analysis for cataracts, the axial flow left ventricular-assist device, non contact electrocardiography, and the guidance system for LASIK surgery. Many more developments are in progress. NASA will continue to advance technologies, incorporating new approaches from basic and applied research, nanotechnology, computational modeling, and database analyses.
ERIC Educational Resources Information Center
Klein, Stacy S.; Sherwood, Robert D.
2005-01-01
This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…
Ethics in published brain-computer interface research
NASA Astrophysics Data System (ADS)
Specker Sullivan, L.; Illes, J.
2018-02-01
Objective. Sophisticated signal processing has opened the doors to more research with human subjects than ever before. The increase in the use of human subjects in research comes with a need for increased human subjects protections. Approach. We quantified the presence or absence of ethics language in published reports of brain-computer interface (BCI) studies that involved human subjects and qualitatively characterized ethics statements. Main results. Reports of BCI studies with human subjects that are published in neural engineering and engineering journals are anchored in the rationale of technological improvement. Ethics language is markedly absent, omitted from 31% of studies published in neural engineering journals and 59% of studies in biomedical engineering journals. Significance. As the integration of technological tools with the capacities of the mind deepens, explicit attention to ethical issues will ensure that broad human benefit is embraced and not eclipsed by technological exclusiveness.
Special Issue: 3D Printing for Biomedical Engineering
Chua, Chee Kai; Yeong, Wai Yee; An, Jia
2017-01-01
Three-dimensional (3D) printing has a long history of applications in biomedical engineering. The development and expansion of traditional biomedical applications are being advanced and enriched by new printing technologies. New biomedical applications such as bioprinting are highly attractive and trendy. This Special Issue aims to provide readers with a glimpse of the recent profile of 3D printing in biomedical research. PMID:28772604
Hanauer, David A; Wu, Danny T Y; Yang, Lei; Mei, Qiaozhu; Murkowski-Steffy, Katherine B; Vydiswaran, V G Vinod; Zheng, Kai
2017-03-01
The utility of biomedical information retrieval environments can be severely limited when users lack expertise in constructing effective search queries. To address this issue, we developed a computer-based query recommendation algorithm that suggests semantically interchangeable terms based on an initial user-entered query. In this study, we assessed the value of this approach, which has broad applicability in biomedical information retrieval, by demonstrating its application as part of a search engine that facilitates retrieval of information from electronic health records (EHRs). The query recommendation algorithm utilizes MetaMap to identify medical concepts from search queries and indexed EHR documents. Synonym variants from UMLS are used to expand the concepts along with a synonym set curated from historical EHR search logs. The empirical study involved 33 clinicians and staff who evaluated the system through a set of simulated EHR search tasks. User acceptance was assessed using the widely used technology acceptance model. The search engine's performance was rated consistently higher with the query recommendation feature turned on vs. off. The relevance of computer-recommended search terms was also rated high, and in most cases the participants had not thought of these terms on their own. The questions on perceived usefulness and perceived ease of use received overwhelmingly positive responses. A vast majority of the participants wanted the query recommendation feature to be available to assist in their day-to-day EHR search tasks. Challenges persist for users to construct effective search queries when retrieving information from biomedical documents including those from EHRs. This study demonstrates that semantically-based query recommendation is a viable solution to addressing this challenge. Published by Elsevier Inc.
Biomedical engineering education--status and perspectives.
Magjarevic, Ratko; Zequera Diaz, Martha L
2014-01-01
Biomedical Engineering programs are present at a large number of universities all over the world with an increasing trend. New generations of biomedical engineers have to face the challenges of health care systems round the world which need a large number of professionals not only to support the present technology in the health care system but to develop new devices and services. Health care stakeholders would like to have innovative solutions directed towards solving problems of the world growing incidence of chronic disease and ageing population. These new solutions have to meet the requirements for continuous monitoring, support or care outside clinical settlements. Presence of these needs can be tracked through data from the Labor Organization in the U.S. showing that biomedical engineering jobs have the largest growth at the engineering labor market with expected 72% growth rate in the period from 2008-2018. In European Union the number of patents (i.e. innovation) is the highest in the category of biomedical technology. Biomedical engineering curricula have to adopt to the new needs and for expectations of the future. In this paper we want to give an overview of engineering professions in related to engineering in medicine and biology and the current status of BME education in some regions, as a base for further discussions.
Evolving technologies drive the new roles of Biomedical Engineering.
Frisch, P H; St Germain, J; Lui, W
2008-01-01
Rapidly changing technology coupled with the financial impact of organized health care, has required hospital Biomedical Engineering organizations to augment their traditional operational and business models to increase their role in developing enhanced clinical applications utilizing new and evolving technologies. The deployment of these technology based applications has required Biomedical Engineering organizations to re-organize to optimize the manner in which they provide and manage services. Memorial Sloan-Kettering Cancer Center has implemented a strategy to explore evolving technologies integrating them into enhanced clinical applications while optimally utilizing the expertise of the traditional Biomedical Engineering component (Clinical Engineering) to provide expanded support in technology / equipment management, device repair, preventive maintenance and integration with legacy clinical systems. Specifically, Biomedical Engineering is an integral component of the Medical Physics Department which provides comprehensive and integrated support to the Center in advanced physical, technical and engineering technology. This organizational structure emphasizes the integration and collaboration between a spectrum of technical expertise for clinical support and equipment management roles. The high cost of clinical equipment purchases coupled with the increasing cost of service has driven equipment management responsibilities to include significant business and financial aspects to provide a cost effective service model. This case study details the dynamics of these expanded roles, future initiatives and benefits for Biomedical Engineering and Memorial Sloan Kettering Cancer Center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, W. E.
2004-08-16
Computational Science plays a big role in research and development in mathematics, science, engineering and biomedical disciplines. The Alliance for Computational Science Collaboration (ACSC) has the goal of training African-American and other minority scientists in the computational science field for eventual employment with the Department of Energy (DOE). The involvements of Historically Black Colleges and Universities (HBCU) in the Alliance provide avenues for producing future DOE African-American scientists. Fisk University has been participating in this program through grants from the DOE. The DOE grant supported computational science activities at Fisk University. The research areas included energy related projects, distributed computing,more » visualization of scientific systems and biomedical computing. Students' involvement in computational science research included undergraduate summer research at Oak Ridge National Lab, on-campus research involving the participation of undergraduates, participation of undergraduate and faculty members in workshops, and mentoring of students. These activities enhanced research and education in computational science, thereby adding to Fisk University's spectrum of research and educational capabilities. Among the successes of the computational science activities are the acceptance of three undergraduate students to graduate schools with full scholarships beginning fall 2002 (one for master degree program and two for Doctoral degree program).« less
Corrias, Alberto; Cho Hong, James Goh
2015-01-01
The design and implementation of a learning environment that leverages on the use of various technologies is presented. The context is an undergraduate core engineering course within the biomedical engineering curriculum. The topic of the course is data analysis in biomedical engineering problems. One of the key ideas of this study is to confine the most mathematical and statistical aspects of data analysis in prerecorded video lectures. Students are asked to watch the video lectures before coming to class. Since the classroom session does not need to cover the mathematical theory, the time is spent on a selected real world scenario in the field of biomedical engineering that exposes students to an actual application of the theory. The weekly cycle is concluded with a hands-on tutorial session in the computer rooms. A potential problem would arise in such learning environment if the students do not follow the recommendation of watching the video lecture before coming to class. In an attempt to limit these occurrences, two key instruments were put in place: a set of online self-assessment questions that students are asked to take before the classroom session and a simple rewards system during the classroom session. Thanks to modern learning analytics tools, we were able to show that, on average, 57.9% of students followed the recommendation of watching the video lecture before class. The efficacy of the learning environment was assessed through various means. A survey was conducted among the students and the gathered data support the view that the learning environment was well received by the students. Attempts were made to quantify the impacts on learning of the proposed measures by taking into account the results of selected questions of the final examination of the course. Although the presence of confounding factors demands caution in the interpretation, these data seem to indicate a possible positive effect of the use of video lectures in this technologically enhanced learning environment.
High-Fidelity Simulation in Biomedical and Aerospace Engineering
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2005-01-01
Contents include the following: Introduction / Background. Modeling and Simulation Challenges in Aerospace Engineering. Modeling and Simulation Challenges in Biomedical Engineering. Digital Astronaut. Project Columbia. Summary and Discussion.
NASA Technical Reports Server (NTRS)
Beckenbach, E. S. (Editor)
1984-01-01
It is more important than ever that engineers have an understanding of the future needs of clinical and research medicine, and that physicians know somthing about probable future developments in instrumentation capabilities. Only by maintaining such a dialog can the most effective application of technological advances to medicine be achieved. This workshop attempted to provide this kind of information transfer in the limited field of diagnostic imaging. Biomedical research at the Jet Propulsion Laboratory is discussed, taking into account imaging results from space exploration missions, as well as biomedical research tasks based in these technologies. Attention is also given to current and future indications for magnetic resonance in medicine, high speed quantitative digital microscopy, computer processing of radiographic images, computed tomography and its modern applications, position emission tomography, and developments related to medical ultrasound.
Epigenetic Regulation: A New Frontier for Biomedical Engineers.
Chen, Zhen; Li, Shuai; Subramaniam, Shankar; Shyy, John Y-J; Chien, Shu
2017-06-21
Gene expression in mammalian cells depends on the epigenetic status of the chromatin, including DNA methylation, histone modifications, promoter-enhancer interactions, and noncoding RNA-mediated regulation. The coordinated actions of these multifaceted regulations determine cell development, cell cycle regulation, cell state and fate, and the ultimate responses in health and disease. Therefore, studies of epigenetic modulations are critical for our understanding of gene regulation mechanisms at the molecular, cellular, tissue, and organ levels. The aim of this review is to provide biomedical engineers with an overview of the principles of epigenetics, methods of study, recent findings in epigenetic regulation in health and disease, and computational and sequencing tools for epigenetics analysis, with an emphasis on the cardiovascular system. This review concludes with the perspectives of the application of bioengineering to advance epigenetics and the utilization of epigenetics to translate bioengineering research into clinical medicine.
The development of biomedical engineering as experienced by one biomedical engineer
2012-01-01
This personal essay described the development of the field of Biomedical Engineering from its early days, from the perspective of one who lived through that development. It describes the making of a major invention using data that had been rejected by other scientists, the re-discovery of an obscure fact of physiology and its use in developing a major medical instrument, the development of a new medical imaging modality, and the near-death rescue of a research project. The essay concludes with comments about the development and present status of impedance imaging, and recent changes in the evolution of biomedical engineering as a field. PMID:23234267
The development of biomedical engineering as experienced by one biomedical engineer.
Newell, Jonathan C
2012-12-12
This personal essay described the development of the field of Biomedical Engineering from its early days, from the perspective of one who lived through that development. It describes the making of a major invention using data that had been rejected by other scientists, the re-discovery of an obscure fact of physiology and its use in developing a major medical instrument, the development of a new medical imaging modality, and the near-death rescue of a research project. The essay concludes with comments about the development and present status of impedance imaging, and recent changes in the evolution of biomedical engineering as a field.
The cortical mouse: a piece of forgotten history in noninvasive brain–computer interfaces.
Principe, Jose C
2013-07-01
Early research on brain-computer interfaces (BCIs) was fueled by the study of event-related potentials (ERPs) by Farwell and Donchin, who are rightly credited for laying important groundwork for the BCI field. However, many other researchers have made substantial contributions that have escaped the radar screen of the current BCI community. For example, in the late 1980s, I worked with a brilliant multidisciplinary research group in electrical engineering at the University of Florida, Gainesville, headed by Dr. Donald Childers. Childers should be well known to long-time members of the IEEE Engineering in Medicine and Biology Society since he was the editor-in-chief of IEEE Transactions on Biomedical Engineering in the 1970s and the recipient of one of the most prestigious society awards, the William J. Morlock Award, in 1973.
Industry careers for the biomedical engineer.
Munzner, Robert F
2004-01-01
This year's conference theme is "linkages for innovation in biomedicine." Biomedical engineers, especially those transitioning their career from academic study into medical device industry, will play a critical role in converting the fruits of scientific research into the reality of modern medical devices. This special session is organized to help biomedical engineers to achieve their career goals more effectively. Participants will have opportunities to hear from and interact with leading industrial experts on many issues. These may include but not limited to 1) career paths for biomedical engineers (industrial, academic, or federal; technical vs. managerial track; small start-up or large established companies); 2) unique design challenges and regulatory requirements in medical device development; 3) aspects of a successful biomedical engineering job candidate (such as resume, interview, follow-up). Suggestions for other topics are welcome and should be directed to xkong@ieee.org The distinguished panelists include: Xuan Kong, Ph.D., VP of Research, NEUROMetrix Inc, Waltham, MA Robert F. Munzner, Ph.D., Medical Device Consultant, Doctor Device, Herndon, VA Glen McLaughlin, Ph.D., VP of Engineering and CTO, Zonare Medical System Inc., Mountain View, CA Grace Bartoo, Ph.D., RAC, General Manager, Decus Biomedical LLC San Carlos, CA.
The Institute of Biological Engineering 2013 Annual Conference
2014-10-30
of Bioengineering University of Washington Presentation: Peptide-Based materials for Drug Delivery Dr. Ya-Ping Sun (Supported by the Grant) Frank...Professor of Biomedical Engineering and Mechanical Engineering and Materials Science Duke University Presentation: Acoustic Microfluidics and New...Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Department of Mechanical Engineering
Gregoretti, Francesco; Belcastro, Vincenzo; di Bernardo, Diego; Oliva, Gennaro
2010-04-21
The reverse engineering of gene regulatory networks using gene expression profile data has become crucial to gain novel biological knowledge. Large amounts of data that need to be analyzed are currently being produced due to advances in microarray technologies. Using current reverse engineering algorithms to analyze large data sets can be very computational-intensive. These emerging computational requirements can be met using parallel computing techniques. It has been shown that the Network Identification by multiple Regression (NIR) algorithm performs better than the other ready-to-use reverse engineering software. However it cannot be used with large networks with thousands of nodes--as is the case in biological networks--due to the high time and space complexity. In this work we overcome this limitation by designing and developing a parallel version of the NIR algorithm. The new implementation of the algorithm reaches a very good accuracy even for large gene networks, improving our understanding of the gene regulatory networks that is crucial for a wide range of biomedical applications.
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2012-05-01
This paper is the fifth part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with Biomedical, Artificial Intelligence and DNA Computing technologies. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the Jubilee XXXth SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET tokamak and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-270].
Biomedical engineering at Sandia National Laboratories
NASA Astrophysics Data System (ADS)
Zanner, Mary Ann
1994-12-01
The potential exists to reduce or control some aspects of the U.S. health care expenditure without compromising health care delivery by developing carefully selected technologies which impact favorably on the health care system. A focused effort to develop such technologies is underway at Sandia National Laboratories. As a DOE National Laboratory, Sandia possesses a wealth of engineering and scientific expertise that can be readily applied to this critical national need. Appropriate mechanisms currently exist to allow transfer of technology from the laboratory to the private sector. Sandia's Biomedical Engineering Initiative addresses the development of properly evaluated, cost-effective medical technologies through team collaborations with the medical community. Technology development is subjected to certain criteria including wide applicability, earlier diagnoses, increased efficiency, cost-effectiveness and dual-use. Examples of Sandia's medical technologies include a noninvasive blood glucose sensor, computer aided mammographic screening, noninvasive fetal oximetry and blood gas measurement, burn diagnostics and laser debridement, telerobotics and ultrasonic scanning for prosthetic devices. Sandia National Laboratories has the potential to aid in directing medical technology development efforts which emphasize health care needs, earlier diagnosis, cost containment and improvement of the quality of life.
Biomedical engineering - A means to add new dimension to medicine and research
NASA Technical Reports Server (NTRS)
Doerr, D. F.
1992-01-01
Biomedical engineering is an evolving science that seeks to insert technically oriented and trained personnel to assist medical professionals in solving technological problems in the pursuit of innovations in the delivery of health care. Consequently, engineering solutions are brought to bear on problems that previously were outside the training of physicians and beyond the understanding or appreciation of the conventionally educated electrical or mechanical engineers. This physician/scientist/engineer team has a capability to extend medicine and research far beyond the capability of a single entity operating alone. How biomedical engineering has added a new dimension to medical science at the Kennedy Space Center is described.
The biomedical engineer as a driver for Health Technology innovation.
Colas Fustero, Javier; Guillen Arredondo, Alejandra
2010-01-01
Health Technology has played a mayor role on most of the fundamental advances in medicine, in the last 30 years. Right now, beginning the XXI Century, it is well accepted that the most important revolution expected in Health Care is the empowerment of the individuals on their own health management. Innovation in health care technologies will continue being paramount, not only in the advances of medicine and in the self health management of patients but also in allowing the sustainability of the public health care becomes more important, the role of the biomedical engineer will turn to be more crucial for the society. The paper targets the development of new curricula for the Biomedical Engineers, The needs of evolving on his different fields in which the contribution of the Biomedical Engineer is becoming fundamental to drive the innovation that Health Care Technology Industry must provide to continue improving human health through cross-disciplinary activities that integrate the engineering sciences with the biomedical sciences and clinical practice.
From biomedical-engineering research to clinical application and industrialization
NASA Astrophysics Data System (ADS)
Taguchi, Tetsushi; Aoyagi, Takao
2012-12-01
The rising costs and aging of the population due to a low birth rate negatively affect the healthcare system in Japan. In 2011, the Council for Science and Technology Policy released the 4th Japan's Science and Technology Basic Policy Report from 2011 to 2015. This report includes two major innovations, 'Life Innovation' and 'Green Innovation', to promote economic growth. Biomedical engineering research is part of 'Life Innovation' and its outcomes are required to maintain people's mental and physical health. It has already resulted in numerous biomedical products, and new ones should be developed using nanotechnology-based concepts. The combination of accumulated knowledge and experience, and 'nanoarchitechtonics' will result in novel, well-designed functional biomaterials. This focus issue contains three reviews and 19 original papers on various biomedical topics, including biomaterials, drug-delivery systems, tissue engineering and diagnostics. We hope that it demonstrates the importance of collaboration among scientists, engineers and clinicians, and will contribute to the further development of biomedical engineering.
European virtual campus for biomedical engineering EVICAB.
Malmivuo, Jaakko A; Nousiainen, Juha O; Lindroos, Kari V
2007-01-01
European Commission has funded building a curriculum on Biomedical Engineering to the Internet for European universities under the project EVICAB. EVICAB forms a curriculum which will be free access and available free of charge. Therefore, in addition to the European universities, it will be available worldwide. EVICAB will make high quality education available for everyone, not only for the university students, and facilitate the development of the discipline of Biomedical Engineering.
Biomedical applications engineering tasks
NASA Technical Reports Server (NTRS)
Laenger, C. J., Sr.
1976-01-01
The engineering tasks performed in response to needs articulated by clinicians are described. Initial contacts were made with these clinician-technology requestors by the Southwest Research Institute NASA Biomedical Applications Team. The basic purpose of the program was to effectively transfer aerospace technology into functional hardware to solve real biomedical problems.
Development of concept-based physiology lessons for biomedical engineering undergraduate students.
Nelson, Regina K; Chesler, Naomi C; Strang, Kevin T
2013-06-01
Physiology is a core requirement in the undergraduate biomedical engineering curriculum. In one or two introductory physiology courses, engineering students must learn physiology sufficiently to support learning in their subsequent engineering courses and careers. As preparation for future learning, physiology instruction centered on concepts may help engineering students to further develop their physiology and biomedical engineering knowledge. Following the Backward Design instructional model, a series of seven concept-based lessons was developed for undergraduate engineering students. These online lessons were created as prerequisite physiology training to prepare students to engage in a collaborative engineering challenge activity. This work is presented as an example of how to convert standard, organ system-based physiology content into concept-based content lessons.
Modern technologies for retinal scanning and imaging: an introduction for the biomedical engineer
2014-01-01
This review article is meant to help biomedical engineers and nonphysical scientists better understand the principles of, and the main trends in modern scanning and imaging modalities used in ophthalmology. It is intended to ease the communication between physicists, medical doctors and engineers, and hopefully encourage “classical” biomedical engineers to generate new ideas and to initiate projects in an area which has traditionally been dominated by optical physics. Most of the methods involved are applicable to other areas of biomedical optics and optoelectronics, such as microscopic imaging, spectroscopy, spectral imaging, opto-acoustic tomography, fluorescence imaging etc., all of which are with potential biomedical application. Although all described methods are novel and important, the emphasis of this review has been placed on three technologies introduced in the 1990’s and still undergoing vigorous development: Confocal Scanning Laser Ophthalmoscopy, Optical Coherence Tomography, and polarization-sensitive retinal scanning. PMID:24779618
Use of controlled vocabularies to improve biomedical information retrieval tasks.
Pasche, Emilie; Gobeill, Julien; Vishnyakova, Dina; Ruch, Patrick; Lovis, Christian
2013-01-01
The high heterogeneity of biomedical vocabulary is a major obstacle for information retrieval in large biomedical collections. Therefore, using biomedical controlled vocabularies is crucial for managing these contents. We investigate the impact of query expansion based on controlled vocabularies to improve the effectiveness of two search engines. Our strategy relies on the enrichment of users' queries with additional terms, directly derived from such vocabularies applied to infectious diseases and chemical patents. We observed that query expansion based on pathogen names resulted in improvements of the top-precision of our first search engine, while the normalization of diseases degraded the top-precision. The expansion of chemical entities, which was performed on the second search engine, positively affected the mean average precision. We have shown that query expansion of some types of biomedical entities has a great potential to improve search effectiveness; therefore a fine-tuning of query expansion strategies could help improving the performances of search engines.
Advanced Computational Methods in Bio-Mechanics.
Al Qahtani, Waleed M S; El-Anwar, Mohamed I
2018-04-15
A novel partnership between surgeons and machines, made possible by advances in computing and engineering technology, could overcome many of the limitations of traditional surgery. By extending surgeons' ability to plan and carry out surgical interventions more accurately and with fewer traumas, computer-integrated surgery (CIS) systems could help to improve clinical outcomes and the efficiency of healthcare delivery. CIS systems could have a similar impact on surgery to that long since realised in computer-integrated manufacturing. Mathematical modelling and computer simulation have proved tremendously successful in engineering. Computational mechanics has enabled technological developments in virtually every area of our lives. One of the greatest challenges for mechanists is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. Biomechanics has significant potential for applications in orthopaedic industry, and the performance arts since skills needed for these activities are visibly related to the human musculoskeletal and nervous systems. Although biomechanics is widely used nowadays in the orthopaedic industry to design orthopaedic implants for human joints, dental parts, external fixations and other medical purposes, numerous researches funded by billions of dollars are still running to build a new future for sports and human healthcare in what is called biomechanics era.
Advanced Biomedical Computing Center (ABCC) | DSITP
The Advanced Biomedical Computing Center (ABCC), located in Frederick Maryland (MD), provides HPC resources for both NIH/NCI intramural scientists and the extramural biomedical research community. Its mission is to provide HPC support, to provide collaborative research, and to conduct in-house research in various areas of computational biology and biomedical research.
Career development in Bioengineering/Biomedical Engineering: a student's roadmap.
Abu-Faraj, Ziad O
2008-01-01
Bioengineering/biomedical engineering education has progressed since the late 1950s and is still evolving in leading academic institutions worldwide. Today, Bioengineering/Biomedical Engineering is acclaimed as one of the most reputable fields within the global arena, and will likely be the catalyst for any future breakthroughs in Medicine and Biology. This paper provides a set of strategies and recommendations to be pursued by individuals aiming at planning and developing careers in this field. The paper targets the international student contemplating bioengineering/biomedical engineering as a career, with an underlying emphasis on the student within developing and transitional countries where career guidance is found deficient. The paper also provides a comprehensive definition of the field and an enumeration of its subdivisions.
People’s Republic of China Scientific Abstracts, Number 195.
1978-08-01
regarding China. 17. Key Word« and Document Analysis. 17a. Descriptors China x Agricultural Science and Technology x Bio-Medical Sciences x...Chemistry Cybernetics, Computers, and Automation Technology x Earth Sciences 17b. ldentifiers/Open-Eoded Terms X X Engineering and Equipment...safety in astronautics, especially in reentry; 3. Producible with current technology ; *t. Provides an increased range of astronautical acti
Development and Evaluation of Thesauri-Based Bibliographic Biomedical Search Engine
ERIC Educational Resources Information Center
Alghoson, Abdullah
2017-01-01
Due to the large volume and exponential growth of biomedical documents (e.g., books, journal articles), it has become increasingly challenging for biomedical search engines to retrieve relevant documents based on users' search queries. Part of the challenge is the matching mechanism of free-text indexing that performs matching based on…
Biomedical engineering and society: policy and ethics.
Flexman, J A; Lazareck, L
2007-01-01
Biomedical engineering impacts health care and contributes to fundamental knowledge in medicine and biology. Policy, such as through regulation and research funding, has the potential to dramatically affect biomedical engineering research and commercialization. New developments, in turn, may affect society in new ways. The intersection of biomedical engineering and society and related policy issues must be discussed between scientists and engineers, policy-makers and the public. As a student, there are many ways to become engaged in the issues surrounding science and technology policy. At the University of Washington in Seattle, the Forum on Science Ethics and Policy (FOSEP, www.fosep.org) was started by graduate students and post-doctoral fellows interested in improving the dialogue between scientists, policymakers and the public and has received support from upper-level administration. This is just one example of how students can start thinking about science policy and ethics early in their careers.
[Metrology research on biomedical engineering publications from China in recent years].
Yu, Lu; Su, Juan; Wang, Ying; Sha, Xianzheng
2014-12-01
The present paper is to evaluate the scientific research level and development trends of biomedical engineering in China using metrology analysis on Chinese biomedical engineering scientific literatures. Pubmed is used to search the biomedical engineering publications in recent 5 years which are indexed by Science Citation Index, and the number and cited times of these publications and the impact factor of the journals are analyzed. The results show that comparing with the world, although the number of the publication in China has increased in recent 5 years, there is still much room for improvement. Among Chinese mainland, Hongkong and Taiwan, Chinese mainland maintains the obvious advantage in this subject, but Hongkong has the highest average cited number. Shanghai and Beijing have better research ability than other areas in Chinese mainland.
Biomedical Engineering Education in Perspective
ERIC Educational Resources Information Center
Gowen, Richard J.
1973-01-01
Discusses recent developments in the health care industry and their impact on the future of biomedical engineering education. Indicates that a more thorough understanding of the complex functions of the living organism can be acquired through the application of engineering techniques to problems of life sciences. (CC)
Commercialising genetically engineered animal biomedical products.
Sullivan, Eddie J; Pommer, Jerry; Robl, James M
2008-01-01
Research over the past two decades has increased the quality and quantity of tools available to produce genetically engineered animals. The number of potentially viable biomedical products from genetically engineered animals is increasing. However, moving from cutting-edge research to development and commercialisation of a biomedical product that is useful and wanted by the public has significant challenges. Even early stage development of genetically engineered animal applications requires consideration of many steps, including quality assurance and quality control, risk management, gap analysis, founder animal establishment, cell banking, sourcing of animals and animal-derived material, animal facilities, product collection facilities and processing facilities. These steps are complicated and expensive. Biomedical applications of genetically engineered animals have had some recent successes and many applications are well into development. As researchers consider applications for their findings, having a realistic understanding of the steps involved in the development and commercialisation of a product, produced in genetically engineered animals, is useful in determining the risk of genetic modification to the animal nu. the potential public benefit of the application.
NASA Astrophysics Data System (ADS)
Guo, Shijun; Lyu, Jie; Zhang, Peiming
2017-08-01
In this paper, the teaching goals, teaching contents and teaching methods in biomedical optics course construction are discussed. From the dimension of teaching goals, students should master the principle of optical inspection on the human body, diagnosis and treatment of methodology and instruments, through the study of the theory and practice of this course, and can utilize biomedical optics methods to solve practical problems in the clinical medical engineering practice. From the dimension of teaching contents, based on the characteristics of biomedical engineering in medical colleges, the organic integration of engineering aspects, medical optical instruments, and biomedical aspects dispersed in human anatomy, human physiology, clinical medicine fundamental related to the biomedical optics is build. Noninvasive measurement of the human body composition and noninvasive optical imaging of the human body were taken as actual problems in biomedical optics fields. Typical medical applications such as eye optics and laser medicine were also integrated into the theory and practice teaching. From the dimension of teaching methods, referencing to organ-system based medical teaching mode, optical principle and instrument principle were taught by teachers from school of medical instruments, and the histological characteristics and clinical actual need in areas such as digestive diseases and urinary surgery were taught by teachers from school of basic medicine or clinical medicine of medical colleges. Furthermore, clinical application guidance would be provided by physician and surgeons in hospitals.
The fully integrated biomedical engineering programme at Eindhoven University of Technology.
Slaaf, D W; van Genderen, M H P
2009-05-01
The development of a fully integrated biomedical engineering programme (life sciences included from the start) is described. Details are provided about background, implementation, and didactic concept: design centred learning combined with courses. The curriculum has developed into a bachelor-master's programme with two different master's degrees: Master's Degree in Biomedical Engineering and Master's Degree in Medical Engineering. Recently, the programme has adopted semester programming, has included a major and minor in the bachelor's degree phase, and a true bachelor's degree final project. Details about the programme and data about where graduates find jobs are provided in this paper.
A Program on Biochemical and Biomedical Engineering.
ERIC Educational Resources Information Center
San, Ka-Yiu; McIntire, Larry V.
1989-01-01
Presents an introduction to the Biochemical and Biomedical Engineering program at Rice University. Describes the development of the academic and enhancement programs, including organizational structure and research project titles. (YP)
The natural history of the sleep and respiratory engineering track at EMBC 1988 to 2010.
Leder, Ron S; Schlotthauer, Gaston; Penzel, Thomas; Jane, Raimon
2010-01-01
Sleep science and respiratory engineering as medical subspecialties and research areas grew up side-by-side with biomedical engineering. The formation of EMBS in the 1950's and the discovery of REM sleep in the 1950's led to parallel development and interaction of sleep and biomedical engineering in diagnostics and therapeutics.
Experiment for validation of fluid-structure interaction models and algorithms.
Hessenthaler, A; Gaddum, N R; Holub, O; Sinkus, R; Röhrle, O; Nordsletten, D
2017-09-01
In this paper a fluid-structure interaction (FSI) experiment is presented. The aim of this experiment is to provide a challenging yet easy-to-setup FSI test case that addresses the need for rigorous testing of FSI algorithms and modeling frameworks. Steady-state and periodic steady-state test cases with constant and periodic inflow were established. Focus of the experiment is on biomedical engineering applications with flow being in the laminar regime with Reynolds numbers 1283 and 651. Flow and solid domains were defined using computer-aided design (CAD) tools. The experimental design aimed at providing a straightforward boundary condition definition. Material parameters and mechanical response of a moderately viscous Newtonian fluid and a nonlinear incompressible solid were experimentally determined. A comprehensive data set was acquired by using magnetic resonance imaging to record the interaction between the fluid and the solid, quantifying flow and solid motion. Copyright © 2016 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.
Hand-in-hand advances in biomedical engineering and sensorimotor restoration.
Pisotta, Iolanda; Perruchoud, David; Ionta, Silvio
2015-05-15
Living in a multisensory world entails the continuous sensory processing of environmental information in order to enact appropriate motor routines. The interaction between our body and our brain is the crucial factor for achieving such sensorimotor integration ability. Several clinical conditions dramatically affect the constant body-brain exchange, but the latest developments in biomedical engineering provide promising solutions for overcoming this communication breakdown. The ultimate technological developments succeeded in transforming neuronal electrical activity into computational input for robotic devices, giving birth to the era of the so-called brain-machine interfaces. Combining rehabilitation robotics and experimental neuroscience the rise of brain-machine interfaces into clinical protocols provided the technological solution for bypassing the neural disconnection and restore sensorimotor function. Based on these advances, the recovery of sensorimotor functionality is progressively becoming a concrete reality. However, despite the success of several recent techniques, some open issues still need to be addressed. Typical interventions for sensorimotor deficits include pharmaceutical treatments and manual/robotic assistance in passive movements. These procedures achieve symptoms relief but their applicability to more severe disconnection pathologies is limited (e.g. spinal cord injury or amputation). Here we review how state-of-the-art solutions in biomedical engineering are continuously increasing expectances in sensorimotor rehabilitation, as well as the current challenges especially with regards to the translation of the signals from brain-machine interfaces into sensory feedback and the incorporation of brain-machine interfaces into daily activities. Copyright © 2015 Elsevier B.V. All rights reserved.
Women in biomedical engineering and health informatics.
McGregor, Carolyn; Frize, Monique
2008-01-01
A valuable session for anyone whether student or not, interested in learning more about Biomedical Engineering and Health Informatics as a career choice for women. Prominent women within the domains Biomedical Engineering and Health Informatics will present their research and their humanitarian interests that motivate them. Utilise the fantastic networking opportunity that will conclude this session to build and establish new professional networks with other women interested in your fields of expertise. Bring your contact details and be ready to make new contacts that are relevant for you.
Telescience Support Center Data System Software
NASA Technical Reports Server (NTRS)
Rahman, Hasan
2010-01-01
The Telescience Support Center (TSC) team has developed a databasedriven, increment-specific Data Require - ment Document (DRD) generation tool that automates much of the work required for generating and formatting the DRD. It creates a database to load the required changes to configure the TSC data system, thus eliminating a substantial amount of labor in database entry and formatting. The TSC database contains the TSC systems configuration, along with the experimental data, in which human physiological data must be de-commutated in real time. The data for each experiment also must be cataloged and archived for future retrieval. TSC software provides tools and resources for ground operation and data distribution to remote users consisting of PIs (principal investigators), bio-medical engineers, scientists, engineers, payload specialists, and computer scientists. Operations support is provided for computer systems access, detailed networking, and mathematical and computational problems of the International Space Station telemetry data. User training is provided for on-site staff and biomedical researchers and other remote personnel in the usage of the space-bound services via the Internet, which enables significant resource savings for the physical facility along with the time savings versus traveling to NASA sites. The software used in support of the TSC could easily be adapted to other Control Center applications. This would include not only other NASA payload monitoring facilities, but also other types of control activities, such as monitoring and control of the electric grid, chemical, or nuclear plant processes, air traffic control, and the like.
Numerical simulations of human tibia osteosynthesis using modular plates based on Nitinol staples.
Tarniţă, Daniela; Tarniţă, D N; Popa, D; Grecu, D; Tarniţă, Roxana; Niculescu, D; Cismaru, F
2010-01-01
The shape memory alloys exhibit a number of remarkable properties, which open new possibilities in engineering and more specifically in biomedical engineering. The most important alloy used in biomedical applications is NiTi. This alloy combines the characteristics of the shape memory effect and superelasticity with excellent corrosion resistance, wear characteristics, mechanical properties and a good biocompatibility. These properties make it an ideal biological engineering material, especially in orthopedic surgery and orthodontics. In this work, modular plates for the osteosynthesis of the long bones fractures are presented. The proposed modular plates are realized from identical modules, completely interchangeable, made of titanium or stainless steel having as connecting elements U-shaped staples made of Nitinol. Using computed tomography (CT) images to provide three-dimensional geometric details and SolidWorks software package, the three dimensional virtual models of the tibia bone and of the modular plates are obtained. The finite element models of the tibia bone and of the modular plate are generated. For numerical simulation, VisualNastran software is used. Finally, displacements diagram, von Misses strain diagram, for the modular plate and for the fractured tibia and modular plate ensemble are obtained.
Ethics in biomedical engineering.
Morsy, Ahmed; Flexman, Jennifer
2008-01-01
This session focuses on a number of aspects of the subject of Ethics in Biomedical Engineering. The session starts by providing a case study of a company that manufactures artificial heart valves where the valves were failing at an unexpected rate. The case study focuses on Biomedical Engineers working at the company and how their education and training did not prepare them to deal properly with such situation. The second part of the session highlights the need to learn about various ethics rules and policies regulating research involving human or animal subjects.
A biomedical engineer's library.
Webster, J G
1982-01-01
A survey resulted in a list of the 101 textbooks used by 62 biomedical engineering educational programs. A second list shows the textbooks used by each school. A third list shows the 27 textbooks used at two or more schools and the number of times each is used. This selected compilation should be useful to (a) biomedical engineering curriculum committees considering program revision, (b) teachers considering course revision, (c) university and industrial librarians updating their collections, (d) individuals building a personal library, and (e) students desiring information about the emphasis of various educational programs.
iDASH: integrating data for analysis, anonymization, and sharing
Bafna, Vineet; Boxwala, Aziz A; Chapman, Brian E; Chapman, Wendy W; Chaudhuri, Kamalika; Day, Michele E; Farcas, Claudiu; Heintzman, Nathaniel D; Jiang, Xiaoqian; Kim, Hyeoneui; Kim, Jihoon; Matheny, Michael E; Resnic, Frederic S; Vinterbo, Staal A
2011-01-01
iDASH (integrating data for analysis, anonymization, and sharing) is the newest National Center for Biomedical Computing funded by the NIH. It focuses on algorithms and tools for sharing data in a privacy-preserving manner. Foundational privacy technology research performed within iDASH is coupled with innovative engineering for collaborative tool development and data-sharing capabilities in a private Health Insurance Portability and Accountability Act (HIPAA)-certified cloud. Driving Biological Projects, which span different biological levels (from molecules to individuals to populations) and focus on various health conditions, help guide research and development within this Center. Furthermore, training and dissemination efforts connect the Center with its stakeholders and educate data owners and data consumers on how to share and use clinical and biological data. Through these various mechanisms, iDASH implements its goal of providing biomedical and behavioral researchers with access to data, software, and a high-performance computing environment, thus enabling them to generate and test new hypotheses. PMID:22081224
iDASH: integrating data for analysis, anonymization, and sharing.
Ohno-Machado, Lucila; Bafna, Vineet; Boxwala, Aziz A; Chapman, Brian E; Chapman, Wendy W; Chaudhuri, Kamalika; Day, Michele E; Farcas, Claudiu; Heintzman, Nathaniel D; Jiang, Xiaoqian; Kim, Hyeoneui; Kim, Jihoon; Matheny, Michael E; Resnic, Frederic S; Vinterbo, Staal A
2012-01-01
iDASH (integrating data for analysis, anonymization, and sharing) is the newest National Center for Biomedical Computing funded by the NIH. It focuses on algorithms and tools for sharing data in a privacy-preserving manner. Foundational privacy technology research performed within iDASH is coupled with innovative engineering for collaborative tool development and data-sharing capabilities in a private Health Insurance Portability and Accountability Act (HIPAA)-certified cloud. Driving Biological Projects, which span different biological levels (from molecules to individuals to populations) and focus on various health conditions, help guide research and development within this Center. Furthermore, training and dissemination efforts connect the Center with its stakeholders and educate data owners and data consumers on how to share and use clinical and biological data. Through these various mechanisms, iDASH implements its goal of providing biomedical and behavioral researchers with access to data, software, and a high-performance computing environment, thus enabling them to generate and test new hypotheses.
Kulhánek, Tomáš; Ježek, Filip; Mateják, Marek; Šilar, Jan; Kofránek, Jří
2015-08-01
This work introduces experiences of teaching modeling and simulation for graduate students in the field of biomedical engineering. We emphasize the acausal and object-oriented modeling technique and we have moved from teaching block-oriented tool MATLAB Simulink to acausal and object oriented Modelica language, which can express the structure of the system rather than a process of computation. However, block-oriented approach is allowed in Modelica language too and students have tendency to express the process of computation. Usage of the exemplar acausal domains and approach allows students to understand the modeled problems much deeper. The causality of the computation is derived automatically by the simulation tool.
Biotelemetry and computer analysis of sleep processes on earth and in space.
NASA Technical Reports Server (NTRS)
Adey, W. R.
1972-01-01
Developments in biomedical engineering now permit study of states of sleep, wakefulness, and focused attention in man exposed to rigorous environments, including aerospace flight. These new sensing devices, data acquisition systems, and computational methods have also been extensively applied to clinical problems of disordered sleep. A 'library' of EEG data has been prepared for sleep in normal man, and characterized for its group features by computational analysis. Sleep in an astronaut in space flight has been examined for the first and second 'nights' of space flight. Normal 90-min cycles were detected during the second night. Sleep patterns in quadriplegic patients deprived of all sensory inputs below the neck have indicated major deviations.
Brown, L F
1989-01-01
The unique properties of piezoelectric/pyroelectric polymers offer many new opportunities for biomedical engineering sensor applications. Since their discovery nearly 20 years ago, the polymer films have been used for many novel switching and sensor applications. Despite the prodigious exposure from many recent publications describing piezo film applications, methods of sensor fabrication and circuit interfacing still elude most engineers. This paper is presented as a tutorial guide to applying piezo polymers to biomedical engineering applications. A review of the fundamentals of piezoelectricity/pyroelectricity in piezo polymers is first presented. Their material properties are contrasted with piezoelectric ceramic materials. Some advantages and disadvantages of the films for biomedical sensors are discussed. Specific details on the fabrication of piezo film sensors are presented. Methods are described for forming, cutting, and mounting film sensors, and making lead connections. A brief discussion of equivalent circuit models for the design and simulation of piezoelectric/pyroelectric sensors is included, as well as common circuit interface techniques. Finally, several sources are recommended for further information on a variety of biomedical sensor applications.
Sarrouti, Mourad; Ouatik El Alaoui, Said
2017-04-01
Passage retrieval, the identification of top-ranked passages that may contain the answer for a given biomedical question, is a crucial component for any biomedical question answering (QA) system. Passage retrieval in open-domain QA is a longstanding challenge widely studied over the last decades. However, it still requires further efforts in biomedical QA. In this paper, we present a new biomedical passage retrieval method based on Stanford CoreNLP sentence/passage length, probabilistic information retrieval (IR) model and UMLS concepts. In the proposed method, we first use our document retrieval system based on PubMed search engine and UMLS similarity to retrieve relevant documents to a given biomedical question. We then take the abstracts from the retrieved documents and use Stanford CoreNLP for sentence splitter to make a set of sentences, i.e., candidate passages. Using stemmed words and UMLS concepts as features for the BM25 model, we finally compute the similarity scores between the biomedical question and each of the candidate passages and keep the N top-ranked ones. Experimental evaluations performed on large standard datasets, provided by the BioASQ challenge, show that the proposed method achieves good performances compared with the current state-of-the-art methods. The proposed method significantly outperforms the current state-of-the-art methods by an average of 6.84% in terms of mean average precision (MAP). We have proposed an efficient passage retrieval method which can be used to retrieve relevant passages in biomedical QA systems with high mean average precision. Copyright © 2017 Elsevier Inc. All rights reserved.
Ivkovic, Sinisa; Simonovic, Janko; Tijanic, Nebojsa; Davis-Dusenbery, Brandi; Kural, Deniz
2016-01-01
As biomedical data has become increasingly easy to generate in large quantities, the methods used to analyze it have proliferated rapidly. Reproducible and reusable methods are required to learn from large volumes of data reliably. To address this issue, numerous groups have developed workflow specifications or execution engines, which provide a framework with which to perform a sequence of analyses. One such specification is the Common Workflow Language, an emerging standard which provides a robust and flexible framework for describing data analysis tools and workflows. In addition, reproducibility can be furthered by executors or workflow engines which interpret the specification and enable additional features, such as error logging, file organization, optimizations1 to computation and job scheduling, and allow for easy computing on large volumes of data. To this end, we have developed the Rabix Executor a , an open-source workflow engine for the purposes of improving reproducibility through reusability and interoperability of workflow descriptions. PMID:27896971
Kaushik, Gaurav; Ivkovic, Sinisa; Simonovic, Janko; Tijanic, Nebojsa; Davis-Dusenbery, Brandi; Kural, Deniz
2017-01-01
As biomedical data has become increasingly easy to generate in large quantities, the methods used to analyze it have proliferated rapidly. Reproducible and reusable methods are required to learn from large volumes of data reliably. To address this issue, numerous groups have developed workflow specifications or execution engines, which provide a framework with which to perform a sequence of analyses. One such specification is the Common Workflow Language, an emerging standard which provides a robust and flexible framework for describing data analysis tools and workflows. In addition, reproducibility can be furthered by executors or workflow engines which interpret the specification and enable additional features, such as error logging, file organization, optim1izations to computation and job scheduling, and allow for easy computing on large volumes of data. To this end, we have developed the Rabix Executor, an open-source workflow engine for the purposes of improving reproducibility through reusability and interoperability of workflow descriptions.
A unified architecture for biomedical search engines based on semantic web technologies.
Jalali, Vahid; Matash Borujerdi, Mohammad Reza
2011-04-01
There is a huge growth in the volume of published biomedical research in recent years. Many medical search engines are designed and developed to address the over growing information needs of biomedical experts and curators. Significant progress has been made in utilizing the knowledge embedded in medical ontologies and controlled vocabularies to assist these engines. However, the lack of common architecture for utilized ontologies and overall retrieval process, hampers evaluating different search engines and interoperability between them under unified conditions. In this paper, a unified architecture for medical search engines is introduced. Proposed model contains standard schemas declared in semantic web languages for ontologies and documents used by search engines. Unified models for annotation and retrieval processes are other parts of introduced architecture. A sample search engine is also designed and implemented based on the proposed architecture in this paper. The search engine is evaluated using two test collections and results are reported in terms of precision vs. recall and mean average precision for different approaches used by this search engine.
Bernstam, Elmer V.; Hersh, William R.; Johnson, Stephen B.; Chute, Christopher G.; Nguyen, Hien; Sim, Ida; Nahm, Meredith; Weiner, Mark; Miller, Perry; DiLaura, Robert P.; Overcash, Marc; Lehmann, Harold P.; Eichmann, David; Athey, Brian D.; Scheuermann, Richard H.; Anderson, Nick; Starren, Justin B.; Harris, Paul A.; Smith, Jack W.; Barbour, Ed; Silverstein, Jonathan C.; Krusch, David A.; Nagarajan, Rakesh; Becich, Michael J.
2010-01-01
Clinical and translational research increasingly requires computation. Projects may involve multiple computationally-oriented groups including information technology (IT) professionals, computer scientists and biomedical informaticians. However, many biomedical researchers are not aware of the distinctions among these complementary groups, leading to confusion, delays and sub-optimal results. Although written from the perspective of clinical and translational science award (CTSA) programs within academic medical centers, the paper addresses issues that extend beyond clinical and translational research. The authors describe the complementary but distinct roles of operational IT, research IT, computer science and biomedical informatics using a clinical data warehouse as a running example. In general, IT professionals focus on technology. The authors distinguish between two types of IT groups within academic medical centers: central or administrative IT (supporting the administrative computing needs of large organizations) and research IT (supporting the computing needs of researchers). Computer scientists focus on general issues of computation such as designing faster computers or more efficient algorithms, rather than specific applications. In contrast, informaticians are concerned with data, information and knowledge. Biomedical informaticians draw on a variety of tools, including but not limited to computers, to solve information problems in health care and biomedicine. The paper concludes with recommendations regarding administrative structures that can help to maximize the benefit of computation to biomedical research within academic health centers. PMID:19550198
Publications in biomedical and environmental sciences programs, 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, J.B.
1982-07-01
This bibliography contains 698 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1981. There are 520 references to articles published in journals and books and 178 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically bymore » author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Instrumentation and Controls, Computer Sciences, Energy, Engineering Technology, Solid State, Central Management, Operations, and Environmental Sciences. Indexes are provided by author, title, and journal reference.« less
Engineering mechanical microenvironment of macrophage and its biomedical applications.
Li, Jing; Li, Yuhui; Gao, Bin; Qin, Chuanguang; He, Yining; Xu, Feng; Yang, Hui; Lin, Min
2018-03-01
Macrophages are the most plastic cells in the hematopoietic system and can be widely found in almost all tissues. Recently studies have shown that mechanical cues (e.g., matrix stiffness and stress/strain) can significantly affect macrophage behaviors. Although existing reviews on the physical and mechanical cues that regulate the macrophage's phenotype are available, engineering mechanical microenvironment of macrophages in vitro as well as a comprehensive overview and prospects for their biomedical applications (e.g., tissue engineering and immunotherapy) has yet to be summarized. Thus, this review provides an overview on the existing methods for engineering mechanical microenvironment of macrophages in vitro and then a section on their biomedical applications and further perspectives are presented.
ERIC Educational Resources Information Center
Nelson, Regina K.
2013-01-01
A mixed-methods research study was designed to test whether undergraduate engineering students were better prepared to learn advanced topics in biomedical engineering if they learned physiology via a quantitative, concept-based approach rather than a qualitative, system-based approach. Experiments were conducted with undergraduate engineering…
ERIC Educational Resources Information Center
Wright, A. S.; Wu, X.; Frye, C. A.; Mathur, A. B.; Patrick, C. W., Jr.
2007-01-01
A Biomedical Engineering Internship Program conducted within a Comprehensive Cancer Center over a 10 year period was assessed and evaluated. Although this is a non-traditional location for an internship, it is an ideal site for a multidisciplinary training program for science, technology, engineering, and mathematics (STEM) students. We made a…
Apuzzo, M L; Liu, C Y
2001-10-01
THIS ARTICLE DISCUSSES elements in the definition of modernity and emerging futurism in neurological surgery. In particular, it describes evolution, discovery, and paradigm shifts in the field and forces responsible for their realization. It analyzes the cyclical reinvention of the discipline experienced during the past generation and attempts to identify apertures to the near and more remote future. Subsequently, it focuses on forces and discovery in computational science, imaging, molecular science, biomedical engineering, and information processing as they relate to the theme of minimalism that is evident in the field. These areas are explained in the light of future possibilities offered by the emerging field of nanotechnology with molecular engineering.
Nalwa, Hari Singh
2014-10-01
This second special issue of the Journal of Biomedical Nanotechnology in a series contains another 30 state-of-the-art reviews focused on the biomedical applications of nanomaterials, biosensors, bone tissue engineering, MRI and bioimaging, single-cell detection, stem cells, endothelial progenitor cells, toxicity and biosafety of nanodrugs, nanoparticle-based new therapeutic approaches for cancer, hepatic and cardiovascular disease.
Careers in biomedical engineering.
Madrid, R E; Rotger, V I; Herrera, M C
2010-01-01
Although biomedical engineering was started in Argentina about 35 years ago, it has had a sustained growth for the last 25 years in human resources, with the emergence of new undergraduate and postgraduate careers, as well as in research, knowledge, technological development, and health care.
John Glenn Biomedical Engineering Consortium
NASA Technical Reports Server (NTRS)
Nall, Marsha
2004-01-01
The John Glenn Biomedical Engineering Consortium is an inter-institutional research and technology development, beginning with ten projects in FY02 that are aimed at applying GRC expertise in fluid physics and sensor development with local biomedical expertise to mitigate the risks of space flight on the health, safety, and performance of astronauts. It is anticipated that several new technologies will be developed that are applicable to both medical needs in space and on earth.
The Structure of Medical Informatics Journal Literature
Morris, Theodore A.; McCain, Katherine W.
1998-01-01
Abstract Objective: Medical informatics is an emergent interdisciplinary field described as drawing upon and contributing to both the health sciences and information sciences. The authors elucidate the disciplinary nature and internal structure of the field. Design: To better understand the field's disciplinary nature, the authors examine the intercitation relationships of its journal literature. To determine its internal structure, they examined its journal cocitation patterns. Measurements: The authors used data from the Science Citation Index (SCI) and Social Science Citation Index (SSCI) to perform intercitation studies among productive journal titles, and software routines from SPSS to perform multivariate data analyses on cocitation data for proposed core journals. Results: Intercitation network analysis suggests that a core literature exists, one mark of a separate discipline. Multivariate analyses of cocitation data suggest that major focus areas within the field include biomedical engineering, biomedical computing, decision support, and education. The interpretable dimensions of multidimensional scaling maps differed for the SCI and SSCI data sets. Strong links to information science literature were not found. Conclusion: The authors saw indications of a core literature and of several major research fronts. The field appears to be viewed differently by authors writing in journals indexed by SCI from those writing in journals indexed by SSCI, with more emphasis placed on computers and engineering versus decision making by the former and more emphasis on theory versus application (clinical practice) by the latter. PMID:9760393
Convolving engineering and medical pedagogies for training of tomorrow's health care professionals.
Lee, Raphael C
2013-03-01
Several fundamental benefits justify why biomedical engineering and medicine should form a more convergent alliance, especially for the training of tomorrow's physicians and biomedical engineers. Herein, we review the rationale underlying the benefits. Biological discovery has advanced beyond the era of molecular biology well into today's era of molecular systems biology, which focuses on understanding the rules that govern the behavior of complex living systems. This has important medical implications. To realize cost-effective personalized medicine, it is necessary to translate the advances in molecular systems biology to higher levels of biological organization (organ, system, and organismal levels) and then to develop new medical therapeutics based on simulation and medical informatics analysis. Higher education in biological and medical sciences must adapt to a new set of training objectives. This will involve a shifting away from reductionist problem solving toward more integrative, continuum, and predictive modeling approaches which traditionally have been more associated with engineering science. Future biomedical engineers and MDs must be able to predict clinical response to therapeutic intervention. Medical education will involve engineering pedagogies, wherein basic governing rules of complex system behavior and skill sets in manipulating these systems to achieve a practical desired outcome are taught. Similarly, graduate biomedical engineering programs will include more practical exposure to clinical problem solving.
COEUS: “semantic web in a box” for biomedical applications
2012-01-01
Background As the “omics” revolution unfolds, the growth in data quantity and diversity is bringing about the need for pioneering bioinformatics software, capable of significantly improving the research workflow. To cope with these computer science demands, biomedical software engineers are adopting emerging semantic web technologies that better suit the life sciences domain. The latter’s complex relationships are easily mapped into semantic web graphs, enabling a superior understanding of collected knowledge. Despite increased awareness of semantic web technologies in bioinformatics, their use is still limited. Results COEUS is a new semantic web framework, aiming at a streamlined application development cycle and following a “semantic web in a box” approach. The framework provides a single package including advanced data integration and triplification tools, base ontologies, a web-oriented engine and a flexible exploration API. Resources can be integrated from heterogeneous sources, including CSV and XML files or SQL and SPARQL query results, and mapped directly to one or more ontologies. Advanced interoperability features include REST services, a SPARQL endpoint and LinkedData publication. These enable the creation of multiple applications for web, desktop or mobile environments, and empower a new knowledge federation layer. Conclusions The platform, targeted at biomedical application developers, provides a complete skeleton ready for rapid application deployment, enhancing the creation of new semantic information systems. COEUS is available as open source at http://bioinformatics.ua.pt/coeus/. PMID:23244467
COEUS: "semantic web in a box" for biomedical applications.
Lopes, Pedro; Oliveira, José Luís
2012-12-17
As the "omics" revolution unfolds, the growth in data quantity and diversity is bringing about the need for pioneering bioinformatics software, capable of significantly improving the research workflow. To cope with these computer science demands, biomedical software engineers are adopting emerging semantic web technologies that better suit the life sciences domain. The latter's complex relationships are easily mapped into semantic web graphs, enabling a superior understanding of collected knowledge. Despite increased awareness of semantic web technologies in bioinformatics, their use is still limited. COEUS is a new semantic web framework, aiming at a streamlined application development cycle and following a "semantic web in a box" approach. The framework provides a single package including advanced data integration and triplification tools, base ontologies, a web-oriented engine and a flexible exploration API. Resources can be integrated from heterogeneous sources, including CSV and XML files or SQL and SPARQL query results, and mapped directly to one or more ontologies. Advanced interoperability features include REST services, a SPARQL endpoint and LinkedData publication. These enable the creation of multiple applications for web, desktop or mobile environments, and empower a new knowledge federation layer. The platform, targeted at biomedical application developers, provides a complete skeleton ready for rapid application deployment, enhancing the creation of new semantic information systems. COEUS is available as open source at http://bioinformatics.ua.pt/coeus/.
Semantic similarity measure in biomedical domain leverage web search engine.
Chen, Chi-Huang; Hsieh, Sheau-Ling; Weng, Yung-Ching; Chang, Wen-Yung; Lai, Feipei
2010-01-01
Semantic similarity measure plays an essential role in Information Retrieval and Natural Language Processing. In this paper we propose a page-count-based semantic similarity measure and apply it in biomedical domains. Previous researches in semantic web related applications have deployed various semantic similarity measures. Despite the usefulness of the measurements in those applications, measuring semantic similarity between two terms remains a challenge task. The proposed method exploits page counts returned by the Web Search Engine. We define various similarity scores for two given terms P and Q, using the page counts for querying P, Q and P AND Q. Moreover, we propose a novel approach to compute semantic similarity using lexico-syntactic patterns with page counts. These different similarity scores are integrated adapting support vector machines, to leverage the robustness of semantic similarity measures. Experimental results on two datasets achieve correlation coefficients of 0.798 on the dataset provided by A. Hliaoutakis, 0.705 on the dataset provide by T. Pedersen with physician scores and 0.496 on the dataset provided by T. Pedersen et al. with expert scores.
Space Technology for Medical Aids
NASA Technical Reports Server (NTRS)
1982-01-01
Under one of the earliest contracts awarded in the Apollo lunar landing program, Parker Hannifin Corporation developed and produced equipment for controlling the flow of propellants into the mammoth engines of the Saturn moonbooster. Today, Parker is supplying the huge valves that control propellant flow from the Space Shuttle's external fuel tank to the engines of the Shuttle Orbiter as well as the "peanut valve," named for its small size. In 1977, NASA, recognizing the company's special expertise in miniature systems, asked Parker to participate in the development of an implantable artificial sphincter for control of urinary incontinence. The company's peanut valve experience provided an ideal base for a new biomedical project, the Programmable Implantable Medication System (PIMS) for continuous, computer-directed delivery of precisely metered medication -- insulin, for example -- within a patient's body. The work on PIMS also inspired development of Micromed, a related programmable medication device for external, rather than implantable use. The Biomedical Products Division has also applied its fluid handling expertise to a drugless therapy system called Cryomax for the treatment of such disorders as rheumatoid arthritis and lupus.
Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization.
Marino, Attilio; Filippeschi, Carlo; Mattoli, Virgilio; Mazzolai, Barbara; Ciofani, Gianni
2015-02-21
Living systems such as cells and tissues are extremely sensitive to their surrounding physico-chemical microenvironment. In the field of regenerative medicine and tissue engineering, the maintenance of culture conditions suitable for the formation of proliferation niches, for the self-renewal maintenance of stem cells, or for the promotion of a particular differentiation fate is an important issue that has been addressed using different strategies. A number of investigations suggests that a particular cell behavior can be in vitro resembled by mimicking the corresponding in vivo conditions. In this context, several biomimetic environments have been designed in order to control cell phenotypes and functions. In this review, we will analyze the most recent examples of the control of the in vitro physical micro/nano-environment by exploiting an innovative technique of high resolution 3D photolithography, the two-photon polymerization (2pp). The biomedical applications of this versatile and disruptive computer assisted design/manufacturing technology are very wide, and range from the fabrication of biomimetic and nanostructured scaffolds for tissue engineering and regenerative medicine, to the microfabrication of biomedical devices, like ossicular replacement prosthesis and microneedles.
Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization
NASA Astrophysics Data System (ADS)
Marino, Attilio; Filippeschi, Carlo; Mattoli, Virgilio; Mazzolai, Barbara; Ciofani, Gianni
2015-02-01
Living systems such as cells and tissues are extremely sensitive to their surrounding physico-chemical microenvironment. In the field of regenerative medicine and tissue engineering, the maintenance of culture conditions suitable for the formation of proliferation niches, for the self-renewal maintenance of stem cells, or for the promotion of a particular differentiation fate is an important issue that has been addressed using different strategies. A number of investigations suggests that a particular cell behavior can be in vitro resembled by mimicking the corresponding in vivo conditions. In this context, several biomimetic environments have been designed in order to control cell phenotypes and functions. In this review, we will analyze the most recent examples of the control of the in vitro physical micro/nano-environment by exploiting an innovative technique of high resolution 3D photolithography, the two-photon polymerization (2pp). The biomedical applications of this versatile and disruptive computer assisted design/manufacturing technology are very wide, and range from the fabrication of biomimetic and nanostructured scaffolds for tissue engineering and regenerative medicine, to the microfabrication of biomedical devices, like ossicular replacement prosthesis and microneedles.
[Biomedical information on the internet using search engines. A one-year trial].
Corrao, Salvatore; Leone, Francesco; Arnone, Sabrina
2004-01-01
The internet is a communication medium and content distributor that provide information in the general sense but it could be of great utility regarding as the search and retrieval of biomedical information. Search engines represent a great deal to rapidly find information on the net. However, we do not know whether general search engines and meta-search ones are reliable in order to find useful and validated biomedical information. The aim of our study was to verify the reproducibility of a search by key-words (pediatric or evidence) using 9 international search engines and 1 meta-search engine at the baseline and after a one year period. We analysed the first 20 citations as output of each searching. We evaluated the formal quality of Web-sites and their domain extensions. Moreover, we compared the output of each search at the start of this study and after a one year period and we considered as a criterion of reliability the number of Web-sites cited again. We found some interesting results that are reported throughout the text. Our findings point out an extreme dynamicity of the information on the Web and, for this reason, we advice a great caution when someone want to use search and meta-search engines as a tool for searching and retrieve reliable biomedical information. On the other hand, some search and meta-search engines could be very useful as a first step searching for defining better a search and, moreover, for finding institutional Web-sites too. This paper allows to know a more conscious approach to the internet biomedical information universe.
Biomedical equipment and medical services in India.
Sahay, K B; Saxena, R K
Varieties of Biomedical Equipment (BME) are now used for quick diagnosis, flawless surgery and therapeutics etc. Use of a malfunctioning BME could result in faulty diagnosis and wrong treatment and can lead to damaging or even devastating aftermath. Modern Biomedical Equipments inevitably employ highly sophisticated technology and use complex systems and instrumentation for best results. To the best of our knowledge the medical education in India does not impart any knowledge on the theory and design of BME and it is perhaps not possible also. Hence there is need for a permanent mechanism which can maintain and repair the biomedical equipments routinely before use and this can be done only with the help of qualified Clinical Engineers. Thus there is a genuine need for well organized cadre of Clinical Engineers who would be persons with engineering background with specialization in medical instrumentation. These Clinical engineers should be made responsible for the maintenance and proper functioning of BME. Every hospital or group of hospitals in the advanced countries has a clinical engineering unit that takes care of the biomedical equipments and systems in the hospital by undertaking routine and preventive maintenance, regular calibration of equipments and their timely repairs. Clinical engineers should be thus made an essential part of modern health care system and services. Unfortunately such facilities and mechanism do not exist in India. To make BME maintenance efficient and flawless in India, study suggests following measures and remedies: (i) design and development of comprehensive computerized database for BME (ii) cadre of Clinical engineers (iii) online maintenance facility and (iv) farsighted managerial skill to maximize accuracy, functioning and cost effectiveness.
ChE Undergraduate Research Projects in Biomedical Engineering.
ERIC Educational Resources Information Center
Stroeve, Pieter
1981-01-01
Describes an undergraduate research program in biomedical engineering at the State University of New York at Buffalo. Includes goals and faculty comments on the program. Indicates that 58 percent of projects conducted between 1976 and 1980 have been presented at meetings or published. (SK)
Doyle, John
2007-01-01
This paper discusses the topic of judicial execution from the perspective of the intersection of the technological issues and the professional ethics issues. Although physicians are generally ethically forbidden from any involvement in the judicial execution process, this does not appear to be the case for engineering professionals. This creates an interesting but controversial opportunity for the engineering community (especially biomedical engineers) to improve the humaneness and reliability of the judicial execution process.
Purpose-driven biomaterials research in liver-tissue engineering.
Ananthanarayanan, Abhishek; Narmada, Balakrishnan Chakrapani; Mo, Xuejun; McMillian, Michael; Yu, Hanry
2011-03-01
Bottom-up engineering of microscale tissue ("microtissue") constructs to recapitulate partially the complex structure-function relationships of liver parenchyma has been realized through the development of sophisticated biomaterial scaffolds, liver-cell sources, and in vitro culture techniques. With regard to in vivo applications, the long-lived stem/progenitor cell constructs can improve cell engraftment, whereas the short-lived, but highly functional hepatocyte constructs stimulate host liver regeneration. With regard to in vitro applications, microtissue constructs are being adapted or custom-engineered into cell-based assays for testing acute, chronic and idiosyncratic toxicities of drugs or pathogens. Systems-level methods and computational models that represent quantitative relationships between biomaterial scaffolds, cells and microtissue constructs will further enable their rational design for optimal integration into specific biomedical applications. Copyright © 2010 Elsevier Ltd. All rights reserved.
Using ontology network structure in text mining.
Berndt, Donald J; McCart, James A; Luther, Stephen L
2010-11-13
Statistical text mining treats documents as bags of words, with a focus on term frequencies within documents and across document collections. Unlike natural language processing (NLP) techniques that rely on an engineered vocabulary or a full-featured ontology, statistical approaches do not make use of domain-specific knowledge. The freedom from biases can be an advantage, but at the cost of ignoring potentially valuable knowledge. The approach proposed here investigates a hybrid strategy based on computing graph measures of term importance over an entire ontology and injecting the measures into the statistical text mining process. As a starting point, we adapt existing search engine algorithms such as PageRank and HITS to determine term importance within an ontology graph. The graph-theoretic approach is evaluated using a smoking data set from the i2b2 National Center for Biomedical Computing, cast as a simple binary classification task for categorizing smoking-related documents, demonstrating consistent improvements in accuracy.
BioMEMS and Lab-on-a-Chip Course Education at West Virginia University
Liu, Yuxin
2011-01-01
With the rapid growth of Biological/Biomedical MicroElectroMechanical Systems (BioMEMS) and microfluidic-based lab-on-a-chip (LOC) technology to biological and biomedical research and applications, demands for educated and trained researchers and technicians in these fields are rapidly expanding. Universities are expected to develop educational plans to address these specialized needs in BioMEMS, microfluidic and LOC science and technology. A course entitled BioMEMS and Lab-on-a-Chip was taught recently at the senior undergraduate and graduate levels in the Department of Computer Science and Electrical Engineering at West Virginia University (WVU). The course focused on the basic principles and applications of BioMEMS and LOC technology to the areas of biomedicine, biology, and biotechnology. The course was well received and the enrolled students had diverse backgrounds in electrical engineering, material science, biology, mechanical engineering, and chemistry. Student feedback and a review of the course evaluations indicated that the course was effective in achieving its objectives. Student presentations at the end of the course were a highlight and a valuable experience for all involved. The course proved successful and will continue to be offered regularly. This paper provides an overview of the course as well as some development and future improvements. PMID:25586697
2005-01-01
bioengineering programs and activities of The Catholic University of America, Georgetown University, The George Washington University and Howard ... University . A prime component of WABME activities is a quarterly series of research workshops, which bring together problem-rich biomedical disciplines and
Biomedical Engineering Education: A Conservative Approach
ERIC Educational Resources Information Center
Niemi, Eugene E., Jr.
1973-01-01
Describes the demand for graduates from biomedical engineering programs as being not yet fully able to absorb the supply. Suggests small schools interested in entering the field consider offering their programs at the undergraduate level via a minor or an option. Examples of such options and student projects are included. (CC)
Anatomy for Biomedical Engineers
ERIC Educational Resources Information Center
Carmichael, Stephen W.; Robb, Richard A.
2008-01-01
There is a perceived need for anatomy instruction for graduate students enrolled in a biomedical engineering program. This appeared especially important for students interested in and using medical images. These students typically did not have a strong background in biology. The authors arranged for students to dissect regions of the body that…
Do Pazo-Oubiña, F; Calvo Pita, C; Puigventós Latorre, F; Periañez-Párraga, L; Ventayol Bosch, P
2011-01-01
To identify publishers of pharmacotherapeutic information not found in biomedical journals that focuses on evaluating and providing advice on medicines and to develop a search engine to access this information. Compiling web sites that publish information on the rational use of medicines and have no commercial interests. Free-access web sites in Spanish, Galician, Catalan or English. Designing a search engine using the Google "custom search" application. Overall 159 internet addresses were compiled and were classified into 9 labels. We were able to recover the information from the selected sources using a search engine, which is called "AlquimiA" and available from http://www.elcomprimido.com/FARHSD/AlquimiA.htm. The main sources of pharmacotherapeutic information not published in biomedical journals were identified. The search engine is a useful tool for searching and accessing "grey literature" on the internet. Copyright © 2010 SEFH. Published by Elsevier Espana. All rights reserved.
Carbon-Based Nanomaterials: Multi-Functional Materials for Biomedical Engineering
Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R.; Khademhosseini, Ali
2013-01-01
Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications. PMID:23560817
Carbon-based nanomaterials: multifunctional materials for biomedical engineering.
Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R; Khademhosseini, Ali
2013-04-23
Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), and extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications.
NASA Astrophysics Data System (ADS)
Yamano, Masahiro; Matsuki, Noriaki; Numayama, Keiko; Takeda, Motohiro; Hayasaka, Tomoaki; Ishikawa, Takuji; Yamaguchi, Takami
We developed new bio-medical engineering curriculum for industrial engineers, and we confirmed that the engineer's needs and the educative effects by holding a trail program. This study in Tohoku University was supported by the Ministry of Economy, Trade and Industry (METI) . We named the curriculum as “ESTEEM” which is acronym of project title “Education through the Synergetic Training for the Engineering Enhanced Medicine” . In Tohoku University, the “REDEEM” curriculum which is an entry level course of bio-medical engineering for engineers has been already held. The positioning of “ESTEEM” program is an advanced course to enhance knowledge and experience in clinical point of view. The program is consisted of the problem based learning (PBL) style lectures, practical training, and observation learning in hospital. It is a unique opportunity to have instruction by doctors, from diagnosis to surgical operation, from traditional technique to front-line medical equipment. In this paper, we report and discuss on the progress of the new bio-medical engineering curriculum.
Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications.
Tay, Chor Yong; Irvine, Scott Alexander; Boey, Freddy Y C; Tan, Lay Poh; Venkatraman, Subbu
2011-05-23
The development of biomedical devices and reconstruction of functional ex vivo tissues often requires the need to fabricate biomimetic surfaces with features of sub-micrometer precision. This can be achieved with the advancements in micro-/nano-engineering techniques, allowing researchers to manipulate a plethora of cellular behaviors at the cell-biomaterial interface. Systematic studies conducted on these 2D engineered surfaces have unraveled numerous novel findings that can potentially be integrated as part of the design consideration for future 2D and 3D biomaterials and will no doubt greatly benefit tissue engineering. In this review, recent developments detailing the use of micro-/nano-engineering techniques to direct cellular orientation and function pertinent to soft tissue engineering will be highlighted. Particularly, this article aims to provide valuable insights into distinctive cell interactions and reactions to controlled surfaces, which can be exploited to understand the mechanisms of cell growth on micro-/nano-engineered interfaces, and to harness this knowledge to optimize the performance of 3D artificial soft tissue grafts and biomedical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Engineering hurdles in contact and intraocular lens lathe design: the view ahead
NASA Astrophysics Data System (ADS)
Bradley, Norman D.; Keller, John R.; Ball, Gary A.
1994-05-01
Current trends in and intraocular lens design suggest ever- increasing demand for aspheric lens geometries - multisurface and/or toric surfaces - in a variety of new materials. As computer numeric controls (CNC) lathes and mills continue to evolve with he ophthalmic market, engineering hurdles present themselves to designers: Can hardware based upon single-point diamond turning accommodate the demands of software-driven designs? What are the limits of CNC resolution and repeatability in high-throughput production? What are the controlling factors in lathed, polish-free surface production? Emerging technologies in the lathed biomedical optics field are discussed along with their limitations, including refined diamond tooling, vibrational control, automation, and advanced motion control systems.
Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications
Shin, Sera; Seo, Jungmok; Han, Heetak; Kang, Subin; Kim, Hyunchul; Lee, Taeyoon
2016-01-01
Biological creatures with unique surface wettability have long served as a source of inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In particular, the engineering of surface wettability by manipulating chemical properties and structure opens emerging biomedical applications ranging from high-throughput cell culture platforms to biomedical devices. This review describes design and fabrication methods for artificial extreme wetting surfaces. Next, we introduce some of the newer and emerging biomedical applications using extreme wetting surfaces. Current challenges and future prospects of the surfaces for potential biomedical applications are also addressed. PMID:28787916
Structural biology computing: Lessons for the biomedical research sciences.
Morin, Andrew; Sliz, Piotr
2013-11-01
The field of structural biology, whose aim is to elucidate the molecular and atomic structures of biological macromolecules, has long been at the forefront of biomedical sciences in adopting and developing computational research methods. Operating at the intersection between biophysics, biochemistry, and molecular biology, structural biology's growth into a foundational framework on which many concepts and findings of molecular biology are interpreted1 has depended largely on parallel advancements in computational tools and techniques. Without these computing advances, modern structural biology would likely have remained an exclusive pursuit practiced by few, and not become the widely practiced, foundational field it is today. As other areas of biomedical research increasingly embrace research computing techniques, the successes, failures and lessons of structural biology computing can serve as a useful guide to progress in other biomedically related research fields. Copyright © 2013 Wiley Periodicals, Inc.
Engineering and Application of Zinc Finger Proteins and TALEs for Biomedical Research.
Kim, Moon-Soo; Kini, Anu Ganesh
2017-08-01
Engineered DNA-binding domains provide a powerful technology for numerous biomedical studies due to their ability to recognize specific DNA sequences. Zinc fingers (ZF) are one of the most common DNA-binding domains and have been extensively studied for a variety of applications, such as gene regulation, genome engineering and diagnostics. Another novel DNA-binding domain known as a transcriptional activator-like effector (TALE) has been more recently discovered, which has a previously undescribed DNA-binding mode. Due to their modular architecture and flexibility, TALEs have been rapidly developed into artificial gene targeting reagents. Here, we describe the methods used to design these DNA-binding proteins and their key applications in biomedical research.
Affective assessment of computer users based on processing the pupil diameter signal.
Ren, Peng; Barreto, Armando; Gao, Ying; Adjouadi, Malek
2011-01-01
Detecting affective changes of computer users is a current challenge in human-computer interaction which is being addressed with the help of biomedical engineering concepts. This article presents a new approach to recognize the affective state ("relaxation" vs. "stress") of a computer user from analysis of his/her pupil diameter variations caused by sympathetic activation. Wavelet denoising and Kalman filtering methods are first used to remove abrupt changes in the raw Pupil Diameter (PD) signal. Then three features are extracted from the preprocessed PD signal for the affective state classification. Finally, a random tree classifier is implemented, achieving an accuracy of 86.78%. In these experiments the Eye Blink Frequency (EBF), is also recorded and used for affective state classification, but the results show that the PD is a more promising physiological signal for affective assessment.
Biomedical informatics training at the University of Wisconsin-Madison.
Severtson, D J; Pape, L; Page, C D; Shavlik, J W; Phillips, G N; Flatley Brennan, P
2007-01-01
The purpose of this paper is to describe biomedical informatics training at the University of Wisconsin-Madison (UW-Madison). We reviewed biomedical informatics training, research, and faculty/trainee participation at UW-Madison. There are three primary approaches to training 1) The Computation & Informatics in Biology & Medicine Training Program, 2) formal biomedical informatics offered by various campus departments, and 3) individualized programs. Training at UW-Madison embodies the features of effective biomedical informatics training recommended by the American College of Medical Informatics that were delineated as: 1) curricula that integrate experiences among computational sciences and application domains, 2) individualized and interdisciplinary cross-training among a diverse cadre of trainees to develop key competencies that he or she does not initially possess, 3) participation in research and development activities, and 4) exposure to a range of basic informational and computational sciences. The three biomedical informatics training approaches immerse students in multidisciplinary training and education that is supported by faculty trainers who participate in collaborative research across departments. Training is provided across a range of disciplines and available at different training stages. Biomedical informatics training at UW-Madison illustrates how a large research University, with multiple departments across biological, computational and health fields, can provide effective and productive biomedical informatics training via multiple bioinformatics training approaches.
Lee, Abraham; Wirtanen, Erik
2012-07-01
The growth of biomedical engineering at The Henry Samueli School of Engineering at the University of California, Irvine (UCI) has been rapid since the Center for Biomedical Engineering was first formed in 1998 [and was later renamed as the Department of Biomedical Engineering (BME) in 2002]. Our current mission statement, “Inspiring Engineering Minds to Advance Human Health,” serves as a reminder of why we exist, what we do, and the core principles that we value and by which we abide. BME exists to advance the state of human health via engineering innovation and practices. To attain our goal, we are empowering our faculty to inspire and mobilize our students to address health problems. We treasure the human being, particularly the human mind and health. We believe that BME is where minds are nurtured, challenged, and disciplined, and it is also where the health of the human is held as a core mission value that deserves our utmost priority (Figure 1). Advancing human health is not a theoretical practice; it requires bridging between disciplines (engineering and medicine) and between communities (academic and industry).
Biomedical Engineering: A Compendium of Research Training Programs.
ERIC Educational Resources Information Center
National Inst. of General Medical Sciences (NIH), Bethesda, MD.
This document was prepared to provide a comprehensive view of the programs in biomedical engineering in existence in 1969. These programs are supported by the National Institute of General Medical Sciences and are located at 18 universities. This compendium provides information as to the intent and content of these programs from data provided by…
Fabricating biomedical origami: a state-of-the-art review
Johnson, Meredith; Chen, Yue; Hovet, Sierra; Xu, Sheng; Wood, Bradford; Ren, Hongliang; Tokuda, Junichi; Tse, Zion Tsz Ho
2018-01-01
Purpose Origami-based biomedical device design is an emerging technology due to its ability to be deployed from a minimal foldable pattern to a larger volume. This paper aims to review state-of-the-art origami structures applied in the medical device field. Methods Publications and reports of origami structure related to medical device design from the past 10 years are reviewed and categorized according to engineering specifications, including the application field, fabrication material, size/volume, deployment method, manufacturability, and advantages. Results This paper presents an overview of the biomedical applications of devices based on origami structures, including disposable sterilization covers, cardiac catheterization, stent grafts, encapsulation and microsurgery, gastrointestinal microsurgery, laparoscopic surgical grippers, microgrippers, microfluidic devices, and drug delivery. Challenges in terms of materials and fabrication, assembly, modeling and computation design, and clinical adoptability are discussed at the end of this paper to provide guidance for future origami-based design in the medical device field. Conclusion Concepts from origami can be used to design and develop novel medical devices. Origami-based medical device design is currently progressing, with researchers improving design methods, materials, fabrication techniques, and folding efficiency. PMID:28260164
Fabricating biomedical origami: a state-of-the-art review.
Johnson, Meredith; Chen, Yue; Hovet, Sierra; Xu, Sheng; Wood, Bradford; Ren, Hongliang; Tokuda, Junichi; Tse, Zion Tsz Ho
2017-11-01
Origami-based biomedical device design is an emerging technology due to its ability to be deployed from a minimal foldable pattern to a larger volume. This paper aims to review state-of-the-art origami structures applied in the medical device field. Publications and reports of origami structure related to medical device design from the past 10 years are reviewed and categorized according to engineering specifications, including the application field, fabrication material, size/volume, deployment method, manufacturability, and advantages. This paper presents an overview of the biomedical applications of devices based on origami structures, including disposable sterilization covers, cardiac catheterization, stent grafts, encapsulation and microsurgery, gastrointestinal microsurgery, laparoscopic surgical grippers, microgrippers, microfluidic devices, and drug delivery. Challenges in terms of materials and fabrication, assembly, modeling and computation design, and clinical adoptability are discussed at the end of this paper to provide guidance for future origami-based design in the medical device field. Concepts from origami can be used to design and develop novel medical devices. Origami-based medical device design is currently progressing, with researchers improving design methods, materials, fabrication techniques, and folding efficiency.
Engineering Stem Cells for Biomedical Applications
Yin, Perry T.; Han, Edward
2018-01-01
Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. PMID:25772134
Choi, Andrew; Seo, Kyoung Duck; Kim, Do Wan; Kim, Bum Chang; Kim, Dong Sung
2017-02-14
Complex microparticles (MPs) bearing unique characteristics such as well-tailored sizes, various morphologies, and multi-compartments have been attempted to be produced by many researchers in the past decades. However, a conventionally used method of fabricating MPs, emulsion polymerization, has a limitation in achieving the aforementioned characteristics and several approaches such as the microfluidics-assisted (droplet-based microfluidics and flow lithography-based microfluidics), electrohydrodynamics (EHD)-based, centrifugation-based, and template-based methods have been recently suggested to overcome this limitation. The outstanding features of complex MPs engineered through these suggested methods have provided new opportunities for MPs to be applied in a wider range of applications including cell carriers, drug delivery agents, active pigments for display, microsensors, interface stabilizers, and catalyst substrates. Overall, the engineered MPs expose their potential particularly in the field of biomedical engineering as the increased complexity in the engineered MPs fulfills well the requirements of the high-end applications. This review outlines the current trends of newly developed techniques used for engineered MPs fabrication and focuses on the current state of engineered MPs in biomedical applications.
The BioIntelligence Framework: a new computational platform for biomedical knowledge computing.
Farley, Toni; Kiefer, Jeff; Lee, Preston; Von Hoff, Daniel; Trent, Jeffrey M; Colbourn, Charles; Mousses, Spyro
2013-01-01
Breakthroughs in molecular profiling technologies are enabling a new data-intensive approach to biomedical research, with the potential to revolutionize how we study, manage, and treat complex diseases. The next great challenge for clinical applications of these innovations will be to create scalable computational solutions for intelligently linking complex biomedical patient data to clinically actionable knowledge. Traditional database management systems (DBMS) are not well suited to representing complex syntactic and semantic relationships in unstructured biomedical information, introducing barriers to realizing such solutions. We propose a scalable computational framework for addressing this need, which leverages a hypergraph-based data model and query language that may be better suited for representing complex multi-lateral, multi-scalar, and multi-dimensional relationships. We also discuss how this framework can be used to create rapid learning knowledge base systems to intelligently capture and relate complex patient data to biomedical knowledge in order to automate the recovery of clinically actionable information.
Robot-aided electrospinning toward intelligent biomedical engineering.
Tan, Rong; Yang, Xiong; Shen, Yajing
2017-01-01
The rapid development of robotics offers new opportunities for the traditional biofabrication in higher accuracy and controllability, which provides great potentials for the intelligent biomedical engineering. This paper reviews the state of the art of robotics in a widely used biomaterial fabrication process, i.e., electrospinning, including its working principle, main applications, challenges, and prospects. First, the principle and technique of electrospinning are introduced by categorizing it to melt electrospinning, solution electrospinning, and near-field electrospinning. Then, the applications of electrospinning in biomedical engineering are introduced briefly from the aspects of drug delivery, tissue engineering, and wound dressing. After that, we conclude the existing problems in traditional electrospinning such as low production, rough nanofibers, and uncontrolled morphology, and then discuss how those problems are addressed by robotics via four case studies. Lastly, the challenges and outlooks of robotics in electrospinning are discussed and prospected.
Jarm, Tomaz; Miklavcic, Damijan
2014-01-01
A new study program of biomedical engineering was recently established at Faculty of Electrical Engineering, University of Ljubljana, Slovenia. It is based on the long-lasting tradition of education in the field of BME at the host institution and is built on the BME areas in which the research groups of the Faculty of Electrical Engineering have been traditionally successful. The program was prepared in accordance with the recommendations of the TEMPUS IV CRH-BME Project consortium.
A review of engineered zirconia surfaces in biomedical applications
Yin, Ling; Nakanishi, Yoshitaka; Alao, Abdur-Rasheed; Song, Xiao-Fei; Abduo, Jaafar; Zhang, Yu
2017-01-01
Zirconia is widely used for load-bearing functional structures in medicine and dentistry. The quality of engineered zirconia surfaces determines not only the fracture and fatigue behaviour but also the low temperature degradation (ageing sensitivity), bacterial colonization and bonding strength of zirconia devices. This paper reviews the current manufacturing techniques for fabrication of zirconia surfaces in biomedical applications, particularly, in tooth and joint replacements, and influences of the zirconia surface quality on their functional behaviours. It discusses emerging manufacturing techniques and challenges for fabrication of zirconia surfaces in biomedical applications. PMID:29130030
Alginate: properties and biomedical applications
Lee, Kuen Yong; Mooney, David J.
2011-01-01
Alginate is a biomaterial that has found numerous applications in biomedical science and engineering due to its favorable properties, including biocompatibility and ease of gelation. Alginate hydrogels have been particularly attractive in wound healing, drug delivery, and tissue engineering applications to date, as these gels retain structural similarity to the extracellular matrices in tissues and can be manipulated to play several critical roles. This review will provide a comprehensive overview of general properties of alginate and its hydrogels, their biomedical applications, and suggest new perspectives for future studies with these polymers. PMID:22125349
How to teach artificial organs.
Zapanta, Conrad M; Borovetz, Harvey S; Lysaght, Michael J; Manning, Keefe B
2011-01-01
Artificial organs education is often an overlooked field for many bioengineering and biomedical engineering students. The purpose of this article is to describe three different approaches to teaching artificial organs. This article can serve as a reference for those who wish to offer a similar course at their own institutions or incorporate these ideas into existing courses. Artificial organ classes typically fulfill several ABET (Accreditation Board for Engineering and Technology) criteria, including those specific to bioengineering and biomedical engineering programs.
Navya, P N; Daima, Hemant Kumar
2016-01-01
Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.
NASA Astrophysics Data System (ADS)
Navya, P. N.; Daima, Hemant Kumar
2016-02-01
Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.
ERIC Educational Resources Information Center
Jendrucko, Richard J.
The first half of a Biomedical Engineering course at Texas A&M University is devoted to group projects that require design planning and a search of the literature. The second half requires each student to individually prepare a research proposal and conduct a research project. (MLH)
ERIC Educational Resources Information Center
Nair, Priya; Ankeny, Casey J.; Ryan, Justin; Okcay, Murat; Frakes, David H.
2016-01-01
We investigated the use of a new system, HemoFlow™, which utilizes state of the art technologies such as particle image velocimetry to test endovascular devices as part of an undergraduate biomedical engineering curriculum. Students deployed an endovascular stent into an anatomical model of a cerebral aneurysm and measured intra-aneurysmal flow…
Eleven quick tips for architecting biomedical informatics workflows with cloud computing.
Cole, Brian S; Moore, Jason H
2018-03-01
Cloud computing has revolutionized the development and operations of hardware and software across diverse technological arenas, yet academic biomedical research has lagged behind despite the numerous and weighty advantages that cloud computing offers. Biomedical researchers who embrace cloud computing can reap rewards in cost reduction, decreased development and maintenance workload, increased reproducibility, ease of sharing data and software, enhanced security, horizontal and vertical scalability, high availability, a thriving technology partner ecosystem, and much more. Despite these advantages that cloud-based workflows offer, the majority of scientific software developed in academia does not utilize cloud computing and must be migrated to the cloud by the user. In this article, we present 11 quick tips for architecting biomedical informatics workflows on compute clouds, distilling knowledge gained from experience developing, operating, maintaining, and distributing software and virtualized appliances on the world's largest cloud. Researchers who follow these tips stand to benefit immediately by migrating their workflows to cloud computing and embracing the paradigm of abstraction.
Eleven quick tips for architecting biomedical informatics workflows with cloud computing
Moore, Jason H.
2018-01-01
Cloud computing has revolutionized the development and operations of hardware and software across diverse technological arenas, yet academic biomedical research has lagged behind despite the numerous and weighty advantages that cloud computing offers. Biomedical researchers who embrace cloud computing can reap rewards in cost reduction, decreased development and maintenance workload, increased reproducibility, ease of sharing data and software, enhanced security, horizontal and vertical scalability, high availability, a thriving technology partner ecosystem, and much more. Despite these advantages that cloud-based workflows offer, the majority of scientific software developed in academia does not utilize cloud computing and must be migrated to the cloud by the user. In this article, we present 11 quick tips for architecting biomedical informatics workflows on compute clouds, distilling knowledge gained from experience developing, operating, maintaining, and distributing software and virtualized appliances on the world’s largest cloud. Researchers who follow these tips stand to benefit immediately by migrating their workflows to cloud computing and embracing the paradigm of abstraction. PMID:29596416
[Flexible print circuit technology application in biomedical engineering].
Jiang, Lihua; Cao, Yi; Zheng, Xiaolin
2013-06-01
Flexible print circuit (FPC) technology has been widely applied in variety of electric circuits with high precision due to its advantages, such as low-cost, high specific fabrication ability, and good flexibility, etc. Recently, this technology has also been used in biomedical engineering, especially in the development of microfluidic chip and microelectrode array. The high specific fabrication can help making microelectrode and other micro-structure equipment. And good flexibility allows the micro devices based on FPC technique to be easily packaged with other parts. In addition, it also reduces the damage of microelectrodes to the tissue. In this paper, the application of FPC technology in biomedical engineering is introduced. Moreover, the important parameters of FPC technique and the development trend of prosperous applications is also discussed.
Hsu, Yi-Yu; Chen, Hung-Yu; Kao, Hung-Yu
2013-01-01
Background Determining the semantic relatedness of two biomedical terms is an important task for many text-mining applications in the biomedical field. Previous studies, such as those using ontology-based and corpus-based approaches, measured semantic relatedness by using information from the structure of biomedical literature, but these methods are limited by the small size of training resources. To increase the size of training datasets, the outputs of search engines have been used extensively to analyze the lexical patterns of biomedical terms. Methodology/Principal Findings In this work, we propose the Mutually Reinforcing Lexical Pattern Ranking (ReLPR) algorithm for learning and exploring the lexical patterns of synonym pairs in biomedical text. ReLPR employs lexical patterns and their pattern containers to assess the semantic relatedness of biomedical terms. By combining sentence structures and the linking activities between containers and lexical patterns, our algorithm can explore the correlation between two biomedical terms. Conclusions/Significance The average correlation coefficient of the ReLPR algorithm was 0.82 for various datasets. The results of the ReLPR algorithm were significantly superior to those of previous methods. PMID:24348899
Current Progress of Genetically Engineered Pig Models for Biomedical Research
Gün, Gökhan
2014-01-01
Abstract The first transgenic pigs were generated for agricultural purposes about three decades ago. Since then, the micromanipulation techniques of pig oocytes and embryos expanded from pronuclear injection of foreign DNA to somatic cell nuclear transfer, intracytoplasmic sperm injection-mediated gene transfer, lentiviral transduction, and cytoplasmic injection. Mechanistically, the passive transgenesis approach based on random integration of foreign DNA was developed to active genetic engineering techniques based on the transient activity of ectopic enzymes, such as transposases, recombinases, and programmable nucleases. Whole-genome sequencing and annotation of advanced genome maps of the pig complemented these developments. The full implementation of these tools promises to immensely increase the efficiency and, in parallel, to reduce the costs for the generation of genetically engineered pigs. Today, the major application of genetically engineered pigs is found in the field of biomedical disease modeling. It is anticipated that genetically engineered pigs will increasingly be used in biomedical research, since this model shows several similarities to humans with regard to physiology, metabolism, genome organization, pathology, and aging. PMID:25469311
Role of Airway Recruitment and Derecruitment in Lung Injury
Ghadiali, S. N.; Huang, Y.
2011-01-01
The mechanical forces generated during the ventilation of patients with acute lung injury causes significant lung damage and inflammation. Low-volume ventilation protocols are commonly used to prevent stretch-related injury that occurs at high lung volumes. However, the cyclic closure and reopening of pulmonary airways at low lung volumes, i.e., derecruitment and recruitment, also causes significant lung damage and inflammation. In this review, we provide an overview of how biomedical engineering techniques are being used to elucidate the complex physiological and biomechanical mechanisms responsible for cellular injury during recruitment/derecruitment. We focus on the development of multiscale, multiphysics computational models of cell deformation and injury during airway reopening. These models, and the corresponding in vitro experiments, have been used to both elucidate the basic mechanisms responsible for recruitment/derecruitment injury and to develop alternative therapies that make the epithelium more resistant to injury. For example, models and experiments indicate that fluidization of the cytoskeleton is cytoprotective and that changes in cytoskeletal structure and cell mechanics can be used to mitigate the mechanotransduction of oscillatory pressure into inflammatory signaling. The continued application of biomedical engineering techniques to the problem of recruitment/derecruitment injury may therefore lead to novel and more effective therapies. PMID:22011235
Cluster-Based Query Expansion Using Language Modeling for Biomedical Literature Retrieval
ERIC Educational Resources Information Center
Xu, Xuheng
2011-01-01
The tremendously huge volume of biomedical literature, scientists' specific information needs, long terms of multiples words, and fundamental problems of synonym and polysemy have been challenging issues facing the biomedical information retrieval community researchers. Search engines have significantly improved the efficiency and effectiveness of…
Trends in Biomedical Education.
ERIC Educational Resources Information Center
Peppas, Nicholas A.; Mallinson, Richard G.
1982-01-01
An analysis of trends in biomedical education within chemical education is presented. Data used for the analysis included: type/level of course, subjects taught, and textbook preferences. Results among others of the 1980 survey indicate that 28 out of 79 schools responding offer at least one course in biomedical engineering. (JN)
Synthetic biology: insights into biological computation.
Manzoni, Romilde; Urrios, Arturo; Velazquez-Garcia, Silvia; de Nadal, Eulàlia; Posas, Francesc
2016-04-18
Organisms have evolved a broad array of complex signaling mechanisms that allow them to survive in a wide range of environmental conditions. They are able to sense external inputs and produce an output response by computing the information. Synthetic biology attempts to rationally engineer biological systems in order to perform desired functions. Our increasing understanding of biological systems guides this rational design, while the huge background in electronics for building circuits defines the methodology. In this context, biocomputation is the branch of synthetic biology aimed at implementing artificial computational devices using engineered biological motifs as building blocks. Biocomputational devices are defined as biological systems that are able to integrate inputs and return outputs following pre-determined rules. Over the last decade the number of available synthetic engineered devices has increased exponentially; simple and complex circuits have been built in bacteria, yeast and mammalian cells. These devices can manage and store information, take decisions based on past and present inputs, and even convert a transient signal into a sustained response. The field is experiencing a fast growth and every day it is easier to implement more complex biological functions. This is mainly due to advances in in vitro DNA synthesis, new genome editing tools, novel molecular cloning techniques, continuously growing part libraries as well as other technological advances. This allows that digital computation can now be engineered and implemented in biological systems. Simple logic gates can be implemented and connected to perform novel desired functions or to better understand and redesign biological processes. Synthetic biological digital circuits could lead to new therapeutic approaches, as well as new and efficient ways to produce complex molecules such as antibiotics, bioplastics or biofuels. Biological computation not only provides possible biomedical and biotechnological applications, but also affords a greater understanding of biological systems.
Biomedical Computing Technology Information Center: introduction and report of early progress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maskewitz, B.F.; Henne, R.L.; McClain, W.J.
1976-01-01
In July 1975, the Biomedical Computing Technology Information Center (BCTIC) was established by the Division of Biomedical and Environmental Research of the U. S. Energy Research and Development Administration (ERDA) at the Oak Ridge National Laboratory. BCTIC collects, organizes, evaluates, and disseminates information on computing technology pertinent to biomedicine, providing needed routes of communication between installations and serving as a clearinghouse for the exchange of biomedical computing software, data, and interface designs. This paper presents BCTIC's functions and early progress to the MUMPS Users' Group in order to stimulate further discussion and cooperation between the two organizations. (BCTIC services aremore » available to its sponsors and their contractors and to any individual/group willing to participate in mutual exchange.) 1 figure.« less
Biomedical Simulation Models of Human Auditory Processes
NASA Technical Reports Server (NTRS)
Bicak, Mehmet M. A.
2012-01-01
Detailed acoustic engineering models that explore noise propagation mechanisms associated with noise attenuation and transmission paths created when using hearing protectors such as earplugs and headsets in high noise environments. Biomedical finite element (FE) models are developed based on volume Computed Tomography scan data which provides explicit external ear, ear canal, middle ear ossicular bones and cochlea geometry. Results from these studies have enabled a greater understanding of hearing protector to flesh dynamics as well as prioritizing noise propagation mechanisms. Prioritization of noise mechanisms can form an essential framework for exploration of new design principles and methods in both earplug and earcup applications. These models are currently being used in development of a novel hearing protection evaluation system that can provide experimentally correlated psychoacoustic noise attenuation. Moreover, these FE models can be used to simulate the effects of blast related impulse noise on human auditory mechanisms and brain tissue.
Pharmaceutical and biomedical applications of surface engineered carbon nanotubes.
Mehra, Neelesh Kumar; Jain, Keerti; Jain, Narendra Kumar
2015-06-01
Surface engineered carbon nanotubes (CNTs) are attracting recent attention of scientists owing to their vivid biomedical and pharmaceutical applications. The focus of this review is to highlight the important role of surface engineered CNTs in the highly challenging but rewarding area of nanotechnology. The major strength of this review lies in highlighting the exciting applications of CNTs to boost the research efforts, which unfortunately are otherwise scattered in the literature making the reading non-coherent and non-homogeneous. Copyright © 2015 Elsevier Ltd. All rights reserved.
Perspectives on an education in computational biology and medicine.
Rubinstein, Jill C
2012-09-01
The mainstream application of massively parallel, high-throughput assays in biomedical research has created a demand for scientists educated in Computational Biology and Bioinformatics (CBB). In response, formalized graduate programs have rapidly evolved over the past decade. Concurrently, there is increasing need for clinicians trained to oversee the responsible translation of CBB research into clinical tools. Physician-scientists with dedicated CBB training can facilitate such translation, positioning themselves at the intersection between computational biomedical research and medicine. This perspective explores key elements of the educational path to such a position, specifically addressing: 1) evolving perceptions of the role of the computational biologist and the impact on training and career opportunities; 2) challenges in and strategies for obtaining the core skill set required of a biomedical researcher in a computational world; and 3) how the combination of CBB with medical training provides a logical foundation for a career in academic medicine and/or biomedical research.
The BioIntelligence Framework: a new computational platform for biomedical knowledge computing
Farley, Toni; Kiefer, Jeff; Lee, Preston; Von Hoff, Daniel; Trent, Jeffrey M; Colbourn, Charles
2013-01-01
Breakthroughs in molecular profiling technologies are enabling a new data-intensive approach to biomedical research, with the potential to revolutionize how we study, manage, and treat complex diseases. The next great challenge for clinical applications of these innovations will be to create scalable computational solutions for intelligently linking complex biomedical patient data to clinically actionable knowledge. Traditional database management systems (DBMS) are not well suited to representing complex syntactic and semantic relationships in unstructured biomedical information, introducing barriers to realizing such solutions. We propose a scalable computational framework for addressing this need, which leverages a hypergraph-based data model and query language that may be better suited for representing complex multi-lateral, multi-scalar, and multi-dimensional relationships. We also discuss how this framework can be used to create rapid learning knowledge base systems to intelligently capture and relate complex patient data to biomedical knowledge in order to automate the recovery of clinically actionable information. PMID:22859646
Engineering artificial machines from designable DNA materials for biomedical applications.
Qi, Hao; Huang, Guoyou; Han, Yulong; Zhang, Xiaohui; Li, Yuhui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng; Wang, Lin
2015-06-01
Deoxyribonucleic acid (DNA) emerges as building bricks for the fabrication of nanostructure with complete artificial architecture and geometry. The amazing ability of DNA in building two- and three-dimensional structures raises the possibility of developing smart nanomachines with versatile controllability for various applications. Here, we overviewed the recent progresses in engineering DNA machines for specific bioengineering and biomedical applications.
Engineering Artificial Machines from Designable DNA Materials for Biomedical Applications
Huang, Guoyou; Han, Yulong; Zhang, Xiaohui; Li, Yuhui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng
2015-01-01
Deoxyribonucleic acid (DNA) emerges as building bricks for the fabrication of nanostructure with complete artificial architecture and geometry. The amazing ability of DNA in building two- and three-dimensional structures raises the possibility of developing smart nanomachines with versatile controllability for various applications. Here, we overviewed the recent progresses in engineering DNA machines for specific bioengineering and biomedical applications. PMID:25547514
Engineering Stem Cells for Biomedical Applications.
Yin, Perry T; Han, Edward; Lee, Ki-Bum
2016-01-07
Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enabling Large-Scale Biomedical Analysis in the Cloud
Lin, Ying-Chih; Yu, Chin-Sheng; Lin, Yen-Jen
2013-01-01
Recent progress in high-throughput instrumentations has led to an astonishing growth in both volume and complexity of biomedical data collected from various sources. The planet-size data brings serious challenges to the storage and computing technologies. Cloud computing is an alternative to crack the nut because it gives concurrent consideration to enable storage and high-performance computing on large-scale data. This work briefly introduces the data intensive computing system and summarizes existing cloud-based resources in bioinformatics. These developments and applications would facilitate biomedical research to make the vast amount of diversification data meaningful and usable. PMID:24288665
A survey of the Australasian clinical medical physics and biomedical engineering workforce.
Round, W H
2007-03-01
A survey of the medical physics and biomedical engineering workforce was carried out in 2006. 495 positions (equivalent to 478 equivalent full time (EFT) positions) were captured by the survey. Of these 268 EFT were in radiation oncology physics, 36 EFT were in radiology physics, 44 were in nuclear medicine physics, 101 EFT were in biomedical engineering and 29 EFT were attributed to other activities. The survey reviewed the experience profile, the salary levels and the number of vacant positions in the workforce for the different disciplines in each Australian state and in New Zealand. Analysis of the data identifies staffing shortfalls in the various disciplines and demonstrates the difficulties that will occur in trying to train sufficient physicists to raise staffing to an acceptable level.
Silk Materials Functionalized via Genetic Engineering for Biomedical Applications.
Deptuch, Tomasz; Dams-Kozlowska, Hanna
2017-12-12
The great mechanical properties, biocompatibility and biodegradability of silk-based materials make them applicable to the biomedical field. Genetic engineering enables the construction of synthetic equivalents of natural silks. Knowledge about the relationship between the structure and function of silk proteins enables the design of bioengineered silks that can serve as the foundation of new biomaterials. Furthermore, in order to better address the needs of modern biomedicine, genetic engineering can be used to obtain silk-based materials with new functionalities. Sequences encoding new peptides or domains can be added to the sequences encoding the silk proteins. The expression of one cDNA fragment indicates that each silk molecule is related to a functional fragment. This review summarizes the proposed genetic functionalization of silk-based materials that can be potentially useful for biomedical applications.
A 2009 survey of the Australasian clinical medical physics and biomedical engineering workforce.
Round, W Howell
2010-06-01
A survey of the Australasian clinical medical physics and biomedical engineering workforce was carried out in 2009 following on from a similar survey in 2006. 621 positions (equivalent to 575 equivalent full time (EFT) positions) were captured by the survey. Of these 330 EFT were in radiation oncology physics, 45 EFT were in radiology physics, 42 EFT were in nuclear medicine physics, 159 EFT were in biomedical engineering and 29 EFT were attributed to other activities. The survey reviewed the experience profile, the salary levels and the number of vacant positions in the workforce for the different disciplines in each Australian state and in New Zealand. Analysis of the data shows the changes to the workforce over the preceding 3 years and identifies shortfalls in the workforce.
The Annals of Biomedical Engineering: inception to signature journal.
Fagette, Paul
2012-03-01
The Annals of Biomedical Engineering, the flagship journal of the Biomedical Engineering Society, developed through four distinct stages. Once an editorial infrastructure was in place and a publisher was secured, a long-lived struggle for sufficient manuscripts and financial stability ensued. The journal achieved a degree of stableness by the mid-1980s. Electronic communication and on-line publishing in the 1990s allowed more rapid turn around but the increased acceptance of quality manuscripts created pressures from insufficient available pages. The journal finally turned to self-publication. The Board of Directors and the Publications Board carefully nurtured the journal over the years with financial support and policy. Still, the bulk of the effort was carried by the editors. They dealt with an ever increasing complex publishing process that now supports three Society journals.
Photonics Applications and Web Engineering: WILGA 2017
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2017-08-01
XLth Wilga Summer 2017 Symposium on Photonics Applications and Web Engineering was held on 28 May-4 June 2017. The Symposium gathered over 350 participants, mainly young researchers active in optics, optoelectronics, photonics, modern optics, mechatronics, applied physics, electronics technologies and applications. There were presented around 300 oral and poster papers in a few main topical tracks, which are traditional for Wilga, including: bio-photonics, optical sensory networks, photonics-electronics-mechatronics co-design and integration, large functional system design and maintenance, Internet of Things, measurement systems for astronomy, high energy physics experiments, and other. The paper is a traditional introduction to the 2017 WILGA Summer Symposium Proceedings, and digests some of the Symposium chosen key presentations. This year Symposium was divided to the following topical sessions/conferences: Optics, Optoelectronics and Photonics, Computational and Artificial Intelligence, Biomedical Applications, Astronomical and High Energy Physics Experiments Applications, Material Research and Engineering, and Advanced Photonics and Electronics Applications in Research and Industry.
Engineering the next generation of clinical deep brain stimulation technology.
McIntyre, Cameron C; Chaturvedi, Ashutosh; Shamir, Reuben R; Lempka, Scott F
2015-01-01
Deep brain stimulation (DBS) has evolved into a powerful clinical therapy for a range of neurological disorders, but even with impressive clinical growth, DBS technology has been relatively stagnant over its history. However, enhanced collaborations between neural engineers, neuroscientists, physicists, neurologists, and neurosurgeons are beginning to address some of the limitations of current DBS technology. These interactions have helped to develop novel ideas for the next generation of clinical DBS systems. This review attempts collate some of that progress with two goals in mind. First, provide a general description of current clinical DBS practices, geared toward educating biomedical engineers and computer scientists on a field that needs their expertise and attention. Second, describe some of the technological developments that are currently underway in surgical targeting, stimulation parameter selection, stimulation protocols, and stimulation hardware that are being directly evaluated for near term clinical application. Copyright © 2015 Elsevier Inc. All rights reserved.
DataMed - an open source discovery index for finding biomedical datasets.
Chen, Xiaoling; Gururaj, Anupama E; Ozyurt, Burak; Liu, Ruiling; Soysal, Ergin; Cohen, Trevor; Tiryaki, Firat; Li, Yueling; Zong, Nansu; Jiang, Min; Rogith, Deevakar; Salimi, Mandana; Kim, Hyeon-Eui; Rocca-Serra, Philippe; Gonzalez-Beltran, Alejandra; Farcas, Claudiu; Johnson, Todd; Margolis, Ron; Alter, George; Sansone, Susanna-Assunta; Fore, Ian M; Ohno-Machado, Lucila; Grethe, Jeffrey S; Xu, Hua
2018-01-13
Finding relevant datasets is important for promoting data reuse in the biomedical domain, but it is challenging given the volume and complexity of biomedical data. Here we describe the development of an open source biomedical data discovery system called DataMed, with the goal of promoting the building of additional data indexes in the biomedical domain. DataMed, which can efficiently index and search diverse types of biomedical datasets across repositories, is developed through the National Institutes of Health-funded biomedical and healthCAre Data Discovery Index Ecosystem (bioCADDIE) consortium. It consists of 2 main components: (1) a data ingestion pipeline that collects and transforms original metadata information to a unified metadata model, called DatA Tag Suite (DATS), and (2) a search engine that finds relevant datasets based on user-entered queries. In addition to describing its architecture and techniques, we evaluated individual components within DataMed, including the accuracy of the ingestion pipeline, the prevalence of the DATS model across repositories, and the overall performance of the dataset retrieval engine. Our manual review shows that the ingestion pipeline could achieve an accuracy of 90% and core elements of DATS had varied frequency across repositories. On a manually curated benchmark dataset, the DataMed search engine achieved an inferred average precision of 0.2033 and a precision at 10 (P@10, the number of relevant results in the top 10 search results) of 0.6022, by implementing advanced natural language processing and terminology services. Currently, we have made the DataMed system publically available as an open source package for the biomedical community. © The Author 2018. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
BIOSSES: a semantic sentence similarity estimation system for the biomedical domain.
Sogancioglu, Gizem; Öztürk, Hakime; Özgür, Arzucan
2017-07-15
The amount of information available in textual format is rapidly increasing in the biomedical domain. Therefore, natural language processing (NLP) applications are becoming increasingly important to facilitate the retrieval and analysis of these data. Computing the semantic similarity between sentences is an important component in many NLP tasks including text retrieval and summarization. A number of approaches have been proposed for semantic sentence similarity estimation for generic English. However, our experiments showed that such approaches do not effectively cover biomedical knowledge and produce poor results for biomedical text. We propose several approaches for sentence-level semantic similarity computation in the biomedical domain, including string similarity measures and measures based on the distributed vector representations of sentences learned in an unsupervised manner from a large biomedical corpus. In addition, ontology-based approaches are presented that utilize general and domain-specific ontologies. Finally, a supervised regression based model is developed that effectively combines the different similarity computation metrics. A benchmark data set consisting of 100 sentence pairs from the biomedical literature is manually annotated by five human experts and used for evaluating the proposed methods. The experiments showed that the supervised semantic sentence similarity computation approach obtained the best performance (0.836 correlation with gold standard human annotations) and improved over the state-of-the-art domain-independent systems up to 42.6% in terms of the Pearson correlation metric. A web-based system for biomedical semantic sentence similarity computation, the source code, and the annotated benchmark data set are available at: http://tabilab.cmpe.boun.edu.tr/BIOSSES/ . gizemsogancioglu@gmail.com or arzucan.ozgur@boun.edu.tr. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Photoreconfigurable polymers for biomedical applications: chemistry and macromolecular engineering.
Zhu, Congcong; Ninh, Chi; Bettinger, Christopher J
2014-10-13
Stimuli-responsive polymers play an important role in many biomedical technologies. Light responsive polymers are particularly desirable because the parameters of irradiated light and diverse photoactive chemistries produce a large number of combinations between functional materials and associated stimuli. This Review summarizes recent advances in utilizing photoactive chemistries in macromolecules for prospective use in biomedical applications. Special focus is granted to selection criterion when choosing photofunctional groups. Synthetic strategies to incorporate these functionalities into polymers and networks with different topologies are also highlighted herein. Prospective applications of these materials are discussed including programmable matrices for controlled release, dynamic scaffolds for tissue engineering, and functional coatings for medical devices. The article concludes by summarizing the state of the art in photoresponsive polymers for biomedical applications including current challenges and future opportunities.
Reverse engineering by design: using history to teach.
Fagette, Paul
2013-01-01
Engineering students rarely have an opportunity to delve into the historic antecedents of design in their craft, and this is especially true for biomedical devices. The teaching emphasis is always on the new, the innovative, and the future. Even so, over the last decade, I have coupled a research agenda with engineering special projects into a successful format that allows young biomedical engineering students to understand aspects of their history and learn the complexities of design. There is value in having knowledge of historic engineering achievements, not just for an appreciation of these accomplishments but also for understanding exactly how engineers and clinicians of the day executed their feats-in other words, how the design process works. Ultimately, this particular educational odyssey confirms that history and engineering education are not only compatible but mutually supportive.
Semantic similarity between ontologies at different scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qingpeng; Haglin, David J.
In the past decade, existing and new knowledge and datasets has been encoded in different ontologies for semantic web and biomedical research. The size of ontologies is often very large in terms of number of concepts and relationships, which makes the analysis of ontologies and the represented knowledge graph computational and time consuming. As the ontologies of various semantic web and biomedical applications usually show explicit hierarchical structures, it is interesting to explore the trade-offs between ontological scales and preservation/precision of results when we analyze ontologies. This paper presents the first effort of examining the capability of this idea viamore » studying the relationship between scaling biomedical ontologies at different levels and the semantic similarity values. We evaluate the semantic similarity between three Gene Ontology slims (Plant, Yeast, and Candida, among which the latter two belong to the same kingdom—Fungi) using four popular measures commonly applied to biomedical ontologies (Resnik, Lin, Jiang-Conrath, and SimRel). The results of this study demonstrate that with proper selection of scaling levels and similarity measures, we can significantly reduce the size of ontologies without losing substantial detail. In particular, the performance of Jiang-Conrath and Lin are more reliable and stable than that of the other two in this experiment, as proven by (a) consistently showing that Yeast and Candida are more similar (as compared to Plant) at different scales, and (b) small deviations of the similarity values after excluding a majority of nodes from several lower scales. This study provides a deeper understanding of the application of semantic similarity to biomedical ontologies, and shed light on how to choose appropriate semantic similarity measures for biomedical engineering.« less
A DNA network as an information processing system.
Santini, Cristina Costa; Bath, Jonathan; Turberfield, Andrew J; Tyrrell, Andy M
2012-01-01
Biomolecular systems that can process information are sought for computational applications, because of their potential for parallelism and miniaturization and because their biocompatibility also makes them suitable for future biomedical applications. DNA has been used to design machines, motors, finite automata, logic gates, reaction networks and logic programs, amongst many other structures and dynamic behaviours. Here we design and program a synthetic DNA network to implement computational paradigms abstracted from cellular regulatory networks. These show information processing properties that are desirable in artificial, engineered molecular systems, including robustness of the output in relation to different sources of variation. We show the results of numerical simulations of the dynamic behaviour of the network and preliminary experimental analysis of its main components.
Louie, Angelique; Izatt, Joseph; Ferrara, Katherine
2006-02-01
We present an overview of graduate programs in biomedical imaging that are currently available in the US. Special attention is given to the emerging technologies of molecular imaging and biophotonics. Discussions from the workshop on Graduate Imaging at the 2005 Whitaker Educational Summit meeting are summarized.
77 FR 54584 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-05
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical Imaging and Bioengineering Special Emphasis Panel, ZEB1 OSR-D(J2) P Tissue Engineering Resource Center...
Biomedical signal and image processing.
Cerutti, Sergio; Baselli, Giuseppe; Bianchi, Anna; Caiani, Enrico; Contini, Davide; Cubeddu, Rinaldo; Dercole, Fabio; Rienzo, Luca; Liberati, Diego; Mainardi, Luca; Ravazzani, Paolo; Rinaldi, Sergio; Signorini, Maria; Torricelli, Alessandro
2011-01-01
Generally, physiological modeling and biomedical signal processing constitute two important paradigms of biomedical engineering (BME): their fundamental concepts are taught starting from undergraduate studies and are more completely dealt with in the last years of graduate curricula, as well as in Ph.D. courses. Traditionally, these two cultural aspects were separated, with the first one more oriented to physiological issues and how to model them and the second one more dedicated to the development of processing tools or algorithms to enhance useful information from clinical data. A practical consequence was that those who did models did not do signal processing and vice versa. However, in recent years,the need for closer integration between signal processing and modeling of the relevant biological systems emerged very clearly [1], [2]. This is not only true for training purposes(i.e., to properly prepare the new professional members of BME) but also for the development of newly conceived research projects in which the integration between biomedical signal and image processing (BSIP) and modeling plays a crucial role. Just to give simple examples, topics such as brain–computer machine or interfaces,neuroengineering, nonlinear dynamical analysis of the cardiovascular (CV) system,integration of sensory-motor characteristics aimed at the building of advanced prostheses and rehabilitation tools, and wearable devices for vital sign monitoring and others do require an intelligent fusion of modeling and signal processing competences that are certainly peculiar of our discipline of BME.
The role of technology and engineering models in transforming healthcare.
Pavel, Misha; Jimison, Holly Brugge; Wactlar, Howard D; Hayes, Tamara L; Barkis, Will; Skapik, Julia; Kaye, Jeffrey
2013-01-01
The healthcare system is in crisis due to challenges including escalating costs, the inconsistent provision of care, an aging population, and high burden of chronic disease related to health behaviors. Mitigating this crisis will require a major transformation of healthcare to be proactive, preventive, patient-centered, and evidence-based with a focus on improving quality-of-life. Information technology, networking, and biomedical engineering are likely to be essential in making this transformation possible with the help of advances, such as sensor technology, mobile computing, machine learning, etc. This paper has three themes: 1) motivation for a transformation of healthcare; 2) description of how information technology and engineering can support this transformation with the help of computational models; and 3) a technical overview of several research areas that illustrate the need for mathematical modeling approaches, ranging from sparse sampling to behavioral phenotyping and early detection. A key tenet of this paper concerns complementing prior work on patient-specific modeling and simulation by modeling neuropsychological, behavioral, and social phenomena. The resulting models, in combination with frequent or continuous measurements, are likely to be key components of health interventions to enhance health and wellbeing and the provision of healthcare.
Zhou, Jun; Wang, Chao
2017-01-01
Intelligent sensing is drastically changing our everyday life including healthcare by biomedical signal monitoring, collection, and analytics. However, long-term healthcare monitoring generates tremendous data volume and demands significant wireless transmission power, which imposes a big challenge for wearable healthcare sensors usually powered by batteries. Efficient compression engine design to reduce wireless transmission data rate with ultra-low power consumption is essential for wearable miniaturized healthcare sensor systems. This paper presents an ultra-low power biomedical signal compression engine for healthcare data sensing and analytics in the era of big data and sensor intelligence. It extracts the feature points of the biomedical signal by window-based turning angle detection. The proposed approach has low complexity and thus low power consumption while achieving a large compression ratio (CR) and good quality of reconstructed signal. Near-threshold design technique is adopted to further reduce the power consumption on the circuit level. Besides, the angle threshold for compression can be adaptively tuned according to the error between the original signal and reconstructed signal to address the variation of signal characteristics from person to person or from channel to channel to meet the required signal quality with optimal CR. For demonstration, the proposed biomedical compression engine has been used and evaluated for ECG compression. It achieves an average (CR) of 71.08% and percentage root-mean-square difference (PRD) of 5.87% while consuming only 39 nW. Compared to several state-of-the-art ECG compression engines, the proposed design has significantly lower power consumption while achieving similar CRD and PRD, making it suitable for long-term wearable miniaturized sensor systems to sense and collect healthcare data for remote data analytics. PMID:28783079
Zhou, Jun; Wang, Chao
2017-08-06
Intelligent sensing is drastically changing our everyday life including healthcare by biomedical signal monitoring, collection, and analytics. However, long-term healthcare monitoring generates tremendous data volume and demands significant wireless transmission power, which imposes a big challenge for wearable healthcare sensors usually powered by batteries. Efficient compression engine design to reduce wireless transmission data rate with ultra-low power consumption is essential for wearable miniaturized healthcare sensor systems. This paper presents an ultra-low power biomedical signal compression engine for healthcare data sensing and analytics in the era of big data and sensor intelligence. It extracts the feature points of the biomedical signal by window-based turning angle detection. The proposed approach has low complexity and thus low power consumption while achieving a large compression ratio (CR) and good quality of reconstructed signal. Near-threshold design technique is adopted to further reduce the power consumption on the circuit level. Besides, the angle threshold for compression can be adaptively tuned according to the error between the original signal and reconstructed signal to address the variation of signal characteristics from person to person or from channel to channel to meet the required signal quality with optimal CR. For demonstration, the proposed biomedical compression engine has been used and evaluated for ECG compression. It achieves an average (CR) of 71.08% and percentage root-mean-square difference (PRD) of 5.87% while consuming only 39 nW. Compared to several state-of-the-art ECG compression engines, the proposed design has significantly lower power consumption while achieving similar CRD and PRD, making it suitable for long-term wearable miniaturized sensor systems to sense and collect healthcare data for remote data analytics.
Otto Schmitt's contributions to basic and applied biomedical engineering and to the profession.
Patterson, Robert
2009-01-01
Otto Schmitt was one of the early giants in biomedical engineering. Best known in engineering circles for the Schmitt Trigger, he also made many other significant scientific contributions. Besides his scientific work Otto was involved in early organizational activities, which included the first large professional BME meeting in Minneapolis in 1958. A description of his many contributions will be presented along with a short video of Schmitt giving a tour of his laboratory, including the original Schmitt Trigger and the model he used to develop his vector ECG system.
King, Andrew J; Fisher, Arielle M; Becich, Michael J; Boone, David N
2017-01-01
The University of Pittsburgh's Department of Biomedical Informatics and Division of Pathology Informatics created a Science, Technology, Engineering, and Mathematics (STEM) pipeline in 2011 dedicated to providing cutting-edge informatics research and career preparatory experiences to a diverse group of highly motivated high-school students. In this third editorial installment describing the program, we provide a brief overview of the pipeline, report on achievements of the past scholars, and present results from self-reported assessments by the 2015 cohort of scholars. The pipeline continues to expand with the 2015 addition of the innovation internship, and the introduction of a program in 2016 aimed at offering first-time research experiences to undergraduates who are underrepresented in pathology and biomedical informatics. Achievements of program scholars include authorship of journal articles, symposium and summit presentations, and attendance at top 25 universities. All of our alumni matriculated into higher education and 90% remain in STEM majors. The 2015 high-school program had ten participating scholars who self-reported gains in confidence in their research abilities and understanding of what it means to be a scientist.
King, Andrew J.; Fisher, Arielle M.; Becich, Michael J.; Boone, David N.
2017-01-01
The University of Pittsburgh's Department of Biomedical Informatics and Division of Pathology Informatics created a Science, Technology, Engineering, and Mathematics (STEM) pipeline in 2011 dedicated to providing cutting-edge informatics research and career preparatory experiences to a diverse group of highly motivated high-school students. In this third editorial installment describing the program, we provide a brief overview of the pipeline, report on achievements of the past scholars, and present results from self-reported assessments by the 2015 cohort of scholars. The pipeline continues to expand with the 2015 addition of the innovation internship, and the introduction of a program in 2016 aimed at offering first-time research experiences to undergraduates who are underrepresented in pathology and biomedical informatics. Achievements of program scholars include authorship of journal articles, symposium and summit presentations, and attendance at top 25 universities. All of our alumni matriculated into higher education and 90% remain in STEM majors. The 2015 high-school program had ten participating scholars who self-reported gains in confidence in their research abilities and understanding of what it means to be a scientist. PMID:28400991
Interdisciplinary innovations in biomedical and health informatics graduate education.
Demiris, G
2007-01-01
Biomedical and health informatics (BHI) is a rapidly growing domain that relies on the active collaboration with diverse disciplines and professions. Educational initiatives in BHI need to prepare students with skills and competencies that will allow them to function within and even facilitate interdisciplinary teams (IDT). This paper describes an interdisciplinary educational approach introduced into a BHI graduate curriculum that aims to prepare informatics researchers to lead IDT research. A case study of the "gerontechnology" research track is presented which highlights how the curriculum fosters collaboration with and understanding of the disciplines of Nursing, Engineering, Computer Science, and Health Administration. Gerontechnology is a new interdisciplinary field that focuses on the use of technology to support aging. Its aim is to explore innovative ways to use information technology and develop systems that support independency and increase quality of life for senior citizens. As a result of a large research group that explores "smart home" technologies and the use of information technology, we integrated this new domain into the curriculum providing a platform for computer scientists, engineers, nurses and physicians to explore challenges and opportunities with our informatics students and faculty. The interdisciplinary educational model provides an opportunity for health informatics students to acquire the skills for communication and collaboration with other disciplines. Numerous graduate and postgraduate students have already participated in this initiative. The evaluation model of this approach is presented. Interdisciplinary educational models are required for health informatics graduate education. Such models need to be innovative and reflect the needs and trends in the domains of health care and information technology.
Silk Materials Functionalized via Genetic Engineering for Biomedical Applications
Deptuch, Tomasz
2017-01-01
The great mechanical properties, biocompatibility and biodegradability of silk-based materials make them applicable to the biomedical field. Genetic engineering enables the construction of synthetic equivalents of natural silks. Knowledge about the relationship between the structure and function of silk proteins enables the design of bioengineered silks that can serve as the foundation of new biomaterials. Furthermore, in order to better address the needs of modern biomedicine, genetic engineering can be used to obtain silk-based materials with new functionalities. Sequences encoding new peptides or domains can be added to the sequences encoding the silk proteins. The expression of one cDNA fragment indicates that each silk molecule is related to a functional fragment. This review summarizes the proposed genetic functionalization of silk-based materials that can be potentially useful for biomedical applications. PMID:29231863
Group of R&D on biomedical engineering: Its development and results.
Yabar, Leopoldo F; Torres, Miguel A; Garcia, Daniel O; Villavicencio, Emilio A; Navarro, Luis A; Nakamura, Orlando K; Huamani, Robinson
2010-01-01
Conducting research and development activities generates new knowledge that can then be applied properly. In this sense, the groups of research and development on biomedical engineering (GRDBE) can contribute a lot in various areas such as teaching (theory and laboratory), as well as the development of prototypes, but mainly with the results they can provide. These contributions should response to specific needs of some sector, for example: health, environment, biology, and others. The present paper provides a description of the development of a GRDBE into a private university. Also, it's presented the amount of papers developed by this group and accepted by international congress on biomedical engineering (BE) on the 2007-2009 period. This paper also shows comparative charts with papers produced by other GRDBE that exist in our country, which are matter of analysis and conclusions.
A 2012 survey of the Australasian clinical medical physics and biomedical engineering workforce.
Round, W H
2013-06-01
A survey of the medical physics and biomedical engineering workforce in Australia and New Zealand was carried out in 2012 following on from similar surveys in 2009 and 2006. 761 positions (equivalent to 736 equivalent full time (EFT) positions) were captured by the survey. Of these, 428 EFT were in radiation oncology physics, 63 EFT were in radiology physics, 49 EFT were in nuclear medicine physics, 150 EFT were in biomedical engineering and 46 EFT were attributed to other activities. The survey reviewed the experience profile, the salary levels and the number of vacant positions in the workforce for the different disciplines in each Australian state and in New Zealand. Analysis of the data shows the changes to the workforce over the preceding 6 years and identifies shortfalls in the workforce.
Teaching biomedical design through a university-industry partnership.
Khuon, Lunal; Zum, Karl R; Zurn, Jane B; Herrera, Gerald M
2016-08-01
This paper describes a course that, as a result of a university-industry partnership, emphasizes bringing industry experts into the classroom to teach biomedical design. Full-time faculty and industry engineers and entrepreneurs teach the senior technical elective course, Biomedical System Design. This hands-on senior course in biomedical system design places varied but connected emphasis on understanding the biological signal source, electronics design, safety, patient use, medical device qualifications, and good manufacturing practices.
NASA Astrophysics Data System (ADS)
Zhang, Jianguo; Zhang, Kai; Yang, Yuanyuan; Ling, Tonghui; Wang, Tusheng; Wang, Mingqing; Hu, Haibo; Xu, Xuemin
2012-02-01
More and more image informatics researchers and engineers are considering to re-construct imaging and informatics infrastructure or to build new framework to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment. In this presentation, we show an outline and our preliminary design work of building an e-Science platform for biomedical imaging and informatics research and application in Shanghai. We will present our consideration and strategy on designing this platform, and preliminary results. We also will discuss some challenges and solutions in building this platform.
Lenas, Petros; Moreno, Angel; Ikonomou, Laertis; Mayer, Joerg; Honda, Hiroyuki; Novellino, Antonio; Pizarro, Camilo; Nicodemou-Lena, Eleni; Rodergas, Silvia; Pintor, Jesus
2008-09-01
Although tissue engineering uses powerful biological tools, it still has a weak conceptual foundation, which is restricted at the cell level. The design criteria at the cell level are not directly related with the tissue functions, and consequently, such functions cannot be implemented in bioartificial tissues with the currently used methods. On the contrary, the field of artificial organs focuses on the function of the artificial organs that are treated in the design as integral entities, instead of the optimization of the artificial organ components. The field of artificial organs has already developed and tested methodologies that are based on system concepts and mathematical-computational methods that connect the component properties with the desired global organ function. Such methodologies are needed in tissue engineering for the design of bioartificial tissues with tissue functions. Under the framework of biomedical engineering, artificial organs and tissue engineering do not present competitive approaches, but are rather complementary and should therefore design a common future for the benefit of patients.
2014 Space Human Factors Engineering Standing Review Panel
NASA Technical Reports Server (NTRS)
Steinberg, Susan
2014-01-01
The 2014 Space Human Factors Engineering (SHFE) Standing Review Panel (from here on referred to as the SRP) participated in a WebEx/teleconference with members of the Space Human Factors and Habitability (SHFH) Element, representatives from the Human Research Program (HRP), the National Space Biomedical Research Institute (NSBRI), and NASA Headquarters on November 17, 2014 (list of participants is in Section XI of this report). The SRP reviewed the updated research plans for the Risk of Incompatible Vehicle/Habitat Design (HAB Risk) and the Risk of Performance Errors Due to Training Deficiencies (Train Risk). The SRP also received a status update on the Risk of Inadequate Critical Task Design (Task Risk), the Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI Risk), and the Risk of Inadequate Human-Computer Interaction (HCI Risk).
The National Center for Biomedical Ontology
Noy, Natalya F; Shah, Nigam H; Whetzel, Patricia L; Chute, Christopher G; Story, Margaret-Anne; Smith, Barry
2011-01-01
The National Center for Biomedical Ontology is now in its seventh year. The goals of this National Center for Biomedical Computing are to: create and maintain a repository of biomedical ontologies and terminologies; build tools and web services to enable the use of ontologies and terminologies in clinical and translational research; educate their trainees and the scientific community broadly about biomedical ontology and ontology-based technology and best practices; and collaborate with a variety of groups who develop and use ontologies and terminologies in biomedicine. The centerpiece of the National Center for Biomedical Ontology is a web-based resource known as BioPortal. BioPortal makes available for research in computationally useful forms more than 270 of the world's biomedical ontologies and terminologies, and supports a wide range of web services that enable investigators to use the ontologies to annotate and retrieve data, to generate value sets and special-purpose lexicons, and to perform advanced analytics on a wide range of biomedical data. PMID:22081220
Pacela, A F; Brush, L C
1993-01-01
This article has described the process and the resources available for locating and hiring clinical/biomedical engineers, supervisors, managers, and biomedical equipment technicians. First, the employer must determine the qualifications for the position, including job titles, descriptions, pay scales, and certification requirements. Next, the employer must find qualified applicants. The most common way to do this is to use "outside" contacts, such as help-wanted advertising, specialized job placement agencies, schools and colleges, military resources, regional biomedical societies, and nationwide societies. An "inside" search involves limited internal advertising of the position and using personal referrals for candidates. Finally, the employer must screen the applicants. The position description is the obvious first step in this process, but there are other pre-screening techniques, such as employment testing. Interviewing is the most common way to hire for job positions, but the interviewer needs to know about the position and ask the right questions. Post-interview screening is a final step to help determine the best job-person match.
Structural Design and Physicochemical Foundations of Hydrogels for Biomedical Applications.
Li, Qingyong; Ning, Zhengxiang; Ren, Jiaoyan; Liao, Wenzhen
2018-01-01
Biomedical research, known as medical research, is conducive to support and promote the development of knowledge in the field of medicine. Hydrogels have been extensively used in many biomedical fields due to their highly absorbent and flexible properties. The smart hydrogels, especially, can respond to a broad range of external stimuli such as temperature, pH value, light, electric and magnetic fields. With excellent biocompatibility, tunable rheology, mechanical properties, porosity, and hydrated molecular structure, hydrogels are considered as promising candidate for simulating local tissue microenvironment. In this review article, we mainly focused on the most recent development of engineering synthetic hydrogels; moreover, the classification, properties, especially the biomedical applications including tissue engineering and cell scaffolding, drug and gene delivery, immunotherapies and vaccines, are summarized and discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Discovering Beaten Paths in Collaborative Ontology-Engineering Projects using Markov Chains
Walk, Simon; Singer, Philipp; Strohmaier, Markus; Tudorache, Tania; Musen, Mark A.; Noy, Natalya F.
2014-01-01
Biomedical taxonomies, thesauri and ontologies in the form of the International Classification of Diseases as a taxonomy or the National Cancer Institute Thesaurus as an OWL-based ontology, play a critical role in acquiring, representing and processing information about human health. With increasing adoption and relevance, biomedical ontologies have also significantly increased in size. For example, the 11th revision of the International Classification of Diseases, which is currently under active development by the World Health Organization contains nearly 50, 000 classes representing a vast variety of different diseases and causes of death. This evolution in terms of size was accompanied by an evolution in the way ontologies are engineered. Because no single individual has the expertise to develop such large-scale ontologies, ontology-engineering projects have evolved from small-scale efforts involving just a few domain experts to large-scale projects that require effective collaboration between dozens or even hundreds of experts, practitioners and other stakeholders. Understanding the way these different stakeholders collaborate will enable us to improve editing environments that support such collaborations. In this paper, we uncover how large ontology-engineering projects, such as the International Classification of Diseases in its 11th revision, unfold by analyzing usage logs of five different biomedical ontology-engineering projects of varying sizes and scopes using Markov chains. We discover intriguing interaction patterns (e.g., which properties users frequently change after specific given ones) that suggest that large collaborative ontology-engineering projects are governed by a few general principles that determine and drive development. From our analysis, we identify commonalities and differences between different projects that have implications for project managers, ontology editors, developers and contributors working on collaborative ontology-engineering projects and tools in the biomedical domain. PMID:24953242
Discovering beaten paths in collaborative ontology-engineering projects using Markov chains.
Walk, Simon; Singer, Philipp; Strohmaier, Markus; Tudorache, Tania; Musen, Mark A; Noy, Natalya F
2014-10-01
Biomedical taxonomies, thesauri and ontologies in the form of the International Classification of Diseases as a taxonomy or the National Cancer Institute Thesaurus as an OWL-based ontology, play a critical role in acquiring, representing and processing information about human health. With increasing adoption and relevance, biomedical ontologies have also significantly increased in size. For example, the 11th revision of the International Classification of Diseases, which is currently under active development by the World Health Organization contains nearly 50,000 classes representing a vast variety of different diseases and causes of death. This evolution in terms of size was accompanied by an evolution in the way ontologies are engineered. Because no single individual has the expertise to develop such large-scale ontologies, ontology-engineering projects have evolved from small-scale efforts involving just a few domain experts to large-scale projects that require effective collaboration between dozens or even hundreds of experts, practitioners and other stakeholders. Understanding the way these different stakeholders collaborate will enable us to improve editing environments that support such collaborations. In this paper, we uncover how large ontology-engineering projects, such as the International Classification of Diseases in its 11th revision, unfold by analyzing usage logs of five different biomedical ontology-engineering projects of varying sizes and scopes using Markov chains. We discover intriguing interaction patterns (e.g., which properties users frequently change after specific given ones) that suggest that large collaborative ontology-engineering projects are governed by a few general principles that determine and drive development. From our analysis, we identify commonalities and differences between different projects that have implications for project managers, ontology editors, developers and contributors working on collaborative ontology-engineering projects and tools in the biomedical domain. Copyright © 2014 Elsevier Inc. All rights reserved.
Multi-field query expansion is effective for biomedical dataset retrieval.
Bouadjenek, Mohamed Reda; Verspoor, Karin
2017-01-01
In the context of the bioCADDIE challenge addressing information retrieval of biomedical datasets, we propose a method for retrieval of biomedical data sets with heterogenous schemas through query reformulation. In particular, the method proposed transforms the initial query into a multi-field query that is then enriched with terms that are likely to occur in the relevant datasets. We compare and evaluate two query expansion strategies, one based on the Rocchio method and another based on a biomedical lexicon. We then perform a comprehensive comparative evaluation of our method on the bioCADDIE dataset collection for biomedical retrieval. We demonstrate the effectiveness of our multi-field query method compared to two baselines, with MAP improved from 0.2171 and 0.2669 to 0.2996. We also show the benefits of query expansion, where the Rocchio expanstion method improves the MAP for our two baselines from 0.2171 and 0.2669 to 0.335. We show that the Rocchio query expansion method slightly outperforms the one based on the biomedical lexicon as a source of terms, with an improvement of roughly 3% for MAP. However, the query expansion method based on the biomedical lexicon is much less resource intensive since it does not require computation of any relevance feedback set or any initial execution of the query. Hence, in term of trade-off between efficiency, execution time and retrieval accuracy, we argue that the query expansion method based on the biomedical lexicon offers the best performance for a prototype biomedical data search engine intended to be used at a large scale. In the official bioCADDIE challenge results, although our approach is ranked seventh in terms of the infNDCG evaluation metric, it ranks second in term of P@10 and NDCG. Hence, the method proposed here provides overall good retrieval performance in relation to the approaches of other competitors. Consequently, the observations made in this paper should benefit the development of a Data Discovery Index prototype or the improvement of the existing one. © The Author(s) 2017. Published by Oxford University Press.
Multi-field query expansion is effective for biomedical dataset retrieval
2017-01-01
Abstract In the context of the bioCADDIE challenge addressing information retrieval of biomedical datasets, we propose a method for retrieval of biomedical data sets with heterogenous schemas through query reformulation. In particular, the method proposed transforms the initial query into a multi-field query that is then enriched with terms that are likely to occur in the relevant datasets. We compare and evaluate two query expansion strategies, one based on the Rocchio method and another based on a biomedical lexicon. We then perform a comprehensive comparative evaluation of our method on the bioCADDIE dataset collection for biomedical retrieval. We demonstrate the effectiveness of our multi-field query method compared to two baselines, with MAP improved from 0.2171 and 0.2669 to 0.2996. We also show the benefits of query expansion, where the Rocchio expanstion method improves the MAP for our two baselines from 0.2171 and 0.2669 to 0.335. We show that the Rocchio query expansion method slightly outperforms the one based on the biomedical lexicon as a source of terms, with an improvement of roughly 3% for MAP. However, the query expansion method based on the biomedical lexicon is much less resource intensive since it does not require computation of any relevance feedback set or any initial execution of the query. Hence, in term of trade-off between efficiency, execution time and retrieval accuracy, we argue that the query expansion method based on the biomedical lexicon offers the best performance for a prototype biomedical data search engine intended to be used at a large scale. In the official bioCADDIE challenge results, although our approach is ranked seventh in terms of the infNDCG evaluation metric, it ranks second in term of P@10 and NDCG. Hence, the method proposed here provides overall good retrieval performance in relation to the approaches of other competitors. Consequently, the observations made in this paper should benefit the development of a Data Discovery Index prototype or the improvement of the existing one. PMID:29220457
Effects of unique biomedical education programs for engineers: REDEEM and ESTEEM projects.
Matsuki, Noriaki; Takeda, Motohiro; Yamano, Masahiro; Imai, Yohsuke; Ishikawa, Takuji; Yamaguchi, Takami
2009-06-01
Current engineering applications in the medical arena are extremely progressive. However, it is rather difficult for medical doctors and engineers to discuss issues because they do not always understand one another's jargon or ways of thinking. Ideally, medical engineers should become acquainted with medicine, and engineers should be able to understand how medical doctors think. Tohoku University in Japan has managed a number of unique reeducation programs for working engineers. Recurrent Education for the Development of Engineering Enhanced Medicine has been offered as a basic learning course since 2004, and Education through Synergetic Training for Engineering Enhanced Medicine has been offered as an advanced learning course since 2006. These programs, which were developed especially for engineers, consist of interactive, modular, and disease-based lectures (case studies) and substantial laboratory work. As a result of taking these courses, all students obtained better objective outcomes, on tests, and subjective outcomes, through student satisfaction. In this article, we report on our unique biomedical education programs for engineers and their effects on working engineers.
Summer Biomedical Engineering Institute 1972
NASA Technical Reports Server (NTRS)
Deloatch, E. M.
1973-01-01
The five problems studied for biomedical applications of NASA technology are reported. The studies reported are: design modification of electrophoretic equipment, operating room environment control, hematological viscometry, handling system for iridium, and indirect blood pressure measuring device.
Development of Concept-Based Physiology Lessons for Biomedical Engineering Undergraduate Students
ERIC Educational Resources Information Center
Nelson, Regina K.; Chesler, Naomi C.; Strang, Kevin T.
2013-01-01
engineering curriculum. In one or two introductory physiology courses, engineering students must learn physiology sufficiently to support learning in their subsequent engineering courses and careers. As preparation for future learning, physiology instruction centered on concepts may…
Sutton, Victoria R; Hauser, Susan E
2005-01-01
MD on Tap, a PDA application that searches and retrieves biomedical literature, is specifically designed for use by mobile healthcare professionals. With the goal of improving the usability of the application, a preliminary comparison was made of two search engines (PubMed and Essie) to determine which provided most efficient path to the desired clinically-relevant information.
Atomistic modeling of BN nanofillers for mechanical and thermal properties: a review.
Kumar, Rajesh; Parashar, Avinash
2016-01-07
Due to their exceptional mechanical properties, thermal conductivity and a wide band gap (5-6 eV), boron nitride nanotubes and nanosheets have promising applications in the field of engineering and biomedical science. Accurate modeling of failure or fracture in a nanomaterial inherently involves coupling of atomic domains of cracks and voids as well as a deformation mechanism originating from grain boundaries. This review highlights the recent progress made in the atomistic modeling of boron nitride nanofillers. Continuous improvements in computational power have made it possible to study the structural properties of these nanofillers at the atomistic scale.
What is biomedical informatics?
Bernstam, Elmer V.; Smith, Jack W.; Johnson, Todd R.
2009-01-01
Biomedical informatics lacks a clear and theoretically grounded definition. Many proposed definitions focus on data, information, and knowledge, but do not provide an adequate definition of these terms. Leveraging insights from the philosophy of information, we define informatics as the science of information, where information is data plus meaning. Biomedical informatics is the science of information as applied to or studied in the context of biomedicine. Defining the object of study of informatics as data plus meaning clearly distinguishes the field from related fields, such as computer science, statistics and biomedicine, which have different objects of study. The emphasis on data plus meaning also suggests that biomedical informatics problems tend to be difficult when they deal with concepts that are hard to capture using formal, computational definitions. In other words, problems where meaning must be considered are more difficult than problems where manipulating data without regard for meaning is sufficient. Furthermore, the definition implies that informatics research, teaching, and service should focus on biomedical information as data plus meaning rather than only computer applications in biomedicine. PMID:19683067
Physical properties of biological entities: an introduction to the ontology of physics for biology.
Cook, Daniel L; Bookstein, Fred L; Gennari, John H
2011-01-01
As biomedical investigators strive to integrate data and analyses across spatiotemporal scales and biomedical domains, they have recognized the benefits of formalizing languages and terminologies via computational ontologies. Although ontologies for biological entities-molecules, cells, organs-are well-established, there are no principled ontologies of physical properties-energies, volumes, flow rates-of those entities. In this paper, we introduce the Ontology of Physics for Biology (OPB), a reference ontology of classical physics designed for annotating biophysical content of growing repositories of biomedical datasets and analytical models. The OPB's semantic framework, traceable to James Clerk Maxwell, encompasses modern theories of system dynamics and thermodynamics, and is implemented as a computational ontology that references available upper ontologies. In this paper we focus on the OPB classes that are designed for annotating physical properties encoded in biomedical datasets and computational models, and we discuss how the OPB framework will facilitate biomedical knowledge integration. © 2011 Cook et al.
Engineering and physical sciences in oncology: challenges and opportunities.
Mitchell, Michael J; Jain, Rakesh K; Langer, Robert
2017-11-01
The principles of engineering and physics have been applied to oncology for nearly 50 years. Engineers and physical scientists have made contributions to all aspects of cancer biology, from quantitative understanding of tumour growth and progression to improved detection and treatment of cancer. Many early efforts focused on experimental and computational modelling of drug distribution, cell cycle kinetics and tumour growth dynamics. In the past decade, we have witnessed exponential growth at the interface of engineering, physics and oncology that has been fuelled by advances in fields including materials science, microfabrication, nanomedicine, microfluidics, imaging, and catalysed by new programmes at the National Institutes of Health (NIH), including the National Institute of Biomedical Imaging and Bioengineering (NIBIB), Physical Sciences in Oncology, and the National Cancer Institute (NCI) Alliance for Nanotechnology. Here, we review the advances made at the interface of engineering and physical sciences and oncology in four important areas: the physical microenvironment of the tumour and technological advances in drug delivery; cellular and molecular imaging; and microfluidics and microfabrication. We discussthe research advances, opportunities and challenges for integrating engineering and physical sciences with oncology to develop new methods to study, detect and treat cancer, and we also describe the future outlook for these emerging areas.
Carbon dots: emerging theranostic nanoarchitectures.
Mishra, Vijay; Patil, Akshay; Thakur, Sourav; Kesharwani, Prashant
2018-06-01
Nanotechnology has gained significant interest from biomedical and analytical researchers in recent years. Carbon dots (C-dots), a new member of the carbon nanomaterial family, are spherical, nontoxic, biocompatible, and discrete particles less than 10nm in diameter. Research interest has focused on C-dots because of their ultra-compact nanosize, favorable biocompatibility, outstanding photoluminescence, superior electron transfer ability, and versatile surface engineering properties. C-dots show significant potential for use in cellular imaging, biosensing, targeted drug delivery, and other biomedical applications. Here we discuss C-dots, in terms of their physicochemical properties, fabrication techniques, toxicity issues, surface engineering and biomedical potential in drug delivery, targeting as well as bioimaging. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
McCallister, Thomas; Gidney, Elwood; Adams, Devin; Diercks, David R.; Ghosh, Santaneel
2014-11-01
Engineered magnetic nanocarriers offer attractive options for implementing novel therapeutic solutions in biomedical research; however lack of biocompatibility and external tunability have prevented a biomedical breakthrough. Here we report multifunctional, magnetic nanospheres with tailored size, volumetric transition range, and magnetic properties based on biocompatible, thermo-responsive oligo(ethylene glycol) methacrylate biopolymers. Precise control of the nanosphere size in the range 100-300 nm, coupled with a higher and broader volumetric transition range (32-42 °C), is ideal for various biomedical applications. More importantly, super-paramagnetic behavior of the nanocarriers, even after polymer shell shrinkage, indicates stable and easily controllable loss mechanisms under exposure to an ac magnetic field.
Nadkarni, Devika; Elhajj, Imad; Dawy, Zaher; Ghattas, Hala; Zaman, Muhammad H
2017-01-01
Conflict and the subsequent displacement of populations creates unique challenges in the delivery of quality health care to the affected population. Equitable access to quality care demands a multi-pronged strategy with a growing need, and role, for technological innovation to address these challenges. While there have been significant contributions towards alleviating the burden of conflict via data informatics and analytics, communication technology, and geographic information systems, little has been done within biomedical engineering. This article elaborates on the causes for gaps in biomedical innovation for refugee populations affected by conflict, tackles preconceived notions, takes stock of recent developments in promising technologies to address these challenges, and identifies tangible action items to create a stronger and sustainable pipeline for biomedical technological innovation to improve the health and well-being of an increasing group of vulnerable people around the world.
omniClassifier: a Desktop Grid Computing System for Big Data Prediction Modeling
Phan, John H.; Kothari, Sonal; Wang, May D.
2016-01-01
Robust prediction models are important for numerous science, engineering, and biomedical applications. However, best-practice procedures for optimizing prediction models can be computationally complex, especially when choosing models from among hundreds or thousands of parameter choices. Computational complexity has further increased with the growth of data in these fields, concurrent with the era of “Big Data”. Grid computing is a potential solution to the computational challenges of Big Data. Desktop grid computing, which uses idle CPU cycles of commodity desktop machines, coupled with commercial cloud computing resources can enable research labs to gain easier and more cost effective access to vast computing resources. We have developed omniClassifier, a multi-purpose prediction modeling application that provides researchers with a tool for conducting machine learning research within the guidelines of recommended best-practices. omniClassifier is implemented as a desktop grid computing system using the Berkeley Open Infrastructure for Network Computing (BOINC) middleware. In addition to describing implementation details, we use various gene expression datasets to demonstrate the potential scalability of omniClassifier for efficient and robust Big Data prediction modeling. A prototype of omniClassifier can be accessed at http://omniclassifier.bme.gatech.edu/. PMID:27532062
Research report: learning styles of biomedical engineering students.
Dee, Kay C; Nauman, Eric A; Livesay, Glen A; Rice, Janet
2002-09-01
Examining students' learning styles can yield information useful to the design of learning activities, courses, and curricula. A variety of measures have been used to characterize learning styles, but the literature contains little information specific to biomedical engineering (BMEN) students. We, therefore, utilized Felder's Index of Learning Styles to investigate the learning style preferences of BMEN students at Tulane University. Tulane BMEN students preferred to receive information visually (preferred by 88% of the student sample) rather than verbally, focus on sensory information (55%) instead of intuitive information, process information actively (66%) instead of reflectively, and understand information globally (59%) rather than sequentially. These preferences varied between cohorts (freshman, sophomore, etc.) and a significantly higher percentage of female students preferred active and sensing learning styles. Compared to other engineering student populations, our sample of Tulane BMEN students contained the highest percentage of students preferring the global learning style. Whether this is a general trend for all BMEN students or a trait specific to Tulane engineers requires further investigation. Regardless, this study confirms the existence of a range of learning styles within biomedical engineering students, and provides motivation for instructors to consider how well their teaching style engages multiple learning styles.
Schultz, Jane S; Rodgers, V G J
2012-07-01
The Department of Bioengineering at the University of California, Riverside (UCR), was established in 2006 and is the youngest department in the Bourns College of Engineering. It is an interdisciplinary research engine that builds strength from highly recognized experts in biochemistry, biophysics, biology, and engineering, focusing on common critical themes. The range of faculty research interests is notable for its diversity, from the basic cell biology through cell function to the physiology of the whole organism, each directed at breakthroughs in biomedical devices for measurement and therapy. The department forges future leaders in bioengineering, mirroring the field in being energetic, interdisciplinary, and fast moving at the frontiers of biomedical discoveries. Our educational programs combine a solid foundation in bio logical sciences and engineering, diverse communication skills, and training in the most advanced quantitative bioengineering research. Bioengineering at UCR also includes the Bioengineering Interdepartmental Graduate (BIG) program. With its slogan Start-Grow-Be-BIG, it is already recognized for its many accomplishments, including being third in the nation in 2011 for bioengineering students receiving National Science Foundation graduate research fellowships as well as being one of the most ethnically inclusive programs in the nation.
A method for exploring implicit concept relatedness in biomedical knowledge network.
Bai, Tian; Gong, Leiguang; Wang, Ye; Wang, Yan; Kulikowski, Casimir A; Huang, Lan
2016-07-19
Biomedical information and knowledge, structural and non-structural, stored in different repositories can be semantically connected to form a hybrid knowledge network. How to compute relatedness between concepts and discover valuable but implicit information or knowledge from it effectively and efficiently is of paramount importance for precision medicine, and a major challenge facing the biomedical research community. In this study, a hybrid biomedical knowledge network is constructed by linking concepts across multiple biomedical ontologies as well as non-structural biomedical knowledge sources. To discover implicit relatedness between concepts in ontologies for which potentially valuable relationships (implicit knowledge) may exist, we developed a Multi-Ontology Relatedness Model (MORM) within the knowledge network, for which a relatedness network (RN) is defined and computed across multiple ontologies using a formal inference mechanism of set-theoretic operations. Semantic constraints are designed and implemented to prune the search space of the relatedness network. Experiments to test examples of several biomedical applications have been carried out, and the evaluation of the results showed an encouraging potential of the proposed approach to biomedical knowledge discovery.
An information technology emphasis in biomedical informatics education.
Kane, Michael D; Brewer, Jeffrey L
2007-02-01
Unprecedented growth in the interdisciplinary domain of biomedical informatics reflects the recent advancements in genomic sequence availability, high-content biotechnology screening systems, as well as the expectations of computational biology to command a leading role in drug discovery and disease characterization. These forces have moved much of life sciences research almost completely into the computational domain. Importantly, educational training in biomedical informatics has been limited to students enrolled in the life sciences curricula, yet much of the skills needed to succeed in biomedical informatics involve or augment training in information technology curricula. This manuscript describes the methods and rationale for training students enrolled in information technology curricula in the field of biomedical informatics, which augments the existing information technology curriculum and provides training on specific subjects in Biomedical Informatics not emphasized in bioinformatics courses offered in life science programs, and does not require prerequisite courses in the life sciences.
Nagaoka, Tomoaki; Watanabe, Soichi
2012-01-01
Electromagnetic simulation with anatomically realistic computational human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the computational human model, we adapt three-dimensional FDTD code to a multi-GPU cluster environment with Compute Unified Device Architecture and Message Passing Interface. Our multi-GPU cluster system consists of three nodes. The seven GPU boards (NVIDIA Tesla C2070) are mounted on each node. We examined the performance of the FDTD calculation on multi-GPU cluster environment. We confirmed that the FDTD calculation on the multi-GPU clusters is faster than that on a multi-GPU (a single workstation), and we also found that the GPU cluster system calculate faster than a vector supercomputer. In addition, our GPU cluster system allowed us to perform the large-scale FDTD calculation because were able to use GPU memory of over 100 GB.
Berglund, Jennifer
2015-01-01
Let's face it: In the United States, a college degree isn't what it used to be. These days, 46% of recent college graduates consider themselves underemployed and in jobs that do not require their college degrees--degrees that have already cost many of these grads and their families hundreds of thousands of dollars in student loans, with no promise of a job and salary to pay those loans back. But engineering majors are said to be outliers. Engineering as a field is widely considered one of, if not the most, lucrative academic paths for students seeking well-paid employment immediately following college. The U.S. Bureau of Labor Statistics indicates that nearly 40% of the 45 most highly paid professions that require only a bachelor's degree are in engineering. Salaries for all biomedical engineers, entry level or not, are among the highest, with a median pay of US$86,960. And engineering departments at colleges are not shy to advertise these numbers: the Biomedical Engineering Department at the University of Texas, Austin, declares on its Web page that, "electing to graduate with a major in biomedical engineering opens the door to an ever-growing amount of job opportunities," citing a 72%, ten-year job growth forecast. Boston University's program cites U.S. News and World Report's claim that BME is the country's fastest-growing occupation.
A natural fit: home healthcare and biomedical engineering.
Damasco, Nestor; Abe, Chris
2010-01-01
The involvement of Biomed in management of home care equipment has become a natural fit for Rady Children's Hospital. Managing all aspects of home care equipment through an in-house biomedical engineering department is cost-effective, efficient, provides excellent customer service, and enhances the relationship with the clinical staff and patients. It develops a sense of security for patients and staff that home care equipment is tested and maintained in a stringent manner that promotes safety.
Sutton, Victoria R.; Hauser, Susan E.
2005-01-01
MD on Tap, a PDA application that searches and retrieves biomedical literature, is specifically designed for use by mobile healthcare professionals. With the goal of improving the usability of the application, a preliminary comparison was made of two search engines (PubMed and Essie) to determine which provided most efficient path to the desired clinically-relevant information. PMID:16779415
Where to search top-K biomedical ontologies?
Oliveira, Daniela; Butt, Anila Sahar; Haller, Armin; Rebholz-Schuhmann, Dietrich; Sahay, Ratnesh
2018-03-20
Searching for precise terms and terminological definitions in the biomedical data space is problematic, as researchers find overlapping, closely related and even equivalent concepts in a single or multiple ontologies. Search engines that retrieve ontological resources often suggest an extensive list of search results for a given input term, which leads to the tedious task of selecting the best-fit ontological resource (class or property) for the input term and reduces user confidence in the retrieval engines. A systematic evaluation of these search engines is necessary to understand their strengths and weaknesses in different search requirements. We have implemented seven comparable Information Retrieval ranking algorithms to search through ontologies and compared them against four search engines for ontologies. Free-text queries have been performed, the outcomes have been judged by experts and the ranking algorithms and search engines have been evaluated against the expert-based ground truth (GT). In addition, we propose a probabilistic GT that is developed automatically to provide deeper insights and confidence to the expert-based GT as well as evaluating a broader range of search queries. The main outcome of this work is the identification of key search factors for biomedical ontologies together with search requirements and a set of recommendations that will help biomedical experts and ontology engineers to select the best-suited retrieval mechanism in their search scenarios. We expect that this evaluation will allow researchers and practitioners to apply the current search techniques more reliably and that it will help them to select the right solution for their daily work. The source code (of seven ranking algorithms), ground truths and experimental results are available at https://github.com/danielapoliveira/bioont-search-benchmark.
Expose Mechanical Engineering Students to Biomechanics Topics
ERIC Educational Resources Information Center
Shen, Hui
2011-01-01
To adapt the focus of engineering education to emerging new industries and technologies nationwide and in the local area, a biomechanics module has been developed and incorporated into a mechanical engineering technical elective course to expose mechanical engineering students at ONU (Ohio Northern University) to the biomedical engineering topics.…
The evolution and future of minimalism in neurological surgery.
Liu, Charles Y; Wang, Michael Y; Apuzzo, Michael L J
2004-11-01
The evolution of the field of neurological surgery has been marked by a progressive minimalism. This has been evident in the development of an entire arsenal of modern neurosurgical enterprises, including microneurosurgery, neuroendoscopy, stereotactic neurosurgery, endovascular techniques, radiosurgical systems, intraoperative and navigational devices, and in the last decade, cellular and molecular adjuvants. In addition to reviewing the major developments and paradigm shifts in the cyclic reinvention of the field as it currently stands, this paper attempts to identify forces and developments that are likely to fuel the irresistible escalation of minimalism into the future. These forces include discoveries in computational science, imaging, molecular science, biomedical engineering, and information processing as they relate to the theme of minimalism. These areas are explained in the light of future possibilities offered by the emerging field of nanotechnology with molecular engineering.
Adolf Friedrich Fercher: a pioneer of biomedical optics.
Hitzenberger, Christoph K
2017-11-01
Adolf Friedrich Fercher, an outstanding pioneer of biomedical optics, passed away earlier this year. He was a brilliant and visionary researcher who pioneered various fields of biomedical optics, such as laser speckle flowgraphy, tissue interferometry, and optical coherence tomography (OCT). On the occasion of the 25th anniversary of OCT, this paper reviews and commemorates Fercher's pioneering work. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Technical Reports Server (NTRS)
Charles, John B.
2017-01-01
Before Apollo fire, early Apollo missions were expected to continue pattern established in Gemini program of accommodating significant scientific and biological experimentation, including human biomedical studies, during flights. Apollo1 and Apollo2, both 2-week engineering test flights, were to carry almost as many biomedical studies as Gemini 7, a 2-week medical test mission.
Ontology-Oriented Programming for Biomedical Informatics.
Lamy, Jean-Baptiste
2016-01-01
Ontologies are now widely used in the biomedical domain. However, it is difficult to manipulate ontologies in a computer program and, consequently, it is not easy to integrate ontologies with databases or websites. Two main approaches have been proposed for accessing ontologies in a computer program: traditional API (Application Programming Interface) and ontology-oriented programming, either static or dynamic. In this paper, we will review these approaches and discuss their appropriateness for biomedical ontologies. We will also present an experience feedback about the integration of an ontology in a computer software during the VIIIP research project. Finally, we will present OwlReady, the solution we developed.
Science at the interstices: an evolution in the academy.
Balser, Jeffrey R; Baruchin, Andrea
2008-09-01
Biomedical science is at an evolutionary turning point. Many of the rate-limiting steps to realizing the next generation of personalized, highly targeted diagnostics and therapeutics rest at the interstices between biomedical science and the classic, university-based disciplines, such as physics, mathematics, computational science, engineering, social sciences, business, and law. Institutes, centers, or other entities created to foster interdisciplinary science are rapidly forming to tackle these formidable challenges, but they are plagued with substantive barriers, born of traditions, processes, and culture, which impede scientific progress and endanger success. Without a more seamless interdisciplinary framework, academic health centers will struggle to move transformative advances in technology into the foundation of biomedical science, and the equally challenging advancement of models that effectively integrate new molecular diagnostics and therapies into the business and social fabric of our population will be similarly hampered. At the same time, excess attention on rankings tied to competition for National Institutes of Health and other federal funds adversely encourages academic medical centers (AMCs) and universities to hoard, rather than share, resources effectively and efficiently. To fully realize their discovery potential, AMCs must consider a substantive realignment relative to one another, as well as with their associated universities, as the academy looks toward innovative approaches to provide a more supportive foundation for the emergent biomedical research enterprise. The authors discuss potential models that could serve to lower barriers to interdisciplinary science, promoting a new synergy between AMCs and their parent universities.
Wu, Hulin; Xue, Hongqi; Kumar, Arun
2012-06-01
Differential equations are extensively used for modeling dynamics of physical processes in many scientific fields such as engineering, physics, and biomedical sciences. Parameter estimation of differential equation models is a challenging problem because of high computational cost and high-dimensional parameter space. In this article, we propose a novel class of methods for estimating parameters in ordinary differential equation (ODE) models, which is motivated by HIV dynamics modeling. The new methods exploit the form of numerical discretization algorithms for an ODE solver to formulate estimating equations. First, a penalized-spline approach is employed to estimate the state variables and the estimated state variables are then plugged in a discretization formula of an ODE solver to obtain the ODE parameter estimates via a regression approach. We consider three different order of discretization methods, Euler's method, trapezoidal rule, and Runge-Kutta method. A higher-order numerical algorithm reduces numerical error in the approximation of the derivative, which produces a more accurate estimate, but its computational cost is higher. To balance the computational cost and estimation accuracy, we demonstrate, via simulation studies, that the trapezoidal discretization-based estimate is the best and is recommended for practical use. The asymptotic properties for the proposed numerical discretization-based estimators are established. Comparisons between the proposed methods and existing methods show a clear benefit of the proposed methods in regards to the trade-off between computational cost and estimation accuracy. We apply the proposed methods t an HIV study to further illustrate the usefulness of the proposed approaches. © 2012, The International Biometric Society.
Semantic biomedical resource discovery: a Natural Language Processing framework.
Sfakianaki, Pepi; Koumakis, Lefteris; Sfakianakis, Stelios; Iatraki, Galatia; Zacharioudakis, Giorgos; Graf, Norbert; Marias, Kostas; Tsiknakis, Manolis
2015-09-30
A plethora of publicly available biomedical resources do currently exist and are constantly increasing at a fast rate. In parallel, specialized repositories are been developed, indexing numerous clinical and biomedical tools. The main drawback of such repositories is the difficulty in locating appropriate resources for a clinical or biomedical decision task, especially for non-Information Technology expert users. In parallel, although NLP research in the clinical domain has been active since the 1960s, progress in the development of NLP applications has been slow and lags behind progress in the general NLP domain. The aim of the present study is to investigate the use of semantics for biomedical resources annotation with domain specific ontologies and exploit Natural Language Processing methods in empowering the non-Information Technology expert users to efficiently search for biomedical resources using natural language. A Natural Language Processing engine which can "translate" free text into targeted queries, automatically transforming a clinical research question into a request description that contains only terms of ontologies, has been implemented. The implementation is based on information extraction techniques for text in natural language, guided by integrated ontologies. Furthermore, knowledge from robust text mining methods has been incorporated to map descriptions into suitable domain ontologies in order to ensure that the biomedical resources descriptions are domain oriented and enhance the accuracy of services discovery. The framework is freely available as a web application at ( http://calchas.ics.forth.gr/ ). For our experiments, a range of clinical questions were established based on descriptions of clinical trials from the ClinicalTrials.gov registry as well as recommendations from clinicians. Domain experts manually identified the available tools in a tools repository which are suitable for addressing the clinical questions at hand, either individually or as a set of tools forming a computational pipeline. The results were compared with those obtained from an automated discovery of candidate biomedical tools. For the evaluation of the results, precision and recall measurements were used. Our results indicate that the proposed framework has a high precision and low recall, implying that the system returns essentially more relevant results than irrelevant. There are adequate biomedical ontologies already available, sufficiency of existing NLP tools and quality of biomedical annotation systems for the implementation of a biomedical resources discovery framework, based on the semantic annotation of resources and the use on NLP techniques. The results of the present study demonstrate the clinical utility of the application of the proposed framework which aims to bridge the gap between clinical question in natural language and efficient dynamic biomedical resources discovery.
Near-infrared light-triggered "on/off" motion of polymer multilayer rockets.
Wu, Zhiguang; Lin, Xiankun; Wu, Yingjie; Si, Tieyan; Sun, Jianmin; He, Qiang
2014-06-24
We describe an approach to modulating the on-demand motion of catalytic polymer-based microengines via near-infrared (NIR) laser irradiation. The polymer multilayer motor was fabricated by the template-assisted layer-by-layer assembly and subsequently deposition of platinum nanoparticles inside and a thin gold shell outside. Then a mixed monolayer of a tumor-targeted peptide and an antifouling poly(ethylene glycol) was functionalized on the gold shell. The microengines remain motionless at the critical peroxide concentration (0.1%, v/v); however, NIR illumination on the engines leads to a photothermal effect and thus rapidly triggers the motion of the catalytic engines. Computational modeling explains the photothermal effect and gives the temperature profile accordingly. Also, the photothermal effect can alone activate the motion of the engines in the absence of the peroxide fuel, implying that it may eliminate the use of toxic fuel in the future. The targeted recognition ability and subsequently killing of cancer cells by the photothermal effect under the higher power of a NIR laser were illustrated. Our results pave the way to apply self-propelled synthetic engines in biomedical fields.
Progress and Prospects for Stem Cell Engineering
Ashton, Randolph S.; Keung, Albert J.; Peltier, Joseph; Schaffer, David V.
2018-01-01
Stem cells offer tremendous biomedical potential owing to their abilities to self-renew and differentiate into cell types of multiple adult tissues. Researchers and engineers have increasingly developed novel discovery technologies, theoretical approaches, and cell culture systems to investigate microenvironmental cues and cellular signaling events that control stem cell fate. Many of these technologies facilitate high-throughput investigation of microenvironmental signals and the intracellular signaling networks and machinery processing those signals into cell fate decisions. As our aggregate empirical knowledge of stem cell regulation grows, theoretical modeling with systems and computational biology methods has and will continue to be important for developing our ability to analyze and extract important conceptual features of stem cell regulation from complex data. Based on this body of knowledge, stem cell engineers will continue to develop technologies that predictably control stem cell fate with the ultimate goal of being able to accurately and economically scale up these systems for clinical-grade production of stem cell therapeutics. PMID:22432628
Emerging Engineering Fields: New Jobs in an Old Profession.
ERIC Educational Resources Information Center
Martin, Gail M.
1980-01-01
Discusses career opportunities, educational requirements, and information sources in these emerging professions: environmental, biomedical, fire protection, ocean, energy, ceramic, and plastics engineering. (SK)
Predicting Silk Fiber Mechanical Properties through Multiscale Simulation and Protein Design.
Rim, Nae-Gyune; Roberts, Erin G; Ebrahimi, Davoud; Dinjaski, Nina; Jacobsen, Matthew M; Martín-Moldes, Zaira; Buehler, Markus J; Kaplan, David L; Wong, Joyce Y
2017-08-14
Silk is a promising material for biomedical applications, and much research is focused on how application-specific, mechanical properties of silk can be designed synthetically through proper amino acid sequences and processing parameters. This protocol describes an iterative process between research disciplines that combines simulation, genetic synthesis, and fiber analysis to better design silk fibers with specific mechanical properties. Computational methods are used to assess the protein polymer structure as it forms an interconnected fiber network through shearing and how this process affects fiber mechanical properties. Model outcomes are validated experimentally with the genetic design of protein polymers that match the simulation structures, fiber fabrication from these polymers, and mechanical testing of these fibers. Through iterative feedback between computation, genetic synthesis, and fiber mechanical testing, this protocol will enable a priori prediction capability of recombinant material mechanical properties via insights from the resulting molecular architecture of the fiber network based entirely on the initial protein monomer composition. This style of protocol may be applied to other fields where a research team seeks to design a biomaterial with biomedical application-specific properties. This protocol highlights when and how the three research groups (simulation, synthesis, and engineering) should be interacting to arrive at the most effective method for predictive design of their material.
Zhao, Wen; Li, Jiaojiao; Jin, Kaixiang; Liu, Wenlong; Qiu, Xuefeng; Li, Chenrui
2016-02-01
Electrospun PLGA-based scaffolds have been applied extensively in biomedical engineering, such as tissue engineering and drug delivery system. Due to lack of the recognition sites on cells, hydropholicity and single-function, the applications of PLGA fibrous scaffolds are limited. In order to tackle these issues, many works have been done to obtain functional PLGA-based scaffolds, including surface modifications, the fabrication of PLGA-based composite scaffolds and drug-loaded scaffolds. The functional PLGA-based scaffolds have significantly improved cell adhesion, attachment and proliferation. Moreover, the current study has summarized the applications of functional PLGA-based scaffolds in wound dressing, vascular and bone tissue engineering area as well as drug delivery system. Copyright © 2015 Elsevier B.V. All rights reserved.
Thompson, Lara A; Adebayo, A Segun; Nian Zhang; Haghani, Sasan; Dowell, Kathleen; Shetty, Devdas
2016-08-01
Biomedical Engineering (BME) is a new, multidisciplinary, and rapidly growing field, however, the BME Workforce suffers from limited ethnic and gender diversity. Despite the demand and growth of this new field due to its public health importance, only 4 out of the 107 Historically Black Colleges and Universities (HBCUs) nationwide offers a Bachelor's of Science (B.S.) in Bio-Engineering related fields. In order to contribute to a growing BME Workforce, HBCUs need to react and offer more degree-programs relevant to BME. At the University of the District of Columbia (UDC), an HBCU and the District's only public institution for higher learning, we have recently established a new, degree program: Bachelor of Science in Biomedical Engineering (B.S. in BME) full-board approved in Fall 2014, with program activities initiated in Fall 2015. The educational goal of this program is to enhance the quality and diversity of the BME Workforce via student professional development, new and relevant BME courses, and BME scholarly activities (e.g., guest lectures and journal club sessions), ultimately to increase the number of ethnic minorities pursuing careers and degrees in BME. Through our program activities, we are aiming to meet the nation's demand to contribute to a diverse BME workforce, directed towards solving problems in human health. A secondary, but related goal, is to increase the diversity of STEM-related fields. This paper summarizes our initial, but encouraging, BME activity-related findings. However, this study will be longitudinal (on a multiple year time period) to observe the true outcomes of our initiative.
Lee, Geon Hui; Lee, Jae Seo; Wang, Xiaohong; Lee, Sang Hoon
2016-01-07
During the last decades, the engineering of well-defined 3D tissues has attracted great attention because it provides in vivo mimicking environment and can be a building block for the engineering of bioartificial organs. In this Review, diverse engineering methods of 3D tissues using microscale devices are introduced. Recent progress of microtechnologies has enabled the development of microplatforms for bottom-up assembly of diverse shaped 3D tissues consisting of various cells. Micro hanging-drop plates, microfluidic chips, and arrayed microwells are the typical examples. The encapsulation of cells in hydrogel microspheres and microfibers allows the engineering of 3D microtissues with diverse shapes. Applications of 3D microtissues in biomedical fields are described, and the future direction of microplatform-based engineering of 3D micro-tissues is discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Fiorini, Rodolfo A.; Dacquino, Gianfranco
2005-03-01
GEOGINE (GEOmetrical enGINE), a state-of-the-art OMG (Ontological Model Generator) based on n-D Tensor Invariants for n-Dimensional shape/texture optimal synthetic representation, description and learning, was presented in previous conferences elsewhere recently. Improved computational algorithms based on the computational invariant theory of finite groups in Euclidean space and a demo application is presented. Progressive model automatic generation is discussed. GEOGINE can be used as an efficient computational kernel for fast reliable application development and delivery in advanced biomedical engineering, biometric, intelligent computing, target recognition, content image retrieval, data mining technological areas mainly. Ontology can be regarded as a logical theory accounting for the intended meaning of a formal dictionary, i.e., its ontological commitment to a particular conceptualization of the world object. According to this approach, "n-D Tensor Calculus" can be considered a "Formal Language" to reliably compute optimized "n-Dimensional Tensor Invariants" as specific object "invariant parameter and attribute words" for automated n-Dimensional shape/texture optimal synthetic object description by incremental model generation. The class of those "invariant parameter and attribute words" can be thought as a specific "Formal Vocabulary" learned from a "Generalized Formal Dictionary" of the "Computational Tensor Invariants" language. Even object chromatic attributes can be effectively and reliably computed from object geometric parameters into robust colour shape invariant characteristics. As a matter of fact, any highly sophisticated application needing effective, robust object geometric/colour invariant attribute capture and parameterization features, for reliable automated object learning and discrimination can deeply benefit from GEOGINE progressive automated model generation computational kernel performance. Main operational advantages over previous, similar approaches are: 1) Progressive Automated Invariant Model Generation, 2) Invariant Minimal Complete Description Set for computational efficiency, 3) Arbitrary Model Precision for robust object description and identification.
Promising iron oxide-based magnetic nanoparticles in biomedical engineering.
Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Vo, Toi Van; Lee, Beom-Jin
2012-12-01
For the past few decades biomedical engineering has imprinted its significant impact on the map of science through its wide applications on many other fields. An important example obviously proving this fact is the versatile application of magnetic nanoparticles in theranostics. Due to preferable properties such as biocompatibility, non-toxicity compared to other metal derivations, iron oxide-based magnetic nanoparticles was chosen to be addressed in this review. Aim of this review is to give the readers a whole working window of these magnetic nanoparticles in the current context of science. Thus, preparation of magnetic iron oxide nanoparticles with the so-far techniques, methods of characterizing the nanoparticles as well as their most recent biomedical applications will be stated.
Trapp, Jamie
2016-12-01
There are often differences in a publication's citation count, depending on the database accessed. Here, aspects of citation counts for medical physics and biomedical engineering papers are studied using papers published in the journal Australasian physical and engineering sciences in medicine. Comparison is made between the Web of Science, Scopus, and Google Scholar. Papers are categorised into subject matter, and citation trends are examined. It is shown that review papers as a group tend to receive more citations on average; however the highest cited individual papers are more likely to be research papers.
Biomedical Biopolymers, their Origin and Evolution in Biomedical Sciences: A Systematic Review
Yadav, Harsh; Shah, Veena Gowri; Shah, Gaurav; Dhaka, Gaurav
2015-01-01
Biopolymers provide a plethora of applications in the pharmaceutical and medical applications. A material that can be used for biomedical applications like wound healing, drug delivery and tissue engineering should possess certain properties like biocompatibility, biodegradation to non-toxic products, low antigenicity, high bio-activity, processability to complicated shapes with appropriate porosity, ability to support cell growth and proliferation and appropriate mechanical properties, as well as maintaining mechanical strength. This paper reviews biodegradable biopolymers focusing on their potential in biomedical applications. Biopolymers most commonly used and most abundantly available have been described with focus on the properties relevant to biomedical importance. PMID:26501034
Biomedical and Biochemical Engineering for K-12 Students
ERIC Educational Resources Information Center
Madihally, Sundararajan V.; Maase, Eric L.
2006-01-01
REACH (Reaching Engineering and Architectural Career Heights) is a weeklong summer academy outreach program for high school students interested in engineering, architecture, or technology. Through module-based instruction, students are introduced to various engineering fields. This report describes one of the modules focused on introducing…
A neural joint model for entity and relation extraction from biomedical text.
Li, Fei; Zhang, Meishan; Fu, Guohong; Ji, Donghong
2017-03-31
Extracting biomedical entities and their relations from text has important applications on biomedical research. Previous work primarily utilized feature-based pipeline models to process this task. Many efforts need to be made on feature engineering when feature-based models are employed. Moreover, pipeline models may suffer error propagation and are not able to utilize the interactions between subtasks. Therefore, we propose a neural joint model to extract biomedical entities as well as their relations simultaneously, and it can alleviate the problems above. Our model was evaluated on two tasks, i.e., the task of extracting adverse drug events between drug and disease entities, and the task of extracting resident relations between bacteria and location entities. Compared with the state-of-the-art systems in these tasks, our model improved the F1 scores of the first task by 5.1% in entity recognition and 8.0% in relation extraction, and that of the second task by 9.2% in relation extraction. The proposed model achieves competitive performances with less work on feature engineering. We demonstrate that the model based on neural networks is effective for biomedical entity and relation extraction. In addition, parameter sharing is an alternative method for neural models to jointly process this task. Our work can facilitate the research on biomedical text mining.
Designing, Implementing and Maintaining a First Year Project Course in Electrical Engineering
ERIC Educational Resources Information Center
Lillieskold, J.; Ostlund, S.
2008-01-01
Being a modern electrical engineer does not only require state of the art skills in areas such as transfer and processing of information, electronics, systems engineering, and biomedical electrical engineering; it also requires generic engineering skills such as oral and written communication, team building, interpersonal skills, and the ability…
Couto, Francisco M; Pinto, H Sofia
2013-10-01
There is a prominent trend to augment and improve the formality of biomedical ontologies. For example, this is shown by the current effort on adding description logic axioms, such as disjointness. One of the key ontology applications that can take advantage of this effort is the conceptual (functional) similarity measurement. The presence of description logic axioms in biomedical ontologies make the current structural or extensional approaches weaker and further away from providing sound semantics-based similarity measures. Although beneficial in small ontologies, the exploration of description logic axioms by semantics-based similarity measures is computational expensive. This limitation is critical for biomedical ontologies that normally contain thousands of concepts. Thus in the process of gaining their rightful place, biomedical functional similarity measures have to take the journey of finding how this rich and powerful knowledge can be fully explored while keeping feasible computational costs. This manuscript aims at promoting and guiding the development of compelling tools that deliver what the biomedical community will require in a near future: a next-generation of biomedical similarity measures that efficiently and fully explore the semantics present in biomedical ontologies.
Explorative search of distributed bio-data to answer complex biomedical questions
2014-01-01
Background The huge amount of biomedical-molecular data increasingly produced is providing scientists with potentially valuable information. Yet, such data quantity makes difficult to find and extract those data that are most reliable and most related to the biomedical questions to be answered, which are increasingly complex and often involve many different biomedical-molecular aspects. Such questions can be addressed only by comprehensively searching and exploring different types of data, which frequently are ordered and provided by different data sources. Search Computing has been proposed for the management and integration of ranked results from heterogeneous search services. Here, we present its novel application to the explorative search of distributed biomedical-molecular data and the integration of the search results to answer complex biomedical questions. Results A set of available bioinformatics search services has been modelled and registered in the Search Computing framework, and a Bioinformatics Search Computing application (Bio-SeCo) using such services has been created and made publicly available at http://www.bioinformatics.deib.polimi.it/bio-seco/seco/. It offers an integrated environment which eases search, exploration and ranking-aware combination of heterogeneous data provided by the available registered services, and supplies global results that can support answering complex multi-topic biomedical questions. Conclusions By using Bio-SeCo, scientists can explore the very large and very heterogeneous biomedical-molecular data available. They can easily make different explorative search attempts, inspect obtained results, select the most appropriate, expand or refine them and move forward and backward in the construction of a global complex biomedical query on multiple distributed sources that could eventually find the most relevant results. Thus, it provides an extremely useful automated support for exploratory integrated bio search, which is fundamental for Life Science data driven knowledge discovery. PMID:24564278
The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update
Afgan, Enis; Baker, Dannon; van den Beek, Marius; Blankenberg, Daniel; Bouvier, Dave; Čech, Martin; Chilton, John; Clements, Dave; Coraor, Nate; Eberhard, Carl; Grüning, Björn; Guerler, Aysam; Hillman-Jackson, Jennifer; Von Kuster, Greg; Rasche, Eric; Soranzo, Nicola; Turaga, Nitesh; Taylor, James; Nekrutenko, Anton; Goecks, Jeremy
2016-01-01
High-throughput data production technologies, particularly ‘next-generation’ DNA sequencing, have ushered in widespread and disruptive changes to biomedical research. Making sense of the large datasets produced by these technologies requires sophisticated statistical and computational methods, as well as substantial computational power. This has led to an acute crisis in life sciences, as researchers without informatics training attempt to perform computation-dependent analyses. Since 2005, the Galaxy project has worked to address this problem by providing a framework that makes advanced computational tools usable by non experts. Galaxy seeks to make data-intensive research more accessible, transparent and reproducible by providing a Web-based environment in which users can perform computational analyses and have all of the details automatically tracked for later inspection, publication, or reuse. In this report we highlight recently added features enabling biomedical analyses on a large scale. PMID:27137889
Case study: use of problem-based learning to develop students' technical and professional skills
NASA Astrophysics Data System (ADS)
Warnock, James N.; Mohammadi-Aragh, M. Jean
2016-03-01
Problem-based learning (PBL) is a pedagogy that has attracted attention for many biomedical engineering curricula. The aim of the current study was to address the research question, 'Does PBL enable students to develop desirable professional engineering skills?' The desirable skills identified were communication, teamwork, problem solving and self-directed learning. Forty-seven students enrolled in a biomedical materials course participated in the case study. Students worked in teams to complete a series of problems throughout the semester. The results showed that students made significant improvements in their problem-solving skills, written communication and self-directed learning. Students also demonstrated an ability to work in teams and communicate orally. In conclusion, this case study provides empirical evidence of the efficacy of PBL on student learning. We discuss findings from our study and provide observations of student performance and perceptions that could be useful for faculty and researchers interested in PBL for biomedical engineering education.
A new visual navigation system for exploring biomedical Open Educational Resource (OER) videos
Zhao, Baoquan; Xu, Songhua; Lin, Shujin; Luo, Xiaonan; Duan, Lian
2016-01-01
Objective Biomedical videos as open educational resources (OERs) are increasingly proliferating on the Internet. Unfortunately, seeking personally valuable content from among the vast corpus of quality yet diverse OER videos is nontrivial due to limitations of today’s keyword- and content-based video retrieval techniques. To address this need, this study introduces a novel visual navigation system that facilitates users’ information seeking from biomedical OER videos in mass quantity by interactively offering visual and textual navigational clues that are both semantically revealing and user-friendly. Materials and Methods The authors collected and processed around 25 000 YouTube videos, which collectively last for a total length of about 4000 h, in the broad field of biomedical sciences for our experiment. For each video, its semantic clues are first extracted automatically through computationally analyzing audio and visual signals, as well as text either accompanying or embedded in the video. These extracted clues are subsequently stored in a metadata database and indexed by a high-performance text search engine. During the online retrieval stage, the system renders video search results as dynamic web pages using a JavaScript library that allows users to interactively and intuitively explore video content both efficiently and effectively. Results The authors produced a prototype implementation of the proposed system, which is publicly accessible at https://patentq.njit.edu/oer. To examine the overall advantage of the proposed system for exploring biomedical OER videos, the authors further conducted a user study of a modest scale. The study results encouragingly demonstrate the functional effectiveness and user-friendliness of the new system for facilitating information seeking from and content exploration among massive biomedical OER videos. Conclusion Using the proposed tool, users can efficiently and effectively find videos of interest, precisely locate video segments delivering personally valuable information, as well as intuitively and conveniently preview essential content of a single or a collection of videos. PMID:26335986
Pietrabissa, Riccardo; Reynolds, Pamela
2015-01-01
From Leonardo da Vinci's designs for ball bearings to the incredible engineering wizardry behind the Ferrari, the inventive, inquisitive, and ingenious spirit of the engineer has always lived--and thrived--in Italy. From education to research to product development, Italy has always been regarded as an engineering leader. But does this apply to biomedical engineering (BME)? Despite many successes, questions loom, as they do at engineering schools worldwide. Concerns such as whether BME programs are providing students with enough focused, practical, hands-on training remain at the forefront, as does the question of whether graduates will be able to find jobs in industry after university studies are over. Here, IEEE Pulse explores these topics with Riccardo Pietrabissa, president of the Gruppo Nazionale di Bioingegneria (National Bioengineering Group) and a full professor in the Department of Chemistry, Materials, and Chemical Engineering at Politecnico di Milano.
Character-level neural network for biomedical named entity recognition.
Gridach, Mourad
2017-06-01
Biomedical named entity recognition (BNER), which extracts important named entities such as genes and proteins, is a challenging task in automated systems that mine knowledge in biomedical texts. The previous state-of-the-art systems required large amounts of task-specific knowledge in the form of feature engineering, lexicons and data pre-processing to achieve high performance. In this paper, we introduce a novel neural network architecture that benefits from both word- and character-level representations automatically, by using a combination of bidirectional long short-term memory (LSTM) and conditional random field (CRF) eliminating the need for most feature engineering tasks. We evaluate our system on two datasets: JNLPBA corpus and the BioCreAtIvE II Gene Mention (GM) corpus. We obtained state-of-the-art performance by outperforming the previous systems. To the best of our knowledge, we are the first to investigate the combination of deep neural networks, CRF, word embeddings and character-level representation in recognizing biomedical named entities. Copyright © 2017 Elsevier Inc. All rights reserved.
Multi-GPU accelerated three-dimensional FDTD method for electromagnetic simulation.
Nagaoka, Tomoaki; Watanabe, Soichi
2011-01-01
Numerical simulation with a numerical human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the numerical human model, we adapt three-dimensional FDTD code to a multi-GPU environment using Compute Unified Device Architecture (CUDA). In this study, we used NVIDIA Tesla C2070 as GPGPU boards. The performance of multi-GPU is evaluated in comparison with that of a single GPU and vector supercomputer. The calculation speed with four GPUs was approximately 3.5 times faster than with a single GPU, and was slightly (approx. 1.3 times) slower than with the supercomputer. Calculation speed of the three-dimensional FDTD method using GPUs can significantly improve with an expanding number of GPUs.
Page, Andrew J.; Keane, Thomas M.; Naughton, Thomas J.
2010-01-01
We present a multi-heuristic evolutionary task allocation algorithm to dynamically map tasks to processors in a heterogeneous distributed system. It utilizes a genetic algorithm, combined with eight common heuristics, in an effort to minimize the total execution time. It operates on batches of unmapped tasks and can preemptively remap tasks to processors. The algorithm has been implemented on a Java distributed system and evaluated with a set of six problems from the areas of bioinformatics, biomedical engineering, computer science and cryptography. Experiments using up to 150 heterogeneous processors show that the algorithm achieves better efficiency than other state-of-the-art heuristic algorithms. PMID:20862190
Sandia National Laboratories Institutional Plan FY1994--1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-01
This report presents a five year plan for the laboratory. This plan takes advantage of the technical strengths of the lab and its staff to address issues of concern to the nation on a scope much broader than Sandia`s original mission, while maintaining the general integrity of the laboratory. The plan proposes initiatives in a number of technologies which overlap the needs of its customers and the strengths of its staff. They include: advanced manufacturing technology; electronics; information and computational technology; transportation energy technology and infrastructure; environmental technology; energy research and technology development; biomedical systems engineering; and post-cold war defensemore » imperatives.« less
Niimi, Shingo; Umezu, Mitsuo; Iseki, Hiroshi; Harada, Hiroshi Kasanuki Noboru; Mitsuishi, Mamoru; Kitamori, Takehiko; Tei, Yuichi; Nakaoka, Ryusuke; Haishima, Yuji
2014-01-01
Division of Medical Devices has been conducting the projects to accelerate the practical use of innovative medical devices to collaborate with TWIns, Center for Advanced Biomedical Sciences, Waseda University and School of Engineering, The University of Tokyo. The TWIns has been studying to aim at establishment of preclinical evaluation methods by "Engineering Based Medicine", and established Regulatory Science Institute for Medical Devices. School of Engineering, The University of Tokyo has been studying to aim at establishment of assessment methodology for innovative minimally invasive therapeutic devices, materials, and nanobio diagnostic devices. This report reviews the exchanges of personnel, the implement systems and the research progress of these projects.
Clinical Immersion and Biomedical Engineering Design Education: "Engineering Grand Rounds".
Walker, Matthew; Churchwell, André L
2016-03-01
Grand Rounds is a ritual of medical education and inpatient care comprised of presenting the medical problems and treatment of a patient to an audience of physicians, residents, and medical students. Traditionally, the patient would be in attendance for the presentation and would answer questions. Grand Rounds has evolved considerably over the years with most sessions being didactic-rarely having a patient present (although, in some instances, an actor will portray the patient). Other members of the team, such as nurses, nurse practitioners, and biomedical engineers, are not traditionally involved in the formal teaching process. In this study we examine the rapid ideation in a clinical setting to forge a system of cross talk between engineers and physicians as a steady state at the praxis of ideation and implementation.
HPC AND GRID COMPUTING FOR INTEGRATIVE BIOMEDICAL RESEARCH
Kurc, Tahsin; Hastings, Shannon; Kumar, Vijay; Langella, Stephen; Sharma, Ashish; Pan, Tony; Oster, Scott; Ervin, David; Permar, Justin; Narayanan, Sivaramakrishnan; Gil, Yolanda; Deelman, Ewa; Hall, Mary; Saltz, Joel
2010-01-01
Integrative biomedical research projects query, analyze, and integrate many different data types and make use of datasets obtained from measurements or simulations of structure and function at multiple biological scales. With the increasing availability of high-throughput and high-resolution instruments, the integrative biomedical research imposes many challenging requirements on software middleware systems. In this paper, we look at some of these requirements using example research pattern templates. We then discuss how middleware systems, which incorporate Grid and high-performance computing, could be employed to address the requirements. PMID:20107625
A systematic approach to embedded biomedical decision making.
Song, Zhe; Ji, Zhongkai; Ma, Jian-Guo; Sputh, Bernhard; Acharya, U Rajendra; Faust, Oliver
2012-11-01
An embedded decision making is a key feature for many biomedical systems. In most cases human life directly depends on correct decisions made by these systems, therefore they have to work reliably. This paper describes how we applied systems engineering principles to design a high performance embedded classification system in a systematic and well structured way. We introduce the structured design approach by discussing requirements capturing, specifications refinement, implementation and testing. Thereby, we follow systems engineering principles and execute each of these processes as formal as possible. The requirements, which motivate the system design, describe an automated decision making system for diagnostic support. These requirements are refined into the implementation of a support vector machine (SVM) algorithm which enables us to integrate automated decision making in embedded systems. With a formal model we establish functionality, stability and reliability of the system. Furthermore, we investigated different parallel processing configurations of this computationally complex algorithm. We found that, by adding SVM processes, an almost linear speedup is possible. Once we established these system properties, we translated the formal model into an implementation. The resulting implementation was tested using XMOS processors with both normal and failure cases, to build up trust in the implementation. Finally, we demonstrated that our parallel implementation achieves the speedup, predicted by the formal model. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Chen, Xi; Chen, Huajun; Bi, Xuan; Gu, Peiqin; Chen, Jiaoyan; Wu, Zhaohui
2014-01-01
Understanding the functional mechanisms of the complex biological system as a whole is drawing more and more attention in global health care management. Traditional Chinese Medicine (TCM), essentially different from Western Medicine (WM), is gaining increasing attention due to its emphasis on individual wellness and natural herbal medicine, which satisfies the goal of integrative medicine. However, with the explosive growth of biomedical data on the Web, biomedical researchers are now confronted with the problem of large-scale data analysis and data query. Besides that, biomedical data also has a wide coverage which usually comes from multiple heterogeneous data sources and has different taxonomies, making it hard to integrate and query the big biomedical data. Embedded with domain knowledge from different disciplines all regarding human biological systems, the heterogeneous data repositories are implicitly connected by human expert knowledge. Traditional search engines cannot provide accurate and comprehensive search results for the semantically associated knowledge since they only support keywords-based searches. In this paper, we present BioTCM-SE, a semantic search engine for the information retrieval of modern biology and TCM, which provides biologists with a comprehensive and accurate associated knowledge query platform to greatly facilitate the implicit knowledge discovery between WM and TCM.
Chen, Xi; Chen, Huajun; Bi, Xuan; Gu, Peiqin; Chen, Jiaoyan; Wu, Zhaohui
2014-01-01
Understanding the functional mechanisms of the complex biological system as a whole is drawing more and more attention in global health care management. Traditional Chinese Medicine (TCM), essentially different from Western Medicine (WM), is gaining increasing attention due to its emphasis on individual wellness and natural herbal medicine, which satisfies the goal of integrative medicine. However, with the explosive growth of biomedical data on the Web, biomedical researchers are now confronted with the problem of large-scale data analysis and data query. Besides that, biomedical data also has a wide coverage which usually comes from multiple heterogeneous data sources and has different taxonomies, making it hard to integrate and query the big biomedical data. Embedded with domain knowledge from different disciplines all regarding human biological systems, the heterogeneous data repositories are implicitly connected by human expert knowledge. Traditional search engines cannot provide accurate and comprehensive search results for the semantically associated knowledge since they only support keywords-based searches. In this paper, we present BioTCM-SE, a semantic search engine for the information retrieval of modern biology and TCM, which provides biologists with a comprehensive and accurate associated knowledge query platform to greatly facilitate the implicit knowledge discovery between WM and TCM. PMID:24772189
Ghadi, Arezou; Mahjoub, Soleiman; Tabandeh, Fatemeh; Talebnia, Farid
2014-01-01
Chitosan nanoparticles have become of great interest for nanomedicine, biomedical engineering and development of new therapeutic drug release systems with improved bioavailability, increased specificity and sensitivity, and reduced pharmacological toxicity. The aim of the present study was to synthesis and optimize of the chitosan nanoparticles for industrial and biomedical applications. Fe3O4 was synthesized and optimized as magnetic core nanoparticles and then chitosan covered this magnetic core. The size and morphology of the nano-magnetic chitosan was analyzed by scanning electron microscope (SEM). Topography and size distribution of the nanoparticles were shown with two-dimensional and three-dimensional images of atomic force microscopy (AFM). The nanoparticles were analyzed using transmission electron microscopy (TEM). The chitosan nanoparticles prepared in the experiment exhibited white powder shape. The SEM micrographs of the nano-magnetic chitosan showed that they were approximately uniform spheres. The unmodified chitosan nanoparticles composed of clusters of nanoparticles with sizes ranging from 10 nm to 80 nm. AFM provides a three-dimensional surface profile. The TEM image showed physical aggregation of the chitosan nanoparticles. The results show that a novel chitosan nanoparticle was successfully synthesized and characterized. It seems that this nanoparticle like the other chitosan nano particles has potential applications for nanomedicine, biomedical engineering, industrial and pharmaceutical fields.
An Approach to Integrating Health Disparities within Undergraduate Biomedical Engineering Education.
Vazquez, Maribel; Marte, Otto; Barba, Joseph; Hubbard, Karen
2017-11-01
Health disparities are preventable differences in the incidence, prevalence and burden of disease among communities targeted by gender, geographic location, ethnicity and/or socio-economic status. While biomedical research has identified partial origin(s) of divergent burden and impact of disease, the innovation needed to eradicate health disparities in the United States requires unique engagement from biomedical engineers. Increasing awareness of the prevalence and consequences of health disparities is particularly attractive to today's undergraduates, who have undauntedly challenged paradigms believed to foster inequality. Here, the Department of Biomedical Engineering at The City College of New York (CCNY) has leveraged its historical mission of access-and-excellence to integrate the study of health disparities into undergraduate BME curricula. This article describes our novel approach in a multiyear study that: (i) Integrated health disparities modules at all levels of the required undergraduate BME curriculum; (ii) Developed opportunities to include impacts of health disparities into undergraduate BME research projects and mentored High School summer STEM training; and (iii) Established health disparities-based challenges as BME capstone design and/or independent entrepreneurship projects. Results illustrate the rising awareness of health disparities among the youngest BMEs-to-be, as well as abundant undergraduate desire to integrate health disparities within BME education and training.
Raman, Ritu; Mitchell, Marlon; Perez-Pinera, Pablo; Bashir, Rashid; DeStefano, Lizanne
2016-01-01
The rapidly evolving discipline of biological and biomedical engineering requires adaptive instructional approaches that teach students to target and solve multi-pronged and ill-structured problems at the cutting edge of scientific research. Here we present a modular approach to designing a lab-based course in the emerging field of biofabrication and biological design, leading to a final capstone design project that requires students to formulate and test a hypothesis using the scientific method. Students were assessed on a range of metrics designed to evaluate the format of the course, the efficacy of the format for teaching new topics and concepts, and the depth of the contribution this course made to students training for biological engineering careers. The evaluation showed that the problem-based format of the course was well suited to teaching students how to use the scientific method to investigate and uncover the fundamental biological design rules that govern the field of biofabrication. We show that this approach is an efficient and effective method of translating emergent scientific principles from the lab bench to the classroom and training the next generation of biological and biomedical engineers for careers as researchers and industry practicians.
Labib, Gihan
2018-01-01
Natural pharmaceutical excipients have been applied extensively in the past decades owing to their safety and biocompatibility. Zein, a natural protein of plant origin offers great benefit over other synthetic polymers used in controlled drug and biomedical delivery systems. It was used in a variety of medical fields including pharmaceutical and biomedical drug targeting, vaccine, tissue engineering, and gene delivery. Being biodegradable and biocompatible, the current review focuses on the history and the medical application of zein as an attractive still promising biopolymer. Areas covered: The current review gives a broadscope on zein as a still promising protein excipient in different fields. Zein- based drug and biomedical delivery systems are discussed with special focus on current and potential application in controlled drug delivery systems, and tissue engineering. Expert opinion: Zein as a protein of natural origin can still be considered a promising polymer in the field of drug delivery systems as well as in tissue engineering. Although different researchers spotted light on zein application in different industrial fields extensively, the feasibility of its use in the field of drug delivery replenished by investigators in recent years has not yet been fully approached.
Passage-Based Bibliographic Coupling: An Inter-Article Similarity Measure for Biomedical Articles
Liu, Rey-Long
2015-01-01
Biomedical literature is an essential source of biomedical evidence. To translate the evidence for biomedicine study, researchers often need to carefully read multiple articles about specific biomedical issues. These articles thus need to be highly related to each other. They should share similar core contents, including research goals, methods, and findings. However, given an article r, it is challenging for search engines to retrieve highly related articles for r. In this paper, we present a technique PBC (Passage-based Bibliographic Coupling) that estimates inter-article similarity by seamlessly integrating bibliographic coupling with the information collected from context passages around important out-link citations (references) in each article. Empirical evaluation shows that PBC can significantly improve the retrieval of those articles that biomedical experts believe to be highly related to specific articles about gene-disease associations. PBC can thus be used to improve search engines in retrieving the highly related articles for any given article r, even when r is cited by very few (or even no) articles. The contribution is essential for those researchers and text mining systems that aim at cross-validating the evidence about specific gene-disease associations. PMID:26440794
Passage-Based Bibliographic Coupling: An Inter-Article Similarity Measure for Biomedical Articles.
Liu, Rey-Long
2015-01-01
Biomedical literature is an essential source of biomedical evidence. To translate the evidence for biomedicine study, researchers often need to carefully read multiple articles about specific biomedical issues. These articles thus need to be highly related to each other. They should share similar core contents, including research goals, methods, and findings. However, given an article r, it is challenging for search engines to retrieve highly related articles for r. In this paper, we present a technique PBC (Passage-based Bibliographic Coupling) that estimates inter-article similarity by seamlessly integrating bibliographic coupling with the information collected from context passages around important out-link citations (references) in each article. Empirical evaluation shows that PBC can significantly improve the retrieval of those articles that biomedical experts believe to be highly related to specific articles about gene-disease associations. PBC can thus be used to improve search engines in retrieving the highly related articles for any given article r, even when r is cited by very few (or even no) articles. The contribution is essential for those researchers and text mining systems that aim at cross-validating the evidence about specific gene-disease associations.
Project-based learning with international collaboration for training biomedical engineers.
Krishnan, Shankar
2011-01-01
Training biomedical engineers while effectively keeping up with the fast paced scientific breakthroughs and the growth in technical innovations poses arduous challenges for educators. Traditional pedagogical methods are employed for coping with the increasing demands in biomedical engineering (BME) training and continuous improvements have been attempted with some success. Project-based learning (PBL) is an academic effort that challenges students by making them carry out interdisciplinary projects aimed at accomplishing a wide range of student learning outcomes. PBL has been shown to be effective in the medical field and has been adopted by other fields including engineering. The impact of globalization in healthcare appears to be steadily increasing which necessitates the inclusion of awareness of relevant international activities in the curriculum. Numerous difficulties are encountered when the formation of a collaborative team is tried, and additional difficulties occur as the collaboration team is extended to international partners. Understanding and agreement of responsibilities becomes somewhat complex and hence the collaborative project has to be planned and executed with clear understanding by all partners and participants. A model for training BME students by adopting PBL with international collaboration is proposed. The results of previous BME project work with international collaboration fit partially into the model. There were many logistic issues and constraints; however, the collaborative projects themselves greatly enhanced the student learning outcomes. This PBL type of learning experience tends to promote long term retention of multidisciplinary material and foster high-order cognitive activities such as analysis, synthesis and evaluation. In addition to introducing the students to experiences encountered in the real-life workforce, the proposed approach enhances developing professional contracts and global networking. In conclusion, despite initial challenges, adopting project-based learning with international collaboration has strong potentials to be valuable in the training of biomedical engineering students.
Engineering and physical sciences in oncology: challenges and opportunities
Mitchell, Michael J.; Jain, Rakesh K.; Langer, Robert
2017-01-01
The principles of engineering and physics have been applied to oncology for nearly 50 years. Engineers and physical scientists have made contributions to all aspects of cancer biology, from quantitative understanding of tumour growth and progression to improved detection and treatment of cancer. Many early efforts focused on experimental and computational modelling of drug distribution, cell cycle kinetics and tumour growth dynamics. In the past decade, we have witnessed exponential growth at the interface of engineering, physics and oncology that has been fuelled by advances in fields including materials science, microfabrication, nanomedicine, microfluidics, imaging, and catalysed by new programmes at the National Institutes of Health (NIH), including the National Institute of Biomedical Imaging and Bioengineering (NIBIB), Physical Sciences in Oncology, and the National Cancer Institute (NCI) Alliance for Nanotechnology. Here, we review the advances made at the interface of engineering and physical sciences and oncology in four important areas: the physical microenvironment of the tumour and technological advances in drug delivery; cellular and molecular imaging; and microfluidics and microfabrication. We discussthe research advances, opportunities and challenges for integrating engineering and physical sciences with oncology to develop new methods to study, detect and treat cancer, and we also describe the future outlook for these emerging areas. PMID:29026204
Harris, Thomas R; Brophy, Sean P
2005-09-01
Vanderbilt University, Northwestern University, the University of Texas and the Harvard/MIT Health Sciences Technology Program have collaborated since 1999 to develop means to improve bioengineering education. This effort, funded by the National Science Foundation as the VaNTH Engineering Research Center in Bioengineering Educational Technologies, has sought a synthesis of learning science, learning technology, assessment and the domains of bioengineering in order to improve learning by bioengineering students. Research has shown that bioengineering educational materials may be designed to emphasize challenges that engage the student and, when coupled with a learning cycle and appropriate technologies, can lead to improvements in instruction.
Research in Biomaterials and Tissue Engineering: Achievements and perspectives.
Ventre, Maurizio; Causa, Filippo; Netti, Paolo A; Pietrabissa, Riccardo
2015-01-01
Research on biomaterials and related subjects has been active in Italy. Starting from the very first examples of biomaterials and biomedical devices, Italian researchers have always provided valuable scientific contributions. This trend has steadily increased. To provide a rough estimate of this, it is sufficient to search PubMed, a free search engine accessing primarily the MEDLINE database of references and abstracts on life sciences and biomedical topics, with the keywords "biomaterials" or "tissue engineering" and sort the results by affiliation. Again, even though this is a crude estimate, the results speak for themselves, as Italy is the third European country, in terms of publications, with an astonishing 3,700 products in the last decade.
Current trends for customized biomedical software tools.
Khan, Haseeb Ahmad
2017-01-01
In the past, biomedical scientists were solely dependent on expensive commercial software packages for various applications. However, the advent of user-friendly programming languages and open source platforms has revolutionized the development of simple and efficient customized software tools for solving specific biomedical problems. Many of these tools are designed and developed by biomedical scientists independently or with the support of computer experts and often made freely available for the benefit of scientific community. The current trends for customized biomedical software tools are highlighted in this short review.
Moody, George B; Mark, Roger G; Goldberger, Ary L
2011-01-01
PhysioNet provides free web access to over 50 collections of recorded physiologic signals and time series, and related open-source software, in support of basic, clinical, and applied research in medicine, physiology, public health, biomedical engineering and computing, and medical instrument design and evaluation. Its three components (PhysioBank, the archive of signals; PhysioToolkit, the software library; and PhysioNetWorks, the virtual laboratory for collaborative development of future PhysioBank data collections and PhysioToolkit software components) connect researchers and students who need physiologic signals and relevant software with researchers who have data and software to share. PhysioNet's annual open engineering challenges stimulate rapid progress on unsolved or poorly solved questions of basic or clinical interest, by focusing attention on achievable solutions that can be evaluated and compared objectively using freely available reference data.
Real-time mobile phone dialing system based on SSVEP
NASA Astrophysics Data System (ADS)
Wang, Dongsheng; Kobayashi, Toshiki; Cui, Gaochao; Watabe, Daishi; Cao, Jianting
2017-03-01
Brain computer interface (BCI) systems based on the steady state visual evoked potential (SSVEP) provide higher information transfer rates and require shorter training time than BCI systems using other brain signals. It has been widely used in brain science, rehabilitation engineering, biomedical engineering and intelligent information processing. In this paper, we present a real-time mobile phone dialing system based on SSVEP, and it is more portable than other dialing system because the flashing dial interface is set on a small tablet. With this online BCI system, we can take advantage of this system based on SSVEP to identify the specific frequency on behalf of a number using canonical correlation analysis (CCA) method and dialed out successfully without using any physical movements such as finger tapping. This phone dialing system will be promising to help disable patients to improve the quality of lives.
Challenges and Opportunities in Interdisciplinary Materials Research Experiences for Undergraduates
NASA Astrophysics Data System (ADS)
Vohra, Yogesh; Nordlund, Thomas
2009-03-01
The University of Alabama at Birmingham (UAB) offer a broad range of interdisciplinary materials research experiences to undergraduate students with diverse backgrounds in physics, chemistry, applied mathematics, and engineering. The research projects offered cover a broad range of topics including high pressure physics, microelectronic materials, nano-materials, laser materials, bioceramics and biopolymers, cell-biomaterials interactions, planetary materials, and computer simulation of materials. The students welcome the opportunity to work with an interdisciplinary team of basic science, engineering, and biomedical faculty but the challenge is in learning the key vocabulary for interdisciplinary collaborations, experimental tools, and working in an independent capacity. The career development workshops dealing with the graduate school application process and the entrepreneurial business activities were found to be most effective. The interdisciplinary university wide poster session helped student broaden their horizons in research careers. The synergy of the REU program with other concurrently running high school summer programs on UAB campus will also be discussed.
Figure Text Extraction in Biomedical Literature
Kim, Daehyun; Yu, Hong
2011-01-01
Background Figures are ubiquitous in biomedical full-text articles, and they represent important biomedical knowledge. However, the sheer volume of biomedical publications has made it necessary to develop computational approaches for accessing figures. Therefore, we are developing the Biomedical Figure Search engine (http://figuresearch.askHERMES.org) to allow bioscientists to access figures efficiently. Since text frequently appears in figures, automatically extracting such text may assist the task of mining information from figures. Little research, however, has been conducted exploring text extraction from biomedical figures. Methodology We first evaluated an off-the-shelf Optical Character Recognition (OCR) tool on its ability to extract text from figures appearing in biomedical full-text articles. We then developed a Figure Text Extraction Tool (FigTExT) to improve the performance of the OCR tool for figure text extraction through the use of three innovative components: image preprocessing, character recognition, and text correction. We first developed image preprocessing to enhance image quality and to improve text localization. Then we adapted the off-the-shelf OCR tool on the improved text localization for character recognition. Finally, we developed and evaluated a novel text correction framework by taking advantage of figure-specific lexicons. Results/Conclusions The evaluation on 382 figures (9,643 figure texts in total) randomly selected from PubMed Central full-text articles shows that FigTExT performed with 84% precision, 98% recall, and 90% F1-score for text localization and with 62.5% precision, 51.0% recall and 56.2% F1-score for figure text extraction. When limiting figure texts to those judged by domain experts to be important content, FigTExT performed with 87.3% precision, 68.8% recall, and 77% F1-score. FigTExT significantly improved the performance of the off-the-shelf OCR tool we used, which on its own performed with 36.6% precision, 19.3% recall, and 25.3% F1-score for text extraction. In addition, our results show that FigTExT can extract texts that do not appear in figure captions or other associated text, further suggesting the potential utility of FigTExT for improving figure search. PMID:21249186
Figure text extraction in biomedical literature.
Kim, Daehyun; Yu, Hong
2011-01-13
Figures are ubiquitous in biomedical full-text articles, and they represent important biomedical knowledge. However, the sheer volume of biomedical publications has made it necessary to develop computational approaches for accessing figures. Therefore, we are developing the Biomedical Figure Search engine (http://figuresearch.askHERMES.org) to allow bioscientists to access figures efficiently. Since text frequently appears in figures, automatically extracting such text may assist the task of mining information from figures. Little research, however, has been conducted exploring text extraction from biomedical figures. We first evaluated an off-the-shelf Optical Character Recognition (OCR) tool on its ability to extract text from figures appearing in biomedical full-text articles. We then developed a Figure Text Extraction Tool (FigTExT) to improve the performance of the OCR tool for figure text extraction through the use of three innovative components: image preprocessing, character recognition, and text correction. We first developed image preprocessing to enhance image quality and to improve text localization. Then we adapted the off-the-shelf OCR tool on the improved text localization for character recognition. Finally, we developed and evaluated a novel text correction framework by taking advantage of figure-specific lexicons. The evaluation on 382 figures (9,643 figure texts in total) randomly selected from PubMed Central full-text articles shows that FigTExT performed with 84% precision, 98% recall, and 90% F1-score for text localization and with 62.5% precision, 51.0% recall and 56.2% F1-score for figure text extraction. When limiting figure texts to those judged by domain experts to be important content, FigTExT performed with 87.3% precision, 68.8% recall, and 77% F1-score. FigTExT significantly improved the performance of the off-the-shelf OCR tool we used, which on its own performed with 36.6% precision, 19.3% recall, and 25.3% F1-score for text extraction. In addition, our results show that FigTExT can extract texts that do not appear in figure captions or other associated text, further suggesting the potential utility of FigTExT for improving figure search.
Sensitive magnetic sensors without cooling in biomedical engineering.
Nowak, H; Strähmel, E; Giessler, F; Rinneberg, G; Haueisen, J
2003-01-01
Magnetic field sensors are used in various fields of technology. In the past few years a large variety of magnetic field sensors has been established and the performance of these sensors has been improved enormously. In this review article all recent developments in the area of sensitive magnetic field sensory analysis (resolution better than 1 nT) are presented and examined regarding their parameters. This is mainly done under the aspect of application fields in biomedical engineering. A comparison of all commercial and available sensitive magnetic field sensors shows current and prospective ranges of application.
A Roadmap for caGrid, an Enterprise Grid Architecture for Biomedical Research
Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Hong, Neil Chue
2012-01-01
caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG™) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities. PMID:18560123
A roadmap for caGrid, an enterprise Grid architecture for biomedical research.
Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Chue Hong, Neil
2008-01-01
caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities.
A Course in Medicine and Clinical Engineering for Engineers.
ERIC Educational Resources Information Center
Webster, John G.
A biomedical engineering course at the University of Wisconsin is described. The course is a comprehensive survey designed to develop the student's ability to participate in the solution of medical problems, particularly in areas involving technology. Course objectives and lecture outlines are provided. (MLH)
Evan Weaver Photo of Evan Weaver Evan Weaver Researcher III-Software Engineering Evan.Weaver , he works as a software engineer developing whole-building energy modeling tools. Prior to joining NREL, he worked in the biomedical industry as a software engineer, specializing in graphical user
An engineering paradigm in the biomedical sciences: Knowledge as epistemic tool.
Boon, Mieke
2017-10-01
In order to deal with the complexity of biological systems and attempts to generate applicable results, current biomedical sciences are adopting concepts and methods from the engineering sciences. Philosophers of science have interpreted this as the emergence of an engineering paradigm, in particular in systems biology and synthetic biology. This article aims at the articulation of the supposed engineering paradigm by contrast with the physics paradigm that supported the rise of biochemistry and molecular biology. This articulation starts from Kuhn's notion of a disciplinary matrix, which indicates what constitutes a paradigm. It is argued that the core of the physics paradigm is its metaphysical and ontological presuppositions, whereas the core of the engineering paradigm is the epistemic aim of producing useful knowledge for solving problems external to the scientific practice. Therefore, the two paradigms involve distinct notions of knowledge. Whereas the physics paradigm entails a representational notion of knowledge, the engineering paradigm involves the notion of 'knowledge as epistemic tool'. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ray, Nilanjan
2011-10-01
Fluid motion estimation from time-sequenced images is a significant image analysis task. Its application is widespread in experimental fluidics research and many related areas like biomedical engineering and atmospheric sciences. In this paper, we present a novel flow computation framework to estimate the flow velocity vectors from two consecutive image frames. In an energy minimization-based flow computation, we propose a novel data fidelity term, which: 1) can accommodate various measures, such as cross-correlation or sum of absolute or squared differences of pixel intensities between image patches; 2) has a global mechanism to control the adverse effect of outliers arising out of motion discontinuities, proximity of image borders; and 3) can go hand-in-hand with various spatial smoothness terms. Further, the proposed data term and related regularization schemes are both applicable to dense and sparse flow vector estimations. We validate these claims by numerical experiments on benchmark flow data sets. © 2011 IEEE
2017-01-01
Due to its biodegradable and bioabsorbable characteristics polylactic acid (PLA) has attracted considerable attention for numerous biomedical applications. Moreover, a number of tissue engineering problems for function restoration of impaired tissues have been addressed by using PLA and its copolymers due to their biocompatibility and distinctive mechanical properties. Recent studies on various stereocomplex formation between enantiomeric PLA, poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) indicated that stereocomplexation enhances the mechanical properties as well as the thermal- and hydrolysis-resistance of PLA polymers. On the other hand, biomedical application of graphene is a relatively new front with significant potential. Many recent reports have indicated that understanding of graphene-cell (or tissue, organ) interactions; particularly the cellular uptake mechanisms are still challenging. Therefore, use of graphene or graphene oxide properly embedded in suitable PLA matrices can positively impact and accelerate the growth, differentiation, and proliferation of stem cells, conceivably minimizing concerns over cytotoxicity of graphene. As such, PLA-graphene composites hold great promise in tissue engineering, regenerative medicine, and in other biomedical fields. However, since PLA is classified as a hard bio-polyester prone to hydrolysis, understanding and engineering of thermo-mechanical properties of PLA-graphene composites are very crucial for such cutting-edge applications. Hence, this review aims to present an overview of current advances in the preparation and applications of PLA-graphene composites and their properties with focus on various biomedical uses such as scaffolds, drug delivery, cancer therapy, and biological imaging, together with a brief discussion on the challenges and perspectives for future research in this field. PMID:28773109
A Course in Medicine for Engineers
ERIC Educational Resources Information Center
Pimmel, Russell; Weed, H. R.
1974-01-01
Describes a course planned for bio-medical engineering students. Intended outcomes of the course include an understanding of medical problems, their courses, diagnosis and treatment, and an awareness of the physician's philosophy and approach. (GS)
Manpower development for the biomedical industry space.
Goh, James C H
2013-01-01
The Biomedical Sciences (BMS) Cluster is one of four key pillars of the Singapore economy. The Singapore Government has injected research funding for basic and translational research to attract companies to carry out their commercial R&D activities. To further intensify the R&D efforts, the National Research Foundation (NRF) was set up to coordinate the research activities of different agencies within the larger national framework and to fund strategic R&D initiatives. In recent years, funding agencies began to focus on support of translational and clinical research, particularly those with potential for commercialization. Translational research is beginning to have traction, in particular research funding for the development of innovation medical devices. Therefore, the Biomedical Sciences sector is projected to grow which means that there is a need to invest in human capital development to achieve sustainable growth. In support of this, education and training programs to strengthen the manpower capabilities for the Biomedical Sciences industry have been developed. In recent years, undergraduate and graduate degree courses in biomedical engineering/bioengineering have been developing at a rapid rate. The goal is to train students with skills to understand complex issues of biomedicine and to develop and implement of advanced technological applications to these problems. There are a variety of career opportunities open to graduates in biomedical engineering, however regardless of the type of career choices, students must not only focus on achieving good grades. They have to develop their marketability to employers through internships, overseas exchange programs, and involvement in leadership-type activities. Furthermore, curriculum has to be developed with biomedical innovation in mind and ensure relevance to the industry. The objective of this paper is to present the NUS Bioengineering undergraduate program in relation to manpower development for the biomedical industry in Singapore.
Biomedical Informatics for Computer-Aided Decision Support Systems: A Survey
Belle, Ashwin; Kon, Mark A.; Najarian, Kayvan
2013-01-01
The volumes of current patient data as well as their complexity make clinical decision making more challenging than ever for physicians and other care givers. This situation calls for the use of biomedical informatics methods to process data and form recommendations and/or predictions to assist such decision makers. The design, implementation, and use of biomedical informatics systems in the form of computer-aided decision support have become essential and widely used over the last two decades. This paper provides a brief review of such systems, their application protocols and methodologies, and the future challenges and directions they suggest. PMID:23431259
Polymer-Based Electrospun Nanofibers for Biomedical Applications
Al-Enizi, Abdullah M.; Zagho, Moustafa M.
2018-01-01
Electrospinning has been considered a promising and novel procedure to fabricate polymer nanofibers due to its simplicity, cost effectiveness, and high production rate, making this technique highly relevant for both industry and academia. It is used to fabricate non-woven fibers with unique characteristics such as high permeability, stability, porosity, surface area to volume ratio, ease of functionalization, and excellent mechanical performance. Nanofibers can be synthesized and tailored to suit a wide range of applications including energy, biotechnology, healthcare, and environmental engineering. A comprehensive outlook on the recent developments, and the influence of electrospinning on biomedical uses such as wound dressing, drug release, and tissue engineering, has been presented. Concerns regarding the procedural restrictions and research contests are addressed, in addition to providing insights about the future of this fabrication technique in the biomedical field. PMID:29677145
Weak Bond-Based Injectable and Stimuli Responsive Hydrogels for Biomedical Applications
Ding, Xiaochu; Wang, Yadong
2017-01-01
Here we define hydrogels crosslinked by weak bonds as physical hydrogels. They possess unique features including reversible bonding, shear thinning and stimuli-responsiveness. Unlike covalently crosslinked hydrogels, physical hydrogels do not require triggers to initiate chemical reactions for in situ gelation. The drug can be fully loaded in a pre-formed hydrogel for delivery with minimal cargo leakage during injection. These benefits make physical hydrogels useful as delivery vehicles for applications in biomedical engineering. This review focuses on recent advances of physical hydrogels crosslinked by weak bonds: hydrogen bonds, ionic interactions, host-guest chemistry, hydrophobic interactions, coordination bonds and π-π stacking interactions. Understanding the principles and the state of the art of gels with these dynamic bonds may give rise to breakthroughs in many biomedical research areas including drug delivery and tissue engineering. PMID:29062484
The Emergence of a Community of Practice in Engineering Education
ERIC Educational Resources Information Center
Kolikant, Yifat Ben-David; McKenna, Ann; Yalvac, Bugrahan
2006-01-01
This chapter describes how engineering faculty and learning scientists developed a collective wisdom--shared language, capabilities, and world view--in order to work together to achieve a common goal of developing course materials in the domain of biomedical engineering. (Contains 1 table and 1 figure.)
New roles & responsibilities of hospital biomedical engineering.
Frisch, P H; Stone, B; Booth, P; Lui, W
2014-01-01
Over the last decade the changing healthcare environment has required hospitals and specifically Biomedical Engineering to critically evaluate, optimize and adapt their operations. The focus is now on new technologies, changes to the environment of care, support requirements and financial constraints. Memorial Sloan Kettering Cancer Center (MSKCC), an NIH-designated comprehensive cancer center, has been transitioning to an increasing outpatient care environment. This transition is driving an increase in-patient acuity coupled with the need for added urgency of support and response time. New technologies, regulatory requirements and financial constraints have impacted operating budgets and in some cases, resulted in a reduction in staffing. Specific initiatives, such as the Joint Commission's National Patient Safety Goals, requirements for an electronic medical record, meaningful use and ICD10 have caused institutions to reevaluate their operations and processes including requiring Biomedical Engineering to manage new technologies, integrations and changes in the electromagnetic environment, while optimizing operational workflow and resource utilization. This paper addresses the new and expanding responsibilities and approach of Biomedical Engineering organizations, specifically at MSKCC. It is suggested that our experience may be a template for other organizations facing similar problems. Increasing support is necessary for Medical Software - Medical Device Data Systems in the evolving wireless environment, including RTLS and RFID. It will be necessary to evaluate the potential impact on the growing electromagnetic environment, on connectivity resulting in the need for dynamic and interactive testing and the growing demand to establish new and needed operational synergies with Information Technology operations and other operational groups within the institution, such as nursing, facilities management, central supply, and the user departments.
PageRank as a method to rank biomedical literature by importance.
Yates, Elliot J; Dixon, Louise C
2015-01-01
Optimal ranking of literature importance is vital in overcoming article overload. Existing ranking methods are typically based on raw citation counts, giving a sum of 'inbound' links with no consideration of citation importance. PageRank, an algorithm originally developed for ranking webpages at the search engine, Google, could potentially be adapted to bibliometrics to quantify the relative importance weightings of a citation network. This article seeks to validate such an approach on the freely available, PubMed Central open access subset (PMC-OAS) of biomedical literature. On-demand cloud computing infrastructure was used to extract a citation network from over 600,000 full-text PMC-OAS articles. PageRanks and citation counts were calculated for each node in this network. PageRank is highly correlated with citation count (R = 0.905, P < 0.01) and we thus validate the former as a surrogate of literature importance. Furthermore, the algorithm can be run in trivial time on cheap, commodity cluster hardware, lowering the barrier of entry for resource-limited open access organisations. PageRank can be trivially computed on commodity cluster hardware and is linearly correlated with citation count. Given its putative benefits in quantifying relative importance, we suggest it may enrich the citation network, thereby overcoming the existing inadequacy of citation counts alone. We thus suggest PageRank as a feasible supplement to, or replacement of, existing bibliometric ranking methods.
Study of the Pressure and Velocity Across the Aortic Valve
NASA Astrophysics Data System (ADS)
Kyung, Seo Young; Chung, Erica Soyun; Lee, Joo Hee; Kyung, Hayoung; Choi, Si Young
Biomechanics of the heart, requiring an extensive understanding of the complexity of the heart, have become the interests of many biomedical engineers in cardiology today. In order to study aortic valve disease, engineers have focused on the data obtained through bio-fluid flow analysis. To further this study, physical and computational analysis on the biomechanical determinants of blood flow in the stenosed aortic valve have been examined. These observations, along with the principles of cardiovascular physiology, confirm that when blood flows through the valve opening, pressure gradient across the valve is produced as a result of stenosis of the aortic valve. The aortic valve gradient is used to interpret the increase and decrease on each side of the defective valve. To compute different pressure gradients across the aortic valve, this paper analyzes Aortic Valve Areas (AVA) using simulations based on the continuity equation and Gorlin equation. The data obtained from such analysis consist of patients in the AS category that display mild Aortic Valve Velocity (AVV) and pressure gradient. Such correlation results in the construction of a dependent relationship between severe AS causing LV systolic dysfunction and the transaortic velocity.
Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging.
Gilad, Assaf A; Shapiro, Mikhail G
2017-06-01
Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.
A knowledge representation view on biomedical structure and function.
Schulz, Stefan; Hahn, Udo
2002-01-01
In biomedical ontologies, structural and functional considerations are of outstanding importance, and concepts which belong to these two categories are highly interdependent. At the representational level both axes must be clearly kept separate in order to support disciplined ontology engineering. Furthermore, the biaxial organization of physical structure (both by a taxonomic and partonomic order) entails intricate patterns of inference. We here propose a layered encoding of taxonomic, partonomic and functional aspects of biomedical concepts using description logics. PMID:12463912
1986-12-01
Engineering University of Wisconsin- Madison Mechanics, 1985 Dept. of Engineering Mechanics Specialty: Engineering Mechanics 1415 Johnson Drive Assigned: RPL... Madison , WI 53706 (608) 262-3990 Brian J. Doherty Degree: B.S.E., Bioenginnering, 1984 Duke University Specialty: Bloengineering Biomedical Engineering...Assigned: ML Kent, OH 44242 (216) 672-2246 Gregory L. Walker Degree: B.S., Engineering University of Wisconsin- Madison Mechanics, 1985 Engineering
De Georgia, Michael A.; Kaffashi, Farhad; Jacono, Frank J.; Loparo, Kenneth A.
2015-01-01
There is a broad consensus that 21st century health care will require intensive use of information technology to acquire and analyze data and then manage and disseminate information extracted from the data. No area is more data intensive than the intensive care unit. While there have been major improvements in intensive care monitoring, the medical industry, for the most part, has not incorporated many of the advances in computer science, biomedical engineering, signal processing, and mathematics that many other industries have embraced. Acquiring, synchronizing, integrating, and analyzing patient data remain frustratingly difficult because of incompatibilities among monitoring equipment, proprietary limitations from industry, and the absence of standard data formatting. In this paper, we will review the history of computers in the intensive care unit along with commonly used monitoring and data acquisition systems, both those commercially available and those being developed for research purposes. PMID:25734185
De Georgia, Michael A; Kaffashi, Farhad; Jacono, Frank J; Loparo, Kenneth A
2015-01-01
There is a broad consensus that 21st century health care will require intensive use of information technology to acquire and analyze data and then manage and disseminate information extracted from the data. No area is more data intensive than the intensive care unit. While there have been major improvements in intensive care monitoring, the medical industry, for the most part, has not incorporated many of the advances in computer science, biomedical engineering, signal processing, and mathematics that many other industries have embraced. Acquiring, synchronizing, integrating, and analyzing patient data remain frustratingly difficult because of incompatibilities among monitoring equipment, proprietary limitations from industry, and the absence of standard data formatting. In this paper, we will review the history of computers in the intensive care unit along with commonly used monitoring and data acquisition systems, both those commercially available and those being developed for research purposes.
See the Math behind the Medicine
ERIC Educational Resources Information Center
Saunders, Marnie M.
2010-01-01
To promote math and science, this author designed an activity to show students that biomedical fields are within their reach. The activity has three distinct goals: (1) To introduce the field of biomedical engineering to students and encourage them in these career pursuits; (2) To give them hands-on experience conducting a biomechanical test; and…
Grounding, Bonding, Shielding, and Lightning Bibliography 1972 to 1979
1981-02-01
Transactions on Biomedical Engineering, vol. BME -22, no. 1, 3anuary 1975, pp. 62-65. Several basic facts about the effects of steel conduits in a.c. power...34 Institution of Engineers, Australia, Electrical Engineering Transactions, (Australia), vol. EE- 14, no. 2, 1978, pp. 73-77. Statistics on Australian
Sagace: A web-based search engine for biomedical databases in Japan
2012-01-01
Background In the big data era, biomedical research continues to generate a large amount of data, and the generated information is often stored in a database and made publicly available. Although combining data from multiple databases should accelerate further studies, the current number of life sciences databases is too large to grasp features and contents of each database. Findings We have developed Sagace, a web-based search engine that enables users to retrieve information from a range of biological databases (such as gene expression profiles and proteomics data) and biological resource banks (such as mouse models of disease and cell lines). With Sagace, users can search more than 300 databases in Japan. Sagace offers features tailored to biomedical research, including manually tuned ranking, a faceted navigation to refine search results, and rich snippets constructed with retrieved metadata for each database entry. Conclusions Sagace will be valuable for experts who are involved in biomedical research and drug development in both academia and industry. Sagace is freely available at http://sagace.nibio.go.jp/en/. PMID:23110816
Genetically engineered livestock for biomedical models.
Rogers, Christopher S
2016-06-01
To commemorate Transgenic Animal Research Conference X, this review summarizes the recent progress in developing genetically engineered livestock species as biomedical models. The first of these conferences was held in 1997, which turned out to be a watershed year for the field, with two significant events occurring. One was the publication of the first transgenic livestock animal disease model, a pig with retinitis pigmentosa. Before that, the use of livestock species in biomedical research had been limited to wild-type animals or disease models that had been induced or were naturally occurring. The second event was the report of Dolly, a cloned sheep produced by somatic cell nuclear transfer. Cloning subsequently became an essential part of the process for most of the models developed in the last 18 years and is stilled used prominently today. This review is intended to highlight the biomedical modeling achievements that followed those key events, many of which were first reported at one of the previous nine Transgenic Animal Research Conferences. Also discussed are the practical challenges of utilizing livestock disease models now that the technical hurdles of model development have been largely overcome.
Adaptation of MSC/NASTRAN to a supercomputer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gloudeman, J.F.; Hodge, J.C.
1982-01-01
MSC/NASTRAN is a large-scale general purpose digital computer program which solves a wider variety of engineering analysis problems by the finite element method. The program capabilities include static and dynamic structural analysis (linear and nonlinear), heat transfer, acoustics, electromagnetism and other types of field problems. It is used worldwide by large and small companies in such diverse fields as automotive, aerospace, civil engineering, shipbuilding, offshore oil, industrial equipment, chemical engineering, biomedical research, optics and government research. The paper presents the significant aspects of the adaptation of MSC/NASTRAN to the Cray-1. First, the general architecture and predominant functional use of MSC/NASTRANmore » are discussed to help explain the imperatives and the challenges of this undertaking. The key characteristics of the Cray-1 which influenced the decision to undertake this effort are then reviewed to help identify performance targets. An overview of the MSC/NASTRAN adaptation effort is then given to help define the scope of the project. Finally, some measures of MSC/NASTRAN's operational performance on the Cray-1 are given, along with a few guidelines to help avoid improper interpretation. 17 references.« less
Molecular engineering of polymer actuators for biomedical and industrial use
NASA Astrophysics Data System (ADS)
Banister, Mark; Eichorst, Rebecca; Gurr, Amy; Schweitzer, Georgette; Geronov, Yordan; Rao, Pavalli; McGrath, Dominic
2012-04-01
Five key materials engineering components and how each component impacted the working performance of a polymer actuator material are investigated. In our research we investigated the change of actuation performance that occurred with each change we made to the material. We investigated polymer crosslink density, polymer chain length, polymer gelation, type and density of reactive units, as well as the addition of binders to the polymer matrix. All five play a significant role and need to be addressed at the molecular level to optimize a polymer gel for use as a practical actuator material for biomedical and industrial use.
Problem-Based Learning in Biomechanics: Advantages, Challenges, and Implementation Strategies.
Clyne, Alisa Morss; Billiar, Kristen L
2016-07-01
Problem-based learning (PBL) has been shown to be effective in biomedical engineering education, particularly in motivating student learning, increasing knowledge retention, and developing problem solving, communication, and teamwork skills. However, PBL adoption remains limited by real challenges in effective implementation. In this paper, we review the literature on advantages and challenges of PBL and present our own experiences. We also provide practical guidelines for implementing PBL, including two examples of PBL modules from biomechanics courses at two different institutions. Overall, we conclude that the benefits for both professors and students support the use of PBL in biomedical engineering education.
Effective communication and supervision in the biomedical engineering department.
Xu, Y; Wald, A; Cappiello, J
1997-01-01
It is important for biomedical engineering supervisors to master the art of effective communication. Supervisors who have effective communication skills can successfully initiate creative programs and generate a harmonious working atmosphere. Using effective communication, they can promote good working conditions, such as high morale, worker initiative and loyalty to the department, which are almost impossible to measure but imperative for a successful department. However, effective communication tends to be neglected by supervisors who are either functional specialists or managerial generalists. This paper presents several cases of what effective communication truly is and discusses some potential factors that may lead to ineffective communication.
Biomedical technology transfer applications of NASA science and technology
NASA Technical Reports Server (NTRS)
1972-01-01
The identification and solution of research and clinical problems in cardiovascular medicine which were investigated by means of biomedical data transfer are reported. The following are sample areas that were focused upon by the Stanford University Biomedical Technology Transfer Team: electrodes for hemiplegia research; vectorcardiogram computer analysis; respiration and phonation electrodes; radiotelemetry of intracranial pressure; and audiotransformation of the electrocardiographic signal. It is concluded that this biomedical technology transfer is significantly aiding present research in cardiovascular medicine.
Chen, Xiaole; Lin, Jiang
2017-01-01
Determining the impact of inter-subject variability on airflow pattern and nanoparticle deposition in the human respiratory system is necessary to generate population-representative models, useful for several biomedical engineering applications. Thus, the overall research objective is to quantitatively correlate geometric parameters and coupled transport characteristics of air, vapor, and nanoparticles. Focusing on identifying morphological parameters that significantly influence airflow field and nanoparticle transport, an experimentally validated computational fluid-particle dynamics (CFPD) model was employed to simulate airflow pattern in three human lung-airway configurations. The numerical results will be used to generate guidelines to construct a representative geometry of the human respiratory system. PMID:29144436
Numerical grid generation in computational field simulations. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soni, B.K.; Thompson, J.F.; Haeuser, J.
1996-12-31
To enhance the CFS technology to its next level of applicability (i.e., to create acceptance of CFS in an integrated product and process development involving multidisciplinary optimization) the basic requirements are: rapid turn-around time, reliable and accurate simulation, affordability and appropriate linkage to other engineering disciplines. In response to this demand, there has been a considerable growth in the grid generation related research activities involving automization, parallel processing, linkage with the CAD-CAM systems, CFS with dynamic motion and moving boundaries, strategies and algorithms associated with multi-block structured, unstructured, hybrid, hexahedral, and Cartesian grids, along with its applicability to various disciplinesmore » including biomedical, semiconductor, geophysical, ocean modeling, and multidisciplinary optimization.« less
Combinatorial Nano-Bio Interfaces.
Cai, Pingqiang; Zhang, Xiaoqian; Wang, Ming; Wu, Yun-Long; Chen, Xiaodong
2018-06-08
Nano-bio interfaces are emerging from the convergence of engineered nanomaterials and biological entities. Despite rapid growth, clinical translation of biomedical nanomaterials is heavily compromised by the lack of comprehensive understanding of biophysicochemical interactions at nano-bio interfaces. In the past decade, a few investigations have adopted a combinatorial approach toward decoding nano-bio interfaces. Combinatorial nano-bio interfaces comprise the design of nanocombinatorial libraries and high-throughput bioevaluation. In this Perspective, we address challenges in combinatorial nano-bio interfaces and call for multiparametric nanocombinatorics (composition, morphology, mechanics, surface chemistry), multiscale bioevaluation (biomolecules, organelles, cells, tissues/organs), and the recruitment of computational modeling and artificial intelligence. Leveraging combinatorial nano-bio interfaces will shed light on precision nanomedicine and its potential applications.
Essie: A Concept-based Search Engine for Structured Biomedical Text
Ide, Nicholas C.; Loane, Russell F.; Demner-Fushman, Dina
2007-01-01
This article describes the algorithms implemented in the Essie search engine that is currently serving several Web sites at the National Library of Medicine. Essie is a phrase-based search engine with term and concept query expansion and probabilistic relevancy ranking. Essie’s design is motivated by an observation that query terms are often conceptually related to terms in a document, without actually occurring in the document text. Essie’s performance was evaluated using data and standard evaluation methods from the 2003 and 2006 Text REtrieval Conference (TREC) Genomics track. Essie was the best-performing search engine in the 2003 TREC Genomics track and achieved results comparable to those of the highest-ranking systems on the 2006 TREC Genomics track task. Essie shows that a judicious combination of exploiting document structure, phrase searching, and concept based query expansion is a useful approach for information retrieval in the biomedical domain. PMID:17329729
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, E.G.; Mioduszewski, R.J.
The Chemical Computer Man: Chemical Agent Response Simulation (CARS) is a computer model and simulation program for estimating the dynamic changes in human physiological dysfunction resulting from exposures to chemical-threat nerve agents. The newly developed CARS methodology simulates agent exposure effects on the following five indices of human physiological function: mental, vision, cardio-respiratory, visceral, and limbs. Mathematical models and the application of basic pharmacokinetic principles were incorporated into the simulation so that for each chemical exposure, the relationship between exposure dosage, absorbed dosage (agent blood plasma concentration), and level of physiological response are computed as a function of time. CARS,more » as a simulation tool, is designed for the users with little or no computer-related experience. The model combines maximum flexibility with a comprehensive user-friendly interactive menu-driven system. Users define an exposure problem and obtain immediate results displayed in tabular, graphical, and image formats. CARS has broad scientific and engineering applications, not only in technology for the soldier in the area of Chemical Defense, but also in minimizing animal testing in biomedical and toxicological research and the development of a modeling system for human exposure to hazardous-waste chemicals.« less
Mobile healthcare applications: system design review, critical issues and challenges.
Baig, Mirza Mansoor; GholamHosseini, Hamid; Connolly, Martin J
2015-03-01
Mobile phones are becoming increasingly important in monitoring and delivery of healthcare interventions. They are often considered as pocket computers, due to their advanced computing features, enhanced preferences and diverse capabilities. Their sophisticated sensors and complex software applications make the mobile healthcare (m-health) based applications more feasible and innovative. In a number of scenarios user-friendliness, convenience and effectiveness of these systems have been acknowledged by both patients as well as healthcare providers. M-health technology employs advanced concepts and techniques from multidisciplinary fields of electrical engineering, computer science, biomedical engineering and medicine which benefit the innovations of these fields towards healthcare systems. This paper deals with two important aspects of current mobile phone based sensor applications in healthcare. Firstly, critical review of advanced applications such as; vital sign monitoring, blood glucose monitoring and in-built camera based smartphone sensor applications. Secondly, investigating challenges and critical issues related to the use of smartphones in healthcare including; reliability, efficiency, mobile phone platform variability, cost effectiveness, energy usage, user interface, quality of medical data, and security and privacy. It was found that the mobile based applications have been widely developed in recent years with fast growing deployment by healthcare professionals and patients. However, despite the advantages of smartphones in patient monitoring, education, and management there are some critical issues and challenges related to security and privacy of data, acceptability, reliability and cost that need to be addressed.
Surface engineering of graphene-based nanomaterials for biomedical applications.
Shi, Sixiang; Chen, Feng; Ehlerding, Emily B; Cai, Weibo
2014-09-17
Graphene-based nanomaterials have attracted tremendous interest over the past decade due to their unique electronic, optical, mechanical, and chemical properties. However, the biomedical applications of these intriguing nanomaterials are still limited due to their suboptimal solubility/biocompatibility, potential toxicity, and difficulties in achieving active tumor targeting, just to name a few. In this Topical Review, we will discuss in detail the important role of surface engineering (i.e., bioconjugation) in improving the in vitro/in vivo stability and enriching the functionality of graphene-based nanomaterials, which can enable single/multimodality imaging (e.g., optical imaging, positron emission tomography, magnetic resonance imaging) and therapy (e.g., photothermal therapy, photodynamic therapy, and drug/gene delivery) of cancer. Current challenges and future research directions are also discussed and we believe that graphene-based nanomaterials are attractive nanoplatforms for a broad array of future biomedical applications.
Surface Engineering of Graphene-Based Nanomaterials for Biomedical Applications
2015-01-01
Graphene-based nanomaterials have attracted tremendous interest over the past decade due to their unique electronic, optical, mechanical, and chemical properties. However, the biomedical applications of these intriguing nanomaterials are still limited due to their suboptimal solubility/biocompatibility, potential toxicity, and difficulties in achieving active tumor targeting, just to name a few. In this Topical Review, we will discuss in detail the important role of surface engineering (i.e., bioconjugation) in improving the in vitro/in vivo stability and enriching the functionality of graphene-based nanomaterials, which can enable single/multimodality imaging (e.g., optical imaging, positron emission tomography, magnetic resonance imaging) and therapy (e.g., photothermal therapy, photodynamic therapy, and drug/gene delivery) of cancer. Current challenges and future research directions are also discussed and we believe that graphene-based nanomaterials are attractive nanoplatforms for a broad array of future biomedical applications. PMID:25117569
[Distance learning using internet in the field of bioengineering].
Ciobanu, O
2003-01-01
The Leonardo da Vinci training programme supports innovative transnational initiatives for promoting the knowledge, aptitudes and skills necessary for successful integration into working life. Biomedical engineering is an emerging interdisciplinary field that contributes to understand, define and solve problems in biomedical technology within industrial and health service contexts. Paper presents a Leonardo da Vinci pilot-project called Web-based learning and training in the field of biomedical and design engineering (WEBD). This project has started on 2001. The WEBD project proposes to use advanced learning technologies to provide education in the www. Project uses interactive 3D graphics and virtual reality tools. The WEBD distance training permits users to experience and interact with a life-like model or environment, in safety and at convenient times, while providing a degree of control over the simulation that is usually not possible in the real-life situation.
Defining new aims for BME programs in Latin America: the case of UAM-Iztapalapa.
Azpiroz-Leehan, J; Martinez, L F; Urbina, M E G; Cadena, M M; Sacristan, E
2016-08-01
The need for upkeep and management of medical technology has fostered the creation of a large number of under graduate programs in the field of biomedical Engineering. In Latin America alone, there are over 85 programs dedicated to this. This contrasts with programs in other regions where most of the undergraduates continue on to pursue graduate degrees or work as research and development engineers in the biomedical industry. In this work we analyze the situation regarding curricular design in the 48 BME programs in Mexico and compare this to suggestions and classifications of programs according to needs and possibilities. We then focus on a particular institution, Universidad Autónoma Metropolitana and due to its characteristics and performance we propose that it should redefine its aims from the undergraduate program on, in order to not only generate research but also to provide a nurturing environment for a budding biomedical industry in Mexico.
Fabrication of Novel Porous Chitosan Matrices as Scaffolds for Bone Tissue Engineering
2005-01-01
Tissue Engineering Tao Jianga, Cyril M. Pilaneb, Cato T. Laurencina’b"c’ * a Department of Chemical Engineering , University of Virginia, Charlottesville...Chair of Orthopaedic Surgery Professor of Biomedical and Chemical Engineering 400 Ray C. Hunt Drive, Suite 330 University of Virginia Charlottesville...an alternative therapeutic approach for skeletal regeneration. Tissue engineering has been defined as the application of biological, chemical , and
Nanotechnology continues to produce a diversity of engineered nanomaterials (NMs), displaying novel physicochemical properties with applications in commercial, consumer, electronic, biomedical, energy, and environmental sectors. Nanotechnology has been referred to as the next in...
26 CFR 1.501(e)-1 - Cooperative hospital service organizations.
Code of Federal Regulations, 2014 CFR
2014-04-01
... illustrated by the following example. Example. An organization performs industrial engineering services on a...-hospitals), warehousing, billing and collection, food, clinical (including radiology), industrial engineering (including the installation, maintenance and repair of biomedical and similar equipment...
26 CFR 1.501(e)-1 - Cooperative hospital service organizations.
Code of Federal Regulations, 2013 CFR
2013-04-01
... illustrated by the following example. Example. An organization performs industrial engineering services on a...-hospitals), warehousing, billing and collection, food, clinical (including radiology), industrial engineering (including the installation, maintenance and repair of biomedical and similar equipment...
26 CFR 1.501(e)-1 - Cooperative hospital service organizations.
Code of Federal Regulations, 2012 CFR
2012-04-01
... illustrated by the following example. Example. An organization performs industrial engineering services on a...-hospitals), warehousing, billing and collection, food, clinical (including radiology), industrial engineering (including the installation, maintenance and repair of biomedical and similar equipment...
26 CFR 1.501(e)-1 - Cooperative hospital service organizations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... illustrated by the following example. Example. An organization performs industrial engineering services on a...-hospitals), warehousing, billing and collection, food, clinical (including radiology), industrial engineering (including the installation, maintenance and repair of biomedical and similar equipment...
26 CFR 1.501(e)-1 - Cooperative hospital service organizations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... illustrated by the following example. Example. An organization performs industrial engineering services on a...-hospitals), warehousing, billing and collection, food, clinical (including radiology), industrial engineering (including the installation, maintenance and repair of biomedical and similar equipment...
Clase, Kari L; Hein, Patrick W; Pelaez, Nancy J
2008-12-01
Physiology as a discipline is uniquely positioned to engage undergraduate students in interdisciplinary research in response to the 2006-2011 National Science Foundation Strategic Plan call for innovative transformational research, which emphasizes multidisciplinary projects. To prepare undergraduates for careers that cross disciplinary boundaries, students need to practice interdisciplinary communication in academic programs that connect students in diverse disciplines. This report surveys policy documents relevant to this emphasis on interdisciplinary training and suggests a changing role for physiology courses in bioscience and engineering programs. A role for a physiology course is increasingly recommended for engineering programs, but the study of physiology from an engineering perspective might differ from the study of physiology as a basic science. Indeed, physiology laboratory courses provide an arena where biomedical engineering and bioscience students can apply knowledge from both fields while cooperating in multidisciplinary teams under specified technical constraints. Because different problem-solving approaches are used by students of engineering and bioscience, instructional innovations are needed to break down stereotypes between the disciplines and create an educational environment where interdisciplinary teamwork is used to bridge differences.
Learning through projects in the training of biomedical engineers: an application experience
NASA Astrophysics Data System (ADS)
Gambi, José Antonio Li; Peme, Carmen
2011-09-01
Learning through Projects in the curriculum consists of both the identification and analysis of a problem, and the design of solution, execution and evaluation strategies, with teams of students. The project is conceived as the creation of a set of strategies articulated and developed during a certain amount of time to solve a problem contextualized in situations continually changing, where the constant evaluation provides feedback to make adjustments. In 2009, Learning through Projects was applied on the subject Hospital Facilities and three intervention projects were developed in health centers. This first stage is restricted to the analysis of the aspects that are considered to be basic to the professional training: a) Context knowledge: The future biomedical engineers must be familiarized with the complex health system where they will develop their profession; b) Team work: This is one of the essential skills in the training of students, since Biomedical Engineering connects the knowledge of sciences of life with the knowledge of exact sciences and technology; c) Regulations: The activities related to the profession require the implementation of regulations; therefore, to be aware of and to apply these regulations is a fundamental aspect to be analyzed in this stage; d) Project evaluation: It refers to the elaboration and studying of co-evaluation reports, which helps to find out if Learning through Projects contributes to the training. This new line of investigation has the purpose of discovering if the application of this learning strategy makes changes in the training of students in relation to their future professional career. The findings of this ongoing investigation will allow for the analysis of the possibility of extending its application. Key words: engineering, biomedical, learning, projects, strategies.
Borycki, E M; Kushniruk, A W; Bellwood, P; Brender, J
2012-01-01
The objective of this paper is to examine the extent, range and scope to which frameworks, models and theories dealing with technology-induced error have arisen in the biomedical and life sciences literature as indexed by Medline®. To better understand the state of work in the area of technology-induced error involving frameworks, models and theories, the authors conducted a search of Medline® using selected key words identified from seminal articles in this research area. Articles were reviewed and those pertaining to frameworks, models or theories dealing with technology-induced error were further reviewed by two researchers. All articles from Medline® from its inception to April of 2011 were searched using the above outlined strategy. 239 citations were returned. Each of the abstracts for the 239 citations were reviewed by two researchers. Eleven articles met the criteria based on abstract review. These 11 articles were downloaded for further in-depth review. The majority of the articles obtained describe frameworks and models with reference to theories developed in other literatures outside of healthcare. The papers were grouped into several areas. It was found that articles drew mainly from three literatures: 1) the human factors literature (including human-computer interaction and cognition), 2) the organizational behavior/sociotechnical literature, and 3) the software engineering literature. A variety of frameworks and models were found in the biomedical and life sciences literatures. These frameworks and models drew upon and extended frameworks, models and theoretical perspectives that have emerged in other literatures. These frameworks and models are informing an emerging line of research in health and biomedical informatics involving technology-induced errors in healthcare.
Genomic cloud computing: legal and ethical points to consider
Dove, Edward S; Joly, Yann; Tassé, Anne-Marie; Burton, Paul; Chisholm, Rex; Fortier, Isabel; Goodwin, Pat; Harris, Jennifer; Hveem, Kristian; Kaye, Jane; Kent, Alistair; Knoppers, Bartha Maria; Lindpaintner, Klaus; Little, Julian; Riegman, Peter; Ripatti, Samuli; Stolk, Ronald; Bobrow, Martin; Cambon-Thomsen, Anne; Dressler, Lynn; Joly, Yann; Kato, Kazuto; Knoppers, Bartha Maria; Rodriguez, Laura Lyman; McPherson, Treasa; Nicolás, Pilar; Ouellette, Francis; Romeo-Casabona, Carlos; Sarin, Rajiv; Wallace, Susan; Wiesner, Georgia; Wilson, Julia; Zeps, Nikolajs; Simkevitz, Howard; De Rienzo, Assunta; Knoppers, Bartha M
2015-01-01
The biggest challenge in twenty-first century data-intensive genomic science, is developing vast computer infrastructure and advanced software tools to perform comprehensive analyses of genomic data sets for biomedical research and clinical practice. Researchers are increasingly turning to cloud computing both as a solution to integrate data from genomics, systems biology and biomedical data mining and as an approach to analyze data to solve biomedical problems. Although cloud computing provides several benefits such as lower costs and greater efficiency, it also raises legal and ethical issues. In this article, we discuss three key ‘points to consider' (data control; data security, confidentiality and transfer; and accountability) based on a preliminary review of several publicly available cloud service providers' Terms of Service. These ‘points to consider' should be borne in mind by genomic research organizations when negotiating legal arrangements to store genomic data on a large commercial cloud service provider's servers. Diligent genomic cloud computing means leveraging security standards and evaluation processes as a means to protect data and entails many of the same good practices that researchers should always consider in securing their local infrastructure. PMID:25248396
Genomic cloud computing: legal and ethical points to consider.
Dove, Edward S; Joly, Yann; Tassé, Anne-Marie; Knoppers, Bartha M
2015-10-01
The biggest challenge in twenty-first century data-intensive genomic science, is developing vast computer infrastructure and advanced software tools to perform comprehensive analyses of genomic data sets for biomedical research and clinical practice. Researchers are increasingly turning to cloud computing both as a solution to integrate data from genomics, systems biology and biomedical data mining and as an approach to analyze data to solve biomedical problems. Although cloud computing provides several benefits such as lower costs and greater efficiency, it also raises legal and ethical issues. In this article, we discuss three key 'points to consider' (data control; data security, confidentiality and transfer; and accountability) based on a preliminary review of several publicly available cloud service providers' Terms of Service. These 'points to consider' should be borne in mind by genomic research organizations when negotiating legal arrangements to store genomic data on a large commercial cloud service provider's servers. Diligent genomic cloud computing means leveraging security standards and evaluation processes as a means to protect data and entails many of the same good practices that researchers should always consider in securing their local infrastructure.
A new visual navigation system for exploring biomedical Open Educational Resource (OER) videos.
Zhao, Baoquan; Xu, Songhua; Lin, Shujin; Luo, Xiaonan; Duan, Lian
2016-04-01
Biomedical videos as open educational resources (OERs) are increasingly proliferating on the Internet. Unfortunately, seeking personally valuable content from among the vast corpus of quality yet diverse OER videos is nontrivial due to limitations of today's keyword- and content-based video retrieval techniques. To address this need, this study introduces a novel visual navigation system that facilitates users' information seeking from biomedical OER videos in mass quantity by interactively offering visual and textual navigational clues that are both semantically revealing and user-friendly. The authors collected and processed around 25 000 YouTube videos, which collectively last for a total length of about 4000 h, in the broad field of biomedical sciences for our experiment. For each video, its semantic clues are first extracted automatically through computationally analyzing audio and visual signals, as well as text either accompanying or embedded in the video. These extracted clues are subsequently stored in a metadata database and indexed by a high-performance text search engine. During the online retrieval stage, the system renders video search results as dynamic web pages using a JavaScript library that allows users to interactively and intuitively explore video content both efficiently and effectively.ResultsThe authors produced a prototype implementation of the proposed system, which is publicly accessible athttps://patentq.njit.edu/oer To examine the overall advantage of the proposed system for exploring biomedical OER videos, the authors further conducted a user study of a modest scale. The study results encouragingly demonstrate the functional effectiveness and user-friendliness of the new system for facilitating information seeking from and content exploration among massive biomedical OER videos. Using the proposed tool, users can efficiently and effectively find videos of interest, precisely locate video segments delivering personally valuable information, as well as intuitively and conveniently preview essential content of a single or a collection of videos. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Knowledge acquisition, semantic text mining, and security risks in health and biomedical informatics
Huang, Jingshan; Dou, Dejing; Dang, Jiangbo; Pardue, J Harold; Qin, Xiao; Huan, Jun; Gerthoffer, William T; Tan, Ming
2012-01-01
Computational techniques have been adopted in medical and biological systems for a long time. There is no doubt that the development and application of computational methods will render great help in better understanding biomedical and biological functions. Large amounts of datasets have been produced by biomedical and biological experiments and simulations. In order for researchers to gain knowledge from original data, nontrivial transformation is necessary, which is regarded as a critical link in the chain of knowledge acquisition, sharing, and reuse. Challenges that have been encountered include: how to efficiently and effectively represent human knowledge in formal computing models, how to take advantage of semantic text mining techniques rather than traditional syntactic text mining, and how to handle security issues during the knowledge sharing and reuse. This paper summarizes the state-of-the-art in these research directions. We aim to provide readers with an introduction of major computing themes to be applied to the medical and biological research. PMID:22371823
Virtual firm as a role-playing tool for biomedical education.
Blagosklonov, Oleg; Soto-Romero, Georges; Guyon, Florent; Courjal, Nadège; Euphrasie, Sebatien; Yahiaoui, Reda; Butterlin, Nadia
2006-01-01
The paper describes design of a role-playing tool based on the experience of the practice firm which allows participants to obtain relevant and practical on-the-job experience. The students played the roles of the employees and the applicants for vacant positions at the virtual firm - a small business specialized in biomedical sector - founded to design the demonstration vehicle for a biomedical device. We found that this innovative concept may be used to improve the young engineers performance and to facilitate their post-graduate integration.
SeqWare Query Engine: storing and searching sequence data in the cloud.
O'Connor, Brian D; Merriman, Barry; Nelson, Stanley F
2010-12-21
Since the introduction of next-generation DNA sequencers the rapid increase in sequencer throughput, and associated drop in costs, has resulted in more than a dozen human genomes being resequenced over the last few years. These efforts are merely a prelude for a future in which genome resequencing will be commonplace for both biomedical research and clinical applications. The dramatic increase in sequencer output strains all facets of computational infrastructure, especially databases and query interfaces. The advent of cloud computing, and a variety of powerful tools designed to process petascale datasets, provide a compelling solution to these ever increasing demands. In this work, we present the SeqWare Query Engine which has been created using modern cloud computing technologies and designed to support databasing information from thousands of genomes. Our backend implementation was built using the highly scalable, NoSQL HBase database from the Hadoop project. We also created a web-based frontend that provides both a programmatic and interactive query interface and integrates with widely used genome browsers and tools. Using the query engine, users can load and query variants (SNVs, indels, translocations, etc) with a rich level of annotations including coverage and functional consequences. As a proof of concept we loaded several whole genome datasets including the U87MG cell line. We also used a glioblastoma multiforme tumor/normal pair to both profile performance and provide an example of using the Hadoop MapReduce framework within the query engine. This software is open source and freely available from the SeqWare project (http://seqware.sourceforge.net). The SeqWare Query Engine provided an easy way to make the U87MG genome accessible to programmers and non-programmers alike. This enabled a faster and more open exploration of results, quicker tuning of parameters for heuristic variant calling filters, and a common data interface to simplify development of analytical tools. The range of data types supported, the ease of querying and integrating with existing tools, and the robust scalability of the underlying cloud-based technologies make SeqWare Query Engine a nature fit for storing and searching ever-growing genome sequence datasets.
SeqWare Query Engine: storing and searching sequence data in the cloud
2010-01-01
Background Since the introduction of next-generation DNA sequencers the rapid increase in sequencer throughput, and associated drop in costs, has resulted in more than a dozen human genomes being resequenced over the last few years. These efforts are merely a prelude for a future in which genome resequencing will be commonplace for both biomedical research and clinical applications. The dramatic increase in sequencer output strains all facets of computational infrastructure, especially databases and query interfaces. The advent of cloud computing, and a variety of powerful tools designed to process petascale datasets, provide a compelling solution to these ever increasing demands. Results In this work, we present the SeqWare Query Engine which has been created using modern cloud computing technologies and designed to support databasing information from thousands of genomes. Our backend implementation was built using the highly scalable, NoSQL HBase database from the Hadoop project. We also created a web-based frontend that provides both a programmatic and interactive query interface and integrates with widely used genome browsers and tools. Using the query engine, users can load and query variants (SNVs, indels, translocations, etc) with a rich level of annotations including coverage and functional consequences. As a proof of concept we loaded several whole genome datasets including the U87MG cell line. We also used a glioblastoma multiforme tumor/normal pair to both profile performance and provide an example of using the Hadoop MapReduce framework within the query engine. This software is open source and freely available from the SeqWare project (http://seqware.sourceforge.net). Conclusions The SeqWare Query Engine provided an easy way to make the U87MG genome accessible to programmers and non-programmers alike. This enabled a faster and more open exploration of results, quicker tuning of parameters for heuristic variant calling filters, and a common data interface to simplify development of analytical tools. The range of data types supported, the ease of querying and integrating with existing tools, and the robust scalability of the underlying cloud-based technologies make SeqWare Query Engine a nature fit for storing and searching ever-growing genome sequence datasets. PMID:21210981
NASA Astrophysics Data System (ADS)
Chen, Hudong
2001-06-01
There have been considerable advances in Lattice Boltzmann (LB) based methods in the last decade. By now, the fundamental concept of using the approach as an alternative tool for computational fluid dynamics (CFD) has been substantially appreciated and validated in mainstream scientific research and in industrial engineering communities. Lattice Boltzmann based methods possess several major advantages: a) less numerical dissipation due to the linear Lagrange type advection operator in the Boltzmann equation; b) local dynamic interactions suitable for highly parallel processing; c) physical handling of boundary conditions for complicated geometries and accurate control of fluxes; d) microscopically consistent modeling of thermodynamics and of interface properties in complex multiphase flows. It provides a great opportunity to apply the method to practical engineering problems encountered in a wide range of industries from automotive, aerospace to chemical, biomedical, petroleum, nuclear, and others. One of the key challenges is to extend the applicability of this alternative approach to regimes of highly turbulent flows commonly encountered in practical engineering situations involving high Reynolds numbers. Over the past ten years, significant efforts have been made on this front at Exa Corporation in developing a lattice Boltzmann based commercial CFD software, PowerFLOW. It has become a useful computational tool for the simulation of turbulent aerodynamics in practical engineering problems involving extremely complex geometries and flow situations, such as in new automotive vehicle designs world wide. In this talk, we present an overall LB based algorithm concept along with certain key extensions in order to accurately handle turbulent flows involving extremely complex geometries. To demonstrate the accuracy of turbulent flow simulations, we provide a set of validation results for some well known academic benchmarks. These include straight channels, backward-facing steps, flows over a curved hill and typical NACA airfoils at various angles of attack including prediction of stall angle. We further provide numerous engineering cases, ranging from external aerodynamics around various car bodies to internal flows involved in various industrial devices. We conclude with a discussion of certain future extensions for complex fluids.
[Advanced online search techniques and dedicated search engines for physicians].
Nahum, Yoav
2008-02-01
In recent years search engines have become an essential tool in the work of physicians. This article will review advanced search techniques from the world of information specialists, as well as some advanced search engine operators that may help physicians improve their online search capabilities, and maximize the yield of their searches. This article also reviews popular dedicated scientific and biomedical literature search engines.
NASA Astrophysics Data System (ADS)
Wang, Mian
This thesis research is consist of four chapters, including biomimetic three-dimensional tissue engineered nanostructured bone model for breast cancer bone metastasis study (Chapter one), cold atmospheric plasma for selectively ablating metastatic breast cancer (Chapter two), design of biomimetic and bioactive cold plasma modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow derived mesenchymal stem cells (Chapter three), and enhanced osteoblast and mesenchymal stem cell functions on titanium with hydrothermally treated nanocrystalline hydroxyapatite/magnetically treated carbon nanotubes for orthopedic applications (Chapter four). All the thesis research is focused on nanomaterials and the use of cold plasma technique for various biomedical applications.
Updating the biomedical engineering curriculum: Inclusion of Health Technology Assessment subjects.
Martinez Licona, Fabiola; Urbina, Edmundo Gerardo; Azpiroz-Leehan, Joaquin
2010-01-01
This paper describes the work being carried out at Metropolitan Autonomous University (UAM) in Mexico City with regard to the continuous evaluation and updating of the Biomedical Engineering (BME) curriculum. In particular the courses regarded as part of the BME basic branch are reduced and new sets of elective subjects are proposed in order to bring closer the research work at UAM with the subjects in the BME curriculum. Special emphasis is placed on subjects dealing with Health Technology Assessment (HTA) and Health economics, as this branch of the BME discipline is quite promising in Mexico, but there are very few professionals in the field with adequate qualifications.
Selective laser sintering in biomedical engineering.
Mazzoli, Alida
2013-03-01
Selective laser sintering (SLS) is a solid freeform fabrication technique, developed by Carl Deckard for his master's thesis at the University of Texas, patented in 1989. SLS manufacturing is a technique that produces physical models through a selective solidification of a variety of fine powders. SLS technology is getting a great amount of attention in the clinical field. In this paper the characteristics features of SLS and the materials that have been developed for are reviewed together with a discussion on the principles of the above-mentioned manufacturing technique. The applications of SLS in tissue engineering, and at-large in the biomedical field, are reviewed and discussed.
Ibrahim, Fatimah; Thio, Tzer Hwai Gilbert; Faisal, Tarig; Neuman, Michael
2015-03-23
This paper reviews a number of biomedical engineering approaches to help aid in the detection and treatment of tropical diseases such as dengue, malaria, cholera, schistosomiasis, lymphatic filariasis, ebola, leprosy, leishmaniasis, and American trypanosomiasis (Chagas). Many different forms of non-invasive approaches such as ultrasound, echocardiography and electrocardiography, bioelectrical impedance, optical detection, simplified and rapid serological tests such as lab-on-chip and micro-/nano-fluidic platforms and medical support systems such as artificial intelligence clinical support systems are discussed. The paper also reviewed the novel clinical diagnosis and management systems using artificial intelligence and bioelectrical impedance techniques for dengue clinical applications.
Empowering biomedical engineering undergraduates to help teach design.
Allen, Robert H; Tam, William; Shoukas, Artin A
2004-01-01
We report on our experience empowering upperclassmen and seniors to help teach design courses in biomedical engineering. Initiated in the fall of 1998, these courses are a projects-based set, where teams of students from freshmen level to senior level converge to solve practical problems in biomedical engineering. One goal in these courses is to teach the design process by providing experiences that mimic it. Student teams solve practical projects solicited from faculty, industry and the local community. To hone skills and have a metric for grading, written documentation, posters and oral presentations are required over the two-semester sequence. By requiring a mock design and build exercise in the fall, students appreciate the manufacturing process, the difficulties unforeseen in the design stage and the importance of testing. A Web-based, searchable design repository captures reporting information from each project since its inception. This serves as a resource for future projects, in addition to traditional ones such as library, outside experts and lab facilities. Based on results to date, we conclude that characteristics about our design program help students experience design and learn aspects about teamwork and mentoring useful in their profession or graduate education.
Supervised Learning Based Hypothesis Generation from Biomedical Literature.
Sang, Shengtian; Yang, Zhihao; Li, Zongyao; Lin, Hongfei
2015-01-01
Nowadays, the amount of biomedical literatures is growing at an explosive speed, and there is much useful knowledge undiscovered in this literature. Researchers can form biomedical hypotheses through mining these works. In this paper, we propose a supervised learning based approach to generate hypotheses from biomedical literature. This approach splits the traditional processing of hypothesis generation with classic ABC model into AB model and BC model which are constructed with supervised learning method. Compared with the concept cooccurrence and grammar engineering-based approaches like SemRep, machine learning based models usually can achieve better performance in information extraction (IE) from texts. Then through combining the two models, the approach reconstructs the ABC model and generates biomedical hypotheses from literature. The experimental results on the three classic Swanson hypotheses show that our approach outperforms SemRep system.
A pH Sensor Based on a Stainless Steel Electrode Electrodeposited with Iridium Oxide
ERIC Educational Resources Information Center
Martinez, C. C. M.; Madrid, R. E.; Felice, C. J.
2009-01-01
A simple procedure to make an iridium oxide (IrO[subscript 2]) electrodeposited pH sensor, that can be used in a chemical, biomedical, or materials laboratory, is presented here. Some exercises, based on this sensor, that can be used to teach important concepts in the field of biomedical, biochemical, tissue, or materials engineering, are also…
Functional supramolecular polymers for biomedical applications.
Dong, Ruijiao; Zhou, Yongfeng; Huang, Xiaohua; Zhu, Xinyuan; Lu, Yunfeng; Shen, Jian
2015-01-21
As a novel class of dynamic and non-covalent polymers, supramolecular polymers not only display specific structural and physicochemical properties, but also have the ability to undergo reversible changes of structure, shape, and function in response to diverse external stimuli, making them promising candidates for widespread applications ranging from academic research to industrial fields. By an elegant combination of dynamic/reversible structures with exceptional functions, functional supramolecular polymers are attracting increasing attention in various fields. In particular, functional supramolecular polymers offer several unique advantages, including inherent degradable polymer backbones, smart responsiveness to various biological stimuli, and the ease for the incorporation of multiple biofunctionalities (e.g., targeting and bioactivity), thereby showing great potential for a wide range of applications in the biomedical field. In this Review, the trends and representative achievements in the design and synthesis of supramolecular polymers with specific functions are summarized, as well as their wide-ranging biomedical applications such as drug delivery, gene transfection, protein delivery, bio-imaging and diagnosis, tissue engineering, and biomimetic chemistry. These achievements further inspire persistent efforts in an emerging interdisciplin-ary research area of supramolecular chemistry, polymer science, material science, biomedical engineering, and nanotechnology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fougère, S; Beydon, L; Saulnier, F
2008-10-01
Medical devices are known to carry risks from design to scrap. Accident reports in ICU show that medical device account for only 20% of accidents. Formation of users and providing a postmarketing incident reporting are thus essential in health institutions. Clinical and engineering departments should cooperate to produce and secure procedures which should be applied during the lifetime of each clinical device. Several points should be especially fulfilled: close cooperation between clinical departments and biomedical engineering departments with available technicians, computer-based inventory of all devices, evaluation of specifications required before purchasing a new device, education of users on utilisation and maintenance, technical follow-up of devices and keeping maintenance and repair logs, ability to provide users with replacement devices, provision of check-lists before use, forging criteria to decide when device should be discarded. These principles are simple and should be considered as mandatory in order to improve medical device related security.
Careers "Fact Sheets" for clinical engineering & biomedical technology.
Pacela, A F
1991-01-01
Three Careers "Fact Sheets" include information on CE and BMET job titles, job descriptions, and certification. These materials are intended to aid in furthering professional recognition for Clinical Engineers and BMETs, and may be useful in communicating with Administration or Human Resources departments.
2014-01-01
Background Accounts of evidence are vital to evaluate and reproduce scientific findings and integrate data on an informed basis. Currently, such accounts are often inadequate, unstandardized and inaccessible for computational knowledge engineering even though computational technologies, among them those of the semantic web, are ever more employed to represent, disseminate and integrate biomedical data and knowledge. Results We present SEE (Semantic EvidencE), an RDF/OWL based approach for detailed representation of evidence in terms of the argumentative structure of the supporting background for claims even in complex settings. We derive design principles and identify minimal components for the representation of evidence. We specify the Reasoning and Discourse Ontology (RDO), an OWL representation of the model of scientific claims, their subjects, their provenance and their argumentative relations underlying the SEE approach. We demonstrate the application of SEE and illustrate its design patterns in a case study by providing an expressive account of the evidence for certain claims regarding the isolation of the enzyme glutamine synthetase. Conclusions SEE is suited to provide coherent and computationally accessible representations of evidence-related information such as the materials, methods, assumptions, reasoning and information sources used to establish a scientific finding by adopting a consistently claim-based perspective on scientific results and their evidence. SEE allows for extensible evidence representations, in which the level of detail can be adjusted and which can be extended as needed. It supports representation of arbitrary many consecutive layers of interpretation and attribution and different evaluations of the same data. SEE and its underlying model could be a valuable component in a variety of use cases that require careful representation or examination of evidence for data presented on the semantic web or in other formats. PMID:25093070
Bölling, Christian; Weidlich, Michael; Holzhütter, Hermann-Georg
2014-01-01
Accounts of evidence are vital to evaluate and reproduce scientific findings and integrate data on an informed basis. Currently, such accounts are often inadequate, unstandardized and inaccessible for computational knowledge engineering even though computational technologies, among them those of the semantic web, are ever more employed to represent, disseminate and integrate biomedical data and knowledge. We present SEE (Semantic EvidencE), an RDF/OWL based approach for detailed representation of evidence in terms of the argumentative structure of the supporting background for claims even in complex settings. We derive design principles and identify minimal components for the representation of evidence. We specify the Reasoning and Discourse Ontology (RDO), an OWL representation of the model of scientific claims, their subjects, their provenance and their argumentative relations underlying the SEE approach. We demonstrate the application of SEE and illustrate its design patterns in a case study by providing an expressive account of the evidence for certain claims regarding the isolation of the enzyme glutamine synthetase. SEE is suited to provide coherent and computationally accessible representations of evidence-related information such as the materials, methods, assumptions, reasoning and information sources used to establish a scientific finding by adopting a consistently claim-based perspective on scientific results and their evidence. SEE allows for extensible evidence representations, in which the level of detail can be adjusted and which can be extended as needed. It supports representation of arbitrary many consecutive layers of interpretation and attribution and different evaluations of the same data. SEE and its underlying model could be a valuable component in a variety of use cases that require careful representation or examination of evidence for data presented on the semantic web or in other formats.
Al-Kattan, Ahmed; Nirwan, Viraj P; Popov, Anton; Ryabchikov, Yury V; Tselikov, Gleb; Sentis, Marc; Fahmi, Amir; Kabashin, Andrei V
2018-05-24
Driven by surface cleanness and unique physical, optical and chemical properties, bare (ligand-free) laser-synthesized nanoparticles (NPs) are now in the focus of interest as promising materials for the development of advanced biomedical platforms related to biosensing, bioimaging and therapeutic drug delivery. We recently achieved significant progress in the synthesis of bare gold (Au) and silicon (Si) NPs and their testing in biomedical tasks, including cancer imaging and therapy, biofuel cells, etc. We also showed that these nanomaterials can be excellent candidates for tissue engineering applications. This review is aimed at the description of our recent progress in laser synthesis of bare Si and Au NPs and their testing as functional modules (additives) in innovative scaffold platforms intended for tissue engineering tasks.
Lin, Chin-Teng; Ko, Li-Wei; Chang, Meng-Hsiu; Duann, Jeng-Ren; Chen, Jing-Ying; Su, Tung-Ping; Jung, Tzyy-Ping
2010-01-01
Biomedical signal monitoring systems have rapidly advanced in recent years, propelled by significant advances in electronic and information technologies. Brain-computer interface (BCI) is one of the important research branches and has become a hot topic in the study of neural engineering, rehabilitation, and brain science. Traditionally, most BCI systems use bulky, wired laboratory-oriented sensing equipments to measure brain activity under well-controlled conditions within a confined space. Using bulky sensing equipments not only is uncomfortable and inconvenient for users, but also impedes their ability to perform routine tasks in daily operational environments. Furthermore, owing to large data volumes, signal processing of BCI systems is often performed off-line using high-end personal computers, hindering the applications of BCI in real-world environments. To be practical for routine use by unconstrained, freely-moving users, BCI systems must be noninvasive, nonintrusive, lightweight and capable of online signal processing. This work reviews recent online BCI systems, focusing especially on wearable, wireless and real-time systems. Copyright 2009 S. Karger AG, Basel.
The medical science DMZ: a network design pattern for data-intensive medical science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peisert, Sean; Dart, Eli; Barnett, William
We describe a detailed solution for maintaining high-capacity, data-intensive network flows (eg, 10, 40, 100 Gbps+) in a scientific, medical context while still adhering to security and privacy laws and regulations.High-end networking, packet-filter firewalls, network intrusion-detection systems.We describe a "Medical Science DMZ" concept as an option for secure, high-volume transport of large, sensitive datasets between research institutions over national research networks, and give 3 detailed descriptions of implemented Medical Science DMZs.The exponentially increasing amounts of "omics" data, high-quality imaging, and other rapidly growing clinical datasets have resulted in the rise of biomedical research "Big Data." The storage, analysis, and networkmore » resources required to process these data and integrate them into patient diagnoses and treatments have grown to scales that strain the capabilities of academic health centers. Some data are not generated locally and cannot be sustained locally, and shared data repositories such as those provided by the National Library of Medicine, the National Cancer Institute, and international partners such as the European Bioinformatics Institute are rapidly growing. The ability to store and compute using these data must therefore be addressed by a combination of local, national, and industry resources that exchange large datasets. Maintaining data-intensive flows that comply with the Health Insurance Portability and Accountability Act (HIPAA) and other regulations presents a new challenge for biomedical research. We describe a strategy that marries performance and security by borrowing from and redefining the concept of a Science DMZ, a framework that is used in physical sciences and engineering research to manage high-capacity data flows.By implementing a Medical Science DMZ architecture, biomedical researchers can leverage the scale provided by high-performance computer and cloud storage facilities and national high-speed research networks while preserving privacy and meeting regulatory requirements.« less
Peisert, Sean; Barnett, William; Dart, Eli; Cuff, James; Grossman, Robert L; Balas, Edward; Berman, Ari; Shankar, Anurag; Tierney, Brian
2016-11-01
We describe use cases and an institutional reference architecture for maintaining high-capacity, data-intensive network flows (e.g., 10, 40, 100 Gbps+) in a scientific, medical context while still adhering to security and privacy laws and regulations. High-end networking, packet filter firewalls, network intrusion detection systems. We describe a "Medical Science DMZ" concept as an option for secure, high-volume transport of large, sensitive data sets between research institutions over national research networks. The exponentially increasing amounts of "omics" data, the rapid increase of high-quality imaging, and other rapidly growing clinical data sets have resulted in the rise of biomedical research "big data." The storage, analysis, and network resources required to process these data and integrate them into patient diagnoses and treatments have grown to scales that strain the capabilities of academic health centers. Some data are not generated locally and cannot be sustained locally, and shared data repositories such as those provided by the National Library of Medicine, the National Cancer Institute, and international partners such as the European Bioinformatics Institute are rapidly growing. The ability to store and compute using these data must therefore be addressed by a combination of local, national, and industry resources that exchange large data sets. Maintaining data-intensive flows that comply with HIPAA and other regulations presents a new challenge for biomedical research. Recognizing this, we describe a strategy that marries performance and security by borrowing from and redefining the concept of a "Science DMZ"-a framework that is used in physical sciences and engineering research to manage high-capacity data flows. By implementing a Medical Science DMZ architecture, biomedical researchers can leverage the scale provided by high-performance computer and cloud storage facilities and national high-speed research networks while preserving privacy and meeting regulatory requirements. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.
The medical science DMZ: a network design pattern for data-intensive medical science.
Peisert, Sean; Dart, Eli; Barnett, William; Balas, Edward; Cuff, James; Grossman, Robert L; Berman, Ari; Shankar, Anurag; Tierney, Brian
2017-10-06
We describe a detailed solution for maintaining high-capacity, data-intensive network flows (eg, 10, 40, 100 Gbps+) in a scientific, medical context while still adhering to security and privacy laws and regulations. High-end networking, packet-filter firewalls, network intrusion-detection systems. We describe a "Medical Science DMZ" concept as an option for secure, high-volume transport of large, sensitive datasets between research institutions over national research networks, and give 3 detailed descriptions of implemented Medical Science DMZs. The exponentially increasing amounts of "omics" data, high-quality imaging, and other rapidly growing clinical datasets have resulted in the rise of biomedical research "Big Data." The storage, analysis, and network resources required to process these data and integrate them into patient diagnoses and treatments have grown to scales that strain the capabilities of academic health centers. Some data are not generated locally and cannot be sustained locally, and shared data repositories such as those provided by the National Library of Medicine, the National Cancer Institute, and international partners such as the European Bioinformatics Institute are rapidly growing. The ability to store and compute using these data must therefore be addressed by a combination of local, national, and industry resources that exchange large datasets. Maintaining data-intensive flows that comply with the Health Insurance Portability and Accountability Act (HIPAA) and other regulations presents a new challenge for biomedical research. We describe a strategy that marries performance and security by borrowing from and redefining the concept of a Science DMZ, a framework that is used in physical sciences and engineering research to manage high-capacity data flows. By implementing a Medical Science DMZ architecture, biomedical researchers can leverage the scale provided by high-performance computer and cloud storage facilities and national high-speed research networks while preserving privacy and meeting regulatory requirements. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Barnett, William; Dart, Eli; Cuff, James; Grossman, Robert L; Balas, Edward; Berman, Ari; Shankar, Anurag; Tierney, Brian
2016-01-01
Objective We describe use cases and an institutional reference architecture for maintaining high-capacity, data-intensive network flows (e.g., 10, 40, 100 Gbps+) in a scientific, medical context while still adhering to security and privacy laws and regulations. Materials and Methods High-end networking, packet filter firewalls, network intrusion detection systems. Results We describe a “Medical Science DMZ” concept as an option for secure, high-volume transport of large, sensitive data sets between research institutions over national research networks. Discussion The exponentially increasing amounts of “omics” data, the rapid increase of high-quality imaging, and other rapidly growing clinical data sets have resulted in the rise of biomedical research “big data.” The storage, analysis, and network resources required to process these data and integrate them into patient diagnoses and treatments have grown to scales that strain the capabilities of academic health centers. Some data are not generated locally and cannot be sustained locally, and shared data repositories such as those provided by the National Library of Medicine, the National Cancer Institute, and international partners such as the European Bioinformatics Institute are rapidly growing. The ability to store and compute using these data must therefore be addressed by a combination of local, national, and industry resources that exchange large data sets. Maintaining data-intensive flows that comply with HIPAA and other regulations presents a new challenge for biomedical research. Recognizing this, we describe a strategy that marries performance and security by borrowing from and redefining the concept of a “Science DMZ”—a framework that is used in physical sciences and engineering research to manage high-capacity data flows. Conclusion By implementing a Medical Science DMZ architecture, biomedical researchers can leverage the scale provided by high-performance computer and cloud storage facilities and national high-speed research networks while preserving privacy and meeting regulatory requirements. PMID:27136944
NASA Technical Reports Server (NTRS)
Frank, Andreas O.; Twombly, I. Alexander; Barth, Timothy J.; Smith, Jeffrey D.; Dalton, Bonnie P. (Technical Monitor)
2001-01-01
We have applied the linear elastic finite element method to compute haptic force feedback and domain deformations of soft tissue models for use in virtual reality simulators. Our results show that, for virtual object models of high-resolution 3D data (>10,000 nodes), haptic real time computations (>500 Hz) are not currently possible using traditional methods. Current research efforts are focused in the following areas: 1) efficient implementation of fully adaptive multi-resolution methods and 2) multi-resolution methods with specialized basis functions to capture the singularity at the haptic interface (point loading). To achieve real time computations, we propose parallel processing of a Jacobi preconditioned conjugate gradient method applied to a reduced system of equations resulting from surface domain decomposition. This can effectively be achieved using reconfigurable computing systems such as field programmable gate arrays (FPGA), thereby providing a flexible solution that allows for new FPGA implementations as improved algorithms become available. The resulting soft tissue simulation system would meet NASA Virtual Glovebox requirements and, at the same time, provide a generalized simulation engine for any immersive environment application, such as biomedical/surgical procedures or interactive scientific applications.
Protecting computer-based medical devices: defending against viruses and other threats.
2005-07-01
The increasing integration of computer hardware has exposed medical devices to greater risks than ever before. More and more devices rely on commercial off-the-shelf software and operating systems, which are vulnerable to the increasing proliferation of viruses and other malicious programs that target computers. Therefore, it is necessary for hospitals to take steps such as those outlined in this article to ensure that their computer-based devices are made safe and continue to remain safe in the future. Maintaining the security of medical devices requires planning, careful execution, and a commitment of resources. A team should be created to develop a process for surveying the security status of all computerized devices in the hospital and making sure that patches and other updates are applied as needed. These patches and updates should be approved by the medical system supplier before being implemented. The team should consider using virtual local area networks to isolate susceptible devices on the hospital's network. All security measures should be carefully documented, and the documentation should be kept up-to-date. Above all, care must be taken to ensure that medical device security involves a collaborative, supportive partnership between the hospital's information technology staff and biomedical engineering personnel.
Carbon Nanotubes in Biomedical Applications: Factors, Mechanisms, and Remedies of Toxicity.
Alshehri, Reem; Ilyas, Asad Muhammad; Hasan, Anwarul; Arnaout, Adnan; Ahmed, Farid; Memic, Adnan
2016-09-22
Carbon nanotubes (CNTs) represent one of the most studied allotropes of carbon. The unique physicochemical properties of CNTs make them among prime candidates for numerous applications in biomedical fields including drug delivery, gene therapy, biosensors, and tissue engineering applications. However, toxicity of CNTs has been a major concern for their use in biomedical applications. In this review, we present an overview of carbon nanotubes in biomedical applications; we particularly focus on various factors and mechanisms affecting their toxicity. We have discussed various parameters including the size, length, agglomeration, and impurities of CNTs that may cause oxidative stress, which is often the main mechanism of CNTs' toxicity. Other toxic pathways are also examined, and possible ways to overcome these challenges have been discussed.
Digital Plasmonic Patterning for Localized Tuning of Hydrogel Stiffness.
Hribar, Kolin C; Choi, Yu Suk; Ondeck, Matthew; Engler, Adam J; Chen, Shaochen
2014-08-20
The mechanical properties of the extracellular matrix (ECM) can dictate cell fate in biological systems. In tissue engineering, varying the stiffness of hydrogels-water-swollen polymeric networks that act as ECM substrates-has previously been demonstrated to control cell migration, proliferation, and differentiation. Here, "digital plasmonic patterning" (DPP) is developed to mechanically alter a hydrogel encapsulated with gold nanorods using a near-infrared laser, according to a digital (computer-generated) pattern. DPP can provide orders of magnitude changes in stiffness, and can be tuned by laser intensity and speed of writing. In vitro cellular experiments using A7R5 smooth muscle cells confirm cell migration and alignment according to these patterns, making DPP a useful technique for mechanically patterning hydrogels for various biomedical applications.
NASA Astrophysics Data System (ADS)
Ueda, T.; Zhai, H. F.; Ren, F.; Noda, N.-A.; Sano, Y.; Takase, Yasushi; Yonezawa, Y.; Tanaka, H.
2018-06-01
In recent years, nanobubble technology has drawn great attention due to their wide applications in various fields of science and technology, such as water treatment, biomedical engineering, and nanomaterials. This study focuses on the application to seafood long term storage. The nitrogen nanobubble water circulation may reduce the oxygen in water and slow the progressions of oxidation and spoilage. Our previous study showed the pressure reduction and shear stress are involved in nanobubble generation apparatus with honeycomb cells. In this work, the nanobubble generating performance is studied experimentally for honeycomb structures by varying the cell size and the flow velocity. Computational Fluid Dynamics analysis is also performed to simulate the experiment and find out the efficient nanobubble generation.
An introduction to information retrieval: applications in genomics
Nadkarni, P M
2011-01-01
Information retrieval (IR) is the field of computer science that deals with the processing of documents containing free text, so that they can be rapidly retrieved based on keywords specified in a user’s query. IR technology is the basis of Web-based search engines, and plays a vital role in biomedical research, because it is the foundation of software that supports literature search. Documents can be indexed by both the words they contain, as well as the concepts that can be matched to domain-specific thesauri; concept matching, however, poses several practical difficulties that make it unsuitable for use by itself. This article provides an introduction to IR and summarizes various applications of IR and related technologies to genomics. PMID:12049181
Flynn, Allen J; Boisvert, Peter; Gittlen, Nate; Gross, Colin; Iott, Brad; Lagoze, Carl; Meng, George; Friedman, Charles P
2018-01-01
The Knowledge Grid (KGrid) is a research and development program toward infrastructure capable of greatly decreasing latency between the publication of new biomedical knowledge and its widespread uptake into practice. KGrid comprises digital knowledge objects, an online Library to store them, and an Activator that uses them to provide Knowledge-as-a-Service (KaaS). KGrid's Activator enables computable biomedical knowledge, held in knowledge objects, to be rapidly deployed at Internet-scale in cloud computing environments for improved health. Here we present the Activator, its system architecture and primary functions.
Computational approaches for predicting biomedical research collaborations.
Zhang, Qing; Yu, Hong
2014-01-01
Biomedical research is increasingly collaborative, and successful collaborations often produce high impact work. Computational approaches can be developed for automatically predicting biomedical research collaborations. Previous works of collaboration prediction mainly explored the topological structures of research collaboration networks, leaving out rich semantic information from the publications themselves. In this paper, we propose supervised machine learning approaches to predict research collaborations in the biomedical field. We explored both the semantic features extracted from author research interest profile and the author network topological features. We found that the most informative semantic features for author collaborations are related to research interest, including similarity of out-citing citations, similarity of abstracts. Of the four supervised machine learning models (naïve Bayes, naïve Bayes multinomial, SVMs, and logistic regression), the best performing model is logistic regression with an ROC ranging from 0.766 to 0.980 on different datasets. To our knowledge we are the first to study in depth how research interest and productivities can be used for collaboration prediction. Our approach is computationally efficient, scalable and yet simple to implement. The datasets of this study are available at https://github.com/qingzhanggithub/medline-collaboration-datasets.
A resource facility for kinetic analysis: modeling using the SAAM computer programs.
Foster, D M; Boston, R C; Jacquez, J A; Zech, L
1989-01-01
Kinetic analysis and integrated system modeling have contributed significantly to understanding the physiology and pathophysiology of metabolic systems in humans and animals. Many experimental biologists are aware of the usefulness of these techniques and recognize that kinetic modeling requires special expertise. The Resource Facility for Kinetic Analysis (RFKA) provides this expertise through: (1) development and application of modeling technology for biomedical problems, and (2) development of computer-based kinetic modeling methodologies concentrating on the computer program Simulation, Analysis, and Modeling (SAAM) and its conversational version, CONversational SAAM (CONSAM). The RFKA offers consultation to the biomedical community in the use of modeling to analyze kinetic data and trains individuals in using this technology for biomedical research. Early versions of SAAM were widely applied in solving dosimetry problems; many users, however, are not familiar with recent improvements to the software. The purpose of this paper is to acquaint biomedical researchers in the dosimetry field with RFKA, which, together with the joint National Cancer Institute-National Heart, Lung and Blood Institute project, is overseeing SAAM development and applications. In addition, RFKA provides many service activities to the SAAM user community that are relevant to solving dosimetry problems.
Development of instruction in hospital electrical safety for medical education.
Yoo, J H; Broderick, W A
1978-01-01
Although hospital electrical safety is receiving increased attention in the literature of engineers, it is not, at present, reflected in the curricula of medical schools. A possible reason for this omission is that biomedical and/or clinical engineers knowledgeable in electrical safety are not usually trained to teach. One remedy for this problem is to combine the knowledge of engineers with that of instructional developers to design a systematic curriculum for a course in hospital electrical safety. This paper describes such an effort at the University of Texas Health Science Center at San Antonio (UTHSCSA). A biomedical engineer and an instructional developer designed an instructional module in hospital electrical safety; the engineer taught the module, and both evaluated the results. The process and outcome of their collaboration are described. This model was effectively applied in the classroom as a four-hour segment in hospital electrical safety for first-year medical students at UTHSCSA. It is hoped that an additional benefit of this system will be that it offers an opportunity for continuing improvement in this kind of instruction at other medical schools and hospitals.
Collaborative Learning in Engineering Design.
ERIC Educational Resources Information Center
Newell, Sigrin
1990-01-01
Described is a capstone experience for undergraduate biomedical engineering students in which student teams work with children and adults with cerebral palsy to produce devices that make their lives easier or more enjoyable. The collaborative approach, benefits to the clients, and evaluation of the projects are discussed. (CW)
Engineering Veterinary Education.
ERIC Educational Resources Information Center
Eyre, Peter
2002-01-01
Calls for a new model for veterinary education, drawn from engineering education, which imparts a strong core of fundamental biomedical knowledge and multi-species clinical experience to all students than allows a genuine opportunity for differentiation into strongly focused subject areas that provide in-depth education and training appropriate to…
Two-Compartment Pharmacokinetic Models for Chemical Engineers
ERIC Educational Resources Information Center
Kanneganti, Kumud; Simon, Laurent
2011-01-01
The transport of potassium permanganate between two continuous-stirred vessels was investigated to help chemical and biomedical engineering students understand two-compartment pharmacokinetic models. Concepts of modeling, mass balance, parameter estimation and Laplace transform were applied to the two-unit process. A good agreement was achieved…
Bacterial filamentation accelerates colonization of adhesive spots embedded in biopassive surfaces
NASA Astrophysics Data System (ADS)
Möller, Jens; Emge, Philippe; Avalos Vizcarra, Ima; Kollmannsberger, Philip; Vogel, Viola
2013-12-01
Sessile bacteria adhere to engineered surfaces and host tissues and pose a substantial clinical and economical risk when growing into biofilms. Most engineered and biological interfaces are of chemically heterogeneous nature and provide adhesive islands for bacterial attachment and growth. To mimic either defects in a surface coating of biomedical implants or heterogeneities within mucosal layers (Peyer's patches), we embedded micrometre-sized adhesive islands in a poly(ethylene glycol) biopassive background. We show experimentally and computationally that filamentation of Escherichia coli can significantly accelerate the bacterial surface colonization under physiological flow conditions. Filamentation can thus provide an advantage to a bacterial population to bridge non-adhesive distances exceeding 5 μm. Bacterial filamentation, caused by blocking of bacterial division, is common among bacterial species and can be triggered by environmental conditions or antibiotic treatment. While great awareness exists that the build-up of antibiotic resistance serves as intrinsic survival strategy, we show here that antibiotic treatment can actually promote surface colonization by triggering filamentation, which in turn prevents daughter cells from being washed away. Our combined microfabrication and computational approaches provide quantitative insights into mechanisms that enable biofouling of biopassive surfaces with embedded adhesive spots, even for spot distances that are multiples of the bacterial length.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Medical Institutions of The Johns Hopkins University and The Johns Hopkins University Applied Physics Laboratory have developed a vigorous collaborative program of biomedical research, development, and systems engineering. An important objective of the program is to apply the expertise in engineering, the physical sciences, and systems analysis acquired by APL in defense and space research and development to problems of medical research and health care delivery. This program has grown to include collaboration with many of the clinical and basic science departments of the medical divisions. Active collaborative projects exist in ophthalmology, neurosensory research and instrumentation development, cardiovascular systems,more » patient monitoring, therapeutic and rehabilitation systems, clinical information systems, and clinical engineering. This application of state-of-the-art technology has contributed to advances in many areas of basic medical research and in clinical diagnosis and therapy through improvement of instrumentation, techniques, and basic understanding.« less
Open access to biomedical engineering publications.
Flexman, Jennifer A
2008-01-01
Scientific research is disseminated within the community and to the public in part through journals. Most scientific journals, in turn, protect the manuscript through copyright and recover their costs by charging subscription fees to individuals and institutions. This revenue stream is used to support the management of the journal and, in some cases, professional activities of the sponsoring society such as the Institute of Electrical and Electronics Engineers (IEEE). For example, the IEEE Engineering in Medicine and Biology Society (EMBS) manages seven academic publications representing the various areas of biomedical engineering. New business models have been proposed to distribute journal articles free of charge, either immediately or after a delay, to enable a greater dissemination of knowledge to both the public and the scientific community. However, publication costs must be recovered and likely at a higher cost to the manuscript authors. While there is little doubt that the foundations of scientific publication will change, the specifics and implications of an open source framework must be discussed.
Becoming an effective clinical engineering or biomedical technology manager.
Brush, L C
1992-01-01
The BMET or CE Supervisor is a technical manager who is close to the actual work of a biomedical or clinical engineering department. The MPTI is a management training tool that has identified differences between the effective and less-effective technical managers. These behaviors or styles can be considered and applied to the clinical engineering and BMET work environments. Effective BMET or CE Supervisors have a management identity. They are both people-oriented and task-oriented. They are good problem-solvers, and will plan and structure the work tasks and environment. When the situation requires a change in plans, however, they can adapt to the new situation easily. If a decision needs to be made that affects the organization, they will check with higher management or peer managers. Less-effective BMET or CE Supervisors will make important decisions alone, without checking with others. They plan and structure tasks and the work environment, but they are less willing to change when faced with a new situation. They are not people-oriented, and their ability to assess social situations is low. Their need for achievement recognition is often too high. The work environment has an effect on how the competence of a manager is perceived. A "one-desk manager" in a small, one-person biomedical engineering department has more autonomy than a CE Supervisor in a large department. Working for a medical device manufacturing firm often requires a greater management identity. An engineering consultant is often a managing specialist, rather than a traditional manager.(ABSTRACT TRUNCATED AT 250 WORDS)
The Brazilian research and teaching center in biomedicine and aerospace biomedical engineering.
Russomano, T; Falcao, P F; Dalmarco, G; Martinelli, L; Cardoso, R; Santos, M A; Sparenberg, A
2008-08-01
The recent engagement of Brazil in the construction and utilization of the International Space Station has motivated several Brazilian research institutions and universities to establish study centers related to Space Sciences. The Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS) is no exception. The University initiated in 1993 the first degree course training students to operate commercial aircraft in South America (the School of Aeronautical Sciences. A further step was the decision to build the first Brazilian laboratory dedicated to the conduct of experiments in ground-based microgravity simulation. Established in 1998, the Microgravity Laboratory, which was located in the Instituto de Pesquisas Cientificas e Tecnologicas (IPCT), was supported by the Schools of Medicine, Aeronautical Sciences and Electrical Engineering/Biomedical Engineering. At the end of 2006, the Microgravity Laboratory became a Center and was transferred to the School of Engineering. The principal activities of the Microgravity Centre are the development of research projects related to human physiology before, during and after ground-based microgravity simulation and parabolic flights, to aviation medicine in the 21st century and to aerospace biomedical engineering. The history of Brazilian, and why not say worldwide, space science should unquestionably go through PUCRS. As time passes, the pioneering spirit of our University in the aerospace area has become undeniable. This is due to the group of professionals, students, technicians and staff in general that have once worked or are still working in the Center of Microgravity, a group of faculty and students that excel in their undeniable technical-scientific qualifications.
Business aspects and sustainability for healthgrids - an expert survey.
Scholz, Stefan; Semler, Sebastian C; Breitner, Michael H
2009-01-01
Grid computing initiatives in medicine and life sciences are under pressure to prove their sustainability. While some first business model frameworks were outlined, few practical experiences were considered. This gap has been narrowed by an international survey of 33 grid computing experts with biomedical and non-biomedical background on business aspects. The experts surveyed were cautiously optimistic about a sustainable implementation of grid computing within a mid term timeline. They identified marketable application areas, stated the underlying value proposition, outlined trends and specify critical success factors. From a general perspective of their answers, they provided a stable basis for a road map of sustainable grid computing solutions for medicine and life sciences.
ERIC Educational Resources Information Center
Marcus, Michael L.; Winters, Dixie L.
2004-01-01
Students from science, engineering, and technology programs should be able to work together as members of project teams to find solutions to technical problems. The exercise in this paper describes the methods actually used by a project team from a Biomedical Instrumentation Corporation in which scientists, technicians, and engineers from various…
Gauvin, Robert; Khademhosseini, Ali
2011-01-01
Micro- and nanoscale technologies have emerged as powerful tools in the fabrication of engineered tissues and organs. Here we focus on the application of these techniques to improve engineered tissue architecture and function using modular and directed self-assembly and highlight the emergence of this new class of materials for biomedical applications. PMID:21627163
Atomic Layer Deposition in Bio-Nanotechnology: A Brief Overview.
Bishal, Arghya K; Butt, Arman; Selvaraj, Sathees K; Joshi, Bela; Patel, Sweetu B; Huang, Su; Yang, Bin; Shukohfar, Tolou; Sukotjo, Cortino; Takoudis, Christos G
2015-01-01
Atomic layer deposition (ALD) is a technique increasingly used in nanotechnology and ultrathin film deposition; it is ideal for films in the nanometer and Angstrom length scales. ALD can effectively be used to modify the surface chemistry and functionalization of engineering-related and biologically important surfaces. It can also be used to alter the mechanical, electrical, chemical, and other properties of materials that are increasingly used in biomedical engineering and biological sciences. ALD is a relatively new technique for optimizing materials for use in bio-nanotechnology. Here, after a brief review of the more widely used modes of ALD and a few of its applications in biotechnology, selected results that show the potential of ALD in bio-nanotechnology are presented. ALD seems to be a promising means for tuning the hydrophilicity/hydrophobicity characteristics of biomedical surfaces, forming conformal ultrathin coatings with desirable properties on biomedical substrates with a high aspect ratio, tuning the antibacterial properties of substrate surfaces of interest, and yielding multifunctional biomaterials for medical implants and other devices.
A BSc level option in biomedical electronics.
Gergely, S
1979-01-01
1. The application of electronic instruments in medical diagnosis and therapy is well established. 2. There is a demand for electronic engineers both in industry and in the Health Service at all ranges of educational attainment. 3. It is possible to identify a set of objectives for a first degree course in Biomedical Electronics. An important element of this course should be the provision of practical experience in industry and in hospitals. 4. Such courses are available both in Europe and in the United States. Although the postgraduate course provision was satisfactory in the UK in the early seventies, only one full time undergraduate course was in operation. 5. A sandwich course can be designed in Biomedical Electronics as a major option of an existing BSc course in Electrical and Electronic Engineering. Provision can be made for entering and leaving the option. The option can be arranged to follow the guidelines laid down by the IEE for exemption from its educational requirements. 6. The option described started at the Lanchester Polytechnic in Coventry in September 1977.
SOA-based digital library services and composition in biomedical applications.
Zhao, Xia; Liu, Enjie; Clapworthy, Gordon J; Viceconti, Marco; Testi, Debora
2012-06-01
Carefully collected, high-quality data are crucial in biomedical visualization, and it is important that the user community has ready access to both this data and the high-performance computing resources needed by the complex, computational algorithms that will process it. Biological researchers generally require data, tools and algorithms from multiple providers to achieve their goals. This paper illustrates our response to the problems that result from this. The Living Human Digital Library (LHDL) project presented in this paper has taken advantage of Web Services to build a biomedical digital library infrastructure that allows clinicians and researchers not only to preserve, trace and share data resources, but also to collaborate at the data-processing level. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Ibrahim, Fatimah; Thio, Tzer Hwai Gilbert; Faisal, Tarig; Neuman, Michael
2015-01-01
This paper reviews a number of biomedical engineering approaches to help aid in the detection and treatment of tropical diseases such as dengue, malaria, cholera, schistosomiasis, lymphatic filariasis, ebola, leprosy, leishmaniasis, and American trypanosomiasis (Chagas). Many different forms of non-invasive approaches such as ultrasound, echocardiography and electrocardiography, bioelectrical impedance, optical detection, simplified and rapid serological tests such as lab-on-chip and micro-/nano-fluidic platforms and medical support systems such as artificial intelligence clinical support systems are discussed. The paper also reviewed the novel clinical diagnosis and management systems using artificial intelligence and bioelectrical impedance techniques for dengue clinical applications. PMID:25806872
Engineering a Cure: Treena Livingston Arinzeh
ERIC Educational Resources Information Center
Lum, Lydia
2005-01-01
This article provides an overview of the accomplishments of Assistant Professor of Biomedical Engineering at the New Jersey Institute of Technology, Treena Livingston Arinzeh. It describes her exemplary work on stem cell research; her educational roots; and her work helping develop undergraduate and graduate curricula for the fledgling biomedical…
Considerations for Reporting Finite Element Analysis Studies in Biomechanics
Erdemir, Ahmet; Guess, Trent M.; Halloran, Jason; Tadepalli, Srinivas C.; Morrison, Tina M.
2012-01-01
Simulation-based medicine and the development of complex computer models of biological structures is becoming ubiquitous for advancing biomedical engineering and clinical research. Finite element analysis (FEA) has been widely used in the last few decades to understand and predict biomechanical phenomena. Modeling and simulation approaches in biomechanics are highly interdisciplinary, involving novice and skilled developers in all areas of biomedical engineering and biology. While recent advances in model development and simulation platforms offer a wide range of tools to investigators, the decision making process during modeling and simulation has become more opaque. Hence, reliability of such models used for medical decision making and for driving multiscale analysis comes into question. Establishing guidelines for model development and dissemination is a daunting task, particularly with the complex and convoluted models used in FEA. Nonetheless, if better reporting can be established, researchers will have a better understanding of a model’s value and the potential for reusability through sharing will be bolstered. Thus, the goal of this document is to identify resources and considerate reporting parameters for FEA studies in biomechanics. These entail various levels of reporting parameters for model identification, model structure, simulation structure, verification, validation, and availability. While we recognize that it may not be possible to provide and detail all of the reporting considerations presented, it is possible to establish a level of confidence with selective use of these parameters. More detailed reporting, however, can establish an explicit outline of the decision-making process in simulation-based analysis for enhanced reproducibility, reusability, and sharing. PMID:22236526
Arifvianto, B; Leeflang, M A; Zhou, J
2017-04-01
Scaffolds with open, interconnected pores and appropriate mechanical properties are required to provide mechanical support and to guide the formation and development of new tissue in bone tissue engineering. Since the mechanical properties of the scaffold tend to decrease with increasing porosity, a balance must be sought in order to meet these two conflicting requirements. In this research, open, interconnected pores and mechanical properties of biomedical titanium scaffolds prepared by using the space holder method were characterized. Micro-computed tomography (micro-CT) and permeability analysis were carried out to quantify the porous structures and ascertain the presence of open, interconnected pores in the scaffolds fabricated. Diametral compression (DC) tests were performed to generate stress-strain diagrams that could be used to determine the elastic moduli and yield strengths of the scaffolds. Deformation and failure mechanisms involved in the DC tests of the titanium scaffolds were examined. The results of micro-CT and permeability analyses confirmed the presence of open, interconnected pores in the titanium scaffolds with porosity over a range of 31-61%. Among these scaffolds, a maximum specific surface area could be achieved in the scaffold with a total porosity of 5-55%. DC tests showed that the titanium scaffolds with elastic moduli and yield strengths of 0.64-3.47GPa and 28.67-80MPa, respectively, could be achieved. By comprehensive consideration of specific surface area, permeability and mechanical properties, the titanium scaffolds with porosities in a range of 50-55% were recommended to be used in cancellous bone tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.
Advances in polymeric systems for tissue engineering and biomedical applications.
Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram
2012-03-01
The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zong, Nansu; Lee, Sungin; Ahn, Jinhyun; Kim, Hong-Gee
2017-08-01
The keyword-based entity search restricts search space based on the preference of search. When given keywords and preferences are not related to the same biomedical topic, existing biomedical Linked Data search engines fail to deliver satisfactory results. This research aims to tackle this issue by supporting an inter-topic search-improving search with inputs, keywords and preferences, under different topics. This study developed an effective algorithm in which the relations between biomedical entities were used in tandem with a keyword-based entity search, Siren. The algorithm, PERank, which is an adaptation of Personalized PageRank (PPR), uses a pair of input: (1) search preferences, and (2) entities from a keyword-based entity search with a keyword query, to formalize the search results on-the-fly based on the index of the precomputed Individual Personalized PageRank Vectors (IPPVs). Our experiments were performed over ten linked life datasets for two query sets, one with keyword-preference topic correspondence (intra-topic search), and the other without (inter-topic search). The experiments showed that the proposed method achieved better search results, for example a 14% increase in precision for the inter-topic search than the baseline keyword-based search engine. The proposed method improved the keyword-based biomedical entity search by supporting the inter-topic search without affecting the intra-topic search based on the relations between different entities. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Malone, Kareen Ror; Nersessian, Nancy J.; Newstetter, Wendy
This article presents qualitative data and offers some innovative theoretical approaches to frame the analysis of gender in science, technology, engineering, and mathematics (STEM) settings. It begins with a theoretical discussion of a discursive approach to gender that captures how gender is lived "on the ground." The authors argue for a less individualistic approach to gender. Data for this research project was gathered from intensive interviews with lab members and ethnographic observations in a biomedical engineering lab. Data analysis relied on a mixed methodology involving qualitative approaches and dialogues with findings from other research traditions. Three themes are highlighted: lab dynamics in relation to issues of critical mass, the division of labor, and knowledge transmission. The data illustrate how gender is created in interactions and is inflected through forms of social organization.
From the foundation act to the corporate culture of a BME teaching institute.
Augustyniak, Ewa; Augustyniak, Piotr
2010-01-01
This paper describes the concept and application of the organizational culture of a BME teaching institute, based on the specificity of biomedical engineering. Selected values and behavioral patterns typical for this profession were endorsed to reinforce the mutual cooperation and understanding of students, university staff and employers as partners in the educational process. Besides of building a professional pride and reputation of the teaching institute, the corporate culture is proved to be useful in imposing of the attitudes required in future career of the biomedical engineer as a partner of a medic in his efforts aimed at the wellness and safety of the patient. Five years since the foundation of the Multidisciplinary School of engineering In Biomedicine we still do not have a quantitative measure of the educational outcome quality, nevertheless the presented idea may be very useful and worth sharing with all BME educators.
Continuous micron-scaled rope engineering using a rotating multi-nozzle electrospinning emitter
NASA Astrophysics Data System (ADS)
Zhang, Chunchen; Gao, Chengcheng; Chang, Ming-Wei; Ahmad, Zeeshan; Li, Jing-Song
2016-10-01
Electrospinning (ES) enables simple production of fibers for broad applications (e.g., biomedical engineering, energy storage, and electronics). However, resulting structures are predominantly random; displaying significant disordered fiber entanglement, which inevitably gives rise to structural variations and reproducibility on the micron scale. Surface and structural features on this scale are critical for biomaterials, tissue engineering, and pharmaceutical sciences. In this letter, a modified ES technique using a rotating multi-nozzle emitter is developed and utilized to fabricate continuous micron-scaled polycaprolactone (PCL) ropes, providing control on fiber intercalation (twist) and structural order. Micron-scaled ropes comprising 312 twists per millimeter are generated, and rope diameter and pitch length are regulated using polymer concentration and process parameters. Electric field simulations confirm vector and distribution mechanisms, which influence fiber orientation and deposition during the process. The modified fabrication system provides much needed control on reproducibility and fiber entanglement which is crucial for electrospun biomedical materials.
Roles and applications of biomedical ontologies in experimental animal science.
Masuya, Hiroshi
2012-01-01
A huge amount of experimental data from past studies has played a vital role in the development of new knowledge and technologies in biomedical science. The importance of computational technologies for the reuse of data, data integration, and knowledge discoveries has also increased, providing means of processing large amounts of data. In recent years, information technologies related to "ontologies" have played more significant roles in the standardization, integration, and knowledge representation of biomedical information. This review paper outlines the history of data integration in biomedical science and its recent trends in relation to the field of experimental animal science.
Principles of Protein Stability and Their Application in Computational Design.
Goldenzweig, Adi; Fleishman, Sarel
2018-01-26
Proteins are increasingly used in basic and applied biomedical research.Many proteins, however, are only marginally stable and can be expressed in limited amounts, thus hampering research and applications. Research has revealed the thermodynamic, cellular, and evolutionary principles and mechanisms that underlie marginal stability. With this growing understanding, computational stability design methods have advanced over the past two decades starting from methods that selectively addressed only some aspects of marginal stability. Current methods are more general and, by combining phylogenetic analysis with atomistic design, have shown drastic improvements in solubility, thermal stability, and aggregation resistance while maintaining the protein's primary molecular activity. Stability design is opening the way to rational engineering of improved enzymes, therapeutics, and vaccines and to the application of protein design methodology to large proteins and molecular activities that have proven challenging in the past. Expected final online publication date for the Annual Review of Biochemistry Volume 87 is June 20, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Gumpertz, Marcia; Durodoye, Raifu; Griffith, Emily; Wilson, Alyson
2017-01-01
In the most recent cohort, 2002-2015, the experiences of men and women differed substantially among STEM disciplines. Female assistant professors were more likely than men to leave the institution and to leave without tenure in engineering, but not in the agricultural, biological and biomedical sciences and natural resources or physical and mathematical sciences. In contrast, the median times to promotion from associate to full professor were similar for women and men in engineering and the physical and mathematical sciences, but one to two years longer for women than men in the agricultural, biological and biomedical sciences and natural resources. URM faculty hiring is increasing, but is well below the proportions earning doctoral degrees in STEM disciplines. The results are variable and because of the small numbers of URM faculty, the precision and power for comparing URM faculty to other faculty were low. In three of the four institutions, lower fractions of URM faculty than other faculty hired in the 2002-2006 time frame left without tenure. Also, in the biological and biomedical and physical and mathematical sciences no URM faculty left without tenure. On the other hand, at two of the institutions, significantly more URM faculty left before their tenth anniversary than other faculty and in engineering significantly more URM faculty than other faculty left before their tenth anniversary. We did not find significant differences in promotion patterns between URM and other faculty.
GeneView: a comprehensive semantic search engine for PubMed.
Thomas, Philippe; Starlinger, Johannes; Vowinkel, Alexander; Arzt, Sebastian; Leser, Ulf
2012-07-01
Research results are primarily published in scientific literature and curation efforts cannot keep up with the rapid growth of published literature. The plethora of knowledge remains hidden in large text repositories like MEDLINE. Consequently, life scientists have to spend a great amount of time searching for specific information. The enormous ambiguity among most names of biomedical objects such as genes, chemicals and diseases often produces too large and unspecific search results. We present GeneView, a semantic search engine for biomedical knowledge. GeneView is built upon a comprehensively annotated version of PubMed abstracts and openly available PubMed Central full texts. This semi-structured representation of biomedical texts enables a number of features extending classical search engines. For instance, users may search for entities using unique database identifiers or they may rank documents by the number of specific mentions they contain. Annotation is performed by a multitude of state-of-the-art text-mining tools for recognizing mentions from 10 entity classes and for identifying protein-protein interactions. GeneView currently contains annotations for >194 million entities from 10 classes for ∼21 million citations with 271,000 full text bodies. GeneView can be searched at http://bc3.informatik.hu-berlin.de/.
Polylactic acid (PLA) controlled delivery carriers for biomedical applications.
Tyler, Betty; Gullotti, David; Mangraviti, Antonella; Utsuki, Tadanobu; Brem, Henry
2016-12-15
Polylactic acid (PLA) and its copolymers have a long history of safety in humans and an extensive range of applications. PLA is biocompatible, biodegradable by hydrolysis and enzymatic activity, has a large range of mechanical and physical properties that can be engineered appropriately to suit multiple applications, and has low immunogenicity. Formulations containing PLA have also been Food and Drug Administration (FDA)-approved for multiple applications making PLA suitable for expedited clinical translatability. These biomaterials can be fashioned into sutures, scaffolds, cell carriers, drug delivery systems, and a myriad of fabrications. PLA has been the focus of a multitude of preclinical and clinical testing. Three-dimensional printing has expanded the possibilities of biomedical engineering and has enabled the fabrication of a myriad of platforms for an extensive variety of applications. PLA has been widely used as temporary extracellular matrices in tissue engineering. At the other end of the spectrum, PLA's application as drug-loaded nanoparticle drug carriers, such as liposomes, polymeric nanoparticles, dendrimers, and micelles, can encapsulate otherwise toxic hydrophobic anti-tumor drugs and evade systemic toxicities. The clinical translation of these technologies from preclinical experimental settings is an ever-evolving field with incremental advancements. In this review, some of the biomedical applications of PLA and its copolymers are highlighted and briefly summarized. Copyright © 2016 Elsevier B.V. All rights reserved.
Whetzel, Patricia L; Noy, Natalya F; Shah, Nigam H; Alexander, Paul R; Nyulas, Csongor; Tudorache, Tania; Musen, Mark A
2011-07-01
The National Center for Biomedical Ontology (NCBO) is one of the National Centers for Biomedical Computing funded under the NIH Roadmap Initiative. Contributing to the national computing infrastructure, NCBO has developed BioPortal, a web portal that provides access to a library of biomedical ontologies and terminologies (http://bioportal.bioontology.org) via the NCBO Web services. BioPortal enables community participation in the evaluation and evolution of ontology content by providing features to add mappings between terms, to add comments linked to specific ontology terms and to provide ontology reviews. The NCBO Web services (http://www.bioontology.org/wiki/index.php/NCBO_REST_services) enable this functionality and provide a uniform mechanism to access ontologies from a variety of knowledge representation formats, such as Web Ontology Language (OWL) and Open Biological and Biomedical Ontologies (OBO) format. The Web services provide multi-layered access to the ontology content, from getting all terms in an ontology to retrieving metadata about a term. Users can easily incorporate the NCBO Web services into software applications to generate semantically aware applications and to facilitate structured data collection.
Swanson uses the BMMD in the SM
2014-03-31
ISS039-E-008066 (30 March 2014) --- NASA astronaut Steve Swanson, Expedition 39 flight engineer, participates in body mass measurement/Russian biomedical routine assessments in the Zvezda Service Module of the International Space Station. Looking on is Russian cosmonaut Alexander Skvortsov, flight engineer representing the Russian Federal Space Agency (Roscosmos).
Effects of Interdisciplinary Education on Technology-Driven Application Design
ERIC Educational Resources Information Center
Tafa, Z.; Rakocevic, G.; Mihailovic, D.; Milutinovic, V.
2011-01-01
This paper describes the structure and the underlying rationale of a new course dedicated to capability maturity model integration (CMMI)-directed design of wireless sensor networks (WSNs)-based biomedical applications that stresses: 1) engineering-, medico-engineering-, and informatics-related issues; 2) design for general- and special-purpose…
Abdulhay, Enas; Khnouf, Ruba; Haddad, Shireen; Al-Bashir, Areen
2017-08-04
Improvement of medical content in Biomedical Engineering curricula based on a qualitative assessment process or on a comparison with another high-standard program has been approached by a number of studies. However, the quantitative assessment tools have not been emphasized. The quantitative assessment tools can be more accurate and robust in cases of challenging multidisciplinary fields like that of Biomedical Engineering which includes biomedicine elements mixed with technology aspects. The major limitations of the previous research are the high dependence on surveys or pure qualitative approaches as well as the absence of strong focus on medical outcomes without implicit confusion with the technical ones. The proposed work presents the development and evaluation of an accurate/robust quantitative approach to the improvement of the medical content in the challenging multidisciplinary BME curriculum. The work presents quantitative assessment tools and subsequent improvement of curriculum medical content applied, as example for explanation, to the ABET (Accreditation Board for Engineering and Technology, USA) accredited biomedical engineering BME department at Jordan University of Science and Technology. The quantitative results of assessment of curriculum/course, capstone, exit exam, course assessment by student (CAS) as well as of surveys filled by alumni, seniors, employers and training supervisors were, first, mapped to the expected students' outcomes related to the medical field (SOsM). The collected data were then analyzed and discussed to find curriculum weakness points by tracking shortcomings in every outcome degree of achievement. Finally, actions were taken to fill in the gaps of the curriculum. Actions were also mapped to the students' medical outcomes (SOsM). Weighted averages of obtained quantitative values, mapped to SOsM, indicated accurately the achievement levels of all outcomes as well as the necessary improvements to be performed in curriculum. Mapping the improvements to SOsM also helps in the assessment of the following cycle. The suggested assessment tools can be generalized and extended to any other BME department. Robust improvement of medical content in BME curriculum can subsequently be achieved.
JPRS Report, Science & Technology, Europe Economic Competitiveness
1991-11-14
budget resources, excluding industrial research, had increased from Fr35.6 billion in 1988 to Fr45 billion in 1992, i.e., an overall increase of...Research or the Biomedical Research Center, shows a disproportionately high growth of 18.8 percent. In environmental engineering, projects for...January 1992 with an initial complement of 350 employees, biomedical research and its clinical application will be carried out "as never before
Innovations in biomedical nanoengineering: nanowell array biosensor.
Seo, YoungTae; Jeong, Sunil; Lee, JuKyung; Choi, Hak Soo; Kim, Jonghan; Lee, HeaYeon
2018-01-01
Nanostructured biosensors have pioneered biomedical engineering by providing highly sensitive analyses of biomolecules. The nanowell array (NWA)-based biosensing platform is particularly innovative, where the small size of NWs within the array permits extremely profound sensing of a small quantity of biomolecules. Undoubtedly, the NWA geometry of a gently-sloped vertical wall is critical for selective docking of specific proteins without capillary resistances, and nanoprocessing has contributed to the fabrication of NWA electrodes on gold substrate such as molding process, e-beam lithography, and krypton-fluoride (KrF) stepper semiconductor method. The Lee group at the Mara Nanotech has established this NW-based biosensing technology during the past two decades by engineering highly sensitive electrochemical sensors and providing a broad range of detection methods from large molecules (e.g., cells or proteins) to small molecules (e.g., DNA and RNA). Nanosized gold dots in the NWA enhance the detection of electrochemical biosensing to the range of zeptomoles in precision against the complementary target DNA molecules. In this review, we discuss recent innovations in biomedical nanoengineering with a specific focus on novel NWA-based biosensors. We also describe our continuous efforts in achieving a label-free detection without non-specific binding while maintaining the activity and stability of immobilized biomolecules. This research can lay the foundation of a new platform for biomedical nanoengineering systems.
Innovations in biomedical nanoengineering: nanowell array biosensor
NASA Astrophysics Data System (ADS)
Seo, YoungTae; Jeong, Sunil; Lee, JuKyung; Choi, Hak Soo; Kim, Jonghan; Lee, HeaYeon
2018-04-01
Nanostructured biosensors have pioneered biomedical engineering by providing highly sensitive analyses of biomolecules. The nanowell array (NWA)-based biosensing platform is particularly innovative, where the small size of NWs within the array permits extremely profound sensing of a small quantity of biomolecules. Undoubtedly, the NWA geometry of a gently-sloped vertical wall is critical for selective docking of specific proteins without capillary resistances, and nanoprocessing has contributed to the fabrication of NWA electrodes on gold substrate such as molding process, e-beam lithography, and krypton-fluoride (KrF) stepper semiconductor method. The Lee group at the Mara Nanotech has established this NW-based biosensing technology during the past two decades by engineering highly sensitive electrochemical sensors and providing a broad range of detection methods from large molecules (e.g., cells or proteins) to small molecules (e.g., DNA and RNA). Nanosized gold dots in the NWA enhance the detection of electrochemical biosensing to the range of zeptomoles in precision against the complementary target DNA molecules. In this review, we discuss recent innovations in biomedical nanoengineering with a specific focus on novel NWA-based biosensors. We also describe our continuous efforts in achieving a label-free detection without non-specific binding while maintaining the activity and stability of immobilized biomolecules. This research can lay the foundation of a new platform for biomedical nanoengineering systems.
Development of a combined microSPECT/CT system for small animal imaging
NASA Astrophysics Data System (ADS)
Sun, Mingshan
Modern advances in the biomedical sciences have placed increased attention on small animals such as mice and rats as models of human biology and disease in biological research and pharmaceutical development. Their small size and fast breeding rate, their physiologic similarity to human, and, more importantly, the availability of sophisticated genetic manipulations, all have made mice and rats the laboratory mammals of choice in these experimental studies. However, the increased use of small animals in biomedical research also calls for new instruments that can measure the anatomic and metabolic information noninvasively with adequate spatial resolution and measurement sensitivity to facilitate these studies. This dissertation describes the engineering development of a combined single photon emission computed tomography (SPECT) and X-ray computed tomography (CT) system dedicated for small animals imaging. The system aims to obtain both the anatomic and metabolic images with submillimeter spatial resolution in a way that the data can be correlated to provide improved image quality and to offer more complete biological evaluation for biomedical studies involving small animals. The project requires development of complete microSPECT and microCT subsystems. Both subsystems are configured with a shared gantry and animal bed with integrated instrumentation for data acquisition and system control. The microCT employs a microfocus X-ray tube and a CCD-based detector for low noise, high resolution imaging. The microSPECT utilizes three semiconductor detectors coupled with pinhole collimators. A significant contribution of this dissertation project is the development of iterative algorithms with geometrical compensation that allows radionuclide images to be reconstructed at submillimeter spatial resolution, but with significantly higher detection efficiency than conventional methods. Both subsystems are capable of helical scans, offering lengthened field of view and improved axial resolution. System performance of both modalities is characterized with phantoms and animals. The microSPECT shows 0.6 mm resolution and 60 cps/MBq detection efficiency for imaging mice with 0.5 mm pinholes. The microCT achieves 120 mum spatial resolution on detector but with a relatively low detective quantum efficiency of 0.2 at the zero frequency. The combined system demonstrates a flexible platform for instrumentation development and a valuable tool for biomedical research. In summary, this dissertation describes the development of a combined SPECT/CT system for imaging the physiological function and anatomical structure in small animals.
An introduction to interactive hypermedia.
Lynch, P J; Jaffe, C C
1990-01-01
Current computers can create and display documents that incorporate a variety of audiovisual media, and can be organized to allow the user, guided by curiosity and not by a fixed path through the material, to move through the information in non-linear pathways. These hypermedia documents and the concept of hypertext offer significant new possibilities for the creation of educational materials for the biomedical sciences. If the full capabilities of the computer are to be used to enhance the educational experience for learners, computer professionals need to collaborate with publishing and teaching professionals. Biomedical communications professionals can and should play a role in establishing and evaluating hypermedia documents for medical education.
The World Wide Web--a new tool for biomedical engineering education.
Blanchard, S M
1997-01-01
An ever-increasing variety of materials (text, images, videos, and sound) are available through the World Wide Web (WWW). While textbooks, which are often outdated by the time they are published, are usually limited to black and white text and images, many supplemental materials can be found on the WWW. The WWW also provides many resources for student projects. In BAE 465: Biomedical Engineering Applications, student teams developed WWW-based term projects on biomedical topics, e.g. biomaterials, MRI, and medical ultrasound. After the projects were completed and edited by the instructor, they were placed on-line for world-wide access if permission for this had been granted by the student authors. Projects from three classes have been used to form the basis for an electronic textbook which is available at http:@www.eos.ncsu.edu/bae/research/blanchard /www/465/textbook/. This electronic textbook also includes instructional objectives and sample tests for specific topic areas. Student projects have been linked to the appropriate topic areas within the electronic textbook. Links to relevant sites have been included within the electronic textbook as well as within the individual projects. Students were required to link to images and other materials they wanted to include in their project in order to avoid copyright issues. The drawback to this approach to copyright protection is that addresses can change making links unavailable. In BAE 465 and in BAE 235: Engineering Biology, the WWW has also been used to distribute instructional objectives, the syllabi and class policies, homework problems, and abbreviated lecture notes. This has made maintaining course-related material easier and has reduced the amount of paper used by both the students and the instructor. Goals for the electronic textbook include the addition of instructional simulation programs that can be run from remote sites. In the future, biomedical engineering may be taught in a virtual classroom with participation by an instructor and students from many different parts of the world.
A Bioinformatics Module for Use in an Introductory Biology Laboratory
ERIC Educational Resources Information Center
Alaie, Adrienne; Teller, Virginia; Qiu, Wei-gang
2012-01-01
Since biomedical science has become increasingly data-intensive, acquisition of computational and quantitative skills by science students has become more important. For non-science students, an introduction to biomedical databases and their applications promotes the development of a scientifically literate population. Because typical college…
Biomedical Informatics on the Cloud: A Treasure Hunt for Advancing Cardiovascular Medicine.
Ping, Peipei; Hermjakob, Henning; Polson, Jennifer S; Benos, Panagiotis V; Wang, Wei
2018-04-27
In the digital age of cardiovascular medicine, the rate of biomedical discovery can be greatly accelerated by the guidance and resources required to unearth potential collections of knowledge. A unified computational platform leverages metadata to not only provide direction but also empower researchers to mine a wealth of biomedical information and forge novel mechanistic insights. This review takes the opportunity to present an overview of the cloud-based computational environment, including the functional roles of metadata, the architecture schema of indexing and search, and the practical scenarios of machine learning-supported molecular signature extraction. By introducing several established resources and state-of-the-art workflows, we share with our readers a broadly defined informatics framework to phenotype cardiovascular health and disease. © 2018 American Heart Association, Inc.
Crowdsourcing biomedical research: leveraging communities as innovation engines
Saez-Rodriguez, Julio; Costello, James C.; Friend, Stephen H.; Kellen, Michael R.; Mangravite, Lara; Meyer, Pablo; Norman, Thea; Stolovitzky, Gustavo
2018-01-01
The generation of large-scale biomedical data is creating unprecedented opportunities for basic and translational science. Typically, the data producers perform initial analyses, but it is very likely that the most informative methods may reside with other groups. Crowdsourcing the analysis of complex and massive data has emerged as a framework to find robust methodologies. When the crowdsourcing is done in the form of collaborative scientific competitions, known as Challenges, the validation of the methods is inherently addressed. Challenges also encourage open innovation, create collaborative communities to solve diverse and important biomedical problems, and foster the creation and dissemination of well-curated data repositories. PMID:27418159
Crowdsourcing biomedical research: leveraging communities as innovation engines.
Saez-Rodriguez, Julio; Costello, James C; Friend, Stephen H; Kellen, Michael R; Mangravite, Lara; Meyer, Pablo; Norman, Thea; Stolovitzky, Gustavo
2016-07-15
The generation of large-scale biomedical data is creating unprecedented opportunities for basic and translational science. Typically, the data producers perform initial analyses, but it is very likely that the most informative methods may reside with other groups. Crowdsourcing the analysis of complex and massive data has emerged as a framework to find robust methodologies. When the crowdsourcing is done in the form of collaborative scientific competitions, known as Challenges, the validation of the methods is inherently addressed. Challenges also encourage open innovation, create collaborative communities to solve diverse and important biomedical problems, and foster the creation and dissemination of well-curated data repositories.
HRP's Healthcare Spin-Offs Through Computational Modeling and Simulation Practice Methodologies
NASA Technical Reports Server (NTRS)
Mulugeta, Lealem; Walton, Marlei; Nelson, Emily; Peng, Grace; Morrison, Tina; Erdemir, Ahmet; Myers, Jerry
2014-01-01
Spaceflight missions expose astronauts to novel operational and environmental conditions that pose health risks that are currently not well understood, and perhaps unanticipated. Furthermore, given the limited number of humans that have flown in long duration missions and beyond low Earth-orbit, the amount of research and clinical data necessary to predict and mitigate these health and performance risks are limited. Consequently, NASA's Human Research Program (HRP) conducts research and develops advanced methods and tools to predict, assess, and mitigate potential hazards to the health of astronauts. In this light, NASA has explored the possibility of leveraging computational modeling since the 1970s as a means to elucidate the physiologic risks of spaceflight and develop countermeasures. Since that time, substantial progress has been realized in this arena through a number of HRP funded activates such as the Digital Astronaut Project (DAP) and the Integrated Medical Model (IMM). Much of this success can be attributed to HRP's endeavor to establish rigorous verification, validation, and credibility (VV&C) processes that ensure computational models and simulations (M&S) are sufficiently credible to address issues within their intended scope. This presentation summarizes HRP's activities in credibility of modeling and simulation, in particular through its outreach to the community of modeling and simulation practitioners. METHODS: The HRP requires all M&S that can have moderate to high impact on crew health or mission success must be vetted in accordance to NASA Standard for Models and Simulations, NASA-STD-7009 (7009) [5]. As this standard mostly focuses on engineering systems, the IMM and DAP have invested substantial efforts to adapt the processes established in this standard for their application to biological M&S, which is more prevalent in human health and performance (HHP) and space biomedical research and operations [6,7]. These methods have also generated substantial interest by the broader medical community though institutions like the National Institutes of Health (NIH) and the Food and Drug Administration (FDA) to develop similar standards and guidelines applicable to the larger medical operations and research community. DISCUSSION: Similar to NASA, many leading government agencies, health institutions and medical product developers around the world are recognizing the potential of computational M&S to support clinical research and decision making. In this light, substantial investments are being made in computational medicine and notable discoveries are being realized [8]. However, there is a lack of broadly applicable practice guidance for the development and implementation of M&S in clinical care and research in a manner that instills confidence among medical practitioners and biological researchers [9,10]. In this presentation, we will give an overview on how HRP is working with the NIH's Interagency Modeling and Analysis Group (IMAG), the FDA and the American Society of Mechanical Engineers (ASME) to leverage NASA's biomedical VV&C processes to establish a new regulatory standard for Verification and Validation in Computational Modeling of Medical Devices, and Guidelines for Credible Practice of Computational Modeling and Simulation in Healthcare.
Search and Graph Database Technologies for Biomedical Semantic Indexing: Experimental Analysis.
Segura Bedmar, Isabel; Martínez, Paloma; Carruana Martín, Adrián
2017-12-01
Biomedical semantic indexing is a very useful support tool for human curators in their efforts for indexing and cataloging the biomedical literature. The aim of this study was to describe a system to automatically assign Medical Subject Headings (MeSH) to biomedical articles from MEDLINE. Our approach relies on the assumption that similar documents should be classified by similar MeSH terms. Although previous work has already exploited the document similarity by using a k-nearest neighbors algorithm, we represent documents as document vectors by search engine indexing and then compute the similarity between documents using cosine similarity. Once the most similar documents for a given input document are retrieved, we rank their MeSH terms to choose the most suitable set for the input document. To do this, we define a scoring function that takes into account the frequency of the term into the set of retrieved documents and the similarity between the input document and each retrieved document. In addition, we implement guidelines proposed by human curators to annotate MEDLINE articles; in particular, the heuristic that says if 3 MeSH terms are proposed to classify an article and they share the same ancestor, they should be replaced by this ancestor. The representation of the MeSH thesaurus as a graph database allows us to employ graph search algorithms to quickly and easily capture hierarchical relationships such as the lowest common ancestor between terms. Our experiments show promising results with an F1 of 69% on the test dataset. To the best of our knowledge, this is the first work that combines search and graph database technologies for the task of biomedical semantic indexing. Due to its horizontal scalability, ElasticSearch becomes a real solution to index large collections of documents (such as the bibliographic database MEDLINE). Moreover, the use of graph search algorithms for accessing MeSH information could provide a support tool for cataloging MEDLINE abstracts in real time. ©Isabel Segura Bedmar, Paloma Martínez, Adrián Carruana Martín. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 01.12.2017.
Biomedical engineering continues to make the future.
Fantini, Sergio; Bennis, Caoimhe; Kaplan, David
2011-01-01
Biomedical engineering (BME) continues to make the future, not just respond to the present, by anticipating the needs of interface engineering and clinical medicine. In many respects, BME is the educational mode of the future, fostering collaboration among disciplines at its core by building on basic concepts in engineering and biology. We strive to educate where the needs, opportunities, and jobs are and will be in the future. The bridge between engineering, biology, and medicine is a growing link, and there is no sign that this interface will slow. With an aging population, dynamic changes in health care, as well as global economies and related themes upon us, we are only at the very beginning of the impact that BME will have on medicine and the quality of life. Those of us in BME are excited to be setting this agenda and welcome your participation. In part, this is why we have designed our BME major to cover both the depth and breadth, always a challenge, but one that we are committed to. The depth of the design projects, research experience, coursework, study abroad options, and internships all convenes to establish a solid foundation for our students as they embark on their career paths.
Digital Plasmonic Patterning for Localized Tuning of Hydrogel Stiffness
Hribar, Kolin C.; Choi, Yu Suk; Ondeck, Matthew; Engler, Adam J.
2015-01-01
The mechanical properties of the extracellular matrix (ECM) can dictate cell fate in biological systems. In tissue engineering, varying the stiffness of hydrogels—water-swollen polymeric networks that act as ECM substrates—has previously been demonstrated to control cell migration, proliferation, and differentiation. Here, “digital plasmonic patterning” (DPP) is developed to mechanically alter a hydrogel encapsulated with gold nanorods using a near-infrared laser, according to a digital (computer-generated) pattern. DPP can provide orders of magnitude changes in stiffness, and can be tuned by laser intensity and speed of writing. In vitro cellular experiments using A7R5 smooth muscle cells confirm cell migration and alignment according to these patterns, making DPP a useful technique for mechanically patterning hydrogels for various biomedical applications. PMID:26120293
Sandia Technology engineering and science accomplishments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report briefly discusses the following research being conducted at Sandia Laboratories: Advanced Manufacturing -- Sandia technology helps keep US industry in the lead; Microelectronics-Sandia`s unique facilities transform research advances into manufacturable products; Energy -- Sandia`s energy programs focus on strengthening industrial growth and political decisionmaking; Environment -- Sandia is a leader in environmentally conscious manufacturing and hazardous waste reduction; Health Care -- New biomedical technologies help reduce cost and improve quality of health care; Information & Computation -- Sandia aims to help make the information age a reality; Transportation -- This new initiative at the Labs will help improvemore » transportation, safety,l efficiency, and economy; Nonproliferation -- Dismantlement and arms control are major areas of emphasis at Sandia; and Awards and Patents -- Talented, dedicated employees are the backbone of Sandia`s success.« less
MATHEMATICAL METHODS IN MEDICAL IMAGE PROCESSING
ANGENENT, SIGURD; PICHON, ERIC; TANNENBAUM, ALLEN
2013-01-01
In this paper, we describe some central mathematical problems in medical imaging. The subject has been undergoing rapid changes driven by better hardware and software. Much of the software is based on novel methods utilizing geometric partial differential equations in conjunction with standard signal/image processing techniques as well as computer graphics facilitating man/machine interactions. As part of this enterprise, researchers have been trying to base biomedical engineering principles on rigorous mathematical foundations for the development of software methods to be integrated into complete therapy delivery systems. These systems support the more effective delivery of many image-guided procedures such as radiation therapy, biopsy, and minimally invasive surgery. We will show how mathematics may impact some of the main problems in this area, including image enhancement, registration, and segmentation. PMID:23645963
Responsive Biomaterials: Advances in Materials Based on Shape-Memory Polymers.
Hardy, John G; Palma, Matteo; Wind, Shalom J; Biggs, Manus J
2016-07-01
Shape-memory polymers (SMPs) are morphologically responsive materials with potential for a variety of biomedical applications, particularly as devices for minimally invasive surgery and the delivery of therapeutics and cells for tissue engineering. A brief introduction to SMPs is followed by a discussion of the current progress toward the development of SMP-based biomaterials for clinically relevant biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yao, Yuan; Yu, Chuan-xin
2013-08-01
Antibody has extensive application prospects in the biomedical field. The inherent disadvantages of traditional polyclonal antibody and monoclonal antibody limit their application values. The humanized and fragmented antibody remodeling has given a rise to a series of genetic engineered antibody variant. This paper reviews the progress of research on genetic engineering antibody and its application in prevention and control of parasitic diseases.
Biomedical engineering education at Politecnico di Milano: development and recent changes.
Baselli, G
2009-05-01
The biomedical engineering (BME) programme at the Politecnico di Milano (POLIMI) is characterized by a strong interdisciplinary background in a broad range of engineering subjects applied to biology and medicine. Accordingly, the undergraduate level (3 years) provides a general education, which includes mechanics, chemistry and materials, electronics, and information technology both in the context of general engineering and within BME foundations. In contrast, the postgraduate programme (2 years) offers a broad choice of specializations in BME fields in close connection with the BME research activities and laboratories of the campus and with active interchange with the other engineering disciplines. The history of BME development at POLIMI is briefly recalled, together with the characteristics of educational and research work, which is strongly biased by a large polytechnic university with no medical school within the same campus; points of strength and weakness due to this background are discussed. The introduction of a double cycle (undergraduate and postgraduate) according to the Bologna process (2000) and the effects on the programme structure is considered. An early phase in which professional education was emphasized at undergraduate level is recalled, which was followed by the actual revision fostering basic engineering and BME education at the first level while leaving in-depth specialization to postgraduate studies or to on-the-job training.
Scientific and Engineering Research Facilities: 2001. Detailed Statistical Tables.
ERIC Educational Resources Information Center
National Science Foundation, Arlington, VA. Div. of Science Resources Studies.
This report presents information on the amount of science and engineering (S&E) research space existing at U.S. colleges, universities, and nonprofit biomedical research institutions based on research data collected biennially through the National Science Foundation. Data are also provided on the adequacy of this research space to meet current…
Case Study: Use of Problem-Based Learning to Develop Students' Technical and Professional Skills
ERIC Educational Resources Information Center
Warnock, James N.; Mohammadi-Aragh, M. Jean
2016-01-01
Problem-based learning (PBL) is a pedagogy that has attracted attention for many biomedical engineering curricula. The aim of the current study was to address the research question, "Does PBL enable students to develop desirable professional engineering skills?" The desirable skills identified were communication, teamwork, problem…
An Example-Centric Tool for Context-Driven Design of Biomedical Devices
ERIC Educational Resources Information Center
Dzombak, Rachel; Mehta, Khanjan; Butler, Peter
2015-01-01
Engineering is one of the most global professions, with design teams developing technologies for an increasingly interconnected and borderless world. In order for engineering students to be proficient in creating viable solutions to the challenges faced by diverse populations, they must receive an experiential education in rigorous engineering…
ERIC Educational Resources Information Center
Górski, Filip; Bun, Pawel; Wichniarek, Radoslaw; Zawadzki, Przemyslaw; Hamrol, Adam
2017-01-01
Effective medical and biomedical engineering education is an important problem. Traditional methods are difficult and costly. That is why Virtual Reality is often used for that purpose. Educational medical VR is a well-developed IT field, with many available hardware and software solutions. Current solutions are prepared without methodological…
John Kuniholm: An Ordinary Man with an Extraordinary Story
ERIC Educational Resources Information Center
Williams, John M.
2006-01-01
This article profiles John Kuniholm, a 34-year-old PhD candidate in biomedical engineering at Duke University and has master's degrees in mechanical engineering and industrial design from North Carolina State University. He has worked in the research and development of tools for robotic cardiac surgery for Cardiovations, a Johnson & Johnson…
From Gene to Protein: A 3-Week Intensive Course in Molecular Biology for Physical Scientists
ERIC Educational Resources Information Center
Nadeau, Jay L.
2009-01-01
This article describes a 3-week intensive molecular biology methods course based upon fluorescent proteins, which is successfully taught at the McGill University to advanced undergraduates and graduates in physics, chemical engineering, biomedical engineering, and medicine. No previous knowledge of biological terminology or methods is expected, so…
Cloud Based Metalearning System for Predictive Modeling of Biomedical Data
Vukićević, Milan
2014-01-01
Rapid growth and storage of biomedical data enabled many opportunities for predictive modeling and improvement of healthcare processes. On the other side analysis of such large amounts of data is a difficult and computationally intensive task for most existing data mining algorithms. This problem is addressed by proposing a cloud based system that integrates metalearning framework for ranking and selection of best predictive algorithms for data at hand and open source big data technologies for analysis of biomedical data. PMID:24892101
PREFACE: Nanoscale Devices and System Integration Conference (NDSI-2004)
NASA Astrophysics Data System (ADS)
Khizroev, Sakhrat; Litvinov, Dmitri
2004-10-01
The inaugural conference on Nanoscale Devices and System Integration (NDSI-2004) was held in Miami, Florida, 15-19 February, 2004. The focus of the conference was `real-life' devices and systems that have recently emerged as a result of various nanotechnology initiatives in chemistry and chemical engineering, physics, electrical engineering, materials science and engineering, biomedical engineering, computer science, robotics, and environmental science. The conference had a single session all-invited speaker format, with the presenters making the `Who's Who in Nanotechnology' list. Contributed work was showcased at a special poster session. The conference, sponsored by the Institute of Electrical and Electronics Engineers (IEEE) and the US Air Force, and endorsed by Materials Research Society (MRS), drew more than 160 participants from fourteen countries. To strengthen the connection between fundamental research and `real-life' applications, the conference featured a large number of presenters from both academia and industry. Among the participating companies were NEC, IBM, Toshiba, AMD, Samsung, Seagate, and Veeco. Nanotechnology has triggered a new wave of research collaborations between researchers from academia and industry with a broad range of specializations. Such a global approach has resulted in a number of breakthrough accomplishments. One of the main goals of this conference was to identify these accomplishments and put the novel technology initiatives and the emerging research teams on the map. Among the key nanotechnology applications demonstrated at NDSI-2004 were carbon-nanotube-based transistors, quantum computing systems, nanophotonic devices, single-molecule electronic devices and biological magnetic sources. Due to the unprecedented success of the conference, the organizing committee of NDSI has unanimously chosen to turn NDSI into an annual international nanotechnology event. The next NDSI is scheduled for 4-6 April, 2005, in Houston, Texas. Details can be found on the conference web site at http://www.nanointernational.org. This special issue of Nanotechnology features selected papers from NDSI-2004.
Finding and accessing diagrams in biomedical publications.
Kuhn, Tobias; Luong, ThaiBinh; Krauthammer, Michael
2012-01-01
Complex relationships in biomedical publications are often communicated by diagrams such as bar and line charts, which are a very effective way of summarizing and communicating multi-faceted data sets. Given the ever-increasing amount of published data, we argue that the precise retrieval of such diagrams is of great value for answering specific and otherwise hard-to-meet information needs. To this end, we demonstrate the use of advanced image processing and classification for identifying bar and line charts by the shape and relative location of the different image elements that make up the charts. With recall and precisions of close to 90% for the detection of relevant figures, we discuss the use of this technology in an existing biomedical image search engine, and outline how it enables new forms of literature queries over biomedical relationships that are represented in these charts.
An overview of biomedical literature search on the World Wide Web in the third millennium.
Kumar, Prince; Goel, Roshni; Jain, Chandni; Kumar, Ashish; Parashar, Abhishek; Gond, Ajay Ratan
2012-06-01
Complete access to the existing pool of biomedical literature and the ability to "hit" upon the exact information of the relevant specialty are becoming essential elements of academic and clinical expertise. With the rapid expansion of the literature database, it is almost impossible to keep up to date with every innovation. Using the Internet, however, most people can freely access this literature at any time, from almost anywhere. This paper highlights the use of the Internet in obtaining valuable biomedical research information, which is mostly available from journals, databases, textbooks and e-journals in the form of web pages, text materials, images, and so on. The authors present an overview of web-based resources for biomedical researchers, providing information about Internet search engines (e.g., Google), web-based bibliographic databases (e.g., PubMed, IndMed) and how to use them, and other online biomedical resources that can assist clinicians in reaching well-informed clinical decisions.
Production and Status of Bacterial Cellulose in Biomedical Engineering
Moniri, Mona; Boroumand Moghaddam, Amin; Abdul Rahim, Raha; Bin Ariff, Arbakariya; Zuhainis Saad, Wan; Navaderi, Mohammad; Mohamad, Rosfarizan
2017-01-01
Bacterial cellulose (BC) is a highly pure and crystalline material generated by aerobic bacteria, which has received significant interest due to its unique physiochemical characteristics in comparison with plant cellulose. BC, alone or in combination with different components (e.g., biopolymers and nanoparticles), can be used for a wide range of applications, such as medical products, electrical instruments, and food ingredients. In recent years, biomedical devices have gained important attention due to the increase in medical engineering products for wound care, regeneration of organs, diagnosis of diseases, and drug transportation. Bacterial cellulose has potential applications across several medical sectors and permits the development of innovative materials. This paper reviews the progress of related research, including overall information about bacterial cellulose, production by microorganisms, mechanisms as well as BC cultivation and its nanocomposites. The latest use of BC in the biomedical field is thoroughly discussed with its applications in both a pure and composite form. This paper concludes the further investigations of BC in the future that are required to make it marketable in vital biomaterials.
Biomedical data integration in computational drug design and bioinformatics.
Seoane, Jose A; Aguiar-Pulido, Vanessa; Munteanu, Cristian R; Rivero, Daniel; Rabunal, Juan R; Dorado, Julian; Pazos, Alejandro
2013-03-01
In recent years, in the post genomic era, more and more data is being generated by biological high throughput technologies, such as proteomics and transcriptomics. This omics data can be very useful, but the real challenge is to analyze all this data, as a whole, after integrating it. Biomedical data integration enables making queries to different, heterogeneous and distributed biomedical data sources. Data integration solutions can be very useful not only in the context of drug design, but also in biomedical information retrieval, clinical diagnosis, system biology, etc. In this review, we analyze the most common approaches to biomedical data integration, such as federated databases, data warehousing, multi-agent systems and semantic technology, as well as the solutions developed using these approaches in the past few years.
Organ Bioprinting: Are We There Yet?
Gao, Guifang; Huang, Ying; Schilling, Arndt F; Hubbell, Karen; Cui, Xiaofeng
2018-01-01
About 15 years ago, bioprinting was coined as one of the ultimate solutions to engineer vascularized tissues, which was impossible to accomplish using the conventional tissue fabrication approaches. With the advances of 3D-printing technology during the past decades, one may expect 3D bioprinting being developed as much as 3D printing. Unfortunately, this is not the case. The printing principles of bioprinting are dramatically different from those applied in industrialized 3D printing, as they have to take the living components into account. While the conventional 3D-printing technologies are actually applied for biological or biomedical applications, true 3D bioprinting involving direct printing of cells and other biological substances for tissue reconstruction is still in its infancy. In this progress report, the current status of bioprinting in academia and industry is subjectively evaluated. The progress made is acknowledged, and the existing bottlenecks in bioprinting are discussed. Recent breakthroughs from a variety of associated fields, including mechanical engineering, robotic engineering, computing engineering, chemistry, material science, cellular biology, molecular biology, system control, and medicine may overcome some of these current bottlenecks. For this to happen, a convergence of these areas into a systemic research area "3D bioprinting" is needed to develop bioprinting as a viable approach for creating fully functional organs for standard clinical diagnosis and treatment including transplantation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CAVEman: Standardized anatomical context for biomedical data mapping.
Turinsky, Andrei L; Fanea, Elena; Trinh, Quang; Wat, Stephen; Hallgrímsson, Benedikt; Dong, Xiaoli; Shu, Xueling; Stromer, Julie N; Hill, Jonathan W; Edwards, Carol; Grosenick, Brenda; Yajima, Masumi; Sensen, Christoph W
2008-01-01
The authors have created a software system called the CAVEman, for the visual integration and exploration of heterogeneous anatomical and biomedical data. The CAVEman can be applied for both education and research tasks. The main component of the system is a three-dimensional digital atlas of the adult male human anatomy, structured according to the nomenclature of Terminologia Anatomica. The underlying data-indexing mechanism uses standard ontologies to map a range of biomedical data types onto the atlas. The CAVEman system is now used to visualize genetic processes in the context of the human anatomy and to facilitate visual exploration of the data. Through the use of Javatrade mark software, the atlas-based system is portable to virtually any computer environment, including personal computers and workstations. Existing Java tools for biomedical data analysis have been incorporated into the system. The affordability of virtual-reality installations has increased dramatically over the last several years. This creates new opportunities for educational scenarios that model important processes in a patient's body, including gene expression patterns, metabolic activity, the effects of interventions such as drug treatments, and eventually surgical simulations.
BIT: Biosignal Igniter Toolkit.
da Silva, Hugo Plácido; Lourenço, André; Fred, Ana; Martins, Raúl
2014-06-01
The study of biosignals has had a transforming role in multiple aspects of our society, which go well beyond the health sciences domains to which they were traditionally associated with. While biomedical engineering is a classical discipline where the topic is amply covered, today biosignals are a matter of interest for students, researchers and hobbyists in areas including computer science, informatics, electrical engineering, among others. Regardless of the context, the use of biosignals in experimental activities and practical projects is heavily bounded by the cost, and limited access to adequate support materials. In this paper we present an accessible, albeit versatile toolkit, composed of low-cost hardware and software, which was created to reinforce the engagement of different people in the field of biosignals. The hardware consists of a modular wireless biosignal acquisition system that can be used to support classroom activities, interface with other devices, or perform rapid prototyping of end-user applications. The software comprehends a set of programming APIs, a biosignal processing toolbox, and a framework for real time data acquisition and postprocessing. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Electronic imaging of the human body
NASA Astrophysics Data System (ADS)
Vannier, Michael W.; Yates, Randall E.; Whitestone, Jennifer J.
1992-09-01
The Human Engineering Division of the Armstrong Laboratory (USAF); the Mallinckrodt Institute of Radiology; the Washington University School of Medicine; and the Lister-Hill National Center for Biomedical Communication, National Library of Medicine are sponsoring a working group on electronic imaging of the human body. Electronic imaging of the surface of the human body has been pursued and developed by a number of disciplines including radiology, forensics, surgery, engineering, medical education, and anthropometry. The applications range from reconstructive surgery to computer-aided design (CAD) of protective equipment. Although these areas appear unrelated, they have a great deal of commonality. All the organizations working in this area are faced with the challenges of collecting, reducing, and formatting the data in an efficient and standard manner; storing this data in a computerized database to make it readily accessible; and developing software applications that can visualize, manipulate, and analyze the data. This working group is being established to encourage effective use of the resources of all the various groups and disciplines involved in electronic imaging of the human body surface by providing a forum for discussing progress and challenges with these types of data.
Duarte, Ana Rita C; Mano, João F; Reis, Rui L
2010-02-01
In this work, a starch-based polymer, namely a blend of starch-poly(epsilon-caprolactone) was processed by supercritical assisted phase inversion process. This processing technique has been proposed for the development of 3D structures with potential applications in tissue engineering applications, as scaffolds. The use of carbon dioxide as non-solvent in the phase inversion process leads to the formation of a porous and interconnected structure, dry and free of any residual solvent. Different processing conditions such as pressure (from 80 up to 150 bar) and temperature (45 and 55 degrees C) were studied and the effect on the morphological features of the scaffolds was evaluated by scanning electron microscopy and micro-computed tomography. The mechanical properties of the SPCL scaffolds prepared were also studied. Additionally, in this work, the in vitro biological performance of the scaffolds was studied. Cell adhesion and morphology, viability and proliferation was assessed and the results suggest that the materials prepared are allow cell attachment and promote cell proliferation having thus potential to be used in some for biomedical applications.
Sun, Huanli; Meng, Fenghua; Dias, Aylvin A; Hendriks, Marc; Feijen, Jan; Zhong, Zhiyuan
2011-06-13
Currently, biomedical engineering is rapidly expanding, especially in the areas of drug delivery, gene transfer, tissue engineering, and regenerative medicine. A prerequisite for further development is the design and synthesis of novel multifunctional biomaterials that are biocompatible and biologically active, are biodegradable with a controlled degradation rate, and have tunable mechanical properties. In the past decades, different types of α-amino acid-containing degradable polymers have been actively developed with the aim to obtain biomimicking functional biomaterials. The use of α-amino acids as building units for degradable polymers may offer several advantages: (i) imparting chemical functionality, such as hydroxyl, amine, carboxyl, and thiol groups, which not only results in improved hydrophilicity and possible interactions with proteins and genes, but also facilitates further modification with bioactive molecules (e.g., drugs or biological cues); (ii) possibly improving materials biological properties, including cell-materials interactions (e.g., cell adhesion, migration) and degradability; (iii) enhancing thermal and mechanical properties; and (iv) providing metabolizable building units/blocks. In this paper, recent developments in the field of α-amino acid-containing degradable polymers are reviewed. First, synthetic approaches to prepare α-amino acid-containing degradable polymers will be discussed. Subsequently, the biomedical applications of these polymers in areas such as drug delivery, gene delivery and tissue engineering will be reviewed. Finally, the future perspectives of α-amino acid-containing degradable polymers will be evaluated.
USNCTAM perspectives on mechanics in medicine
Bao, Gang; Bazilevs, Yuri; Chung, Jae-Hyun; Decuzzi, Paolo; Espinosa, Horacio D.; Ferrari, Mauro; Gao, Huajian; Hossain, Shaolie S.; Hughes, Thomas J. R.; Kamm, Roger D.; Liu, Wing Kam; Marsden, Alison; Schrefler, Bernhard
2014-01-01
Over decades, the theoretical and applied mechanics community has developed sophisticated approaches for analysing the behaviour of complex engineering systems. Most of these approaches have targeted systems in the transportation, materials, defence and energy industries. Applying and further developing engineering approaches for understanding, predicting and modulating the response of complicated biomedical processes not only holds great promise in meeting societal needs, but also poses serious challenges. This report, prepared for the US National Committee on Theoretical and Applied Mechanics, aims to identify the most pressing challenges in biological sciences and medicine that can be tackled within the broad field of mechanics. This echoes and complements a number of national and international initiatives aiming at fostering interdisciplinary biomedical research. This report also comments on cultural/educational challenges. Specifically, this report focuses on three major thrusts in which we believe mechanics has and will continue to have a substantial impact. (i) Rationally engineering injectable nano/microdevices for imaging and therapy of disease. Within this context, we discuss nanoparticle carrier design, vascular transport and adhesion, endocytosis and tumour growth in response to therapy, as well as uncertainty quantification techniques to better connect models and experiments. (ii) Design of biomedical devices, including point-of-care diagnostic systems, model organ and multi-organ microdevices, and pulsatile ventricular assistant devices. (iii) Mechanics of cellular processes, including mechanosensing and mechanotransduction, improved characterization of cellular constitutive behaviour, and microfluidic systems for single-cell studies. PMID:24872502
NASA Technical Reports Server (NTRS)
Nall, Marsha M.; Barna, Gerald J.
2009-01-01
The John Glenn Biomedical Engineering Consortium was established by NASA in 2002 to formulate and implement an integrated, interdisciplinary research program to address risks faced by astronauts during long-duration space missions. The consortium is comprised of a preeminent team of Northeast Ohio institutions that include Case Western Reserve University, the Cleveland Clinic, University Hospitals Case Medical Center, The National Center for Space Exploration Research, and the NASA Glenn Research Center. The John Glenn Biomedical Engineering Consortium research is focused on fluid physics and sensor technology that addresses the critical risks to crew health, safety, and performance. Effectively utilizing the unique skills, capabilities and facilities of the consortium members is also of prime importance. Research efforts were initiated with a general call for proposals to the consortium members. The top proposals were selected for funding through a rigorous, peer review process. The review included participation from NASA's Johnson Space Center, which has programmatic responsibility for NASA's Human Research Program. The projects range in scope from delivery of prototype hardware to applied research that enables future development of advanced technology devices. All of the projects selected for funding have been completed and the results are summarized. Because of the success of the consortium, the member institutions have extended the original agreement to continue this highly effective research collaboration through 2011.
Semantic-Based Information Retrieval of Biomedical Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Yu; Potok, Thomas E; Hurson, Ali R.
In this paper, we propose to improve the effectiveness of biomedical information retrieval via a medical thesaurus. We analyzed the deficiencies of the existing medical thesauri and reconstructed a new thesaurus, called MEDTHES, which follows the ANSI/NISO Z39.19-2003 standard. MEDTHES also endows the users with fine-grained control of information retrieval by providing functions to calculate the semantic similarity between words. We demonstrate the usage of MEDTHES through an existing data search engine.
Why our patients (and we) need basic science research.
Schor, Nina F
2013-05-28
In times of fiscal austerity, the tendency is to seek instant, inexpensive gratification. In the case of biomedical research, this means the shortest path to practical clinical implementation. But fueling the translational pipeline with discovery depends critically on allowing the biomedical research community to follow their science where it takes them. Fiscal constraints carry with them the risk of squelching creativity and forfeiting the power of serendipity to provide the substrate for the translational engine in the future.
Zhang, Lei; Peng, Xinwen; Zhong, Linxin; Chua, Weitian; Xiang, Zhihua; Sun, Runcang
2017-09-18
The pertinent issue of resources shortage arising from global climate change in the recent years has accentuated the importance of materials that are environmental friendly. Despite the merits of current material like cellulose as the most abundant natural polysaccharide on earth, the incorporation of lignocellulosic biomass has the potential to value-add the recent development of cellulose-derivatives in drug delivery systems. Lignocellulosic biomass, with a hierarchical structure, comprised of cellulose, hemicellulose and lignin. As an excellent substrate that is renewable, biodegradable, biocompatible and chemically accessible for modified materials, lignocellulosic biomass sets forth a myriad of applications. To date, materials derived from lignocellulosic biomass have been extensively explored for new technological development and applications, such as biomedical, green electronics and energy products. In this review, chemical constituents of lignocellulosic biomass are first discussed before we critically examine the potential alternatives in the field of biomedical application. In addition, the pretreatment methods for extracting cellulose, hemicellulose and lignin from lignocellulosic biomass as well as their biological applications including drug delivery, biosensor, tissue engineering etc will be reviewed. It is anticipated there will be an increasing interest and research findings in cellulose, hemicellulose and lignin from natural resources, which help provide important directions for the development in biomedical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Han, Ya-Hui; Kankala, Ranjith Kumar; Wang, Shi-Bin; Chen, Ai-Zheng
2018-05-24
In recent times, photo-induced therapeutics have attracted enormous interest from researchers due to such attractive properties as preferential localization, excellent tissue penetration, high therapeutic efficacy, and minimal invasiveness, among others. Numerous photosensitizers have been considered in combination with light to realize significant progress in therapeutics. Along this line, indocyanine green (ICG), a Food and Drug Administration (FDA)-approved near-infrared (NIR, >750 nm) fluorescent dye, has been utilized in various biomedical applications such as drug delivery, imaging, and diagnosis, due to its attractive physicochemical properties, high sensitivity, and better imaging view field. However, ICG still suffers from certain limitations for its utilization as a molecular imaging probe in vivo, such as concentration-dependent aggregation, poor in vitro aqueous stability and photodegradation due to various physicochemical attributes. To overcome these limitations, much research has been dedicated to engineering numerous multifunctional polymeric composites for potential biomedical applications. In this review, we aim to discuss ICG-encapsulated polymeric nanoconstructs, which are of particular interest in various biomedical applications. First, we emphasize some attractive properties of ICG (including physicochemical characteristics, optical properties, metabolic features, and other aspects) and some of its current limitations. Next, we aim to provide a comprehensive overview highlighting recent reports on various polymeric nanoparticles that carry ICG for light-induced therapeutics with a set of examples. Finally, we summarize with perspectives highlighting the significant outcome, and current challenges of these nanocomposites.
GDRMS: a system for automatic extraction of the disease-centre relation
NASA Astrophysics Data System (ADS)
Yang, Ronggen; Zhang, Yue; Gong, Lejun
2012-01-01
With the rapidly increasing of biomedical literature, the deluge of new articles is leading to information overload. Extracting the available knowledge from the huge amount of biomedical literature has become a major challenge. GDRMS is developed as a tool that extracts the relationship between disease and gene, gene and gene from biomedical literatures using text mining technology. It is a ruled-based system which also provides disease-centre network visualization, constructs the disease-gene database, and represents a gene engine for understanding the function of the gene. The main focus of GDRMS is to provide a valuable opportunity to explore the relationship between disease and gene for the research community about etiology of disease.
Linking engineering and medicine: fostering collaboration skills in interdisciplinary teams.
Khoo, Michael C K
2012-07-01
Biomedical engineering embodies the spirit of combining disciplines. The engineer's pragmatic approach to--and appetite for--solving problems is matched by a bounty of technical challenges generated in medical domains. From nanoscale diagnostics to the redesign of systems of health-care delivery, engineers have been connecting advances in basic and applied science with applications that have helped to improve medical care and outcomes. Increasingly, however, integrating these areas of knowledge and application is less individualistic and more of a team sport. Success increasingly relies on a direct focus on practicing and developing collaboration skills in interdisciplinary teams. Such an approach does not fit easily into individual-focused, discipline-based programs. Biomedical engineering has done its fair share of silo busting, but new approaches are needed to inspire interdisciplinary teams to form around challenges in particular areas. Health care offers a wide variety of complex challenges across an array of delivery settings that can call for new interdisciplinary approaches. This was recognized by the deans of the University of Southern California's (USC's) Medical and Engineering Schools when they began the planning process, leading to the creation of the Health, Technology, and Engineering (HTE@USC or HTE for short) program. “Health care and technology are changing rapidly, and future physicians and engineers need intellectual tools to stay ahead of this change,” says Carmen A. Puliafito, dean of the Keck School of Medicine. His goal is to train national leaders in the quest for devices and processes to improve health care.
Kumar, Saurabh; Amrutur, Bharadwaj; Asokan, Sundarrajan
2018-02-01
Fiber Bragg Grating (FBG) sensors have become popular for applications related to structural health monitoring, biomedical engineering, and robotics. However, for successful large scale adoption, FBG interrogation systems are as important as sensor characteristics. Apart from accuracy, the required number of FBG sensors per fiber and the distance between the device in which the sensors are used and the interrogation system also influence the selection of the interrogation technique. For several measurement devices developed for applications in biomedical engineering and robotics, only a few sensors per fiber are required and the device is close to the interrogation system. For these applications, interrogation systems based on InGaAs linear detector arrays provide a good choice. However, their resolution is dependent on the algorithms used for curve fitting. In this work, a detailed analysis of the choice of algorithm using the Gaussian approximation for the FBG spectrum and the number of pixels used for curve fitting on the errors is provided. The points where the maximum errors occur have been identified. All comparisons for wavelength shift detection have been made against another interrogation system based on the tunable swept laser. It has been shown that maximum errors occur when the wavelength shift is such that one new pixel is included for curve fitting. It has also been shown that an algorithm with lower computation cost compared to the more popular methods using iterative non-linear least squares estimation can be used without leading to the loss of accuracy. The algorithm has been implemented on embedded hardware, and a speed-up of approximately six times has been observed.
NASA Astrophysics Data System (ADS)
Kumar, Saurabh; Amrutur, Bharadwaj; Asokan, Sundarrajan
2018-02-01
Fiber Bragg Grating (FBG) sensors have become popular for applications related to structural health monitoring, biomedical engineering, and robotics. However, for successful large scale adoption, FBG interrogation systems are as important as sensor characteristics. Apart from accuracy, the required number of FBG sensors per fiber and the distance between the device in which the sensors are used and the interrogation system also influence the selection of the interrogation technique. For several measurement devices developed for applications in biomedical engineering and robotics, only a few sensors per fiber are required and the device is close to the interrogation system. For these applications, interrogation systems based on InGaAs linear detector arrays provide a good choice. However, their resolution is dependent on the algorithms used for curve fitting. In this work, a detailed analysis of the choice of algorithm using the Gaussian approximation for the FBG spectrum and the number of pixels used for curve fitting on the errors is provided. The points where the maximum errors occur have been identified. All comparisons for wavelength shift detection have been made against another interrogation system based on the tunable swept laser. It has been shown that maximum errors occur when the wavelength shift is such that one new pixel is included for curve fitting. It has also been shown that an algorithm with lower computation cost compared to the more popular methods using iterative non-linear least squares estimation can be used without leading to the loss of accuracy. The algorithm has been implemented on embedded hardware, and a speed-up of approximately six times has been observed.
Nanoparticles for Biomedical Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nune, Satish K.; Gunda, Padmaja; Thallapally, Praveen K.
2009-11-01
Background: Synthetic nanoparticles are emerging as versatile tools in biomedical applications, particularly in the area of biomedical imaging. Nanoparticles 1 to 100 nm in diameter possess dimensions comparable to biological functional units. Diverse surface chemistries, unique magnetic properties, tunable absorption and emission properties, and recent advances in the synthesis and engineering of various nanoparticles suggest their potential as probes for early detection of diseases such as cancer. Surface functionalization has further expanded the potential of nanoparticles as probes for molecular imaging. Objective: To summarize emerging research of nanoparticles for biomedical imaging with increased selectivity and reduced non-specific uptake with increasedmore » spatial resolution containing stabilizers conjugated with targeting ligands. Methods: This review summarizes recent technological advances in the synthesis of various nanoparticle probes, and surveys methods to improve the targeting of nanoparticles for their applications in biomedical imaging. Conclusion: Structural design of nanomaterials for biomedical imaging continues to expand and diversify. Synthetic methods have aimed to control the size and surface characteristics of nanoparticles to control distribution, half-life and elimination. Although molecular imaging applications using nanoparticles are advancing into clinical applications, challenges such as storage stability and long-term toxicology should continue to be addressed. Keywords: nanoparticle synthesis, surface modification, targeting, molecular imaging, and biomedical imaging.« less
Leavesley, Silas J; Sweat, Brenner; Abbott, Caitlyn; Favreau, Peter; Rich, Thomas C
2018-01-01
Spectral imaging technologies have been used for many years by the remote sensing community. More recently, these approaches have been applied to biomedical problems, where they have shown great promise. However, biomedical spectral imaging has been complicated by the high variance of biological data and the reduced ability to construct test scenarios with fixed ground truths. Hence, it has been difficult to objectively assess and compare biomedical spectral imaging assays and technologies. Here, we present a standardized methodology that allows assessment of the performance of biomedical spectral imaging equipment, assays, and analysis algorithms. This methodology incorporates real experimental data and a theoretical sensitivity analysis, preserving the variability present in biomedical image data. We demonstrate that this approach can be applied in several ways: to compare the effectiveness of spectral analysis algorithms, to compare the response of different imaging platforms, and to assess the level of target signature required to achieve a desired performance. Results indicate that it is possible to compare even very different hardware platforms using this methodology. Future applications could include a range of optimization tasks, such as maximizing detection sensitivity or acquisition speed, providing high utility for investigators ranging from design engineers to biomedical scientists. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Davidson, Shaun M; Docherty, Paul D; Murray, Rua
2017-03-01
Parameter identification is an important and widely used process across the field of biomedical engineering. However, it is susceptible to a number of potential difficulties, such as parameter trade-off, causing premature convergence at non-optimal parameter values. The proposed Dimensional Reduction Method (DRM) addresses this issue by iteratively reducing the dimension of hyperplanes where trade off occurs, and running subsequent identification processes within these hyperplanes. The DRM was validated using clinical data to optimize 4 parameters of the widely used Bergman Minimal Model of glucose and insulin kinetics, as well as in-silico data to optimize 5 parameters of the Pulmonary Recruitment (PR) Model. Results were compared with the popular Levenberg-Marquardt (LMQ) Algorithm using a Monte-Carlo methodology, with both methods afforded equivalent computational resources. The DRM converged to a lower or equal residual value in all tests run using the Bergman Minimal Model and actual patient data. For the PR model, the DRM attained significantly lower overall median parameter error values and lower residuals in the vast majority of tests. This shows the DRM has potential to provide better resolution of optimum parameter values for the variety of biomedical models in which significant levels of parameter trade-off occur. Copyright © 2017 Elsevier Inc. All rights reserved.
Scientific and Engineering Research Facilities at Colleges and Universities, 1998. Topical Report.
ERIC Educational Resources Information Center
National Science Foundation, Arlington, VA. Div. of Science Resources Studies.
On a biennial basis since 1986, the National Science Foundation (NSF) has collected data on issues related to Science and Engineering (S&E) research facilities at U.S. colleges, universities, and biomedical institutions. This report presents the major findings from the 1998 survey and provides a summary of the changes that took place between…
Cockrell, Robert Chase; Christley, Scott; Chang, Eugene; An, Gary
2015-01-01
Perhaps the greatest challenge currently facing the biomedical research community is the ability to integrate highly detailed cellular and molecular mechanisms to represent clinical disease states as a pathway to engineer effective therapeutics. This is particularly evident in the representation of organ-level pathophysiology in terms of abnormal tissue structure, which, through histology, remains a mainstay in disease diagnosis and staging. As such, being able to generate anatomic scale simulations is a highly desirable goal. While computational limitations have previously constrained the size and scope of multi-scale computational models, advances in the capacity and availability of high-performance computing (HPC) resources have greatly expanded the ability of computational models of biological systems to achieve anatomic, clinically relevant scale. Diseases of the intestinal tract are exemplary examples of pathophysiological processes that manifest at multiple scales of spatial resolution, with structural abnormalities present at the microscopic, macroscopic and organ-levels. In this paper, we describe a novel, massively parallel computational model of the gut, the Spatially Explicitly General-purpose Model of Enteric Tissue_HPC (SEGMEnT_HPC), which extends an existing model of the gut epithelium, SEGMEnT, in order to create cell-for-cell anatomic scale simulations. We present an example implementation of SEGMEnT_HPC that simulates the pathogenesis of ileal pouchitis, and important clinical entity that affects patients following remedial surgery for ulcerative colitis.
Loudos, George K; Papadimitroulas, Panagiotis G; Kagadis, George C
2014-01-01
Monte Carlo (MC) simulations play a crucial role in nuclear medical imaging since they can provide the ground truth for clinical acquisitions, by integrating and quantifing all physical parameters that affect image quality. The last decade a number of realistic computational anthropomorphic models have been developed to serve imaging, as well as other biomedical engineering applications. The combination of MC techniques with realistic computational phantoms can provide a powerful tool for pre and post processing in imaging, data analysis and dosimetry. This work aims to create a global database for simulated Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) exams and the methodology, as well as the first elements are presented. Simulations are performed using the well validated GATE opensource toolkit, standard anthropomorphic phantoms and activity distribution of various radiopharmaceuticals, derived from literature. The resulting images, projections and sinograms of each study are provided in the database and can be further exploited to evaluate processing and reconstruction algorithms. Patient studies using different characteristics are included in the database and different computational phantoms were tested for the same acquisitions. These include the XCAT, Zubal and the Virtual Family, which some of which are used for the first time in nuclear imaging. The created database will be freely available and our current work is towards its extension by simulating additional clinical pathologies.
Development of a new Clinical Engineering Management Tool & Information System (CLE-MANTIS).
Panousis, S G; Malataras, P; Patelodimou, C; Kolitsi, Z; Pallikarakis, N
1997-01-01
The evolution of the field of biomedical technology has led to the diffusion of an impressive number of medical devices into healthcare institutions. In this environment, Clinical Engineering Departments (CEDs) are expanding their role in healthcare technology management, by changing their structure and introducing quality systems in order to improve their services and monitor the outcomes. In the framework of the national project BIOTECHNET II, a software tool for the management of biomedical technology, named CLE-MANTIS, has been developed, with the aim to assist CEDs in their tasks. CLE-MANTIS functions include the upkeep of an inventory, the support and monitoring of scheduled maintenance, corrective maintenance, vigilance, equipment acquisition and replacement, service contract management and user training. The system offers clinical engineers the possibility to monitor and evaluate the quality and cost-effectiveness of their departments through the monitoring of quality and cost indicators. This paper presents the main features and functions of the system.
Focus on: Washington Hospital Center, Biomedical Engineering Department.
Hughes, J D
1995-01-01
The Biomedical Engineering Department of the Washington Hospital Center provides clinical engineering services to an urban 907-bed, tertiary care teaching hospital and a variety of associated healthcare facilities. With an annual budget of over $3,000,000, the 24-person department provides cradle-to-grave support for a host of sophisticated medical devices and imaging systems such as lasers, CT scanners, and linear accelerators as well as traditional patient care instrumentation. Hallmarks of the department include its commitment to customer service and patient care, close collaboration with clinicians and quality assurance teams throughout the hospital system, proactive involvement in all phases of the technology management process, and shared leadership in safety standards with the hospital's risk management group. Through this interactive process, the department has assisted the Center not only in the acquisition of 11,000 active devices with a value of more than $64 million, but also in becoming one of the leading providers of high technology healthcare in the Washington, DC metropolitan area.
CRISPR-cas System as a Genome Engineering Platform: Applications in Biomedicine and Biotechnology.
Hashemi, Atieh
2018-01-01
Genome editing mediated by Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and its associated proteins (Cas) has recently been considered to be used as efficient, rapid and site-specific tool in the modification of endogenous genes in biomedically important cell types and whole organisms. It has become a predictable and precise method of choice for genome engineering by specifying a 20-nt targeting sequence within its guide RNA. Firstly, this review aims to describe the biology of CRISPR system. Next, the applications of CRISPR-Cas9 in various ways, such as efficient generation of a wide variety of biomedically important cellular models as well as those of animals, modifying epigenomes, conducting genome-wide screens, gene therapy, labelling specific genomic loci in living cells, metabolic engineering of yeast and bacteria and endogenous gene expression regulation by an altered version of this system were reviewed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Synthetic biology: programming cells for biomedical applications.
Hörner, Maximilian; Reischmann, Nadine; Weber, Wilfried
2012-01-01
The emerging field of synthetic biology is a novel biological discipline at the interface between traditional biology, chemistry, and engineering sciences. Synthetic biology aims at the rational design of complex synthetic biological devices and systems with desired properties by combining compatible, modular biological parts in a systematic manner. While the first engineered systems were mainly proof-of-principle studies to demonstrate the power of the modular engineering approach of synthetic biology, subsequent systems focus on applications in the health, environmental, and energy sectors. This review describes recent approaches for biomedical applications that were developed along the synthetic biology design hierarchy, at the level of individual parts, of devices, and of complex multicellular systems. It describes how synthetic biological parts can be used for the synthesis of drug-delivery tools, how synthetic biological devices can facilitate the discovery of novel drugs, and how multicellular synthetic ecosystems can give insight into population dynamics of parasites and hosts. These examples demonstrate how this new discipline could contribute to novel solutions in the biopharmaceutical industry.