Sample records for biomedical research centre

  1. Building up careers in translational neuroscience and mental health research: Education and training in the Centre for Biomedical Research in Mental Health.

    PubMed

    Rapado-Castro, Marta; Pazos, Ángel; Fañanás, Lourdes; Bernardo, Miquel; Ayuso-Mateos, Jose Luis; Leza, Juan Carlos; Berrocoso, Esther; de Arriba, Jose; Roldán, Laura; Sanjuán, Julio; Pérez, Victor; Haro, Josep M; Palomo, Tomás; Valdizan, Elsa M; Micó, Juan Antonio; Sánchez, Manuel; Arango, Celso

    2015-01-01

    The number of large collaborative research networks in mental health is increasing. Training programs are an essential part of them. We critically review the specific implementation of a research training program in a translational Centre for Biomedical Research in Mental Health in order to inform the strategic integration of basic research into clinical practice to have a positive impact in the mental health system and society. Description of training activities, specific educational programs developed by the research network, and challenges on its implementation are examined. The Centre for Biomedical Research in Mental Health has focused on training through different activities which have led to the development of an interuniversity master's degree postgraduate program in mental health research, certified by the National Spanish Agency for Quality Evaluation and Accreditation. Consolidation of training programs within the Centre for Biomedical Research in Mental Health has considerably advanced the training of researchers to meet competency standards on research. The master's degree constitutes a unique opportunity to accomplish neuroscience and mental health research career-building within the official framework of university programs in Spain. Copyright © 2014 SEP y SEPB. Published by Elsevier España. All rights reserved.

  2. Does a biomedical research centre affect patient care in local hospitals?

    PubMed

    Lichten, Catherine A; Marsden, Grace; Pollitt, Alexandra; Kiparoglou, Vasiliki; Channon, Keith M; Sussex, Jon

    2017-01-21

    Biomedical research can have impacts on patient care at research-active hospitals. We qualitatively evaluated the impact of the Oxford Biomedical Research Centre (Oxford BRC), a university-hospital partnership, on the effectiveness and efficiency of healthcare in local hospitals. Effectiveness and efficiency are conceptualised in terms of impacts perceived by clinicians on the quality, quantity and costs of patient care they deliver. First, we reviewed documentation from Oxford BRC and literature on the impact of research activity on patient care. Second, we interviewed leaders of the Oxford BRC's research to identify the direct and indirect impacts they expected their activity would have on local hospitals. Third, this information was used to inform interviews with senior clinicians responsible for patient care at Oxford's acute hospitals to discover what impacts they observed from research generally and from Oxford BRC's research work specifically. We compared and contrasted the results from the two sets of interviews using a qualitative approach. Finally, we identified themes emerging from the senior clinicians' responses, and compared them with an existing taxonomy of mechanisms through which quality of healthcare may be affected in research-active settings. We were able to interview 17 research leaders at the Oxford BRC and 19 senior clinicians at Oxford's acute hospitals. The research leaders identified a wide range of beneficial impacts that they expected might be felt at local hospitals as a result of their research activity. They expected the impact of their research activity on patient care to be generally positive. The senior clinicians responsible for patient care at those hospitals presented a more mixed picture, identifying many positive impacts, but also a smaller number of negative impacts, from research activity, including that of the Oxford BRC. We found the existing taxonomy of benefit types to be helpful in organising the findings, and propose

  3. Maximising value from a United Kingdom Biomedical Research Centre: study protocol.

    PubMed

    Greenhalgh, Trisha; Ovseiko, Pavel V; Fahy, Nick; Shaw, Sara; Kerr, Polly; Rushforth, Alexander D; Channon, Keith M; Kiparoglou, Vasiliki

    2017-08-14

    Biomedical Research Centres (BRCs) are partnerships between healthcare organisations and universities in England. Their mission is to generate novel treatments, technologies, diagnostics and other interventions that increase the country's international competitiveness, to rapidly translate these innovations into benefits for patients, and to improve efficiency and reduce waste in healthcare. As NIHR Oxford BRC (Oxford BRC) enters its third 5-year funding period, we seek to (1) apply the evidence base on how best to support the various partnerships in this large, multi-stakeholder research system and (2) research how these partnerships play out in a new, ambitious programme of translational research. Organisational case study, informed by the principles of action research. A cross-cutting theme, 'Partnerships for Health, Wealth and Innovation' has been established with multiple sub-themes (drug development, device development, business support and commercialisation, research methodology and statistics, health economics, bioethics, patient and public involvement and engagement, knowledge translation, and education and training) to support individual BRC research themes and generate cross-theme learning. The 'Partnerships' theme will support the BRC's goals by facilitating six types of partnership (with patients and citizens, clinical services, industry, across the NIHR infrastructure, across academic disciplines, and with policymakers and payers) through a range of engagement platforms and activities. We will develop a longitudinal progress narrative centred around exemplar case studies, and apply theoretical models from innovation studies (Triple Helix), sociology of science (Mode 2 knowledge production) and business studies (Value Co-creation). Data sources will be the empirical research studies within individual BRC research themes (who will apply separately for NHS ethics approval), plus documentary analysis and interviews and ethnography with research

  4. [Hospital biomedical research through the satisfaction of a Health Research Institute professionals].

    PubMed

    Olmedo, C; Plá, R; Bellón, J M; Bardinet, T; Buño, I; Bañares, R

    2015-01-01

    A Health Research Institute is a powerful strategic commitment to promote biomedical research in hospitals. To assess user satisfaction is an essential quality requirement. The aim of this study is to evaluate the professional satisfaction in a Health Research Institute, a hospital biomedical research centre par excellence. Observational study was conducted using a satisfaction questionnaire on Health Research Institute researchers. The explored dimensions were derived from the services offered by the Institute to researchers, and are structured around 4 axes of a five-year Strategic Plan. A descriptive and analytical study was performed depending on adjustment variables. Internal consistency was also calculated. The questionnaire was completed by 108 researchers (15% response). The most valued strategic aspect was the structuring Areas and Research Groups and political communication and dissemination. The overall rating was 7.25 out of 10. Suggestions for improvement refer to the need for help in recruitment, and research infrastructures. High internal consistency was found in the questionnaire (Cronbach alpha of 0.9). So far research policies in health and biomedical environment have not been sufficiently evaluated by professionals in our field. Systematic evaluations of satisfaction and expectations of key stakeholders is an essential tool for analysis, participation in continuous improvement and advancing excellence in health research. Copyright © 2015 SECA. Published by Elsevier Espana. All rights reserved.

  5. A negative trend of biomedical research in Libya: a bibliometric study.

    PubMed

    Benamer, Hani T S; Bredan, Amin; Bakoush, Omran

    2009-09-01

    It is well established that Libya is lagging behind its peers in biomedical research. The aim of this study is to analyse all the original biomedical publications affiliated with Libya from 1973 to 2007. PubMed and the Science Citation Index Expanded were searched for 'original research' biomedical studies affiliated with Libya. The generated data were hand searched and 329 'original research' studies were included in the analysis. The first study was published in 1973. Publication rate peaked to an average of 15.2 studies per year during 1986-1996 and dropped to an average of 8.8 studies per year during 1997-2007. Of 166 first authors; 41% were Libyans and 59% were expatriates. The latter contributed 104 studies between 1986 and 1996 and 36 studies between 1997 and 2007, while the Libyans contributed 63 and 61 studies in the two respective periods. Authors affiliated with Benghazi produced 67% of the published studies, while authors from Tripoli produced 30% and other medical schools, hospitals and research centres from other Libyan cities produced only 3%. This study showed a decline in biomedical research publication in Libya. We propose that the lack of a research culture among the Libyan medical professionals is one of the factors contributing to this decline, which coincided with the departure of expatriate doctors from Libya. Raising awareness of the importance of research and improving research skills among Libyan medical professionals may help to reverse the current trend.

  6. Evaluation of research in biomedical ontologies

    PubMed Central

    Dumontier, Michel; Gkoutos, Georgios V.

    2013-01-01

    Ontologies are now pervasive in biomedicine, where they serve as a means to standardize terminology, to enable access to domain knowledge, to verify data consistency and to facilitate integrative analyses over heterogeneous biomedical data. For this purpose, research on biomedical ontologies applies theories and methods from diverse disciplines such as information management, knowledge representation, cognitive science, linguistics and philosophy. Depending on the desired applications in which ontologies are being applied, the evaluation of research in biomedical ontologies must follow different strategies. Here, we provide a classification of research problems in which ontologies are being applied, focusing on the use of ontologies in basic and translational research, and we demonstrate how research results in biomedical ontologies can be evaluated. The evaluation strategies depend on the desired application and measure the success of using an ontology for a particular biomedical problem. For many applications, the success can be quantified, thereby facilitating the objective evaluation and comparison of research in biomedical ontology. The objective, quantifiable comparison of research results based on scientific applications opens up the possibility for systematically improving the utility of ontologies in biomedical research. PMID:22962340

  7. Publishing priorities of biomedical research funders

    PubMed Central

    Collins, Ellen

    2013-01-01

    Objectives To understand the publishing priorities, especially in relation to open access, of 10 UK biomedical research funders. Design Semistructured interviews. Setting 10 UK biomedical research funders. Participants 12 employees with responsibility for research management at 10 UK biomedical research funders; a purposive sample to represent a range of backgrounds and organisation types. Conclusions Publicly funded and large biomedical research funders are committed to open access publishing and are pleased with recent developments which have stimulated growth in this area. Smaller charitable funders are supportive of the aims of open access, but are concerned about the practical implications for their budgets and their funded researchers. Across the board, biomedical research funders are turning their attention to other priorities for sharing research outputs, including data, protocols and negative results. Further work is required to understand how smaller funders, including charitable funders, can support open access. PMID:24154520

  8. Biomedical research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Biomedical problems encountered by man in space which have been identified as a result of previous experience in simulated or actual spaceflight include cardiovascular deconditioning, motion sickness, bone loss, muscle atrophy, red cell alterations, fluid and electrolyte loss, radiation effects, radiation protection, behavior, and performance. The investigations and the findings in each of these areas were reviewed. A description of how biomedical research is organized within NASA, how it is funded, and how it is being reoriented to meet the needs of future manned space missions is also provided.

  9. [Ethics and biomedical research].

    PubMed

    Goussard, Christophe

    2007-01-01

    Ethics in biomedical research took off from the 1947 Nuremberg Code to its own right in the wake of the Declaration of Helsinki in 1964. Since then, (inter)national regulations and guidelines providing a framework for clinical studies and protection for study participants have been drafted and implemented, while ethics committees and drug evaluation agencies have sprung up throughout the world. These two developments were crucial in bringing about the protection of rights and safety of the participants and harmonization of the conduct of biomedical research. Ethics committees and drug evaluation agencies deliver ethical and scientific assessments on the quality and safety of the projects submitted to them and issue respectively approvals and authorizations to carry out clinical trials, while ensuring that they comply with regulatory requirements, ethical principles, and scientific guidelines. The advent of biomedical ethics, together with the responsible commitment of clinical investigators and of the pharmaceutical industry, has guaranteed respect for the patient, for whom and with whom research is conducted. Just as importantly, it has also ensured that patients reap the benefit of what is the primary objective of biomedical research: greater life expectancy, well-being, and quality of life.

  10. Addiction research centres and the nurturing of creativity: Centre for Social Research on Alcohol and Drugs (SoRAD), Stockholm University, Sweden.

    PubMed

    Stenius, Kerstin; Ramstedt, Mats; Olsson, Börje

    2010-03-01

    The Centre for Social Research on Alcohol and Drugs (SoRAD) was established as a national research centre and department within the Faculty of Social Science at Stockholm University in 1997, following a Government Report and with the aim to strengthen social alcohol and drug research. Initially, core funding came from the Swedish Council for Working Life and Social Research and from the Ministry of Health and Social Affairs for several long-term projects. Today, SoRAD, with 25 senior and junior researchers, has core funding from the university but most of its funding comes from external national and international grants. Research is organized under three themes: consumption, problems and norms, alcohol and drug policy and societal reactions, treatment and recovery processes. SoRADs scientific approach, multi-disciplinarity, a mix of qualitative and quantitative methods and international comparisons was established by the centre's first leader, Robin Room. Regular internal seminars are held and young researchers are encouraged to attend scientific meetings and take part in collaborative projects. SoRAD researchers produce government-funded monthly statistics on alcohol consumption and purchase, and take part in various national government committees, but SoRADs research has no clear political or bureaucratic constraints. One of the future challenges for SoRAD will be the proposed system for university grants allocation, where applied social science will have difficulties competing with basic biomedical research if decisions are based on publication and citation measures.

  11. Biomedical Research Warfare.

    ERIC Educational Resources Information Center

    Fortson, Leigh

    1999-01-01

    An African-American researcher is spearheading a black biomedical research movement to urge more African Americans to investigate the health issues affecting their communities. His research focuses on the acquired immune deficiency syndrome (AIDS) virus, but he is encouraging general expansion of the black researcher population. (MSE)

  12. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The National Space Biomedical Research Institute (NSBRI) sponsors and performs fundamental and applied space biomedical research with the mission of leading a world-class, national effort in integrated, critical path space biomedical research that supports NASA's Human Exploration and Development of Space (HEDS) Strategic Plan. It focuses on the enabling of long-term human presence in, development of, and exploration of space. This will be accomplished by: designing, implementing, and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight; defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures; establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level, and deliver quality medical care; transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the benefit of mankind in space and on Earth, including the treatment of patients suffering from gravity- and radiation-related conditions on Earth; and ensuring open involvement of the scientific community, industry, and the public at large in the Institute's activities and fostering a robust collaboration with NASA, particularly through Johnson Space Center.

  13. Simbody: multibody dynamics for biomedical research.

    PubMed

    Sherman, Michael A; Seth, Ajay; Delp, Scott L

    Multibody software designed for mechanical engineering has been successfully employed in biomedical research for many years. For real time operation some biomedical researchers have also adapted game physics engines. However, these tools were built for other purposes and do not fully address the needs of biomedical researchers using them to analyze the dynamics of biological structures and make clinically meaningful recommendations. We are addressing this problem through the development of an open source, extensible, high performance toolkit including a multibody mechanics library aimed at the needs of biomedical researchers. The resulting code, Simbody, supports research in a variety of fields including neuromuscular, prosthetic, and biomolecular simulation, and related research such as biologically-inspired design and control of humanoid robots and avatars. Simbody is the dynamics engine behind OpenSim, a widely used biomechanics simulation application. This article reviews issues that arise uniquely in biomedical research, and reports on the architecture, theory, and computational methods Simbody uses to address them. By addressing these needs explicitly Simbody provides a better match to the needs of researchers than can be obtained by adaptation of mechanical engineering or gaming codes. Simbody is a community resource, free for any purpose. We encourage wide adoption and invite contributions to the code base at https://simtk.org/home/simbody.

  14. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In June 1996, NASA released a Cooperative Agreement Notice (CAN) inviting proposals to establish a National Space Biomedical Research Institute (9-CAN-96-01). This CAN stated that: The Mission of the Institute will be to lead a National effort for accomplishing the integrated, critical path, biomedical research necessary to support the long term human presence, development, and exploration of space and to enhance life on Earth by applying the resultant advances in human knowledge and technology acquired through living and working in space. The Institute will be the focal point of NASA sponsored space biomedical research. This statement has not been amended by NASA and remains the mission of the NSBRI.

  15. The South London and Maudsley NHS Foundation Trust Biomedical Research Centre (SLAM BRC) case register: development and descriptive data.

    PubMed

    Stewart, Robert; Soremekun, Mishael; Perera, Gayan; Broadbent, Matthew; Callard, Felicity; Denis, Mike; Hotopf, Matthew; Thornicroft, Graham; Lovestone, Simon

    2009-08-12

    Case registers have been used extensively in mental health research. Recent developments in electronic medical records, and in computer software to search and analyse these in anonymised format, have the potential to revolutionise this research tool. We describe the development of the South London and Maudsley NHS Foundation Trust (SLAM) Biomedical Research Centre (BRC) Case Register Interactive Search tool (CRIS) which allows research-accessible datasets to be derived from SLAM, the largest provider of secondary mental healthcare in Europe. All clinical data, including free text, are available for analysis in the form of anonymised datasets. Development involved both the building of the system and setting in place the necessary security (with both functional and procedural elements). Descriptive data are presented for the Register database as of October 2008. The database at that point included 122,440 cases, 35,396 of whom were receiving active case management under the Care Programme Approach. In terms of gender and ethnicity, the database was reasonably representative of the source population. The most common assigned primary diagnoses were within the ICD mood disorders (n = 12,756) category followed by schizophrenia and related disorders (8158), substance misuse (7749), neuroses (7105) and organic disorders (6414). The SLAM BRC Case Register represents a 'new generation' of this research design, built on a long-running system of fully electronic clinical records and allowing in-depth secondary analysis of both numerical, string and free text data, whilst preserving anonymity through technical and procedural safeguards.

  16. The joint cardiovascular research profile of the university medical centres in the Netherlands.

    PubMed

    van Welie, S D; van Leeuwen, T N; Bouma, C J; Klaassen, A B M

    2016-05-01

    Biomedical scientific research in the Netherlands has a good reputation worldwide. Quantitatively, the university medical centres (UMCs) deliver about 40 % of the total number of scientific publications of this research. Analysis of the bibliometric output data of the UMCs shows that their research is highly cited. These output-based analyses also indicate the high impact of cardiovascular scientific research in these centres, illustrating the strength of this research in the Netherlands. A set of six joint national cardiovascular research topics selected by the UMCs can be recognised. At the top are heart failure, rhythm disorder research and atherosclerosis. National collaboration of top scientists in consortia in these three areas is successful in acquiring funding of large-scale programs. Our observations suggest that funding national consortia of experts focused on a few selected research topics may increase the international competitiveness of cardiovascular research in the Netherlands.

  17. [Main characteristics of current biomedical research, in Chile].

    PubMed

    Valdés S, Gloria; Armas M, Rodolfo; Reyes B, Humberto

    2012-04-01

    Biomedical research is a fundamental tool for the development of a country, requiring human and financial resources. To define some current characteristics of biomedical research, in Chile. Data on entities funding bio-medical research, participant institutions, and the number of active investigators for the period 2007-2009 were obtained from institutional sources; publications indexed in PubMed for 2008-2009 were analysed. Most financial resources invested in biomedical research projects (approximately US$ 19 million per year) came from the "Comisión Nacional de Investigación Científica y Tecnológica" (CONICYT), a state institution with 3 independent Funds administering competitive grant applications open annually to institutional or independent investigators in Chile. Other sources and universities raised the total amount to US$ 26 million. Since 2007 to 2009, 408 investigators participated in projects funded by CONICYT. The main participant institutions were Universidad de Chile and Pontificia Universidad Católica de Chile, both adding up to 84% of all funded projects. Independently, in 2009,160 research projects -mainly multi centric clinical trials- received approximately US$ 24 million from foreign pharmaceutical companies. Publications listed in PubMed were classified as "clinical research" (n = 879, including public health) or "basic biomedical research" (n = 312). Biomedical research in Chile is mainly supported by state funds and university resources, but clinical trials also obtained an almost equivalent amount from foreign resources. Investigators are predominantly located in two universities. A small number of MD-PhD programs are aimed to train and incorporate new scientists. Only a few new Medical Schools participate in biomedical research. A National Registry of biomedical research projects, including the clinical trials, is required among other initiatives to stimulate research in biomedical sciences in Chile.

  18. The South London and Maudsley NHS Foundation Trust Biomedical Research Centre (SLAM BRC) case register: development and descriptive data

    PubMed Central

    Stewart, Robert; Soremekun, Mishael; Perera, Gayan; Broadbent, Matthew; Callard, Felicity; Denis, Mike; Hotopf, Matthew; Thornicroft, Graham; Lovestone, Simon

    2009-01-01

    Background Case registers have been used extensively in mental health research. Recent developments in electronic medical records, and in computer software to search and analyse these in anonymised format, have the potential to revolutionise this research tool. Methods We describe the development of the South London and Maudsley NHS Foundation Trust (SLAM) Biomedical Research Centre (BRC) Case Register Interactive Search tool (CRIS) which allows research-accessible datasets to be derived from SLAM, the largest provider of secondary mental healthcare in Europe. All clinical data, including free text, are available for analysis in the form of anonymised datasets. Development involved both the building of the system and setting in place the necessary security (with both functional and procedural elements). Results Descriptive data are presented for the Register database as of October 2008. The database at that point included 122,440 cases, 35,396 of whom were receiving active case management under the Care Programme Approach. In terms of gender and ethnicity, the database was reasonably representative of the source population. The most common assigned primary diagnoses were within the ICD mood disorders (n = 12,756) category followed by schizophrenia and related disorders (8158), substance misuse (7749), neuroses (7105) and organic disorders (6414). Conclusion The SLAM BRC Case Register represents a 'new generation' of this research design, built on a long-running system of fully electronic clinical records and allowing in-depth secondary analysis of both numerical, string and free text data, whilst preserving anonymity through technical and procedural safeguards. PMID:19674459

  19. Biomedical Polar Research Workshop Minutes

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This workshop was conducted to provide a background of NASA and National Science Foundation goals, an overview of previous and current biomedical research, and a discussion about areas of potential future joint activities. The objectives of the joint research were: (1) to develop an understanding of the physiological, psychological, and behavioral alterations and adaptations to extreme environments of the polar regions; (2) to ensure the health, well-being, and performance of humans in these environments; and (3) to promote the application of biomedical research to improve the quality of life in all environments.

  20. The Need for Veterinarians in Biomedical Research

    PubMed Central

    Rosol, Thomas J.; Moore, Rustin M.; Saville, William J.A.; Oglesbee, Michael J.; Rush, Laura J.; Mathes, Lawrence E.; Lairmore, Michael D.

    2010-01-01

    The number of veterinarians in the United States is inadequate to meet societal needs in biomedical research and public health. Areas of greatest need include translational medical research, veterinary pathology, laboratory-animal medicine, emerging infectious diseases, public health, academic medicine, and production-animal medicine. Veterinarians have unique skill sets that enable them to serve as leaders or members of interdisciplinary research teams involved in basic science and biomedical research with applications to animal or human health. There are too few graduate veterinarians to serve broad national needs in private practice; academia; local, state, and federal government agencies; and private industry. There are no easy solutions to the problem of increasing the number of veterinarians in biomedical research. Progress will require creativity, modification of priorities, broad-based communication, support from faculty and professional organizations, effective mentoring, education in research and alternative careers as part of the veterinary professional curriculum, and recognition of the value of research experience among professional schools’ admissions committees. New resources should be identified to improve communication and education, professional and graduate student programs in biomedical research, and support to junior faculty. These actions are necessary for the profession to sustain its viability as an integral part of biomedical research. PMID:19435992

  1. Military research needs in biomedical informatics.

    PubMed

    Reifman, Jaques; Gilbert, Gary R; Fagan, Lawrence; Satava, Richard

    2002-01-01

    The 2001 U.S. Army Medical Research and Materiel Command (USAMRMC) Biomedical Informatics Roadmap Meeting was devoted to developing a strategic plan in four focus areas: Hospital and Clinical Informatics, E-Health, Combat Health Informatics, and Bioinformatics and Biomedical Computation. The driving force of this Roadmap Meeting was the recent accelerated pace of change in biomedical informatics in which emerging technologies have the potential to affect significantly the Army research portfolio and investment strategy in these focus areas. The meeting was structured so that the first two days were devoted to presentations from experts in the field, including representatives from the three services, other government agencies, academia, and the private sector, and the morning of the last day was devoted to capturing specific biomedical informatics research needs in the four focus areas. This white paper summarizes the key findings and recommendations and should be a powerful tool for the crafting of future requests for proposals to help align USAMRMC new strategic research investments with new developments and emerging technologies.

  2. The Obligation to Participate in Biomedical Research

    PubMed Central

    Schaefer, G. Owen; Emanuel, Ezekiel J.; Wertheimer, Alan

    2009-01-01

    The prevailing view is that participation in biomedical research is above and beyond the call of duty. While some commentators have offered reasons against this, we propose a novel public goods argument for an obligation to participate in biomedical research. Biomedical knowledge is a public good, available to any individual even if that individual does not contribute to it. Participation in research is a critical way to support that important public good. Consequently, we all have a duty to participate. The current social norm is that people participate only if they have a good reason to do so. The public goods argument implies that people should participate unless they have a good reason not to. Such a shift would be of great aid to the progress of biomedical research, eventually making our society significantly healthier and longer-lived. PMID:19567441

  3. Trust me, I'm a researcher!: The role of trust in biomedical research.

    PubMed

    Kerasidou, Angeliki

    2017-03-01

    In biomedical research lack of trust is seen as a great threat that can severely jeopardise the whole biomedical research enterprise. Practices, such as informed consent, and also the administrative and regulatory oversight of research in the form of research ethics committees and Institutional Review Boards, are established to ensure the protection of future research subjects and, at the same time, restore public trust in biomedical research. Empirical research also testifies to the role of trust as one of the decisive factors in research participation and lack of trust as a barrier for consenting to research. However, what is often missing is a clear definition of trust. This paper seeks to address this gap. It starts with a conceptual analysis of the term trust. It compares trust with two other related terms, those of reliance and trustworthiness, and offers a defence of Baier's attribute of 'good will' a basic characteristic of trust. It, then, proceeds to consider trust in the context of biomedical research by examining two questions: First, is trust necessary in biomedical research?; and second, do increases in regulatory oversight of biomedical research also increase trust in the field? This paper argues that regulatory oversight is important for increasing reliance in biomedical research, but it does not improve trust, which remains important for biomedical research. It finishes by pointing at professional integrity as a way of promoting trust and trustworthiness in this field.

  4. The importance of Zebrafish in biomedical research.

    PubMed

    Tavares, Bárbara; Santos Lopes, Susana

    2013-01-01

    Zebrafish (Danio rerio) is an ideal model organism for the study of vertebrate development. This is due to the large clutches that each couple produces, with up to 200 embryos every 7 days, and to the fact that the embryos and larvae are small, transparent and undergo rapid external development. Using scientific literature research tools available online and the keywords Zebrafish, biomedical research, human disease, and drug screening, we reviewed original studies and reviews indexed in PubMed. In this review we summarized work conducted with this model for the advancement of our knowledge related to several human diseases. We also focused on the biomedical research being performed in Portugal with the zebrafish model. Powerful live imaging and genetic tools are currently available for zebrafish making it a valuable model in biomedical research. The combination of these properties with the optimization of automated systems for drug screening has transformed the zebrafish into "a top model" in biomedical research, drug discovery and toxicity testing. Furthermore, with the optimization of xenografts technology it will be possible to use zebrafish to aide in the choice of the best therapy for each patient. Zebrafish is an excellent model organism in biomedical research, drug development and in clinical therapy.

  5. The diversity of experimental organisms in biomedical research may be influenced by biomedical funding.

    PubMed

    Erick Peirson, B R; Kropp, Heather; Damerow, Julia; Laubichler, Manfred D

    2017-05-01

    Contrary to concerns of some critics, we present evidence that biomedical research is not dominated by a small handful of model organisms. An exhaustive analysis of research literature suggests that the diversity of experimental organisms in biomedical research has increased substantially since 1975. There has been a longstanding worry that organism-centric funding policies can lead to biases in experimental organism choice, and thus negatively impact the direction of research and the interpretation of results. Critics have argued that a focus on model organisms has unduly constrained the diversity of experimental organisms. The availability of large electronic databases of scientific literature, combined with interest in quantitative methods among philosophers of science, presents new opportunities for data-driven investigations into organism choice in biomedical research. The diversity of organisms used in NIH-funded research may be considerably lower than in the broader biomedical sciences, and may be subject to greater constraints on organism choice. © 2017 WILEY Periodicals, Inc.

  6. Environmental practices for biomedical research facilities.

    PubMed Central

    Medlin, E L; Grupenhoff, J T

    2000-01-01

    As a result of the Leadership Conference on Biomedical Research and the Environment, the Facilities Committee focused its work on the development of best environmental practices at biomedical research facilities at the university and independent research facility level as well as consideration of potential involvement of for-profit companies and government agencies. The designation "facilities" includes all related buildings and grounds, "green auditing" of buildings and programs, purchasing of furnishings and sources, energy efficiency, and engineering services (lighting, heating, air conditioning), among other activities. The committee made a number of recommendations, including development of a national council for environmental stewardship in biomedical research, development of a system of green auditing of such research facilities, and creation of programs for sustainable building and use. In addition, the committee recommended extension of education and training programs for environmental stewardship, in cooperation with facilities managers, for all research administrators and researchers. These programs would focus especially on graduate fellows and other students, as well as on science labs at levels K--12. PMID:11121360

  7. Financial anatomy of biomedical research.

    PubMed

    Moses, Hamilton; Dorsey, E Ray; Matheson, David H M; Thier, Samuel O

    2005-09-21

    Public and private financial support of biomedical research have increased over the past decade. Few comprehensive analyses of the sources and uses of funds are available. This results in inadequate information on which to base investment decisions because not all sources allow equal latitude to explore hypotheses having scientific or clinical importance and creates a barrier to judging the value of research to society. To quantify funding trends from 1994 to 2004 of basic, translational, and clinical biomedical research by principal sponsors based in the United States. Publicly available data were compiled for the federal, state, and local governments; foundations; charities; universities; and industry. Proprietary (by subscription but openly available) databases were used to supplement public sources. Total actual research spending, growth rates, and type of research with inflation adjustment. Biomedical research funding increased from 37.1 billion dollars in 1994 to 94.3 billion dollars in 2003 and doubled when adjusted for inflation. Principal research sponsors in 2003 were industry (57%) and the National Institutes of Health (28%). Relative proportions from all public and private sources did not change. Industry sponsorship of clinical trials increased from 4.0 dollars to 14.2 billion dollars (in real terms) while federal proportions devoted to basic and applied research were unchanged. The United States spent an estimated 5.6% of its total health expenditures on biomedical research, more than any other country, but less than 0.1% for health services research. From an economic perspective, biotechnology and medical device companies were most productive, as measured by new diagnostic and therapeutic devices per dollar of research and development cost. Productivity declined for new pharmaceuticals. Enhancing research productivity and evaluation of benefit are pressing challenges, requiring (1) more effective translation of basic scientific knowledge to clinical

  8. Biomedical Research Division significant accomplishments for FY 1983

    NASA Technical Reports Server (NTRS)

    Martello, N. V.

    1984-01-01

    Various research and technology activities of Ames Research Center's Biomedical Research Division are described. Contributions to the Space Administration's goals in the life sciences include research in operational medicine, cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, fluid and electrolyte changes, radiation effects and protection, human behavior and performance, general biomedical research, and gravitational biology.

  9. Economies of scale and scope in publicly funded biomedical and health research: evidence from the literature.

    PubMed

    Hernandez-Villafuerte, Karla; Sussex, Jon; Robin, Enora; Guthrie, Sue; Wooding, Steve

    2017-02-02

    Publicly funded biomedical and health research is expected to achieve the best return possible for taxpayers and for society generally. It is therefore important to know whether such research is more productive if concentrated into a small number of 'research groups' or dispersed across many. We undertook a systematic rapid evidence assessment focused on the research question: do economies of scale and scope exist in biomedical and health research? In other words, is that research more productive per unit of cost if more of it, or a wider variety of it, is done in one location? We reviewed English language literature without date restriction to the end of 2014. To help us to classify and understand that literature, we first undertook a review of econometric literature discussing models for analysing economies of scale and/or scope in research generally (not limited to biomedical and health research). We found a large and disparate literature. We reviewed 60 empirical studies of (dis-)economies of scale and/or scope in biomedical and health research, or in categories of research including or overlapping with biomedical and health research. This literature is varied in methods and findings. At the level of universities or research institutes, studies more often point to positive economies of scale than to diseconomies of scale or constant returns to scale in biomedical and health research. However, all three findings exist in the literature, along with inverse U-shaped relationships. At the level of individual research units, laboratories or projects, the numbers of studies are smaller and evidence is mixed. Concerning economies of scope, the literature more often suggests positive economies of scope than diseconomies, but the picture is again mixed. The effect of varying the scope of activities by a research group was less often reported than the effect of scale and the results were more mixed. The absence of predominant findings for or against the existence of

  10. Should biomedical research be like Airbnb?

    PubMed

    Bonazzi, Vivien R; Bourne, Philip E

    2017-04-01

    The thesis presented here is that biomedical research is based on the trusted exchange of services. That exchange would be conducted more efficiently if the trusted software platforms to exchange those services, if they exist, were more integrated. While simpler and narrower in scope than the services governing biomedical research, comparison to existing internet-based platforms, like Airbnb, can be informative. We illustrate how the analogy to internet-based platforms works and does not work and introduce The Commons, under active development at the National Institutes of Health (NIH) and elsewhere, as an example of the move towards platforms for research.

  11. Should biomedical research be like Airbnb?

    PubMed Central

    Bonazzi, Vivien R.

    2017-01-01

    The thesis presented here is that biomedical research is based on the trusted exchange of services. That exchange would be conducted more efficiently if the trusted software platforms to exchange those services, if they exist, were more integrated. While simpler and narrower in scope than the services governing biomedical research, comparison to existing internet-based platforms, like Airbnb, can be informative. We illustrate how the analogy to internet-based platforms works and does not work and introduce The Commons, under active development at the National Institutes of Health (NIH) and elsewhere, as an example of the move towards platforms for research. PMID:28388615

  12. Centre of the Cell: Science Comes to Life.

    PubMed

    Balkwill, Frances; Chambers, Katie

    2015-01-01

    Centre of the Cell is a unique biomedical science education centre, a widening participation and outreach project in London's East End. This article describes Centre of the Cell's first five years of operation, the evolution of the project in response to audience demand, and the impact of siting a major public engagement project within a research laboratory.

  13. Map of biomedical research in Cameroon; a documentary review of approved protocols from 1997 to 2012.

    PubMed

    Walter, Ebile Akoh; Jerome, Ateudjieu; Marceline, Djuidje Ngounoue; Yakum, Martin Ndinakie; Pierre, Watcho

    2017-11-21

    Over the last decade, there has been a rapid increase in biomedical research in Cameroon. However, the question of whether these research projects target major health priorities, vulnerable populations and geographic locations at risk remains to be answered. The aim of this paper is to describe the state of biomedical research in Cameroon which is a key determinant that would guide future health care policies and promote equitable access to healthcare. A documentary review of all approved protocols (proposals) of biomedical research projects, from 1997 through 2012, at the Cameroon National Ethics Committee. Protocols were reviewed systematically by independent reviewers and data were extracted on a grid. Data were analyzed by calculating proportions at 95% confidence interval, chi-square test (chi2) and p-values. Two thousand one hundred seventy two protocols were reviewed for data extraction. One thousand three hundred ninety-five (64.7%) were student projects, 369 (17.0%) projects had international sponsors, and 1528 (72.4%) were hospital-based studies. The most targeted domain was the fight against diseases 1323 (61.3%); mostly HIV 342 (25.8%) and Malaria 136 (10.3%). Over half of the studies were concentrated in the Centre region 1242 (57.2%), with the least projects conducted in the Northern region 15 (0.7%). There was strong evidence that international and local sponsors would influence the research site (p-value = 0.01) and population targets (p-value = 0.00). Although biomedical research targets some important diseases that pose a great burden to Cameroonians, the most vulnerable populations are excluded from research. Biomedical research scarcely addresses other components of the health system and emerging diseases of vital public health importance. We recommend that the government should play a central role, between researchers from academic institutions, sponsors, NGOs and research institutions, to ensure that biomedical research addresses the

  14. Biomedical engineering for health research and development.

    PubMed

    Zhang, X-Y

    2015-01-01

    Biomedical engineering is a new area of research in medicine and biology, providing new concepts and designs for the diagnosis, treatment and prevention of various diseases. There are several types of biomedical engineering, such as tissue, genetic, neural and stem cells, as well as chemical and clinical engineering for health care. Many electronic and magnetic methods and equipments are used for the biomedical engineering such as Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI) scans, Electroencephalography (EEG), Ultrasound and regenerative medicine and stem cell cultures, preparations of artificial cells and organs, such as pancreas, urinary bladders, liver cells, and fibroblasts cells of foreskin and others. The principle of tissue engineering is described with various types of cells used for tissue engineering purposes. The use of several medical devices and bionics are mentioned with scaffold, cells and tissue cultures and various materials are used for biomedical engineering. The use of biomedical engineering methods is very important for the human health, and research and development of diseases. The bioreactors and preparations of artificial cells or tissues and organs are described here.

  15. National Space Biomedical Research Institute Annual Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This report summarizes the activities of the National Space Biomedical Research Institute (NSBRI) during FY 2000. The NSBRI is responsible for the development of countermeasures against the deleterious effects of long-duration space flight and performs fundamental and applied space biomedical research directed towards this specific goal. Its mission is to lead a world-class, national effort in integrated, critical path space biomedical research that supports NASA's Human Exploration and Development of Space (HEDS) Strategic Plan by focusing on the enabling of long-term human presence in, development of, and exploration of space. This is accomplished by: designing, testing and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight; defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures; establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level, and deliver quality medical care; transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the general benefit of mankind, including the treatment of patients suffering from gravity- and radiation-related conditions on Earth; and ensuring open involvement of the scientific community, industry and the public at large in the Institute's activities and fostering a robust collaboration with NASA, particularly through NASA's Lyndon B. Johnson Space Center. Attachment:Appendices (A,B,C,D,E,F,G,H,I,J,K,L,M,N,O, and P.).

  16. Funding of US biomedical research, 2003-2008.

    PubMed

    Dorsey, E Ray; de Roulet, Jason; Thompson, Joel P; Reminick, Jason I; Thai, Ashley; White-Stellato, Zachary; Beck, Christopher A; George, Benjamin P; Moses, Hamilton

    2010-01-13

    With the exception of the American Recovery and Reinvestment Act, funding support for biomedical research in the United States has slowed after a decade of doubling. However, the extent and scope of slowing are largely unknown. To quantify funding of biomedical research in the United States from 2003 to 2008. Publicly available data were used to quantify funding from government (federal, state, and local), private, and industry sources. Regression models were used to compare financial trends between 1994-2003 and 2003-2007. The numbers of new drug and device approvals by the US Food and Drug Administration over the same period were also evaluated. Funding and growth rates by source; numbers of US Food and Drug Administration approvals. Biomedical research funding increased from $75.5 billion in 2003 to $101.1 billion in 2007. In 2008, funding from the National Institutes of Health and industry totaled $88.8 billion. In 2007, funding from these sources, adjusted for inflation, was $90.2 billion. Adjusted for inflation, funding from 2003 to 2007 increased by 14%, for a compound annual growth rate of 3.4%. By comparison, funding from 1994 to 2003 increased at an annual rate of 7.8% (P < .001). In 2007, industry (58%) was the largest funder, followed by the federal government (33%). Modest increase in funding was not accompanied by an increase in approvals for drugs or devices. In 2007, the United States spent an estimated 4.5% of its total health expenditures on biomedical research and 0.1% on health services research. After a decade of doubling, the rate of increase in biomedical research funding slowed from 2003 to 2007, and after adjustment for inflation, the absolute level of funding from the National Institutes of Health and industry appears to have decreased by 2% in 2008.

  17. Biomedical research publications: 1980 - 1982

    NASA Technical Reports Server (NTRS)

    Pleasant, L. G.; Limbach, L.

    1982-01-01

    Publications concerning the major physiological and psychological problems encountered by man when he undertakes space flight are listed. Nine research areas are included: cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, blood cell alterations, fluid and eletrolyte changes, radiation effects and protection, behavior and performance, and general biomedical research.

  18. Globalization and changing trends of biomedical research output.

    PubMed

    Conte, Marisa L; Liu, Jing; Schnell, Santiago; Omary, M Bishr

    2017-06-15

    The US continues to lead the world in research and development (R&D) expenditures, but there is concern that stagnation in federal support for biomedical research in the US could undermine the leading role the US has played in biomedical and clinical research discoveries. As a readout of research output in the US compared with other countries, assessment of original research articles published by US-based authors in ten clinical and basic science journals during 2000 to 2015 showed a steady decline of articles in high-ranking journals or no significant change in mid-ranking journals. In contrast, publication output originating from China-based investigators, in both high- and mid-ranking journals, has steadily increased commensurate with significant growth in R&D expenditures. These observations support the current concerns of stagnant and year-to-year uncertainty in US federal funding of biomedical research.

  19. International coordination of biomedical research.

    PubMed

    Owen, S G

    1976-01-01

    Recent efforts at international coordination in biomedical research have taken place at two levels. At the level of the working clinician and scientist, European regionalism has become increasingly manifest in such organizations as the European Society for Clinical Investigation, the European Organization for Research into the Treatment of Cancer, the European Molecular Biology Organization and many others. These have developed largely, though not entirely, independently of government funding. At the level of science policy, i.e. of bodies supporting biomedical research mainly from public funds, the major developments have been the Comité de la Recherche Médicale of the European Community and the much wider association of European Medical Research Councils, based on the whole of Western Europe; in October 1975 the latter group became incorporated into the new European Science Foundation as the first Standing Committee of that body. Wider, interregional, cooperation presents greater problems, though there have been some modest successes, and the multinational drive on research into six of the major health problems of the Third World now being proposed by WHO holds further promise for the future.

  20. Beginning community engagement at a busy biomedical research programme: Experiences from the KEMRI CGMRC-Wellcome Trust Research Programme, Kilifi, Kenya

    PubMed Central

    Marsh, Vicki; Kamuya, Dorcas; Rowa, Yvonne; Gikonyo, Caroline; Molyneux, Sassy

    2008-01-01

    There is wide acknowledgement of the need for community engagement in biomedical research, particularly in international settings. Recent debates have described theoretical approaches to identifying situations where this is most critical and potential mechanisms to achieve it. However, there is relatively little published experience of community engagement in practice. A major component of the Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme is centred on Kilifi District General Hospital and surrounding community of 240,000 local residents. Documented community perceptions of the research centre are generally positive, but many indicate a low understanding of research and therapeutic misconceptions of its activities. As in other settings, these misunderstandings have contributed to concerns and rumours, and potentially undermine ethical aspects of research and local trust in the institution. Through a series of consultative activities, a community engagement strategy has been developed in Kilifi to strengthen mutual understanding between community members and the Centre. One important component is the establishment of a representative local resident network in different geographic locations commonly involved in research, to supplement existing communication channels. Early implementation of the strategy has provided new and diverse opportunities for dialogue, interaction and partnership building. Through the complex social interactions inherent in the community engagement strategy, the centre aims to build context specific ethical relations with local residents and to strengthen understanding of how ethical principles can be applied in practice. Evaluations over time will assess the effectiveness and sustainability of these strategies, provide generalisable information for similar research settings, and contribute to debates on the universality of ethical principles for research. This paper aims to summarise the rationale for community

  1. Computational approaches for predicting biomedical research collaborations.

    PubMed

    Zhang, Qing; Yu, Hong

    2014-01-01

    Biomedical research is increasingly collaborative, and successful collaborations often produce high impact work. Computational approaches can be developed for automatically predicting biomedical research collaborations. Previous works of collaboration prediction mainly explored the topological structures of research collaboration networks, leaving out rich semantic information from the publications themselves. In this paper, we propose supervised machine learning approaches to predict research collaborations in the biomedical field. We explored both the semantic features extracted from author research interest profile and the author network topological features. We found that the most informative semantic features for author collaborations are related to research interest, including similarity of out-citing citations, similarity of abstracts. Of the four supervised machine learning models (naïve Bayes, naïve Bayes multinomial, SVMs, and logistic regression), the best performing model is logistic regression with an ROC ranging from 0.766 to 0.980 on different datasets. To our knowledge we are the first to study in depth how research interest and productivities can be used for collaboration prediction. Our approach is computationally efficient, scalable and yet simple to implement. The datasets of this study are available at https://github.com/qingzhanggithub/medline-collaboration-datasets.

  2. Biomedical research in a Digital Health Framework

    PubMed Central

    2014-01-01

    This article describes a Digital Health Framework (DHF), benefitting from the lessons learnt during the three-year life span of the FP7 Synergy-COPD project. The DHF aims to embrace the emerging requirements - data and tools - of applying systems medicine into healthcare with a three-tier strategy articulating formal healthcare, informal care and biomedical research. Accordingly, it has been constructed based on three key building blocks, namely, novel integrated care services with the support of information and communication technologies, a personal health folder (PHF) and a biomedical research environment (DHF-research). Details on the functional requirements and necessary components of the DHF-research are extensively presented. Finally, the specifics of the building blocks strategy for deployment of the DHF, as well as the steps toward adoption are analyzed. The proposed architectural solutions and implementation steps constitute a pivotal strategy to foster and enable 4P medicine (Predictive, Preventive, Personalized and Participatory) in practice and should provide a head start to any community and institution currently considering to implement a biomedical research platform. PMID:25472554

  3. Research evaluation support services in biomedical libraries

    PubMed Central

    Gutzman, Karen Elizabeth; Bales, Michael E.; Belter, Christopher W.; Chambers, Thane; Chan, Liza; Holmes, Kristi L.; Lu, Ya-Ling; Palmer, Lisa A.; Reznik-Zellen, Rebecca C.; Sarli, Cathy C.; Suiter, Amy M.; Wheeler, Terrie R.

    2018-01-01

    Objective The paper provides a review of current practices related to evaluation support services reported by seven biomedical and research libraries. Methods A group of seven libraries from the United States and Canada described their experiences with establishing evaluation support services at their libraries. A questionnaire was distributed among the libraries to elicit information as to program development, service and staffing models, campus partnerships, training, products such as tools and reports, and resources used for evaluation support services. The libraries also reported interesting projects, lessons learned, and future plans. Results The seven libraries profiled in this paper report a variety of service models in providing evaluation support services to meet the needs of campus stakeholders. The service models range from research center cores, partnerships with research groups, and library programs with staff dedicated to evaluation support services. A variety of products and services were described such as an automated tool to develop rank-based metrics, consultation on appropriate metrics to use for evaluation, customized publication and citation reports, resource guides, classes and training, and others. Implementing these services has allowed the libraries to expand their roles on campus and to contribute more directly to the research missions of their institutions. Conclusions Libraries can leverage a variety of evaluation support services as an opportunity to successfully meet an array of challenges confronting the biomedical research community, including robust efforts to report and demonstrate tangible and meaningful outcomes of biomedical research and clinical care. These services represent a transformative direction that can be emulated by other biomedical and research libraries. PMID:29339930

  4. Research evaluation support services in biomedical libraries.

    PubMed

    Gutzman, Karen Elizabeth; Bales, Michael E; Belter, Christopher W; Chambers, Thane; Chan, Liza; Holmes, Kristi L; Lu, Ya-Ling; Palmer, Lisa A; Reznik-Zellen, Rebecca C; Sarli, Cathy C; Suiter, Amy M; Wheeler, Terrie R

    2018-01-01

    The paper provides a review of current practices related to evaluation support services reported by seven biomedical and research libraries. A group of seven libraries from the United States and Canada described their experiences with establishing evaluation support services at their libraries. A questionnaire was distributed among the libraries to elicit information as to program development, service and staffing models, campus partnerships, training, products such as tools and reports, and resources used for evaluation support services. The libraries also reported interesting projects, lessons learned, and future plans. The seven libraries profiled in this paper report a variety of service models in providing evaluation support services to meet the needs of campus stakeholders. The service models range from research center cores, partnerships with research groups, and library programs with staff dedicated to evaluation support services. A variety of products and services were described such as an automated tool to develop rank-based metrics, consultation on appropriate metrics to use for evaluation, customized publication and citation reports, resource guides, classes and training, and others. Implementing these services has allowed the libraries to expand their roles on campus and to contribute more directly to the research missions of their institutions. Libraries can leverage a variety of evaluation support services as an opportunity to successfully meet an array of challenges confronting the biomedical research community, including robust efforts to report and demonstrate tangible and meaningful outcomes of biomedical research and clinical care. These services represent a transformative direction that can be emulated by other biomedical and research libraries.

  5. Calixarenes in bio-medical researches.

    PubMed

    Rodik, Roman V; Boyko, Vyacheslav I; Kalchenko, Vitaly I

    2009-01-01

    Application of calixarene derivatives in bio-medical researches is reviewed in this article. Antiviral, bactericidal, antithrombothic, antituberculosis, anticancer activity as well as specific protein complexation, membranotropic properties and toxicity of modified calixarenes are discussed.

  6. Biomedical research publications, 1982 - 1983

    NASA Technical Reports Server (NTRS)

    Bolcik, C.; Pleasant, L. G.

    1983-01-01

    Cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, blood cell alterations, fluid and electrolyte changes, radiation effects and protection, behavior and performance, and general biomedical research are covered in a bibliography of 444 items.

  7. Globalization and changing trends of biomedical research output

    PubMed Central

    Conte, Marisa L.; Liu, Jing; Omary, M. Bishr

    2017-01-01

    The US continues to lead the world in research and development (R&D) expenditures, but there is concern that stagnation in federal support for biomedical research in the US could undermine the leading role the US has played in biomedical and clinical research discoveries. As a readout of research output in the US compared with other countries, assessment of original research articles published by US-based authors in ten clinical and basic science journals during 2000 to 2015 showed a steady decline of articles in high-ranking journals or no significant change in mid-ranking journals. In contrast, publication output originating from China-based investigators, in both high- and mid-ranking journals, has steadily increased commensurate with significant growth in R&D expenditures. These observations support the current concerns of stagnant and year-to-year uncertainty in US federal funding of biomedical research. PMID:28614799

  8. Community outreach at biomedical research facilities.

    PubMed

    Goldman, M; Hedetniemi, J N; Herbert, E R; Sassaman, J S; Walker, B C

    2000-12-01

    For biomedical researchers to fulfill their responsibility for protecting the environment, they must do more than meet the scientific challenge of reducing the number and volume of hazardous materials used in their laboratories and the engineering challenge of reducing pollution and shifting to cleaner energy sources. They must also meet the public relations challenge of informing and involving their neighbors in these efforts. The experience of the Office of Community Liaison of the National Institutes of Health (NIH) in meeting the latter challenge offers a model and several valuable lessons for other biomedical research facilities to follow. This paper is based on presentations by an expert panel during the Leadership Conference on Biomedical Research and the Environment held 1--2 November 1999 at NIH, Bethesda, Maryland. The risks perceived by community members are often quite different from those identified by officials at the biomedical research facility. The best antidote for misconceptions is more and better information. If community organizations are to be informed participants in the decision-making process, they need a simple but robust mechanism for identifying and evaluating the environmental hazards in their community. Local government can and should be an active and fully informed partner in planning and emergency preparedness. In some cases this can reduce the regulatory burden on the biomedical research facility. In other cases it might simplify and expedite the permitting process or help the facility disseminate reliable information to the community. When a particular risk, real or perceived, is of special concern to the community, community members should be involved in the design, implementation, and evaluation of targeted risk assessment activities. Only by doing so will the community have confidence in the results of those activities. NIH has involved community members in joint efforts to deal with topics as varied as recycling and soil

  9. Minimization and management of wastes from biomedical research.

    PubMed Central

    Rau, E H; Alaimo, R J; Ashbrook, P C; Austin, S M; Borenstein, N; Evans, M R; French, H M; Gilpin, R W; Hughes, J; Hummel, S J; Jacobsohn, A P; Lee, C Y; Merkle, S; Radzinski, T; Sloane, R; Wagner, K D; Weaner, L E

    2000-01-01

    Several committees were established by the National Association of Physicians for the Environment to investigate and report on various topics at the National Leadership Conference on Biomedical Research and the Environment held at the 1--2 November 1999 at the National Institutes of Health in Bethesda, Maryland. This is the report of the Committee on Minimization and Management of Wastes from Biomedical Research. Biomedical research facilities contribute a small fraction of the total amount of wastes generated in the United States, and the rate of generation appears to be decreasing. Significant reductions in generation of hazardous, radioactive, and mixed wastes have recently been reported, even at facilities with rapidly expanding research programs. Changes in the focus of research, improvements in laboratory techniques, and greater emphasis on waste minimization (volume and toxicity reduction) explain the declining trend in generation. The potential for uncontrolled releases of wastes from biomedical research facilities and adverse impacts on the general environment from these wastes appears to be low. Wastes are subject to numerous regulatory requirements and are contained and managed in a manner protective of the environment. Most biohazardous agents, chemicals, and radionuclides that find significant use in research are not likely to be persistent, bioaccumulative, or toxic if they are released. Today, the primary motivations for the ongoing efforts by facilities to improve minimization and management of wastes are regulatory compliance and avoidance of the high disposal costs and liabilities associated with generation of regulated wastes. The committee concluded that there was no evidence suggesting that the anticipated increases in biomedical research will significantly increase generation of hazardous wastes or have adverse impacts on the general environment. This conclusion assumes the positive, countervailing trends of enhanced pollution prevention

  10. [Biomedical research in Revista de Biologia Tropical].

    PubMed

    Gutiérrez, José María

    2002-01-01

    The contributions published in Revista de Biología Tropical in the area of Biomedical Sciences are reviewed in terms of number of contributions and scope of research subjects. Biomedical Sciences, particularly Parasitology and Microbiology, constituted the predominant subject in the Revista during the first decade, reflecting the intense research environment at the School of Microbiology of the University of Costa Rica and at Hospital San Juan de Dios. The relative weight of Biomedicine in the following decades diminished, due to the outstanding increment in publications in Biological Sciences; however, the absolute number of contributions in Biomedical Sciences remained constant throughout the last decades, with around 80 contributions per decade. In spite of the predominance of Parasitology as the main biomedical subject, the last decades have witnessed the emergence of new areas of interest in the Revista, such as Pharmacology of natural products, Toxinology, especially related to snake venoms, and Human Genetics. This retrospective analysis evidences that Biomedical Sciences, particularly those related to Tropical Medicine, were a fundamental component during the first years of Revista de Biología Tropical, and have maintained a significant presence in the scientific output of this journal, the most relevant scientific publication in biological sciences in Central America.

  11. In vivo optical imaging and dynamic contrast methods for biomedical research

    PubMed Central

    Hillman, Elizabeth M. C.; Amoozegar, Cyrus B.; Wang, Tracy; McCaslin, Addason F. H.; Bouchard, Matthew B.; Mansfield, James; Levenson, Richard M.

    2011-01-01

    This paper provides an overview of optical imaging methods commonly applied to basic research applications. Optical imaging is well suited for non-clinical use, since it can exploit an enormous range of endogenous and exogenous forms of contrast that provide information about the structure and function of tissues ranging from single cells to entire organisms. An additional benefit of optical imaging that is often under-exploited is its ability to acquire data at high speeds; a feature that enables it to not only observe static distributions of contrast, but to probe and characterize dynamic events related to physiology, disease progression and acute interventions in real time. The benefits and limitations of in vivo optical imaging for biomedical research applications are described, followed by a perspective on future applications of optical imaging for basic research centred on a recently introduced real-time imaging technique called dynamic contrast-enhanced small animal molecular imaging (DyCE). PMID:22006910

  12. Accessing and integrating data and knowledge for biomedical research.

    PubMed

    Burgun, A; Bodenreider, O

    2008-01-01

    To review the issues that have arisen with the advent of translational research in terms of integration of data and knowledge, and survey current efforts to address these issues. Using examples form the biomedical literature, we identified new trends in biomedical research and their impact on bioinformatics. We analyzed the requirements for effective knowledge repositories and studied issues in the integration of biomedical knowledge. New diagnostic and therapeutic approaches based on gene expression patterns have brought about new issues in the statistical analysis of data, and new workflows are needed are needed to support translational research. Interoperable data repositories based on standard annotations, infrastructures and services are needed to support the pooling and meta-analysis of data, as well as their comparison to earlier experiments. High-quality, integrated ontologies and knowledge bases serve as a source of prior knowledge used in combination with traditional data mining techniques and contribute to the development of more effective data analysis strategies. As biomedical research evolves from traditional clinical and biological investigations towards omics sciences and translational research, specific needs have emerged, including integrating data collected in research studies with patient clinical data, linking omics knowledge with medical knowledge, modeling the molecular basis of diseases, and developing tools that support in-depth analysis of research data. As such, translational research illustrates the need to bridge the gap between bioinformatics and medical informatics, and opens new avenues for biomedical informatics research.

  13. Accessing and Integrating Data and Knowledge for Biomedical Research

    PubMed Central

    Burgun, A.; Bodenreider, O.

    2008-01-01

    Summary Objectives To review the issues that have arisen with the advent of translational research in terms of integration of data and knowledge, and survey current efforts to address these issues. Methods Using examples form the biomedical literature, we identified new trends in biomedical research and their impact on bioinformatics. We analyzed the requirements for effective knowledge repositories and studied issues in the integration of biomedical knowledge. Results New diagnostic and therapeutic approaches based on gene expression patterns have brought about new issues in the statistical analysis of data, and new workflows are needed are needed to support translational research. Interoperable data repositories based on standard annotations, infrastructures and services are needed to support the pooling and meta-analysis of data, as well as their comparison to earlier experiments. High-quality, integrated ontologies and knowledge bases serve as a source of prior knowledge used in combination with traditional data mining techniques and contribute to the development of more effective data analysis strategies. Conclusion As biomedical research evolves from traditional clinical and biological investigations towards omics sciences and translational research, specific needs have emerged, including integrating data collected in research studies with patient clinical data, linking omics knowledge with medical knowledge, modeling the molecular basis of diseases, and developing tools that support in-depth analysis of research data. As such, translational research illustrates the need to bridge the gap between bioinformatics and medical informatics, and opens new avenues for biomedical informatics research. PMID:18660883

  14. Biomedical research applications of electromagnetically separated enriched stable isotopes

    NASA Astrophysics Data System (ADS)

    Lambrecht, R. M.

    The current and projected annual requirements through 1985 for stable isotopes enriched by electromagnetic separation methods were reviewed for applications in various types of biomedical research: (1) medical radiosiotope production, labeled compounds, and potential radio-pharmaceuticals; (2) nutrition, food science, and pharmacology: (3) metallobiochemistry and environmental toxicology; (4) nuclear magnetic resonance, electron paramagnetic resonance, and moessbauer spectroscopy in biochemical, biophysical, and biomedical research; and (5) miscellaneous advances in radioactive and nonradioactive tracer technology. Radioisotopes available from commercial sources or routinely used in clinical nuclear medicine were excluded. Current requirements for enriched stable isotopes in biomedical research are not being satisfied. Severe shortages exist for Mg 26, Ca 43, Zn 70, Se 76, Se 77, Se 78, Pd 102, Cd 111, Cd 113, and Os 190. Many interesting and potentially important investigations in biomedical research require small quantities of specific elements at high isotopic enrichments.

  15. Characteristics Desired in Clinical Data Warehouse for Biomedical Research

    PubMed Central

    Shin, Soo-Yong; Kim, Woo Sung

    2014-01-01

    Objectives Due to the unique characteristics of clinical data, clinical data warehouses (CDWs) have not been successful so far. Specifically, the use of CDWs for biomedical research has been relatively unsuccessful thus far. The characteristics necessary for the successful implementation and operation of a CDW for biomedical research have not clearly defined yet. Methods Three examples of CDWs were reviewed: a multipurpose CDW in a hospital, a CDW for independent multi-institutional research, and a CDW for research use in an institution. After reviewing the three CDW examples, we propose some key characteristics needed in a CDW for biomedical research. Results A CDW for research should include an honest broker system and an Institutional Review Board approval interface to comply with governmental regulations. It should also include a simple query interface, an anonymized data review tool, and a data extraction tool. Also, it should be a biomedical research platform for data repository use as well as data analysis. Conclusions The proposed characteristics desired in a CDW may have limited transfer value to organizations in other countries. However, these analysis results are still valid in Korea, and we have developed clinical research data warehouse based on these desiderata. PMID:24872909

  16. Personnel Needs and Training for Biomedical and Behavioral Research. The 1985 Report of the Committee on National Needs for Biomedical and Behavioral Research Personnel.

    ERIC Educational Resources Information Center

    Institute of Medicine (NAS), Washington, DC.

    Designed to provide assistance in the assessment of the need for biomedical and behavioral research personnel, this report presents research findings related to specific medical careers. The review includes an examination of the system under which biomedical and behavioral scientists are trained for research careers and the United States…

  17. Information Retrieval in Biomedical Research: From Articles to Datasets

    ERIC Educational Resources Information Center

    Wei, Wei

    2017-01-01

    Information retrieval techniques have been applied to biomedical research for a variety of purposes, such as textual document retrieval and molecular data retrieval. As biomedical research evolves over time, information retrieval is also constantly facing new challenges, including the growing number of available data, the emerging new data types,…

  18. Research and technology activities at Ames Research Center's Biomedical Research Division

    NASA Technical Reports Server (NTRS)

    Martello, N.

    1985-01-01

    Various research and technology activities at Ames Research Center's Biomedical Research Division are described. Contributions to the Space Administration's goals in the life sciences include descriptions of research in operational medicine, cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, fluid and electrolyte changes, radiation effects and protection, behavior and performance, gravitational biology, and life sciences flight experiments.

  19. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This report outlines National Space Biomedical Research Institute (NSBRI) activities during FY 2001, the fourth year of the NSBRI's programs. It is prepared in accordance with Cooperative Agreement NCC 9-58 between NASA's Lyndon B. Johnson Space Center and Baylor College of Medicine (NSBRI).

  20. Animal Experiments in Biomedical Research: A Historical Perspective

    PubMed Central

    Franco, Nuno Henrique

    2013-01-01

    Simple Summary This article reviews the use of non-human animals in biomedical research from a historical viewpoint, providing an insight into the most relevant social and moral issues on this topic across time, as well as to how the current paradigm for ethically and publically acceptable use of animals in biomedicine has been achieved. Abstract The use of non-human animals in biomedical research has given important contributions to the medical progress achieved in our day, but it has also been a cause of heated public, scientific and philosophical discussion for hundreds of years. This review, with a mainly European outlook, addresses the history of animal use in biomedical research, some of its main protagonists and antagonists, and its effect on society from Antiquity to the present day, while providing a historical context with which to understand how we have arrived at the current paradigm regarding the ethical treatment of animals in research. PMID:26487317

  1. HPC AND GRID COMPUTING FOR INTEGRATIVE BIOMEDICAL RESEARCH

    PubMed Central

    Kurc, Tahsin; Hastings, Shannon; Kumar, Vijay; Langella, Stephen; Sharma, Ashish; Pan, Tony; Oster, Scott; Ervin, David; Permar, Justin; Narayanan, Sivaramakrishnan; Gil, Yolanda; Deelman, Ewa; Hall, Mary; Saltz, Joel

    2010-01-01

    Integrative biomedical research projects query, analyze, and integrate many different data types and make use of datasets obtained from measurements or simulations of structure and function at multiple biological scales. With the increasing availability of high-throughput and high-resolution instruments, the integrative biomedical research imposes many challenging requirements on software middleware systems. In this paper, we look at some of these requirements using example research pattern templates. We then discuss how middleware systems, which incorporate Grid and high-performance computing, could be employed to address the requirements. PMID:20107625

  2. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This report outlines the National Space Biomedical Research Institute's (NSBRI) activities during FY 2004, the Institute's seventh year. It is prepared in accordance with Cooperative Agreement NCC 9-58 between NASA's Lyndon B. Johnson Space Center (JSC) and the Institute's lead institution, Baylor College of Medicine.

  3. The distribution of biomedical research resources and international justice.

    PubMed

    Resnik, David B

    2004-05-01

    According to some estimates, less than 10% of the world's biomedical research funds are dedicated to addressing problems that are responsible for 90% of the world's burden of disease. This paper explains why this disparity exists and what should be done about it. It argues that the disparity exists because: 1) multinational pharmaceutical and biotechnology companies do not regard research and development investments on the health problems of developing nations to be economically lucrative; and 2) governmental agencies that sponsor biomedical research face little political pressure to allocate funds for the problems of developing nations. This paper argues that developed nations have an obligation to address disparities related to biomedical research funding. To facilitate this effort, developed countries should establish a trust fund dedicated to research on the health problems of developing nations similar to the Global AIDS Fund.

  4. Facilitating biomedical researchers' interrogation of electronic health record data: Ideas from outside of biomedical informatics.

    PubMed

    Hruby, Gregory W; Matsoukas, Konstantina; Cimino, James J; Weng, Chunhua

    2016-04-01

    Electronic health records (EHR) are a vital data resource for research uses, including cohort identification, phenotyping, pharmacovigilance, and public health surveillance. To realize the promise of EHR data for accelerating clinical research, it is imperative to enable efficient and autonomous EHR data interrogation by end users such as biomedical researchers. This paper surveys state-of-art approaches and key methodological considerations to this purpose. We adapted a previously published conceptual framework for interactive information retrieval, which defines three entities: user, channel, and source, by elaborating on channels for query formulation in the context of facilitating end users to interrogate EHR data. We show the current progress in biomedical informatics mainly lies in support for query execution and information modeling, primarily due to emphases on infrastructure development for data integration and data access via self-service query tools, but has neglected user support needed during iteratively query formulation processes, which can be costly and error-prone. In contrast, the information science literature has offered elaborate theories and methods for user modeling and query formulation support. The two bodies of literature are complementary, implying opportunities for cross-disciplinary idea exchange. On this basis, we outline the directions for future informatics research to improve our understanding of user needs and requirements for facilitating autonomous interrogation of EHR data by biomedical researchers. We suggest that cross-disciplinary translational research between biomedical informatics and information science can benefit our research in facilitating efficient data access in life sciences. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This report outlines the activities of the National Space Biomedical Research Institute (NSBRI) during FY 2003, the sixth year of the NSBRI's programs. It is prepared in accordance with Cooperative Agreement NCC 9-58 between NASA's Lyndon B. Johnson Space Center (JSC) and the Institute's lead institution, Baylor College of Medicine.

  6. Structural biology computing: Lessons for the biomedical research sciences.

    PubMed

    Morin, Andrew; Sliz, Piotr

    2013-11-01

    The field of structural biology, whose aim is to elucidate the molecular and atomic structures of biological macromolecules, has long been at the forefront of biomedical sciences in adopting and developing computational research methods. Operating at the intersection between biophysics, biochemistry, and molecular biology, structural biology's growth into a foundational framework on which many concepts and findings of molecular biology are interpreted1 has depended largely on parallel advancements in computational tools and techniques. Without these computing advances, modern structural biology would likely have remained an exclusive pursuit practiced by few, and not become the widely practiced, foundational field it is today. As other areas of biomedical research increasingly embrace research computing techniques, the successes, failures and lessons of structural biology computing can serve as a useful guide to progress in other biomedically related research fields. Copyright © 2013 Wiley Periodicals, Inc.

  7. NIH/NSF accelerate biomedical research innovations

    Cancer.gov

    A collaboration between the National Science Foundation and the National Institutes of Health will give NIH-funded researchers training to help them evaluate their scientific discoveries for commercial potential, with the aim of accelerating biomedical in

  8. Organization of Biomedical Data for Collaborative Scientific Research: A Research Information Management System.

    PubMed

    Myneni, Sahiti; Patel, Vimla L

    2010-06-01

    Biomedical researchers often work with massive, detailed and heterogeneous datasets. These datasets raise new challenges of information organization and management for scientific interpretation, as they demand much of the researchers' time and attention. The current study investigated the nature of the problems that researchers face when dealing with such data. Four major problems identified with existing biomedical scientific information management methods were related to data organization, data sharing, collaboration, and publications. Therefore, there is a compelling need to develop an efficient and user-friendly information management system to handle the biomedical research data. This study evaluated the implementation of an information management system, which was introduced as part of the collaborative research to increase scientific productivity in a research laboratory. Laboratory members seemed to exhibit frustration during the implementation process. However, empirical findings revealed that they gained new knowledge and completed specified tasks while working together with the new system. Hence, researchers are urged to persist and persevere when dealing with any new technology, including an information management system in a research laboratory environment.

  9. Defining Compensable Injury in Biomedical Research.

    PubMed

    Larkin, Megan E

    2015-01-01

    Biomedical research provides a core social good by enabling medical progress. In the twenty-first century alone, this includes reducing transmission of HIV/AIDS, developing innovative therapies for cancer patients, and exploring the possibilities of personalized medicine. In order to continue to advance medical science, research relies on the voluntary participation of human subjects. Because research is inherently uncertain, unintended harm is an inevitable part of the research enterprise. Currently, injured research participants in the United States must turn to the “litigation lottery” of the tort system in search of compensation. This state of affairs fails research participants, who are too often left uncompensated for devastating losses, and makes the United States an outlier in the international community. In spite of forty years’ worth of Presidential Commissions and other respected voices calling for the development of a no-fault compensation system, no progress has been made to date. One of the reasons for this lack of progress is the failure to develop a coherent ethical basis for an obligation to provide compensation for research related injuries. This problem is exacerbated by the lack of a clear definition of “compensable injury” in the biomedical research context. This article makes a number of important contributions to the scholarship in this growing field. To begin, it examines compensation systems already in existence and concludes that there are four main definitional elements that must be used to define “compensable injury.” Next, it examines the justifications that have been put forth as the basis for an ethical obligation to provide compensation, and settles on retrospective nonmaleficence and distributive and compensatory justice as the most salient and persuasive. Finally, it uses the regulatory elements and the justifications discussed in the first two sections to develop a well-rounded definition of “compensable injury

  10. Perspectives of clinician and biomedical scientists on interdisciplinary health research.

    PubMed

    Laberge, Suzanne; Albert, Mathieu; Hodges, Brian D

    2009-11-24

    Interdisciplinary health research is a priority of many funding agencies. We surveyed clinician and biomedical scientists about their views on the value and funding of interdisciplinary health research. We conducted semistructured interviews with 31 biomedical and 30 clinician scientists. The scientists were selected from the 2000-2006 membership lists of peer-review committees of the Canadian Institutes of Health Research. We investigated respondents' perspectives on the assumption that collaboration across disciplines adds value to health research. We also investigated their perspectives on funding agencies' growing support of interdisciplinary research. The 61 respondents expressed a wide variety of perspectives on the value of interdisciplinary health research, ranging from full agreement (22) to complete disagreement (11) that it adds value; many presented qualified viewpoints (28). More than one-quarter viewed funding agencies' growing support of interdisciplinary research as appropriate. Most (44) felt that the level of support was unwarranted. Arguments included the belief that current support leads to the creation of artificial teams and that a top-down process of imposing interdisciplinary structures on teams constrains scientists' freedom. On both issues we found contrasting trends between the clinician and the biomedical scientists. Despite having some positive views about the value of interdisciplinary research, scientists, especially biomedical scientists, expressed reservations about the growing support of interdisciplinary research.

  11. Livestock in biomedical research: history, current status and future prospective.

    PubMed

    Polejaeva, Irina A; Rutigliano, Heloisa M; Wells, Kevin D

    2016-01-01

    Livestock models have contributed significantly to biomedical and surgical advances. Their contribution is particularly prominent in the areas of physiology and assisted reproductive technologies, including understanding developmental processes and disorders, from ancient to modern times. Over the past 25 years, biomedical research that traditionally embraced a diverse species approach shifted to a small number of model species (e.g. mice and rats). The initial reasons for focusing the main efforts on the mouse were the availability of murine embryonic stem cells (ESCs) and genome sequence data. This powerful combination allowed for precise manipulation of the mouse genome (knockouts, knockins, transcriptional switches etc.) leading to ground-breaking discoveries on gene functions and regulation, and their role in health and disease. Despite the enormous contribution to biomedical research, mouse models have some major limitations. Their substantial differences compared with humans in body and organ size, lifespan and inbreeding result in pronounced metabolic, physiological and behavioural differences. Comparative studies of strategically chosen domestic species can complement mouse research and yield more rigorous findings. Because genome sequence and gene manipulation tools are now available for farm animals (cattle, pigs, sheep and goats), a larger number of livestock genetically engineered (GE) models will be accessible for biomedical research. This paper discusses the use of cattle, goats, sheep and pigs in biomedical research, provides an overview of transgenic technology in farm animals and highlights some of the beneficial characteristics of large animal models of human disease compared with the mouse. In addition, status and origin of current regulation of GE biomedical models is also reviewed.

  12. Organization of Biomedical Data for Collaborative Scientific Research: A Research Information Management System

    PubMed Central

    Myneni, Sahiti; Patel, Vimla L.

    2010-01-01

    Biomedical researchers often work with massive, detailed and heterogeneous datasets. These datasets raise new challenges of information organization and management for scientific interpretation, as they demand much of the researchers’ time and attention. The current study investigated the nature of the problems that researchers face when dealing with such data. Four major problems identified with existing biomedical scientific information management methods were related to data organization, data sharing, collaboration, and publications. Therefore, there is a compelling need to develop an efficient and user-friendly information management system to handle the biomedical research data. This study evaluated the implementation of an information management system, which was introduced as part of the collaborative research to increase scientific productivity in a research laboratory. Laboratory members seemed to exhibit frustration during the implementation process. However, empirical findings revealed that they gained new knowledge and completed specified tasks while working together with the new system. Hence, researchers are urged to persist and persevere when dealing with any new technology, including an information management system in a research laboratory environment. PMID:20543892

  13. The Impact of Regulating Social Science Research with Biomedical Regulations

    ERIC Educational Resources Information Center

    Durosinmi, Brenda Braxton

    2011-01-01

    The Impact of Regulating Social Science Research with Biomedical Regulations Since 1974 Federal regulations have governed the use of human subjects in biomedical and social science research. The regulations are known as the Federal Policy for the Protection of Human Subjects, and often referred to as the "Common Rule" because 18 Federal…

  14. Biomedical text mining for research rigor and integrity: tasks, challenges, directions.

    PubMed

    Kilicoglu, Halil

    2017-06-13

    An estimated quarter of a trillion US dollars is invested in the biomedical research enterprise annually. There is growing alarm that a significant portion of this investment is wasted because of problems in reproducibility of research findings and in the rigor and integrity of research conduct and reporting. Recent years have seen a flurry of activities focusing on standardization and guideline development to enhance the reproducibility and rigor of biomedical research. Research activity is primarily communicated via textual artifacts, ranging from grant applications to journal publications. These artifacts can be both the source and the manifestation of practices leading to research waste. For example, an article may describe a poorly designed experiment, or the authors may reach conclusions not supported by the evidence presented. In this article, we pose the question of whether biomedical text mining techniques can assist the stakeholders in the biomedical research enterprise in doing their part toward enhancing research integrity and rigor. In particular, we identify four key areas in which text mining techniques can make a significant contribution: plagiarism/fraud detection, ensuring adherence to reporting guidelines, managing information overload and accurate citation/enhanced bibliometrics. We review the existing methods and tools for specific tasks, if they exist, or discuss relevant research that can provide guidance for future work. With the exponential increase in biomedical research output and the ability of text mining approaches to perform automatic tasks at large scale, we propose that such approaches can support tools that promote responsible research practices, providing significant benefits for the biomedical research enterprise. Published by Oxford University Press 2017. This work is written by a US Government employee and is in the public domain in the US.

  15. Mixed Methods in Biomedical and Health Services Research

    PubMed Central

    Curry, Leslie A.; Krumholz, Harlan M.; O’Cathain, Alicia; Plano Clark, Vicki L.; Cherlin, Emily; Bradley, Elizabeth H.

    2013-01-01

    Mixed methods studies, in which qualitative and quantitative methods are combined in a single program of inquiry, can be valuable in biomedical and health services research, where the complementary strengths of each approach can yield greater insight into complex phenomena than either approach alone. Although interest in mixed methods is growing among science funders and investigators, written guidance on how to conduct and assess rigorous mixed methods studies is not readily accessible to the general readership of peer-reviewed biomedical and health services journals. Furthermore, existing guidelines for publishing mixed methods studies are not well known or applied by researchers and journal editors. Accordingly, this paper is intended to serve as a concise, practical resource for readers interested in core principles and practices of mixed methods research. We briefly describe mixed methods approaches and present illustrations from published biomedical and health services literature, including in cardiovascular care, summarize standards for the design and reporting of these studies, and highlight four central considerations for investigators interested in using these methods. PMID:23322807

  16. DNA nanotechnology and its applications in biomedical research.

    PubMed

    Sun, Lifan; Yu, Lu; Shen, Wanqiu

    2014-09-01

    DNA nanotechnology, which uses DNA as a material to self-assemble designed nanostructures, including DNA 2D arrays, 3D nanostructures, DNA nanotubes and DNA nanomechanical devices, has showed great promise in biomedical applications. Various DNA nanostructures have been used for protein characterization, enzyme assembly, biosensing, drug delivery and biomimetic assemblies. In this review, we will present recent advances of DNA nanotechnology and its applications in biomedical research field.

  17. Addiction research centres and the nurturing of creativity The Norwegian Centre for Addiction Research (SERAF).

    PubMed

    Bramness, Jørgen G; Clausen, Thomas; Duckert, Fanny; Ravndal, Edle; Waal, Helge

    2011-08-01

    The Norwegian Centre for Addiction Research (SERAF) at the University of Oslo is a newly established, clinical addiction research centre. It is located at the Oslo University Hospital and has a major focus on opioid dependency, investigating Norwegian opioid maintenance treatment (OMT), with special interest in OMT during pregnancy, mortality, morbidity and criminality before, during and after OMT and alternatives to OMT, such as the use of naltrexone implants. The well-developed health registries of Norway are core assets that also allow the opportunity for other types of substance abuse research. This research includes health services, abuse of prescription drugs and drugs of abuse in connection with traffic. The centre also focuses upon comorbidity, investigating the usefulness and limitations of psychometric instruments, drug abuse in different psychiatric treatment settings and internet-based interventions for hazardous alcohol consumption. © 2010 The Authors, Addiction © 2010 Society for the Study of Addiction.

  18. The Central Importance of Laboratories for Reducing Waste in Biomedical Research.

    PubMed

    Stroth, Nikolas

    2016-12-01

    The global biomedical research enterprise is driving substantial advances in medicine and healthcare. Yet it appears that the enterprise is rather wasteful, falling short of its true innovative potential. Suggested reasons are manifold and involve various stakeholders, such that there is no single remedy. In the present paper, I will argue that laboratories are the basic working units of the biomedical research enterprise and an important site of action for corrective intervention. Keeping laboratories relatively small will enable better training and mentoring of individual scientists, which in turn will yield better performance of the scientific workforce. The key premise of this argument is that people are at the heart of the successes and failures of biomedical research, yet the human dimension of science has been unduly neglected in practice. Renewed focus on the importance of laboratories and their constituent scientists is one promising approach to reducing waste and increasing efficiency within the biomedical research enterprise.

  19. Are we studying what matters? Health priorities and NIH-funded biomedical engineering research.

    PubMed

    Rubin, Jessica B; Paltiel, A David; Saltzman, W Mark

    2010-07-01

    With the founding of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) in 1999, the National Institutes of Health (NIH) made explicit its dedication to expanding research in biomedical engineering. Ten years later, we sought to examine how closely federal funding for biomedical engineering aligns with U.S. health priorities. Using a publicly accessible database of research projects funded by the NIH in 2008, we identified 641 grants focused on biomedical engineering, 48% of which targeted specific diseases. Overall, we found that these disease-specific NIH-funded biomedical engineering research projects align with national health priorities, as quantified by three commonly utilized measures of disease burden: cause of death, disability-adjusted survival losses, and expenditures. However, we also found some illnesses (e.g., cancer and heart disease) for which the number of research projects funded deviated from our expectations, given their disease burden. Our findings suggest several possibilities for future studies that would serve to further inform the allocation of limited research dollars within the field of biomedical engineering.

  20. Patient-centred outcomes research: perspectives of patient stakeholders.

    PubMed

    Chhatre, Sumedha; Gallo, Joseph J; Wittink, Marsha; Schwartz, J Sanford; Jayadevappa, Ravishankar

    2017-11-01

    To elicit patient stakeholders' experience and perspectives about patient-centred care. Qualitative. A large urban healthcare system. Four patient stakeholders who are prostate cancer survivors. Experience and perspectives of patient stakeholders regarding patient-centred care and treatment decisions. Our patient stakeholders represented a diverse socio-demographic group. The patient stakeholders identified engagement and dialogue with physicians as crucial elements of patient-centred care model. The degree of patient-centred care was observed to be dependent on the situations. High severity conditions warranted a higher level of patient involvement, compared to mild conditions. They agreed that patient-centred care should not mean that patients can demand inappropriate treatments. An important attribute of patient-centred outcomes research model is the involvement of stakeholders. However, we have limited knowledge about the experience of patient stakeholders in patient-centred outcomes research. Our study indicates that patient stakeholders offer a unique perspective as researchers and policy-makers aim to precisely define patient-centred research and care.

  1. Implementation of Assessment of Polar Biomedical Research

    DTIC Science & Technology

    1988-08-01

    biomedicine in educational programs and professional society activities and publications is urgently needed. RECENT STATEMENTS ON POLAR BIOMEDICAL RESEARCH...study methods for training administrators, community health aides, paraprofessionals, and professionals ; 3. to conduct research to increase the...to be studied as well as the professionals and agencies involved in providing health care; and • ensure that results of all research are reported

  2. Biomedical text mining and its applications in cancer research.

    PubMed

    Zhu, Fei; Patumcharoenpol, Preecha; Zhang, Cheng; Yang, Yang; Chan, Jonathan; Meechai, Asawin; Vongsangnak, Wanwipa; Shen, Bairong

    2013-04-01

    Cancer is a malignant disease that has caused millions of human deaths. Its study has a long history of well over 100years. There have been an enormous number of publications on cancer research. This integrated but unstructured biomedical text is of great value for cancer diagnostics, treatment, and prevention. The immense body and rapid growth of biomedical text on cancer has led to the appearance of a large number of text mining techniques aimed at extracting novel knowledge from scientific text. Biomedical text mining on cancer research is computationally automatic and high-throughput in nature. However, it is error-prone due to the complexity of natural language processing. In this review, we introduce the basic concepts underlying text mining and examine some frequently used algorithms, tools, and data sets, as well as assessing how much these algorithms have been utilized. We then discuss the current state-of-the-art text mining applications in cancer research and we also provide some resources for cancer text mining. With the development of systems biology, researchers tend to understand complex biomedical systems from a systems biology viewpoint. Thus, the full utilization of text mining to facilitate cancer systems biology research is fast becoming a major concern. To address this issue, we describe the general workflow of text mining in cancer systems biology and each phase of the workflow. We hope that this review can (i) provide a useful overview of the current work of this field; (ii) help researchers to choose text mining tools and datasets; and (iii) highlight how to apply text mining to assist cancer systems biology research. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. e-Science platform for translational biomedical imaging research: running, statistics, and analysis

    NASA Astrophysics Data System (ADS)

    Wang, Tusheng; Yang, Yuanyuan; Zhang, Kai; Wang, Mingqing; Zhao, Jun; Xu, Lisa; Zhang, Jianguo

    2015-03-01

    In order to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment, we had designed an e-Science platform for biomedical imaging research and application cross multiple academic institutions and hospitals in Shanghai and presented this work in SPIE Medical Imaging conference held in San Diego in 2012. In past the two-years, we implemented a biomedical image chain including communication, storage, cooperation and computing based on this e-Science platform. In this presentation, we presented the operating status of this system in supporting biomedical imaging research, analyzed and discussed results of this system in supporting multi-disciplines collaboration cross-multiple institutions.

  4. Driving forces of biomedical science education and research in state-of-the arts academic medical centres: the United States as example.

    PubMed

    John, T A

    2011-06-01

    Basic science departments in academic medical centres are influenced by changes that are commonly directed at medical education and financial gain. Some of such changes may have been detrimental to or may have enhanced basic science education. They may have determined basic science research focus or basic science research methods. However, there is lack of research on the educational process in the basic sciences including training of PhD's while there is ample research on medical education pertaining to training of medical doctors. The author here identifies, from university websites and available literature, some forces that have driven teaching and research focus and methods in state-of-the-arts academic medical centres in recent times with a view of seeing through their possible influences on basic science education and research, using the United States of America as an example. The "forces" are: Changes in medical schools; Medical educational philosophies: problem based learning, evidence based medicine, cyberlearning and self-directed learning; Shifting impressions of the value of basic sciences in medical schools; Research trends in Basic Sciences: role of antivivisectionists, alternative experimentations, explosion of molecular and cell biology; Technological advancements; Commercialization of research; and Funding agencies. The author encourages African leaders in academia to pay attention to such forces as the leadership seeks to raise African Universities as centres of knowledge that have a major role in acquiring, preserving, imparting, and utilizing knowledge.

  5. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report summarizes the activities of the National Space Biomedical Research Institute (NSBRI) during FY 1999, the second full year of existence of the NSBRI's research program, and is prepared in accordance with Cooperative Agreement NCC9-58 between NASA's Lyndon B. Johnson Space Center and Baylor College of Medicine (NSBRI). The report consists of progress reports on projects related to the effects of microgravity and space on physiology. The research is broken up in nine areas: (1) Bone loss, (2) Cardiovascular alterations, (3) human performance, (3) immunology, infection and hematology, (4) muscle alterations and atrophy,(5) Neurovestibular adaptation, radiation effects, (6) technology development, and (7) synergy projects.

  6. Challenges in regulation of biomedical research: The case of Kenya.

    PubMed

    Wekesa, M

    2015-12-01

    Unregulated biomedical research has previously caused untold suffering to humankind. History is full of examples of abuse of animal and human subjects for research. Several codes and instruments have been formulated to regulate biomedical research. In Kenya, the Science, Technology and Innovation Act, 2014, together with the Constitution of Kenya, 2010, provide a fairly robust legal framework. Possible challenges include capacity building, overlap of functions of institutions, monitoring and evaluation, scientific/technological advances, intellectual property rights, funding for research, and dispute resolution. It is hoped that the new legislation will adequately address these challenges.

  7. Building a biomedical cyberinfrastructure for collaborative research.

    PubMed

    Schad, Peter A; Mobley, Lee Rivers; Hamilton, Carol M

    2011-05-01

    For the potential power of genome-wide association studies (GWAS) and translational medicine to be realized, the biomedical research community must adopt standard measures, vocabularies, and systems to establish an extensible biomedical cyberinfrastructure. Incorporating standard measures will greatly facilitate combining and comparing studies via meta-analysis. Incorporating consensus-based and well-established measures into various studies should reduce the variability across studies due to attributes of measurement, making findings across studies more comparable. This article describes two well-established consensus-based approaches to identifying standard measures and systems: PhenX (consensus measures for phenotypes and eXposures), and the Open Geospatial Consortium (OGC). NIH support for these efforts has produced the PhenX Toolkit, an assembled catalog of standard measures for use in GWAS and other large-scale genomic research efforts, and the RTI Spatial Impact Factor Database (SIFD), a comprehensive repository of geo-referenced variables and extensive meta-data that conforms to OGC standards. The need for coordinated development of cyberinfrastructure to support measures and systems that enhance collaboration and data interoperability is clear; this paper includes a discussion of standard protocols for ensuring data compatibility and interoperability. Adopting a cyberinfrastructure that includes standard measures and vocabularies, and open-source systems architecture, such as the two well-established systems discussed here, will enhance the potential of future biomedical and translational research. Establishing and maintaining the cyberinfrastructure will require a fundamental change in the way researchers think about study design, collaboration, and data storage and analysis. Copyright © 2011 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  8. Building a Biomedical Cyberinfrastructure for Collaborative Research

    PubMed Central

    Schad, Peter A.; Mobley, Lee Rivers; Hamilton, Carol M.

    2018-01-01

    For the potential power of genome-wide association studies (GWAS) and translational medicine to be realized, the biomedical research community must adopt standard measures, vocabularies, and systems to establish an extensible biomedical cyberinfrastructure. Incorporating standard measures will greatly facilitate combining and comparing studies via meta-analysis, which is a means for deriving larger populations, needed for increased statistical power to detect less apparent and more complex associations (gene-environment interactions and polygenic gene-gene interactions). Incorporating consensus-based and well-established measures into various studies should reduce the variability across studies due to attributes of measurement, making findings across studies more comparable. This article describes two consensus-based approaches to establishing standard measures and systems: PhenX (consensus measures for Phenotypes and eXposures), and the Open Geospatial Consortium (OGC). National Institutes of Health support for these efforts has produced the PhenX Toolkit, an assembled catalog of standard measures for use in GWAS and other large-scale genomic research efforts, and the RTI Spatial Impact Factor Database (SIFD), a comprehensive repository of georeferenced variables and extensive metadata that conforms to OGC standards. The need for coordinated development of cyberinfrastructure to support collaboration and data interoperability is clear, and we discuss standard protocols for ensuring data compatibility and interoperability. Adopting a cyberinfrastructure that includes standard measures, vocabularies, and open-source systems architecture will enhance the potential of future biomedical and translational research. Establishing and maintaining the cyberinfrastructure will require a fundamental change in the way researchers think about study design, collaboration, and data storage and analysis. PMID:21521587

  9. Social Media and Mentoring in Biomedical Research Faculty Development.

    PubMed

    Teruya, Stacey Alan; Bazargan-Hejazi, Shahrzad

    2014-09-01

    To determine how effective and collegial mentoring in biomedical research faculty development may be implemented and facilitated through social media. The authors reviewed the literature for objectives, concerns, and limitations of career development for junior research faculty. They tabularized these as developmental goals, and aligned them with relevant social media strengths and capabilities facilitated through traditional and/or peer mentoring. The authors derived a model in which social media is leveraged to achieve developmental goals reflected in independent and shared projects, and in the creation and expansion of support and research networks. Social media may be successfully leveraged and applied in achieving developmental goals for biomedical research faculty, and potentially for those in other fields and disciplines.

  10. Facilities available for biomedical science research in the public universities in Lagos, Nigeria.

    PubMed

    John, T A

    2010-03-01

    Across the world, basic medical scientists and physician scientists work on common platforms in state-of-the-arts laboratories doing translational research that occasionally results in bedside application. Biotechnology industries capitalise on useful findings for colossal profit.1 In Nigeria and the rest of Africa, biomedical science has not thrived and the contribution of publications to global high impact journals is low.2 This work investigated facilities available for modern biomedical research in Lagos public universities to extract culprit factors. The two public universities in Lagos, Nigeria were investigated by a cross sectional questionnaire survey of the technical staff manning biomedical science departments. They were asked about availability of 47 modern biomedical science research laboratory components such as cold room and microscopes and six research administration components such as director of research and grants administration. For convenient basic laboratory components such as autoclaves and balances, 50% responses indicated "well maintained and always functional" whereas for less convenient complex, high maintenance, state-of-the-arts equipment 19% responses indicated "well maintained and always functional." Respondents indicated that components of modern biomedical science research administration were 44% of expectation. The survey reveal a deficit in state-of the-arts research equipment and also a deficit in high maintenance, expensive equipment indicating that biomedical science in the investigated environment lacks the momentum of global trends and also lacks buoyant funding. In addition, administration supporting biomedical science is below expectation and may also account for the low contributions of research articles to global high impact journals.

  11. The Brazilian research and teaching center in biomedicine and aerospace biomedical engineering.

    PubMed

    Russomano, T; Falcao, P F; Dalmarco, G; Martinelli, L; Cardoso, R; Santos, M A; Sparenberg, A

    2008-08-01

    The recent engagement of Brazil in the construction and utilization of the International Space Station has motivated several Brazilian research institutions and universities to establish study centers related to Space Sciences. The Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS) is no exception. The University initiated in 1993 the first degree course training students to operate commercial aircraft in South America (the School of Aeronautical Sciences. A further step was the decision to build the first Brazilian laboratory dedicated to the conduct of experiments in ground-based microgravity simulation. Established in 1998, the Microgravity Laboratory, which was located in the Instituto de Pesquisas Cientificas e Tecnologicas (IPCT), was supported by the Schools of Medicine, Aeronautical Sciences and Electrical Engineering/Biomedical Engineering. At the end of 2006, the Microgravity Laboratory became a Center and was transferred to the School of Engineering. The principal activities of the Microgravity Centre are the development of research projects related to human physiology before, during and after ground-based microgravity simulation and parabolic flights, to aviation medicine in the 21st century and to aerospace biomedical engineering. The history of Brazilian, and why not say worldwide, space science should unquestionably go through PUCRS. As time passes, the pioneering spirit of our University in the aerospace area has become undeniable. This is due to the group of professionals, students, technicians and staff in general that have once worked or are still working in the Center of Microgravity, a group of faculty and students that excel in their undeniable technical-scientific qualifications.

  12. Two-Photon Fluorescence Microscopy for Biomedical Research

    NASA Technical Reports Server (NTRS)

    Fischer, David; Zimmerli, Greg; Asipauskas, Marius

    2007-01-01

    This viewgraph presentation gives an overview of two-photon microscopy as it applies to biomedical research. The topics include: 1) Overview; 2) Background; 3) Principles of Operation; 4) Advantages Over Confocal; 5) Modes of Operation; and 6) Applications.

  13. Towards a 21st century roadmap for biomedical research and ...

    EPA Pesticide Factsheets

    Decades of costly failures in translating drug candidates from preclinical disease models to human therapeutic use warrant reconsideration of the priority placed on animal models in biomedical research. Following an international workshop attended by experts from academia, government institutions, research funding bodies and the corporate and NGO sectors, this consensus report analyses, as case studies, five disease areas with major unmet needs for new treatments. In view of the scientifically driven transition towards a human pathways-based paradigm in toxicology, a similar paradigm shift appears to be justified in biomedical research. There is a pressing need for an approach that strategically implements advanced, human biology-based models and tools to understand disease pathways at multiple biological scales. We present recommendations to help achieve this. To discover and develop new therapies, we need 21-century roadmaps for biomedical research based on multiscale human disease pathways, and supported by policy and funding strategies that prioritise human relevance.

  14. Structural DNA Nanotechnology: Artificial Nanostructures for Biomedical Research.

    PubMed

    Ke, Yonggang; Castro, Carlos; Choi, Jong Hyun

    2018-06-04

    Structural DNA nanotechnology utilizes synthetic or biologic DNA as designer molecules for the self-assembly of artificial nanostructures. The field is founded upon the specific interactions between DNA molecules, known as Watson-Crick base pairing. After decades of active pursuit, DNA has demonstrated unprecedented versatility in constructing artificial nanostructures with significant complexity and programmability. The nanostructures could be either static, with well-controlled physicochemical properties, or dynamic, with the ability to reconfigure upon external stimuli. Researchers have devoted considerable effort to exploring the usability of DNA nanostructures in biomedical research. We review the basic design methods for fabricating both static and dynamic DNA nanostructures, along with their biomedical applications in fields such as biosensing, bioimaging, and drug delivery.

  15. Technical editing of research reports in biomedical journals.

    PubMed

    Wager, Elizabeth; Middleton, Philippa

    2008-10-08

    Most journals try to improve their articles by technical editing processes such as proof-reading, editing to conform to 'house styles', grammatical conventions and checking accuracy of cited references. Despite the considerable resources devoted to technical editing, we do not know whether it improves the accessibility of biomedical research findings or the utility of articles. This is an update of a Cochrane methodology review first published in 2003. To assess the effects of technical editing on research reports in peer-reviewed biomedical journals, and to assess the level of accuracy of references to these reports. We searched The Cochrane Library Issue 2, 2007; MEDLINE (last searched July 2006); EMBASE (last searched June 2007) and checked relevant articles for further references. We also searched the Internet and contacted researchers and experts in the field. Prospective or retrospective comparative studies of technical editing processes applied to original research articles in biomedical journals, as well as studies of reference accuracy. Two review authors independently assessed each study against the selection criteria and assessed the methodological quality of each study. One review author extracted the data, and the second review author repeated this. We located 32 studies addressing technical editing and 66 surveys of reference accuracy. Only three of the studies were randomised controlled trials. A 'package' of largely unspecified editorial processes applied between acceptance and publication was associated with improved readability in two studies and improved reporting quality in another two studies, while another study showed mixed results after stricter editorial policies were introduced. More intensive editorial processes were associated with fewer errors in abstracts and references. Providing instructions to authors was associated with improved reporting of ethics requirements in one study and fewer errors in references in two studies, but no

  16. A community of practice: librarians in a biomedical research network.

    PubMed

    De Jager-Loftus, Danielle P; Midyette, J David; Harvey, Barbara

    2014-01-01

    Providing library and reference services within a biomedical research community presents special challenges for librarians, especially those in historically lower-funded states. These challenges can include understanding needs, defining and communicating the library's role, building relationships, and developing and maintaining general and subject specific knowledge. This article describes a biomedical research network and the work of health sciences librarians at the lead intensive research institution with librarians from primarily undergraduate institutions and tribal colleges. Applying the concept of a community of practice to a collaborative effort suggests how librarians can work together to provide effective reference services to researchers in biomedicine.

  17. Figure mining for biomedical research.

    PubMed

    Rodriguez-Esteban, Raul; Iossifov, Ivan

    2009-08-15

    Figures from biomedical articles contain valuable information difficult to reach without specialized tools. Currently, there is no search engine that can retrieve specific figure types. This study describes a retrieval method that takes advantage of principles in image understanding, text mining and optical character recognition (OCR) to retrieve figure types defined conceptually. A search engine was developed to retrieve tables and figure types to aid computational and experimental research. http://iossifovlab.cshl.edu/figurome/.

  18. [Cluster analysis in biomedical researches].

    PubMed

    Akopov, A S; Moskovtsev, A A; Dolenko, S A; Savina, G D

    2013-01-01

    Cluster analysis is one of the most popular methods for the analysis of multi-parameter data. The cluster analysis reveals the internal structure of the data, group the separate observations on the degree of their similarity. The review provides a definition of the basic concepts of cluster analysis, and discusses the most popular clustering algorithms: k-means, hierarchical algorithms, Kohonen networks algorithms. Examples are the use of these algorithms in biomedical research.

  19. Incorporating collaboratory concepts into informatics in support of translational interdisciplinary biomedical research

    PubMed Central

    Lee, E. Sally; McDonald, David W.; Anderson, Nicholas; Tarczy-Hornoch, Peter

    2008-01-01

    Due to its complex nature, modern biomedical research has become increasingly interdisciplinary and collaborative in nature. Although a necessity, interdisciplinary biomedical collaboration is difficult. There is, however, a growing body of literature on the study and fostering of collaboration in fields such as computer supported cooperative work (CSCW) and information science (IS). These studies of collaboration provide insight into how to potentially alleviate the difficulties of interdisciplinary collaborative research. We, therefore, undertook a cross cutting study of science and engineering collaboratories to identify emergent themes. We review many relevant collaboratory concepts: (a) general collaboratory concepts across many domains: communication, common workspace and coordination, and data sharing and management, (b) specific collaboratory concepts of particular biomedical relevance: data integration and analysis, security structure, metadata and data provenance, and interoperability and data standards, (c) environmental factors that support collaboratories: administrative and management structure, technical support, and available funding as critical environmental factors, and (d) future considerations for biomedical collaboration: appropriate training and long-term planning. In our opinion, the collaboratory concepts we discuss can guide planning and design of future collaborative infrastructure by biomedical informatics researchers to alleviate some of the difficulties of interdisciplinary biomedical collaboration. PMID:18706852

  20. Social Media and Mentoring in Biomedical Research Faculty Development

    PubMed Central

    Teruya, Stacey Alan; Bazargan-Hejazi, Shahrzad

    2015-01-01

    Purpose To determine how effective and collegial mentoring in biomedical research faculty development may be implemented and facilitated through social media. Method The authors reviewed the literature for objectives, concerns, and limitations of career development for junior research faculty. They tabularized these as developmental goals, and aligned them with relevant social media strengths and capabilities facilitated through traditional and/or peer mentoring. Results The authors derived a model in which social media is leveraged to achieve developmental goals reflected in independent and shared projects, and in the creation and expansion of support and research networks. Conclusions Social media may be successfully leveraged and applied in achieving developmental goals for biomedical research faculty, and potentially for those in other fields and disciplines. PMID:26120494

  1. Shaping science policy: what's happening to biomedical research in America.

    PubMed

    Culliton, B J

    1991-04-01

    There is, scientists proclaim, a crisis in biomedical research. The crisis lies in the fact that the community's expectations now exceed any reasonable capacity to fund its projects. Between the late 1960s and now, the community has felt threatened many times: by the government leaders' and the public's perceptions of what basic science can produce; by such government initiatives as the "war on cancer," which steered funding to politically chosen areas of research; by changes in funding postgraduate research training; and by successive "crises" over the way NIH research funds are apportioned. None of these crises has resulted in the predicted dire consequences for the community, and the current one will not either. The challenge for the biomedical research community is to set priorities and allocate money accordingly. Despite the nation's economic and social problems, funding for biomedical research remains very high--$8 billion for the NIH, for example--and the community cannot expect that doubling or even tripling the budget would fund all the good ideas produced by a greatly expanded body of researchers. New policies for allocating funds among individual investigators, institutions, and infrastructure need to be put in place.

  2. A BRIEF HISTORY OF BIOMEDICAL RESEARCH ETHICS IN IRAN: CONFLICT OF PARADIGMS

    PubMed Central

    ARAMESH, KIARASH

    2014-01-01

    During the past two decades, Iran has experienced a noteworthy growth in its biomedical research sector. At the same time, ethical concerns and debates resulting from this burgeoning enterprise has led to increasing attention paid to biomedical ethics. In Iran, Biomedical research ethics and research oversight passed through major periods during the past decades, separated by a paradigm shift. Period 1, starting from the early 1970s, is characterized by research paternalism and complete reliance on researchers as virtuous and caring physicians. This approach was in concordance with the paternalistic clinical practice of physicians outside of research settings during the same period. Period 2, starting from the late 1990s, was partly due to revealing of ethical flaws that occurred in biomedical research in Iran. The regulatory and funding bodies concluded that it was not sufficient to rely solely on the personal and professional virtues of researchers to safeguard human subjects’ rights and welfare. The necessity for independent oversight, emphasized by international declarations, became obvious and undeniable. This paradigm shift led to the establishment of research ethics committees throughout the country, the establishment of academic research centers focusing on medical ethics (MEHR) and the compilation of the first set of national ethical guidelines on biomedical research–one of the first and most important projects conducted by and in the MEHR. Although not yet arrived, ‘period 3’ is on its way. It is predictable from the obvious trends toward performance of high-quality clinical research and the appearance of a highly educated new generation, especially among women. PMID:24720443

  3. Addiction research centres and the nurturing of creativity: The Centre for Addictions Research of British Columbia, Canada

    PubMed Central

    Stockwell, Tim; Reist, Dan; Macdonald, Scott; Benoit, Cecilia; Jansson, Mikael

    2015-01-01

    The Centre for Addictions Research of British Columbia (CARBC) was established as a multi-campus and multi-disciplinary research centre administered by the University of Victoria (UVic) in late 2003. Its core funding is provided from interest payments on an endowment of CAD$10.55 million. It is supported by a commitment to seven faculty appointments in various departments at UVic. The Centre has two offices, an administration and research office in Victoria and a knowledge exchange unit in Vancouver. The two offices are collaborating on the implementation of CARBC’s first 5-year plan which seeks to build capacity in British Columbia for integrated multi-disciplinary research and knowledge exchange in the areas substance use, addictions and harm reduction. Present challenges include losses to the endowment caused by the 2008/2009 economic crisis and difficulties negotiating faculty positions with the university administration. Despite these hurdles, to date each year has seen increased capacity for the Centre in terms of affiliated scientists, funding and staffing as well as output in terms of published reports, electronic resources and impacts on policy and practice. Areas of special research interest include: drug testing in the work-place, epidemiological monitoring, substance use and injury, pricing and taxation policies, privatization of liquor monopolies, poly-substance use, health determinants of indigenous peoples, street-involved youth and other vulnerable populations at risk of substance use problems. Further information about the Centre and its activities can be found on http://www.carbc.ca. PMID:20078479

  4. Blood donors' preferences for blood donation for biomedical research.

    PubMed

    Raivola, Vera; Snell, Karoliina; Pastila, Satu; Helén, Ilpo; Partanen, Jukka

    2018-03-23

    Increasing numbers of blood donors are recruited to participate in biomedical research. As blood services depend on voluntary donors, successful recruitment calls for a better understanding of donors' expectations and attitudes toward the use of samples in research. Sixty-one semistructured interviews were conducted with blood donors at eight Finnish Red Cross Blood Service donation sites in Finland. The 10- to 30-minute interviews included open-ended questions about donors' views on blood donation for patients and for biomedical research. Central motives to donate blood for patients were identified against which views on research use were compared to see how these reflections differed. Six central motives for donating blood for patients were identified among donors. The interviewees were, in general, willing to donate blood for research, but considered research donation more likely if it could be easily integrated into their usual blood donation habits. Biomedical research was perceived as important but its social benefits were more abstract than a direct help to patients. Familiarity and reciprocity were key to the relationship between the blood service and blood donors. Donation for research introduces a new, more complex context to blood donation. Challenge to recognize concrete outcomes and benefits of donation may affect willingness to donate for research. Transparent communication of the role of the blood service in research and of the beneficiaries of the research is essential in maintaining trust. These results will help blood services in their planning to recruit blood donors for research projects. © 2018 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  5. [Open access :an opportunity for biomedical research].

    PubMed

    Duchange, Nathalie; Autard, Delphine; Pinhas, Nicole

    2008-01-01

    Open access within the scientific community depends on the scientific context and the practices of the field. In the biomedical domain, the communication of research results is characterised by the importance of the peer reviewing process, the existence of a hierarchy among journals and the transfer of copyright to the editor. Biomedical publishing has become a lucrative market and the growth of electronic journals has not helped lower the costs. Indeed, it is difficult for today's public institutions to gain access to all the scientific literature. Open access is thus imperative, as demonstrated through the positions taken by a growing number of research funding bodies, the development of open access journals and efforts made in promoting open archives. This article describes the setting up of an Inserm portal for publication in the context of the French national protocol for open-access self-archiving and in an international context.

  6. Leveraging the national cyberinfrastructure for biomedical research.

    PubMed

    LeDuc, Richard; Vaughn, Matthew; Fonner, John M; Sullivan, Michael; Williams, James G; Blood, Philip D; Taylor, James; Barnett, William

    2014-01-01

    In the USA, the national cyberinfrastructure refers to a system of research supercomputer and other IT facilities and the high speed networks that connect them. These resources have been heavily leveraged by scientists in disciplines such as high energy physics, astronomy, and climatology, but until recently they have been little used by biomedical researchers. We suggest that many of the 'Big Data' challenges facing the medical informatics community can be efficiently handled using national-scale cyberinfrastructure. Resources such as the Extreme Science and Discovery Environment, the Open Science Grid, and Internet2 provide economical and proven infrastructures for Big Data challenges, but these resources can be difficult to approach. Specialized web portals, support centers, and virtual organizations can be constructed on these resources to meet defined computational challenges, specifically for genomics. We provide examples of how this has been done in basic biology as an illustration for the biomedical informatics community.

  7. The Tuskegee Legacy Project: willingness of minorities to participate in biomedical research.

    PubMed

    Katz, Ralph V; Kegeles, S Steven; Kressin, Nancy R; Green, B Lee; Wang, Min Qi; James, Sherman A; Russell, Stefanie Luise; Claudio, Cristina

    2006-11-01

    The broad goal of the Tuskegee Legacy Project (TLP) study was to address, and understand, a range of issues related to the recruitment and retention of Blacks and other minorities in biomedical research studies. The specific aim of this analysis was to compare the self-reported willingness of Blacks, Hispanics, and Whites to participate as research subjects in biomedical studies, as measured by the Likelihood of Participation (LOP) Scale and the Guinea Pig Fear Factor (GPFF) Scale. The Tuskegee Legacy Project Questionnaire, a 60 item instrument, was administered to 1,133 adult Blacks, Hispanics, and non-Hispanic Whites in 4 U.S. cities. The findings revealed no difference in self-reported willingness to participate in biomedical research, as measured by the LOP Scale, between Blacks, Hispanics, and Whites, despite Blacks being 1.8 times as likely as Whites to have a higher fear of participation in biomedical research on the GPFF Scale.

  8. The Tuskegee Legacy Project: Willingness of Minorities to Participate in Biomedical Research

    PubMed Central

    Katz, Ralph V.; Russell, Stefanie L.; Kegeles, S. Steven; Kressin, Nancy R.; Green, B. Lee; Wang, Min Qi; James, Sherman A.; Claudio, Cristina

    2006-01-01

    The broad goal of the Tuskegee Legacy Project (TLP) study was to address, and understand, a range of issues related to the recruitment and retention of Blacks and other minorities in biomedical research studies. The specific aim of this analysis was to compare the self-reported willingness of Blacks, Hispanics, and Whites to participate as research subjects in biomedical studies, as measured by the Likelihood of Participation (LOP) Scale and the Guinea Pig Fear Factor (GPFF) Scale. The Tuskegee Legacy Project Questionnaire, a 60 item instrument, was administered to 1,133 adult Blacks, Hispanics, and non-Hispanic Whites in 4 U.S. cities. The findings revealed no difference in self-reported willingness to participate in biomedical research, as measured by the LOP Scale, between Blacks, Hispanics, and Whites, despite Blacks being 1.8 times as likely as Whites to have a higher fear of participation in biomedical research on the GPFF Scale. PMID:17242525

  9. Labor and skills gap analysis of the biomedical research workforce.

    PubMed

    Mason, Julie L; Johnston, Elizabeth; Berndt, Sam; Segal, Katie; Lei, Ming; Wiest, Jonathan S

    2016-08-01

    The United States has experienced an unsustainable increase of the biomedical research workforce over the past 3 decades. This expansion has led to a myriad of consequences, including an imbalance in the number of researchers and available tenure-track faculty positions, extended postdoctoral training periods, increasing age of investigators at first U.S. National Institutes of Health R01 grant, and exodus of talented individuals seeking careers beyond traditional academe. Without accurate data on the biomedical research labor market, challenges will remain in resolving these problems and in advising trainees of viable career options and the skills necessary to be productive in their careers. We analyzed workforce trends, integrating both traditional labor market information and real-time job data. We generated a profile of the current biomedical research workforce, performed labor gap analyses of occupations in the workforce at regional and national levels, and assessed skill transferability between core and complementary occupations. We conclude that although supply into the workforce and the number of job postings for occupations within that workforce have grown over the past decade, supply continues to outstrip demand. Moreover, we identify practical skill sets from real-time job postings to optimally equip trainees for an array of careers to effectively meet future workforce demand.-Mason, J. L., Johnston, E., Berndt, S., Segal, K., Lei, M., Wiest, J. S. Labor and skills gap analysis of the biomedical research workforce. © FASEB.

  10. Labor and skills gap analysis of the biomedical research workforce

    PubMed Central

    Mason, Julie L.; Johnston, Elizabeth; Berndt, Sam; Segal, Katie; Lei, Ming; Wiest, Jonathan S.

    2016-01-01

    The United States has experienced an unsustainable increase of the biomedical research workforce over the past 3 decades. This expansion has led to a myriad of consequences, including an imbalance in the number of researchers and available tenure-track faculty positions, extended postdoctoral training periods, increasing age of investigators at first U.S. National Institutes of Health R01 grant, and exodus of talented individuals seeking careers beyond traditional academe. Without accurate data on the biomedical research labor market, challenges will remain in resolving these problems and in advising trainees of viable career options and the skills necessary to be productive in their careers. We analyzed workforce trends, integrating both traditional labor market information and real-time job data. We generated a profile of the current biomedical research workforce, performed labor gap analyses of occupations in the workforce at regional and national levels, and assessed skill transferability between core and complementary occupations. We conclude that although supply into the workforce and the number of job postings for occupations within that workforce have grown over the past decade, supply continues to outstrip demand. Moreover, we identify practical skill sets from real-time job postings to optimally equip trainees for an array of careers to effectively meet future workforce demand.—Mason, J. L., Johnston, E., Berndt, S., Segal, K., Lei, M., Wiest, J. S. Labor and skills gap analysis of the biomedical research workforce. PMID:27075242

  11. A Brief History of Biomedical Research Ethics in Iran: Conflict of Paradigms.

    PubMed

    Aramesh, Kiarash

    2015-08-01

    During the past two decades, Iran has experienced a noteworthy growth in its biomedical research sector. At the same time, ethical concerns and debates resulting from this burgeoning enterprise has led to increasing attention paid to biomedical ethics. In Iran, Biomedical research ethics and research oversight passed through major periods during the past decades, separated by a paradigm shift. Period 1, starting from the early 1970s, is characterized by research paternalism and complete reliance on researchers as virtuous and caring physicians. This approach was in concordance with the paternalistic clinical practice of physicians outside of research settings during the same period. Period 2, starting from the late 1990s, was partly due to revealing of ethical flaws that occurred in biomedical research in Iran. The regulatory and funding bodies concluded that it was not sufficient to rely solely on the personal and professional virtues of researchers to safeguard human subjects' rights and welfare. The necessity for independent oversight, emphasized by international declarations, became obvious and undeniable. This paradigm shift led to the establishment of research ethics committees throughout the country, the establishment of academic research centers focusing on medical ethics (MEHR) and the compilation of the first set of national ethical guidelines on biomedical research-one of the first and most important projects conducted by and in the MEHR. Although not yet arrived, 'period 3' is on its way. It is predictable from the obvious trends toward performance of high-quality clinical research and the appearance of a highly educated new generation, especially among women. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  12. Building dialogues between clinical and biomedical research through cross-species collaborations.

    PubMed

    Chao, Hsiao-Tuan; Liu, Lucy; Bellen, Hugo J

    2017-10-01

    Today, biomedical science is equipped with an impressive array of technologies and genetic resources that bolster our basic understanding of fundamental biology and enhance the practice of modern medicine by providing clinicians with a diverse toolkit to diagnose, prognosticate, and treat a plethora of conditions. Many significant advances in our understanding of disease mechanisms and therapeutic interventions have arisen from fruitful dialogues between clinicians and biomedical research scientists. However, the increasingly specialized scientific and medical disciplines, globalization of science and technology, and complex datasets often hinder the development of effective interdisciplinary collaborations between clinical medicine and biomedical research. The goal of this review is to provide examples of diverse strategies to enhance communication and collaboration across diverse disciplines. First, we discuss examples of efforts to foster interdisciplinary collaborations at institutional and multi-institutional levels. Second, we explore resources and tools for clinicians and research scientists to facilitate effective bi-directional dialogues. Third, we use our experiences in neurobiology and human genetics to highlight how communication between clinical medicine and biomedical research lead to effective implementation of cross-species model organism approaches to uncover the biological underpinnings of health and disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A survey of working conditions within biomedical research in the United Kingdom.

    PubMed

    Riddiford, Nick

    2017-01-01

    Background: Many recent articles have presented a bleak view of career prospects in biomedical research in the US. Too many PhDs and postdocs are trained for too few research positions, creating a "holding-tank" of experienced senior postdocs who are unable to get a permanent position. Coupled with relatively low salaries and high levels of pressure to publish in top-tier academic journals, this has created a toxic environment that is perhaps responsible for a recently observed decline in biomedical postdocs in the US, the so-called "postdocalypse". Methods: In order to address the gulf of information relating to working habits and attitudes of UK-based biomedical researchers, a link to an online survey was included in an article published in the Guardian newspaper. Survey data were collected between 21 st March 2016 and 6 th November 2016 and analysed to examine discrete profiles for three major career stages: the PhD, the postdoc and the principal investigator. Results: Overall, the data presented here echo trends observed in the US: The 520 UK-based biomedical researchers responding to the survey reported feeling disillusioned with academic research, due to the low chance of getting a permanent position and the long hours required at the bench. Also like the US, large numbers of researchers at each distinct career stage are considering leaving biomedical research altogether. Conclusions: There are several systemic flaws in the academic scientific research machine - for example the continual overproduction of PhDs and the lack of stability in the early-mid stages of a research career - that are slowly being addressed in countries such as the US and Germany. These data suggest that similar flaws also exist in the UK, with a large proportion of respondents concerned about their future in research. To avoid lasting damage to the biomedical research agenda in the UK, addressing such concerns should be a major priority.

  14. An Evolving Research Culture: Analysis of Biomedical Publications from Libya, 2003-13

    ERIC Educational Resources Information Center

    Ahmed, Mohamed O.; Daw, Mohamed A.; van Velkinburgh, Jennifer C.

    2017-01-01

    Understanding the publication output of a country's biomedical research can provide information for strengthening its policies, economy, and educational systems. Yet, this is the first bibliometric study to date to analyze and provide an in-depth discussion of the biomedical research productivity from Libyan academic institutions. The biomedical…

  15. Can there be a moral obligation to participate in biomedical research?

    PubMed

    Seiler, Christian

    2018-04-01

    In clinical medicine, the moral obligation to care for the individual patient is absolute. Patient care means at least and by negative terms to minimize any risk of treatment. In this context, the question arises about the compatibility of clinical ethics and human biomedical research ethics. Or conversely, is there a common ground between the two? At the opposite end of the field between clinical ethics and biomedical research ethics is the proposal of an obligation to participate in biomedical research, which is argued for on the basis of biomedical knowledge being a public good available to the community as a whole. While patient accrual during a clinical investigation would certainly be facilitated by obligatory research participation, and the data obtained would be-at first sight-more representative for the population studied, the still feasible refusal to participate would be stigmatizing and as such detrimental for the patient-physician relation. This essay seeks to provide a reply to the titled question by focusing on aspects such as individual vs common medical claims, shared grounds between the two and an important document of medical research ethics, that is the Nuremberg code. © 2018 Stichting European Society for Clinical Investigation Journal Foundation.

  16. Knowledge of the Nigerian Code of Health Research Ethics Among Biomedical Researchers in Southern Nigeria.

    PubMed

    Ogunrin, Olubunmi A; Daniel, Folasade; Ansa, Victor

    2016-12-01

    Responsibility for protection of research participants from harm and exploitation rests on Research Ethics Committees and principal investigators. The Nigerian National Code of Health Research Ethics defines responsibilities of stakeholders in research so its knowledge among researchers will likely aid ethical conduct of research. The levels of awareness and knowledge of the Code among biomedical researchers in southern Nigerian research institutions was assessed. Four institutions were selected using a stratified random sampling technique. Research participants were selected by purposive sampling and completed a pre-tested structured questionnaire. A total of 102 biomedical researchers completed the questionnaires. Thirty percent of the participants were aware of the National Code though 64% had attended at least one training seminar in research ethics. Twenty-five percent had a fairly acceptable knowledge (scores 50%-74%) and 10% had excellent knowledge of the code (score ≥75%). Ninety-five percent expressed intentions to learn more about the National Code and agreed that it is highly relevant to the ethical conduct of research. Awareness and knowledge of the Code were found to be very limited among biomedical researchers in southern Nigeria. There is need to improve awareness and knowledge through ethics seminars and training. Use of existing Nigeria-specific online training resources is also encouraged.

  17. Biomedical databases: protecting privacy and promoting research.

    PubMed

    Wylie, Jean E; Mineau, Geraldine P

    2003-03-01

    When combined with medical information, large electronic databases of information that identify individuals provide superlative resources for genetic, epidemiology and other biomedical research. Such research resources increasingly need to balance the protection of privacy and confidentiality with the promotion of research. Models that do not allow the use of such individual-identifying information constrain research; models that involve commercial interests raise concerns about what type of access is acceptable. Researchers, individuals representing the public interest and those developing regulatory guidelines must be involved in an ongoing dialogue to identify practical models.

  18. Medical and biomedical research productivity from Palestine, 2002 - 2011.

    PubMed

    Sweileh, Waleed M; Zyoud, Sa'ed H; Sawalha, Ansam F; Abu-Taha, Adham; Hussein, Ayman; Al-Jabi, Samah W

    2013-02-02

    Medical research productivity reflects the level of medical education and practice in a particular country. The objective of this study was to examine the quantity and quality of medical and biomedical research published from Palestine. Comprehensive review of the literature indexed by Scopus was conducted. Data from Jan 01, 2002 till December 31, 2011 was searched for authors affiliated with Palestine or Palestinian authority. Results were refined to limit the search to medical and biomedical subjects. The quality of publication was assessed using Journal Citation Report. The total number of publications was 2207. A total of 770 publications were in the medical and biomedical subject areas. The annual rate of publication was 0.077 articles per gross domestic product/capita. The 770 publications have an h-index of 32. One hundred and thirty eight (18%) articles were published in 46 journals that were not indexed in the web of knowledge. Twenty two (22/770; 2.9%) articles were published in journals with an IF > 10. The quantity and quality of research originating from Palestinian institutions is promising given the scarce resources of Palestine. However, more effort is needed to bridge the gap in medical research productivity and to promote better health in Palestine.

  19. Leveraging the national cyberinfrastructure for biomedical research

    PubMed Central

    LeDuc, Richard; Vaughn, Matthew; Fonner, John M; Sullivan, Michael; Williams, James G; Blood, Philip D; Taylor, James; Barnett, William

    2014-01-01

    In the USA, the national cyberinfrastructure refers to a system of research supercomputer and other IT facilities and the high speed networks that connect them. These resources have been heavily leveraged by scientists in disciplines such as high energy physics, astronomy, and climatology, but until recently they have been little used by biomedical researchers. We suggest that many of the ‘Big Data’ challenges facing the medical informatics community can be efficiently handled using national-scale cyberinfrastructure. Resources such as the Extreme Science and Discovery Environment, the Open Science Grid, and Internet2 provide economical and proven infrastructures for Big Data challenges, but these resources can be difficult to approach. Specialized web portals, support centers, and virtual organizations can be constructed on these resources to meet defined computational challenges, specifically for genomics. We provide examples of how this has been done in basic biology as an illustration for the biomedical informatics community. PMID:23964072

  20. A biobank management model applicable to biomedical research.

    PubMed

    Auray-Blais, Christiane; Patenaude, Johane

    2006-04-06

    The work of Research Ethics Boards (REBs), especially when involving genetics research and biobanks, has become more challenging with the growth of biotechnology and biomedical research. Some REBs have even rejected research projects where the use of a biobank with coded samples was an integral part of the study, the greatest fear being the lack of participant protection and uncontrolled use of biological samples or related genetic data. The risks of discrimination and stigmatization are a recurrent issue. In light of the increasing interest in biomedical research and the resulting benefits to the health of participants, it is imperative that practical solutions be found to the problems associated with the management of biobanks: namely, protecting the integrity of the research participants, as well as guaranteeing the security and confidentiality of the participant's information. We aimed to devise a practical and efficient model for the management of biobanks in biomedical research where a medical archivist plays the pivotal role as a data-protection officer. The model had to reduce the burden placed on REBs responsible for the evaluation of genetics projects and, at the same time, maximize the protection of research participants. The proposed model includes the following: 1) a means of protecting the information in biobanks, 2) offers ways to provide follow-up information requested about the participants, 3) protects the participant's confidentiality and 4) adequately deals with the ethical issues at stake in biobanking. Until a governmental governance body is established in Quebec to guarantee the protection of research participants and establish harmonized guidelines for the management of biobanks in medical research, it is definitely up to REBs to find solutions that the present lack of guidelines poses. The model presented in this article offers a practical solution on a day-to-day basis for REBs, as well as researchers by promoting an archivist to a pivotal

  1. Research-Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment

    ERIC Educational Resources Information Center

    Lorden, Joan F., Ed.; Kuh, Charlotte V., Ed.; Voytuk, James A., Ed.

    2011-01-01

    "Research Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment" examines data on the biomedical sciences programs to gather additional insight about the talent, training environment, outcomes, diversity, and international participation in the biomedical sciences workforce. This report supports an…

  2. A list of highly influential biomedical researchers, 1996-2011.

    PubMed

    Boyack, Kevin W; Klavans, Richard; Sorensen, Aaron A; Ioannidis, John P A

    2013-12-01

    We have generated a list of highly influential biomedical researchers based on Scopus citation data from the period 1996-2011. Of the 15,153,100 author identifiers in Scopus, approximately 1% (n=149,655) have an h-index >=20. Of those, we selected 532 authors who belonged to the 400 with highest total citation count (>=25,142 citations) and/or the 400 with highest h-index (>=76). Of those, we selected the top-400 living core biomedical researchers based on a normalized score combining total citations and h-index. Another 62 authors whose focus is outside biomedicine had a normalized score that was at least as high as the score of the 400th core biomedical researcher. We provide information on the profile of these most influential authors, including the most common Medical Subject Heading terms in their articles that are also specific to their work, most common journals where they publish, number of papers with over 100 citations that they have published as first/single, last, or middle authors, and impact score adjusted for authorship positions, given that crude citation indices and authorship positions are almost totally orthogonal. We also show for each researcher the distribution of their papers across 4 main levels (basic-to-applied) of research. We discuss technical issues, limitations and caveats, comparisons against other lists of highly-cited researchers, and potential uses of this resource. © 2013 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.

  3. [International regulation of ethics committees on biomedical research as protection mechanisms for people: analysis of the Additional Protocol to the Convention on Human Rights and Biomedicine, concerning Biomedical Research of the Council of Europe].

    PubMed

    de Lecuona, Itziar

    2013-01-01

    The article explores and analyses the content of the Council of Europe's Additional Protocol to the Convention on Human Rights and Biomedicine concerning Biomedical Research regarding the standard legal instrument in biomedical research, issued by an international organization with leadership in bioethics. This implies ethics committees are mechanisms of protection of humans in biomedical research and not mere bureaucratic agencies and that a sound inescapable international regulatory framework exists for States to regulate biomedical research. The methodology used focuses on the analysis of the background, the context in which it is made and the nature and scope of the Protocol. It also identifies and analyses the characteristics and functions of ethics committees in biomedical research and, in particular, the information that should be provided to this bodies to develop their functions previously, during and at the end of research projects. This analysis will provide guidelines, suggestions and conclusions for the awareness and training of members of these committees in order to influence the daily practice. This paper may also be of interest to legal practitioners who work in different areas of biomedical research. From this practical perspective, the article examines the legal treatment of the Protocol to meet new challenges and classic issues in research: the treatment of human biological samples, the use of placebos, avoiding double standards, human vulnerability, undue influence and conflicts of interest, among others. Also, from a critical view, this work links the legal responses to develop work procedures that are required for an effective performance of the functions assigned of ethics committees in biomedical research. An existing international legal response that lacks doctrinal standards and provides little support should, however, serve as a guide and standard to develop actions that allow ethics committees -as key bodies for States- to advance in

  4. From biomedical-engineering research to clinical application and industrialization

    NASA Astrophysics Data System (ADS)

    Taguchi, Tetsushi; Aoyagi, Takao

    2012-12-01

    The rising costs and aging of the population due to a low birth rate negatively affect the healthcare system in Japan. In 2011, the Council for Science and Technology Policy released the 4th Japan's Science and Technology Basic Policy Report from 2011 to 2015. This report includes two major innovations, 'Life Innovation' and 'Green Innovation', to promote economic growth. Biomedical engineering research is part of 'Life Innovation' and its outcomes are required to maintain people's mental and physical health. It has already resulted in numerous biomedical products, and new ones should be developed using nanotechnology-based concepts. The combination of accumulated knowledge and experience, and 'nanoarchitechtonics' will result in novel, well-designed functional biomaterials. This focus issue contains three reviews and 19 original papers on various biomedical topics, including biomaterials, drug-delivery systems, tissue engineering and diagnostics. We hope that it demonstrates the importance of collaboration among scientists, engineers and clinicians, and will contribute to the further development of biomedical engineering.

  5. Biomedical and Behavioral Research Scientists: Their Training and Supply. Volume 1: Findings.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Office of Scientific and Engineering Personnel.

    This is the first of three volumes which presents the Committee on Biomedical and Behavioral Research Personnel's examination of the educational process that leads to doctoral degrees in biomedical and behavioral science (and to postdoctoral study in some cases) and the role of the National Research Service Awards (NRSA) training programs in it.…

  6. Seven layers of security to help protect biomedical research facilities.

    PubMed

    Mortell, Norman

    2010-04-01

    In addition to risks such as theft and fire that can confront any type of business, the biomedical research community often faces additional concerns over animal rights extremists, infiltrations, data security and intellectual property rights. Given these concerns, it is not surprising that the industry gives a high priority to security. This article identifies security threats faced by biomedical research companies and shows how these threats are ranked in importance by industry stakeholders. The author then goes on to discuss seven key 'layers' of security, from the external environment to the research facility itself, and how these layers all contribute to the creation of a successfully secured facility.

  7. Maximizing the return on taxpayers' investments in fundamental biomedical research.

    PubMed

    Lorsch, Jon R

    2015-05-01

    The National Institute of General Medical Sciences (NIGMS) at the U.S. National Institutes of Health has an annual budget of more than $2.3 billion. The institute uses these funds to support fundamental biomedical research and training at universities, medical schools, and other institutions across the country. My job as director of NIGMS is to work to maximize the scientific returns on the taxpayers' investments. I describe how we are optimizing our investment strategies and funding mechanisms, and how, in the process, we hope to create a more efficient and sustainable biomedical research enterprise.

  8. A Roadmap for caGrid, an Enterprise Grid Architecture for Biomedical Research

    PubMed Central

    Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Hong, Neil Chue

    2012-01-01

    caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG™) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities. PMID:18560123

  9. A roadmap for caGrid, an enterprise Grid architecture for biomedical research.

    PubMed

    Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Chue Hong, Neil

    2008-01-01

    caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities.

  10. 100 Metrics to Assess and Communicate the Value of Biomedical Research

    PubMed Central

    Guthrie, Susan; Krapels, Joachim; Lichten, Catherine A.; Wooding, Steven

    2017-01-01

    Abstract Biomedical research affects society in many ways. It has been shown to improve health, create jobs, add to our knowledge, and foster new collaborations. Despite the complexity of modern research, many of the metrics used to evaluate the impacts of research still focus on the traditional, often academic, part of the research pathway, covering areas such as the amount of grant funding received and the number of peer-reviewed publications. In response to increasing expectations of accountability and transparency, the Association of American Medical Colleges (AAMC), in collaboration with RAND Europe, undertook a project to help communicate the wider value of biomedical research. The initiative developed resources to support academic medical centers in evaluating the outcomes and impacts of their research using approaches relevant to various stakeholders, including patients, providers, administrators, and legislators. This study presents 100 ideas for metrics that can be used to assess and communicate the value of biomedical research. The list is not comprehensive, and the metrics are not fully developed, but they should serve to stimulate and broaden thinking about how academic medical centers can communicate the value of their research to a broad range of stakeholders. PMID:28983437

  11. From Nonclinical Research to Clinical Trials and Patient-registries: Challenges and Opportunities in Biomedical Research

    PubMed Central

    de la Torre Hernández, José M.; Edelman, Elazer R.

    2018-01-01

    The most important challenge faced by human beings is health. The only way to provide better solutions for health care is innovation, true innovation. The only source of true innovation is research, good research indeed. The pathway from a basic science study to a randomized clinical trial is long and not free of bumps and even landmines. These are all the obstacles and barriers that limit the availability of resources, entangle administrative-regulatory processes, and restrain investigators’ initiatives. There is increasing demand for evidence to guide clinical practice but, paradoxically, biomedical research has become increasingly complex, expensive, and difficult to integrate into clinical care with increased barriers to performing the practical aspects of investigation. We face the challenge of increasing the volume of biomedical research and simultaneously improving the efficiency and output of this research. In this article, we review the main stages and methods of biomedical research, from nonclinical studies with animal and computational models to randomized trials and clinical registries, focusing on their limitations and challenges, but also providing alternative solutions to overcome them. Fortunately, challenges are always opportunities in disguise. PMID:28838647

  12. Latino Beliefs about Biomedical Research Participation: A Qualitative Study on the US-Mexico Border

    PubMed Central

    Ceballos, Rachel; Knerr, Sarah; Scott, Mary Alice; Hohl, Sarah; Malen, Rachel; Vilchis, Hugo; Thompson, Beti

    2015-01-01

    Latinos are under-represented in biomedical research conducted in the United States (US), impeding disease prevention and treatment efforts for this growing demographic group. We gathered perceptions of biomedical research and gauged willingness to participate through elicitation interviews and focus groups with Latinos living on the US-Mexico border. Themes that emerged included a strong willingness to participate in biomedical studies and suggested that Latinos may be under-represented due to limited formal education and access to health information, not distrust. The conflation of research and clinical care was common and motivated participation. Outreach efforts and educational interventions to inform Latinos of participation opportunities and clarify harms and benefits associated with biomedical research participation will be essential to maintain trust within Latino communities. PMID:25747293

  13. Contrasting the ethical perspectives of biospecimen research among individuals with familial risk for hereditary cancer and biomedical researchers: implications for researcher training.

    PubMed

    Quinn, Gwendolyn P; Koskan, Alexis; Sehovic, Ivana; Pal, Tuya; Meade, Cathy; Gwede, Clement K

    2014-07-01

    While ethical concerns about participating in biospecimen research have been previously identified, few studies have reported the concerns among individuals with familial risk for hereditary cancer (IFRs). At the same time, biomedical researchers often lack training in discussing such concerns to potential donors. This study explores IFRs' and biomedical researchers' perceptions of ethical concerns about participating in biobanking research. In separate focus groups, IFRs and biomedical researchers participated in 90-min telephone focus groups. Focus group questions centered on knowledge about laws that protect the confidentiality of biospecimen donors, understanding of informed consent and study procedures, and preferences for being recontacted about potential incidental discovery and also study results. A total of 40 IFRs and 32 biomedical researchers participated in the focus groups. Results demonstrated discrepancies between the perceptions of IFRs and researchers. IFRs' concerns centered on health information protection; potential discrimination by insurers and employers; and preferences for being recontacted upon discovery of gene mutations or to communicate study results. Researchers perceived that participants understood laws protecting donors' privacy and (detailed study information outlined in the informed consent process), study outcomes were used to create a training tool kit to increase researchers' understanding of IFRs' concerns about biobanking.

  14. Funding for U.S. biomedical research: the case for the scientist-advocate.

    PubMed

    Nurse, J T D; Fox, C H

    2012-07-01

    The U.S. biomedical research community finds itself at a particularly consequential moment. Since the end of the Fiscal Year (FY) 1998-2003 NIH budget doubling period, brought to fruition with bipartisan leadership, the Federal investment in biomedical research has been declining. The NIH budget has actually decreased in constant dollars since FY 2004. Across-the-board cuts included in the Budget Control Act of 2011 would result in a loss of $2.4 billion and roughly 2,300 research project grants in FY 2013 alone, unless Congress acts to intervene before January 2013. Many of the beneficiaries of NIH support view advocacy for research funding as "someone else's job". The case to reverse this mindset must be made. Members of Congress and their staffers are open to consideration of the case for sustaining Federal investments in science, even during these difficult budget times. However, the advocacy effort must be broad-based and repeatedly presented to effect change. The figures on economic return from spending on biomedical research are compelling, but they do not tell the entire story. The results of biomedical research improve and save lives every single day, a fact that should not be lost on our elected leaders.

  15. Critical Contexts for Biomedical Research in a Native American Community: Health Care, History, and Community Survival

    ERIC Educational Resources Information Center

    Sahota, Puneet Chawla

    2012-01-01

    Native Americans have been underrepresented in previous studies of biomedical research participants. This paper reports a qualitative interview study of Native Americans' perspectives on biomedical research. In-depth interviews were conducted with 53 members of a Southwest tribal community. Many interviewees viewed biomedical research studies as a…

  16. Effects of an educational intervention on female biomedical scientists' research self-efficacy.

    PubMed

    Bakken, Lori L; Byars-Winston, Angela; Gundermann, Dawn M; Ward, Earlise C; Slattery, Angela; King, Andrea; Scott, Denise; Taylor, Robert E

    2010-05-01

    Women and people of color continue to be underrepresented among biomedical researchers to an alarming degree. Research interest and subsequent productivity have been shown to be affected by the research training environment through the mediating effects of research self-efficacy. This article presents the findings of a study to determine whether a short-term research training program coupled with an efficacy enhancing intervention for novice female biomedical scientists of diverse racial backgrounds would increase their research self-efficacy beliefs. Forty-three female biomedical scientists were randomized into a control or intervention group and 15 men participated as a control group. Research self-efficacy significantly increased for women who participated in the self-efficacy intervention workshop. Research self-efficacy within each group also significantly increased following the short-term research training program, but cross-group comparisons were not significant. These findings suggest that educational interventions that target sources of self-efficacy and provide domain-specific learning experiences are effective at increasing research self-efficacy for women and men. Further studies are needed to determine the longitudinal outcomes of this effort.

  17. Effects of an Educational Intervention on Female Biomedical Scientists’ Research Self-Efficacy

    PubMed Central

    Bakken, Lori L.; Byars-Winston, Angela; Gundermann, Dawn M.; Ward, Earlise C.; Slattery, Angela; King, Andrea; Scott, Denise; Taylor, Robert E.

    2009-01-01

    Women and people of color continue to be underrepresented among biomedical researchers to an alarming degree. Research interest and subsequent productivity have been shown to be affected by the research training environment through the mediating effects of research self-efficacy. This article presents the findings of a study to determine whether a short-term research training program coupled with an efficacy enhancing intervention for novice female biomedical scientists of diverse racial backgrounds would increase their research self-efficacy beliefs. Forty-three female biomedical scientists were randomized into a control or intervention group and 15 men participated as a control group. Research self-efficacy significantly increased for women who participated in the self-efficacy intervention workshop. Research self-efficacy within each group also significantly increased following the short-term research training program, but cross-group comparisons were not significant. These findings suggest that educational interventions that target sources of self-efficacy and provide domain-specific learning experiences are effective at increasing research self-efficacy for women and men. Further studies are needed to determine the longitudinal outcomes of this effort. PMID:19774477

  18. How Do Interaction Experiences Influence Doctoral Students' Academic Pursuits in Biomedical Research?

    ERIC Educational Resources Information Center

    Kong, Xiaoqing; Chakraverty, Devasmita; Jeffe, Donna B.; Andriole, Dorothy A.; Wathington, Heather D.; Tai, Robert H.

    2013-01-01

    This exploratory qualitative study investigated how doctoral students reported their personal and professional interaction experiences that they believed might facilitate or impede their academic pursuits in biomedical research. We collected 19 in-depth interviews with doctoral students in biomedical research from eight universities, and we based…

  19. Addiction research centres and the nurturing of creativity. The Centre for Alcohol and Drug Research: social science alcohol and drug research in Denmark.

    PubMed

    Pedersen, Mads U; Elmeland, Karen; Frank, Vibeke A

    2011-12-01

    The purpose of this paper is to introduce the social science alcohol and drug research undertaken by the Centre for Alcohol and Drug Research (CRF) and at the same time offer an insight into the development in Danish alcohol and drug research throughout the past 15-20 years. A review of articles, books and reports published by researcher from CRF from the mid-1990s until today and an analysis of the policy-making in the Danish substance use and misuse area. CRF is a result of the discussions surrounding social, health and allocation policy questions since the mid-1980s. Among other things, these discussions led to the formal establishment of the Centre in 1991 under the Aarhus University, the Faculty of Social Science. Since 2001 the Centre has received a permanent basic allocation, which has made it possible to appoint tenured senior researchers; to work under a more long-term research strategy; to function as a milieu for educating PhD students; and to diversify from commissioned research tasks to initiating projects involving more fundamental research. Research at the Centre is today pivoted around four core areas: consumption, policy, prevention and treatment. The emergence, continuation, financing and character of the research taking place at CRF can be linked closely to the specific Danish drug and alcohol discourse and to the division of the responsibility for alcohol and drug research into separate Ministries. © 2010 The Authors, Addiction © 2010 Society for the Study of Addiction.

  20. Commercializing biomedical research through securitization techniques.

    PubMed

    Fernandez, Jose-Maria; Stein, Roger M; Lo, Andrew W

    2012-10-01

    Biomedical innovation has become riskier, more expensive and more difficult to finance with traditional sources such as private and public equity. Here we propose a financial structure in which a large number of biomedical programs at various stages of development are funded by a single entity to substantially reduce the portfolio's risk. The portfolio entity can finance its activities by issuing debt, a critical advantage because a much larger pool of capital is available for investment in debt versus equity. By employing financial engineering techniques such as securitization, it can raise even greater amounts of more-patient capital. In a simulation using historical data for new molecular entities in oncology from 1990 to 2011, we find that megafunds of $5–15 billion may yield average investment returns of 8.9–11.4% for equity holders and 5–8% for 'research-backed obligation' holders, which are lower than typical venture-capital hurdle rates but attractive to pension funds, insurance companies and other large institutional investors.

  1. Maximizing the return on taxpayers' investments in fundamental biomedical research

    PubMed Central

    Lorsch, Jon R.

    2015-01-01

    The National Institute of General Medical Sciences (NIGMS) at the U.S. National Institutes of Health has an annual budget of more than $2.3 billion. The institute uses these funds to support fundamental biomedical research and training at universities, medical schools, and other institutions across the country. My job as director of NIGMS is to work to maximize the scientific returns on the taxpayers' investments. I describe how we are optimizing our investment strategies and funding mechanisms, and how, in the process, we hope to create a more efficient and sustainable biomedical research enterprise. PMID:25926703

  2. Alternative methods for the use of non-human primates in biomedical research.

    PubMed

    Burm, Saskia M; Prins, Jan-Bas; Langermans, Jan; Bajramovic, Jeffrey J

    2014-01-01

    The experimental use of non-human primates (NHP) in Europe is tightly regulated and is only permitted when there are no alternatives available. As a result, NHP are most often used in late, pre-clinical phases of biomedical research. Although the impetus for scientists, politicians and the general public to replace, reduce and refine NHP in biomedical research is strong, the development of 3Rs technology for NHP poses specific challenges. In February 2014 a workshop on "Alternative methods for the use of NHP in biomedical research" was organized within the international exchange program of EUPRIM-Net II, a European infrastructure initiative that links biomedical primate research centers. The workshop included lectures by key scientists in the field of alternatives as well as by experts from governmental and non-governmental organizations. Furthermore, parallel sessions were organized to stimulate discussion on the challenges of advancing the use of alternative methods for NHP. Subgroups voted on four statements and together composed a list with opportunities and priorities. This report summarizes the presentations that were held, the content of the discussion sessions and concludes with recommendations on 3Rs development for NHP specifically. These include technical, conceptual as well as political topics.

  3. Designing a mobile augmented reality tool for the locative visualisation of biomedical knowledge.

    PubMed

    Kilby, Jess; Gray, Kathleen; Elliott, Kristine; Waycott, Jenny; Sanchez, Fernando Martin; Dave, Bharat

    2013-01-01

    Mobile augmented reality (MAR) may offer new and engaging ways to support consumer participation in health. We report on design-based research into a MAR application for smartphones and tablets, intended to improve public engagement with biomedical research in a specific urban precinct. Following a review of technical capabilities and organizational and locative design considerations, we worked with staff of four research institutes to elicit their ideas about information and interaction functionalities of a shared MAR app. The results were promising, supporting the development of a prototype and initial field testing with these staff. Evidence from this project may point the way toward user-centred design of MAR services that will enable more widespread adoption of the technology in other healthcare and biomedical research contexts.

  4. Legacy of Biomedical Research During the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Hayes, Judith C.

    2011-01-01

    The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over 30 years and represented the longest and largest US human spaceflight program. Outcomes of the research were understanding the effect of spaceflight on human physiology and performance, countermeasures, operational protocols, and hardware. The Shuttle flights were relatively short, < 16 days and routinely had 4 to 6 crewmembers for a total of 135 flights. Biomedical research was conducted on the Space Shuttle using various vehicle resources. Specially constructed pressurized laboratories called Spacelab and SPACEHAB housed many laboratory instruments to accomplish experiments in the Shuttle s large payload bay. In addition to these laboratory flights, nearly every mission had dedicated human life science research experiments conducted in the Shuttle middeck. Most Shuttle astronauts participated in some life sciences research experiments either as test subjects or test operators. While middeck experiments resulted in a low sample per mission compared to many Earth-based studies, this participation allowed investigators to have repetition of tests over the years on successive Shuttle flights. In addition, as a prelude to the International Space Station (ISS), NASA used the Space Shuttle as a platform for assessing future ISS hardware systems and procedures. The purpose of this panel is to provide an understanding of science integration activities required to implement Shuttle research, review biomedical research, characterize countermeasures developed for Shuttle and ISS as well as discuss lessons learned that may support commercial crew endeavors. Panel topics include research integration, cardiovascular physiology, neurosciences, skeletal muscle, and exercise physiology. Learning Objective: The panel provides an overview from the Space Shuttle Program regarding research integration, scientific results, lessons learned from biomedical research and

  5. Dual-use review policies of biomedical research journals.

    PubMed

    Resnik, David B; Barner, Dionne D; Dinse, Gregg E

    2011-03-01

    To address biosecurity issues, government agencies, academic institutions, and professional societies have developed policies concerning the publication of "dual-use" biomedical research-that is, research that could be readily applied to cause significant harm to the public, the environment, or national security. We conducted an e-mail survey of life science journals to determine the percentage that have a dual-use policy. Of the 155 journals that responded to our survey (response rate 39%), only 7.7% stated that they had a written dual-use policy and only 5.8% said they had experience reviewing dual-use research in the past 5 years. Among the potential predictors we investigated, the one most highly associated with a journal having a written dual-use policy was membership in the Nature Publishing Group (positive association). When considered individually, both previous experience with reviewing dual-use research and the journal's impact factor appeared to be positively associated with having a written dual-use policy, but only the former remained significant after adjusting for publishing group. Although preventing the misuse of scientific research for terrorist or criminal purposes is an important concern, few biomedical journals have dual-use review policies. Journals that are likely to review research that raises potential dual-use concerns should consider developing dual-use policies.

  6. Contrasting the Ethical Perspectives of Biospecimen Research Among Individuals with Familial Risk for Hereditary Cancer and Biomedical Researchers: Implications for Researcher Training

    PubMed Central

    Koskan, Alexis; Sehovic, Ivana; Pal, Tuya; Meade, Cathy; Gwede, Clement K.

    2014-01-01

    While ethical concerns about participating in biospecimen research have been previously identified, few studies have reported the concerns among individuals with familial risk for hereditary cancer (IFRs). At the same time, biomedical researchers often lack training in discussing such concerns to potential donors. This study explores IFRs' and biomedical researchers' perceptions of ethical concerns about participating in biobanking research. In separate focus groups, IFRs and biomedical researchers participated in 90-min telephone focus groups. Focus group questions centered on knowledge about laws that protect the confidentiality of biospecimen donors, understanding of informed consent and study procedures, and preferences for being recontacted about potential incidental discovery and also study results. A total of 40 IFRs and 32 biomedical researchers participated in the focus groups. Results demonstrated discrepancies between the perceptions of IFRs and researchers. IFRs' concerns centered on health information protection; potential discrimination by insurers and employers; and preferences for being recontacted upon discovery of gene mutations or to communicate study results. Researchers perceived that participants understood laws protecting donors' privacy and (detailed study information outlined in the informed consent process), study outcomes were used to create a training tool kit to increase researchers' understanding of IFRs' concerns about biobanking. PMID:24786355

  7. [Big Data: the great opportunities and challenges to microbiome and other biomedical research].

    PubMed

    Xu, Zhenjiang

    2015-02-01

    With the development of high-throughput technologies, biomedical data has been increasing exponentially in an explosive manner. This brings enormous opportunities and challenges to biomedical researchers on how to effectively utilize big data. Big data is different from traditional data in many ways, described as 3Vs - volume, variety and velocity. From the perspective of biomedical research, here I introduced the characteristics of big data, such as its messiness, re-usage and openness. Focusing on microbiome research of meta-analysis, the author discussed the prospective principles in data collection, challenges of privacy protection in data management, and the scalable tools in data analysis with examples from real life.

  8. Social Media and Mentoring in Biomedical Research Faculty Development

    ERIC Educational Resources Information Center

    Teruya, Stacey Alan; Bazargan-Hejazi, Shahrzad

    2014-01-01

    Purpose: To determine how effective and collegial mentoring in biomedical research faculty development may be implemented and facilitated through social media. Method: The authors reviewed the literature for objectives, concerns, and limitations of career development for junior research faculty. They tabularized these as developmental goals, and…

  9. [Metrology research on biomedical engineering publications from China in recent years].

    PubMed

    Yu, Lu; Su, Juan; Wang, Ying; Sha, Xianzheng

    2014-12-01

    The present paper is to evaluate the scientific research level and development trends of biomedical engineering in China using metrology analysis on Chinese biomedical engineering scientific literatures. Pubmed is used to search the biomedical engineering publications in recent 5 years which are indexed by Science Citation Index, and the number and cited times of these publications and the impact factor of the journals are analyzed. The results show that comparing with the world, although the number of the publication in China has increased in recent 5 years, there is still much room for improvement. Among Chinese mainland, Hongkong and Taiwan, Chinese mainland maintains the obvious advantage in this subject, but Hongkong has the highest average cited number. Shanghai and Beijing have better research ability than other areas in Chinese mainland.

  10. Applications submitted and grants awarded to men and women in nationwide biomedical competitive research, in 2006, in Spain

    PubMed Central

    Peiró‐Pérez, Rosana; Colomer‐Revuelta, Concha; Blázquez‐Herranz, Margarita; Gómez‐López, Fernando

    2007-01-01

    Background According to European reports, women participate in research less than men, especially in positions of responsibility. This kind of analysis has not been carried out in Spain in the field of biomedical research. This study describes participation of men and women as grant applicants in two different calls for research funding, held in Spain in 2006. Methods Data collected from grant applicants and from grantees, for two different competitive grant researches areas: human resources and CIBER (Spanish acronym for Biomedical Research Network Centres) have been described by sex. Results The human resources call shows that the number of applications submitted by women is higher (67.8% vs 32.2%), but the percentage of awards are similar (20.3% vs 22.7%), OR = 1.15 (95% CI: 0.82 to 1.62), with no statistical differences, although there are more men in the upper categories (superior technical experts (OR = 1.19 (0.58 to 2.45)) post‐doctoral (OR = 1.36 (0.65 to 2.86)) and research personnel (OR = 1.48 (0.67 to 3.25)). With the CIBER call (senior researchers) there is a clear difference in the number of applicants (women 19.6%, men 80.4%) but the number of awardees is similar (40.3% vs 43.1%) OR = 0.89 (0.65 to 1.34). Conclusions Although there are no statistical differences between women and men, with respect the awards obtained, there is a different pattern to the type of grant application, with fewer women in the more senior call. PMID:18000109

  11. Arab nations lagging behind other Middle Eastern countries in biomedical research: a comparative study

    PubMed Central

    2009-01-01

    Background Analysis of biomedical research and publications in a country or group of countries is used to monitor research progress and trends. This study aims to assess the performance of biomedical research in the Arab world during 2001–2005 and to compare it with other Middle Eastern non-Arab countries. Methods PubMed and Science Citation Index Expanded (SCI-expanded) were searched systematically for the original biomedical research publications and their citation frequencies of 16 Arab nations and three non-Arab Middle Eastern countries (Iran, Israel and Turkey), all of which are classified as middle or high income countries. Results The 16 Arab countries together have 5775 and 14,374 original research articles listed by PubMed and SCI-expanded, respectively, significantly less (p < 0.001) than the other three Middle Eastern countries (25,643 and 49,110). The Arab countries also scored less when the data were normalized to population, gross domestic product (GDP), and GDP/capita. The publications from the Arab countries also have a significantly lower (p < 0.001) citation frequency. Conclusion The Arab world is producing fewer biomedical publications of lower quality than other Middle Eastern countries. Studies are needed to clarify the causes and to propose strategies to improve the biomedical research status in Arab countries. PMID:19374747

  12. Mortality of people with chronic fatigue syndrome: a retrospective cohort study in England and Wales from the South London and Maudsley NHS Foundation Trust Biomedical Research Centre (SLaM BRC) Clinical Record Interactive Search (CRIS) Register.

    PubMed

    Roberts, Emmert; Wessely, Simon; Chalder, Trudie; Chang, Chin-Kuo; Hotopf, Matthew

    2016-04-16

    Mortality associated with chronic fatigue syndrome is uncertain. We investigated mortality in individuals diagnosed with chronic fatigue syndrome in secondary and tertiary care using data from the South London and Maudsley NHS Foundation Trust Biomedical Research Centre (SLaM BRC) Clinical Record Interactive Search (CRIS) register. We calculated standardised mortality ratios (SMRs) for all-cause, suicide-specific, and cancer-specific mortality for a 7-year observation period using the number of deaths observed in SLaM records compared with age-specific and sex-specific mortality statistics for England and Wales. Study participants were included if they had had contact with the chronic fatigue service (referral, discharge, or case note entry) and received a diagnosis of chronic fatigue syndrome. We identified 2147 cases of chronic fatigue syndrome from CRIS and 17 deaths from Jan 1, 2007, to Dec 31, 2013. 1533 patients were women of whom 11 died, and 614 were men of whom six died. There was no significant difference in age-standardised and sex-standardised mortality ratios (SMRs) for all-cause mortality (SMR 1·14, 95% CI 0·65-1·85; p=0·67) or cancer-specific mortality (1·39, 0·60-2·73; p=0·45) in patients with chronic fatigue syndrome when compared with the general population in England and Wales. This remained the case when deaths from suicide were removed from the analysis. There was a significant increase in suicide-specific mortality (SMR 6·85, 95% CI 2·22-15·98; p=0·002). We did not note increased all-cause mortality in people with chronic fatigue syndrome, but our findings show a substantial increase in mortality from suicide. This highlights the need for clinicians to be aware of the increased risk of completed suicide and to assess suicidality adequately in patients with chronic fatigue syndrome. National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London

  13. Medical and biomedical research productivity from Palestine, 2002 – 2011

    PubMed Central

    2013-01-01

    Background Medical research productivity reflects the level of medical education and practice in a particular country. The objective of this study was to examine the quantity and quality of medical and biomedical research published from Palestine. Findings Comprehensive review of the literature indexed by Scopus was conducted. Data from Jan 01, 2002 till December 31, 2011 was searched for authors affiliated with Palestine or Palestinian authority. Results were refined to limit the search to medical and biomedical subjects. The quality of publication was assessed using Journal Citation Report. The total number of publications was 2207. A total of 770 publications were in the medical and biomedical subject areas. The annual rate of publication was 0.077 articles per gross domestic product/capita. The 770 publications have an h-index of 32. One hundred and thirty eight (18%) articles were published in 46 journals that were not indexed in the web of knowledge. Twenty two (22/770; 2.9%) articles were published in journals with an IF > 10. Conclusions The quantity and quality of research originating from Palestinian institutions is promising given the scarce resources of Palestine. However, more effort is needed to bridge the gap in medical research productivity and to promote better health in Palestine. PMID:23375070

  14. ChE Undergraduate Research Projects in Biomedical Engineering.

    ERIC Educational Resources Information Center

    Stroeve, Pieter

    1981-01-01

    Describes an undergraduate research program in biomedical engineering at the State University of New York at Buffalo. Includes goals and faculty comments on the program. Indicates that 58 percent of projects conducted between 1976 and 1980 have been presented at meetings or published. (SK)

  15. Applying environmental product design to biomedical products research.

    PubMed Central

    Messelbeck, J; Sutherland, L

    2000-01-01

    The principal themes for the Biomedical Research and the Environment Conference Committee on Environmental Economics in Biomedical Research include the following: healthcare delivery companies and biomedical research organizations, both nonprofit and for-profit, need to improve their environmental performance; suppliers of healthcare products will be called upon to support this need; and improving the environmental profile of healthcare products begins in research and development (R&D). The committee report begins with requirements from regulatory authorities (e.g., U.S. Environmental Protection Agency [EPA], the U.S. Food and Drug Administration), and the healthcare delivery sector). The 1998 American Hospital Association and EPA Memorandum of Understanding to reduce solid waste and mercury from healthcare facilities is emblematic of these requirements. The dominant message from the requirements discussion is to ensure that R&D organizations do not ignore customer, environmental, and regulatory requirements in the early stages of product development. Several representatives from healthcare products manufacturers presented their companies' approaches to meeting these requirements. They reported on efforts to ensure that their R&D processes are sensitive to the environmental consequences from manufacturing, distributing, using, and disposing of healthcare products. These reports describe representatives' awareness of requirements and the unique approaches their R&D organizations have taken to meet these requirements. All representatives reported that their R&D organizations have embraced environmental product design because it avoids the potential of returning products to R&D to improve the environmental profile. Additionally, several reports detailed cost savings, sustainability benefits, and improvements in environmental manufacturing or redesign, and increased customer satisfaction. Many companies in healthcare delivery are working to improve environmental

  16. Applying environmental product design to biomedical products research.

    PubMed

    Messelbeck, J; Sutherland, L

    2000-12-01

    The principal themes for the Biomedical Research and the Environment Conference Committee on Environmental Economics in Biomedical Research include the following: healthcare delivery companies and biomedical research organizations, both nonprofit and for-profit, need to improve their environmental performance; suppliers of healthcare products will be called upon to support this need; and improving the environmental profile of healthcare products begins in research and development (R&D). The committee report begins with requirements from regulatory authorities (e.g., U.S. Environmental Protection Agency [EPA], the U.S. Food and Drug Administration), and the healthcare delivery sector). The 1998 American Hospital Association and EPA Memorandum of Understanding to reduce solid waste and mercury from healthcare facilities is emblematic of these requirements. The dominant message from the requirements discussion is to ensure that R&D organizations do not ignore customer, environmental, and regulatory requirements in the early stages of product development. Several representatives from healthcare products manufacturers presented their companies' approaches to meeting these requirements. They reported on efforts to ensure that their R&D processes are sensitive to the environmental consequences from manufacturing, distributing, using, and disposing of healthcare products. These reports describe representatives' awareness of requirements and the unique approaches their R&D organizations have taken to meet these requirements. All representatives reported that their R&D organizations have embraced environmental product design because it avoids the potential of returning products to R&D to improve the environmental profile. Additionally, several reports detailed cost savings, sustainability benefits, and improvements in environmental manufacturing or redesign, and increased customer satisfaction. Many companies in healthcare delivery are working to improve environmental

  17. How do scientists perceive the current publication culture? A qualitative focus group interview study among Dutch biomedical researchers.

    PubMed

    Tijdink, J K; Schipper, K; Bouter, L M; Maclaine Pont, P; de Jonge, J; Smulders, Y M

    2016-02-17

    To investigate the biomedical scientist's perception of the prevailing publication culture. Qualitative focus group interview study. Four university medical centres in the Netherlands. Three randomly selected groups of biomedical scientists (PhD, postdoctoral staff members and full professors). Main themes for discussion were selected by participants. Frequently perceived detrimental effects of contemporary publication culture were the strong focus on citation measures (like the Journal Impact Factor and the H-index), gift and ghost authorships and the order of authors, the peer review process, competition, the funding system and publication bias. These themes were generally associated with detrimental and undesirable effects on publication practices and on the validity of reported results. Furthermore, senior scientists tended to display a more cynical perception of the publication culture than their junior colleagues. However, even among the PhD students and the postdoctoral fellows, the sentiment was quite negative. Positive perceptions of specific features of contemporary scientific and publication culture were rare. Our findings suggest that the current publication culture leads to negative sentiments, counterproductive stress levels and, most importantly, to questionable research practices among junior and senior biomedical scientists. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. Biomedical research, a tool to address the health issues that affect African populations

    PubMed Central

    2013-01-01

    Traditionally, biomedical research endeavors in low to middle resources countries have focused on communicable diseases. However, data collected over the past 20 years by the World Health Organization (WHO) show a significant increase in the number of people suffering from non-communicable diseases (e.g. heart disease, diabetes, cancer and pulmonary diseases). Within the coming years, WHO predicts significant decreases in communicable diseases while non-communicable diseases are expected to double in low and middle income countries in sub-Saharan Africa. The predicted increase in the non-communicable diseases population could be economically burdensome for the basic healthcare infrastructure of countries that lack resources to address this emerging disease burden. Biomedical research could stimulate development of healthcare and biomedical infrastructure. If this development is sustainable, it provides an opportunity to alleviate the burden of both communicable and non-communicable diseases through diagnosis, prevention and treatment. In this paper, we discuss how research using biomedical technology, especially genomics, has produced data that enhances the understanding and treatment of both communicable and non-communicable diseases in sub-Saharan Africa. We further discuss how scientific development can provide opportunities to pursue research areas responsive to the African populations. We limit our discussion to biomedical research in the areas of genomics due to its substantial impact on the scientific community in recent years however, we also recognize that targeted investments in other scientific disciplines could also foster further development in African countries. PMID:24143865

  19. 76 FR 1212 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board Panel for Eligibility; Notice of Meeting The Department of Veterans Affairs (VA) gives notice under the Public Law 92-463 (Federal Advisory...

  20. 75 FR 57833 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board; Notice of Meetings The Department of Veterans Affairs gives notice under the Public Law 92-463 (Federal Advisory Committee Act) that...

  1. 76 FR 66367 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board; Notice of Meetings The Department of Veterans Affairs gives notice under the Public Law 92-463 (Federal Advisory Committee Act) that...

  2. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board, Notice of Meeting Amendment The Department of Veterans Affairs (VA) gives notice under the Public Law 92-463 (Federal Advisory Committee Act...

  3. 76 FR 79273 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board Panel for Eligibility, Notice of Meeting The Department of Veterans Affairs (VA) gives notice under Public Law 92-463 (Federal Advisory...

  4. Six essential roles of health promotion research centres: the Atlantic Canada experience

    PubMed Central

    Langille, Lynn L.; Crowell, Sandra J.; Lyons, Renée F.

    2009-01-01

    SUMMARY Over the past 20 years, the federal government and universities across Canada have directed resources towards the development of university-based health promotion research centres. Researchers at health promotion research centres in Canada have produced peer-reviewed papers and policy documents based on their work, but no publications have emerged that focus on the specific roles of the health promotion research centres themselves. The purpose of this paper is to propose a framework, based on an in-depth examination of one centre, to help identify the unique roles of health promotion research centres and to clarify the value they add to promoting health and advancing university goals. Considering the shifting federal discourse on health promotion over time and the vulnerability of social and health sciences to changes in research funding priorities, health promotion research centres in Canada and elsewhere may need to articulate their unique roles and contributions in order to maintain a critical focus on health promotion research. The authors briefly describe the Atlantic Health Promotion Research Centre (AHPRC), propose a framework that illustrates six essential roles of health promotion research centres and describe the policy contexts and challenges of health promotion research centres. The analysis of research and knowledge translation activities over 15 years at AHPRC sheds light on the roles that health promotion research centres play in applied research. The conclusion raises questions regarding the value of university-based research centres and challenges to their sustainability. PMID:19171668

  5. GDRMS: a system for automatic extraction of the disease-centre relation

    NASA Astrophysics Data System (ADS)

    Yang, Ronggen; Zhang, Yue; Gong, Lejun

    2012-01-01

    With the rapidly increasing of biomedical literature, the deluge of new articles is leading to information overload. Extracting the available knowledge from the huge amount of biomedical literature has become a major challenge. GDRMS is developed as a tool that extracts the relationship between disease and gene, gene and gene from biomedical literatures using text mining technology. It is a ruled-based system which also provides disease-centre network visualization, constructs the disease-gene database, and represents a gene engine for understanding the function of the gene. The main focus of GDRMS is to provide a valuable opportunity to explore the relationship between disease and gene for the research community about etiology of disease.

  6. RX for science literacy: The what, where, how, and why of health science research (A teacher`s manual about biomedical research)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, K.S.

    1994-12-31

    When the North Carolina Association for Biomedical Research (NCABR) surveyed the state`s science teachers in March 1993, 92% of those responding requested information related to biomedical research. Most of the teachers requested lesson plans and activities designed to help them give students an accurate and balanced perspective on research. In response to that need, NCABR has recently completed production of a 300-page teacher`s manual that provides an overview of the biomedical research process and describes the role and care of animals in that process. Rx for Science Literacy incorporates background information, lesson plans, handouts and activities to assist teachers inmore » K-12 classrooms. Developed by a science teacher with assistance from science and education experts, the manual captures the complex biomedical research process in an easy-to-follow, easy-to-use format. In North Carolina, NCABR plans to begin these workshops in fall 1994. The workshops will include a tour of a biomedical research laboratory and on-site presentations by bench scientists. Teacher evaluation of the manual will be structured into the workshop program. The manual is available at cost to all interested individuals and organizations.« less

  7. UCSC genome browser: deep support for molecular biomedical research.

    PubMed

    Mangan, Mary E; Williams, Jennifer M; Lathe, Scott M; Karolchik, Donna; Lathe, Warren C

    2008-01-01

    The volume and complexity of genomic sequence data, and the additional experimental data required for annotation of the genomic context, pose a major challenge for display and access for biomedical researchers. Genome browsers organize this data and make it available in various ways to extract useful information to advance research projects. The UCSC Genome Browser is one of these resources. The official sequence data for a given species forms the framework to display many other types of data such as expression, variation, cross-species comparisons, and more. Visual representations of the data are available for exploration. Data can be queried with sequences. Complex database queries are also easily achieved with the Table Browser interface. Associated tools permit additional query types or access to additional data sources such as images of in situ localizations. Support for solving researcher's issues is provided with active discussion mailing lists and by providing updated training materials. The UCSC Genome Browser provides a source of deep support for a wide range of biomedical molecular research (http://genome.ucsc.edu).

  8. How Do Interaction Experiences Influence Doctoral Students’ Academic Pursuits in Biomedical Research?

    PubMed Central

    Kong, Xiaoqing; Chakraverty, Devasmita; Jeffe, Donna B.; Andriole, Dorothy A.; Wathington, Heather D.; Tai, Robert H.

    2014-01-01

    This exploratory qualitative study investigated how doctoral students reported their personal and professional interaction experiences that they believed might facilitate or impede their academic pursuits in biomedical research. We collected 19 in-depth interviews with doctoral students in biomedical research from eight universities, and we based our qualitative analytic approach on the work of Miles and Huberman. The results indicated that among different sources and types of interaction, academic and emotional interactions from family and teachers in various stages essentially affected students’ persistence in the biomedical science field. In addition, co-mentorship among peers, departmental environment, and volunteer experiences were other essential factors. This study also found related experiences among women and underrepresented minority students that were important to their academic pursuit. PMID:26166928

  9. How Do Interaction Experiences Influence Doctoral Students' Academic Pursuits in Biomedical Research?

    PubMed

    Kong, Xiaoqing; Chakraverty, Devasmita; Jeffe, Donna B; Andriole, Dorothy A; Wathington, Heather D; Tai, Robert H

    2013-01-01

    This exploratory qualitative study investigated how doctoral students reported their personal and professional interaction experiences that they believed might facilitate or impede their academic pursuits in biomedical research. We collected 19 in-depth interviews with doctoral students in biomedical research from eight universities, and we based our qualitative analytic approach on the work of Miles and Huberman. The results indicated that among different sources and types of interaction, academic and emotional interactions from family and teachers in various stages essentially affected students' persistence in the biomedical science field. In addition, co-mentorship among peers, departmental environment, and volunteer experiences were other essential factors. This study also found related experiences among women and underrepresented minority students that were important to their academic pursuit.

  10. Unbridle biomedical research from the laboratory cage

    PubMed Central

    Lahvis, Garet P

    2017-01-01

    Many biomedical research studies use captive animals to model human health and disease. However, a surprising number of studies show that the biological systems of animals living in standard laboratory housing are abnormal. To make animal studies more relevant to human health, research animals should live in the wild or be able to roam free in captive environments that offer a natural range of both positive and negative experiences. Recent technological advances now allow us to study freely roaming animals and we should make use of them. PMID:28661398

  11. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board; Notice of Meetings; Amendment The Department of Veterans Affairs (VA) gives notice under the Federal Advisory Committee Act, 5 U.S.C. App...

  12. Gifted Minority High School Students Study Biomedical Research.

    ERIC Educational Resources Information Center

    Bitter, John

    1988-01-01

    A program at Alabama State University seeks to stimulate the interest of academically gifted minority juniors and seniors in biomedical sciences and health professions. Selected students carry out research under the direction of university faculty members, in such areas as salmonella contamination in chicken and acid content in rainwater. (JDD)

  13. Empirically-derived Knowledge on Adolescent Assent to Pediatric Biomedical Research

    PubMed Central

    Brody, Janet L.; Annett, Robert D.; Turner, Charles; Dalen, Jeanne; Yoon, Yesel

    2013-01-01

    Background There has been a recent growth in empirical research on assent with pediatric populations, due in part, to the demand for increased participation of this population in biomedical research. Despite methodological limitations, studies of adolescent capacities to assent have advanced and identified a number of salient psychological and social variables that are key to understanding assent. Methods The authors review a subsection of the empirical literature on adolescent assent focusing primarily on asthma and cancer therapeutic research; adolescent competencies to assent to these studies; perceptions of protocol risk and benefit; the affects of various social context variables on adolescent research participation decision making; and the inter-relatedness of these psychological and social factors. Results Contemporary studies of assent, using multivariate methods and updated approaches to statistical modeling, have revealed the importance of studying the intercorrelation between adolescents’ psychological capacities and their ability to employ these capacities in family and medical decision-making contexts. Understanding these dynamic relationships will enable researchers and ethicists to develop assent procedures that respect the authority of parents, while at the same time accord adolescents appropriate decision-making autonomy. Conclusions Reviews of empirical literature on the assent process reveal that adolescents possess varying capacities for biomedical research participation decision making depending on their maturity and the social context in which the decision is made. The relationship between adolescents and physician-investigators can be used to attenuate concerns about research protocols and clarify risk and benefit information so adolescents, in concert with their families, can make the most informed and ethical decisions. Future assent researchers will be better able to navigate the complicated interplay of contextual and developmental

  14. Dual-Use Review Policies of Biomedical Research Journals

    PubMed Central

    Barner, Dionne D.; Dinse, Gregg E.

    2011-01-01

    To address biosecurity issues, government agencies, academic institutions, and professional societies have developed policies concerning the publication of “dual-use” biomedical research—that is, research that could be readily applied to cause significant harm to the public, the environment, or national security. We conducted an e-mail survey of life science journals to determine the percentage that have a dual-use policy. Of the 155 journals that responded to our survey (response rate 39%), only 7.7% stated that they had a written dual-use policy and only 5.8% said they had experience reviewing dual-use research in the past 5 years. Among the potential predictors we investigated, the one most highly associated with a journal having a written dual-use policy was membership in the Nature Publishing Group (positive association). When considered individually, both previous experience with reviewing dual-use research and the journal's impact factor appeared to be positively associated with having a written dual-use policy, but only the former remained significant after adjusting for publishing group. Although preventing the misuse of scientific research for terrorist or criminal purposes is an important concern, few biomedical journals have dual-use review policies. Journals that are likely to review research that raises potential dual-use concerns should consider developing dual-use policies. PMID:21395429

  15. From the NIH: A Systems Approach to Increasing the Diversity of the Biomedical Research Workforce

    PubMed Central

    Valantine, Hannah A.; Lund, P. Kay; Gammie, Alison E.

    2016-01-01

    The National Institutes of Health (NIH) is committed to attracting, developing, and supporting the best scientists from all groups as an integral part of excellence in training. Biomedical research workforce diversity, capitalizing on the full spectrum of skills, talents, and viewpoints, is essential for solving complex human health challenges. Over the past few decades, the biomedical research workforce has benefited from NIH programs aimed at enhancing diversity. However, there is considerable room for improvement, particularly at the level of independent scientists and within scientific leadership. We provide a rationale and specific opportunities to develop and sustain a diverse biomedical research workforce through interventions that promote the successful transitions to different stages on the path toward completion of training and entry into the biomedical workforce. PMID:27587850

  16. Biomedical research leaders: report on needs, opportunities, difficulties, education and training, and evaluation.

    PubMed Central

    Wilson, S H; Merkle, S; Brown, D; Moskowitz, J; Hurley, D; Brown, D; Bailey, B J; McClain, M; Misenhimer, M; Buckalew, J; Burks, T

    2000-01-01

    The National Association of Physicians for the Environment (NAPE) has assumed a leadership role in protecting environmental health in recent years. The Committee of Biomedical Research Leaders was convened at the recent NAPE Leadership Conference: Biomedical Research and the Environment held on 1--2 November 1999, at the National Institutes of Health, Bethesda, Maryland. This report summarizes the discussion of the committee and its recommendations. The charge to the committee was to raise and address issues that will promote and sustain environmental health, safety, and energy efficiency within the biomedical community. Leaders from every important research sector (industry laboratories, academic health centers and institutes, hospitals and care facilities, Federal laboratories, and community-based research facilities) were gathered in this committee to discuss issues relevant to promoting environmental health. The conference and this report focus on the themes of environmental stewardship, sustainable development and "best greening practices." Environmental stewardship, an emerging theme within and outside the biomedical community, symbolizes the effort to provide an integrated, synthesized, and concerted effort to protect the health of the environment in both the present and the future. The primary goal established by the committee is to promote environmentally responsible leadership in the biomedical research community. Key outcomes of the committee's discussion and deliberation were a) the need for a central organization to evaluate, promote, and oversee efforts in environmental stewardship; and b) immediate need to facilitate efficient information transfer relevant to protecting the global environment through a database/clearinghouse. Means to fulfill these needs are discussed in this report. PMID:11121363

  17. Biomedical research leaders: report on needs, opportunities, difficulties, education and training, and evaluation.

    PubMed

    Wilson, S H; Merkle, S; Brown, D; Moskowitz, J; Hurley, D; Brown, D; Bailey, B J; McClain, M; Misenhimer, M; Buckalew, J; Burks, T

    2000-12-01

    The National Association of Physicians for the Environment (NAPE) has assumed a leadership role in protecting environmental health in recent years. The Committee of Biomedical Research Leaders was convened at the recent NAPE Leadership Conference: Biomedical Research and the Environment held on 1--2 November 1999, at the National Institutes of Health, Bethesda, Maryland. This report summarizes the discussion of the committee and its recommendations. The charge to the committee was to raise and address issues that will promote and sustain environmental health, safety, and energy efficiency within the biomedical community. Leaders from every important research sector (industry laboratories, academic health centers and institutes, hospitals and care facilities, Federal laboratories, and community-based research facilities) were gathered in this committee to discuss issues relevant to promoting environmental health. The conference and this report focus on the themes of environmental stewardship, sustainable development and "best greening practices." Environmental stewardship, an emerging theme within and outside the biomedical community, symbolizes the effort to provide an integrated, synthesized, and concerted effort to protect the health of the environment in both the present and the future. The primary goal established by the committee is to promote environmentally responsible leadership in the biomedical research community. Key outcomes of the committee's discussion and deliberation were a) the need for a central organization to evaluate, promote, and oversee efforts in environmental stewardship; and b) immediate need to facilitate efficient information transfer relevant to protecting the global environment through a database/clearinghouse. Means to fulfill these needs are discussed in this report.

  18. Decision-making and motivation to participate in biomedical research in southwest Nigeria.

    PubMed

    Osamor, Pauline E; Kass, Nancy

    2012-08-01

    Motivations and decision-making styles that influence participation in biomedical research vary across study types, cultures, and countries. While there is a small amount of literature on informed consent in non-western cultures, few studies have examined how participants make the decision to join research. This study was designed to identify the factors motivating people to participate in biomedical research in a traditional Nigerian community, assess the degree to which participants involve others in the decision-making process, and examine issues of autonomy in decision-making for research. A descriptive cross-sectional study was conducted with 100 adults (50 men, 50 women) in an urban Nigerian community who had participated in a biomedical research study. Subjects were interviewed using a survey instrument. Two-thirds of the respondents reported participating in the biomedical study to learn more about their illness, while 30% hoped to get some medical care. Over three-quarters (78%) of participants discussed the enrollment decision with someone else and 39% reported obtaining permission from a spouse or family member to participate in the study. Women were more than twice as likely as men to report obtaining permission from someone else before participating. More specifically, half of the female participants reported seeking permission from a spouse before enrolling. The findings suggest that informed consent in this community is understood and practised as a relational activity that involves others in the decision making process. Further studies are needed in non-Western countries concerning autonomy, decision-making, and motivation to participate in research studies. © 2012 Blackwell Publishing Ltd.

  19. A research education program model to prepare a highly qualified workforce in biomedical and health-related research and increase diversity.

    PubMed

    Crockett, Elahé T

    2014-09-24

    The National Institutes of Health has recognized a compelling need to train highly qualified individuals and promote diversity in the biomedical/clinical sciences research workforce. In response, we have developed a research-training program known as REPID (Research Education Program to Increase Diversity among Health Researchers) to prepare students/learners to pursue research careers in these fields and address the lack of diversity and health disparities. By inclusion of students/learners from minority and diverse backgrounds, the REPID program aims to provide a research training and enrichment experience through team mentoring to inspire students/learners to pursue research careers in biomedical and health-related fields. Students/learners are recruited from the University campus from a diverse population of undergraduates, graduates, health professionals, and lifelong learners. Our recruits first enroll into an innovative on-line introductory course in Basics and Methods in Biomedical Research that uses a laboratory Tool-Kit (a lab in a box called the My Dr. ET Lab Tool-Kit) to receive the standard basics of research education, e.g., research skills, and lab techniques. The students/learners will also learn about the responsible conduct of research, research concept/design, data recording/analysis, and scientific writing/presentation. The course is followed by a 12-week hands-on research experience during the summer. The students/learners also attend workshops and seminars/conferences. The students/learners receive scholarship to cover stipends, research related expenses, and to attend a scientific conference. The scholarship allows the students/learners to gain knowledge and seize opportunities in biomedical and health-related careers. This is an ongoing program, and during the first three years of the program, fifty-one (51) students/learners have been recruited. Thirty-six (36) have completed their research training, and eighty percent (80%) of them have

  20. Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research: scientific and cultural exchange in undergraduate engineering.

    PubMed

    Wisneski, Andrew D; Huang, Lixia; Hong, Bo; Wang, Xiaoqin

    2011-01-01

    A model for an international undergraduate biomedical engineering research exchange program is outlined. In 2008, the Johns Hopkins University in collaboration with Tsinghua University in Beijing, China established the Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research. Undergraduate biomedical engineering students from both universities are offered the opportunity to participate in research at the overseas institution. Programs such as these will not only provide research experiences for undergraduates but valuable cultural exchange and enrichment as well. Currently, strict course scheduling and rigorous curricula in most biomedical engineering programs may present obstacles for students to partake in study abroad opportunities. Universities are encouraged to harbor abroad opportunities for undergraduate engineering students, for which this particular program can serve as a model.

  1. Comparative case study of two biomedical research collaboratories.

    PubMed

    Schleyer, Titus K L; Teasley, Stephanie D; Bhatnagar, Rishi

    2005-10-25

    Working together efficiently and effectively presents a significant challenge in large-scale, complex, interdisciplinary research projects. Collaboratories are a nascent method to help meet this challenge. However, formal collaboratories in biomedical research centers are the exception rather than the rule. The main purpose of this paper is to compare and describe two collaboratories that used off-the-shelf tools and relatively modest resources to support the scientific activity of two biomedical research centers. The two centers were the Great Lakes Regional Center for AIDS Research (HIV/AIDS Center) and the New York University Oral Cancer Research for Adolescent and Adult Health Promotion Center (Oral Cancer Center). In each collaboratory, we used semistructured interviews, surveys, and contextual inquiry to assess user needs and define the technology requirements. We evaluated and selected commercial software applications by comparing their feature sets with requirements and then pilot-testing the applications. Local and remote support staff cooperated in the implementation and end user training for the collaborative tools. Collaboratory staff evaluated each implementation by analyzing utilization data, administering user surveys, and functioning as participant observers. The HIV/AIDS Center primarily required real-time interaction for developing projects and attracting new participants to the center; the Oral Cancer Center, on the other hand, mainly needed tools to support distributed and asynchronous work in small research groups. The HIV/AIDS Center's collaboratory included a center-wide website that also served as the launch point for collaboratory applications, such as NetMeeting, Timbuktu Conference, PlaceWare Auditorium, and iVisit. The collaboratory of the Oral Cancer Center used Groove and Genesys Web conferencing. The HIV/AIDS Center was successful in attracting new scientists to HIV/AIDS research, and members used the collaboratory for developing and

  2. Comparative Case Study of Two Biomedical Research Collaboratories

    PubMed Central

    Teasley, Stephanie D; Bhatnagar, Rishi

    2005-01-01

    Background Working together efficiently and effectively presents a significant challenge in large-scale, complex, interdisciplinary research projects. Collaboratories are a nascent method to help meet this challenge. However, formal collaboratories in biomedical research centers are the exception rather than the rule. Objective The main purpose of this paper is to compare and describe two collaboratories that used off-the-shelf tools and relatively modest resources to support the scientific activity of two biomedical research centers. The two centers were the Great Lakes Regional Center for AIDS Research (HIV/AIDS Center) and the New York University Oral Cancer Research for Adolescent and Adult Health Promotion Center (Oral Cancer Center). Methods In each collaboratory, we used semistructured interviews, surveys, and contextual inquiry to assess user needs and define the technology requirements. We evaluated and selected commercial software applications by comparing their feature sets with requirements and then pilot-testing the applications. Local and remote support staff cooperated in the implementation and end user training for the collaborative tools. Collaboratory staff evaluated each implementation by analyzing utilization data, administering user surveys, and functioning as participant observers. Results The HIV/AIDS Center primarily required real-time interaction for developing projects and attracting new participants to the center; the Oral Cancer Center, on the other hand, mainly needed tools to support distributed and asynchronous work in small research groups. The HIV/AIDS Center’s collaboratory included a center-wide website that also served as the launch point for collaboratory applications, such as NetMeeting, Timbuktu Conference, PlaceWare Auditorium, and iVisit. The collaboratory of the Oral Cancer Center used Groove and Genesys Web conferencing. The HIV/AIDS Center was successful in attracting new scientists to HIV/AIDS research, and members

  3. [Biomedical research from philanthropy to scarcity.

    PubMed

    Addis, Antonio; De Fiore, Luca; Traversa, Giuseppe

    2016-10-01

    Some huge information technology companies have increased investment in biomedical research: recently Google, Microsoft, and Facebook. The latter presented the ambitious Zuckerberg-Chan Initiative involving three major Californian universities: UC San Francisco, Berkeley and Stanford. These important private investments arouse reflections. First, investing in scientific research improves the corporate image of the most generous companies and it is a great marketing strategy. Second, the availability of private funds is surely useful, especially if these funds are directed to relevant projects, and produce studies conducted and disseminated in a transparent way. Third, private funding should not replace public ones, representing an integration that will not likely affect the determination of the research agenda, which should remain the prerogative of public institutions. Fourth, the researchers involved in public funded projects should benefit from the margin of freedom that private industry promises, both in the decision of research pathways and in their course. Finally, the scarcity of resources is likely to divert energy and attention of the public researchers and this aspect should be considered by decision makers when determining size and recipients of research funding.

  4. Outcome of a Workshop on Applications of Protein Models in Biomedical Research

    PubMed Central

    Schwede, Torsten; Sali, Andrej; Honig, Barry; Levitt, Michael; Berman, Helen M.; Jones, David; Brenner, Steven E.; Burley, Stephen K.; Das, Rhiju; Dokholyan, Nikolay V.; Dunbrack, Roland L.; Fidelis, Krzysztof; Fiser, Andras; Godzik, Adam; Huang, Yuanpeng Janet; Humblet, Christine; Jacobson, Matthew P.; Joachimiak, Andrzej; Krystek, Stanley R.; Kortemme, Tanja; Kryshtafovych, Andriy; Montelione, Gaetano T.; Moult, John; Murray, Diana; Sanchez, Roberto; Sosnick, Tobin R.; Standley, Daron M.; Stouch, Terry; Vajda, Sandor; Vasquez, Max; Westbrook, John D.; Wilson, Ian A.

    2009-01-01

    Summary We describe the proceedings and conclusions from a “Workshop on Applications of Protein Models in Biomedical Research” that was held at University of California at San Francisco on 11 and 12 July, 2008. At the workshop, international scientists involved with structure modeling explored (i) how models are currently used in biomedical research, (ii) what the requirements and challenges for different applications are, and (iii) how the interaction between the computational and experimental research communities could be strengthened to advance the field. PMID:19217386

  5. The Biomedical Resource Ontology (BRO) to Enable Resource Discovery in Clinical and Translational Research

    PubMed Central

    Tenenbaum, Jessica D.; Whetzel, Patricia L.; Anderson, Kent; Borromeo, Charles D.; Dinov, Ivo D.; Gabriel, Davera; Kirschner, Beth; Mirel, Barbara; Morris, Tim; Noy, Natasha; Nyulas, Csongor; Rubenson, David; Saxman, Paul R.; Singh, Harpreet; Whelan, Nancy; Wright, Zach; Athey, Brian D.; Becich, Michael J.; Ginsburg, Geoffrey S.; Musen, Mark A.; Smith, Kevin A.; Tarantal, Alice F.; Rubin, Daniel L; Lyster, Peter

    2010-01-01

    The biomedical research community relies on a diverse set of resources, both within their own institutions and at other research centers. In addition, an increasing number of shared electronic resources have been developed. Without effective means to locate and query these resources, it is challenging, if not impossible, for investigators to be aware of the myriad resources available, or to effectively perform resource discovery when the need arises. In this paper, we describe the development and use of the Biomedical Resource Ontology (BRO) to enable semantic annotation and discovery of biomedical resources. We also describe the Resource Discovery System (RDS) which is a federated, inter-institutional pilot project that uses the BRO to facilitate resource discovery on the Internet. Through the RDS framework and its associated Biositemaps infrastructure, the BRO facilitates semantic search and discovery of biomedical resources, breaking down barriers and streamlining scientific research that will improve human health. PMID:20955817

  6. ROLE OF INSTITUTIONAL CLIMATE IN FOSTERING DIVERSITY IN BIOMEDICAL RESEARCH WORKFORCE: A CASE STUDY

    PubMed Central

    Butts, Gary C.; Hurd, Yasmin; Palermo, Ann-Gel S.; Delbrune, Denise; Saran, Suman; Zony, Chati; Krulwich, Terry A.

    2012-01-01

    This article reviews the barriers to diversity in biomedical research, describes the evolution and efforts to address climate issues to enhance the ability to attract, retain and develop underrepresented minorities (URM) - underrepresented minorities whose underrepresentation is found both in science and medicine, in the graduate school biomedical research doctoral programs (PhD and MD/PhD) at Mount Sinai School of Medicine (MSSM). We also describe the potential beneficial impact of having a climate that supports diversity and inclusion in the biomedical research workforce. MSSM diversity climate efforts are discussed as part of a comprehensive plan to increase diversity in all institutional programs PhD, MD/PhD, MD, and at the residency, post doctoral fellow, and faculty levels. Lessons learned from four decades of targeted programs and activities at MSSM may be of value to other institutions interested in improving diversity in the biomedical science and academic medicine workforce. PMID:22786740

  7. Role of institutional climate in fostering diversity in biomedical research workforce: a case study.

    PubMed

    Butts, Gary C; Hurd, Yasmin; Palermo, Ann-Gel S; Delbrune, Denise; Saran, Suman; Zony, Chati; Krulwich, Terry A

    2012-01-01

    This article reviews the barriers to diversity in biomedical research and describes the evolution of efforts to address climate issues to enhance the ability to attract, retain, and develop underrepresented minorities, whose underrepresentation is found both in science and medicine, in the graduate-school biomedical research doctoral programs (PhD and MD/PhD) at Mount Sinai School of Medicine. We also describe the potential beneficial impact of having a climate that supports diversity and inclusion in the biomedical research workforce. The Mount Sinai School of Medicine diversity-climate efforts are discussed as part of a comprehensive plan to increase diversity in all institutional programs: PhD, MD/PhD, and MD, and at the residency, postdoctoral fellow, and faculty levels. Lessons learned from 4 decades of targeted programs and activities at the Mount Sinai School of Medicine may be of value to other institutions interested in improving diversity in the biomedical science and academic medicine workforce. © 2012 Mount Sinai School of Medicine.

  8. Mössbauer spectroscopy in biomedical physics research

    NASA Astrophysics Data System (ADS)

    Zhang, Xiufang

    1994-12-01

    Several applications of Mössbauer spectroscopy (MS) as an analytical tool in research on biomedical physics are reviewed: (1) The evaluation of treatments for some diseases such as thalassemia, iron-overload disease, high altitude polycythemia. (2) Medical research on the effects of environmental factors on the human body, for example, the effects of electromagnetic radiation on human red blood cells (RBCs). Some advantages and weaknesses of MS, a new application of the Mössbauer effect, cancer therapy, and some possible applications such as monitoring the RBCs of the patients before, during, and after surgical operation, are discussed.

  9. Art and science of authorship for biomedical research publication.

    PubMed

    Harsoor, S S

    2016-09-01

    Completion of research is logically followed by process of submission of the outcomes for publication. The objective of this article is to sensitise the young potential authors to improve their skill of writing so that the acceptance rate of publication is improved without significant comments and efforts of the editors of the journal. The article is based on the available literature combined with the experience of the author himself as reviewer and editor of biomedical journals. The treatment patterns of clinicians are moving towards evidence-based medical practice. Hence, a clinically relevant research question based on the contemporary knowledge gap is studied using appropriate research methodology. The writers are informed about the criteria to be fulfilled to claim authorship. Finally, emphasis is laid on the essentials of good medical writing necessary for publication. The writing for submission to biomedical journal is both an art and science in itself. A scientifically well-conducted study along with a sound knowledge of the mechanics of writing will enable the novices to achieve better acceptance rate for publication.

  10. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NSBRI partners with NASA to develop countermeasures against the deleterious effects of long duration space flight. NSBRI's science and technology projects are directed toward this goal, which is accomplished by: 1. Designing, testing and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight. 2. Defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures. 3. Establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level and deliver quality medical care. 4. Transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the general benefit of humankind; including the treatment of patients suffering from gravity- and radiation-related conditions on Earth. and 5. ensuring open involvement of the scientific community,industry and the public in the Institute's activities and fostering a robust collaboration with NASA, particularly through JSC.

  11. Profile: Manhiça Health Research Centre (Manhiça HDSS).

    PubMed

    Sacoor, Charfudin; Nhacolo, Ariel; Nhalungo, Delino; Aponte, John J; Bassat, Quique; Augusto, Orvalho; Mandomando, Inácio; Sacarlal, Jahit; Lauchande, Natu; Sigaúque, Betuel; Alonso, Pedro; Macete, Eusébio; Munguambe, Khátia; Guinovart, Caterina; Aide, Pedro; Menendez, Clara; Acácio, Sozinho; Quelhas, Diana; Sevene, Esperança; Nhampossa, Tacilta

    2013-10-01

    The Manhiça Health Research Centre, established in 1996 in a rural area of southern Mozambique, currently follows around 92 000 individuals living in approximately 20 000 enumerated and geo-positioned households. Its main strength is the possibility of linking demographic data and clinical data to promote and conduct biomedical research in priority health areas. Socio-demographic data are updated twice a year and clinical data are collected on a daily basis. The data collected in Manhiça HDSS comprises household and individual characteristics, household socio-economic assets, vital data, migration, individual health history and cause of death, among others. Studies conducted in this HDSS contributed to guide the health authorities and decision-making bodies to define or adjust health policies such as the introduction of Mozambique's expanded programme of immunization with different vaccines (Haemophilus influenzae type b, Pneumococcus) or the development of the concept of Intermittent Preventive Treatment for Infants (IPTi) that led to the World Health Organization recommendation of this method as best practice for the control of malaria among infants. Manhiça's data can be accessed through a formal request to Diana Quelhas (diana.quelhas@manhica.net) accompanied by a proposal that will be analysed by the Manhiça HDSS internal scientific and ethics committees.

  12. caGrid 1.0: an enterprise Grid infrastructure for biomedical research.

    PubMed

    Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Phillips, Joshua; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel

    2008-01-01

    To develop software infrastructure that will provide support for discovery, characterization, integrated access, and management of diverse and disparate collections of information sources, analysis methods, and applications in biomedical research. An enterprise Grid software infrastructure, called caGrid version 1.0 (caGrid 1.0), has been developed as the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG) program. It is designed to support a wide range of use cases in basic, translational, and clinical research, including 1) discovery, 2) integrated and large-scale data analysis, and 3) coordinated study. The caGrid is built as a Grid software infrastructure and leverages Grid computing technologies and the Web Services Resource Framework standards. It provides a set of core services, toolkits for the development and deployment of new community provided services, and application programming interfaces for building client applications. The caGrid 1.0 was released to the caBIG community in December 2006. It is built on open source components and caGrid source code is publicly and freely available under a liberal open source license. The core software, associated tools, and documentation can be downloaded from the following URL: https://cabig.nci.nih.gov/workspaces/Architecture/caGrid. While caGrid 1.0 is designed to address use cases in cancer research, the requirements associated with discovery, analysis and integration of large scale data, and coordinated studies are common in other biomedical fields. In this respect, caGrid 1.0 is the realization of a framework that can benefit the entire biomedical community.

  13. Southwest Research Institute assistance to NASA in biomedical areas of the technology utilization program

    NASA Technical Reports Server (NTRS)

    Culclasure, D. F.; Sigmon, J. L.; Carter, J. M.

    1973-01-01

    The activities are reported of the NASA Biomedical Applications Team at Southwest Research Institute between 25 August, 1972 and 15 November, 1973. The program background and methodology are discussed along with the technology applications, and biomedical community impacts.

  14. Accelerator mass spectrometry in biomedical research

    NASA Astrophysics Data System (ADS)

    Vogel, J. S.; Turteltaub, K. W.

    1994-06-01

    Biological effects occur in natural systems at chemical concentrations of parts per billion (1:10 9) or less. Affected biomolecules may be separable in only milligram or microgram quantities. Quantification at attomole sensitivity is needed to study these interactions. AMS measures isotope concentrations to parts per 10 13-15 on milligram-sized samples and is ideal for quantifying long-lived radioisotopic labels for tracing biochemical pathways in natural systems. 14C-AMS has now been coupled to a variety of organic separation and definition technologies. Our primary research investigates pharmacokinetics and genotoxicities of toxins and drugs at very low doses. Human subjects research using AMS includes nutrition, toxicity and elemental balance studies. 3H, 41Ca and 26Al are also traced by AMS for fundamental biochemical kinetic research. Expansion of biomedical AMS awaits further development of biochemical and accelerator technologies designed specifically for these applications.

  15. Adolescent Self-Consent for Biomedical Human Immunodeficiency Virus Prevention Research.

    PubMed

    Gilbert, Amy Lewis; Knopf, Amelia S; Fortenberry, J Dennis; Hosek, Sybil G; Kapogiannis, Bill G; Zimet, Gregory D

    2015-07-01

    The Adolescent Medicine Trials Network Protocol 113 (ATN113) is an open-label, multisite demonstration project and Phase II safety study of human immunodeficiency virus (HIV) preexposure prophylaxis with 15- to 17-year-old young men who have sex with men that requires adolescent consent for participation. The purpose of this study was to examine factors related to the process by which Institutional Review Boards (IRBs) and researchers made decisions regarding whether to approve and implement ATN113 so as to inform future biomedical HIV prevention research with high-risk adolescent populations. Participants included 17 researchers at 13 sites in 12 states considering ATN113 implementation. Qualitative descriptive methods were used. Data sources included interviews and documents generated during the initiation process. A common process for initiating ATN113 emerged, and informants described how they identified and addressed practical, ethical, and legal challenges that arose. Informants described the process as responding to the protocol, preparing for IRB submission, abstaining from or proceeding with submission, responding to IRB concerns, and reacting to the outcomes. A complex array of factors impacting approval and implementation were identified, and ATN113 was ultimately implemented in seven of 13 sites. Informants also reflected on lessons learned that may help inform future biomedical HIV prevention research with high-risk adolescent populations. The results illustrate factors for consideration in determining whether to implement such trials, demonstrate that such protocols have the potential to be approved, and highlight a need for clearer standards regarding biomedical HIV prevention research with high-risk adolescent populations. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  16. Eli Lilly and Company's bioethics framework for human biomedical research.

    PubMed

    Van Campen, Luann E; Therasse, Donald G; Klopfenstein, Mitchell; Levine, Robert J

    2015-11-01

    Current ethics and good clinical practice guidelines address various aspects of pharmaceutical research and development, but do not comprehensively address the bioethical responsibilities of sponsors. To fill this void, in 2010 Eli Lilly and Company developed and implemented a Bioethics Framework for Human Biomedical Research to guide ethical decisions. (See our companion article that describes how the framework was developed and implemented and provides a critique of its usefulness and limitations.) This paper presents the actual framework that serves as a company resource for employee education and bioethics deliberations. The framework consists of four basic ethical principles and 13 essential elements for ethical human biomedical research and resides within the context of our company's mission, vision and values. For each component of the framework, we provide a high-level overview followed by a detailed description with cross-references to relevant well regarded guidance documents. The principles and guidance described should be familiar to those acquainted with research ethics. Therefore the novelty of the framework lies not in the foundational concepts presented as much as the attempt to specify and compile a sponsor's bioethical responsibilities to multiple stakeholders into one resource. When such a framework is employed, it can serve as a bioethical foundation to inform decisions and actions throughout clinical planning, trial design, study implementation and closeout, as well as to inform company positions on bioethical issues. The framework is, therefore, a useful tool for translating ethical aspirations into action - to help ensure pharmaceutical human biomedical research is conducted in a manner that aligns with consensus ethics principles, as well as a sponsor's core values.

  17. Biomedical scientists' perception of the social sciences in health research.

    PubMed

    Albert, Mathieu; Laberge, Suzanne; Hodges, Brian D; Regehr, Glenn; Lingard, Lorelei

    2008-06-01

    The growing interest in interdisciplinary research within the Canadian health sciences sector has been manifested by initiatives aimed at increasing the involvement of the social sciences in this sector. Drawing on Bourdieu's concept of field and Knorr-Cetina's concept of epistemic culture, this study explores the extent to which it is possible for the social sciences to integrate into, and thrive in, a field in which the experimental paradigm occupies a hegemonic position. Thirty-one semi-structured interviews were conducted to explore biomedical scientists' receptiveness toward the social sciences in general and to qualitative research in particular. We found that these respondents exhibited a predominantly negative posture toward the social sciences; however, we also found considerable variation in their judgments and explanations. Eight biomedical scientists tended to be receptive to the social sciences, 7 ambivalent, and 16 unreceptive. The main rationale expressed by receptive respondents is that the legitimacy of a method depends on its capacity to adequately respond to a research question and not on its conformity to the experimental canon. Unreceptive respondents maintained that the social sciences cannot generate valid and reliable results because they are not conducive to the experimental design as a methodological approach. Ambivalent respondents were characterized by their cautiously accepting posture toward the social sciences and, especially, by their reservations about qualitative methods. Based on the biomedical scientists' limited receptiveness, we can anticipate that the growth of the social sciences will continue to meet obstacles within the health research field in the near future in Canada.

  18. [Ethics of biomedical research: questions about patient information].

    PubMed

    Moutel, Grégoire

    2013-02-01

    All recommendations and laws concerning biomedical research, including the most recent in France in 2012, emphasize the quality of patient information to justify its participation. To optimize practices, it is important to take into account the central issues: what limits of information? What role for the relatives and family in the decision in case of disability or vulnerability of a patient? What need for specific information for long protocol and follow-up cohort? What information about research results? © 2013 médecine/sciences – Inserm / SRMS.

  19. Women's mental health research: the emergence of a biomedical field.

    PubMed

    Blehar, Mary C

    2006-01-01

    This review surveys the field of women's mental health, with particular emphasis on its evolution into a distinct area of biomedical research. The field employs a biomedical disease model but it also emphasizes social and cultural influences on health outcomes. In recent years, its scope has expanded beyond studies of disorders occurring in women at times of reproductive transitions and it now encompasses a broader study of sex and gender differences. Historical and conceptual influences on the field are discussed. The review also surveys gender differences in the prevalence and clinical manifestations of mental disorders. Epidemiological findings have provided a rich resource for theory development, but without research tools to test theories adequately, findings of gender differences have begged the question of their biological, social, and cultural origins. Clinical depression is used to exemplify the usefulness of a sex/gender perspective in understanding mental illness; and major theories proposed to account for gender differences are critically evaluated. The National Institutes of Health (NIH) is the primary federal funding source for biomedical women's mental health research. The review surveys areas of emphasis in women's mental health research at the NIH as well as some collaborative activities that represent efforts to translate research findings into the public health and services arenas. As new analytic methods become available, it is anticipated that a more fundamental understanding of the biological and behavioral mechanisms underlying sex and gender differences in mental illness will emerge. Nonetheless, it is also likely that integration of findings predicated on different conceptual models of the nature and causes of mental illness will remain a challenge. These issues are discussed with reference to their impact on the field of women's mental health research.

  20. Introduction to Oxidative Stress in Biomedical and Biological Research

    PubMed Central

    Breitenbach, Michael; Eckl, Peter

    2015-01-01

    Oxidative stress is now a well-researched area with thousands of new articles appearing every year. We want to give the reader here an overview of the topics in biomedical and basic oxidative stress research which are covered by the authors of this thematic issue. We also want to give the newcomer a short introduction into some of the basic concepts, definitions and analytical procedures used in this field. PMID:26117854

  1. Importance of intellectual property generated by biomedical research at universities and academic hospitals.

    PubMed

    Heus, Joris J; de Pauw, Elmar S; Leloux, Mirjam; Morpurgo, Margherita; Hamblin, Michael R; Heger, Michal

    2017-01-01

    Biomedical research has many different facets. Researchers and clinicians study disease biology and biochemistry to discover novel therapeutic targets, unravel biochemical pathways and identify biomarkers to improve diagnosis, or devise new approaches to clinically manage diseases more effectively. In all instances, the overall goal of biomedical research is to ensure that results thereof (such as a therapy, a device, or a method which may be broadly referred to as "inventions") are clinically implemented. Most of the researchers' efforts are centered on the advance of technical and scientific aspects of an invention. The development and implementation of an invention can be arduous and very costly. Historically, it has proven to be crucial to protect intellectual property rights (IPR) to an invention (i.e., a patent) to ensure that companies can obtain a fair return on their investment that is needed to develop an academic invention into a product for the benefit of patients. However, the importance of IPR is not generally acknowledged among researchers at academic institutions active in biomedical research. Therefore this paper aims to (1) raise IP awareness amongst clinical and translational researchers; (2) provide a concise overview of what the patenting trajectory entails; and (3) highlight the importance of patenting for research and the researcher. Adequate patent protection of inventions generated through biomedical research at academic institutions increases the probability that patients will benefit from these inventions, and indirectly enables the financing of clinical studies, mainly by opening up funding opportunities (e.g. specific grants aimed at start-ups, pre-seed and seed capital) that otherwise would not be accessible. As a consequence, patented inventions are more likely to become clinically tested and reach the market, providing patients with more treatment options.

  2. Applications of nanotechnology, next generation sequencing and microarrays in biomedical research.

    PubMed

    Elingaramil, Sauli; Li, Xiaolong; He, Nongyue

    2013-07-01

    Next-generation sequencing technologies, microarrays and advances in bio nanotechnology have had an enormous impact on research within a short time frame. This impact appears certain to increase further as many biomedical institutions are now acquiring these prevailing new technologies. Beyond conventional sampling of genome content, wide-ranging applications are rapidly evolving for next-generation sequencing, microarrays and nanotechnology. To date, these technologies have been applied in a variety of contexts, including whole-genome sequencing, targeted re sequencing and discovery of transcription factor binding sites, noncoding RNA expression profiling and molecular diagnostics. This paper thus discusses current applications of nanotechnology, next-generation sequencing technologies and microarrays in biomedical research and highlights the transforming potential these technologies offer.

  3. EuFishBioMed (COST Action BM0804): A European Network to Promote the Use of Small Fishes in Biomedical Research

    PubMed Central

    Bally-Cuif, Laure; Kelsh, Robert; Beis, Dimitris; Mione, Marina; Panula, Pertti; Figueras, Antonio; Gothilf, Yoav; Brösamle, Christian; Geisler, Robert; Knedlitschek, Gudrun

    2012-01-01

    Abstract Small fresh water fishes such as the zebrafish (Danio rerio) have become important model organisms for biomedical research. They currently represent the best vertebrate embryo models in which it is possible to derive quantitative data on gene expression, signaling events, and cell behavior in real time in the living animal. Relevant phenotypes in fish mutants are similar to those of other vertebrate models and human diseases. They can be analyzed in great detail and much faster than in mammals. In recent years, approximately 2500 genetically distinct fish lines have been generated by European research groups alone. Their potential, including their possible use by industry, is far from being exploited. To promote zebrafish research in Europe, EuFishBioMed was founded and won support by the EU COST programme (http://www.cost.esf.org/). The main objective of EuFishBioMed is to establish a platform of knowledge exchange for research on small fish models with a strong focus on widening its biomedical applications and an integration of European research efforts and resources. EuFishBioMed currently lists more than 300 member laboratories in Europe, offers funding for short-term laboratory visits, organizes and co-sponsors meetings and workshops, and has successfully lobbied for the establishment of a European Zebrafish Resource Centre. To maintain this network in the future, beyond the funding period of the COST Action, we are currently establishing the European Society for Fish Models in Biology and Medicine. PMID:22537014

  4. Animals in biomedical space research

    NASA Astrophysics Data System (ADS)

    Phillips, Robert W.

    The use of experimental animals has been a major component of biomedical research progress. Using animals in space presents special problems, but also provides special opportunities. Rat and squirrel monkeys experiments have been planned in concert with human experiments to help answer fundamental questions concerning the effect of weightlessness on mammalian function. For the most part, these experiments focus on identified changes noted in humans during space flight. Utilizing space laboratory facilities, manipulative experiments can be completed while animals are still in orbit. Other experiments are designed to study changes in gravity receptor structure and function and the effect of weightlessness on early vertebrate development. Following these preliminary animals experiments on Spacelab Shuttle flights, longer term programs of animal investigation will be conducted on Space Station.

  5. Development and Validation of the Biomedical Research Trust Scale (BRTS) in English and Spanish.

    PubMed

    Baik, Sharon H; Arevalo, Mariana; Gwede, Clement; Meade, Cathy D; Jacobsen, Paul B; Quinn, Gwendolyn P; Wells, Kristen J

    2016-10-01

    This study developed and validated the Biomedical Research Trust Scale (BRTS), a 10-item measure of global trust in biomedical research, in English and Spanish (BRTS-SP). In total, 85 English- and 85 Spanish-speaking participants completed the BRTS or BRTS-SP, as well as measures of biobanking attitudes, self-efficacy, receptivity, and intentions to donate blood or urine. Results indicated the BRTS and BRTS-SP showed adequate internal consistency in both English and Spanish. In addition, greater levels of trust in biomedical research were significantly associated with greater self-efficacy, receptivity, attitudes, and intentions to donate blood and urine in English-speaking participants, and self-efficacy and intention to donate urine in Spanish-speaking participants. These results support the use of the BRTS and BRTS-SP among English- and Spanish-speaking community members.

  6. Boundary-Work in the Health Research Field: Biomedical and Clinician Scientists' Perceptions of Social Science Research

    ERIC Educational Resources Information Center

    Albert, Mathieu; Laberge, Suzanne; Hodges, Brian D.

    2009-01-01

    Funding agencies in Canada are attempting to break down the organizational boundaries between disciplines to promote interdisciplinary research and foster the integration of the social sciences into the health research field. This paper explores the extent to which biomedical and clinician scientists' perceptions of social science research operate…

  7. Importance of intellectual property generated by biomedical research at universities and academic hospitals

    PubMed Central

    Heus, Joris J.; de Pauw, Elmar S.; Leloux, Mirjam; Morpurgo, Margherita; Hamblin, Michael R; Heger, Michal

    2017-01-01

    Biomedical research has many different facets. Researchers and clinicians study disease biology and biochemistry to discover novel therapeutic targets, unravel biochemical pathways and identify biomarkers to improve diagnosis, or devise new approaches to clinically manage diseases more effectively. In all instances, the overall goal of biomedical research is to ensure that results thereof (such as a therapy, a device, or a method which may be broadly referred to as “inventions”) are clinically implemented. Most of the researchers’ efforts are centered on the advance of technical and scientific aspects of an invention. The development and implementation of an invention can be arduous and very costly. Historically, it has proven to be crucial to protect intellectual property rights (IPR) to an invention (i.e., a patent) to ensure that companies can obtain a fair return on their investment that is needed to develop an academic invention into a product for the benefit of patients. However, the importance of IPR is not generally acknowledged among researchers at academic institutions active in biomedical research. Therefore this paper aims to (1) raise IP awareness amongst clinical and translational researchers; (2) provide a concise overview of what the patenting trajectory entails; and (3) highlight the importance of patenting for research and the researcher. Importance for patients Adequate patent protection of inventions generated through biomedical research at academic institutions increases the probability that patients will benefit from these inventions, and indirectly enables the financing of clinical studies, mainly by opening up funding opportunities (e.g. specific grants aimed at start-ups, pre-seed and seed capital) that otherwise would not be accessible. As a consequence, patented inventions are more likely to become clinically tested and reach the market, providing patients with more treatment options. PMID:29623295

  8. Reasons behind the participation in biomedical research: a brief review.

    PubMed

    Dainesi, Sonia Mansoldo; Goldbaum, Moisés

    2014-12-01

    Clinical research is essential for the advancement of Medicine, especially regarding the development of new drugs. Understanding the reasons behind patients' decision of participating in these studies is critical for the recruitment and retention in the research. To examine the decision-making of participants in biomedical research, taking into account different settings and environments where clinical research is performed. A critical review of the literature was performed through several databases using the keywords: "motivation", "decision", "reason", "biomedical research", "clinical research", "recruitment", "enrollment", "participation", "benefits", "altruism", "decline", "vulnerability" and "ethics", between August and November 2013, in English and in Portuguese. The review pointed out that the reasons can be different according to some characteristics such as the disease being treated, study phase, prognoses and socioeconomic and cultural environment. Access to better health care, personal benefits, financial rewards and altruism are mentioned depending on the circumstances. Finding out more about individuals' reasons for taking part in the research will allow clinical investigators to design studies of greater benefit for the community and will probably help to remove undesirable barriers imposed to participation. Improving the information to health care professionals and patients on the benefits and risks of clinical trials is certainly a good start.

  9. caGrid 1.0: An Enterprise Grid Infrastructure for Biomedical Research

    PubMed Central

    Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Phillips, Joshua; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel

    2008-01-01

    Objective To develop software infrastructure that will provide support for discovery, characterization, integrated access, and management of diverse and disparate collections of information sources, analysis methods, and applications in biomedical research. Design An enterprise Grid software infrastructure, called caGrid version 1.0 (caGrid 1.0), has been developed as the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG™) program. It is designed to support a wide range of use cases in basic, translational, and clinical research, including 1) discovery, 2) integrated and large-scale data analysis, and 3) coordinated study. Measurements The caGrid is built as a Grid software infrastructure and leverages Grid computing technologies and the Web Services Resource Framework standards. It provides a set of core services, toolkits for the development and deployment of new community provided services, and application programming interfaces for building client applications. Results The caGrid 1.0 was released to the caBIG community in December 2006. It is built on open source components and caGrid source code is publicly and freely available under a liberal open source license. The core software, associated tools, and documentation can be downloaded from the following URL: https://cabig.nci.nih.gov/workspaces/Architecture/caGrid. Conclusions While caGrid 1.0 is designed to address use cases in cancer research, the requirements associated with discovery, analysis and integration of large scale data, and coordinated studies are common in other biomedical fields. In this respect, caGrid 1.0 is the realization of a framework that can benefit the entire biomedical community. PMID:18096909

  10. CPTAC Accelerates Precision Proteomics Biomedical Research | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The accurate quantitation of proteins or peptides using Mass Spectrometry (MS) is gaining prominence in the biomedical research community as an alternative method for analyte measurement. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) investigators have been at the forefront in the promotion of reproducible MS techniques, through the development and application of standardized proteomic methods for protein quantitation on biologically relevant samples.

  11. Science communication in the field of fundamental biomedical research (editorial).

    PubMed

    Illingworth, Sam; Prokop, Andreas

    2017-10-01

    The aim of this special issue on science communication is to inspire and help scientists who are taking part or want to take part in science communication and engage with the wider public, clinicians, other scientists or policy makers. For this, some articles provide concise and accessible advice to individual scientists, science networks, or learned societies on how to communicate effectively; others share rationales, objectives and aims, experiences, implementation strategies and resources derived from existing long-term science communication initiatives. Although this issue is primarily addressing scientists working in the field of biomedical research, much of it similarly applies to scientists from other disciplines. Furthermore, we hope that this issue will also be used as a helpful resource by academic science communicators and social scientists, as a collection that highlights some of the major communication challenges that the biomedical sciences face, and which provides interesting case studies of initiatives that use a breadth of strategies to address these challenges. In this editorial, we first discuss why we should communicate our science and contemplate some of the different approaches, aspirations and definitions of science communication. We then address the specific challenges that researchers in the biomedical sciences are faced with when engaging with wider audiences. Finally, we explain the rationales and contents of the different articles in this issue and the various science communication initiatives and strategies discussed in each of them, whilst also providing some information on the wide range of further science communication activities in the biomedical sciences that could not all be covered here. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Youth Research Centre Annual Report, 2002.

    ERIC Educational Resources Information Center

    Melbourne Univ. (Australia). Youth Research Centre.

    This report details the activities of the Youth Research Centre (YRC) at the University of Melbourne in 2002 in research project work involving a balance between the completion of projects, the development of new areas, and the continuation of longer-term projects as well as the supervision and teaching of a range of postgraduate health and…

  13. Changing the Translational Research Landscape: A Review of the Impacts of Biomedical Research Units in England.

    PubMed

    Marjanovic, Sonja; Soper, Bryony; Ismail, Sharif; Reding, Anais; Ling, Tom

    2012-01-01

    This article describes a review of the Biomedical Research Units (BRU) scheme, undertaken for the Department of Health. This review was a perceptions audit of senior executives involved in the scheme, and explored what impact they felt the scheme is having on the translational research landscape. More specifically, we investigated whether and how institutional relationships between NHS and academic partners, industry and other health research system players are changing because of the scheme; how the scheme is helping build critical mass in specific priority disease areas; and the effects of any changes on efforts to deliver the broader goals set out in Best Research for Best Health. The views presented are those of study informants only. The information obtained through our interviews suggests that the BRU scheme is significantly helping shape the health research system to pursue translational research and innovation, with the clear goal of realising patient benefit. The BRUs are already contributing to observable changes in institutional relationships between the NHS and academic partners: trusts and medical schools are collaborating more closely than in the past, have signed up to the same vision of translational research from bench to bedside, and are managing and governing targeted research resources more professionally and transparently than in the past. There is also a stronger emphasis on engaging industry and more strategic thinking about strengthening regional and national collaboration with other hospital trusts, PCTs, research organisations, networks and development agencies. The scheme is also transforming capacity building in the health research system. This includes (i) developing and modernising facilities and equipment for translation; (ii) building a critical mass of human resources through recruitment and training, as well as improving retention of existing expertise; and (iii) helping ensure a steady flow of funds needed to sustain research

  14. Development and Validation of the Biomedical Research Trust Scale (BRTS) in English and Spanish

    PubMed Central

    Baik, Sharon H.; Arevalo, Mariana; Gwede, Clement; Meade, Cathy D.; Jacobsen, Paul B.; Quinn, Gwendolyn P.; Wells, Kristen J.

    2016-01-01

    This study developed and validated the Biomedical Research Trust Scale (BRTS), a 10-item measure of global trust in biomedical research, in English and Spanish (BRTS-SP). In total, 85 English- and 85 Spanish-speaking participants completed the BRTS or BRTS-SP, as well as measures of biobanking attitudes, self-efficacy, receptivity, and intentions to donate blood or urine. Results indicated the BRTS and BRTS-SP showed adequate internal consistency in both English and Spanish. In addition, greater levels of trust in biomedical research were significantly associated with greater self-efficacy, receptivity, attitudes, and intentions to donate blood and urine in English-speaking participants, and self-efficacy and intention to donate urine in Spanish-speaking participants. These results support the use of the BRTS and BRTS-SP among English- and Spanish-speaking community members. PMID:27646400

  15. 100 Metrics to Assess and Communicate the Value of Biomedical Research: An Ideas Book.

    PubMed

    Guthrie, Susan; Krapels, Joachim; Lichten, Catherine A; Wooding, Steven

    2017-01-01

    Biomedical research affects society in many ways. It has been shown to improve health, create jobs, add to our knowledge, and foster new collaborations. Despite the complexity of modern research, many of the metrics used to evaluate the impacts of research still focus on the traditional, often academic, part of the research pathway, covering areas such as the amount of grant funding received and the number of peer-reviewed publications. In response to increasing expectations of accountability and transparency, the Association of American Medical Colleges (AAMC), in collaboration with RAND Europe, undertook a project to help communicate the wider value of biomedical research. The initiative developed resources to support academic medical centers in evaluating the outcomes and impacts of their research using approaches relevant to various stakeholders, including patients, providers, administrators, and legislators. This study presents 100 ideas for metrics that can be used to assess and communicate the value of biomedical research. The list is not comprehensive, and the metrics are not fully developed, but they should serve to stimulate and broaden thinking about how academic medical centers can communicate the value of their research to a broad range of stakeholders.

  16. Biomimicry in biomedical research

    PubMed Central

    Zhang, Ge

    2012-01-01

    Biomimicry (literally defined as the imitation of life or nature) has sparked a variety of human innovations and inspired countless cutting-edge designs. From spider silk-made artificial skin to lotus leaf-inspired self-cleaning materials, biomimicry endeavors to solve human problems. Biomimetic approaches have contributed significantly to advances biomedical research during recent years. Using polyacrylamide gels to mimic the elastic modulus of different biological tissues, Disher’s lab has directed meschymal stem cell differentiation into specific lineages.1 They have shown that soft substrates mimicking the elastic modulus of brain tissues (0.1~1 kPa) were neurogenic, substrates of intermediate elastic modulus mimicking muscle (8 ~17 kPa) were myogenic, and substrates with bone-like elastic modulus (25~40 kPa) were osteogenic. This work represents a novel way to regulate the fate of stem cells and exerts profound influence on stem cell research. Biomimcry also drives improvements in tissue engineering. Novel scaffolds have been designed to capture extracellular matrix-like structures, binding of ligands, sustained release of cytokines, and mechanical properties intrinsic to specific tissues for tissue engineering applications.2,3 For example, tissue engineering skin grafts have been designed to mimic the cell composition and layered structure of native skin.4 Similarly, in the field of regenerative medicine, researchers aim to create biomimetic scaffolds to mimic the properties of a native stem cell environment (niche) to dynamically interact with the entrapped stem cells and direct their response.5 PMID:23275257

  17. The CRC Contribution to Research Training: Report of a Scoping Study for the Cooperative Research Centres Association

    ERIC Educational Resources Information Center

    Palmer, Nigel

    2012-01-01

    This report summarises findings from a scoping study conducted for the Cooperative Research Centres Association (CRCA) by the Centre for the Study of Higher Education. The purpose of the scoping study is to inform the research training activities of Cooperative Research Centres (CRCs). While previous studies have focussed on the outcomes supported…

  18. Architecture of a Biomedical Informatics Research Data Management Pipeline.

    PubMed

    Bauer, Christian R; Umbach, Nadine; Baum, Benjamin; Buckow, Karoline; Franke, Thomas; Grütz, Romanus; Gusky, Linda; Nussbeck, Sara Yasemin; Quade, Matthias; Rey, Sabine; Rottmann, Thorsten; Rienhoff, Otto; Sax, Ulrich

    2016-01-01

    In University Medical Centers, heterogeneous data are generated that cannot always be clearly attributed to patient care or biomedical research. Each data set has to adhere to distinct intrinsic and operational quality standards. However, only if high-quality data, tools to work with the data, and most importantly guidelines and rules of how to work with the data are addressed adequately, an infrastructure can be sustainable. Here, we present the IT Research Architecture of the University Medical Center Göttingen and describe our ten years' experience and lessons learned with infrastructures in networked medical research.

  19. Disadvantages of publishing biomedical research articles in English for non-native speakers of English

    PubMed Central

    Rezaeian, Mohsen

    2015-01-01

    OBJECTIVES: English has become the most frequently used language for scientific communication in the biomedical field. Therefore, scholars from all over the world try to publish their findings in English. This trend has a number of advantages, along with several disadvantages. METHODS: In the current article, the most important disadvantages of publishing biomedical research articles in English for non-native speakers of English are reviewed. RESULTS: The most important disadvantages of publishing biomedical research articles in English for non-native speakers may include: Overlooking, either unintentionally or even deliberately, the most important local health problems; failure to carry out groundbreaking research due to limited medical research budgets; violating generally accepted codes of publication ethics and committing research misconduct and publications in open-access scam/predatory journals rather than prestigious journals. CONCLUSIONS: The above mentioned disadvantages could eventually result in academic establishments becoming irresponsible or, even worse, corrupt. In order to avoid this, scientists, scientific organizations, academic institutions, and scientific associations all over the world should design and implement a wider range of collaborative and comprehensive plans. PMID:25968115

  20. Disadvantages of publishing biomedical research articles in English for non-native speakers of English.

    PubMed

    Rezaeian, Mohsen

    2015-01-01

    English has become the most frequently used language for scientific communication in the biomedical field. Therefore, scholars from all over the world try to publish their findings in English. This trend has a number of advantages, along with several disadvantages. In the current article, the most important disadvantages of publishing biomedical research articles in English for non-native speakers of English are reviewed. The most important disadvantages of publishing biomedical research articles in English for non-native speakers may include: Overlooking, either unintentionally or even deliberately, the most important local health problems; failure to carry out groundbreaking research due to limited medical research budgets; violating generally accepted codes of publication ethics and committing research misconduct and publications in open-access scam/predatory journals rather than prestigious journals. The above mentioned disadvantages could eventually result in academic establishments becoming irresponsible or, even worse, corrupt. In order to avoid this, scientists, scientific organizations, academic institutions, and scientific associations all over the world should design and implement a wider range of collaborative and comprehensive plans.

  1. The NERC Data Assimilation Research Centre and Envisat

    NASA Astrophysics Data System (ADS)

    LAHOZ, W. A.

    2001-12-01

    The NERC Data Assimilation Research Centre (DARC), a Centre of Excellence in Earth Observation, has been recently set up in the UK. DARC is a distributed centre, with participation from the universities of Reading, Oxford, Cambridge and Edinburgh, and the Rutherford Appleton Laboratory. It has strong links with the UK Met Office, and with European data assimilation groups. One of the remits of DARC is the exploitation of research satellite data (e.g. from ESA's Envisat, due to be launched in November 2001). This presentation will describe the participation of DARC in the Envisat programme. This participation involves: (1) the calibration/validation of Envisat data using an NWP assimilation system, and (2) the production of 4-d quality-controlled datasets of temperature, ozone and water vapour from Envisat using an NWP assimilation system.

  2. Observations from the AAMC advisory panel on biomedical research.

    PubMed

    Cohen, D H

    1991-10-01

    The author gives a brief history of the events that led to the establishment of the Association of American Medical Colleges (AAMC) Advisory Panel on Biomedical Research, describes some of its early activities, and discusses some of the issues that the biomedical research community is facing. Specifically, he describes how the competition for research funding that became particularly intense in 1989-90 eroded the well-orchestrated coalition approach to appropriations that had been the norm. Another disturbing development was a growing tension between research faculty and the administrators of their institutions. To address these problems, the author, under the aegis of the AAMC, convened a series of workshops during the summer of 1990 to provide a forum for airing concerns and allowing different groups to become aware of each other's positions and perceptions. These workshops were quite useful and helped in framing some important issues. Also deriving from the workshops was the recognition that a continuing advisory group on research policy was needed; thus the AAMC advisory panel was created. The author describes its unusual characteristics and its importance. Subcommittees were later established to facilitate the effectiveness of the panel. Early in the panel's deliberations it became clear that it was important to bring into the meeting various knowledgeable individuals to educate and interact with panel members. The author concludes by surveying the larger picture of the public's eroding confidence in research universities and higher education in general, the punitive environment that this has created in Congress, the increasingly harsh economic situation, and what these conditions may portend for future research funding.

  3. Effects of an Educational Intervention on Female Biomedical Scientists' Research Self-Efficacy

    ERIC Educational Resources Information Center

    Bakken, Lori L.; Byars-Winston, Angela; Gundermann, Dawn M.; Ward, Earlise C.; Slattery, Angela; King, Andrea; Scott, Denise; Taylor, Robert E.

    2010-01-01

    Women and people of color continue to be underrepresented among biomedical researchers to an alarming degree. Research interest and subsequent productivity have been shown to be affected by the research training environment through the mediating effects of research self-efficacy. This article presents the findings of a study to determine whether a…

  4. Can small institutes address some problems facing biomedical researchers?

    PubMed

    Sheetz, Michael P

    2014-11-01

    At a time of historically low National Institutes of Health funding rates and many problems with the conduct of research (unfunded mandates, disgruntled reviewers, and rampant paranoia), there is a concern that biomedical research as a profession is waning in the United States (see "Rescuing US biomedical research from its systemic flaws" by Alberts and colleagues in the Proceedings of the National Academy of Sciences). However, it is wonderful to discover something new and to tackle tough puzzles. If we could focus more of our effort on discussing scientific problems and doing research, then we could be more productive and perhaps happier. One potential solution is to focus efforts on small thematic institutes in the university structure that can provide a stimulating and supportive environment for innovation and exploration. With an open-lab concept, there are economies of scale that can diminish paperwork and costs, while providing greater access to state-of-the-art equipment. Merging multiple disciplines around a common theme can catalyze innovation, and this enables individuals to develop new concepts without giving up the credit they deserve, because it is usually clear who did the work. Small institutes do not solve larger systemic problems but rather enable collective efforts to address the noisome aspects of the system and foster an innovative community effort to address scientific problems. © 2014 Sheetz.

  5. ReVeaLD: a user-driven domain-specific interactive search platform for biomedical research.

    PubMed

    Kamdar, Maulik R; Zeginis, Dimitris; Hasnain, Ali; Decker, Stefan; Deus, Helena F

    2014-02-01

    Bioinformatics research relies heavily on the ability to discover and correlate data from various sources. The specialization of life sciences over the past decade, coupled with an increasing number of biomedical datasets available through standardized interfaces, has created opportunities towards new methods in biomedical discovery. Despite the popularity of semantic web technologies in tackling the integrative bioinformatics challenge, there are many obstacles towards its usage by non-technical research audiences. In particular, the ability to fully exploit integrated information needs using improved interactive methods intuitive to the biomedical experts. In this report we present ReVeaLD (a Real-time Visual Explorer and Aggregator of Linked Data), a user-centered visual analytics platform devised to increase intuitive interaction with data from distributed sources. ReVeaLD facilitates query formulation using a domain-specific language (DSL) identified by biomedical experts and mapped to a self-updated catalogue of elements from external sources. ReVeaLD was implemented in a cancer research setting; queries included retrieving data from in silico experiments, protein modeling and gene expression. ReVeaLD was developed using Scalable Vector Graphics and JavaScript and a demo with explanatory video is available at http://www.srvgal78.deri.ie:8080/explorer. A set of user-defined graphic rules controls the display of information through media-rich user interfaces. Evaluation of ReVeaLD was carried out as a game: biomedical researchers were asked to assemble a set of 5 challenge questions and time and interactions with the platform were recorded. Preliminary results indicate that complex queries could be formulated under less than two minutes by unskilled researchers. The results also indicate that supporting the identification of the elements of a DSL significantly increased intuitiveness of the platform and usability of semantic web technologies by domain users

  6. Construction of an annotated corpus to support biomedical information extraction

    PubMed Central

    Thompson, Paul; Iqbal, Syed A; McNaught, John; Ananiadou, Sophia

    2009-01-01

    Background Information Extraction (IE) is a component of text mining that facilitates knowledge discovery by automatically locating instances of interesting biomedical events from huge document collections. As events are usually centred on verbs and nominalised verbs, understanding the syntactic and semantic behaviour of these words is highly important. Corpora annotated with information concerning this behaviour can constitute a valuable resource in the training of IE components and resources. Results We have defined a new scheme for annotating sentence-bound gene regulation events, centred on both verbs and nominalised verbs. For each event instance, all participants (arguments) in the same sentence are identified and assigned a semantic role from a rich set of 13 roles tailored to biomedical research articles, together with a biological concept type linked to the Gene Regulation Ontology. To our knowledge, our scheme is unique within the biomedical field in terms of the range of event arguments identified. Using the scheme, we have created the Gene Regulation Event Corpus (GREC), consisting of 240 MEDLINE abstracts, in which events relating to gene regulation and expression have been annotated by biologists. A novel method of evaluating various different facets of the annotation task showed that average inter-annotator agreement rates fall within the range of 66% - 90%. Conclusion The GREC is a unique resource within the biomedical field, in that it annotates not only core relationships between entities, but also a range of other important details about these relationships, e.g., location, temporal, manner and environmental conditions. As such, it is specifically designed to support bio-specific tool and resource development. It has already been used to acquire semantic frames for inclusion within the BioLexicon (a lexical, terminological resource to aid biomedical text mining). Initial experiments have also shown that the corpus may viably be used to train IE

  7. Genome typing of nonhuman primate models: implications for biomedical research.

    PubMed

    Haus, Tanja; Ferguson, Betsy; Rogers, Jeffrey; Doxiadis, Gaby; Certa, Ulrich; Rose, Nicola J; Teepe, Robert; Weinbauer, Gerhard F; Roos, Christian

    2014-11-01

    The success of personalized medicine rests on understanding the genetic variation between individuals. Thus, as medical practice evolves and variation among individuals becomes a fundamental aspect of clinical medicine, a thorough consideration of the genetic and genomic information concerning the animals used as models in biomedical research also becomes critical. In particular, nonhuman primates (NHPs) offer great promise as models for many aspects of human health and disease. These are outbred species exhibiting substantial levels of genetic variation; however, understanding of the contribution of this variation to phenotypes is lagging behind in NHP species. Thus, there is a pivotal need to address this gap and define strategies for characterizing both genomic content and variability within primate models of human disease. Here, we discuss the current state of genomics of NHP models and offer guidelines for future work to ensure continued improvement and utility of this line of biomedical research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Recruiting intergenerational African American males for biomedical research Studies: a major research challenge.

    PubMed

    Byrd, Goldie S; Edwards, Christopher L; Kelkar, Vinaya A; Phillips, Ruth G; Byrd, Jennifer R; Pim-Pong, Dora Som; Starks, Takiyah D; Taylor, Ashleigh L; Mckinley, Raechel E; Li, Yi-Ju; Pericak-Vance, Margaret

    2011-06-01

    The health and well-being of all individuals, independent of race, ethnicity, or gender, is a significant public health concern. Despite many improvements in the status of minority health, African American males continue to have the highest age-adjusted mortality rate of any race-sex group in the United States. Such disparities are accounted for by deaths from a number of diseases such as diabetes, human immunodeficiency virus (HIV), cancer, and cardiovascular disease, as well as by many historical and present social and cultural constructs that present as obstacles to better health outcomes. Distrust of the medical community, inadequate education, low socioeconomic status, social deprivation, and underutilized primary health care services all contribute to disproportionate health and health care outcomes among African Americans compared to their Caucasian counterparts. Results of clinical research on diseases that disproportionately affect African American males are often limited in their reliability due to common sampling errors existing in the majority of biomedical research studies and clinical trials. There are many reasons for underrepresentation of African American males in clinical trials, including their common recollection and interpretation of relevant historical of biomedical events where minorities were abused or exposed to racial discrimination or racist provocation. In addition, African American males continue to be less educated and more disenfranchised from the majority in society than Caucasian males and females and their African American female counterparts. As such, understanding their perceptions, even in early developmental years, about health and obstacles to involvement in research is important. In an effort to understand perspectives about their level of participation, motivation for participation, impact of education, and engagement in research, this study was designed to explore factors that impact their willingness to participate. Our

  9. Fundamental differences between wildlife and biomedical research.

    PubMed

    Sikes, Robert S; Paul, Ellen

    2013-01-01

    Non-human animals have starred in countless productions of biological research. Whether they play the lead or supporting role depends on the nature of the investigation. These differences in the roles of animals affect nearly every facet of animal involvement, including: the choice of species, the sample size, the source of individuals, and the settings in which the animals are used. These roles establish different baselines for animal use that require substantially different ethical considerations. Efficient and appropriate oversight of wildlife research benefits the animals and their investigators. Toward that end, Institutional Animal Care and Use Committee (IACUCs) must appreciate the profound differences between biomedical and wildlife research and recognize the value of the state and federal permitting processes required for wildlife studies. These processes assure us that potential impacts beyond the level of the individual are minimal or are justified. Most importantly, IACUCs must recognize that they, and their investigators, have an obligation to use appropriate guidelines for evaluating wildlife research.

  10. Requirement analysis for an electronic laboratory notebook for sustainable data management in biomedical research.

    PubMed

    Menzel, Julia; Weil, Philipp; Bittihn, Philip; Hornung, Daniel; Mathieu, Nadine; Demiroglu, Sara Y

    2013-01-01

    Sustainable data management in biomedical research requires documentation of metadata for all experiments and results. Scientists usually document research data and metadata in laboratory paper notebooks. An electronic laboratory notebook (ELN) can keep metadata linked to research data resulting in a better understanding of the research results, meaning a scientific benefit [1]. Besides other challenges [2], the biggest hurdles for introducing an ELN seem to be usability, file formats, and data entry mechanisms [3] and that many ELNs are assigned to specific research fields such as biology, chemistry, or physics [4]. We aimed to identify requirements for the introduction of ELN software in a biomedical collaborative research center [5] consisting of different scientific fields and to find software fulfilling most of these requirements.

  11. The Tuskegee Study of Untreated Syphilis and public perceptions of biomedical research: a focus group study.

    PubMed

    Bates, Benjamin R; Harris, Tina M

    2004-08-01

    African Americans are less likely than European Americans to participate in biomedical research. Researchers often attribute nonparticipation to the "Tuskegee effect." Using critical qualitative analysis of focus group data, we examined the public's use of the Tuskegee Study of Untreated Syphilis (TSUS) to discuss biomedical research. Our participants articulated three primary themes in relation to TSUS: 1) that TSUS made them suspicious about biomedical research; 2) that other values had to weigh against concerns about TSUS; and 3) that African Americans could take steps to resolve their concerns about TSUS. African Americans were more likely to discuss TSUS than were European Americans. African Americans did not use TSUS to express simple fear. African Americans suggested issues other than TSUS that influence the decision to participate in research. African Americans indicated specific reforms that would increase participation in research. We discuss how a better understanding of African Americans' use of TSUS can enhance research participation and allay concerns about "another Tuskegee."

  12. The Connectivity Map: a new tool for biomedical research.

    PubMed

    Lamb, Justin

    2007-01-01

    The ultimate objective of biomedical research is to connect human diseases with the genes that underlie them and drugs that treat them. But this remains a daunting task, and even the most inspired researchers still have to resort to laborious screens of genetic or chemical libraries. What if at least some parts of this screening process could be systematized and centralized? And hits found and hypotheses generated with something resembling an internet search engine? These are the questions the Connectivity Map project set out to answer.

  13. NASA's Biomedical Research Program

    NASA Technical Reports Server (NTRS)

    Ahn, Chung-Hae

    1981-01-01

    The biomedical research program has been established to investigate the major physiological and psychological problems encountered by man when he undertakes spaceflight. The program seeks to obtain a better definition of each problem, an understanding of its underlying mechanism, and ultimately a means of prevention. In pursuing these goals the program also includes a major effort to develop the research tools and procedures it needs where these are not being developed elsewhere. After almost twenty years of manned spaceflight activities and after a much longer period of space related ground-based research, the program now recognizes two characteristics of spaceflight which are truly unique to space. These are weightlessness and one specific form of radiation. In its present stage of maturity much of the research focuses on mechanisms underlying the basic responses of man and animals to weightlessness. The program consists of nine elements. Eight of these are referable to specific physiological problems that have either been encountered in previous manned spaceflight or which are anticipated to occur as spaceflights last longer, traverse steeper orbital inclinations, or are otherwise different from previous missions. The ninth addresses problems that have neither arisen nor can be reasonably predicted but are suspected on the basis of theoretical models, ground-based animal research, or for other reasons. The program's current emphasis is directed toward the motion sickness problem because of its relevance to Space Shuttle operations. Increased awareness and understanding of the radiation hazard has resulted in more emphasis being placed on the biological effects of high energy, high mass number particulate radiation and upon radiation protection . Cardiovascular and musculoskeleta1 studies are pursued in recognition of the considerable fundamental knowledge that must be acquired in these areas before effective countermeasures to the effects of repetitive or long

  14. Liberty to decide on dual use biomedical research: an acknowledged necessity.

    PubMed

    Keuleyan, Emma

    2010-03-01

    Humanity entered the twenty-first century with revolutionary achievements in biomedical research. At the same time multiple "dual-use" results have been published. The battle against infectious diseases is meeting new challenges, with newly emerging and re-emerging infections. Both natural disaster epidemics, such as SARS, avian influenza, haemorrhagic fevers, XDR and MDR tuberculosis and many others, and the possibility of intentional mis-use, such as letters containing anthrax spores in USA, 2001, have raised awareness of the real threats. Many great men, including Goethe, Spinoza, J.B. Shaw, Fr. Engels, J.F. Kennedy and others, have recognized that liberty is also a responsibility. That is why the liberty to decide now represents an acknowledged necessity: biomedical research should be supported, conducted and published with appropriate measures to prevent potential "dual use". Biomedical scientists should work according to the ethical principles of their Code of Conduct, an analogue of Hippocrates Oath of doctors; and they should inform government, society and their juniors about the problem. National science consulting boards of experts should be created to prepare guidelines and control the problem at state level. An international board should develop minimum standards to be applicable by each country. Bio-preparedness is considered another key-measure.

  15. Resolving Complex Research Data Management Issues in Biomedical Laboratories: Qualitative Study of an Industry-Academia Collaboration

    PubMed Central

    Myneni, Sahiti; Patel, Vimla L.; Bova, G. Steven; Wang, Jian; Ackerman, Christopher F.; Berlinicke, Cynthia A.; Chen, Steve H.; Lindvall, Mikael; Zack, Donald J.

    2016-01-01

    This paper describes a distributed collaborative effort between industry and academia to systematize data management in an academic biomedical laboratory. Heterogeneous and voluminous nature of research data created in biomedical laboratories make information management difficult and research unproductive. One such collaborative effort was evaluated over a period of four years using data collection methods including ethnographic observations, semi-structured interviews, web-based surveys, progress reports, conference call summaries, and face-to-face group discussions. Data were analyzed using qualitative methods of data analysis to 1) characterize specific problems faced by biomedical researchers with traditional information management practices, 2) identify intervention areas to introduce a new research information management system called Labmatrix, and finally to 3) evaluate and delineate important general collaboration (intervention) characteristics that can optimize outcomes of an implementation process in biomedical laboratories. Results emphasize the importance of end user perseverance, human-centric interoperability evaluation, and demonstration of return on investment of effort and time of laboratory members and industry personnel for success of implementation process. In addition, there is an intrinsic learning component associated with the implementation process of an information management system. Technology transfer experience in a complex environment such as the biomedical laboratory can be eased with use of information systems that support human and cognitive interoperability. Such informatics features can also contribute to successful collaboration and hopefully to scientific productivity. PMID:26652980

  16. Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research: A Multidisciplinary View

    PubMed Central

    2016-01-01

    Background As more and more researchers are turning to big data for new opportunities of biomedical discoveries, machine learning models, as the backbone of big data analysis, are mentioned more often in biomedical journals. However, owing to the inherent complexity of machine learning methods, they are prone to misuse. Because of the flexibility in specifying machine learning models, the results are often insufficiently reported in research articles, hindering reliable assessment of model validity and consistent interpretation of model outputs. Objective To attain a set of guidelines on the use of machine learning predictive models within clinical settings to make sure the models are correctly applied and sufficiently reported so that true discoveries can be distinguished from random coincidence. Methods A multidisciplinary panel of machine learning experts, clinicians, and traditional statisticians were interviewed, using an iterative process in accordance with the Delphi method. Results The process produced a set of guidelines that consists of (1) a list of reporting items to be included in a research article and (2) a set of practical sequential steps for developing predictive models. Conclusions A set of guidelines was generated to enable correct application of machine learning models and consistent reporting of model specifications and results in biomedical research. We believe that such guidelines will accelerate the adoption of big data analysis, particularly with machine learning methods, in the biomedical research community. PMID:27986644

  17. A new paradigm for improved co-ordination and efficacy of European biomedical research: taking diabetes as a model.

    PubMed

    Halban, P A; Boulton, A J M; Smith, U

    2013-03-01

    Today, European biomedical and health-related research is insufficiently well funded and is fragmented, with no common vision, less-than-optimal sharing of resources, and inadequate support and training in clinical research. Improvements to the competitiveness of European biomedical research will depend on the creation of new infrastructures that must be dynamic and free of bureaucracy, involve all stakeholders and facilitate faster delivery of new discoveries from bench to bedside. Taking diabetes research as the model, a new paradigm for European biomedical research is presented, which offers improved co-ordination and common resources that will benefit both academic and industrial clinical research. This includes the creation of a European Council for Health Research, first proposed by the Alliance for Biomedical Research in Europe, which will bring together and consult with all health stakeholders to develop strategic and multidisciplinary research programmes addressing the full innovation cycle. A European Platform for Clinical Research in Diabetes is proposed by the Alliance for European Diabetes Research (EURADIA) in response to the special challenges and opportunities presented by research across the European region, with the need for common standards and shared expertise and data.

  18. Drug knowledge bases and their applications in biomedical informatics research.

    PubMed

    Zhu, Yongjun; Elemento, Olivier; Pathak, Jyotishman; Wang, Fei

    2018-01-03

    Recent advances in biomedical research have generated a large volume of drug-related data. To effectively handle this flood of data, many initiatives have been taken to help researchers make good use of them. As the results of these initiatives, many drug knowledge bases have been constructed. They range from simple ones with specific focuses to comprehensive ones that contain information on almost every aspect of a drug. These curated drug knowledge bases have made significant contributions to the development of efficient and effective health information technologies for better health-care service delivery. Understanding and comparing existing drug knowledge bases and how they are applied in various biomedical studies will help us recognize the state of the art and design better knowledge bases in the future. In addition, researchers can get insights on novel applications of the drug knowledge bases through a review of successful use cases. In this study, we provide a review of existing popular drug knowledge bases and their applications in drug-related studies. We discuss challenges in constructing and using drug knowledge bases as well as future research directions toward a better ecosystem of drug knowledge bases. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Cooperative Research Centres: The Concept and Its Implementation.

    ERIC Educational Resources Information Center

    Slatyer, Ralph O.

    1994-01-01

    Australia's Cooperative Research Centres Program, a system of 52 research and development (R&D) units, links researchers from public and private sectors, helping industry and scientific community coordinate research efforts. The program represents 6% of the national R&D effort and spans six major R&D and industry sectors. (MSE)

  20. Biomedical ontologies: toward scientific debate.

    PubMed

    Maojo, V; Crespo, J; García-Remesal, M; de la Iglesia, D; Perez-Rey, D; Kulikowski, C

    2011-01-01

    Biomedical ontologies have been very successful in structuring knowledge for many different applications, receiving widespread praise for their utility and potential. Yet, the role of computational ontologies in scientific research, as opposed to knowledge management applications, has not been extensively discussed. We aim to stimulate further discussion on the advantages and challenges presented by biomedical ontologies from a scientific perspective. We review various aspects of biomedical ontologies going beyond their practical successes, and focus on some key scientific questions in two ways. First, we analyze and discuss current approaches to improve biomedical ontologies that are based largely on classical, Aristotelian ontological models of reality. Second, we raise various open questions about biomedical ontologies that require further research, analyzing in more detail those related to visual reasoning and spatial ontologies. We outline significant scientific issues that biomedical ontologies should consider, beyond current efforts of building practical consensus between them. For spatial ontologies, we suggest an approach for building "morphospatial" taxonomies, as an example that could stimulate research on fundamental open issues for biomedical ontologies. Analysis of a large number of problems with biomedical ontologies suggests that the field is very much open to alternative interpretations of current work, and in need of scientific debate and discussion that can lead to new ideas and research directions.

  1. Development, implementation and critique of a bioethics framework for pharmaceutical sponsors of human biomedical research.

    PubMed

    Van Campen, Luann E; Therasse, Donald G; Klopfenstein, Mitchell; Levine, Robert J

    2015-11-01

    Pharmaceutical human biomedical research is a multi-dimensional endeavor that requires collaboration among many parties, including those who sponsor, conduct, participate in, or stand to benefit from the research. Human subjects' protections have been promulgated to ensure that the benefits of such research are accomplished with respect for and minimal risk to individual research participants, and with an overall sense of fairness. Although these protections are foundational to clinical research, most ethics guidance primarily highlights the responsibilities of investigators and ethics review boards. Currently, there is no published resource that comprehensively addresses bioethical responsibilities of industry sponsors; including their responsibilities to parties who are not research participants, but are, nevertheless key stakeholders in the endeavor. To fill this void, in 2010 Eli Lilly and Company instituted a Bioethics Framework for Human Biomedical Research. This paper describes how the framework was developed and implemented and provides a critique based on four years of experience. A companion article provides the actual document used by Eli Lilly and Company to guide ethical decisions regarding all phases of human clinical trials. While many of the concepts presented in this framework are not novel, compiling them in a manner that articulates the ethical responsibilities of a sponsor is novel. By utilizing this type of bioethics framework, we have been able to develop bioethics positions on various topics, provide research ethics consultations, and integrate bioethics into the daily operations of our human biomedical research. We hope that by sharing these companion papers we will stimulate discussion within and outside the biopharmaceutical industry for the benefit of the multiple parties involved in pharmaceutical human biomedical research.

  2. Advanced Biomedical Computing Center (ABCC) | DSITP

    Cancer.gov

    The Advanced Biomedical Computing Center (ABCC), located in Frederick Maryland (MD), provides HPC resources for both NIH/NCI intramural scientists and the extramural biomedical research community. Its mission is to provide HPC support, to provide collaborative research, and to conduct in-house research in various areas of computational biology and biomedical research.

  3. NASA Johnson Space Center Biomedical Research Resources

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.

    1999-01-01

    Johnson Space Center (JSC) medical sciences laboratories constitute a national resource for support of medical operations and life sciences research enabling a human presence in space. They play a critical role in evaluating, defining, and mitigation the untoward effect of human adaption to space flight. Over the years they have developed the unique facilities and expertise required to perform: biomedical sample analysis and physiological performance tests supporting medical evaluations of space flight crew members and scientific investigations of the operationally relevant medical, physiological, cellular, and biochemical issues associated with human space flight. A general overview of these laboratories is presented in viewgraph form.

  4. Collaborative mining and interpretation of large-scale data for biomedical research insights.

    PubMed

    Tsiliki, Georgia; Karacapilidis, Nikos; Christodoulou, Spyros; Tzagarakis, Manolis

    2014-01-01

    Biomedical research becomes increasingly interdisciplinary and collaborative in nature. Researchers need to efficiently and effectively collaborate and make decisions by meaningfully assembling, mining and analyzing available large-scale volumes of complex multi-faceted data residing in different sources. In line with related research directives revealing that, in spite of the recent advances in data mining and computational analysis, humans can easily detect patterns which computer algorithms may have difficulty in finding, this paper reports on the practical use of an innovative web-based collaboration support platform in a biomedical research context. Arguing that dealing with data-intensive and cognitively complex settings is not a technical problem alone, the proposed platform adopts a hybrid approach that builds on the synergy between machine and human intelligence to facilitate the underlying sense-making and decision making processes. User experience shows that the platform enables more informed and quicker decisions, by displaying the aggregated information according to their needs, while also exploiting the associated human intelligence.

  5. Collaborative Mining and Interpretation of Large-Scale Data for Biomedical Research Insights

    PubMed Central

    Tsiliki, Georgia; Karacapilidis, Nikos; Christodoulou, Spyros; Tzagarakis, Manolis

    2014-01-01

    Biomedical research becomes increasingly interdisciplinary and collaborative in nature. Researchers need to efficiently and effectively collaborate and make decisions by meaningfully assembling, mining and analyzing available large-scale volumes of complex multi-faceted data residing in different sources. In line with related research directives revealing that, in spite of the recent advances in data mining and computational analysis, humans can easily detect patterns which computer algorithms may have difficulty in finding, this paper reports on the practical use of an innovative web-based collaboration support platform in a biomedical research context. Arguing that dealing with data-intensive and cognitively complex settings is not a technical problem alone, the proposed platform adopts a hybrid approach that builds on the synergy between machine and human intelligence to facilitate the underlying sense-making and decision making processes. User experience shows that the platform enables more informed and quicker decisions, by displaying the aggregated information according to their needs, while also exploiting the associated human intelligence. PMID:25268270

  6. From the NIH: A Systems Approach to Increasing the Diversity of the Biomedical Research Workforce.

    PubMed

    Valantine, Hannah A; Lund, P Kay; Gammie, Alison E

    The National Institutes of Health (NIH) is committed to attracting, developing, and supporting the best scientists from all groups as an integral part of excellence in training. Biomedical research workforce diversity, capitalizing on the full spectrum of skills, talents, and viewpoints, is essential for solving complex human health challenges. Over the past few decades, the biomedical research workforce has benefited from NIH programs aimed at enhancing diversity. However, there is considerable room for improvement, particularly at the level of independent scientists and within scientific leadership. We provide a rationale and specific opportunities to develop and sustain a diverse biomedical research workforce through interventions that promote the successful transitions to different stages on the path toward completion of training and entry into the biomedical workforce. © 2016 H. A. Valantine et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Strategies for Disseminating Information on Biomedical Research on Autism to Hispanic Parents

    PubMed Central

    Lajonchere, Clara M.; Wheeler, Barbara Y.; Valente, Thomas W.; Kreutzer, Cary; Munson, Aron; Narayanan, Shrikanth; Kazemzadeh, Abe; Cruz, Roxana; Martinez, Irene; Schrager, Sheree M.; Schweitzer, Lisa; Chklovski, Tara; Hwang, Darryl

    2015-01-01

    Low income Hispanic families experience multiple barriers to accessing evidence-based information on Autism Spectrum Disorders (ASD). This study utilized a mixed-strategy intervention to create access to information in published bio-medical research articles on ASD by distilling the content into parent-friendly English- and Spanish-language ASD Science Briefs and presenting them to participants using two socially-oriented dissemination methods. There was a main effect for short-term knowledge gains associated with the Science Briefs but no effect for the dissemination method. After 5 months, participants reported utilizing the information learned and 90% wanted to read more Science Briefs. These preliminary findings highlight the potential benefits of distilling biomedical research articles on ASD into parent-friendly educational products for currently underserved Hispanic parents. PMID:26563948

  8. BUILDing BLaST: promoting rural students' biomedical research careers using a culturally responsive, one health approach.

    PubMed

    Taylor, Barbara E; Reynolds, Arleigh J; Etz, Kathy E; MacCalla, Nicole M G; Cotter, Paul A; DeRuyter, Tiffany L; Hueffer, Karsten

    2017-01-01

    Most postsecondary institutions in the state of Alaska (USA) have a broad mission to serve diverse students, many of whom come from schools in rural villages that are accessible only by plane, boat, or snowmobile. The major research university, the University of Alaska in Fairbanks (UAF), serves a population whereby 40% are from groups recognized as underrepresented in the biomedical workforce. The purpose of this article is to describe the Building Infrastructure Leading to Diversity (BUILD)-supported program in the state of Alaska that seeks to engage students from rural areas with a culturally relevant approach that is centered on the One Health paradigm, integrating human, animal, and environmental health. The Biomedical Learning and Student Training (BLaST) program distinguished by broad themes that address recruitment, retention, and success of students in biomedical programs, especially for students from rural backgrounds. Targeted rural outreach emphasizes that biomedical research includes research on the integration of human, animal, and environmental health. This One Health perspective gives personal relevance and connection to biomedical research. This outreach is expected to benefit student recruitment, as well as foster family and community support for pursuit of college degrees. BLaST promotes integration of research into undergraduate curricula through curriculum development, and by creating a new class of instructors, laboratory research and teaching technicians, who provide research mentorship, course instruction, and comprehensive advising. Finally, BLaST facilitates early and sustained undergraduate research experiences in collaborations with graduate students and faculty. BLaST's approach is highly adapted to the Alaskan educational and physical environment, but components and concepts could be adapted to other rural areas as a means to engage students from rural backgrounds, who often have a closer relationship with the natural environment than

  9. NASA Ames Research Center R and D Services Directorate Biomedical Systems Development

    NASA Technical Reports Server (NTRS)

    Pollitt, J.; Flynn, K.

    1999-01-01

    The Ames Research Center R&D Services Directorate teams with NASA, other government agencies and/or industry investigators for the development, design, fabrication, manufacturing and qualification testing of space-flight and ground-based experiment hardware for biomedical and general aerospace applications. In recent years, biomedical research hardware and software has been developed to support space-flight and ground-based experiment needs including the E 132 Biotelemetry system for the Research Animal Holding Facility (RAHF), E 100 Neurolab neuro-vestibular investigation systems, the Autogenic Feedback Systems, and the Standard Interface Glove Box (SIGB) experiment workstation module. Centrifuges, motion simulators, habitat design, environmental control systems, and other unique experiment modules and fixtures have also been developed. A discussion of engineered systems and capabilities will be provided to promote understanding of possibilities for future system designs in biomedical applications. In addition, an overview of existing engineered products will be shown. Examples of hardware and literature that demonstrate the organization's capabilities will be displayed. The Ames Research Center R&D Services Directorate is available to support the development of new hardware and software systems or adaptation of existing systems to meet the needs of academic, commercial/industrial, and government research requirements. The Ames R&D Services Directorate can provide specialized support for: System concept definition and feasibility Mathematical modeling and simulation of system performance Prototype hardware development Hardware and software design Data acquisition systems Graphical user interface development Motion control design Hardware fabrication and high-fidelity machining Composite materials development and application design Electronic/electrical system design and fabrication System performance verification testing and qualification.

  10. A possible biomedical facility at the European Organization for Nuclear Research (CERN).

    PubMed

    Dosanjh, M; Jones, B; Myers, S

    2013-05-01

    A well-attended meeting, called "Brainstorming discussion for a possible biomedical facility at CERN", was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams.

  11. A possible biomedical facility at the European Organization for Nuclear Research (CERN)

    PubMed Central

    Dosanjh, M; Myers, S

    2013-01-01

    A well-attended meeting, called “Brainstorming discussion for a possible biomedical facility at CERN”, was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams. PMID:23549990

  12. Addiction research centres and the nurturing of creativity: The Centre for Alcohol Policy Research (CAPR), Melbourne: a decade on.

    PubMed

    Wilkinson, Claire; Pennay, Amy; MacLean, Sarah; Livingston, Michael; Room, Robin; Hamilton, Margaret; Laslett, Anne-Marie; Jiang, Heng; Callinan, Sarah; Waleewong, Orratai

    2018-03-01

    Established in 2006, the Centre for Alcohol Policy Research (CAPR) is Australia's only research centre with a primary focus on alcohol policy. CAPR has four main areas of research: alcohol policy impacts; alcohol policy formation and regulatory processes involved in implementing alcohol policies; patterns and trends in drinking and alcohol problems in the population; and the influence of drinking norms, cultural practices and social contexts, particularly in interaction with alcohol policies. In this paper, we give examples of key publications in each area. During the past decade, the number of staff employed at CAPR has increased steadily and now hovers at approximately 10. CAPR has supported the development of independent researchers who collaborate on a number of international projects, such as the Alcohol's Harm to Others study which is now replicated in approximately 30 countries. CAPR receives core funding from the Foundation for Alcohol Research and Education, and staff have been highly successful in securing additional competitive research funding. In 2016, CAPR moved to a new institutional setting at La Trobe University and celebrated 10 years of operation. © 2017 Society for the Study of Addiction.

  13. Synergies and Distinctions between Computational Disciplines in Biomedical Research: Perspective from the Clinical and Translational Science Award Programs

    PubMed Central

    Bernstam, Elmer V.; Hersh, William R.; Johnson, Stephen B.; Chute, Christopher G.; Nguyen, Hien; Sim, Ida; Nahm, Meredith; Weiner, Mark; Miller, Perry; DiLaura, Robert P.; Overcash, Marc; Lehmann, Harold P.; Eichmann, David; Athey, Brian D.; Scheuermann, Richard H.; Anderson, Nick; Starren, Justin B.; Harris, Paul A.; Smith, Jack W.; Barbour, Ed; Silverstein, Jonathan C.; Krusch, David A.; Nagarajan, Rakesh; Becich, Michael J.

    2010-01-01

    Clinical and translational research increasingly requires computation. Projects may involve multiple computationally-oriented groups including information technology (IT) professionals, computer scientists and biomedical informaticians. However, many biomedical researchers are not aware of the distinctions among these complementary groups, leading to confusion, delays and sub-optimal results. Although written from the perspective of clinical and translational science award (CTSA) programs within academic medical centers, the paper addresses issues that extend beyond clinical and translational research. The authors describe the complementary but distinct roles of operational IT, research IT, computer science and biomedical informatics using a clinical data warehouse as a running example. In general, IT professionals focus on technology. The authors distinguish between two types of IT groups within academic medical centers: central or administrative IT (supporting the administrative computing needs of large organizations) and research IT (supporting the computing needs of researchers). Computer scientists focus on general issues of computation such as designing faster computers or more efficient algorithms, rather than specific applications. In contrast, informaticians are concerned with data, information and knowledge. Biomedical informaticians draw on a variety of tools, including but not limited to computers, to solve information problems in health care and biomedicine. The paper concludes with recommendations regarding administrative structures that can help to maximize the benefit of computation to biomedical research within academic health centers. PMID:19550198

  14. Improving validity of informed consent for biomedical research in Zambia using a laboratory exposure intervention.

    PubMed

    Zulu, Joseph Mumba; Lisulo, Mpala Mwanza; Besa, Ellen; Kaonga, Patrick; Chisenga, Caroline C; Chomba, Mumba; Simuyandi, Michelo; Banda, Rosemary; Kelly, Paul

    2014-01-01

    Complex biomedical research can lead to disquiet in communities with limited exposure to scientific discussions, leading to rumours or to high drop-out rates. We set out to test an intervention designed to address apprehensions commonly encountered in a community where literacy is uncommon, and where complex biomedical research has been conducted for over a decade. We aimed to determine if it could improve the validity of consent. Data were collected using focus group discussions, key informant interviews and observations. We designed an intervention that exposed participants to a detailed demonstration of laboratory processes. Each group was interviewed twice in a day, before and after exposure to the intervention in order to assess changes in their views. Factors that motivated people to participate in invasive biomedical research included a desire to stay healthy because of the screening during the recruitment process, regular advice from doctors, free medical services, and trust in the researchers. Inhibiting factors were limited knowledge about samples taken from their bodies during endoscopic procedures, the impact of endoscopy on the function of internal organs, and concerns about the use of biomedical samples. The belief that blood can be used for Satanic practices also created insecurities about drawing of blood samples. Further inhibiting factors included a fear of being labelled as HIV positive if known to consult heath workers repeatedly, and gender inequality. Concerns about the use and storage of blood and tissue samples were overcome by a laboratory exposure intervention. Selecting a group of members from target community and engaging them in a laboratory exposure intervention could be a useful tool for enhancing specific aspects of consent for biomedical research. Further work is needed to determine the extent to which improved understanding permeates beyond the immediate group participating in the intervention.

  15. Improving Validity of Informed Consent for Biomedical Research in Zambia Using a Laboratory Exposure Intervention

    PubMed Central

    Zulu, Joseph Mumba; Lisulo, Mpala Mwanza; Besa, Ellen; Kaonga, Patrick; Chisenga, Caroline C.; Chomba, Mumba; Simuyandi, Michelo; Banda, Rosemary; Kelly, Paul

    2014-01-01

    Background Complex biomedical research can lead to disquiet in communities with limited exposure to scientific discussions, leading to rumours or to high drop-out rates. We set out to test an intervention designed to address apprehensions commonly encountered in a community where literacy is uncommon, and where complex biomedical research has been conducted for over a decade. We aimed to determine if it could improve the validity of consent. Methods Data were collected using focus group discussions, key informant interviews and observations. We designed an intervention that exposed participants to a detailed demonstration of laboratory processes. Each group was interviewed twice in a day, before and after exposure to the intervention in order to assess changes in their views. Results Factors that motivated people to participate in invasive biomedical research included a desire to stay healthy because of the screening during the recruitment process, regular advice from doctors, free medical services, and trust in the researchers. Inhibiting factors were limited knowledge about samples taken from their bodies during endoscopic procedures, the impact of endoscopy on the function of internal organs, and concerns about the use of biomedical samples. The belief that blood can be used for Satanic practices also created insecurities about drawing of blood samples. Further inhibiting factors included a fear of being labelled as HIV positive if known to consult heath workers repeatedly, and gender inequality. Concerns about the use and storage of blood and tissue samples were overcome by a laboratory exposure intervention. Conclusion Selecting a group of members from target community and engaging them in a laboratory exposure intervention could be a useful tool for enhancing specific aspects of consent for biomedical research. Further work is needed to determine the extent to which improved understanding permeates beyond the immediate group participating in the intervention

  16. Materials research at CMAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zucchiatti, Alessandro

    2013-07-18

    The Centro de Micro Analisis de Materiales (CMAM) is a research centre of the Universidad Autonoma de Madrid dedicated to the modification and analysis of materials using ion beam techniques. The infrastructure, based on a HVEE 5MV tandem accelerator, provided with a coaxial Cockcroft Walton charging system, is fully open to research groups of the UAM, to other public research institutions and to private enterprises. The CMAM research covers a few important lines such as advanced materials, surface science, biomedical materials, cultural heritage, materials for energy production. The Centre gives as well support to university teaching and technical training. Amore » detail description of the research infrastructures and their use statistics will be given. Some of the main research results will be presented to show the progress of research in the Centre in the past few years and to motivate the strategic plans for the forthcoming.« less

  17. Resolving complex research data management issues in biomedical laboratories: Qualitative study of an industry-academia collaboration.

    PubMed

    Myneni, Sahiti; Patel, Vimla L; Bova, G Steven; Wang, Jian; Ackerman, Christopher F; Berlinicke, Cynthia A; Chen, Steve H; Lindvall, Mikael; Zack, Donald J

    2016-04-01

    This paper describes a distributed collaborative effort between industry and academia to systematize data management in an academic biomedical laboratory. Heterogeneous and voluminous nature of research data created in biomedical laboratories make information management difficult and research unproductive. One such collaborative effort was evaluated over a period of four years using data collection methods including ethnographic observations, semi-structured interviews, web-based surveys, progress reports, conference call summaries, and face-to-face group discussions. Data were analyzed using qualitative methods of data analysis to (1) characterize specific problems faced by biomedical researchers with traditional information management practices, (2) identify intervention areas to introduce a new research information management system called Labmatrix, and finally to (3) evaluate and delineate important general collaboration (intervention) characteristics that can optimize outcomes of an implementation process in biomedical laboratories. Results emphasize the importance of end user perseverance, human-centric interoperability evaluation, and demonstration of return on investment of effort and time of laboratory members and industry personnel for success of implementation process. In addition, there is an intrinsic learning component associated with the implementation process of an information management system. Technology transfer experience in a complex environment such as the biomedical laboratory can be eased with use of information systems that support human and cognitive interoperability. Such informatics features can also contribute to successful collaboration and hopefully to scientific productivity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Single cell biology beyond the era of antibodies: relevance, challenges, and promises in biomedical research.

    PubMed

    Abraham, Parvin; Maliekal, Tessy Thomas

    2017-04-01

    Research of the past two decades has proved the relevance of single cell biology in basic research and translational medicine. Successful detection and isolation of specific subsets is the key to understand their functional heterogeneity. Antibodies are conventionally used for this purpose, but their relevance in certain contexts is limited. In this review, we discuss some of these contexts, posing bottle neck for different fields of biology including biomedical research. With the advancement of chemistry, several methods have been introduced to overcome these problems. Even though microfluidics and microraft array are newer techniques exploited for single cell biology, fluorescence-activated cell sorting (FACS) remains the gold standard technique for isolation of cells for many biomedical applications, like stem cell therapy. Here, we present a comprehensive and comparative account of some of the probes that are useful in FACS. Further, we illustrate how these techniques could be applied in biomedical research. It is postulated that intracellular molecular markers like nucleostemin (GNL3), alkaline phosphatase (ALPL) and HIRA can be used for improving the outcome of cardiac as well as bone regeneration. Another field that could utilize intracellular markers is diagnostics, and we propose the use of specific peptide nucleic acid probes (PNPs) against certain miRNAs for cancer surgical margin prediction. The newer techniques for single cell biology, based on intracellular molecules, will immensely enhance the repertoire of possible markers for the isolation of cell types useful in biomedical research.

  19. Increasing disparities between resource inputs and outcomes, as measured by certain health deliverables, in biomedical research.

    PubMed

    Bowen, Anthony; Casadevall, Arturo

    2015-09-08

    Society makes substantial investments in biomedical research, searching for ways to better human health. The product of this research is principally information published in scientific journals. Continued investment in science relies on society's confidence in the accuracy, honesty, and utility of research results. A recent focus on productivity has dominated the competitive evaluation of scientists, creating incentives to maximize publication numbers, citation counts, and publications in high-impact journals. Some studies have also suggested a decreasing quality in the published literature. The efficiency of society's investments in biomedical research, in terms of improved health outcomes, has not been studied. We show that biomedical research outcomes over the last five decades, as estimated by both life expectancy and New Molecular Entities approved by the Food and Drug Administration, have remained relatively constant despite rising resource inputs and scientific knowledge. Research investments by the National Institutes of Health over this time correlate with publication and author numbers but not with the numerical development of novel therapeutics. We consider several possibilities for the growing input-outcome disparity including the prior elimination of easier research questions, increasing specialization, overreliance on reductionism, a disproportionate emphasis on scientific outputs, and other negative pressures on the scientific enterprise. Monitoring the efficiency of research investments in producing positive societal outcomes may be a useful mechanism for weighing the efficacy of reforms to the scientific enterprise. Understanding the causes of the increasing input-outcome disparity in biomedical research may improve society's confidence in science and provide support for growing future research investments.

  20. Increasing disparities between resource inputs and outcomes, as measured by certain health deliverables, in biomedical research

    PubMed Central

    Bowen, Anthony; Casadevall, Arturo

    2015-01-01

    Society makes substantial investments in biomedical research, searching for ways to better human health. The product of this research is principally information published in scientific journals. Continued investment in science relies on society’s confidence in the accuracy, honesty, and utility of research results. A recent focus on productivity has dominated the competitive evaluation of scientists, creating incentives to maximize publication numbers, citation counts, and publications in high-impact journals. Some studies have also suggested a decreasing quality in the published literature. The efficiency of society’s investments in biomedical research, in terms of improved health outcomes, has not been studied. We show that biomedical research outcomes over the last five decades, as estimated by both life expectancy and New Molecular Entities approved by the Food and Drug Administration, have remained relatively constant despite rising resource inputs and scientific knowledge. Research investments by the National Institutes of Health over this time correlate with publication and author numbers but not with the numerical development of novel therapeutics. We consider several possibilities for the growing input-outcome disparity including the prior elimination of easier research questions, increasing specialization, overreliance on reductionism, a disproportionate emphasis on scientific outputs, and other negative pressures on the scientific enterprise. Monitoring the efficiency of research investments in producing positive societal outcomes may be a useful mechanism for weighing the efficacy of reforms to the scientific enterprise. Understanding the causes of the increasing input-outcome disparity in biomedical research may improve society’s confidence in science and provide support for growing future research investments. PMID:26283360

  1. Biomedical Research Group, Health Division annual report 1954

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langham, W.H.; Storer, J.B.

    1955-12-31

    This report covers the activities of the Biomedical Research Group (H-4) of the Health Division during the period January 1 through December 31, 1954. Organizationally, Group H-4 is divided into five sections, namely, Biochemistry, Radiobiology, Radiopathology, Biophysics, and Organic Chemistry. The activities of the Group are summarized under the headings of the various sections. The general nature of each section`s program, publications, documents and reports originating from its members, and abstracts and summaries of the projects pursued during the year are presented.

  2. Text mining patents for biomedical knowledge.

    PubMed

    Rodriguez-Esteban, Raul; Bundschus, Markus

    2016-06-01

    Biomedical text mining of scientific knowledge bases, such as Medline, has received much attention in recent years. Given that text mining is able to automatically extract biomedical facts that revolve around entities such as genes, proteins, and drugs, from unstructured text sources, it is seen as a major enabler to foster biomedical research and drug discovery. In contrast to the biomedical literature, research into the mining of biomedical patents has not reached the same level of maturity. Here, we review existing work and highlight the associated technical challenges that emerge from automatically extracting facts from patents. We conclude by outlining potential future directions in this domain that could help drive biomedical research and drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Design of e-Science platform for biomedical imaging research cross multiple academic institutions and hospitals

    NASA Astrophysics Data System (ADS)

    Zhang, Jianguo; Zhang, Kai; Yang, Yuanyuan; Ling, Tonghui; Wang, Tusheng; Wang, Mingqing; Hu, Haibo; Xu, Xuemin

    2012-02-01

    More and more image informatics researchers and engineers are considering to re-construct imaging and informatics infrastructure or to build new framework to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment. In this presentation, we show an outline and our preliminary design work of building an e-Science platform for biomedical imaging and informatics research and application in Shanghai. We will present our consideration and strategy on designing this platform, and preliminary results. We also will discuss some challenges and solutions in building this platform.

  4. Biomedical informatics research network: building a national collaboratory to hasten the derivation of new understanding and treatment of disease.

    PubMed

    Grethe, Jeffrey S; Baru, Chaitan; Gupta, Amarnath; James, Mark; Ludaescher, Bertram; Martone, Maryann E; Papadopoulos, Philip M; Peltier, Steven T; Rajasekar, Arcot; Santini, Simone; Zaslavsky, Ilya N; Ellisman, Mark H

    2005-01-01

    Through support from the National Institutes of Health's National Center for Research Resources, the Biomedical Informatics Research Network (BIRN) is pioneering the use of advanced cyberinfrastructure for medical research. By synchronizing developments in advanced wide area networking, distributed computing, distributed database federation, and other emerging capabilities of e-science, the BIRN has created a collaborative environment that is paving the way for biomedical research and clinical information management. The BIRN Coordinating Center (BIRN-CC) is orchestrating the development and deployment of key infrastructure components for immediate and long-range support of biomedical and clinical research being pursued by domain scientists in three neuroimaging test beds.

  5. Creating a Controlled Vocabulary for the Ethics of Human Research: Towards a Biomedical Ethics Ontology

    PubMed Central

    Koepsell, David; Arp, Robert; Fostel, Jennifer; Smith, Barry

    2009-01-01

    Ontologies describe reality in specific domains in ways that can bridge various disciplines and languages. They allow easier access and integration of information that is collected by different groups. Ontologies are currently used in the biomedical sciences, geography, and law. A Biomedical Ethics Ontology (BMEO) would benefit members of ethics committees who deal with protocols and consent forms spanning numerous fields of inquiry. There already exists the Ontology for Biomedical Investigations (OBI); the proposed BMEO would interoperate with OBI, creating a powerful information tool. We define a domain ontology and begin to construct a BMEO, focused on the process of evaluating human research protocols. Finally, we show how our BMEO can have practical applications for ethics committees. This paper describes ongoing research and a strategy for its broader continuation and cooperation. PMID:19374479

  6. Mediator infrastructure for information integration and semantic data integration environment for biomedical research.

    PubMed

    Grethe, Jeffrey S; Ross, Edward; Little, David; Sanders, Brian; Gupta, Amarnath; Astakhov, Vadim

    2009-01-01

    This paper presents current progress in the development of semantic data integration environment which is a part of the Biomedical Informatics Research Network (BIRN; http://www.nbirn.net) project. BIRN is sponsored by the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). A goal is the development of a cyberinfrastructure for biomedical research that supports advance data acquisition, data storage, data management, data integration, data mining, data visualization, and other computing and information processing services over the Internet. Each participating institution maintains storage of their experimental or computationally derived data. Mediator-based data integration system performs semantic integration over the databases to enable researchers to perform analyses based on larger and broader datasets than would be available from any single institution's data. This paper describes recent revision of the system architecture, implementation, and capabilities of the semantically based data integration environment for BIRN.

  7. How the UK Can Lead the Terrestrial Translation of Biomedical Advances Arising from Lunar Exploration Activities

    NASA Astrophysics Data System (ADS)

    Green, David A.

    2010-12-01

    biomedical science activities would retain mission critically (and thus avoid obsolesce) so long as a human is involved (irrespective of specific mission architecture) and could be used to leverage opportunities for UK-based institutions, companies and individuals, most notably current ESA astronaut candidate Major Tim Peake. A combination of ESA engagement and national support for space biomedical sciences via research councils (e.g. Medical Research Council) could facilitate a virtuous circle of investment, advancement and socio-economic return invigorating the NHS, education, and key research initiatives such as ESA Harwell, UK Centre for Medical Research and Innovation, and the newly instigated Academic Health Science Centres. Such a strategy could also boost private space enterprise within the UK including the creation of a space port and could help retain the UK's position as a European aerospace transportation, services and legislative hub. By focusing upon its biomedical strength within a multi-faceted but co-ordinated strategy of engagement, the UK could reap significant socio-economic benefits for the UK and its citizens, be they on the Moon, or the Earth.

  8. Insights on compassion and patient-centred nursing in intensive care: A constructivist grounded theory.

    PubMed

    Jakimowicz, Samantha; Perry, Lin; Lewis, Joanne

    2018-04-01

    To explore patient-centred nursing, compassion satisfaction and compassion fatigue from intensive care nurses' perspectives. Compassion satisfaction and compassion fatigue can influence critical care nurses' decisions to either continue or leave the profession, and could impact the compassionate patient-centred nursing care patients receive during their ICU admission. This qualitative research design was informed by Charmaz's Grounded Theory Constructivist methodology. In-depth interviews were conducted with 21 critical care nurses of two ICUs in Australia during 2016. Interview data were analysed using grounded theory processes. Findings reflected positive and negative impacts on critical care nurses' ability to deal compassionately with their patients. Effects on patient-centred nursing and critical care nurses' own well-being were revealed. A core category of "Expectations" emerged, explaining the tension between critical care nurses' biomedical, clinical skills and knowledge versus compassionate, patient-centred nursing care. This tension was clarified and expanded in subcategories of "Life in the Balance," "Passion and Pressure," "Understanding and Advocacy" and "Tenacity and Fragility". Providing patient-centred nursing may enhance critical care nurses' experience of compassion satisfaction, in turn impacting delivery of compassionate patient-centred nursing to generate a virtuous circle. Critical care nurses who feel respected and supported by their management team and colleagues experience feelings of compassion satisfaction, leading to greater engagement and care towards their patient. Systematically addressing critical care nurses' needs to successfully balance biomedical with compassionate nursing care may lead to greater well-being in the critical care nursing workforce and improve patient experience of intensive care. © 2017 John Wiley & Sons Ltd.

  9. Astonishing advances in mouse genetic tools for biomedical research.

    PubMed

    Kaczmarczyk, Lech; Jackson, Walker S

    2015-01-01

    The humble house mouse has long been a workhorse model system in biomedical research. The technology for introducing site-specific genome modifications led to Nobel Prizes for its pioneers and opened a new era of mouse genetics. However, this technology was very time-consuming and technically demanding. As a result, many investigators continued to employ easier genome manipulation methods, though resulting models can suffer from overlooked or underestimated consequences. Another breakthrough, invaluable for the molecular dissection of disease mechanisms, was the invention of high-throughput methods to measure the expression of a plethora of genes in parallel. However, the use of samples containing material from multiple cell types could obfuscate data, and thus interpretations. In this review we highlight some important issues in experimental approaches using mouse models for biomedical research. We then discuss recent technological advances in mouse genetics that are revolutionising human disease research. Mouse genomes are now easily manipulated at precise locations thanks to guided endonucleases, such as transcription activator-like effector nucleases (TALENs) or the CRISPR/Cas9 system, both also having the potential to turn the dream of human gene therapy into reality. Newly developed methods of cell type-specific isolation of transcriptomes from crude tissue homogenates, followed by detection with next generation sequencing (NGS), are vastly improving gene regulation studies. Taken together, these amazing tools simplify the creation of much more accurate mouse models of human disease, and enable the extraction of hitherto unobtainable data.

  10. Implantable Biomedical Microsystems: A New Graduate Course in Biomedical Circuits and Systems

    ERIC Educational Resources Information Center

    Sodagar, Amir M.

    2014-01-01

    After more than two decades of research on the design and development of implantable biomedical microsystems, it is time now to organize research achievements in this area in a consolidated and pedagogical form. This paper introduces a new graduate course in advanced biomedical circuits and systems. Designed for graduate students with electrical…

  11. Life sciences biomedical research planning for Space Station

    NASA Technical Reports Server (NTRS)

    Primeaux, Gary R.; Michaud, Roger; Miller, Ladonna; Searcy, Jim; Dickey, Bernistine

    1987-01-01

    The Biomedical Research Project (BmRP), a major component of the NASA Life Sciences Space Station Program, incorporates a laboratory for the study of the effects of microgravity on the human body, and the development of techniques capable of modifying or counteracting these effects. Attention is presently given to a representative scenario of BmRP investigations and associated engineering analyses, together with an account of the evolutionary process by which the scenarios and the Space Station design requirements they entail are identified. Attention is given to a tether-implemented 'variable gravity centrifuge'.

  12. Status of marine biomedical research.

    PubMed Central

    Bessey, O

    1976-01-01

    A meeting on Marine Biomedical Research, sponsored by the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health and the Smithsonian Institution Museum of Natural History, was attended by approximately 125 scientists, directors and representatives from many of the country's marine biological laboratories, and government agencies whose interests and responsibilites are in the marine biology and health areas. The purpose of the meeting was to explore the undeveloped research opportunities in the area of marine biology for the advancement of our understanding of human health problems and to provide information on the current status of marine biology laboratories. The meeting was devoted to presentations and discussions in four general areas: (1)Marine Species as Models for Human Disease; (2)Environmental Carcinogenesis and Mutagenesis; (3)Human Health and the Marine Environment--infectious agents and naturally occurring and foreign toxins; and (4)Drugs from the seas. Representatives from twelve of the country's approximatley 40 marine laboratories discussed their organization, developmental history, scientific programs, facilities, and present status of their support. The presentations served as a background and stimulated very lively analytical and constructive discussions of the undeveloped research and education potential residing in the marine environment and biological laboratories for a better understanding of many human health problems; some scientific areas that should be developed to realize this potential; and the needs and problems of marine laboratories that require attention and support if they are to survive and realize their possibilities. PMID:944630

  13. Nanomaterials driven energy, environmental and biomedical research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Prakash C.; Srinivasan, Sesha S.; Wilson, Jeremiah F.

    We have developed state-of-the-art nanomaterials such as nanofibers, nanotubes, nanoparticles, nanocatalysts and nanostructures for clean energy, environmental and biomedical research. Energy can neither be created nor be destroyed, but it can be converted from one form to another. Based on this principle, chemical energy such as hydrogen has been produced from water electrolysis at a much lower voltage using RuO{sub 2} nanoparticles on the Si wafer substrate. Once the hydrogen is produced from the clean sources such as solar energy and water, it has to be stored by physisorption or chemisorption processes on to the solid state systems. For themore » successful physical adsorption of hydrogen molecule, we have developed novel polyaniline nanostructures via chemical templating and electrospinning routes. Chemical or complex hydrides involving nano MgH{sub 2} and transition metal nanocatalysts have been synthesized to tailor both the thermodynamics and kinetics of hydrogen (chemi) sorption respectively. Utilization of solar energy (UV-Vis) and a coupling of novel semiconductor oxide nanoparticles have been recently demonstrated with enhancement in photo-oxidation and/or photo-reduction processes for the water/air detoxification and sustainable liquid fuel production respectively. Magnetic nanoparticles such as ZnFe{sub 2}O{sub 4} have been synthesized and optimized for biomedical applications such as targeted drug delivery and tumor diagnostic sensing (MRI)« less

  14. Topics in Biomedical Optics: Introduction

    NASA Astrophysics Data System (ADS)

    Hebden, Jeremy C.; Boas, David A.; George, John S.; Durkin, Anthony J.

    2003-06-01

    The field of biomedical optics is experiencing tremendous growth. Biomedical technologies contribute in the creation of devices used in healthcare of various specialties (ophthalmology, cardiology, anesthesiology, and immunology, etc.). Recent research in biomedical optics is discussed. Overviews of meetings held at the 2002 Optical Society of America Biomedical Topical Meetings are presented.

  15. Strategies from UW-Madison for rescuing biomedical research in the US

    PubMed Central

    Kimble, Judith; Bement, William M; Chang, Qiang; Cox, Benjamin L; Drinkwater, Norman R; Gourse, Richard L; Hoskins, Aaron A; Huttenlocher, Anna; Kreeger, Pamela K; Lambert, Paul F; Mailick, Marsha R; Miyamoto, Shigeki; Moss, Richard L; O'Connor-Giles, Kate M; Roopra, Avtar; Saha, Krishanu; Seidel, Hannah S

    2015-01-01

    A cross-campus, cross-career stage and cross-disciplinary series of discussions at a large public university has produced a series of recommendations for addressing the problems confronting the biomedical research community in the US. DOI: http://dx.doi.org/10.7554/eLife.09305.001 PMID:26122792

  16. Smart textile-based wearable biomedical systems: a transition plan for research to reality.

    PubMed

    Park, Sungmee; Jayaraman, Sundaresan

    2010-01-01

    The field of smart textile-based wearable biomedical systems (ST-WBSs) has of late been generating a lot of interest in the research and business communities since its early beginnings in the mid-nineties. However, the technology is yet to enter the marketplace and realize its original goal of enhancing the quality of life for individuals through enhanced real-time biomedical monitoring. In this paper, we propose a framework for analyzing the transition of ST-WBS from research to reality. We begin with a look at the evolution of the field and describe the major components of an ST-WBS. We then analyze the key issues encompassing the technical, medical, economic, public policy, and business facets from the viewpoints of various stakeholders in the continuum. We conclude with a plan of action for transitioning ST-WBS from "research to reality."

  17. Addiction research centres and the nurturing of creativity: National Drug Dependence Treatment Centre, India--a profile.

    PubMed

    Ray, Rajat; Dhawan, Anju; Chopra, Anita

    2013-10-01

    The National Drug Dependence Treatment Centre (NDDTC) is a part of the All India Institute of Medical Sciences, a premier autonomous medical university in India. This article provides an account of its origin and its contribution to the field of substance use disorder at the national and international levels. Since its establishment, the NDDTC has played a major role in the development of various replicable models of care, the training of post-graduate students of psychiatry, research, policy development and planning. An assessment of the magnitude of drug abuse in India began in the early 1990s and this was followed by a National Survey on Extent, Patterns and Trends of Drug Abuse in 2004. Several models of clinical care have been developed for population subgroups in diverse settings. The centre played an important role in producing data and resource material which helped to scale up opioid substitution treatment in India. A nationwide database on the profile of patients seeking treatment (Drug Abuse Monitoring System) at government drug treatment centres has also been created. The centre has provided valuable inputs for the Government of India's programme planning. Besides clinical studies, research has also focused on pre-clinical studies. Capacity-building is an important priority, with training curricula and resource material being developed for doctors and paramedical staff. Many of these training programmes are conducted in collaboration with other institutions in the country. The NDDTC has received funding from several national and international organizations for research and scientific meetings, and, most recently (2012), it has been designated as a World Health Organization Collaborating Centre on Substance Abuse. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.

  18. Silicon Valley Meets Biomedical Research in the Chan Zuckerberg Initiative.

    PubMed

    Crow, Diana

    2017-05-18

    The Chan Zuckerberg Initiative, the philanthropy launched by Facebook CEO Mark Zuckerberg and his wife Priscilla Chan, drew attention with its stated goal of helping to "cure, manage, or treat all diseases" by the end of the century. They intend to do it through funding basic research and addressing gaps in biomedical technology. Copyright © 2017. Published by Elsevier Inc.

  19. Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research: A Multidisciplinary View.

    PubMed

    Luo, Wei; Phung, Dinh; Tran, Truyen; Gupta, Sunil; Rana, Santu; Karmakar, Chandan; Shilton, Alistair; Yearwood, John; Dimitrova, Nevenka; Ho, Tu Bao; Venkatesh, Svetha; Berk, Michael

    2016-12-16

    As more and more researchers are turning to big data for new opportunities of biomedical discoveries, machine learning models, as the backbone of big data analysis, are mentioned more often in biomedical journals. However, owing to the inherent complexity of machine learning methods, they are prone to misuse. Because of the flexibility in specifying machine learning models, the results are often insufficiently reported in research articles, hindering reliable assessment of model validity and consistent interpretation of model outputs. To attain a set of guidelines on the use of machine learning predictive models within clinical settings to make sure the models are correctly applied and sufficiently reported so that true discoveries can be distinguished from random coincidence. A multidisciplinary panel of machine learning experts, clinicians, and traditional statisticians were interviewed, using an iterative process in accordance with the Delphi method. The process produced a set of guidelines that consists of (1) a list of reporting items to be included in a research article and (2) a set of practical sequential steps for developing predictive models. A set of guidelines was generated to enable correct application of machine learning models and consistent reporting of model specifications and results in biomedical research. We believe that such guidelines will accelerate the adoption of big data analysis, particularly with machine learning methods, in the biomedical research community. ©Wei Luo, Dinh Phung, Truyen Tran, Sunil Gupta, Santu Rana, Chandan Karmakar, Alistair Shilton, John Yearwood, Nevenka Dimitrova, Tu Bao Ho, Svetha Venkatesh, Michael Berk. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 16.12.2016.

  20. What specifications for a centre or network of excellence in clinical research?

    PubMed

    Diebolt, Vincent; Lang, Marie; Thoby, Frédérique

    2016-02-01

    The Giens 2015 Workshop Round Table entitled "What specifications for a centre or network of excellence in clinical research?" took a viewpoint distinct from earlier work and studies on changes in clinical research activities in France. The purpose of the present work was to identify, starting from concrete examples, the main strengths and advantages of clinical research activity in France related, in part, to the background environment and also to the specific characteristics of the investigation centres considered to be among the most high-performance units in activity. The criteria retained were grouped into a set of specifications that could be used to establish a "label of excellence" upon which the different teams and clinical research centres could model themselves. It was thus considered that belonging to a centre or structured network with at least a national configuration, when this is possible for the medial topic in question, constitutes a real advantage. Four benchmarks were identified: the scientific and clinical expertise of the head investigator, as well as the qualification and operational capacity of the centre's team; definition and measurement of performance using clearly displayed indicators and evaluation procedures; the quality of the overall trial "process" and of each of its component steps; communication, because know-how and promotion go hand in hand, with the main objective of informing the professional and general public about the value of the research centre meeting the above-mentioned criteria, about its networks of competencies, and more generally, about the important assets of the background of clinical research in France. This sector of research is funded by the public authorities via calls for public grants, financial aids for structures supporting clinical research in the University Hospital Centres and other healthcare institutions allowing for a professionalization of the research occupations, and the national public health

  1. The intriguing evolution of effect sizes in biomedical research over time: smaller but more often statistically significant.

    PubMed

    Monsarrat, Paul; Vergnes, Jean-Noel

    2018-01-01

    In medicine, effect sizes (ESs) allow the effects of independent variables (including risk/protective factors or treatment interventions) on dependent variables (e.g., health outcomes) to be quantified. Given that many public health decisions and health care policies are based on ES estimates, it is important to assess how ESs are used in the biomedical literature and to investigate potential trends in their reporting over time. Through a big data approach, the text mining process automatically extracted 814 120 ESs from 13 322 754 PubMed abstracts. Eligible ESs were risk ratio, odds ratio, and hazard ratio, along with their confidence intervals. Here we show a remarkable decrease of ES values in PubMed abstracts between 1990 and 2015 while, concomitantly, results become more often statistically significant. Medians of ES values have decreased over time for both "risk" and "protective" values. This trend was found in nearly all fields of biomedical research, with the most marked downward tendency in genetics. Over the same period, the proportion of statistically significant ESs increased regularly: among the abstracts with at least 1 ES, 74% were statistically significant in 1990-1995, vs 85% in 2010-2015. whereas decreasing ESs could be an intrinsic evolution in biomedical research, the concomitant increase of statistically significant results is more intriguing. Although it is likely that growing sample sizes in biomedical research could explain these results, another explanation may lie in the "publish or perish" context of scientific research, with the probability of a growing orientation toward sensationalism in research reports. Important provisions must be made to improve the credibility of biomedical research and limit waste of resources. © The Authors 2017. Published by Oxford University Press.

  2. A Microcosm of the Biomedical Research Experience for Upper-Level Undergraduates

    ERIC Educational Resources Information Center

    Hurd, Daryl D.

    2008-01-01

    The skill set required of biomedical researchers continues to grow and evolve as biology matures as a natural science. Science necessitates creative yet critical thinking, persuasive communication skills, purposeful use of time, and adeptness at the laboratory bench. Teaching these skills can be effectively accomplished in an inquiry-based,…

  3. The Aotus nancymaae erythrocyte proteome and its importance for biomedical research.

    PubMed

    Moreno-Pérez, D A; García-Valiente, R; Ibarrola, N; Muro, A; Patarroyo, M A

    2017-01-30

    The Aotus nancymaae species has been of great importance in researching the biology and pathogenesis of malaria, particularly for studying Plasmodium molecules for including them in effective vaccines against such microorganism. In spite of the forgoing, there has been no report to date describing the biology of parasite target cells in primates or their biomedical importance. This study was thus designed to analyse A. nancymaae erythrocyte protein composition using MS data collected during a previous study aimed at characterising the Plasmodium vivax proteome and published in the pertinent literature. Most peptides identified were similar to those belonging to 1189 Homo sapiens molecules; >95% of them had orthologues in New World primates. GO terms revealed a correlation between categories having the greatest amount of proteins and vital cell function. Integral membrane molecules were also identified which could be possible receptors facilitating interaction with Plasmodium species. The A. nancymaae erythrocyte proteome is described here for the first time, as a starting point for more in-depth/extensive studies. The data reported represents a source of invaluable information for laboratories interested in carrying out basic and applied biomedical investigation studies which involve using this primate. An understanding of the proteomics characteristics of A. nancymaae erythrocytes represents a fascinating area for research regarding the study of the pathogenesis of malaria since these are the main target for Plasmodium invasion. However, and even though Aotus is one of the non-human primate models considered most appropriate for biomedical research, knowledge of its proteome, particularly its erythrocytes, remains unknown. According to the above and bearing in mind the lack of information about the A. nancymaae species genome and transcriptome, this study involved a search for primate proteins for comparing their MS/MS spectra with the available information for

  4. Current Status of Sperm Cryopreservation in Biomedical Research Fish Models: Zebrafish, Medaka, and Xiphophorus*

    PubMed Central

    Yang, Huiping; Tiersch, Terrence R.

    2009-01-01

    Aquarium fishes are becoming increasingly important because of their value in biomedical research and the ornamental fish trade, and because many have become threatened or endangered in the wild. This review summarizes the current status of sperm cryopreservation in three fishes widely used in biomedical research: zebrafish, medaka, and live-bearing fishes of the genus Xiphophorus, and will focus on the needs and opportunities for future research and application of cryopreservation in aquarium fish. First, we summarize the basic biological characteristics regarding natural habitat, testis structure, spermatogenesis, sperm morphology, and sperm physiology. Second, we compare protocol development of sperm cryopreservation. Third, we emphasize the importance of artificial fertilization in sperm cryopreservation to evaluate the viability of thawed sperm. We conclude with a look to future research directions for sperm cryopreservation and the application of this technique in aquarium species. PMID:18691673

  5. Biomedical engineering - A means to add new dimension to medicine and research

    NASA Technical Reports Server (NTRS)

    Doerr, D. F.

    1992-01-01

    Biomedical engineering is an evolving science that seeks to insert technically oriented and trained personnel to assist medical professionals in solving technological problems in the pursuit of innovations in the delivery of health care. Consequently, engineering solutions are brought to bear on problems that previously were outside the training of physicians and beyond the understanding or appreciation of the conventionally educated electrical or mechanical engineers. This physician/scientist/engineer team has a capability to extend medicine and research far beyond the capability of a single entity operating alone. How biomedical engineering has added a new dimension to medical science at the Kennedy Space Center is described.

  6. Semantic Similarity in Biomedical Ontologies

    PubMed Central

    Pesquita, Catia; Faria, Daniel; Falcão, André O.; Lord, Phillip; Couto, Francisco M.

    2009-01-01

    In recent years, ontologies have become a mainstream topic in biomedical research. When biological entities are described using a common schema, such as an ontology, they can be compared by means of their annotations. This type of comparison is called semantic similarity, since it assesses the degree of relatedness between two entities by the similarity in meaning of their annotations. The application of semantic similarity to biomedical ontologies is recent; nevertheless, several studies have been published in the last few years describing and evaluating diverse approaches. Semantic similarity has become a valuable tool for validating the results drawn from biomedical studies such as gene clustering, gene expression data analysis, prediction and validation of molecular interactions, and disease gene prioritization. We review semantic similarity measures applied to biomedical ontologies and propose their classification according to the strategies they employ: node-based versus edge-based and pairwise versus groupwise. We also present comparative assessment studies and discuss the implications of their results. We survey the existing implementations of semantic similarity measures, and we describe examples of applications to biomedical research. This will clarify how biomedical researchers can benefit from semantic similarity measures and help them choose the approach most suitable for their studies. Biomedical ontologies are evolving toward increased coverage, formality, and integration, and their use for annotation is increasingly becoming a focus of both effort by biomedical experts and application of automated annotation procedures to create corpora of higher quality and completeness than are currently available. Given that semantic similarity measures are directly dependent on these evolutions, we can expect to see them gaining more relevance and even becoming as essential as sequence similarity is today in biomedical research. PMID:19649320

  7. Biomedical and Behavioral Research Scientists: Their Training and Supply. Volume 2: Statistical Tables.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Office of Scientific and Engineering Personnel.

    Volume Two of a three volume set of the Biomedical and Behavioral Research Scientists study presents tables of data which were required for the study's development by the National Research Council. Data from these tables were obtained from the Association of American Medical Colleges, the American Dental Association, the American Medical…

  8. Spacelab Life Sciences 3 biomedical research using the Rhesus Research Facility

    NASA Technical Reports Server (NTRS)

    Ballard, R. W.; Searby, N. D.; Stone, L. S.; Hogan, R. P.; Viso, M.; Venet, M.

    1992-01-01

    In 1985, a letter of agreement was signed between the French space agency, CNES, and NASA, formally initiating a joint venture called the RHESUS Project. The goal of this project is to provide a facility to fly rhesus monkeys (Macaca mulatta) to support spaceflight experiments which are applicable but not practical to carry out on human subjects. Biomedical investigations in behavior/performance, immunology/microbiology, muscle physiology, cardiopulmonary physiology, bone/calcium physiology, regulatory physiology, and neurophysiology disciplines will be performed. The Rhesus Research Facility, hardware capable of supporting two adult rhesus monkeys in a microgravity environment, is being developed for a first flight on Spacelab Life Sciences in early 1996.

  9. Suitability of customer relationship management systems for the management of study participants in biomedical research.

    PubMed

    Schwanke, J; Rienhoff, O; Schulze, T G; Nussbeck, S Y

    2013-01-01

    Longitudinal biomedical research projects study patients or participants over a course of time. No IT solution is known that can manage study participants, enhance quality of data, support re-contacting of participants, plan study visits, and keep track of informed consent procedures and recruitments that may be subject to change over time. In business settings management of personal is one of the major aspects of customer relationship management systems (CRMS). To evaluate whether CRMS are suitable IT solutions for study participant management in biomedical research. Three boards of experts in the field of biomedical research were consulted to get an insight into recent IT developments regarding study participant management systems (SPMS). Subsequently, a requirements analysis was performed with stakeholders of a major biomedical research project. The successive suitability evaluation was based on the comparison of the identified requirements with the features of six CRMS. Independently of each other, the interviewed expert boards confirmed that there is no generic IT solution for the management of participants. Sixty-four requirements were identified and prioritized in a requirements analysis. The best CRMS was able to fulfill forty-two of these requirements. The non-fulfilled requirements demand an adaption of the CRMS, consuming time and resources, reducing the update compatibility, the system's suitability, and the security of the CRMS. A specific solution for the SPMS is favored instead of a generic and commercially-oriented CRMS. Therefore, the development of a small and specific SPMS solution was commenced and is currently on the way to completion.

  10. The client-centred approach as experienced by male neurological rehabilitation clients in occupational therapy. A qualitative study based on a grounded theory tradition.

    PubMed

    Van de Velde, Dominique; Devisch, Ignaas; De Vriendt, Patricia

    2016-08-01

    Purpose To explore the perspectives of male clients in a neurological rehabilitation setting with regard to the occupational therapy they have received and the client-centred approach. Method This study involved a qualitative research design based on the grounded theory tradition. Individual in-depth interviews were used to collect data. Data were analysed using a constant comparative method. Seven male participants from an inpatient neurological setting were included using a theoretical sampling technique. Results Three themes emerged to describe the approach of the therapists to client-centred practice: (a) a shared biomedical focus as the start of the rehabilitation process, (b) the un-simultaneous shift from a biomedical towards a psycho-social focus and (c) formal versus informal nature of gathering client information. Conclusion A client-centred approach entails a shift from the therapist focussing on recovery from the short-term neurological issues towards the long-term consequences of the disease. According to the client, this shift in reasoning must occur at a specific and highly subjective moment during the rehabilitation process. Identifying this moment could strengthen the client-centred approach. Implications for Rehabilitation Client-centred practice entails a shift from recovering the short-term neurological issues towards the long-term psycho-social consequences of the disease. To be effective in client-centred practice, the clients expect from the professional to be an authority with regard to biomedical issues and to be partner with regard to psycho-social issues. Client-centred practice is most likely to be successful when client is susceptible to discuss his psycho-social issues and finding this moment is a challenge for the professional. Using formal methods for goal setting do not necessarily cover all the information needed for a client-centred therapy programme. Rather, using informal methods could lead to a more valid image of the client.

  11. BrisSynBio: a BBSRC/EPSRC-funded Synthetic Biology Research Centre.

    PubMed

    Sedgley, Kathleen R; Race, Paul R; Woolfson, Derek N

    2016-06-15

    BrisSynBio is the Bristol-based Biotechnology and Biological Sciences Research Council (BBSRC)/Engineering and Physical Sciences Research Council (EPSRC)-funded Synthetic Biology Research Centre. It is one of six such Centres in the U.K. BrisSynBio's emphasis is on rational and predictive bimolecular modelling, design and engineering in the context of synthetic biology. It trains the next generation of synthetic biologists in these approaches, to facilitate translation of fundamental synthetic biology research to industry and the clinic, and to do this within an innovative and responsible research framework. © 2016 The Author(s).

  12. Integrity in Biomedical Research: A Systematic Review of Studies in China.

    PubMed

    Yi, Nannan; Nemery, Benoit; Dierickx, Kris

    2018-05-02

    Recent empirical evidence has demonstrated that research misconduct occurs to a substantial degree in biomedical research. It has been suggested that scientific integrity is also of concern in China, but this seems to be based largely on anecdotal evidence. We, therefore, sought to explore the Chinese situation, by making a systematic review of published empirical studies on biomedical research integrity in China. One of our purposes was also to summarize the existing body of research published in Chinese. We searched the China National Knowledge Infrastructure, Wanfang Data, PubMed and Web of Science for potentially relevant studies, and included studies meeting our inclusion criteria, i.e. mainly those presenting empirically obtained data about the practice of research in China. All the data was extracted and synthesized using an inductive approach. Twenty-one studies were included for review. Two studies used qualitative methods (interviews) and nineteen studies used quantitative methods (questionnaires). Studies involved mainly medical postgraduates and nurses and they investigated awareness, attitudes, perceptions and experiences of research integrity and misconduct. Most of the participants in these 21 studies reported that research integrity is of great importance and that they obey academic norms during their research. Nevertheless, the occurrence of research misbehaviors, such as fabrication, falsification, plagiarism, improper authorship and duplicate submission was also reported. Strengthening research integrity training, developing the governance system and improving the scientific evaluation system were areas of particular attention in several studies. Our review demonstrates that a substantial number of articles have been devoted to research integrity in China, but only a few studies provide empirical evidence. With more safeguard measures of research integrity being taken in China, it would be crucial to conduct more research to explore researchers

  13. Biomedical research and the commercialization agenda: a review of main considerations for neuroscience.

    PubMed

    Caulfield, Timothy; Ogbogu, Ubaka

    2008-01-01

    This article reviews a range of issues associated with the commercialization of biomedical research and speculates on how these issues might apply to the neuroscience context. Drawing on existing studies of the impact of research commercialization activities on various areas of biotechnology research, the authors explore normative benchmarks for assessing and resolving issues likely to arise from the commercialization of neuroscientific research, including such topics as patenting, marketing pressures, and representations of research prospects.

  14. Collective intelligence for translational medicine: Crowdsourcing insights and innovation from an interdisciplinary biomedical research community.

    PubMed

    Budge, Eleanor Jane; Tsoti, Sandra Maria; Howgate, Daniel James; Sivakumar, Shivan; Jalali, Morteza

    2015-01-01

    Translational medicine bridges the gap between discoveries in biomedical science and their safe and effective clinical application. Despite the gross opportunity afforded by modern research for unparalleled advances in this field, the process of translation remains protracted. Efforts to expedite science translation have included the facilitation of interdisciplinary collaboration within both academic and clinical environments in order to generate integrated working platforms fuelling the sharing of knowledge, expertise, and tools to align biomedical research with clinical need. However, barriers to scientific translation remain, and further progress is urgently required. Collective intelligence and crowdsourcing applications offer the potential for global online networks, allowing connection and collaboration between a wide variety of fields. This would drive the alignment of biomedical science with biotechnology, clinical need, and patient experience, in order to deliver evidence-based innovation which can revolutionize medical care worldwide. Here we discuss the critical steps towards implementing collective intelligence in translational medicine using the experience of those in other fields of science and public health.

  15. Use of telescience for biomedical research during space flight

    NASA Technical Reports Server (NTRS)

    Huntoon, Carolyn L.; Schneider, Howard J.; Karamanos, Gayle M.

    1991-01-01

    When the U.S. first embarked on a manned space flight program, NASA's use of medical telescience was focused on crew health monitoring. In recent years, medical telescience use has been expanded to include support of basic research in space medicine. It enables ground support personnel to assist on-board crews in the performance of experiments and improves the quality and quantity of data return. NASA is continuing to develop its telescience capabilities. Future plans include telemedicine that will enable physicians on Earth to support crewmembers during flight and telescience that will enable investigators at their home institutions to support and conduct in-flight medical research. NASA's use of telescience for crew safety and biomedical research from Project Mercury to the present is described and NASA's plans for the future are presented.

  16. Engineering and Application of Zinc Finger Proteins and TALEs for Biomedical Research.

    PubMed

    Kim, Moon-Soo; Kini, Anu Ganesh

    2017-08-01

    Engineered DNA-binding domains provide a powerful technology for numerous biomedical studies due to their ability to recognize specific DNA sequences. Zinc fingers (ZF) are one of the most common DNA-binding domains and have been extensively studied for a variety of applications, such as gene regulation, genome engineering and diagnostics. Another novel DNA-binding domain known as a transcriptional activator-like effector (TALE) has been more recently discovered, which has a previously undescribed DNA-binding mode. Due to their modular architecture and flexibility, TALEs have been rapidly developed into artificial gene targeting reagents. Here, we describe the methods used to design these DNA-binding proteins and their key applications in biomedical research.

  17. [The long pilgrimage of Spanish biomedical journals toward excellence. Who helps? Quality, impact and research merit].

    PubMed

    Alfonso, Fernando

    2010-03-01

    Biomedical journals must adhere to strict standards of editorial quality. In a globalized academic scenario, biomedical journals must compete firstly to publish the most relevant original research and secondly to obtain the broadest possible visibility and the widest dissemination of their scientific contents. The cornerstone of the scientific process is still the peer-review system but additional quality criteria should be met. Recently access to medical information has been revolutionized by electronic editions. Bibliometric databases such as MEDLINE, the ISI Web of Science and Scopus offer comprehensive online information on medical literature. Classically, the prestige of biomedical journals has been measured by their impact factor but, recently, other indicators such as SCImago SJR or the Eigenfactor are emerging as alternative indices of a journal's quality. Assessing the scholarly impact of research and the merits of individual scientists remains a major challenge. Allocation of authorship credit also remains controversial. Furthermore, in our Kafkaesque world, we prefer to count rather than read the articles we judge. Quantitative publication metrics (research output) and citations analyses (scientific influence) are key determinants of the scientific success of individual investigators. However, academia is embracing new objective indicators (such as the "h" index) to evaluate scholarly merit. The present review discusses some editorial issues affecting biomedical journals, currently available bibliometric databases, bibliometric indices of journal quality and, finally, indicators of research performance and scientific success. Copyright 2010 SEEN. Published by Elsevier Espana. All rights reserved.

  18. Factors Influencing Dental Patient Participation in Biobanking and Biomedical Research.

    PubMed

    Hassona, Yazan; Ahram, Mamoun; Odeh, Noorah; Abu Gosh, Mais; Scully, Crispian

    To study the willingness of dental patients to donate biospecimens for research purpose and to examine factors that may influence such a decision. A face-to-face interview was conducted using a pretested structured survey instrument on 408 adult dental patients attending a university hospital for dental care. Descriptive statistics were generated, and the x03C7;2 test was used to examine differences between groups. p values ≤0.5 were considered statistically significant. Of the 408 participants, only 71 (17.4%) had heard of the terms biobanking/biospecimens, but 293 (71.9%) approved of the idea of using biospecimens for biomedical research, and 228 (55.9%) were willing to donate biospecimens and give personal information for research purposes. In participants who were unwilling to participate in biobanking, fear of information leakage was the most frequently reported reason, while in participants who were willing to donate biospecimens, the potential to provide more effective and less costly treatments was the most frequently reported reason. The preferences of the 228 participants who were willing to donate biospecimens were as follows: give a sample of removed oral tissues including extracted teeth (n = 105, 46.1%), donate a blood sample (n = 52, 23%), donate a sample of saliva (n = 43, 18.6%), and give a urine sample (n = 28, 12.3%). Dental patients had a generally positive attitude towards biomedical research and biobanking. The most preferred types of biospecimens to donate in a dental setting were removed tissues, including extracted teeth and blood samples. © 2016 S. Karger AG, Basel.

  19. The use of nonhuman animals in biomedical research: necessity and justification.

    PubMed

    Francione, Gary L

    2007-01-01

    Discourse about the use of animals in biomedical research usually focuses on two issues: its empirical and moral use. The empirical issue asks whether the use of nonhumans in experiments is required in order to get data. The moral issue asks whether the use of nonhumans can be defended as matter of ethical theory. Although the use of animals in research may involve a plausible necessity claim, no moral justification exists for using nonhumans in situations in which we would not use humans.

  20. Annual tendency of research papers used ICR mice as experimental animals in biomedical research fields.

    PubMed

    Kim, Ji Eun; Nam, Jung Hoon; Cho, Joon Young; Kim, Kil Soo; Hwang, Dae Youn

    2017-06-01

    Institute of Cancer Research (ICR) mice have been widely used in various research fields including toxicology, oncology, pharmacology, and pharmaceutical product safety testing for decades. However, annual tendency of research papers involving ICR mice in various biomedical fields has not been previously analyzed. In this study, we examined the numbers of papers that used ICR mice as experimental animals in the social science, natural science, engineering, medicine-pharmacy, marine agriculture-fishery, and art-kinesiology fields by analyzing big data. Numbers of ICR mouse-used papers gradually increased from 1961 to 2014, but small decreases were observed in 2015 and 2016. The largest number of ICR-used papers were published in the medicine-pharmacy field, followed by natural science and art-kinesiology fields. There were no ICR mouse-used papers in other fields. Furthermore, ICR mice have been widely employed in cell biology studies within the natural science field as well as in biochemistry and pathology in the medicine-pharmacy field. Few ICR mouse-used papers were published in exercise biochemistry and exercise nutrition in the art-kinesiology field. Regardless in most fields, the total numbers of published papers involving ICR mice were higher in 2014 than in other years, although the numbers in some fields including dentistry, veterinary science, and dermatology were high in 2016. Taken together, the present study shows that various ICR stocks, including Korl:ICR mice, are widely employed as experimental animals in various biomedical research fields.

  1. Annual tendency of research papers used ICR mice as experimental animals in biomedical research fields

    PubMed Central

    Kim, Ji Eun; Nam, Jung Hoon; Cho, Joon Young; Kim, Kil Soo

    2017-01-01

    Institute of Cancer Research (ICR) mice have been widely used in various research fields including toxicology, oncology, pharmacology, and pharmaceutical product safety testing for decades. However, annual tendency of research papers involving ICR mice in various biomedical fields has not been previously analyzed. In this study, we examined the numbers of papers that used ICR mice as experimental animals in the social science, natural science, engineering, medicine-pharmacy, marine agriculture-fishery, and art-kinesiology fields by analyzing big data. Numbers of ICR mouse-used papers gradually increased from 1961 to 2014, but small decreases were observed in 2015 and 2016. The largest number of ICR-used papers were published in the medicine-pharmacy field, followed by natural science and art-kinesiology fields. There were no ICR mouse-used papers in other fields. Furthermore, ICR mice have been widely employed in cell biology studies within the natural science field as well as in biochemistry and pathology in the medicine-pharmacy field. Few ICR mouse-used papers were published in exercise biochemistry and exercise nutrition in the art-kinesiology field. Regardless in most fields, the total numbers of published papers involving ICR mice were higher in 2014 than in other years, although the numbers in some fields including dentistry, veterinary science, and dermatology were high in 2016. Taken together, the present study shows that various ICR stocks, including Korl:ICR mice, are widely employed as experimental animals in various biomedical research fields. PMID:28747984

  2. Sex Bias in Neuroscience and Biomedical Research

    PubMed Central

    Beery, Annaliese K.; Zucker, Irving

    2010-01-01

    Female mammals have long been neglected in biomedical research. The NIH mandated enrollment of women in human clinical trials in 1993, but no similar initiatives exist to foster research on female animals. We reviewed sex bias in research on mammals in 10 biological fields for 2009 and their historical precedents. Male bias was evident in 8 disciplines and most prominent in neuroscience, with single-sex studies of male animals outnumbering those of females 5.5 to 1. In the past half-century, male bias in non-human studies has increased while declining in human studies. Studies of both sexes frequently fail to analyze results by sex. Underrepresentation of females in animal models of disease is also commonplace, and our understanding of female biology is compromised by these deficiencies. The majority of articles in several journals are conducted on rats and mice to the exclusion of other useful animal models. The belief that non-human female mammals are intrinsically more variable than males and too troublesome for routine inclusion in research protocols is without foundation. We recommend that when only one sex is studied, this should be indicated in article titles, and that funding agencies favor proposals that investigate both sexes and analyze data by sex. PMID:20620164

  3. IT Infrastructure for Biomedical Research in North-West Germany.

    PubMed

    Seeger, Insa; Zeleke, Atinkut; Freitag, Michael; Röhrig, Rainer

    2017-01-01

    The efficient use of routine data for biomedical research presupposes an IT infrastructure designed for health care facilities. The objective of this study was to analyse which IT infrastructure is used in hospitals and by general practitioners' (GP) practices in the region Oldenburg-Bremen and to examine how well this supports research projects. To this end, IT managers and GPs were interviewed. The usage of hospital information systems (HIS) and data warehouse systems (DWS) in hospitals is of major importance for the study. Over 90 % use DWS for administration, 42 % for clinical research. None of the hospitals implemented consent for the use of routine data for research. Only a third of the GPs have participated in studies. The GPs' offices based EHR systems in use offer virtually no support for research projects. The study results demonstrate that technical and organisational measures are required for the further usage of routine data in the region.

  4. The use of human cells in biomedical research and testing.

    PubMed

    Combes, Robert D

    2004-06-01

    The ability to use human cells in biomedical research and testing has the obvious advantage over the use of laboratory animals that the need for species extrapolation is obviated, due to the presence of more-relevant morphological, physiological and biochemical properties, including receptors. Moreover, human cells exhibit the same advantages as animal cells in culture in that different cell types can be used, from different tissues, with a wide range of techniques, to investigate a wide variety of biological phenomena in tissue culture. Human cells can also be grown as organotypic cultures to facilitate the extrapolation from cells to whole organisms. Human cell lines have been available for many years on an ad hoc basis from individual researchers, and also from recognised sources, such as the European Collection of Animal Cell Cultures (ECACC) and, in the USA, the Human Cell Culture Centre (HCCC). Such cells have usually been derived from tumours and this has restricted the variety of types of cells available. This problem has been addressed by using primary human cells that can be obtained from a variety of sources, such as cadavers, diseased tissue, skin strips, peripheral blood, buccal cavity smears, hair follicles and surgical waste from biopsy material that is unsuitable for transplantation purposes. However, primary human cells need to be obtained, processed, distributed and handled in a safe and ethical manner. They also have to be made available at the correct time to researchers very shortly after they become available. It is only comparatively recently that the safe and controlled acquisition of surgical waste and non-transplantable human tissues has become feasible with the establishment of several human tissue banks. Recently, the formation of a UK and European centralised network for human tissue supply has been initiated. The problems of short longevity and loss of specialisation in culture are being approached by: a) cell immortalisation to

  5. Strategies for Disseminating Information on Biomedical Research on Autism to Hispanic Parents

    ERIC Educational Resources Information Center

    Lajonchere, Clara M.; Wheeler, Barbara Y.; Valente, Thomas W.; Kreutzer, Cary; Munson, Aron; Narayanan, Shrikanth; Kazemzadeh, Abe; Cruz, Roxana; Martinez, Irene; Schrager, Sheree M.; Schweitzer, Lisa; Chklovski, Tara; Hwang, Darryl

    2016-01-01

    Low income Hispanic families experience multiple barriers to accessing evidence-based information on Autism Spectrum Disorders (ASD). This study utilized a mixed-strategy intervention to create access to information in published bio-medical research articles on ASD by distilling the content into parent-friendly English- and Spanish-language ASD…

  6. Southwest Research Institute assistance to NASA in biomedical areas of the technology utilization program

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Applications of aerospace technology to biomedical science are described. Recent research and development of specific techniques, services, and equipment adopted by physicians to help combat disease and disability are reviewed.

  7. The National Center for Biomedical Ontology

    PubMed Central

    Noy, Natalya F; Shah, Nigam H; Whetzel, Patricia L; Chute, Christopher G; Story, Margaret-Anne; Smith, Barry

    2011-01-01

    The National Center for Biomedical Ontology is now in its seventh year. The goals of this National Center for Biomedical Computing are to: create and maintain a repository of biomedical ontologies and terminologies; build tools and web services to enable the use of ontologies and terminologies in clinical and translational research; educate their trainees and the scientific community broadly about biomedical ontology and ontology-based technology and best practices; and collaborate with a variety of groups who develop and use ontologies and terminologies in biomedicine. The centerpiece of the National Center for Biomedical Ontology is a web-based resource known as BioPortal. BioPortal makes available for research in computationally useful forms more than 270 of the world's biomedical ontologies and terminologies, and supports a wide range of web services that enable investigators to use the ontologies to annotate and retrieve data, to generate value sets and special-purpose lexicons, and to perform advanced analytics on a wide range of biomedical data. PMID:22081220

  8. An entrepreneurial training model to enhance undergraduate training in biomedical research.

    PubMed

    Kamangar, Farin; Silver, Gillian; Hohmann, Christine; Hughes-Darden, Cleo; Turner-Musa, Jocelyn; Haines, Robert Trent; Jackson, Avis; Aguila, Nelson; Sheikhattari, Payam

    2017-01-01

    Undergraduate students who are interested in biomedical research typically work on a faculty member's research project, conduct one distinct task (e.g., running gels), and, step by step, enhance their skills. This "apprenticeship" model has been helpful in training many distinguished scientists over the years, but it has several potential drawbacks. For example, the students have limited autonomy, and may not understand the big picture, which may result in students giving up on their goals for a research career. Also, the model is costly and may greatly depend on a single mentor. The NIH Building Infrastructure Leading to Diversity (BUILD) Initiative has been established to fund innovative undergraduate research training programs and support institutional and faculty development of the recipient university. The training model at Morgan State University (MSU), namely " A S tudent- C entered En trepreneurship D evelopment training model" (ASCEND), is one of the 10 NIH BUILD-funded programs, and offers a novel, experimental "entrepreneurial" training approach. In the ASCEND training model, the students take the lead. They own the research, understand the big picture, and experience the entire scope of the research process, which we hypothesize will lead to a greater sense of self-efficacy and research competency, as well as an enhanced sense of science identity. They are also immersed in environments with substantial peer support, where they can exchange research ideas and share experiences. This is important for underrepresented minority students who might have fewer role models and less peer support in conducting research. In this article, we describe the MSU ASCEND entrepreneurial training model's components, rationale, and history, and how it may enhance undergraduate training in biomedical research that may be of benefit to other institutions. We also discuss evaluation methods, possible sustainability solutions, and programmatic challenges that can affect all

  9. [The relevance of qualitative techniques in biomedical research].

    PubMed

    de Camargo, Kenneth Rochel

    2008-01-01

    On observing how qualitative and quantitative studies are reported in the biomedical literature it becomes evident that, besides the virtual absence of the former, they are presented in different ways. Authors of qualitative studies seem to need almost invariably to explain why they choose a qualitative approach whereas that does not occur in quantitative studies. This paper takes Ludwik Fleck's comparative epistemology as a means of exploring those differences empirically, illustrating on the basis of two studies dealing with different aspects of biomedical practices how qualitative methods can elucidate a variety of questions pertaining to this field. The paper concludes presenting some structural characteristics of the biomedical field which on one hand, would not be explored properly without employing qualitative methods and, on the other hand, can help understanding the little value given to qualitative techniques in this area.

  10. [Biomedical engineering today : An overview from the viewpoint of the German Biomedical Engineering Society].

    PubMed

    Schlötelburg, C; Becks, T; Stieglitz, T

    2010-08-01

    Biomedical engineering is characterized by the interdisciplinary co-operation of technology, science, and ways of thinking, probably more than any other technological area. The close interaction of engineering and information sciences with medicine and biology results in innovative products and methods, but also requires high standards for the interdisciplinary transfer of ideas into products for patients' benefits. This article describes the situation of biomedical engineering in Germany. It displays characteristics of the medical device industry and ranks it with respect to the international market. The research landscape is described as well as up-to-date research topics and trends. The national funding situation of research in biomedical engineering is reviewed and existing innovation barriers are discussed.

  11. Ceramide synthases in biomedical research.

    PubMed

    Cingolani, Francesca; Futerman, Anthony H; Casas, Josefina

    2016-05-01

    Sphingolipid metabolism consists of multiple metabolic pathways that converge upon ceramide, one of the key molecules among sphingolipids (SLs). In mammals, ceramide synthesis occurs via N-acylation of sphingoid backbones, dihydrosphingosine (dhSo) or sphingosine (So). The reaction is catalyzed by ceramide synthases (CerS), a family of enzymes with six different isoforms, with each one showing specificity towards a restricted group of acyl-CoAs, thus producing ceramides (Cer) and dihydroceramides (dhCer) with different fatty acid chain lengths. A large body of evidence documents the role of both So and dhSo as bioactive molecules, as well as the involvement of dhCer and Cer in physiological and pathological processes. In particular, the fatty acid composition of Cer has different effects in cell biology and in the onset and progression of different diseases. Therefore, modulation of CerS activity represents an attractive target in biomedical research and in finding new treatment modalities. In this review, we discuss functional, structural and biochemical features of CerS and examine CerS inhibitors that are currently available. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Open Access Centre at the Nature Research Centre: a facility for enhancement of scientific research, education and public outreach in Lithuania

    NASA Astrophysics Data System (ADS)

    Šerpenskienė, Silvija; Skridlaitė, Gražina

    2014-05-01

    Open Access Centre (OAC) was established in Vilnius, Lithuania in 2013 as a subdivision of the Nature Research Centre (NRC) operating on the principle of open access for both internal and external users. The OAC consists of 15 units, i.e. 15 NRC laboratories or their branches. Forty four sets of research equipment were purchased. The OAC cooperates with Lithuanian science and studies institutions, business sector and other governmental and public institutions. Investigations can be carried in the Geosciences, Biotaxonomy, Ecology and Molecular Research, and Ecotoxicology fields. Environmental radioactivity, radioecology, nuclear geophysics, microscopic and chemical composition of natural compounds (minerals, rocks etc.), paleomagnetic, magnetic and environmental investigations, as well as ground and water contamination by oil products and other organic environment polluting compounds, identification of fossils, rocks and minerals can be studied in the Georesearch field. Ecosystems and identification of plants, animals and microorganisms are main subjects of the Biotaxonomy, Ecology and Molecular Research field. The Ecotoxicologal Research deals with toxic and genotoxic effects of toxic substances and other sources of pollution on macro- and microorganisms and cell cultures. Open access is guaranteed by: (1) providing scientific research and experimental development services; (2) implementing joint business and science projects; (3) using facilities for the training of specialists of the highest qualifications; (4) providing properly qualified and technically trained users with opportunities to carry out their scientific research and/or experiments in the OAC laboratories by themselves. Services provided in the Open Access Centre can be received by both internal and external users: persons undertaking innovative economic activities, students of other educational institutions, interns, external teams of researchers engaged in scientific research activities, teachers

  13. The Research Training Experiences of Doctoral Students Linked to Australian Cooperative Research Centres.

    ERIC Educational Resources Information Center

    Harman, Kay

    2002-01-01

    Examined the research training experiences of Australian doctoral students working in or funded by Cooperative Research Centres (CRCs). Found that CRC-related Ph.D. students fare well compared to their counterparts in regular university departments, and that on a number of indicators CRC-related students recorded higher levels of satisfaction with…

  14. Peer Review Practices for Evaluating Biomedical Research Grants: A Scientific Statement From the American Heart Association.

    PubMed

    Liaw, Lucy; Freedman, Jane E; Becker, Lance B; Mehta, Nehal N; Liscum, Laura

    2017-08-04

    The biomedical research enterprise depends on the fair and objective peer review of research grants, leading to the distribution of resources through efficient and robust competitive methods. In the United States, federal funding agencies and foundations collectively distribute billions of dollars annually to support biomedical research. For the American Heart Association, a Peer Review Subcommittee is charged with establishing the highest standards for peer review. This scientific statement reviews the current literature on peer review practices, describes the current American Heart Association peer review process and those of other agencies, analyzes the strengths and weaknesses of American Heart Association peer review practices, and recommends best practices for the future. © 2017 American Heart Association, Inc.

  15. Improving biomedical journals' ethical policies: the case of research misconduct.

    PubMed

    Bosch, Xavier

    2014-09-01

    Scientific journals may incur scientific error if articles are tainted by research misconduct. While some journals' ethical policies, especially those on conflicts of interest, have improved over recent years, with some adopting a uniform approach, only around half of biomedical journals, principally those with higher impact factors, currently have formal misconduct policies, mainly for handling allegations. Worryingly, since a response to allegations would reasonably require an a priori definition, far fewer journals have publicly available definitions of misconduct. While some journals and editors' associations have taken significant steps to prevent and detect misconduct and respond to allegations, the content, visibility of and access to these policies varies considerably. In addition, while the lack of misconduct policies may prompt and maintain a de novo approach for journals, potentially causing stress, publication delays and even legal disputes, the lack of uniformity may be a matter of contention for research stakeholders such as editors, authors and their institutions, and publishers. Although each case may need an individual approach, I argue that posting highly visible, readily accessible, comprehensive, consistent misconduct policies could prevent the publication of fraudulent papers, increase the number of retractions of already published papers and, perhaps, reduce research misconduct. Although legally problematic, a concerted approach, with sharing of information between editors, which is clearly explained in journal websites, could also help. Ideally, journals, editors' associations, and publishers should seek consistency and homogenise misconduct policies to maintain public confidence in the integrity of biomedical research publications. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Progress and Prospects for Genetic Modification of Nonhuman Primate Models in Biomedical Research

    PubMed Central

    Chan, Anthony W. S.

    2013-01-01

    The growing interest of modeling human diseases using genetically modified (transgenic) nonhuman primates (NHPs) is a direct result of NHPs (rhesus macaque, etc.) close relation to humans. NHPs share similar developmental paths with humans in their anatomy, physiology, genetics, and neural functions; and in their cognition, emotion, and social behavior. The NHP model within biomedical research has played an important role in the development of vaccines, assisted reproductive technologies, and new therapies for many diseases. Biomedical research has not been the primary role of NHPs. They have mainly been used for safety evaluation and pharmacokinetics studies, rather than determining therapeutic efficacy. The development of the first transgenic rhesus macaque (2001) revolutionized the role of NHP models in biomedicine. Development of the transgenic NHP model of Huntington's disease (2008), with distinctive clinical features, further suggested the uniqueness of the model system; and the potential role of the NHP model for human genetic disorders. Modeling human genetic diseases using NHPs will continue to thrive because of the latest advances in molecular, genetic, and embryo technologies. NHPs rising role in biomedical research, specifically pre-clinical studies, is foreseeable. The path toward the development of transgenic NHPs and the prospect of transgenic NHPs in their new role in future biomedicine needs to be reviewed. This article will focus on the advancement of transgenic NHPs in the past decade, including transgenic technologies and disease modeling. It will outline new technologies that may have significant impact in future NHP modeling and will conclude with a discussion of the future prospects of the transgenic NHP model. PMID:24174443

  17. Lung Cancer Cell Lines as Tools for Biomedical Discovery and Research

    PubMed Central

    Girard, Luc; Lockwood, William W.; Lam, Wan L.; Minna, John D.

    2010-01-01

    Lung cancer cell lines have made a substantial contribution to lung cancer translational research and biomedical discovery. A systematic approach to initiating and characterizing cell lines from small cell and non–small cell lung carcinomas has led to the current collection of more than 200 lung cancer cell lines, a number that exceeds those for other common epithelial cancers combined. The ready availability and widespread dissemination of the lines to investigators worldwide have resulted in more than 9000 citations, including multiple examples of important biomedical discoveries. The high (but not perfect) genomic similarities between lung cancer cell lines and the lung tumor type from which they were derived provide evidence of the relevance of their use. However, major problems including misidentification or cell line contamination remain. Ongoing studies and new approaches are expected to reveal the full potential of the lung cancer cell line panel. PMID:20679594

  18. Foundational biomedical informatics research in the clinical and translational science era: a call to action.

    PubMed

    Payne, Philip R O; Embi, Peter J; Niland, Joyce

    2010-01-01

    Advances in clinical and translational science, along with related national-scale policy and funding mechanisms, have provided significant opportunities for the advancement of applied clinical research informatics (CRI) and translational bioinformatics (TBI). Such efforts are primarily oriented to application and infrastructure development and are critical to the conduct of clinical and translational research. However, they often come at the expense of the foundational CRI and TBI research needed to grow these important biomedical informatics subdisciplines and ensure future innovations. In light of this challenge, it is critical that a number of steps be taken, including the conduct of targeted advocacy campaigns, the development of community-accepted research agendas, and the continued creation of forums for collaboration and knowledge exchange. Such efforts are needed to ensure that the biomedical informatics community is able to advance CRI and TBI science in the context of the modern clinical and translational science era.

  19. Person-generated Data in Self-quantification. A Health Informatics Research Program.

    PubMed

    Gray, Kathleen; Martin-Sanchez, Fernando J; Lopez-Campos, Guillermo H; Almalki, Manal; Merolli, Mark

    2017-01-09

    The availability of internet-connected mobile, wearable and ambient consumer technologies, direct-to-consumer e-services and peer-to-peer social media sites far outstrips evidence about the efficiency, effectiveness and efficacy of using them in healthcare applications. The aim of this paper is to describe one approach to build a program of health informatics research, so as to generate rich and robust evidence about health data and information processing in self-quantification and associated healthcare and health outcomes. The paper summarises relevant health informatics research approaches in the literature and presents an example of developing a program of research in the Health and Biomedical Informatics Centre (HaBIC) at the University of Melbourne. The paper describes this program in terms of research infrastructure, conceptual models, research design, research reporting and knowledge sharing. The paper identifies key outcomes from integrative and multiple-angle approaches to investigating the management of information and data generated by use of this Centre's collection of wearable, mobiles and other devices in health self-monitoring experiments. These research results offer lessons for consumers, developers, clinical practitioners and biomedical and health informatics researchers. Health informatics is increasingly called upon to make sense of emerging self-quantification and other digital health phenomena that are well beyond the conventions of healthcare in which the field of informatics originated and consolidated. To make a substantial contribution to optimise the aims, processes and outcomes of health self-quantification needs further work at scale in multi-centre collaborations for this Centre and for health informatics researchers generally.

  20. Biomedical Publishing and the Internet

    PubMed Central

    Jacobson, Michael W.

    2000-01-01

    The Internet is challenging traditional publishing patterns. In the biomedical domain, medical journals are providing more and more content online, both free and for a fee. Beyond this, however, a number of commentators believe that traditional notions of copyright and intellectual property ownership are no longer suited to the information age and that ownership of copyright to research reports should be and will be wrested from publishers and returned to authors. In this paper, it is argued that, although the Internet will indeed profoundly affect the distribution of biomedical research results, the biomedical publishing industry is too intertwined with the research establishment and too powerful to fall prey to such a copyright revolution. PMID:10833159

  1. Current Progress of Genetically Engineered Pig Models for Biomedical Research

    PubMed Central

    Gün, Gökhan

    2014-01-01

    Abstract The first transgenic pigs were generated for agricultural purposes about three decades ago. Since then, the micromanipulation techniques of pig oocytes and embryos expanded from pronuclear injection of foreign DNA to somatic cell nuclear transfer, intracytoplasmic sperm injection-mediated gene transfer, lentiviral transduction, and cytoplasmic injection. Mechanistically, the passive transgenesis approach based on random integration of foreign DNA was developed to active genetic engineering techniques based on the transient activity of ectopic enzymes, such as transposases, recombinases, and programmable nucleases. Whole-genome sequencing and annotation of advanced genome maps of the pig complemented these developments. The full implementation of these tools promises to immensely increase the efficiency and, in parallel, to reduce the costs for the generation of genetically engineered pigs. Today, the major application of genetically engineered pigs is found in the field of biomedical disease modeling. It is anticipated that genetically engineered pigs will increasingly be used in biomedical research, since this model shows several similarities to humans with regard to physiology, metabolism, genome organization, pathology, and aging. PMID:25469311

  2. Personnel Needs and Training for Biomedical and Behavioral Research.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Human Resources.

    The fourth in a series of annual reports assessing the role of and need for federal training programs in the biomedical and behavioral sciences is presented. Highlights of this 1978 report include: (1) the results of surveys of the chairpersons of 1,324 basic biomedical science departments and 474 behavioral science departments in Ph.D.-granting…

  3. [Results from biomedical aging research. Trends and current examples from immunology].

    PubMed

    Pfister, G; Herndler-Brandstetter, D; Grubeck-Loebenstein, B

    2006-06-01

    The public health of our society is challenged by a continuous increase in life expectancy. Hence, biomedical aging research is enjoying a steadily increasing popularity but also enlightens our understanding of age-related diseases by a number of striking results from basic research. One of the most striking changes that occurs during normal human aging is an overall diminution of immune functions, a phenomenon often termed immunosenescence. Starting from some highly exciting examples from basic immunological research, this article sheds light on which impact normal human aging has on several immune defence mechanisms. In addition, clinical consequences in view of Alzheimer's disease, immunogenicity of vaccines and autoimmune diseases are discussed.

  4. The Benefits of Attending the Annual Biomedical Research Conference for Minority Students (ABRCMS): The Role of Research Confidence

    ERIC Educational Resources Information Center

    Casad, Bettina J.; Chang, Amy L.; Pribbenow, Christine M.

    2016-01-01

    The Annual Biomedical Research Conference for Minority Students (ABRCMS) is designed to support undergraduate students' professional development as future scientists. Juniors, seniors, and postbaccalaureates who attended ABRCMS during 2008-2011 were emailed a link to an online questionnaire in which they reported their experiences at the…

  5. Awareness and knowledge of the U.S. Public Health Service syphilis study at Tuskegee: implications for biomedical research.

    PubMed

    McCallum, Jan M; Arekere, Dhananjaya M; Green, B Lee; Katz, Ralph V; Rivers, Brian M

    2006-11-01

    The purpose of this review was to collect and interpret the findings of all published qualitative or quantitative research that assessed African Americans' 1) general awareness and/or specific knowledge of the U.S. Public Health Service (USPHS) Syphilis Study at Tuskegee, and 2) attitudes towards and/or willingness to participate in biomedical research. An exhaustive review of the literature produced eight articles that fit the aforementioned selection criteria. All articles that assessed both awareness and knowledge found that familiarity with the USPHS Syphilis Study at Tuskegee did not necessarily ensure accurate knowledge of it. Four studies also found that awareness of the USPHS Syphilis Study at Tuskegee did not relate to willingness to participate in biomedical research. In addition to awareness and knowledge of the USPHS Syphilis Study at Tuskegee, published studies suggest that a broad array of structural and sociocultural factors influence minorities' willingness to participate in biomedical studies.

  6. Cheminformatics Research at the Unilever Centre for Molecular Science Informatics Cambridge.

    PubMed

    Fuchs, Julian E; Bender, Andreas; Glen, Robert C

    2015-09-01

    The Centre for Molecular Informatics, formerly Unilever Centre for Molecular Science Informatics (UCMSI), at the University of Cambridge is a world-leading driving force in the field of cheminformatics. Since its opening in 2000 more than 300 scientific articles have fundamentally changed the field of molecular informatics. The Centre has been a key player in promoting open chemical data and semantic access. Though mainly focussing on basic research, close collaborations with industrial partners ensured real world feedback and access to high quality molecular data. A variety of tools and standard protocols have been developed and are ubiquitous in the daily practice of cheminformatics. Here, we present a retrospective of cheminformatics research performed at the UCMSI, thereby highlighting historical and recent trends in the field as well as indicating future directions.

  7. Cheminformatics Research at the Unilever Centre for Molecular Science Informatics Cambridge

    PubMed Central

    Fuchs, Julian E; Bender, Andreas; Glen, Robert C

    2015-01-01

    The Centre for Molecular Informatics, formerly Unilever Centre for Molecular Science Informatics (UCMSI), at the University of Cambridge is a world-leading driving force in the field of cheminformatics. Since its opening in 2000 more than 300 scientific articles have fundamentally changed the field of molecular informatics. The Centre has been a key player in promoting open chemical data and semantic access. Though mainly focussing on basic research, close collaborations with industrial partners ensured real world feedback and access to high quality molecular data. A variety of tools and standard protocols have been developed and are ubiquitous in the daily practice of cheminformatics. Here, we present a retrospective of cheminformatics research performed at the UCMSI, thereby highlighting historical and recent trends in the field as well as indicating future directions. PMID:26435758

  8. State of reporting of primary biomedical research: a scoping review protocol

    PubMed Central

    Mbuagbaw, Lawrence; Samaan, Zainab; Jin, Yanling; Nwosu, Ikunna; Levine, Mitchell A H; Adachi, Jonathan D; Thabane, Lehana

    2017-01-01

    Introduction Incomplete or inconsistent reporting remains a major concern in the biomedical literature. Incomplete or inconsistent reporting may yield the published findings unreliable, irreproducible or sometimes misleading. In this study based on evidence from systematic reviews and surveys that have evaluated the reporting issues in primary biomedical studies, we aim to conduct a scoping review with focuses on (1) the state-of-the-art extent of adherence to the emerging reporting guidelines in primary biomedical research, (2) the inconsistency between protocols or registrations and full reports and (3) the disagreement between abstracts and full-text articles. Methods and analyses We will use a comprehensive search strategy to retrieve all available and eligible systematic reviews and surveys in the literature. We will search the following electronic databases: Web of Science, Excerpta Medica Database (EMBASE), MEDLINE and Cumulative Index to Nursing and Allied Health Literature (CINAHL). Our outcomes are levels of adherence to reporting guidelines, levels of consistency between protocols or registrations and full reports and the agreement between abstracts and full reports, all of which will be expressed as percentages, quality scores or categorised rating (such as high, medium and low). No pooled analyses will be performed quantitatively given the heterogeneity of the included systematic reviews and surveys. Likewise, factors associated with improved completeness and consistency of reporting will be summarised qualitatively. The quality of the included systematic reviews will be evaluated using AMSTAR (a measurement tool to assess systematic reviews). Ethics and dissemination All findings will be published in peer-reviewed journals and relevant conferences. These results may advance our understanding of the extent of incomplete and inconsistent reporting, factors related to improved completeness and consistency of reporting and potential recommendations for

  9. Reflections on my journey in biomedical research: the art, science, and politics of advocacy.

    PubMed

    Slavkin, H C

    2013-01-01

    Scientific Discovery often reflects the art, science, and advocacy for biomedical research. Here the author reflects on selected highlights of discovery that contributed to several aspects of our understanding of craniofacial biology and craniofacial diseases and disorders.

  10. Bioelectromagnetics Research within an Australian Context: The Australian Centre for Electromagnetic Bioeffects Research (ACEBR).

    PubMed

    Loughran, Sarah P; Al Hossain, Md Shahriar; Bentvelzen, Alan; Elwood, Mark; Finnie, John; Horvat, Joseph; Iskra, Steve; Ivanova, Elena P; Manavis, Jim; Mudiyanselage, Chathuranga Keerawella; Lajevardipour, Alireza; Martinac, Boris; McIntosh, Robert; McKenzie, Raymond; Mustapic, Mislav; Nakayama, Yoshitaka; Pirogova, Elena; Rashid, M Harunur; Taylor, Nigel A; Todorova, Nevena; Wiedemann, Peter M; Vink, Robert; Wood, Andrew; Yarovsky, Irene; Croft, Rodney J

    2016-09-29

    Mobile phone subscriptions continue to increase across the world, with the electromagnetic fields (EMF) emitted by these devices, as well as by related technologies such as Wi-Fi and smart meters, now ubiquitous. This increase in use and consequent exposure to mobile communication (MC)-related EMF has led to concern about possible health effects that could arise from this exposure. Although much research has been conducted since the introduction of these technologies, uncertainty about the impact on health remains. The Australian Centre for Electromagnetic Bioeffects Research (ACEBR) is a National Health and Medical Research Council Centre of Research Excellence that is undertaking research addressing the most important aspects of the MC-EMF health debate, with a strong focus on mechanisms, neurodegenerative diseases, cancer, and exposure dosimetry. This research takes as its starting point the current scientific status quo, but also addresses the adequacy of the evidence for the status quo. Risk communication research complements the above, and aims to ensure that whatever is found, it is communicated effectively and appropriately. This paper provides a summary of this ACEBR research (both completed and ongoing), and discusses the rationale for conducting it in light of the prevailing science.

  11. Bioelectromagnetics Research within an Australian Context: The Australian Centre for Electromagnetic Bioeffects Research (ACEBR)

    PubMed Central

    Loughran, Sarah P.; Al Hossain, Md Shahriar; Bentvelzen, Alan; Elwood, Mark; Finnie, John; Horvat, Joseph; Iskra, Steve; Ivanova, Elena P.; Manavis, Jim; Mudiyanselage, Chathuranga Keerawella; Lajevardipour, Alireza; Martinac, Boris; McIntosh, Robert; McKenzie, Raymond; Mustapic, Mislav; Nakayama, Yoshitaka; Pirogova, Elena; Rashid, M. Harunur; Taylor, Nigel A.; Todorova, Nevena; Wiedemann, Peter M.; Vink, Robert; Wood, Andrew; Yarovsky, Irene; Croft, Rodney J.

    2016-01-01

    Mobile phone subscriptions continue to increase across the world, with the electromagnetic fields (EMF) emitted by these devices, as well as by related technologies such as Wi-Fi and smart meters, now ubiquitous. This increase in use and consequent exposure to mobile communication (MC)-related EMF has led to concern about possible health effects that could arise from this exposure. Although much research has been conducted since the introduction of these technologies, uncertainty about the impact on health remains. The Australian Centre for Electromagnetic Bioeffects Research (ACEBR) is a National Health and Medical Research Council Centre of Research Excellence that is undertaking research addressing the most important aspects of the MC-EMF health debate, with a strong focus on mechanisms, neurodegenerative diseases, cancer, and exposure dosimetry. This research takes as its starting point the current scientific status quo, but also addresses the adequacy of the evidence for the status quo. Risk communication research complements the above, and aims to ensure that whatever is found, it is communicated effectively and appropriately. This paper provides a summary of this ACEBR research (both completed and ongoing), and discusses the rationale for conducting it in light of the prevailing science. PMID:27690076

  12. Effects of government spending on research workforce development: evidence from biomedical postdoctoral researchers.

    PubMed

    Hur, Hyungjo; Ghaffarzadegan, Navid; Hawley, Joshua

    2015-01-01

    We examine effects of government spending on postdoctoral researchers' (postdocs) productivity in biomedical sciences, the largest population of postdocs in the US. We analyze changes in the productivity of postdocs before and after the US government's 1997 decision to increase NIH funding. In the first round of analysis, we find that more government spending has resulted in longer postdoc careers. We see no significant changes in researchers' productivity in terms of publication and conference presentations. However, when the population is segmented by citizenship, we find that the effects are heterogeneous; US citizens stay longer in postdoc positions with no change in publications and, in contrast, international permanent residents (green card holders) produce more conference papers and publications without significant changes in postdoc duration. Possible explanations and policy implications of the analysis are discussed.

  13. Getting to zero the biomedical way in Africa: outcomes of deliberation at the 2013 Biomedical HIV Prevention Forum in Abuja, Nigeria

    PubMed Central

    2014-01-01

    Background Over the last few decades, biomedical HIV prevention research had engaged multiple African stakeholders. There have however been few platforms to enable regional stakeholders to engage with one another. In partnership with the World AIDS Campaign International, the Institute of Public Health of Obafemi Awolowo University, and the National Agency for the Control of AIDS in Nigeria, the New HIV Vaccine and Microbicide Advocacy Society hosted a forum on biomedical HIV prevention research in Africa. Stakeholders’ present explored evidences related to biomedical HIV prevention research and development in Africa, and made recommendations to inform policy, guidelines and future research agenda. Discussion The BHPF hosted 342 participants. Topics discussed included the use of antiretrovirals for HIV prevention, considerations for biomedical HIV prevention among key populations; HIV vaccine development; HIV cure; community and civil society engagement; and ethical considerations in implementation of biomedical HIV prevention research. Participants identified challenges for implementation of proven efficacious interventions and discovery of other new prevention options for Africa. Concerns raised included limited funding by African governments, lack of cohesive advocacy and policy agenda for biomedical HIV prevention research and development by Africa, varied ethical practices, and limited support to communities’ capacity to actively engaged with clinical trial conducts. Participants recommended that the African Government implement the Abuja +12 declaration; the civil society build stronger partnerships with diverse stakeholders, and develop a coherent advocacy agenda that also enhances community research literacy; and researchers and sponsors of trials on the African continent establish a process for determining appropriate standards for trial conduct on the continent. Conclusion By highlighting key considerations for biomedical HIV prevention research and

  14. Getting to zero the biomedical way in Africa: outcomes of deliberation at the 2013 Biomedical HIV Prevention Forum in Abuja, Nigeria.

    PubMed

    Folayan, Morenike Oluwatoyin; Gottemoeller, Megan; Mburu, Rosemary; Brown, Brandon

    2014-01-01

    Over the last few decades, biomedical HIV prevention research had engaged multiple African stakeholders. There have however been few platforms to enable regional stakeholders to engage with one another. In partnership with the World AIDS Campaign International, the Institute of Public Health of Obafemi Awolowo University, and the National Agency for the Control of AIDS in Nigeria, the New HIV Vaccine and Microbicide Advocacy Society hosted a forum on biomedical HIV prevention research in Africa. Stakeholders' present explored evidences related to biomedical HIV prevention research and development in Africa, and made recommendations to inform policy, guidelines and future research agenda. The BHPF hosted 342 participants. Topics discussed included the use of antiretrovirals for HIV prevention, considerations for biomedical HIV prevention among key populations; HIV vaccine development; HIV cure; community and civil society engagement; and ethical considerations in implementation of biomedical HIV prevention research. Participants identified challenges for implementation of proven efficacious interventions and discovery of other new prevention options for Africa. Concerns raised included limited funding by African governments, lack of cohesive advocacy and policy agenda for biomedical HIV prevention research and development by Africa, varied ethical practices, and limited support to communities' capacity to actively engaged with clinical trial conducts. Participants recommended that the African Government implement the Abuja +12 declaration; the civil society build stronger partnerships with diverse stakeholders, and develop a coherent advocacy agenda that also enhances community research literacy; and researchers and sponsors of trials on the African continent establish a process for determining appropriate standards for trial conduct on the continent. By highlighting key considerations for biomedical HIV prevention research and development in Africa, the forum has

  15. Globalizing and crowdsourcing biomedical research.

    PubMed

    Afshinnekoo, Ebrahim; Ahsanuddin, Sofia; Mason, Christopher E

    2016-12-01

    Crowdfunding and crowdsourcing of medical research has emerged as a novel paradigm for many biomedical disciplines to rapidly collect, process and interpret data from high-throughput and high-dimensional experiments. The novelty and promise of these approaches have led to fundamental discoveries about RNA mechanisms, microbiome dynamics and even patient interpretation of test results. However, these methods require robust training protocols, uniform sampling methods and experimental rigor in order to be useful for subsequent research efforts. Executed correctly, crowdfunding and crowdsourcing can leverage public resources and engagement to generate support for scientific endeavors that would otherwise be impossible due to funding constraints and or the large number of participants needed for data collection. We conducted a comprehensive literature review of scientific studies that utilized crowdsourcing and crowdfunding to generate data. We also discuss our own experiences conducting citizen-science research initiatives (MetaSUB and PathoMap) in ensuring data robustness, educational outreach and public engagement. We demonstrate the efficacy of crowdsourcing mechanisms for revolutionizing microbiome and metagenomic research to better elucidate the microbial and genetic dynamics of cities around the world (as well as non-urban areas). Crowdsourced studies have been able to create an improved and unprecedented ability to monitor, design and measure changes at the microbial and macroscopic scale. Thus, the use of crowdsourcing strategies has dramatically altered certain genomics research to create global citizen-science initiatives that reveal new discoveries about the world's genetic dynamics. The effectiveness of crowdfunding and crowdsourcing is largely dependent on the study design and methodology. One point of contention for the present discussion is the validity and scientific rigor of data that are generated by non-scientists. Selection bias, limited sample

  16. Biomedical applications engineering tasks

    NASA Technical Reports Server (NTRS)

    Laenger, C. J., Sr.

    1976-01-01

    The engineering tasks performed in response to needs articulated by clinicians are described. Initial contacts were made with these clinician-technology requestors by the Southwest Research Institute NASA Biomedical Applications Team. The basic purpose of the program was to effectively transfer aerospace technology into functional hardware to solve real biomedical problems.

  17. Biomedical technology in Franconia.

    PubMed

    Efferth, T

    2000-01-01

    Medical instrumentation and biotechnology business is developing rapidly in Franconia. The universities of Bayreuth, Erlangen-Nürnberg, and Würzburg hold upper ranks in biomedical extramural funding research. They have a high competence in biomedical research, medical instrumentation, and biotechnology. The association "BioMedTec Franken e.V" has been founded at the beginning of 1999 both to foster the information exchange between universities, industry and politics and to facilitate the establishment of biomedical companies by means of science parks. In the IGZ (Innovation and Foundation Center Nürnberg-Fürth-Erlangen) 4,500 square meters of space are currently shared by 19 novel companies. Since 1985 60 companies in the IGZ had a total turnover of about 74 Mio Euro. The TGZ (Technologie- und Gründerzentrum) in Würzburg provides space for 11 companies. For the specific needs of biomedical technology companies further science parks will be set up in the near future. A science park for medical instrumentation will be founded in Erlangen (IZMP, Innovations- und Gründerzentrum für Medizintechnik und Pharma in der Region Nürnberg, Fürch, Erlangen). Furthermore, a Biomedical Technology Center and a Research Center for Bicompatible Materials are to be founded in Würzburg and Bayreuth, respectively. Several communication platforms (Bayern Innovativ, FORWISS, FTT, KIM, N-TEC-VISIT, TBU, WETTI etc.) allow the transfer of local academic research activities to industrial utilization and open new co-operation possibilities. International pharmaceutical companies (Novartis, Nürnberg; Pharmacia Upjohn, Erlangen) are located in Franconia. Central Franconia represents a national focus for medical instrumentation. The Erlangen settlement of the Medical Engineering Section of Siemens employs 4,500 people including approximately 1,000 employees in the Siemens research center.

  18. Managing the future: the Special Virus Leukemia Program and the acceleration of biomedical research.

    PubMed

    Scheffler, Robin Wolfe

    2014-12-01

    After the end of the Second World War, cancer virus research experienced a remarkable revival, culminating in the creation in 1964 of the United States National Cancer Institute's Special Virus Leukemia Program (SVLP), an ambitious program of directed biomedical research to accelerate the development of a leukemia vaccine. Studies of cancer viruses soon became the second most highly funded area of research at the Institute, and by far the most generously funded area of biological research. Remarkably, this vast infrastructure for cancer vaccine production came into being before a human leukemia virus was shown to exist. The origins of the SVLP were rooted in as much as shifts in American society as laboratory science. The revival of cancer virus studies was a function of the success advocates and administrators achieved in associating cancer viruses with campaigns against childhood diseases such as polio and leukemia. To address the urgency borne of this new association, the SVLP's architects sought to lessen the power of peer review in favor of centralized Cold War management methods, fashioning viruses as "administrative objects" in order to accelerate the tempo of biomedical research and discovery.

  19. Person-centred Leadership: a relational approach to leadership derived through action research.

    PubMed

    Cardiff, Shaun; McCormack, Brendan; McCance, Tanya

    2018-04-21

    How does person-centred leadership manifest in clinical nursing. Person-centred practice fosters healthful relationships and is gaining increasing attention in nursing and healthcare, but nothing is known about the influence of a person-centred approach to leadership practice. Most leadership models used in nursing were originally developed outside of nursing. A three year participatory action research study where participant leaders planned, researched and learned from their practice development. After an orientation phase, four action spirals focused on: critical and creative reflective inquiries into leadership practice change; leading the implementation and evaluation of a new nursing system; facilitating storytelling sessions with staff and annually reflecting on personal leadership change. Multiple data gathering methods offered insight into leadership development from several perspectives. Critical and creative thematic data analysis revealed a set of attributes, relational processes and contextual factors that influenced the being and becoming of a person-centred leader. Comparing the findings with nursing leadership literature supports a conceptual framework for person-centred leadership. Person-centred leadership is a complex, dynamic, relational and contextualised practice that aims to enable associates and leaders achieve self-actualisation, empowerment and wellbeing. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. African Americans, democracy, and biomedical and behavioral research: contradictions or consensus in community-based participatory research?

    PubMed

    Spigner, C

    Individualism, in both its political and attitudinal senses, reinforces societal and institutional racism in the United States. Because of individualism's dominant focus on self-interest and self-reliance, any application of "participatory democracy" in community-based biomedical and behavioral research is fraught with dilemmas similar to those that Gunnar Myrdal observed between American racism and democracy. The research establishment is overwhelmed by well-meaning non-minorities who recognize racism and its consequences in health, but only greater representation of people-of-color in the health establishment can ameliorate the inherent contradictions of "participatory democracy" which is so fundamental to the process of community-based participatory research.

  1. Biomedical research and corporate interests: a question of academic freedom.

    PubMed

    McHenry, Leemon

    2008-01-01

    The current situation in medicine has been described as a crisis of credibility, as the profit motive of industry has taken control of clinical trials and the dissemination of data. Pharmaceutical companies maintain a stranglehold over the content of medical journals in three ways: (1) by ghostwriting articles that bias the results of clinical trials, (2) by the sheer economic power they exert on journals due to the purchase of drug advertisements and journal reprints, and (3) by the threat of legal action against those researchers who seek to correct the misrepresentation of study results. This paper argues that Karl Popper's critical rationalism provides a corrective to the failure of academic freedom in biomedical research.

  2. Biomedical Research and Corporate Interests: A Question of Academic Freedom

    PubMed Central

    McHenry, Leemon

    2008-01-01

    The current situation in medicine has been described as a crisis of credibility, as the profit motive of industry has taken control of clinical trials and the dissemination of data. Pharmaceutical companies maintain a stranglehold over the content of medical journals in three ways: (1) by ghostwriting articles that bias the results of clinical trials, (2) by the sheer economic power they exert on journals due to the purchase of drug advertisements and journal reprints, and (3) by the threat of legal action against those researchers who seek to correct the misrepresentation of study results. This paper argues that Karl Popper's critical rationalism provides a corrective to the failure of academic freedom in biomedical research. PMID:22013356

  3. caGrid 1.0 : an enterprise Grid infrastructure for biomedical research.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oster, S.; Langella, S.; Hastings, S.

    To develop software infrastructure that will provide support for discovery, characterization, integrated access, and management of diverse and disparate collections of information sources, analysis methods, and applications in biomedical research. Design: An enterprise Grid software infrastructure, called caGrid version 1.0 (caGrid 1.0), has been developed as the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG{trademark}) program. It is designed to support a wide range of use cases in basic, translational, and clinical research, including (1) discovery, (2) integrated and large-scale data analysis, and (3) coordinated study. Measurements: The caGrid is built as a Grid software infrastructure andmore » leverages Grid computing technologies and the Web Services Resource Framework standards. It provides a set of core services, toolkits for the development and deployment of new community provided services, and application programming interfaces for building client applications. Results: The caGrid 1.0 was released to the caBIG community in December 2006. It is built on open source components and caGrid source code is publicly and freely available under a liberal open source license. The core software, associated tools, and documentation can be downloaded from the following URL: .« less

  4. Medical research in Israel and the Israel biomedical database.

    PubMed

    Berns, D S; Rager-Zisman, B

    2000-11-01

    The data collected for the second edition of the Directory of Medical Research in Israel and the Israel Biomedical Database have yielded very relevant information concerning the distribution of investigators, publication activities and funding sources. The aggregate data confirm the findings of the first edition published in 1996 [2]. Those facts endorse the highly concentrated and extensive nature of medical research in the Jerusalem area, which is conducted at the Hebrew University and its affiliated hospitals. In contrast, Tel Aviv University, whose basic research staff is about two-thirds the size of the Hebrew University staff, has a more diffuse relationship with its clinical staff who are located at more than half a dozen hospitals. Ben-Gurion University in Beer Sheva and the Technion in Haifa are smaller in size, but have closer geographic contact between their clinical and basic research staff. Nonetheless, all the medical schools and affiliated hospitals have good publication and funding records. It is important to note that while some aspects of the performance at basic research institutions seem to be somewhat better than at hospitals, the records are actually quite similar despite the greater burden of clinical services at the hospitals as compared to teaching responsibilities in the basic sciences. The survey also indicates the substantial number of young investigators in the latest survey who did not appear in the first survey. While this is certainly encouraging, it is also disturbing that the funding sources are apparently decreasing at a time when young investigators are attempting to become established and the increasing burden of health care costs precludes financial assistance from hospital sources. The intensity and undoubtedly the quality of medical research in Israel remains at a level consistent with many of the more advanced western countries. This conclusion is somewhat mitigated by the fact that there is a decrease in available funding

  5. The Content of Statistical Requirements for Authors in Biomedical Research Journals

    PubMed Central

    Liu, Tian-Yi; Cai, Si-Yu; Nie, Xiao-Lu; Lyu, Ya-Qi; Peng, Xiao-Xia; Feng, Guo-Shuang

    2016-01-01

    Background: Robust statistical designing, sound statistical analysis, and standardized presentation are important to enhance the quality and transparency of biomedical research. This systematic review was conducted to summarize the statistical reporting requirements introduced by biomedical research journals with an impact factor of 10 or above so that researchers are able to give statistical issues’ serious considerations not only at the stage of data analysis but also at the stage of methodological design. Methods: Detailed statistical instructions for authors were downloaded from the homepage of each of the included journals or obtained from the editors directly via email. Then, we described the types and numbers of statistical guidelines introduced by different press groups. Items of statistical reporting guideline as well as particular requirements were summarized in frequency, which were grouped into design, method of analysis, and presentation, respectively. Finally, updated statistical guidelines and particular requirements for improvement were summed up. Results: Totally, 21 of 23 press groups introduced at least one statistical guideline. More than half of press groups can update their statistical instruction for authors gradually relative to issues of new statistical reporting guidelines. In addition, 16 press groups, covering 44 journals, address particular statistical requirements. The most of the particular requirements focused on the performance of statistical analysis and transparency in statistical reporting, including “address issues relevant to research design, including participant flow diagram, eligibility criteria, and sample size estimation,” and “statistical methods and the reasons.” Conclusions: Statistical requirements for authors are becoming increasingly perfected. Statistical requirements for authors remind researchers that they should make sufficient consideration not only in regards to statistical methods during the research

  6. The Content of Statistical Requirements for Authors in Biomedical Research Journals.

    PubMed

    Liu, Tian-Yi; Cai, Si-Yu; Nie, Xiao-Lu; Lyu, Ya-Qi; Peng, Xiao-Xia; Feng, Guo-Shuang

    2016-10-20

    Robust statistical designing, sound statistical analysis, and standardized presentation are important to enhance the quality and transparency of biomedical research. This systematic review was conducted to summarize the statistical reporting requirements introduced by biomedical research journals with an impact factor of 10 or above so that researchers are able to give statistical issues' serious considerations not only at the stage of data analysis but also at the stage of methodological design. Detailed statistical instructions for authors were downloaded from the homepage of each of the included journals or obtained from the editors directly via email. Then, we described the types and numbers of statistical guidelines introduced by different press groups. Items of statistical reporting guideline as well as particular requirements were summarized in frequency, which were grouped into design, method of analysis, and presentation, respectively. Finally, updated statistical guidelines and particular requirements for improvement were summed up. Totally, 21 of 23 press groups introduced at least one statistical guideline. More than half of press groups can update their statistical instruction for authors gradually relative to issues of new statistical reporting guidelines. In addition, 16 press groups, covering 44 journals, address particular statistical requirements. The most of the particular requirements focused on the performance of statistical analysis and transparency in statistical reporting, including "address issues relevant to research design, including participant flow diagram, eligibility criteria, and sample size estimation," and "statistical methods and the reasons." Statistical requirements for authors are becoming increasingly perfected. Statistical requirements for authors remind researchers that they should make sufficient consideration not only in regards to statistical methods during the research design, but also standardized statistical reporting

  7. Issues in Biomedical Research Data Management and Analysis: Needs and Barriers

    PubMed Central

    Anderson, Nicholas R.; Lee, E. Sally; Brockenbrough, J. Scott; Minie, Mark E.; Fuller, Sherrilynne; Brinkley, James; Tarczy-Hornoch, Peter

    2007-01-01

    Objectives A. Identify the current state of data management needs of academic biomedical researchers. B. Explore their anticipated data management and analysis needs. C. Identify barriers to addressing those needs. Design A multimodal needs analysis was conducted using a combination of an online survey and in-depth one-on-one semi-structured interviews. Subjects were recruited via an e-mail list representing a wide range of academic biomedical researchers in the Pacific Northwest. Measurements The results from 286 survey respondents were used to provide triangulation of the qualitative analysis of data gathered from 15 semi-structured in-depth interviews. Results Three major themes were identified: 1) there continues to be widespread use of basic general-purpose applications for core data management; 2) there is broad perceived need for additional support in managing and analyzing large datasets; and 3) the barriers to acquiring currently available tools are most commonly related to financial burdens on small labs and unmet expectations of institutional support. Conclusion Themes identified in this study suggest that at least some common data management needs will best be served by improving access to basic level tools such that researchers can solve their own problems. Additionally, institutions and informaticians should focus on three components: 1) facilitate and encourage the use of modern data exchange models and standards, enabling researchers to leverage a common layer of interoperability and analysis; 2) improve the ability of researchers to maintain provenance of data and models as they evolve over time though tools and the leveraging of standards; and 3) develop and support information management service cores that could assist in these previous components while providing researchers with unique data analysis and information design support within a spectrum of informatics capabilities. PMID:17460139

  8. Awareness and Knowledge of the U.S. Public Health Service Syphilis Study at Tuskegee: Implications for Biomedical Research

    PubMed Central

    McCallum, Jan M.; Arekere, Dhananjaya M.; Green, B. Lee; Katz, Ralph V.; Rivers, Brian M.

    2007-01-01

    The purpose of this review was to collect and interpret the findings of all published qualitative or quantitative research that assessed African Americans’ 1) general awareness and/or specific knowledge of the U.S. Public Health Service (USPHS) Syphilis Study at Tuskegee, and 2) attitudes towards and/or willingness to participate in biomedical research. An exhaustive review of the literature produced eight articles that fit the aforementioned selection criteria. All articles that assessed both awareness and knowledge found that familiarity with the USPHS Syphilis Study at Tuskegee did not necessarily ensure accurate knowledge of it Four studies also found that awareness of the USPHS Syphilis Study at Tuskegee did not relate to willingness to participate in biomedical research. In addition to awareness and knowledge of the USPHS Syphilis Study at Tuskegee, published studies suggest that a broad, array of structural and sociocultural factors influence minorities’ willingness to participate in biomedical studies. PMID:17242526

  9. Towards an ethics safe harbor for global biomedical research

    PubMed Central

    Dove, Edward S.; Knoppers, Bartha M.; Zawati, Ma'n H.

    2014-01-01

    Although increasingly global, data-driven genomics and other ‘omics’-focused research hold great promise for health discoveries, current research ethics review systems around the world challenge potential improvements in human health from such research. To overcome this challenge, we propose a ‘Safe Harbor Framework for International Ethics Equivalency’ that facilitates the harmonization of ethics review of specific types of data-driven international research projects while respecting globally transposable research ethics norms and principles. The Safe Harbor would consist in part of an agency supporting an International Federation for Ethics Review (IFER), formed by a voluntary compact among countries, granting agencies, philanthropies, institutions, and healthcare, patient advocacy, and research organizations. IFER would be both a central ethics review body, and also a forum for review and follow-up of policies concerning ethics norms for international research projects. It would be built on five principle elements: (1) registration, (2) compliance review, (3) recognition, (4) monitoring and enforcement, and (5) public participation. The Safe Harbor would create many benefits for researchers, countries, and the general public, and may eventually have application beyond (gen)omics to other areas of biomedical research that increasingly engage in secondary use of data and present only negligible risks. PMID:27774154

  10. Capital Investment for the Future of Biomedical Research: A University Chief Financial Officer's View.

    ERIC Educational Resources Information Center

    Massy, William F.

    1989-01-01

    Three principal aspects of capital needs in biomedical research are discussed: the significant and growing need for capital; sources; and the role of federal policy. Important assumptions, questions, and possible future trends are discussed. Consolidated thinking and effort are encouraged. (MSE)

  11. Southwest Research Institute assistance to NASA in biomedical areas of the technology utilization program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The problem statements presented relate mostly to research on prosthetic equipment and means of attaching biomedical and electronic devices to the human body. A patent application for a reliable switching element in a patient assist control units is also described.

  12. 78 FR 52777 - Implementation of the Revised International Guiding Principles for Biomedical Research Involving...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Implementation of the... Institutes of Health (NIH) is providing guidance to Public Health Service (PHS) awardee institutions on implementation of the revised International Guiding Principles for Biomedical Research Involving Animals...

  13. Scope and impact of financial conflicts of interest in biomedical research: a systematic review.

    PubMed

    Bekelman, Justin E; Li, Yan; Gross, Cary P

    Despite increasing awareness about the potential impact of financial conflicts of interest on biomedical research, no comprehensive synthesis of the body of evidence relating to financial conflicts of interest has been performed. To review original, quantitative studies on the extent, impact, and management of financial conflicts of interest in biomedical research. Studies were identified by searching MEDLINE (January 1980-October 2002), the Web of Science citation database, references of articles, letters, commentaries, editorials, and books and by contacting experts. All English-language studies containing original, quantitative data on financial relationships among industry, scientific investigators, and academic institutions were included. A total of 1664 citations were screened, 144 potentially eligible full articles were retrieved, and 37 studies met our inclusion criteria. One investigator (J.E.B.) extracted data from each of the 37 studies. The main outcomes were the prevalence of specific types of industry relationships, the relation between industry sponsorship and study outcome or investigator behavior, and the process for disclosure, review, and management of financial conflicts of interest. Approximately one fourth of investigators have industry affiliations, and roughly two thirds of academic institutions hold equity in start-ups that sponsor research performed at the same institutions. Eight articles, which together evaluated 1140 original studies, assessed the relation between industry sponsorship and outcome in original research. Aggregating the results of these articles showed a statistically significant association between industry sponsorship and pro-industry conclusions (pooled Mantel-Haenszel odds ratio, 3.60; 95% confidence interval, 2.63-4.91). Industry sponsorship was also associated with restrictions on publication and data sharing. The approach to managing financial conflicts varied substantially across academic institutions and peer

  14. Glycan Arrays: From Basic Biochemical Research to Bioanalytical and Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Geissner, Andreas; Seeberger, Peter H.

    2016-06-01

    A major branch of glycobiology and glycan-focused biomedicine studies the interaction between carbohydrates and other biopolymers, most importantly, glycan-binding proteins. Today, this research into glycan-biopolymer interaction is unthinkable without glycan arrays, tools that enable high-throughput analysis of carbohydrate interaction partners. Glycan arrays offer many applications in basic biochemical research, for example, defining the specificity of glycosyltransferases and lectins such as immune receptors. Biomedical applications include the characterization and surveillance of influenza strains, identification of biomarkers for cancer and infection, and profiling of immune responses to vaccines. Here, we review major applications of glycan arrays both in basic and applied research. Given the dynamic nature of this rapidly developing field, we focus on recent findings.

  15. Research Workforce Diversity: The Case of Balancing National versus International Postdocs in US Biomedical Research.

    PubMed

    Ghaffarzadegan, Navid; Hawley, Joshua; Desai, Anand

    2014-03-01

    The US government has been increasingly supporting postdoctoral training in biomedical sciences to develop the domestic research workforce. However, current trends suggest that mostly international researchers benefit from the funding, many of whom might leave the USA after training. In this paper, we describe a model used to analyse the flow of national versus international researchers into and out of postdoctoral training. We calibrate our model in the case of the USA and successfully replicate the data. We use the model to conduct simulation-based analyses of effects of different policies on the diversity of postdoctoral researchers. Our model shows that capping the duration of postdoctoral careers, a policy proposed previously, favours international postdoctoral researchers. The analysis suggests that the leverage point to help the growth of domestic research workforce is in the pregraduate education area, and many policies implemented at the postgraduate level have minimal or unintended effects on diversity.

  16. Irreproducibility in Preclinical Biomedical Research: Perceptions, Uncertainties, and Knowledge Gaps.

    PubMed

    Jarvis, Michael F; Williams, Michael

    2016-04-01

    Concerns regarding the reliability of biomedical research outcomes were precipitated by two independent reports from the pharmaceutical industry that documented a lack of reproducibility in preclinical research in the areas of oncology, endocrinology, and hematology. Given their potential impact on public health, these concerns have been extensively covered in the media. Assessing the magnitude and scope of irreproducibility is limited by the anecdotal nature of the initial reports and a lack of quantitative data on specific failures to reproduce published research. Nevertheless, remediation activities have focused on needed enhancements in transparency and consistency in the reporting of experimental methodologies and results. While such initiatives can effectively bridge knowledge gaps and facilitate best practices across established and emerging research disciplines and therapeutic areas, concerns remain on how these improve on the historical process of independent replication in validating research findings and their potential to inhibit scientific innovation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A guide to multi-centre ethics for surgical research in Australia and New Zealand.

    PubMed

    Boult, Maggi; Fitzpatrick, Kate; Maddern, Guy; Fitridge, Robert

    2011-03-01

    This paper describes existing inconsistencies as well as the disparate processes and logistics required when obtaining ethics approval in Australia and New Zealand in order to initiate a multi-centre bi-national surgical trial. The endovascular aortic aneurysm repair trial is a large multi-centre trial that aims to obtain pre- and post-operative data from patients in hospitals across Australia and New Zealand. As the trial was research based, ethics applications were submitted to all hospitals where surgeons wished to be involved in the trial. Few ethics committees have embraced attempts to simplify the application process for multi-centre trials. There was limited mutual review between Human Research Ethics Committees necessitating the submission of multiple applications. Though the use of the National Ethics Application Form in ethical review is increasing, some Human Research Ethics Committees do not accept it in its entirety; many require site-specific applications or sections of the Common Application Form modules. Queensland, New South Wales and New Zealand were the easiest systems to prepare, submit and lodge ethics applications because of their understanding and accommodation of reviewing multi-centred trials. The time, expense and complexity of obtaining ethics approval for multi-centre research projects are impediments to their establishment and reduce the time available for research. Australia is working to implement a system named the Harmonisation of Multi-centre Ethical Review to ease the process of obtaining multi-centre ethics clearance. Our experience suggests there will be some teething problems with implementation and acceptance. © 2010 The Authors. ANZ Journal of Surgery © 2010 Royal Australasian College of Surgeons.

  18. Research Strategies for Biomedical and Health Informatics

    PubMed Central

    Kulikowski, Casimir A.; Bakken, Suzanne; de Lusignan, Simon; Kimura, Michio; Koch, Sabine; Mantas, John; Maojo, Victor; Marschollek, Michael; Martin-Sanchez, Fernando; Moen, Anne; Park, Hyeoun-Ae; Sarkar, Indra Neil; Leong, Tze Yun; McCray, Alexa T.

    2017-01-01

    Summary Background Medical informatics, or biomedical and health informatics (BMHI), has become an established scientific discipline. In all such disciplines there is a certain inertia to persist in focusing on well-established research areas and to hold on to well-known research methodologies rather than adopting new ones, which may be more appropriate. Objectives To search for answers to the following questions: What are research fields in informatics, which are not being currently adequately addressed, and which methodological approaches might be insufficiently used? Do we know about reasons? What could be consequences of change for research and for education? Methods Outstanding informatics scientists were invited to three panel sessions on this topic in leading international conferences (MIE 2015, Medinfo 2015, HEC 2016) in order to get their answers to these questions. Results A variety of themes emerged in the set of answers provided by the panellists. Some panellists took the theoretical foundations of the field for granted, while several questioned whether the field was actually grounded in a strong theoretical foundation. Panellists proposed a range of suggestions for new or improved approaches, methodologies, and techniques to enhance the BMHI research agenda. Conclusions The field of BMHI is on the one hand maturing as an academic community and intellectual endeavour. On the other hand vendor-supplied solutions may be too readily and uncritically accepted in health care practice. There is a high chance that BMHI will continue to flourish as an important discipline; its innovative interventions might then reach the original objectives of advancing science and improving health care outcomes. PMID:28119991

  19. [Research Biomedical Ethics and Practical Wisdom].

    PubMed

    Vergara, Oscar

    2015-01-01

    As is well known, in the field of Biomedical Ethics some methodological proposals have been put forward. They try to provide some guidelines in order to take proper decisions. These methodologies are quite useful insofar as they supply reasons for action, but they are essentially insufficient. In fact, taking a good decision requires a special skill that goes beyond sheer technique, and this skill is traditionally called practical wisdom. Not in the usual and more outlying sense of sheer caution, but in the more central one of phronesis or prudentia. Although it is not a new notion, it usually appears blurred in biomedical decision-making theory, playing the wrong role, or in a marginal or indefinite way. From this postulate, we will try to make a double analysis. First, we will try to show the need for a proper understanding of the core role that phronesis plays in decision making. Second, we will try to get the original meaning of Aristotelian phronesis back. For reasons of space, in this paper the second question will be just partially addressed.

  20. The SWAN biomedical discourse ontology.

    PubMed

    Ciccarese, Paolo; Wu, Elizabeth; Wong, Gwen; Ocana, Marco; Kinoshita, June; Ruttenberg, Alan; Clark, Tim

    2008-10-01

    Developing cures for highly complex diseases, such as neurodegenerative disorders, requires extensive interdisciplinary collaboration and exchange of biomedical information in context. Our ability to exchange such information across sub-specialties today is limited by the current scientific knowledge ecosystem's inability to properly contextualize and integrate data and discourse in machine-interpretable form. This inherently limits the productivity of research and the progress toward cures for devastating diseases such as Alzheimer's and Parkinson's. SWAN (Semantic Web Applications in Neuromedicine) is an interdisciplinary project to develop a practical, common, semantically structured, framework for biomedical discourse initially applied, but not limited, to significant problems in Alzheimer Disease (AD) research. The SWAN ontology has been developed in the context of building a series of applications for biomedical researchers, as well as in extensive discussions and collaborations with the larger bio-ontologies community. In this paper, we present and discuss the SWAN ontology of biomedical discourse. We ground its development theoretically, present its design approach, explain its main classes and their application, and show its relationship to other ongoing activities in biomedicine and bio-ontologies.

  1. Manpower development for the biomedical industry space.

    PubMed

    Goh, James C H

    2013-01-01

    The Biomedical Sciences (BMS) Cluster is one of four key pillars of the Singapore economy. The Singapore Government has injected research funding for basic and translational research to attract companies to carry out their commercial R&D activities. To further intensify the R&D efforts, the National Research Foundation (NRF) was set up to coordinate the research activities of different agencies within the larger national framework and to fund strategic R&D initiatives. In recent years, funding agencies began to focus on support of translational and clinical research, particularly those with potential for commercialization. Translational research is beginning to have traction, in particular research funding for the development of innovation medical devices. Therefore, the Biomedical Sciences sector is projected to grow which means that there is a need to invest in human capital development to achieve sustainable growth. In support of this, education and training programs to strengthen the manpower capabilities for the Biomedical Sciences industry have been developed. In recent years, undergraduate and graduate degree courses in biomedical engineering/bioengineering have been developing at a rapid rate. The goal is to train students with skills to understand complex issues of biomedicine and to develop and implement of advanced technological applications to these problems. There are a variety of career opportunities open to graduates in biomedical engineering, however regardless of the type of career choices, students must not only focus on achieving good grades. They have to develop their marketability to employers through internships, overseas exchange programs, and involvement in leadership-type activities. Furthermore, curriculum has to be developed with biomedical innovation in mind and ensure relevance to the industry. The objective of this paper is to present the NUS Bioengineering undergraduate program in relation to manpower development for the biomedical

  2. Cohort profile of the South London and Maudsley NHS Foundation Trust Biomedical Research Centre (SLaM BRC) Case Register: current status and recent enhancement of an Electronic Mental Health Record-derived data resource.

    PubMed

    Perera, Gayan; Broadbent, Matthew; Callard, Felicity; Chang, Chin-Kuo; Downs, Johnny; Dutta, Rina; Fernandes, Andrea; Hayes, Richard D; Henderson, Max; Jackson, Richard; Jewell, Amelia; Kadra, Giouliana; Little, Ryan; Pritchard, Megan; Shetty, Hitesh; Tulloch, Alex; Stewart, Robert

    2016-03-01

    The South London and Maudsley National Health Service (NHS) Foundation Trust Biomedical Research Centre (SLaM BRC) Case Register and its Clinical Record Interactive Search (CRIS) application were developed in 2008, generating a research repository of real-time, anonymised, structured and open-text data derived from the electronic health record system used by SLaM, a large mental healthcare provider in southeast London. In this paper, we update this register's descriptive data, and describe the substantial expansion and extension of the data resource since its original development. Descriptive data were generated from the SLaM BRC Case Register on 31 December 2014. Currently, there are over 250,000 patient records accessed through CRIS. Since 2008, the most significant developments in the SLaM BRC Case Register have been the introduction of natural language processing to extract structured data from open-text fields, linkages to external sources of data, and the addition of a parallel relational database (Structured Query Language) output. Natural language processing applications to date have brought in new and hitherto inaccessible data on cognitive function, education, social care receipt, smoking, diagnostic statements and pharmacotherapy. In addition, through external data linkages, large volumes of supplementary information have been accessed on mortality, hospital attendances and cancer registrations. Coupled with robust data security and governance structures, electronic health records provide potentially transformative information on mental disorders and outcomes in routine clinical care. The SLaM BRC Case Register continues to grow as a database, with approximately 20,000 new cases added each year, in addition to extension of follow-up for existing cases. Data linkages and natural language processing present important opportunities to enhance this type of research resource further, achieving both volume and depth of data. However, research projects still

  3. Edited course of biomedical research: leaping forward with CRISPR.

    PubMed

    Collins, Patrick J; Hale, Christopher M; Xu, Han

    2017-11-01

    Within the short few years since the report of its application in precise genome editing, CRISPR technology has become the method of choice to modify and modulate gene expression in biomedical research and therapeutic development. Subsequently, a variety of research, diagnostic, and therapeutic tools have been developed based upon CRISPR's mechanism of action. Such tools have helped to deepen the understanding of fundamental biology and broaden the horizon in the search for treatments for diseases that have been considered hard or impossible to cure. As CRISPR technology advances closer to clinical applications, its short comings are becoming more apparent, thus creating opportunities to improve the technology's efficacy, specificity, and safety profile in this setting. We will summarize the current status of CRISPR technology and discuss its future impact in this review. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. [Integration of fundamental and applied medical and technical research made at the department of the biomedical systems, Moscow State Institute of Electronic Engineering].

    PubMed

    Selishchev, S V

    2004-01-01

    The integration results of fundamental and applied medical-and-technical research made at the chair of biomedical systems, Moscow state institute of electronic engineering (technical university--MSIEE), are described in the paper. The chair is guided in its research activity by the traditions of higher education in Russia in the field of biomedical electronics and biomedical engineering. Its activities are based on the extrapolation of methods of electronic tools, computer technologies, physics, biology and medicine with due respect being paid to the requirements of practical medicine and to topical issues of research and design.

  5. DrosAfrica: Building an African biomedical research community using Drosophila.

    PubMed

    Martín-Bermudo, María D; Gebel, Luka; Palacios, Isabel M

    2017-10-01

    The impact that research has on shaping the future of societies is perhaps as significant as never before. One of the problems for most regions in Africa is poor quality and quantity of research-based education, as well as low level of funding. Hence, African researchers produce only around one percent of the world's research. We believe that research with Drosophila melanogaster can contribute to changing that. As seen before in other places, Drosophila can be used as a powerful and cost-effective model system to scale-up and improve both academia and research output. The DrosAfrica project was founded to train and establish a connected community of researchers using Drosophila as a model system to investigate biomedical problems in Africa. Since founding, the project has trained eighty scientists from numerous African countries, and continues to grow. Here, we describe the DrosAfrica project, its conception and its mission. We also give detailed insights into DrosAfrica's approaches to achieve its aims, as well as future perspectives, and opportunities beyond Africa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The Charles Perkins Centre's Twins Research Node.

    PubMed

    Ferreira, Lucas C; Craig, Jeffrey M; Hopper, John L; Carrick, Susan E

    2016-08-01

    Twins can help researchers disentangle the roles of genes from those of the environment on human traits, health, and diseases. To realize this potential, the Australian Twin Registry (ATR), University of Melbourne, and the Charles Perkins Centre (CPC), University of Sydney, established a collaboration to form the Twins Research Node, a highly interconnected research facility dedicated specifically to research involving twins. This collaboration aims to foster the adoption of twin designs as important tools for research in a range of health-related domains. The CPC hosted their Twins Research Node's launch seminar entitled 'Double the power of your research with twin studies', in which experienced twin researchers described how twin studies are supporting scientific discoveries and careers. The launch also featured twin pairs who have actively participated in research through the ATR. Researchers at the CPC were surveyed before the event to gauge their level of understanding and interest in utilizing twin research. This article describes the new Twins Research Node, discusses the survey's main results and reports on the launch seminar.

  7. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drucker, H.

    1983-02-01

    Biomedical and health effects research conducted at PNL in 1982 on the evaluation of risk to man from existing and/or developing energy-related technologies are described. Most of the studies described in this report relate to activities for three major energy technologies: nuclear fuel cycle; fossil fuel cycle (oil, gas, and coal process technologies, mining, and utilization; synfuel development), and fudion (biomagnetic effects). The report is organized under these technologies. In addition, research reports are included on the application of nuclear energy to biomedical problems. Individual projects are indexed separately.

  8. Research Workforce Diversity: The Case of Balancing National versus International Postdocs in US Biomedical Research

    PubMed Central

    Ghaffarzadegan, Navid; Hawley, Joshua; Desai, Anand

    2013-01-01

    The US government has been increasingly supporting postdoctoral training in biomedical sciences to develop the domestic research workforce. However, current trends suggest that mostly international researchers benefit from the funding, many of whom might leave the USA after training. In this paper, we describe a model used to analyse the flow of national versus international researchers into and out of postdoctoral training. We calibrate our model in the case of the USA and successfully replicate the data. We use the model to conduct simulation-based analyses of effects of different policies on the diversity of postdoctoral researchers. Our model shows that capping the duration of postdoctoral careers, a policy proposed previously, favours international postdoctoral researchers. The analysis suggests that the leverage point to help the growth of domestic research workforce is in the pregraduate education area, and many policies implemented at the postgraduate level have minimal or unintended effects on diversity. PMID:25368504

  9. Advances in targeted proteomics and applications to biomedical research

    PubMed Central

    Shi, Tujin; Song, Ehwang; Nie, Song; Rodland, Karin D.; Liu, Tao; Qian, Wei-Jun; Smith, Richard D.

    2016-01-01

    Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed. PMID:27302376

  10. A comparative analysis of biomedical research ethics regulation systems in Europe and Latin America with regard to the protection of human subjects.

    PubMed

    Lamas, Eugenia; Ferrer, Marcela; Molina, Alberto; Salinas, Rodrigo; Hevia, Adriana; Bota, Alexandre; Feinholz, Dafna; Fuchs, Michael; Schramm, Roland; Tealdi, Juan-Carlos; Zorrilla, Sergio

    2010-12-01

    The European project European and Latin American Systems of Ethics Regulation of Biomedical Research Project (EULABOR) has carried out the first comparative analysis of ethics regulation systems for biomedical research in seven countries in Europe and Latin America, evaluating their roles in the protection of human subjects. We developed a conceptual and methodological framework defining 'ethics regulation system for biomedical research' as a set of actors, institutions, codes and laws involved in overseeing the ethics of biomedical research on humans. This framework allowed us to develop comprehensive national reports by conducting semi-structured interviews to key informants. These reports were summarised and analysed in a comparative analysis. The study showed that the regulatory framework for clinical research in these countries differ in scope. It showed that despite the different political contexts, actors involved and motivations for creating the regulation, in most of the studied countries it was the government who took the lead in setting up the system. The study also showed that Europe and Latin America are similar regarding national bodies and research ethics committees, but the Brazilian system has strong and noteworthy specificities.

  11. Crowdsourcing biomedical research: leveraging communities as innovation engines

    PubMed Central

    Saez-Rodriguez, Julio; Costello, James C.; Friend, Stephen H.; Kellen, Michael R.; Mangravite, Lara; Meyer, Pablo; Norman, Thea; Stolovitzky, Gustavo

    2018-01-01

    The generation of large-scale biomedical data is creating unprecedented opportunities for basic and translational science. Typically, the data producers perform initial analyses, but it is very likely that the most informative methods may reside with other groups. Crowdsourcing the analysis of complex and massive data has emerged as a framework to find robust methodologies. When the crowdsourcing is done in the form of collaborative scientific competitions, known as Challenges, the validation of the methods is inherently addressed. Challenges also encourage open innovation, create collaborative communities to solve diverse and important biomedical problems, and foster the creation and dissemination of well-curated data repositories. PMID:27418159

  12. Crowdsourcing biomedical research: leveraging communities as innovation engines.

    PubMed

    Saez-Rodriguez, Julio; Costello, James C; Friend, Stephen H; Kellen, Michael R; Mangravite, Lara; Meyer, Pablo; Norman, Thea; Stolovitzky, Gustavo

    2016-07-15

    The generation of large-scale biomedical data is creating unprecedented opportunities for basic and translational science. Typically, the data producers perform initial analyses, but it is very likely that the most informative methods may reside with other groups. Crowdsourcing the analysis of complex and massive data has emerged as a framework to find robust methodologies. When the crowdsourcing is done in the form of collaborative scientific competitions, known as Challenges, the validation of the methods is inherently addressed. Challenges also encourage open innovation, create collaborative communities to solve diverse and important biomedical problems, and foster the creation and dissemination of well-curated data repositories.

  13. qPortal: A platform for data-driven biomedical research.

    PubMed

    Mohr, Christopher; Friedrich, Andreas; Wojnar, David; Kenar, Erhan; Polatkan, Aydin Can; Codrea, Marius Cosmin; Czemmel, Stefan; Kohlbacher, Oliver; Nahnsen, Sven

    2018-01-01

    Modern biomedical research aims at drawing biological conclusions from large, highly complex biological datasets. It has become common practice to make extensive use of high-throughput technologies that produce big amounts of heterogeneous data. In addition to the ever-improving accuracy, methods are getting faster and cheaper, resulting in a steadily increasing need for scalable data management and easily accessible means of analysis. We present qPortal, a platform providing users with an intuitive way to manage and analyze quantitative biological data. The backend leverages a variety of concepts and technologies, such as relational databases, data stores, data models and means of data transfer, as well as front-end solutions to give users access to data management and easy-to-use analysis options. Users are empowered to conduct their experiments from the experimental design to the visualization of their results through the platform. Here, we illustrate the feature-rich portal by simulating a biomedical study based on publically available data. We demonstrate the software's strength in supporting the entire project life cycle. The software supports the project design and registration, empowers users to do all-digital project management and finally provides means to perform analysis. We compare our approach to Galaxy, one of the most widely used scientific workflow and analysis platforms in computational biology. Application of both systems to a small case study shows the differences between a data-driven approach (qPortal) and a workflow-driven approach (Galaxy). qPortal, a one-stop-shop solution for biomedical projects offers up-to-date analysis pipelines, quality control workflows, and visualization tools. Through intensive user interactions, appropriate data models have been developed. These models build the foundation of our biological data management system and provide possibilities to annotate data, query metadata for statistics and future re-analysis on

  14. Towards a 21st-century roadmap for biomedical research and drug discovery: consensus report and recommendations.

    PubMed

    Langley, Gillian R; Adcock, Ian M; Busquet, François; Crofton, Kevin M; Csernok, Elena; Giese, Christoph; Heinonen, Tuula; Herrmann, Kathrin; Hofmann-Apitius, Martin; Landesmann, Brigitte; Marshall, Lindsay J; McIvor, Emily; Muotri, Alysson R; Noor, Fozia; Schutte, Katrin; Seidle, Troy; van de Stolpe, Anja; Van Esch, Hilde; Willett, Catherine; Woszczek, Grzegorz

    2017-02-01

    Decades of costly failures in translating drug candidates from preclinical disease models to human therapeutic use warrant reconsideration of the priority placed on animal models in biomedical research. Following an international workshop attended by experts from academia, government institutions, research funding bodies, and the corporate and non-governmental organisation (NGO) sectors, in this consensus report, we analyse, as case studies, five disease areas with major unmet needs for new treatments. In view of the scientifically driven transition towards a human pathways-based paradigm in toxicology, a similar paradigm shift appears to be justified in biomedical research. There is a pressing need for an approach that strategically implements advanced, human biology-based models and tools to understand disease pathways at multiple biological scales. We present recommendations to help achieve this. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research.

    PubMed

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E; Altintas, Ilkay

    2016-06-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC collaborative is an e-learning platform that supports the biomedical community to access, develop and deploy open training materials. The BBDTC supports Big Data skill training for biomedical scientists at all levels, and from varied backgrounds. The natural hierarchy of courses allows them to be broken into and handled as modules . Modules can be reused in the context of multiple courses and reshuffled, producing a new and different, dynamic course called a playlist . Users may create playlists to suit their learning requirements and share it with individual users or the wider public. BBDTC leverages the maturity and design of the HUBzero content-management platform for delivering educational content. To facilitate the migration of existing content, the BBDTC supports importing and exporting course material from the edX platform. Migration tools will be extended in the future to support other platforms. Hands-on training software packages, i.e., toolboxes , are supported through Amazon EC2 and Virtualbox virtualization technologies, and they are available as: ( i ) downloadable lightweight Virtualbox Images providing a standardized software tool environment with software packages and test data on their personal machines, and ( ii ) remotely accessible Amazon EC2 Virtual Machines for accessing biomedical big data tools and scalable big data experiments. At the moment, the BBDTC site contains three open Biomedical big data training courses with lecture contents, videos and hands-on training utilizing VM toolboxes, covering diverse topics. The courses have enhanced the hands-on learning environment by providing structured content that users can use at their own pace. A four course biomedical big data series is

  16. The fully integrated biomedical engineering programme at Eindhoven University of Technology.

    PubMed

    Slaaf, D W; van Genderen, M H P

    2009-05-01

    The development of a fully integrated biomedical engineering programme (life sciences included from the start) is described. Details are provided about background, implementation, and didactic concept: design centred learning combined with courses. The curriculum has developed into a bachelor-master's programme with two different master's degrees: Master's Degree in Biomedical Engineering and Master's Degree in Medical Engineering. Recently, the programme has adopted semester programming, has included a major and minor in the bachelor's degree phase, and a true bachelor's degree final project. Details about the programme and data about where graduates find jobs are provided in this paper.

  17. Perceptions of Chinese Biomedical Researchers Towards Academic Misconduct: A Comparison Between 2015 and 2010.

    PubMed

    Liao, Qing-Jiao; Zhang, Yuan-Yuan; Fan, Yu-Chen; Zheng, Ming-Hua; Bai, Yu; Eslick, Guy D; He, Xing-Xiang; Zhang, Shi-Bing; Xia, Harry Hua-Xiang; He, Hua

    2018-04-01

    Publications by Chinese researchers in scientific journals have dramatically increased over the past decade; however, academic misconduct also becomes more prevalent in the country. The aim of this prospective study was to understand the perceptions of Chinese biomedical researchers towards academic misconduct and the trend from 2010 to 2015. A questionnaire comprising 10 questions was designed and then validated by ten biomedical researchers in China. In the years 2010 and 2015, respectively, the questionnaire was sent as a survey to biomedical researchers at teaching hospitals, universities, and medical institutes in mainland China. Data were analyzed by the Chi squared test, one-way analysis of variance with the Tukey post hoc test, or Spearman's rank correlation method, where appropriate. The overall response rates in 2010 and 2015 were 4.5% (446/9986) and 5.5% (832/15,127), respectively. Data from 15 participants in 2010 were invalid, and analysis was thus performed for 1263 participants. Among the participants, 54.7% thought that academic misconduct was serious-to-extremely serious, and 71.2% believed that the Chinese authorities paid no or little attention to the academic misconduct. Moreover, 70.2 and 65.2% of participants considered that the punishment for academic misconduct at the authority and institution levels, respectively, was not appropriate or severe enough. Inappropriate authorship and plagiarism were the most common forms of academic misconduct. The most important factor underlying academic misconduct was the academic assessment system, as judged by 50.7% of the participants. Participants estimated that 40.1% (39.8 ± 23.5% in 2010; 40.2 ± 24.5% in 2015) of published scientific articles were associated with some form of academic misconduct. Their perceptions towards academic misconduct had not significantly changed over the 5 years. Reform of the academic assessment system should be the fundamental approach to tackling this problem in

  18. Improving average ranking precision in user searches for biomedical research datasets

    PubMed Central

    Gobeill, Julien; Gaudinat, Arnaud; Vachon, Thérèse; Ruch, Patrick

    2017-01-01

    Abstract Availability of research datasets is keystone for health and life science study reproducibility and scientific progress. Due to the heterogeneity and complexity of these data, a main challenge to be overcome by research data management systems is to provide users with the best answers for their search queries. In the context of the 2016 bioCADDIE Dataset Retrieval Challenge, we investigate a novel ranking pipeline to improve the search of datasets used in biomedical experiments. Our system comprises a query expansion model based on word embeddings, a similarity measure algorithm that takes into consideration the relevance of the query terms, and a dataset categorization method that boosts the rank of datasets matching query constraints. The system was evaluated using a corpus with 800k datasets and 21 annotated user queries, and provided competitive results when compared to the other challenge participants. In the official run, it achieved the highest infAP, being +22.3% higher than the median infAP of the participant’s best submissions. Overall, it is ranked at top 2 if an aggregated metric using the best official measures per participant is considered. The query expansion method showed positive impact on the system’s performance increasing our baseline up to +5.0% and +3.4% for the infAP and infNDCG metrics, respectively. The similarity measure algorithm showed robust performance in different training conditions, with small performance variations compared to the Divergence from Randomness framework. Finally, the result categorization did not have significant impact on the system’s performance. We believe that our solution could be used to enhance biomedical dataset management systems. The use of data driven expansion methods, such as those based on word embeddings, could be an alternative to the complexity of biomedical terminologies. Nevertheless, due to the limited size of the assessment set, further experiments need to be performed to draw

  19. A Probabilistic Approach to Data Integration in Biomedical Research: The IsBIG Experiments

    ERIC Educational Resources Information Center

    Anand, Vibha

    2010-01-01

    Biomedical research has produced vast amounts of new information in the last decade but has been slow to find its use in clinical applications. Data from disparate sources such as genetic studies and summary data from published literature have been amassed, but there is a significant gap, primarily due to a lack of normative methods, in combining…

  20. The genetic composition of populations of cynomolgus macaques (Macaca fascicularis) used in biomedical research.

    PubMed

    Kanthaswamy, S; Ng, J; Satkoski Trask, J; George, D A; Kou, A J; Hoffman, L N; Doherty, T B; Houghton, P; Smith, D G

    2013-06-01

    The genetic composition of cynomolgus macaques used in biomedical research is not as well-characterized as that of rhesus macaques. Populations of cynomolgus macaques from Sumatra, Corregidor, Mauritius, Singapore, Cambodia, and Zamboanga were analyzed using 24 STRs. The Sumatran and Cambodian populations exhibited the highest allelic diversity, while the Mauritian population exhibited the lowest. Sumatran cynomolgus macaques were the most genetically similar to all others, consistent with an Indonesian origin of the species. The high diversity among Cambodian animals may result from interbreeding with rhesus macaques. The Philippine and Mauritian samples were the most divergent from other populations, the former due to separation from the Sunda Shelf by deepwater and the latter due to anthropogenic translocation and extreme founder effects. Investigators should verify their research subjects' origin, ancestry, and pedigree to minimize risks to biomedical experimentation from genetic variance stemming from close kinship and mixed ancestry as these can obscure treatment effects. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Biomedical research competencies for osteopathic medical students

    PubMed Central

    Cruser, des Anges; Dubin, Bruce; Brown, Sarah K; Bakken, Lori L; Licciardone, John C; Podawiltz, Alan L; Bulik, Robert J

    2009-01-01

    Background Without systematic exposure to biomedical research concepts or applications, osteopathic medical students may be generally under-prepared to efficiently consume and effectively apply research and evidence-based medicine information in patient care. The academic literature suggests that although medical residents are increasingly expected to conduct research in their post graduate training specialties, they generally have limited understanding of research concepts. With grant support from the National Center for Complementary and Alternative Medicine, and a grant from the Osteopathic Heritage Foundation, the University of North Texas Health Science Center (UNTHSC) is incorporating research education in the osteopathic medical school curriculum. The first phase of this research education project involved a baseline assessment of students' understanding of targeted research concepts. This paper reports the results of that assessment and discusses implications for research education during medical school. Methods Using a novel set of research competencies supported by the literature as needed for understanding research information, we created a questionnaire to measure students' confidence and understanding of selected research concepts. Three matriculating medical school classes completed the on-line questionnaire. Data were analyzed for differences between groups using analysis of variance and t-tests. Correlation coefficients were computed for the confidence and applied understanding measures. We performed a principle component factor analysis of the confidence items, and used multiple regression analyses to explore how confidence might be related to the applied understanding. Results Of 496 total incoming, first, and second year medical students, 354 (71.4%) completed the questionnaire. Incoming students expressed significantly more confidence than first or second year students (F = 7.198, df = 2, 351, P = 0.001) in their ability to understand the

  2. Big Data Application in Biomedical Research and Health Care: A Literature Review.

    PubMed

    Luo, Jake; Wu, Min; Gopukumar, Deepika; Zhao, Yiqing

    2016-01-01

    Big data technologies are increasingly used for biomedical and health-care informatics research. Large amounts of biological and clinical data have been generated and collected at an unprecedented speed and scale. For example, the new generation of sequencing technologies enables the processing of billions of DNA sequence data per day, and the application of electronic health records (EHRs) is documenting large amounts of patient data. The cost of acquiring and analyzing biomedical data is expected to decrease dramatically with the help of technology upgrades, such as the emergence of new sequencing machines, the development of novel hardware and software for parallel computing, and the extensive expansion of EHRs. Big data applications present new opportunities to discover new knowledge and create novel methods to improve the quality of health care. The application of big data in health care is a fast-growing field, with many new discoveries and methodologies published in the last five years. In this paper, we review and discuss big data application in four major biomedical subdisciplines: (1) bioinformatics, (2) clinical informatics, (3) imaging informatics, and (4) public health informatics. Specifically, in bioinformatics, high-throughput experiments facilitate the research of new genome-wide association studies of diseases, and with clinical informatics, the clinical field benefits from the vast amount of collected patient data for making intelligent decisions. Imaging informatics is now more rapidly integrated with cloud platforms to share medical image data and workflows, and public health informatics leverages big data techniques for predicting and monitoring infectious disease outbreaks, such as Ebola. In this paper, we review the recent progress and breakthroughs of big data applications in these health-care domains and summarize the challenges, gaps, and opportunities to improve and advance big data applications in health care.

  3. Big Data Application in Biomedical Research and Health Care: A Literature Review

    PubMed Central

    Luo, Jake; Wu, Min; Gopukumar, Deepika; Zhao, Yiqing

    2016-01-01

    Big data technologies are increasingly used for biomedical and health-care informatics research. Large amounts of biological and clinical data have been generated and collected at an unprecedented speed and scale. For example, the new generation of sequencing technologies enables the processing of billions of DNA sequence data per day, and the application of electronic health records (EHRs) is documenting large amounts of patient data. The cost of acquiring and analyzing biomedical data is expected to decrease dramatically with the help of technology upgrades, such as the emergence of new sequencing machines, the development of novel hardware and software for parallel computing, and the extensive expansion of EHRs. Big data applications present new opportunities to discover new knowledge and create novel methods to improve the quality of health care. The application of big data in health care is a fast-growing field, with many new discoveries and methodologies published in the last five years. In this paper, we review and discuss big data application in four major biomedical subdisciplines: (1) bioinformatics, (2) clinical informatics, (3) imaging informatics, and (4) public health informatics. Specifically, in bioinformatics, high-throughput experiments facilitate the research of new genome-wide association studies of diseases, and with clinical informatics, the clinical field benefits from the vast amount of collected patient data for making intelligent decisions. Imaging informatics is now more rapidly integrated with cloud platforms to share medical image data and workflows, and public health informatics leverages big data techniques for predicting and monitoring infectious disease outbreaks, such as Ebola. In this paper, we review the recent progress and breakthroughs of big data applications in these health-care domains and summarize the challenges, gaps, and opportunities to improve and advance big data applications in health care. PMID:26843812

  4. Environmental/Biomedical Terminology Index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huffstetler, J.K.; Dailey, N.S.; Rickert, L.W.

    1976-12-01

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually groupedmore » as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index (EBTI).« less

  5. Openness--A Way Forward: Development Education Research Centre

    ERIC Educational Resources Information Center

    Hare-Heremia, Mahora

    2014-01-01

    Education is a vital aspect in the lives of humankind. It contributes and shapes our future as citizens of the world. To understand it is to discover the many hidden talents the world has in store for all. The Development Education Research Centre (DERC) holds many resources that aid in the development of education at a global level. With the…

  6. The effect of public disclosure laws on biomedical research.

    PubMed

    Cardon, Andrew D; Bailey, Matthew R; Bennett, B Taylor

    2012-05-01

    The Freedom of Information Act (FOIA) and state 'open-records' laws govern access to records in the possession of federal agencies and state entities, such as public universities. Although these laws are intended to promote 'open government' and to assure the existence of an informed citizenry capable of holding government officials accountable for their decisions, an inherent tension exists between the public's access to information and biomedical research institutions' need to ensure the confidentiality of proprietary records and to protect the personal safety of employees. Recognizing these and other conflicts, the federal FOIA and state public-disclosure laws contain express exemptions to protect sensitive information from disclosure. Although some state open-records laws are modeled after the federal FOIA, important differences exist based on the language used by the state law, court interpretations, and exemptions. Two specific types of exemptions are particularly relevant to research facilities: exemptions for research information and exemptions for personal information. Responding to FOIA and state open-records requests requires knowledge of relevant laws and the involvement of all interested parties to facilitate a coordinated and orderly response.

  7. Evidence of Public Engagement with Science: Visitor Learning at a Zoo-Housed Primate Research Centre

    PubMed Central

    Waller, Bridget M.; Peirce, Kate; Mitchell, Heidi; Micheletta, Jerome

    2012-01-01

    Primate behavioural and cognitive research is increasingly conducted on direct public view in zoo settings. The potential of such facilities for public engagement with science is often heralded, but evidence of tangible, positive effects on public understanding is rare. Here, the effect of a new zoo-based primate research centre on visitor behaviour, learning and attitudes was assessed using a quasi-experimental design. Zoo visitors approached the primate research centre more often when a scientist was present and working with the primates, and reported greater awareness of primates (including conservation) compared to when the scientist was not present. Visitors also reported greater perceived learning when the scientist was present. Installation of information signage had no main effect on visitor attitudes or learning. Visitors who interacted with the signage, however, demonstrated increased knowledge and understanding when asked about the specific information present on the signs (which was related to the ongoing facial expression research at the research centre). The findings show that primate behaviour research centres on public view can have a demonstrable and beneficial effect on public understanding of science. PMID:23028580

  8. Evidence of public engagement with science: visitor learning at a zoo-housed primate research centre.

    PubMed

    Waller, Bridget M; Peirce, Kate; Mitchell, Heidi; Micheletta, Jerome

    2012-01-01

    Primate behavioural and cognitive research is increasingly conducted on direct public view in zoo settings. The potential of such facilities for public engagement with science is often heralded, but evidence of tangible, positive effects on public understanding is rare. Here, the effect of a new zoo-based primate research centre on visitor behaviour, learning and attitudes was assessed using a quasi-experimental design. Zoo visitors approached the primate research centre more often when a scientist was present and working with the primates, and reported greater awareness of primates (including conservation) compared to when the scientist was not present. Visitors also reported greater perceived learning when the scientist was present. Installation of information signage had no main effect on visitor attitudes or learning. Visitors who interacted with the signage, however, demonstrated increased knowledge and understanding when asked about the specific information present on the signs (which was related to the ongoing facial expression research at the research centre). The findings show that primate behaviour research centres on public view can have a demonstrable and beneficial effect on public understanding of science.

  9. Frontiers in biomedical engineering and biotechnology.

    PubMed

    Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu

    2014-01-01

    The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.

  10. [Research Progress and Development Prospect of Biomedical Plate].

    PubMed

    Li, Xiao; Liu, Jing; Wu, Qiang; Wang, Yanjie; Xiao, Tao; Liu, Lihong; Yu, Shu

    2016-12-01

    Different generations of biomedical materials are analyzed in this paper.The current clinical uses of plates made of metals,polymers or composite materials are evaluated,and nano hydroxyapatite/polylactic acid composites and carbon/carbon composite plates are introduced as emphasis.It is pointed out that the carbon/carbon composites are of great feasibility and advantage as a new generation of biomedical materials,especially in the field of bone plate.Compared to other biomaterials,carbon/carbon composites have a good biocompatibility and mechanical compatibility because they have similar elastic modulus,porosity and density to that of human bones.With the development of the technology in knitting and material preparation,carbon/carbon composite plates have a good application prospect.

  11. Feasibility study for a biomedical experimental facility based on LEIR at CERN.

    PubMed

    Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken

    2013-07-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments.

  12. Feasibility study for a biomedical experimental facility based on LEIR at CERN

    PubMed Central

    Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken

    2013-01-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments. PMID:23824122

  13. Future of fundamental discovery in US biomedical research

    PubMed Central

    Levitt, Michael; Levitt, Jonathan M.

    2017-01-01

    Young researchers are crucially important for basic science as they make unexpected, fundamental discoveries. Since 1982, we find a steady drop in the number of grant-eligible basic-science faculty [principal investigators (PIs)] younger than 46. This fall occurred over a 32-y period when inflation-corrected congressional funds for NIH almost tripled. During this time, the PI success ratio (fraction of basic-science PIs who are R01 grantees) dropped for younger PIs (below 46) and increased for older PIs (above 55). This age-related bias seems to have caused the steady drop in the number of young basic-science PIs and could reduce future US discoveries in fundamental biomedical science. The NIH recognized this bias in its 2008 early-stage investigator (ESI) policy to fund young PIs at higher rates. We show this policy is working and recommend that it be enhanced by using better data. Together with the National Institute of General Medical Sciences (NIGMS) Maximizing Investigators’ Research Award (MIRA) program to reward senior PIs with research time in exchange for less funding, this may reverse a decades-long trend of more money going to older PIs. To prepare young scientists for increased demand, additional resources should be devoted to transitional postdoctoral fellowships already offered by NIH. PMID:28584129

  14. Biomedical informatics and translational medicine.

    PubMed

    Sarkar, Indra Neil

    2010-02-26

    Biomedical informatics involves a core set of methodologies that can provide a foundation for crossing the "translational barriers" associated with translational medicine. To this end, the fundamental aspects of biomedical informatics (e.g., bioinformatics, imaging informatics, clinical informatics, and public health informatics) may be essential in helping improve the ability to bring basic research findings to the bedside, evaluate the efficacy of interventions across communities, and enable the assessment of the eventual impact of translational medicine innovations on health policies. Here, a brief description is provided for a selection of key biomedical informatics topics (Decision Support, Natural Language Processing, Standards, Information Retrieval, and Electronic Health Records) and their relevance to translational medicine. Based on contributions and advancements in each of these topic areas, the article proposes that biomedical informatics practitioners ("biomedical informaticians") can be essential members of translational medicine teams.

  15. The Challenging Road towards a Unified Animal Research Network in Europe

    PubMed Central

    Martinez-Sanchez, Emma; Leech, Kirk

    2015-01-01

    Animal models are key in biomedical research as a proof of concept to study complex processes in a physiological context. Despite the small yet crucial role animals play in fundamental and applied research, the value of animal research is recurrently undermined. Lack of openness and transparency encourages misconceptions, which can have a dramatic negative impact on science and medicine. Research centres should use all available resources to ensure that relevant details about their use of animals in research are readily accessible. More concerted efforts by professional advocacy groups devoted to informing about the benefits of biomedical animal research are also crucial. The European Animal Research Association acts as an umbrella organisation providing support to national advocacy groups and coordinating actions in countries in which no advocacy group exists. PMID:26018997

  16. From Mars to man - Biomedical research at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Beckenbach, E. S.

    1984-01-01

    In the course of the unmanned exploration of the solar system, which the California Institute of Technology's Jet Propulsion Laboratory has managed for NASA, major advances in computerized image processing, materials research, and miniature electronics design have been accomplished. This presentation shows some of the imaging results from space exploration missions, as well as biomedical research tasks based in these technologies. Among other topics, the use of polymeric microspheres in cancer therapy is discussed. Also included are ceramic applications to prosthesis development, laser applications in the treatment of coronary artery disease, multispectral imaging as used in the diagnosis of thermal burn injury, and some examples of telemetry systems as they can be involved in biological systems.

  17. Special Issue: 3D Printing for Biomedical Engineering.

    PubMed

    Chua, Chee Kai; Yeong, Wai Yee; An, Jia

    2017-02-28

    Three-dimensional (3D) printing has a long history of applications in biomedical engineering. The development and expansion of traditional biomedical applications are being advanced and enriched by new printing technologies. New biomedical applications such as bioprinting are highly attractive and trendy. This Special Issue aims to provide readers with a glimpse of the recent profile of 3D printing in biomedical research.

  18. Informed consent document improvement does not increase patients' comprehension in biomedical research

    PubMed Central

    Paris, Adeline; Brandt, Christian; Cornu, Catherine; Maison, Patrick; Thalamas, Claire; Cracowski, Jean-Luc

    2010-01-01

    AIMS International guidelines on ethics in biomedical research require that the informed consent of all enrolled participants is obtained. A written document describing the research, the informed consent (IC) document, must be given to all participants by the investigator. Most IC documents are long, containing much information. The aim of the present study was to determine whether the modification of the IC document by a working group or systematic improvement in its lexicosyntactic readability can improve comprehension of the written information given to patients participating in biomedical research. METHODS One hundred and fifty-nine patients were randomized to read one of the three versions of the IC document: unchanged document, document modified using systematic improvement of lexicosyntactic readability and document modified by a working group. RESULTS Neither the improvement in the lexicosyntactic readability, nor the intervention of the working group significantly improved the score of objective comprehension for the subjects included in this study: it was 66.6 (95% confidence interval 64.0, 69.2) for the control group, 68.8 (66.2, 71.4) for the group with the document improved for lexicosyntactic readability and 69.2 (66.0, 72.4) for the group who read the document improved by the working group (P= 0.38). CONCLUSIONS We failed to show that improving IC document comprehension through a lexicosyntactic approach or by a working group leads to better comprehension. PMID:20233193

  19. Advances in targeted proteomics and applications to biomedical research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Tujin; Song, Ehwang; Nie, Song

    Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity (Shi et al., Proteomics, 12, 1074–1092, 2012) herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications inmore » human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed.« less

  20. Status of Research in Biomedical Engineering 1968.

    ERIC Educational Resources Information Center

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This status report is divided into eight sections. The first four represent the classical engineering or building aspects of bioengineering and deal with biomedical instrumentation, prosthetics, man-machine systems and computer and information systems. The next three sections are related to the scientific, intellectual and academic influence of…

  1. Towards Sustainable Research Capacity Development and Research Ownership for Academic Institutes in Developing Countries: The Malawian Research Support Centre Model

    ERIC Educational Resources Information Center

    Gomo, Exnevia; Kalilani, Linda; Mwapasa, Victor; Trigu, Chifundo; Phiri, Kamija; Schmidt, Joann; van Hensbroek, Michael Boele

    2011-01-01

    In lesser-developed African countries, the lack of institutionalised support for research, combined with limited career opportunities and poor remuneration, have contributed to weak research infrastructure and capacity, and a continuing brain drain to developed countries. Malawi's Research Support Centre (RSC) model is novel in that it provides a…

  2. Size and characteristics of the biomedical research workforce associated with U.S. National Institutes of Health extramural grants

    PubMed Central

    Pool, Lindsay R.; Wagner, Robin M.; Scott, Lindsey L.; RoyChowdhury, Deepshikha; Berhane, Rediet; Wu, Charles; Pearson, Katrina; Sutton, Jennifer A.; Schaffer, Walter T.

    2016-01-01

    The U.S. National Institutes of Health (NIH) annually invests approximately $22 billion in biomedical research through its extramural grant programs. Since fiscal year (FY) 2010, all persons involved in research during the previous project year have been required to be listed on the annual grant progress report. These new data have enabled the production of the first-ever census of the NIH-funded extramural research workforce. Data were extracted from All Personnel Reports submitted for NIH grants funded in FY 2009, including position title, months of effort, academic degrees obtained, and personal identifiers. Data were de-duplicated to determine a unique person count. Person-years of effort (PYE) on NIH grants were computed. In FY 2009, NIH funded 50,885 grant projects, which created 313,049 full- and part-time positions spanning all job functions involved in biomedical research. These positions were staffed by 247,457 people at 2,604 institutions. These persons devoted 121,465 PYE to NIH grant-supported research. Research project grants each supported 6 full- or part-time positions, on average. Over 20% of positions were occupied by postdoctoral researchers and graduate and undergraduate students. These baseline data were used to project workforce estimates for FYs 2010–2014 and will serve as a foundation for future research.—Pool, L. R., Wagner, R. M., Scott, L. L., RoyChowdhury, D., Berhane, R., Wu, C., Pearson, K., Sutton, J. A., Schaffer, W. T. Size and characteristics of the biomedical research workforce associated with U.S. National Institutes of Health extramural grants. PMID:26625903

  3. Biomedical informatics training at the University of Wisconsin-Madison.

    PubMed

    Severtson, D J; Pape, L; Page, C D; Shavlik, J W; Phillips, G N; Flatley Brennan, P

    2007-01-01

    The purpose of this paper is to describe biomedical informatics training at the University of Wisconsin-Madison (UW-Madison). We reviewed biomedical informatics training, research, and faculty/trainee participation at UW-Madison. There are three primary approaches to training 1) The Computation & Informatics in Biology & Medicine Training Program, 2) formal biomedical informatics offered by various campus departments, and 3) individualized programs. Training at UW-Madison embodies the features of effective biomedical informatics training recommended by the American College of Medical Informatics that were delineated as: 1) curricula that integrate experiences among computational sciences and application domains, 2) individualized and interdisciplinary cross-training among a diverse cadre of trainees to develop key competencies that he or she does not initially possess, 3) participation in research and development activities, and 4) exposure to a range of basic informational and computational sciences. The three biomedical informatics training approaches immerse students in multidisciplinary training and education that is supported by faculty trainers who participate in collaborative research across departments. Training is provided across a range of disciplines and available at different training stages. Biomedical informatics training at UW-Madison illustrates how a large research University, with multiple departments across biological, computational and health fields, can provide effective and productive biomedical informatics training via multiple bioinformatics training approaches.

  4. Compliance with National Ethics Requirements for Human-Subject Research in Non-biomedical Sciences in Brazil: A Changing Culture?

    PubMed

    de Albuquerque Rocha, Karina; Vasconcelos, Sonia M R

    2018-02-06

    Ethics regulation for human-subject research (HSR) has been established for about 20 years in Brazil. However, compliance with this regulation is controversial for non-biomedical sciences, particularly for human and social sciences (HSS), the source of a recent debate at the National Commission for Research Ethics. We hypothesized that for these fields, formal requirements for compliance with HSR regulation in graduate programs, responsible for the greatest share of Brazilian science, would be small in number. We analyzed institutional documents (collected from June 2014 to May 2015) from 171 graduate programs at six prestigious Brazilian universities in São Paulo and Rio de Janeiro, the states that fund most of the science conducted in Brazil. Among these programs, 149 were in HSS. The results suggest that non-compliance with standard regulation seems to be the rule in most of these programs. The data may reflect not only a resistance from scientists in these fields to comply with standard regulations for ethics in HSR but also a disciplinary tradition that seems prevalent when it comes to research ethics in HSR. However, recent encounters between Brazilian biomedical and non-biomedical scientists for debates over ethics in HSR point to a changing culture in the approach to research ethics in the country.

  5. Patient identity management for secondary use of biomedical research data in a distributed computing environment.

    PubMed

    Nitzlnader, Michael; Schreier, Günter

    2014-01-01

    Dealing with data from different source domains is of increasing importance in today's large scale biomedical research endeavours. Within the European Network for Cancer research in Children and Adolescents (ENCCA) a solution to share such data for secondary use will be established. In this paper the solution arising from the aims of the ENCCA project and regulatory requirements concerning data protection and privacy is presented. Since the details of secondary biomedical dataset utilisation are often not known in advance, data protection regulations are met with an identity management concept that facilitates context-specific pseudonymisation and a way of data aggregation using a hidden reference table later on. Phonetic hashing is proposed to prevent duplicated patient registration and re-identification of patients is possible via a trusted third party only. Finally, the solution architecture allows for implementation in a distributed computing environment, including cloud-based elements.

  6. Building integrated pathways to independence for diverse biomedical researchers: Project Pathways, the BUILD program at Xavier University of Louisiana.

    PubMed

    Foroozesh, Maryam; Giguette, Marguerite; Morgan, Kathleen; Johanson, Kelly; D'Amour, Gene; Coston, Tiera; Wilkins-Green, Clair

    2017-01-01

    Xavier University of Louisiana is a historically Black and Catholic university that is nationally recognized for its science, technology, engineering and mathematics (STEM) curricula. Approximately 73% of Xavier's students are African American, and about 77% major in the biomedical sciences. Xavier is a national leader in the number of STEM majors who go on to receive M.D. degrees and Ph.D. degrees in science and engineering. Despite Xavier's advances in this area, African Americans still earn about 7.5% of the Bachelor's degrees, less than 8% of the Master's degrees, and less than 5% of the doctoral degrees conferred in STEM disciplines in the United States. Additionally, although many well-prepared, highly-motivated students are attracted by Xavier's reputation in the sciences, many of these students, though bright and capable, come from underperforming public school systems and receive substandard preparation in STEM disciplines. The purpose of this article is to describe how Xavier works to overcome unequal education backgrounds and socioeconomic challenges to develop student talent through expanding biomedical training opportunities and build on an established reputation in science education. The National Institutes of Health (NIH)/National Institute of General Medical Sciences (NIGMS)-funded BUILD (Building Infrastructure Leading to Diversity) Program at Xavier University of Louisiana, Project Pathways , is a highly-innovative program designed to broaden the career interests of students early on, and to engage them in activities that entice them to continue their education towards biomedical research careers. Project strategies involve a transformation of Xavier's academic and non-academic programs through the redesign, supplementation and integration of academic advising, tutoring, career services, personal counseling, undergraduate research training, faculty research mentoring, and development of new biomedical and research skills courses. The Program also

  7. Centre for Research Infrastructure of Polish GNSS Data - response and possible contribution to EPOS

    NASA Astrophysics Data System (ADS)

    Araszkiewicz, Andrzej; Rohm, Witold; Bosy, Jaroslaw; Szolucha, Marcin; Kaplon, Jan; Kroszczynski, Krzysztof

    2017-04-01

    In the frame of the first call under Action 4.2: Development of modern research infrastructure of the science sector in the Smart Growth Operational Programme 2014-2020 in the late of 2016 the "EPOS-PL" project has launched. Following institutes are responsible for the implementation of this project: Institute of Geophysics, Polish Academy of Sciences - Project Leader, Academic Computer Centre Cyfronet AGH University of Science and Technology, Central Mining Institute, the Institute of Geodesy and Cartography, Wrocław University of Environmental and Life Sciences, Military University of Technology. In addition, resources constituting entrepreneur's own contribution will come from the Polish Mining Group. Research Infrastructure EPOS-PL will integrate both existing and newly built National Research Infrastructures (Theme Centre for Research Infrastructures), which, under the premise of the program EPOS, are financed exclusively by the national founds. In addition, the e-science platform will be developed. The Centre for Research Infrastructure of GNSS Data (CIBDG - Task 5) will be built based on the experience and facilities of two institutions: Military University of Technology and Wrocław University of Environmental and Life Sciences. The project includes the construction of the National GNNS Repository with data QC procedures and adaptation of two Regional GNNS Analysis Centres for rapid and long-term geodynamical monitoring.

  8. Bridging the social and the biomedical: engaging the social and political sciences in HIV research.

    PubMed

    Kippax, Susan C; Holt, Martin; Friedman, Samuel R

    2011-09-27

    This supplement to the Journal of the International AIDS Society focuses on the engagement of the social and political sciences within HIV research and, in particular, maintaining a productive relationship between social and biomedical perspectives on HIV. It responds to a number of concerns raised primarily by social scientists, but also recognized as important by biomedical and public health researchers. These concerns include how best to understand the impact of medical technologies (such as HIV treatments, HIV testing, viral load testing, male circumcision, microbicides, and pre-and post-exposure prophylaxis) on sexual cultures, drug practices, relationships and social networks in different cultural, economic and political contexts. The supplement is also concerned with how we might examine the relationship between HIV prevention and treatment, understand the social and political mobilization required to tackle HIV, and sustain the range of disciplinary approaches needed to inform and guide responses to the global pandemic. The six articles included in the supplement demonstrate the value of fostering high quality social and political research to inform, guide and challenge our collaborative responses to HIV/AIDS.

  9. Biomedical informatics: development of a comprehensive data warehouse for clinical and genomic breast cancer research.

    PubMed

    Hu, Hai; Brzeski, Henry; Hutchins, Joe; Ramaraj, Mohan; Qu, Long; Xiong, Richard; Kalathil, Surendran; Kato, Rand; Tenkillaya, Santhosh; Carney, Jerry; Redd, Rosann; Arkalgudvenkata, Sheshkumar; Shahzad, Kashif; Scott, Richard; Cheng, Hui; Meadow, Stephen; McMichael, John; Sheu, Shwu-Lin; Rosendale, David; Kvecher, Leonid; Ahern, Stephen; Yang, Song; Zhang, Yonghong; Jordan, Rick; Somiari, Stella B; Hooke, Jeffrey; Shriver, Craig D; Somiari, Richard I; Liebman, Michael N

    2004-10-01

    The Windber Research Institute is an integrated high-throughput research center employing clinical, genomic and proteomic platforms to produce terabyte levels of data. We use biomedical informatics technologies to integrate all of these operations. This report includes information on a multi-year, multi-phase hybrid data warehouse project currently under development in the Institute. The purpose of the warehouse is to host the terabyte-level of internal experimentally generated data as well as data from public sources. We have previously reported on the phase I development, which integrated limited internal data sources and selected public databases. Currently, we are completing phase II development, which integrates our internal automated data sources and develops visualization tools to query across these data types. This paper summarizes our clinical and experimental operations, the data warehouse development, and the challenges we have faced. In phase III we plan to federate additional manual internal and public data sources and then to develop and adapt more data analysis and mining tools. We expect that the final implementation of the data warehouse will greatly facilitate biomedical informatics research.

  10. Nanoparticles for Biomedical Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nune, Satish K.; Gunda, Padmaja; Thallapally, Praveen K.

    2009-11-01

    Background: Synthetic nanoparticles are emerging as versatile tools in biomedical applications, particularly in the area of biomedical imaging. Nanoparticles 1 to 100 nm in diameter possess dimensions comparable to biological functional units. Diverse surface chemistries, unique magnetic properties, tunable absorption and emission properties, and recent advances in the synthesis and engineering of various nanoparticles suggest their potential as probes for early detection of diseases such as cancer. Surface functionalization has further expanded the potential of nanoparticles as probes for molecular imaging. Objective: To summarize emerging research of nanoparticles for biomedical imaging with increased selectivity and reduced non-specific uptake with increasedmore » spatial resolution containing stabilizers conjugated with targeting ligands. Methods: This review summarizes recent technological advances in the synthesis of various nanoparticle probes, and surveys methods to improve the targeting of nanoparticles for their applications in biomedical imaging. Conclusion: Structural design of nanomaterials for biomedical imaging continues to expand and diversify. Synthetic methods have aimed to control the size and surface characteristics of nanoparticles to control distribution, half-life and elimination. Although molecular imaging applications using nanoparticles are advancing into clinical applications, challenges such as storage stability and long-term toxicology should continue to be addressed. Keywords: nanoparticle synthesis, surface modification, targeting, molecular imaging, and biomedical imaging.« less

  11. Relational Databases and Biomedical Big Data.

    PubMed

    de Silva, N H Nisansa D

    2017-01-01

    In various biomedical applications that collect, handle, and manipulate data, the amounts of data tend to build up and venture into the range identified as bigdata. In such occurrences, a design decision has to be taken as to what type of database would be used to handle this data. More often than not, the default and classical solution to this in the biomedical domain according to past research is relational databases. While this used to be the norm for a long while, it is evident that there is a trend to move away from relational databases in favor of other types and paradigms of databases. However, it still has paramount importance to understand the interrelation that exists between biomedical big data and relational databases. This chapter will review the pros and cons of using relational databases to store biomedical big data that previous researches have discussed and used.

  12. Special Issue: 3D Printing for Biomedical Engineering

    PubMed Central

    Chua, Chee Kai; Yeong, Wai Yee; An, Jia

    2017-01-01

    Three-dimensional (3D) printing has a long history of applications in biomedical engineering. The development and expansion of traditional biomedical applications are being advanced and enriched by new printing technologies. New biomedical applications such as bioprinting are highly attractive and trendy. This Special Issue aims to provide readers with a glimpse of the recent profile of 3D printing in biomedical research. PMID:28772604

  13. Biomedical technology transfer applications of NASA science and technology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The identification and solution of research and clinical problems in cardiovascular medicine which were investigated by means of biomedical data transfer are reported. The following are sample areas that were focused upon by the Stanford University Biomedical Technology Transfer Team: electrodes for hemiplegia research; vectorcardiogram computer analysis; respiration and phonation electrodes; radiotelemetry of intracranial pressure; and audiotransformation of the electrocardiographic signal. It is concluded that this biomedical technology transfer is significantly aiding present research in cardiovascular medicine.

  14. Instructions to Prospective Authors by Indian Biomedical Journals: An Opportunity to Promote Responsible Conduct of Research.

    PubMed

    Bhat, Anup; Shah, Akash; Sherighar, Swathi G

    2017-04-01

    Journals provide instructions to prospective authors to facilitate the process of manuscript publication. The information provided under such instructions could be a potential opportunity to promote responsible conduct of research (RCR). We analyzed 74 Indian biomedical journals for the type of information provided in the "instructions to authors" section and adherence to the International Committee of Medical Journal Editors (ICMJE) recommendations. Among the 71 journals that had an "instructions to authors" section, 53 journals adhered to ICMJE recommendations. We discuss sections of the ICMJE recommendations detailed by Indian biomedical journals under the "instructions to authors" section and emphasize components that require greater exposure.

  15. Scottish Schools Science Equipment Research Centre Bulletin No. 55.

    ERIC Educational Resources Information Center

    1972

    Instructions for the construction of the following apparatus for the secondary school science laboratory are included in this issue of the Scottish Schools Science Equipment Research Centre Bulletin: a cheap water purifier using an expendable deionizer can; a simple amplifier suitable for detecting or displaying D. C. currents of 1 microamp or…

  16. New Developments in NASA's Rodent Research Hardware for Conducting Long Duration Biomedical and Basic Research in Space

    NASA Technical Reports Server (NTRS)

    Shirazi, Yasaman; Choi, S.; Harris, C.; Gong, C.; Fisher, R. J.; Beegle, J. E.; Stube, K. C.; Martin, K. J.; Nevitt, R. G.; Globus, R. K.

    2017-01-01

    Animal models, particularly rodents, are the foundation of pre-clinical research to understand human diseases and evaluate new therapeutics, and play a key role in advancing biomedical discoveries both on Earth and in space. The National Research Councils Decadal survey emphasized the importance of expanding NASA's life sciences research to perform long duration, rodent experiments on the International Space Station (ISS) to study effects of the space environment on the musculoskeletal and neurological systems of mice as model organisms of human health and disease, particularly in areas of muscle atrophy, bone loss, and fracture healing. To accomplish this objective, flight hardware, operations, and science capabilities were developed at NASA Ames Research Center (ARC) to enhance science return for both commercial (CASIS) and government-sponsored rodent research. The Rodent Research Project at NASA ARC has pioneered a new research capability on the International Space Station and has progressed toward translating research to the ISS utilizing commercial rockets, collaborating with academia and science industry, while training crewmembers to assist in performing research on orbit. The Rodent Research Habitat provides a living environment for animals on ISS according to standard animal welfare requirements, and daily health checks can be performed using the habitats camera system. Results from these studies contribute to the science community via both the primary investigation and banked samples that are shared in publicly available data repository such as GeneLab. Following each flight, through the Biospecimen Sharing Program (BSP), numerous tissues and thousands of samples will be harvested, and distributed from the Space Life and Physical Sciences (SLPS) to Principal Investigators (PIs) through the Ames Life Science Data Archive (ALSDA). Every completed mission sets a foundation to build and design greater complexity into future research and answer questions about

  17. Survey of checkpoints along the pathway to diverse biomedical research faculty

    PubMed Central

    Brown, Abigail M.; Moneta-Koehler, Liane; Chalkley, Roger

    2018-01-01

    There is a persistent shortage of underrepresented minority (URM) faculty who are involved in basic biomedical research at medical schools. We examined the entire training pathway of potential candidates to identify the points of greatest loss. Using a range of recent national data sources, including the National Science Foundation’s Survey of Earned Doctorates and Survey of Doctoral Recipients, we analyzed the demographics of the population of interest, specifically those from URM backgrounds with an interest in biomedical sciences. We examined the URM population from high school graduates through undergraduate, graduate, and postdoctoral training as well as the URM population in basic science tenure track faculty positions at medical schools. We find that URM and non-URM trainees are equally likely to transition into doctoral programs, to receive their doctoral degree, and to secure a postdoctoral position. However, the analysis reveals that the diversions from developing a faculty career are found primarily at two clearly identifiable places, specifically during undergraduate education and in transition from postdoctoral fellowship to tenure track faculty in the basic sciences at medical schools. We suggest focusing additional interventions on these two stages along the educational pathway. PMID:29338019

  18. The biomedical model of mental disorder: a critical analysis of its validity, utility, and effects on psychotherapy research.

    PubMed

    Deacon, Brett J

    2013-11-01

    The biomedical model posits that mental disorders are brain diseases and emphasizes pharmacological treatment to target presumed biological abnormalities. A biologically-focused approach to science, policy, and practice has dominated the American healthcare system for more than three decades. During this time, the use of psychiatric medications has sharply increased and mental disorders have become commonly regarded as brain diseases caused by chemical imbalances that are corrected with disease-specific drugs. However, despite widespread faith in the potential of neuroscience to revolutionize mental health practice, the biomedical model era has been characterized by a broad lack of clinical innovation and poor mental health outcomes. In addition, the biomedical paradigm has profoundly affected clinical psychology via the adoption of drug trial methodology in psychotherapy research. Although this approach has spurred the development of empirically supported psychological treatments for numerous mental disorders, it has neglected treatment process, inhibited treatment innovation and dissemination, and divided the field along scientist and practitioner lines. The neglected biopsychosocial model represents an appealing alternative to the biomedical approach, and an honest and public dialog about the validity and utility of the biomedical paradigm is urgently needed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Coal conversion: description of technologies and necessary biomedical and environmental research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-08-01

    This document contains a description of the biomedical and environmental research necessary to ensure the timely attainment of coal conversion technologies amenable to man and his environment. The document is divided into three sections. The first deals with the types of processes currently being considered for development; the data currently available on composition of product, process and product streams, and their potential effects; and problems that might arise from transportation and use of products. Section II is concerned with a description of the necessary research in each of the King-Muir categories, while the third section presents the research strategies necessarymore » to assess the potential problems at the conversion plant (site specific) and those problems that might effect the general public and environment as a result of the operation of large-scale coal conversion plants.« less

  20. The Impact of CRISPR/Cas9-Based Genomic Engineering on Biomedical Research and Medicine.

    PubMed

    Go, D E; Stottmann, R W

    2016-01-01

    There has been prolonged and significant interest in manipulating the genome for a wide range of applications in biomedical research and medicine. An existing challenge in realizing this potential has been the inability to precisely edit specific DNA sequences. Past efforts to generate targeted double stranded DNA cleavage have fused DNA-targeting elements such as zinc fingers and DNA-binding proteins to endonucleases. However, these approaches are limited by both design complexity and inefficient, costineffective operation. The discovery of CRISPR/Cas9, a branch of the bacterial adaptive immune system, as a potential genomic editing tool holds the promise of facile targeted cleavage. Its novelty lies in its RNA-guided endonuclease activity, which enhances its efficiency, scalability, and ease of use. The only necessary components are a Cas9 endonuclease protein and an RNA molecule tailored to the gene of interest. This lowbarrier of adoption has facilitated a plethora of advances in just the past three years since its discovery. In this review, we will discuss the impact of CRISPR/Cas9 on biomedical research and its potential implications in medicine.

  1. Past and future trends in cancer and biomedical research: a comparison between Egypt and the world using PubMed-indexed publications.

    PubMed

    Zeeneldin, Ahmed Abdelmabood; Taha, Fatma Mohamed; Moneer, Manar

    2012-07-10

    PubMed is a free web literature search service that contains almost 21 millions of abstracts and publications with almost 5 million user queries daily. The purposes of the study were to compare trends in PubMed-indexed cancer and biomedical publications from Egypt to that of the world and to predict future publication volumes. The PubMed was searched for the biomedical publications between 1991 and 2010 (publications dates). Affiliation was then limited to Egypt. Further limitation was applied to cancer, human and animal publications. Poisson regression model was used for prediction of future number of publications between 2011 and 2020. Cancer publications contributed 23% to biomedical publications both for Egypt and the world. Egyptian biomedical and cancer publications contributed about 0.13% to their world counterparts. This contribution was more than doubled over the study period. Egyptian and world's publications increased from year to year with rapid rise starting the year 2003. Egyptian as well as world's human cancer publications showed the highest increases. Egyptian publications had some peculiarities; they showed some drop at the years 1994 and 2002 and apart from the decline in the animal: human ratio with time, all Egyptian publications in the period 1991-2000 were significantly more than those in 2001-2010 (P < 0.05 for all). By 2020, Egyptian biomedical and cancer publications will increase by 158.7% and 280% relative to 2010 to constitute 0.34% and 0.17% of total PubMed publications, respectively. The Egyptian contribution to world's biomedical and cancer publications needs significant improvements through research strategic planning, setting national research priorities, adequate funding and researchers' training.

  2. Biomedical research and aerospace technology applications

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The accomplishments and activities of an Applications Team for biomedical subjects are presented. The team attempts to couple the technological problems and requirements in medicine with the relevant aerospace technology and, in particular, NASA-generated technology. The team actively engages in identifying these problems through direct contact with medical staffs or problem originators. The identification and specification of medical problems is followed by a search for technology which may be relevant to solutions to these problems.

  3. The first chimpanzee sanctuary in Japan: an attempt to care for the "surplus" of biomedical research.

    PubMed

    Morimura, Naruki; Idani, Gen'ichi; Matsuzawa, Tetsuro

    2011-03-01

    This article specifically examines several aspects of the human-captive chimpanzee bond and the effort to create the first chimpanzee sanctuary in Japan. We discuss our ethical responsibility for captive chimpanzees that have been used in biomedical research. On April 1, 2007, the Chimpanzee Sanctuary Uto (CSU) was established as the first sanctuary for retired laboratory chimpanzees in Japan. This initiative was the result of the continuous efforts by members of Support for African/Asian Great Apes (SAGA), and the Great Ape Information Network to provide a solution to the large chimpanzee colony held in biomedical facilities. However, the cessation of invasive biomedical studies using chimpanzees has created a new set of challenges because Japan lacks registration and laws banning invasive ape experiments and lacks a national policy for the life-long care of retired laboratory chimpanzees. Therefore, CSU has initiated a relocation program in which 79 retired laboratory chimpanzees will be sent to domestic zoos and receive life-long care. By the end of 2009, the number of chimpanzees living at CSU had decreased from 79 to 59 individuals. A nationwide network of care facilities and CSU to provide life-long care of retired laboratory chimpanzees is growing across Japan. This will result in humane treatment of these research animals. 2010 Wiley-Liss, Inc.

  4. Biomedical Science Undergraduate Major: A New Pathway to Advance Research and the Health Professions.

    PubMed

    Gunn, John S; Ledford, Cynthia H; Mousetes, Steven J; Grever, Michael R

    2018-01-01

    Many students entering professional degree programs, particularly M.D., Ph.D., and M.D./Ph.D., are not well prepared regarding the breadth of scientific knowledge required, communication skills, research experience, reading and understanding the scientific literature, and significant shadowing (for M.D.-related professions). In addition, physician scientists are a needed and necessary part of the academic research environment but are dwindling in numbers. In response to predictions of critical shortages of clinician investigators and the lack of proper preparation as undergraduates for these professions, the Biomedical Science (BMS) undergraduate major was created at The Ohio State University to attract incoming college freshmen with interests in scientific research and the healthcare professions. The intent of this major was to graduate an elite cohort of highly talented individuals who would pursue careers in the healthcare professions, biomedical research, or both. Students were admitted to the BMS major through an application and interview process. Admitted cohorts were small, comprising 22 to 26 students, and received a high degree of individualized professional academic advising and mentoring. The curriculum included a minimum of 4 semesters (or 2 years) of supervised research experience designed to enable students to gain skills in clinical and basic science investigation. In addition to covering the prerequisites for medicine and advanced degrees in health professions, the integrated BMS coursework emphasized research literacy as well as skills related to work as a healthcare professional, with additional emphasis on independent learning, teamwork to solve complex problems, and both oral and written communication skills. Supported by Ohio State's Department of Internal Medicine, a unique clinical internship provided selected students with insights into potential careers as physician scientists. In this educational case report, we describe the BMS

  5. Towards a 21st century roadmap for biomedical research and drug discovery: Consensus report and recommendations

    EPA Science Inventory

    Decades of costly failures in translating drug candidates from preclinical disease models to human therapeutic use warrant reconsideration of the priority placed on animal models in biomedical research. Following an international workshop attended by experts from academia, govern...

  6. For 481 biomedical open access journals, articles are not searchable in the Directory of Open Access Journals nor in conventional biomedical databases

    PubMed Central

    Andresen, Kristoffer; Pommergaard, Hans-Christian; Rosenberg, Jacob

    2015-01-01

    Background. Open access (OA) journals allows access to research papers free of charge to the reader. Traditionally, biomedical researchers use databases like MEDLINE and EMBASE to discover new advances. However, biomedical OA journals might not fulfill such databases’ criteria, hindering dissemination. The Directory of Open Access Journals (DOAJ) is a database exclusively listing OA journals. The aim of this study was to investigate DOAJ’s coverage of biomedical OA journals compared with the conventional biomedical databases. Methods. Information on all journals listed in four conventional biomedical databases (MEDLINE, PubMed Central, EMBASE and SCOPUS) and DOAJ were gathered. Journals were included if they were (1) actively publishing, (2) full OA, (3) prospectively indexed in one or more database, and (4) of biomedical subject. Impact factor and journal language were also collected. DOAJ was compared with conventional databases regarding the proportion of journals covered, along with their impact factor and publishing language. The proportion of journals with articles indexed by DOAJ was determined. Results. In total, 3,236 biomedical OA journals were included in the study. Of the included journals, 86.7% were listed in DOAJ. Combined, the conventional biomedical databases listed 75.0% of the journals; 18.7% in MEDLINE; 36.5% in PubMed Central; 51.5% in SCOPUS and 50.6% in EMBASE. Of the journals in DOAJ, 88.7% published in English and 20.6% had received impact factor for 2012 compared with 93.5% and 26.0%, respectively, for journals in the conventional biomedical databases. A subset of 51.1% and 48.5% of the journals in DOAJ had articles indexed from 2012 and 2013, respectively. Of journals exclusively listed in DOAJ, one journal had received an impact factor for 2012, and 59.6% of the journals had no content from 2013 indexed in DOAJ. Conclusions. DOAJ is the most complete registry of biomedical OA journals compared with five conventional biomedical

  7. For 481 biomedical open access journals, articles are not searchable in the Directory of Open Access Journals nor in conventional biomedical databases.

    PubMed

    Liljekvist, Mads Svane; Andresen, Kristoffer; Pommergaard, Hans-Christian; Rosenberg, Jacob

    2015-01-01

    Background. Open access (OA) journals allows access to research papers free of charge to the reader. Traditionally, biomedical researchers use databases like MEDLINE and EMBASE to discover new advances. However, biomedical OA journals might not fulfill such databases' criteria, hindering dissemination. The Directory of Open Access Journals (DOAJ) is a database exclusively listing OA journals. The aim of this study was to investigate DOAJ's coverage of biomedical OA journals compared with the conventional biomedical databases. Methods. Information on all journals listed in four conventional biomedical databases (MEDLINE, PubMed Central, EMBASE and SCOPUS) and DOAJ were gathered. Journals were included if they were (1) actively publishing, (2) full OA, (3) prospectively indexed in one or more database, and (4) of biomedical subject. Impact factor and journal language were also collected. DOAJ was compared with conventional databases regarding the proportion of journals covered, along with their impact factor and publishing language. The proportion of journals with articles indexed by DOAJ was determined. Results. In total, 3,236 biomedical OA journals were included in the study. Of the included journals, 86.7% were listed in DOAJ. Combined, the conventional biomedical databases listed 75.0% of the journals; 18.7% in MEDLINE; 36.5% in PubMed Central; 51.5% in SCOPUS and 50.6% in EMBASE. Of the journals in DOAJ, 88.7% published in English and 20.6% had received impact factor for 2012 compared with 93.5% and 26.0%, respectively, for journals in the conventional biomedical databases. A subset of 51.1% and 48.5% of the journals in DOAJ had articles indexed from 2012 and 2013, respectively. Of journals exclusively listed in DOAJ, one journal had received an impact factor for 2012, and 59.6% of the journals had no content from 2013 indexed in DOAJ. Conclusions. DOAJ is the most complete registry of biomedical OA journals compared with five conventional biomedical databases

  8. A Perspective on Promoting Diversity in the Biomedical Research Workforce: The National Heart, Lung, and Blood Institute's PRIDE Program.

    PubMed

    Boyington, Josephine E A; Maihle, Nita J; Rice, Treva K; Gonzalez, Juan E; Hess, Caryl A; Makala, Levi H; Jeffe, Donna B; Ogedegbe, Gbenga; Rao, Dabeeru C; Dávila-Román, Victor G; Pace, Betty S; Jean-Louis, Girardin; Boutjdir, Mohamed

    2016-07-21

    Aspiring junior investigators from groups underrepresented in the biomedical sciences face various challenges as they pursue research independence. However, the biomedical research enterprise needs their participation to effectively address critical research issues such as health disparities and health inequities. In this article, we share a research education and mentoring initiative that seeks to address this challenge: Programs to Increase Diversity among Individuals Engaged in Health Related Research (PRIDE), funded by the National Heart, Lung, and Blood Institute (NHLBI). This longitudinal research-education and mentoring program occurs through summer institute programs located at US-based academic institutions. Recruited participants are exposed to didactic and lab-based research-skill enhancement experiences, with year-round mentoring over the course of two years. Mentor-mentee matching is based on shared research interests to promote congruence and to enhance skill acquisition. Program descriptions and sample narratives of participants' perceptions of PRIDE's impact on their career progress are showcased. Additionally, we highlight the overall program design and structure of four of seven funded summer institutes that focus on cardiovascular disease, related conditions, and health disparities. Mentees' testimonials about the value of the PRIDE mentoring approach in facilitating career development are also noted. Meeting the clinical and research needs of an increasingly diverse US population is an issue of national concern. The PRIDE initiative, which focuses on increasing research preparedness and professional development of groups underrepresented in the biomedical research workforce, with an emphasis on mentoring as the critical approach, provides a robust model that is impacting the careers of future investigators.

  9. Aptamers: multifunctional molecules for biomedical research.

    PubMed

    Banerjee, Jayeeta; Nilsen-Hamilton, Marit

    2013-12-01

    Aptamers are single-stranded oligonucleotides that fold into well-defined three-dimensional shapes, allowing them to bind their targets with high affinity and specificity. They can be generated through an in vitro process called "Systemic Evolution of Ligands by Exponential Enrichment" and applied for specific detection, inhibition, and characterization of various targets like small organic and inorganic molecules, proteins, and whole cells. Aptamers have also been called chemical antibodies because of their synthetic origin and their similar modes of action to antibodies. They exhibit significant advantages over antibodies in terms of their small size, synthetic accessibility, and ability to be chemically modified and thus endowed with new properties. The first generation of aptamer drug "Macugen" was available for public use within 25 years of the discovery of aptamers. With others in the pipeline for clinical trials, this emerging field of medical biotechnology is raising significant interest. However, aptamers pose different problems for their development than for antibodies that need to be addressed to achieve practical applications. It is likely that current developments in aptamer engineering will be the basis for the evolution of improved future bioanalytical and biomedical applications. The present review discusses the development of aptamers for therapeutics, drug delivery, target validation and imaging, and reviews some of the challenges to fully realizing the promise of aptamers in biomedical applications.

  10. Proceedings of the First Biennial Space Biomedical Investigators' Workshop

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The First Biennial Space Biomedical Investigators' Workshop, held January 11-13, 1999, was unique in that it assembled, for the first time, a broad cross section of NASA-funded biomedical researchers to present the current status of their projects and their plans for future investigations. All principal investigators with active, or recently-completed ground-based projects in NASA's Biomedical Research and Countermeasures Program that were funded through NASA's Office of Life and Microgravity Sciences and Applications were invited. Included were individual investigators funded through NASA Research Announcements, investigators with NASA Specialized Centers of Research and Training, investigators with the recently established National Space Biomedical Research Institute (NSBRI), and NASA civil servant investigators. Seventy-seven percent of all eligible projects were presented at the workshop. Thus, these Proceedings should provide a useful snapshot of the status of NASA-funded space biomedical research as of January 1999. An important workshop objective was to achieve free and open communication among the presenting investigators. Therefore, presentation of new and incomplete results, as well as hypotheses and ideas for future research, was encouraged. Comments and constructive criticisms from the presenters' colleagues were also encouraged. These ground rules resulted in many lively and useful discussions, during both the presentation sessions and informal evening gatherings and breaks.

  11. Credibility Assessment of Deterministic Computational Models and Simulations for Space Biomedical Research and Operations

    NASA Technical Reports Server (NTRS)

    Mulugeta, Lealem; Walton, Marlei; Nelson, Emily; Myers, Jerry

    2015-01-01

    Human missions beyond low earth orbit to destinations, such as to Mars and asteroids will expose astronauts to novel operational conditions that may pose health risks that are currently not well understood and perhaps unanticipated. In addition, there are limited clinical and research data to inform development and implementation of health risk countermeasures for these missions. Consequently, NASA's Digital Astronaut Project (DAP) is working to develop and implement computational models and simulations (M&S) to help predict and assess spaceflight health and performance risks, and enhance countermeasure development. In order to effectively accomplish these goals, the DAP evaluates its models and simulations via a rigorous verification, validation and credibility assessment process to ensure that the computational tools are sufficiently reliable to both inform research intended to mitigate potential risk as well as guide countermeasure development. In doing so, DAP works closely with end-users, such as space life science researchers, to establish appropriate M&S credibility thresholds. We will present and demonstrate the process the DAP uses to vet computational M&S for space biomedical analysis using real M&S examples. We will also provide recommendations on how the larger space biomedical community can employ these concepts to enhance the credibility of their M&S codes.

  12. [The significance of animals in biomedical research].

    PubMed

    Pawlik, W W

    1998-01-01

    The mission of medicine is maintenance of health, elimination of suffering and prolongation of life. These aims can be achieved by medicine based on experimental determination, because only then it becomes a real science. The nature of human mind has led the man since the beginning of humanity on the earth to the cognition of his environment and himself. Being intellectually superior than other living creatures, the man got power over them. In his endless efforts to expand knowledge about living organisms, including his own, he started to use animals. The man has used animals for cognitive purposes for ages and is still doing it, however his motivation has changed and is still changing. Cognition of functions of living organisms on the basis of observation solely, without any interference into the living body gave a lot of important information, yet, generally, this method was of little use for the development of science. Only the use of animals could give information about this what was earlier unknown and impossible. The long-lasting evolution of experimental studies of living functions of higher organisms resulted in achieving a perfect level in biomedical studies. Vivisection, as it was understood years ago, has become history. For a chronic experiment, an animal is surgically prepared according to the researcher's intention. The surgery and the postoperative period follow the principles used in human surgery. After the convalesce period, the animal is used for further experiments. On such prepared animals, the investigations in experimental cardiology, neurophysiology, gastroenterology and other medical disciplines are performed. The animal prepared for longlasting experiments do not suffer from pain during both the experiments and intervals between them. Another important achievement in chronic experiments is considerable reduction of the number of animals used in experimental medicine. Undoubtedly, the greatest achievements in medicine in the 19th and 20th

  13. Balanced program plan: analysis for biomedical and environmental research. Volume 5. Oil shale technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-06-01

    Oil shale technology has been divided into two sub-technologies: surfaceprocessing and in-situ processing. Definition of the research programs is essentially an amplification of the five King-Muir categories: (A) pollutants: characterization, measurement, and monitoring; (B) physical and chemical processes and effects; (C) health effects; (D) ecological processes and effects; and (E) integrated assessment. Twenty-three biomedical and environmental research projects are described as to program title, scope, milestones, technology time frame, program unit priority, and estimated program unit cost.

  14. BER balanced program plan: oil shale technology. [23 suggested biomedical and environmental research projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulte, H.F.; Stoker, A.K.; Campbell, E.E.

    1976-06-01

    Oil shale technology has been divided into two sub-technologies: surface processing and in-situ processing. Definition of the research programs is essentially an amplification of the five King-Muir categories: (A) pollutants: characterization, measurement, and monitoring; (B) physical and chemical processes and effects; (C) health effects; (D) ecological processes and effects; and (E) integrated assessment. Twenty-three biomedical and environmental research projects are described as to program title, scope, milestones, technolgy time frame, program unit priority, and estimated program unit cost.

  15. Palliative care research centre's move into social media: constructing a framework for ethical research, a consensus paper.

    PubMed

    Hopewell-Kelly, Noreen; Baillie, Jessica; Sivell, Stephanie; Harrop, Emily; Bowyer, Anna; Taylor, Sophia; Thomas, Kristen; Newman, Alisha; Prout, Hayley; Byrne, Anthony; Taubert, Mark; Nelson, Annmarie

    2016-01-28

    Social media (SM) have altered the way we live and, for many, the way we die. The information available on even the rarest conditions is vast. Free from restrictions of mobility, time and distance, SM provides a space for people to share experiences of illness, death and dying, and potentially benefit from the emotional and practical support of others n similar positions. The communications that take place in these spaces also create large amounts of 'data' which, for any research centre, cannot be ignored. However, for a palliative care research centre the use of this 'data' comes with specific ethical dilemmas. This paper details the process that we, as a research, went through in constructing a set of ethical guidelines by which to work. This involved conducting two consensus days; one with researchers from within the centre, and one with the inclusion of external researchers with a specific interest in SM. The primary themes that emerged from the consensus meetings includes; SM as a public or private space; the status of open and closed groups; the use of historical data; recruiting participants and obtaining informed consent and problems of anonymity associated with dissemination. These are the themes that this paper will focus on prior to setting out the guidelines that we subsequently constructed. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Research and Development Digest--5. A Summary of Published Research by the Centre for the Period 1 July, 1989--30 June, 1990.

    ERIC Educational Resources Information Center

    Hall, William C., Ed.

    This publication summarizes 50 research studies published by the TAFE (Technical and Further Education) National Centre for Research and Development Ltd., Australia. The document is presented in 10 sections. The first section provides an overview of the Centre's work and its publications, describing how best to use them. Sections 2-6 consist of…

  17. Commercial Biomedical Experiments

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. Biomedical Experiments (CIBX-2) payload. CIBX-2 is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the Stars program. Valerie Cassanto of ITA checks the Canadian Protein Crystallization Experiment (CAPE) carried by STS-86 to Mir in 1997. The experiments are sponsored by NASA's Space Product Development Program (SPD).

  18. From the NIH: A Systems Approach to Increasing the Diversity of the Biomedical Research Workforce

    ERIC Educational Resources Information Center

    Valantine, Hannah A.; Lund, P. Kay; Gammie, Alison E.

    2016-01-01

    The National Institutes of Health (NIH) is committed to attracting, developing, and supporting the best scientists from all groups as an integral part of excellence in training. Biomedical research workforce diversity, capitalizing on the full spectrum of skills, talents, and viewpoints, is essential for solving complex human health challenges.…

  19. Laser spectroscopy applied to environmental, ecological, food safety, and biomedical research.

    PubMed

    Svanberg, Sune; Zhao, Guangyu; Zhang, Hao; Huang, Jing; Lian, Ming; Li, Tianqi; Zhu, Shiming; Li, Yiyun; Duan, Zheng; Lin, Huiying; Svanberg, Katarina

    2016-03-21

    Laser spectroscopy provides many possibilities for multi-disciplinary applications in environmental monitoring, in the ecological field, for food safety investigations, and in biomedicine. The paper gives several examples of the power of multi-disciplinary applications of laser spectroscopy as pursued in our research group. The studies utilize mostly similar and widely applicable spectroscopic approaches. Air pollution and vegetation monitoring by lidar techniques, as well as agricultural pest insect monitoring and classification by elastic scattering and fluorescence spectroscopy are described. Biomedical aspects include food safety applications and medical diagnostics of sinusitis and otitis, with strong connection to the abatement of antibiotics resistance development.

  20. KLIMA 2050: a research-based innovation centre for risk reduction through climate adaptation of infrastructure and buildings

    NASA Astrophysics Data System (ADS)

    Solheim, Anders; Time, Berit; Kvande, Tore; Sivertsen, Edvard; Cepeda, Jose; Lappegard Hauge, Åshild; Bygballe, Lena; Almås, Anders-Johan

    2016-04-01

    Klima 2050 - Risk reduction through climate adaptation of buildings and infrastructure is a Centre for Research based Innovation (SFI), funded jointly by the Research Council of Norway (RCN) and the partners of the centre. The aim of Klima 2050 is to reduce the societal risks associated with climate changes, including enhanced precipitation and flood water exposure within the built environment. The Centre will strengthen companies' innovation capacity through a focus on long-term research. It is also a clear objective to facilitate close cooperation between Research & Development, performing companies, public entities, and prominent research groups. Emphasis will be placed on development of moisture-resilient buildings, storm-water management, blue-green solutions, mitigation measures for water-triggered landslides, socio-economic incentives and decision-making processes. Both extreme weather and gradual climatic changes will be addressed. The Centre consists of a consortium of 18 partners from three sectors: industry, public entities and research/education organizations. The partners from the industry/private sector include a variety of companies from the building industry. The public entities comprise the most important infrastructure owners in Norway (public roads, railroads, buildings, airports), as well as the directorate for water and energy. The research and education partners are SINTEF Building and Infrastructure, the Norwegian Business School, the Norwegian University of Science and Technology, the Norwegian Meteorological Institute, and the Norwegian Geotechnical Institute. This contribution presents the main research plans and activities of this Centre, which was started in 2015 and will run for 8 years, until 2023. The presentation also includes options for international cooperation in the Centre via PhD and postdoctoral positions, MSc projects and guest-researcher stays with Klima 2050 partners.

  1. Review of spectral imaging technology in biomedical engineering: achievements and challenges.

    PubMed

    Li, Qingli; He, Xiaofu; Wang, Yiting; Liu, Hongying; Xu, Dongrong; Guo, Fangmin

    2013-10-01

    Spectral imaging is a technology that integrates conventional imaging and spectroscopy to get both spatial and spectral information from an object. Although this technology was originally developed for remote sensing, it has been extended to the biomedical engineering field as a powerful analytical tool for biological and biomedical research. This review introduces the basics of spectral imaging, imaging methods, current equipment, and recent advances in biomedical applications. The performance and analytical capabilities of spectral imaging systems for biological and biomedical imaging are discussed. In particular, the current achievements and limitations of this technology in biomedical engineering are presented. The benefits and development trends of biomedical spectral imaging are highlighted to provide the reader with an insight into the current technological advances and its potential for biomedical research.

  2. Workshop summary. Biomedical and Space-Related Research with Heavy Ions at the BEVALAC

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Curtis, S. B.

    1989-01-01

    The authors provide an overview of papers presented at a workshop on Biomedical and Space-Related Research with Heavy Ions at the BEVALAC at Lawrence Berkeley Laboratory. Goals of the meeting were to determine the critical experiments using heavy ions as probes in radiation physics, radiation chemistry, macromolecular and cellular biology, evolution science, basic neurophysiology, and medical therapies; how beam lines and facilities at Lawrence Berkeley Laboratory can be improved for these experiments; and implications in priorities and funding for national policy. Workshop topics included physics and facilities, cellular and molecular biology, tissue radiobiology, and the future of heavy ion research.

  3. A new model of collaborative research: experiences from one of Australia's NHMRC Partnership Centres for Better Health.

    PubMed

    Wutzke, Sonia; Redman, Sally; Bauman, Adrian; Hawe, Penelope; Shiell, Alan; Thackway, Sarah; Wilson, Andrew

    2017-02-15

    There is often a disconnection between the creation of evidence and its use in policy and practice. Cross-sectoral, multidisciplinary partnership research, founded on shared governance and coproduction, is considered to be one of the most effective means of overcoming this research-policy-practice disconnect. Similar to a number of funding bodies internationally, Australia's National Health and Medical Research Council has introduced Partnership Centres for Better Health: a scheme explicitly designed to encourage coproduced partnership research. In this paper, we describe our experiences of The Australian Prevention Partnership Centre, established in June 2013 to explore the systems, strategies and structures that inform decisions about how to prevent lifestyle-related chronic disease. We present our view on how the Partnership Centre model is working in practice. We comment on the unique features of the Partnership Centre funding model, how these features enable ways of working that are different from both investigator-initiated and commissioned research, and how these ways of working can result in unique outcomes that would otherwise not have been possible. Although not without challenges, the Partnership Centre approach addresses a major gap in the Australian research environment, whereby large-scale, research-policy-practice partnerships are established with sufficient time, resources and flexibility to deliver highly innovative, timely and accessible research that is of use to policy and practice.

  4. CollaborationViz: Interactive Visual Exploration of Biomedical Research Collaboration Networks

    PubMed Central

    Bian, Jiang; Xie, Mengjun; Hudson, Teresa J.; Eswaran, Hari; Brochhausen, Mathias; Hanna, Josh; Hogan, William R.

    2014-01-01

    Social network analysis (SNA) helps us understand patterns of interaction between social entities. A number of SNA studies have shed light on the characteristics of research collaboration networks (RCNs). Especially, in the Clinical Translational Science Award (CTSA) community, SNA provides us a set of effective tools to quantitatively assess research collaborations and the impact of CTSA. However, descriptive network statistics are difficult for non-experts to understand. In this article, we present our experiences of building meaningful network visualizations to facilitate a series of visual analysis tasks. The basis of our design is multidimensional, visual aggregation of network dynamics. The resulting visualizations can help uncover hidden structures in the networks, elicit new observations of the network dynamics, compare different investigators and investigator groups, determine critical factors to the network evolution, and help direct further analyses. We applied our visualization techniques to explore the biomedical RCNs at the University of Arkansas for Medical Sciences – a CTSA institution. And, we created CollaborationViz, an open-source visual analytical tool to help network researchers and administration apprehend the network dynamics of research collaborations through interactive visualization. PMID:25405477

  5. BIOMedical Search Engine Framework: Lightweight and customized implementation of domain-specific biomedical search engines.

    PubMed

    Jácome, Alberto G; Fdez-Riverola, Florentino; Lourenço, Anália

    2016-07-01

    Text mining and semantic analysis approaches can be applied to the construction of biomedical domain-specific search engines and provide an attractive alternative to create personalized and enhanced search experiences. Therefore, this work introduces the new open-source BIOMedical Search Engine Framework for the fast and lightweight development of domain-specific search engines. The rationale behind this framework is to incorporate core features typically available in search engine frameworks with flexible and extensible technologies to retrieve biomedical documents, annotate meaningful domain concepts, and develop highly customized Web search interfaces. The BIOMedical Search Engine Framework integrates taggers for major biomedical concepts, such as diseases, drugs, genes, proteins, compounds and organisms, and enables the use of domain-specific controlled vocabulary. Technologies from the Typesafe Reactive Platform, the AngularJS JavaScript framework and the Bootstrap HTML/CSS framework support the customization of the domain-oriented search application. Moreover, the RESTful API of the BIOMedical Search Engine Framework allows the integration of the search engine into existing systems or a complete web interface personalization. The construction of the Smart Drug Search is described as proof-of-concept of the BIOMedical Search Engine Framework. This public search engine catalogs scientific literature about antimicrobial resistance, microbial virulence and topics alike. The keyword-based queries of the users are transformed into concepts and search results are presented and ranked accordingly. The semantic graph view portraits all the concepts found in the results, and the researcher may look into the relevance of different concepts, the strength of direct relations, and non-trivial, indirect relations. The number of occurrences of the concept shows its importance to the query, and the frequency of concept co-occurrence is indicative of biological relations

  6. The Stanford MediaServer Project: strategies for building a flexible digital media platform to support biomedical education and research.

    PubMed Central

    Durack, Jeremy C.; Chao, Chih-Chien; Stevenson, Derek; Andriole, Katherine P.; Dev, Parvati

    2002-01-01

    Medical media collections are growing at a pace that exceeds the value they currently provide as research and educational resources. To address this issue, the Stanford MediaServer was designed to promote innovative multimedia-based application development. The nucleus of the MediaServer platform is a digital media database strategically designed to meet the information needs of many biomedical disciplines. Key features include an intuitive web-based interface for collaboratively populating the media database, flexible creation of media collections for diverse and specialized purposes, and the ability to construct a variety of end-user applications from the same database to support biomedical education and research. PMID:12463820

  7. The Stanford MediaServer Project: strategies for building a flexible digital media platform to support biomedical education and research.

    PubMed

    Durack, Jeremy C; Chao, Chih-Chien; Stevenson, Derek; Andriole, Katherine P; Dev, Parvati

    2002-01-01

    Medical media collections are growing at a pace that exceeds the value they currently provide as research and educational resources. To address this issue, the Stanford MediaServer was designed to promote innovative multimedia-based application development. The nucleus of the MediaServer platform is a digital media database strategically designed to meet the information needs of many biomedical disciplines. Key features include an intuitive web-based interface for collaboratively populating the media database, flexible creation of media collections for diverse and specialized purposes, and the ability to construct a variety of end-user applications from the same database to support biomedical education and research.

  8. Biomedical graphite and CaF2 preparation and measurement at PRIME Lab

    NASA Astrophysics Data System (ADS)

    Jackson, George S.; Einstein, Jane A.; Kubley, Tom; Martin, Berdine; Weaver, Connie M.; Caffee, Marc

    2015-10-01

    The biomedical program at PRIME Lab has prepared radiocarbon and 41Ca as tracers for a variety of applications. Over the last decade several hundred 14C samples and several thousand 41Ca samples have been measured per year. Biomedical samples pose challenges that are relatively rare in the AMS community. We will discuss how to prepare and compensate for samples that have isotope ratios above the dynamic range of AMS, high interference rates, and small samples sizes. In the case of 41Ca, the trade off in the chromatography between yield and sample cleanliness will be analyzed. Secondary standards that have isotope ratios commonly encountered in our applications are routinely prepared. We use material from the Joint Research Centre's Institute for Reference Materials and Measurement: IRMM-3701/4, 3701/5, and 3701/6 and a standard produced by PRIME Lab for 41Ca. We use International Atomic Energy Agency's IAEA C-3, IAEA C-7, IAEA C-8, and a ∼12.5× modern oxalic acid secondary standard supplied by Lawrence Livermore National Laboratory for 14C. We will discuss our precision, reproducibility, and the relative agreement between our measured and the reported values for these materials.

  9. Biomedical Data Sharing and Reuse: Attitudes and Practices of Clinical and Scientific Research Staff.

    PubMed

    Federer, Lisa M; Lu, Ya-Ling; Joubert, Douglas J; Welsh, Judith; Brandys, Barbara

    2015-01-01

    Significant efforts are underway within the biomedical research community to encourage sharing and reuse of research data in order to enhance research reproducibility and enable scientific discovery. While some technological challenges do exist, many of the barriers to sharing and reuse are social in nature, arising from researchers' concerns about and attitudes toward sharing their data. In addition, clinical and basic science researchers face their own unique sets of challenges to sharing data within their communities. This study investigates these differences in experiences with and perceptions about sharing data, as well as barriers to sharing among clinical and basic science researchers. Clinical and basic science researchers in the Intramural Research Program at the National Institutes of Health were surveyed about their attitudes toward and experiences with sharing and reusing research data. Of 190 respondents to the survey, the 135 respondents who identified themselves as clinical or basic science researchers were included in this analysis. Odds ratio and Fisher's exact tests were the primary methods to examine potential relationships between variables. Worst-case scenario sensitivity tests were conducted when necessary. While most respondents considered data sharing and reuse important to their work, they generally rated their expertise as low. Sharing data directly with other researchers was common, but most respondents did not have experience with uploading data to a repository. A number of significant differences exist between the attitudes and practices of clinical and basic science researchers, including their motivations for sharing, their reasons for not sharing, and the amount of work required to prepare their data. Even within the scope of biomedical research, addressing the unique concerns of diverse research communities is important to encouraging researchers to share and reuse data. Efforts at promoting data sharing and reuse should be aimed at

  10. Challenges facing academic research in commercializing event-detector implantable devices for an in-vivo biomedical subcutaneous device for biomedical analysis

    NASA Astrophysics Data System (ADS)

    Juanola-Feliu, E.; Colomer-Farrarons, J.; Miribel-Català, P.; Samitier, J.; Valls-Pasola, J.

    2011-05-01

    It is widely recognized that the welfare of the most advanced economies is at risk, and that the only way to tackle this situation is by controlling the knowledge economies and dealing with. To achieve this ambitious goal, we need to improve the performance of each dimension in the "knowledge triangle": education, research and innovation. Indeed, recent findings point to the importance of strategies of adding-value and marketing during R+D processes so as to bridge the gap between the laboratory and the market and so ensure the successful commercialization of new technology-based products. Moreover, in a global economy in which conventional manufacturing is dominated by developing economies, the future of industry in the most advanced economies must rely on its ability to innovate in those high-tech activities that can offer a differential added-value, rather than on improving existing technologies and products. It seems quite clear, therefore, that the combination of health (medicine) and nanotechnology in a new biomedical device is very capable of meeting these requisites. This work propose a generic CMOS Front-End Self-Powered In-Vivo Implantable Biomedical Device, based on a threeelectrode amperometric biosensor approach, capable of detecting threshold values for targeted concentrations of pathogens, ions, oxygen concentration, etc. Given the speed with which diabetes can spread, as diabetes is the fastest growing disease in the world, the nano-enabled implantable device for in-vivo biomedical analysis needs to be introduced into the global diabetes care devices market. In the case of glucose monitoring, the detection of a threshold decrease in the glucose level it is mandatory to avoid critic situations like the hypoglycemia. Although the case study reported in this paper is complex because it involves multiple organizations and sources of data, it contributes to extend experience to the best practices and models on nanotechnology applications and

  11. search.bioPreprint: a discovery tool for cutting edge, preprint biomedical research articles

    PubMed Central

    Iwema, Carrie L.; LaDue, John; Zack, Angela; Chattopadhyay, Ansuman

    2016-01-01

    The time it takes for a completed manuscript to be published traditionally can be extremely lengthy. Article publication delay, which occurs in part due to constraints associated with peer review, can prevent the timely dissemination of critical and actionable data associated with new information on rare diseases or developing health concerns such as Zika virus. Preprint servers are open access online repositories housing preprint research articles that enable authors (1) to make their research immediately and freely available and (2) to receive commentary and peer review prior to journal submission. There is a growing movement of preprint advocates aiming to change the current journal publication and peer review system, proposing that preprints catalyze biomedical discovery, support career advancement, and improve scientific communication. While the number of articles submitted to and hosted by preprint servers are gradually increasing, there has been no simple way to identify biomedical research published in a preprint format, as they are not typically indexed and are only discoverable by directly searching the specific preprint server websites. To address this issue, we created a search engine that quickly compiles preprints from disparate host repositories and provides a one-stop search solution. Additionally, we developed a web application that bolsters the discovery of preprints by enabling each and every word or phrase appearing on any web site to be integrated with articles from preprint servers. This tool, search.bioPreprint, is publicly available at http://www.hsls.pitt.edu/resources/preprint. PMID:27508060

  12. Universal Design of Research: Inclusion of Persons with Disabilities in Mainstream Biomedical Studies

    PubMed Central

    Williams, Ann S.; Moore, Shirley M.

    2012-01-01

    Although persons with disabilities of all kinds have as wide a range of health conditions as the general population, they are profoundly underrepresented in mainstream health research. Such underrepresentation might contribute to the health disparities in this population. We propose the concept of Universal Design of Research (UDR), which would promote routine inclusion of persons with disabilities in mainstream biomedical studies, without the need for adaptation or specialized design. Elements of UDR include the use of multi-sensory formats for recruiting participants, presenting research instruments and interventions, and data gathering from participants, and should promote the inclusion of participants with a wide range of abilities, thus enhancing the generalizability of results. PMID:21562227

  13. Universal design of research: inclusion of persons with disabilities in mainstream biomedical studies.

    PubMed

    Williams, Ann S; Moore, Shirley M

    2011-05-11

    Although persons with disabilities of all kinds have as wide a range of health conditions as the general population, they are profoundly underrepresented in mainstream health research. Such underrepresentation might contribute to the health disparities in this population. We propose the concept of Universal Design of Research (UDR), which would promote routine inclusion of persons with disabilities in mainstream biomedical and psychosocial studies, without the need for adaptation or specialized design. Elements of UDR include the use of multisensory formats for recruiting participants, presenting research instruments and interventions, and data gathering from participants and should promote the inclusion of participants with a wide range of abilities, thus enhancing the generalizability of results.

  14. Industry careers for the biomedical engineer.

    PubMed

    Munzner, Robert F

    2004-01-01

    This year's conference theme is "linkages for innovation in biomedicine." Biomedical engineers, especially those transitioning their career from academic study into medical device industry, will play a critical role in converting the fruits of scientific research into the reality of modern medical devices. This special session is organized to help biomedical engineers to achieve their career goals more effectively. Participants will have opportunities to hear from and interact with leading industrial experts on many issues. These may include but not limited to 1) career paths for biomedical engineers (industrial, academic, or federal; technical vs. managerial track; small start-up or large established companies); 2) unique design challenges and regulatory requirements in medical device development; 3) aspects of a successful biomedical engineering job candidate (such as resume, interview, follow-up). Suggestions for other topics are welcome and should be directed to xkong@ieee.org The distinguished panelists include: Xuan Kong, Ph.D., VP of Research, NEUROMetrix Inc, Waltham, MA Robert F. Munzner, Ph.D., Medical Device Consultant, Doctor Device, Herndon, VA Glen McLaughlin, Ph.D., VP of Engineering and CTO, Zonare Medical System Inc., Mountain View, CA Grace Bartoo, Ph.D., RAC, General Manager, Decus Biomedical LLC San Carlos, CA.

  15. Camera systems in human motion analysis for biomedical applications

    NASA Astrophysics Data System (ADS)

    Chin, Lim Chee; Basah, Shafriza Nisha; Yaacob, Sazali; Juan, Yeap Ewe; Kadir, Aida Khairunnisaa Ab.

    2015-05-01

    Human Motion Analysis (HMA) system has been one of the major interests among researchers in the field of computer vision, artificial intelligence and biomedical engineering and sciences. This is due to its wide and promising biomedical applications, namely, bio-instrumentation for human computer interfacing and surveillance system for monitoring human behaviour as well as analysis of biomedical signal and image processing for diagnosis and rehabilitation applications. This paper provides an extensive review of the camera system of HMA, its taxonomy, including camera types, camera calibration and camera configuration. The review focused on evaluating the camera system consideration of the HMA system specifically for biomedical applications. This review is important as it provides guidelines and recommendation for researchers and practitioners in selecting a camera system of the HMA system for biomedical applications.

  16. From global bioethics to ethical governance of biomedical research collaborations.

    PubMed

    Wahlberg, Ayo; Rehmann-Sutter, Christoph; Sleeboom-Faulkner, Margaret; Lu, Guangxiu; Döring, Ole; Cong, Yali; Laska-Formejster, Alicja; He, Jing; Chen, Haidan; Gottweis, Herbert; Rose, Nikolas

    2013-12-01

    One of the features of advanced life sciences research in recent years has been its internationalisation, with countries such as China and South Korea considered 'emerging biotech' locations. As a result, cross-continental collaborations are becoming common generating moves towards ethical and legal standardisation under the rubric of 'global bioethics'. Such a 'global', 'Western' or 'universal' bioethics has in turn been critiqued as an imposition upon resource-poor, non-Western or local medical settings. In this article, we propose that a different tack is necessary if we are to come to grips with the ethical challenges that inter-continental biomedical research collaborations generate. In particular we ask how national systems of ethical governance of life science research might cope with increasingly global research collaborations with a focus on Sino-European collaboration. We propose four 'spheres' - deliberation, regulation, oversight and interaction - as a helpful way to conceptualise national systems of ethical governance. Using a workshop-based mapping methodology (workshops held in Beijing, Shanghai, Changsha, Xian, Shenzen and London) we identified three specific ethical challenges arising from cross-continental research collaborations: (1) ambiguity as to which regulations are applicable; (2) lack of ethical review capacity not only among ethical review board members but also collaborating scientists; (3) already complex, researcher-research subject interaction is further complicated when many nationalities are involved. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. 'Add women & stir'--the biomedical approach to cardiac research!

    PubMed

    O'Donnell, Sharon; Condell, Sarah; Begley, Cecily M

    2004-07-01

    In conditions shared by women and men, the biomedical model of disease assumes that illness-symptoms and outcomes are biologically and socially 'neutral'. Consequently, up until a decade ago, white middle-aged men were the model subjects in most funded cardiac trials, with the assumption that whatever the findings, the results would also hold true for women. This 'add women and stir' approach has resulted in imbalances in cardiac care and an image of coronary artery disease, which portrays a middle-aged male as its victim. Moreover, cardiac health care has been designed with the male anatomy and male experience of illness in mind, and health promotional measures have been targeted towards men. Women have received these health promotional messages to protect the hearts of men, and have been less likely to modify their own lifestyles in a cardio-protective manner. However, the biological and social differences that exist between women and men, must surely invalidate such biased biomedical assertions, and signify a need to delve beyond the realm of biomedical reductionism for greater insights and understanding. This review examines how scientific reductionism has failed to explore the impact of coronary artery disease on the lives of women and how the gendered image of this disease has privileged the normative frame.

  18. Domestic animals as models for biomedical research.

    PubMed

    Andersson, Leif

    2016-01-01

    Domestic animals are unique models for biomedical research due to their long history (thousands of years) of strong phenotypic selection. This process has enriched for novel mutations that have contributed to phenotype evolution in domestic animals. The characterization of such mutations provides insights in gene function and biological mechanisms. This review summarizes genetic dissection of about 50 genetic variants affecting pigmentation, behaviour, metabolic regulation, and the pattern of locomotion. The variants are controlled by mutations in about 30 different genes, and for 10 of these our group was the first to report an association between the gene and a phenotype. Almost half of the reported mutations occur in non-coding sequences, suggesting that this is the most common type of polymorphism underlying phenotypic variation since this is a biased list where the proportion of coding mutations are inflated as they are easier to find. The review documents that structural changes (duplications, deletions, and inversions) have contributed significantly to the evolution of phenotypic diversity in domestic animals. Finally, we describe five examples of evolution of alleles, which means that alleles have evolved by the accumulation of several consecutive mutations affecting the function of the same gene.

  19. Domestic animals as models for biomedical research

    PubMed Central

    Andersson, Leif

    2016-01-01

    Domestic animals are unique models for biomedical research due to their long history (thousands of years) of strong phenotypic selection. This process has enriched for novel mutations that have contributed to phenotype evolution in domestic animals. The characterization of such mutations provides insights in gene function and biological mechanisms. This review summarizes genetic dissection of about 50 genetic variants affecting pigmentation, behaviour, metabolic regulation, and the pattern of locomotion. The variants are controlled by mutations in about 30 different genes, and for 10 of these our group was the first to report an association between the gene and a phenotype. Almost half of the reported mutations occur in non-coding sequences, suggesting that this is the most common type of polymorphism underlying phenotypic variation since this is a biased list where the proportion of coding mutations are inflated as they are easier to find. The review documents that structural changes (duplications, deletions, and inversions) have contributed significantly to the evolution of phenotypic diversity in domestic animals. Finally, we describe five examples of evolution of alleles, which means that alleles have evolved by the accumulation of several consecutive mutations affecting the function of the same gene. PMID:26479863

  20. Enhancing biomedical design with design thinking.

    PubMed

    Kemnitzer, Ronald; Dorsa, Ed

    2009-01-01

    The development of biomedical equipment is justifiably focused on making products that "work." However, this approach leaves many of the people affected by these designs (operators, patients, etc.) with little or no representation when it comes to the design of these products. Industrial design is a "user focused" profession which takes into account the needs of diverse groups when making design decisions. The authors propose that biomedical equipment design can be enhanced, made more user and patient "friendly" by adopting the industrial design approach to researching, analyzing, and ultimately designing biomedical products.

  1. A Perspective on Promoting Diversity in the Biomedical Research Workforce: The National Heart, Lung, and Blood Institute’s PRIDE Program

    PubMed Central

    Boyington, Josephine E.A.; Maihle, Nita J.; Rice, Treva K.; Gonzalez, Juan E.; Hess, Caryl A.; Makala, Levi H.; Jeffe, Donna B.; Ogedegbe, Gbenga; Rao, Dabeeru C.; Dávila-Román, Victor G.; Pace, Betty S.; Jean-Louis, Girardin; Boutjdir, Mohamed

    2016-01-01

    Aspiring junior investigators from groups underrepresented in the biomedical sciences face various challenges as they pursue research independence. However, the biomedical research enterprise needs their participation to effectively address critical research issues such as health disparities and health inequities. In this article, we share a research education and mentoring initiative that seeks to address this challenge: Programs to Increase Diversity among Individuals Engaged in Health Related Research (PRIDE), funded by the National Heart, Lung, and Blood Institute (NHLBI). This longitudinal research-education and mentoring program occurs through summer institute programs located at US-based academic institutions. Recruited participants are exposed to didactic and lab-based research-skill enhancement experiences, with year-round mentoring over the course of two years. Mentor-mentee matching is based on shared research interests to promote congruence and to enhance skill acquisition. Program descriptions and sample narratives of participants’ perceptions of PRIDE’s impact on their career progress are showcased. Additionally, we highlight the overall program design and structure of four of seven funded summer institutes that focus on cardiovascular disease, related conditions, and health disparities. Mentees’ testimonials about the value of the PRIDE mentoring approach in facilitating career development are also noted. Meeting the clinical and research needs of an increasingly diverse US population is an issue of national concern. The PRIDE initiative, which focuses on increasing research preparedness and professional development of groups underrepresented in the biomedical research workforce, with an emphasis on mentoring as the critical approach, provides a robust model that is impacting the careers of future investigators. PMID:27440978

  2. Accessing Biomedical Literature in the Current Information Landscape

    PubMed Central

    Khare, Ritu; Leaman, Robert; Lu, Zhiyong

    2015-01-01

    i. Summary Biomedical and life sciences literature is unique because of its exponentially increasing volume and interdisciplinary nature. Biomedical literature access is essential for several types of users including biomedical researchers, clinicians, database curators, and bibliometricians. In the past few decades, several online search tools and literature archives, generic as well as biomedicine-specific, have been developed. We present this chapter in the light of three consecutive steps of literature access: searching for citations, retrieving full-text, and viewing the article. The first section presents the current state of practice of biomedical literature access, including an analysis of the search tools most frequently used by the users, including PubMed, Google Scholar, Web of Science, Scopus, and Embase, and a study on biomedical literature archives such as PubMed Central. The next section describes current research and the state-of-the-art systems motivated by the challenges a user faces during query formulation and interpretation of search results. The research solutions are classified into five key areas related to text and data mining, text similarity search, semantic search, query support, relevance ranking, and clustering results. Finally, the last section describes some predicted future trends for improving biomedical literature access, such as searching and reading articles on portable devices, and adoption of the open access policy. PMID:24788259

  3. Biomedical publishing and the internet: evolution or revolution?

    PubMed

    Jacobson, M W

    2000-01-01

    The Internet is challenging traditional publishing patterns. In the biomedical domain, medical journals are providing more and more content online, both free and for a fee. Beyond this, however, a number of commentators believe that traditional notions of copyright and intellectual property ownership are no longer suited to the information age and that ownership of copyright to research reports should be and will be wrested from publishers and returned to authors. In this paper, it is argued that, although the Internet will indeed profoundly affect the distribution of biomedical research results, the biomedical publishing industry is too intertwined with the research establishment and too powerful to fall prey to such a copyright revolution.

  4. What is biomedical informatics?

    PubMed Central

    Bernstam, Elmer V.; Smith, Jack W.; Johnson, Todd R.

    2009-01-01

    Biomedical informatics lacks a clear and theoretically grounded definition. Many proposed definitions focus on data, information, and knowledge, but do not provide an adequate definition of these terms. Leveraging insights from the philosophy of information, we define informatics as the science of information, where information is data plus meaning. Biomedical informatics is the science of information as applied to or studied in the context of biomedicine. Defining the object of study of informatics as data plus meaning clearly distinguishes the field from related fields, such as computer science, statistics and biomedicine, which have different objects of study. The emphasis on data plus meaning also suggests that biomedical informatics problems tend to be difficult when they deal with concepts that are hard to capture using formal, computational definitions. In other words, problems where meaning must be considered are more difficult than problems where manipulating data without regard for meaning is sufficient. Furthermore, the definition implies that informatics research, teaching, and service should focus on biomedical information as data plus meaning rather than only computer applications in biomedicine. PMID:19683067

  5. Research in intelligent biomedical clothing vs. realities in the European textile business.

    PubMed

    Walter, Lutz

    2004-01-01

    In order to make intelligent biomedical clothing a market reality, a critical mass of scientific, technical and industrial capacities from various disciplines and industries must be successfully brought together. The textiles and clothing sector, i.e. the industry that transform natural or man-made fibres into yarns then with a myriad of processing options into complex tissues and finally into clothing, is undoubtedly a crucial element in such development. With Europe disposing of the world's most diverse, productive and innovative textiles and clothing industry, in addition to relevant expertise and resources in other scientific disciplines and industrial sectors, it could play a leading role in the advancement of the concept of intelligent biomedical clothing. In this process, a great number of challenges--firstly scientific and technical in nature--still need to be overcome and support from public funding programmes could constitute the necessary trigger for research and industrial efforts to be seriously undertaken. In view of the great benefits of such new products for the individual consumer, national health care systems and the society as a whole, a concerted effort in private-public partnership seems merited.

  6. Using mobile location data in biomedical research while preserving privacy.

    PubMed

    Goldenholz, Daniel M; Goldenholz, Shira R; Krishnamurthy, Kaarkuzhali B; Halamka, John; Karp, Barbara; Tyburski, Matthew; Wendler, David; Moss, Robert; Preston, Kenzie L; Theodore, William

    2018-06-07

    Location data are becoming easier to obtain and are now bundled with other metadata in a variety of biomedical research applications. At the same time, the level of sophistication required to protect patient privacy is also increasing. In this article, we provide guidance for institutional review boards (IRBs) to make informed decisions about privacy protections in protocols involving location data. We provide an overview of some of the major categories of technical algorithms and medical-legal tools at the disposal of investigators, as well as the shortcomings of each. Although there is no "one size fits all" approach to privacy protection, this article attempts to describe a set of practical considerations that can be used by investigators, journal editors, and IRBs.

  7. Volunteers for biomedical research. Recruitment and screening of normal controls.

    PubMed

    Shtasel, D L; Gur, R E; Mozley, P D; Richards, J; Taleff, M M; Heimberg, C; Gallacher, F; Gur, R C

    1991-11-01

    We examined the process of accruing healthy control subjects for biomedical research on brain function. Of 1670 responders to newspaper advertising, 23.1% were uninterested when learning more about the studies, and 50.9% of those remaining were found by structured telephone screening to meet exclusionary criteria for having a history of psychiatric, neurologic, or medical disease that might affect brain function. Of 312 volunteers passing the telephone screening who came to an in-person evaluation by a physician and agreed to participate, 49.7% were found to meet exclusionary criteria, and only 157 were admitted to the study. This underscores the importance of attending to the issue of screening and assessment of "normal volunteers." Alternative strategies should be considered for enriching the pool.

  8. Medical nanotechnology in the UK: a perspective from the London Centre for Nanotechnology.

    PubMed

    Horton, Michael A; Khan, Abid

    2006-03-01

    Nanotechnology research is booming worldwide, and the general belief is that medical and biological applications will form the greatest sector of expansion over the next decade, driven by an attempt to bring radical solutions to areas of unmet medical need. What is true in the United States is also being fulfilled in Europe. This, though, is generally at a significantly lower investment level, even if for "large" capital infrastructure and interdisciplinary centers. Against this, the United Kingdom and its European partners are following the maxim "small is beautiful" and are attempting to identify and develop academic research and commercial businesses in areas that traditional nanotechnology developments involving engineering or physics find challenging. Thus in London-University College London (UCL) in a major joint project with Imperial College and linked to other UK and European centers of excellence-we are building upon our internationally competitive medical research (the two universities together form one of the largest centers of biomedical research outside the United States) to focus on and develop medical nanotechnology as a major sector of our research activity. A novel approach to commercialization has been the establishment with government and private equity funds of a "BioNanotechnology Centre" that will act as a portal for UK industry to access specialist skills to solve issues relating to developing nanotechnology-based medical applications, for example, for environmental screening, diagnostics, and therapy. This article reviews our academic and business strategy with examples from our current biomedical research portfolio.

  9. Public views on the donation and use of human biological samples in biomedical research: a mixed methods study

    PubMed Central

    Lewis, Celine; Clotworthy, Margaret; Hilton, Shona; Magee, Caroline; Robertson, Mark J; Stubbins, Lesley J; Corfield, Julie

    2013-01-01

    Objective A mixed methods study exploring the UK general public's willingness to donate human biosamples (HBSs) for biomedical research. Setting Cross-sectional focus groups followed by an online survey. Participants Twelve focus groups (81 participants) selectively sampled to reflect a range of demographic groups; 1110 survey responders recruited through a stratified sampling method with quotas set on sex, age, geographical location, socioeconomic group and ethnicity. Main outcome measures (1) Identify participants’ willingness to donate HBSs for biomedical research, (2) explore acceptability towards donating different types of HBSs in various settings and (3) explore preferences regarding use and access to HBSs. Results 87% of survey participants thought donation of HBSs was important and 75% wanted to be asked to donate in general. Responders who self-reported having some or good knowledge of the medical research process were significantly more likely to want to donate (p<0.001). Reasons why focus group participants saw donation as important included: it was a good way of reciprocating for the medical treatment received; it was an important way of developing drugs and treatments; residual tissue would otherwise go to waste and they or their family members might benefit. The most controversial types of HBSs to donate included: brain post mortem (29% would donate), eyes post mortem (35%), embryos (44%), spare eggs (48%) and sperm (58%). Regarding the use of samples, there were concerns over animal research (34%), research conducted outside the UK (35%), and research conducted by pharmaceutical companies (56%), although education and discussion were found to alleviate such concerns. Conclusions There is a high level of public support and willingness to donate HBSs for biomedical research. Underlying concerns exist regarding the use of certain types of HBSs and conditions under which they are used. Improved education and more controlled forms of consent for

  10. John Glenn Biomedical Engineering Consortium

    NASA Technical Reports Server (NTRS)

    Nall, Marsha

    2004-01-01

    The John Glenn Biomedical Engineering Consortium is an inter-institutional research and technology development, beginning with ten projects in FY02 that are aimed at applying GRC expertise in fluid physics and sensor development with local biomedical expertise to mitigate the risks of space flight on the health, safety, and performance of astronauts. It is anticipated that several new technologies will be developed that are applicable to both medical needs in space and on earth.

  11. The International Development Research Centre: A Guide for the Canadian University Research Community = Le Centre de recherches pour le developpement international: guide a l'intention des scientifiques des universites Canadiennes.

    ERIC Educational Resources Information Center

    Tillman, George; Wasilewski, Ania, Ed.

    Written in both English and French this is a manual for the Canadian research community. It describes the International Development Research Centre (IDRC) and its operations. The main objective of the IDRC is to assist scientists in developing countries to identify and conduct research into long term practical solutions to development problems.…

  12. Ethics in biomedical engineering.

    PubMed

    Morsy, Ahmed; Flexman, Jennifer

    2008-01-01

    This session focuses on a number of aspects of the subject of Ethics in Biomedical Engineering. The session starts by providing a case study of a company that manufactures artificial heart valves where the valves were failing at an unexpected rate. The case study focuses on Biomedical Engineers working at the company and how their education and training did not prepare them to deal properly with such situation. The second part of the session highlights the need to learn about various ethics rules and policies regulating research involving human or animal subjects.

  13. The development of biomedical engineering as experienced by one biomedical engineer

    PubMed Central

    2012-01-01

    This personal essay described the development of the field of Biomedical Engineering from its early days, from the perspective of one who lived through that development. It describes the making of a major invention using data that had been rejected by other scientists, the re-discovery of an obscure fact of physiology and its use in developing a major medical instrument, the development of a new medical imaging modality, and the near-death rescue of a research project. The essay concludes with comments about the development and present status of impedance imaging, and recent changes in the evolution of biomedical engineering as a field. PMID:23234267

  14. The development of biomedical engineering as experienced by one biomedical engineer.

    PubMed

    Newell, Jonathan C

    2012-12-12

    This personal essay described the development of the field of Biomedical Engineering from its early days, from the perspective of one who lived through that development. It describes the making of a major invention using data that had been rejected by other scientists, the re-discovery of an obscure fact of physiology and its use in developing a major medical instrument, the development of a new medical imaging modality, and the near-death rescue of a research project. The essay concludes with comments about the development and present status of impedance imaging, and recent changes in the evolution of biomedical engineering as a field.

  15. An Examination of How Women and Underrepresented Racial/Ethnic Minorities Experience Barriers in Biomedical Research and Medical Programs

    ERIC Educational Resources Information Center

    Chakraverty, Devasmita

    2013-01-01

    Women in medicine and biomedical research often face challenges to their retention, promotion, and advancement to leadership positions (McPhillips et al., 2007); they take longer to advance their careers, tend to serve at less research-intensive institutions and have shorter tenures compared to their male colleagues (White, McDade, Yamagata, &…

  16. Requirements for data integration platforms in biomedical research networks: a reference model

    PubMed Central

    Knaup, Petra

    2015-01-01

    Biomedical research networks need to integrate research data among their members and with external partners. To support such data sharing activities, an adequate information technology infrastructure is necessary. To facilitate the establishment of such an infrastructure, we developed a reference model for the requirements. The reference model consists of five reference goals and 15 reference requirements. Using the Unified Modeling Language, the goals and requirements are set into relation to each other. In addition, all goals and requirements are described textually in tables. This reference model can be used by research networks as a basis for a resource efficient acquisition of their project specific requirements. Furthermore, a concrete instance of the reference model is described for a research network on liver cancer. The reference model is transferred into a requirements model of the specific network. Based on this concrete requirements model, a service-oriented information technology architecture is derived and also described in this paper. PMID:25699205

  17. Requirements for data integration platforms in biomedical research networks: a reference model.

    PubMed

    Ganzinger, Matthias; Knaup, Petra

    2015-01-01

    Biomedical research networks need to integrate research data among their members and with external partners. To support such data sharing activities, an adequate information technology infrastructure is necessary. To facilitate the establishment of such an infrastructure, we developed a reference model for the requirements. The reference model consists of five reference goals and 15 reference requirements. Using the Unified Modeling Language, the goals and requirements are set into relation to each other. In addition, all goals and requirements are described textually in tables. This reference model can be used by research networks as a basis for a resource efficient acquisition of their project specific requirements. Furthermore, a concrete instance of the reference model is described for a research network on liver cancer. The reference model is transferred into a requirements model of the specific network. Based on this concrete requirements model, a service-oriented information technology architecture is derived and also described in this paper.

  18. Crossing the Chasm: Information Technology to Biomedical Informatics

    PubMed Central

    Fahy, Brenda G.; Balke, C. William; Umberger, Gloria H.; Talbert, Jeffery; Canales, Denise Niles; Steltenkamp, Carol L.; Conigliaro, Joseph

    2011-01-01

    Accelerating the translation of new scientific discoveries to improve human health and disease management is the overall goal of a series of initiatives integrated in the National Institutes of Health (NIH) “Roadmap for Medical Research.” The Clinical and Translational Research Award (CTSA) program is, arguably, the most visible component of the NIH Roadmap providing resources to institutions to transform their clinical and translational research enterprises along the goals of the Roadmap. The CTSA program emphasizes biomedical informatics as a critical component for the accomplishment of the NIH’s translational objectives. To be optimally effective, emerging biomedical informatics programs must link with the information technology (IT) platforms of the enterprise clinical operations within academic health centers. This report details one academic health center’s transdisciplinary initiative to create an integrated academic discipline of biomedical informatics through the development of its infrastructure for clinical and translational science infrastructure and response to the CTSA mechanism. This approach required a detailed informatics strategy to accomplish these goals. This transdisciplinary initiative was the impetus for creation of a specialized biomedical informatics core, the Center for Biomedical Informatics (CBI). Development of the CBI codified the need to incorporate medical informatics including quality and safety informatics and enterprise clinical information systems within the CBI. This paper describes the steps taken to develop the biomedical informatics infrastructure, its integration with clinical systems at one academic health center, successes achieved, and barriers encountered during these efforts. PMID:21383632

  19. Past and future trends in cancer and biomedical research: a comparison between Egypt and the World using PubMed-indexed publications

    PubMed Central

    2012-01-01

    Background PubMed is a free web literature search service that contains almost 21 millions of abstracts and publications with almost 5 million user queries daily. The purposes of the study were to compare trends in PubMed-indexed cancer and biomedical publications from Egypt to that of the world and to predict future publication volumes. Methods The PubMed was searched for the biomedical publications between 1991 and 2010 (publications dates). Affiliation was then limited to Egypt. Further limitation was applied to cancer, human and animal publications. Poisson regression model was used for prediction of future number of publications between 2011 and 2020. Results Cancer publications contributed 23% to biomedical publications both for Egypt and the world. Egyptian biomedical and cancer publications contributed about 0.13% to their world counterparts. This contribution was more than doubled over the study period. Egyptian and world’s publications increased from year to year with rapid rise starting the year 2003. Egyptian as well as world’s human cancer publications showed the highest increases. Egyptian publications had some peculiarities; they showed some drop at the years 1994 and 2002 and apart from the decline in the animal: human ratio with time, all Egyptian publications in the period 1991-2000 were significantly more than those in 2001-2010 (P < 0.05 for all). By 2020, Egyptian biomedical and cancer publications will increase by 158.7% and 280% relative to 2010 to constitute 0.34% and 0.17% of total PubMed publications, respectively. Conclusions The Egyptian contribution to world’s biomedical and cancer publications needs significant improvements through research strategic planning, setting national research priorities, adequate funding and researchers’ training. PMID:22780908

  20. Current biomedical scientific impact (2013) of institutions, academic journals and researchers in the Republic of Macedonia.

    PubMed

    Spiroski, Mirko

    2014-01-01

    To analyse current ranking (2013) of institutions, journals and researchers in the Republic of Macedonia. the country rankings of R. Macedonia were analyzed with SCImago Country & Journal Rank (SJR) for subject area Medicine in the years 1996-2013, and ordered by H-index. SCImago Institutions Rankings for 2013 was used for the scientific impact of biomedical institutions in the Republic of Macedonia. Journal metrics from Elsevier for the Macedonian scholarly journals for the period 2009-2013 were performed. Source Normalized Impact per Paper (SNIP), the Impact per Publication (IPP), and SCImago Journal Rank (SJR) were analysed. Macedonian scholarly biomedical journals included in Google Scholar metrics (2013, 2012) were analysed with h5-index and h5-median (June 2014). A semantic analysis of the PubMed database was performed with GoPubMed on November 2, 2014 in order to identify published papers from the field of biomedical sciences affiliated with the country of Macedonia. Harzing's Publish or Perish software was used for author impact analysis and the calculation of the Hirsh-index based on Google Scholar query. The rank of subject area Medicine of R. Macedonia according to the SCImago Journal & Country Rank (SJR) is 110th in the world and 17th in Eastern Europe. Of 20 universities in Macedonia, only Ss Cyril and Methodius University, Skopje, and the University St Clement of Ohrid, Bitola, are listed in the SCImago Institutions Rankings (SIR) for 2013. A very small number of Macedonian scholarly journals is included in Web of Sciences (2), PubMed (1), PubMed Central (1), SCOPUS (6), SCImago (6), and Google Scholar metrics (6). The rank of Hirsh index (h-index) was different from the rank of number of abstracts indexed in PubMed for the top 20 authors from R. Macedonia. The current biomedical scientific impact (2013) of institutions, academic journals and researchers in R. Macedonia is very low. There is an urgent need for organized measures to improve the quality

  1. Machine learning, medical diagnosis, and biomedical engineering research - commentary.

    PubMed

    Foster, Kenneth R; Koprowski, Robert; Skufca, Joseph D

    2014-07-05

    A large number of papers are appearing in the biomedical engineering literature that describe the use of machine learning techniques to develop classifiers for detection or diagnosis of disease. However, the usefulness of this approach in developing clinically validated diagnostic techniques so far has been limited and the methods are prone to overfitting and other problems which may not be immediately apparent to the investigators. This commentary is intended to help sensitize investigators as well as readers and reviewers of papers to some potential pitfalls in the development of classifiers, and suggests steps that researchers can take to help avoid these problems. Building classifiers should be viewed not simply as an add-on statistical analysis, but as part and parcel of the experimental process. Validation of classifiers for diagnostic applications should be considered as part of a much larger process of establishing the clinical validity of the diagnostic technique.

  2. Visualization of gender, race, citizenship and academic performance in association with career outcomes of 15-year biomedical doctoral alumni at a public research university

    PubMed Central

    Cano, Annmarie; Kohl, Michael; Muthunayake, Nisansala S.; Vaidyanathan, Prassanna; Wood, Mary E.; Ziyad, Mustafa

    2018-01-01

    It has long been thought that biomedical doctoral students pursue careers primarily as tenure-track/tenured faculty at research institutions. Recent reports showed, however, that the majority of biomedical doctoral alumni engage in a variety of careers. Wayne State University (WSU) undertook a project to understand the career trajectories of its biomedical doctoral alumni to create programs to better prepare its students for careers in multiple pathways. Data were collected on career outcomes of WSU’s biomedical doctoral alumni who graduated in a 15-year period from 1999–2014. Careers were classified into three tiers by Employment Sector, Career Types and Job Functions and career paths were examined by alumni gender, race, U.S. citizenship status, and association with certain academic characteristics. Several statistically significant differences in career paths among all demographics were found. For example, women were more likely to be in teaching and providing healthcare, men in faculty and research; Black alumni pursued careers in Government at higher rates and Whites in For-Profit careers; Asians and non-U.S. citizens spent more time in training positions than others. There was no association of academic characteristics such as GRE, GPA, and Time-to-Degree completion with careers in the two largest sectors of Academia or For-profit. Since our trainees are engaged in this rich variety of careers essential to advancing biomedical science and research nationally, it is imperative for the graduate training community to embrace all careers as successful, and transform the model for biomedical doctoral training to foster student success across this broad career spectrum. PMID:29771987

  3. An examination of how women and underrepresented racial/ethnic minorities experience barriers in biomedical research and medical programs

    NASA Astrophysics Data System (ADS)

    Chakraverty, Devasmita

    Women in medicine and biomedical research often face challenges to their retention, promotion, and advancement to leadership positions (McPhillips et al., 2007); they take longer to advance their careers, tend to serve at less research-intensive institutions and have shorter tenures compared to their male colleagues (White, McDade, Yamagata, & Morahan, 2012). Additionally, Blacks and Hispanics are the two largest minority groups that are vastly underrepresented in medicine and biomedical research in the United States (AAMC, 2012; NSF, 2011). The purpose of this study is to examine specific barriers reported by students and post-degree professionals in the field through the following questions: 1. How do women who are either currently enrolled or graduated from biomedical research or medical programs define and make meaning of gender-roles as academic barriers? 2. How do underrepresented groups in medical schools and biomedical research institutions define and make meaning of the academic barriers they face and the challenges these barriers pose to their success as individuals in the program? These questions were qualitatively analyzed using 146 interviews from Project TrEMUR applying grounded theory. Reported gender-role barriers were explained using the "Condition-Process-Outcome" theoretical framework. About one-third of the females (across all three programs; majority White or Black between 25-35 years of age) reported gender-role barriers, mostly due to poor mentoring, time constraints, set expectations and institutional barriers. Certain barriers act as conditions, causing gender-role issues, and gender-role issues influence certain barriers that act as outcomes. Strategies to overcome barriers included interventions mostly at the institutional level (mentor support, proper specialty selection, selecting academia over medicine). Barrier analysis for the two largest URM groups indicated that, while Blacks most frequently reported racism, gender barriers

  4. Architecture for an advanced biomedical collaboration domain for the European paediatric cancer research community (ABCD-4-E).

    PubMed

    Nitzlnader, Michael; Falgenhauer, Markus; Gossy, Christian; Schreier, Günter

    2015-01-01

    Today, progress in biomedical research often depends on large, interdisciplinary research projects and tailored information and communication technology (ICT) support. In the context of the European Network for Cancer Research in Children and Adolescents (ENCCA) project the exchange of data between data source (Source Domain) and data consumer (Consumer Domain) systems in a distributed computing environment needs to be facilitated. This work presents the requirements and the corresponding solution architecture of the Advanced Biomedical Collaboration Domain for Europe (ABCD-4-E). The proposed concept utilises public as well as private cloud systems, the Integrating the Healthcare Enterprise (IHE) framework and web-based applications to provide the core capabilities in accordance with privacy and security needs. The utility of crucial parts of the concept was evaluated by prototypic implementation. A discussion of the design indicates that the requirements of ENCCA are fully met. A whole system demonstration is currently being prepared to verify that ABCD-4-E has the potential to evolve into a domain-bridging collaboration platform in the future.

  5. Applications of systems science in biomedical research regarding obesity and noncommunicable chronic diseases: opportunities, promise, and challenges.

    PubMed

    Wang, Youfa; Xue, Hong; Liu, Shiyong

    2015-01-01

    Interest in the application of systems science (SS) in biomedical research, particularly regarding obesity and noncommunicable chronic disease (NCD) research, has been growing rapidly over the past decade. SS is a broad term referring to a family of research approaches that include modeling. As an emerging approach being adopted in public health, SS focuses on the complex dynamic interaction between agents (e.g., people) and subsystems defined at different levels. SS provides a conceptual framework for interdisciplinary and transdisciplinary approaches that address complex problems. SS has unique advantages for studying obesity and NCD problems in comparison to the traditional analytic approaches. The application of SS in biomedical research dates back to the 1960s with the development of computing capacity and simulation software. In recent decades, SS has been applied to addressing the growing global obesity epidemic. There is growing appreciation and support for using SS in the public health field, with many promising opportunities. There are also many challenges and uncertainties, including methodologic, funding, and institutional barriers. Integrated efforts by stakeholders that address these challenges are critical for the successful application of SS in the future. © 2015 American Society for Nutrition.

  6. European Network of Bipolar Research Expert Centre (ENBREC): a network to foster research and promote innovative care.

    PubMed

    Henry, Chantal; Andreassen, Ole A; Barbato, Angelo; Demotes-Mainard, Jacques; Goodwin, Guy; Leboyer, Marion; Vieta, Eduard; Nolen, Willem A; Kessing, Lars Vedel; Scott, Jan; Bauer, Michael

    2013-01-01

    Bipolar disorders rank as one of the most disabling illnesses in working age adults worldwide. Despite this, the quality of care offered to patients with this disorder is suboptimal, largely due to limitations in our understanding of the pathology. Improving this scenario requires the development of a critical mass of expertise and multicentre collaborative projects. Within the framework of the European FP7 programme, we developed a European Network of Bipolar Research Expert Centres (ENBREC) designed specifically to facilitate EU-wide studies. ENBREC provides an integrated support structure facilitating research on disease mechanisms and clinical outcomes across six European countries (France, Germany, Italy, Norway, Spain and the UK). The centres are adopting a standardised clinical assessment that explores multiple aspects of bipolar disorder through a structured evaluation designed to inform clinical decision-making as well as being applicable to research. Reliable, established measures have been prioritised, and instruments have been translated and validated when necessary. An electronic healthcare record and monitoring system (e-ENBREC©) has been developed to collate the data. Protocols to conduct multicentre clinical observational studies and joint studies on cognitive function, biomarkers, genetics, and neuroimaging are in progress; a pilot study has been completed on strategies for routine implementation of psycho-education. The network demonstrates 'proof of principle' that expert centres across Europe can collaborate on a wide range of basic science and clinical programmes using shared protocols. This paper is to describe the network and how it aims to improve the quality and effectiveness of research in a neglected priority area.

  7. [The Chilean Association of Biomedical Journal Editors].

    PubMed

    Reyes, H

    2001-01-01

    On September 29th, 2000, The Chilean Association of Biomedical Journal Editors was founded, sponsored by the "Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)" (the Governmental Agency promoting and funding scientific research and technological development in Chile) and the "Sociedad Médica de Santiago" (Chilean Society of Internal Medicine). The Association adopted the goals of the World Association of Medical Editors (WAME) and therefore it will foster "cooperation and communication among Editors of Chilean biomedical journals; to improve editorial standards, to promote professionalism in medical editing through education, self-criticism and self-regulation; and to encourage research on the principles and practice of medical editing". Twenty nine journals covering a closely similar number of different biomedical sciences, medical specialties, veterinary, dentistry and nursing, became Founding Members of the Association. A Governing Board was elected: President: Humberto Reyes, M.D. (Editor, Revista Médica de Chile); Vice-President: Mariano del Sol, M.D. (Editor, Revista Chilena de Anatomía); Secretary: Anna María Prat (CONICYT); Councilors: Manuel Krauskopff, Ph.D. (Editor, Biological Research) and Maritza Rahal, M.D. (Editor, Revista de Otorrinolaringología y Cirugía de Cabeza y Cuello). The Association will organize a Symposium on Biomedical Journal Editing and will spread information stimulating Chilean biomedical journals to become indexed in international databases and in SciELO-Chile, the main Chilean scientific website (www.scielo.cl).

  8. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research.

    PubMed

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E; Altintas, Ilkay

    2017-05-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC is an e-learning platform that empowers the biomedical community to develop, launch and share open training materials. It deploys hands-on software training toolboxes through virtualization technologies such as Amazon EC2 and Virtualbox. The BBDTC facilitates migration of courses across other course management platforms. The framework encourages knowledge sharing and content personalization through the playlist functionality that enables unique learning experiences and accelerates information dissemination to a wider community.

  9. Biomedical Engineering: A Compendium of Research Training Programs.

    ERIC Educational Resources Information Center

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This document was prepared to provide a comprehensive view of the programs in biomedical engineering in existence in 1969. These programs are supported by the National Institute of General Medical Sciences and are located at 18 universities. This compendium provides information as to the intent and content of these programs from data provided by…

  10. Rules of good practice in the care of laboratory animals used in biomedical research.

    PubMed

    Valanzano, Angelina

    2004-01-01

    In recent years, the use of laboratory animals has decreased as a result of the adoption of alternative methods such as in vitro experiments and simulation studies. Nonetheless, animal models continue to be necessary in many fields of biomedical research, giving rise to ethical issues regarding the treatment of these animals. In the present work, a general overview of the rules of good practise in caring for laboratory animals is provided, focussing on housing conditions and the proper means of handling animals, including the importance of the relationship or "bond" between the researcher and the animal.

  11. Commercialising genetically engineered animal biomedical products.

    PubMed

    Sullivan, Eddie J; Pommer, Jerry; Robl, James M

    2008-01-01

    Research over the past two decades has increased the quality and quantity of tools available to produce genetically engineered animals. The number of potentially viable biomedical products from genetically engineered animals is increasing. However, moving from cutting-edge research to development and commercialisation of a biomedical product that is useful and wanted by the public has significant challenges. Even early stage development of genetically engineered animal applications requires consideration of many steps, including quality assurance and quality control, risk management, gap analysis, founder animal establishment, cell banking, sourcing of animals and animal-derived material, animal facilities, product collection facilities and processing facilities. These steps are complicated and expensive. Biomedical applications of genetically engineered animals have had some recent successes and many applications are well into development. As researchers consider applications for their findings, having a realistic understanding of the steps involved in the development and commercialisation of a product, produced in genetically engineered animals, is useful in determining the risk of genetic modification to the animal nu. the potential public benefit of the application.

  12. Rabbit models for biomedical research revisited via genome editing approaches

    PubMed Central

    HONDA, Arata; OGURA, Atsuo

    2017-01-01

    Although the laboratory rabbit has long contributed to many paradigmatic studies in biology and medicine, it is often considered to be a “classical animal model” because in the last 30 years, the laboratory mouse has been more often used, thanks to the availability of embryonic stem cells that have allowed the generation of gene knockout (KO) animals. However, recent genome-editing strategies have changed this unrivaled condition; so far, more than 10 mammalian species have been added to the list of KO animals. Among them, the rabbit has distinct advantages for application of genome-editing systems, such as easy application of superovulation, consistency with fertile natural mating, well-optimized embryo manipulation techniques, and the short gestation period. The rabbit has now returned to the stage of advanced biomedical research. PMID:28579598

  13. Biomedical research with human embryos: changes in the legislation on assisted reproduction in Spain.

    PubMed

    Vidal Martínez, Jaime

    2006-01-01

    This study deals with issues of research with human embryos obtained through in vitro fertilization in the context of the Spanish Law. The paper focuses on Act 14/2006 on techniques of human assisted reproduction, which replaces the previous Act from 1988. The author claims that the main goals of Act 14/2006 are, on the one hand, to eliminate the restrictions affecting research with human embryos put in place by Act 45/2003 and, on the other, to pave the way for a future legislation on biomedical research. This paper argues for the need of an effective and adequate juridical protection of human embryos obtained in vitro according to responsibility and precautionary principles.

  14. Biomedical applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    Castles, T. R.

    1971-01-01

    Aerospace technology transfer to biomedical research problems is discussed, including transfer innovations and potential applications. Statistical analysis of the transfer activities and impact is also presented.

  15. Prediction markets and their potential role in biomedical research--a review.

    PubMed

    Pfeiffer, Thomas; Almenberg, Johan

    2010-01-01

    Predictions markets are marketplaces for trading contracts with payoffs that depend on the outcome of future events. Popular examples are markets on the outcome of presidential elections, where contracts pay $1 if a specific candidate wins the election and $0 if someone else wins. Contract prices on prediction markets can be interpreted as forecasts regarding the outcome of future events. Further attractive properties include the potential to aggregate private information, to generate and disseminate a consensus among the market participants, and to offer incentives for the acquisition of information. It has been argued that these properties might be valuable in the context of scientific research. In this review, we give an overview of key properties of prediction markets and discuss potential benefits for science. To illustrate these benefits for biomedical research, we discuss an example application in the context of decision making in research on the genetics of diseases. Moreover, some potential practical problems of prediction market application in science are discussed, and solutions are outlined. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Biomedical technology prosperity game{trademark}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, M.; Boyack, K.W.; Wesenberg, D.L.

    1996-07-01

    Prosperity Games{trademark} are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games{trademark} are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games{trademark} are unique in that both the game format and the player contributions vary from game to game. This report documents the Biomedical Technology Prosperity Game{trademark} conducted under the sponsorship of Sandia National Laboratories, the Defensemore » Advanced Research Projects Agency, and the Koop Foundation, Inc. Players were drawn from all stakeholders involved in biomedical technologies including patients, hospitals, doctors, insurance companies, legislators, suppliers/manufacturers, regulators, funding organizations, universities/laboratories, and the legal profession. The primary objectives of this game were to: (1) Identify advanced/critical technology issues that affect the cost and quality of health care. (2) Explore the development, patenting, manufacturing and licensing of needed technologies that would decrease costs while maintaining or improving quality. (3) Identify policy and regulatory changes that would reduce costs and improve quality and timeliness of health care delivery. (4) Identify and apply existing resources and facilities to develop and implement improved technologies and policies. (5) Begin to develop Biomedical Technology Roadmaps for industry and government cooperation. The deliberations and recommendations of these players provided valuable insights as to the views of this diverse group of decision makers concerning biomedical issues. Significant progress was made in the roadmapping of key areas in the biomedical technology

  17. Shape-Memory Polymers for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Yakacki, Christopher M.; Gall, Ken

    Shape-memory polymers (SMPs) are a class of mechanically functional "smart" materials that have generated substantial interest for biomedical applications. SMPs offer the ability to promote minimally invasive surgery, provide structural support, exert stabilizing forces, elute therapeutic agents, and biodegrade. This review focuses on several areas of biomedicine including vascular, orthopedic, and neuronal applications with respect to the progress and potential for SMPs to improve the standard of treatment in these areas. Fundamental studies on proposed biomedical SMP systems are discussed with regards to biodegradability, tailorability, sterilization, and biocompatibility. Lastly, a proposed research and development pathway for SMP-based biomedical devices is proposed based on trends in the recent literature.

  18. New Development in NASA's Rodent Research Hardware for Conducting Long Duration Biomedical and Basic Research in Space

    NASA Technical Reports Server (NTRS)

    Shirazi-Fard, Y.; Choi, S.; Harris, C.; Gong, C.; Beegle, J. E.; Stube, K. C.; Martin, K. J.; Nevitt, R. G.; Globus, R. G.

    2017-01-01

    Animal models, particularly rodents, are the foundation of pre-clinical research to understand human diseases and evaluate new therapeutics, and play a key role in advancing biomedical discoveries both on Earth and in space. The National Research Councils Decadal survey emphasized the importance of expanding NASAs life sciences research to perform long duration, rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware, operations, and science capabilities were developed at NASA Ames Research Center (ARC) to enhance science return for both commercial (CASIS) and government-sponsored rodent research. The Rodent Research program at NASA ARC has pioneered a new research capability on the International Space Station and has progressed toward translating research to the ISS utilizing commercial rockets, collaborating with academia and science industry, while training crewmembers to assist in performing research on orbit. Throughout phases of these missions, our practices, hardware and operations have evolved from tested to developed standards, and we are able to modify and customize our procedure and operations for mission specific requirements. The Rodent Research Habitat is capable of providing a living environment for animals on ISS according to standard animal welfare requirements. Using the cameras in the Habitat, the Rodent Research team has the ability to perform daily health checks on animals, and further analyze the collected videos for behavioral studies. A recent development of the Rodent Research hardware is inclusion of enrichment, to provide the animals the ability to rest and huddle. The Enrichment Hut is designed carefully for adult mice (up to 35 week old) within animal welfare, engineering, and operations constraints. The Hut is made out of the same stainless steel mesh as the cage interior, it has an ingress and an egress to allow animals move freely, and a hinge door to allow crewmembers remove the

  19. Advancement of Women in the Biomedical Workforce: Insights for Success

    PubMed Central

    Barfield, Whitney L.; Plank-Bazinet, Jennifer L.; Clayton, Janine Austin

    2016-01-01

    Women continue to face unique barriers in the biomedical workforce that affect their advancement and retention in this field. The National Institutes of Health (NIH) formed the Working Group on Women in Biomedical Careers to address these issues. Through the efforts of the Working Group, the NIH funded 14 research grants to identify barriers or to develop and/or test interventions to support women in the biomedical workforce. The grantees that were funded through this endeavor later established the grassroots Research Partnership on Women in Biomedical Careers, and they continue to conduct research and disseminate information on the state of women in academic medicine. This Commentary explores the themes introduced in a collection of articles organized by the Research Partnership and published in this issue of Academic Medicine. The authors highlight the role government plays in the advancement of women in academic medicine and highlight the findings put forward in this collection. PMID:27306970

  20. Advancement of Women in the Biomedical Workforce: Insights for Success.

    PubMed

    Barfield, Whitney L; Plank-Bazinet, Jennifer L; Austin Clayton, Janine

    2016-08-01

    Women continue to face unique barriers in the biomedical workforce that affect their advancement and retention in this field. The National Institutes of Health (NIH) formed the Working Group on Women in Biomedical Careers to address these issues. Through the efforts of the working group, the NIH funded 14 research grants to identify barriers or to develop and/or test interventions to support women in the biomedical workforce. The grantees that were funded through this endeavor later established the grassroots Research Partnership on Women in Biomedical Careers, and they continue to conduct research and disseminate information on the state of women in academic medicine. This Commentary explores the themes introduced in a collection of articles organized by the research partnership and published in this issue of Academic Medicine. The authors highlight the role that government plays in the advancement of women in academic medicine and highlight the findings put forward in this collection.