Trust me, I'm a researcher!: The role of trust in biomedical research.
Kerasidou, Angeliki
2017-03-01
In biomedical research lack of trust is seen as a great threat that can severely jeopardise the whole biomedical research enterprise. Practices, such as informed consent, and also the administrative and regulatory oversight of research in the form of research ethics committees and Institutional Review Boards, are established to ensure the protection of future research subjects and, at the same time, restore public trust in biomedical research. Empirical research also testifies to the role of trust as one of the decisive factors in research participation and lack of trust as a barrier for consenting to research. However, what is often missing is a clear definition of trust. This paper seeks to address this gap. It starts with a conceptual analysis of the term trust. It compares trust with two other related terms, those of reliance and trustworthiness, and offers a defence of Baier's attribute of 'good will' a basic characteristic of trust. It, then, proceeds to consider trust in the context of biomedical research by examining two questions: First, is trust necessary in biomedical research?; and second, do increases in regulatory oversight of biomedical research also increase trust in the field? This paper argues that regulatory oversight is important for increasing reliance in biomedical research, but it does not improve trust, which remains important for biomedical research. It finishes by pointing at professional integrity as a way of promoting trust and trustworthiness in this field.
Structural biology computing: Lessons for the biomedical research sciences.
Morin, Andrew; Sliz, Piotr
2013-11-01
The field of structural biology, whose aim is to elucidate the molecular and atomic structures of biological macromolecules, has long been at the forefront of biomedical sciences in adopting and developing computational research methods. Operating at the intersection between biophysics, biochemistry, and molecular biology, structural biology's growth into a foundational framework on which many concepts and findings of molecular biology are interpreted1 has depended largely on parallel advancements in computational tools and techniques. Without these computing advances, modern structural biology would likely have remained an exclusive pursuit practiced by few, and not become the widely practiced, foundational field it is today. As other areas of biomedical research increasingly embrace research computing techniques, the successes, failures and lessons of structural biology computing can serve as a useful guide to progress in other biomedically related research fields. Copyright © 2013 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Albert, Mathieu; Laberge, Suzanne; Hodges, Brian D.
2009-01-01
Funding agencies in Canada are attempting to break down the organizational boundaries between disciplines to promote interdisciplinary research and foster the integration of the social sciences into the health research field. This paper explores the extent to which biomedical and clinician scientists' perceptions of social science research operate…
Topics in Biomedical Optics: Introduction
NASA Astrophysics Data System (ADS)
Hebden, Jeremy C.; Boas, David A.; George, John S.; Durkin, Anthony J.
2003-06-01
The field of biomedical optics is experiencing tremendous growth. Biomedical technologies contribute in the creation of devices used in healthcare of various specialties (ophthalmology, cardiology, anesthesiology, and immunology, etc.). Recent research in biomedical optics is discussed. Overviews of meetings held at the 2002 Optical Society of America Biomedical Topical Meetings are presented.
Frontiers in biomedical engineering and biotechnology.
Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu
2014-01-01
The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.
Menzel, Julia; Weil, Philipp; Bittihn, Philip; Hornung, Daniel; Mathieu, Nadine; Demiroglu, Sara Y
2013-01-01
Sustainable data management in biomedical research requires documentation of metadata for all experiments and results. Scientists usually document research data and metadata in laboratory paper notebooks. An electronic laboratory notebook (ELN) can keep metadata linked to research data resulting in a better understanding of the research results, meaning a scientific benefit [1]. Besides other challenges [2], the biggest hurdles for introducing an ELN seem to be usability, file formats, and data entry mechanisms [3] and that many ELNs are assigned to specific research fields such as biology, chemistry, or physics [4]. We aimed to identify requirements for the introduction of ELN software in a biomedical collaborative research center [5] consisting of different scientific fields and to find software fulfilling most of these requirements.
Structural Design and Physicochemical Foundations of Hydrogels for Biomedical Applications.
Li, Qingyong; Ning, Zhengxiang; Ren, Jiaoyan; Liao, Wenzhen
2018-01-01
Biomedical research, known as medical research, is conducive to support and promote the development of knowledge in the field of medicine. Hydrogels have been extensively used in many biomedical fields due to their highly absorbent and flexible properties. The smart hydrogels, especially, can respond to a broad range of external stimuli such as temperature, pH value, light, electric and magnetic fields. With excellent biocompatibility, tunable rheology, mechanical properties, porosity, and hydrated molecular structure, hydrogels are considered as promising candidate for simulating local tissue microenvironment. In this review article, we mainly focused on the most recent development of engineering synthetic hydrogels; moreover, the classification, properties, especially the biomedical applications including tissue engineering and cell scaffolding, drug and gene delivery, immunotherapies and vaccines, are summarized and discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Budge, Eleanor Jane; Tsoti, Sandra Maria; Howgate, Daniel James; Sivakumar, Shivan; Jalali, Morteza
2015-01-01
Translational medicine bridges the gap between discoveries in biomedical science and their safe and effective clinical application. Despite the gross opportunity afforded by modern research for unparalleled advances in this field, the process of translation remains protracted. Efforts to expedite science translation have included the facilitation of interdisciplinary collaboration within both academic and clinical environments in order to generate integrated working platforms fuelling the sharing of knowledge, expertise, and tools to align biomedical research with clinical need. However, barriers to scientific translation remain, and further progress is urgently required. Collective intelligence and crowdsourcing applications offer the potential for global online networks, allowing connection and collaboration between a wide variety of fields. This would drive the alignment of biomedical science with biotechnology, clinical need, and patient experience, in order to deliver evidence-based innovation which can revolutionize medical care worldwide. Here we discuss the critical steps towards implementing collective intelligence in translational medicine using the experience of those in other fields of science and public health.
Are we studying what matters? Health priorities and NIH-funded biomedical engineering research.
Rubin, Jessica B; Paltiel, A David; Saltzman, W Mark
2010-07-01
With the founding of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) in 1999, the National Institutes of Health (NIH) made explicit its dedication to expanding research in biomedical engineering. Ten years later, we sought to examine how closely federal funding for biomedical engineering aligns with U.S. health priorities. Using a publicly accessible database of research projects funded by the NIH in 2008, we identified 641 grants focused on biomedical engineering, 48% of which targeted specific diseases. Overall, we found that these disease-specific NIH-funded biomedical engineering research projects align with national health priorities, as quantified by three commonly utilized measures of disease burden: cause of death, disability-adjusted survival losses, and expenditures. However, we also found some illnesses (e.g., cancer and heart disease) for which the number of research projects funded deviated from our expectations, given their disease burden. Our findings suggest several possibilities for future studies that would serve to further inform the allocation of limited research dollars within the field of biomedical engineering.
Kim, Ji Eun; Nam, Jung Hoon; Cho, Joon Young; Kim, Kil Soo; Hwang, Dae Youn
2017-06-01
Institute of Cancer Research (ICR) mice have been widely used in various research fields including toxicology, oncology, pharmacology, and pharmaceutical product safety testing for decades. However, annual tendency of research papers involving ICR mice in various biomedical fields has not been previously analyzed. In this study, we examined the numbers of papers that used ICR mice as experimental animals in the social science, natural science, engineering, medicine-pharmacy, marine agriculture-fishery, and art-kinesiology fields by analyzing big data. Numbers of ICR mouse-used papers gradually increased from 1961 to 2014, but small decreases were observed in 2015 and 2016. The largest number of ICR-used papers were published in the medicine-pharmacy field, followed by natural science and art-kinesiology fields. There were no ICR mouse-used papers in other fields. Furthermore, ICR mice have been widely employed in cell biology studies within the natural science field as well as in biochemistry and pathology in the medicine-pharmacy field. Few ICR mouse-used papers were published in exercise biochemistry and exercise nutrition in the art-kinesiology field. Regardless in most fields, the total numbers of published papers involving ICR mice were higher in 2014 than in other years, although the numbers in some fields including dentistry, veterinary science, and dermatology were high in 2016. Taken together, the present study shows that various ICR stocks, including Korl:ICR mice, are widely employed as experimental animals in various biomedical research fields.
Kim, Ji Eun; Nam, Jung Hoon; Cho, Joon Young; Kim, Kil Soo
2017-01-01
Institute of Cancer Research (ICR) mice have been widely used in various research fields including toxicology, oncology, pharmacology, and pharmaceutical product safety testing for decades. However, annual tendency of research papers involving ICR mice in various biomedical fields has not been previously analyzed. In this study, we examined the numbers of papers that used ICR mice as experimental animals in the social science, natural science, engineering, medicine-pharmacy, marine agriculture-fishery, and art-kinesiology fields by analyzing big data. Numbers of ICR mouse-used papers gradually increased from 1961 to 2014, but small decreases were observed in 2015 and 2016. The largest number of ICR-used papers were published in the medicine-pharmacy field, followed by natural science and art-kinesiology fields. There were no ICR mouse-used papers in other fields. Furthermore, ICR mice have been widely employed in cell biology studies within the natural science field as well as in biochemistry and pathology in the medicine-pharmacy field. Few ICR mouse-used papers were published in exercise biochemistry and exercise nutrition in the art-kinesiology field. Regardless in most fields, the total numbers of published papers involving ICR mice were higher in 2014 than in other years, although the numbers in some fields including dentistry, veterinary science, and dermatology were high in 2016. Taken together, the present study shows that various ICR stocks, including Korl:ICR mice, are widely employed as experimental animals in various biomedical research fields. PMID:28747984
Structural DNA Nanotechnology: Artificial Nanostructures for Biomedical Research.
Ke, Yonggang; Castro, Carlos; Choi, Jong Hyun
2018-06-04
Structural DNA nanotechnology utilizes synthetic or biologic DNA as designer molecules for the self-assembly of artificial nanostructures. The field is founded upon the specific interactions between DNA molecules, known as Watson-Crick base pairing. After decades of active pursuit, DNA has demonstrated unprecedented versatility in constructing artificial nanostructures with significant complexity and programmability. The nanostructures could be either static, with well-controlled physicochemical properties, or dynamic, with the ability to reconfigure upon external stimuli. Researchers have devoted considerable effort to exploring the usability of DNA nanostructures in biomedical research. We review the basic design methods for fabricating both static and dynamic DNA nanostructures, along with their biomedical applications in fields such as biosensing, bioimaging, and drug delivery.
Selishchev, S V
2004-01-01
The integration results of fundamental and applied medical-and-technical research made at the chair of biomedical systems, Moscow state institute of electronic engineering (technical university--MSIEE), are described in the paper. The chair is guided in its research activity by the traditions of higher education in Russia in the field of biomedical electronics and biomedical engineering. Its activities are based on the extrapolation of methods of electronic tools, computer technologies, physics, biology and medicine with due respect being paid to the requirements of practical medicine and to topical issues of research and design.
Review of spectral imaging technology in biomedical engineering: achievements and challenges.
Li, Qingli; He, Xiaofu; Wang, Yiting; Liu, Hongying; Xu, Dongrong; Guo, Fangmin
2013-10-01
Spectral imaging is a technology that integrates conventional imaging and spectroscopy to get both spatial and spectral information from an object. Although this technology was originally developed for remote sensing, it has been extended to the biomedical engineering field as a powerful analytical tool for biological and biomedical research. This review introduces the basics of spectral imaging, imaging methods, current equipment, and recent advances in biomedical applications. The performance and analytical capabilities of spectral imaging systems for biological and biomedical imaging are discussed. In particular, the current achievements and limitations of this technology in biomedical engineering are presented. The benefits and development trends of biomedical spectral imaging are highlighted to provide the reader with an insight into the current technological advances and its potential for biomedical research.
DNA nanotechnology and its applications in biomedical research.
Sun, Lifan; Yu, Lu; Shen, Wanqiu
2014-09-01
DNA nanotechnology, which uses DNA as a material to self-assemble designed nanostructures, including DNA 2D arrays, 3D nanostructures, DNA nanotubes and DNA nanomechanical devices, has showed great promise in biomedical applications. Various DNA nanostructures have been used for protein characterization, enzyme assembly, biosensing, drug delivery and biomimetic assemblies. In this review, we will present recent advances of DNA nanotechnology and its applications in biomedical research field.
Stucki, Gerold; Grimby, Gunnar
2007-05-01
There is a need to organize rehabilitation and related research into distinct scientific fields in order to overcome the current limitations of rehabilitation research. Based on the general distinction in basic, applied and professional sciences applicable to research in general, and the rehabilitation relevant distinction between the comprehensive perspective based on WHO's integrative model of human functioning (ICF) and the partial perspective focusing on the biomedical aspects of functioning, it is possible to identify 5 distinct scientific fields of human functioning and rehabilitation research. These are the emerging human functioning sciences and integrative rehabilitation sciences from the comprehensive perspective, the established biosciences and biomedical rehabilitation sciences and engineering from the partial perspective, and the professional rehabilitation sciences at the cutting edge of research and practice. The human functioning sciences aim to understand human functioning and to identify targets for comprehensive interventions, with the goal of contributing to the minimization of the experience of disability in the population. The biosciences in rehabilitation aim to explain body injury and repair and to identify targets for biomedical interventions. The integrative rehabilitation sciences design and study comprehensive assessments and interventions that integrate biomedical, personal factor and environmental approaches suited to optimize people's performance. The biomedical rehabilitation sciences and engineering study diagnostic measures and interventions suitable to minimize impairment, including symptom control, and to optimize people's capacity. The professional rehabilitation sciences study how to provide best care with the goal of enabling people with health conditions experiencing or likely to experience disability to achieve and maintain optimal functioning in interaction with the environment. The organization of human functioning and rehabilitation research into the 5 distinct scientific fields facilitates the development of academic training programs and career building as well as the development of research structures dedicated to human functioning and rehabilitation research.
Women's mental health research: the emergence of a biomedical field.
Blehar, Mary C
2006-01-01
This review surveys the field of women's mental health, with particular emphasis on its evolution into a distinct area of biomedical research. The field employs a biomedical disease model but it also emphasizes social and cultural influences on health outcomes. In recent years, its scope has expanded beyond studies of disorders occurring in women at times of reproductive transitions and it now encompasses a broader study of sex and gender differences. Historical and conceptual influences on the field are discussed. The review also surveys gender differences in the prevalence and clinical manifestations of mental disorders. Epidemiological findings have provided a rich resource for theory development, but without research tools to test theories adequately, findings of gender differences have begged the question of their biological, social, and cultural origins. Clinical depression is used to exemplify the usefulness of a sex/gender perspective in understanding mental illness; and major theories proposed to account for gender differences are critically evaluated. The National Institutes of Health (NIH) is the primary federal funding source for biomedical women's mental health research. The review surveys areas of emphasis in women's mental health research at the NIH as well as some collaborative activities that represent efforts to translate research findings into the public health and services arenas. As new analytic methods become available, it is anticipated that a more fundamental understanding of the biological and behavioral mechanisms underlying sex and gender differences in mental illness will emerge. Nonetheless, it is also likely that integration of findings predicated on different conceptual models of the nature and causes of mental illness will remain a challenge. These issues are discussed with reference to their impact on the field of women's mental health research.
Outcome of a Workshop on Applications of Protein Models in Biomedical Research
Schwede, Torsten; Sali, Andrej; Honig, Barry; Levitt, Michael; Berman, Helen M.; Jones, David; Brenner, Steven E.; Burley, Stephen K.; Das, Rhiju; Dokholyan, Nikolay V.; Dunbrack, Roland L.; Fidelis, Krzysztof; Fiser, Andras; Godzik, Adam; Huang, Yuanpeng Janet; Humblet, Christine; Jacobson, Matthew P.; Joachimiak, Andrzej; Krystek, Stanley R.; Kortemme, Tanja; Kryshtafovych, Andriy; Montelione, Gaetano T.; Moult, John; Murray, Diana; Sanchez, Roberto; Sosnick, Tobin R.; Standley, Daron M.; Stouch, Terry; Vajda, Sandor; Vasquez, Max; Westbrook, John D.; Wilson, Ian A.
2009-01-01
Summary We describe the proceedings and conclusions from a “Workshop on Applications of Protein Models in Biomedical Research” that was held at University of California at San Francisco on 11 and 12 July, 2008. At the workshop, international scientists involved with structure modeling explored (i) how models are currently used in biomedical research, (ii) what the requirements and challenges for different applications are, and (iii) how the interaction between the computational and experimental research communities could be strengthened to advance the field. PMID:19217386
The development of biomedical engineering as experienced by one biomedical engineer
2012-01-01
This personal essay described the development of the field of Biomedical Engineering from its early days, from the perspective of one who lived through that development. It describes the making of a major invention using data that had been rejected by other scientists, the re-discovery of an obscure fact of physiology and its use in developing a major medical instrument, the development of a new medical imaging modality, and the near-death rescue of a research project. The essay concludes with comments about the development and present status of impedance imaging, and recent changes in the evolution of biomedical engineering as a field. PMID:23234267
The development of biomedical engineering as experienced by one biomedical engineer.
Newell, Jonathan C
2012-12-12
This personal essay described the development of the field of Biomedical Engineering from its early days, from the perspective of one who lived through that development. It describes the making of a major invention using data that had been rejected by other scientists, the re-discovery of an obscure fact of physiology and its use in developing a major medical instrument, the development of a new medical imaging modality, and the near-death rescue of a research project. The essay concludes with comments about the development and present status of impedance imaging, and recent changes in the evolution of biomedical engineering as a field.
Dielectrophoresis for Biomedical Sciences Applications: A Review
Abd Rahman, Nurhaslina; Ibrahim, Fatimah; Yafouz, Bashar
2017-01-01
Dielectrophoresis (DEP) is a label-free, accurate, fast, low-cost diagnostic technique that uses the principles of polarization and the motion of bioparticles in applied electric fields. This technique has been proven to be beneficial in various fields, including environmental research, polymer research, biosensors, microfluidics, medicine and diagnostics. Biomedical science research is one of the major research areas that could potentially benefit from DEP technology for diverse applications. Nevertheless, many medical science research investigations have yet to benefit from the possibilities offered by DEP. This paper critically reviews the fundamentals, recent progress, current challenges, future directions and potential applications of research investigations in the medical sciences utilizing DEP technique. This review will also act as a guide and reference for medical researchers and scientists to explore and utilize the DEP technique in their research fields. PMID:28245552
Advancement of Women in the Biomedical Workforce: Insights for Success
Barfield, Whitney L.; Plank-Bazinet, Jennifer L.; Clayton, Janine Austin
2016-01-01
Women continue to face unique barriers in the biomedical workforce that affect their advancement and retention in this field. The National Institutes of Health (NIH) formed the Working Group on Women in Biomedical Careers to address these issues. Through the efforts of the Working Group, the NIH funded 14 research grants to identify barriers or to develop and/or test interventions to support women in the biomedical workforce. The grantees that were funded through this endeavor later established the grassroots Research Partnership on Women in Biomedical Careers, and they continue to conduct research and disseminate information on the state of women in academic medicine. This Commentary explores the themes introduced in a collection of articles organized by the Research Partnership and published in this issue of Academic Medicine. The authors highlight the role government plays in the advancement of women in academic medicine and highlight the findings put forward in this collection. PMID:27306970
Advancement of Women in the Biomedical Workforce: Insights for Success.
Barfield, Whitney L; Plank-Bazinet, Jennifer L; Austin Clayton, Janine
2016-08-01
Women continue to face unique barriers in the biomedical workforce that affect their advancement and retention in this field. The National Institutes of Health (NIH) formed the Working Group on Women in Biomedical Careers to address these issues. Through the efforts of the working group, the NIH funded 14 research grants to identify barriers or to develop and/or test interventions to support women in the biomedical workforce. The grantees that were funded through this endeavor later established the grassroots Research Partnership on Women in Biomedical Careers, and they continue to conduct research and disseminate information on the state of women in academic medicine. This Commentary explores the themes introduced in a collection of articles organized by the research partnership and published in this issue of Academic Medicine. The authors highlight the role that government plays in the advancement of women in academic medicine and highlight the findings put forward in this collection.
Camera systems in human motion analysis for biomedical applications
NASA Astrophysics Data System (ADS)
Chin, Lim Chee; Basah, Shafriza Nisha; Yaacob, Sazali; Juan, Yeap Ewe; Kadir, Aida Khairunnisaa Ab.
2015-05-01
Human Motion Analysis (HMA) system has been one of the major interests among researchers in the field of computer vision, artificial intelligence and biomedical engineering and sciences. This is due to its wide and promising biomedical applications, namely, bio-instrumentation for human computer interfacing and surveillance system for monitoring human behaviour as well as analysis of biomedical signal and image processing for diagnosis and rehabilitation applications. This paper provides an extensive review of the camera system of HMA, its taxonomy, including camera types, camera calibration and camera configuration. The review focused on evaluating the camera system consideration of the HMA system specifically for biomedical applications. This review is important as it provides guidelines and recommendation for researchers and practitioners in selecting a camera system of the HMA system for biomedical applications.
Advances in electronic-nose technologies developed for biomedical applications
Dan Wilson; Manuela Baietto
2011-01-01
The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and...
Smart textile-based wearable biomedical systems: a transition plan for research to reality.
Park, Sungmee; Jayaraman, Sundaresan
2010-01-01
The field of smart textile-based wearable biomedical systems (ST-WBSs) has of late been generating a lot of interest in the research and business communities since its early beginnings in the mid-nineties. However, the technology is yet to enter the marketplace and realize its original goal of enhancing the quality of life for individuals through enhanced real-time biomedical monitoring. In this paper, we propose a framework for analyzing the transition of ST-WBS from research to reality. We begin with a look at the evolution of the field and describe the major components of an ST-WBS. We then analyze the key issues encompassing the technical, medical, economic, public policy, and business facets from the viewpoints of various stakeholders in the continuum. We conclude with a plan of action for transitioning ST-WBS from "research to reality."
ERIC Educational Resources Information Center
Haller, Edwin W., Ed.; Aitken, Larry P., Ed.
This book consists of papers and panel discussions presented at a conference that focused on encouraging American Indian and Alaska Native students to enter the field of biomedical research. Research and treatment of diseases among Native populations can best be carried out by American Indian and Alaska Native researchers who have a background in…
Biomedical ontologies: toward scientific debate.
Maojo, V; Crespo, J; García-Remesal, M; de la Iglesia, D; Perez-Rey, D; Kulikowski, C
2011-01-01
Biomedical ontologies have been very successful in structuring knowledge for many different applications, receiving widespread praise for their utility and potential. Yet, the role of computational ontologies in scientific research, as opposed to knowledge management applications, has not been extensively discussed. We aim to stimulate further discussion on the advantages and challenges presented by biomedical ontologies from a scientific perspective. We review various aspects of biomedical ontologies going beyond their practical successes, and focus on some key scientific questions in two ways. First, we analyze and discuss current approaches to improve biomedical ontologies that are based largely on classical, Aristotelian ontological models of reality. Second, we raise various open questions about biomedical ontologies that require further research, analyzing in more detail those related to visual reasoning and spatial ontologies. We outline significant scientific issues that biomedical ontologies should consider, beyond current efforts of building practical consensus between them. For spatial ontologies, we suggest an approach for building "morphospatial" taxonomies, as an example that could stimulate research on fundamental open issues for biomedical ontologies. Analysis of a large number of problems with biomedical ontologies suggests that the field is very much open to alternative interpretations of current work, and in need of scientific debate and discussion that can lead to new ideas and research directions.
Military research needs in biomedical informatics.
Reifman, Jaques; Gilbert, Gary R; Fagan, Lawrence; Satava, Richard
2002-01-01
The 2001 U.S. Army Medical Research and Materiel Command (USAMRMC) Biomedical Informatics Roadmap Meeting was devoted to developing a strategic plan in four focus areas: Hospital and Clinical Informatics, E-Health, Combat Health Informatics, and Bioinformatics and Biomedical Computation. The driving force of this Roadmap Meeting was the recent accelerated pace of change in biomedical informatics in which emerging technologies have the potential to affect significantly the Army research portfolio and investment strategy in these focus areas. The meeting was structured so that the first two days were devoted to presentations from experts in the field, including representatives from the three services, other government agencies, academia, and the private sector, and the morning of the last day was devoted to capturing specific biomedical informatics research needs in the four focus areas. This white paper summarizes the key findings and recommendations and should be a powerful tool for the crafting of future requests for proposals to help align USAMRMC new strategic research investments with new developments and emerging technologies.
Potential Applications of Nanocellulose-Containing Materials in the Biomedical Field
Halib, Nadia; Perrone, Francesca; Dapas, Barbara; Farra, Rossella; Abrami, Michela; Chiarappa, Gianluca; Forte, Giancarlo; Zanconati, Fabrizio; Pozzato, Gabriele; Murena, Luigi; Fiotti, Nicola; Lapasin, Romano; Cansolino, Laura; Grassi, Gabriele
2017-01-01
Because of its high biocompatibility, bio-degradability, low-cost and easy availability, cellulose finds application in disparate areas of research. Here we focus our attention on the most recent and attractive potential applications of cellulose in the biomedical field. We first describe the chemical/structural composition of cellulose fibers, the cellulose sources/features and cellulose chemical modifications employed to improve its properties. We then move to the description of cellulose potential applications in biomedicine. In this field, cellulose is most considered in recent research in the form of nano-sized particle, i.e., nanofiber cellulose (NFC) or cellulose nanocrystal (CNC). NFC is obtained from cellulose via chemical and mechanical methods. CNC can be obtained from macroscopic or microscopic forms of cellulose following strong acid hydrolysis. NFC and CNC are used for several reasons including the mechanical properties, the extended surface area and the low toxicity. Here we present some potential applications of nano-sized cellulose in the fields of wound healing, bone-cartilage regeneration, dental application and different human diseases including cancer. To witness the close proximity of nano-sized cellulose to the practical biomedical use, examples of recent clinical trials are also reported. Altogether, the described examples strongly support the enormous application potential of nano-sized cellulose in the biomedical field. PMID:28825682
Kong, Xiaoqing; Chakraverty, Devasmita; Jeffe, Donna B; Andriole, Dorothy A; Wathington, Heather D; Tai, Robert H
2013-01-01
This exploratory qualitative study investigated how doctoral students reported their personal and professional interaction experiences that they believed might facilitate or impede their academic pursuits in biomedical research. We collected 19 in-depth interviews with doctoral students in biomedical research from eight universities, and we based our qualitative analytic approach on the work of Miles and Huberman. The results indicated that among different sources and types of interaction, academic and emotional interactions from family and teachers in various stages essentially affected students' persistence in the biomedical science field. In addition, co-mentorship among peers, departmental environment, and volunteer experiences were other essential factors. This study also found related experiences among women and underrepresented minority students that were important to their academic pursuit.
Simbody: multibody dynamics for biomedical research.
Sherman, Michael A; Seth, Ajay; Delp, Scott L
Multibody software designed for mechanical engineering has been successfully employed in biomedical research for many years. For real time operation some biomedical researchers have also adapted game physics engines. However, these tools were built for other purposes and do not fully address the needs of biomedical researchers using them to analyze the dynamics of biological structures and make clinically meaningful recommendations. We are addressing this problem through the development of an open source, extensible, high performance toolkit including a multibody mechanics library aimed at the needs of biomedical researchers. The resulting code, Simbody, supports research in a variety of fields including neuromuscular, prosthetic, and biomolecular simulation, and related research such as biologically-inspired design and control of humanoid robots and avatars. Simbody is the dynamics engine behind OpenSim, a widely used biomechanics simulation application. This article reviews issues that arise uniquely in biomedical research, and reports on the architecture, theory, and computational methods Simbody uses to address them. By addressing these needs explicitly Simbody provides a better match to the needs of researchers than can be obtained by adaptation of mechanical engineering or gaming codes. Simbody is a community resource, free for any purpose. We encourage wide adoption and invite contributions to the code base at https://simtk.org/home/simbody.
Social Media and Mentoring in Biomedical Research Faculty Development.
Teruya, Stacey Alan; Bazargan-Hejazi, Shahrzad
2014-09-01
To determine how effective and collegial mentoring in biomedical research faculty development may be implemented and facilitated through social media. The authors reviewed the literature for objectives, concerns, and limitations of career development for junior research faculty. They tabularized these as developmental goals, and aligned them with relevant social media strengths and capabilities facilitated through traditional and/or peer mentoring. The authors derived a model in which social media is leveraged to achieve developmental goals reflected in independent and shared projects, and in the creation and expansion of support and research networks. Social media may be successfully leveraged and applied in achieving developmental goals for biomedical research faculty, and potentially for those in other fields and disciplines.
Ballabeni, Andrea; Boggio, Andrea; Hemenway, David
2014-01-01
Basic research in the biomedical field generates both knowledge that has a value per se regardless of its possible practical outcome and knowledge that has the potential to produce more practical benefits. Policies can increase the benefit potential to society of basic biomedical research by offering various kinds of incentives to basic researchers. In this paper we argue that soft incentives or “nudges” are particularly promising. However, to be well designed, these incentives must take into account the motivations, goals and views of the basic scientists. In the paper we present the results of an investigation that involved more than 300 scientists at Harvard Medical School and affiliated institutes. The results of this study suggest that some soft incentives could be valuable tools to increase the transformative value of fundamental investigations without affecting the spirit of the basic research and scientists’ work satisfaction. After discussing the findings, we discuss a few examples of nudges for basic researchers in the biomedical fields. PMID:24795807
Ballabeni, Andrea; Boggio, Andrea; Hemenway, David
2014-01-01
Basic research in the biomedical field generates both knowledge that has a value per se regardless of its possible practical outcome and knowledge that has the potential to produce more practical benefits. Policies can increase the benefit potential to society of basic biomedical research by offering various kinds of incentives to basic researchers. In this paper we argue that soft incentives or "nudges" are particularly promising. However, to be well designed, these incentives must take into account the motivations, goals and views of the basic scientists. In the paper we present the results of an investigation that involved more than 300 scientists at Harvard Medical School and affiliated institutes. The results of this study suggest that some soft incentives could be valuable tools to increase the transformative value of fundamental investigations without affecting the spirit of the basic research and scientists' work satisfaction. After discussing the findings, we discuss a few examples of nudges for basic researchers in the biomedical fields.
Abraham, Parvin; Maliekal, Tessy Thomas
2017-04-01
Research of the past two decades has proved the relevance of single cell biology in basic research and translational medicine. Successful detection and isolation of specific subsets is the key to understand their functional heterogeneity. Antibodies are conventionally used for this purpose, but their relevance in certain contexts is limited. In this review, we discuss some of these contexts, posing bottle neck for different fields of biology including biomedical research. With the advancement of chemistry, several methods have been introduced to overcome these problems. Even though microfluidics and microraft array are newer techniques exploited for single cell biology, fluorescence-activated cell sorting (FACS) remains the gold standard technique for isolation of cells for many biomedical applications, like stem cell therapy. Here, we present a comprehensive and comparative account of some of the probes that are useful in FACS. Further, we illustrate how these techniques could be applied in biomedical research. It is postulated that intracellular molecular markers like nucleostemin (GNL3), alkaline phosphatase (ALPL) and HIRA can be used for improving the outcome of cardiac as well as bone regeneration. Another field that could utilize intracellular markers is diagnostics, and we propose the use of specific peptide nucleic acid probes (PNPs) against certain miRNAs for cancer surgical margin prediction. The newer techniques for single cell biology, based on intracellular molecules, will immensely enhance the repertoire of possible markers for the isolation of cell types useful in biomedical research.
Investigation of laser polarized xenon magnetic resonance
NASA Technical Reports Server (NTRS)
Walsworth, Ronald L.
1998-01-01
Ground-based investigations of a new biomedical diagnostic technology: nuclear magnetic resonance of laser polarized noble gas are addressed. The specific research tasks discussed are: (1) Development of a large-scale noble gas polarization system; (2) biomedical investigations using laser polarized noble gas in conventional (high magnetic field) NMR systems; and (3) the development and application of a low magnetic field system for laser polarized noble gas NMR.
Lee, E. Sally; McDonald, David W.; Anderson, Nicholas; Tarczy-Hornoch, Peter
2008-01-01
Due to its complex nature, modern biomedical research has become increasingly interdisciplinary and collaborative in nature. Although a necessity, interdisciplinary biomedical collaboration is difficult. There is, however, a growing body of literature on the study and fostering of collaboration in fields such as computer supported cooperative work (CSCW) and information science (IS). These studies of collaboration provide insight into how to potentially alleviate the difficulties of interdisciplinary collaborative research. We, therefore, undertook a cross cutting study of science and engineering collaboratories to identify emergent themes. We review many relevant collaboratory concepts: (a) general collaboratory concepts across many domains: communication, common workspace and coordination, and data sharing and management, (b) specific collaboratory concepts of particular biomedical relevance: data integration and analysis, security structure, metadata and data provenance, and interoperability and data standards, (c) environmental factors that support collaboratories: administrative and management structure, technical support, and available funding as critical environmental factors, and (d) future considerations for biomedical collaboration: appropriate training and long-term planning. In our opinion, the collaboratory concepts we discuss can guide planning and design of future collaborative infrastructure by biomedical informatics researchers to alleviate some of the difficulties of interdisciplinary biomedical collaboration. PMID:18706852
Crockett, Elahé T
2014-09-24
The National Institutes of Health has recognized a compelling need to train highly qualified individuals and promote diversity in the biomedical/clinical sciences research workforce. In response, we have developed a research-training program known as REPID (Research Education Program to Increase Diversity among Health Researchers) to prepare students/learners to pursue research careers in these fields and address the lack of diversity and health disparities. By inclusion of students/learners from minority and diverse backgrounds, the REPID program aims to provide a research training and enrichment experience through team mentoring to inspire students/learners to pursue research careers in biomedical and health-related fields. Students/learners are recruited from the University campus from a diverse population of undergraduates, graduates, health professionals, and lifelong learners. Our recruits first enroll into an innovative on-line introductory course in Basics and Methods in Biomedical Research that uses a laboratory Tool-Kit (a lab in a box called the My Dr. ET Lab Tool-Kit) to receive the standard basics of research education, e.g., research skills, and lab techniques. The students/learners will also learn about the responsible conduct of research, research concept/design, data recording/analysis, and scientific writing/presentation. The course is followed by a 12-week hands-on research experience during the summer. The students/learners also attend workshops and seminars/conferences. The students/learners receive scholarship to cover stipends, research related expenses, and to attend a scientific conference. The scholarship allows the students/learners to gain knowledge and seize opportunities in biomedical and health-related careers. This is an ongoing program, and during the first three years of the program, fifty-one (51) students/learners have been recruited. Thirty-six (36) have completed their research training, and eighty percent (80%) of them have continued their research experiences beyond the program. The combination of carefully providing standard basics of research education and mentorship has been successful and instrumental for training these students/learners and their success in finding biomedical/health-related jobs and/or pursuing graduate/medical studies. All experiences have been positive and highly promoted. This approach has the potential to train a highly qualified workforce, change lives, enhance biomedical research, and by extension, improve national health-care.
Biomedical informatics training at the University of Wisconsin-Madison.
Severtson, D J; Pape, L; Page, C D; Shavlik, J W; Phillips, G N; Flatley Brennan, P
2007-01-01
The purpose of this paper is to describe biomedical informatics training at the University of Wisconsin-Madison (UW-Madison). We reviewed biomedical informatics training, research, and faculty/trainee participation at UW-Madison. There are three primary approaches to training 1) The Computation & Informatics in Biology & Medicine Training Program, 2) formal biomedical informatics offered by various campus departments, and 3) individualized programs. Training at UW-Madison embodies the features of effective biomedical informatics training recommended by the American College of Medical Informatics that were delineated as: 1) curricula that integrate experiences among computational sciences and application domains, 2) individualized and interdisciplinary cross-training among a diverse cadre of trainees to develop key competencies that he or she does not initially possess, 3) participation in research and development activities, and 4) exposure to a range of basic informational and computational sciences. The three biomedical informatics training approaches immerse students in multidisciplinary training and education that is supported by faculty trainers who participate in collaborative research across departments. Training is provided across a range of disciplines and available at different training stages. Biomedical informatics training at UW-Madison illustrates how a large research University, with multiple departments across biological, computational and health fields, can provide effective and productive biomedical informatics training via multiple bioinformatics training approaches.
New frontiers in biomedical science and engineering during 2014-2015.
Liu, Feng; Lee, Dong-Hoon; Lagoa, Ricardo; Kumar, Sandeep
2015-01-01
The International Conference on Biomedical Engineering and Biotechnology (ICBEB) is an international meeting held once a year. This, the fourth International Conference on Biomedical Engineering and Biotechnology (ICBEB2015), will be held in Shanghai, China, during August 18th-21st, 2015. This annual conference intends to provide an opportunity for researchers and practitioners at home and abroad to present the most recent frontiers and future challenges in the fields of biomedical science, biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, etc. The papers published in this issue are selected from this Conference, which witness the advances in biomedical engineering and biotechnology during 2014-2015.
Abu-Faraj, Ziad O
2008-01-01
Bioengineering/Biomedical Engineering is considered amongst the most reputable fields within the global arena, and will likely be the primer for any future breakthroughs in Medicine and Biology. Bioengineering/biomedical engineering education has evolved since late 1950s and is undergoing advancement in leading academic institutions worldwide. This paper delineates an original study on the world proliferation of bioengineering/biomedical engineering education and bears the name 'Project Alexander the Great'. The initial step of the project was to survey all 10448 universities, recognized by the International Association of Universities, spread among the 193 member states of the United Nations within the six continents. The project aims at identifying, disseminating, and networking, through the world-wide-web, those institutions of higher learning that provide bioengineering/biomedical engineering education. The significance of this project is multifold: i) the inception of a web-based 'world-map' in bioengineering/biomedical engineering education for the potential international student desiring to pursue a career in this field; ii) the global networking of bioengineering/biomedical engineering academic/research programs; iii) the promotion of first-class bioengineering/biomedical engineering education and the catalysis of global proliferation of this field; iv) the erection of bridges among educational institutions, industry, and professional societies or organizations involved in Bioengineering/Biomedical Engineering; and v) the catalysis in the establishment of framework agreements for cooperation among the identified institutions offering curricula in this field. This paper presents the results obtained from Africa and North America. The whole project is due to be completed by 2009.
Adolf Friedrich Fercher: a pioneer of biomedical optics.
Hitzenberger, Christoph K
2017-11-01
Adolf Friedrich Fercher, an outstanding pioneer of biomedical optics, passed away earlier this year. He was a brilliant and visionary researcher who pioneered various fields of biomedical optics, such as laser speckle flowgraphy, tissue interferometry, and optical coherence tomography (OCT). On the occasion of the 25th anniversary of OCT, this paper reviews and commemorates Fercher's pioneering work. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Biomedical scientists' perception of the social sciences in health research.
Albert, Mathieu; Laberge, Suzanne; Hodges, Brian D; Regehr, Glenn; Lingard, Lorelei
2008-06-01
The growing interest in interdisciplinary research within the Canadian health sciences sector has been manifested by initiatives aimed at increasing the involvement of the social sciences in this sector. Drawing on Bourdieu's concept of field and Knorr-Cetina's concept of epistemic culture, this study explores the extent to which it is possible for the social sciences to integrate into, and thrive in, a field in which the experimental paradigm occupies a hegemonic position. Thirty-one semi-structured interviews were conducted to explore biomedical scientists' receptiveness toward the social sciences in general and to qualitative research in particular. We found that these respondents exhibited a predominantly negative posture toward the social sciences; however, we also found considerable variation in their judgments and explanations. Eight biomedical scientists tended to be receptive to the social sciences, 7 ambivalent, and 16 unreceptive. The main rationale expressed by receptive respondents is that the legitimacy of a method depends on its capacity to adequately respond to a research question and not on its conformity to the experimental canon. Unreceptive respondents maintained that the social sciences cannot generate valid and reliable results because they are not conducive to the experimental design as a methodological approach. Ambivalent respondents were characterized by their cautiously accepting posture toward the social sciences and, especially, by their reservations about qualitative methods. Based on the biomedical scientists' limited receptiveness, we can anticipate that the growth of the social sciences will continue to meet obstacles within the health research field in the near future in Canada.
Kong, Xiaoqing; Chakraverty, Devasmita; Jeffe, Donna B.; Andriole, Dorothy A.; Wathington, Heather D.; Tai, Robert H.
2014-01-01
This exploratory qualitative study investigated how doctoral students reported their personal and professional interaction experiences that they believed might facilitate or impede their academic pursuits in biomedical research. We collected 19 in-depth interviews with doctoral students in biomedical research from eight universities, and we based our qualitative analytic approach on the work of Miles and Huberman. The results indicated that among different sources and types of interaction, academic and emotional interactions from family and teachers in various stages essentially affected students’ persistence in the biomedical science field. In addition, co-mentorship among peers, departmental environment, and volunteer experiences were other essential factors. This study also found related experiences among women and underrepresented minority students that were important to their academic pursuit. PMID:26166928
Data Analysis and Data Mining: Current Issues in Biomedical Informatics
Bellazzi, Riccardo; Diomidous, Marianna; Sarkar, Indra Neil; Takabayashi, Katsuhiko; Ziegler, Andreas; McCray, Alexa T.
2011-01-01
Summary Background Medicine and biomedical sciences have become data-intensive fields, which, at the same time, enable the application of data-driven approaches and require sophisticated data analysis and data mining methods. Biomedical informatics provides a proper interdisciplinary context to integrate data and knowledge when processing available information, with the aim of giving effective decision-making support in clinics and translational research. Objectives To reflect on different perspectives related to the role of data analysis and data mining in biomedical informatics. Methods On the occasion of the 50th year of Methods of Information in Medicine a symposium was organized, that reflected on opportunities, challenges and priorities of organizing, representing and analysing data, information and knowledge in biomedicine and health care. The contributions of experts with a variety of backgrounds in the area of biomedical data analysis have been collected as one outcome of this symposium, in order to provide a broad, though coherent, overview of some of the most interesting aspects of the field. Results The paper presents sections on data accumulation and data-driven approaches in medical informatics, data and knowledge integration, statistical issues for the evaluation of data mining models, translational bioinformatics and bioinformatics aspects of genetic epidemiology. Conclusions Biomedical informatics represents a natural framework to properly and effectively apply data analysis and data mining methods in a decision-making context. In the future, it will be necessary to preserve the inclusive nature of the field and to foster an increasing sharing of data and methods between researchers. PMID:22146916
Talboom, Joshua S; Huentelman, Matthew J
2018-05-01
Advances in information technology (IT) hardware in the last decade have led to the advent of small connected devices broadly referred to as the Internet of Things (IoT). The IoT and its subcategory of wearable devices (wearables) both have the potential to greatly impact biomedical research. This focused review covers recent biomedical research using the IoT and wearables in the area of neurological traits and disease. In addition, a look into the future of biomedical research using IoT devices and wearables as well as some areas requiring further consideration by the field will be discussed.
Advances in biomedical engineering and biotechnology during 2013-2014.
Liu, Feng; Wang, Ying; Burkhart, Timothy A; González Penedo, Manuel Francisco; Ma, Shaodong
2014-01-01
The 3rd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2014), held in Beijing from the 25th to the 28th of September 2014, is an annual conference that intends to provide an opportunity for researchers and practitioners around the world to present the most recent advances and future challenges in the fields of biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, amongst others. The papers published in this issue are selected from this conference, which witnesses the advances in biomedical engineering and biotechnology during 2013-2014.
Introduction to Oxidative Stress in Biomedical and Biological Research
Breitenbach, Michael; Eckl, Peter
2015-01-01
Oxidative stress is now a well-researched area with thousands of new articles appearing every year. We want to give the reader here an overview of the topics in biomedical and basic oxidative stress research which are covered by the authors of this thematic issue. We also want to give the newcomer a short introduction into some of the basic concepts, definitions and analytical procedures used in this field. PMID:26117854
Social Media and Mentoring in Biomedical Research Faculty Development
Teruya, Stacey Alan; Bazargan-Hejazi, Shahrzad
2015-01-01
Purpose To determine how effective and collegial mentoring in biomedical research faculty development may be implemented and facilitated through social media. Method The authors reviewed the literature for objectives, concerns, and limitations of career development for junior research faculty. They tabularized these as developmental goals, and aligned them with relevant social media strengths and capabilities facilitated through traditional and/or peer mentoring. Results The authors derived a model in which social media is leveraged to achieve developmental goals reflected in independent and shared projects, and in the creation and expansion of support and research networks. Conclusions Social media may be successfully leveraged and applied in achieving developmental goals for biomedical research faculty, and potentially for those in other fields and disciplines. PMID:26120494
de Albuquerque Rocha, Karina; Vasconcelos, Sonia M R
2018-02-06
Ethics regulation for human-subject research (HSR) has been established for about 20 years in Brazil. However, compliance with this regulation is controversial for non-biomedical sciences, particularly for human and social sciences (HSS), the source of a recent debate at the National Commission for Research Ethics. We hypothesized that for these fields, formal requirements for compliance with HSR regulation in graduate programs, responsible for the greatest share of Brazilian science, would be small in number. We analyzed institutional documents (collected from June 2014 to May 2015) from 171 graduate programs at six prestigious Brazilian universities in São Paulo and Rio de Janeiro, the states that fund most of the science conducted in Brazil. Among these programs, 149 were in HSS. The results suggest that non-compliance with standard regulation seems to be the rule in most of these programs. The data may reflect not only a resistance from scientists in these fields to comply with standard regulations for ethics in HSR but also a disciplinary tradition that seems prevalent when it comes to research ethics in HSR. However, recent encounters between Brazilian biomedical and non-biomedical scientists for debates over ethics in HSR point to a changing culture in the approach to research ethics in the country.
Moyo, Christabelle S; Francis, Joseph; Bessong, Pascal O
2017-03-17
Researchers involved in biomedical community-based projects rarely seek the perspectives of community fieldworkers, who are the 'foot soldiers' in such projects. Understanding the effect of biomedical research on community-based field workers could identify benefits and shortfalls that may be crucial to the success of community-based studies. The present study explored the perceptions of community-based field workers on the effect of the Etiology, Risk Factors and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development Project" (MAL-ED) South Africa on their tangible and intangible capital which together comprise sustainable livelihoods. The study was conducted in Dzimauli community in Limpopo Province of South Africa between January-February 2016. The sustainable livelihoods framework was used to query community-based field workers' perspectives of both tangible assets such as income and physical assets and intangible assets such as social capital, confidence, and skills. Data were collected through twenty one individual in-depth interviews and one focus group discussion. Data were analysed using the Thematic Content Analysis approach supported by ATLAS.ti, version 7.5.10 software. All the field workers indicated that they benefitted from the MAL-ED South Africa project. The benefits included intangible assets such as acquisition of knowledge and skills, stronger social capital and personal development. Additionally, all indicated that MAL-ED South Africa provided them with the tangible assets of increased income and physical assets. Observations obtained from the focus group discussion and the community-based leaders concurred with the findings from the in-depth interviews. Additionally, some field workers expressed the desire for training in public relations, communication, problem solving and confidence building. The MAL-ED South Africa, biomedical research project, had positive effects on tangible and intangible assets that compose the sustainable livelihoods of community-based fieldworkers. However, the field workers expressed the need to acquire social skills to enable them carry out their duties more efficiently.
Issues and special features of animal health research
2011-01-01
In the rapidly changing context of research on animal health, INRA launched a collective discussion on the challenges facing the field, its distinguishing features, and synergies with biomedical research. As has been declared forcibly by the heads of WHO, FAO and OIE, the challenges facing animal health, beyond diseases transmissible to humans, are critically important and involve food security, agriculture economics, and the ensemble of economic activities associated with agriculture. There are in addition issues related to public health (zoonoses, xenobiotics, antimicrobial resistance), the environment, and animal welfare. Animal health research is distinguished by particular methodologies and scientific questions that stem from the specific biological features of domestic species and from animal husbandry practices. It generally does not explore the same scientific questions as research on human biology, even when the same pathogens are being studied, and the discipline is rooted in a very specific agricultural and economic context. Generic and methodological synergies nevertheless exist with biomedical research, particularly with regard to tools and biological models. Certain domestic species furthermore present more functional similarities with humans than laboratory rodents. The singularity of animal health research in relation to biomedical research should be taken into account in the organization, evaluation, and funding of the field through a policy that clearly recognizes the specific issues at stake. At the same time, the One Health approach should facilitate closer collaboration between biomedical and animal health research at the level of research teams and programmes. PMID:21864344
Issues and special features of animal health research.
Ducrot, Christian; Bed'hom, Bertrand; Béringue, Vincent; Coulon, Jean-Baptiste; Fourichon, Christine; Guérin, Jean-Luc; Krebs, Stéphane; Rainard, Pascal; Schwartz-Cornil, Isabelle; Torny, Didier; Vayssier-Taussat, Muriel; Zientara, Stephan; Zundel, Etienne; Pineau, Thierry
2011-08-24
In the rapidly changing context of research on animal health, INRA launched a collective discussion on the challenges facing the field, its distinguishing features, and synergies with biomedical research. As has been declared forcibly by the heads of WHO, FAO and OIE, the challenges facing animal health, beyond diseases transmissible to humans, are critically important and involve food security, agriculture economics, and the ensemble of economic activities associated with agriculture. There are in addition issues related to public health (zoonoses, xenobiotics, antimicrobial resistance), the environment, and animal welfare.Animal health research is distinguished by particular methodologies and scientific questions that stem from the specific biological features of domestic species and from animal husbandry practices. It generally does not explore the same scientific questions as research on human biology, even when the same pathogens are being studied, and the discipline is rooted in a very specific agricultural and economic context.Generic and methodological synergies nevertheless exist with biomedical research, particularly with regard to tools and biological models. Certain domestic species furthermore present more functional similarities with humans than laboratory rodents.The singularity of animal health research in relation to biomedical research should be taken into account in the organization, evaluation, and funding of the field through a policy that clearly recognizes the specific issues at stake. At the same time, the One Health approach should facilitate closer collaboration between biomedical and animal health research at the level of research teams and programmes.
Functional supramolecular polymers for biomedical applications.
Dong, Ruijiao; Zhou, Yongfeng; Huang, Xiaohua; Zhu, Xinyuan; Lu, Yunfeng; Shen, Jian
2015-01-21
As a novel class of dynamic and non-covalent polymers, supramolecular polymers not only display specific structural and physicochemical properties, but also have the ability to undergo reversible changes of structure, shape, and function in response to diverse external stimuli, making them promising candidates for widespread applications ranging from academic research to industrial fields. By an elegant combination of dynamic/reversible structures with exceptional functions, functional supramolecular polymers are attracting increasing attention in various fields. In particular, functional supramolecular polymers offer several unique advantages, including inherent degradable polymer backbones, smart responsiveness to various biological stimuli, and the ease for the incorporation of multiple biofunctionalities (e.g., targeting and bioactivity), thereby showing great potential for a wide range of applications in the biomedical field. In this Review, the trends and representative achievements in the design and synthesis of supramolecular polymers with specific functions are summarized, as well as their wide-ranging biomedical applications such as drug delivery, gene transfection, protein delivery, bio-imaging and diagnosis, tissue engineering, and biomimetic chemistry. These achievements further inspire persistent efforts in an emerging interdisciplin-ary research area of supramolecular chemistry, polymer science, material science, biomedical engineering, and nanotechnology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Martín-Arribas, M C; Posada, M; Terracini, B; Carballo, F; Abaitua, I
2003-01-01
This Field Note aims to make known the decisions taken by the Ethics Committee of the Instituto de Salud Carlos III for Toxic Oil Syndrome regarding the secondary use of research specimens in biological research when informed consent is lacking. This is a common concern in the field of biomedical research. After debating the ethical suitability of the secondary use of these samples, our main conclusion is that researchers conducting prospective studies should expressly solicit written informed consent from participants in the study about i) whether there will or could be any secondary use of the samples and, if so, ii) whether such secondary use would be conditional on the type of research.
Applications of Nanoflowers in Biomedicine.
Negahdary, Masoud; Heli, Hossein
2018-02-14
Nanotechnology has opened new windows for biomedical researches and treatment of diseases. Nanostructures with flower-like shapes (nanoflowers) which have exclusive morphology and properties have been interesting for many researchers. In this review, various applications of nanoflowers in biomedical researches and patents from various aspects have been investigated and reviewed. Nanoflowers attracted serious attentions in whole biomedical fields such as cardiovascular diseases, microbiology, sensors and biosensors, biochemical and cellular studies, cancer therapy, healthcare, etc. The competitive power of nanoflowers against other in use technologies provides successful achievements in the progress of mentioned biomedical studies. The use of nanoflowers in biomedicine leads to improving accuracy, reducing time to achieve the results, reducing costs, creating optimal treatment conditions as well as avoiding side effects of the treatment of specific diseases, and increasing functional strength. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Koepsell, David; Arp, Robert; Fostel, Jennifer; Smith, Barry
2009-01-01
Ontologies describe reality in specific domains in ways that can bridge various disciplines and languages. They allow easier access and integration of information that is collected by different groups. Ontologies are currently used in the biomedical sciences, geography, and law. A Biomedical Ethics Ontology (BMEO) would benefit members of ethics committees who deal with protocols and consent forms spanning numerous fields of inquiry. There already exists the Ontology for Biomedical Investigations (OBI); the proposed BMEO would interoperate with OBI, creating a powerful information tool. We define a domain ontology and begin to construct a BMEO, focused on the process of evaluating human research protocols. Finally, we show how our BMEO can have practical applications for ethics committees. This paper describes ongoing research and a strategy for its broader continuation and cooperation. PMID:19374479
The rolling evolution of biomedical science as an essential tool in modern clinical practice.
Blann, Andrew
2016-01-01
The British Journal of Biomedical Science is committed to publishing high-quality original research that represents a clear advance in the practice of biomedical science, and reviews that summarise recent advances in the field of biomedical science. The overall aim of the Journal is to provide a platform for the dissemination of new and innovative information on the diagnosis and management of disease that is valuable to the practicing laboratory scientist. The Editorial that follows describes the Journal and provides a perspective of its aims and objectives.
Functionalized Gold Nanoparticles and Their Biomedical Applications
Tiwari, Pooja M.; Vig, Komal; Dennis, Vida A.; Singh, Shree R.
2011-01-01
Metal nanoparticles are being extensively used in various biomedical applications due to their small size to volume ratio and extensive thermal stability. Gold nanoparticles (GNPs) are an obvious choice due to their amenability of synthesis and functionalization, less toxicity and ease of detection. The present review focuses on various methods of functionalization of GNPs and their applications in biomedical research. Functionalization facilitates targeted delivery of these nanoparticles to various cell types, bioimaging, gene delivery, drug delivery and other therapeutic and diagnostic applications. This review is an amalgamation of recent advances in the field of functionalization of gold nanoparticles and their potential applications in the field of medicine and biology. PMID:28348279
Application of nanotechnology in biomedical sciences.
Zhao, Wei; Cao, Hong; Wan, Cheng-Song; Zhang, Wen-Bing
2002-05-01
Nanotechnology, a new research field that holds enormous prospects in the 21th century, has by now gained wide application in biomedical sciences, and consequently gives rise to two new cross-disciplines, nanobiology and nanobiomedicine. The authors provide a brief summarization of the progress so far achieved in these two new disciplines.
Dankar, Fida K; Ptitsyn, Andrey; Dankar, Samar K
2018-04-10
Contemporary biomedical databases include a wide range of information types from various observational and instrumental sources. Among the most important features that unite biomedical databases across the field are high volume of information and high potential to cause damage through data corruption, loss of performance, and loss of patient privacy. Thus, issues of data governance and privacy protection are essential for the construction of data depositories for biomedical research and healthcare. In this paper, we discuss various challenges of data governance in the context of population genome projects. The various challenges along with best practices and current research efforts are discussed through the steps of data collection, storage, sharing, analysis, and knowledge dissemination.
Can there be a moral obligation to participate in biomedical research?
Seiler, Christian
2018-04-01
In clinical medicine, the moral obligation to care for the individual patient is absolute. Patient care means at least and by negative terms to minimize any risk of treatment. In this context, the question arises about the compatibility of clinical ethics and human biomedical research ethics. Or conversely, is there a common ground between the two? At the opposite end of the field between clinical ethics and biomedical research ethics is the proposal of an obligation to participate in biomedical research, which is argued for on the basis of biomedical knowledge being a public good available to the community as a whole. While patient accrual during a clinical investigation would certainly be facilitated by obligatory research participation, and the data obtained would be-at first sight-more representative for the population studied, the still feasible refusal to participate would be stigmatizing and as such detrimental for the patient-physician relation. This essay seeks to provide a reply to the titled question by focusing on aspects such as individual vs common medical claims, shared grounds between the two and an important document of medical research ethics, that is the Nuremberg code. © 2018 Stichting European Society for Clinical Investigation Journal Foundation.
Research Trend Visualization by MeSH Terms from PubMed.
Yang, Heyoung; Lee, Hyuck Jai
2018-05-30
Motivation : PubMed is a primary source of biomedical information comprising search tool function and the biomedical literature from MEDLINE which is the US National Library of Medicine premier bibliographic database, life science journals and online books. Complimentary tools to PubMed have been developed to help the users search for literature and acquire knowledge. However, these tools are insufficient to overcome the difficulties of the users due to the proliferation of biomedical literature. A new method is needed for searching the knowledge in biomedical field. Methods : A new method is proposed in this study for visualizing the recent research trends based on the retrieved documents corresponding to a search query given by the user. The Medical Subject Headings (MeSH) are used as the primary analytical element. MeSH terms are extracted from the literature and the correlations between them are calculated. A MeSH network, called MeSH Net, is generated as the final result based on the Pathfinder Network algorithm. Results : A case study for the verification of proposed method was carried out on a research area defined by the search query (immunotherapy and cancer and "tumor microenvironment"). The MeSH Net generated by the method is in good agreement with the actual research activities in the research area (immunotherapy). Conclusion : A prototype application generating MeSH Net was developed. The application, which could be used as a "guide map for travelers", allows the users to quickly and easily acquire the knowledge of research trends. Combination of PubMed and MeSH Net is expected to be an effective complementary system for the researchers in biomedical field experiencing difficulties with search and information analysis.
BANNER: an executable survey of advances in biomedical named entity recognition.
Leaman, Robert; Gonzalez, Graciela
2008-01-01
There has been an increasing amount of research on biomedical named entity recognition, the most basic text extraction problem, resulting in significant progress by different research teams around the world. This has created a need for a freely-available, open source system implementing the advances described in the literature. In this paper we present BANNER, an open-source, executable survey of advances in biomedical named entity recognition, intended to serve as a benchmark for the field. BANNER is implemented in Java as a machine-learning system based on conditional random fields and includes a wide survey of the best techniques recently described in the literature. It is designed to maximize domain independence by not employing brittle semantic features or rule-based processing steps, and achieves significantly better performance than existing baseline systems. It is therefore useful to developers as an extensible NER implementation, to researchers as a standard for comparing innovative techniques, and to biologists requiring the ability to find novel entities in large amounts of text.
Biomedical engineering and the whitaker foundation: a thirty-year partnership.
Katona, Peter G
2006-06-01
The Whitaker Foundation, established in 1976, will close in 2006. It will have made awards totaling 805 million US dollars, with over 710 million US dollars in biomedical engineering. Close to 1,500 faculty members received research grants to help them establish academic careers in biomedical engineering, and over 400 graduate students received fellowship support. The Foundation also supported the enhancement or establishment of educational programs in biomedical engineering, especially encouraging the formation of departments. The number of biomedical engineering departments almost tripled during the past 10 years, now numbering close to 75. Leveraging of grants enabled the construction of 13 new buildings. With the field firmly established, the grant program supporting new faculty members will be the one missed the most. New opportunities, however, are emerging as interdisciplinary research is being embraced by both public and private funding sources. The life sciences will be increasingly incorporated into all areas of engineering, and it is expected that such "biofication" will pose both opportunities and challenges to biomedical engineering.
NASA Astrophysics Data System (ADS)
Baird, Richard
2006-03-01
The mission of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) is to improve human health by promoting the development and translation of emerging technologies in biomedical imaging and bioengineering. To this end, NIBIB supports a coordinated agenda of research programs in advanced imaging technologies and engineering methods that enable fundamental biomedical discoveries across a broad spectrum of biological processes, disorders, and diseases and have significant potential for direct medical application. These research programs dramatically advance the Nation's healthcare by improving the detection, management and, ultimately, the prevention of disease. The research promoted and supported by NIBIB also is strongly synergistic with other NIH Institutes and Centers as well as across government agencies. This presentation will provide an overview of the scientific programs and funding opportunities supported by NIBIB, highlighting those that are of particular important to the field of medical physics.
Alternative methods for the use of non-human primates in biomedical research.
Burm, Saskia M; Prins, Jan-Bas; Langermans, Jan; Bajramovic, Jeffrey J
2014-01-01
The experimental use of non-human primates (NHP) in Europe is tightly regulated and is only permitted when there are no alternatives available. As a result, NHP are most often used in late, pre-clinical phases of biomedical research. Although the impetus for scientists, politicians and the general public to replace, reduce and refine NHP in biomedical research is strong, the development of 3Rs technology for NHP poses specific challenges. In February 2014 a workshop on "Alternative methods for the use of NHP in biomedical research" was organized within the international exchange program of EUPRIM-Net II, a European infrastructure initiative that links biomedical primate research centers. The workshop included lectures by key scientists in the field of alternatives as well as by experts from governmental and non-governmental organizations. Furthermore, parallel sessions were organized to stimulate discussion on the challenges of advancing the use of alternative methods for NHP. Subgroups voted on four statements and together composed a list with opportunities and priorities. This report summarizes the presentations that were held, the content of the discussion sessions and concludes with recommendations on 3Rs development for NHP specifically. These include technical, conceptual as well as political topics.
[The relevance of qualitative techniques in biomedical research].
de Camargo, Kenneth Rochel
2008-01-01
On observing how qualitative and quantitative studies are reported in the biomedical literature it becomes evident that, besides the virtual absence of the former, they are presented in different ways. Authors of qualitative studies seem to need almost invariably to explain why they choose a qualitative approach whereas that does not occur in quantitative studies. This paper takes Ludwik Fleck's comparative epistemology as a means of exploring those differences empirically, illustrating on the basis of two studies dealing with different aspects of biomedical practices how qualitative methods can elucidate a variety of questions pertaining to this field. The paper concludes presenting some structural characteristics of the biomedical field which on one hand, would not be explored properly without employing qualitative methods and, on the other hand, can help understanding the little value given to qualitative techniques in this area.
Are graduate students rational? Evidence from the market for biomedical scientists.
Blume-Kohout, Margaret E; Clack, John W
2013-01-01
The U.S. National Institutes of Health (NIH) budget expansion from 1998 through 2003 increased demand for biomedical research, raising relative wages and total employment in the market for biomedical scientists. However, because research doctorates in biomedical sciences can often take six years or more to complete, the full labor supply response to such changes in market conditions is not immediate, but rather is observed over a period of several years. Economic rational expectations models assume that prospective students anticipate these future changes, and also that students take into account the opportunity costs of their pursuing graduate training. Prior empirical research on student enrollment and degree completions in science and engineering (S&E) fields indicates that "cobweb" expectations prevail: that is, at least in theory, prospective graduate students respond to contemporaneous changes in market wages and employment, but do not forecast further changes that will arise by the time they complete their degrees and enter the labor market. In this article, we analyze time-series data on wages and employment of biomedical scientists versus alternative careers, on completions of S&E bachelor's degrees and biomedical sciences PhDs, and on research expenditures funded both by NIH and by biopharmaceutical firms, to examine the responsiveness of the biomedical sciences labor supply to changes in market conditions. Consistent with previous studies, we find that enrollments and completions in biomedical sciences PhD programs are responsive to market conditions at the time of students' enrollment. More striking, however, is the close correspondence between graduate student enrollments and completions, and changes in availability of NIH-funded traineeships, fellowships, and research assistantships.
Designing a mobile augmented reality tool for the locative visualisation of biomedical knowledge.
Kilby, Jess; Gray, Kathleen; Elliott, Kristine; Waycott, Jenny; Sanchez, Fernando Martin; Dave, Bharat
2013-01-01
Mobile augmented reality (MAR) may offer new and engaging ways to support consumer participation in health. We report on design-based research into a MAR application for smartphones and tablets, intended to improve public engagement with biomedical research in a specific urban precinct. Following a review of technical capabilities and organizational and locative design considerations, we worked with staff of four research institutes to elicit their ideas about information and interaction functionalities of a shared MAR app. The results were promising, supporting the development of a prototype and initial field testing with these staff. Evidence from this project may point the way toward user-centred design of MAR services that will enable more widespread adoption of the technology in other healthcare and biomedical research contexts.
Reproducibility of results in preclinical studies: a perspective from the bone field.
Manolagas, Stavros C; Kronenberg, Henry M
2014-10-01
The biomedical research enterprise-and the public support for it-is predicated on the belief that discoveries and the conclusions drawn from them can be trusted to build a body of knowledge which will be used to improve human health. As in all other areas of scientific inquiry, knowledge and understanding grow by layering new discoveries upon earlier ones. The process self-corrects and distills knowledge by discarding false ideas and unsubstantiated claims. Although self-correction is inexorable in the long-term, in recent years biomedical scientists and the public alike have become alarmed and deeply troubled by the fact that many published results cannot be reproduced. The chorus of concern reached a high pitch with a recent commentary from the NIH Director, Francis S. Collins, and Principal Deputy Director, Lawrence A. Tabak, and their announcement of specific plans to enhance reproducibility of preclinical research that relies on animal models. In this invited perspective, we highlight the magnitude of the problem across biomedical fields and address the relevance of these concerns to the field of bone and mineral metabolism. We also suggest how our specialty journals, our scientific organizations, and our community of bone and mineral researchers can help to overcome this troubling trend. © 2014 American Society for Bone and Mineral Research.
Rezaeian, Mohsen
2015-01-01
OBJECTIVES: English has become the most frequently used language for scientific communication in the biomedical field. Therefore, scholars from all over the world try to publish their findings in English. This trend has a number of advantages, along with several disadvantages. METHODS: In the current article, the most important disadvantages of publishing biomedical research articles in English for non-native speakers of English are reviewed. RESULTS: The most important disadvantages of publishing biomedical research articles in English for non-native speakers may include: Overlooking, either unintentionally or even deliberately, the most important local health problems; failure to carry out groundbreaking research due to limited medical research budgets; violating generally accepted codes of publication ethics and committing research misconduct and publications in open-access scam/predatory journals rather than prestigious journals. CONCLUSIONS: The above mentioned disadvantages could eventually result in academic establishments becoming irresponsible or, even worse, corrupt. In order to avoid this, scientists, scientific organizations, academic institutions, and scientific associations all over the world should design and implement a wider range of collaborative and comprehensive plans. PMID:25968115
Rezaeian, Mohsen
2015-01-01
English has become the most frequently used language for scientific communication in the biomedical field. Therefore, scholars from all over the world try to publish their findings in English. This trend has a number of advantages, along with several disadvantages. In the current article, the most important disadvantages of publishing biomedical research articles in English for non-native speakers of English are reviewed. The most important disadvantages of publishing biomedical research articles in English for non-native speakers may include: Overlooking, either unintentionally or even deliberately, the most important local health problems; failure to carry out groundbreaking research due to limited medical research budgets; violating generally accepted codes of publication ethics and committing research misconduct and publications in open-access scam/predatory journals rather than prestigious journals. The above mentioned disadvantages could eventually result in academic establishments becoming irresponsible or, even worse, corrupt. In order to avoid this, scientists, scientific organizations, academic institutions, and scientific associations all over the world should design and implement a wider range of collaborative and comprehensive plans.
What is biomedical informatics?
Bernstam, Elmer V.; Smith, Jack W.; Johnson, Todd R.
2009-01-01
Biomedical informatics lacks a clear and theoretically grounded definition. Many proposed definitions focus on data, information, and knowledge, but do not provide an adequate definition of these terms. Leveraging insights from the philosophy of information, we define informatics as the science of information, where information is data plus meaning. Biomedical informatics is the science of information as applied to or studied in the context of biomedicine. Defining the object of study of informatics as data plus meaning clearly distinguishes the field from related fields, such as computer science, statistics and biomedicine, which have different objects of study. The emphasis on data plus meaning also suggests that biomedical informatics problems tend to be difficult when they deal with concepts that are hard to capture using formal, computational definitions. In other words, problems where meaning must be considered are more difficult than problems where manipulating data without regard for meaning is sufficient. Furthermore, the definition implies that informatics research, teaching, and service should focus on biomedical information as data plus meaning rather than only computer applications in biomedicine. PMID:19683067
Biomedical informatics and the convergence of Nano-Bio-Info-Cogno (NBIC) technologies.
Martin-Sanchez, F; Maojo, V
2009-01-01
To analyze the role that biomedical informatics could play in the application of the NBIC Converging Technologies in the medical field and raise awareness of these new areas throughout the Biomedical Informatics community. Review of the literature and analysis of the reference documents in this domain from the biomedical informatics perspective. Detailing existing developments showing that partial convergence of technologies have already yielded relevant results in biomedicine (such as bioinformatics or biochips). Input from current projects in which the authors are involved is also used. Information processing is a key issue in enabling the convergence of NBIC technologies. Researchers in biomedical informatics are in a privileged position to participate and actively develop this new scientific direction. The experience of biomedical informaticians in five decades of research in the medical area and their involvement in the completion of the Human and other genome projects will help them participate in a similar role for the development of applications of converging technologies -particularly in nanomedicine. The proposed convergence will bring bridges between traditional disciplines. Particular attention should be placed on the ethical, legal, and social issues raised by the NBIC convergence. These technologies provide new directions for research and education in Biomedical Informatics placing a greater emphasis in multidisciplinary approaches.
ERIC Educational Resources Information Center
Thomas, Lewis
1978-01-01
The author explains that misunderstanding the role of science and scientists is mainly due to a communication gap precipitated by the enormity of the field of science. Among the many examples given are cloning and DNA from biomedical research. Argues strongly against establishing an agency to control the field of scientific research. (GA)
Women in biomedical engineering and health informatics.
McGregor, Carolyn; Frize, Monique
2008-01-01
A valuable session for anyone whether student or not, interested in learning more about Biomedical Engineering and Health Informatics as a career choice for women. Prominent women within the domains Biomedical Engineering and Health Informatics will present their research and their humanitarian interests that motivate them. Utilise the fantastic networking opportunity that will conclude this session to build and establish new professional networks with other women interested in your fields of expertise. Bring your contact details and be ready to make new contacts that are relevant for you.
Olmedo, C; Plá, R; Bellón, J M; Bardinet, T; Buño, I; Bañares, R
2015-01-01
A Health Research Institute is a powerful strategic commitment to promote biomedical research in hospitals. To assess user satisfaction is an essential quality requirement. The aim of this study is to evaluate the professional satisfaction in a Health Research Institute, a hospital biomedical research centre par excellence. Observational study was conducted using a satisfaction questionnaire on Health Research Institute researchers. The explored dimensions were derived from the services offered by the Institute to researchers, and are structured around 4 axes of a five-year Strategic Plan. A descriptive and analytical study was performed depending on adjustment variables. Internal consistency was also calculated. The questionnaire was completed by 108 researchers (15% response). The most valued strategic aspect was the structuring Areas and Research Groups and political communication and dissemination. The overall rating was 7.25 out of 10. Suggestions for improvement refer to the need for help in recruitment, and research infrastructures. High internal consistency was found in the questionnaire (Cronbach alpha of 0.9). So far research policies in health and biomedical environment have not been sufficiently evaluated by professionals in our field. Systematic evaluations of satisfaction and expectations of key stakeholders is an essential tool for analysis, participation in continuous improvement and advancing excellence in health research. Copyright © 2015 SECA. Published by Elsevier Espana. All rights reserved.
Challenges of the biomedical engineering education in Europe.
Magjarevic, Ratko; Lackovic, Igor; Bliznakov, Zhivko; Pallikarakis, Nicolas
2010-01-01
Higher education in Europe has passed through a very dynamic period of changes during the last ten years. Since the signing of the Bologna Declaration in 1999 by the Ministers of Education from the EU states, European higher education system has aimed toward establishing harmonized programs enabling students and teachers to extensively exchange knowledge, ideas and skills. Education in the field of Biomedical Engineering has experienced changes also because of the research and development in the field which was more intensive than in other fields. Besides research in new power sources, it is the most intensive and productive research field. Much of the development in BME education in Europe is influenced by the European research policy expressed through the 7th Framework Programme where health is the major theme. In order to foster and support the changes in the European Higher Education Area (EHEA) according to the needs of research sector and the labor market, the Tempus scheme of projects was established. Tempus scheme aims to support the modernization of higher education and create an area of co-operation in the countries surrounding the EU. Our Tempus project, CRH-BME "Curricula Reformation and Harmonization in the field of Biomedical Engineering" aims to create guidelines for updating existing curricula in the field of BME in Europe in order to meet recent and future developments in the area, address new emerging interdisciplinary domains that appear as the result of the R&D progress and respond to the BME job market demands. In this paper, some policy and economic factors affecting BME education in Europe are discussed and the results of a BME education survey we prepared within the Tempus CHR-BME project are presented. The number of BME programmes in Europe has in the last decade significantly increased and there are more BME specializations as the result of growing complexity of the research and production in the field.
Additive Manufacturing of Biomedical Constructs with Biomimetic Structural Organizations.
Li, Xiao; He, Jiankang; Zhang, Weijie; Jiang, Nan; Li, Dichen
2016-11-09
Additive manufacturing (AM), sometimes called three-dimensional (3D) printing, has attracted a lot of research interest and is presenting unprecedented opportunities in biomedical fields, because this technology enables the fabrication of biomedical constructs with great freedom and in high precision. An important strategy in AM of biomedical constructs is to mimic the structural organizations of natural biological organisms. This can be done by directly depositing cells and biomaterials, depositing biomaterial structures before seeding cells, or fabricating molds before casting biomaterials and cells. This review organizes the research advances of AM-based biomimetic biomedical constructs into three major directions: 3D constructs that mimic tubular and branched networks of vasculatures; 3D constructs that contains gradient interfaces between different tissues; and 3D constructs that have different cells positioned to create multicellular systems. Other recent advances are also highlighted, regarding the applications of AM for organs-on-chips, AM-based micro/nanostructures, and functional nanomaterials. Under this theme, multiple aspects of AM including imaging/characterization, material selection, design, and printing techniques are discussed. The outlook at the end of this review points out several possible research directions for the future.
Computational approaches for predicting biomedical research collaborations.
Zhang, Qing; Yu, Hong
2014-01-01
Biomedical research is increasingly collaborative, and successful collaborations often produce high impact work. Computational approaches can be developed for automatically predicting biomedical research collaborations. Previous works of collaboration prediction mainly explored the topological structures of research collaboration networks, leaving out rich semantic information from the publications themselves. In this paper, we propose supervised machine learning approaches to predict research collaborations in the biomedical field. We explored both the semantic features extracted from author research interest profile and the author network topological features. We found that the most informative semantic features for author collaborations are related to research interest, including similarity of out-citing citations, similarity of abstracts. Of the four supervised machine learning models (naïve Bayes, naïve Bayes multinomial, SVMs, and logistic regression), the best performing model is logistic regression with an ROC ranging from 0.766 to 0.980 on different datasets. To our knowledge we are the first to study in depth how research interest and productivities can be used for collaboration prediction. Our approach is computationally efficient, scalable and yet simple to implement. The datasets of this study are available at https://github.com/qingzhanggithub/medline-collaboration-datasets.
Are Graduate Students Rational? Evidence from the Market for Biomedical Scientists
Blume-Kohout, Margaret E.; Clack, John W.
2013-01-01
The U.S. National Institutes of Health (NIH) budget expansion from 1998 through 2003 increased demand for biomedical research, raising relative wages and total employment in the market for biomedical scientists. However, because research doctorates in biomedical sciences can often take six years or more to complete, the full labor supply response to such changes in market conditions is not immediate, but rather is observed over a period of several years. Economic rational expectations models assume that prospective students anticipate these future changes, and also that students take into account the opportunity costs of their pursuing graduate training. Prior empirical research on student enrollment and degree completions in science and engineering (S&E) fields indicates that “cobweb” expectations prevail: that is, at least in theory, prospective graduate students respond to contemporaneous changes in market wages and employment, but do not forecast further changes that will arise by the time they complete their degrees and enter the labor market. In this article, we analyze time-series data on wages and employment of biomedical scientists versus alternative careers, on completions of S&E bachelor's degrees and biomedical sciences PhDs, and on research expenditures funded both by NIH and by biopharmaceutical firms, to examine the responsiveness of the biomedical sciences labor supply to changes in market conditions. Consistent with previous studies, we find that enrollments and completions in biomedical sciences PhD programs are responsive to market conditions at the time of students' enrollment. More striking, however, is the close correspondence between graduate student enrollments and completions, and changes in availability of NIH-funded traineeships, fellowships, and research assistantships. PMID:24376573
State performance in pluripotent and adult stem cell research, 2009-2016.
Surani, Sana H; Levine, Aaron D
2018-04-01
To examine how the geographic distribution of pluripotent and adult stem cell research publications within the USA differs from other areas of biomedical research. Publication count data for pluripotent stem cell research, adult stem cell research and a comparison group representative of biomedical research more broadly were collected and analyzed for each US state from 2009 to 2016. The distribution of pluripotent stem cell research differed from the other fields with overperformance in pluripotent stem cell research observed in California, as well as Wisconsin, Massachusetts, Maryland and Connecticut. Our analysis suggests that permissive state stem cell policy may be one of the several factors contributing to strong state performance in pluripotent stem cell research.
Emerging applications of nanoparticles: Biomedical and environmental
NASA Astrophysics Data System (ADS)
Gulati, Shivani; Sachdeva, M.; Bhasin, K. K.
2018-05-01
Nanotechnology finds a wide range of applications from energy production to industrial fabrication processes to biomedical applications. Nanoparticles (NPs) can be engineered to possess unique compositions and functionalities to empower novel tools and techniques that have not existed previously in biomedical research. The unique size and shape dependent physicochemical properties along with their unique spectral and optical properties have prompted the development of a wide variety of potential applications in the field of diagnostics and medicines. In the plethora of scientific and technological fields, environmental safety is also a big concern. For this purpose, nanomaterials have been functionalized to cope up the existing pollution, improving manufacturing methods to reduce the generation of new pollution, and making alternative and more cost effective energy sources.
Cadmium-containing quantum dots: properties, applications, and toxicity.
Mo, Dan; Hu, Liang; Zeng, Guangming; Chen, Guiqiu; Wan, Jia; Yu, Zhigang; Huang, Zhenzhen; He, Kai; Zhang, Chen; Cheng, Min
2017-04-01
The marriage of biology with nanomaterials has significantly accelerated advancement of biological techniques, profoundly facilitating practical applications in biomedical fields. With unique optical properties (e.g., tunable broad excitation, narrow emission spectra, robust photostability, and high quantum yield), fluorescent quantum dots (QDs) have been reasonably functionalized with controllable interfaces and extensively used as a new class of optical probe in biological researches. In this review, we summarize the recent progress in synthesis and properties of QDs. Moreover, we provide an overview of the outstanding potential of QDs for biomedical research and innovative methods of drug delivery. Specifically, the applications of QDs as novel fluorescent nanomaterials for biomedical sensing and imaging have been detailedly highlighted and discussed. In addition, recent concerns on potential toxicity of QDs are also introduced, ranging from cell researches to animal models.
Advances in Electronic-Nose Technologies Developed for Biomedical Applications
Wilson, Alphus D.; Baietto, Manuela
2011-01-01
The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry. PMID:22346620
Ethical considerations for biomedical scientists and engineers: issues for the rank and file.
Kwarteng, K B
2000-01-01
Biomedical science and engineering is inextricably linked with the fields of medicine and surgery. Yet, while physicians and surgeons, nurses, and other medical professionals receive instruction in ethics during their training and must abide by certain codes of ethics during their practice, those engaged in biomedical science and engineering typically receive no formal training in ethics. In fact, the little contact that many biomedical science and engineering professionals have with ethics occurs either when they participate in government-funded research or submit articles for publication in certain journals. Thus, there is a need for biomedical scientists and engineers as a group to become more aware of ethics. Moreover, recent advances in biomedical technology and the ever-increasing use of new devices virtually guarantee that biomedical science and engineering will become even more important in the future. Although they are rarely in direct contact with patients, biomedical scientists and engineers must become aware of ethics in order to be able to deal with the complex ethical issues that arise from our society's increasing reliance on biomedical technology. In this brief communication, the need for ethical awareness among workers in biomedical science and engineering is discussed in terms of certain conflicts that arise in the workaday world of the biomedical scientist in a complex, modern society. It is also recognized that inasmuch as workers in the many branches of bioengineering are not regulated like their counterparts in medicine and surgery, perhaps academic institutions and professional societies are best equipped to heighten ethical awareness among workers in this important field.
ERIC Educational Resources Information Center
Taviss, Irene, Ed.; Koivumaki, Judith, Ed.
A small number of books and articles devoted to the social, political, ethical, and legal implications of the biomedical field and technology have been abstracted for this document. A basic criterion for selection was the focus on questions of overall organization and public policy rather than on more specialized concerns. Topics covered include…
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Dissemination of information derived from educational research. (6) Surveys or demonstrations in the field of... for the hearing impaired. (8) Operation of language or area centers. (9) Biomedical research and support services. (10) Research surveys or demonstrations involving the training and placement of health...
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Dissemination of information derived from educational research. (6) Surveys or demonstrations in the field of... for the hearing impaired. (8) Operation of language or area centers. (9) Biomedical research and support services. (10) Research surveys or demonstrations involving the training and placement of health...
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Dissemination of information derived from educational research. (6) Surveys or demonstrations in the field of... for the hearing impaired. (8) Operation of language or area centers. (9) Biomedical research and support services. (10) Research surveys or demonstrations involving the training and placement of health...
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Dissemination of information derived from educational research. (6) Surveys or demonstrations in the field of... for the hearing impaired. (8) Operation of language or area centers. (9) Biomedical research and support services. (10) Research surveys or demonstrations involving the training and placement of health...
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Dissemination of information derived from educational research. (6) Surveys or demonstrations in the field of... for the hearing impaired. (8) Operation of language or area centers. (9) Biomedical research and support services. (10) Research surveys or demonstrations involving the training and placement of health...
Mello, Anahi Guedes de
2016-10-01
Anthropology has increasingly questioned the hegemony of biomedical knowledge in ethical review processes of social research projects prevailing in Brazil, which was governed until 2012 by the Human Research Ethics Committee of each institution under the auspices of the National Research Ethics Commission (CONEP). This was mandated through Resolution No. 196/1996 prevailing in 2012 when this field research was conducted. The scope of this study is to recount and reflect upon the barriers to obtaining approval in 2012 for my master's research project from the Human Research Ethics Committee of the Federal University of Santa Catarina (CEP/UFSC) in Florianopolis. In this ethnographic experience, in the light of Crip theory, I observed how the "disability," "vulnerability" and "inability" categories are articulated to reveal the ableism and the primacy of the biomedical model in the case of an ethics review at UFSC regarding the participation and legal capacity of persons with disabilities as subjects of research.
Simbios: an NIH national center for physics-based simulation of biological structures.
Delp, Scott L; Ku, Joy P; Pande, Vijay S; Sherman, Michael A; Altman, Russ B
2012-01-01
Physics-based simulation provides a powerful framework for understanding biological form and function. Simulations can be used by biologists to study macromolecular assemblies and by clinicians to design treatments for diseases. Simulations help biomedical researchers understand the physical constraints on biological systems as they engineer novel drugs, synthetic tissues, medical devices, and surgical interventions. Although individual biomedical investigators make outstanding contributions to physics-based simulation, the field has been fragmented. Applications are typically limited to a single physical scale, and individual investigators usually must create their own software. These conditions created a major barrier to advancing simulation capabilities. In 2004, we established a National Center for Physics-Based Simulation of Biological Structures (Simbios) to help integrate the field and accelerate biomedical research. In 6 years, Simbios has become a vibrant national center, with collaborators in 16 states and eight countries. Simbios focuses on problems at both the molecular scale and the organismal level, with a long-term goal of uniting these in accurate multiscale simulations.
Simbios: an NIH national center for physics-based simulation of biological structures
Delp, Scott L; Ku, Joy P; Pande, Vijay S; Sherman, Michael A
2011-01-01
Physics-based simulation provides a powerful framework for understanding biological form and function. Simulations can be used by biologists to study macromolecular assemblies and by clinicians to design treatments for diseases. Simulations help biomedical researchers understand the physical constraints on biological systems as they engineer novel drugs, synthetic tissues, medical devices, and surgical interventions. Although individual biomedical investigators make outstanding contributions to physics-based simulation, the field has been fragmented. Applications are typically limited to a single physical scale, and individual investigators usually must create their own software. These conditions created a major barrier to advancing simulation capabilities. In 2004, we established a National Center for Physics-Based Simulation of Biological Structures (Simbios) to help integrate the field and accelerate biomedical research. In 6 years, Simbios has become a vibrant national center, with collaborators in 16 states and eight countries. Simbios focuses on problems at both the molecular scale and the organismal level, with a long-term goal of uniting these in accurate multiscale simulations. PMID:22081222
Science communication in the field of fundamental biomedical research (editorial).
Illingworth, Sam; Prokop, Andreas
2017-10-01
The aim of this special issue on science communication is to inspire and help scientists who are taking part or want to take part in science communication and engage with the wider public, clinicians, other scientists or policy makers. For this, some articles provide concise and accessible advice to individual scientists, science networks, or learned societies on how to communicate effectively; others share rationales, objectives and aims, experiences, implementation strategies and resources derived from existing long-term science communication initiatives. Although this issue is primarily addressing scientists working in the field of biomedical research, much of it similarly applies to scientists from other disciplines. Furthermore, we hope that this issue will also be used as a helpful resource by academic science communicators and social scientists, as a collection that highlights some of the major communication challenges that the biomedical sciences face, and which provides interesting case studies of initiatives that use a breadth of strategies to address these challenges. In this editorial, we first discuss why we should communicate our science and contemplate some of the different approaches, aspirations and definitions of science communication. We then address the specific challenges that researchers in the biomedical sciences are faced with when engaging with wider audiences. Finally, we explain the rationales and contents of the different articles in this issue and the various science communication initiatives and strategies discussed in each of them, whilst also providing some information on the wide range of further science communication activities in the biomedical sciences that could not all be covered here. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Rules of good practice in the care of laboratory animals used in biomedical research.
Valanzano, Angelina
2004-01-01
In recent years, the use of laboratory animals has decreased as a result of the adoption of alternative methods such as in vitro experiments and simulation studies. Nonetheless, animal models continue to be necessary in many fields of biomedical research, giving rise to ethical issues regarding the treatment of these animals. In the present work, a general overview of the rules of good practise in caring for laboratory animals is provided, focussing on housing conditions and the proper means of handling animals, including the importance of the relationship or "bond" between the researcher and the animal.
Natural Products and HIV/AIDS.
Cary, Daniele C; Peterlin, B Matija
2018-01-01
The study of natural products in biomedical research is not a modern concept. Many of the most successful medical therapeutics are derived from natural products, including those studied in the field of HIV/AIDS. Biomedical research has a rich history of discovery based on screens of medicinal herbs and traditional medicine practices. Compounds derived from natural products, which repress HIV and those that activate latent HIV, have been reported. It is important to remember the tradition in medical research to derive therapies based on these natural products and to overcome the negative perception of natural products as an "alternative medicine."
A summary of the research program in the broad field of electronics
NASA Technical Reports Server (NTRS)
1972-01-01
Summary reports of research projects covering solid state materials, semiconductors and devices, quantum electronics, plasmas, applied electromagnetics, electrical engineering systems to include control communication, computer and power systems, biomedical engineering and mathematical biosciences.
2013-01-01
Background Professionals in the biomedical domain are confronted with an increasing mass of data. Developing methods to assist professional end users in the field of Knowledge Discovery to identify, extract, visualize and understand useful information from these huge amounts of data is a huge challenge. However, there are so many diverse methods and methodologies available, that for biomedical researchers who are inexperienced in the use of even relatively popular knowledge discovery methods, it can be very difficult to select the most appropriate method for their particular research problem. Results A web application, called KNODWAT (KNOwledge Discovery With Advanced Techniques) has been developed, using Java on Spring framework 3.1. and following a user-centered approach. The software runs on Java 1.6 and above and requires a web server such as Apache Tomcat and a database server such as the MySQL Server. For frontend functionality and styling, Twitter Bootstrap was used as well as jQuery for interactive user interface operations. Conclusions The framework presented is user-centric, highly extensible and flexible. Since it enables methods for testing using existing data to assess suitability and performance, it is especially suitable for inexperienced biomedical researchers, new to the field of knowledge discovery and data mining. For testing purposes two algorithms, CART and C4.5 were implemented using the WEKA data mining framework. PMID:23763826
Holzinger, Andreas; Zupan, Mario
2013-06-13
Professionals in the biomedical domain are confronted with an increasing mass of data. Developing methods to assist professional end users in the field of Knowledge Discovery to identify, extract, visualize and understand useful information from these huge amounts of data is a huge challenge. However, there are so many diverse methods and methodologies available, that for biomedical researchers who are inexperienced in the use of even relatively popular knowledge discovery methods, it can be very difficult to select the most appropriate method for their particular research problem. A web application, called KNODWAT (KNOwledge Discovery With Advanced Techniques) has been developed, using Java on Spring framework 3.1. and following a user-centered approach. The software runs on Java 1.6 and above and requires a web server such as Apache Tomcat and a database server such as the MySQL Server. For frontend functionality and styling, Twitter Bootstrap was used as well as jQuery for interactive user interface operations. The framework presented is user-centric, highly extensible and flexible. Since it enables methods for testing using existing data to assess suitability and performance, it is especially suitable for inexperienced biomedical researchers, new to the field of knowledge discovery and data mining. For testing purposes two algorithms, CART and C4.5 were implemented using the WEKA data mining framework.
Additive Manufacturing of Biomedical Constructs with Biomimetic Structural Organizations
Li, Xiao; He, Jiankang; Zhang, Weijie; Jiang, Nan; Li, Dichen
2016-01-01
Additive manufacturing (AM), sometimes called three-dimensional (3D) printing, has attracted a lot of research interest and is presenting unprecedented opportunities in biomedical fields, because this technology enables the fabrication of biomedical constructs with great freedom and in high precision. An important strategy in AM of biomedical constructs is to mimic the structural organizations of natural biological organisms. This can be done by directly depositing cells and biomaterials, depositing biomaterial structures before seeding cells, or fabricating molds before casting biomaterials and cells. This review organizes the research advances of AM-based biomimetic biomedical constructs into three major directions: 3D constructs that mimic tubular and branched networks of vasculatures; 3D constructs that contains gradient interfaces between different tissues; and 3D constructs that have different cells positioned to create multicellular systems. Other recent advances are also highlighted, regarding the applications of AM for organs-on-chips, AM-based micro/nanostructures, and functional nanomaterials. Under this theme, multiple aspects of AM including imaging/characterization, material selection, design, and printing techniques are discussed. The outlook at the end of this review points out several possible research directions for the future. PMID:28774030
An information technology emphasis in biomedical informatics education.
Kane, Michael D; Brewer, Jeffrey L
2007-02-01
Unprecedented growth in the interdisciplinary domain of biomedical informatics reflects the recent advancements in genomic sequence availability, high-content biotechnology screening systems, as well as the expectations of computational biology to command a leading role in drug discovery and disease characterization. These forces have moved much of life sciences research almost completely into the computational domain. Importantly, educational training in biomedical informatics has been limited to students enrolled in the life sciences curricula, yet much of the skills needed to succeed in biomedical informatics involve or augment training in information technology curricula. This manuscript describes the methods and rationale for training students enrolled in information technology curricula in the field of biomedical informatics, which augments the existing information technology curriculum and provides training on specific subjects in Biomedical Informatics not emphasized in bioinformatics courses offered in life science programs, and does not require prerequisite courses in the life sciences.
Assessment Study of an Undergraduate Research Training Abroad Program
ERIC Educational Resources Information Center
Nieto-Fernandez, Fernando; Race, Kathryn; Quarless, Duncan A.
2013-01-01
The Old Westbury Neuroscience International Research Program (OWNIP) encourages undergraduate students from health disparities populations and underrepresented minorities to pursue careers in basic science, biomedical, clinical, and behavioral health research fields. To evaluate this program, several measures were used tracked through an online…
Monsarrat, Paul; Vergnes, Jean-Noel
2018-01-01
In medicine, effect sizes (ESs) allow the effects of independent variables (including risk/protective factors or treatment interventions) on dependent variables (e.g., health outcomes) to be quantified. Given that many public health decisions and health care policies are based on ES estimates, it is important to assess how ESs are used in the biomedical literature and to investigate potential trends in their reporting over time. Through a big data approach, the text mining process automatically extracted 814 120 ESs from 13 322 754 PubMed abstracts. Eligible ESs were risk ratio, odds ratio, and hazard ratio, along with their confidence intervals. Here we show a remarkable decrease of ES values in PubMed abstracts between 1990 and 2015 while, concomitantly, results become more often statistically significant. Medians of ES values have decreased over time for both "risk" and "protective" values. This trend was found in nearly all fields of biomedical research, with the most marked downward tendency in genetics. Over the same period, the proportion of statistically significant ESs increased regularly: among the abstracts with at least 1 ES, 74% were statistically significant in 1990-1995, vs 85% in 2010-2015. whereas decreasing ESs could be an intrinsic evolution in biomedical research, the concomitant increase of statistically significant results is more intriguing. Although it is likely that growing sample sizes in biomedical research could explain these results, another explanation may lie in the "publish or perish" context of scientific research, with the probability of a growing orientation toward sensationalism in research reports. Important provisions must be made to improve the credibility of biomedical research and limit waste of resources. © The Authors 2017. Published by Oxford University Press.
Learning to Rank Figures within a Biomedical Article
Liu, Feifan; Yu, Hong
2014-01-01
Hundreds of millions of figures are available in biomedical literature, representing important biomedical experimental evidence. This ever-increasing sheer volume has made it difficult for scientists to effectively and accurately access figures of their interest, the process of which is crucial for validating research facts and for formulating or testing novel research hypotheses. Current figure search applications can't fully meet this challenge as the “bag of figures” assumption doesn't take into account the relationship among figures. In our previous study, hundreds of biomedical researchers have annotated articles in which they serve as corresponding authors. They ranked each figure in their paper based on a figure's importance at their discretion, referred to as “figure ranking”. Using this collection of annotated data, we investigated computational approaches to automatically rank figures. We exploited and extended the state-of-the-art listwise learning-to-rank algorithms and developed a new supervised-learning model BioFigRank. The cross-validation results show that BioFigRank yielded the best performance compared with other state-of-the-art computational models, and the greedy feature selection can further boost the ranking performance significantly. Furthermore, we carry out the evaluation by comparing BioFigRank with three-level competitive domain-specific human experts: (1) First Author, (2) Non-Author-In-Domain-Expert who is not the author nor co-author of an article but who works in the same field of the corresponding author of the article, and (3) Non-Author-Out-Domain-Expert who is not the author nor co-author of an article and who may or may not work in the same field of the corresponding author of an article. Our results show that BioFigRank outperforms Non-Author-Out-Domain-Expert and performs as well as Non-Author-In-Domain-Expert. Although BioFigRank underperforms First Author, since most biomedical researchers are either in- or out-domain-experts for an article, we conclude that BioFigRank represents an artificial intelligence system that offers expert-level intelligence to help biomedical researchers to navigate increasingly proliferated big data efficiently. PMID:24625719
Learning to rank figures within a biomedical article.
Liu, Feifan; Yu, Hong
2014-01-01
Hundreds of millions of figures are available in biomedical literature, representing important biomedical experimental evidence. This ever-increasing sheer volume has made it difficult for scientists to effectively and accurately access figures of their interest, the process of which is crucial for validating research facts and for formulating or testing novel research hypotheses. Current figure search applications can't fully meet this challenge as the "bag of figures" assumption doesn't take into account the relationship among figures. In our previous study, hundreds of biomedical researchers have annotated articles in which they serve as corresponding authors. They ranked each figure in their paper based on a figure's importance at their discretion, referred to as "figure ranking". Using this collection of annotated data, we investigated computational approaches to automatically rank figures. We exploited and extended the state-of-the-art listwise learning-to-rank algorithms and developed a new supervised-learning model BioFigRank. The cross-validation results show that BioFigRank yielded the best performance compared with other state-of-the-art computational models, and the greedy feature selection can further boost the ranking performance significantly. Furthermore, we carry out the evaluation by comparing BioFigRank with three-level competitive domain-specific human experts: (1) First Author, (2) Non-Author-In-Domain-Expert who is not the author nor co-author of an article but who works in the same field of the corresponding author of the article, and (3) Non-Author-Out-Domain-Expert who is not the author nor co-author of an article and who may or may not work in the same field of the corresponding author of an article. Our results show that BioFigRank outperforms Non-Author-Out-Domain-Expert and performs as well as Non-Author-In-Domain-Expert. Although BioFigRank underperforms First Author, since most biomedical researchers are either in- or out-domain-experts for an article, we conclude that BioFigRank represents an artificial intelligence system that offers expert-level intelligence to help biomedical researchers to navigate increasingly proliferated big data efficiently.
Deacon, Brett J
2013-11-01
The biomedical model posits that mental disorders are brain diseases and emphasizes pharmacological treatment to target presumed biological abnormalities. A biologically-focused approach to science, policy, and practice has dominated the American healthcare system for more than three decades. During this time, the use of psychiatric medications has sharply increased and mental disorders have become commonly regarded as brain diseases caused by chemical imbalances that are corrected with disease-specific drugs. However, despite widespread faith in the potential of neuroscience to revolutionize mental health practice, the biomedical model era has been characterized by a broad lack of clinical innovation and poor mental health outcomes. In addition, the biomedical paradigm has profoundly affected clinical psychology via the adoption of drug trial methodology in psychotherapy research. Although this approach has spurred the development of empirically supported psychological treatments for numerous mental disorders, it has neglected treatment process, inhibited treatment innovation and dissemination, and divided the field along scientist and practitioner lines. The neglected biopsychosocial model represents an appealing alternative to the biomedical approach, and an honest and public dialog about the validity and utility of the biomedical paradigm is urgently needed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Synthetic Plasma Liquid Based Electronic Circuits Realization-A Novel Concept.
Pandya, Killol V; Kosta, ShivPrasad
2016-09-01
Biomedical research is contributing significant role in the field of biomedical engineering and applied science. It brings research and innovations to a different level. This study investigated artificial human blood -synthetic plasma liquid as conductive medium. Keeping in mind the conductivity of synthetic plasma, astable multivibrator as well as differential amplifier circuit were demonstrated. The circuits were given normal input voltages at regular temperature and ideal conditions. The result shows desired response which supports the novel concept. For both the circuits, phase shift of 180° achieved by analysing biological electronic circuits.
Chesler, Naomi C; Barabino, Gilda; Bhatia, Sangeeta N; Richards-Kortum, Rebecca
2010-05-01
While the percentage of women in biomedical engineering is higher than in many other technical fields, it is far from being in proportion to the US population. The decrease in the proportion of women and underrepresented minorities in biomedical engineering from the bachelors to the masters to the doctoral levels is evidence of a still leaky pipeline in our discipline. In addition, the percentage of women faculty members at the assistant, associate and full professor levels remain disappointingly low even after years of improved recruitment of women into biomedical engineering at the undergraduate level. Worse, the percentage of women graduating with undergraduate degrees in biomedical engineering has been decreasing nationwide for the most recent three year span for which national data are available. Increasing diversity in biomedical engineering is predicted to have significant research and educational benefits. The barriers to women's success in biomedical engineering and strategies for overcoming these obstacles-and fixing the leaks in the pipeline-are reviewed.
TU-F-BRD-01: Biomedical Informatics for Medical Physicists
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, M; Kalet, I; McNutt, T
Biomedical informatics encompasses a very large domain of knowledge and applications. This broad and loosely defined field can make it difficult to navigate. Physicists often are called upon to provide informatics services and/or to take part in projects involving principles of the field. The purpose of the presentations in this symposium is to help medical physicists gain some knowledge about the breadth of the field and how, in the current clinical and research environment, they can participate and contribute. Three talks have been designed to give an overview from the perspective of physicists and to provide a more in-depth discussionmore » in two areas. One of the primary purposes, and the main subject of the first talk, is to help physicists achieve a perspective about the range of the topics and concepts that fall under the heading of 'informatics'. The approach is to de-mystify topics and jargon and to help physicists find resources in the field should they need them. The other talks explore two areas of biomedical informatics in more depth. The goal is to highlight two domains of intense current interest--databases and models--in enough depth into current approaches so that an adequate background for independent inquiry is achieved. These two areas will serve as good examples of how physicists, using informatics principles, can contribute to oncology practice and research. Learning Objectives: To understand how the principles of biomedical informatics are used by medical physicists. To put the relevant informatics concepts in perspective with regard to biomedicine in general. To use clinical database design as an example of biomedical informatics. To provide a solid background into the problems and issues of the design and use of data and databases in radiation oncology. To use modeling in the service of decision support systems as an example of modeling methods and data use. To provide a background into how uncertainty in our data and knowledge can be incorporated into modeling methods.« less
Enhancing Graduate and Postdoctoral Education To Create a Sustainable Biomedical Workforce
Fuhrmann, Cynthia N.
2016-01-01
PhD-trained biomedical scientists are moving into an increasingly diverse variety of careers within the sciences. However, graduate and postdoctoral training programs have historically focused on academic career preparation, and have not sufficiently prepared trainees for transitioning into other scientific careers. Advocates for science have raised the concern that the collective disregard of the broader career-development needs for predoctoral and postdoctoral trainees could drive talent away from science in upcoming generations. A shift is occurring, wherein universities are increasingly investing in centralized career development programs to address this need. In this Perspective, I reflect on the movement that brought biomedical PhD career development to the spotlight in recent years, and how this movement has influenced both the academic biomedical community and the field of career development. I offer recommendations for universities looking to establish or strengthen their career development programs, including recommendations for how to develop a campus culture that values career development as part of pre- and postdoctoral training. I also suggest steps that faculty might take to facilitate the career development of their mentees, regardless of the mentee's career aspirations. Finally, I reflect on recent national efforts to incentivize innovation, evaluation, and research in the field of biomedical PhD career development, and propose actions that the scientific community can take to support biomedical career development further as a scholarly discipline. These investments will enable new approaches to be rigorously tested and efficiently disseminated to support this rapidly growing field. Ultimately, strengthening biomedical career development will be essential for attracting the best talent to science and helping them efficiently move into careers that will sustain our nation's scientific enterprise. PMID:27762630
Enhancing Graduate and Postdoctoral Education To Create a Sustainable Biomedical Workforce.
Fuhrmann, Cynthia N
2016-11-01
PhD-trained biomedical scientists are moving into an increasingly diverse variety of careers within the sciences. However, graduate and postdoctoral training programs have historically focused on academic career preparation, and have not sufficiently prepared trainees for transitioning into other scientific careers. Advocates for science have raised the concern that the collective disregard of the broader career-development needs for predoctoral and postdoctoral trainees could drive talent away from science in upcoming generations. A shift is occurring, wherein universities are increasingly investing in centralized career development programs to address this need. In this Perspective, I reflect on the movement that brought biomedical PhD career development to the spotlight in recent years, and how this movement has influenced both the academic biomedical community and the field of career development. I offer recommendations for universities looking to establish or strengthen their career development programs, including recommendations for how to develop a campus culture that values career development as part of pre- and postdoctoral training. I also suggest steps that faculty might take to facilitate the career development of their mentees, regardless of the mentee's career aspirations. Finally, I reflect on recent national efforts to incentivize innovation, evaluation, and research in the field of biomedical PhD career development, and propose actions that the scientific community can take to support biomedical career development further as a scholarly discipline. These investments will enable new approaches to be rigorously tested and efficiently disseminated to support this rapidly growing field. Ultimately, strengthening biomedical career development will be essential for attracting the best talent to science and helping them efficiently move into careers that will sustain our nation's scientific enterprise.
Genetically engineered livestock for biomedical models.
Rogers, Christopher S
2016-06-01
To commemorate Transgenic Animal Research Conference X, this review summarizes the recent progress in developing genetically engineered livestock species as biomedical models. The first of these conferences was held in 1997, which turned out to be a watershed year for the field, with two significant events occurring. One was the publication of the first transgenic livestock animal disease model, a pig with retinitis pigmentosa. Before that, the use of livestock species in biomedical research had been limited to wild-type animals or disease models that had been induced or were naturally occurring. The second event was the report of Dolly, a cloned sheep produced by somatic cell nuclear transfer. Cloning subsequently became an essential part of the process for most of the models developed in the last 18 years and is stilled used prominently today. This review is intended to highlight the biomedical modeling achievements that followed those key events, many of which were first reported at one of the previous nine Transgenic Animal Research Conferences. Also discussed are the practical challenges of utilizing livestock disease models now that the technical hurdles of model development have been largely overcome.
[Open access :an opportunity for biomedical research].
Duchange, Nathalie; Autard, Delphine; Pinhas, Nicole
2008-01-01
Open access within the scientific community depends on the scientific context and the practices of the field. In the biomedical domain, the communication of research results is characterised by the importance of the peer reviewing process, the existence of a hierarchy among journals and the transfer of copyright to the editor. Biomedical publishing has become a lucrative market and the growth of electronic journals has not helped lower the costs. Indeed, it is difficult for today's public institutions to gain access to all the scientific literature. Open access is thus imperative, as demonstrated through the positions taken by a growing number of research funding bodies, the development of open access journals and efforts made in promoting open archives. This article describes the setting up of an Inserm portal for publication in the context of the French national protocol for open-access self-archiving and in an international context.
Reprint 1987: Research Administration in a Time of Change
ERIC Educational Resources Information Center
Brandt, Edward N.
2017-01-01
The field of biomedical research has undergone several changes in recent years. These include increased funding, the rapid development in scientific knowledge which speeds up the obsolescence of equipment, facilities and knowledge and the growing complexity of scientific problems. Research administrators can take steps to address these changes…
Metabolomics and Epidemiology Working Group
The Metabolomics and Epidemiology (MetEpi) Working Group promotes metabolomics analyses in population-based studies, as well as advancement in the field of metabolomics for broader biomedical and public health research.
Application of text mining in the biomedical domain.
Fleuren, Wilco W M; Alkema, Wynand
2015-03-01
In recent years the amount of experimental data that is produced in biomedical research and the number of papers that are being published in this field have grown rapidly. In order to keep up to date with developments in their field of interest and to interpret the outcome of experiments in light of all available literature, researchers turn more and more to the use of automated literature mining. As a consequence, text mining tools have evolved considerably in number and quality and nowadays can be used to address a variety of research questions ranging from de novo drug target discovery to enhanced biological interpretation of the results from high throughput experiments. In this paper we introduce the most important techniques that are used for a text mining and give an overview of the text mining tools that are currently being used and the type of problems they are typically applied for. Copyright © 2015 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Gilliland, C. Taylor; Sittampalam, G. Sitta; Wang, Philip Y.; Ryan, Philip E.
2017-01-01
Translational science is an emerging field that holds great promise to accelerate the development of novel medical interventions. As the field grows, so does the demand for highly trained biomedical scientists to fill the positions that are being created. Many graduate and postdoctorate training programs do not provide their trainees with…
Labib, Gihan
2018-01-01
Natural pharmaceutical excipients have been applied extensively in the past decades owing to their safety and biocompatibility. Zein, a natural protein of plant origin offers great benefit over other synthetic polymers used in controlled drug and biomedical delivery systems. It was used in a variety of medical fields including pharmaceutical and biomedical drug targeting, vaccine, tissue engineering, and gene delivery. Being biodegradable and biocompatible, the current review focuses on the history and the medical application of zein as an attractive still promising biopolymer. Areas covered: The current review gives a broadscope on zein as a still promising protein excipient in different fields. Zein- based drug and biomedical delivery systems are discussed with special focus on current and potential application in controlled drug delivery systems, and tissue engineering. Expert opinion: Zein as a protein of natural origin can still be considered a promising polymer in the field of drug delivery systems as well as in tissue engineering. Although different researchers spotted light on zein application in different industrial fields extensively, the feasibility of its use in the field of drug delivery replenished by investigators in recent years has not yet been fully approached.
Recent trends in the U.S. Behavioral and Social Sciences Research (BSSR) workforce
2017-01-01
While behavioral and social sciences occupations comprise one of the largest portions of the “STEM” workforce, most studies of diversity in STEM overlook this population, focusing instead on fields such as biomedical or physical sciences. This study evaluates major demographic trends and productivity in the behavioral and social sciences research (BSSR) workforce in the United States during the past decade. Our analysis shows that the demographic trends for different BSSR fields vary. In terms of gender balance, there is no single trend across all BSSR fields; rather, the problems are field-specific, and disciplines such as economics and political science continue to have more men than women. We also show that all BSSR fields suffer from a lack of racial and ethnic diversity. The BSSR workforce is, in fact, less representative of racial and ethnic minorities than are biomedical sciences or engineering. Moreover, in many BSSR subfields, minorities are less likely to receive funding. We point to various funding distribution patterns across different demographic groups of BSSR scientists, and discuss several policy implications. PMID:28166252
Recent trends in the U.S. Behavioral and Social Sciences Research (BSSR) workforce.
Hur, Hyungjo; Andalib, Maryam A; Maurer, Julie A; Hawley, Joshua D; Ghaffarzadegan, Navid
2017-01-01
While behavioral and social sciences occupations comprise one of the largest portions of the "STEM" workforce, most studies of diversity in STEM overlook this population, focusing instead on fields such as biomedical or physical sciences. This study evaluates major demographic trends and productivity in the behavioral and social sciences research (BSSR) workforce in the United States during the past decade. Our analysis shows that the demographic trends for different BSSR fields vary. In terms of gender balance, there is no single trend across all BSSR fields; rather, the problems are field-specific, and disciplines such as economics and political science continue to have more men than women. We also show that all BSSR fields suffer from a lack of racial and ethnic diversity. The BSSR workforce is, in fact, less representative of racial and ethnic minorities than are biomedical sciences or engineering. Moreover, in many BSSR subfields, minorities are less likely to receive funding. We point to various funding distribution patterns across different demographic groups of BSSR scientists, and discuss several policy implications.
McGee, Richard
2016-09-01
Like all biomedical research fields, AIDS research needs the broadest diversity of experiences and perspectives among researchers in the field if creative advancements are to be achieved. Mentors and mentoring are the most important vehicles by which the talents of young scientists are developed. However, mentoring as a teaching and learning paradigm is very complex and idiosyncratic, and often inadvertently fails to provide the same quality and quantity of opportunity to aspiring scientists who are 'different' from those doing the mentoring. This article provides a theoretical and practical framework for understanding how differences of race, ethnicity, gender, skin color, social status and other identifiable characteristics can play into scientific development during mentoring 'within the pipeline'. It also serves as a foundation upon which mentoring in AIDS is considered by subsequent papers in this series. Finally, it goes beyond mentoring to propose systematic coaching as an effective complement to research mentoring to promote success, especially for individuals from underrepresented groups.
McGee, Richard
2016-01-01
Like all biomedical research fields, AIDS research needs the broadest diversity of experiences and perspectives among researchers in the field if creative advancements are to be achieved. Mentors and mentoring are the most important vehicles by which the talents of young scientists are developed. However, mentoring as a teaching and learning paradigm is very complex and idiosyncratic, and often inadvertently fails to provide the same quality and quantity of opportunity to aspiring scientists who are ‘different’ from those doing the mentoring. This article provides a theoretical and practical framework for understanding how differences of race, ethnicity, gender, skin color, social status and other identifiable characteristics can play into scientific development during mentoring ‘within the pipeline’. It also serves as a foundation upon which mentoring in AIDS is considered by subsequent papers in this series. Finally, it goes beyond mentoring to propose systematic coaching as an effective complement to research mentoring to promote success, especially for individuals from underrepresented groups. PMID:27424004
Biomedical text mining and its applications in cancer research.
Zhu, Fei; Patumcharoenpol, Preecha; Zhang, Cheng; Yang, Yang; Chan, Jonathan; Meechai, Asawin; Vongsangnak, Wanwipa; Shen, Bairong
2013-04-01
Cancer is a malignant disease that has caused millions of human deaths. Its study has a long history of well over 100years. There have been an enormous number of publications on cancer research. This integrated but unstructured biomedical text is of great value for cancer diagnostics, treatment, and prevention. The immense body and rapid growth of biomedical text on cancer has led to the appearance of a large number of text mining techniques aimed at extracting novel knowledge from scientific text. Biomedical text mining on cancer research is computationally automatic and high-throughput in nature. However, it is error-prone due to the complexity of natural language processing. In this review, we introduce the basic concepts underlying text mining and examine some frequently used algorithms, tools, and data sets, as well as assessing how much these algorithms have been utilized. We then discuss the current state-of-the-art text mining applications in cancer research and we also provide some resources for cancer text mining. With the development of systems biology, researchers tend to understand complex biomedical systems from a systems biology viewpoint. Thus, the full utilization of text mining to facilitate cancer systems biology research is fast becoming a major concern. To address this issue, we describe the general workflow of text mining in cancer systems biology and each phase of the workflow. We hope that this review can (i) provide a useful overview of the current work of this field; (ii) help researchers to choose text mining tools and datasets; and (iii) highlight how to apply text mining to assist cancer systems biology research. Copyright © 2012 Elsevier Inc. All rights reserved.
Kulikowski, Casimir A; Shortliffe, Edward H; Currie, Leanne M; Elkin, Peter L; Hunter, Lawrence E; Johnson, Todd R; Kalet, Ira J; Lenert, Leslie A; Musen, Mark A; Ozbolt, Judy G; Smith, Jack W; Tarczy-Hornoch, Peter Z
2012-01-01
The AMIA biomedical informatics (BMI) core competencies have been designed to support and guide graduate education in BMI, the core scientific discipline underlying the breadth of the field's research, practice, and education. The core definition of BMI adopted by AMIA specifies that BMI is ‘the interdisciplinary field that studies and pursues the effective uses of biomedical data, information, and knowledge for scientific inquiry, problem solving and decision making, motivated by efforts to improve human health.’ Application areas range from bioinformatics to clinical and public health informatics and span the spectrum from the molecular to population levels of health and biomedicine. The shared core informatics competencies of BMI draw on the practical experience of many specific informatics sub-disciplines. The AMIA BMI analysis highlights the central shared set of competencies that should guide curriculum design and that graduate students should be expected to master. PMID:22683918
Hussein, R; Khalifa, A
2011-01-01
During the last decade, Egypt has experienced a revolution in the field of Information and Communication Technology (ICT) that has had a corresponding impact on the field of healthcare. Since 1993, the Information Technology Institute (ITI) has been leading the development of the Information Technology (IT) professional training and education in Egypt to produce top quality IT professionals who are considered now the backbone of the IT revolution in Egypt. For the past five years, ITI has been adopting the objective of building high caliber health professionals who can effectively serve the ever-growing information society. Academic links have been established with internationally renowned universities, e.g., Oregon Health and Science University (OHSU) in US, University of Leipzig in Germany, in addition those with the Egyptian Fellowship Board in order to enrich ITI Medical Informatics Education and Research. The ITI Biomedical and Health Informatics (BMHI) education and training programs target fresh graduates as well as life-long learners. Therefore, the program's learning objectives are framed within the context of the four specialization tracks: Healthcare Management (HCM), Biomedical Informatics Research (BMIR), Bioinformatics Professional (BIP), and Healthcare Professional (HCP). The ITI BMHI research projects tackle a wide-range of current challenges in this field, such as knowledge management in healthcare, providing tele-consultation services for diagnosis and treatment of infectious diseases for underserved regions in Egypt, and exploring the cultural and educational aspects of Nanoinformatics. Since 2006, ITI has been positively contributing to develop the discipline of BMHI in Egypt in order to support improved healthcare services.
Text mining for traditional Chinese medical knowledge discovery: a survey.
Zhou, Xuezhong; Peng, Yonghong; Liu, Baoyan
2010-08-01
Extracting meaningful information and knowledge from free text is the subject of considerable research interest in the machine learning and data mining fields. Text data mining (or text mining) has become one of the most active research sub-fields in data mining. Significant developments in the area of biomedical text mining during the past years have demonstrated its great promise for supporting scientists in developing novel hypotheses and new knowledge from the biomedical literature. Traditional Chinese medicine (TCM) provides a distinct methodology with which to view human life. It is one of the most complete and distinguished traditional medicines with a history of several thousand years of studying and practicing the diagnosis and treatment of human disease. It has been shown that the TCM knowledge obtained from clinical practice has become a significant complementary source of information for modern biomedical sciences. TCM literature obtained from the historical period and from modern clinical studies has recently been transformed into digital data in the form of relational databases or text documents, which provide an effective platform for information sharing and retrieval. This motivates and facilitates research and development into knowledge discovery approaches and to modernize TCM. In order to contribute to this still growing field, this paper presents (1) a comparative introduction to TCM and modern biomedicine, (2) a survey of the related information sources of TCM, (3) a review and discussion of the state of the art and the development of text mining techniques with applications to TCM, (4) a discussion of the research issues around TCM text mining and its future directions. Copyright 2010 Elsevier Inc. All rights reserved.
Glycan Arrays: From Basic Biochemical Research to Bioanalytical and Biomedical Applications
NASA Astrophysics Data System (ADS)
Geissner, Andreas; Seeberger, Peter H.
2016-06-01
A major branch of glycobiology and glycan-focused biomedicine studies the interaction between carbohydrates and other biopolymers, most importantly, glycan-binding proteins. Today, this research into glycan-biopolymer interaction is unthinkable without glycan arrays, tools that enable high-throughput analysis of carbohydrate interaction partners. Glycan arrays offer many applications in basic biochemical research, for example, defining the specificity of glycosyltransferases and lectins such as immune receptors. Biomedical applications include the characterization and surveillance of influenza strains, identification of biomarkers for cancer and infection, and profiling of immune responses to vaccines. Here, we review major applications of glycan arrays both in basic and applied research. Given the dynamic nature of this rapidly developing field, we focus on recent findings.
3D printed microfluidics for biological applications.
Ho, Chee Meng Benjamin; Ng, Sum Huan; Li, King Ho Holden; Yoon, Yong-Jin
2015-01-01
The term "Lab-on-a-Chip," is synonymous with describing microfluidic devices with biomedical applications. Even though microfluidics have been developing rapidly over the past decade, the uptake rate in biological research has been slow. This could be due to the tedious process of fabricating a chip and the absence of a "killer application" that would outperform existing traditional methods. In recent years, three dimensional (3D) printing has been drawing much interest from the research community. It has the ability to make complex structures with high resolution. Moreover, the fast building time and ease of learning has simplified the fabrication process of microfluidic devices to a single step. This could possibly aid the field of microfluidics in finding its "killer application" that will lead to its acceptance by researchers, especially in the biomedical field. In this paper, a review is carried out of how 3D printing helps to improve the fabrication of microfluidic devices, the 3D printing technologies currently used for fabrication and the future of 3D printing in the field of microfluidics.
Usage of insecure E-mail services among researchers with different scientific background.
Solić, Kresimir; Grgić, Krešimir; Ilakovac, Vesna; Zagar, Drago
2011-08-01
Free web‑based e-mail services are considered to have more security flaws than institutional ones, but they are frequently used among scientific researchers for professional communication. The aim of this study was to analyze frequency of usage of the insecure free e-mail services for professional communication among biomedical, economical and technical researchers, who published papers in one of three different journals: Croatian Medical Journal, Automatika and Economic Research. Contact details of the authors who provided their e‑mail address from the papers published in those three journals during one year period were collected. These e‑mail addresses were collected from the electronic archive of the journals in question. The domains of all e‑mail addresses were assessed and contacts were categorized into three groups according to the following types: world-wide known free web‑based e‑mail services, national Internet Service Provider (ISP) e-mail services, and institutional or corporate e-mail addresses. The proportion of authors using free web-based e-mail services, the least secure group type, was highest among biomedical researchers (17.8%) while every e‑mail address collected from the technical journal belonged to the secured institutional e‑mail group type. It seems that all researchers from the technical scientific field and most of the researchers from the economical field value good security practice and use more secure systems for professional communication. High percentage of the biomedical researchers who use insecure e‑mail services may mean that they need to be warned of the possible security disadvantages of those kinds of e‑mail addresses.
Introducing Theranostics Journal - From the Editor-in-Chief
Chen, Xiaoyuan (Shawn)
2011-01-01
Theranostics is a multidisciplinary journal that publishes innovative and original research papers reflecting the field of molecular imaging, molecular therapeutics, multifunctional nanoparticle platforms, image-guided therapy, and translational nanomedicine. A broad spectrum of biomedical research that can be applied to future theranostic applications is encouraged. PMID:21547150
Integrated interdisciplinary training in the radiological sciences.
Brenner, D J; Vazquez, M; Buonanno, M; Amundson, S A; Bigelow, A W; Garty, G; Harken, A D; Hei, T K; Marino, S A; Ponnaiya, B; Randers-Pehrson, G; Xu, Y
2014-02-01
The radiation sciences are increasingly interdisciplinary, both from the research and the clinical perspectives. Beyond clinical and research issues, there are very real issues of communication between scientists from different disciplines. It follows that there is an increasing need for interdisciplinary training courses in the radiological sciences. Training courses are common in biomedical academic and clinical environments, but are typically targeted to scientists in specific technical fields. In the era of multidisciplinary biomedical science, there is a need for highly integrated multidisciplinary training courses that are designed for, and are useful to, scientists who are from a mix of very different academic fields and backgrounds. We briefly describe our experiences running such an integrated training course for researchers in the field of biomedical radiation microbeams, and draw some conclusions about how such interdisciplinary training courses can best function. These conclusions should be applicable to many other areas of the radiological sciences. In summary, we found that it is highly beneficial to keep the scientists from the different disciplines together. In practice, this means not segregating the training course into sections specifically for biologists and sections specifically for physicists and engineers, but rather keeping the students together to attend the same lectures and hands-on studies throughout the course. This structure added value to the learning experience not only in terms of the cross fertilization of information and ideas between scientists from the different disciplines, but also in terms of reinforcing some basic concepts for scientists in their own discipline.
Dispersed publication of editorial research.
Rosenberg, Jacob; Pommergaard, Hans-Christian; Vinther, Siri; Burcharth, Jakob
2015-02-01
There seems to be no dedicated journals available for publication of editorial research in the biomedical sciences; that is research into editorial or publication process issues involving the scientific approach to writing, reviewing, editing and publishing. It is unknown where papers concerning these issues are typically published. We therefore set out to study the distribution of such papers in the biomedical literature. In this pilot study, we conducted a MEDLINE search for papers on editorial research published in the year 2012. We found 445 articles published in 311 journals with a median of one article per journal (range: 1-17). The publication of papers on editorial research seems to be dispersed. In order to increase the visibility of this research field, it may be reasonable to establish well-defined platforms such as dedicated journals or journal sections in which such research could preferably be published.
CRISPR editing in biological and biomedical investigation.
Huang, Jiaojiao; Wang, Yanfang; Zhao, Jianguo
2018-05-01
Recently, clustered regularly interspaced short palindromic repeats (CRISPR) based genomic editing technologies have armed researchers with powerful new tools to biological and biomedical investigations. To further improve and expand its functionality, natural, and engineered CRISPR associated nine proteins (Cas9s) have been investigated, various CRISPR delivery strategies have been tested and optimized, and multiple schemes have been developed to ensure precise mammalian genome editing. Benefiting from those in-depth understanding and further development of CRISPR, versatile CRISPR-based platforms for genome editing have been rapidly developed to advance investigations in biology and biomedicine. In biological research area, CRISPR has been widely adopted in both fundamental and applied research fields, such as accurate base editing, transcriptional regulation, and genome-wide screening. In biomedical research area, CRISPR has also shown its extensive applicability in the establishment of animal models for genetic disorders especially those large animals and non-human primates models, and gene therapy to combat virus infectious diseases, to correct monogenic disorders in vivo or in pluripotent cells. In this prospect article, after highlighting recent developments of CRISPR systems, we outline different applications and current limitations of CRISPR use in biological and biomedical investigation. Finally, we provide a perspective for future development and potential risks of this multifunctional technology. © 2017 Wiley Periodicals, Inc.
Nanotubular surface modification of metallic implants via electrochemical anodization technique.
Wang, Lu-Ning; Jin, Ming; Zheng, Yudong; Guan, Yueping; Lu, Xin; Luo, Jing-Li
2014-01-01
Due to increased awareness and interest in the biomedical implant field as a result of an aging population, research in the field of implantable devices has grown rapidly in the last few decades. Among the biomedical implants, metallic implant materials have been widely used to replace disordered bony tissues in orthopedic and orthodontic surgeries. The clinical success of implants is closely related to their early osseointegration (ie, the direct structural and functional connection between living bone and the surface of a load-bearing artificial implant), which relies heavily on the surface condition of the implant. Electrochemical techniques for modifying biomedical implants are relatively simple, cost-effective, and appropriate for implants with complex shapes. Recently, metal oxide nanotubular arrays via electrochemical anodization have become an attractive technique to build up on metallic implants to enhance the biocompatibility and bioactivity. This article will thoroughly review the relevance of electrochemical anodization techniques for the modification of metallic implant surfaces in nanoscale, and cover the electrochemical anodization techniques used in the development of the types of nanotubular/nanoporous modification achievable via electrochemical approaches, which hold tremendous potential for bio-implant applications. In vitro and in vivo studies using metallic oxide nanotubes are also presented, revealing the potential of nanotubes in biomedical applications. Finally, an outlook of future growth of research in metallic oxide nanotubular arrays is provided. This article will therefore provide researchers with an in-depth understanding of electrochemical anodization modification and provide guidance regarding the design and tuning of new materials to achieve a desired performance and reliable biocompatibility.
Nanotubular surface modification of metallic implants via electrochemical anodization technique
Wang, Lu-Ning; Jin, Ming; Zheng, Yudong; Guan, Yueping; Lu, Xin; Luo, Jing-Li
2014-01-01
Due to increased awareness and interest in the biomedical implant field as a result of an aging population, research in the field of implantable devices has grown rapidly in the last few decades. Among the biomedical implants, metallic implant materials have been widely used to replace disordered bony tissues in orthopedic and orthodontic surgeries. The clinical success of implants is closely related to their early osseointegration (ie, the direct structural and functional connection between living bone and the surface of a load-bearing artificial implant), which relies heavily on the surface condition of the implant. Electrochemical techniques for modifying biomedical implants are relatively simple, cost-effective, and appropriate for implants with complex shapes. Recently, metal oxide nanotubular arrays via electrochemical anodization have become an attractive technique to build up on metallic implants to enhance the biocompatibility and bioactivity. This article will thoroughly review the relevance of electrochemical anodization techniques for the modification of metallic implant surfaces in nanoscale, and cover the electrochemical anodization techniques used in the development of the types of nanotubular/nanoporous modification achievable via electrochemical approaches, which hold tremendous potential for bio-implant applications. In vitro and in vivo studies using metallic oxide nanotubes are also presented, revealing the potential of nanotubes in biomedical applications. Finally, an outlook of future growth of research in metallic oxide nanotubular arrays is provided. This article will therefore provide researchers with an in-depth understanding of electrochemical anodization modification and provide guidance regarding the design and tuning of new materials to achieve a desired performance and reliable biocompatibility. PMID:25258532
Practical methods for generating alternating magnetic fields for biomedical research
NASA Astrophysics Data System (ADS)
Christiansen, Michael G.; Howe, Christina M.; Bono, David C.; Perreault, David J.; Anikeeva, Polina
2017-08-01
Alternating magnetic fields (AMFs) cause magnetic nanoparticles (MNPs) to dissipate heat while leaving surrounding tissue unharmed, a mechanism that serves as the basis for a variety of emerging biomedical technologies. Unfortunately, the challenges and costs of developing experimental setups commonly used to produce AMFs with suitable field amplitudes and frequencies present a barrier to researchers. This paper first presents a simple, cost-effective, and robust alternative for small AMF working volumes that uses soft ferromagnetic cores to focus the flux into a gap. As the experimental length scale increases to accommodate animal models (working volumes of 100s of cm3 or greater), poor thermal conductivity and volumetrically scaled core losses render that strategy ineffective. Comparatively feasible strategies for these larger volumes instead use low loss resonant tank circuits to generate circulating currents of 1 kA or greater in order to produce the comparable field amplitudes. These principles can be extended to the problem of identifying practical routes for scaling AMF setups to humans, an infrequently acknowledged challenge that influences the extent to which many applications of MNPs may ever become clinically relevant.
Nanomaterials and nanofabrication for biomedical applications
NASA Astrophysics Data System (ADS)
Cheng, Chao-Min; Chia-Wen Wu, Kevin
2013-08-01
Traditional boundaries between materials science and engineering and life sciences are rapidly disintegrating as interdisciplinary research teams develop new materials-science-based tools for exploring fundamental issues in both medicine and biology. With recent technological advances in multiple research fields such as materials science, cell and molecular biology and micro-/nano-technology, much attention is shifting toward evaluating the functional advantages of nanomaterials and nanofabrication, at the cellular and molecular levels, for specific, biomedically relevant applications. The pursuit of this direction enhances the understanding of the mechanisms of, and therapeutic potentials for, some of the most lethal diseases, including cardiovascular diseases, organ fibrosis and cancers. This interdisciplinary approach has generated great interest among researchers working in a wide variety of communities including industry, universities and research laboratories. The purpose of this focus issue in Science and Technology of Advanced Materials is to bridge nanotechnology and biology with medicine, focusing more on the applications of nanomaterials and nanofabrication in biomedically relevant issues. This focus issue, we believe, will provide a more comprehensive understanding of (i) the preparation of nanomaterials and the underlying mechanisms of nanofabrication, and (ii) the linkage of nanomaterials and nanofabrication with biomedical applications. The multidisciplinary focus issue that we have attempted to organize is of interest to various research fields including biomaterials and tissue engineering, bioengineering, nanotechnology and nanomaterials, i.e. chemistry, physics and engineering. Nanomaterials and nanofabrication topics addressed in this focus issue include sensing and diagnosis (e.g. immunosensing and diagnostic devices for diseases), cellular and molecular biology (e.g. probing cellular behaviors and stem cell differentiation) and drug delivery carriers (e.g. polymers, gold nanoparticles, Prussian blue nanoparticles, mesoporous silica nanoparticles and carbon-based nanomaterials). Here, we would like to show our deep appreciation to all authors and reviewers. Without their great help and contributions, this focus issue, including the review and original papers, would not have been published on schedule. This focus issue may not cover all issues in this emerging scientific field; however, we believe that our efforts have great potential 'to hurl a boulder to draw a jade' and ignite innovation and challenging discussion in the relevant scientific communities.
Schwanke, J; Rienhoff, O; Schulze, T G; Nussbeck, S Y
2013-01-01
Longitudinal biomedical research projects study patients or participants over a course of time. No IT solution is known that can manage study participants, enhance quality of data, support re-contacting of participants, plan study visits, and keep track of informed consent procedures and recruitments that may be subject to change over time. In business settings management of personal is one of the major aspects of customer relationship management systems (CRMS). To evaluate whether CRMS are suitable IT solutions for study participant management in biomedical research. Three boards of experts in the field of biomedical research were consulted to get an insight into recent IT developments regarding study participant management systems (SPMS). Subsequently, a requirements analysis was performed with stakeholders of a major biomedical research project. The successive suitability evaluation was based on the comparison of the identified requirements with the features of six CRMS. Independently of each other, the interviewed expert boards confirmed that there is no generic IT solution for the management of participants. Sixty-four requirements were identified and prioritized in a requirements analysis. The best CRMS was able to fulfill forty-two of these requirements. The non-fulfilled requirements demand an adaption of the CRMS, consuming time and resources, reducing the update compatibility, the system's suitability, and the security of the CRMS. A specific solution for the SPMS is favored instead of a generic and commercially-oriented CRMS. Therefore, the development of a small and specific SPMS solution was commenced and is currently on the way to completion.
Using Biocatalysis to Integrate Organic Chemistry into a Molecular Biology Laboratory Course
ERIC Educational Resources Information Center
Beers, Mande; Archer, Crystal; Feske, Brent D.; Mateer, Scott C.
2012-01-01
Current cutting-edge biomedical investigation requires that the researcher have an operational understanding of several diverse disciplines. Biocatalysis is a field of science that operates at the crossroads of organic chemistry, biochemistry, microbiology, and molecular biology, and provides an excellent model for interdisciplinary research. We…
[Scientometrics and bibliometrics of biomedical engineering periodicals and papers].
Zhao, Ping; Xu, Ping; Li, Bingyan; Wang, Zhengrong
2003-09-01
This investigation was made to reveal the current status, research trend and research level of biomedical engineering in Chinese mainland by means of scientometrics and to assess the quality of the four domestic publications by bibliometrics. We identified all articles of four related publications by searching Chinese and foreign databases from 1997 to 2001. All articles collected or cited by these databases were searched and statistically analyzed for finding out the relevant distributions, including databases, years, authors, institutions, subject headings and subheadings. The source of sustentation funds and the related articles were analyzed too. The results showed that two journals were cited by two foreign databases and five Chinese databases simultaneously. The output of Journal of Biomedical Engineering was the highest. Its quantity of original papers cited by EI, CA and the totality of papers sponsored by funds were higher than those of the others, but the quantity and percentage per year of biomedical articles cited by EI were decreased in all. Inland core authors and institutions had come into being in the field of biomedical engineering. Their research topics were mainly concentrated on ten subject headings which included biocompatible materials, computer-assisted signal processing, electrocardiography, computer-assisted image processing, biomechanics, algorithms, electroencephalography, automatic data processing, mechanical stress, hemodynamics, mathematical computing, microcomputers, theoretical models, etc. The main subheadings were concentrated on instrumentation, physiopathology, diagnosis, therapy, ultrasonography, physiology, analysis, surgery, pathology, method, etc.
Fabricating biomedical origami: a state-of-the-art review
Johnson, Meredith; Chen, Yue; Hovet, Sierra; Xu, Sheng; Wood, Bradford; Ren, Hongliang; Tokuda, Junichi; Tse, Zion Tsz Ho
2018-01-01
Purpose Origami-based biomedical device design is an emerging technology due to its ability to be deployed from a minimal foldable pattern to a larger volume. This paper aims to review state-of-the-art origami structures applied in the medical device field. Methods Publications and reports of origami structure related to medical device design from the past 10 years are reviewed and categorized according to engineering specifications, including the application field, fabrication material, size/volume, deployment method, manufacturability, and advantages. Results This paper presents an overview of the biomedical applications of devices based on origami structures, including disposable sterilization covers, cardiac catheterization, stent grafts, encapsulation and microsurgery, gastrointestinal microsurgery, laparoscopic surgical grippers, microgrippers, microfluidic devices, and drug delivery. Challenges in terms of materials and fabrication, assembly, modeling and computation design, and clinical adoptability are discussed at the end of this paper to provide guidance for future origami-based design in the medical device field. Conclusion Concepts from origami can be used to design and develop novel medical devices. Origami-based medical device design is currently progressing, with researchers improving design methods, materials, fabrication techniques, and folding efficiency. PMID:28260164
Fabricating biomedical origami: a state-of-the-art review.
Johnson, Meredith; Chen, Yue; Hovet, Sierra; Xu, Sheng; Wood, Bradford; Ren, Hongliang; Tokuda, Junichi; Tse, Zion Tsz Ho
2017-11-01
Origami-based biomedical device design is an emerging technology due to its ability to be deployed from a minimal foldable pattern to a larger volume. This paper aims to review state-of-the-art origami structures applied in the medical device field. Publications and reports of origami structure related to medical device design from the past 10 years are reviewed and categorized according to engineering specifications, including the application field, fabrication material, size/volume, deployment method, manufacturability, and advantages. This paper presents an overview of the biomedical applications of devices based on origami structures, including disposable sterilization covers, cardiac catheterization, stent grafts, encapsulation and microsurgery, gastrointestinal microsurgery, laparoscopic surgical grippers, microgrippers, microfluidic devices, and drug delivery. Challenges in terms of materials and fabrication, assembly, modeling and computation design, and clinical adoptability are discussed at the end of this paper to provide guidance for future origami-based design in the medical device field. Concepts from origami can be used to design and develop novel medical devices. Origami-based medical device design is currently progressing, with researchers improving design methods, materials, fabrication techniques, and folding efficiency.
Context-Aware Adaptive Hybrid Semantic Relatedness in Biomedical Science
NASA Astrophysics Data System (ADS)
Emadzadeh, Ehsan
Text mining of biomedical literature and clinical notes is a very active field of research in biomedical science. Semantic analysis is one of the core modules for different Natural Language Processing (NLP) solutions. Methods for calculating semantic relatedness of two concepts can be very useful in solutions solving different problems such as relationship extraction, ontology creation and question / answering [1--6]. Several techniques exist in calculating semantic relatedness of two concepts. These techniques utilize different knowledge sources and corpora. So far, researchers attempted to find the best hybrid method for each domain by combining semantic relatedness techniques and data sources manually. In this work, attempts were made to eliminate the needs for manually combining semantic relatedness methods targeting any new contexts or resources through proposing an automated method, which attempted to find the best combination of semantic relatedness techniques and resources to achieve the best semantic relatedness score in every context. This may help the research community find the best hybrid method for each context considering the available algorithms and resources.
Extracting biomedical events from pairs of text entities
2015-01-01
Background Huge amounts of electronic biomedical documents, such as molecular biology reports or genomic papers are generated daily. Nowadays, these documents are mainly available in the form of unstructured free texts, which require heavy processing for their registration into organized databases. This organization is instrumental for information retrieval, enabling to answer the advanced queries of researchers and practitioners in biology, medicine, and related fields. Hence, the massive data flow calls for efficient automatic methods of text-mining that extract high-level information, such as biomedical events, from biomedical text. The usual computational tools of Natural Language Processing cannot be readily applied to extract these biomedical events, due to the peculiarities of the domain. Indeed, biomedical documents contain highly domain-specific jargon and syntax. These documents also describe distinctive dependencies, making text-mining in molecular biology a specific discipline. Results We address biomedical event extraction as the classification of pairs of text entities into the classes corresponding to event types. The candidate pairs of text entities are recursively provided to a multiclass classifier relying on Support Vector Machines. This recursive process extracts events involving other events as arguments. Compared to joint models based on Markov Random Fields, our model simplifies inference and hence requires shorter training and prediction times along with lower memory capacity. Compared to usual pipeline approaches, our model passes over a complex intermediate problem, while making a more extensive usage of sophisticated joint features between text entities. Our method focuses on the core event extraction of the Genia task of BioNLP challenges yielding the best result reported so far on the 2013 edition. PMID:26201478
Laser spectroscopy applied to environmental, ecological, food safety, and biomedical research.
Svanberg, Sune; Zhao, Guangyu; Zhang, Hao; Huang, Jing; Lian, Ming; Li, Tianqi; Zhu, Shiming; Li, Yiyun; Duan, Zheng; Lin, Huiying; Svanberg, Katarina
2016-03-21
Laser spectroscopy provides many possibilities for multi-disciplinary applications in environmental monitoring, in the ecological field, for food safety investigations, and in biomedicine. The paper gives several examples of the power of multi-disciplinary applications of laser spectroscopy as pursued in our research group. The studies utilize mostly similar and widely applicable spectroscopic approaches. Air pollution and vegetation monitoring by lidar techniques, as well as agricultural pest insect monitoring and classification by elastic scattering and fluorescence spectroscopy are described. Biomedical aspects include food safety applications and medical diagnostics of sinusitis and otitis, with strong connection to the abatement of antibiotics resistance development.
Open-source tools for data mining.
Zupan, Blaz; Demsar, Janez
2008-03-01
With a growing volume of biomedical databases and repositories, the need to develop a set of tools to address their analysis and support knowledge discovery is becoming acute. The data mining community has developed a substantial set of techniques for computational treatment of these data. In this article, we discuss the evolution of open-source toolboxes that data mining researchers and enthusiasts have developed over the span of a few decades and review several currently available open-source data mining suites. The approaches we review are diverse in data mining methods and user interfaces and also demonstrate that the field and its tools are ready to be fully exploited in biomedical research.
Nanocarbon surfaces for biomedicine
Reina, Giacomo; Tamburri, Emanuela; Orlanducci, Silvia; Gay, Stefano; Matassa, Roberto; Guglielmotti, Valeria; Lavecchia, Teresa; Letizia Terranova, Maria; Rossi, Marco
2014-01-01
The distinctive physicochemical, mechanical and electrical properties of carbon nanostructures are currently gaining the interest of researchers working in bioengineering and biomedical fields. Carbon nanotubes, carbon dendrimers, graphenic platelets and nanodiamonds are deeply studied aiming at their application in several areas of biology and medicine. Here we provide a summary of the carbon nanomaterials prepared in our labs and of the fabrication techniques used to produce several biomedical utilities, from scaffolds for tissue growth to cargos for drug delivery and to biosensors. PMID:24646883
Raman, Ritu; Mitchell, Marlon; Perez-Pinera, Pablo; Bashir, Rashid; DeStefano, Lizanne
2016-01-01
The rapidly evolving discipline of biological and biomedical engineering requires adaptive instructional approaches that teach students to target and solve multi-pronged and ill-structured problems at the cutting edge of scientific research. Here we present a modular approach to designing a lab-based course in the emerging field of biofabrication and biological design, leading to a final capstone design project that requires students to formulate and test a hypothesis using the scientific method. Students were assessed on a range of metrics designed to evaluate the format of the course, the efficacy of the format for teaching new topics and concepts, and the depth of the contribution this course made to students training for biological engineering careers. The evaluation showed that the problem-based format of the course was well suited to teaching students how to use the scientific method to investigate and uncover the fundamental biological design rules that govern the field of biofabrication. We show that this approach is an efficient and effective method of translating emergent scientific principles from the lab bench to the classroom and training the next generation of biological and biomedical engineers for careers as researchers and industry practicians.
[Research Progress and Development Prospect of Biomedical Plate].
Li, Xiao; Liu, Jing; Wu, Qiang; Wang, Yanjie; Xiao, Tao; Liu, Lihong; Yu, Shu
2016-12-01
Different generations of biomedical materials are analyzed in this paper.The current clinical uses of plates made of metals,polymers or composite materials are evaluated,and nano hydroxyapatite/polylactic acid composites and carbon/carbon composite plates are introduced as emphasis.It is pointed out that the carbon/carbon composites are of great feasibility and advantage as a new generation of biomedical materials,especially in the field of bone plate.Compared to other biomaterials,carbon/carbon composites have a good biocompatibility and mechanical compatibility because they have similar elastic modulus,porosity and density to that of human bones.With the development of the technology in knitting and material preparation,carbon/carbon composite plates have a good application prospect.
NASA Astrophysics Data System (ADS)
McCallister, Thomas; Gidney, Elwood; Adams, Devin; Diercks, David R.; Ghosh, Santaneel
2014-11-01
Engineered magnetic nanocarriers offer attractive options for implementing novel therapeutic solutions in biomedical research; however lack of biocompatibility and external tunability have prevented a biomedical breakthrough. Here we report multifunctional, magnetic nanospheres with tailored size, volumetric transition range, and magnetic properties based on biocompatible, thermo-responsive oligo(ethylene glycol) methacrylate biopolymers. Precise control of the nanosphere size in the range 100-300 nm, coupled with a higher and broader volumetric transition range (32-42 °C), is ideal for various biomedical applications. More importantly, super-paramagnetic behavior of the nanocarriers, even after polymer shell shrinkage, indicates stable and easily controllable loss mechanisms under exposure to an ac magnetic field.
Simulation study of a high power density rectenna array for biomedical implantable devices
NASA Astrophysics Data System (ADS)
Day, John; Yoon, Hargsoon; Kim, Jaehwan; Choi, Sang H.; Song, Kyo D.
2016-04-01
The integration of wireless power transmission devices using microwaves into the biomedical field is close to a practical reality. Implanted biomedical devices need a long lasting power source or continuous power supply. Recent development of high efficiency rectenna technology enables continuous power supply to these implanted devices. Due to the size limit of most of medical devices, it is imperative to minimize the rectenna as well. The research reported in this paper reviews the effects of close packing the rectenna elements which show the potential of directly empowering the implanted devices, especially within a confined area. The rectenna array is tested in the X band frequency range.
Defining new aims for BME programs in Latin America: the case of UAM-Iztapalapa.
Azpiroz-Leehan, J; Martinez, L F; Urbina, M E G; Cadena, M M; Sacristan, E
2016-08-01
The need for upkeep and management of medical technology has fostered the creation of a large number of under graduate programs in the field of biomedical Engineering. In Latin America alone, there are over 85 programs dedicated to this. This contrasts with programs in other regions where most of the undergraduates continue on to pursue graduate degrees or work as research and development engineers in the biomedical industry. In this work we analyze the situation regarding curricular design in the 48 BME programs in Mexico and compare this to suggestions and classifications of programs according to needs and possibilities. We then focus on a particular institution, Universidad Autónoma Metropolitana and due to its characteristics and performance we propose that it should redefine its aims from the undergraduate program on, in order to not only generate research but also to provide a nurturing environment for a budding biomedical industry in Mexico.
2016-01-01
During the last twenty years, the research in nanoscience and nanotechnology has dramatically increased and, in the last decade, the interest has progressively been oriented towards biomedical applications, giving rise to a new field termed nanomedicine. Transmission electron microscopy is a valuable technique not only for the thorough physico-chemical characterization of newly synthesized nanoparticulates, but especially to explore the effects of nanocomposites on biological systems, providing essential information for the development of efficient therapeutic and diagnostic strategies. Thus, for the progress of nanotechnology in the biomedical field, experts in cell biology, histochemistry and ultramicroscopy should always support the chemists, physicists and pharmacologists engaged in the synthesis and characterization of innovative nanoconstructs. PMID:28076938
[Research progress of mammalian synthetic biology in biomedical field].
Yang, Linfeng; Yin, Jianli; Wang, Meiyan; Ye, Haifeng
2017-03-25
Although still in its infant stage, synthetic biology has achieved remarkable development and progress during the past decade. Synthetic biology applies engineering principles to design and construct gene circuits uploaded into living cells or organisms to perform novel or improved functions, and it has been widely used in many fields. In this review, we describe the recent advances of mammalian synthetic biology for the treatment of diseases. We introduce common tools and design principles of synthetic gene circuits, and then we demonstrate open-loop gene circuits induced by different trigger molecules used in disease diagnosis and close-loop gene circuits used for biomedical applications. Finally, we discuss the perspectives and potential challenges of synthetic biology for clinical applications.
Deep learning in bioinformatics.
Min, Seonwoo; Lee, Byunghan; Yoon, Sungroh
2017-09-01
In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e. omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e. deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zebrafish (Danio rerio): A Potential Model for Toxinological Studies.
Vargas, Rafael Antonio; Sarmiento, Karen; Vásquez, Isabel Cristina
2015-10-01
Zebrafish are an emerging basic biomedical research model that has multiple advantages compared with other research models. Given that biotoxins, such as toxins, poisons, and venoms, represent health hazards to animals and humans, a low-cost biological model that is highly sensitive to biotoxins is useful to understand the damage caused by such agents and to develop biological tests to prevent and reduce the risk of poisoning in potential cases of bioterrorism or food contamination. In this article, a narrative review of the general aspects of zebrafish as a model in basic biomedical research and various studies in the field of toxinology that have used zebrafish as a biological model are presented. This information will provide useful material to beginner students and researchers who are interested in developing toxinological studies with the zebrafish model.
Cross-Field Comparison of Ethics Education: Golden Rules and Particulars.
Mulhearn, Tyler J; Watts, Logan L; Torrence, Brett S; Todd, E Michelle; Turner, Megan R; Connelly, Shane; Mumford, Michael D
2017-01-01
Research misconduct negatively impacts the scientific community and society in general. Providing training in the responsible conduct of research (RCR) to researchers is one viable approach to minimizing research misconduct. Although recent evidence suggests ethics training can indeed be effective, little empirical work has examined the similarities and differences across fields. In the present study, we analyzed 62 empirical studies in engineering, biomedical science, social science, and mixed fields. The findings suggest certain instructional principles, or "golden rules," apply generally to all fields. These golden rules include maintaining a field-specific or field-general approach and emphasizing processes in training. The findings also suggest that content areas contributing to instructional effectiveness vary as a function of field. Generally, it appears that all fields may benefit from taking a multi-pronged approach to ethics education wherein the salient field issues are covered. Implications for RCR education are discussed.
Maintaining respect and fairness in the usage of stored shared specimens.
Mduluza, Takafira; Midzi, Nicholas; Duruza, Donold; Ndebele, Paul
2013-01-01
Every year, research specimens are shipped from one institution to another as well as across national boundaries. A significant proportion of specimens move from poor to rich countries. Concerns are always raised on the future usage of the stored specimens shipped to research institutions from developing countries. Creating awareness of the processes is required in all sectors involved in biomedical research. To maintain fairness and respect in sharing biomedical specimens and research products requires safeguarding by Ethics Review Committees in both provider and recipient institutions. Training in basic ethical principles in research is required to all sectors involved in biomedical research so as to level up the research playing field. By agreeing to provide specimens, individuals and communities from whom samples are collected would have placed their trust and all ensuing up-keep of the specimens to the researchers. In most collaborative set-up, laid down material transfer agreements are negotiated and signed before the shipment of specimens. Researchers, research ethics committees (RECs) and institutions in the countries of origin are supposed to serve as overseers of the specimens. There is need to advocate for honesty in sample handling and sharing, and also need to oversee any written commitments by researchers, RECs and institutions at source as well as in recipient institution. Commitments from source RECs and Institutional Review Boards (IRBs) and in the receiving institution on overseeing the future usage of stored specimens are required; including the ultimate confirmation abiding by the agreement. Training in ethical issues pertaining to sample handling and biomedical research in general is essential at all levels of academic pursuit. While sharing of biological specimens and research data demands honesty and oversight by ethical regulatory agents from both institutions in developing country and recipient institutions in developed countries. Archiving of biological specimens requires reconsideration for the future of biomedical findings and scientific break-throughs. Biomedical ethical regulations still need to established clear viable regulations that have vision for the future of science through shared and archived samples. This discussion covers and proposes essential points that need to be considered in view of future generations and scientific break-throughs. The discussion is based on the experience of working in resource-limited settings, the local regulatory laws and the need to refine research regulations governing sharing and storage of specimens for the future of science.
Theories on Drug Abuse: Selected Contemporary Perspectives. Research Monograph 30.
ERIC Educational Resources Information Center
Lettieri, Dan J., Ed.; And Others
This volume presents various theoretical orientations and perspectives of the drug abuse research field, derived from the social and biomedical sciences. The first section contains a separate theoretical overview for each of the 43 theories or perspectives. The second section contains five chapters which correspond to the five components of a drug…
ERIC Educational Resources Information Center
Yellowlees, Peter M.; Hogarth, Michael; Hilty, Donald M.
2006-01-01
Objective: This article highlights the importance of distributed broadband networks as part of the core infrastructure necessary to deliver academic research and education programs. Method: The authors review recent developments in the field and present the University of California, Davis, environment as a case study of a future virtual regional…
Soucy, Katie; Fairhurst, Rick M; Lynn, Geoffrey M; Fomalont, Kevin; Wynn, Thomas A; Siegel, Richard M
2016-12-01
Immunology is an increasingly interdisciplinary field. Here we describe a new model for interinstitutional graduate training as partnerships between complementary laboratories. This collaborative model reduces time to graduation without compromising productivity or alumni outcomes. We offer our experience with one such program and thoughts on the ingredients for their success. Despite tremendous recent advances in technology, communications, and the translation of basic scientific discoveries into new diagnostics and therapies for human diseases, graduate training in immunology and other areas of biomedical research in the United States has remained remarkably unchanged since the early 20th century, with coursework and laboratory rotations taking up much of the first 2 years, and a single mentor shepherding the student through a research project over 3 or more subsequent years. The time to graduation still averages more than 6 years in the biomedical sciences field (http://www.nsf.gov/statistics/2016/nsf16300/), with uncertain benefit of this extended time to research productivity and career advancement. Published by Elsevier Ltd.
Animal experimentation--a personal view.
Gershoff, Stanley N
2009-02-01
Disagreement about the use of animals in biomedical research has resulted in absurd positions by both sides. Increasingly, some zealots against animal experimentation have resorted to violence or other illegal acts to support their points of view. The value of animal research in providing better health for man and animals is incontrovertible. This is illustrated by references to animal research in the field of nutrition.
Maintaining respect and fairness in the usage of stored shared specimens
2013-01-01
Background Every year, research specimens are shipped from one institution to another as well as across national boundaries. A significant proportion of specimens move from poor to rich countries. Concerns are always raised on the future usage of the stored specimens shipped to research insitutions from developing countries. Creating awareness of the processes is required in all sectors involved in biomedical research. To maintain fairness and respect in sharing biomedical specimens and reserch products requires safeguarding by Ethics Review Committees in both provider and recepient institutions. Training in basic ethical principles in research is required to all sectors involved in biomedical research so as to level up the research playing field. Discussion By agreeing to provide specimens, individuals and communities from whom samples are collected would have placed their trust and all ensuing up-keep of the specimens to the researchers. In most collaborative set-up, laid down material transfer agreements are negotiated and signed before the shipment of specimens. Researchers, research ethics committees (RECs) and institutions in the countries of origin are supposed to serve as overseers of the specimens. There is need to advocate for honesty in sample handling and sharing, and also need to oversee any written commitments by researchers, RECs and institutions at source as well as in recipient institution. Commitments from source RECs and Institutional Review Boards (IRBs) and in the receiving institution on overseeing the future usage of stored specimens are required; including the ultimate confirmation abiding by the agreement. Training in ethical issues pertaining to sample handling and biomedical research in general is essential at all levels of academic pursuit. While sharing of biological specimens and research data demands honesty and oversight by ethical regulatory agents from both institutions in developing country and recepient institutions in developed countries. Concluding summary Archiving of biological specimens requires reconsideration for the future of biomedical findings and scientific break-throughs. Biomedical ethical regulations still need to established clear viable regulations that have vision for the future of science through shared and archived samples. This discussion covers and proposes essential points that need to be considered in view of future generations and scientific break-throughs. The discussion is based on the experience of working in resource-limited settings, the local regulatory laws and the need to refine research regulations governing sharing and storage of specimens for the future of science. PMID:24565022
caGrid 1.0: An Enterprise Grid Infrastructure for Biomedical Research
Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Phillips, Joshua; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel
2008-01-01
Objective To develop software infrastructure that will provide support for discovery, characterization, integrated access, and management of diverse and disparate collections of information sources, analysis methods, and applications in biomedical research. Design An enterprise Grid software infrastructure, called caGrid version 1.0 (caGrid 1.0), has been developed as the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG™) program. It is designed to support a wide range of use cases in basic, translational, and clinical research, including 1) discovery, 2) integrated and large-scale data analysis, and 3) coordinated study. Measurements The caGrid is built as a Grid software infrastructure and leverages Grid computing technologies and the Web Services Resource Framework standards. It provides a set of core services, toolkits for the development and deployment of new community provided services, and application programming interfaces for building client applications. Results The caGrid 1.0 was released to the caBIG community in December 2006. It is built on open source components and caGrid source code is publicly and freely available under a liberal open source license. The core software, associated tools, and documentation can be downloaded from the following URL: https://cabig.nci.nih.gov/workspaces/Architecture/caGrid. Conclusions While caGrid 1.0 is designed to address use cases in cancer research, the requirements associated with discovery, analysis and integration of large scale data, and coordinated studies are common in other biomedical fields. In this respect, caGrid 1.0 is the realization of a framework that can benefit the entire biomedical community. PMID:18096909
caGrid 1.0: an enterprise Grid infrastructure for biomedical research.
Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Phillips, Joshua; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel
2008-01-01
To develop software infrastructure that will provide support for discovery, characterization, integrated access, and management of diverse and disparate collections of information sources, analysis methods, and applications in biomedical research. An enterprise Grid software infrastructure, called caGrid version 1.0 (caGrid 1.0), has been developed as the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG) program. It is designed to support a wide range of use cases in basic, translational, and clinical research, including 1) discovery, 2) integrated and large-scale data analysis, and 3) coordinated study. The caGrid is built as a Grid software infrastructure and leverages Grid computing technologies and the Web Services Resource Framework standards. It provides a set of core services, toolkits for the development and deployment of new community provided services, and application programming interfaces for building client applications. The caGrid 1.0 was released to the caBIG community in December 2006. It is built on open source components and caGrid source code is publicly and freely available under a liberal open source license. The core software, associated tools, and documentation can be downloaded from the following URL: https://cabig.nci.nih.gov/workspaces/Architecture/caGrid. While caGrid 1.0 is designed to address use cases in cancer research, the requirements associated with discovery, analysis and integration of large scale data, and coordinated studies are common in other biomedical fields. In this respect, caGrid 1.0 is the realization of a framework that can benefit the entire biomedical community.
Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance
NASA Technical Reports Server (NTRS)
Walsworth, Ronald L.
2001-01-01
We are developing laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI) (e.g., of lung ventilation) as well as studies of tissue perfusion. In addition, laser-polarized noble gases (He-3 and Xe-129) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We are pursuing two specific aims in this research. The first aim is to develop a low-field (< 0.01 T) instrument for noble gas MRI of humans, and the second aim is to develop functional MRI of the lung using laser-polarized Xe-129 and related techniques.
Web 2.0 applications in medicine: trends and topics in the literature.
Boudry, Christophe
2015-04-01
The World Wide Web has changed research habits, and these changes were further expanded when "Web 2.0" became popular in 2005. Bibliometrics is a helpful tool used for describing patterns of publication, for interpreting progression over time, and the geographical distribution of research in a given field. Few studies employing bibliometrics, however, have been carried out on the correlative nature of scientific literature and Web 2.0. The aim of this bibliometric analysis was to provide an overview of Web 2.0 implications in the biomedical literature. The objectives were to assess the growth rate of literature, key journals, authors, and country contributions, and to evaluate whether the various Web 2.0 applications were expressed within this biomedical literature, and if so, how. A specific query with keywords chosen to be representative of Web 2.0 applications was built for the PubMed database. Articles related to Web 2.0 were downloaded in Extensible Markup Language (XML) and were processed through developed hypertext preprocessor (PHP) scripts, then imported to Microsoft Excel 2010 for data processing. A total of 1347 articles were included in this study. The number of articles related to Web 2.0 has been increasing from 2002 to 2012 (average annual growth rate was 106.3% with a maximum of 333% in 2005). The United States was by far the predominant country for authors, with 514 articles (54.0%; 514/952). The second and third most productive countries were the United Kingdom and Australia, with 87 (9.1%; 87/952) and 44 articles (4.6%; 44/952), respectively. Distribution of number of articles per author showed that the core population of researchers working on Web 2.0 in the medical field could be estimated at approximately 75. In total, 614 journals were identified during this analysis. Using Bradford's law, 27 core journals were identified, among which three (Studies in Health Technology and Informatics, Journal of Medical Internet Research, and Nucleic Acids Research) produced more than 35 articles related to Web 2.0 over the period studied. A total of 274 words in the field of Web 2.0 were found after manual sorting of the 15,878 words appearing in title and abstract fields for articles. Word frequency analysis reveals "blog" as the most recurrent, followed by "wiki", "Web 2.0", "social media", "Facebook", "social networks", "blogger", "cloud computing", "Twitter", and "blogging". All categories of Web 2.0 applications were found, indicating the successful integration of Web 2.0 into the biomedical field. This study shows that the biomedical community is engaged in the use of Web 2.0 and confirms its high level of interest in these tools. Therefore, changes in the ways researchers use information seem to be far from over.
Acoustic methods for cavitation mapping in biomedical applications
NASA Astrophysics Data System (ADS)
Wan, M.; Xu, S.; Ding, T.; Hu, H.; Liu, R.; Bai, C.; Lu, S.
2015-12-01
In recent years, cavitation is increasingly utilized in a wide range of applications in biomedical field. Monitoring the spatial-temporal evolution of cavitation bubbles is of great significance for efficiency and safety in biomedical applications. In this paper, several acoustic methods for cavitation mapping proposed or modified on the basis of existing work will be presented. The proposed novel ultrasound line-by-line/plane-by-plane method can depict cavitation bubbles distribution with high spatial and temporal resolution and may be developed as a potential standard 2D/3D cavitation field mapping method. The modified ultrafast active cavitation mapping based upon plane wave transmission and reception as well as bubble wavelet and pulse inversion technique can apparently enhance the cavitation to tissue ratio in tissue and further assist in monitoring the cavitation mediated therapy with good spatial and temporal resolution. The methods presented in this paper will be a foundation to promote the research and development of cavitation imaging in non-transparent medium.
Wang, Youfa; Xue, Hong; Liu, Shiyong
2015-01-01
Interest in the application of systems science (SS) in biomedical research, particularly regarding obesity and noncommunicable chronic disease (NCD) research, has been growing rapidly over the past decade. SS is a broad term referring to a family of research approaches that include modeling. As an emerging approach being adopted in public health, SS focuses on the complex dynamic interaction between agents (e.g., people) and subsystems defined at different levels. SS provides a conceptual framework for interdisciplinary and transdisciplinary approaches that address complex problems. SS has unique advantages for studying obesity and NCD problems in comparison to the traditional analytic approaches. The application of SS in biomedical research dates back to the 1960s with the development of computing capacity and simulation software. In recent decades, SS has been applied to addressing the growing global obesity epidemic. There is growing appreciation and support for using SS in the public health field, with many promising opportunities. There are also many challenges and uncertainties, including methodologic, funding, and institutional barriers. Integrated efforts by stakeholders that address these challenges are critical for the successful application of SS in the future. © 2015 American Society for Nutrition.
Plikus, Maksim V; Zhang, Zina; Chuong, Cheng-Ming
2006-01-01
Background Understanding research activity within any given biomedical field is important. Search outputs generated by MEDLINE/PubMed are not well classified and require lengthy manual citation analysis. Automation of citation analytics can be very useful and timesaving for both novices and experts. Results PubFocus web server automates analysis of MEDLINE/PubMed search queries by enriching them with two widely used human factor-based bibliometric indicators of publication quality: journal impact factor and volume of forward references. In addition to providing basic volumetric statistics, PubFocus also prioritizes citations and evaluates authors' impact on the field of search. PubFocus also analyses presence and occurrence of biomedical key terms within citations by utilizing controlled vocabularies. Conclusion We have developed citations' prioritisation algorithm based on journal impact factor, forward referencing volume, referencing dynamics, and author's contribution level. It can be applied either to the primary set of PubMed search results or to the subsets of these results identified through key terms from controlled biomedical vocabularies and ontologies. NCI (National Cancer Institute) thesaurus and MGD (Mouse Genome Database) mammalian gene orthology have been implemented for key terms analytics. PubFocus provides a scalable platform for the integration of multiple available ontology databases. PubFocus analytics can be adapted for input sources of biomedical citations other than PubMed. PMID:17014720
Big Data Application in Biomedical Research and Health Care: A Literature Review.
Luo, Jake; Wu, Min; Gopukumar, Deepika; Zhao, Yiqing
2016-01-01
Big data technologies are increasingly used for biomedical and health-care informatics research. Large amounts of biological and clinical data have been generated and collected at an unprecedented speed and scale. For example, the new generation of sequencing technologies enables the processing of billions of DNA sequence data per day, and the application of electronic health records (EHRs) is documenting large amounts of patient data. The cost of acquiring and analyzing biomedical data is expected to decrease dramatically with the help of technology upgrades, such as the emergence of new sequencing machines, the development of novel hardware and software for parallel computing, and the extensive expansion of EHRs. Big data applications present new opportunities to discover new knowledge and create novel methods to improve the quality of health care. The application of big data in health care is a fast-growing field, with many new discoveries and methodologies published in the last five years. In this paper, we review and discuss big data application in four major biomedical subdisciplines: (1) bioinformatics, (2) clinical informatics, (3) imaging informatics, and (4) public health informatics. Specifically, in bioinformatics, high-throughput experiments facilitate the research of new genome-wide association studies of diseases, and with clinical informatics, the clinical field benefits from the vast amount of collected patient data for making intelligent decisions. Imaging informatics is now more rapidly integrated with cloud platforms to share medical image data and workflows, and public health informatics leverages big data techniques for predicting and monitoring infectious disease outbreaks, such as Ebola. In this paper, we review the recent progress and breakthroughs of big data applications in these health-care domains and summarize the challenges, gaps, and opportunities to improve and advance big data applications in health care.
Big Data Application in Biomedical Research and Health Care: A Literature Review
Luo, Jake; Wu, Min; Gopukumar, Deepika; Zhao, Yiqing
2016-01-01
Big data technologies are increasingly used for biomedical and health-care informatics research. Large amounts of biological and clinical data have been generated and collected at an unprecedented speed and scale. For example, the new generation of sequencing technologies enables the processing of billions of DNA sequence data per day, and the application of electronic health records (EHRs) is documenting large amounts of patient data. The cost of acquiring and analyzing biomedical data is expected to decrease dramatically with the help of technology upgrades, such as the emergence of new sequencing machines, the development of novel hardware and software for parallel computing, and the extensive expansion of EHRs. Big data applications present new opportunities to discover new knowledge and create novel methods to improve the quality of health care. The application of big data in health care is a fast-growing field, with many new discoveries and methodologies published in the last five years. In this paper, we review and discuss big data application in four major biomedical subdisciplines: (1) bioinformatics, (2) clinical informatics, (3) imaging informatics, and (4) public health informatics. Specifically, in bioinformatics, high-throughput experiments facilitate the research of new genome-wide association studies of diseases, and with clinical informatics, the clinical field benefits from the vast amount of collected patient data for making intelligent decisions. Imaging informatics is now more rapidly integrated with cloud platforms to share medical image data and workflows, and public health informatics leverages big data techniques for predicting and monitoring infectious disease outbreaks, such as Ebola. In this paper, we review the recent progress and breakthroughs of big data applications in these health-care domains and summarize the challenges, gaps, and opportunities to improve and advance big data applications in health care. PMID:26843812
Marine Polysaccharides from Algae with Potential Biomedical Applications
de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Bernardo; de Morais, Rui Manuel Santos Costa
2015-01-01
There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae. PMID:25988519
Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M; King, Andrew J; Draper, Amie J; Handen, Adam L; Fisher, Arielle M; Becich, Michael J; Dutta-Moscato, Joyeeta
2016-01-01
The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4(th) year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.
Two-Dimensional Nanomaterials for Biomedical Applications: Emerging Trends and Future Prospects.
Chimene, David; Alge, Daniel L; Gaharwar, Akhilesh K
2015-12-02
Two-dimensional (2D) nanomaterials are ultrathin nanomaterials with a high degree of anisotropy and chemical functionality. Research on 2D nanomaterials is still in its infancy, with the majority of research focusing on elucidating unique material characteristics and few reports focusing on biomedical applications of 2D nanomaterials. Nevertheless, recent rapid advances in 2D nanomaterials have raised important and exciting questions about their interactions with biological moieties. 2D nanoparticles such as carbon-based 2D materials, silicate clays, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs) provide enhanced physical, chemical, and biological functionality owing to their uniform shapes, high surface-to-volume ratios, and surface charge. Here, we focus on state-of-the-art biomedical applications of 2D nanomaterials as well as recent developments that are shaping this emerging field. Specifically, we describe the unique characteristics that make 2D nanoparticles so valuable, as well as the biocompatibility framework that has been investigated so far. Finally, to both capture the growing trend of 2D nanomaterials for biomedical applications and to identify promising new research directions, we provide a critical evaluation of potential applications of recently developed 2D nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Haux, Reinhold; Kulikowski, Casimir A; Bakken, Suzanne; de Lusignan, Simon; Kimura, Michio; Koch, Sabine; Mantas, John; Maojo, Victor; Marschollek, Michael; Martin-Sanchez, Fernando; Moen, Anne; Park, Hyeoun-Ae; Sarkar, Indra N; Leong, Tze Yun; McCray, Alexa T
2017-01-25
Medical informatics, or biomedical and health informatics (BMHI), has become an established scientific discipline. In all such disciplines there is a certain inertia to persist in focusing on well-established research areas and to hold on to well-known research methodologies rather than adopting new ones, which may be more appropriate. To search for answers to the following questions: What are research fields in informatics, which are not being currently adequately addressed, and which methodological approaches might be insufficiently used? Do we know about reasons? What could be consequences of change for research and for education? Outstanding informatics scientists were invited to three panel sessions on this topic in leading international conferences (MIE 2015, Medinfo 2015, HEC 2016) in order to get their answers to these questions. A variety of themes emerged in the set of answers provided by the panellists. Some panellists took the theoretical foundations of the field for granted, while several questioned whether the field was actually grounded in a strong theoretical foundation. Panellists proposed a range of suggestions for new or improved approaches, methodologies, and techniques to enhance the BMHI research agenda. The field of BMHI is on the one hand maturing as an academic community and intellectual endeavour. On the other hand vendor-supplied solutions may be too readily and uncritically accepted in health care practice. There is a high chance that BMHI will continue to flourish as an important discipline; its innovative interventions might then reach the original objectives of advancing science and improving health care outcomes.
At what age do biomedical scientists do their best work?
Falagas, Matthew E; Ierodiakonou, Vrettos; Alexiou, Vangelis G
2008-12-01
Several human characteristics that influence scientific research performance, including set goals, mental and physical abilities, education, and experience, may vary considerably during the life cycle of scientists. We sought to answer the question of whether high-quality research productivity is associated with investigator's age. We randomly selected 300 highly cited scientists (50 from each of 6 different biomedical fields, specifically immunology, microbiology, neuroscience, psychology-psychiatry, clinical medicine, and biology-biochemistry). Then, we identified the top 5 highly cited articles (within 10 yr after publication adjusted for the expansion of the literature) as first author of each of them. Subsequently, we plotted the distribution of the 1500 analyzed articles of the 300 studied scientists in the eight 5-year intervals of investigator's age during the year of article publication (21-25 to 55-60 yr of age), adjusted for person-years of contribution of each scientist in the various age groups. Highly cited research productivity plotted a curve that peaked at the age group of 31-35 yr of age and then gradually decreased with advancing age. However, a considerable proportion of this highly cited research was produced by older scientists (in almost 20% of the analyzed articles, researchers were older than 50 yr). The results were similar in another analysis of the single most cited article of each studied scientist. In conclusion, high-quality scientific productivity in the biomedical fields as a function of investigator's age plots an inverted U-shaped curve, in which significant decreases take place from around 40 yr of age and beyond.
[French biomedical competitiveness clusters: opportunities for public-private partnerships].
Vasmant, Daniel
2009-12-01
A "competitive cluster" is a partnership between businesses, research units and training centers, working together to generate synergies for innovative projects in a particular geographic area. Since 2005, the first five calls for cluster projects have led to the funding of 645 R&D projects involving 13,000 researchers. Together, the R&D expenditure of these projects has so far totaled nearly Euro 3.6 billion. This included public funding of Euro 1300 million, Euro 840 million of which was provided by central government. In the biomedical field, 80 R&D projects have been funded to the tune of Euro 140 million (Euro 81 million from central government and Euro 59 million from local government). A total of 288 agreements have been signed, 12% with large companies, 36% with SMEs and 49.8% with public research laboratories. Alongside the more classical biomedical research funding sources, such as the National Research Agency and government-sponsored projects (on cancer, Alzheimer's disease, rare diseases, etc.), competitive clusters provide the impetus for profound changes in research culture. They draw on the principle of professional guidance and public-private partnerships to build a bridge between the "academic" and "industrial" research arenas. By facilitating knowledge generation and sharing, competitive clusters create a climate of action-driven mutual respect and trust.
[The need for experiments using primates from a scientific point of view].
Kaup, F J
2007-03-01
Concerning the public discussion on animal experiments using primates, various research fields are demonstrated where non-human primates are necessary for certain scientific reasons at this time. Non-human Primates are used in Germany mainly in regulatory toxicology and pharmaceutical safety studies.A small amount is disposed in different fields of biological or biomedical basic research. This includes in particular neurosciences and infection research. 2006 New and Old World monkeys were needed in Germany in 2005. No chimpanzees are used anymore as laboratory animals in Germany since many years. Several examples are presented to demonstrate that certain research fields need non-human primates as laboratory animals in the foreseeable future.
Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications
Moura, Duarte; Mano, João F.; Paiva, Maria C.; Alves, Natália M.
2016-01-01
Abstract Chitosan (CHI), a biocompatible and biodegradable polysaccharide with the ability to provide a non-protein matrix for tissue growth, is considered to be an ideal material in the biomedical field. However, the lack of good mechanical properties limits its applications. In order to overcome this drawback, CHI has been combined with different polymers and fillers, leading to a variety of chitosan-based nanocomposites. The extensive research on CHI nanocomposites as well as their main biomedical applications are reviewed in this paper. An overview of the different fillers and assembly techniques available to produce CHI nanocomposites is presented. Finally, the properties of such nanocomposites are discussed with particular focus on bone regeneration, drug delivery, wound healing and biosensing applications. PMID:27877909
Biomedical informatics publications: a global perspective: part I: conferences.
Maojo, V; García-Remesal, M; Bielza, C; Crespo, J; Perez-Rey, D; Kulikowski, C
2012-01-01
In the past decade, Medical Informatics (MI) and Bioinformatics (BI) have converged towards a new discipline, called Biomedical Informatics (BMI) bridging informatics methods across the spectrum from genomic research to personalized medicine and global healthcare. This convergence still raises challenging research questions which are being addressed by researchers internationally, which in turn raises the question of how biomedical informatics publications reflect the contributions from around the world in documenting the research. To analyse the worldwide participation of biomedical informatics researchers from professional groups and societies in the best-known scientific conferences in the field. The analysis is focused on their geographical affiliation, but also includes other features, such as the impact and recognition of the conferences. We manually collected data about authors of papers presented at three major MI conferences: Medinfo, MIE and the AMIA symposium. In addition, we collected data from a BI conference, ISMB, as a comparison. Finally, we analyzed the impact and recognition of these conferences within their scientific contexts. Data indicate a predominance of local authors at the regional conferences (AMIA and MIE), whereas other conferences with a world-wide scope (Medinfo and ISMB) had broader participation. Our analysis shows that the influence of these conferences beyond the discipline remains somewhat limited. Our results suggest that for BMI to be recognized as a broad discipline, both in the geographical and scientific sense, it will need to extend the scope of collaborations and their interdisciplinary impacts worldwide.
Vézian, Audrey
2014-01-01
This article examines the new organizations in cancer research in France called cancéropôles and created in 2003, whose mission is to coordinate actors from industry, research and clinical fields. Our research is based on a study of cancéropôles which embraces an evolutionary perspective on cluster formation and development. Our analysis reveals that although clear differences exist between them, our sample of the three established Cancéropôles display similar patterns of unsuccessful cases. Eventually, the identification of mechanisms that reduce their action in the cancer research environment raises questions about the factors that may influence any public action to a reconfiguration of the French biomedical sector. © 2014 médecine/sciences – Inserm.
Jarm, Tomaz; Miklavcic, Damijan
2014-01-01
A new study program of biomedical engineering was recently established at Faculty of Electrical Engineering, University of Ljubljana, Slovenia. It is based on the long-lasting tradition of education in the field of BME at the host institution and is built on the BME areas in which the research groups of the Faculty of Electrical Engineering have been traditionally successful. The program was prepared in accordance with the recommendations of the TEMPUS IV CRH-BME Project consortium.
Incorporating ideas from computer-supported cooperative work.
Pratt, Wanda; Reddy, Madhu C; McDonald, David W; Tarczy-Hornoch, Peter; Gennari, John H
2004-04-01
Many information systems have failed when deployed into complex health-care settings. We believe that one cause of these failures is the difficulty in systematically accounting for the collaborative and exception-filled nature of medical work. In this methodological review paper, we highlight research from the field of computer-supported cooperative work (CSCW) that could help biomedical informaticists recognize and design around the kinds of challenges that lead to unanticipated breakdowns and eventual abandonment of their systems. The field of CSCW studies how people collaborate with each other and the role that technology plays in this collaboration for a wide variety of organizational settings. Thus, biomedical informaticists could benefit from the lessons learned by CSCW researchers. In this paper, we provide a focused review of CSCW methods and ideas-we review aspects of the field that could be applied to improve the design and deployment of medical information systems. To make our discussion concrete, we use electronic medical record systems as an example medical information system, and present three specific principles from CSCW: accounting for incentive structures, understanding workflow, and incorporating awareness.
Extending XNAT Platform with an Incremental Semantic Framework
Timón, Santiago; Rincón, Mariano; Martínez-Tomás, Rafael
2017-01-01
Informatics increases the yield from neuroscience due to improved data. Data sharing and accessibility enable joint efforts between different research groups, as well as replication studies, pivotal for progress in the field. Research data archiving solutions are evolving rapidly to address these necessities, however, distributed data integration is still difficult because of the need of explicit agreements for disparate data models. To address these problems, ontologies are widely used in biomedical research to obtain common vocabularies and logical descriptions, but its application may suffer from scalability issues, domain bias, and loss of low-level data access. With the aim of improving the application of semantic models in biobanking systems, an incremental semantic framework that takes advantage of the latest advances in biomedical ontologies and the XNAT platform is designed and implemented. We follow a layered architecture that allows the alignment of multi-domain biomedical ontologies to manage data at different levels of abstraction. To illustrate this approach, the development is integrated in the JPND (EU Joint Program for Neurodegenerative Disease) APGeM project, focused on finding early biomarkers for Alzheimer's and other dementia related diseases. PMID:28912709
Extending XNAT Platform with an Incremental Semantic Framework.
Timón, Santiago; Rincón, Mariano; Martínez-Tomás, Rafael
2017-01-01
Informatics increases the yield from neuroscience due to improved data. Data sharing and accessibility enable joint efforts between different research groups, as well as replication studies, pivotal for progress in the field. Research data archiving solutions are evolving rapidly to address these necessities, however, distributed data integration is still difficult because of the need of explicit agreements for disparate data models. To address these problems, ontologies are widely used in biomedical research to obtain common vocabularies and logical descriptions, but its application may suffer from scalability issues, domain bias, and loss of low-level data access. With the aim of improving the application of semantic models in biobanking systems, an incremental semantic framework that takes advantage of the latest advances in biomedical ontologies and the XNAT platform is designed and implemented. We follow a layered architecture that allows the alignment of multi-domain biomedical ontologies to manage data at different levels of abstraction. To illustrate this approach, the development is integrated in the JPND (EU Joint Program for Neurodegenerative Disease) APGeM project, focused on finding early biomarkers for Alzheimer's and other dementia related diseases.
Research Strategies for Biomedical and Health Informatics
Kulikowski, Casimir A.; Bakken, Suzanne; de Lusignan, Simon; Kimura, Michio; Koch, Sabine; Mantas, John; Maojo, Victor; Marschollek, Michael; Martin-Sanchez, Fernando; Moen, Anne; Park, Hyeoun-Ae; Sarkar, Indra Neil; Leong, Tze Yun; McCray, Alexa T.
2017-01-01
Summary Background Medical informatics, or biomedical and health informatics (BMHI), has become an established scientific discipline. In all such disciplines there is a certain inertia to persist in focusing on well-established research areas and to hold on to well-known research methodologies rather than adopting new ones, which may be more appropriate. Objectives To search for answers to the following questions: What are research fields in informatics, which are not being currently adequately addressed, and which methodological approaches might be insufficiently used? Do we know about reasons? What could be consequences of change for research and for education? Methods Outstanding informatics scientists were invited to three panel sessions on this topic in leading international conferences (MIE 2015, Medinfo 2015, HEC 2016) in order to get their answers to these questions. Results A variety of themes emerged in the set of answers provided by the panellists. Some panellists took the theoretical foundations of the field for granted, while several questioned whether the field was actually grounded in a strong theoretical foundation. Panellists proposed a range of suggestions for new or improved approaches, methodologies, and techniques to enhance the BMHI research agenda. Conclusions The field of BMHI is on the one hand maturing as an academic community and intellectual endeavour. On the other hand vendor-supplied solutions may be too readily and uncritically accepted in health care practice. There is a high chance that BMHI will continue to flourish as an important discipline; its innovative interventions might then reach the original objectives of advancing science and improving health care outcomes. PMID:28119991
PubMed and beyond: a survey of web tools for searching biomedical literature
Lu, Zhiyong
2011-01-01
The past decade has witnessed the modern advances of high-throughput technology and rapid growth of research capacity in producing large-scale biological data, both of which were concomitant with an exponential growth of biomedical literature. This wealth of scholarly knowledge is of significant importance for researchers in making scientific discoveries and healthcare professionals in managing health-related matters. However, the acquisition of such information is becoming increasingly difficult due to its large volume and rapid growth. In response, the National Center for Biotechnology Information (NCBI) is continuously making changes to its PubMed Web service for improvement. Meanwhile, different entities have devoted themselves to developing Web tools for helping users quickly and efficiently search and retrieve relevant publications. These practices, together with maturity in the field of text mining, have led to an increase in the number and quality of various Web tools that provide comparable literature search service to PubMed. In this study, we review 28 such tools, highlight their respective innovations, compare them to the PubMed system and one another, and discuss directions for future development. Furthermore, we have built a website dedicated to tracking existing systems and future advances in the field of biomedical literature search. Taken together, our work serves information seekers in choosing tools for their needs and service providers and developers in keeping current in the field. Database URL: http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/search PMID:21245076
Chapter 16: text mining for translational bioinformatics.
Cohen, K Bretonnel; Hunter, Lawrence E
2013-04-01
Text mining for translational bioinformatics is a new field with tremendous research potential. It is a subfield of biomedical natural language processing that concerns itself directly with the problem of relating basic biomedical research to clinical practice, and vice versa. Applications of text mining fall both into the category of T1 translational research-translating basic science results into new interventions-and T2 translational research, or translational research for public health. Potential use cases include better phenotyping of research subjects, and pharmacogenomic research. A variety of methods for evaluating text mining applications exist, including corpora, structured test suites, and post hoc judging. Two basic principles of linguistic structure are relevant for building text mining applications. One is that linguistic structure consists of multiple levels. The other is that every level of linguistic structure is characterized by ambiguity. There are two basic approaches to text mining: rule-based, also known as knowledge-based; and machine-learning-based, also known as statistical. Many systems are hybrids of the two approaches. Shared tasks have had a strong effect on the direction of the field. Like all translational bioinformatics software, text mining software for translational bioinformatics can be considered health-critical and should be subject to the strictest standards of quality assurance and software testing.
Current perspectives on biomedical waste management: Rules, conventions and treatment technologies.
Capoor, Malini R; Bhowmik, Kumar Tapas
2017-01-01
Unregulated biomedical waste management (BMWM) is a public health problem. This has posed a grave threat to not only human health and safety but also to the environment for the current and future generations. Safe and reliable methods for handling of biomedical waste (BMW) are of paramount importance. Effective BMWM is not only a legal necessity but also a social responsibility. This article reviews the current perspectives on BMWM and rules, conventions and the treatment technologies used worldwide. BMWM should ideally be the subject of a national strategy with dedicated infrastructure, cradle-to-grave legislation, competent regulatory authority and trained personnel. Improving the management of biomedical waste begins with waste minimisation. These standards, norms and rules on BMWM in a country regulate the disposal of various categories of BMW to ensure the safety of the health-care workers, patients, public and environment. Furthermore, developing models for the monitoring of hospital health-care waste practices and research into non-burn eco-friendly sustainable technologies, recycling and polyvinyl chloride-free devices will go in long way for safe carbon environment. Globally, greater research in BMWM is warranted to understand its growing field of public health importance.
Publication ethics in biomedical journals from countries in Central and Eastern Europe.
Broga, Mindaugas; Mijaljica, Goran; Waligora, Marcin; Keis, Aime; Marusic, Ana
2014-03-01
Publication ethics is an important aspect of both the research and publication enterprises. It is particularly important in the field of biomedical science because published data may directly affect human health. In this article, we examine publication ethics policies in biomedical journals published in Central and Eastern Europe. We were interested in possible differences between East European countries that are members of the European Union (Eastern EU) and South-East European countries (South-East Europe) that are not members of the European Union. The most common ethical issues addressed by all journals in the region were redundant publication, peer review process, and copyright or licensing details. Image manipulation, editors' conflicts of interest and registration of clinical trials were the least common ethical policies. Three aspects were significantly more common in journals published outside the EU: statements on the endorsement of international editorial standards, contributorship policy, and image manipulation. On the other hand, copyright or licensing information were more prevalent in journals published in the Eastern EU. The existence of significant differences among biomedical journals' ethical policies calls for further research and active measures to harmonize policies across journals.
A resource facility for kinetic analysis: modeling using the SAAM computer programs.
Foster, D M; Boston, R C; Jacquez, J A; Zech, L
1989-01-01
Kinetic analysis and integrated system modeling have contributed significantly to understanding the physiology and pathophysiology of metabolic systems in humans and animals. Many experimental biologists are aware of the usefulness of these techniques and recognize that kinetic modeling requires special expertise. The Resource Facility for Kinetic Analysis (RFKA) provides this expertise through: (1) development and application of modeling technology for biomedical problems, and (2) development of computer-based kinetic modeling methodologies concentrating on the computer program Simulation, Analysis, and Modeling (SAAM) and its conversational version, CONversational SAAM (CONSAM). The RFKA offers consultation to the biomedical community in the use of modeling to analyze kinetic data and trains individuals in using this technology for biomedical research. Early versions of SAAM were widely applied in solving dosimetry problems; many users, however, are not familiar with recent improvements to the software. The purpose of this paper is to acquaint biomedical researchers in the dosimetry field with RFKA, which, together with the joint National Cancer Institute-National Heart, Lung and Blood Institute project, is overseeing SAAM development and applications. In addition, RFKA provides many service activities to the SAAM user community that are relevant to solving dosimetry problems.
Rotheram-Borus, Mary Jane; Swendeman, Dallas; Chovnick, Gary
2010-01-01
In the past 25 years, the field of HIV prevention research has been transformed repeatedly. Today, effective HIV prevention requires a combination of behavioral, biomedical, and structural intervention strategies. Risk of transmitting or acquiring HIV is reduced by consistent male and female-condom use, reductions in concurrent and/or sequential sexual and needle-sharing partners, male circumcision, and treatment with antiretroviral medications. At least 144 behavioral prevention programs have been found effective in reducing HIV transmission acts; however, scale up of these programs has not occurred outside of the United States. A series of recent failures of HIV-prevention efficacy trials for biomedical innovations such as HIV vaccines, treating herpes simplex 2 and other sexually transmitted infections, and diaphragm and microbicide barriers highlights the need for behavioral strategies to accompany biomedical strategies. This challenges prevention researchers to reconceptualize how cost-effective, useful, realistic, and sustainable prevention programs will be designed, delivered, tested, and diffused. The next generation of HIV prevention science must draw from the successes of existing evidence-based interventions and the expertise of the market sector to integrate preventive innovations and behaviors into everyday routines. PMID:19327028
[The biomedical periodicals of Hungarian editions--historical overview].
Berhidi, Anna; Geges, József; Vasas, Lívia
2006-03-12
The majority of Hungarian scientific results are published in international periodicals in foreign languages. Yet the publications in Hungarian scientific periodicals also should not be ignored. This study analyses biomedical periodicals of Hungarian edition from different points of view. Based on different databases a list of titles consisting of 119 items resulted, which contains both the core and the peripheral journals of the biomedical field. These periodicals were analysed empirically, one by one: checking out the titles. 13 of the titles are ceased, among the rest 106 Hungarian scientific journals 10 are published in English language. From the remaining majority of Hungarian language and publishing only a few show up in international databases. Although quarter of the Hungarian biomedical journals meet the requirements, which means they could be represented in international databases, these periodicals are not indexed. 42 biomedical periodicals are available online. Although quarter of these journals come with restricted access. 2/3 of the Hungarian biomedical journals have detailed instructions to authors. These instructions inform the publishing doctors and researchers of the requirements of a biomedical periodical. The increasing number of Hungarian biomedical journals published is welcome news. But it would be important for quality publications which are cited a lot to appear in the Hungarian journals. The more publications are cited, the more journals and authors gain in prestige on home and international level.
Recommending images of user interests from the biomedical literature
NASA Astrophysics Data System (ADS)
Clukey, Steven; Xu, Songhua
2013-03-01
Every year hundreds of thousands of biomedical images are published in journals and conferences. Consequently, finding images relevant to one's interests becomes an ever daunting task. This vast amount of literature creates a need for intelligent and easy-to-use tools that can help researchers effectively navigate through the content corpus and conveniently locate materials of their interests. Traditionally, literature search tools allow users to query content using topic keywords. However, manual query composition is often time and energy consuming. A better system would be one that can automatically deliver relevant content to a researcher without having the end user manually manifest one's search intent and interests via search queries. Such a computer-aided assistance for information access can be provided by a system that first determines a researcher's interests automatically and then recommends images relevant to the person's interests accordingly. The technology can greatly improve a researcher's ability to stay up to date in their fields of study by allowing them to efficiently browse images and documents matching their needs and interests among the vast amount of the biomedical literature. A prototype system implementation of the technology can be accessed via http://www.smartdataware.com.
Schultz, Jane S; Rodgers, V G J
2012-07-01
The Department of Bioengineering at the University of California, Riverside (UCR), was established in 2006 and is the youngest department in the Bourns College of Engineering. It is an interdisciplinary research engine that builds strength from highly recognized experts in biochemistry, biophysics, biology, and engineering, focusing on common critical themes. The range of faculty research interests is notable for its diversity, from the basic cell biology through cell function to the physiology of the whole organism, each directed at breakthroughs in biomedical devices for measurement and therapy. The department forges future leaders in bioengineering, mirroring the field in being energetic, interdisciplinary, and fast moving at the frontiers of biomedical discoveries. Our educational programs combine a solid foundation in bio logical sciences and engineering, diverse communication skills, and training in the most advanced quantitative bioengineering research. Bioengineering at UCR also includes the Bioengineering Interdepartmental Graduate (BIG) program. With its slogan Start-Grow-Be-BIG, it is already recognized for its many accomplishments, including being third in the nation in 2011 for bioengineering students receiving National Science Foundation graduate research fellowships as well as being one of the most ethnically inclusive programs in the nation.
Infrared Mass Spectrometry for Environmental and Biomedical Applications
NASA Astrophysics Data System (ADS)
Baltz-Knorr, M. L.; Papantonakis, M. R.; Ermer Haglund, D. R., Jr.
2000-11-01
Matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS) using a tunable, ultrashort pulse, mid-infrared free electron laser (FEL) has many applications for both environmental and biomedical research. Environmentally, the characterization of stored nuclear materials has been an important area of research. We are developing a method to determine nuclear tank waste constituents using MALDI MS. This includes desorption and ionization of small organic molecules from sodium nitrate solids and slurries (similar to the salt cake found in some tanks) and also from traditional MALDI matrices. Important aspects of the technique are that it does not produce a secondary waste stream and it is potentially field-deployable using solid-state lasers. Biomedically, the ability to do proteomics is being enhanced by the sensitivity and mass accuracy provided by MALDI MS. We are using MALDI MS to identify proteins embedded in liquid matrix materials, which provide a more natural environment for the biomolecules. We are also working on coupling MALDI MS to traditional protein identification and sequencing techniques for rapid analysis of large numbers of proteins. Research supported by the Office of Naval Research and the U.S. Department of Energy
Characterization of Acoustic Droplet Vaporization Using MRI
NASA Astrophysics Data System (ADS)
Li, David; Allen, Steven; Hernandez-Garcia, Luis; Bull, Joseph
2013-11-01
Acoustic droplet vaporization (ADV) is the selective vaporization of liquid droplets to form larger gas bubbles. The ADV process is currently being researched for biomedical applications such as gas embolotherapy, drug delivery, and phase-change contrast agents. In this study an albumin encapsulated dodecafluoropentane (DDFP, CAS: 678-26-2) microdroplet suspension was vaporized using a single element focused (f/2, D = 19 mm) 3.5 MHz transducer (Panametrics A321S, Olympus, Waltham, MA). The resulting DDFP bubble clouds were imaged using both bright field microscopy and MRI (Varian 7T, Agilent Technologies Inc., Santa Clara, CA). Field distortions due to DDFP bubble generation were characterized against the bright field images as a function of acoustic power and bubble cloud size. Experimentally a direct correlation between bubble cloud dimensions generated and field distortions seen in the MRI was observed. Additionally, MR velocimetry was used to measure the flow field resulting from ADV. The field distortions due to the bubbles were further characterized by modeling Maxwell's equations using COMSOL (COMSOL Inc., Burlington, MA). The ability to characterize ADV with alternative imaging modalities may prove useful in further development of ADV based biomedical therapies.
SATORI: a system for ontology-guided visual exploration of biomedical data repositories.
Lekschas, Fritz; Gehlenborg, Nils
2018-04-01
The ever-increasing number of biomedical datasets provides tremendous opportunities for re-use but current data repositories provide limited means of exploration apart from text-based search. Ontological metadata annotations provide context by semantically relating datasets. Visualizing this rich network of relationships can improve the explorability of large data repositories and help researchers find datasets of interest. We developed SATORI-an integrative search and visual exploration interface for the exploration of biomedical data repositories. The design is informed by a requirements analysis through a series of semi-structured interviews. We evaluated the implementation of SATORI in a field study on a real-world data collection. SATORI enables researchers to seamlessly search, browse and semantically query data repositories via two visualizations that are highly interconnected with a powerful search interface. SATORI is an open-source web application, which is freely available at http://satori.refinery-platform.org and integrated into the Refinery Platform. nils@hms.harvard.edu. Supplementary data are available at Bioinformatics online.
Current Progress of Genetically Engineered Pig Models for Biomedical Research
Gün, Gökhan
2014-01-01
Abstract The first transgenic pigs were generated for agricultural purposes about three decades ago. Since then, the micromanipulation techniques of pig oocytes and embryos expanded from pronuclear injection of foreign DNA to somatic cell nuclear transfer, intracytoplasmic sperm injection-mediated gene transfer, lentiviral transduction, and cytoplasmic injection. Mechanistically, the passive transgenesis approach based on random integration of foreign DNA was developed to active genetic engineering techniques based on the transient activity of ectopic enzymes, such as transposases, recombinases, and programmable nucleases. Whole-genome sequencing and annotation of advanced genome maps of the pig complemented these developments. The full implementation of these tools promises to immensely increase the efficiency and, in parallel, to reduce the costs for the generation of genetically engineered pigs. Today, the major application of genetically engineered pigs is found in the field of biomedical disease modeling. It is anticipated that genetically engineered pigs will increasingly be used in biomedical research, since this model shows several similarities to humans with regard to physiology, metabolism, genome organization, pathology, and aging. PMID:25469311
Advanced Biomedical Computing Center (ABCC) | DSITP
The Advanced Biomedical Computing Center (ABCC), located in Frederick Maryland (MD), provides HPC resources for both NIH/NCI intramural scientists and the extramural biomedical research community. Its mission is to provide HPC support, to provide collaborative research, and to conduct in-house research in various areas of computational biology and biomedical research.
Evaluation of research in biomedical ontologies
Dumontier, Michel; Gkoutos, Georgios V.
2013-01-01
Ontologies are now pervasive in biomedicine, where they serve as a means to standardize terminology, to enable access to domain knowledge, to verify data consistency and to facilitate integrative analyses over heterogeneous biomedical data. For this purpose, research on biomedical ontologies applies theories and methods from diverse disciplines such as information management, knowledge representation, cognitive science, linguistics and philosophy. Depending on the desired applications in which ontologies are being applied, the evaluation of research in biomedical ontologies must follow different strategies. Here, we provide a classification of research problems in which ontologies are being applied, focusing on the use of ontologies in basic and translational research, and we demonstrate how research results in biomedical ontologies can be evaluated. The evaluation strategies depend on the desired application and measure the success of using an ontology for a particular biomedical problem. For many applications, the success can be quantified, thereby facilitating the objective evaluation and comparison of research in biomedical ontology. The objective, quantifiable comparison of research results based on scientific applications opens up the possibility for systematically improving the utility of ontologies in biomedical research. PMID:22962340
Histochemistry in biology and medicine: a message from the citing journals.
Pellicciari, Carlo
2015-12-23
Especially in recent years, biomedical research has taken advantage of the progress in several disciplines, among which microscopy and histochemistry. To assess the influence of histochemistry in the biomedical field, the articles published during the period 2011-2015 have been selected from different databases and grouped by subject categories: as expected, biological and biomedical studies where histochemistry has been used as a major experimental approach include a wide of basic and applied researches on both humans and other animal or plant organisms. To better understand the impact of histochemical publications onto the different biological and medical disciplines, it was useful to look at the journals where the articles published in a multidisciplinary journal of histochemistry have been cited: it was observed that, in the five-years period considered, 20% only of the citations were in histochemical periodicals, the remaining ones being in journals of Cell & Tissue biology, general and experimental Medicine, Oncology, Biochemistry & Molecular biology, Neurobiology, Anatomy & Morphology, Pharmacology & Toxicology, Reproductive biology, Veterinary sciences, Physiology, Endocrinology, Tissue engineering & Biomaterials, as well as in multidisciplinary journals.It is easy to foresee that also in the future the histochemical journals will be an attended forum for basic and applied scientists in the biomedical field. It will be crucial that these journals be open to an audience as varied as possible, publishing articles on the application of refined techniques to very different experimental models: this will stimulate non-histochemist scientists to approach histochemistry whose application horizon could expand to novel and possibly exclusive subjects.
Histochemistry in Biology and Medicine: A Message From the Citing Journals
2015-01-01
Especially in recent years, biomedical research has taken advantage of the progress in several disciplines, among which microscopy and histochemistry. To assess the influence of histochemistry in the biomedical field, the articles published during the period 2011-2015 have been selected from different databases and grouped by subject categories. As expected, biological and biomedical studies where histochemistry has been used as a major experimental approach include a wide range of basic and applied researches on both humans and other animal or plant organisms. To better understand the impact of histochemical publications onto the different biological and medical disciplines, it was useful to look at the journals where the articles published in a multidisciplinary journal of histochemistry have been cited: it was observed that, in the five-years period considered, 20% only of the citations were in histochemical periodicals, the remaining ones being in journals of Cell & Tissue biology, general and experimental Medicine, Oncology, Biochemistry & Molecular biology, Neurobiology, Anatomy & Morphology, Pharmacology & Toxicology, Reproductive biology, Veterinary sciences, Physiology, Endocrinology, Tissue engineering & Biomaterials, as well as in multidisciplinary journals. It is easy to foresee that also in the future the histochemical journals will be an attended forum for basic and applied scientists in the biomedical field. It will be crucial that these journals be open to an audience as varied as possible, publishing articles on the application of refined techniques to very different experimental models: this will stimulate non-histochemist scientists to approach histochemistry whose application horizon could expand to novel and possibly exclusive subjects. PMID:26708189
Code of Federal Regulations, 2012 CFR
2012-10-01
... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS MINORITY BIOMEDICAL RESEARCH... Biomedical Research Support Program) awarded in accordance with section 301(a)(3) of the Public Health... investigators engaged in biomedical research, and to broaden the opportunities for participation in biomedical...
Code of Federal Regulations, 2010 CFR
2010-10-01
... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS MINORITY BIOMEDICAL RESEARCH... Biomedical Research Support Program) awarded in accordance with section 301(a)(3) of the Public Health... investigators engaged in biomedical research, and to broaden the opportunities for participation in biomedical...
Code of Federal Regulations, 2011 CFR
2011-10-01
... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS MINORITY BIOMEDICAL RESEARCH... Biomedical Research Support Program) awarded in accordance with section 301(a)(3) of the Public Health... investigators engaged in biomedical research, and to broaden the opportunities for participation in biomedical...
Code of Federal Regulations, 2013 CFR
2013-10-01
... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS MINORITY BIOMEDICAL RESEARCH... Biomedical Research Support Program) awarded in accordance with section 301(a)(3) of the Public Health... investigators engaged in biomedical research, and to broaden the opportunities for participation in biomedical...
Code of Federal Regulations, 2014 CFR
2014-10-01
... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS MINORITY BIOMEDICAL RESEARCH... Biomedical Research Support Program) awarded in accordance with section 301(a)(3) of the Public Health... investigators engaged in biomedical research, and to broaden the opportunities for participation in biomedical...
Recent advances in bulk metallic glasses for biomedical applications.
Li, H F; Zheng, Y F
2016-05-01
With a continuously increasing aging population and the improvement of living standards, large demands of biomaterials are expected for a long time to come. Further development of novel biomaterials, that are much safer and of much higher quality, in terms of both biomedical and mechanical properties, are therefore of great interest for both the research scientists and clinical surgeons. Compared with the conventional crystalline metallic counterparts, bulk metallic glasses have unique amorphous structures, and thus exhibit higher strength, lower Young's modulus, improved wear resistance, good fatigue endurance, and excellent corrosion resistance. For this purpose, bulk metallic glasses (BMGs) have recently attracted much attention for biomedical applications. This review discusses and summarizes the recent developments and advances of bulk metallic glasses, including Ti-based, Zr-based, Fe-based, Mg-based, Zn-based, Ca-based and Sr-based alloying systems for biomedical applications. Future research directions will move towards overcoming the brittleness, increasing the glass forming ability (GFA) thus obtaining corresponding bulk metallic glasses with larger sizes, removing/reducing toxic elements, and surface modifications. Bulk metallic glasses (BMGs), also known as amorphous alloys or liquid metals, are relative newcomers in the field of biomaterials. They have gained increasing attention during the past decades, as they exhibit an excellent combination of properties and processing capabilities desired for versatile biomedical implant applications. The present work reviewed the recent developments and advances of biomedical BMGs, including Ti-based, Zr-based, Fe-based, Mg-based, Zn-based, Ca-based and Sr-based BMG alloying systems. Besides, the critical analysis and in-depth discussion on the current status, challenge and future development of biomedical BMGs are included. The possible solution to the BMG size limitation, the brittleness of BMGs has been proposed. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
[Lines of research in the field of cellular technologies and its application in military medicine].
Chepur, S V; Iudin, A B; Shperling, I A; Iurkevich, Iu V; Vengerovich, N G; Shchipanov, S G; Shulepov, A V
2015-02-01
The paper presents an overview of cellular therapy products and medical tissue engineering of the leading countries of the world (including the US) and identifies lines of research in the field of cellular technology application in the interests of national military medicine. The authors gave information concerning practical implementation of the achievements of biomedical research in the field of regenerative cellular products and technologies in Russia as different products, which may be used at the stages of medical evacuation. The authors presented results of research, which was, performed on the model of mine blast injury in accordance with principle possibility of the usage of cellular technologies products (multipotent mesenchymal stromal cells) in medical practice.
[Biomedicine in thoracic surgery: state of the art].
Leistner, M; Steinke, M; Walles, T
2013-06-01
Biomedicine represents a new scientific field at the interface of human, molecular and cell biology and medicine. Comprising the diverse disciplines of stem cell research, tissue engineering and material sciences, biomedicine gives rise to new approaches in research and therapy for - to date - unmet medical issues. Biomedical research is currently conducted in many medical, especially surgical subspecialties, and a number of successful developments have already been brought to clinical application. Concerning thoracic surgery, biomedical approaches are pursued primarily for tissue and organ replacement of the upper airways, lung and thoracic wall. In spite of a comparatively small research foundation, five different concepts have been clinically implemented worldwide, due to a lack of established treatment options in the case of extensive disease of the greater airways. In this review, the clinical background and the tissue-specific basics of tracheobronchial biomedicine are presented. Georg Thieme Verlag KG Stuttgart · New York.
From Cleanroom to Desktop: Emerging Micro-Nanofabrication Technology for Biomedical Applications
Wang, Wei
2010-01-01
This review is motivated by the growing demand for low-cost, easy-to-use, compact-size yet powerful micro-nanofabrication technology to address emerging challenges of fundamental biology and translational medicine in regular laboratory settings. Recent advancements in the field benefit considerably from rapidly expanding material selections, ranging from inorganics to organics and from nanoparticles to self-assembled molecules. Meanwhile a great number of novel methodologies, employing off-the-shelf consumer electronics, intriguing interfacial phenomena, bottom-up self-assembly principles, etc., have been implemented to transit micro-nanofabrication from a cleanroom environment to a desktop setup. Furthermore, the latest application of micro-nanofabrication to emerging biomedical research will be presented in detail, which includes point-of-care diagnostics, on-chip cell culture as well as bio-manipulation. While significant progresses have been made in the rapidly growing field, both apparent and unrevealed roadblocks will need to be addressed in the future. We conclude this review by offering our perspectives on the current technical challenges and future research opportunities. PMID:21161384
From cleanroom to desktop: emerging micro-nanofabrication technology for biomedical applications.
Pan, Tingrui; Wang, Wei
2011-02-01
This review is motivated by the growing demand for low-cost, easy-to-use, compact-size yet powerful micro-nanofabrication technology to address emerging challenges of fundamental biology and translational medicine in regular laboratory settings. Recent advancements in the field benefit considerably from rapidly expanding material selections, ranging from inorganics to organics and from nanoparticles to self-assembled molecules. Meanwhile a great number of novel methodologies, employing off-the-shelf consumer electronics, intriguing interfacial phenomena, bottom-up self-assembly principles, etc., have been implemented to transit micro-nanofabrication from a cleanroom environment to a desktop setup. Furthermore, the latest application of micro-nanofabrication to emerging biomedical research will be presented in detail, which includes point-of-care diagnostics, on-chip cell culture as well as bio-manipulation. While significant progresses have been made in the rapidly growing field, both apparent and unrevealed roadblocks will need to be addressed in the future. We conclude this review by offering our perspectives on the current technical challenges and future research opportunities.
ERIC Educational Resources Information Center
Sahota, Puneet Chawla
2012-01-01
Native Americans have been underrepresented in previous studies of biomedical research participants. This paper reports a qualitative interview study of Native Americans' perspectives on biomedical research. In-depth interviews were conducted with 53 members of a Southwest tribal community. Many interviewees viewed biomedical research studies as a…
Zhan, Qimin; Liu, Depei
2007-08-01
The Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC) is the largest medical institution in China and has a leading high-level multidisciplinary medical research and medial service. Under the CAMS and PUMC infrastructure, there are 17 biomedical institutes and 6 large hospitals, which cover most fields of the human disease-related research. CAMS and PUMC has always attached great emphasis on the control and cure of severe diseases, as well as a series of innovative drug researches, and has made significant progress in those fields. The long-term goals for CAMS and PUMC in the future development are: reaching the international advanced level in the areas of severe disease prediction, prevention, control, diagnosis, and research on drug innovation; establishing theoretical and technological system for explanation of the mechanism of severe diseases, which possesses Chinese style and represents the frontier level in the world, and at the same time, providing scientific support for the prevention and treatment of severe disease and making contribution to the establishment and development of a harmonious society in China.
Of mice and rats: key species variations in the sexual differentiation of brain and behavior.
Bonthuis, P J; Cox, K H; Searcy, B T; Kumar, P; Tobet, S; Rissman, E F
2010-07-01
Mice and rats are important mammalian models in biomedical research. In contrast to other biomedical fields, work on sexual differentiation of brain and behavior has traditionally utilized comparative animal models. As mice are gaining in popularity, it is essential to acknowledge the differences between these two rodents. Here we review neural and behavioral sexual dimorphisms in rats and mice, which highlight species differences and experimental gaps in the literature, that are needed for direct species comparisons. Moving forward, investigators must answer fundamental questions about their chosen organism, and attend to both species and strain differences as they select the optimal animal models for their research questions. Copyright 2010 Elsevier Inc. All rights reserved.
High-power THz to IR emission by femtosecond laser irradiation of random 2D metallic nanostructures.
Zhang, Liangliang; Mu, Kaijun; Zhou, Yunsong; Wang, Hai; Zhang, Cunlin; Zhang, X-C
2015-07-24
Terahertz (THz) spectroscopic sensing and imaging has identified its potentials in a number of areas such as standoff security screening at portals, explosive detection at battle fields, bio-medical research, and so on. With these needs, the development of an intense and broadband THz source has been a focus of THz research. In this work, we report an intense (~10 mW) and ultra-broadband (~150 THz) THz to infrared (IR) source with a Gaussian wavefront, emitted from nano-pore-structured metallic thin films with femtosecond laser pulse excitation. The underlying mechanism has been proposed as thermal radiation. In addition, an intense coherent THz signal was generated through the optical rectification process simultaneously with the strong thermal signal. This unique feature opens up new avenues in biomedical research.
NASA Technical Reports Server (NTRS)
Beckenbach, E. S. (Editor)
1984-01-01
It is more important than ever that engineers have an understanding of the future needs of clinical and research medicine, and that physicians know somthing about probable future developments in instrumentation capabilities. Only by maintaining such a dialog can the most effective application of technological advances to medicine be achieved. This workshop attempted to provide this kind of information transfer in the limited field of diagnostic imaging. Biomedical research at the Jet Propulsion Laboratory is discussed, taking into account imaging results from space exploration missions, as well as biomedical research tasks based in these technologies. Attention is also given to current and future indications for magnetic resonance in medicine, high speed quantitative digital microscopy, computer processing of radiographic images, computed tomography and its modern applications, position emission tomography, and developments related to medical ultrasound.
Web 2.0 Applications in Medicine: Trends and Topics in the Literature
2015-01-01
Background The World Wide Web has changed research habits, and these changes were further expanded when “Web 2.0” became popular in 2005. Bibliometrics is a helpful tool used for describing patterns of publication, for interpreting progression over time, and the geographical distribution of research in a given field. Few studies employing bibliometrics, however, have been carried out on the correlative nature of scientific literature and Web 2.0. Objective The aim of this bibliometric analysis was to provide an overview of Web 2.0 implications in the biomedical literature. The objectives were to assess the growth rate of literature, key journals, authors, and country contributions, and to evaluate whether the various Web 2.0 applications were expressed within this biomedical literature, and if so, how. Methods A specific query with keywords chosen to be representative of Web 2.0 applications was built for the PubMed database. Articles related to Web 2.0 were downloaded in Extensible Markup Language (XML) and were processed through developed hypertext preprocessor (PHP) scripts, then imported to Microsoft Excel 2010 for data processing. Results A total of 1347 articles were included in this study. The number of articles related to Web 2.0 has been increasing from 2002 to 2012 (average annual growth rate was 106.3% with a maximum of 333% in 2005). The United States was by far the predominant country for authors, with 514 articles (54.0%; 514/952). The second and third most productive countries were the United Kingdom and Australia, with 87 (9.1%; 87/952) and 44 articles (4.6%; 44/952), respectively. Distribution of number of articles per author showed that the core population of researchers working on Web 2.0 in the medical field could be estimated at approximately 75. In total, 614 journals were identified during this analysis. Using Bradford’s law, 27 core journals were identified, among which three (Studies in Health Technology and Informatics, Journal of Medical Internet Research, and Nucleic Acids Research) produced more than 35 articles related to Web 2.0 over the period studied. A total of 274 words in the field of Web 2.0 were found after manual sorting of the 15,878 words appearing in title and abstract fields for articles. Word frequency analysis reveals “blog” as the most recurrent, followed by “wiki”, “Web 2.0”, ”social media”, “Facebook”, “social networks”, “blogger”, “cloud computing”, “Twitter”, and “blogging”. All categories of Web 2.0 applications were found, indicating the successful integration of Web 2.0 into the biomedical field. Conclusions This study shows that the biomedical community is engaged in the use of Web 2.0 and confirms its high level of interest in these tools. Therefore, changes in the ways researchers use information seem to be far from over. PMID:25842175
Gimli: open source and high-performance biomedical name recognition
2013-01-01
Background Automatic recognition of biomedical names is an essential task in biomedical information extraction, presenting several complex and unsolved challenges. In recent years, various solutions have been implemented to tackle this problem. However, limitations regarding system characteristics, customization and usability still hinder their wider application outside text mining research. Results We present Gimli, an open-source, state-of-the-art tool for automatic recognition of biomedical names. Gimli includes an extended set of implemented and user-selectable features, such as orthographic, morphological, linguistic-based, conjunctions and dictionary-based. A simple and fast method to combine different trained models is also provided. Gimli achieves an F-measure of 87.17% on GENETAG and 72.23% on JNLPBA corpus, significantly outperforming existing open-source solutions. Conclusions Gimli is an off-the-shelf, ready to use tool for named-entity recognition, providing trained and optimized models for recognition of biomedical entities from scientific text. It can be used as a command line tool, offering full functionality, including training of new models and customization of the feature set and model parameters through a configuration file. Advanced users can integrate Gimli in their text mining workflows through the provided library, and extend or adapt its functionalities. Based on the underlying system characteristics and functionality, both for final users and developers, and on the reported performance results, we believe that Gimli is a state-of-the-art solution for biomedical NER, contributing to faster and better research in the field. Gimli is freely available at http://bioinformatics.ua.pt/gimli. PMID:23413997
ERIC Educational Resources Information Center
Institute of Medicine (NAS), Washington, DC.
Designed to provide assistance in the assessment of the need for biomedical and behavioral research personnel, this report presents research findings related to specific medical careers. The review includes an examination of the system under which biomedical and behavioral scientists are trained for research careers and the United States…
Bhalla, Nikhil; Jolly, Pawan; Formisano, Nello
2016-01-01
Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available. PMID:27365030
Barata, David; van Blitterswijk, Clemens; Habibovic, Pamela
2016-04-01
From the first microfluidic devices used for analysis of single metabolic by-products to highly complex multicompartmental co-culture organ-on-chip platforms, efforts of many multidisciplinary teams around the world have been invested in overcoming the limitations of conventional research methods in the biomedical field. Close spatial and temporal control over fluids and physical parameters, integration of sensors for direct read-out as well as the possibility to increase throughput of screening through parallelization, multiplexing and automation are some of the advantages of microfluidic over conventional, 2D tissue culture in vitro systems. Moreover, small volumes and relatively small cell numbers used in experimental set-ups involving microfluidics, can potentially decrease research cost. On the other hand, these small volumes and numbers of cells also mean that many of the conventional molecular biology or biochemistry assays cannot be directly applied to experiments that are performed in microfluidic platforms. Development of different types of assays and evidence that such assays are indeed a suitable alternative to conventional ones is a step that needs to be taken in order to have microfluidics-based platforms fully adopted in biomedical research. In this review, rather than providing a comprehensive overview of the literature on microfluidics, we aim to discuss developments in the field of microfluidics that can aid advancement of biomedical research, with emphasis on the field of biomaterials. Three important topics will be discussed, being: screening, in particular high-throughput and combinatorial screening; mimicking of natural microenvironment ranging from 3D hydrogel-based cellular niches to organ-on-chip devices; and production of biomaterials with closely controlled properties. While important technical aspects of various platforms will be discussed, the focus is mainly on their applications, including the state-of-the-art, future perspectives and challenges. Microfluidics, being a technology characterized by the engineered manipulation of fluids at the submillimeter scale, offers some interesting tools that can advance biomedical research and development. Screening platforms based on microfluidic technologies that allow high-throughput and combinatorial screening may lead to breakthrough discoveries not only in basic research but also relevant to clinical application. This is further strengthened by the fact that reliability of such screens may improve, since microfluidic systems allow close mimicking of physiological conditions. Finally, microfluidic systems are also very promising as micro factories of a new generation of natural or synthetic biomaterials and constructs, with finely controlled properties. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Publishing priorities of biomedical research funders
Collins, Ellen
2013-01-01
Objectives To understand the publishing priorities, especially in relation to open access, of 10 UK biomedical research funders. Design Semistructured interviews. Setting 10 UK biomedical research funders. Participants 12 employees with responsibility for research management at 10 UK biomedical research funders; a purposive sample to represent a range of backgrounds and organisation types. Conclusions Publicly funded and large biomedical research funders are committed to open access publishing and are pleased with recent developments which have stimulated growth in this area. Smaller charitable funders are supportive of the aims of open access, but are concerned about the practical implications for their budgets and their funded researchers. Across the board, biomedical research funders are turning their attention to other priorities for sharing research outputs, including data, protocols and negative results. Further work is required to understand how smaller funders, including charitable funders, can support open access. PMID:24154520
[Main characteristics of current biomedical research, in Chile].
Valdés S, Gloria; Armas M, Rodolfo; Reyes B, Humberto
2012-04-01
Biomedical research is a fundamental tool for the development of a country, requiring human and financial resources. To define some current characteristics of biomedical research, in Chile. Data on entities funding bio-medical research, participant institutions, and the number of active investigators for the period 2007-2009 were obtained from institutional sources; publications indexed in PubMed for 2008-2009 were analysed. Most financial resources invested in biomedical research projects (approximately US$ 19 million per year) came from the "Comisión Nacional de Investigación Científica y Tecnológica" (CONICYT), a state institution with 3 independent Funds administering competitive grant applications open annually to institutional or independent investigators in Chile. Other sources and universities raised the total amount to US$ 26 million. Since 2007 to 2009, 408 investigators participated in projects funded by CONICYT. The main participant institutions were Universidad de Chile and Pontificia Universidad Católica de Chile, both adding up to 84% of all funded projects. Independently, in 2009,160 research projects -mainly multi centric clinical trials- received approximately US$ 24 million from foreign pharmaceutical companies. Publications listed in PubMed were classified as "clinical research" (n = 879, including public health) or "basic biomedical research" (n = 312). Biomedical research in Chile is mainly supported by state funds and university resources, but clinical trials also obtained an almost equivalent amount from foreign resources. Investigators are predominantly located in two universities. A small number of MD-PhD programs are aimed to train and incorporate new scientists. Only a few new Medical Schools participate in biomedical research. A National Registry of biomedical research projects, including the clinical trials, is required among other initiatives to stimulate research in biomedical sciences in Chile.
Glez-Peña, Daniel; Díaz, Fernando; Hernández, Jesús M; Corchado, Juan M; Fdez-Riverola, Florentino
2009-06-18
Bioinformatics and medical informatics are two research fields that serve the needs of different but related communities. Both domains share the common goal of providing new algorithms, methods and technological solutions to biomedical research, and contributing to the treatment and cure of diseases. Although different microarray techniques have been successfully used to investigate useful information for cancer diagnosis at the gene expression level, the true integration of existing methods into day-to-day clinical practice is still a long way off. Within this context, case-based reasoning emerges as a suitable paradigm specially intended for the development of biomedical informatics applications and decision support systems, given the support and collaboration involved in such a translational development. With the goals of removing barriers against multi-disciplinary collaboration and facilitating the dissemination and transfer of knowledge to real practice, case-based reasoning systems have the potential to be applied to translational research mainly because their computational reasoning paradigm is similar to the way clinicians gather, analyze and process information in their own practice of clinical medicine. In addressing the issue of bridging the existing gap between biomedical researchers and clinicians who work in the domain of cancer diagnosis, prognosis and treatment, we have developed and made accessible a common interactive framework. Our geneCBR system implements a freely available software tool that allows the use of combined techniques that can be applied to gene selection, clustering, knowledge extraction and prediction for aiding diagnosis in cancer research. For biomedical researches, geneCBR expert mode offers a core workbench for designing and testing new techniques and experiments. For pathologists or oncologists, geneCBR diagnostic mode implements an effective and reliable system that can diagnose cancer subtypes based on the analysis of microarray data using a CBR architecture. For programmers, geneCBR programming mode includes an advanced edition module for run-time modification of previous coded techniques. geneCBR is a new translational tool that can effectively support the integrative work of programmers, biomedical researches and clinicians working together in a common framework. The code is freely available under the GPL license and can be obtained at http://www.genecbr.org.
Advancing Global Health – The Need for (Better) Social Science
Hanefeld, Johanna
2016-01-01
In his perspective "Navigating between stealth advocacy and unconscious dogmatism: the challenge of researching the norms, politics and power of global health," Ooms argues that actions taken in the field of global health are dependent not only on available resources, but on the normative premise that guides how these resources are spent. This comment sets out how the application of a predominately biomedical positivist research tradition in global health, has potentially limited understanding of the value judgements underlying decisions in the field. To redress this critical social science, including health policy analysis has much to offer, to the field of global health including on questions of governance. PMID:27239873
Management of information in distributed biomedical collaboratories.
Keator, David B
2009-01-01
Organizing and annotating biomedical data in structured ways has gained much interest and focus in the last 30 years. Driven by decreases in digital storage costs and advances in genetics sequencing, imaging, electronic data collection, and microarray technologies, data is being collected at an alarming rate. The specialization of fields in biology and medicine demonstrates the need for somewhat different structures for storage and retrieval of data. For biologists, the need for structured information and integration across a number of domains drives development. For clinical researchers and hospitals, the need for a structured medical record accessible to, ideally, any medical practitioner who might require it during the course of research or patient treatment, patient confidentiality, and security are the driving developmental factors. Scientific data management systems generally consist of a few core services: a backend database system, a front-end graphical user interface, and an export/import mechanism or data interchange format to both get data into and out of the database and share data with collaborators. The chapter introduces some existing databases, distributed file systems, and interchange languages used within the biomedical research and clinical communities for scientific data management and exchange.
Owlia, P; Vasei, M; Goliaei, B; Nassiri, I
2011-04-01
The interests in journal impact factor (JIF) in scientific communities have grown over the last decades. The JIFs are used to evaluate journals quality and the papers published therein. JIF is a discipline specific measure and the comparison between the JIF dedicated to different disciplines is inadequate, unless a normalization process is performed. In this study, normalized impact factor (NIF) was introduced as a relatively simple method enabling the JIFs to be used when evaluating the quality of journals and research works in different disciplines. The NIF index was established based on the multiplication of JIF by a constant factor. The constants were calculated for all 54 disciplines of biomedical field during 2005, 2006, 2007, 2008 and 2009 years. Also, ranking of 393 journals in different biomedical disciplines according to the NIF and JIF were compared to illustrate how the NIF index can be used for the evaluation of publications in different disciplines. The findings prove that the use of the NIF enhances the equality in assessing the quality of research works produced by researchers who work in different disciplines. Copyright © 2010 Elsevier Inc. All rights reserved.
Special Section: New Ways to Detect Colon Cancer 3-D virtual screening now being used
... two together," recalls Arie Kaufman, chairman of the computer science department at New York's Stony Brook University. Dr. Kaufman is one of the world's leading researchers in the high-tech medical fields of biomedical visualization, computer graphics, virtual reality, and multimedia. The year was ...
The Importance of Having a Ph.D., Career Advice
USDA-ARS?s Scientific Manuscript database
A presentation on the importance of having a PhD to motivate Initiative to Maximize Student Diversity Program (IMSD) undergrads towards conducting research, pursuing careers in the biomedical field, applying to grad school, and getting a Ph.D., based upon ARS scientist's experiences as a student, a ...
42 CFR 65a.1 - To what programs do these regulations apply?
Code of Federal Regulations, 2010 CFR
2010-10-01
... Section 65a.1 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS... understanding, assessing, and attenuating the adverse effects on human health resulting from exposure to...-biomedical research project in the fields of ecology, hydrogeology, and/or engineering, and including the...
42 CFR 65a.1 - To what programs do these regulations apply?
Code of Federal Regulations, 2011 CFR
2011-10-01
... Section 65a.1 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS... understanding, assessing, and attenuating the adverse effects on human health resulting from exposure to...-biomedical research project in the fields of ecology, hydrogeology, and/or engineering, and including the...
Preface to Special Topic: Emerging materials for photonics
NASA Astrophysics Data System (ADS)
Vitiello, Miriam S.; Razeghi, Manijeh
2017-03-01
Photonics plays a major role in all aspects of human life. It revolutionized science by addressing fundamental scientific questions and by enabling key functions in many interdisciplinary fields spanning from quantum technologies to information and communication science, and from biomedical research to industrial process monitoring and life entertainment.
Defining Compensable Injury in Biomedical Research.
Larkin, Megan E
2015-01-01
Biomedical research provides a core social good by enabling medical progress. In the twenty-first century alone, this includes reducing transmission of HIV/AIDS, developing innovative therapies for cancer patients, and exploring the possibilities of personalized medicine. In order to continue to advance medical science, research relies on the voluntary participation of human subjects. Because research is inherently uncertain, unintended harm is an inevitable part of the research enterprise. Currently, injured research participants in the United States must turn to the “litigation lottery” of the tort system in search of compensation. This state of affairs fails research participants, who are too often left uncompensated for devastating losses, and makes the United States an outlier in the international community. In spite of forty years’ worth of Presidential Commissions and other respected voices calling for the development of a no-fault compensation system, no progress has been made to date. One of the reasons for this lack of progress is the failure to develop a coherent ethical basis for an obligation to provide compensation for research related injuries. This problem is exacerbated by the lack of a clear definition of “compensable injury” in the biomedical research context. This article makes a number of important contributions to the scholarship in this growing field. To begin, it examines compensation systems already in existence and concludes that there are four main definitional elements that must be used to define “compensable injury.” Next, it examines the justifications that have been put forth as the basis for an ethical obligation to provide compensation, and settles on retrospective nonmaleficence and distributive and compensatory justice as the most salient and persuasive. Finally, it uses the regulatory elements and the justifications discussed in the first two sections to develop a well-rounded definition of “compensable injury” that is tailored to the biomedical research context. Using this definition, it argues for the development of a first-of- its-kind no-fault compensation system in the United States.
Classifying diseases and remedies in ethnomedicine and ethnopharmacology.
Staub, Peter O; Geck, Matthias S; Weckerle, Caroline S; Casu, Laura; Leonti, Marco
2015-11-04
Ethnopharmacology focuses on the understanding of local and indigenous use of medicines and therefore an emic approach is inevitable. Often, however, standard biomedical disease classifications are used to describe and analyse local diseases and remedies. Standard classifications might be a valid tool for cross-cultural comparisons and bioprospecting purposes but are not suitable to understand the local perception of disease and use of remedies. Different standard disease classification systems exist but their suitability for cross-cultural comparisons of ethnomedical data has never been assessed. Depending on the research focus, (I) ethnomedical, (II) cross-cultural, and (III) bioprospecting, we provide suggestions for the use of specific classification systems. We analyse three different standard biomedical classification systems (the International Classification of Diseases (ICD); the Economic Botany Data Collection Standard (EBDCS); and the International Classification of Primary Care (ICPC)), and discuss their value for categorizing diseases of ethnomedical systems and their suitability for cross-cultural research in ethnopharmacology. Moreover, based on the biomedical uses of all approved plant derived biomedical drugs, we propose a biomedical therapy-based classification system as a guide for the discovery of drugs from ethnopharmacological sources. Widely used standards, such as the International Classification of Diseases (ICD) by the WHO and the Economic Botany Data Collection Standard (EBDCS) are either technically challenging due to a categorisation system based on clinical examinations, which are usually not possible during field research (ICD) or lack clear biomedical criteria combining disorders and medical effects in an imprecise and confusing way (EBDCS). The International Classification of Primary Care (ICPC), also accepted by the WHO, has more in common with ethnomedical reality than the ICD or the EBDCS, as the categories are designed according to patient's perceptions and are less influenced by clinical medicine. Since diagnostic tools are not required, medical ethnobotanists and ethnopharmacologists can easily classify reported symptoms and complaints with the ICPC in one of the "chapters" based on 17 body systems, psychological and social problems. Also the biomedical uses of plant-derived drugs are classifiable into 17 broad organ- and therapy-based use-categories but can easily be divided into more specific subcategories. Depending on the research focus (I-III) we propose the following classification systems: I. Ethnomedicine: Ethnomedicine is culture-bound and local classifications have to be understood from an emic perspective. Consequently, the application of prefabricated, "one-size fits all" biomedical classification schemes is of limited value. II. Cross-cultural analysis: The ICPC is a suitable standard that can be applied but modified as required. III. Bioprospecting: We suggest a biomedical therapy-driven classification system with currently 17 use-categories based on biomedical uses of all approved plant derived natural product drugs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Polymer-Based Electrospun Nanofibers for Biomedical Applications
Al-Enizi, Abdullah M.; Zagho, Moustafa M.
2018-01-01
Electrospinning has been considered a promising and novel procedure to fabricate polymer nanofibers due to its simplicity, cost effectiveness, and high production rate, making this technique highly relevant for both industry and academia. It is used to fabricate non-woven fibers with unique characteristics such as high permeability, stability, porosity, surface area to volume ratio, ease of functionalization, and excellent mechanical performance. Nanofibers can be synthesized and tailored to suit a wide range of applications including energy, biotechnology, healthcare, and environmental engineering. A comprehensive outlook on the recent developments, and the influence of electrospinning on biomedical uses such as wound dressing, drug release, and tissue engineering, has been presented. Concerns regarding the procedural restrictions and research contests are addressed, in addition to providing insights about the future of this fabrication technique in the biomedical field. PMID:29677145
On Contributing to the Progress of Medical Informatics as Publisher.
Haux, R; Geissbuhler, A; Holmes, J; Jaulent, M-C; Koch, S; Kulikowski, C A; Lehmann, C U; McCray, A T; Séroussi, B; Soualmia, L F; van Bemmel, J H
2017-08-01
May 1st, 2017, will mark Dieter Bergemann's 80th birthday. As Chief Executive Officer and Owner of Schattauer Publishers from 1983 to 2016, the biomedical and health informatics community owes him a great debt of gratitude. The past and present editors of Methods of Information in Medicine, the IMIA Yearbook of Medical Informatics, and Applied Clinical Informatics want to honour and thank Dieter Bergemann by providing a brief biography that emphasizes his contributions, by reviewing his critical role as an exceptionally supportive publisher for Schattauer's three biomedical and health informatics periodicals, and by sharing some personal anecdotes. Over the past 40 years, Dieter Bergemann has been an influential, if behind-the-scenes, driving force in biomedical and health informatics publications, helping to ensure success in the dissemination of our field's research and practice. Georg Thieme Verlag KG Stuttgart.
Zinc Oxide Nanomaterials for Biomedical Fluorescence Detection
Hahm, Jong-in
2014-01-01
One-dimensional zinc oxide nanomaterials have been recently developed into novel, extremely effective, optical signal-enhancing bioplatforms. Their usefulness has been demonstrated in various biomedical fluorescence assays. Fluorescence is extensively used in biology and medicine as a sensitive and noninvasive detection method for tracking and analyzing biological molecules. Achieving high sensitivity via improving signal-to-noise ratio is of paramount importance in fluorescence-based, trace-level detection. Recent advances in the development of optically superior one-dimensional materials have contributed to this important biomedical area of detection. This review article will discuss major research developments that have so far been made in this emerging and exciting topical field. The discussion will cover a broad range of subjects including synthesis of zinc oxide nanorods (ZnO NRs), various properties differentiating them as suitable optical biodetection platforms, their demonstrated applicability in DNA and protein detection, and the nanomaterial characteristics relevant for biomolecular fluorescence enhancement. This review will then summarize the current status of ZnO NR-based biodetection and further elaborate future utility of ZnO NR platforms for advanced biomedical assays, based on their proven advantages. Lastly, present challenges experienced in this topical area will be identified and focal subject areas for future research will be suggested as well. PMID:24730276
Multifunctional Nanoparticles Self-Assembled from Small Organic Building Blocks for Biomedicine.
Xing, Pengyao; Zhao, Yanli
2016-09-01
Supramolecular self-assembly shows significant potential to construct responsive materials. By tailoring the structural parameters of organic building blocks, nanosystems can be fabricated, whose performance in catalysis, energy storage and conversion, and biomedicine has been explored. Since small organic building blocks are structurally simple, easily modified, and reproducible, they are frequently employed in supramolecular self-assembly and materials science. The dynamic and adaptive nature of self-assembled nanoarchitectures affords an enhanced sensitivity to the changes in environmental conditions, favoring their applications in controllable drug release and bioimaging. Here, recent significant research advancements of small-organic-molecule self-assembled nanoarchitectures toward biomedical applications are highlighted. Functionalized assemblies, mainly including vesicles, nanoparticles, and micelles are categorized according to their topological morphologies and functions. These nanoarchitectures with different topologies possess distinguishing advantages in biological applications, well incarnating the structure-property relationship. By presenting some important discoveries, three domains of these nanoarchitectures in biomedical research are covered, including biosensors, bioimaging, and controlled release/therapy. The strategies regarding how to design and characterize organic assemblies to exhibit biomedical applications are also discussed. Up-to-date research developments in the field are provided and research challenges to be overcome in future studies are revealed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lam, Maggie P Y; Venkatraman, Vidya; Xing, Yi; Lau, Edward; Cao, Quan; Ng, Dominic C M; Su, Andrew I; Ge, Junbo; Van Eyk, Jennifer E; Ping, Peipei
2016-11-04
Amidst the proteomes of human tissues lie subsets of proteins that are closely involved in conserved pathophysiological processes. Much of biomedical research concerns interrogating disease signature proteins and defining their roles in disease mechanisms. With advances in proteomics technologies, it is now feasible to develop targeted proteomics assays that can accurately quantify protein abundance as well as their post-translational modifications; however, with rapidly accumulating number of studies implicating proteins in diseases, current resources are insufficient to target every protein without judiciously prioritizing the proteins with high significance and impact for assay development. We describe here a data science method to prioritize and expedite assay development on high-impact proteins across research fields by leveraging the biomedical literature record to rank and normalize proteins that are popularly and preferentially published by biomedical researchers. We demonstrate this method by finding priority proteins across six major physiological systems (cardiovascular, cerebral, hepatic, renal, pulmonary, and intestinal). The described method is data-driven and builds upon the collective knowledge of previous publications referenced on PubMed to lend objectivity to target selection. The method and resulting popular protein lists may also be useful for exploring biological processes associated with various physiological systems and research topics, in addition to benefiting ongoing efforts to facilitate the broad translation of proteomics technologies.
Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering.
Perestrelo, Ana Rubina; Águas, Ana C P; Rainer, Alberto; Forte, Giancarlo
2015-12-10
Recent advances in biomedical technologies are mostly related to the convergence of biology with microengineering. For instance, microfluidic devices are now commonly found in most research centers, clinics and hospitals, contributing to more accurate studies and therapies as powerful tools for drug delivery, monitoring of specific analytes, and medical diagnostics. Most remarkably, integration of cellularized constructs within microengineered platforms has enabled the recapitulation of the physiological and pathological conditions of complex tissues and organs. The so-called "organ-on-a-chip" technology, which represents a new avenue in the field of advanced in vitro models, with the potential to revolutionize current approaches to drug screening and toxicology studies. This review aims to highlight recent advances of microfluidic-based devices towards a body-on-a-chip concept, exploring their technology and broad applications in the biomedical field.
Overholser, Brian R; Sowinski, Kevin M
2007-12-01
Biostatistics is the application of statistics to biologic data. The field of statistics can be broken down into 2 fundamental parts: descriptive and inferential. Descriptive statistics are commonly used to categorize, display, and summarize data. Inferential statistics can be used to make predictions based on a sample obtained from a population or some large body of information. It is these inferences that are used to test specific research hypotheses. This 2-part review will outline important features of descriptive and inferential statistics as they apply to commonly conducted research studies in the biomedical literature. Part 1 in this issue will discuss fundamental topics of statistics and data analysis. Additionally, some of the most commonly used statistical tests found in the biomedical literature will be reviewed in Part 2 in the February 2008 issue.
Degradable vinyl polymers for biomedical applications.
Delplace, Vianney; Nicolas, Julien
2015-10-01
Vinyl polymers have been the focus of intensive research over the past few decades and are attractive materials owing to their ease of synthesis and their broad diversity of architectures, compositions and functionalities. Their carbon-carbon backbones are extremely resistant to degradation, however, and this property limits their uses. Degradable polymers are an important field of research in polymer science and have been used in a wide range of applications spanning from (nano)medicine to microelectronics and environmental protection. The development of synthetic strategies to enable complete or partial degradation of vinyl polymers is, therefore, of great importance because it will offer new opportunities for the application of these materials. This Review captures the most recent and promising approaches to the design of degradable vinyl polymers and discusses the potential of these materials for biomedical applications.
Career development in Bioengineering/Biomedical Engineering: a student's roadmap.
Abu-Faraj, Ziad O
2008-01-01
Bioengineering/biomedical engineering education has progressed since the late 1950s and is still evolving in leading academic institutions worldwide. Today, Bioengineering/Biomedical Engineering is acclaimed as one of the most reputable fields within the global arena, and will likely be the catalyst for any future breakthroughs in Medicine and Biology. This paper provides a set of strategies and recommendations to be pursued by individuals aiming at planning and developing careers in this field. The paper targets the international student contemplating bioengineering/biomedical engineering as a career, with an underlying emphasis on the student within developing and transitional countries where career guidance is found deficient. The paper also provides a comprehensive definition of the field and an enumeration of its subdivisions.
Preparation of Magnetic Carbon Nanotubes (Mag-CNTs) for Biomedical and Biotechnological Applications
Masotti, Andrea; Caporali, Andrea
2013-01-01
Carbon nanotubes (CNTs) have been widely studied for their potential applications in many fields from nanotechnology to biomedicine. The preparation of magnetic CNTs (Mag-CNTs) opens new avenues in nanobiotechnology and biomedical applications as a consequence of their multiple properties embedded within the same moiety. Several preparation techniques have been developed during the last few years to obtain magnetic CNTs: grafting or filling nanotubes with magnetic ferrofluids or attachment of magnetic nanoparticles to CNTs or their polymeric coating. These strategies allow the generation of novel versatile systems that can be employed in many biotechnological or biomedical fields. Here, we review and discuss the most recent papers dealing with the preparation of magnetic CNTs and their application in biomedical and biotechnological fields. PMID:24351838
Masotti, Andrea; Caporali, Andrea
2013-12-18
Carbon nanotubes (CNTs) have been widely studied for their potential applications in many fields from nanotechnology to biomedicine. The preparation of magnetic CNTs (Mag-CNTs) opens new avenues in nanobiotechnology and biomedical applications as a consequence of their multiple properties embedded within the same moiety. Several preparation techniques have been developed during the last few years to obtain magnetic CNTs: grafting or filling nanotubes with magnetic ferrofluids or attachment of magnetic nanoparticles to CNTs or their polymeric coating. These strategies allow the generation of novel versatile systems that can be employed in many biotechnological or biomedical fields. Here, we review and discuss the most recent papers dealing with the preparation of magnetic CNTs and their application in biomedical and biotechnological fields.
2017-01-01
Due to its biodegradable and bioabsorbable characteristics polylactic acid (PLA) has attracted considerable attention for numerous biomedical applications. Moreover, a number of tissue engineering problems for function restoration of impaired tissues have been addressed by using PLA and its copolymers due to their biocompatibility and distinctive mechanical properties. Recent studies on various stereocomplex formation between enantiomeric PLA, poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) indicated that stereocomplexation enhances the mechanical properties as well as the thermal- and hydrolysis-resistance of PLA polymers. On the other hand, biomedical application of graphene is a relatively new front with significant potential. Many recent reports have indicated that understanding of graphene-cell (or tissue, organ) interactions; particularly the cellular uptake mechanisms are still challenging. Therefore, use of graphene or graphene oxide properly embedded in suitable PLA matrices can positively impact and accelerate the growth, differentiation, and proliferation of stem cells, conceivably minimizing concerns over cytotoxicity of graphene. As such, PLA-graphene composites hold great promise in tissue engineering, regenerative medicine, and in other biomedical fields. However, since PLA is classified as a hard bio-polyester prone to hydrolysis, understanding and engineering of thermo-mechanical properties of PLA-graphene composites are very crucial for such cutting-edge applications. Hence, this review aims to present an overview of current advances in the preparation and applications of PLA-graphene composites and their properties with focus on various biomedical uses such as scaffolds, drug delivery, cancer therapy, and biological imaging, together with a brief discussion on the challenges and perspectives for future research in this field. PMID:28773109
Ingoglia, Nicholas A
2009-04-01
Most graduate schools associated with medical schools offer programs leading to the PhD degree but pay little attention to master's programs. This is unfortunate because many university graduates who are interested specifically in biomedical rather than pure science fields need further education before making decisions on whether to enter clinical, research, education, or business careers. Training for these students is done best in a medical school, rather than a graduate university, environment and by faculty who are engaged in research in the biomedical sciences. Students benefit from these programs by exploring career options they might not have previously considered while learning about disease-related subjects at the graduate level. Graduate faculty can also benefit by being compensated for their teaching with a portion of the tuition revenue, funds that can help run their laboratories and support other academic expenses. Faculty also may attract talented students to their labs and to their PhD programs by exposing them to a passion for research. The graduate school also benefits by collecting masters tuition revenue that can be used toward supporting PhD stipends. Six-year outcome data from the program at Newark show that, on completion of the program, most students enter educational, clinical, or research careers and that the graduate school has established a new and significant stream of revenue. Thus, the establishment of a master's program in biomedical sciences that helps students match their academic abilities with their career goals significantly benefits students as well as the graduate school and its faculty.
Design study of beam transport lines for BioLEIR facility at CERN
NASA Astrophysics Data System (ADS)
Ghithan, S.; Roy, G.; Schuh, S.
2017-09-01
The biomedical community has asked CERN to investigate the possibility to transform the Low Energy Ion Ring (LEIR) accelerator into a multidisciplinary, biomedical research facility (BioLEIR) that could provide ample, high-quality beams of a range of light ions suitable for clinically oriented, fundamental research on cell cultures and for radiation instrumentation development. The present LEIR machine uses fast beam extraction to the next accelerator in the chain, eventually leading to the Large Hadron Collider (LHC) . To provide beam for a biomedical research facility, a new slow extraction system must be installed. Two horizontal and one vertical experimental beamlines were designed for transporting the extracted beam to three experimental end-stations. The vertical beamline (pencil beam) was designed for a maximum energy of 75 MeV/u for low-energy radiobiological research, while the two horizontal beamlines could deliver up to 440 MeV/u. One horizontal beamline shall be used preferentially for biomedical experiments and shall provide pencil beam and a homogeneous broad beam, covering an area of 5 × 5 cm2 with a beam homogeneity of ±5%. The second horizontal beamline will have pencil beam only and is intended for hardware developments in the fields of (micro-)dosimetry and detector development. The minimum full aperture of the beamlines is approximately 100 mm at all magnetic elements, to accommodate the expected beam envelopes. Seven dipoles and twenty quadrupoles are needed for a total of 65 m of beamlines to provide the specified beams. In this paper we present the optical design for the three beamlines.
Harding, Clifford V; Akabas, Myles H; Andersen, Olaf S
2017-10-01
Physician-scientists are needed to continue the great pace of recent biomedical research and translate scientific findings to clinical applications. MD-PhD programs represent one approach to train physician-scientists. MD-PhD training started in the 1950s and expanded greatly with the Medical Scientist Training Program (MSTP), launched in 1964 by the National Institute of General Medical Sciences (NIGMS) at the National Institutes of Health. MD-PhD training has been influenced by substantial changes in medical education, science, and clinical fields since its inception. In 2014, NIGMS held a 50th Anniversary MSTP Symposium highlighting the program and assessing its outcomes. In 2016, there were over 90 active MD-PhD programs in the United States, of which 45 were MSTP supported, with a total of 988 trainee slots. Over 10,000 students have received MSTP support since 1964. The authors present data for the demographic characteristics and outcomes for 9,683 MSTP trainees from 1975-2014. The integration of MD and PhD training has allowed trainees to develop a rigorous foundation in research in concert with clinical training. MSTP graduates have had relative success in obtaining research grants and have become prominent leaders in many biomedical research fields. Many challenges remain, however, including the need to maintain rigorous scientific components in evolving medical curricula, to enhance research-oriented residency and fellowship opportunities in a widening scope of fields targeted by MSTP graduates, to achieve greater racial diversity and gender balance in the physician-scientist workforce, and to sustain subsequent research activities of physician-scientists.
Biomedical Research Division significant accomplishments for FY 1983
NASA Technical Reports Server (NTRS)
Martello, N. V.
1984-01-01
Various research and technology activities of Ames Research Center's Biomedical Research Division are described. Contributions to the Space Administration's goals in the life sciences include research in operational medicine, cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, fluid and electrolyte changes, radiation effects and protection, human behavior and performance, general biomedical research, and gravitational biology.
Foroozesh, Maryam; Giguette, Marguerite; Morgan, Kathleen; Johanson, Kelly; D'Amour, Gene; Coston, Tiera; Wilkins-Green, Clair
2017-01-01
Xavier University of Louisiana is a historically Black and Catholic university that is nationally recognized for its science, technology, engineering and mathematics (STEM) curricula. Approximately 73% of Xavier's students are African American, and about 77% major in the biomedical sciences. Xavier is a national leader in the number of STEM majors who go on to receive M.D. degrees and Ph.D. degrees in science and engineering. Despite Xavier's advances in this area, African Americans still earn about 7.5% of the Bachelor's degrees, less than 8% of the Master's degrees, and less than 5% of the doctoral degrees conferred in STEM disciplines in the United States. Additionally, although many well-prepared, highly-motivated students are attracted by Xavier's reputation in the sciences, many of these students, though bright and capable, come from underperforming public school systems and receive substandard preparation in STEM disciplines. The purpose of this article is to describe how Xavier works to overcome unequal education backgrounds and socioeconomic challenges to develop student talent through expanding biomedical training opportunities and build on an established reputation in science education. The National Institutes of Health (NIH)/National Institute of General Medical Sciences (NIGMS)-funded BUILD (Building Infrastructure Leading to Diversity) Program at Xavier University of Louisiana, Project Pathways , is a highly-innovative program designed to broaden the career interests of students early on, and to engage them in activities that entice them to continue their education towards biomedical research careers. Project strategies involve a transformation of Xavier's academic and non-academic programs through the redesign, supplementation and integration of academic advising, tutoring, career services, personal counseling, undergraduate research training, faculty research mentoring, and development of new biomedical and research skills courses. The Program also focuses on mentor training and providing faculty members with opportunities to improve their teaching skills as well as their research competitiveness. In addition to the wide range of activities supported by BUILD within the institution, Xavier University is partnering with a number of major research universities across the nation to achieve Project Pathways' goals. The strategies developed by Project Pathways are designed to address the challenges and barriers Xavier students face as they work towards graduate studies and entering the biomedical workforce. Xavier University of Louisiana has a long history of providing high quality, rigorous education to African American students in a very supportive environment with highly dedicated faculty and staff. The program highlighted here could be used by other institutions as a model program for assisting students in STEM and other biomedical fields of study to successfully matriculate through college and graduate school and develop their research careers.
Wu, Dongni; Zhang, Shuangying; Zhao, Yuyuan; Ao, Ningjian; Ramakrishna, Seeram; He, Liumin
2018-03-16
RADA16-I (Ac-(RADA) 4 -CONH 2 ) is a widely investigated self-assembling peptide (SAP) in the biomedical field. It can undergo ordered self-assembly to form stable secondary structures, thereby further forming a nanofiber hydrogel. The modification of RADA16-I with functional peptide motifs has become a popular research topic. Researchers aim to exhibit particular biomedical signaling, and subsequently, further expand its applications. However, only a few fundamental reports are available on the influences of the peptide motifs on self-assembly mechanisms of designer functional RADA16-I SAPs. In this study, we designed RGD-modified RADA16-I SAPs with a series of net charges and amphiphilicities. The assembly/reassembly of these functionally designer SAPs was thoroughly studied using Raman spectroscopy, CD spectroscopy, and AFM. The nanofiber morphology and the secondary structure largely depended on the balance between the hydrophobic effects versus like-charge repulsions of the motifs, which should be to the focus in order to achieve a tailored nanostructure. Our study would contribute insight into considerations for sophisticated design of SAPs for biomedical applications.
Biomedical technology prosperity game{trademark}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, M.; Boyack, K.W.; Wesenberg, D.L.
1996-07-01
Prosperity Games{trademark} are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games{trademark} are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games{trademark} are unique in that both the game format and the player contributions vary from game to game. This report documents the Biomedical Technology Prosperity Game{trademark} conducted under the sponsorship of Sandia National Laboratories, the Defensemore » Advanced Research Projects Agency, and the Koop Foundation, Inc. Players were drawn from all stakeholders involved in biomedical technologies including patients, hospitals, doctors, insurance companies, legislators, suppliers/manufacturers, regulators, funding organizations, universities/laboratories, and the legal profession. The primary objectives of this game were to: (1) Identify advanced/critical technology issues that affect the cost and quality of health care. (2) Explore the development, patenting, manufacturing and licensing of needed technologies that would decrease costs while maintaining or improving quality. (3) Identify policy and regulatory changes that would reduce costs and improve quality and timeliness of health care delivery. (4) Identify and apply existing resources and facilities to develop and implement improved technologies and policies. (5) Begin to develop Biomedical Technology Roadmaps for industry and government cooperation. The deliberations and recommendations of these players provided valuable insights as to the views of this diverse group of decision makers concerning biomedical issues. Significant progress was made in the roadmapping of key areas in the biomedical technology field.« less
de Lecuona, Itziar
2013-01-01
The article explores and analyses the content of the Council of Europe's Additional Protocol to the Convention on Human Rights and Biomedicine concerning Biomedical Research regarding the standard legal instrument in biomedical research, issued by an international organization with leadership in bioethics. This implies ethics committees are mechanisms of protection of humans in biomedical research and not mere bureaucratic agencies and that a sound inescapable international regulatory framework exists for States to regulate biomedical research. The methodology used focuses on the analysis of the background, the context in which it is made and the nature and scope of the Protocol. It also identifies and analyses the characteristics and functions of ethics committees in biomedical research and, in particular, the information that should be provided to this bodies to develop their functions previously, during and at the end of research projects. This analysis will provide guidelines, suggestions and conclusions for the awareness and training of members of these committees in order to influence the daily practice. This paper may also be of interest to legal practitioners who work in different areas of biomedical research. From this practical perspective, the article examines the legal treatment of the Protocol to meet new challenges and classic issues in research: the treatment of human biological samples, the use of placebos, avoiding double standards, human vulnerability, undue influence and conflicts of interest, among others. Also, from a critical view, this work links the legal responses to develop work procedures that are required for an effective performance of the functions assigned of ethics committees in biomedical research. An existing international legal response that lacks doctrinal standards and provides little support should, however, serve as a guide and standard to develop actions that allow ethics committees -as key bodies for States- to advance in the protection of humans in biomedical research.
NASA Astrophysics Data System (ADS)
Horie, Mikio
2004-10-01
In recent years, the researches about Micro/Nano Systems are down actively in the bio-medical research fields, DNA research fields, chemical analysis systems fields, etc. In the results, a new materials and new functions in the systems are developed. In this invited paper, Mechano-Micro/Nano Systems, especially, motion systems are introduced. First, the research activities concerning the Mechano-Micro/Nano Systems in the world(MST2003, MEMS2003 and MEMS2004) and in Japan(Researech Projects on Nanotechnology and Materials in Ministry of Education, Culture, Sports, Science and Technology) are shown. Secondary, my research activities are introduced. As my research activities, (1) a comb-drive static actuator for the motion convert mechanisms, (2) a micro-nano fabrication method by use of FAB(Fast Atom Beam) machines, (3) a micro optical mirror manipulator for inputs-outputs optical switches, (4) a miniature pantograph mechanism with large-deflective hinges and links made of plastics are discussed and their performances are explained.
Yao, Yuan; Yu, Chuan-xin
2013-08-01
Antibody has extensive application prospects in the biomedical field. The inherent disadvantages of traditional polyclonal antibody and monoclonal antibody limit their application values. The humanized and fragmented antibody remodeling has given a rise to a series of genetic engineered antibody variant. This paper reviews the progress of research on genetic engineering antibody and its application in prevention and control of parasitic diseases.
Biomedical Applications of Mulberry Silk and its Proteins: A Review
NASA Astrophysics Data System (ADS)
Nivedita, S.; Sivaprasad, V.
2014-04-01
Silk is a natural fibre used mainly for aesthetic purposes. It has also been used for making surgical sutures for centuries. The recent rediscovery of silk's biological properties have led to new areas of research and utilization in cosmetic, health and medical fields. The silk proteins, fibroin and sericin are processed into biomaterials because of bio-compatibility, bio-degradability, excellent mechanical properties, thermo tolerance and UV protective properties. Silk proteins could be obtained as pure liquids and regenerated in different forms suitable for tissue engineering applications. This paper presents some of the biomedical products and biomaterials made from native, degraded and regenerated silk and their fabrication techniques.
Updating the biomedical engineering curriculum: Inclusion of Health Technology Assessment subjects.
Martinez Licona, Fabiola; Urbina, Edmundo Gerardo; Azpiroz-Leehan, Joaquin
2010-01-01
This paper describes the work being carried out at Metropolitan Autonomous University (UAM) in Mexico City with regard to the continuous evaluation and updating of the Biomedical Engineering (BME) curriculum. In particular the courses regarded as part of the BME basic branch are reduced and new sets of elective subjects are proposed in order to bring closer the research work at UAM with the subjects in the BME curriculum. Special emphasis is placed on subjects dealing with Health Technology Assessment (HTA) and Health economics, as this branch of the BME discipline is quite promising in Mexico, but there are very few professionals in the field with adequate qualifications.
2004-07-07
KENNEDY SPACE CENTER, FLA. - The boat with NEEMO-6 personnel ties up at the dock in Key Largo after a training session offshore at NASA’s undersea research station, named Aquarius. At right is Bill Todd, project lead. The NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission involves spacewalk-like diving excursions and field-testing a variety of biomedical equipment designed to help astronauts living aboard the International Space Station. The NEEMO-6 team comprises astronaut John Herrington, mission commander, astronauts Doug Wheelock and Nick Patrick, and biomedical engineer Tara Ruttley. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.
Medical journals--in the news and for the wrong reasons.
Pai, Sanjay A
2014-01-01
2013 has been a landmark year, in fact, a bad year for biomedical journals. Medical journals and their editors have been respected for long, as they are the harbingers of change and of progress in scientific thought. Science expects transparency from the agents through which scientists publish their latest research findings and this expectation is usually fulfilled. Recent developments have, however, thrown into doubt the integrity of some science journals, their editors, and by extension, the entire field of biomedical and science publishing. These developments involve wide-ranging issues--the impact factor, the International Committee of Medical Journal Editors (ICMJE), and the birth, existence and rise of predatory journals.
Text mining patents for biomedical knowledge.
Rodriguez-Esteban, Raul; Bundschus, Markus
2016-06-01
Biomedical text mining of scientific knowledge bases, such as Medline, has received much attention in recent years. Given that text mining is able to automatically extract biomedical facts that revolve around entities such as genes, proteins, and drugs, from unstructured text sources, it is seen as a major enabler to foster biomedical research and drug discovery. In contrast to the biomedical literature, research into the mining of biomedical patents has not reached the same level of maturity. Here, we review existing work and highlight the associated technical challenges that emerge from automatically extracting facts from patents. We conclude by outlining potential future directions in this domain that could help drive biomedical research and drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Epigenetics: A Fascinating Field with Profound Research, Clinical, & Public Health Implications
ERIC Educational Resources Information Center
Stein, Richard A.; Davis, Devra Lee
2012-01-01
Epigenetics is emerging as one of the most dynamic and vibrant biomedical areas. Multiple lines of evidence confirm that inherited genetic changes alone cannot fully explain all phenotypic characteristics of live organisms, and additional factors, which are not encoded in the DNA sequence, are involved. The contribution of non-genetic factors is…
[Application of zebrafish model organism in the research of Chinese materia medica].
Chen, Lei; Liu, Yi; Liang, Sheng-Wang
2012-04-01
Zebrafish has become an important model organism in many fields of biomedical studies and been increasingly used in Chinese materia medica studies in recent years. This article summarized the achievements and prospect for zebrafish as a pharmacological and toxicological tool in the study and development of Chinese materia medica.
Nanoparticles for cancer imaging: The good, the bad, and the promise
Chapman, Sandra; Dobrovolskaia, Marina; Farahani, Keyvan; Goodwin, Andrew; Joshi, Amit; Lee, Hakho; Meade, Thomas; Pomper, Martin; Ptak, Krzysztof; Rao, Jianghong; Singh, Ravi; Sridhar, Srinivas; Stern, Stephan; Wang, Andrew; Weaver, John B.; Woloschak, Gayle; Yang, Lily
2014-01-01
Summary Recent advances in molecular imaging and nanotechnology are providing new opportunities for biomedical imaging with great promise for the development of novel imaging agents. The unique optical, magnetic, and chemical properties of materials at the scale of nanometers allow the creation of imaging probes with better contrast enhancement, increased sensitivity, controlled biodistribution, better spatial and temporal information, multi-functionality and multi-modal imaging across MRI, PET, SPECT, and ultrasound. These features could ultimately translate to clinical advantages such as earlier detection, real time assessment of disease progression and personalized medicine. However, several years of investigation into the application of these materials to cancer research has revealed challenges that have delayed the successful application of these agents to the field of biomedical imaging. Understanding these challenges is critical to take full advantage of the benefits offered by nano-sized imaging agents. Therefore, this article presents the lessons learned and challenges encountered by a group of leading researchers in this field, and suggests ways forward to develop nanoparticle probes for cancer imaging. Published by Elsevier Ltd. PMID:25419228
Is Open Science the Future of Drug Development?
Shaw, Daniel L
2017-03-01
Traditional drug development models are widely perceived as opaque and inefficient, with the cost of research and development continuing to rise even as production of new drugs stays constant. Searching for strategies to improve the drug discovery process, the biomedical research field has begun to embrace open strategies. The resulting changes are starting to reshape the industry. Open science-an umbrella term for diverse strategies that seek external input and public engagement-has become an essential tool with researchers, who are increasingly turning to collaboration, crowdsourcing, data sharing, and open sourcing to tackle some of the most pressing problems in medicine. Notable examples of such open drug development include initiatives formed around malaria and tropical disease. Open practices have found their way into the drug discovery process, from target identification and compound screening to clinical trials. This perspective argues that while open science poses some risks-which include the management of collaboration and the protection of proprietary data-these strategies are, in many cases, the more efficient and ethical way to conduct biomedical research.
Molecular imaging probe development: a chemistry perspective
Nolting, Donald D; Nickels, Michael L; Guo, Ning; Pham, Wellington
2012-01-01
Molecular imaging is an attractive modality that has been widely employed in many aspects of biomedical research; especially those aimed at the early detection of diseases such as cancer, inflammation and neurodegenerative disorders. The field emerged in response to a new research paradigm in healthcare that seeks to integrate detection capabilities for the prediction and prevention of diseases. This approach made a distinct impact in biomedical research as it enabled researchers to leverage the capabilities of molecular imaging probes to visualize a targeted molecular event non-invasively, repeatedly and continuously in a living system. In addition, since such probes are inherently compact, robust, and amenable to high-throughput production, these probes could potentially facilitate screening of preclinical drug discovery, therapeutic assessment and validation of disease biomarkers. They could also be useful in drug discovery and safety evaluations. In this review, major trends in the chemical synthesis and development of positron emission tomography (PET), optical and magnetic resonance imaging (MRI) probes are discussed. PMID:22943038
[Development of a massage device based on microcontroller in the field of alimentary tract].
Huang, Rong; Peng, Chenglin; He, Hongmei; Zhu, Jing
2007-12-01
In this artical is first reported a survey of the progress in research of MEMS technology. Then, the basic structure, features and the principles of a massage device based on microcontroller in the field of alimentary tract are introduced. Special emphasis is laid on the utilization of MSP430F123 microprocessor for producing a kind of period pulse to control the power of massage capsule. In general, the research and development of the massage device in the field of alimentary tract have active support and deep significance to therapy in the clinical and business settings as well as in the development of biomedical engineering and MEMS.
Wearable and Implantable Mechanical Energy Harvesters for Self-Powered Biomedical Systems.
Hinchet, Ronan; Kim, Sang-Woo
2015-08-25
In this issue of ACS Nano, Tang et al. investigate the ability of a triboelectric nanogenerator (TENG) to self-power a low-level laser cure system for osteogenesis by studying the efficiency of a bone remodeling laser treatment that is powered by a skin-patch-like TENG instead of a battery. We outline this field by highlighting the motivations for self-powered biomedical systems and by discussing recent progress in nanogenerators. We note the overlap between biomedical devices and TENGs and their dawning synergy, and we highlight key prospects for future developments. Biomedical systems should be more autonomous. This advance could improve their body integration and fields of action, leading to new medical diagnostics and treatments. However, future self-powered biomedical systems will need to be more flexible, biocompatible, and biodegradable. These advances hold the promise of enabling new smart autonomous biomedical systems and contributing significantly to the Internet of Things.
NASA Astrophysics Data System (ADS)
Bhalla, Suresh; Srivastava, Shashank; Suresh, Rupali; Moharana, Sumedha; Kaur, Naveet; Gupta, Ashok
2015-03-01
This paper presents a case for extension of structural health monitoring (SHM) technologies to offer solutions for biomedical problems. SHM research has made remarkable progress during the last two/ three decades. These technologies are now being extended for possible applications in the bio-medical field. Especially, smart materials, such as piezoelectric ceramic (PZT) patches and fibre-Bragg grating (FBG) sensors, offer a new set of possibilities to the bio-medical community to augment their conventional set of sensors, tools and equipment. The paper presents some of the recent extensions of SHM, such as condition monitoring of bones, monitoring of dental implant post surgery and foot pressure measurement. Latest developments, such as non-bonded configuration of PZT patches for monitoring bones and possible applications in osteoporosis detection, are also discussed. In essence, there is a whole new gamut of new possibilities for SHM technologies making their foray into the bi-medical sector.
Micro Electromechanical Systems (MEMS) Based Microfluidic Devices for Biomedical Applications
Ashraf, Muhammad Waseem; Tayyaba, Shahzadi; Afzulpurkar, Nitin
2011-01-01
Micro Electromechanical Systems (MEMS) based microfluidic devices have gained popularity in biomedicine field over the last few years. In this paper, a comprehensive overview of microfluidic devices such as micropumps and microneedles has been presented for biomedical applications. The aim of this paper is to present the major features and issues related to micropumps and microneedles, e.g., working principles, actuation methods, fabrication techniques, construction, performance parameters, failure analysis, testing, safety issues, applications, commercialization issues and future prospects. Based on the actuation mechanisms, the micropumps are classified into two main types, i.e., mechanical and non-mechanical micropumps. Microneedles can be categorized according to their structure, fabrication process, material, overall shape, tip shape, size, array density and application. The presented literature review on micropumps and microneedles will provide comprehensive information for researchers working on design and development of microfluidic devices for biomedical applications. PMID:21747700
Erick Peirson, B R; Kropp, Heather; Damerow, Julia; Laubichler, Manfred D
2017-05-01
Contrary to concerns of some critics, we present evidence that biomedical research is not dominated by a small handful of model organisms. An exhaustive analysis of research literature suggests that the diversity of experimental organisms in biomedical research has increased substantially since 1975. There has been a longstanding worry that organism-centric funding policies can lead to biases in experimental organism choice, and thus negatively impact the direction of research and the interpretation of results. Critics have argued that a focus on model organisms has unduly constrained the diversity of experimental organisms. The availability of large electronic databases of scientific literature, combined with interest in quantitative methods among philosophers of science, presents new opportunities for data-driven investigations into organism choice in biomedical research. The diversity of organisms used in NIH-funded research may be considerably lower than in the broader biomedical sciences, and may be subject to greater constraints on organism choice. © 2017 WILEY Periodicals, Inc.
A capillary viscometer designed for the characterization of biocompatible ferrofluids
NASA Astrophysics Data System (ADS)
Nowak, J.; Odenbach, S.
2016-08-01
Suspensions of magnetic nanoparticles are receiving a growing interest in biomedical research. These ferrofluids can, e.g., be used for the treatment of cancer, making use of the drug targeting principle or using an artificially induced heating. To enable a safe application the basic properties of the ferrofluids have to be well understood, including the viscosity of the fluids if an external magnetic field is applied. It is well known that the viscosity of ferrofluids rises if a magnetic field is applied, where the rise depends on shear rate and magnetic field strength. In case of biocompatible ferrofluids such investigations proved to be rather complicated as the experimental setup should be close to the actual application to allow justified predictions of the effects which have to be expected. Thus a capillary viscometer, providing a flow situation comparable to the flow in a blood vessel, has been designed. The glass capillary is exchangeable and different inner diameters can be used. The range of the shear rates has been adapted to the range found in the human organism. The application of an external magnetic field is enabled with two different coil setups covering the ranges of magnetic field strengths required on the one hand for a theoretical understanding of particle interaction and resulting changes in viscosity and on the other hand for values necessary for a potential biomedical application. The results show that the newly designed capillary viscometer is suitable to measure the magnetoviscous effect in biocompatible ferrofluids and that the results appear to be consistent with data measured with rotational rheometry. In addition, a strong change of the flow behaviour of a biocompatible ferrofluid was proven for ranges of the shear rate and the magnetic field strength expected for a potential biomedical application.
[Development and application of electroanalytical methods in biomedical fields].
Kusu, Fumiyo
2015-01-01
To summarize our electroanalytical research in the biomedical field over the past 43 years, this review describes studies on specular reflection measurement, redox potential determination, amperometric acid sensing, HPLC with electrochemical detection, and potential oscillation across a liquid membrane. The specular reflection method was used for clarifying the adsorption of neurotransmitters and their related drugs onto a gold electrode and the interaction between dental alloys and compound iodine glycerin. A voltammetric screening test using a redox potential for the antioxidative effect of flavonoids was proposed. Amperometric acid sensing based on the measurement of the reduction prepeak current of 2-methyl-1,4-naphthoquinone (VK3) or 3,5-di-tert-buty1-1,2-benzoquinone (DBBQ) was applied to determine acid values of fats and oils, titrable acidity of coffee, and enzyme activity of lipase, free fatty acids (FFAs) in serum, short-chain fatty acids in feces, etc. The electrode reactions of phenothiazines, catechins, and cholesterol were applied to biomedical analysis using HPLC with electrochemical detection. A three-channel electrochemical detection system was utilized for the sensitive determination of redox compounds in Chinese herbal medicines. The behavior of barbituric acid derivatives was examined based on potential oscillation measurements.
Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T.; Becich, Michael J.
2014-01-01
This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics will be critical to assuring their success as leaders in the era of big data and personalized medicine. PMID:24860688
Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J
2014-01-01
This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics will be critical to assuring their success as leaders in the era of big data and personalized medicine.
Research-Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment
ERIC Educational Resources Information Center
Lorden, Joan F., Ed.; Kuh, Charlotte V., Ed.; Voytuk, James A., Ed.
2011-01-01
"Research Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment" examines data on the biomedical sciences programs to gather additional insight about the talent, training environment, outcomes, diversity, and international participation in the biomedical sciences workforce. This report supports an…
Magnetoviscous effect in ferrofluids diluted with sheep blood
NASA Astrophysics Data System (ADS)
Nowak, J.; Borin, D.; Haefner, S.; Richter, A.; Odenbach, S.
2017-11-01
Suspensions of magnetic nanoparticles in suitable carrier liquids, denoted as ferrofluids, are in the focus of current research in the biomedical area. Those fluids can be potentially used for the treatment of cancer by coupling chemotherapeutic agents and accumulating them in the diseased region with the help of external magnetic fields or by artificially local induced heating. Those applications rely on the help of external magnetic fields, which are well known to drastically influence the physical behaviour of ferrofluids. This study investigates the changing viscosity of a biocompatible ferrofluid in a flow situation close to the situation found in a biomedical application. For this purpose blood as diluting agent and thin capillaries have been utilised. The strong magnetoviscous effects found lead to the assumption of quite big changes of the microstructure due to the external magnetic fields, which was investigated and quantified using a microscopic setup. In the result an increases of the structure size as well as faster structure formation in the stronger magnetic fields were observed. Moreover, with increasing duration of the applied magnetic field the size of the structures increases too. The observed process of the structure formation is reversible.
Thermal characterization of magnetically aligned carbonyl iron/agar composites.
Diaz-Bleis, D; Vales-Pinzón, C; Freile-Pelegrín, Y; Alvarado-Gil, J J
2014-01-01
Composites of magnetic particles into polymeric matrices have received increasing research interest due to their capacity to respond to external magnetic or electromagnetic fields. In this study, agar from Gelidium robustum has been chosen as natural biocompatible polymer to build the matrix of the magnetic carbonyl iron particles (CIP) for their uses in biomedical fields. Heat transfer behavior of the CIP-agar composites containing different concentrations (5, 10, 15, 20, 25 and 30% w/w) of magnetically aligned and non-aligned CIP in the agar matrix was studied using photothermal radiometry (PTR) in the back-propagation emission configuration. The morphology of the CIP-agar composites with aligned and non-aligned CIP under magnetic field was also evaluated by scanning electron microscopy (SEM). The results revealed a dominant effect of CIP concentration over the alignment patterns induced by the magnetic field, which agrees with the behavior of the thermal diffusivity and thermal conductivity. Agar served as a perfect matrix to be used with CIP, and CIP-agar composites magnetically aligned at 20% CIP concentration can be considered as promising 'smart' material for hyperthermia treatments in the biomedical field. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fanjul-Vélez, F.; Arce-Diego, J. L.
2017-12-01
Education in the field of photonics is usually somehow complex due to the fact that most of the programs include just a few subjects on the field, apart from specific Master programs in Photonics. There are also specific doctorate programs dealing with photonics. Apart from the problems shared with photonics in education in general, biophotonics specifically needs an interdisciplinary approach between biomedical and technical or scientific fields. In this work, we present our education experience in teaching the subject Fundamentals of Biophotonics, intended preferentially to engineering Bachelor and Master degrees students, but also to science and medicine students. First it was necessary to join a teaching group coming from the scientific technical and medical fields, working together in the subject. This task was easier as our research group, the Applied Optical Techniques group, had previous contacts and experience in working with medicine professors and medical doctors at hospitals. The orientation of the subject, intended for both technical and medical students, has to be carefully selected. All this information could be employed by other education institutions willing to implement studies on biomedical optics.
2014-01-01
Background Over the last few decades, biomedical HIV prevention research had engaged multiple African stakeholders. There have however been few platforms to enable regional stakeholders to engage with one another. In partnership with the World AIDS Campaign International, the Institute of Public Health of Obafemi Awolowo University, and the National Agency for the Control of AIDS in Nigeria, the New HIV Vaccine and Microbicide Advocacy Society hosted a forum on biomedical HIV prevention research in Africa. Stakeholders’ present explored evidences related to biomedical HIV prevention research and development in Africa, and made recommendations to inform policy, guidelines and future research agenda. Discussion The BHPF hosted 342 participants. Topics discussed included the use of antiretrovirals for HIV prevention, considerations for biomedical HIV prevention among key populations; HIV vaccine development; HIV cure; community and civil society engagement; and ethical considerations in implementation of biomedical HIV prevention research. Participants identified challenges for implementation of proven efficacious interventions and discovery of other new prevention options for Africa. Concerns raised included limited funding by African governments, lack of cohesive advocacy and policy agenda for biomedical HIV prevention research and development by Africa, varied ethical practices, and limited support to communities’ capacity to actively engaged with clinical trial conducts. Participants recommended that the African Government implement the Abuja +12 declaration; the civil society build stronger partnerships with diverse stakeholders, and develop a coherent advocacy agenda that also enhances community research literacy; and researchers and sponsors of trials on the African continent establish a process for determining appropriate standards for trial conduct on the continent. Conclusion By highlighting key considerations for biomedical HIV prevention research and development in Africa, the forum has helped identify key advocacy issues that Civil Society can expend efforts on so as to strengthen support for future biomedical HIV prevention research on the continent. PMID:26636825
Folayan, Morenike Oluwatoyin; Gottemoeller, Megan; Mburu, Rosemary; Brown, Brandon
2014-01-01
Over the last few decades, biomedical HIV prevention research had engaged multiple African stakeholders. There have however been few platforms to enable regional stakeholders to engage with one another. In partnership with the World AIDS Campaign International, the Institute of Public Health of Obafemi Awolowo University, and the National Agency for the Control of AIDS in Nigeria, the New HIV Vaccine and Microbicide Advocacy Society hosted a forum on biomedical HIV prevention research in Africa. Stakeholders' present explored evidences related to biomedical HIV prevention research and development in Africa, and made recommendations to inform policy, guidelines and future research agenda. The BHPF hosted 342 participants. Topics discussed included the use of antiretrovirals for HIV prevention, considerations for biomedical HIV prevention among key populations; HIV vaccine development; HIV cure; community and civil society engagement; and ethical considerations in implementation of biomedical HIV prevention research. Participants identified challenges for implementation of proven efficacious interventions and discovery of other new prevention options for Africa. Concerns raised included limited funding by African governments, lack of cohesive advocacy and policy agenda for biomedical HIV prevention research and development by Africa, varied ethical practices, and limited support to communities' capacity to actively engaged with clinical trial conducts. Participants recommended that the African Government implement the Abuja +12 declaration; the civil society build stronger partnerships with diverse stakeholders, and develop a coherent advocacy agenda that also enhances community research literacy; and researchers and sponsors of trials on the African continent establish a process for determining appropriate standards for trial conduct on the continent. By highlighting key considerations for biomedical HIV prevention research and development in Africa, the forum has helped identify key advocacy issues that Civil Society can expend efforts on so as to strengthen support for future biomedical HIV prevention research on the continent.
Carbon nanotubes: potential medical applications and safety concerns.
Amenta, Valeria; Aschberger, Karin
2015-01-01
Carbon nanotubes (CNTs) have unique atomic structure, as well as outstanding thermal, mechanical, and electronic properties, making them extremely attractive materials for several different applications. Many research groups are focusing on biomedical applications of carbon-based nanomaterials, however the application of CNTs to the biomedical field is not developing as fast as in other areas. While CNTs-based products are already being used in textiles, polymer matrices to strengthen materials, sports articles, microelectronics, energy storage, etc., medicinal products and medical devices for in vivo application based on CNTs have not been commercialized yet. However, CNTs for biomedical application, i.e., CNTs conjugated to siRNA for cancer therapy, or CNTs for imaging of colorectal cancer and many other products may enter clinical trials in the next years. Concerns related to the toxicity of CNTs must be overcome in order to have these products commercialized in a near future. This article reviews emerging biomedical applications of CNTs, specifically for therapy. It also deals with challenges associated with possible medical applications of CNTs, such as their not fully understood toxicological profile in the human body. © 2014 Wiley Periodicals, Inc.
GSDC: A Unique Data Center in Korea for HEP research
NASA Astrophysics Data System (ADS)
Ahn, Sang-Un
2017-04-01
Global Science experimental Data hub Center (GSDC) at Korea Institute of Science and Technology Information (KISTI) is a unique data center in South Korea established for promoting the fundamental research fields by supporting them with the expertise on Information and Communication Technology (ICT) and the infrastructure for High Performance Computing (HPC), High Throughput Computing (HTC) and Networking. GSDC has supported various research fields in South Korea dealing with the large scale of data, e.g. RENO experiment for neutrino research, LIGO experiment for gravitational wave detection, Genome sequencing project for bio-medical, and HEP experiments such as CDF at FNAL, Belle at KEK, and STAR at BNL. In particular, GSDC has run a Tier-1 center for ALICE experiment using the LHC at CERN since 2013. In this talk, we present the overview on computing infrastructure that GSDC runs for the research fields and we discuss on the data center infrastructure management system deployed at GSDC.
Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches
Silva, Tiago H.; Alves, Anabela; Popa, Elena G.; Reys, Lara L.; Gomes, Manuela E.; Sousa, Rui A.; Silva, Simone S.; Mano, João F.; Reis, Rui L.
2012-01-01
Biomedical field is constantly requesting for new biomaterials, with innovative properties. Natural polymers appear as materials of election for this goal due to their biocompatibility and biodegradability. In particular, materials found in marine environment are of great interest since the chemical and biological diversity found in this environment is almost uncountable and continuously growing with the research in deeper waters. Moreover, there is also a slower risk of these materials to pose illnesses to humans. In particular, sulfated polysaccharides can be found in marine environment, in different algae species. These polysaccharides don’t have equivalent in the terrestrial plants and resembles the chemical and biological properties of mammalian glycosaminoglycans. In this perspective, are receiving growing interest for application on health-related fields. On this review, we will focus on the biomedical applications of marine algae sulfated polymers, in particular on the development of innovative systems for tissue engineering and drug delivery approaches. PMID:23507892
Investigating Public trust in Expert Knowledge: Narrative, Ethics, and Engagement.
Camporesi, Silvia; Vaccarella, Maria; Davis, Mark
2017-03-01
"Public Trust in Expert Knowledge: Narrative, Ethics, and Engagement" examines the social, cultural, and ethical ramifications of changing public trust in the expert biomedical knowledge systems of emergent and complex global societies. This symposium was conceived as an interdisciplinary project, drawing on bioethics, the social sciences, and the medical humanities. We settled on public trust as a topic for our work together because its problematization cuts across our fields and substantive research interests. For us, trust is simultaneously a matter of ethics, social relations, and the cultural organization of meaning. We share a commitment to narrative inquiry across our fields of expertise in the bioethics of transformative health technologies, public communications on health threats, and narrative medicine. The contributions to this symposium have applied, in different ways and with different effects, this interdisciplinary mode of inquiry, supplying new reflections on public trust, expertise, and biomedical knowledge.
Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering
Perestrelo, Ana Rubina; Águas, Ana C. P.; Rainer, Alberto; Forte, Giancarlo
2015-01-01
Recent advances in biomedical technologies are mostly related to the convergence of biology with microengineering. For instance, microfluidic devices are now commonly found in most research centers, clinics and hospitals, contributing to more accurate studies and therapies as powerful tools for drug delivery, monitoring of specific analytes, and medical diagnostics. Most remarkably, integration of cellularized constructs within microengineered platforms has enabled the recapitulation of the physiological and pathological conditions of complex tissues and organs. The so-called “organ-on-a-chip” technology, which represents a new avenue in the field of advanced in vitro models, with the potential to revolutionize current approaches to drug screening and toxicology studies. This review aims to highlight recent advances of microfluidic-based devices towards a body-on-a-chip concept, exploring their technology and broad applications in the biomedical field. PMID:26690442
Guided self-assembly of magnetic beads for biomedical applications
NASA Astrophysics Data System (ADS)
Gusenbauer, Markus; Nguyen, Ha; Reichel, Franz; Exl, Lukas; Bance, Simon; Fischbacher, Johann; Özelt, Harald; Kovacs, Alexander; Brandl, Martin; Schrefl, Thomas
2014-02-01
Micromagnetic beads are widely used in biomedical applications for cell separation, drug delivery, and hyperthermia cancer treatment. Here we propose to use self-organized magnetic bead structures which accumulate on fixed magnetic seeding points to isolate circulating tumor cells. The analysis of circulating tumor cells is an emerging tool for cancer biology research and clinical cancer management including the detection, diagnosis and monitoring of cancer. Microfluidic chips for isolating circulating tumor cells use either affinity, size or density capturing methods. We combine multiphysics simulation techniques to understand the microscopic behavior of magnetic beads interacting with soft magnetic accumulation points used in lab-on-chip technologies. Our proposed chip technology offers the possibility to combine affinity and size capturing with special antibody-coated bead arrangements using a magnetic gradient field created by Neodymium Iron Boron permanent magnets. The multiscale simulation environment combines magnetic field computation, fluid dynamics and discrete particle dynamics.
Graphene Field Effect Transistors for Biomedical Applications: Current Status and Future Prospects.
Forsyth, Rhiannan; Devadoss, Anitha; Guy, Owen J
2017-07-26
Since the discovery of the two-dimensional (2D) carbon material, graphene, just over a decade ago, the development of graphene-based field effect transistors (G-FETs) has become a widely researched area, particularly for use in point-of-care biomedical applications. G-FETs are particularly attractive as next generation bioelectronics due to their mass-scalability and low cost of the technology's manufacture. Furthermore, G-FETs offer the potential to complete label-free, rapid, and highly sensitive analysis coupled with a high sample throughput. These properties, coupled with the potential for integration into portable instrumentation, contribute to G-FETs' suitability for point-of-care diagnostics. This review focuses on elucidating the recent developments in the field of G-FET sensors that act on a bioaffinity basis, whereby a binding event between a bioreceptor and the target analyte is transduced into an electrical signal at the G-FET surface. Recognizing and quantifying these target analytes accurately and reliably is essential in diagnosing many diseases, therefore it is vital to design the G-FET with care. Taking into account some limitations of the sensor platform, such as Debye-Hükel screening and device surface area, is fundamental in developing improved bioelectronics for applications in the clinical setting. This review highlights some efforts undertaken in facing these limitations in order to bring G-FET development for biomedical applications forward.
García-Sancho, Miguel
2011-01-01
This paper explores the different identities adopted by connective tissue research at the University of Manchester during the second half of the 20th century. By looking at the long-term redefinition of a research programme, it sheds new light on the interactions between different and conflicting levels in the study of biomedicine, such as the local and the global, or the medical and the biological. It also addresses the gap in the literature between the first biomedical complexes after World War II and the emergence of biotechnology. Connective tissue research in Manchester emerged as a field focused on new treatments for rheumatic diseases. During the 1950s and 60s, it absorbed a number of laboratory techniques from biology, namely cell culture and electron microscopy. The transformations in scientific policy during the late 70s and the migration of Manchester researchers to the US led them to adopt recombinant DNA methods, which were borrowed from human genetics. This resulted in the emergence of cell matrix biology, a new field which had one of its reference centres in Manchester. The Manchester story shows the potential of detailed and chronologically wide local studies of patterns of work to understand the mechanisms by which new biomedical tools and institutions interact with long-standing problems and existing affiliations. PMID:21486662
Code of Federal Regulations, 2013 CFR
2013-10-01
... receives PHS support for any activity or program that involves the conduct of biomedical or behavioral research, biomedical or behavioral research training, or activities related to that research or training. This includes, but is not limited to colleges and universities, PHS intramural biomedical or behavioral...
Code of Federal Regulations, 2014 CFR
2014-10-01
... receives PHS support for any activity or program that involves the conduct of biomedical or behavioral research, biomedical or behavioral research training, or activities related to that research or training. This includes, but is not limited to colleges and universities, PHS intramural biomedical or behavioral...
Code of Federal Regulations, 2012 CFR
2012-10-01
... receives PHS support for any activity or program that involves the conduct of biomedical or behavioral research, biomedical or behavioral research training, or activities related to that research or training. This includes, but is not limited to colleges and universities, PHS intramural biomedical or behavioral...
Code of Federal Regulations, 2010 CFR
2010-10-01
... receives PHS support for any activity or program that involves the conduct of biomedical or behavioral research, biomedical or behavioral research training, or activities related to that research or training. This includes, but is not limited to colleges and universities, PHS intramural biomedical or behavioral...
Unanticipated Insights into Biomedicine from the Study of Acupuncture.
MacPherson, Hugh; Hammerschlag, Richard; Coeytaux, Remy R; Davis, Robert T; Harris, Richard E; Kong, Jiang-Ti; Langevin, Helene M; Lao, Lixing; Milley, Ryan J; Napadow, Vitaly; Schnyer, Rosa N; Stener-Victorin, Elisabet; Witt, Claudia M; Wayne, Peter M
2016-02-01
Research into acupuncture has had ripple effects beyond the field of acupuncture. This paper identifies five exemplars to illustrate that there is tangible evidence of the way insights gleaned from acupuncture research have informed biomedical research, practice, or policy. The first exemplar documents how early research into acupuncture analgesia has expanded into neuroimaging research, broadening physiologic understanding and treatment of chronic pain. The second describes how the acupuncture needle has become a tool to enhance biomedical knowledge of connective tissue. The third exemplar, which illustrates use of a modified acupuncture needle as a sham device, focuses on emergent understanding of placebo effects and, in turn, on insights into therapeutic encounters in treatments unrelated to acupuncture. The fourth exemplar documents that two medical devices now in widespread use were inspired by acupuncture: transcutaneous electrical nerve stimulators for pain control and antinausea wrist bands. The final exemplar describes how pragmatic clinical trial designs applied in acupuncture research have informed current general interest in comparative effectiveness research. In conclusion, these exemplars of unanticipated outcomes of acupuncture research comprise an additional rationale for continued support of basic and clinical research evaluating acupuncture and other under-researched therapies.
Technical editing of research reports in biomedical journals.
Wager, Elizabeth; Middleton, Philippa
2008-10-08
Most journals try to improve their articles by technical editing processes such as proof-reading, editing to conform to 'house styles', grammatical conventions and checking accuracy of cited references. Despite the considerable resources devoted to technical editing, we do not know whether it improves the accessibility of biomedical research findings or the utility of articles. This is an update of a Cochrane methodology review first published in 2003. To assess the effects of technical editing on research reports in peer-reviewed biomedical journals, and to assess the level of accuracy of references to these reports. We searched The Cochrane Library Issue 2, 2007; MEDLINE (last searched July 2006); EMBASE (last searched June 2007) and checked relevant articles for further references. We also searched the Internet and contacted researchers and experts in the field. Prospective or retrospective comparative studies of technical editing processes applied to original research articles in biomedical journals, as well as studies of reference accuracy. Two review authors independently assessed each study against the selection criteria and assessed the methodological quality of each study. One review author extracted the data, and the second review author repeated this. We located 32 studies addressing technical editing and 66 surveys of reference accuracy. Only three of the studies were randomised controlled trials. A 'package' of largely unspecified editorial processes applied between acceptance and publication was associated with improved readability in two studies and improved reporting quality in another two studies, while another study showed mixed results after stricter editorial policies were introduced. More intensive editorial processes were associated with fewer errors in abstracts and references. Providing instructions to authors was associated with improved reporting of ethics requirements in one study and fewer errors in references in two studies, but no difference was seen in the quality of abstracts in one randomised controlled trial. Structuring generally improved the quality of abstracts, but increased their length. The reference accuracy studies showed a median citation error rate of 38% and a median quotation error rate of 20%. Surprisingly few studies have evaluated the effects of technical editing rigorously. However there is some evidence that the 'package' of technical editing used by biomedical journals does improve papers. A substantial number of references in biomedical articles are cited or quoted inaccurately.
Mental disorder ethics: theory and empirical investigation
Eastman, N; Starling, B
2006-01-01
Mental disorders and their care present unusual problems within biomedical ethics. The disorders themselves invite an ethical critique, as does society's attitude to them; researching the diagnosis and treatment of mental disorders also presents special ethical issues. The current high profile of mental disorder ethics, emphasised by recent political and legal developments, makes this a field of research that is not only important but also highly topical. For these reasons, the Wellcome Trust's biomedical ethics programme convened a meeting, “Investigating Ethics and Mental Disorders”, in order to review some current research, and to stimulate topics and methods of future research in the field. The meeting was attended by policy makers, regulators, research funders, and researchers, including social scientists, psychiatrists, psychologists, lawyers, philosophers, criminologists, and others. As well as aiming to inspire a stronger research endeavour, the meeting also sought to stimulate an improved understanding of the methods and interactions that can contribute to “empirical ethics” generally. This paper reports on the meeting by describing contributions from individual speakers and discussion sections of the meeting. At the end we describe and discuss the conclusions of the meeting. As a result, the text is referenced less than would normally be expected in a review. Also, in summarising contributions from named presenters at the meeting it is possible that we have created inaccuracies; however, the definitive version of each paper, as provided directly by the presenter, is available at http://www.wellcome.ac.uk/doc.WTX025116.html. PMID:16446414
Peiró‐Pérez, Rosana; Colomer‐Revuelta, Concha; Blázquez‐Herranz, Margarita; Gómez‐López, Fernando
2007-01-01
Background According to European reports, women participate in research less than men, especially in positions of responsibility. This kind of analysis has not been carried out in Spain in the field of biomedical research. This study describes participation of men and women as grant applicants in two different calls for research funding, held in Spain in 2006. Methods Data collected from grant applicants and from grantees, for two different competitive grant researches areas: human resources and CIBER (Spanish acronym for Biomedical Research Network Centres) have been described by sex. Results The human resources call shows that the number of applications submitted by women is higher (67.8% vs 32.2%), but the percentage of awards are similar (20.3% vs 22.7%), OR = 1.15 (95% CI: 0.82 to 1.62), with no statistical differences, although there are more men in the upper categories (superior technical experts (OR = 1.19 (0.58 to 2.45)) post‐doctoral (OR = 1.36 (0.65 to 2.86)) and research personnel (OR = 1.48 (0.67 to 3.25)). With the CIBER call (senior researchers) there is a clear difference in the number of applicants (women 19.6%, men 80.4%) but the number of awardees is similar (40.3% vs 43.1%) OR = 0.89 (0.65 to 1.34). Conclusions Although there are no statistical differences between women and men, with respect the awards obtained, there is a different pattern to the type of grant application, with fewer women in the more senior call. PMID:18000109
PubRunner: A light-weight framework for updating text mining results.
Anekalla, Kishore R; Courneya, J P; Fiorini, Nicolas; Lever, Jake; Muchow, Michael; Busby, Ben
2017-01-01
Biomedical text mining promises to assist biologists in quickly navigating the combined knowledge in their domain. This would allow improved understanding of the complex interactions within biological systems and faster hypothesis generation. New biomedical research articles are published daily and text mining tools are only as good as the corpus from which they work. Many text mining tools are underused because their results are static and do not reflect the constantly expanding knowledge in the field. In order for biomedical text mining to become an indispensable tool used by researchers, this problem must be addressed. To this end, we present PubRunner, a framework for regularly running text mining tools on the latest publications. PubRunner is lightweight, simple to use, and can be integrated with an existing text mining tool. The workflow involves downloading the latest abstracts from PubMed, executing a user-defined tool, pushing the resulting data to a public FTP or Zenodo dataset, and publicizing the location of these results on the public PubRunner website. We illustrate the use of this tool by re-running the commonly used word2vec tool on the latest PubMed abstracts to generate up-to-date word vector representations for the biomedical domain. This shows a proof of concept that we hope will encourage text mining developers to build tools that truly will aid biologists in exploring the latest publications.
Han, Ya-Hui; Kankala, Ranjith Kumar; Wang, Shi-Bin; Chen, Ai-Zheng
2018-05-24
In recent times, photo-induced therapeutics have attracted enormous interest from researchers due to such attractive properties as preferential localization, excellent tissue penetration, high therapeutic efficacy, and minimal invasiveness, among others. Numerous photosensitizers have been considered in combination with light to realize significant progress in therapeutics. Along this line, indocyanine green (ICG), a Food and Drug Administration (FDA)-approved near-infrared (NIR, >750 nm) fluorescent dye, has been utilized in various biomedical applications such as drug delivery, imaging, and diagnosis, due to its attractive physicochemical properties, high sensitivity, and better imaging view field. However, ICG still suffers from certain limitations for its utilization as a molecular imaging probe in vivo, such as concentration-dependent aggregation, poor in vitro aqueous stability and photodegradation due to various physicochemical attributes. To overcome these limitations, much research has been dedicated to engineering numerous multifunctional polymeric composites for potential biomedical applications. In this review, we aim to discuss ICG-encapsulated polymeric nanoconstructs, which are of particular interest in various biomedical applications. First, we emphasize some attractive properties of ICG (including physicochemical characteristics, optical properties, metabolic features, and other aspects) and some of its current limitations. Next, we aim to provide a comprehensive overview highlighting recent reports on various polymeric nanoparticles that carry ICG for light-induced therapeutics with a set of examples. Finally, we summarize with perspectives highlighting the significant outcome, and current challenges of these nanocomposites.
Merelli, Ivan; Pérez-Sánchez, Horacio; Gesing, Sandra; D'Agostino, Daniele
2014-01-01
The explosion of the data both in the biomedical research and in the healthcare systems demands urgent solutions. In particular, the research in omics sciences is moving from a hypothesis-driven to a data-driven approach. Healthcare is additionally always asking for a tighter integration with biomedical data in order to promote personalized medicine and to provide better treatments. Efficient analysis and interpretation of Big Data opens new avenues to explore molecular biology, new questions to ask about physiological and pathological states, and new ways to answer these open issues. Such analyses lead to better understanding of diseases and development of better and personalized diagnostics and therapeutics. However, such progresses are directly related to the availability of new solutions to deal with this huge amount of information. New paradigms are needed to store and access data, for its annotation and integration and finally for inferring knowledge and making it available to researchers. Bioinformatics can be viewed as the “glue” for all these processes. A clear awareness of present high performance computing (HPC) solutions in bioinformatics, Big Data analysis paradigms for computational biology, and the issues that are still open in the biomedical and healthcare fields represent the starting point to win this challenge. PMID:25254202
The Need for Veterinarians in Biomedical Research
Rosol, Thomas J.; Moore, Rustin M.; Saville, William J.A.; Oglesbee, Michael J.; Rush, Laura J.; Mathes, Lawrence E.; Lairmore, Michael D.
2010-01-01
The number of veterinarians in the United States is inadequate to meet societal needs in biomedical research and public health. Areas of greatest need include translational medical research, veterinary pathology, laboratory-animal medicine, emerging infectious diseases, public health, academic medicine, and production-animal medicine. Veterinarians have unique skill sets that enable them to serve as leaders or members of interdisciplinary research teams involved in basic science and biomedical research with applications to animal or human health. There are too few graduate veterinarians to serve broad national needs in private practice; academia; local, state, and federal government agencies; and private industry. There are no easy solutions to the problem of increasing the number of veterinarians in biomedical research. Progress will require creativity, modification of priorities, broad-based communication, support from faculty and professional organizations, effective mentoring, education in research and alternative careers as part of the veterinary professional curriculum, and recognition of the value of research experience among professional schools’ admissions committees. New resources should be identified to improve communication and education, professional and graduate student programs in biomedical research, and support to junior faculty. These actions are necessary for the profession to sustain its viability as an integral part of biomedical research. PMID:19435992
Construction of an annotated corpus to support biomedical information extraction
Thompson, Paul; Iqbal, Syed A; McNaught, John; Ananiadou, Sophia
2009-01-01
Background Information Extraction (IE) is a component of text mining that facilitates knowledge discovery by automatically locating instances of interesting biomedical events from huge document collections. As events are usually centred on verbs and nominalised verbs, understanding the syntactic and semantic behaviour of these words is highly important. Corpora annotated with information concerning this behaviour can constitute a valuable resource in the training of IE components and resources. Results We have defined a new scheme for annotating sentence-bound gene regulation events, centred on both verbs and nominalised verbs. For each event instance, all participants (arguments) in the same sentence are identified and assigned a semantic role from a rich set of 13 roles tailored to biomedical research articles, together with a biological concept type linked to the Gene Regulation Ontology. To our knowledge, our scheme is unique within the biomedical field in terms of the range of event arguments identified. Using the scheme, we have created the Gene Regulation Event Corpus (GREC), consisting of 240 MEDLINE abstracts, in which events relating to gene regulation and expression have been annotated by biologists. A novel method of evaluating various different facets of the annotation task showed that average inter-annotator agreement rates fall within the range of 66% - 90%. Conclusion The GREC is a unique resource within the biomedical field, in that it annotates not only core relationships between entities, but also a range of other important details about these relationships, e.g., location, temporal, manner and environmental conditions. As such, it is specifically designed to support bio-specific tool and resource development. It has already been used to acquire semantic frames for inclusion within the BioLexicon (a lexical, terminological resource to aid biomedical text mining). Initial experiments have also shown that the corpus may viably be used to train IE components, such as semantic role labellers. The corpus and annotation guidelines are freely available for academic purposes. PMID:19852798
42 CFR 93.301 - Institutional assurances.
Code of Federal Regulations, 2010 CFR
2010-10-01
... assurances. (a) General policy. An institution with PHS supported biomedical or behavioral research, research... biomedical and behavioral research, research training, or activities related to that research or research...
42 CFR 93.301 - Institutional assurances.
Code of Federal Regulations, 2013 CFR
2013-10-01
... assurances. (a) General policy. An institution with PHS supported biomedical or behavioral research, research... biomedical and behavioral research, research training, or activities related to that research or research...
42 CFR 93.301 - Institutional assurances.
Code of Federal Regulations, 2011 CFR
2011-10-01
... assurances. (a) General policy. An institution with PHS supported biomedical or behavioral research, research... biomedical and behavioral research, research training, or activities related to that research or research...
42 CFR 93.301 - Institutional assurances.
Code of Federal Regulations, 2012 CFR
2012-10-01
... assurances. (a) General policy. An institution with PHS supported biomedical or behavioral research, research... biomedical and behavioral research, research training, or activities related to that research or research...
42 CFR 93.301 - Institutional assurances.
Code of Federal Regulations, 2014 CFR
2014-10-01
... assurances. (a) General policy. An institution with PHS supported biomedical or behavioral research, research... biomedical and behavioral research, research training, or activities related to that research or research...
Microgravity: New opportunities to facilitate biotechnology development
NASA Astrophysics Data System (ADS)
Johnson, Terry; Todd, Paul; Stodieck, Louis S.
1996-03-01
New opportunities exist to use the microgravity environment to facilitate biotechnology development. BioServe Space Technologies Center for the Commercial Development of Space offers access to microgravity environments for companies who wish to perform research or develop products in three specific life-science fields: Biomedical and Pharmaceutical Research, Biotechnology and Bioprocessing Research, and Agricultural and Environmental Research. Examples of each include physiological testing of new pharmaceutical countermeasures against symptoms that are exaggerated in space flight, crystallization and testing of novel, precompetitive biopharmaceutical substances in a convection-free environment, and closed life-support system product development.
A Summary of Important Documents in the Field of Research Ethics
Fischer, Bernard A
2006-01-01
Today's researchers are obligated to conduct their studies ethically. However, it often seems a daunting task to become familiar with the important ethical codes required to do so. The purpose of this article is to examine the content of those ethical documents most relevant to the biomedical researcher. Documents examined include the Nuremberg Code, the Declaration of Helsinki, Henry Beecher's landmark paper, the Belmont Report, the U.S. Common Rule, the Guideline for Good Clinical Practice, and the National Bioethics Advisory Commission's report on research protections for the mentally ill. PMID:16192409
Rapid fabrication of microneedles using magnetorheological drawing lithography.
Chen, Zhipeng; Ren, Lei; Li, Jiyu; Yao, Lebin; Chen, Yan; Liu, Bin; Jiang, Lelun
2018-01-01
Microneedles are micron-sized needles that are widely applied in biomedical fields owing to their painless, minimally invasive, and convenient operation. However, most microneedle fabrication approaches are costly, time consuming, involve multiple steps, and require expensive equipment. In this study, we present a novel magnetorheological drawing lithography (MRDL) method to efficiently fabricate microneedle, bio-inspired microneedle, and molding-free microneedle array. With the assistance of an external magnetic field, the 3D structure of a microneedle can be directly drawn from a droplet of curable magnetorheological fluid. The formation process of a microneedle consists of two key stages, elasto-capillary self-thinning and magneto-capillary self-shrinking, which greatly affect the microneedle height and tip radius. Penetration and fracture tests demonstrated that the microneedle had sufficient strength and toughness for skin penetration. Microneedle arrays and a bio-inspired microneedle were also fabricated, which further demonstrated the versatility and flexibility of the MRDL method. Microneedles have been widely applied in biomedical fields owing to their painless, minimally invasive, and convenient operation. However, most microneedle fabrication approaches are costly, time consuming, involve multiple steps, and require expensive equipment. Furthermore, most researchers have focused on the biomedical applications of microneedles but have given little attention to the optimization of the fabrication process. This research presents a novel magnetorheological drawing lithography (MRDL) method to fabricate microneedle, bio-inspired microneedle, and molding-free microneedle array. In this proposed technique, a droplet of curable magnetorheological fluid (CMRF) is drawn directly from almost any substrate to produce a 3D microneedle under an external magnetic field. This method not only inherits the advantages of thermal drawing approach without the need for a mask and light irradiation but also eliminates the requirement for drawing temperature adjustment. The MRDL method is extremely simple and can even produce the complex and multiscale structure of bio-inspired microneedle. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
e-Science platform for translational biomedical imaging research: running, statistics, and analysis
NASA Astrophysics Data System (ADS)
Wang, Tusheng; Yang, Yuanyuan; Zhang, Kai; Wang, Mingqing; Zhao, Jun; Xu, Lisa; Zhang, Jianguo
2015-03-01
In order to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment, we had designed an e-Science platform for biomedical imaging research and application cross multiple academic institutions and hospitals in Shanghai and presented this work in SPIE Medical Imaging conference held in San Diego in 2012. In past the two-years, we implemented a biomedical image chain including communication, storage, cooperation and computing based on this e-Science platform. In this presentation, we presented the operating status of this system in supporting biomedical imaging research, analyzed and discussed results of this system in supporting multi-disciplines collaboration cross-multiple institutions.
Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications.
Luo, Zhentao; Zheng, Kaiyuan; Xie, Jianping
2014-05-25
Gold and silver nanoclusters or Au/Ag NCs with core sizes smaller than 2 nm have been an attractive frontier of nanoparticle research because of their unique physicochemical properties such as well-defined molecular structure, discrete electronic transitions, quantized charging, and strong luminescence. As a result of these unique properties, ultrasmall size, and good biocompatibility, Au/Ag NCs have great potential for a variety of biomedical applications, such as bioimaging, biosensing, antimicrobial agents, and cancer therapy. In this feature article, we will first discuss some critical biological considerations, such as biocompatibility and renal clearance, of Au/Ag NCs that are applied for biomedical applications, leading to some design criteria for functional Au/Ag NCs in the biological settings. According to these biological considerations, we will then survey some efficient synthetic strategies for the preparation of protein- and peptide-protected Au/Ag NCs with an emphasis on our recent contributions in this fast-growing field. In the last part, we will highlight some potential biomedical applications of these protein- and peptide-protected Au/Ag NCs. It is believed that with continued efforts to understand the interactions of biomolecule-protected Au/Ag NCs with the biological systems, scientists can largely realize the great potential of Au/Ag NCs for biomedical applications, which could finally pave their way towards clinical use.
A Novel Multi-Class Ensemble Model for Classifying Imbalanced Biomedical Datasets
NASA Astrophysics Data System (ADS)
Bikku, Thulasi; Sambasiva Rao, N., Dr; Rao, Akepogu Ananda, Dr
2017-08-01
This paper mainly focuseson developing aHadoop based framework for feature selection and classification models to classify high dimensionality data in heterogeneous biomedical databases. Wide research has been performing in the fields of Machine learning, Big data and Data mining for identifying patterns. The main challenge is extracting useful features generated from diverse biological systems. The proposed model can be used for predicting diseases in various applications and identifying the features relevant to particular diseases. There is an exponential growth of biomedical repositories such as PubMed and Medline, an accurate predictive model is essential for knowledge discovery in Hadoop environment. Extracting key features from unstructured documents often lead to uncertain results due to outliers and missing values. In this paper, we proposed a two phase map-reduce framework with text preprocessor and classification model. In the first phase, mapper based preprocessing method was designed to eliminate irrelevant features, missing values and outliers from the biomedical data. In the second phase, a Map-Reduce based multi-class ensemble decision tree model was designed and implemented in the preprocessed mapper data to improve the true positive rate and computational time. The experimental results on the complex biomedical datasets show that the performance of our proposed Hadoop based multi-class ensemble model significantly outperforms state-of-the-art baselines.
Capsule review of the DOE research and development and field facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1980-09-01
A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses,more » and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)« less
Facilities available for biomedical science research in the public universities in Lagos, Nigeria.
John, T A
2010-03-01
Across the world, basic medical scientists and physician scientists work on common platforms in state-of-the-arts laboratories doing translational research that occasionally results in bedside application. Biotechnology industries capitalise on useful findings for colossal profit.1 In Nigeria and the rest of Africa, biomedical science has not thrived and the contribution of publications to global high impact journals is low.2 This work investigated facilities available for modern biomedical research in Lagos public universities to extract culprit factors. The two public universities in Lagos, Nigeria were investigated by a cross sectional questionnaire survey of the technical staff manning biomedical science departments. They were asked about availability of 47 modern biomedical science research laboratory components such as cold room and microscopes and six research administration components such as director of research and grants administration. For convenient basic laboratory components such as autoclaves and balances, 50% responses indicated "well maintained and always functional" whereas for less convenient complex, high maintenance, state-of-the-arts equipment 19% responses indicated "well maintained and always functional." Respondents indicated that components of modern biomedical science research administration were 44% of expectation. The survey reveal a deficit in state-of the-arts research equipment and also a deficit in high maintenance, expensive equipment indicating that biomedical science in the investigated environment lacks the momentum of global trends and also lacks buoyant funding. In addition, administration supporting biomedical science is below expectation and may also account for the low contributions of research articles to global high impact journals.
Mei Li; Mandla A. Tshabalala; Gisela Buschle-Diller
2016-01-01
Owing to their chemical, physical, and functional characteristics, polysaccharides are considered to be the most versatile natural polymers. As a result, their properties have been exploited in various fields of research in the biomedical, pharmaceutical, cosmetic, food, and agricultural industries. A property of special interest is their ability to form systems or...
USDA-ARS?s Scientific Manuscript database
Neonatal pigs can serve as dual-use models for nutrition research in animal agriculture and biomedical fields. To determine how feeding modality by either intermittent bolus or continuous schedule affects protein anabolism and catabolism, neonatal pigs (n = 6/group, 9-d-old) were overnight fasted (F...
ERIC Educational Resources Information Center
De Mattos, J. C. P.; Dantas, F. J. S.; Caldeira-de-Araujo, A.; Moraes, M. O.
2004-01-01
Good quality scientific teaching depends on the ability of researchers to translate laboratory experiments into high school and undergraduate classes, bridging the advanced and basic science with common knowledge. A fast-growing field in biomedical sciences is oxidative stress, which has been associated to several diseases, including cancer and…
Information Retrieval in Biomedical Research: From Articles to Datasets
ERIC Educational Resources Information Center
Wei, Wei
2017-01-01
Information retrieval techniques have been applied to biomedical research for a variety of purposes, such as textual document retrieval and molecular data retrieval. As biomedical research evolves over time, information retrieval is also constantly facing new challenges, including the growing number of available data, the emerging new data types,…
ERIC Educational Resources Information Center
Kong, Xiaoqing; Chakraverty, Devasmita; Jeffe, Donna B.; Andriole, Dorothy A.; Wathington, Heather D.; Tai, Robert H.
2013-01-01
This exploratory qualitative study investigated how doctoral students reported their personal and professional interaction experiences that they believed might facilitate or impede their academic pursuits in biomedical research. We collected 19 in-depth interviews with doctoral students in biomedical research from eight universities, and we based…
Wisneski, Andrew D; Huang, Lixia; Hong, Bo; Wang, Xiaoqin
2011-01-01
A model for an international undergraduate biomedical engineering research exchange program is outlined. In 2008, the Johns Hopkins University in collaboration with Tsinghua University in Beijing, China established the Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research. Undergraduate biomedical engineering students from both universities are offered the opportunity to participate in research at the overseas institution. Programs such as these will not only provide research experiences for undergraduates but valuable cultural exchange and enrichment as well. Currently, strict course scheduling and rigorous curricula in most biomedical engineering programs may present obstacles for students to partake in study abroad opportunities. Universities are encouraged to harbor abroad opportunities for undergraduate engineering students, for which this particular program can serve as a model.
Latino Beliefs about Biomedical Research Participation: A Qualitative Study on the US-Mexico Border
Ceballos, Rachel; Knerr, Sarah; Scott, Mary Alice; Hohl, Sarah; Malen, Rachel; Vilchis, Hugo; Thompson, Beti
2015-01-01
Latinos are under-represented in biomedical research conducted in the United States (US), impeding disease prevention and treatment efforts for this growing demographic group. We gathered perceptions of biomedical research and gauged willingness to participate through elicitation interviews and focus groups with Latinos living on the US-Mexico border. Themes that emerged included a strong willingness to participate in biomedical studies and suggested that Latinos may be under-represented due to limited formal education and access to health information, not distrust. The conflation of research and clinical care was common and motivated participation. Outreach efforts and educational interventions to inform Latinos of participation opportunities and clarify harms and benefits associated with biomedical research participation will be essential to maintain trust within Latino communities. PMID:25747293
Implantable Biomedical Microsystems: A New Graduate Course in Biomedical Circuits and Systems
ERIC Educational Resources Information Center
Sodagar, Amir M.
2014-01-01
After more than two decades of research on the design and development of implantable biomedical microsystems, it is time now to organize research achievements in this area in a consolidated and pedagogical form. This paper introduces a new graduate course in advanced biomedical circuits and systems. Designed for graduate students with electrical…
2004-07-07
KENNEDY SPACE CENTER, FLA. - A boat returns to the dock in Key Largo from a training session offshore at NASA’s undersea research station, named Aquarius. At left is Marc Reagan, lead on the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission. In the bow is astronaut John Herrington, mission commander. The others are support personnel. Members of the team also include astronauts Doug Wheelock and Nick Patrick, and biomedical engineer Tara Ruttley. To prepare for their 10-day stay, the team had dive training twice a day. While stationed in Aquarius, the team conducted spacewalk-like diving excursions and field-testing a variety of biomedical equipment designed to help astronauts living aboard the International Space Station.
Bhalla, Nikhil; Jolly, Pawan; Formisano, Nello; Estrela, Pedro
2016-06-30
Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Dumitrascu, Dan L
2018-01-01
There is a competition between scientific journals in order to achieve leadership in their scientific field. There are several Romanian biomedical journals which are published in English and a smaller number in Romanian. We need a periodical analysis of their visibility and ranking according to scientometric measures. We searched all biomedical journals indexed on international data bases: Web of Science, PubMed, Scopus, Embase, Google Scholar. We analyzed their evaluation factors. Several journals from Romania in the biomedical field are indexed in international databases. Their scientometric indexes are not high. The best journal was acquired by an international publisher and is no longer listed for Romania. There are several Romanian biomedical journals indexed in international databases that deserve periodical analysis. There is a need to improve their ranking.
Biomedical technology transfer applications of NASA science and technology
NASA Technical Reports Server (NTRS)
1972-01-01
The identification and solution of research and clinical problems in cardiovascular medicine which were investigated by means of biomedical data transfer are reported. The following are sample areas that were focused upon by the Stanford University Biomedical Technology Transfer Team: electrodes for hemiplegia research; vectorcardiogram computer analysis; respiration and phonation electrodes; radiotelemetry of intracranial pressure; and audiotransformation of the electrocardiographic signal. It is concluded that this biomedical technology transfer is significantly aiding present research in cardiovascular medicine.
ERIC Educational Resources Information Center
Haller, Edwin W., Ed.; Myers, Ruth A., Ed.
This document contains edited versions of tape-recorded speeches given at a conference titled "American Indians and Alaskan Natives in Biomedical Research." The proceedings is divided into two sections: "Research in the Biomedical Sciences: American Indians Speak Out" that includes presentations on aspects of biomedical careers and their federal…
Biotechnology in Turkey: an overview.
Ozdamar, Tunçer H
2009-07-01
The term biotechnology first appeared in the programs of the Scientific and Technological Research Council of Turkey (TUBITAK) in 1982. The State Planning Organization (SPO) in 1988 defined biotechnology and the scientific fields. Moreover, it put forward an institutional framework and suggested priority areas for research and development. Turkey has been researching and investing in biotechnology for almost four decades. This review covers the development of science and technology policy with its history, consensus and consequences, bio-industries in Turkey, and research activities in biotechnology at Turkish Universities. Details are provided by the research groups in response to a common request for information on their activities and major publications in the field. The information provided has been grouped under thematic topics within the broad theme of biotechnology, and summarized within these topics. Although many aspects of biotechnological research are being pursued in Turkey, it appears that the most common research activities of the field are in fermentation processes, environmental biotechnology, and biomedical engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, K.S.
1994-12-31
When the North Carolina Association for Biomedical Research (NCABR) surveyed the state`s science teachers in March 1993, 92% of those responding requested information related to biomedical research. Most of the teachers requested lesson plans and activities designed to help them give students an accurate and balanced perspective on research. In response to that need, NCABR has recently completed production of a 300-page teacher`s manual that provides an overview of the biomedical research process and describes the role and care of animals in that process. Rx for Science Literacy incorporates background information, lesson plans, handouts and activities to assist teachers inmore » K-12 classrooms. Developed by a science teacher with assistance from science and education experts, the manual captures the complex biomedical research process in an easy-to-follow, easy-to-use format. In North Carolina, NCABR plans to begin these workshops in fall 1994. The workshops will include a tour of a biomedical research laboratory and on-site presentations by bench scientists. Teacher evaluation of the manual will be structured into the workshop program. The manual is available at cost to all interested individuals and organizations.« less
Application of the 4-D XCAT Phantoms in Biomedical Imaging and Beyond.
Segars, W Paul; Tsui, B M W; Cai, Jing; Yin, Fang-Fang; Fung, George S K; Samei, Ehsan
2018-03-01
The four-dimensional (4-D) eXtended CArdiac-Torso (XCAT) series of phantoms was developed to provide accurate computerized models of the human anatomy and physiology. The XCAT series encompasses a vast population of phantoms of varying ages from newborn to adult, each including parameterized models for the cardiac and respiratory motions. With great flexibility in the XCAT's design, any number of body sizes, different anatomies, cardiac or respiratory motions or patterns, patient positions and orientations, and spatial resolutions can be simulated. As such, the XCAT phantoms are gaining a wide use in biomedical imaging research. There they can provide a virtual patient base from which to quantitatively evaluate and improve imaging instrumentation, data acquisition, techniques, and image reconstruction and processing methods which can lead to improved image quality and more accurate clinical diagnoses. The phantoms have also found great use in radiation dosimetry, radiation therapy, medical device design, and even the security and defense industry. This review paper highlights some specific areas in which the XCAT phantoms have found use within biomedical imaging and other fields. From these examples, we illustrate the increasingly important role that computerized phantoms and computer simulation are playing in the research community.
NASA Astrophysics Data System (ADS)
Evetts, S. N.
2014-08-01
The human exploration of space is pushing the boundaries of what is technically feasible. The space industry is preparing for the New Space era, the momentum for which will emanate from the commercial human spaceflight sector, and will be buttressed by international solar system exploration endeavours. With many distinctive technical challenges to be overcome, human spaceflight requires that numerous biological and physical systems be examined under exceptional circumstances for progress to be made. To effectively tackle such an undertaking significant intra- and international coordination and collaboration is required. Space life and biomedical science research and development (R & D) will support the Global Exploration Roadmap (GER) by enabling humans to 'endure' the extreme activity that is long duration human spaceflight. In so doing the field will discover solutions to some of our most difficult human health issues, and as a consequence benefit society as a whole. This space-specific R&D will drive a significant amount of terrestrial biomedical research and as a result the international community will not only gain benefits in the form of improved healthcare in space and on Earth, but also through the growth of its science base and industry.
Biomedical Applications of Terahertz Spectroscopy: A Brief Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargas-Luna, M.; Huerta-Franco, R.
The Terahertz (THz) window of the electromagnetic spectrum has been partially explored but almost unexploited commercially. In recent years there has been an increased interest and a technological boost in THz research for detection systems, material characterization and imaging. Among many hot topics the researchers are interested in medical applications, and protein characterization. We present a general overview of the field showing some of the handicaps and promises of this region of the electromagnetic spectru000.
The Impact of Regulating Social Science Research with Biomedical Regulations
ERIC Educational Resources Information Center
Durosinmi, Brenda Braxton
2011-01-01
The Impact of Regulating Social Science Research with Biomedical Regulations Since 1974 Federal regulations have governed the use of human subjects in biomedical and social science research. The regulations are known as the Federal Policy for the Protection of Human Subjects, and often referred to as the "Common Rule" because 18 Federal…
An Evolving Research Culture: Analysis of Biomedical Publications from Libya, 2003-13
ERIC Educational Resources Information Center
Ahmed, Mohamed O.; Daw, Mohamed A.; van Velkinburgh, Jennifer C.
2017-01-01
Understanding the publication output of a country's biomedical research can provide information for strengthening its policies, economy, and educational systems. Yet, this is the first bibliometric study to date to analyze and provide an in-depth discussion of the biomedical research productivity from Libyan academic institutions. The biomedical…
Hanefeld, Johanna
2016-02-06
In his perspective "Navigating between stealth advocacy and unconscious dogmatism: the challenge of researching the norms, politics and power of global health," Ooms argues that actions taken in the field of global health are dependent not only on available resources, but on the normative premise that guides how these resources are spent. This comment sets out how the application of a predominately biomedical positivist research tradition in global health, has potentially limited understanding of the value judgements underlying decisions in the field. To redress this critical social science, including health policy analysis has much to offer, to the field of global health including on questions of governance. © 2016 by Kerman University of Medical Sciences.
Wallen, M; Pandit, A
2009-05-01
In addressing the task of developing an undergraduate module in the field of tissue engineering, the greatest challenge lies in managing to capture what is a growing and rapidly changing field. Acknowledging the call for the development of greater critical thinking and interpersonal skills among the next generation of engineers as well as encouraging students to engage actively with the dynamic nature of research in the field, the module was developed to include both project-based and cooperative-learning experiences. These learning activities include developing hypotheses for the application of newly introduced laboratory procedures, a collaborative mock grant submission, and debates on ethical issues in which students are assigned roles as various stakeholders. Feedback from module evaluations has indicated that, while students find the expectations challenging, they are able to gain an advanced insight into a dynamic field. More importantly, students develop research competencies by engaging in activities that require them to link current research directions with their own development of hypotheses for future tissue-engineering applications.
Sensitive magnetic sensors without cooling in biomedical engineering.
Nowak, H; Strähmel, E; Giessler, F; Rinneberg, G; Haueisen, J
2003-01-01
Magnetic field sensors are used in various fields of technology. In the past few years a large variety of magnetic field sensors has been established and the performance of these sensors has been improved enormously. In this review article all recent developments in the area of sensitive magnetic field sensory analysis (resolution better than 1 nT) are presented and examined regarding their parameters. This is mainly done under the aspect of application fields in biomedical engineering. A comparison of all commercial and available sensitive magnetic field sensors shows current and prospective ranges of application.
Document Exploration and Automatic Knowledge Extraction for Unstructured Biomedical Text
NASA Astrophysics Data System (ADS)
Chu, S.; Totaro, G.; Doshi, N.; Thapar, S.; Mattmann, C. A.; Ramirez, P.
2015-12-01
We describe our work on building a web-browser based document reader with built-in exploration tool and automatic concept extraction of medical entities for biomedical text. Vast amounts of biomedical information are offered in unstructured text form through scientific publications and R&D reports. Utilizing text mining can help us to mine information and extract relevant knowledge from a plethora of biomedical text. The ability to employ such technologies to aid researchers in coping with information overload is greatly desirable. In recent years, there has been an increased interest in automatic biomedical concept extraction [1, 2] and intelligent PDF reader tools with the ability to search on content and find related articles [3]. Such reader tools are typically desktop applications and are limited to specific platforms. Our goal is to provide researchers with a simple tool to aid them in finding, reading, and exploring documents. Thus, we propose a web-based document explorer, which we called Shangri-Docs, which combines a document reader with automatic concept extraction and highlighting of relevant terms. Shangri-Docsalso provides the ability to evaluate a wide variety of document formats (e.g. PDF, Words, PPT, text, etc.) and to exploit the linked nature of the Web and personal content by performing searches on content from public sites (e.g. Wikipedia, PubMed) and private cataloged databases simultaneously. Shangri-Docsutilizes Apache cTAKES (clinical Text Analysis and Knowledge Extraction System) [4] and Unified Medical Language System (UMLS) to automatically identify and highlight terms and concepts, such as specific symptoms, diseases, drugs, and anatomical sites, mentioned in the text. cTAKES was originally designed specially to extract information from clinical medical records. Our investigation leads us to extend the automatic knowledge extraction process of cTAKES for biomedical research domain by improving the ontology guided information extraction process. We will describe our experience and implementation of our system and share lessons learned from our development. We will also discuss ways in which this could be adapted to other science fields. [1] Funk et al., 2014. [2] Kang et al., 2014. [3] Utopia Documents, http://utopiadocs.com [4] Apache cTAKES, http://ctakes.apache.org
Glycobiology of Reproductive Processes in Marine Animals: The State of the Art
Gallo, Alessandra; Costantini, Maria
2012-01-01
Glycobiology is the study of complex carbohydrates in biological systems and represents a developing field of science that has made huge advances in the last half century. In fact, it combines all branches of biomedical research, revealing the vast and diverse forms of carbohydrate structures that exist in nature. Advances in structure determination have enabled scientists to study the function of complex carbohydrates in more depth and to determine the role that they play in a wide range of biological processes. Glycobiology research in marine systems has primarily focused on reproduction, in particular for what concern the chemical communication between the gametes. The current status of marine glycobiology is primarily descriptive, devoted to characterizing marine glycoconjugates with potential biomedical and biotechnological applications. In this review, we describe the current status of the glycobiology in the reproductive processes from gametogenesis to fertilization and embryo development of marine animals. PMID:23247316
Bahraminasab, Marjan; Farahmand, Farzam
2017-09-01
The trend in biomaterials development has now headed for tailoring the properties and making hybrid materials to achieve the optimal performance metrics in a product. Modern manufacturing processes along with advanced computational techniques enable systematical fabrication of new biomaterials by design strategy. Functionally graded materials as a recent group of hybrid materials have found numerous applications in biomedical area, particularly for making orthopedic prostheses. This article, therefore, seeks to address the following research questions: (RQ1) What is the desired structure of orthopedic hybrid materials? (RQ2) What is the contribution of the literature in the development of hybrid materials in the field of orthopedic research? (RQ3) Which type of manufacturing approaches is prevalently used to build these materials for knee and hip implants? (RQ4) Is there any inadequacy in the methods applied?
Assessing the impact of biomedical research in academic institutions of disparate sizes
2009-01-01
Background The evaluation of academic research performance is nowadays a priority issue. Bibliometric indicators such as the number of publications, total citation counts and h-index are an indispensable tool in this task but their inherent association with the size of the research output may result in rewarding high production when evaluating institutions of disparate sizes. The aim of this study is to propose an indicator that may facilitate the comparison of institutions of disparate sizes. Methods The Modified Impact Index (MII) was defined as the ratio of the observed h-index (h) of an institution over the h-index anticipated for that institution on average, given the number of publications (N) it produces i.e. (α and β denote the intercept and the slope, respectively, of the line describing the dependence of the h-index on the number of publications in log10 scale). MII values higher than 1 indicate that an institution performs better than the average, in terms of its h-index. Data on scientific papers published during 2002–2006 and within 36 medical fields for 219 Academic Medical Institutions from 16 European countries were used to estimate α and β and to calculate the MII of their total and field-specific production. Results From our biomedical research data, the slope β governing the dependence of h-index on the number of publications in biomedical research was found to be similar to that estimated in other disciplines (≈0.4). The MII was positively associated with the average number of citations/publication (r = 0.653, p < 0.001), the h-index (r = 0.213, p = 0.002), the number of publications with ≥ 100 citations (r = 0.211, p = 0.004) but not with the number of publications (r = -0.020, p = 0.765). It was the most highly associated indicator with the share of country-specific government budget appropriations or outlays for research and development as % of GDP in 2004 (r = 0.229) followed by the average number of citations/publication (r = 0.153) whereas the corresponding correlation coefficient for the h-index was close to 0 (r = 0.029). MII was calculated for first 10 top-ranked European universities in life sciences and biomedicine, as provided by Times Higher Education ranking system, and their total and field-specific performance was compared. Conclusion The MII should complement the use of h-index when comparing the research output of institutions of disparate sizes. It has a conceptual interpretation and, with the data provided here, can be computed for the total research output as well as for field-specific publication sets of institutions in biomedicine. PMID:19480665
Assessing the impact of biomedical research in academic institutions of disparate sizes.
Sypsa, Vana; Hatzakis, Angelos
2009-05-29
The evaluation of academic research performance is nowadays a priority issue. Bibliometric indicators such as the number of publications, total citation counts and h-index are an indispensable tool in this task but their inherent association with the size of the research output may result in rewarding high production when evaluating institutions of disparate sizes. The aim of this study is to propose an indicator that may facilitate the comparison of institutions of disparate sizes. The Modified Impact Index (MII) was defined as the ratio of the observed h-index (h) of an institution over the h-index anticipated for that institution on average, given the number of publications (N) it produces i.e. MII = h/10alphaNbeta (alpha and beta denote the intercept and the slope, respectively, of the line describing the dependence of the h-index on the number of publications in log10 scale). MII values higher than 1 indicate that an institution performs better than the average, in terms of its h-index. Data on scientific papers published during 2002-2006 and within 36 medical fields for 219 Academic Medical Institutions from 16 European countries were used to estimate alpha and beta and to calculate the MII of their total and field-specific production. From our biomedical research data, the slope beta governing the dependence of h-index on the number of publications in biomedical research was found to be similar to that estimated in other disciplines ( approximately 0.4). The MII was positively associated with the average number of citations/publication (r = 0.653, p < 0.001), the h-index (r = 0.213, p = 0.002), the number of publications with > or = 100 citations (r = 0.211, p = 0.004) but not with the number of publications (r = -0.020, p = 0.765). It was the most highly associated indicator with the share of country-specific government budget appropriations or outlays for research and development as % of GDP in 2004 (r = 0.229) followed by the average number of citations/publication (r = 0.153) whereas the corresponding correlation coefficient for the h-index was close to 0 (r = 0.029). MII was calculated for first 10 top-ranked European universities in life sciences and biomedicine, as provided by Times Higher Education ranking system, and their total and field-specific performance was compared. The MII should complement the use of h-index when comparing the research output of institutions of disparate sizes. It has a conceptual interpretation and, with the data provided here, can be computed for the total research output as well as for field-specific publication sets of institutions in biomedicine.
Marschall, Sebastian; Sander, Birgit; Mogensen, Mette; Jørgensen, Thomas M; Andersen, Peter E
2011-07-01
Optical coherence tomography (OCT) is a noninvasive imaging technique that provides real-time two- and three-dimensional images of scattering samples with micrometer resolution. By mapping the local reflectivity, OCT visualizes the morphology of the sample. In addition, functional properties such as birefringence, motion, or the distributions of certain substances can be detected with high spatial resolution. Its main field of application is biomedical imaging and diagnostics. In ophthalmology, OCT is accepted as a clinical standard for diagnosing and monitoring the treatment of a number of retinal diseases, and OCT is becoming an important instrument for clinical cardiology. New applications are emerging in various medical fields, such as early-stage cancer detection, surgical guidance, and the early diagnosis of musculoskeletal diseases. OCT has also proven its value as a tool for developmental biology. The number of companies involved in manufacturing OCT systems has increased substantially during the last few years (especially due to its success in opthalmology), and this technology can be expected to continue to spread into various fields of application.
Grethe, Jeffrey S; Baru, Chaitan; Gupta, Amarnath; James, Mark; Ludaescher, Bertram; Martone, Maryann E; Papadopoulos, Philip M; Peltier, Steven T; Rajasekar, Arcot; Santini, Simone; Zaslavsky, Ilya N; Ellisman, Mark H
2005-01-01
Through support from the National Institutes of Health's National Center for Research Resources, the Biomedical Informatics Research Network (BIRN) is pioneering the use of advanced cyberinfrastructure for medical research. By synchronizing developments in advanced wide area networking, distributed computing, distributed database federation, and other emerging capabilities of e-science, the BIRN has created a collaborative environment that is paving the way for biomedical research and clinical information management. The BIRN Coordinating Center (BIRN-CC) is orchestrating the development and deployment of key infrastructure components for immediate and long-range support of biomedical and clinical research being pursued by domain scientists in three neuroimaging test beds.
The Obligation to Participate in Biomedical Research
Schaefer, G. Owen; Emanuel, Ezekiel J.; Wertheimer, Alan
2009-01-01
The prevailing view is that participation in biomedical research is above and beyond the call of duty. While some commentators have offered reasons against this, we propose a novel public goods argument for an obligation to participate in biomedical research. Biomedical knowledge is a public good, available to any individual even if that individual does not contribute to it. Participation in research is a critical way to support that important public good. Consequently, we all have a duty to participate. The current social norm is that people participate only if they have a good reason to do so. The public goods argument implies that people should participate unless they have a good reason not to. Such a shift would be of great aid to the progress of biomedical research, eventually making our society significantly healthier and longer-lived. PMID:19567441
Ponnaiah, Paulraj; Vnoothenei, Nagiah; Chandramohan, Muruganandham; Thevarkattil, Mohamed Javad Pazhayakath
2018-01-30
Polyhydroxyalkanoates are bio-based, biodegradable naturally occurring polymers produced by a wide range of organisms, from bacteria to higher mammals. The properties and biocompatibility of PHA make it possible for a wide spectrum of applications. In this context, we analyze the potential applications of PHA in biomedical science by exploring the global trend through the patent survey. The survey suggests that PHA is an attractive candidate in such a way that their applications are widely distributed in the medical industry, drug delivery system, dental material, tissue engineering, packaging material as well as other useful products. In our present study, we explored patents associated with various biomedical applications of polyhydroxyalkanoates. Patent databases of European Patent Office, United States Patent and Trademark Office and World Intellectual Property Organization were mined. We developed an intensive exploration approach to eliminate overlapping patents and sort out significant patents. We demarcated the keywords and search criterions and established search patterns for the database request. We retrieved documents within the recent 6 years, 2010 to 2016 and sort out the collected data stepwise to gather the most appropriate documents in patent families for further scrutiny. By this approach, we retrieved 23,368 patent documents from all the three databases and the patent titles were further analyzed for the relevance of polyhydroxyalkanoates in biomedical applications. This ensued in the documentation of approximately 226 significant patents associated with biomedical applications of polyhydroxyalkanoates and the information was classified into six major groups. Polyhydroxyalkanoates has been patented in such a way that their applications are widely distributed in the medical industry, drug delivery system, dental material, tissue engineering, packaging material as well as other useful products. There are many avenues through which PHA & PHB could be used. Our analysis shows patent information can be used to identify various applications of PHA and its representatives in the biomedical field. Upcoming studies can focus on the application of PHA in the different field to discover the related topics and associate to this study. We believe that this approach of analysis and findings can initiate new researchers to undertake similar kind of studies in their represented field to fill the gap between the patent articles and researchpublications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Optical biosensors: a revolution towards quantum nanoscale electronics device fabrication.
Dey, D; Goswami, T
2011-01-01
The dimension of biomolecules is of few nanometers, so the biomolecular devices ought to be of that range so a better understanding about the performance of the electronic biomolecular devices can be obtained at nanoscale. Development of optical biomolecular device is a new move towards revolution of nano-bioelectronics. Optical biosensor is one of such nano-biomolecular devices that has a potential to pave a new dimension of research and device fabrication in the field of optical and biomedical fields. This paper is a very small report about optical biosensor and its development and importance in various fields.
The importance of Zebrafish in biomedical research.
Tavares, Bárbara; Santos Lopes, Susana
2013-01-01
Zebrafish (Danio rerio) is an ideal model organism for the study of vertebrate development. This is due to the large clutches that each couple produces, with up to 200 embryos every 7 days, and to the fact that the embryos and larvae are small, transparent and undergo rapid external development. Using scientific literature research tools available online and the keywords Zebrafish, biomedical research, human disease, and drug screening, we reviewed original studies and reviews indexed in PubMed. In this review we summarized work conducted with this model for the advancement of our knowledge related to several human diseases. We also focused on the biomedical research being performed in Portugal with the zebrafish model. Powerful live imaging and genetic tools are currently available for zebrafish making it a valuable model in biomedical research. The combination of these properties with the optimization of automated systems for drug screening has transformed the zebrafish into "a top model" in biomedical research, drug discovery and toxicity testing. Furthermore, with the optimization of xenografts technology it will be possible to use zebrafish to aide in the choice of the best therapy for each patient. Zebrafish is an excellent model organism in biomedical research, drug development and in clinical therapy.
Biomedical text mining for research rigor and integrity: tasks, challenges, directions.
Kilicoglu, Halil
2017-06-13
An estimated quarter of a trillion US dollars is invested in the biomedical research enterprise annually. There is growing alarm that a significant portion of this investment is wasted because of problems in reproducibility of research findings and in the rigor and integrity of research conduct and reporting. Recent years have seen a flurry of activities focusing on standardization and guideline development to enhance the reproducibility and rigor of biomedical research. Research activity is primarily communicated via textual artifacts, ranging from grant applications to journal publications. These artifacts can be both the source and the manifestation of practices leading to research waste. For example, an article may describe a poorly designed experiment, or the authors may reach conclusions not supported by the evidence presented. In this article, we pose the question of whether biomedical text mining techniques can assist the stakeholders in the biomedical research enterprise in doing their part toward enhancing research integrity and rigor. In particular, we identify four key areas in which text mining techniques can make a significant contribution: plagiarism/fraud detection, ensuring adherence to reporting guidelines, managing information overload and accurate citation/enhanced bibliometrics. We review the existing methods and tools for specific tasks, if they exist, or discuss relevant research that can provide guidance for future work. With the exponential increase in biomedical research output and the ability of text mining approaches to perform automatic tasks at large scale, we propose that such approaches can support tools that promote responsible research practices, providing significant benefits for the biomedical research enterprise. Published by Oxford University Press 2017. This work is written by a US Government employee and is in the public domain in the US.
DTMiner: identification of potential disease targets through biomedical literature mining
Xu, Dong; Zhang, Meizhuo; Xie, Yanping; Wang, Fan; Chen, Ming; Zhu, Kenny Q.; Wei, Jia
2016-01-01
Motivation: Biomedical researchers often search through massive catalogues of literature to look for potential relationships between genes and diseases. Given the rapid growth of biomedical literature, automatic relation extraction, a crucial technology in biomedical literature mining, has shown great potential to support research of gene-related diseases. Existing work in this field has produced datasets that are limited both in scale and accuracy. Results: In this study, we propose a reliable and efficient framework that takes large biomedical literature repositories as inputs, identifies credible relationships between diseases and genes, and presents possible genes related to a given disease and possible diseases related to a given gene. The framework incorporates name entity recognition (NER), which identifies occurrences of genes and diseases in texts, association detection whereby we extract and evaluate features from gene–disease pairs, and ranking algorithms that estimate how closely the pairs are related. The F1-score of the NER phase is 0.87, which is higher than existing studies. The association detection phase takes drastically less time than previous work while maintaining a comparable F1-score of 0.86. The end-to-end result achieves a 0.259 F1-score for the top 50 genes associated with a disease, which performs better than previous work. In addition, we released a web service for public use of the dataset. Availability and Implementation: The implementation of the proposed algorithms is publicly available at http://gdr-web.rwebox.com/public_html/index.php?page=download.php. The web service is available at http://gdr-web.rwebox.com/public_html/index.php. Contact: jenny.wei@astrazeneca.com or kzhu@cs.sjtu.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27506226
DTMiner: identification of potential disease targets through biomedical literature mining.
Xu, Dong; Zhang, Meizhuo; Xie, Yanping; Wang, Fan; Chen, Ming; Zhu, Kenny Q; Wei, Jia
2016-12-01
Biomedical researchers often search through massive catalogues of literature to look for potential relationships between genes and diseases. Given the rapid growth of biomedical literature, automatic relation extraction, a crucial technology in biomedical literature mining, has shown great potential to support research of gene-related diseases. Existing work in this field has produced datasets that are limited both in scale and accuracy. In this study, we propose a reliable and efficient framework that takes large biomedical literature repositories as inputs, identifies credible relationships between diseases and genes, and presents possible genes related to a given disease and possible diseases related to a given gene. The framework incorporates name entity recognition (NER), which identifies occurrences of genes and diseases in texts, association detection whereby we extract and evaluate features from gene-disease pairs, and ranking algorithms that estimate how closely the pairs are related. The F1-score of the NER phase is 0.87, which is higher than existing studies. The association detection phase takes drastically less time than previous work while maintaining a comparable F1-score of 0.86. The end-to-end result achieves a 0.259 F1-score for the top 50 genes associated with a disease, which performs better than previous work. In addition, we released a web service for public use of the dataset. The implementation of the proposed algorithms is publicly available at http://gdr-web.rwebox.com/public_html/index.php?page=download.php The web service is available at http://gdr-web.rwebox.com/public_html/index.php CONTACT: jenny.wei@astrazeneca.com or kzhu@cs.sjtu.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Guo, Yufan; Silins, Ilona; Stenius, Ulla; Korhonen, Anna
2013-06-01
Techniques that are capable of automatically analyzing the information structure of scientific articles could be highly useful for improving information access to biomedical literature. However, most existing approaches rely on supervised machine learning (ML) and substantial labeled data that are expensive to develop and apply to different sub-fields of biomedicine. Recent research shows that minimal supervision is sufficient for fairly accurate information structure analysis of biomedical abstracts. However, is it realistic for full articles given their high linguistic and informational complexity? We introduce and release a novel corpus of 50 biomedical articles annotated according to the Argumentative Zoning (AZ) scheme, and investigate active learning with one of the most widely used ML models-Support Vector Machines (SVM)-on this corpus. Additionally, we introduce two novel applications that use AZ to support real-life literature review in biomedicine via question answering and summarization. We show that active learning with SVM trained on 500 labeled sentences (6% of the corpus) performs surprisingly well with the accuracy of 82%, just 2% lower than fully supervised learning. In our question answering task, biomedical researchers find relevant information significantly faster from AZ-annotated than unannotated articles. In the summarization task, sentences extracted from particular zones are significantly more similar to gold standard summaries than those extracted from particular sections of full articles. These results demonstrate that active learning of full articles' information structure is indeed realistic and the accuracy is high enough to support real-life literature review in biomedicine. The annotated corpus, our AZ classifier and the two novel applications are available at http://www.cl.cam.ac.uk/yg244/12bioinfo.html
Promayon, Emmanuel; Fouard, Céline; Bailet, Mathieu; Deram, Aurélien; Fiard, Gaëlle; Hungr, Nikolai; Luboz, Vincent; Payan, Yohan; Sarrazin, Johan; Saubat, Nicolas; Selmi, Sonia Yuki; Voros, Sandrine; Cinquin, Philippe; Troccaz, Jocelyne
2013-01-01
Computer Assisted Medical Intervention (CAMI hereafter) is a complex multi-disciplinary field. CAMI research requires the collaboration of experts in several fields as diverse as medicine, computer science, mathematics, instrumentation, signal processing, mechanics, modeling, automatics, optics, etc. CamiTK is a modular framework that helps researchers and clinicians to collaborate together in order to prototype CAMI applications by regrouping the knowledge and expertise from each discipline. It is an open-source, cross-platform generic and modular tool written in C++ which can handle medical images, surgical navigation, biomedicals simulations and robot control. This paper presents the Computer Assisted Medical Intervention ToolKit (CamiTK) and how it is used in various applications in our research team.
History of research on angiogenesis.
Ribatti, Domenico
2014-01-01
Over the past 25 years, the number of Medline publications dealing with angiogenesis has increased in a nonlinear fashion, reflecting the interest among basic scientists and clinicians in this field. Under physiological conditions, angiogenesis is regulated by the local balance between endogenous stimulators and inhibitors of this process. In tumor growth, there is an imbalance between endogenous stimulator and inhibitor levels, leading to an 'angiogenic switch'. Starting with the hypothesis formulated by Judah Folkman that tumor growth is angiogenesis-dependent, this area of research has a solid scientific foundation and inhibition of angiogenesis is a major area of therapeutic development for the treatment of cancer. This paper offers an account of the most relevant discoveries in this field of biomedical research. Copyright © 2014 S. Karger AG, Basel.
Use of Nonhuman Primates in Research in North America
Turner, Patricia V; Mullan, Robert J; Galland, G Gale
2014-01-01
In North America, the biomedical research community faces social and economic challenges to nonhuman primate (NHP) importation that could reduce the number of NHP available for research needs. The effect of such limitations on specific biomedical research topics is unknown. The Association of Primate Veterinarians (APV), with assistance from the Centers for Disease Control and Prevention, developed a survey regarding biomedical research involving NHP in the United States and Canada. The survey sought to determine the number and species of NHP maintained at APV members’ facilities, current uses of NHP to identify the types of biomedical research that rely on imported animals, and members’ perceived trends in NHP research. Of the 149 members contacted, 33 (22%) replied, representing diverse facility sizes and types. Cynomolgus and rhesus macaques were the most common species housed at responding institutions and comprised the majority of newly acquired and imported NHP. The most common uses for NHP included pharmaceutical research and development and neuroscience, neurology, or neuromuscular disease research. Preclinical safety testing and cancer research projects usually involved imported NHP, whereas research on aging or degenerative disease, reproduction or reproductive disease, and organ or tissue transplantation typically used domestic-bred NHP. The current results improve our understanding of the research uses for imported NHP in North America and may facilitate estimating the potential effect of any future changes in NHP accessibility for research purposes. Ensuring that sufficient NHP are available for critical biomedical research remains a pressing concern for the biomedical research community in North America. PMID:24827570
Code of Federal Regulations, 2011 CFR
2011-07-01
... research to qualified persons doing biomedical or social science research under the conditions outlined in... who wish to have access to records restricted by § 1256.56 to conduct biomedical or social science... even for biomedical or social science research; (ii) The methodology proposed by the requester will...
Biomedical and Behavioral Research Scientists: Their Training and Supply. Volume 1: Findings.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Office of Scientific and Engineering Personnel.
This is the first of three volumes which presents the Committee on Biomedical and Behavioral Research Personnel's examination of the educational process that leads to doctoral degrees in biomedical and behavioral science (and to postdoctoral study in some cases) and the role of the National Research Service Awards (NRSA) training programs in it.…
From the NIH: A Systems Approach to Increasing the Diversity of the Biomedical Research Workforce
Valantine, Hannah A.; Lund, P. Kay; Gammie, Alison E.
2016-01-01
The National Institutes of Health (NIH) is committed to attracting, developing, and supporting the best scientists from all groups as an integral part of excellence in training. Biomedical research workforce diversity, capitalizing on the full spectrum of skills, talents, and viewpoints, is essential for solving complex human health challenges. Over the past few decades, the biomedical research workforce has benefited from NIH programs aimed at enhancing diversity. However, there is considerable room for improvement, particularly at the level of independent scientists and within scientific leadership. We provide a rationale and specific opportunities to develop and sustain a diverse biomedical research workforce through interventions that promote the successful transitions to different stages on the path toward completion of training and entry into the biomedical workforce. PMID:27587850
[Alternative sources for a history of sciences].
Edler, F
In this study we call attention to the importance of Manguinhos' scientific collections, which preserve a major portion of the memory of scientific practice as developed by Brazilian researchers in the field of biomedical sciences. We make use of these collections to approach some little-known aspects of scientific activity: the historical evaluation of forms of zoological classification and efforts as legitimating scientific practice.
ERIC Educational Resources Information Center
Her, Cheenou; Alonzo, Aaron P.; Vang, Justin Y.; Torres, Ernesto; Krishnan, V. V.
2015-01-01
Enzyme kinetics is an essential part of a chemistry curriculum, especially for students interested in biomedical research or in health care fields. Though the concept is routinely performed in undergraduate chemistry/biochemistry classrooms using other spectroscopic methods, we provide an optimized approach that uses a real-time monitoring of the…
Nanobiotechnology: Cell Membrane-Based Delivery Systems.
Zhang, Pengfei; Liu, Gang; Chen, Xiaoyuan
2017-04-01
The increasingly rapid pace of research in the field of bioinspired drug delivery systems is revealing the promise of cell membrane-based nanovesicles for biomedical applications. Those cell membrane-based nanoparticles combine the natural functionalities of cell plasma membranes and the bioengineering flexibility of synthetic nanomaterials, and such versatility provides a means of designing exciting new drug formulations for personalized treatment in future nanomedicine.
Functionality and versatility of aggregation-induced emission luminogens
NASA Astrophysics Data System (ADS)
Feng, Guangxue; Kwok, Ryan T. K.; Tang, Ben Zhong; Liu, Bin
2017-06-01
Breakthrough innovations in light-emitting materials have opened new exciting avenues for science and technology over the last few decades. Aggregation-induced emission (AIE) represents one of such innovations. It refers to a unique light-emitting phenomenon, in which luminescent materials that are non-emissive in molecular state can be induced to emit efficiently in aggregated state. The design and development of AIE luminogens (AIEgens) have overcome technical and fundamental limitations that exist in conventional light-emitting materials, and thus generate great opportunities for various applications. In this review, we aim to introduce the wonderful world of AIE to scientists from different disciplines by summarizing the recent progress made in this exciting research field. The mechanistic analyses and the working principles of the AIE processes are first elaborated, which reveal the restriction of intramolecular motions as the main cause for the AIE effect. The different molecular engineering strategies for the design of new AIEgens are subsequently discussed with examples of various AIEgen systems. The recent high-tech applications of AIEgens as optoelectronic materials, chemical sensors, and biomedical probes are presented and discussed. We hope that this review will stimulate more research interest from physics, chemistry, life science, and biomedical fields to this wonderland of AIE.
Cubeddu, Rinaldo; Bassi, Andrea; Comelli, Daniela; Cova, Sergio; Farina, Andrea; Ghioni, Massimo; Rech, Ivan; Pifferi, Antonio; Spinelli, Lorenzo; Taroni, Paola; Torricelli, Alessandro; Tosi, Alberto; Valentini, Gianluca; Zappa, Franco
2011-01-01
Light is strictly connected with life, and its presence is fundamental for any living environment. Thus, many biological mechanisms are related to light interaction or can be evaluated through processes involving energy exchange with photons. Optics has always been a precious tool to evaluate molecular and cellular mechanisms, but the discovery of lasers opened new pathways of interactions of light with biological matter, pushing an impressive development for both therapeutic and diagnostic applications in biomedicine. The use of light in different fields has become so widespread that the word photonics has been utilized to identify all the applications related to processes where the light is involved. The photonics area covers a wide range of wavelengths spanning from soft X-rays to mid-infrared and includes all devices related to photons as light sources, optical fibers and light guides, detectors, and all the related electronic equipment. The recent use of photons in the field of telecommunications has pushed the technology toward low-cost, compact, and efficient devices, making them available for many other applications, including those related to biology and medicine where these requirements are of particular relevance. Moreover, basic sciences such as physics, chemistry, mathematics, and electronics have recognized the interdisciplinary need of biomedical science and are translating the most advanced researches into these fields. The Politecnico school has pioneered many of them,and this article reviews the state of the art of biomedical research at the Politecnico in the field internationally known as biophotonics.
NASA Astrophysics Data System (ADS)
Hartmann, Carolin; Patil, Roshani; Lin, Charles P.; Niedre, Mark
2018-01-01
There are many diseases and biological processes that involve circulating cells in the bloodstream, such as cancer metastasis, immunology, reproductive medicine, and stem cell therapies. This has driven significant interest in new technologies for the study of circulating cells in small animal research models and clinically. Most currently used methods require drawing and enriching blood samples from the body, but these suffer from a number of limitations. In contrast, ‘in vivo flow cytometry’ (IVFC) refers to set of technologies that allow study of cells directly in the bloodstream of the organism in vivo. In recent years the IVFC field has grown significantly and new techniques have been developed, including fluorescence microscopy, multi-photon, photo-acoustic, and diffuse fluorescence IVFC. In this paper we review recent technical advances in IVFC, with emphasis on instrumentation, contrast mechanisms, and detection sensitivity. We also describe key applications in biomedical research, including cancer research and immunology. Last, we discuss future directions for IVFC, as well as prospects for broader adoption by the biomedical research community and translation to humans clinically.
Is Open Science the Future of Drug Development?
Shaw, Daniel L.
2017-01-01
Traditional drug development models are widely perceived as opaque and inefficient, with the cost of research and development continuing to rise even as production of new drugs stays constant. Searching for strategies to improve the drug discovery process, the biomedical research field has begun to embrace open strategies. The resulting changes are starting to reshape the industry. Open science—an umbrella term for diverse strategies that seek external input and public engagement—has become an essential tool with researchers, who are increasingly turning to collaboration, crowdsourcing, data sharing, and open sourcing to tackle some of the most pressing problems in medicine. Notable examples of such open drug development include initiatives formed around malaria and tropical disease. Open practices have found their way into the drug discovery process, from target identification and compound screening to clinical trials. This perspective argues that while open science poses some risks—which include the management of collaboration and the protection of proprietary data—these strategies are, in many cases, the more efficient and ethical way to conduct biomedical research. PMID:28356902
Hartmann, Carolin; Patil, Roshani; Lin, Charles P; Niedre, Mark
2017-12-14
There are many diseases and biological processes that involve circulating cells in the bloodstream, such as cancer metastasis, immunology, reproductive medicine, and stem cell therapies. This has driven significant interest in new technologies for the study of circulating cells in small animal research models and clinically. Most currently used methods require drawing and enriching blood samples from the body, but these suffer from a number of limitations. In contrast, 'in vivo flow cytometry' (IVFC) refers to set of technologies that allow study of cells directly in the bloodstream of the organism in vivo. In recent years the IVFC field has grown significantly and new techniques have been developed, including fluorescence microscopy, multi-photon, photo-acoustic, and diffuse fluorescence IVFC. In this paper we review recent technical advances in IVFC, with emphasis on instrumentation, contrast mechanisms, and detection sensitivity. We also describe key applications in biomedical research, including cancer research and immunology. Last, we discuss future directions for IVFC, as well as prospects for broader adoption by the biomedical research community and translation to humans clinically.
Inorganic nanolayers: structure, preparation, and biomedical applications.
Saifullah, Bullo; Hussein, Mohd Zobir B
2015-01-01
Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.
Inorganic nanolayers: structure, preparation, and biomedical applications
Saifullah, Bullo; Hussein, Mohd Zobir B
2015-01-01
Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging. PMID:26366081
Halban, P A; Boulton, A J M; Smith, U
2013-03-01
Today, European biomedical and health-related research is insufficiently well funded and is fragmented, with no common vision, less-than-optimal sharing of resources, and inadequate support and training in clinical research. Improvements to the competitiveness of European biomedical research will depend on the creation of new infrastructures that must be dynamic and free of bureaucracy, involve all stakeholders and facilitate faster delivery of new discoveries from bench to bedside. Taking diabetes research as the model, a new paradigm for European biomedical research is presented, which offers improved co-ordination and common resources that will benefit both academic and industrial clinical research. This includes the creation of a European Council for Health Research, first proposed by the Alliance for Biomedical Research in Europe, which will bring together and consult with all health stakeholders to develop strategic and multidisciplinary research programmes addressing the full innovation cycle. A European Platform for Clinical Research in Diabetes is proposed by the Alliance for European Diabetes Research (EURADIA) in response to the special challenges and opportunities presented by research across the European region, with the need for common standards and shared expertise and data.
See the Math behind the Medicine
ERIC Educational Resources Information Center
Saunders, Marnie M.
2010-01-01
To promote math and science, this author designed an activity to show students that biomedical fields are within their reach. The activity has three distinct goals: (1) To introduce the field of biomedical engineering to students and encourage them in these career pursuits; (2) To give them hands-on experience conducting a biomechanical test; and…
Biomedical research applications of electromagnetically separated enriched stable isotopes
NASA Astrophysics Data System (ADS)
Lambrecht, R. M.
The current and projected annual requirements through 1985 for stable isotopes enriched by electromagnetic separation methods were reviewed for applications in various types of biomedical research: (1) medical radiosiotope production, labeled compounds, and potential radio-pharmaceuticals; (2) nutrition, food science, and pharmacology: (3) metallobiochemistry and environmental toxicology; (4) nuclear magnetic resonance, electron paramagnetic resonance, and moessbauer spectroscopy in biochemical, biophysical, and biomedical research; and (5) miscellaneous advances in radioactive and nonradioactive tracer technology. Radioisotopes available from commercial sources or routinely used in clinical nuclear medicine were excluded. Current requirements for enriched stable isotopes in biomedical research are not being satisfied. Severe shortages exist for Mg 26, Ca 43, Zn 70, Se 76, Se 77, Se 78, Pd 102, Cd 111, Cd 113, and Os 190. Many interesting and potentially important investigations in biomedical research require small quantities of specific elements at high isotopic enrichments.
The Tuskegee Legacy Project: willingness of minorities to participate in biomedical research.
Katz, Ralph V; Kegeles, S Steven; Kressin, Nancy R; Green, B Lee; Wang, Min Qi; James, Sherman A; Russell, Stefanie Luise; Claudio, Cristina
2006-11-01
The broad goal of the Tuskegee Legacy Project (TLP) study was to address, and understand, a range of issues related to the recruitment and retention of Blacks and other minorities in biomedical research studies. The specific aim of this analysis was to compare the self-reported willingness of Blacks, Hispanics, and Whites to participate as research subjects in biomedical studies, as measured by the Likelihood of Participation (LOP) Scale and the Guinea Pig Fear Factor (GPFF) Scale. The Tuskegee Legacy Project Questionnaire, a 60 item instrument, was administered to 1,133 adult Blacks, Hispanics, and non-Hispanic Whites in 4 U.S. cities. The findings revealed no difference in self-reported willingness to participate in biomedical research, as measured by the LOP Scale, between Blacks, Hispanics, and Whites, despite Blacks being 1.8 times as likely as Whites to have a higher fear of participation in biomedical research on the GPFF Scale.
The Tuskegee Legacy Project: Willingness of Minorities to Participate in Biomedical Research
Katz, Ralph V.; Russell, Stefanie L.; Kegeles, S. Steven; Kressin, Nancy R.; Green, B. Lee; Wang, Min Qi; James, Sherman A.; Claudio, Cristina
2006-01-01
The broad goal of the Tuskegee Legacy Project (TLP) study was to address, and understand, a range of issues related to the recruitment and retention of Blacks and other minorities in biomedical research studies. The specific aim of this analysis was to compare the self-reported willingness of Blacks, Hispanics, and Whites to participate as research subjects in biomedical studies, as measured by the Likelihood of Participation (LOP) Scale and the Guinea Pig Fear Factor (GPFF) Scale. The Tuskegee Legacy Project Questionnaire, a 60 item instrument, was administered to 1,133 adult Blacks, Hispanics, and non-Hispanic Whites in 4 U.S. cities. The findings revealed no difference in self-reported willingness to participate in biomedical research, as measured by the LOP Scale, between Blacks, Hispanics, and Whites, despite Blacks being 1.8 times as likely as Whites to have a higher fear of participation in biomedical research on the GPFF Scale. PMID:17242525
The Central Importance of Laboratories for Reducing Waste in Biomedical Research.
Stroth, Nikolas
2016-12-01
The global biomedical research enterprise is driving substantial advances in medicine and healthcare. Yet it appears that the enterprise is rather wasteful, falling short of its true innovative potential. Suggested reasons are manifold and involve various stakeholders, such that there is no single remedy. In the present paper, I will argue that laboratories are the basic working units of the biomedical research enterprise and an important site of action for corrective intervention. Keeping laboratories relatively small will enable better training and mentoring of individual scientists, which in turn will yield better performance of the scientific workforce. The key premise of this argument is that people are at the heart of the successes and failures of biomedical research, yet the human dimension of science has been unduly neglected in practice. Renewed focus on the importance of laboratories and their constituent scientists is one promising approach to reducing waste and increasing efficiency within the biomedical research enterprise.
NASA Astrophysics Data System (ADS)
Chakraverty, Devasmita
Women in medicine and biomedical research often face challenges to their retention, promotion, and advancement to leadership positions (McPhillips et al., 2007); they take longer to advance their careers, tend to serve at less research-intensive institutions and have shorter tenures compared to their male colleagues (White, McDade, Yamagata, & Morahan, 2012). Additionally, Blacks and Hispanics are the two largest minority groups that are vastly underrepresented in medicine and biomedical research in the United States (AAMC, 2012; NSF, 2011). The purpose of this study is to examine specific barriers reported by students and post-degree professionals in the field through the following questions: 1. How do women who are either currently enrolled or graduated from biomedical research or medical programs define and make meaning of gender-roles as academic barriers? 2. How do underrepresented groups in medical schools and biomedical research institutions define and make meaning of the academic barriers they face and the challenges these barriers pose to their success as individuals in the program? These questions were qualitatively analyzed using 146 interviews from Project TrEMUR applying grounded theory. Reported gender-role barriers were explained using the "Condition-Process-Outcome" theoretical framework. About one-third of the females (across all three programs; majority White or Black between 25-35 years of age) reported gender-role barriers, mostly due to poor mentoring, time constraints, set expectations and institutional barriers. Certain barriers act as conditions, causing gender-role issues, and gender-role issues influence certain barriers that act as outcomes. Strategies to overcome barriers included interventions mostly at the institutional level (mentor support, proper specialty selection, selecting academia over medicine). Barrier analysis for the two largest URM groups indicated that, while Blacks most frequently reported racism, gender barriers, mentoring, and personal barriers, Hispanics most frequently reported economic barriers, language barriers, institutional and workplace environment barriers, and gender-role barriers. Examining barriers using the "Individual-Institutional" theoretical framework indicated that barriers do not occur in isolation, but due to an interaction between the individual and its institution. Additionally, the barriers of the two groups are qualitatively different and the "one size fits all" approach may not be suitable for interventions. Implications and recommendations were stated.
Biomedical imaging and sensing using flatbed scanners.
Göröcs, Zoltán; Ozcan, Aydogan
2014-09-07
In this Review, we provide an overview of flatbed scanner based biomedical imaging and sensing techniques. The extremely large imaging field-of-view (e.g., ~600-700 cm(2)) of these devices coupled with their cost-effectiveness provide unique opportunities for digital imaging of samples that are too large for regular optical microscopes, and for collection of large amounts of statistical data in various automated imaging or sensing tasks. Here we give a short introduction to the basic features of flatbed scanners also highlighting the key parameters for designing scientific experiments using these devices, followed by a discussion of some of the significant examples, where scanner-based systems were constructed to conduct various biomedical imaging and/or sensing experiments. Along with mobile phones and other emerging consumer electronics devices, flatbed scanners and their use in advanced imaging and sensing experiments might help us transform current practices of medicine, engineering and sciences through democratization of measurement science and empowerment of citizen scientists, science educators and researchers in resource limited settings.
Recognising discourse causality triggers in the biomedical domain.
Mihăilă, Claudiu; Ananiadou, Sophia
2013-12-01
Current domain-specific information extraction systems represent an important resource for biomedical researchers, who need to process vast amounts of knowledge in a short time. Automatic discourse causality recognition can further reduce their workload by suggesting possible causal connections and aiding in the curation of pathway models. We describe here an approach to the automatic identification of discourse causality triggers in the biomedical domain using machine learning. We create several baselines and experiment with and compare various parameter settings for three algorithms, i.e. Conditional Random Fields (CRF), Support Vector Machines (SVM) and Random Forests (RF). We also evaluate the impact of lexical, syntactic, and semantic features on each of the algorithms, showing that semantics improves the performance in all cases. We test our comprehensive feature set on two corpora containing gold standard annotations of causal relations, and demonstrate the need for more gold standard data. The best performance of 79.35% F-score is achieved by CRFs when using all three feature types.
Biomedical Imaging and Sensing using Flatbed Scanners
Göröcs, Zoltán; Ozcan, Aydogan
2014-01-01
In this Review, we provide an overview of flatbed scanner based biomedical imaging and sensing techniques. The extremely large imaging field-of-view (e.g., ~600–700 cm2) of these devices coupled with their cost-effectiveness provide unique opportunities for digital imaging of samples that are too large for regular optical microscopes, and for collection of large amounts of statistical data in various automated imaging or sensing tasks. Here we give a short introduction to the basic features of flatbed scanners also highlighting the key parameters for designing scientific experiments using these devices, followed by a discussion of some of the significant examples, where scanner-based systems were constructed to conduct various biomedical imaging and/or sensing experiments. Along with mobile phones and other emerging consumer electronics devices, flatbed scanners and their use in advanced imaging and sensing experiments might help us transform current practices of medicine, engineering and sciences through democratization of measurement science and empowerment of citizen scientists, science educators and researchers in resource limited settings. PMID:24965011
Liu, Xudong; Guo, Qing; Zhang, Yuchao; Li, Jinquan; Li, Rui; Wu, Yang; Ma, Ping; Yang, Xu
2016-01-01
Given the extensive application of carbon nanotubes (CNTs) in biomedical fields, there is increasing concern regarding unintentional health impacts. Research into safe usage is therefore increasingly necessary. This study investigated the responses of the mouse brain to single-walled CNTs (SWCNTs) delivered via intraperitoneal (IP) injection and compared these results with the previous study where SWCNTs were delivered via intravenous (IV) injection so as to explore which administration route is potentially better for SWCNTs application. This study suggests SWCNTs delivered via IP injection can have negative effects on the mouse brain through oxidative stress and inflammation at high concentration exposure, but these responses were not consistent and showed no dose-dependent effect. In a previous study, the results showed that IV-delivered SWCNTs induced a more consistent and dose-dependent effect. The comparison of the 2 studies suggested that using SWCNTs at a safe dosage delivered via IV injection may be a better administration route for SWCNTs in biomedical applications.
Highly efficient multifunctional MnSe/ZnSeS quantum dots for biomedical applications
NASA Astrophysics Data System (ADS)
Armijo, Leisha M.; Akins, Brian A.; Plumley, John B.; Rivera, Antonio C.; Withers, Nathan J.; Cook, Nathaniel C.; Smolyakov, Gennady A.; Huber, Dale L.; Smyth, Hugh D. C.; Osińki, Marek
2013-03-01
Colloidal quantum dots (QDs) are of interest for a variety of biomedical applications, including bioimaging, drug targeting, and photodynamic therapy. However, a significant limitation is that highly efficient photoluminescent QDs available commercially contain cadmium. Recent research has focused on cadmium-free QDs, which are anticipated to exhibit significantly lower cytotoxicity. Previous work has focused on InP and ZnO as alternative semiconductor materials for QDs. However, these nanoparticles have been shown to be cytotoxic. Recently, we have synthesized high quantum efficiency (exceeding 90%), color tunable MnSe/ZnSeS nanoparticles, as potentially attractive QDs for biomedical applications. Additionally, the manganese imparts magnetic properties on the QDs, which are important for magnetic field-guided transport, hyperthermia, and potentially magnetic resonance imaging (MRI). The QDs can be further biofunctionalized via conjugation to a ligand or a biomarker of disease, allowing combination of drug delivery with visual verification and colocalization due to the color tunability of the QDs.
Assistance to NASA in biomedical areas of the technology utilization program
NASA Technical Reports Server (NTRS)
Culclasure, D. F.; Eckhardt, L.
1972-01-01
The applications of aerospace technology to biomedical research are reported. The medical institutions participating in the Biomedical Applications Program are listed along with the institutions currently utilizing the services of the Southwest Research Institute Biomedical Applications Team. Significant accomplishments during this period include: ultra-low bandpass amplifier for gastro-intestinal electric potentials; non-encumbering EEG electrode assembly suitable for long term sleep research; accurate cardiac telemetry system for active subjects; warning system for the deaf; tracking cane for the blind; and an improved control mechanism to expand the self-sufficiency of quadriplegics.
[The present state and progress of researches on gait recognition].
Xue, Zhaojun; Jin, Jingna; Ming, Dong; Wan, Baikun
2008-10-01
Recognition by gait is a new field for the biometric recognition technology. Its aim is to recognize people and detect physiological, pathological and mental characters by their walk style. The use of gait as a biometric for human identification is promising. The technique of gait recognition, as an attractive research area of biomedical information detection, attracts more and more attention. In this paper is introduced a survey of the basic theory, existing gait recognition methods and potential prospects. The latest progress and key factors of research difficulties are analyzed, and future researches are envisaged.
Accessing and integrating data and knowledge for biomedical research.
Burgun, A; Bodenreider, O
2008-01-01
To review the issues that have arisen with the advent of translational research in terms of integration of data and knowledge, and survey current efforts to address these issues. Using examples form the biomedical literature, we identified new trends in biomedical research and their impact on bioinformatics. We analyzed the requirements for effective knowledge repositories and studied issues in the integration of biomedical knowledge. New diagnostic and therapeutic approaches based on gene expression patterns have brought about new issues in the statistical analysis of data, and new workflows are needed are needed to support translational research. Interoperable data repositories based on standard annotations, infrastructures and services are needed to support the pooling and meta-analysis of data, as well as their comparison to earlier experiments. High-quality, integrated ontologies and knowledge bases serve as a source of prior knowledge used in combination with traditional data mining techniques and contribute to the development of more effective data analysis strategies. As biomedical research evolves from traditional clinical and biological investigations towards omics sciences and translational research, specific needs have emerged, including integrating data collected in research studies with patient clinical data, linking omics knowledge with medical knowledge, modeling the molecular basis of diseases, and developing tools that support in-depth analysis of research data. As such, translational research illustrates the need to bridge the gap between bioinformatics and medical informatics, and opens new avenues for biomedical informatics research.
Abu-Dawas, Reema B; Mallick, Muaz A; Hamadah, Reem E; Kharraz, Razan H; Chamseddin, Ranim A; Khan, Tehreem A; AlAmodi, Abdulhadi A; Rohra, Dileep K
2015-09-01
To compare the research productivity of different Gulf Cooperation Council (GCC) countries in the field of biomedical sciences from 2011-2013. This is a retrospective study conducted in the College of Medicine, Alfaisal University, Riyadh, Saudi Arabia. Data on the biomedical publications originating from GCC countries published between January 2011 to December 2013 was searched via MEDLINE using PubMed. The total number of publications emanating from each country was normalized with the country's population. The mean impact factor (IF) of all the publications in a year was calculated for comparative analysis. A total of 11,000 publications were retrieved via MEDLINE using PubMed, out of which, 9222 were selected for analysis. A successive increase in the number of publications by every country was observed. The most striking increase in the number of publications was from Saudi Arabia. However, after normalization with population, the performance of Oman, Qatar, and Kuwait looks far better than Saudi Arabia in terms of research productivity. Data on mean IF showed that the overall mean IF of all GCC countries has remained largely unchanged except Oman. Although Oman had a comparatively low mean IF value in 2011, they recorded a tremendous improvement in successive years. All GCC countries underwent an increase in quantitative research productivity over the last 3 years. However, no increase in quality of research publications was noted based on the proxy reports of mean journal IF.
Abu-Dawas, Reema B.; Mallick, Muaz A.; Hamadah, Reem E.; Kharraz, Razan H.; Chamseddin, Ranim A.; Khan, Tehreem A.; AlAmodi, Abdulhadi A.; Rohra, Dileep K.
2015-01-01
Objectives: To compare the research productivity of different Gulf Cooperation Council (GCC) countries in the field of biomedical sciences from 2011-2013. Methods: This is a retrospective study conducted in the College of Medicine, Alfaisal University, Riyadh, Saudi Arabia. Data on the biomedical publications originating from GCC countries published between January 2011 to December 2013 was searched via MEDLINE using PubMed. The total number of publications emanating from each country was normalized with the country’s population. The mean impact factor (IF) of all the publications in a year was calculated for comparative analysis. Results: A total of 11,000 publications were retrieved via MEDLINE using PubMed, out of which, 9222 were selected for analysis. A successive increase in the number of publications by every country was observed. The most striking increase in the number of publications was from Saudi Arabia. However, after normalization with population, the performance of Oman, Qatar, and Kuwait looks far better than Saudi Arabia in terms of research productivity. Data on mean IF showed that the overall mean IF of all GCC countries has remained largely unchanged except Oman. Although Oman had a comparatively low mean IF value in 2011, they recorded a tremendous improvement in successive years. Conclusion: All GCC countries underwent an increase in quantitative research productivity over the last 3 years. However, no increase in quality of research publications was noted based on the proxy reports of mean journal IF. PMID:26318469
NASA Technical Reports Server (NTRS)
Culclasure, D. F.; Sigmon, J. L.; Carter, J. M.
1973-01-01
The activities are reported of the NASA Biomedical Applications Team at Southwest Research Institute between 25 August, 1972 and 15 November, 1973. The program background and methodology are discussed along with the technology applications, and biomedical community impacts.
Sensor, signal, and image informatics - state of the art and current topics.
Lehmann, T M; Aach, T; Witte, H
2006-01-01
The number of articles published annually in the fields of biomedical signal and image acquisition and processing is increasing. Based on selected examples, this survey aims at comprehensively demonstrating the recent trends and developments. Four articles are selected for biomedical data acquisition covering topics such as dose saving in CT, C-arm X-ray imaging systems for volume imaging, and the replacement of dose-intensive CT-based diagnostic with harmonic ultrasound imaging. Regarding biomedical signal analysis (BSA), the four selected articles discuss the equivalence of different time-frequency approaches for signal analysis, an application to Cochlea implants, where time-frequency analysis is applied for controlling the replacement system, recent trends for fusion of different modalities, and the role of BSA as part of a brain machine interfaces. To cover the broad spectrum of publications in the field of biomedical image processing, six papers are focused. Important topics are content-based image retrieval in medical applications, automatic classification of tongue photographs from traditional Chinese medicine, brain perfusion analysis in single photon emission computed tomography (SPECT), model-based visualization of vascular trees, and virtual surgery, where enhanced visualization and haptic feedback techniques are combined with a sphere-filled model of the organ. The selected papers emphasize the five fields forming the chain of biomedical data processing: (1) data acquisition, (2) data reconstruction and pre-processing, (3) data handling, (4) data analysis, and (5) data visualization. Fields 1 and 2 form the sensor informatics, while fields 2 to 5 form signal or image informatics with respect to the nature of the data considered. Biomedical data acquisition and pre-processing, as well as data handling, analysis and visualization aims at providing reliable tools for decision support that improve the quality of health care. Comprehensive evaluation of the processing methods and their reliable integration in routine applications are future challenges in the field of sensor, signal and image informatics.
Spiroski, Mirko
2014-01-01
To analyse current ranking (2013) of institutions, journals and researchers in the Republic of Macedonia. the country rankings of R. Macedonia were analyzed with SCImago Country & Journal Rank (SJR) for subject area Medicine in the years 1996-2013, and ordered by H-index. SCImago Institutions Rankings for 2013 was used for the scientific impact of biomedical institutions in the Republic of Macedonia. Journal metrics from Elsevier for the Macedonian scholarly journals for the period 2009-2013 were performed. Source Normalized Impact per Paper (SNIP), the Impact per Publication (IPP), and SCImago Journal Rank (SJR) were analysed. Macedonian scholarly biomedical journals included in Google Scholar metrics (2013, 2012) were analysed with h5-index and h5-median (June 2014). A semantic analysis of the PubMed database was performed with GoPubMed on November 2, 2014 in order to identify published papers from the field of biomedical sciences affiliated with the country of Macedonia. Harzing's Publish or Perish software was used for author impact analysis and the calculation of the Hirsh-index based on Google Scholar query. The rank of subject area Medicine of R. Macedonia according to the SCImago Journal & Country Rank (SJR) is 110th in the world and 17th in Eastern Europe. Of 20 universities in Macedonia, only Ss Cyril and Methodius University, Skopje, and the University St Clement of Ohrid, Bitola, are listed in the SCImago Institutions Rankings (SIR) for 2013. A very small number of Macedonian scholarly journals is included in Web of Sciences (2), PubMed (1), PubMed Central (1), SCOPUS (6), SCImago (6), and Google Scholar metrics (6). The rank of Hirsh index (h-index) was different from the rank of number of abstracts indexed in PubMed for the top 20 authors from R. Macedonia. The current biomedical scientific impact (2013) of institutions, academic journals and researchers in R. Macedonia is very low. There is an urgent need for organized measures to improve the quality and output of institutions, scholarly journals, and researchers in R. Macedonia in order to achieve higher international standards.
Mongeon, Philippe; Smith, Elise; Joyal, Bruno; Larivière, Vincent
2017-01-01
Contemporary biomedical research is performed by increasingly large teams. Consequently, an increasingly large number of individuals are being listed as authors in the bylines, which complicates the proper attribution of credit and responsibility to individual authors. Typically, more importance is given to the first and last authors, while it is assumed that the others (the middle authors) have made smaller contributions. However, this may not properly reflect the actual division of labor because some authors other than the first and last may have made major contributions. In practice, research teams may differentiate the main contributors from the rest by using partial alphabetical authorship (i.e., by listing middle authors alphabetically, while maintaining a contribution-based order for more substantial contributions). In this paper, we use partial alphabetical authorship to divide the authors of all biomedical articles in the Web of Science published over the 1980-2015 period in three groups: primary authors, middle authors, and supervisory authors. We operationalize the concept of middle author as those who are listed in alphabetical order in the middle of an authors' list. Primary and supervisory authors are those listed before and after the alphabetical sequence, respectively. We show that alphabetical ordering of middle authors is frequent in biomedical research, and that the prevalence of this practice is positively correlated with the number of authors in the bylines. We also find that, for articles with 7 or more authors, the average proportion of primary, middle and supervisory authors is independent of the team size, more than half of the authors being middle authors. This suggests that growth in authors lists are not due to an increase in secondary contributions (or middle authors) but, rather, in equivalent increases of all types of roles and contributions (including many primary authors and many supervisory authors). Nevertheless, we show that the relative contribution of alphabetically ordered middle authors to the overall production of knowledge in the biomedical field has greatly increased over the last 35 years.
The Human Volunteer in Military Biomedical Research (Military Medical Ethics. Volume 2, Chapter 19)
2002-10-01
was not de- classified until 1975. It applied only to human re- search in the fields of atomic, biological , and/or chemical warfare.11 In 1954 the Army...memo- randum applied to all human research, not only atomic, biological , or chemical testing.11 Even though this memorandum applied only to the Army...first peacetime nuclear weapons tests in the Bikini Atoll, until 1963, when atmospheric test- ing was halted by the Limited Test Ban Treaty, nu
Applications of microscopy to genetic therapy of cystic fibrosis and other human diseases.
Moninger, Thomas O; Nessler, Randy A; Moore, Kenneth C
2006-01-01
Gene therapy has become an extremely important and active field of biomedical research. Microscopy is an integral component of this effort. This chapter presents an overview of imaging techniques used in our facility in support of cystic fibrosis gene therapy research. Instrumentation used in these studies includes light and confocal microscopy, transmission electron microscopy, and scanning electron microscopy. Techniques outlined include negative staining, cryo-electron microscopy, three-dimentional reconstruction, enzyme cytochemistry, immunocytochemistry, and fluorescence imaging.
Issues of exploration: human health and wellbeing during a mission to Mars.
White, R J; Bassingthwaighte, J B; Charles, J B; Kushmerick, M J; Newman, D J
2003-01-01
Today, the tools are in our hands to enable us to travel away from our home planet and become citizens of the solar system. Even now, we are seriously beginning to develop the robust infrastructure that will make the 21st century the Century of Space Travel. But this bold step must be taken with due concern for the health, safety and wellbeing of future space explorers. Our long experience with space biomedical research convinces us that, if we are to deal effectively with the medical and biomedical issues of exploration, then dramatic and bold steps are also necessary in this field. We can no longer treat the human body as if it were composed of muscles, bones, heart and brain acting independently. Instead, we must lead the effort to develop a fully integrated view of the body, with all parts connected and fully interacting in a realistic way. This paper will present the status of current (2000) plans by the National Space Biomedical Research Institute to initiate research in this area of integrative physiology and medicine. Specifically, three example projects are discussed as potential stepping stones towards the ultimate goal of producing a digital human. These projects relate to developing a functional model of the human musculoskeletal system and the heart. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Issues of exploration: human health and wellbeing during a mission to Mars
NASA Technical Reports Server (NTRS)
White, R. J.; Bassingthwaighte, J. B.; Charles, J. B.; Kushmerick, M. J.; Newman, D. J.
2003-01-01
Today, the tools are in our hands to enable us to travel away from our home planet and become citizens of the solar system. Even now, we are seriously beginning to develop the robust infrastructure that will make the 21st century the Century of Space Travel. But this bold step must be taken with due concern for the health, safety and wellbeing of future space explorers. Our long experience with space biomedical research convinces us that, if we are to deal effectively with the medical and biomedical issues of exploration, then dramatic and bold steps are also necessary in this field. We can no longer treat the human body as if it were composed of muscles, bones, heart and brain acting independently. Instead, we must lead the effort to develop a fully integrated view of the body, with all parts connected and fully interacting in a realistic way. This paper will present the status of current (2000) plans by the National Space Biomedical Research Institute to initiate research in this area of integrative physiology and medicine. Specifically, three example projects are discussed as potential stepping stones towards the ultimate goal of producing a digital human. These projects relate to developing a functional model of the human musculoskeletal system and the heart. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
National Space Biomedical Research Institute
NASA Technical Reports Server (NTRS)
2003-01-01
In June 1996, NASA released a Cooperative Agreement Notice (CAN) inviting proposals to establish a National Space Biomedical Research Institute (9-CAN-96-01). This CAN stated that: The Mission of the Institute will be to lead a National effort for accomplishing the integrated, critical path, biomedical research necessary to support the long term human presence, development, and exploration of space and to enhance life on Earth by applying the resultant advances in human knowledge and technology acquired through living and working in space. The Institute will be the focal point of NASA sponsored space biomedical research. This statement has not been amended by NASA and remains the mission of the NSBRI.
Lymberis, Andreas; Olsson, Silas
2003-01-01
Telemedicine has been introduced to overcome distance in order to get prompt access to medical knowledge and appropriate health care. More recently, work in telemedicine has aimed at developing solutions to support the management of chronic diseases such as diabetes, and lung and heart diseases, as well as to provide support for home care services. Telemedicine is also entering the fields of health promotion/prevention disease, life style management, and well-being. The evolution and broadening of telemedicine gives birth to a nomenclature that includes "e-health," "telehealth," and "telecare." The latest developments in microsystems and nanotechnologies as well as in information processing and communication technologies allow miniaturization and non-invasive smart monitoring of physiological and physical data. Ongoing cutting-edge multidisciplinary research in textile fibers, biomedical sensors, and wireless and mobile telecommunications integrated with telemedicine, aims at developing intelligent biomedical clothing (IBC) that could pave the way to support personalized management of health and diseases at the point of need and at any time. In this study, we aim to describe the current status of multidisciplinary research and development of IBC, based on bibliographic research and reports from seminars, workshops, conferences, and working groups. A further aim is to inform the developers, the decision makers, and users in the health and healthcare sector regarding future solutions to support personalized health care and disease management. Both the textile sector and healthcare sector are looking with great interest at the innovative products and applications that could result from the integration of microsystems, nanotechnologies, biomedical sensors, textiles, and mobile telecommunications. For health monitoring, disease prevention and management, rehabilitation, and sport medicine, IBC may offer, in the mid-term future, a unique, wearable non-obtrusive telemedicine platform for individualized services that is readily accessible and of good quality.
New Directions for Biomedical Engineering
ERIC Educational Resources Information Center
Plonsey, Robert
1973-01-01
Discusses the definition of "biomedical engineering" and the development of educational programs in the field. Includes detailed descriptions of the roles of bioengineers, medical engineers, and chemical engineers. (CC)
Bloomrosen, Meryl; Detmer, Don
2008-01-01
The fields of health informatics and biomedical research increasingly depend on the availability of aggregated health data. Yet, despite over fifteen years of policy work on health data issues, the United States (U.S.) lacks coherent policy to guide users striving to navigate the ethical, political, technical, and economic challenges associated with health data use. In 2007, building on more than a decade of previous work, the American Medical Informatics Association (AMIA) convened a panel of experts to stimulate discussion about and action on a national framework for health data use. This initiative is being carried out in the context of rapidly accelerating advances in the fields of health informatics and biomedical research, many of which are dependent on the availability of aggregated health data. Use of these data poses complex challenges that must be addressed by public policy. This paper highlights the results of the meeting, presents data stewardship as a key building block in the national framework, and outlines stewardship principles for the management of health information. The authors also introduce a taxonomy developed to focus definitions and terminology in the evolving field of health data applications. Finally, they identify areas for further policy analysis and recommend that public and private sector organizations elevate consideration of a national framework on the uses of health data to a top priority. PMID:18755988
The case of biobank with the law: between a legal and scientific fiction.
Sándor, Judit; Bárd, Petra; Tamburrini, Claudio; Tännsjö, Torbjörn
2012-06-01
According to estimates more than 400 biobanks currently operate across Europe. The term 'biobank' indicates a specific field of genetic study that has quietly developed without any significant critical reflection across European societies. Although scientists now routinely use this phrase, the wider public is still confused when the word 'bank' is being connected with the collection of their biological samples. There is a striking lack of knowledge of this field. In the recent Eurobarometer survey it was demonstrated that even in 2010 two-thirds of the respondents had never even heard about biobanks. The term gives the impression that a systematic collection of biological samples can constitute a 'bank' of considerable financial worth, where the biological samples, which are insignificant in isolation but are valuable as a collection, can be preserved, analysed and put to 'profitable use'. By studying the practices of the numerous already existing biobanks, the authors address the following questions: to what extent does the term 'biobank' reflect the normative concept of using biological samples for the purposes of biomedical research? Furthermore, is it in harmony with the so far agreed legal-ethical consensus in Europe or does it deliberately pull science to the territory of a new, ambiguous commercial field? In other words, do biobanks constitute a medico-legal fiction or are they substantively different from other biomedical research protocols on human tissues?
Functional requirements for a central research imaging data repository.
Franke, Thomas; Gruetz, Romanus; Dickmann, Frank
2013-01-01
The current situation at many university medical centers regarding the management of biomedical research imaging data leaves much to be desired. In contrast to the recommendations of the German Research Foundation (DFG) and the German Council of Sciences and Humanities regarding the professional management of research data, there are commonly many individual data pools for research data in each institute and the management remains the responsibility of the researcher. A possible solution for this situation would be to install local central repositories for biomedical research imaging data. In this paper, we developed a scenario based on abstracted use-cases for institutional research undertakings as well as collaborative biomedical research projects and analyzed the functional requirements that a local repository would have to fulfill. We determined eight generic categories of functional requirements, which can be viewed as a basic guideline for the minimum functionality of a central repository for biomedical research imaging data.
Choosing experiments to accelerate collective discovery
Rzhetsky, Andrey; Foster, Jacob G.; Foster, Ian T.; ...
2015-11-24
Scientists perform a tiny subset of all possible experiments. What characterizes the experiments they choose? What are the consequences of those choices for the pace of scientific discovery? We model scientific knowledge as a network and science as a sequence of experiments designed to gradually uncover it. By analyzing millions of biomedical articles published over 30 y, we find that biomedical scientists pursue conservative research strategies exploring the local neighborhood of central, important molecules. Although such strategies probably serve scientific careers, we show that they slow scientific advance, especially in mature fields, where more risk and less redundant experimentation wouldmore » accelerate discovery of the network. Lastly, we also consider institutional arrangements that could help science pursue these more efficient strategies.« less
Recent advances in engineering topography mediated antibacterial surfaces
Hasan, Jafar
2015-01-01
The tendency of bacterial cells to adhere and colonize a material surface leading to biofilm formation is a fundamental challenge underlying many different applications including microbial infections associated with biomedical devices and products. Although, bacterial attachment to surfaces has been extensively studied in the past, the effect of surface topography on bacteria–material interactions has received little attention until more recently. We review the recent progress in surface topography based approaches for engineering antibacterial surfaces. Biomimicry of antibacterial surfaces in nature is a popular strategy. Whereas earlier endeavors in the field aimed at minimizing cell attachment, more recent efforts have focused on developing bactericidal surfaces. However, not all such topography mediated bactericidal surfaces are necessarily cytocompatible thus underscoring the need for continued efforts for research in this area for developing antibacterial and yet cytocompatible surfaces for use in implantable biomedical applications. This mini-review provides a brief overview of the current strategies and challenges in the emerging field of topography mediated antibacterial surfaces. PMID:26372264
Recent advances in engineering topography mediated antibacterial surfaces
NASA Astrophysics Data System (ADS)
Hasan, Jafar; Chatterjee, Kaushik
2015-09-01
The tendency of bacterial cells to adhere and colonize a material surface leading to biofilm formation is a fundamental challenge underlying many different applications including microbial infections associated with biomedical devices and products. Although, bacterial attachment to surfaces has been extensively studied in the past, the effect of surface topography on bacteria-material interactions has received little attention until more recently. We review the recent progress in surface topography based approaches for engineering antibacterial surfaces. Biomimicry of antibacterial surfaces in nature is a popular strategy. Whereas earlier endeavors in the field aimed at minimizing cell attachment, more recent efforts have focused on developing bactericidal surfaces. However, not all such topography mediated bactericidal surfaces are necessarily cytocompatible thus underscoring the need for continued efforts for research in this area for developing antibacterial and yet cytocompatible surfaces for use in implantable biomedical applications. This mini-review provides a brief overview of the current strategies and challenges in the emerging field of topography mediated antibacterial surfaces.
Manpower development for the biomedical industry space.
Goh, James C H
2013-01-01
The Biomedical Sciences (BMS) Cluster is one of four key pillars of the Singapore economy. The Singapore Government has injected research funding for basic and translational research to attract companies to carry out their commercial R&D activities. To further intensify the R&D efforts, the National Research Foundation (NRF) was set up to coordinate the research activities of different agencies within the larger national framework and to fund strategic R&D initiatives. In recent years, funding agencies began to focus on support of translational and clinical research, particularly those with potential for commercialization. Translational research is beginning to have traction, in particular research funding for the development of innovation medical devices. Therefore, the Biomedical Sciences sector is projected to grow which means that there is a need to invest in human capital development to achieve sustainable growth. In support of this, education and training programs to strengthen the manpower capabilities for the Biomedical Sciences industry have been developed. In recent years, undergraduate and graduate degree courses in biomedical engineering/bioengineering have been developing at a rapid rate. The goal is to train students with skills to understand complex issues of biomedicine and to develop and implement of advanced technological applications to these problems. There are a variety of career opportunities open to graduates in biomedical engineering, however regardless of the type of career choices, students must not only focus on achieving good grades. They have to develop their marketability to employers through internships, overseas exchange programs, and involvement in leadership-type activities. Furthermore, curriculum has to be developed with biomedical innovation in mind and ensure relevance to the industry. The objective of this paper is to present the NUS Bioengineering undergraduate program in relation to manpower development for the biomedical industry in Singapore.
CRISPR Editing in Biological and Biomedical Investigation.
Ju, Xing-Da; Xu, Jing; Sun, Zhong Sheng
2018-01-01
The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas (CRISPR-associated protein) system, a prokaryotic RNA-based adaptive immune system against viral infection, is emerging as a powerful genome editing tool in broad research areas. To further improve and expand its functionality, various CRISPR delivery strategies have been tested and optimized, and key CRISPR system components such as Cas protein have been engineered with different purposes. Benefiting from more in-depth understanding and further development of CRISPR, versatile CRISPR-based platforms for genome editing have been rapidly developed to advance investigations in biology and biomedicine. In biological research area, CRISPR has been widely adopted in both fundamental and applied research fields, such as genomic and epigenomic modification, genome-wide screening, cell and animal research, agriculture transforming, livestock breeding, food manufacture, industrial biotechnology, and gene drives in disease agents control. In biomedical research area, CRISPR has also shown its extensive applicability in the establishment of animal models for genetic disorders, generation of tissue donors, implementation of antimicrobial and antiviral studies, identification and assessment of new drugs, and even treatment for clinical diseases. However, there are still several problems to consider, and the biggest concerns are the off-target effects and ethical issues of this technology. In this prospect article, after highlighting recent development of CRISPR systems, we outline different applications and current limitations of CRISPR in biological and biomedical investigation. Finally, we provide a perspective on future development and potential risks of this multifunctional technology. J. Cell. Biochem. 119: 52-61, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
2009-01-01
Background Analysis of biomedical research and publications in a country or group of countries is used to monitor research progress and trends. This study aims to assess the performance of biomedical research in the Arab world during 2001–2005 and to compare it with other Middle Eastern non-Arab countries. Methods PubMed and Science Citation Index Expanded (SCI-expanded) were searched systematically for the original biomedical research publications and their citation frequencies of 16 Arab nations and three non-Arab Middle Eastern countries (Iran, Israel and Turkey), all of which are classified as middle or high income countries. Results The 16 Arab countries together have 5775 and 14,374 original research articles listed by PubMed and SCI-expanded, respectively, significantly less (p < 0.001) than the other three Middle Eastern countries (25,643 and 49,110). The Arab countries also scored less when the data were normalized to population, gross domestic product (GDP), and GDP/capita. The publications from the Arab countries also have a significantly lower (p < 0.001) citation frequency. Conclusion The Arab world is producing fewer biomedical publications of lower quality than other Middle Eastern countries. Studies are needed to clarify the causes and to propose strategies to improve the biomedical research status in Arab countries. PMID:19374747
Proceedings of the First Biennial Space Biomedical Investigators' Workshop
NASA Technical Reports Server (NTRS)
1999-01-01
The First Biennial Space Biomedical Investigators' Workshop, held January 11-13, 1999, was unique in that it assembled, for the first time, a broad cross section of NASA-funded biomedical researchers to present the current status of their projects and their plans for future investigations. All principal investigators with active, or recently-completed ground-based projects in NASA's Biomedical Research and Countermeasures Program that were funded through NASA's Office of Life and Microgravity Sciences and Applications were invited. Included were individual investigators funded through NASA Research Announcements, investigators with NASA Specialized Centers of Research and Training, investigators with the recently established National Space Biomedical Research Institute (NSBRI), and NASA civil servant investigators. Seventy-seven percent of all eligible projects were presented at the workshop. Thus, these Proceedings should provide a useful snapshot of the status of NASA-funded space biomedical research as of January 1999. An important workshop objective was to achieve free and open communication among the presenting investigators. Therefore, presentation of new and incomplete results, as well as hypotheses and ideas for future research, was encouraged. Comments and constructive criticisms from the presenters' colleagues were also encouraged. These ground rules resulted in many lively and useful discussions, during both the presentation sessions and informal evening gatherings and breaks.
National Space Biomedical Research Institute
NASA Technical Reports Server (NTRS)
1998-01-01
The National Space Biomedical Research Institute (NSBRI) sponsors and performs fundamental and applied space biomedical research with the mission of leading a world-class, national effort in integrated, critical path space biomedical research that supports NASA's Human Exploration and Development of Space (HEDS) Strategic Plan. It focuses on the enabling of long-term human presence in, development of, and exploration of space. This will be accomplished by: designing, implementing, and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight; defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures; establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level, and deliver quality medical care; transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the benefit of mankind in space and on Earth, including the treatment of patients suffering from gravity- and radiation-related conditions on Earth; and ensuring open involvement of the scientific community, industry, and the public at large in the Institute's activities and fostering a robust collaboration with NASA, particularly through Johnson Space Center.
Schlötelburg, C; Becks, T; Stieglitz, T
2010-08-01
Biomedical engineering is characterized by the interdisciplinary co-operation of technology, science, and ways of thinking, probably more than any other technological area. The close interaction of engineering and information sciences with medicine and biology results in innovative products and methods, but also requires high standards for the interdisciplinary transfer of ideas into products for patients' benefits. This article describes the situation of biomedical engineering in Germany. It displays characteristics of the medical device industry and ranks it with respect to the international market. The research landscape is described as well as up-to-date research topics and trends. The national funding situation of research in biomedical engineering is reviewed and existing innovation barriers are discussed.
Clinical application of bio ceramics
NASA Astrophysics Data System (ADS)
Anu, Sharma; Gayatri, Sharma
2016-05-01
Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.
Clinical application of bio ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anu, Sharma, E-mail: issaranu@gmail.com; Gayatri, Sharma, E-mail: sharmagayatri@gmail.com
Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.
Okano, Hideyuki; Kishi, Noriyuki
2018-06-01
Although mice have been the most frequently used experimental animals in many research fields due to well-established gene manipulation techniques, recent evidence has revealed that rodent models do not always recapitulate pathophysiology of human neurological and psychiatric diseases due to the differences between humans and rodents. The recent developments in gene manipulation of non-human primate have been attracting much attention in the biomedical research field, because non-human primates have more applicable brain structure and function than rodents. In this review, we summarize recent progress on genetically-modified non-human primates including transgenic and knockout animals using genome editing technology. Copyright © 2017 Elsevier Ltd. All rights reserved.
Individualized medicine enabled by genomics in Saudi Arabia
2015-01-01
The biomedical research sector in Saudi Arabia has recently received special attention from the government, which is currently supporting research aimed at improving the understanding and treatment of common diseases afflicting Saudi Arabian society. To build capacity for research and training, a number of centres of excellence were established in different areas of the country. Among these, is the Centre of Excellence in Genomic Medicine Research (CEGMR) at King Abdulaziz University, Jeddah, with its internationally ranked and highly productive team performing translational research in the area of individualized medicine. Here, we present a panorama of the recent trends in different areas of biomedical research in Saudi Arabia drawing from our vision of where genomics will have maximal impact in the Kingdom of Saudi Arabia. We describe advances in a number of research areas including; congenital malformations, infertility, consanguinity and pre-implantation genetic diagnosis, cancer and genomic classifications in Saudi Arabia, epigenetic explanations of idiopathic disease, and pharmacogenomics and personalized medicine. We conclude that CEGMR will continue to play a pivotal role in advances in the field of genomics and research in this area is facing a number of challenges including generating high quality control data from Saudi population and policies for using these data need to comply with the international set up. PMID:25951871
Globalization and changing trends of biomedical research output.
Conte, Marisa L; Liu, Jing; Schnell, Santiago; Omary, M Bishr
2017-06-15
The US continues to lead the world in research and development (R&D) expenditures, but there is concern that stagnation in federal support for biomedical research in the US could undermine the leading role the US has played in biomedical and clinical research discoveries. As a readout of research output in the US compared with other countries, assessment of original research articles published by US-based authors in ten clinical and basic science journals during 2000 to 2015 showed a steady decline of articles in high-ranking journals or no significant change in mid-ranking journals. In contrast, publication output originating from China-based investigators, in both high- and mid-ranking journals, has steadily increased commensurate with significant growth in R&D expenditures. These observations support the current concerns of stagnant and year-to-year uncertainty in US federal funding of biomedical research.
Sex Bias in Neuroscience and Biomedical Research
Beery, Annaliese K.; Zucker, Irving
2010-01-01
Female mammals have long been neglected in biomedical research. The NIH mandated enrollment of women in human clinical trials in 1993, but no similar initiatives exist to foster research on female animals. We reviewed sex bias in research on mammals in 10 biological fields for 2009 and their historical precedents. Male bias was evident in 8 disciplines and most prominent in neuroscience, with single-sex studies of male animals outnumbering those of females 5.5 to 1. In the past half-century, male bias in non-human studies has increased while declining in human studies. Studies of both sexes frequently fail to analyze results by sex. Underrepresentation of females in animal models of disease is also commonplace, and our understanding of female biology is compromised by these deficiencies. The majority of articles in several journals are conducted on rats and mice to the exclusion of other useful animal models. The belief that non-human female mammals are intrinsically more variable than males and too troublesome for routine inclusion in research protocols is without foundation. We recommend that when only one sex is studied, this should be indicated in article titles, and that funding agencies favor proposals that investigate both sexes and analyze data by sex. PMID:20620164
Extended use of superconducting magnets for bio-medical development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoynev, Stoyan E.
Magnetic fields interact with biological cells affecting them in variety of ways which are usually hard to predict. Among them, it was observed that strong fields can align dividing cells in a preferred direction. It was also demonstrated that dividing cancer cells are effectively destroyed by applying electric fields in vivo with a success rate dependent on the cell-to-field orientation. Based on these facts, the present note aims to suggest the use of magnetic and electric fields for improved cancer treatment. Several possibilities of generating the electric fields inside the magnetic field volume are reviewed, main tentative approaches are describedmore » and discussed. Most if not all of them require special magnet configuration research which can be based on existing magnet systems in operation or in development.« less
Bernstam, Elmer V.; Hersh, William R.; Johnson, Stephen B.; Chute, Christopher G.; Nguyen, Hien; Sim, Ida; Nahm, Meredith; Weiner, Mark; Miller, Perry; DiLaura, Robert P.; Overcash, Marc; Lehmann, Harold P.; Eichmann, David; Athey, Brian D.; Scheuermann, Richard H.; Anderson, Nick; Starren, Justin B.; Harris, Paul A.; Smith, Jack W.; Barbour, Ed; Silverstein, Jonathan C.; Krusch, David A.; Nagarajan, Rakesh; Becich, Michael J.
2010-01-01
Clinical and translational research increasingly requires computation. Projects may involve multiple computationally-oriented groups including information technology (IT) professionals, computer scientists and biomedical informaticians. However, many biomedical researchers are not aware of the distinctions among these complementary groups, leading to confusion, delays and sub-optimal results. Although written from the perspective of clinical and translational science award (CTSA) programs within academic medical centers, the paper addresses issues that extend beyond clinical and translational research. The authors describe the complementary but distinct roles of operational IT, research IT, computer science and biomedical informatics using a clinical data warehouse as a running example. In general, IT professionals focus on technology. The authors distinguish between two types of IT groups within academic medical centers: central or administrative IT (supporting the administrative computing needs of large organizations) and research IT (supporting the computing needs of researchers). Computer scientists focus on general issues of computation such as designing faster computers or more efficient algorithms, rather than specific applications. In contrast, informaticians are concerned with data, information and knowledge. Biomedical informaticians draw on a variety of tools, including but not limited to computers, to solve information problems in health care and biomedicine. The paper concludes with recommendations regarding administrative structures that can help to maximize the benefit of computation to biomedical research within academic health centers. PMID:19550198
Characteristics Desired in Clinical Data Warehouse for Biomedical Research
Shin, Soo-Yong; Kim, Woo Sung
2014-01-01
Objectives Due to the unique characteristics of clinical data, clinical data warehouses (CDWs) have not been successful so far. Specifically, the use of CDWs for biomedical research has been relatively unsuccessful thus far. The characteristics necessary for the successful implementation and operation of a CDW for biomedical research have not clearly defined yet. Methods Three examples of CDWs were reviewed: a multipurpose CDW in a hospital, a CDW for independent multi-institutional research, and a CDW for research use in an institution. After reviewing the three CDW examples, we propose some key characteristics needed in a CDW for biomedical research. Results A CDW for research should include an honest broker system and an Institutional Review Board approval interface to comply with governmental regulations. It should also include a simple query interface, an anonymized data review tool, and a data extraction tool. Also, it should be a biomedical research platform for data repository use as well as data analysis. Conclusions The proposed characteristics desired in a CDW may have limited transfer value to organizations in other countries. However, these analysis results are still valid in Korea, and we have developed clinical research data warehouse based on these desiderata. PMID:24872909
Accessing and Integrating Data and Knowledge for Biomedical Research
Burgun, A.; Bodenreider, O.
2008-01-01
Summary Objectives To review the issues that have arisen with the advent of translational research in terms of integration of data and knowledge, and survey current efforts to address these issues. Methods Using examples form the biomedical literature, we identified new trends in biomedical research and their impact on bioinformatics. We analyzed the requirements for effective knowledge repositories and studied issues in the integration of biomedical knowledge. Results New diagnostic and therapeutic approaches based on gene expression patterns have brought about new issues in the statistical analysis of data, and new workflows are needed are needed to support translational research. Interoperable data repositories based on standard annotations, infrastructures and services are needed to support the pooling and meta-analysis of data, as well as their comparison to earlier experiments. High-quality, integrated ontologies and knowledge bases serve as a source of prior knowledge used in combination with traditional data mining techniques and contribute to the development of more effective data analysis strategies. Conclusion As biomedical research evolves from traditional clinical and biological investigations towards omics sciences and translational research, specific needs have emerged, including integrating data collected in research studies with patient clinical data, linking omics knowledge with medical knowledge, modeling the molecular basis of diseases, and developing tools that support in-depth analysis of research data. As such, translational research illustrates the need to bridge the gap between bioinformatics and medical informatics, and opens new avenues for biomedical informatics research. PMID:18660883
[Big Data: the great opportunities and challenges to microbiome and other biomedical research].
Xu, Zhenjiang
2015-02-01
With the development of high-throughput technologies, biomedical data has been increasing exponentially in an explosive manner. This brings enormous opportunities and challenges to biomedical researchers on how to effectively utilize big data. Big data is different from traditional data in many ways, described as 3Vs - volume, variety and velocity. From the perspective of biomedical research, here I introduced the characteristics of big data, such as its messiness, re-usage and openness. Focusing on microbiome research of meta-analysis, the author discussed the prospective principles in data collection, challenges of privacy protection in data management, and the scalable tools in data analysis with examples from real life.
Tenenbaum, Jessica D.; Whetzel, Patricia L.; Anderson, Kent; Borromeo, Charles D.; Dinov, Ivo D.; Gabriel, Davera; Kirschner, Beth; Mirel, Barbara; Morris, Tim; Noy, Natasha; Nyulas, Csongor; Rubenson, David; Saxman, Paul R.; Singh, Harpreet; Whelan, Nancy; Wright, Zach; Athey, Brian D.; Becich, Michael J.; Ginsburg, Geoffrey S.; Musen, Mark A.; Smith, Kevin A.; Tarantal, Alice F.; Rubin, Daniel L; Lyster, Peter
2010-01-01
The biomedical research community relies on a diverse set of resources, both within their own institutions and at other research centers. In addition, an increasing number of shared electronic resources have been developed. Without effective means to locate and query these resources, it is challenging, if not impossible, for investigators to be aware of the myriad resources available, or to effectively perform resource discovery when the need arises. In this paper, we describe the development and use of the Biomedical Resource Ontology (BRO) to enable semantic annotation and discovery of biomedical resources. We also describe the Resource Discovery System (RDS) which is a federated, inter-institutional pilot project that uses the BRO to facilitate resource discovery on the Internet. Through the RDS framework and its associated Biositemaps infrastructure, the BRO facilitates semantic search and discovery of biomedical resources, breaking down barriers and streamlining scientific research that will improve human health. PMID:20955817
ROLE OF INSTITUTIONAL CLIMATE IN FOSTERING DIVERSITY IN BIOMEDICAL RESEARCH WORKFORCE: A CASE STUDY
Butts, Gary C.; Hurd, Yasmin; Palermo, Ann-Gel S.; Delbrune, Denise; Saran, Suman; Zony, Chati; Krulwich, Terry A.
2012-01-01
This article reviews the barriers to diversity in biomedical research, describes the evolution and efforts to address climate issues to enhance the ability to attract, retain and develop underrepresented minorities (URM) - underrepresented minorities whose underrepresentation is found both in science and medicine, in the graduate school biomedical research doctoral programs (PhD and MD/PhD) at Mount Sinai School of Medicine (MSSM). We also describe the potential beneficial impact of having a climate that supports diversity and inclusion in the biomedical research workforce. MSSM diversity climate efforts are discussed as part of a comprehensive plan to increase diversity in all institutional programs PhD, MD/PhD, MD, and at the residency, post doctoral fellow, and faculty levels. Lessons learned from four decades of targeted programs and activities at MSSM may be of value to other institutions interested in improving diversity in the biomedical science and academic medicine workforce. PMID:22786740
Low-Cost, High-Throughput 3D Pulmonary Imager Using Hyperpolarized Contrast Agents and Low-Field MRI
2016-10-01
COMMUNITIES OF INTEREST? ................................................. 8 4. IMPACT...publicize the work performed and also for their exposure to biomedical science. How were the results disseminated to communities of interest? Nothing...biomedical community , expanding the utility of HP methods as a new tool for probing fundamental biomedical questions. Acknowledgments The authors thank
Quinn, Gwendolyn P; Koskan, Alexis; Sehovic, Ivana; Pal, Tuya; Meade, Cathy; Gwede, Clement K
2014-07-01
While ethical concerns about participating in biospecimen research have been previously identified, few studies have reported the concerns among individuals with familial risk for hereditary cancer (IFRs). At the same time, biomedical researchers often lack training in discussing such concerns to potential donors. This study explores IFRs' and biomedical researchers' perceptions of ethical concerns about participating in biobanking research. In separate focus groups, IFRs and biomedical researchers participated in 90-min telephone focus groups. Focus group questions centered on knowledge about laws that protect the confidentiality of biospecimen donors, understanding of informed consent and study procedures, and preferences for being recontacted about potential incidental discovery and also study results. A total of 40 IFRs and 32 biomedical researchers participated in the focus groups. Results demonstrated discrepancies between the perceptions of IFRs and researchers. IFRs' concerns centered on health information protection; potential discrimination by insurers and employers; and preferences for being recontacted upon discovery of gene mutations or to communicate study results. Researchers perceived that participants understood laws protecting donors' privacy and (detailed study information outlined in the informed consent process), study outcomes were used to create a training tool kit to increase researchers' understanding of IFRs' concerns about biobanking.
Koskan, Alexis; Sehovic, Ivana; Pal, Tuya; Meade, Cathy; Gwede, Clement K.
2014-01-01
While ethical concerns about participating in biospecimen research have been previously identified, few studies have reported the concerns among individuals with familial risk for hereditary cancer (IFRs). At the same time, biomedical researchers often lack training in discussing such concerns to potential donors. This study explores IFRs' and biomedical researchers' perceptions of ethical concerns about participating in biobanking research. In separate focus groups, IFRs and biomedical researchers participated in 90-min telephone focus groups. Focus group questions centered on knowledge about laws that protect the confidentiality of biospecimen donors, understanding of informed consent and study procedures, and preferences for being recontacted about potential incidental discovery and also study results. A total of 40 IFRs and 32 biomedical researchers participated in the focus groups. Results demonstrated discrepancies between the perceptions of IFRs and researchers. IFRs' concerns centered on health information protection; potential discrimination by insurers and employers; and preferences for being recontacted upon discovery of gene mutations or to communicate study results. Researchers perceived that participants understood laws protecting donors' privacy and (detailed study information outlined in the informed consent process), study outcomes were used to create a training tool kit to increase researchers' understanding of IFRs' concerns about biobanking. PMID:24786355
EDITORIAL: Gas plasmas in biology and medicine
NASA Astrophysics Data System (ADS)
Stoffels, Eva
2006-08-01
It is my great pleasure to introduce this special cluster devoted to recent developments in biomedical plasma technology. It is an even greater pleasure to behold the enormous progress which has been made in this area over the last five years. Research on biomedical plasma applications proceeds hand in hand with the development of new material processing technologies, based on atmospheric plasma sources. In the beginning, major research effort was invested in the development and control of new plasma sources—in this laborious process, novel devices were constructed and characterized, and also new plasma physical phenomena were discovered. Self-constriction of micro-plasmas, pattern formation, filamentation of glow discharges and various mode transitions are just a few examples. It is a real challenge for theorists to gain an understanding of these complex phenomena. Later, the devices had to be thoroughly tested and automated, and various safety issues had to be addressed. At present, many atmospheric plasma sources are ready to use, but not all fundamental and technical problems have been resolved by far. There is still plenty of room for improvement, as in any dynamic area of research. The recent trends are clear: the application area of plasmas expands into processing of unconventional materials such as biological scaffolds, and eventually living human, animal and plant tissues. The gentle, precise and versatile character of cold plasmas simply invites this new application. Firstly, non-living surfaces have been plasma-treated to attain desired effects in biomedical research; tissue engineering will soon fully profit from this powerful technique. Furthermore, studies on cultured plant and animal cells have provided many findings, which are both fundamentally interesting and potentially applicable in health care, veterinary medicine and agriculture. The most important and hitherto unique property of plasma treatment is that it can evade accidental cell death and its attendant complications, such as inflammation and scarring. Another substantial research direction makes use of the bactericidal properties of the plasma. The number of findings on plasma inactivation of bacteria and spores is growing; plasma sterilization has already achieved some commercial success. In future, bacteriostatic properties of cold plasmas will even facilitate non-contact disinfection of human tissues. At this moment, one cannot explicitly list all the medical procedures in which cold plasmas will be involved. My personal intuition predicts widespread use of plasma treatment in dentistry and dermatology, but surely more applications will emerge in the course of this multi-disciplinary research. In fact, some plasma techniques, such as coagulation and coblation, are already used in clinical practice—this is another image of plasma science, which is so far unfamiliar to plasma physicists. Therefore, this particular topic forms a perfect platform for contacts between physicists and medical experts. Our colleagues from the medical scientific community will continue giving us feedback, suggestions or even orders. Biomedical plasmas should not become an isolated research area—we must grow together with medical research, listen to criticism, and eventually serve the physicians. Only then will this new field grow, flourish and bear fruit. All the above-mentioned topics meet in this issue of Journal of Physics D: Applied Physics, comprising the most significant examples of modern biomedical plasma research. Browsing through the contributions, the reader can trace back the progress in this field: from fundamental physical (numerical) studies, through phenomenology and physics of new discharges, studies on plasma-surface modification, bacterial inactivation tests, fundamental cell biological investigations, to final in vivo applications. One may ask why this selection has found its place in a purely physical journal—many contributions are concerned with (micro)-biology rather than physics. To me, the answer is clear: it is important to maintain the visibility of this fascinating and growing cross-disciplinary field within the (plasma) physical community. This is not the `physics we are used to', but one we will eventually get used to and accept.
Engineering β-sheet peptide assemblies for biomedical applications.
Yu, Zhiqiang; Cai, Zheng; Chen, Qiling; Liu, Menghua; Ye, Ling; Ren, Jiaoyan; Liao, Wenzhen; Liu, Shuwen
2016-03-01
Hydrogels have been widely studied in various biomedical applications, such as tissue engineering, cell culture, immunotherapy and vaccines, and drug delivery. Peptide-based nanofibers represent a promising new strategy for current drug delivery approaches and cell carriers for tissue engineering. This review focuses on the recent advances in the use of self-assembling engineered β-sheet peptide assemblies for biomedical applications. The applications of peptide nanofibers in biomedical fields, such as drug delivery, tissue engineering, immunotherapy, and vaccines, are highlighted. The current challenges and future perspectives for self-assembling peptide nanofibers in biomedical applications are discussed.
NASA Astrophysics Data System (ADS)
Wang, Ruikang K.; Priezzhev, Alexander; Fantini, Sergio
2004-07-01
To honour Professor Valery Tuchin, one of the pioneers in biomedical optics, Journal of Physics D: Applied Physics invites manuscript submissions on topics in biomedical optics, for publication in a Special section in May 2005. Papers may cover a variety of topics related to photon propagation in turbid media, spectroscopy and imaging. This Special cluster will reflect the diversity, breadth and impact of Professor Tuchin's contributions to the field of biomedical optics over the course of his distinguished career. Biomedical optics is a recently emerged discipline providing a broad variety of optical techniques and instruments for diagnostic, therapeutic and basic science applications. Together with contributions from other pioneers in the field, Professor Tuchin's work on fundamental and experimental aspects in tissue optics contributed enormously to the formation of this exciting field. Although general submissions in biomedical optics are invited, the Special cluster Editors especially encourage submissions in areas that are explicitly or implicitly influenced by Professor Tuchin's contributions to the field of biomedical optics. Manuscripts submitted to this Special cluster of Journal of Physics D: Applied Physics will be refereed according to the normal criteria and procedures of the journal, in accordance with the following schedule: Deadline for receipt of contributed papers: 31 November 2004 Deadline for acceptance and completion of refereeing process: 28 February 2005 Publication of special issue: May 2005 Please submit your manuscript electronically to jphysd@iop.org or via the Web site at www.iop.org/Journals. Otherwise, please send a copy of your typescript, a set of original figures and a cover letter to: The Publishing Administrator, Journal of Physics D: Applied Physics, Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, United Kingdom. Further information on how to submit may be obtained upon request by e-mailing the journal at the above address. Alternatively, visit the homepage of the journal on the World Wide Web (http://www.iop.org/journals/jphysd)
Waimey, Kate E.; Duncan, Francesca E.; Su, H. Irene; Smith, Kristin; Wallach, Harlan; Jona, Kemi; Coutifaris, Christos; Gracia, Clarisa R.; Shea, Lonnie D.; Brannigan, Robert E.; Chang, R. Jeffrey; Zelinski, Mary B.; Stouffer, Richard L.; Taylor, Robert L.
2013-01-01
Fertility impairment and loss due to cancer or its treatment is a significant survivorship consideration for many pediatric, adolescent, and young adult cancer survivors. Chemotherapeutics, radiation, and surgery can impact the future fertility of men, women, and children with cancer. The field of oncofertility, founded to ensure the reproductive future of cancer survivors, gained momentum with 5 years of funding through a 2007 National Institutes of Health Roadmap Grant for Biomedical Research. This report from working group meetings at the fifth annual Oncofertility Consortium Conference speaks to the present state of oncofertility research and clinical care, existing gaps, and future directions for the field. This summary from conference participants and leaders in the field addresses the science, clinical specialties, and academic scholarship that can guide the field as the Roadmap Grant funding comes to a close. PMID:23610740
NASA Astrophysics Data System (ADS)
von Woedtke, Th.; Reuter, S.; Masur, K.; Weltmann, K.-D.
2013-09-01
Plasma medicine is an innovative and emerging field combining plasma physics, life science and clinical medicine. In a more general perspective, medical application of physical plasma can be subdivided into two principal approaches. (i) “Indirect” use of plasma-based or plasma-supplemented techniques to treat surfaces, materials or devices to realize specific qualities for subsequent special medical applications, and (ii) application of physical plasma on or in the human (or animal) body to realize therapeutic effects based on direct interaction of plasma with living tissue. The field of plasma applications for the treatment of medical materials or devices is intensively researched and partially well established for several years. However, plasma medicine in the sense of its actual definition as a new field of research focuses on the use of plasma technology in the treatment of living cells, tissues, and organs. Therefore, the aim of the new research field of plasma medicine is the exploitation of a much more differentiated interaction of specific plasma components with specific structural as well as functional elements or functionalities of living cells. This interaction can possibly lead either to stimulation or inhibition of cellular function and be finally used for therapeutic purposes. During recent years a broad spectrum of different plasma sources with various names dedicated for biomedical applications has been reported. So far, research activities were mainly focused on barrier discharges and plasma jets working at atmospheric pressure. Most efforts to realize plasma application directly on or in the human (or animal) body for medical purposes is concentrated on the broad field of dermatology including wound healing, but also includes cancer treatment, endoscopy, or dentistry. Despite the fact that the field of plasma medicine is very young and until now mostly in an empirical stage of development yet, there are first indicators of its enormous economic potential. This ambivalent situation fundamentally requires a responsible use of plasma sources, which are specifically designated for biomedical applications. To enable physicians as well as life scientists to decide whether a given plasma source is really suitable for medical applications or biological experiments, a meaningful and mandatory spectrum of indicators has to be compiled to allow for a basic estimation of the potential of this plasma source.
A BRIEF HISTORY OF BIOMEDICAL RESEARCH ETHICS IN IRAN: CONFLICT OF PARADIGMS
ARAMESH, KIARASH
2014-01-01
During the past two decades, Iran has experienced a noteworthy growth in its biomedical research sector. At the same time, ethical concerns and debates resulting from this burgeoning enterprise has led to increasing attention paid to biomedical ethics. In Iran, Biomedical research ethics and research oversight passed through major periods during the past decades, separated by a paradigm shift. Period 1, starting from the early 1970s, is characterized by research paternalism and complete reliance on researchers as virtuous and caring physicians. This approach was in concordance with the paternalistic clinical practice of physicians outside of research settings during the same period. Period 2, starting from the late 1990s, was partly due to revealing of ethical flaws that occurred in biomedical research in Iran. The regulatory and funding bodies concluded that it was not sufficient to rely solely on the personal and professional virtues of researchers to safeguard human subjects’ rights and welfare. The necessity for independent oversight, emphasized by international declarations, became obvious and undeniable. This paradigm shift led to the establishment of research ethics committees throughout the country, the establishment of academic research centers focusing on medical ethics (MEHR) and the compilation of the first set of national ethical guidelines on biomedical research–one of the first and most important projects conducted by and in the MEHR. Although not yet arrived, ‘period 3’ is on its way. It is predictable from the obvious trends toward performance of high-quality clinical research and the appearance of a highly educated new generation, especially among women. PMID:24720443
45 CFR 46.306 - Permitted research involving prisoners.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 1 2014-10-01 2014-10-01 false Permitted research involving prisoners. 46.306... HUMAN SUBJECTS Additional Protections Pertaining to Biomedical and Behavioral Research Involving Prisoners as Subjects § 46.306 Permitted research involving prisoners. (a) Biomedical or behavioral research...
ERIC Educational Resources Information Center
Fortson, Leigh
1999-01-01
An African-American researcher is spearheading a black biomedical research movement to urge more African Americans to investigate the health issues affecting their communities. His research focuses on the acquired immune deficiency syndrome (AIDS) virus, but he is encouraging general expansion of the black researcher population. (MSE)
ERIC Educational Resources Information Center
Technical Education Research Center, Cambridge, MA.
OFFICIALS OF A REPRESENTATIVE SAMPLE OF HOSPITALS, BIOMEDICAL EQUIPMENT MANUFACTURERS, AND MEDICAL RESEARCH INSTITUTES IN NEW ENGLAND AND THREE MIDDLE ATLANTIC STATES WERE INTERVIEWED TO DETERMINE THE NEED FOR TECHNICIANS TO SERVICE AND MAINTAIN EQUIPMENT FOUND IN HOSPITALS AND BIOMEDICAL RESEARCH INSTITUTIONS. RESPONSES INDICATED A NEED FOR…
Semantic Similarity in Biomedical Ontologies
Pesquita, Catia; Faria, Daniel; Falcão, André O.; Lord, Phillip; Couto, Francisco M.
2009-01-01
In recent years, ontologies have become a mainstream topic in biomedical research. When biological entities are described using a common schema, such as an ontology, they can be compared by means of their annotations. This type of comparison is called semantic similarity, since it assesses the degree of relatedness between two entities by the similarity in meaning of their annotations. The application of semantic similarity to biomedical ontologies is recent; nevertheless, several studies have been published in the last few years describing and evaluating diverse approaches. Semantic similarity has become a valuable tool for validating the results drawn from biomedical studies such as gene clustering, gene expression data analysis, prediction and validation of molecular interactions, and disease gene prioritization. We review semantic similarity measures applied to biomedical ontologies and propose their classification according to the strategies they employ: node-based versus edge-based and pairwise versus groupwise. We also present comparative assessment studies and discuss the implications of their results. We survey the existing implementations of semantic similarity measures, and we describe examples of applications to biomedical research. This will clarify how biomedical researchers can benefit from semantic similarity measures and help them choose the approach most suitable for their studies. Biomedical ontologies are evolving toward increased coverage, formality, and integration, and their use for annotation is increasingly becoming a focus of both effort by biomedical experts and application of automated annotation procedures to create corpora of higher quality and completeness than are currently available. Given that semantic similarity measures are directly dependent on these evolutions, we can expect to see them gaining more relevance and even becoming as essential as sequence similarity is today in biomedical research. PMID:19649320
Ethnicity in Dutch health research: situating scientific practice.
Helberg-Proctor, Alana; Meershoek, Agnes; Krumeich, Anja; Horstman, Klasien
2016-10-01
A growing body of work is examining the role health research itself plays in the construction of 'ethnicity.' We discuss the results of our investigation as to how the political, social, and institutional dynamics of the context in which health research takes place affect the manner in which knowledge about ethnicity and health is produced. Qualitative content analysis of academic publications, interviews with biomedical and health researchers, and participant observation at various conferences and scientific events. We identified four aspects related to the context in which Dutch research takes place that we have found relevant to biomedical and health-research practices. Firstly, the 'diversity' and 'inclusion' policies of the major funding institution; secondly, the official Dutch national ethnic registration system; a third factor was the size of the Netherlands and the problem of small sample sizes; and lastly, the need for researchers to use meaningful ethnic categories when publishing in English-language journals. Our analysis facilitates the understanding of how specific ethnicities are constructed in this field and provides fruitful insight into the socio-scientific co-production of ethnicity, and specifically into the manner in which common-sense ethnic categories and hierarchies are granted scientific validity through academic publication and, are subsequently, used in clinical guidelines and policy.
Sprouting Buds of Zebrafish Research in Malaysia: First Malaysia Zebrafish Disease Model Workshop.
Okuda, Kazuhide Shaun; Tan, Pei Jean; Patel, Vyomesh
2016-04-01
Zebrafish is gaining prominence as an important vertebrate model for investigating various human diseases. Zebrafish provides unique advantages such as optical clarity of embryos, high fecundity rate, and low cost of maintenance, making it a perfect complement to the murine model equivalent in biomedical research. Due to these advantages, researchers in Malaysia are starting to take notice and incorporate the zebrafish model into their research activities. However, zebrafish research in Malaysia is still in its infancy stage and many researchers still remain unaware of the full potential of the zebrafish model or have limited access to related tools and techniques that are widely utilized in many zebrafish laboratories worldwide. To overcome this, we organized the First Malaysia Zebrafish Disease Model Workshop in Malaysia that took place on 11th and 12th of November 2015. In this workshop, we showcased how the zebrafish model is being utilized in the biomedical field in international settings as well as in Malaysia. For this, notable international speakers and those from local universities known to be carrying out impactful research using zebrafish were invited to share some of the cutting edge techniques that are used in their laboratories that may one day be incorporated in the Malaysian scientific community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, W. E.
2004-08-16
Computational Science plays a big role in research and development in mathematics, science, engineering and biomedical disciplines. The Alliance for Computational Science Collaboration (ACSC) has the goal of training African-American and other minority scientists in the computational science field for eventual employment with the Department of Energy (DOE). The involvements of Historically Black Colleges and Universities (HBCU) in the Alliance provide avenues for producing future DOE African-American scientists. Fisk University has been participating in this program through grants from the DOE. The DOE grant supported computational science activities at Fisk University. The research areas included energy related projects, distributed computing,more » visualization of scientific systems and biomedical computing. Students' involvement in computational science research included undergraduate summer research at Oak Ridge National Lab, on-campus research involving the participation of undergraduates, participation of undergraduate and faculty members in workshops, and mentoring of students. These activities enhanced research and education in computational science, thereby adding to Fisk University's spectrum of research and educational capabilities. Among the successes of the computational science activities are the acceptance of three undergraduate students to graduate schools with full scholarships beginning fall 2002 (one for master degree program and two for Doctoral degree program).« less
77 FR 6809 - National Institute of General Medical Sciences; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-09
... Biomedical Research Support; 93.821, Cell Biology and Biophysics Research; 93.859, Pharmacology, Physiology, and Biological Chemistry Research; 93.862, Genetics and Developmental Biology Research; 93.88... Sciences Initial Review Group Biomedical Research and Research Training Review Subcommittee A. Date: March...
The distribution of biomedical research resources and international justice.
Resnik, David B
2004-05-01
According to some estimates, less than 10% of the world's biomedical research funds are dedicated to addressing problems that are responsible for 90% of the world's burden of disease. This paper explains why this disparity exists and what should be done about it. It argues that the disparity exists because: 1) multinational pharmaceutical and biotechnology companies do not regard research and development investments on the health problems of developing nations to be economically lucrative; and 2) governmental agencies that sponsor biomedical research face little political pressure to allocate funds for the problems of developing nations. This paper argues that developed nations have an obligation to address disparities related to biomedical research funding. To facilitate this effort, developed countries should establish a trust fund dedicated to research on the health problems of developing nations similar to the Global AIDS Fund.
Leong, Sim Siong; Yeap, Swee Pin; Lim, JitKang
2016-12-06
Magnetic separation is a versatile technique used in sample preparation for diagnostic purpose. For such application, an external magnetic field is applied to drive the separation of target entity (e.g. bacteria, viruses, parasites and cancer cells) from a complex raw sample in order to ease the subsequent task(s) for disease diagnosis. This separation process not only can be achieved via the utilization of high magnetic field gradient, but also, in most cases, low magnetic field gradient with magnitude less than 100 T m -1 is equally feasible. It is the aim of this review paper to summarize the usage of both high gradient magnetic separation and low gradient magnetic separation (LGMS) techniques in this area of research. It is noteworthy that effectiveness of the magnetic separation process not only determines the outcome of a diagnosis but also directly influences its accuracy as well as sensing time involved. Therefore, understanding the factors that simultaneously influence the efficiency of both magnetic separation process and target detection is necessary. Moreover, for LGMS, there are several important considerations that should be taken into account in order to ensure its successful implementation. Hence, this review paper aims to provide an overview to relate all this crucial information by linking the magnetic separation theory to biomedical diagnostic applications.
A survey of working conditions within biomedical research in the United Kingdom.
Riddiford, Nick
2017-01-01
Background: Many recent articles have presented a bleak view of career prospects in biomedical research in the US. Too many PhDs and postdocs are trained for too few research positions, creating a "holding-tank" of experienced senior postdocs who are unable to get a permanent position. Coupled with relatively low salaries and high levels of pressure to publish in top-tier academic journals, this has created a toxic environment that is perhaps responsible for a recently observed decline in biomedical postdocs in the US, the so-called "postdocalypse". Methods: In order to address the gulf of information relating to working habits and attitudes of UK-based biomedical researchers, a link to an online survey was included in an article published in the Guardian newspaper. Survey data were collected between 21 st March 2016 and 6 th November 2016 and analysed to examine discrete profiles for three major career stages: the PhD, the postdoc and the principal investigator. Results: Overall, the data presented here echo trends observed in the US: The 520 UK-based biomedical researchers responding to the survey reported feeling disillusioned with academic research, due to the low chance of getting a permanent position and the long hours required at the bench. Also like the US, large numbers of researchers at each distinct career stage are considering leaving biomedical research altogether. Conclusions: There are several systemic flaws in the academic scientific research machine - for example the continual overproduction of PhDs and the lack of stability in the early-mid stages of a research career - that are slowly being addressed in countries such as the US and Germany. These data suggest that similar flaws also exist in the UK, with a large proportion of respondents concerned about their future in research. To avoid lasting damage to the biomedical research agenda in the UK, addressing such concerns should be a major priority.
Globalization and changing trends of biomedical research output
Conte, Marisa L.; Liu, Jing; Omary, M. Bishr
2017-01-01
The US continues to lead the world in research and development (R&D) expenditures, but there is concern that stagnation in federal support for biomedical research in the US could undermine the leading role the US has played in biomedical and clinical research discoveries. As a readout of research output in the US compared with other countries, assessment of original research articles published by US-based authors in ten clinical and basic science journals during 2000 to 2015 showed a steady decline of articles in high-ranking journals or no significant change in mid-ranking journals. In contrast, publication output originating from China-based investigators, in both high- and mid-ranking journals, has steadily increased commensurate with significant growth in R&D expenditures. These observations support the current concerns of stagnant and year-to-year uncertainty in US federal funding of biomedical research. PMID:28614799
Clase, Kari L; Hein, Patrick W; Pelaez, Nancy J
2008-12-01
Physiology as a discipline is uniquely positioned to engage undergraduate students in interdisciplinary research in response to the 2006-2011 National Science Foundation Strategic Plan call for innovative transformational research, which emphasizes multidisciplinary projects. To prepare undergraduates for careers that cross disciplinary boundaries, students need to practice interdisciplinary communication in academic programs that connect students in diverse disciplines. This report surveys policy documents relevant to this emphasis on interdisciplinary training and suggests a changing role for physiology courses in bioscience and engineering programs. A role for a physiology course is increasingly recommended for engineering programs, but the study of physiology from an engineering perspective might differ from the study of physiology as a basic science. Indeed, physiology laboratory courses provide an arena where biomedical engineering and bioscience students can apply knowledge from both fields while cooperating in multidisciplinary teams under specified technical constraints. Because different problem-solving approaches are used by students of engineering and bioscience, instructional innovations are needed to break down stereotypes between the disciplines and create an educational environment where interdisciplinary teamwork is used to bridge differences.
Pulsed Laser Synthesized Magnetic Cobalt Oxide Nanoparticles for Biomedical Applications
NASA Astrophysics Data System (ADS)
Bhatta, Hari; Gupta, Ram; Ghosh, Kartik; Kahol, Pawan; Delong, Robert; Wanekawa, Adam
2011-03-01
Nanomaterials research has become a major attraction in the field of advanced materials research in the area of Physics, Chemistry, and Materials Science. Biocompatible and chemically stable magnetic metal oxide nanoparticles have biomedical applications that includes drug delivery, cell and DNA separation, gene cloning, magnetic resonance imaging (MRI). This research is aimed at the fabrication of magnetic cobalt oxide nanoparticles using a safe, cost effective, and easy to handle technique that is capable of producing nanoparticles free of any contamination. Cobalt oxide nanoparticles have been synthesized at room temperature using cobalt foil by pulsed laser ablation technique. These cobalt oxide nanoparticles were characterized using UV-Visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), and dynamic laser light scattering (DLLS). The magnetic cobalt oxides nanoparticles were stabilized in glucose solutions of various concentrations in deionized water. The presence of UV-Vis absorption peak at 270 nm validates the nature of cobalt oxide nanoparticles. The DLLS size distributions of nanoparticles are in the range of 110 to 300 nm, which further confirms the presence nanoparticles. This work is partially supported by National Science Foundation (DMR- 0907037).
Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications.
Manivasagan, Panchanathan; Oh, Junghwan
2016-01-01
Research on marine polysaccharide-based nanomaterials is emerging in nanobiotechnological fields such as drug delivery, gene delivery, tissue engineering, cancer therapy, wound dressing, biosensors, and water treatment. Important properties of the marine polysaccharides include biocompatibility, biodegradability, nontoxicity, low cost, and abundance. Most of the marine polysaccharides are derived from natural sources such as fucoidan, alginates, carrageenan, agarose, porphyran, ulvan, mauran, chitin, chitosan, and chitooligosaccharide. Marine polysaccharides are very important biological macromolecules that widely exist in marine organisms. Marine polysaccharides exhibit a vast variety of structures and are still under-exploited and thus should be considered as a novel source of natural products for drug discovery. An enormous variety of polysaccharides can be extracted from marine organisms such as algae, crustaceans, and microorganisms. Marine polysaccharides have been shown to have a variety of biological and biomedical properties. Recently, research and development of marine polysaccharide-based nanomaterials have received considerable attention as one of the major resources for nanotechnological applications. This review highlights the recent research on marine polysaccharide-based nanomaterials for biotechnological and biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Biomedical coatings on magnesium alloys - a review.
Hornberger, H; Virtanen, S; Boccaccini, A R
2012-07-01
This review comprehensively covers research carried out in the field of degradable coatings on Mg and Mg alloys for biomedical applications. Several coating methods are discussed, which can be divided, based on the specific processing techniques used, into conversion and deposition coatings. The literature review revealed that in most cases coatings increase the corrosion resistance of Mg and Mg alloys. The critical factors determining coating performance, such as corrosion rate, surface chemistry, adhesion and coating morphology, are identified and discussed. The analysis of the literature showed that many studies have focused on calcium phosphate coatings produced either using conversion or deposition methods which were developed for orthopaedic applications. However, the control of phases and the formation of cracks still appear unsatisfactory. More research and development is needed in the case of biodegradable organic based coatings to generate reproducible and relevant data. In addition to biocompatibility, the mechanical properties of the coatings are also relevant, and the development of appropriate methods to study the corrosion process in detail and in the long term remains an important area of research. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Matz, Gregor; Messerschmidt, Bernhard; Göbel, Werner; Filser, Severin; Betz, Christian S.; Kirsch, Matthias; Uckermann, Ortrud; Kunze, Marcel; Flämig, Sven; Ehrhardt, André; Irion, Klaus-Martin; Haack, Mareike; Dorostkar, Mario M.; Herms, Jochen; Gross, Herbert
2017-01-01
We demonstrate a 60 mg light video-endomicroscope with a cylindrical shape of the rigid tip of only 1.6 mm diameter and 6.7 mm length. A novel implementation method of the illumination unit in the endomicroscope is presented. It allows for the illumination of the biological sample with fiber-coupled LED light at 455 nm and the imaging of the red-shifted fluorescence light above 500 nm in epi-direction. A large numerical aperture of 0.7 leads to a sub-cellular resolution and yields to high-contrast images within a field of view of 160 μm. A miniaturized chip-on-the-tip CMOS image sensor with more than 150,000 pixels captures the multicolor images at 30 fps. Considering size, plug-and-play capability, optical performance, flexibility and weight, we hence present a probe which sets a new benchmark in the field of epifluorescence endomicroscopes. Several ex-vivo and in-vivo experiments in rodents and humans suggest future application in biomedical fields, especially in the neuroscience community, as well as in medical applications targeting optical biopsies or the detection of cellular anomalies. PMID:28717570
Perspectives of clinician and biomedical scientists on interdisciplinary health research.
Laberge, Suzanne; Albert, Mathieu; Hodges, Brian D
2009-11-24
Interdisciplinary health research is a priority of many funding agencies. We surveyed clinician and biomedical scientists about their views on the value and funding of interdisciplinary health research. We conducted semistructured interviews with 31 biomedical and 30 clinician scientists. The scientists were selected from the 2000-2006 membership lists of peer-review committees of the Canadian Institutes of Health Research. We investigated respondents' perspectives on the assumption that collaboration across disciplines adds value to health research. We also investigated their perspectives on funding agencies' growing support of interdisciplinary research. The 61 respondents expressed a wide variety of perspectives on the value of interdisciplinary health research, ranging from full agreement (22) to complete disagreement (11) that it adds value; many presented qualified viewpoints (28). More than one-quarter viewed funding agencies' growing support of interdisciplinary research as appropriate. Most (44) felt that the level of support was unwarranted. Arguments included the belief that current support leads to the creation of artificial teams and that a top-down process of imposing interdisciplinary structures on teams constrains scientists' freedom. On both issues we found contrasting trends between the clinician and the biomedical scientists. Despite having some positive views about the value of interdisciplinary research, scientists, especially biomedical scientists, expressed reservations about the growing support of interdisciplinary research.
Research and development program, fiscal year 1966
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1964-04-01
The biomedical program of the Laboratory of Nuclear Medicine and Radiation Biology for FY 1966 is conducted within the scope of the following categories: Somatic Effects of Radiation; Combating Detrimental Effects of Radiation; Molecular and Cellular Level Studies; Environmental Radiation Studies; Radiological and Health Physics and Instrumentation; Chemical Toxicity; Cancer Research; and Selected Beneficial Applications. The overall objectives of the Laboratory within these areas of the Biology and Medicine program may be summarized as follows: (1) investigation of the effects of ionizing radiation on living organisms and systems of biological significance; (2) investigation of the dynamic aspects of physiological andmore » biochemical processes in man, animals and plants and how these processes are modified by radiation and related pathological states; (3) the assessment and study of the immediate and long term consequences of the operation or detonation of nuclear devices on the fauna, and flora in man's environment and on man; (4) the development of methods of minimizing or preventing the detrimental effects of ionizing radiation; (5) research in, and development of, beneficial uses of ionizing radiation and radioactive substances in medicine and biology; (6) research in the development of new and more efficient radiation detection devices; (7) research, including field studies, as mutually agreed upon by the Commission and the University, in connection with the conduct of weapon tests and biomedical and civil effects experiments at such tests conducted at continental and overseas test sites; and (8) the conduct of training and educational activities in the biological and medical aspects of radiation and related fields.« less
Hernandez-Villafuerte, Karla; Sussex, Jon; Robin, Enora; Guthrie, Sue; Wooding, Steve
2017-02-02
Publicly funded biomedical and health research is expected to achieve the best return possible for taxpayers and for society generally. It is therefore important to know whether such research is more productive if concentrated into a small number of 'research groups' or dispersed across many. We undertook a systematic rapid evidence assessment focused on the research question: do economies of scale and scope exist in biomedical and health research? In other words, is that research more productive per unit of cost if more of it, or a wider variety of it, is done in one location? We reviewed English language literature without date restriction to the end of 2014. To help us to classify and understand that literature, we first undertook a review of econometric literature discussing models for analysing economies of scale and/or scope in research generally (not limited to biomedical and health research). We found a large and disparate literature. We reviewed 60 empirical studies of (dis-)economies of scale and/or scope in biomedical and health research, or in categories of research including or overlapping with biomedical and health research. This literature is varied in methods and findings. At the level of universities or research institutes, studies more often point to positive economies of scale than to diseconomies of scale or constant returns to scale in biomedical and health research. However, all three findings exist in the literature, along with inverse U-shaped relationships. At the level of individual research units, laboratories or projects, the numbers of studies are smaller and evidence is mixed. Concerning economies of scope, the literature more often suggests positive economies of scope than diseconomies, but the picture is again mixed. The effect of varying the scope of activities by a research group was less often reported than the effect of scale and the results were more mixed. The absence of predominant findings for or against the existence of economies of scale or scope implies a continuing need for case by case decisions when distributing research funding, rather than a general policy either to concentrate funding in a few centres or to disperse it across many.
PubMed-based quantitative analysis of biomedical publications in the SAARC countries: 1985-2009.
Azim Majumder, Md Anwarul; Shaban, Sami F; Rahman, Sayeeda; Rahman, Nuzhat; Ahmed, Moslehuddin; Bin Abdulrahman, Khalid A; Islam, Ziauddin
2012-09-01
To conduct a geographical analysis of biomedical publications from the South Asian Association for Regional Cooperation (SAARC) countries over the past 25 years (1985-2009) using the PubMed database. A qualitative study. Web-based search during September 2010. A data extraction program, developed by one of the authors (SFS), was used to extract the raw publication counts from the downloaded PubMed data. A search of PubMed was performed for all journals indexed by selecting the advanced search option and entering the country name in the 'affiliation' field. The publications were normalized by total population, adult illiteracy rate, gross domestic product (GDP), secondary school enrollment ratio and Internet usage rate. The number of PubMed-listed papers published by the SAARC countries over the last 25 years totalled 141,783, which is 1.1% of the total papers indexed by PubMed in the same period. India alone produced 90.5% of total publications generated by SAARC countries. The average number of papers published per year from 1985 to 2009 was 5671 and number of publication increased approximately 242-fold. Normalizing by the population (per million) and GDP (per billion), India (133, 27.6%) and Nepal (323, 37.3%) had the highest publications respectively. There was a marked imbalance among the SAARC countries in terms of biomedical research and publication. Because of huge population and the high disease burden, biomedical research and publication output should receive special attention to formulate health policies, re-orient medical education curricula, and alleviate diseases and poverty.
The National Center for Biomedical Ontology
Noy, Natalya F; Shah, Nigam H; Whetzel, Patricia L; Chute, Christopher G; Story, Margaret-Anne; Smith, Barry
2011-01-01
The National Center for Biomedical Ontology is now in its seventh year. The goals of this National Center for Biomedical Computing are to: create and maintain a repository of biomedical ontologies and terminologies; build tools and web services to enable the use of ontologies and terminologies in clinical and translational research; educate their trainees and the scientific community broadly about biomedical ontology and ontology-based technology and best practices; and collaborate with a variety of groups who develop and use ontologies and terminologies in biomedicine. The centerpiece of the National Center for Biomedical Ontology is a web-based resource known as BioPortal. BioPortal makes available for research in computationally useful forms more than 270 of the world's biomedical ontologies and terminologies, and supports a wide range of web services that enable investigators to use the ontologies to annotate and retrieve data, to generate value sets and special-purpose lexicons, and to perform advanced analytics on a wide range of biomedical data. PMID:22081220
The Structure of Medical Informatics Journal Literature
Morris, Theodore A.; McCain, Katherine W.
1998-01-01
Abstract Objective: Medical informatics is an emergent interdisciplinary field described as drawing upon and contributing to both the health sciences and information sciences. The authors elucidate the disciplinary nature and internal structure of the field. Design: To better understand the field's disciplinary nature, the authors examine the intercitation relationships of its journal literature. To determine its internal structure, they examined its journal cocitation patterns. Measurements: The authors used data from the Science Citation Index (SCI) and Social Science Citation Index (SSCI) to perform intercitation studies among productive journal titles, and software routines from SPSS to perform multivariate data analyses on cocitation data for proposed core journals. Results: Intercitation network analysis suggests that a core literature exists, one mark of a separate discipline. Multivariate analyses of cocitation data suggest that major focus areas within the field include biomedical engineering, biomedical computing, decision support, and education. The interpretable dimensions of multidimensional scaling maps differed for the SCI and SSCI data sets. Strong links to information science literature were not found. Conclusion: The authors saw indications of a core literature and of several major research fronts. The field appears to be viewed differently by authors writing in journals indexed by SCI from those writing in journals indexed by SSCI, with more emphasis placed on computers and engineering versus decision making by the former and more emphasis on theory versus application (clinical practice) by the latter. PMID:9760393
A Brief History of Biomedical Research Ethics in Iran: Conflict of Paradigms.
Aramesh, Kiarash
2015-08-01
During the past two decades, Iran has experienced a noteworthy growth in its biomedical research sector. At the same time, ethical concerns and debates resulting from this burgeoning enterprise has led to increasing attention paid to biomedical ethics. In Iran, Biomedical research ethics and research oversight passed through major periods during the past decades, separated by a paradigm shift. Period 1, starting from the early 1970s, is characterized by research paternalism and complete reliance on researchers as virtuous and caring physicians. This approach was in concordance with the paternalistic clinical practice of physicians outside of research settings during the same period. Period 2, starting from the late 1990s, was partly due to revealing of ethical flaws that occurred in biomedical research in Iran. The regulatory and funding bodies concluded that it was not sufficient to rely solely on the personal and professional virtues of researchers to safeguard human subjects' rights and welfare. The necessity for independent oversight, emphasized by international declarations, became obvious and undeniable. This paradigm shift led to the establishment of research ethics committees throughout the country, the establishment of academic research centers focusing on medical ethics (MEHR) and the compilation of the first set of national ethical guidelines on biomedical research-one of the first and most important projects conducted by and in the MEHR. Although not yet arrived, 'period 3' is on its way. It is predictable from the obvious trends toward performance of high-quality clinical research and the appearance of a highly educated new generation, especially among women. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Magnetic Characterization of Iron Oxide Nanoparticles for Biomedical Applications.
Maldonado-Camargo, Lorena; Unni, Mythreyi; Rinaldi, Carlos
2017-01-01
Iron oxide nanoparticles are of interest in a wide range of biomedical applications due to their response to applied magnetic fields and their unique magnetic properties. Magnetization measurements in constant and time-varying magnetic field are often carried out to quantify key properties of iron oxide nanoparticles. This chapter describes the importance of thorough magnetic characterization of iron oxide nanoparticles intended for use in biomedical applications. A basic introduction to relevant magnetic properties of iron oxide nanoparticles is given, followed by protocols and conditions used for measurement of magnetic properties, along with examples of data obtained from each measurement, and methods of data analysis.
NASA Astrophysics Data System (ADS)
Bilek, Marcela M. M.
2014-08-01
Despite major research efforts in the field of biomaterials, rejection, severe immune responses, scar tissue and poor integration continue to seriously limit the performance of today's implantable biomedical devices. Implantable biomaterials that interact with their host via an interfacial layer of active biomolecules to direct a desired cellular response to the implant would represent a major and much sought after improvement. Another, perhaps equally revolutionary, development that is on the biomedical horizon is the introduction of cost-effective microarrays for fast, highly multiplexed screening for biomarkers on cell membranes and in a variety of analyte solutions. Both of these advances will rely on effective methods of functionalizing surfaces with bioactive molecules. After a brief introduction to other methods currently available, this review will describe recently developed approaches that use energetic ions extracted from plasma to facilitate simple, one-step covalent surface immobilization of bioactive molecules. A kinetic theory model of the immobilization process by reactions with long-lived, mobile, surface-embedded radicals will be presented. The roles of surface chemistry and microstructure of the ion treated layer will be discussed. Early progress on applications of this technology to create diagnostic microarrays and to engineer bioactive surfaces for implantable biomedical devices will be reviewed.
Propolis: A natural biomaterial for dental and oral healthcare
Khurshid, Zohaib; Naseem, Mustafa; Najeeb, Shariq; Zohaib, Sana
2017-01-01
The field of health has always emphasised on the use of natural products for curing diseases. There are varieties of natural products (such as silk, herbal tea, chitosan) used today in the biomedical application in treating a large array of systemic diseases. The natural product "Propolis" is a non-toxic resinous material having beneficial properties such as antimicrobial, anticancer, antifungal, antiviral and anti-inflammatory; hence gain the attention of researchers for its potential for bio-dental applications. The study aims to explore the properties and chemistry of propolis concerning biomedical and dental applications. In addition, status and scope of propolis for current and potential future in bio-dental applications have been discussed. This review gives an insight to the reader about the possible use of propolis in modern-day dentistry. PMID:29354255
Zhou, Xinyi Y; Tay, Zhi Wei; Chandrasekharan, Prashant; Yu, Elaine Y; Hensley, Daniel W; Orendorff, Ryan; Jeffris, Kenneth E; Mai, David; Zheng, Bo; Goodwill, Patrick W; Conolly, Steven M
2018-05-10
Magnetic particle imaging (MPI) is an emerging ionizing radiation-free biomedical tracer imaging technique that directly images the intense magnetization of superparamagnetic iron oxide nanoparticles (SPIOs). MPI offers ideal image contrast because MPI shows zero signal from background tissues. Moreover, there is zero attenuation of the signal with depth in tissue, allowing for imaging deep inside the body quantitatively at any location. Recent work has demonstrated the potential of MPI for robust, sensitive vascular imaging and cell tracking with high contrast and dose-limited sensitivity comparable to nuclear medicine. To foster future applications in MPI, this new biomedical imaging field is welcoming researchers with expertise in imaging physics, magnetic nanoparticle synthesis and functionalization, nanoscale physics, and small animal imaging applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hoopes, P. J.; Petryk, Alicia A.; Misra, Adwiteeya; Kastner, Elliot J.; Pearce, John A.; Ryan, Thomas P.
2015-03-01
For more than 50 years, hyperthermia-based cancer researchers have utilized mathematical models, cell culture studies and animal models to better understand, develop and validate potential new treatments. It has been, and remains, unclear how and to what degree these research techniques depend on, complement and, ultimately, translate accurately to a successful clinical treatment. In the past, when mathematical models have not proven accurate in a clinical treatment situation, the initiating quantitative scientists (engineers, mathematicians and physicists) have tended to believe the biomedical parameters provided to them were inaccurately determined or reported. In a similar manner, experienced biomedical scientists often tend to question the value of mathematical models and cell culture results since those data typically lack the level of biologic and medical variability and complexity that are essential to accurately study and predict complex diseases and subsequent treatments. Such quantitative and biomedical interdependence, variability, diversity and promise have never been greater than they are within magnetic nanoparticle hyperthermia cancer treatment. The use of hyperthermia to treat cancer is well studied and has utilized numerous delivery techniques, including microwaves, radio frequency, focused ultrasound, induction heating, infrared radiation, warmed perfusion liquids (combined with chemotherapy), and, recently, metallic nanoparticles (NP) activated by near infrared radiation (NIR) and alternating magnetic field (AMF) based platforms. The goal of this paper is to use proven concepts and current research to address the potential pathobiology, modeling and quantification of the effects of treatment as pertaining to the similarities and differences in energy delivered by known external delivery techniques and iron oxide nanoparticles.
Special Issue: 3D Printing for Biomedical Engineering.
Chua, Chee Kai; Yeong, Wai Yee; An, Jia
2017-02-28
Three-dimensional (3D) printing has a long history of applications in biomedical engineering. The development and expansion of traditional biomedical applications are being advanced and enriched by new printing technologies. New biomedical applications such as bioprinting are highly attractive and trendy. This Special Issue aims to provide readers with a glimpse of the recent profile of 3D printing in biomedical research.
Important skills for biomedical services: The perspectives of Malaysian employers and employees.
Buntat, Yahya; Saud, Muhammad Sukri; Mokhtar, Mahani; Kamin, Yusri; Feh, Lim Set
2016-10-17
Increase in the occurrence of existing diseases, continual emergence of new or exotic diseases and re-emergence of old diseases have placed increasing demands on biomedical services in Malaysia. Biomedical technicians play an important role in operating biomedical instruments. However, there are no clear specifications about characteristics and traits for these semi-professional employees. Employers in a few studies claimed that biomedical graduates are not ready to enter and face challenges in the job market. Therefore, the purpose of this study is to identify technical and generic skills for a biomedical technician from the perspectives of the biomedical technicians and their employers. A quantitative survey design was employed whereby data were obtained through the administration of an instrument developed by the researchers. The sample consisted of 20 hospital managers and 186 biomedical technicians who are currently working in Malaysian government hospitals. The findings show that there are no difference in the perceptions of hospital managers and biomedical technicians regarding technical and non-technical skills. These findings resulted in a checklist which can be used for institutions to produce future biomedical technician graduates in order to meet job demands. However, future research is needed to validate the findings and explore the variables in depth.
Nuclear microscopy in biomedical analysis with special emphasis on clinical metal biology
NASA Astrophysics Data System (ADS)
Lindh, Ulf; Frisk, Peter; Nyström, Joakim; Danersund, Antero; Hudecek, Romuald; Lindvall, Anders; Thunell, Stig
1997-07-01
Nuclear microscopy based upon developments in high energy ion beam techniques is by now an accepted technique in many fields of research. The advancements into the biomedical field have, however, been slower than expected. A major factor explaining this tendency is the availability of nuclear microscopy. This paper reviews briefly the biomedical work using nuclear microscopy that has been carried out since the 4 th International Conference on Nuclear Microprobe Technology and Applications held in Shanghai. Nuclear microscopy of isolated individual blood cells from patients adversely affected by metal exposure from dental amalgam has been performed both before and after removal of the metallic fillings. The elemental profile of blood cells was more or less normalised after treatment. Some of these results will be presented to illustrate a medical application. Results from bulk analysis by ICP-MS of erythrocytes and plasma before and after treatment will also be presented to illustrate the difference in information content between these two approaches as well as the need for complementary information in solving biomedical problems. As part of a larger study of acute porphyria, nuclear microscopy of blood cells was included among the 78 laboratory tests. The approach in this study was unbiased in the sense that no hypothesis was formulated as to which laboratory parameters would be the most explanatory for health or disease. Multivariate discriminant analysis was applied to the large amounts of data acquired. This approach led to the hypothesis that oxidative stress increased the synthesis of manganese-dependent superoxide dismutase in the mitochondria of polymorphonuclear leukocytes, explaining the increase of manganese in these cells. Antioxidant therapy was therefore applied to a couple of patients with porphyria, however, without clinical success.
Funding for U.S. biomedical research: the case for the scientist-advocate.
Nurse, J T D; Fox, C H
2012-07-01
The U.S. biomedical research community finds itself at a particularly consequential moment. Since the end of the Fiscal Year (FY) 1998-2003 NIH budget doubling period, brought to fruition with bipartisan leadership, the Federal investment in biomedical research has been declining. The NIH budget has actually decreased in constant dollars since FY 2004. Across-the-board cuts included in the Budget Control Act of 2011 would result in a loss of $2.4 billion and roughly 2,300 research project grants in FY 2013 alone, unless Congress acts to intervene before January 2013. Many of the beneficiaries of NIH support view advocacy for research funding as "someone else's job". The case to reverse this mindset must be made. Members of Congress and their staffers are open to consideration of the case for sustaining Federal investments in science, even during these difficult budget times. However, the advocacy effort must be broad-based and repeatedly presented to effect change. The figures on economic return from spending on biomedical research are compelling, but they do not tell the entire story. The results of biomedical research improve and save lives every single day, a fact that should not be lost on our elected leaders.
Lamas, Eugenia; Ferrer, Marcela; Molina, Alberto; Salinas, Rodrigo; Hevia, Adriana; Bota, Alexandre; Feinholz, Dafna; Fuchs, Michael; Schramm, Roland; Tealdi, Juan-Carlos; Zorrilla, Sergio
2010-12-01
The European project European and Latin American Systems of Ethics Regulation of Biomedical Research Project (EULABOR) has carried out the first comparative analysis of ethics regulation systems for biomedical research in seven countries in Europe and Latin America, evaluating their roles in the protection of human subjects. We developed a conceptual and methodological framework defining 'ethics regulation system for biomedical research' as a set of actors, institutions, codes and laws involved in overseeing the ethics of biomedical research on humans. This framework allowed us to develop comprehensive national reports by conducting semi-structured interviews to key informants. These reports were summarised and analysed in a comparative analysis. The study showed that the regulatory framework for clinical research in these countries differ in scope. It showed that despite the different political contexts, actors involved and motivations for creating the regulation, in most of the studied countries it was the government who took the lead in setting up the system. The study also showed that Europe and Latin America are similar regarding national bodies and research ethics committees, but the Brazilian system has strong and noteworthy specificities.
Virtual biomedical universities and e-learning.
Beux, P Le; Fieschi, M
2007-01-01
In this special issue on virtual biomedical universities and e-learning we will make a survey on the principal existing teaching applications of ICT used in medical Schools around the world. In the following we identify five types of research and experiments in this field of medical e-learning and virtual medical universities. The topics of this special issue goes from educational computer program to create and simulate virtual patients with a wide variety of medical conditions in different clinical settings and over different time frames to using distance learning in developed and developing countries program training medical informatics of clinicians. We also present the necessity of good indexing and research tools for training resources together with workflows to manage the multiple source content of virtual campus or universities and the virtual digital video resources. A special attention is given to training new generations of clinicians in ICT tools and methods to be used in clinical settings as well as in medical schools.
Rapid prototyping for biomedical engineering: current capabilities and challenges.
Lantada, Andrés Díaz; Morgado, Pilar Lafont
2012-01-01
A new set of manufacturing technologies has emerged in the past decades to address market requirements in a customized way and to provide support for research tasks that require prototypes. These new techniques and technologies are usually referred to as rapid prototyping and manufacturing technologies, and they allow prototypes to be produced in a wide range of materials with remarkable precision in a couple of hours. Although they have been rapidly incorporated into product development methodologies, they are still under development, and their applications in bioengineering are continuously evolving. Rapid prototyping and manufacturing technologies can be of assistance in every stage of the development process of novel biodevices, to address various problems that can arise in the devices' interactions with biological systems and the fact that the design decisions must be tested carefully. This review focuses on the main fields of application for rapid prototyping in biomedical engineering and health sciences, as well as on the most remarkable challenges and research trends.
2015-01-01
Summary The first generation of Artificial Intelligence (AI) in Medicine methods were developed in the early 1970’s drawing on insights about problem solving in AI. They developed new ways of representing structured expert knowledge about clinical and biomedical problems using causal, taxonomic, associational, rule, and frame-based models. By 1975, several prototype systems had been developed and clinically tested, and the Rutgers Research Resource on Computers in Biomedicine hosted the first in a series of workshops on AI in Medicine that helped researchers and clinicians share their ideas, demonstrate their models, and comment on the prospects for the field. These developments and the workshops themselves benefited considerably from Stanford’s SUMEX-AIM pioneering experiment in biomedical computer networking. This paper focuses on discussions about issues at the intersection of medicine and artificial intelligence that took place during the presentations and panels at the First Rutgers AIM Workshop in New Brunswick, New Jersey from June 14 to 17, 1975. PMID:26123911
Integrating Epigenomics into the Understanding of Biomedical Insight.
Han, Yixing; He, Ximiao
2016-01-01
Epigenetics is one of the most rapidly expanding fields in biomedical research, and the popularity of the high-throughput next-generation sequencing (NGS) highlights the accelerating speed of epigenomics discovery over the past decade. Epigenetics studies the heritable phenotypes resulting from chromatin changes but without alteration on DNA sequence. Epigenetic factors and their interactive network regulate almost all of the fundamental biological procedures, and incorrect epigenetic information may lead to complex diseases. A comprehensive understanding of epigenetic mechanisms, their interactions, and alterations in health and diseases genome widely has become a priority in biological research. Bioinformatics is expected to make a remarkable contribution for this purpose, especially in processing and interpreting the large-scale NGS datasets. In this review, we introduce the epigenetics pioneering achievements in health status and complex diseases; next, we give a systematic review of the epigenomics data generation, summarize public resources and integrative analysis approaches, and finally outline the challenges and future directions in computational epigenomics.
Integrating Epigenomics into the Understanding of Biomedical Insight
Han, Yixing; He, Ximiao
2016-01-01
Epigenetics is one of the most rapidly expanding fields in biomedical research, and the popularity of the high-throughput next-generation sequencing (NGS) highlights the accelerating speed of epigenomics discovery over the past decade. Epigenetics studies the heritable phenotypes resulting from chromatin changes but without alteration on DNA sequence. Epigenetic factors and their interactive network regulate almost all of the fundamental biological procedures, and incorrect epigenetic information may lead to complex diseases. A comprehensive understanding of epigenetic mechanisms, their interactions, and alterations in health and diseases genome widely has become a priority in biological research. Bioinformatics is expected to make a remarkable contribution for this purpose, especially in processing and interpreting the large-scale NGS datasets. In this review, we introduce the epigenetics pioneering achievements in health status and complex diseases; next, we give a systematic review of the epigenomics data generation, summarize public resources and integrative analysis approaches, and finally outline the challenges and future directions in computational epigenomics. PMID:27980397
Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis
Scimeca, Manuel; Bischetti, Simone; Lamsira, Harpreet Kaur; Bonfiglio, Rita; Bonanno, Elena
2018-01-01
The Energy Dispersive X-ray (EDX) microanalysis is a technique of elemental analysis associated to electron microscopy based on the generation of characteristic Xrays that reveals the presence of elements present in the specimens. The EDX microanalysis is used in different biomedical fields by many researchers and clinicians. Nevertheless, most of the scientific community is not fully aware of its possible applications. The spectrum of EDX microanalysis contains both semi-qualitative and semi-quantitative information. EDX technique is made useful in the study of drugs, such as in the study of drugs delivery in which the EDX is an important tool to detect nanoparticles (generally, used to improve the therapeutic performance of some chemotherapeutic agents). EDX is also used in the study of environmental pollution and in the characterization of mineral bioaccumulated in the tissues. In conclusion, the EDX can be considered as a useful tool in all works that require element determination, endogenous or exogenous, in the tissue, cell or any other sample. PMID:29569878
NASA Astrophysics Data System (ADS)
Angioletti-Uberti, Stefano
2017-11-01
Functionalised nanoparticles for biomedical applications represents an incredibly exciting and rapidly growing field of research. Considering the complexity of the nano-bio interface, an important question is to what extent can theory and simulations be used to study these systems in a realistic, meaningful way. In this review, we will argue for a positive answer to this question. Approaching the issue from a "Soft Matter" perspective, we will consider those properties of functionalised nanoparticles that can be captured within a classical description. We will thus not concentrate on optical and electronic properties, but rather on the way nanoparticles' interactions with the biological environment can be tuned by functionalising their surface and exploited in different contexts relevant to applications. In particular, we wish to provide a critical overview of theoretical and computational coarse-grained models, developed to describe these interactions and present to the readers some of the latest results in this fascinating area of research.
Magnesium based degradable biomaterials: A review
NASA Astrophysics Data System (ADS)
Gu, Xue-Nan; Li, Shuang-Shuang; Li, Xiao-Ming; Fan, Yu-Bo
2014-09-01
Magnesium has been suggested as a revolutionary biodegradable metal for biomedical applications. The corrosion of magnesium, however, is too rapid to match the rates of tissue healing and, additionally, exhibits the localized corrosion mechanism. Thus it is necessary to control the corrosion behaviors of magnesium for their practical use. This paper comprehensively reviews the research progress on the development of representative magnesium based alloys, including Mg-Ca, Mg-Sr, Mg-Zn and Mg-REE alloy systems as well as the bulk metallic glass. The influence of alloying element on their microstructures, mechanical properties and corrosion behaviors is summarized. The mechanical and corrosion properties of wrought magnesium alloys are also discussed in comparison with those of cast alloys. Furthermore, this review also covers research carried out in the field of the degradable coatings on magnesium alloys for biomedical applications. Calcium phosphate and biodegradable polymer coatings are discussed based on different preparation techniques used. We also compare the effect of different coatings on the corrosion behaviors of magnesium alloys substrate.
Kulikowski, C A
2015-08-13
The first generation of Artificial Intelligence (AI) in Medicine methods were developed in the early 1970's drawing on insights about problem solving in AI. They developed new ways of representing structured expert knowledge about clinical and biomedical problems using causal, taxonomic, associational, rule, and frame-based models. By 1975, several prototype systems had been developed and clinically tested, and the Rutgers Research Resource on Computers in Biomedicine hosted the first in a series of workshops on AI in Medicine that helped researchers and clinicians share their ideas, demonstrate their models, and comment on the prospects for the field. These developments and the workshops themselves benefited considerably from Stanford's SUMEX-AIM pioneering experiment in biomedical computer networking. This paper focuses on discussions about issues at the intersection of medicine and artificial intelligence that took place during the presentations and panels at the First Rutgers AIM Workshop in New Brunswick, New Jersey from June 14 to 17, 1975.
Nikolai Fedorovich Gamaliya (1932-2016).
2016-06-01
Professor Nikolai Fedorovich Gamaliya, well-known scientist in the field of laser biomedical research, biophysicist, authority in experimental oncology, Laureate of the State Prize in Science and Techno-logy of Ukraine, Head of the Department of Biological Effects of Ionizing and Non-Ionizing Radiation of R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the National Academy of Sciences (NAS) of Ukraine died on June 14, 2016 at the age of 83.
Preparing chimpanzees for laboratory research.
Bloomsmith, Mollie A; Schapiro, Steven J; Strobert, Elizabeth A
2006-01-01
The chimpanzee is the only representative of the Great Apes that is extensively involved in biomedical research in primate laboratories. These apes are used as animal models in a variety of studies, including research on infectious disease, parasitic disease, pharmacokinetic studies, neuroscience, cognition, and behavior. Chimpanzees used in biomedical research in the United States reside largely in six specialized research and holding facilities, and most of the research with them is conducted at these sites. Given the relatively small population of chimpanzees and its importance to biomedical research, it is imperative that we carefully manage the care, production, and use of these animals in biomedical research studies. Selection criteria and preparation techniques are reviewed in this article in an effort to begin a discussion on best practices for choosing and handling chimpanzees participating in biomedical research. The use of routine health assessment information is described for subject selection, as are behavioral issues to be considered. Due to the relatively small number of chimpanzees available, issues related to experimental design and multiple uses of chimpanzees are discussed. Practices related to the transportation and acclimation of chimpanzees are described. Finally, behavioral conditioning procedures are discussed, including habituation, desensitization, and positive reinforcement training that have been applied to reduce animal distress and improve the quality of the science being conducted with chimpanzee subjects.
Lander, Jonas; Hainz, Tobias; Hirschberg, Irene; Strech, Daniel
2014-01-01
A recent report from the British Nuffield Council on Bioethics associated 'emerging biotechnologies' with a threefold challenge: 1) uncertainty about outcomes, 2) diverse public views on the values and implications attached to biotechnologies and 3) the possibility of creating radical changes regarding societal relations and practices. To address these challenges, leading international institutions stress the need for public involvement activities (PIAs). The objective of this study was to assess the state of PIA reports in the field of biomedical research. PIA reports were identified via a systematic literature search. Thematic text analysis was employed for data extraction. After filtering, 35 public consultation and 11 public participation studies were included in this review. Analysis and synthesis of all 46 PIA studies resulted in 6 distinguishable PIA objectives and 37 corresponding PIA methods. Reports of outcome translation and PIA evaluation were found in 9 and 10 studies respectively (20% and 22%). The paper presents qualitative details. The state of PIAs on biomedical research and innovation is characterized by a broad range of methods and awkward variation in the wording of objectives. Better comparability of PIAs might improve the translation of PIA findings into further policy development. PIA-specific reporting guidelines would help in this regard. The modest level of translation efforts is another pointer to the "deliberation to policy gap". The results of this review could inform the design of new PIAs and future efforts to improve PIA comparability and outcome translation.
Nanotechnology, nanotoxicology, and neuroscience
Suh, Won Hyuk; Suslick, Kenneth S.; Stucky, Galen D.; Suh, Yoo-Hun
2009-01-01
Nanotechnology, which deals with features as small as a 1 billionth of a meter, began to enter into mainstream physical sciences and engineering some 20 years ago. Recent applications of nanoscience include the use of nanoscale materials in electronics, catalysis, and biomedical research. Among these applications, strong interest has been shown to biological processes such as blood coagulation control and multimodal bioimaging, which has brought about a new and exciting research field called nanobiotechnology. Biotechnology, which itself also dates back ∼30 years, involves the manipulation of macroscopic biological systems such as cells and mice in order to understand why and how molecular level mechanisms affect specific biological functions, e.g., the role of APP (amyloid precursor protein) in Alzheimer’s disease (AD). This review aims (1) to introduce key concepts and materials from nanotechnology to a non-physical sciences community; (2) to introduce several state-of-the-art examples of current nanotechnology that were either constructed for use in biological systems or that can, in time, be utilized for biomedical research; (3) to provide recent excerpts in nanotoxicology and multifunctional nanoparticle systems (MFNPSs); and (4) to propose areas in neuroscience that may benefit from research at the interface of neurobiologically important systems and nanostructured materials. PMID:18926873
Hartmann, Carolin; Patil, Roshani; Lin, Charles P; Niedre, Mark J
2017-11-08
There are many diseases and biological processes that involve circulating cells in the bloodstream, such as cancer metastasis, immune reaction/inflammation, reproductive medicine, and stem cell therapies. This has driven significant interest in new technologies for the study of circulating cells in small animal research models and clinically. Most currently used methods require drawing and enriching blood samples from the body, but these suffer from a number of limitations. In contrast, "in vivo flow cytometry" (IVFC) refers to set of technologies that allow study of cells directly in the bloodstream of the organism in vivo. In recent years the IVFC field has grown significantly and new techniques have been developed, including fluorescence microscopy, multi-photon, photo-acoustic, and diffuse fluorescence IVFC. In this paper we review recent technical advances in IVFC, with emphasis on instrumentation, contrast mechanisms, and detection sensitivity. We also describe key applications in biomedical research, including cancer research and immunology. Last, we discuss future directions for IVFC, as well as prospects for broader adoption by the biomedical research community and translation to humans clinically. © 2017 Institute of Physics and Engineering in Medicine.
Education Highlights: Synthetic Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gambacorta, Francesca; Michalska, Martyna
Argonne intern Francesca Gambacorta from University of Illinois at Urbana–Champaign worked with Argonne mentor Phil Laible and Postdoctoral mentor Martyna Michalska to study how black silicon, a synthetic nanomaterial, kills bacteria. This research will help scientists predict other applications of this material in the biomedical field. Argonne aims to develop the next generation of scientists, researchers, and engineers by mentoring over 300 undergraduate and graduate students a year from over 40 STEM majors in over 15 different career development programs. Students come from over 160 colleges and universities in 41 states and 15 countries.
Information and informatics literacies of first-year medical students
Bouquin, Daina R.; Tmanova, Lyubov L.; Wright, Drew
2015-01-01
Purpose The study evaluated medical students' familiarity with information literacy and informatics during the health sciences library orientation. Methods A survey was fielded at the start of the 2013 school year. Results Seventy-two of 77 students (94%) completed the survey. Over one-half (57%) expected to use library research materials and services. About half (43%) expected to use library physical space. Students preferred accessing biomedical research on laptops and learning via online-asynchronous modes. Conclusions The library identified areas for service development and outreach to medical students and academic departments. PMID:26512221
Balanced biomedical program plan. Volume X. Fusion analysis for and environmental research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-06-01
In this draft planning document for health and environmental research needs relevant to the development of fusion technology, an attempt is made to integrate input from the participating laboratories on the basis of the King-Muir study categories. The general description covers only those concepts and features that are considered important to an understanding of possible and probable effects of thermonuclear reactors on health and the environment. Appendixes are included which reflect an understanding of three areas of special interest: materials requirements, effects from magnetic fields, and tritium effects.
Code of Federal Regulations, 2012 CFR
2012-10-01
... reference in this part to grants includes cooperative agreements) for biomedical and behavioral research; and (2) Biomedical and behavioral research and development contract project concepts and proposals for...
Code of Federal Regulations, 2011 CFR
2011-10-01
... reference in this part to grants includes cooperative agreements) for biomedical and behavioral research; and (2) Biomedical and behavioral research and development contract project concepts and proposals for...
Code of Federal Regulations, 2013 CFR
2013-10-01
... reference in this part to grants includes cooperative agreements) for biomedical and behavioral research; and (2) Biomedical and behavioral research and development contract project concepts and proposals for...
Code of Federal Regulations, 2014 CFR
2014-10-01
... reference in this part to grants includes cooperative agreements) for biomedical and behavioral research; and (2) Biomedical and behavioral research and development contract project concepts and proposals for...
Livestock in biomedical research: history, current status and future prospective.
Polejaeva, Irina A; Rutigliano, Heloisa M; Wells, Kevin D
2016-01-01
Livestock models have contributed significantly to biomedical and surgical advances. Their contribution is particularly prominent in the areas of physiology and assisted reproductive technologies, including understanding developmental processes and disorders, from ancient to modern times. Over the past 25 years, biomedical research that traditionally embraced a diverse species approach shifted to a small number of model species (e.g. mice and rats). The initial reasons for focusing the main efforts on the mouse were the availability of murine embryonic stem cells (ESCs) and genome sequence data. This powerful combination allowed for precise manipulation of the mouse genome (knockouts, knockins, transcriptional switches etc.) leading to ground-breaking discoveries on gene functions and regulation, and their role in health and disease. Despite the enormous contribution to biomedical research, mouse models have some major limitations. Their substantial differences compared with humans in body and organ size, lifespan and inbreeding result in pronounced metabolic, physiological and behavioural differences. Comparative studies of strategically chosen domestic species can complement mouse research and yield more rigorous findings. Because genome sequence and gene manipulation tools are now available for farm animals (cattle, pigs, sheep and goats), a larger number of livestock genetically engineered (GE) models will be accessible for biomedical research. This paper discusses the use of cattle, goats, sheep and pigs in biomedical research, provides an overview of transgenic technology in farm animals and highlights some of the beneficial characteristics of large animal models of human disease compared with the mouse. In addition, status and origin of current regulation of GE biomedical models is also reviewed.
R(X) for recruitment and retention of veterinarian scientists: money, marketing, mentoring.
Freeman, Lisa C
2005-01-01
Veterinary medicine is failing both to sustain its academic base and to meet national needs for research in the fields of comparative medicine (translational research), public health, and food production. The basis for the shortage of veterinarians with research expertise is multi-factorial and related to the substantial commitment of time and money required to obtain both a DVM and advanced training, as well as the lack of motivation among veterinary students to engage in biomedical science. Effective strategies for increasing the number of veterinarian scientists must address these issues using a balanced combination of money, marketing, and mentoring. Success will require not only that we increase and improve opportunities for research training, but also that we create and sustain veterinary college environments that attract, foster, and reward dedication to research. The ''research pipeline'' needs to be transformed into a ''research manifold'' with multiple portals for entry and re-entry of trainees. Age-appropriate educational and mentoring programs should be implemented at K-14, baccalaureate, veterinary college, post-graduate, and junior faculty levels to promote recruitment, training, and retention of veterinarian scientists. New initiatives are especially needed to attract students with primary interests in science and biomedical research to the veterinary profession and to facilitate transition of motivated veterinary graduates from private practice to research careers. Specific examples of such programs are presented and future directions are discussed.
Environmental practices for biomedical research facilities.
Medlin, E L; Grupenhoff, J T
2000-01-01
As a result of the Leadership Conference on Biomedical Research and the Environment, the Facilities Committee focused its work on the development of best environmental practices at biomedical research facilities at the university and independent research facility level as well as consideration of potential involvement of for-profit companies and government agencies. The designation "facilities" includes all related buildings and grounds, "green auditing" of buildings and programs, purchasing of furnishings and sources, energy efficiency, and engineering services (lighting, heating, air conditioning), among other activities. The committee made a number of recommendations, including development of a national council for environmental stewardship in biomedical research, development of a system of green auditing of such research facilities, and creation of programs for sustainable building and use. In addition, the committee recommended extension of education and training programs for environmental stewardship, in cooperation with facilities managers, for all research administrators and researchers. These programs would focus especially on graduate fellows and other students, as well as on science labs at levels K--12. PMID:11121360
Kingori, Patricia
2015-01-01
This article explores the views of frontline research staff in different Sub-Saharan African contexts on the notion of choice in biomedical research. It argues that the current emphasis on individual choice, in the conduct of biomedical research, ignores significant structural and contextual factors in resource-limited settings. These factors severely constrain individual options and often make biomedical research enrolment the most amenable route to healthcare for the world’s poorest. From the position of frontline research staff, local contextual factors and structural issues narrowly frame the parameters within which many prospective participants are asked to choose, to such an extent that individuals are effectively presented with an ‘empty choice’. The article draws on ethnographic and interview data and insights gained through graphic elucidation techniques. It demonstrates that for frontline research staff, macro-level structural factors and their bearing on everyday realities shape what choice in biomedical research participation means in practice. PMID:27182072
Bates, Benjamin R; Harris, Tina M
2004-08-01
African Americans are less likely than European Americans to participate in biomedical research. Researchers often attribute nonparticipation to the "Tuskegee effect." Using critical qualitative analysis of focus group data, we examined the public's use of the Tuskegee Study of Untreated Syphilis (TSUS) to discuss biomedical research. Our participants articulated three primary themes in relation to TSUS: 1) that TSUS made them suspicious about biomedical research; 2) that other values had to weigh against concerns about TSUS; and 3) that African Americans could take steps to resolve their concerns about TSUS. African Americans were more likely to discuss TSUS than were European Americans. African Americans did not use TSUS to express simple fear. African Americans suggested issues other than TSUS that influence the decision to participate in research. African Americans indicated specific reforms that would increase participation in research. We discuss how a better understanding of African Americans' use of TSUS can enhance research participation and allay concerns about "another Tuskegee."
Challenges in regulation of biomedical research: The case of Kenya.
Wekesa, M
2015-12-01
Unregulated biomedical research has previously caused untold suffering to humankind. History is full of examples of abuse of animal and human subjects for research. Several codes and instruments have been formulated to regulate biomedical research. In Kenya, the Science, Technology and Innovation Act, 2014, together with the Constitution of Kenya, 2010, provide a fairly robust legal framework. Possible challenges include capacity building, overlap of functions of institutions, monitoring and evaluation, scientific/technological advances, intellectual property rights, funding for research, and dispute resolution. It is hoped that the new legislation will adequately address these challenges.
A community of practice: librarians in a biomedical research network.
De Jager-Loftus, Danielle P; Midyette, J David; Harvey, Barbara
2014-01-01
Providing library and reference services within a biomedical research community presents special challenges for librarians, especially those in historically lower-funded states. These challenges can include understanding needs, defining and communicating the library's role, building relationships, and developing and maintaining general and subject specific knowledge. This article describes a biomedical research network and the work of health sciences librarians at the lead intensive research institution with librarians from primarily undergraduate institutions and tribal colleges. Applying the concept of a community of practice to a collaborative effort suggests how librarians can work together to provide effective reference services to researchers in biomedicine.