Sample records for biomedical testing module

  1. Development and pilot testing of an online module for ethics education based on the Nigerian National Code for Health Research Ethics.

    PubMed

    Ogunrin, Olubunmi A; Ogundiran, Temidayo O; Adebamowo, Clement

    2013-01-02

    The formulation and implementation of national ethical regulations to protect research participants is fundamental to ethical conduct of research. Ethics education and capacity are inadequate in developing African countries. This study was designed to develop a module for online training in research ethics based on the Nigerian National Code of Health Research Ethics and assess its ease of use and reliability among biomedical researchers in Nigeria. This was a three-phased evaluation study. Phase one involved development of an online training module based on the Nigerian Code of Health Research Ethics (NCHRE) and uploading it to the Collaborative Institutional Training Initiative (CITI) website while the second phase entailed the evaluation of the module for comprehensibility, readability and ease of use by 45 Nigerian biomedical researchers. The third phase involved modification and re-evaluation of the module by 30 Nigerian biomedical researchers and determination of test-retest reliability of the module using Cronbach's alpha. The online module was easily accessible and comprehensible to 95% of study participants. There were significant differences in the pretest and posttest scores of study participants during the evaluation of the online module (p = 0.001) with correlation coefficients of 0.9 and 0.8 for the pretest and posttest scores respectively. The module also demonstrated excellent test-retest reliability and internal consistency as shown by Cronbach's alpha coefficients of 0.92 and 0.84 for the pretest and posttest respectively. The module based on the Nigerian Code was developed, tested and made available online as a valuable tool for training in cultural and societal relevant ethical principles to orient national and international biomedical researchers working in Nigeria. It would complement other general research ethics and Good Clinical Practice modules. Participants suggested that awareness of the online module should be increased through seminars, advertisement on government websites and portals used by Nigerian biomedical researchers, and incorporation of the Code into the undergraduate medical training curriculum.

  2. Development and pilot testing of an online module for ethics education based on the Nigerian National Code for Health Research Ethics

    PubMed Central

    2013-01-01

    Background The formulation and implementation of national ethical regulations to protect research participants is fundamental to ethical conduct of research. Ethics education and capacity are inadequate in developing African countries. This study was designed to develop a module for online training in research ethics based on the Nigerian National Code of Health Research Ethics and assess its ease of use and reliability among biomedical researchers in Nigeria. Methodology This was a three-phased evaluation study. Phase one involved development of an online training module based on the Nigerian Code of Health Research Ethics (NCHRE) and uploading it to the Collaborative Institutional Training Initiative (CITI) website while the second phase entailed the evaluation of the module for comprehensibility, readability and ease of use by 45 Nigerian biomedical researchers. The third phase involved modification and re-evaluation of the module by 30 Nigerian biomedical researchers and determination of test-retest reliability of the module using Cronbach’s alpha. Results The online module was easily accessible and comprehensible to 95% of study participants. There were significant differences in the pretest and posttest scores of study participants during the evaluation of the online module (p = 0.001) with correlation coefficients of 0.9 and 0.8 for the pretest and posttest scores respectively. The module also demonstrated excellent test-retest reliability and internal consistency as shown by Cronbach’s alpha coefficients of 0.92 and 0.84 for the pretest and posttest respectively. Conclusion The module based on the Nigerian Code was developed, tested and made available online as a valuable tool for training in cultural and societal relevant ethical principles to orient national and international biomedical researchers working in Nigeria. It would complement other general research ethics and Good Clinical Practice modules. Participants suggested that awareness of the online module should be increased through seminars, advertisement on government websites and portals used by Nigerian biomedical researchers, and incorporation of the Code into the undergraduate medical training curriculum. PMID:23281968

  3. Digital fabrication of multi-material biomedical objects.

    PubMed

    Cheung, H H; Choi, S H

    2009-12-01

    This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module and a virtual reality (VR) simulation module. The DMMVP module is used to model discrete multi-material (DMM) objects, while the FGMVP module is for functionally graded multi-material (FGM) objects. The VR simulation module integrates these two modules to perform digital fabrication of multi-material objects, which can be subsequently visualized and analysed in a virtual environment to optimize MMLM processes for fabrication of product prototypes. Using the MMVP system, two biomedical objects, including a DMM human spine and an FGM intervertebral disc spacer are modelled and digitally fabricated for visualization and analysis in a VR environment. These studies show that the MMVP system is a practical tool for modelling, visualization, and subsequent fabrication of biomedical objects of discrete and functionally graded multi-materials for biomedical applications. The system may be adapted to control MMLM machines with appropriate hardware for physical fabrication of biomedical objects.

  4. Miniature biotelemeter gives multichannel wideband biomedical data

    NASA Technical Reports Server (NTRS)

    Carraway, J. B.

    1972-01-01

    A miniature biotelemeter was developed for sensing and transmitting multiple channels of biomedical data over a radio link. The design of this miniature, 10-channel, wideband (5 kHz/channel), pulse amplitude modulation/ frequency modulation biotelemeter takes advantage of modern device technology (e.g., integrated circuit operational amplifiers, complementary symmetry/metal oxide semiconductor logic, and solid state switches) and hybrid packaging techniques. The telemeter is being used to monitor 10 channels of neuron firings from specific regions of the brain in rats implanted with chronic electrodes. Design, fabrication, and testing of an engineering model biotelemeter are described.

  5. Industrial and biomedical use of aerospace personal cooling garments

    NASA Technical Reports Server (NTRS)

    Williams, B. A.; Mcewen, G. N., Jr.; Montgomery, L. D.; Elkins, W. E.

    1975-01-01

    Liquid-cooled garments (LCG) have been developed which utilize liquid-cooled modules rather than the network of tygon tubing typical of Apollo LCG's. The ultra-thin, heat-sealed, polyurethane modules are situated over the body to cover 50 percent of the body surface area with special emphasis on the 'working' muscles and the head-neck area. These garments are being designed specifically for industrial and biomedical uses, such as: a head-neck cooling system which is being tested for race-car drivers, tractor drivers, truck drivers, or a head-neck cooling system tested for the reduction of the scalp hair loss which normally accompanies cancer treatments. A combined head-neck and thorax unit is being developed for use during mine distaster rescue operations, and for other hazardous hot applications. Finally applications for head-neck and partitional cooling are anticipated for military pilots, tank drivers, and heavy equipment operations.

  6. Telemedicine optoelectronic biomedical data processing system

    NASA Astrophysics Data System (ADS)

    Prosolovska, Vita V.

    2010-08-01

    The telemedicine optoelectronic biomedical data processing system is created to share medical information for the control of health rights and timely and rapid response to crisis. The system includes the main blocks: bioprocessor, analog-digital converter biomedical images, optoelectronic module for image processing, optoelectronic module for parallel recording and storage of biomedical imaging and matrix screen display of biomedical images. Rated temporal characteristics of the blocks defined by a particular triggering optoelectronic couple in analog-digital converters and time imaging for matrix screen. The element base for hardware implementation of the developed matrix screen is integrated optoelectronic couples produced by selective epitaxy.

  7. Observation Platform for Dynamic Biomedical and Biotechnology Experiments Using the International Space Station (ISS) Light Microscopy Module (LMM)

    NASA Technical Reports Server (NTRS)

    Kurk, Michael A. (Andy)

    2015-01-01

    Techshot, Inc., has developed an observation platform for the LMM on the ISS that will enable biomedical and biotechnology experiments. The LMM Dynamic Stage consists of an electronics module and the first two of a planned suite of experiment modules. Specimens and reagent solutions can be injected into a small, hollow microscope slide-the heart of the innovation-via a combination of small reservoirs, pumps, and valves. A life science experiment module allows investigators to load up to two different fluids for on-orbit, real-time image cytometry. Fluids can be changed to initiate a process, fix biological samples, or retrieve suspended cells. A colloid science experiment module conducts microparticle and nanoparticle tests for investigation of colloid self-assembly phenomena. This module includes a hollow glass slide and heating elements for the creation of a thermal gradient from one end of the slide to the other. The electronics module supports both experiment modules and contains a unique illuminator/condenser for bright and dark field and phase contrast illumination, power supplies for two piezoelectric pumps, and controller boards for pumps and valves. This observation platform safely contains internal fluids and will greatly accelerate the research and development (R&D) cycle of numerous experiments, products, and services aboard the ISS.

  8. NASA Ames Research Center R and D Services Directorate Biomedical Systems Development

    NASA Technical Reports Server (NTRS)

    Pollitt, J.; Flynn, K.

    1999-01-01

    The Ames Research Center R&D Services Directorate teams with NASA, other government agencies and/or industry investigators for the development, design, fabrication, manufacturing and qualification testing of space-flight and ground-based experiment hardware for biomedical and general aerospace applications. In recent years, biomedical research hardware and software has been developed to support space-flight and ground-based experiment needs including the E 132 Biotelemetry system for the Research Animal Holding Facility (RAHF), E 100 Neurolab neuro-vestibular investigation systems, the Autogenic Feedback Systems, and the Standard Interface Glove Box (SIGB) experiment workstation module. Centrifuges, motion simulators, habitat design, environmental control systems, and other unique experiment modules and fixtures have also been developed. A discussion of engineered systems and capabilities will be provided to promote understanding of possibilities for future system designs in biomedical applications. In addition, an overview of existing engineered products will be shown. Examples of hardware and literature that demonstrate the organization's capabilities will be displayed. The Ames Research Center R&D Services Directorate is available to support the development of new hardware and software systems or adaptation of existing systems to meet the needs of academic, commercial/industrial, and government research requirements. The Ames R&D Services Directorate can provide specialized support for: System concept definition and feasibility Mathematical modeling and simulation of system performance Prototype hardware development Hardware and software design Data acquisition systems Graphical user interface development Motion control design Hardware fabrication and high-fidelity machining Composite materials development and application design Electronic/electrical system design and fabrication System performance verification testing and qualification.

  9. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research.

    PubMed

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E; Altintas, Ilkay

    2016-06-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC collaborative is an e-learning platform that supports the biomedical community to access, develop and deploy open training materials. The BBDTC supports Big Data skill training for biomedical scientists at all levels, and from varied backgrounds. The natural hierarchy of courses allows them to be broken into and handled as modules . Modules can be reused in the context of multiple courses and reshuffled, producing a new and different, dynamic course called a playlist . Users may create playlists to suit their learning requirements and share it with individual users or the wider public. BBDTC leverages the maturity and design of the HUBzero content-management platform for delivering educational content. To facilitate the migration of existing content, the BBDTC supports importing and exporting course material from the edX platform. Migration tools will be extended in the future to support other platforms. Hands-on training software packages, i.e., toolboxes , are supported through Amazon EC2 and Virtualbox virtualization technologies, and they are available as: ( i ) downloadable lightweight Virtualbox Images providing a standardized software tool environment with software packages and test data on their personal machines, and ( ii ) remotely accessible Amazon EC2 Virtual Machines for accessing biomedical big data tools and scalable big data experiments. At the moment, the BBDTC site contains three open Biomedical big data training courses with lecture contents, videos and hands-on training utilizing VM toolboxes, covering diverse topics. The courses have enhanced the hands-on learning environment by providing structured content that users can use at their own pace. A four course biomedical big data series is planned for development in 2016.

  10. Soviet space flight: the human element.

    PubMed

    Garshnek, V

    1988-05-01

    Building on past experience and knowledge, the Soviet manned space flight effort has become broad, comprehensive, and forward-looking. Their long-running space station program has provided the capabilities to investigate long-term effects of microgravity on human physiology and behavior and test various countermeasures against microgravity-induced physiological deconditioning. Since the beginning of Soviet manned space flight, the biomedical training and preparation of cosmonauts has evolved from a process that increased human tolerance to space flight factors, to a system of interrelated measures to prepare cosmonauts physically and psychologically to live and work in space. Currently, the Soviet Union is constructing a multimodular space station, the Mir. With the emergence of dedicated laboratory modules, the Soviets have begun the transition from small-scale experimental research to large-scale production activities and specialized scientific work in space. In the future, additional laboratory modules will be added, including one dedicated to biomedical research, called the "Medilab." The longest manned space flight to date (326 days) has been completed by the Soviets. The biomedical effects of previous long-duration flights, and perhaps those of still greater length, may contribute important insight ito the possibility of extended missions beyond Earth, such as a voyage to Mars.

  11. Providing Experiential Business and Management Training for Biomedical Research Trainees

    PubMed Central

    Petrie, Kimberly A.; Carnahan, Robert H.; Brown, Abigail M.; Gould, Kathleen L.

    2017-01-01

    Many biomedical PhD trainees lack exposure to business principles, which limits their competitiveness and effectiveness in academic and industry careers. To fill this training gap, we developed Business and Management Principles for Scientists, a semester-long program that combined didactic exposure to business fundamentals with practical team-based projects aimed at solving real business problems encountered by institutional shared-­resource core facilities. The program also included a retreat featuring presentations by and networking with local life science entrepreneurs and final team presentations to expert judges. Quantitative and qualitative metrics were used to evaluate the program’s impact on trainees. A pretest–posttest approach was used to assess trainees’ baseline knowledge and mastery of module concepts, and each individual’s pretest and posttest responses were compared. The mean score improved by more than 17 percentage points. Trainees also took an online survey to provide feedback about the module. Nearly all participants agreed or strongly agreed that the module was a valuable use of their time and will help guide their career decisions and that project work helped drive home module concepts. More than 75% of trainees reported discussing the module with their research advisors, and all of these participants reported supportive or neutral responses. Collectively, the trainee feedback about the module, improvement in test scores, and trainee perception of advisor support suggest that this short module is an effective method of providing scientists with efficient and meaningful exposure to business concepts. PMID:28798213

  12. [An integral chip for the multiphase pulse-duration modulation used for voltage changer in biomedical microprocessor systems].

    PubMed

    Balashov, A M; Selishchev, S V

    2004-01-01

    An integral chip (IC) was designed for controlling the step-down pulse voltage converter, which is based on the multiphase pulse-duration modulation, for use in biomedical microprocessor systems. The CMOS technology was an optimal basis for the IC designing. An additional feedback circuit diminishes the output voltage dispersion at dynamically changing loads.

  13. Recent Advances in Laser-Ablative Synthesis of Bare Au and Si Nanoparticles and Assessment of Their Prospects for Tissue Engineering Applications.

    PubMed

    Al-Kattan, Ahmed; Nirwan, Viraj P; Popov, Anton; Ryabchikov, Yury V; Tselikov, Gleb; Sentis, Marc; Fahmi, Amir; Kabashin, Andrei V

    2018-05-24

    Driven by surface cleanness and unique physical, optical and chemical properties, bare (ligand-free) laser-synthesized nanoparticles (NPs) are now in the focus of interest as promising materials for the development of advanced biomedical platforms related to biosensing, bioimaging and therapeutic drug delivery. We recently achieved significant progress in the synthesis of bare gold (Au) and silicon (Si) NPs and their testing in biomedical tasks, including cancer imaging and therapy, biofuel cells, etc. We also showed that these nanomaterials can be excellent candidates for tissue engineering applications. This review is aimed at the description of our recent progress in laser synthesis of bare Si and Au NPs and their testing as functional modules (additives) in innovative scaffold platforms intended for tissue engineering tasks.

  14. Biomedical Experiments Scientific Satellite /BESS/

    NASA Technical Reports Server (NTRS)

    Berry, W. E.; Tremor, J. W.; Aepli, T. C.

    1976-01-01

    The Biomedical Experiments Scientific Satellite (BESS) program is proposed to provide a long-duration, earth-orbiting facility to expose selected specimens in a series of biomedical experiments through the 1980's. Launched and retrieved by the Space Transportation System, the fully reusable, free-flying BESS will contain all systems necessary to conduct a six-month to one-year spaceflight mission. The spacecraft system will consist of a large pressurized experiment module and a standard NASA service module currently conceived as the Goddard Multi-Mission Spacecraft (MMS). The experiment module will contain the life-support systems, waste management system, specimen-holding facilities, and monitoring, evaluating, and data-handling equipment. Although a variety of specimens will be flown in basic biological and medical studies, the primate was taken as the principal design driver since it has a maximal life-support demand.

  15. Home telecare system using cable television plants--an experimental field trial.

    PubMed

    Lee, R G; Chen, H S; Lin, C C; Chang, K C; Chen, J H

    2000-03-01

    To solve the inconvenience of routine transportation of chronically ill and handicapped patients, this paper proposes a platform based on a hybrid fiber coaxial (HFC) network in Taiwan designed to make a home telecare system feasible. The aim of this home telecare system is to combine biomedical data, including three-channel electrocardiogram (ECG) and blood pressure (BP), video, and audio into a National Television Standard Committee (NTSC) channel for communication between the patient and healthcare provider. Digitized biomedical data and output from medical devices can be further modulated to a second audio program (SAP) subchannel which can be used for second-language audio in NTSC television signals. For long-distance transmission, we translate the digital biomedical data into the frequency domain using frequency shift key (FSK) technology and insert this signal into an SAP band. The whole system has been implemented and tested. The results obtained using this system clearly demonstrated that real-time video, audio, and biomedical data transmission are very clear with a carrier-to-noise ratio up to 43 dB.

  16. Clique-based data mining for related genes in a biomedical database.

    PubMed

    Matsunaga, Tsutomu; Yonemori, Chikara; Tomita, Etsuji; Muramatsu, Masaaki

    2009-07-01

    Progress in the life sciences cannot be made without integrating biomedical knowledge on numerous genes in order to help formulate hypotheses on the genetic mechanisms behind various biological phenomena, including diseases. There is thus a strong need for a way to automatically and comprehensively search from biomedical databases for related genes, such as genes in the same families and genes encoding components of the same pathways. Here we address the extraction of related genes by searching for densely-connected subgraphs, which are modeled as cliques, in a biomedical relational graph. We constructed a graph whose nodes were gene or disease pages, and edges were the hyperlink connections between those pages in the Online Mendelian Inheritance in Man (OMIM) database. We obtained over 20,000 sets of related genes (called 'gene modules') by enumerating cliques computationally. The modules included genes in the same family, genes for proteins that form a complex, and genes for components of the same signaling pathway. The results of experiments using 'metabolic syndrome'-related gene modules show that the gene modules can be used to get a coherent holistic picture helpful for interpreting relations among genes. We presented a data mining approach extracting related genes by enumerating cliques. The extracted gene sets provide a holistic picture useful for comprehending complex disease mechanisms.

  17. Comparison of the Spectral-Temporally Modulated Ripple Test With the Arizona Biomedical Institute Sentence Test in Cochlear Implant Users.

    PubMed

    Lawler, Marshall; Yu, Jeffrey; Aronoff, Justin M

    Although speech perception is the gold standard for measuring cochlear implant (CI) users' performance, speech perception tests often require extensive adaptation to obtain accurate results, particularly after large changes in maps. Spectral ripple tests, which measure spectral resolution, are an alternate measure that has been shown to correlate with speech perception. A modified spectral ripple test, the spectral-temporally modulated ripple test (SMRT) has recently been developed, and the objective of this study was to compare speech perception and performance on the SMRT for a heterogeneous population of unilateral CI users, bilateral CI users, and bimodal users. Twenty-five CI users (eight using unilateral CIs, nine using bilateral CIs, and eight using a CI and a hearing aid) were tested on the Arizona Biomedical Institute Sentence Test (AzBio) with a +8 dB signal to noise ratio, and on the SMRT. All participants were tested with their clinical programs. There was a significant correlation between SMRT and AzBio performance. After a practice block, an improvement of one ripple per octave for SMRT corresponded to an improvement of 12.1% for AzBio. Additionally, there was no significant difference in slope or intercept between any of the CI populations. The results indicate that performance on the SMRT correlates with speech recognition in noise when measured across unilateral, bilateral, and bimodal CI populations. These results suggest that SMRT scores are strongly associated with speech recognition in noise ability in experienced CI users. Further studies should focus on increasing both the size and diversity of the tested participants, and on determining whether the SMRT technique can be used for early predictions of long-term speech scores, or for evaluating differences among different stimulation strategies or parameter settings.

  18. Kaleri works with the Pilot experiment during Expedition 8

    NASA Image and Video Library

    2003-10-31

    ISS008-E-05179 (31 October 2003) --- Cosmonaut Alexander Y. Kaleri, Expedition 8 flight engineer, works with the Russian biomedical “Pilot” experiment (MBI-15) in the Zvezda Service Module on the International Space Station (ISS). The experiment, which looks at psychological and physiological changes in crew performance during long-duration spaceflight, requires a worktable, ankle restraint system and two control handles for testing piloting skill. Kaleri represents Rosaviakosmos.

  19. A 1V low power second-order delta-sigma modulator for biomedical signal application.

    PubMed

    Hsu, Chih-Han; Tang, Kea-Tiong

    2013-01-01

    This paper presents the design and implementation of a low-power delta-sigma modulator for biomedical application with a standard 90 nm CMOS technology. The delta-sigma architecture is implemented as 2nd order feedforward architecture. A low quiescent current operational transconductance amplifier (OTA) is utilized to reduce power consumption. This delta-sigma modulator operated in 1V power supply, and achieved 64.87 dB signal to noise distortion ratio (SNDR) at 10 KHz bandwidth with an oversampling ratio (OSR) of 64. The power consumption is 17.14 µW, and the figure-of-merit (FOM) is 0.60 pJ/conv.

  20. Foale works with the Pilot experiment during Expedition 8

    NASA Image and Video Library

    2003-10-31

    ISS008-E-05181 (31 October 2003) --- Astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer, works with the Russian biomedical “Pilot” experiment (MBI-15) in the Zvezda Service Module on the International Space Station (ISS). The experiment, which looks at psychological and physiological changes in crew performance during long-duration spaceflight, requires a worktable, ankle restraint system and two control handles for testing piloting skill.

  1. Generating and Executing Complex Natural Language Queries across Linked Data.

    PubMed

    Hamon, Thierry; Mougin, Fleur; Grabar, Natalia

    2015-01-01

    With the recent and intensive research in the biomedical area, the knowledge accumulated is disseminated through various knowledge bases. Links between these knowledge bases are needed in order to use them jointly. Linked Data, SPARQL language, and interfaces in Natural Language question-answering provide interesting solutions for querying such knowledge bases. We propose a method for translating natural language questions in SPARQL queries. We use Natural Language Processing tools, semantic resources, and the RDF triples description. The method is designed on 50 questions over 3 biomedical knowledge bases, and evaluated on 27 questions. It achieves 0.78 F-measure on the test set. The method for translating natural language questions into SPARQL queries is implemented as Perl module available at http://search.cpan.org/ thhamon/RDF-NLP-SPARQLQuery.

  2. Astronaut Kenneth Reightler processes biomedical samples in SPACEHAB

    NASA Image and Video Library

    1994-02-09

    STS060-301-003 (3-11 Feb 1994) --- Astronaut Kenneth S. Reightler, STS-60 pilot, processes biomedical samples in a centrifuge aboard the SPACEHAB module. Reightler joined four other NASA astronauts and a Russian cosmonaut for eight days of research aboard the Space Shuttle Discovery.

  3. Finding abbreviations in biomedical literature: three BioC-compatible modules and four BioC-formatted corpora.

    PubMed

    Islamaj Doğan, Rezarta; Comeau, Donald C; Yeganova, Lana; Wilbur, W John

    2014-01-01

    BioC is a recently created XML format to share text data and annotations, and an accompanying input/output library to promote interoperability of data and tools for natural language processing of biomedical text. This article reports the use of BioC to address a common challenge in processing biomedical text information-that of frequent entity name abbreviation. We selected three different abbreviation definition identification modules, and used the publicly available BioC code to convert these independent modules into BioC-compatible components that interact seamlessly with BioC-formatted data, and other BioC-compatible modules. In addition, we consider four manually annotated corpora of abbreviations in biomedical text: the Ab3P corpus of 1250 PubMed abstracts, the BIOADI corpus of 1201 PubMed abstracts, the old MEDSTRACT corpus of 199 PubMed(®) citations and the Schwartz and Hearst corpus of 1000 PubMed abstracts. Annotations in these corpora have been re-evaluated by four annotators and their consistency and quality levels have been improved. We converted them to BioC-format and described the representation of the annotations. These corpora are used to measure the three abbreviation-finding algorithms and the results are given. The BioC-compatible modules, when compared with their original form, have no difference in their efficiency, running time or any other comparable aspects. They can be conveniently used as a common pre-processing step for larger multi-layered text-mining endeavors. Database URL: Code and data are available for download at the BioC site: http://bioc.sourceforge.net. Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US.

  4. Automated labeling of bibliographic data extracted from biomedical online journals

    NASA Astrophysics Data System (ADS)

    Kim, Jongwoo; Le, Daniel X.; Thoma, George R.

    2003-01-01

    A prototype system has been designed to automate the extraction of bibliographic data (e.g., article title, authors, abstract, affiliation and others) from online biomedical journals to populate the National Library of Medicine"s MEDLINE database. This paper describes a key module in this system: the labeling module that employs statistics and fuzzy rule-based algorithms to identify segmented zones in an article"s HTML pages as specific bibliographic data. Results from experiments conducted with 1,149 medical articles from forty-seven journal issues are presented.

  5. A Bioinformatics Module for Use in an Introductory Biology Laboratory

    ERIC Educational Resources Information Center

    Alaie, Adrienne; Teller, Virginia; Qiu, Wei-gang

    2012-01-01

    Since biomedical science has become increasingly data-intensive, acquisition of computational and quantitative skills by science students has become more important. For non-science students, an introduction to biomedical databases and their applications promotes the development of a scientifically literate population. Because typical college…

  6. Identifying interactions between chemical entities in biomedical text.

    PubMed

    Lamurias, Andre; Ferreira, João D; Couto, Francisco M

    2014-10-23

    Interactions between chemical compounds described in biomedical text can be of great importance to drug discovery and design, as well as pharmacovigilance. We developed a novel system, \\"Identifying Interactions between Chemical Entities\\" (IICE), to identify chemical interactions described in text. Kernel-based Support Vector Machines first identify the interactions and then an ensemble classifier validates and classifies the type of each interaction. This relation extraction module was evaluated with the corpus released for the DDI Extraction task of SemEval 2013, obtaining results comparable to state-of-the-art methods for this type of task. We integrated this module with our chemical named entity recognition module and made the whole system available as a web tool at www.lasige.di.fc.ul.pt/webtools/iice.

  7. Identifying interactions between chemical entities in biomedical text.

    PubMed

    Lamurias, Andre; Ferreira, João D; Couto, Francisco M

    2014-12-01

    Interactions between chemical compounds described in biomedical text can be of great importance to drug discovery and design, as well as pharmacovigilance. We developed a novel system, "Identifying Interactions between Chemical Entities" (IICE), to identify chemical interactions described in text. Kernel-based Support Vector Machines first identify the interactions and then an ensemble classifier validates and classifies the type of each interaction. This relation extraction module was evaluated with the corpus released for the DDI Extraction task of SemEval 2013, obtaining results comparable to stateof- the-art methods for this type of task. We integrated this module with our chemical named entity recognition module and made the whole system available as a web tool at www.lasige.di.fc.ul.pt/webtools/iice.

  8. Providing Experiential Business and Management Training for Biomedical Research Trainees.

    PubMed

    Petrie, Kimberly A; Carnahan, Robert H; Brown, Abigail M; Gould, Kathleen L

    2017-01-01

    Many biomedical PhD trainees lack exposure to business principles, which limits their competitiveness and effectiveness in academic and industry careers. To fill this training gap, we developed Business and Management Principles for Scientists, a semester-long program that combined didactic exposure to business fundamentals with practical team-based projects aimed at solving real business problems encountered by institutional shared--resource core facilities. The program also included a retreat featuring presentations by and networking with local life science entrepreneurs and final team presentations to expert judges. Quantitative and qualitative metrics were used to evaluate the program's impact on trainees. A pretest-posttest approach was used to assess trainees' baseline knowledge and mastery of module concepts, and each individual's pretest and posttest responses were compared. The mean score improved by more than 17 percentage points. Trainees also took an online survey to provide feedback about the module. Nearly all participants agreed or strongly agreed that the module was a valuable use of their time and will help guide their career decisions and that project work helped drive home module concepts. More than 75% of trainees reported discussing the module with their research advisors, and all of these participants reported supportive or neutral responses. Collectively, the trainee feedback about the module, improvement in test scores, and trainee perception of advisor support suggest that this short module is an effective method of providing scientists with efficient and meaningful exposure to business concepts. © 2017 K. A. Petrie et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. BDPU, Favier places new test chamber into experiment module in LMS-1 Spacelab

    NASA Image and Video Library

    1996-07-09

    STS078-301-021 (20 June - 7 July 1996) --- Payload specialist Jean-Jacques Favier, representing the French Space Agency (CNES), holds up a test container to a Spacelab camera. The test involves the Bubble Drop Particle Unit (BDPU), which Favier is showing to ground controllers at the Marshall Space Flight Center (MSFC) in order to check the condition of the unit prior to heating in the BDPU facility. The test container holds experimental fluid and allows experiment observation through optical windows. BDPU contains three internal cameras that are used to continuously downlink BDPU activity so that behavior of the bubbles can be monitored. Astronaut Richard M. Linnehan, mission specialist, conducts biomedical testing in the background.

  10. Space Shuttle Project

    NASA Image and Video Library

    1992-01-22

    Onboard Space Shuttle Discovery (STS-42) the seven crewmembers pose for a traditional in-space portrait in the shirt-sleeve environment of the International Microgravity Laboratory (IML-1) science module in the Shuttle's cargo bay. Pictured are (clockwise from top),Commander Ronald J. Grabe, payload commander Norman E. Thagard, payload specialist Roberta L. Bondar; mission specialists William F. Readdy and David C. Hilmers; pilot Stephen S. Oswald and payload specialist Ulf Merbold. The rotating chair, used often in biomedical tests on the eight-day flight, is in center frame.

  11. Exploring Protein Structure and Dynamics through a Project-Oriented Biochemistry Laboratory Module

    ERIC Educational Resources Information Center

    Lipchock, James M.; Ginther, Patrick S.; Douglas, Bonnie B.; Bird, Kelly E.; Loria, J. Patrick

    2017-01-01

    Here, we present a 10-week project-oriented laboratory module designed to provide a course-based undergraduate research experience in biochemistry that emphasizes the importance of biomolecular structure and dynamics in enzyme function. This module explores the impact of mutagenesis on an important active site loop for a biomedically-relevant…

  12. 3D printing of tissue-simulating phantoms as a traceable standard for biomedical optical measurement

    NASA Astrophysics Data System (ADS)

    Dong, Erbao; Wang, Minjie; Shen, Shuwei; Han, Yilin; Wu, Qiang; Xu, Ronald

    2016-01-01

    Optical phantoms are commonly used to validate and calibrate biomedical optical devices in order to ensure accurate measurement of optical properties in biological tissue. However, commonly used optical phantoms are based on homogenous materials that reflect neither optical properties nor multi-layer heterogeneities of biological tissue. Using these phantoms for optical calibration may result in significant bias in biological measurement. We propose to characterize and fabricate tissue simulating phantoms that simulate not only the multi-layer heterogeneities but also optical properties of biological tissue. The tissue characterization module detects tissue structural and functional properties in vivo. The phantom printing module generates 3D tissue structures at different scales by layer-by-layer deposition of phantom materials with different optical properties. The ultimate goal is to fabricate multi-layer tissue simulating phantoms as a traceable standard for optimal calibration of biomedical optical spectral devices.

  13. Evaluation of a distance-learning immunology and pathology module in a postgraduate biomedical science course.

    PubMed

    Ryan, M T; Mulholland, C W

    2005-01-01

    An electronic presentation of materials for a distance-learning immunology and pathology module from a postgraduate biomedical science course is evaluated. Two different electronic presentation formats for the delivery of the educational material to distance learners are assessed. Responses from users of this material highlighted a preference for a format that has a design tailored to distance learning. There was no significant difference in learning outcome between those taking the module on campus and by distance learning. This suggests that the prerequisites for entry, learning materials and direction given to the students studying by distance learning are adequate for these students to achieve the learning objectives outlined in the course. The evaluation also gave direction for areas within the (CAL) application that can be improved for future students.

  14. STS-42 OV-103 crew poses for onboard (in-space) portrait in IML-1 SL module

    NASA Image and Video Library

    1992-01-30

    STS042-78-061 (22-30 Jan. 1992) --- The seven STS-42 crewmembers pose for a traditional in-space portrait in the shirt-sleeve environment of the International Microgravity Laboratory (IML-1) science module in the shuttle's cargo bay. (Hold picture with index numbers at top.) David C. Hilmers, mission specialist, is at top center of the 70mm image. Others pictured are (clockwise) Ronald J. Grabe, mission commander; William F. Readdy; mission specialist; Ulf Merbold, European Space Agency (ESA) payload specialist; Norman E. Thagard, payload commander; Stephen S. Oswald, pilot; and Roberta L. Bondar, Canadian payload specialist. The rotating chair, used often in biomedical tests on the eight-day flight, is (partially obscured) in center frame.

  15. Development and evaluation of an internet-based blended-learning module in biomedicine for university applicants--Education as a challenge for the future.

    PubMed

    Klümper, Christian; Neunzehn, Jörg; Wegmann, Ute; Kruppke, Benjamin; Joos, Ulrich; Wiesmann, Hans Peter

    2016-03-25

    Biomedical science, especially biomaterials, is an expanding field in medicine. Universities are being challenged to gain the best students for a later academic career. Pre-university assessment of pupils has become crucial to reach this aim. Blended learning is an emerging paradigm for science education even though it has not yet been rigorously assessed, especially in the pupil/undergraduate situation. The aim of the study was to develop and preliminarily test a blended-learning system in biomedicine for university applicants. An internet-based blended-learning module in material science was developed in close collaboration between a university (Biomaterials Department, Dresden TU), a German Gymnasium and an internationally oriented medical college (IMC®, Münster). Forty pre-university students were taught by this learning module composed of school education and internet-based knowledge transfer and involved in the evaluation of the utility of this learning tool. Finally, the students took first-year university examinations in order to evaluate the success of this kind of education. The internet-based blended-learning module as a combination of e-learning tutorials and live online lectures which was applied in phase 3 of this study was developed on the basis of the findings of both pre-university studies. The results of the learning behavior regarding the number of invokes and the dwell time of the individual pages of the pre-university learning material, the results of the online evaluation and the results of the pre-phase examination were successively used to optimize the next phase. At the end of the pre-university learning, seven of eight participants were able to pass the first-year university examination followed by nationally accepted credit award. Internet-based blended-learning module proved to be suitable to prepare students for biomedical university education while also giving them the possibility to assess their qualifications for studying biomedicine and subsequent scientific careers. Moreover, the module can help universities to find the best students.

  16. Moral Enhancement Using Non-invasive Brain Stimulation

    PubMed Central

    Darby, R. Ryan; Pascual-Leone, Alvaro

    2017-01-01

    Biomedical enhancement refers to the use of biomedical interventions to improve capacities beyond normal, rather than to treat deficiencies due to diseases. Enhancement can target physical or cognitive capacities, but also complex human behaviors such as morality. However, the complexity of normal moral behavior makes it unlikely that morality is a single capacity that can be deficient or enhanced. Instead, our central hypothesis will be that moral behavior results from multiple, interacting cognitive-affective networks in the brain. First, we will test this hypothesis by reviewing evidence for modulation of moral behavior using non-invasive brain stimulation. Next, we will discuss how this evidence affects ethical issues related to the use of moral enhancement. We end with the conclusion that while brain stimulation has the potential to alter moral behavior, such alteration is unlikely to improve moral behavior in all situations, and may even lead to less morally desirable behavior in some instances. PMID:28275345

  17. Apollo Soyuz, mission evaluation report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Apollo Soyuz mission was the first manned space flight to be conducted jointly by two nations - the United States and the Union of Soviet Socialist Republics. The primary purpose of the mission was to test systems for rendezvous and docking of manned spacecraft that would be suitable for use as a standard international system, and to demonstrate crew transfer between spacecraft. The secondary purpose was to conduct a program of scientific and applications experimentation. With minor modifications, the Apollo and Soyuz spacecraft were like those flown on previous missions. However, a new module was built specifically for this mission - the docking module. It served as an airlock for crew transfer and as a structural base for the docking mechanism that interfaced with a similar mechanism on the Soyuz orbital module. The postflight evaluation of the performance of the docking system and docking module, as well as the overall performance of the Apollo spacecraft and experiments is presented. In addition, the mission is evaluated from the viewpoints of the flight crew, ground support operations, and biomedical operations. Descriptions of the docking mechanism, docking module, crew equipment and experiment hardware are given.

  18. Assessing Understanding of Complex Learning Outcomes and Real-World Skills Using an Authentic Software Tool: A Study from Biomedical Sciences

    ERIC Educational Resources Information Center

    Dermo, John; Boyne, James

    2014-01-01

    We describe a study conducted during 2009-12 into innovative assessment practice, evaluating an assessed coursework task on a final year Medical Genetics module for Biomedical Science undergraduates. An authentic e-assessment coursework task was developed, integrating objectively marked online questions with an online DNA sequence analysis tool…

  19. Biomedical Potential of mTOR Modulation by Nanoparticles.

    PubMed

    Hulea, Laura; Markovic, Zoran; Topisirovic, Ivan; Simmet, Thomas; Trajkovic, Vladimir

    2016-05-01

    Modulation of the mammalian target of rapamycin (mTOR), the principal regulator of cellular homeostasis, underlies the biological effects of engineered nanoparticles, including regulation of cell death/survival and metabolic responses. Understanding the mechanisms and biological actions of nanoparticle-mediated mTOR modulation may help in developing safe and efficient nanotherapeutics to fight human disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Substrate effect modulates adhesion and proliferation of fibroblast on graphene layer.

    PubMed

    Lin, Feng; Du, Feng; Huang, Jianyong; Chau, Alicia; Zhou, Yongsheng; Duan, Huiling; Wang, Jianxiang; Xiong, Chunyang

    2016-10-01

    Graphene is an emerging candidate for biomedical applications, including biosensor, drug delivery and scaffold biomaterials. Cellular functions and behaviors on different graphene-coated substrates, however, still remain elusive to a great extent. This paper explored the functional responses of cells such as adhesion and proliferation, to different kinds of substrates including coverslips, silicone, polydimethylsiloxane (PDMS) with different curing ratios, PDMS treated with oxygen plasma, and their counterparts coated with single layer graphene (SLG). Specifically, adherent cell number, spreading area and cytoskeleton configuration were exploited to characterize cell-substrate adhesion ability, while MTT assay was employed to test the proliferation capability of fibroblasts. Experimental outcome demonstrated graphene coating had excellent cytocompatibility, which could lead to an increase in early adhesion, spreading, proliferation, and remodeling of cytoskeletons of fibroblast cells. Notably, it was found that the underlying substrate effect, e.g., stiffness of substrate materials, could essentially regulate the adhesion and proliferation of cells cultured on graphene. The stiffer the substrates were, the stronger the abilities of adhesion and proliferation of fibroblasts were. This study not only deepens our understanding of substrate-modulated interfacial interactions between live cells and graphene, but also provides a valuable guidance for the design and application of graphene-based biomaterials in biomedical engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Biomedical and Biochemical Engineering for K-12 Students

    ERIC Educational Resources Information Center

    Madihally, Sundararajan V.; Maase, Eric L.

    2006-01-01

    REACH (Reaching Engineering and Architectural Career Heights) is a weeklong summer academy outreach program for high school students interested in engineering, architecture, or technology. Through module-­based instruction, students are introduced to various engineering fields. This report describes one of the modules focused on introducing…

  2. Simplified generation of biomedical 3D surface model data for embedding into 3D portable document format (PDF) files for publication and education.

    PubMed

    Newe, Axel; Ganslandt, Thomas

    2013-01-01

    The usefulness of the 3D Portable Document Format (PDF) for clinical, educational, and research purposes has recently been shown. However, the lack of a simple tool for converting biomedical data into the model data in the necessary Universal 3D (U3D) file format is a drawback for the broad acceptance of this new technology. A new module for the image processing and rapid prototyping framework MeVisLab does not only provide a platform-independent possibility to create surface meshes out of biomedical/DICOM and other data and to export them into U3D--it also lets the user add meta data to these meshes to predefine colors and names that can be processed by a PDF authoring software while generating 3D PDF files. Furthermore, the source code of the respective module is available and well documented so that it can easily be modified for own purposes.

  3. Biomedical Wireless Ambulatory Crew Monitor

    NASA Technical Reports Server (NTRS)

    Chmiel, Alan; Humphreys, Brad

    2009-01-01

    A compact, ambulatory biometric data acquisition system has been developed for space and commercial terrestrial use. BioWATCH (Bio medical Wireless and Ambulatory Telemetry for Crew Health) acquires signals from biomedical sensors using acquisition modules attached to a common data and power bus. Several slots allow the user to configure the unit by inserting sensor-specific modules. The data are then sent real-time from the unit over any commercially implemented wireless network including 802.11b/g, WCDMA, 3G. This system has a distributed computing hierarchy and has a common data controller on each sensor module. This allows for the modularity of the device along with the tailored ability to control the cards using a relatively small master processor. The distributed nature of this system affords the modularity, size, and power consumption that betters the current state of the art in medical ambulatory data acquisition. A new company was created to market this technology.

  4. MODULATION OF RAT LEYDIG CELL STEROIDOGENIC FUNCTION BY DI(2-ETHYLHEXYL)PHTHALATE

    EPA Science Inventory

    Modulation of rat Leydig cell steroidogenic function by di(2-ethylhexyl)phthalate.

    Akingbemi BT, Youker RT, Sottas CM, Ge R, Katz E, Klinefelter GR, Zirkin BR, Hardy MP.

    Center for Biomedical Research, Population Council, New York, New York 10021, USA. benson@popcbr...

  5. PZEh-MO-8/Body Mass Measurement in Service Module

    NASA Image and Video Library

    2009-05-06

    ISS019-E-014222 (6 May 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, uses the IM mass measurement device to perform the PZEh-MO-8/Body Mass Measurement Russian biomedical routine assessments in the Zvezda Service Module of the International Space Station.

  6. PZEh-MO-8/Body Mass Measurement in Service Module

    NASA Image and Video Library

    2009-05-06

    ISS019-E-014216 (6 May 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, uses the IM mass measurement device to perform the PZEh-MO-8/Body Mass Measurement Russian biomedical routine assessments in the Zvezda Service Module of the International Space Station.

  7. Health Instruction Packages: Medical Technologies--EEG, Radiology, & Biomedical Photography.

    ERIC Educational Resources Information Center

    Brittenham, Dorothea; And Others

    Text, illustrations, and exercises are utilized in this set of four learning modules to instruct medical technology students in a variety of job-related skills. The first module, "EEG Technology: Measurement Technique of the 'International 10-20 System'" by Dorothea Brittenham, describes a procedure used by electroencephalograph…

  8. Dilemmas in Bioethics. [Student's Guide.] Preparing for Tomorrow's World.

    ERIC Educational Resources Information Center

    Iozzi, Louis A.; And Others

    The purpose of this module is to introduce students (grades 10-11) to critical bioethical issues by considering moral dilemmas and knowledge of biomedical advances. The module is organized into 12 topic areas, each containing a dilemma story, introductory reading material, sample student responses, and questions. Dilemmas are essentially brief…

  9. A low-cost biomedical signal transceiver based on a Bluetooth wireless system.

    PubMed

    Fazel-Rezai, Reza; Pauls, Mark; Slawinski, David

    2007-01-01

    Most current wireless biomedical signal transceivers use range-limiting communication. This work presents a low-cost biomedical signal transceiver that uses Bluetooth wireless technology. The design is implemented in a modular form to be adaptable to different types of biomedical signals. The signal front end obtains and processes incoming signals, which are then transmitted via a microcontroller and wireless module. Near real-time receive software in LabVIEW was developed to demonstrate the system capability. The completed transmitter prototype successfully transmits ECG signals, and is able to simultaneously send multiple signals. The sampling rate of the transmitter is fast enough to send up to thirteen ECG signals simultaneously, with an error rate below 0.1% for transmission exceeding 65 meters. A low-cost wireless biomedical transceiver has many applications, such as real-time monitoring of patients with a known condition in non-clinical settings.

  10. A statistical framework for biomedical literature mining.

    PubMed

    Chung, Dongjun; Lawson, Andrew; Zheng, W Jim

    2017-09-30

    In systems biology, it is of great interest to identify new genes that were not previously reported to be associated with biological pathways related to various functions and diseases. Identification of these new pathway-modulating genes does not only promote understanding of pathway regulation mechanisms but also allow identification of novel targets for therapeutics. Recently, biomedical literature has been considered as a valuable resource to investigate pathway-modulating genes. While the majority of currently available approaches are based on the co-occurrence of genes within an abstract, it has been reported that these approaches show only sub-optimal performances because 70% of abstracts contain information only for a single gene. To overcome such limitation, we propose a novel statistical framework based on the concept of ontology fingerprint that uses gene ontology to extract information from large biomedical literature data. The proposed framework simultaneously identifies pathway-modulating genes and facilitates interpreting functions of these new genes. We also propose a computationally efficient posterior inference procedure based on Metropolis-Hastings within Gibbs sampler for parameter updates and the poor man's reversible jump Markov chain Monte Carlo approach for model selection. We evaluate the proposed statistical framework with simulation studies, experimental validation, and an application to studies of pathway-modulating genes in yeast. The R implementation of the proposed model is currently available at https://dongjunchung.github.io/bayesGO/. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  11. An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling.

    PubMed

    Gong, Chen; Liu, Dake; Miao, Zhidong; Wang, Wei; Li, Min

    2017-06-11

    The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC) and wireless power transfer (WPT). However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically), since the NFC signal (especially for the uplink from the in-body part to the out-body part) could be too weak to be detected. Traditional load shift keying (LSK) requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK) modulation, its downlink data are modulated on the power carrier (2 MHz), while its uplink data are modulated on another carrier (125 kHz). The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10 - 7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications.

  12. Relational Network for Knowledge Discovery through Heterogeneous Biomedical and Clinical Features

    PubMed Central

    Chen, Huaidong; Chen, Wei; Liu, Chenglin; Zhang, Le; Su, Jing; Zhou, Xiaobo

    2016-01-01

    Biomedical big data, as a whole, covers numerous features, while each dataset specifically delineates part of them. “Full feature spectrum” knowledge discovery across heterogeneous data sources remains a major challenge. We developed a method called bootstrapping for unified feature association measurement (BUFAM) for pairwise association analysis, and relational dependency network (RDN) modeling for global module detection on features across breast cancer cohorts. Discovered knowledge was cross-validated using data from Wake Forest Baptist Medical Center’s electronic medical records and annotated with BioCarta signaling signatures. The clinical potential of the discovered modules was exhibited by stratifying patients for drug responses. A series of discovered associations provided new insights into breast cancer, such as the effects of patient’s cultural background on preferences for surgical procedure. We also discovered two groups of highly associated features, the HER2 and the ER modules, each of which described how phenotypes were associated with molecular signatures, diagnostic features, and clinical decisions. The discovered “ER module”, which was dominated by cancer immunity, was used as an example for patient stratification and prediction of drug responses to tamoxifen and chemotherapy. BUFAM-derived RDN modeling demonstrated unique ability to discover clinically meaningful and actionable knowledge across highly heterogeneous biomedical big data sets. PMID:27427091

  13. Relational Network for Knowledge Discovery through Heterogeneous Biomedical and Clinical Features

    NASA Astrophysics Data System (ADS)

    Chen, Huaidong; Chen, Wei; Liu, Chenglin; Zhang, Le; Su, Jing; Zhou, Xiaobo

    2016-07-01

    Biomedical big data, as a whole, covers numerous features, while each dataset specifically delineates part of them. “Full feature spectrum” knowledge discovery across heterogeneous data sources remains a major challenge. We developed a method called bootstrapping for unified feature association measurement (BUFAM) for pairwise association analysis, and relational dependency network (RDN) modeling for global module detection on features across breast cancer cohorts. Discovered knowledge was cross-validated using data from Wake Forest Baptist Medical Center’s electronic medical records and annotated with BioCarta signaling signatures. The clinical potential of the discovered modules was exhibited by stratifying patients for drug responses. A series of discovered associations provided new insights into breast cancer, such as the effects of patient’s cultural background on preferences for surgical procedure. We also discovered two groups of highly associated features, the HER2 and the ER modules, each of which described how phenotypes were associated with molecular signatures, diagnostic features, and clinical decisions. The discovered “ER module”, which was dominated by cancer immunity, was used as an example for patient stratification and prediction of drug responses to tamoxifen and chemotherapy. BUFAM-derived RDN modeling demonstrated unique ability to discover clinically meaningful and actionable knowledge across highly heterogeneous biomedical big data sets.

  14. Apollo Program Summary Report: Synopsis of the Apollo Program Activities and Technology for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Overall program activities and the technology developed to accomplish lunar exploration are discussed. A summary of the flights conducted over an 11-year period is presented along with specific aspects of the overall program, including lunar science, vehicle development and performance, lunar module development program, spacecraft development testing, flight crew summary, mission operations, biomedical data, spacecraft manufacturing and testing, launch site facilities, equipment, and prelaunch operations, and the lunar receiving laboratory. Appendixes provide data on each of the Apollo missions, mission type designations, spacecraft weights, records achieved by Apollo crewmen, vehicle histories, and a listing of anomalous hardware conditions noted during each flight beginning with Apollo 4.

  15. CD-REST: a system for extracting chemical-induced disease relation in literature.

    PubMed

    Xu, Jun; Wu, Yonghui; Zhang, Yaoyun; Wang, Jingqi; Lee, Hee-Jin; Xu, Hua

    2016-01-01

    Mining chemical-induced disease relations embedded in the vast biomedical literature could facilitate a wide range of computational biomedical applications, such as pharmacovigilance. The BioCreative V organized a Chemical Disease Relation (CDR) Track regarding chemical-induced disease relation extraction from biomedical literature in 2015. We participated in all subtasks of this challenge. In this article, we present our participation system Chemical Disease Relation Extraction SysTem (CD-REST), an end-to-end system for extracting chemical-induced disease relations in biomedical literature. CD-REST consists of two main components: (1) a chemical and disease named entity recognition and normalization module, which employs the Conditional Random Fields algorithm for entity recognition and a Vector Space Model-based approach for normalization; and (2) a relation extraction module that classifies both sentence-level and document-level candidate drug-disease pairs by support vector machines. Our system achieved the best performance on the chemical-induced disease relation extraction subtask in the BioCreative V CDR Track, demonstrating the effectiveness of our proposed machine learning-based approaches for automatic extraction of chemical-induced disease relations in biomedical literature. The CD-REST system provides web services using HTTP POST request. The web services can be accessed fromhttp://clinicalnlptool.com/cdr The online CD-REST demonstration system is available athttp://clinicalnlptool.com/cdr/cdr.html. Database URL:http://clinicalnlptool.com/cdr;http://clinicalnlptool.com/cdr/cdr.html. © The Author(s) 2016. Published by Oxford University Press.

  16. Big-data-based edge biomarkers: study on dynamical drug sensitivity and resistance in individuals.

    PubMed

    Zeng, Tao; Zhang, Wanwei; Yu, Xiangtian; Liu, Xiaoping; Li, Meiyi; Chen, Luonan

    2016-07-01

    Big-data-based edge biomarker is a new concept to characterize disease features based on biomedical big data in a dynamical and network manner, which also provides alternative strategies to indicate disease status in single samples. This article gives a comprehensive review on big-data-based edge biomarkers for complex diseases in an individual patient, which are defined as biomarkers based on network information and high-dimensional data. Specifically, we firstly introduce the sources and structures of biomedical big data accessible in public for edge biomarker and disease study. We show that biomedical big data are typically 'small-sample size in high-dimension space', i.e. small samples but with high dimensions on features (e.g. omics data) for each individual, in contrast to traditional big data in many other fields characterized as 'large-sample size in low-dimension space', i.e. big samples but with low dimensions on features. Then, we demonstrate the concept, model and algorithm for edge biomarkers and further big-data-based edge biomarkers. Dissimilar to conventional biomarkers, edge biomarkers, e.g. module biomarkers in module network rewiring-analysis, are able to predict the disease state by learning differential associations between molecules rather than differential expressions of molecules during disease progression or treatment in individual patients. In particular, in contrast to using the information of the common molecules or edges (i.e.molecule-pairs) across a population in traditional biomarkers including network and edge biomarkers, big-data-based edge biomarkers are specific for each individual and thus can accurately evaluate the disease state by considering the individual heterogeneity. Therefore, the measurement of big data in a high-dimensional space is required not only in the learning process but also in the diagnosing or predicting process of the tested individual. Finally, we provide a case study on analyzing the temporal expression data from a malaria vaccine trial by big-data-based edge biomarkers from module network rewiring-analysis. The illustrative results show that the identified module biomarkers can accurately distinguish vaccines with or without protection and outperformed previous reported gene signatures in terms of effectiveness and efficiency. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. From Lexical Regularities to Axiomatic Patterns for the Quality Assurance of Biomedical Terminologies and Ontologies.

    PubMed

    van Damme, Philip; Quesada-Martínez, Manuel; Cornet, Ronald; Fernández-Breis, Jesualdo Tomás

    2018-06-13

    Ontologies and terminologies have been identified as key resources for the achievement of semantic interoperability in biomedical domains. The development of ontologies is performed as a joint work by domain experts and knowledge engineers. The maintenance and auditing of these resources is also the responsibility of such experts, and this is usually a time-consuming, mostly manual task. Manual auditing is impractical and ineffective for most biomedical ontologies, especially for larger ones. An example is SNOMED CT, a key resource in many countries for codifying medical information. SNOMED CT contains more than 300000 concepts. Consequently its auditing requires the support of automatic methods. Many biomedical ontologies contain natural language content for humans and logical axioms for machines. The 'lexically suggest, logically define' principle means that there should be a relation between what is expressed in natural language and as logical axioms, and that such a relation should be useful for auditing and quality assurance. Besides, the meaning of this principle is that the natural language content for humans could be used to generate the logical axioms for the machines. In this work, we propose a method that combines lexical analysis and clustering techniques to (1) identify regularities in the natural language content of ontologies; (2) cluster, by similarity, labels exhibiting a regularity; (3) extract relevant information from those clusters; and (4) propose logical axioms for each cluster with the support of axiom templates. These logical axioms can then be evaluated with the existing axioms in the ontology to check their correctness and completeness, which are two fundamental objectives in auditing and quality assurance. In this paper, we describe the application of the method to two SNOMED CT modules, a 'congenital' module, obtained using concepts exhibiting the attribute Occurrence - Congenital, and a 'chronic' module, using concepts exhibiting the attribute Clinical course - Chronic. We obtained a precision and a recall of respectively 75% and 28% for the 'congenital' module, and 64% and 40% for the 'chronic' one. We consider these results to be promising, so our method can contribute to the support of content editors by using automatic methods for assuring the quality of biomedical ontologies and terminologies. Copyright © 2018. Published by Elsevier Inc.

  18. A modular framework for biomedical concept recognition

    PubMed Central

    2013-01-01

    Background Concept recognition is an essential task in biomedical information extraction, presenting several complex and unsolved challenges. The development of such solutions is typically performed in an ad-hoc manner or using general information extraction frameworks, which are not optimized for the biomedical domain and normally require the integration of complex external libraries and/or the development of custom tools. Results This article presents Neji, an open source framework optimized for biomedical concept recognition built around four key characteristics: modularity, scalability, speed, and usability. It integrates modules for biomedical natural language processing, such as sentence splitting, tokenization, lemmatization, part-of-speech tagging, chunking and dependency parsing. Concept recognition is provided through dictionary matching and machine learning with normalization methods. Neji also integrates an innovative concept tree implementation, supporting overlapped concept names and respective disambiguation techniques. The most popular input and output formats, namely Pubmed XML, IeXML, CoNLL and A1, are also supported. On top of the built-in functionalities, developers and researchers can implement new processing modules or pipelines, or use the provided command-line interface tool to build their own solutions, applying the most appropriate techniques to identify heterogeneous biomedical concepts. Neji was evaluated against three gold standard corpora with heterogeneous biomedical concepts (CRAFT, AnEM and NCBI disease corpus), achieving high performance results on named entity recognition (F1-measure for overlap matching: species 95%, cell 92%, cellular components 83%, gene and proteins 76%, chemicals 65%, biological processes and molecular functions 63%, disorders 85%, and anatomical entities 82%) and on entity normalization (F1-measure for overlap name matching and correct identifier included in the returned list of identifiers: species 88%, cell 71%, cellular components 72%, gene and proteins 64%, chemicals 53%, and biological processes and molecular functions 40%). Neji provides fast and multi-threaded data processing, annotating up to 1200 sentences/second when using dictionary-based concept identification. Conclusions Considering the provided features and underlying characteristics, we believe that Neji is an important contribution to the biomedical community, streamlining the development of complex concept recognition solutions. Neji is freely available at http://bioinformatics.ua.pt/neji. PMID:24063607

  19. Astronaut Harris checks response of muscles to microgravity

    NASA Image and Video Library

    1995-02-03

    STS063-86-016 (3-11 Feb 1995) --- With astronaut Janice E. Voss, mission specialist, as his test subject, astronaut Bernard A. Harris, Jr., payload commander and a physician, uses a special biomedical harness experiment to check the response of muscles to microgravity. They are on the mid-deck, where many of the SpaceHab 3 experiments are located. The SpaceHab 3 Module is in the cargo bay. Others onboard the Space Shuttle Discovery were astronauts James D. Wetherbee, commander; Eileen M. Collins, pilot; mission specialists C. Michael Foale and Russian cosmonaut Vladimir G. Titov.

  20. A generalizable NLP framework for fast development of pattern-based biomedical relation extraction systems.

    PubMed

    Peng, Yifan; Torii, Manabu; Wu, Cathy H; Vijay-Shanker, K

    2014-08-23

    Text mining is increasingly used in the biomedical domain because of its ability to automatically gather information from large amount of scientific articles. One important task in biomedical text mining is relation extraction, which aims to identify designated relations among biological entities reported in literature. A relation extraction system achieving high performance is expensive to develop because of the substantial time and effort required for its design and implementation. Here, we report a novel framework to facilitate the development of a pattern-based biomedical relation extraction system. It has several unique design features: (1) leveraging syntactic variations possible in a language and automatically generating extraction patterns in a systematic manner, (2) applying sentence simplification to improve the coverage of extraction patterns, and (3) identifying referential relations between a syntactic argument of a predicate and the actual target expected in the relation extraction task. A relation extraction system derived using the proposed framework achieved overall F-scores of 72.66% for the Simple events and 55.57% for the Binding events on the BioNLP-ST 2011 GE test set, comparing favorably with the top performing systems that participated in the BioNLP-ST 2011 GE task. We obtained similar results on the BioNLP-ST 2013 GE test set (80.07% and 60.58%, respectively). We conducted additional experiments on the training and development sets to provide a more detailed analysis of the system and its individual modules. This analysis indicates that without increasing the number of patterns, simplification and referential relation linking play a key role in the effective extraction of biomedical relations. In this paper, we present a novel framework for fast development of relation extraction systems. The framework requires only a list of triggers as input, and does not need information from an annotated corpus. Thus, we reduce the involvement of domain experts, who would otherwise have to provide manual annotations and help with the design of hand crafted patterns. We demonstrate how our framework is used to develop a system which achieves state-of-the-art performance on a public benchmark corpus.

  1. An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling

    PubMed Central

    Gong, Chen; Liu, Dake; Miao, Zhidong; Wang, Wei; Li, Min

    2017-01-01

    The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC) and wireless power transfer (WPT). However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically), since the NFC signal (especially for the uplink from the in-body part to the out-body part) could be too weak to be detected. Traditional load shift keying (LSK) requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK) modulation, its downlink data are modulated on the power carrier (2 MHz), while its uplink data are modulated on another carrier (125 kHz). The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10−7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications. PMID:28604610

  2. Using rule-based natural language processing to improve disease normalization in biomedical text.

    PubMed

    Kang, Ning; Singh, Bharat; Afzal, Zubair; van Mulligen, Erik M; Kors, Jan A

    2013-01-01

    In order for computers to extract useful information from unstructured text, a concept normalization system is needed to link relevant concepts in a text to sources that contain further information about the concept. Popular concept normalization tools in the biomedical field are dictionary-based. In this study we investigate the usefulness of natural language processing (NLP) as an adjunct to dictionary-based concept normalization. We compared the performance of two biomedical concept normalization systems, MetaMap and Peregrine, on the Arizona Disease Corpus, with and without the use of a rule-based NLP module. Performance was assessed for exact and inexact boundary matching of the system annotations with those of the gold standard and for concept identifier matching. Without the NLP module, MetaMap and Peregrine attained F-scores of 61.0% and 63.9%, respectively, for exact boundary matching, and 55.1% and 56.9% for concept identifier matching. With the aid of the NLP module, the F-scores of MetaMap and Peregrine improved to 73.3% and 78.0% for boundary matching, and to 66.2% and 69.8% for concept identifier matching. For inexact boundary matching, performances further increased to 85.5% and 85.4%, and to 73.6% and 73.3% for concept identifier matching. We have shown the added value of NLP for the recognition and normalization of diseases with MetaMap and Peregrine. The NLP module is general and can be applied in combination with any concept normalization system. Whether its use for concept types other than disease is equally advantageous remains to be investigated.

  3. Computer program and user documentation medical data tape retrieval system

    NASA Technical Reports Server (NTRS)

    Anderson, J.

    1971-01-01

    This volume provides several levels of documentation for the program module of the NASA medical directorate mini-computer storage and retrieval system. A biomedical information system overview describes some of the reasons for the development of the mini-computer storage and retrieval system. It briefly outlines all of the program modules which constitute the system.

  4. An assessment strategy for proposals of engineering projects in the Bachelor of Biomedical Engineering Curriculum at Universidad Autónoma Metropolitana-Iztapalapa.

    PubMed

    Castañeda-Villa, N; Jiménez-González, A; Ortiz-Posadas, M R

    2015-08-01

    Since 1974, the Bachelor of Biomedical Engineering Program (BBME) is offered at Universidad Autónoma Metropolitana-Iztapalapa, in Mexico City. By design, it must be completed in four years (12 trimesters) and, in the latter three, the senior students work on a BME project, which is done by completing three modules: Project Seminar (PS), Project on BME I and Project on BME II. In the PS module, the student must find a problem of interest in the BME field and suggest a solution through the development of an Engineering Project Proposal (EPP). Currently, the module is being taught by two faculty members of the BBME, who instruct students on how to develop their EPPs and evaluate their progress by reviewing a number of EPPs during the trimester. This generates a huge workload for the module instructors, which makes it necessary to involve more faculty members trimester-to-trimester (i.e. every 12 weeks) and, therefore, to create a set of systematic guidelines that ease the evaluation process for new instructors. Hence, the purpose of this paper is to present an assessment strategy (in the form of an assessment matrix) for the PS module as well as some preliminary results after two trimesters of its implementation.

  5. A New Tool For The Hospital Lab

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The multi-module AutoMicrobic System (AMS), whose development stemmed from space-biomedical research, is an automatic, time-saving system for detecting and identifying disease-producing microorganisms in the human body.

  6. Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene

    NASA Astrophysics Data System (ADS)

    Jessop, David S.; Sol, Christian W. O.; Xiao, Long; Kindness, Stephen J.; Braeuninger-Weimer, Philipp; Lin, Hungyen; Griffiths, Jonathan P.; Ren, Yuan; Kamboj, Varun S.; Hofmann, Stephan; Zeitler, J. Axel; Beere, Harvey E.; Ritchie, David A.; Degl'Innocenti, Riccardo

    2016-02-01

    The growing interest in terahertz (THz) technologies in recent years has seen a wide range of demonstrated applications, spanning from security screening, non-destructive testing, gas sensing, to biomedical imaging and communication. Communication with THz radiation offers the advantage of much higher bandwidths than currently available, in an unallocated spectrum. For this to be realized, optoelectronic components capable of manipulating THz radiation at high speeds and high signal-to-noise ratios must be developed. In this work we demonstrate a room temperature frequency dependent optoelectronic amplitude modulator working at around 2 THz, which incorporates graphene as the tuning medium. The architecture of the modulator is an array of plasmonic dipole antennas surrounded by graphene. By electrostatically doping the graphene via a back gate electrode, the reflection characteristics of the modulator are modified. The modulator is electrically characterized to determine the graphene conductivity and optically characterization, by THz time-domain spectroscopy and a single-mode 2 THz quantum cascade laser, to determine the optical modulation depth and cut-off frequency. A maximum optical modulation depth of ~ 30% is estimated and is found to be most (least) sensitive when the electrical modulation is centered at the point of maximum (minimum) differential resistivity of the graphene. A 3 dB cut-off frequency > 5 MHz, limited only by the area of graphene on the device, is reported. The results agree well with theoretical calculations and numerical simulations, and demonstrate the first steps towards ultra-fast, graphene based THz optoelectronic devices.

  7. Biomedical laboratory science education: standardising teaching content in resource-limited countries.

    PubMed

    Arneson, Wendy; Robinson, Cathy; Nyary, Bryan

    2013-01-01

    There is a worldwide shortage of qualified laboratory personnel to provide adequate testing for the detection and monitoring of diseases. In an effort to increase laboratory capacity in developing countries, new skills have been introduced into laboratory services. Curriculum revision with a focus on good laboratory practice is an important aspect of supplying entry-level graduates with the competencies needed to meet the current needs. Gaps in application and problem-solving competencies of newly graduated laboratory personnel were discovered in Ethiopia, Tanzania and Kenya. New medical laboratory teaching content was developed in Ethiopia, Tanzania and Kenya using national instructors, tutors, and experts and consulting medical laboratory educators from the United States of America (USA). Workshops were held in Ethiopia to create standardised biomedical laboratory science (BMLS) lessons based on recently-revised course objectives with an emphasis on application of skills. In Tanzania, course-module teaching guides with objectives were developed based on established competency outcomes and tasks. In Kenya, example interactive presentations and lesson plans were developed by the USA medical laboratory educators prior to the workshop to serve as resources and templates for the development of lessons within the country itself. The new teaching materials were implemented and faculty, students and other stakeholders reported successful outcomes. These approaches to updating curricula may be helpful as biomedical laboratory schools in other countries address gaps in the competencies of entry-level graduates.

  8. Wireless plataforms for the monitoring of biomedical variables

    NASA Astrophysics Data System (ADS)

    Bianco, Román; Laprovitta, Agustín; Misa, Alberto; Toselli, Eduardo; Castagnola, Juan Luis

    2007-11-01

    The present paper aims to analyze and to compare two wireless platforms for the monitoring of biomedical variables. They must obtain the vital signals of the patients, transmit them through a radio frequency bond and centralize them for their process, storage and monitoring in real time. The implementation of this system permit us to obtain two important benefits; The patient will enjoy greater comfort during the internment, and the doctors will be able to know the state of the biomedical variables of each patient, in simultaneous form. In order to achieve the objective of this work, two communication systems for wireless transmissions data were developed and implemented. The CC1000 transceiver was used in the first system and the Bluetooth module was used in the other system.

  9. Using Mouse Mammary Tumor Cells to Teach Core Biology Concepts: A Simple Lab Module.

    PubMed

    McIlrath, Victoria; Trye, Alice; Aguanno, Ann

    2015-06-18

    Undergraduate biology students are required to learn, understand and apply a variety of cellular and molecular biology concepts and techniques in preparation for biomedical, graduate and professional programs or careers in science. To address this, a simple laboratory module was devised to teach the concepts of cell division, cellular communication and cancer through the application of animal cell culture techniques. Here the mouse mammary tumor (MMT) cell line is used to model for breast cancer. Students learn to grow and characterize these animal cells in culture and test the effects of traditional and non-traditional chemotherapy agents on cell proliferation. Specifically, students determine the optimal cell concentration for plating and growing cells, learn how to prepare and dilute drug solutions, identify the best dosage and treatment time course of the antiproliferative agents, and ascertain the rate of cell death in response to various treatments. The module employs both a standard cell counting technique using a hemocytometer and a novel cell counting method using microscopy software. The experimental procedure lends to open-ended inquiry as students can modify critical steps of the protocol, including testing homeopathic agents and over-the-counter drugs. In short, this lab module requires students to use the scientific process to apply their knowledge of the cell cycle, cellular signaling pathways, cancer and modes of treatment, all while developing an array of laboratory skills including cell culture and analysis of experimental data not routinely taught in the undergraduate classroom.

  10. [327] Biomedical Research Deferred in the Aftermath of the Apollo Fire: Impact to Progress in Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Charles, John B.

    2017-01-01

    Before Apollo fire, early Apollo missions were expected to continue pattern established in Gemini program of accommodating significant scientific and biological experimentation, including human biomedical studies, during flights. Apollo1 and Apollo2, both 2-week engineering test flights, were to carry almost as many biomedical studies as Gemini 7, a 2-week medical test mission.

  11. MOEMS optical delay line for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Choudhary, Om P.; Chouksey, S.; Sen, P. K.; Sen, P.; Solanki, J.; Andrews, J. T.

    2014-09-01

    Micro-Opto-Electro-Mechanical optical coherence tomography, a lab-on-chip for biomedical applications is designed, studied, fabricated and characterized. To fabricate the device standard PolyMUMPS processes is adopted. We report the utilization of electro-optic modulator for a fast scanning optical delay line for time domain optical coherence tomography. Design optimization are performed using Tanner EDA while simulations are performed using COMSOL. The paper summarizes various results and fabrication methodology adopted. The success of the device promises a future hand-held or endoscopic optical coherence tomography for biomedical applications.

  12. An integrated open-cavity system for magnetic bead manipulation.

    PubMed

    Abu-Nimeh, F T; Salem, F M

    2013-02-01

    Superparamagnetic beads are increasingly used in biomedical assays to manipulate, transport, and maneuver biomaterials. We present a low-cost integrated system designed in bulk CMOS to manipulate and separate biomedical magnetic beads. The system consists of 8 × 8 coil-arrays suitable for single bead manipulation, or collaborative multi-bead manipulation, using pseudo-parallel executions. We demonstrate the flexibility of the design in terms of different coil sizes, DC current levels, and layout techniques. In one array module example, the size of a single coil is 30 μm × 30 μm and the full array occupies an area of 248 μm × 248 μm in 0.5 μm CMOS technology. The programmable DC current source supports 8 discrete levels up to 1.5 mA. The total power consumption of the entire module is 9 mW when running at full power.

  13. Graphene oxide assisted synthesis of GaN nanostructures for reducing cell adhesion.

    PubMed

    Yang, Rong; Zhang, Ying; Li, Jingying; Han, Qiusen; Zhang, Wei; Lu, Chao; Yang, Yanlian; Dong, Hongwei; Wang, Chen

    2013-11-21

    We report a general approach for the synthesis of large-scale gallium nitride (GaN) nanostructures by the graphene oxide (GO) assisted chemical vapor deposition (CVD) method. A modulation effect of GaN nanostructures on cell adhesion has been observed. The morphology of the GaN surface can be controlled by GO concentrations. This approach, which is based on the predictable choice of the ratio of GO to catalysts, can be readily extended to the synthesis of other materials with controllable nanostructures. Cell studies show that GaN nanostructures reduced cell adhesion significantly compared to GaN flat surfaces. The cell-repelling property is related to the nanostructure and surface wettability. These observations of the modulation effect on cell behaviors suggest new opportunities for novel GaN nanomaterial-based biomedical devices. We believe that potential applications will emerge in the biomedical and biotechnological fields.

  14. A three channel telemetry system

    NASA Technical Reports Server (NTRS)

    Lesho, Jeffery C.; Eaton, Harry A. C.

    1993-01-01

    A three channel telemetry system intended for biomedical applications is described. The transmitter is implemented in a single chip using a 2 micron BiCMOS processes. The operation of the system and the test results from the latest chip are discussed. One channel is always dedicated to temperature measurement while the other two channels are generic. The generic channels carry information from transducers that are interfaced to the system through on-chip general purpose operational amplifiers. The generic channels have different bandwidths: one from dc to 250 Hz and the other from dc to 1300 Hz. Each generic channel modulates a current controlled oscillator to produce a frequency modulated signal. The two frequency modulated signals are summed and used to amplitude modulate the temperature signal which acts as a carrier. A near-field inductive link telemeters the combined signals over a short distance. The chip operates on a supply voltage anywhere from 2.5 to 3.6 Volts and draws less than 1 mA when transmitting a signal. The chip can be incorporated into ingestible, implantable and other configurations. The device can free the patient from tethered data collection systems and reduces the possibility of infection from subcutaneous leads. Data telemetry can increase patient comfort leading to a greater acceptance of monitoring.

  15. WE-AB-204-11: Development of a Nuclear Medicine Dosimetry Module for the GPU-Based Monte Carlo Code ARCHER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, T; Lin, H; Xu, X

    Purpose: To develop a nuclear medicine dosimetry module for the GPU-based Monte Carlo code ARCHER. Methods: We have developed a nuclear medicine dosimetry module for the fast Monte Carlo code ARCHER. The coupled electron-photon Monte Carlo transport kernel included in ARCHER is built upon the Dose Planning Method code (DPM). The developed module manages the radioactive decay simulation by consecutively tracking several types of radiation on a per disintegration basis using the statistical sampling method. Optimization techniques such as persistent threads and prefetching are studied and implemented. The developed module is verified against the VIDA code, which is based onmore » Geant4 toolkit and has previously been verified against OLINDA/EXM. A voxelized geometry is used in the preliminary test: a sphere made of ICRP soft tissue is surrounded by a box filled with water. Uniform activity distribution of I-131 is assumed in the sphere. Results: The self-absorption dose factors (mGy/MBqs) of the sphere with varying diameters are calculated by ARCHER and VIDA respectively. ARCHER’s result is in agreement with VIDA’s that are obtained from a previous publication. VIDA takes hours of CPU time to finish the computation, while it takes ARCHER 4.31 seconds for the 12.4-cm uniform activity sphere case. For a fairer CPU-GPU comparison, more effort will be made to eliminate the algorithmic differences. Conclusion: The coupled electron-photon Monte Carlo code ARCHER has been extended to radioactive decay simulation for nuclear medicine dosimetry. The developed code exhibits good performance in our preliminary test. The GPU-based Monte Carlo code is developed with grant support from the National Institute of Biomedical Imaging and Bioengineering through an R01 grant (R01EB015478)« less

  16. Modulated CMOS camera for fluorescence lifetime microscopy.

    PubMed

    Chen, Hongtao; Holst, Gerhard; Gratton, Enrico

    2015-12-01

    Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime of entire images. However, the complexity and high costs involved in construction of such a system limit the extensive use of this technique. PCO AG recently released the first luminescence lifetime imaging camera based on a high frequency modulated CMOS image sensor, QMFLIM2. Here we tested and provide operational procedures to calibrate the camera and to improve the accuracy using corrections necessary for image analysis. With its flexible input/output options, we are able to use a modulated laser diode or a 20 MHz pulsed white supercontinuum laser as the light source. The output of the camera consists of a stack of modulated images that can be analyzed by the SimFCS software using the phasor approach. The nonuniform system response across the image sensor must be calibrated at the pixel level. This pixel calibration is crucial and needed for every camera settings, e.g. modulation frequency and exposure time. A significant dependency of the modulation signal on the intensity was also observed and hence an additional calibration is needed for each pixel depending on the pixel intensity level. These corrections are important not only for the fundamental frequency, but also for the higher harmonics when using the pulsed supercontinuum laser. With these post data acquisition corrections, the PCO CMOS-FLIM camera can be used for various biomedical applications requiring a large frame and high speed acquisition. © 2015 Wiley Periodicals, Inc.

  17. Biomedical laboratory science education: standardising teaching content in resource-limited countries

    PubMed Central

    Robinson, Cathy; Nyary, Bryan

    2013-01-01

    Background There is a worldwide shortage of qualified laboratory personnel to provide adequate testing for the detection and monitoring of diseases. In an effort to increase laboratory capacity in developing countries, new skills have been introduced into laboratory services. Curriculum revision with a focus on good laboratory practice is an important aspect of supplying entry-level graduates with the competencies needed to meet the current needs. Objectives Gaps in application and problem-solving competencies of newly graduated laboratory personnel were discovered in Ethiopia, Tanzania and Kenya. New medical laboratory teaching content was developed in Ethiopia, Tanzania and Kenya using national instructors, tutors, and experts and consulting medical laboratory educators from the United States of America (USA). Method Workshops were held in Ethiopia to create standardised biomedical laboratory science (BMLS) lessons based on recently-revised course objectives with an emphasis on application of skills. In Tanzania, course-module teaching guides with objectives were developed based on established competency outcomes and tasks. In Kenya, example interactive presentations and lesson plans were developed by the USA medical laboratory educators prior to the workshop to serve as resources and templates for the development of lessons within the country itself. Results The new teaching materials were implemented and faculty, students and other stakeholders reported successful outcomes. Conclusions These approaches to updating curricula may be helpful as biomedical laboratory schools in other countries address gaps in the competencies of entry-level graduates. PMID:29043162

  18. Toward modular biological models: defining analog modules based on referent physiological mechanisms

    PubMed Central

    2014-01-01

    Background Currently, most biomedical models exist in isolation. It is often difficult to reuse or integrate models or their components, in part because they are not modular. Modular components allow the modeler to think more deeply about the role of the model and to more completely address a modeling project’s requirements. In particular, modularity facilitates component reuse and model integration for models with different use cases, including the ability to exchange modules during or between simulations. The heterogeneous nature of biology and vast range of wet-lab experimental platforms call for modular models designed to satisfy a variety of use cases. We argue that software analogs of biological mechanisms are reasonable candidates for modularization. Biomimetic software mechanisms comprised of physiomimetic mechanism modules offer benefits that are unique or especially important to multi-scale, biomedical modeling and simulation. Results We present a general, scientific method of modularizing mechanisms into reusable software components that we call physiomimetic mechanism modules (PMMs). PMMs utilize parametric containers that partition and expose state information into physiologically meaningful groupings. To demonstrate, we modularize four pharmacodynamic response mechanisms adapted from an in silico liver (ISL). We verified the modularization process by showing that drug clearance results from in silico experiments are identical before and after modularization. The modularized ISL achieves validation targets drawn from propranolol outflow profile data. In addition, an in silico hepatocyte culture (ISHC) is created. The ISHC uses the same PMMs and required no refactoring. The ISHC achieves validation targets drawn from propranolol intrinsic clearance data exhibiting considerable between-lab variability. The data used as validation targets for PMMs originate from both in vitro to in vivo experiments exhibiting large fold differences in time scale. Conclusions This report demonstrates the feasibility of PMMs and their usefulness across multiple model use cases. The pharmacodynamic response module developed here is robust to changes in model context and flexible in its ability to achieve validation targets in the face of considerable experimental uncertainty. Adopting the modularization methods presented here is expected to facilitate model reuse and integration, thereby accelerating the pace of biomedical research. PMID:25123169

  19. Toward modular biological models: defining analog modules based on referent physiological mechanisms.

    PubMed

    Petersen, Brenden K; Ropella, Glen E P; Hunt, C Anthony

    2014-08-16

    Currently, most biomedical models exist in isolation. It is often difficult to reuse or integrate models or their components, in part because they are not modular. Modular components allow the modeler to think more deeply about the role of the model and to more completely address a modeling project's requirements. In particular, modularity facilitates component reuse and model integration for models with different use cases, including the ability to exchange modules during or between simulations. The heterogeneous nature of biology and vast range of wet-lab experimental platforms call for modular models designed to satisfy a variety of use cases. We argue that software analogs of biological mechanisms are reasonable candidates for modularization. Biomimetic software mechanisms comprised of physiomimetic mechanism modules offer benefits that are unique or especially important to multi-scale, biomedical modeling and simulation. We present a general, scientific method of modularizing mechanisms into reusable software components that we call physiomimetic mechanism modules (PMMs). PMMs utilize parametric containers that partition and expose state information into physiologically meaningful groupings. To demonstrate, we modularize four pharmacodynamic response mechanisms adapted from an in silico liver (ISL). We verified the modularization process by showing that drug clearance results from in silico experiments are identical before and after modularization. The modularized ISL achieves validation targets drawn from propranolol outflow profile data. In addition, an in silico hepatocyte culture (ISHC) is created. The ISHC uses the same PMMs and required no refactoring. The ISHC achieves validation targets drawn from propranolol intrinsic clearance data exhibiting considerable between-lab variability. The data used as validation targets for PMMs originate from both in vitro to in vivo experiments exhibiting large fold differences in time scale. This report demonstrates the feasibility of PMMs and their usefulness across multiple model use cases. The pharmacodynamic response module developed here is robust to changes in model context and flexible in its ability to achieve validation targets in the face of considerable experimental uncertainty. Adopting the modularization methods presented here is expected to facilitate model reuse and integration, thereby accelerating the pace of biomedical research.

  20. In-silico experiments of zebrafish behaviour: modeling swimming in three dimensions

    NASA Astrophysics Data System (ADS)

    Mwaffo, Violet; Butail, Sachit; Porfiri, Maurizio

    2017-01-01

    Zebrafish is fast becoming a species of choice in biomedical research for the investigation of functional and dysfunctional processes coupled with their genetic and pharmacological modulation. As with mammals, experimentation with zebrafish constitutes a complicated ethical issue that calls for the exploration of alternative testing methods to reduce the number of subjects, refine experimental designs, and replace live animals. Inspired by the demonstrated advantages of computational studies in other life science domains, we establish an authentic data-driven modelling framework to simulate zebrafish swimming in three dimensions. The model encapsulates burst-and-coast swimming style, speed modulation, and wall interaction, laying the foundations for in-silico experiments of zebrafish behaviour. Through computational studies, we demonstrate the ability of the model to replicate common ethological observables such as speed and spatial preference, and anticipate experimental observations on the correlation between tank dimensions on zebrafish behaviour. Reaching to other experimental paradigms, our framework is expected to contribute to a reduction in animal use and suffering.

  1. Tamoxifen accelerates the repair of demyelinated lesions in the central nervous system

    PubMed Central

    Gonzalez, Ginez A.; Hofer, Matthias P.; Syed, Yasir A.; Amaral, Ana I.; Rundle, Jon; Rahman, Saifur; Zhao, Chao; Kotter, Mark R. N.

    2016-01-01

    Enhancing central nervous system (CNS) myelin regeneration is recognized as an important strategy to ameliorate the devastating consequences of demyelinating diseases such as multiple sclerosis. Previous findings have indicated that myelin proteins, which accumulate following demyelination, inhibit remyelination by blocking the differentiation of rat oligodendrocyte progenitor cells (OPCs) via modulation of PKCα. We therefore screened drugs for their potential to overcome this differentiation block. From our screening, tamoxifen emerges as a potent inducer of OPC differentiation in vitro. We show that the effects of tamoxifen rely on modulation of the estrogen receptors ERα, ERβ, and GPR30. Furthermore, we demonstrate that administration of tamoxifen to demyelinated rats in vivo accelerates remyelination. Tamoxifen is a well-established drug and is thus a promising candidate for a drug to regenerate myelin, as it will not require extensive safety testing. In addition, Tamoxifen plays an important role in biomedical research as an activator of inducible genetic models. Our results highlight the importance of appropriate controls when using such models. PMID:27554391

  2. In-silico experiments of zebrafish behaviour: modeling swimming in three dimensions

    PubMed Central

    Mwaffo, Violet; Butail, Sachit; Porfiri, Maurizio

    2017-01-01

    Zebrafish is fast becoming a species of choice in biomedical research for the investigation of functional and dysfunctional processes coupled with their genetic and pharmacological modulation. As with mammals, experimentation with zebrafish constitutes a complicated ethical issue that calls for the exploration of alternative testing methods to reduce the number of subjects, refine experimental designs, and replace live animals. Inspired by the demonstrated advantages of computational studies in other life science domains, we establish an authentic data-driven modelling framework to simulate zebrafish swimming in three dimensions. The model encapsulates burst-and-coast swimming style, speed modulation, and wall interaction, laying the foundations for in-silico experiments of zebrafish behaviour. Through computational studies, we demonstrate the ability of the model to replicate common ethological observables such as speed and spatial preference, and anticipate experimental observations on the correlation between tank dimensions on zebrafish behaviour. Reaching to other experimental paradigms, our framework is expected to contribute to a reduction in animal use and suffering. PMID:28071731

  3. Recent Advances in the Synthesis and Biomedical Applications of Nanocomposite Hydrogels

    PubMed Central

    Spizzirri, Umile Gianfranco; Curcio, Manuela; Cirillo, Giuseppe; Spataro, Tania; Vittorio, Orazio; Picci, Nevio; Hampel, Silke; Iemma, Francesca; Nicoletta, Fiore Pasquale

    2015-01-01

    Hydrogels sensitive to electric current are usually made of polyelectrolytes and undergo erosion, swelling, de-swelling or bending in the presence of an applied electric field. The electrical conductivity of many polymeric materials used for the fabrication of biomedical devices is not high enough to achieve an effective modulation of the functional properties, and thus, the incorporation of conducting materials (e.g., carbon nanotubes and nanographene oxide) was proposed as a valuable approach to overcome this limitation. By coupling the biological and chemical features of both natural and synthetic polymers with the favourable properties of carbon nanostructures (e.g., cellular uptake, electromagnetic and magnetic behaviour), it is possible to produce highly versatile and effective nanocomposite materials. In the present review, the recent advances in the synthesis and biomedical applications of electro-responsive nanocomposite hydrogels are discussed. PMID:26473915

  4. Recent Advances in the Synthesis and Biomedical Applications of Nanocomposite Hydrogels.

    PubMed

    Spizzirri, Umile Gianfranco; Curcio, Manuela; Cirillo, Giuseppe; Spataro, Tania; Vittorio, Orazio; Picci, Nevio; Hampel, Silke; Iemma, Francesca; Nicoletta, Fiore Pasquale

    2015-10-13

    Hydrogels sensitive to electric current are usually made of polyelectrolytes and undergo erosion, swelling, de-swelling or bending in the presence of an applied electric field. The electrical conductivity of many polymeric materials used for the fabrication of biomedical devices is not high enough to achieve an effective modulation of the functional properties, and thus, the incorporation of conducting materials (e.g., carbon nanotubes and nanographene oxide) was proposed as a valuable approach to overcome this limitation. By coupling the biological and chemical features of both natural and synthetic polymers with the favourable properties of carbon nanostructures (e.g., cellular uptake, electromagnetic and magnetic behaviour), it is possible to produce highly versatile and effective nanocomposite materials. In the present review, the recent advances in the synthesis and biomedical applications of electro-responsive nanocomposite hydrogels are discussed.

  5. @Note: a workbench for biomedical text mining.

    PubMed

    Lourenço, Anália; Carreira, Rafael; Carneiro, Sónia; Maia, Paulo; Glez-Peña, Daniel; Fdez-Riverola, Florentino; Ferreira, Eugénio C; Rocha, Isabel; Rocha, Miguel

    2009-08-01

    Biomedical Text Mining (BioTM) is providing valuable approaches to the automated curation of scientific literature. However, most efforts have addressed the benchmarking of new algorithms rather than user operational needs. Bridging the gap between BioTM researchers and biologists' needs is crucial to solve real-world problems and promote further research. We present @Note, a platform for BioTM that aims at the effective translation of the advances between three distinct classes of users: biologists, text miners and software developers. Its main functional contributions are the ability to process abstracts and full-texts; an information retrieval module enabling PubMed search and journal crawling; a pre-processing module with PDF-to-text conversion, tokenisation and stopword removal; a semantic annotation schema; a lexicon-based annotator; a user-friendly annotation view that allows to correct annotations and a Text Mining Module supporting dataset preparation and algorithm evaluation. @Note improves the interoperability, modularity and flexibility when integrating in-home and open-source third-party components. Its component-based architecture allows the rapid development of new applications, emphasizing the principles of transparency and simplicity of use. Although it is still on-going, it has already allowed the development of applications that are currently being used.

  6. Non-thermal plasma jet without electrical shock for biomedical applications

    NASA Astrophysics Data System (ADS)

    Baik, Ku Youn; Kang, Han Lim; Kim, Junseong; Park, Shin Young; Bang, Ji Yun; Uhm, Han S.; Choi, Eun Ha; Cho, Guangsup

    2013-10-01

    A plasma jet without an electrical shock was generated through a Y-shaped tube in which voltages with opposite phases were applied to a pair of tubes. The plasma plume generated at the intersection had a plasma potential of a 60-90 V and high concentrations of reactive species sufficient to induce a high level of lethality on gram-negative bacteria on a tissue mimic. The selective lethality of bacteria on an epithelial-cell-containing tissue mimic could be modulated using oxidant and antioxidant chemicals, thereby leading to the possibility of a shock-reduced plasma jet for biomedical applications.

  7. Problem-Based Learning in Biomechanics: Advantages, Challenges, and Implementation Strategies.

    PubMed

    Clyne, Alisa Morss; Billiar, Kristen L

    2016-07-01

    Problem-based learning (PBL) has been shown to be effective in biomedical engineering education, particularly in motivating student learning, increasing knowledge retention, and developing problem solving, communication, and teamwork skills. However, PBL adoption remains limited by real challenges in effective implementation. In this paper, we review the literature on advantages and challenges of PBL and present our own experiences. We also provide practical guidelines for implementing PBL, including two examples of PBL modules from biomechanics courses at two different institutions. Overall, we conclude that the benefits for both professors and students support the use of PBL in biomedical engineering education.

  8. Laser surface texturing of polymers for biomedical applications

    NASA Astrophysics Data System (ADS)

    Riveiro, Antonio; Maçon, Anthony L. B.; del Val, Jesus; Comesaña, Rafael; Pou, Juan

    2018-02-01

    Polymers are materials widely used in biomedical science because of their biocompatibility, and good mechanical properties (which, in some cases, are similar to those of human tissues); however, these materials are, in general, chemically and biologically inert. Surface characteristics, such as topography (at the macro-, micro, and nanoscale), surface chemistry, surface energy, charge or wettability are interrelated properties, and they cooperatively influence the biological performance of materials when used for biomedical applications. They regulate the biological response at the implant/tissue interface (e.g., influencing the cell adhesion, cell orientation, cell motility, etc.). Several surface processing techniques have been explored to modulate these properties for biomedical applications. Despite their potentials, these methods have limitations that prevent their applicability. In this regard, laser-based methods, in particular laser surface texturing (LST), can be an interesting alternative. Different works have showed the potentiality of this technique to control the surface properties of biomedical polymers and enhance their biological performance; however, more research is needed to obtain the desired biological response. This work provides a general overview of the basics and applications of LST for the surface modification of polymers currently used in the clinical practice (e.g. PEEK, UHMWPE, PP, etc.). The modification of roughness, wettability, and their impact on the biological response is addressed to offer new insights on the surface modification of biomedical polymers.

  9. A compact high resolution flat panel PET detector based on the new 4-side buttable MPPC for biomedical applications.

    PubMed

    Wang, Qiang; Wen, Jie; Ravindranath, Bosky; O'Sullivan, Andrew W; Catherall, David; Li, Ke; Wei, Shouyi; Komarov, Sergey; Tai, Yuan-Chuan

    2015-09-11

    Compact high-resolution panel detectors using virtual pinhole (VP) PET geometry can be inserted into existing clinical or pre-clinical PET systems to improve regional spatial resolution and sensitivity. Here we describe a compact panel PET detector built using the new Though Silicon Via (TSV) multi-pixel photon counters (MPPC) detector. This insert provides high spatial resolution and good timing performance for multiple bio-medical applications. Because the TSV MPPC design eliminates wire bonding and has a package dimension which is very close to the MPPC's active area, it is 4-side buttable. The custom designed MPPC array (based on Hamamatsu S12641-PA-50(x)) used in the prototype is composed of 4 × 4 TSV-MPPC cells with a 4.46 mm pitch in both directions. The detector module has 16 × 16 lutetium yttrium oxyorthosilicate (LYSO) crystal array, with each crystal measuring 0.92 × 0.92 × 3 mm 3 with 1.0 mm pitch. The outer diameter of the detector block is 16.8 × 16.8 mm 2 . Thirty-two such blocks will be arranged in a 4 × 8 array with 1 mm gaps to form a panel detector with detection area around 7 cm × 14 cm in the full-size detector. The flood histogram acquired with Ge-68 source showed excellent crystal separation capability with all 256 crystals clearly resolved. The detector module's mean, standard deviation, minimum (best) and maximum (worst) energy resolution were 10.19%, +/-0.68%, 8.36% and 13.45% FWHM, respectively. The measured coincidence time resolution between the block detector and a fast reference detector (around 200 ps single photon timing resolution) was 0.95 ns. When tested with Siemens Cardinal electronics the performance of the detector blocks remain consistent. These results demonstrate that the TSV-MPPC is a promising photon sensor for use in a flat panel PET insert composed of many high resolution compact detector modules.

  10. Biomedical ground lead system

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design and verification tests for the biomedical ground lead system of Apollo biomedical monitors are presented. Major efforts were made to provide a low impedance path to ground, reduce noise and artifact of ECG signals, and limit the current flowing in the ground electrode of the system.

  11. A survey of quality assurance practices in biomedical open source software projects.

    PubMed

    Koru, Günes; El Emam, Khaled; Neisa, Angelica; Umarji, Medha

    2007-05-07

    Open source (OS) software is continuously gaining recognition and use in the biomedical domain, for example, in health informatics and bioinformatics. Given the mission critical nature of applications in this domain and their potential impact on patient safety, it is important to understand to what degree and how effectively biomedical OS developers perform standard quality assurance (QA) activities such as peer reviews and testing. This would allow the users of biomedical OS software to better understand the quality risks, if any, and the developers to identify process improvement opportunities to produce higher quality software. A survey of developers working on biomedical OS projects was conducted to examine the QA activities that are performed. We took a descriptive approach to summarize the implementation of QA activities and then examined some of the factors that may be related to the implementation of such practices. Our descriptive results show that 63% (95% CI, 54-72) of projects did not include peer reviews in their development process, while 82% (95% CI, 75-89) did include testing. Approximately 74% (95% CI, 67-81) of developers did not have a background in computing, 80% (95% CI, 74-87) were paid for their contributions to the project, and 52% (95% CI, 43-60) had PhDs. A multivariate logistic regression model to predict the implementation of peer reviews was not significant (likelihood ratio test = 16.86, 9 df, P = .051) and neither was a model to predict the implementation of testing (likelihood ratio test = 3.34, 9 df, P = .95). Less attention is paid to peer review than testing. However, the former is a complementary, and necessary, QA practice rather than an alternative. Therefore, one can argue that there are quality risks, at least at this point in time, in transitioning biomedical OS software into any critical settings that may have operational, financial, or safety implications. Developers of biomedical OS applications should invest more effort in implementing systemic peer review practices throughout the development and maintenance processes.

  12. Payload Specialist Byron K. Lichtenberg working in the Spacelab

    NASA Image and Video Library

    1983-11-28

    STS009-125-427 (28 Nov 1983) --- Payload Specialist Byron K. Lichtenberg carries out an experiment at the fluid physics module on the busy materials science double rack facility. Two beverage containers can be seen just above the biomedical engineer's head.

  13. BIOMEDICAL - MEDICAL (ECHOCARDIOGRAPH) - JSC

    NASA Image and Video Library

    1987-03-12

    S87-28936 (March 1987) --- The Spacelab Life Sciences-1 (SLS-1) echocardiograph, installed in a science module rack, displays the image of a human heart. One of the objectives on SLS-1 is the investigation of the effects of microgravity on heart size and function.

  14. MAPI: a software framework for distributed biomedical applications

    PubMed Central

    2013-01-01

    Background The amount of web-based resources (databases, tools etc.) in biomedicine has increased, but the integrated usage of those resources is complex due to differences in access protocols and data formats. However, distributed data processing is becoming inevitable in several domains, in particular in biomedicine, where researchers face rapidly increasing data sizes. This big data is difficult to process locally because of the large processing, memory and storage capacity required. Results This manuscript describes a framework, called MAPI, which provides a uniform representation of resources available over the Internet, in particular for Web Services. The framework enhances their interoperability and collaborative use by enabling a uniform and remote access. The framework functionality is organized in modules that can be combined and configured in different ways to fulfil concrete development requirements. Conclusions The framework has been tested in the biomedical application domain where it has been a base for developing several clients that are able to integrate different web resources. The MAPI binaries and documentation are freely available at http://www.bitlab-es.com/mapi under the Creative Commons Attribution-No Derivative Works 2.5 Spain License. The MAPI source code is available by request (GPL v3 license). PMID:23311574

  15. Owlready: Ontology-oriented programming in Python with automatic classification and high level constructs for biomedical ontologies.

    PubMed

    Lamy, Jean-Baptiste

    2017-07-01

    Ontologies are widely used in the biomedical domain. While many tools exist for the edition, alignment or evaluation of ontologies, few solutions have been proposed for ontology programming interface, i.e. for accessing and modifying an ontology within a programming language. Existing query languages (such as SPARQL) and APIs (such as OWLAPI) are not as easy-to-use as object programming languages are. Moreover, they provide few solutions to difficulties encountered with biomedical ontologies. Our objective was to design a tool for accessing easily the entities of an OWL ontology, with high-level constructs helping with biomedical ontologies. From our experience on medical ontologies, we identified two difficulties: (1) many entities are represented by classes (rather than individuals), but the existing tools do not permit manipulating classes as easily as individuals, (2) ontologies rely on the open-world assumption, whereas the medical reasoning must consider only evidence-based medical knowledge as true. We designed a Python module for ontology-oriented programming. It allows access to the entities of an OWL ontology as if they were objects in the programming language. We propose a simple high-level syntax for managing classes and the associated "role-filler" constraints. We also propose an algorithm for performing local closed world reasoning in simple situations. We developed Owlready, a Python module for a high-level access to OWL ontologies. The paper describes the architecture and the syntax of the module version 2. It details how we integrated the OWL ontology model with the Python object model. The paper provides examples based on Gene Ontology (GO). We also demonstrate the interest of Owlready in a use case focused on the automatic comparison of the contraindications of several drugs. This use case illustrates the use of the specific syntax proposed for manipulating classes and for performing local closed world reasoning. Owlready has been successfully used in a medical research project. It has been published as Open-Source software and then used by many other researchers. Future developments will focus on the support of vagueness and additional non-monotonic reasoning feature, and automatic dialog box generation. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. geneCBR: a translational tool for multiple-microarray analysis and integrative information retrieval for aiding diagnosis in cancer research.

    PubMed

    Glez-Peña, Daniel; Díaz, Fernando; Hernández, Jesús M; Corchado, Juan M; Fdez-Riverola, Florentino

    2009-06-18

    Bioinformatics and medical informatics are two research fields that serve the needs of different but related communities. Both domains share the common goal of providing new algorithms, methods and technological solutions to biomedical research, and contributing to the treatment and cure of diseases. Although different microarray techniques have been successfully used to investigate useful information for cancer diagnosis at the gene expression level, the true integration of existing methods into day-to-day clinical practice is still a long way off. Within this context, case-based reasoning emerges as a suitable paradigm specially intended for the development of biomedical informatics applications and decision support systems, given the support and collaboration involved in such a translational development. With the goals of removing barriers against multi-disciplinary collaboration and facilitating the dissemination and transfer of knowledge to real practice, case-based reasoning systems have the potential to be applied to translational research mainly because their computational reasoning paradigm is similar to the way clinicians gather, analyze and process information in their own practice of clinical medicine. In addressing the issue of bridging the existing gap between biomedical researchers and clinicians who work in the domain of cancer diagnosis, prognosis and treatment, we have developed and made accessible a common interactive framework. Our geneCBR system implements a freely available software tool that allows the use of combined techniques that can be applied to gene selection, clustering, knowledge extraction and prediction for aiding diagnosis in cancer research. For biomedical researches, geneCBR expert mode offers a core workbench for designing and testing new techniques and experiments. For pathologists or oncologists, geneCBR diagnostic mode implements an effective and reliable system that can diagnose cancer subtypes based on the analysis of microarray data using a CBR architecture. For programmers, geneCBR programming mode includes an advanced edition module for run-time modification of previous coded techniques. geneCBR is a new translational tool that can effectively support the integrative work of programmers, biomedical researches and clinicians working together in a common framework. The code is freely available under the GPL license and can be obtained at http://www.genecbr.org.

  17. Novel Blend for Producing Porous Chitosan-Based Films Suitable for Biomedical Applications

    PubMed Central

    Nady, Norhan; Kandil, Sherif H.

    2018-01-01

    In this work, a chitosan–gelatin–ferulic acid blend was used in different ratios for preparing novel films that can be used in biomedical applications. Both acetic and formic acid were tested as solvents for the chitosan–gelatin–ferulic acid blend. Glycerol was tested as a plasticizer. The thickness, mechanical strength, static water contact angle and water uptake of the prepared films were determined. Also, the prepared films were characterized using different analysis techniques such as Fourier transform infrared spectroscopy (FT-IR) analysis, X-ray diffraction (XRD), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Acetic acid produced continuous compact surfaces that are not recommended for testing in biomedical applications. The plasticized chitosan–gelatin–ferulic acid blend, using formic acid solvent, produced novel hexagonal porous films with a pore size of around 10–14 µm. This blend is recommended for preparing films (scaffolds) for testing in biomedical applications as it has the advantage of a decreased thickness. PMID:29301357

  18. Noguchi uses BMMD in SM

    NASA Image and Video Library

    2010-05-26

    ISS023-E-052104 (26 May 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 23 flight engineer, uses the IM mass measurement device to perform the PZEh-MO-8/Body Mass Measurement Russian biomedical routine assessments in the Zvezda Service Module of the International Space Station.

  19. Detonation Nanodiamond Toxicity in Human Airway Epithelial Cells Is Modulated by Air Oxidation

    EPA Science Inventory

    Detonational nanodiamonds (DND), a nanomaterial with an increasing range of industrial and biomedical applications, have previously been shown to induce a pro-inflammatory response in cultured human airway epithelial cells (HAEC). We now show that surface modifications induced by...

  20. Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light

    PubMed Central

    Ruan, Haowen; Brake, Joshua; Robinson, J. Elliott; Liu, Yan; Jang, Mooseok; Xiao, Cheng; Zhou, Chunyi; Gradinaru, Viviana; Yang, Changhuei

    2017-01-01

    Noninvasive light focusing deep inside living biological tissue has long been a goal in biomedical optics. However, the optical scattering of biological tissue prevents conventional optical systems from tightly focusing visible light beyond several hundred micrometers. The recently developed wavefront shaping technique time-reversed ultrasonically encoded (TRUE) focusing enables noninvasive light delivery to targeted locations beyond the optical diffusion limit. However, until now, TRUE focusing has only been demonstrated inside nonliving tissue samples. We present the first example of TRUE focusing in 2-mm-thick living brain tissue and demonstrate its application for optogenetic modulation of neural activity in 800-μm-thick acute mouse brain slices at a wavelength of 532 nm. We found that TRUE focusing enabled precise control of neuron firing and increased the spatial resolution of neuronal excitation fourfold when compared to conventional lens focusing. This work is an important step in the application of TRUE focusing for practical biomedical uses. PMID:29226248

  1. A Low-Power and Portable Biomedical Device for Respiratory Monitoring with a Stable Power Source

    PubMed Central

    Yang, Jiachen; Chen, Bobo; Zhou, Jianxiong; Lv, Zhihan

    2015-01-01

    Continuous respiratory monitoring is an important tool for clinical monitoring. Associated with the development of biomedical technology, it has become more and more important, especially in the measuring of gas flow and CO2 concentration, which can reflect the status of the patient. In this paper, a new type of biomedical device is presented, which uses low-power sensors with a piezoresistive silicon differential pressure sensor to measure gas flow and with a pyroelectric sensor to measure CO2 concentration simultaneously. For the portability of the biomedical device, the sensors and low-power measurement circuits are integrated together, and the airway tube also needs to be miniaturized. Circuits are designed to ensure the stability of the power source and to filter out the existing noise. Modulation technology is used to eliminate the fluctuations at the trough of the waveform of the CO2 concentration signal. Statistical analysis with the coefficient of variation was performed to find out the optimal driving voltage of the pressure transducer. Through targeted experiments, the biomedical device showed a high accuracy, with a measuring precision of 0.23 mmHg, and it worked continuously and stably, thus realizing the real-time monitoring of the status of patients. PMID:26270665

  2. Astronaut Bonnie Dunbar preparing to perform bio-medical test

    NASA Image and Video Library

    1985-10-30

    61A-18-001A (30 Oct-6 Nov 1985) --- Her head equipped with a sensor device, astronaut Bonnie J. Dunbar, 61-A mission specialist, talks to earthbound investigators while participating in a bio-medical test. A 35mm camera was used to expose the frame.

  3. Exploiting semantic patterns over biomedical knowledge graphs for predicting treatment and causative relations.

    PubMed

    Bakal, Gokhan; Talari, Preetham; Kakani, Elijah V; Kavuluru, Ramakanth

    2018-06-01

    Identifying new potential treatment options for medical conditions that cause human disease burden is a central task of biomedical research. Since all candidate drugs cannot be tested with animal and clinical trials, in vitro approaches are first attempted to identify promising candidates. Likewise, identifying different causal relations between biomedical entities is also critical to understand biomedical processes. Generally, natural language processing (NLP) and machine learning are used to predict specific relations between any given pair of entities using the distant supervision approach. To build high accuracy supervised predictive models to predict previously unknown treatment and causative relations between biomedical entities based only on semantic graph pattern features extracted from biomedical knowledge graphs. We used 7000 treats and 2918 causes hand-curated relations from the UMLS Metathesaurus to train and test our models. Our graph pattern features are extracted from simple paths connecting biomedical entities in the SemMedDB graph (based on the well-known SemMedDB database made available by the U.S. National Library of Medicine). Using these graph patterns connecting biomedical entities as features of logistic regression and decision tree models, we computed mean performance measures (precision, recall, F-score) over 100 distinct 80-20% train-test splits of the datasets. For all experiments, we used a positive:negative class imbalance of 1:10 in the test set to model relatively more realistic scenarios. Our models predict treats and causes relations with high F-scores of 99% and 90% respectively. Logistic regression model coefficients also help us identify highly discriminative patterns that have an intuitive interpretation. We are also able to predict some new plausible relations based on false positives that our models scored highly based on our collaborations with two physician co-authors. Finally, our decision tree models are able to retrieve over 50% of treatment relations from a recently created external dataset. We employed semantic graph patterns connecting pairs of candidate biomedical entities in a knowledge graph as features to predict treatment/causative relations between them. We provide what we believe is the first evidence in direct prediction of biomedical relations based on graph features. Our work complements lexical pattern based approaches in that the graph patterns can be used as additional features for weakly supervised relation prediction. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Immediate detailed feedback to test-enhanced learning: an effective online educational tool.

    PubMed

    Wojcikowski, Ken; Kirk, Leslie

    2013-11-01

    Test-enhanced learning has gained popularity because it is an effective way to increase retention of knowledge; provided the student receives the correct answer soon after the test is taken. To determine whether detailed feedback provided to test-enhanced learning questions is an effective online educational tool for improving performance on complex biomedical information exams. A series of online multiple choice tests were developed to test knowledge of biomedical information that students were expected to know after each patient-case. Following submission of the student answers, one cohort (n = 52) received answers only while the following year, a second cohort (n = 51) received the answers with detailed feedback explaining why each answer was correct or incorrect. Students in both groups progressed through the series of online tests with little assessor intervention. Students receiving the answers along with the explanations within their feedback performed significantly better in the final biomedical information exam than those students receiving correct answers only. This pilot study found that the detailed feedback to test-enhanced learning questions is an important online learning tool. The increase in student performance in the complex biomedical information exam in this study suggests that detailed feedback should be investigated not only for increasing knowledge, but also be investigated for its effect on retention and application of knowledge.

  5. View of FE Stott using the BMMD in the SM

    NASA Image and Video Library

    2009-10-12

    ISS021-E-014503 (12 Oct. 2009) --- NASA astronaut Nicole Stott, Expedition 21 flight engineer, uses the IM mass measurement device to perform the PZEh-MO-8/Body Mass Measurement Russian biomedical routine assessments in the Zvezda Service Module of the International Space Station.

  6. PZEh-MO-8/Body Mass Measurement

    NASA Image and Video Library

    2009-06-30

    ISS020-E-015853 (30 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, uses the IM mass measurement device to perform the PZEh-MO-8/Body Mass Measurement Russian biomedical routine assessments in the Zvezda Service Module of the International Space Station.

  7. Biotelemetry system for ambulatory patients

    NASA Technical Reports Server (NTRS)

    Fryer, T. B.

    1978-01-01

    Compact transmitter for multichannel telemetry of medical data is carried in patient's belt. Pulse-code modulation (PCM), is used for high-quality signal, and low-power CMOS integrated circuits make miniaturization possible. Transmitter is useful for electro-encephalograms (EEG) and electro-cardiograms (EKG) and other biomedical patient-monitoring situations.

  8. Regulation of proteasomal degradation by modulating proteasomal initiation regions

    PubMed Central

    Takahashi, Kazunobu; Matouschek, Andreas; Inobe, Tomonao

    2016-01-01

    Methods for regulating the concentrations of specific cellular proteins are valuable tools for biomedical studies. Artificial regulation of protein degradation by the proteasome is receiving increasing attention. Efficient proteasomal protein degradation requires a degron with two components: a ubiquitin tag that is recognized by the proteasome and a disordered region at which the proteasome engages the substrate and initiates degradation. Here we show that degradation rates can be regulated by modulating the disordered initiation region by the binding of modifier molecules, in vitro and in vivo. These results suggest that artificial modulation of proteasome initiation is a versatile method for conditionally inhibiting the proteasomal degradation of specific proteins. PMID:26278914

  9. ProNormz--an integrated approach for human proteins and protein kinases normalization.

    PubMed

    Subramani, Suresh; Raja, Kalpana; Natarajan, Jeyakumar

    2014-02-01

    The task of recognizing and normalizing protein name mentions in biomedical literature is a challenging task and important for text mining applications such as protein-protein interactions, pathway reconstruction and many more. In this paper, we present ProNormz, an integrated approach for human proteins (HPs) tagging and normalization. In Homo sapiens, a greater number of biological processes are regulated by a large human gene family called protein kinases by post translational phosphorylation. Recognition and normalization of human protein kinases (HPKs) is considered to be important for the extraction of the underlying information on its regulatory mechanism from biomedical literature. ProNormz distinguishes HPKs from other HPs besides tagging and normalization. To our knowledge, ProNormz is the first normalization system available to distinguish HPKs from other HPs in addition to gene normalization task. ProNormz incorporates a specialized synonyms dictionary for human proteins and protein kinases, a set of 15 string matching rules and a disambiguation module to achieve the normalization. Experimental results on benchmark BioCreative II training and test datasets show that our integrated approach achieve a fairly good performance and outperforms more sophisticated semantic similarity and disambiguation systems presented in BioCreative II GN task. As a freely available web tool, ProNormz is useful to developers as extensible gene normalization implementation, to researchers as a standard for comparing their innovative techniques, and to biologists for normalization and categorization of HPs and HPKs mentions in biomedical literature. URL: http://www.biominingbu.org/pronormz. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Preoperative Pain Neuroscience Education Combined With Knee Joint Mobilization for Knee Osteoarthritis: A Randomized Controlled Trial.

    PubMed

    Lluch, Enrique; Dueñas, Lirios; Falla, Deborah; Baert, Isabel; Meeus, Mira; Sánchez-Frutos, José; Nijs, Jo

    2018-01-01

    This study aimed to first compare the effects of a preoperative treatment combining pain neuroscience education (PNE) with knee joint mobilization versus biomedical education with knee joint mobilization on central sensitization (CS) in patients with knee osteoarthritis, both before and after surgery. Second, we wanted to compare the effects of both interventions on knee pain, disability, and psychosocial variables. Forty-four patients with knee osteoarthritis were allocated to receive 4 sessions of either PNE combined with knee joint mobilization or biomedical education with knee joint mobilization before surgery. All participants completed self-administered questionnaires and quantitative sensory testing was performed at baseline, after treatment and at a 1 month follow-up (all before surgery), and at 3 months after surgery. Significant and clinically relevant differences before and after surgery were found after treatments for both knee pain and disability, and some measures of CS (ie, widespread hyperalgesia, CS inventory), with no significant between-group differences. Other indicators of CS (ie, conditioned pain modulation, temporal summation) did not change over time following either treatment, and in some occasions the observed changes were not in the expected direction. Patients receiving PNE with knee joint mobilization achieved greater improvements in psychosocial variables (pain catastrophizing, kinesiophobia) both before and after surgery. Preoperative PNE combined with knee joint mobilization did not produce any additional benefits over time for knee pain and disability, and CS measures compared with biomedical education with knee joint mobilization. Superior effects in the PNE with knee joint mobilization group were only observed for psychosocial variables related to pain catastrophizing and kinesiophobia.

  11. Theories of Evolution, Science (Experimental): 5315.42.

    ERIC Educational Resources Information Center

    Adams, Joseph P.

    This is an in-depth course of study of the historical attempts to explain the evolutionary process and of recent developments pertinent to the study of biomedical evolution. Topics included in the module are: (1) ancient concepts of the evolutionary process; (2) various aspects of Lamarckism, Darwinism and neo-Darwinism, including substantiating…

  12. Expose Mechanical Engineering Students to Biomechanics Topics

    ERIC Educational Resources Information Center

    Shen, Hui

    2011-01-01

    To adapt the focus of engineering education to emerging new industries and technologies nationwide and in the local area, a biomechanics module has been developed and incorporated into a mechanical engineering technical elective course to expose mechanical engineering students at ONU (Ohio Northern University) to the biomedical engineering topics.…

  13. Swanson uses the BMMD in the SM

    NASA Image and Video Library

    2014-03-31

    ISS039-E-008066 (30 March 2014) --- NASA astronaut Steve Swanson, Expedition 39 flight engineer, participates in body mass measurement/Russian biomedical routine assessments in the Zvezda Service Module of the International Space Station. Looking on is Russian cosmonaut Alexander Skvortsov, flight engineer representing the Russian Federal Space Agency (Roscosmos).

  14. Life sciences payload definition and integration study. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Detail design information concerning payloads for biomedical research projects conducted during space missions is presented. Subjects discussed are: (1) equipment modules and equipment item lists, (2) weight and volume breakdown by payload and equipment units, (3) longitudinal floor arrangement configuration, and (4) nonbaseline second generation layouts.

  15. Biomedical Online Learning: The Route to Success

    ERIC Educational Resources Information Center

    Harvey, Patricia J.; Cookson, Barry; Meerabeau, Elizabeth; Muggleston, Diana

    2003-01-01

    The potential of the World Wide Web for rapid global communication is driving the creation of specifically tailored courses for employees, yet few practitioners have the necessary experience in on-line teaching methods, or in preparing documents for the web. Experience gained in developing six online training modules for the biotechnology and…

  16. Atomic layer deposited ZrO2 nanofilm on Mg-Sr alloy for enhanced corrosion resistance and biocompatibility.

    PubMed

    Yang, Qiuyue; Yuan, Wei; Liu, Xiangmei; Zheng, Yufeng; Cui, Zhenduo; Yang, Xianjin; Pan, Haobo; Wu, Shuilin

    2017-08-01

    The biodegradability and good mechanical property of magnesium alloys make them potential biomedical materials. However, their rapid corrosion rate in the human body's environment impairs these advantages and limits their clinical use. In this work, a compact zirconia (ZrO 2 ) nanofilm was fabricated on the surface of a magnesium-strontium (Mg-Sr) alloy by the atomic layer deposition (ALD) method, which can regulate the thickness of the film precisely and thus also control the corrosion rate. Corrosion tests reveal that the ZrO 2 film can effectively reduce the corrosion rate of Mg-Sr alloys that is closely related to the thickness of the film. The cell culture test shows that this kind of ZrO 2 film can also enhance the activity and adhesion of osteoblasts on the surfaces of Mg-Sr alloys. The significance of the current work is to develop a zirconia nanofilm on biomedical MgSr alloy with controllable thickness precisely through atomic layer deposition technique. By adjusting the thickness of nanofilm, the corrosion rate of Mg-Sr alloy can be modulated, thereafter, the degradation rate of Mg-based alloys can be controlled precisely according to actual clinical requirement. In addition, this zirconia nanofilm modified Mg-Sr alloys show excellent biocompatibility than the bare samples. Hence, this work provides a new surface strategy to control the degradation rate while improving the biocompatibility of substrates. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Using Role Play to Debate Animal Testing

    ERIC Educational Resources Information Center

    Agell, Laia; Soria, Vanessa; Carrió, Mar

    2015-01-01

    The use of animals in biomedical research is a socio-scientific issue in which decision-making is complicated. In this article, we describe an experience involving a role play activity performed during school visits to the Barcelona Biomedical Research Park (PRBB) to debate animal testing. Role playing games require students to defend different…

  18. Integrated Modules Analysis to Explore the Molecular Mechanisms of Phlegm-Stasis Cementation Syndrome with Ischemic Heart Disease.

    PubMed

    Xu, Wei-Ming; Yang, Kuo; Jiang, Li-Jie; Hu, Jing-Qing; Zhou, Xue-Zhong

    2018-01-01

    Background: Ischemic heart disease (IHD) has been the leading cause of death for several decades globally, IHD patients usually hold the symptoms of phlegm-stasis cementation syndrome (PSCS) as significant complications. However, the underlying molecular mechanisms of PSCS complicated with IHD have not yet been fully elucidated. Materials and Methods: Network medicine methods were utilized to elucidate the underlying molecular mechanisms of IHD phenotypes. Firstly, high-quality IHD-associated genes from both human curated disease-gene association database and biomedical literatures were integrated. Secondly, the IHD disease modules were obtained by dissecting the protein-protein interaction (PPI) topological modules in the String V9.1 database and the mapping of IHD-associated genes to the PPI topological modules. After that, molecular functional analyses (e.g., Gene Ontology and pathway enrichment analyses) for these IHD disease modules were conducted. Finally, the PSCS syndrome modules were identified by mapping the PSCS related symptom-genes to the IHD disease modules, which were further validated by both pharmacological and physiological evidences derived from published literatures. Results: The total of 1,056 high-quality IHD-associated genes were integrated and evaluated. In addition, eight IHD disease modules (the PPI sub-networks significantly relevant to IHD) were identified, in which two disease modules were relevant to PSCS syndrome (i.e., two PSCS syndrome modules). These two modules had enriched pathways on Toll-like receptor signaling pathway (hsa04620) and Renin-angiotensin system (hsa04614), with the molecular functions of angiotensin maturation (GO:0002003) and response to bacterium (GO:0009617), which had been validated by classical Chinese herbal formulas-related targets, IHD-related drug targets, and the phenotype features derived from human phenotype ontology (HPO) and published biomedical literatures. Conclusion: A network medicine-based approach was proposed to identify the underlying molecular modules of PSCS complicated with IHD, which could be used for interpreting the pharmacological mechanisms of well-established Chinese herbal formulas ( e.g., Tao Hong Si Wu Tang, Dan Shen Yin, Hunag Lian Wen Dan Tang and Gua Lou Xie Bai Ban Xia Tang ). In addition, these results delivered novel understandings of the molecular network mechanisms of IHD phenotype subtypes with PSCS complications, which would be both insightful for IHD precision medicine and the integration of disease and TCM syndrome diagnoses.

  19. Integrated Modules Analysis to Explore the Molecular Mechanisms of Phlegm-Stasis Cementation Syndrome with Ischemic Heart Disease

    PubMed Central

    Xu, Wei-Ming; Yang, Kuo; Jiang, Li-Jie; Hu, Jing-Qing; Zhou, Xue-Zhong

    2018-01-01

    Background: Ischemic heart disease (IHD) has been the leading cause of death for several decades globally, IHD patients usually hold the symptoms of phlegm-stasis cementation syndrome (PSCS) as significant complications. However, the underlying molecular mechanisms of PSCS complicated with IHD have not yet been fully elucidated. Materials and Methods: Network medicine methods were utilized to elucidate the underlying molecular mechanisms of IHD phenotypes. Firstly, high-quality IHD-associated genes from both human curated disease-gene association database and biomedical literatures were integrated. Secondly, the IHD disease modules were obtained by dissecting the protein-protein interaction (PPI) topological modules in the String V9.1 database and the mapping of IHD-associated genes to the PPI topological modules. After that, molecular functional analyses (e.g., Gene Ontology and pathway enrichment analyses) for these IHD disease modules were conducted. Finally, the PSCS syndrome modules were identified by mapping the PSCS related symptom-genes to the IHD disease modules, which were further validated by both pharmacological and physiological evidences derived from published literatures. Results: The total of 1,056 high-quality IHD-associated genes were integrated and evaluated. In addition, eight IHD disease modules (the PPI sub-networks significantly relevant to IHD) were identified, in which two disease modules were relevant to PSCS syndrome (i.e., two PSCS syndrome modules). These two modules had enriched pathways on Toll-like receptor signaling pathway (hsa04620) and Renin-angiotensin system (hsa04614), with the molecular functions of angiotensin maturation (GO:0002003) and response to bacterium (GO:0009617), which had been validated by classical Chinese herbal formulas-related targets, IHD-related drug targets, and the phenotype features derived from human phenotype ontology (HPO) and published biomedical literatures. Conclusion: A network medicine-based approach was proposed to identify the underlying molecular modules of PSCS complicated with IHD, which could be used for interpreting the pharmacological mechanisms of well-established Chinese herbal formulas (e.g., Tao Hong Si Wu Tang, Dan Shen Yin, Hunag Lian Wen Dan Tang and Gua Lou Xie Bai Ban Xia Tang). In addition, these results delivered novel understandings of the molecular network mechanisms of IHD phenotype subtypes with PSCS complications, which would be both insightful for IHD precision medicine and the integration of disease and TCM syndrome diagnoses. PMID:29403392

  20. Blackboard architecture for medical image interpretation

    NASA Astrophysics Data System (ADS)

    Davis, Darryl N.; Taylor, Christopher J.

    1991-06-01

    There is a growing interest in using sophisticated knowledge-based systems for biomedical image interpretation. We present a principled attempt to use artificial intelligence methodologies in interpreting lateral skull x-ray images. Such radiographs are routinely used in cephalometric analysis to provide quantitative measurements useful to clinical orthodontists. Manual and interactive methods of analysis are known to be error prone and previous attempts to automate this analysis typically fail to capture the expertise and adaptability required to cope with the variability in biological structure and image quality. An integrated model-based system has been developed which makes use of a blackboard architecture and multiple knowledge sources. A model definition interface allows quantitative models, of feature appearance and location, to be built from examples as well as more qualitative modelling constructs. Visual task definition and blackboard control modules allow task-specific knowledge sources to act on information available to the blackboard in a hypothesise and test reasoning cycle. Further knowledge-based modules include object selection, location hypothesis, intelligent segmentation, and constraint propagation systems. Alternative solutions to given tasks are permitted.

  1. A study of acceptability & feasibility of integrating humanities based study modules in undergraduate curriculum

    PubMed Central

    Gurtoo, Anil; Ranjan, Piyush; Sud, Ritika; Kumari, Archana

    2013-01-01

    Background & objectives: The field of medical education in our country remains deeply fragmented and polarised between the biomedical technical domains which are overrepresented and the humanitarian domains which are under-represented within the universe of medical pedagogy. To overcome this imbalance, we designed a module that integrates the two domains in a holistic biomedical and socio-cultural framework with the objective of providing unified field of learning experience to the undergraduate medical students attending rotatory clinical postings in a medical college in New Delhi, India. Methods: Undergraduate medical students of 6th and 8th semesters were enrolled in humanities based study module (HSM) on voluntary basis for a total duration of six months. During their compulsory rotatory medicine ward posting, they were introduced and exposed to learning bedside experience of HSM with various tools of art and literature in the form of poem, short narratives, paintings, sketches and group discussions to express their feelings about patients’ sufferings. Students’ feed-back was recorded through an anonymized questionnaire. Result: Of the 235 students, 223 (95%) enrolled themselves voluntarily and 94 per cent (210 of 223) of them completed the total six month duration of the study module. Seventy three per cent of the students found HSM effective in improving their affective motivational behavior, 82 per cent found it effective in motivating them to learn more about core medical subjects, and 85 per cent wanted its continuation as part of medical curriculum. Interpretation & conclusions: The positive response of the students towards the HSM was an indicator of the potential for integrating the module within the undergraduate medical curriculum. PMID:23481073

  2. Computer Program and User Documentation Medical Data Input System

    NASA Technical Reports Server (NTRS)

    Anderson, J.

    1971-01-01

    Several levels of documentation are presented for the program module of the NASA medical directorate minicomputer storage and retrieval system. The biomedical information system overview gives reasons for the development of the minicomputer storage and retrieval system. It briefly describes all of the program modules which constitute the system. A technical discussion oriented to the programmer is given. Each subroutine is described in enough detail to permit in-depth understanding of the routines and to facilitate program modifications. The program utilization section may be used as a users guide.

  3. Conceptualization and design of a variable-gravity research facility

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The goal is to provide facilities for the study of the effects of variable-gravity levels in reducing the physiological stresses upon the humans of long-term stay time in zero-g. The designs studied include: twin-tethered two module system with a central despun module with docking port and winch gear; and rigid arm tube facility using shuttle external tanks. Topics examined included: despun central capsule configuration, docking clearances, EVA requirements, crew selection, crew scheduling, food supply and preparation, waste handling, leisure use, biomedical issues, and psycho-social issues.

  4. Wearable sweat detector device design for health monitoring and clinical diagnosis

    NASA Astrophysics Data System (ADS)

    Wu, Qiuchen; Zhang, Xiaodong; Tian, Bihao; Zhang, Hongyan; Yu, Yang; Wang, Ming

    2017-06-01

    Miniaturized sensor is necessary part for wearable detector for biomedical applications. Wearable detector device is indispensable for online health care. This paper presents a concept of an wearable digital health monitoring device design for sweat analysis. The flexible sensor is developed to quantify the amount of hydrogen ions in sweat and skin temperature in real time. The detection system includes pH sensor, temperature sensor, signal processing module, power source, microprocessor, display module and so on. The sweat monitoring device is designed for sport monitoring or clinical diagnosis.

  5. Endovascular Device Testing with Particle Image Velocimetry Enhances Undergraduate Biomedical Engineering Education

    ERIC Educational Resources Information Center

    Nair, Priya; Ankeny, Casey J.; Ryan, Justin; Okcay, Murat; Frakes, David H.

    2016-01-01

    We investigated the use of a new system, HemoFlow™, which utilizes state of the art technologies such as particle image velocimetry to test endovascular devices as part of an undergraduate biomedical engineering curriculum. Students deployed an endovascular stent into an anatomical model of a cerebral aneurysm and measured intra-aneurysmal flow…

  6. A biomedical sensor system for real-time monitoring of astronauts' physiological parameters during extra-vehicular activities.

    PubMed

    Fei, Ding-Yu; Zhao, Xiaoming; Boanca, Cosmin; Hughes, Esther; Bai, Ou; Merrell, Ronald; Rafiq, Azhar

    2010-07-01

    To design and test an embedded biomedical sensor system that can monitor astronauts' comprehensive physiological parameters, and provide real-time data display during extra-vehicle activities (EVA) in the space exploration. An embedded system was developed with an array of biomedical sensors that can be integrated into the spacesuit. Wired communications were tested for physiological data acquisition and data transmission to a computer mounted on the spacesuit during task performances simulating EVA sessions. The sensor integration, data collection and communication, and the real-time data monitoring were successfully validated in the NASA field tests. The developed system may work as an embedded system for monitoring health status during long-term space mission. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Prototyping Instruments for Chemical Laboratory Using Inexpensive Electronic Modules.

    PubMed

    Urban, Pawel L

    2018-05-15

    Open-source electronics and programming can augment chemical and biomedical research. Currently, chemists can choose from a broad range of low-cost universal electronic modules (microcontroller boards and single-board computers) and use them to assemble working prototypes of scientific tools to address specific experimental problems and to support daily research work. The learning time can be as short as a few hours, and the required budget is often as low as 50 USD. Prototyping instruments using low-cost electronic modules gives chemists enormous flexibility to design and construct customized instrumentation, which can reduce the delays caused by limited access to high-end commercial platforms. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Biomedical Technology. Innovations: The Social Consequences of Science and Technology Program.

    ERIC Educational Resources Information Center

    McInerney, Joseph D.; And Others

    This module is part of an interdisciplinary program designed to educate the general citizenry regarding the issues of science/technology/society that have important consequences for both present and future social policies. Specifically, the program provides an opportunity for students to assess the effects of selected technological innovations in…

  9. Emerging and Re-Emerging Infectious Diseases. Grades 9-12. NIH Curriculum Supplement Series.

    ERIC Educational Resources Information Center

    Biological Sciences Curriculum Study, Colorado Springs.

    This curriculum supplement guide brings the latest medical discoveries to classrooms. This module focuses on the objectives of introducing students to major concepts related to emerging and re-emerging infectious diseases, and developing an understanding of the relationship between biomedical research and personal and public health. This module…

  10. Cell Biology and Cancer. Grades 9-12. NIH Curriculum Supplement Series.

    ERIC Educational Resources Information Center

    Biological Sciences Curriculum Study, Colorado Springs.

    This curriculum supplement guide brings the latest medical discoveries to classrooms. This module focuses on the objectives of introducing students to major concepts related to the development of cancer and its impacts, and developing an understanding of the relationship between biomedical research and personal and public health. This module…

  11. Development of instruction in hospital electrical safety for medical education.

    PubMed

    Yoo, J H; Broderick, W A

    1978-01-01

    Although hospital electrical safety is receiving increased attention in the literature of engineers, it is not, at present, reflected in the curricula of medical schools. A possible reason for this omission is that biomedical and/or clinical engineers knowledgeable in electrical safety are not usually trained to teach. One remedy for this problem is to combine the knowledge of engineers with that of instructional developers to design a systematic curriculum for a course in hospital electrical safety. This paper describes such an effort at the University of Texas Health Science Center at San Antonio (UTHSCSA). A biomedical engineer and an instructional developer designed an instructional module in hospital electrical safety; the engineer taught the module, and both evaluated the results. The process and outcome of their collaboration are described. This model was effectively applied in the classroom as a four-hour segment in hospital electrical safety for first-year medical students at UTHSCSA. It is hoped that an additional benefit of this system will be that it offers an opportunity for continuing improvement in this kind of instruction at other medical schools and hospitals.

  12. NORMAL HUMAN VARIATION: REFOCUSSING THE ENHANCEMENT DEBATE

    PubMed Central

    Kahane, Guy; Savulescu, Julian

    2015-01-01

    This article draws attention to several common mistakes in thinking about biomedical enhancement, mistakes that are made even by some supporters of enhancement. We illustrate these mistakes by examining objections that John Harris has recently raised against the use of pharmacological interventions to directly modulate moral decision-making. We then apply these lessons to other influential figures in the debate about enhancement. One upshot of our argument is that many considerations presented as powerful objections to enhancement are really strong considerations in favour of biomedical enhancement, just in a different direction. Another upshot is that it is unfortunate that much of the current debate focuses on interventions that will radically transform normal human capacities. Such interventions are unlikely to be available in the near future, and may not even be feasible. But our argument shows that the enhancement project can still have a radical impact on human life even if biomedical enhancement operated entirely within the normal human range. PMID:23906367

  13. Context-Aware Adaptive Hybrid Semantic Relatedness in Biomedical Science

    NASA Astrophysics Data System (ADS)

    Emadzadeh, Ehsan

    Text mining of biomedical literature and clinical notes is a very active field of research in biomedical science. Semantic analysis is one of the core modules for different Natural Language Processing (NLP) solutions. Methods for calculating semantic relatedness of two concepts can be very useful in solutions solving different problems such as relationship extraction, ontology creation and question / answering [1--6]. Several techniques exist in calculating semantic relatedness of two concepts. These techniques utilize different knowledge sources and corpora. So far, researchers attempted to find the best hybrid method for each domain by combining semantic relatedness techniques and data sources manually. In this work, attempts were made to eliminate the needs for manually combining semantic relatedness methods targeting any new contexts or resources through proposing an automated method, which attempted to find the best combination of semantic relatedness techniques and resources to achieve the best semantic relatedness score in every context. This may help the research community find the best hybrid method for each context considering the available algorithms and resources.

  14. Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy.

    PubMed

    Chidley, Matthew D; Carlson, Kristen D; Richards-Kortum, Rebecca R; Descour, Michael R

    2006-04-10

    The design, analysis, assembly methods, and optical-bench test results for a miniature injection-molded plastic objective lens used in a fiber-optic confocal reflectance microscope are presented. The five-lens plastic objective was tested as a stand-alone optical system before its integration into a confocal microscope for in vivo imaging of cells and tissue. Changing the spacing and rotation of the individual optical elements can compensate for fabrication inaccuracies and improve performance. The system performance of the miniature objective lens is measured by use of an industry-accepted slanted-edge modulation transfer function (MTF) metric. An estimated Strehl ratio of 0.61 and a MTF value of 0.66 at the fiber-optic bundle Nyquist frequency have been obtained. The optical bench testing system is configured to permit interactive optical alignment during testing to optimize performance. These results are part of an effort to demonstrate the manufacturability of low-cost, high-performance biomedical optics for high-resolution in vivo imaging. Disposable endoscopic microscope objectives could help in vivo confocal microscopy technology mature to permit wide-scale clinical screening and detection of early cancers and precancerous lesions.

  15. From Saccharomyces cerevisiae to human: The important gene co-expression modules.

    PubMed

    Liu, Wei; Li, Li; Ye, Hua; Chen, Haiwei; Shen, Weibiao; Zhong, Yuexian; Tian, Tian; He, Huaqin

    2017-08-01

    Network-based systems biology has become an important method for analyzing high-throughput gene expression data and gene function mining. Yeast has long been a popular model organism for biomedical research. In the current study, a weighted gene co-expression network analysis algorithm was applied to construct a gene co-expression network in Saccharomyces cerevisiae . Seventeen stable gene co-expression modules were detected from 2,814 S. cerevisiae microarray data. Further characterization of these modules with the Database for Annotation, Visualization and Integrated Discovery tool indicated that these modules were associated with certain biological processes, such as heat response, cell cycle, translational regulation, mitochondrion oxidative phosphorylation, amino acid metabolism and autophagy. Hub genes were also screened by intra-modular connectivity. Finally, the module conservation was evaluated in a human disease microarray dataset. Functional modules were identified in budding yeast, some of which are associated with patient survival. The current study provided a paradigm for single cell microorganisms and potentially other organisms.

  16. A bioinformatics knowledge discovery in text application for grid computing

    PubMed Central

    Castellano, Marcello; Mastronardi, Giuseppe; Bellotti, Roberto; Tarricone, Gianfranco

    2009-01-01

    Background A fundamental activity in biomedical research is Knowledge Discovery which has the ability to search through large amounts of biomedical information such as documents and data. High performance computational infrastructures, such as Grid technologies, are emerging as a possible infrastructure to tackle the intensive use of Information and Communication resources in life science. The goal of this work was to develop a software middleware solution in order to exploit the many knowledge discovery applications on scalable and distributed computing systems to achieve intensive use of ICT resources. Methods The development of a grid application for Knowledge Discovery in Text using a middleware solution based methodology is presented. The system must be able to: perform a user application model, process the jobs with the aim of creating many parallel jobs to distribute on the computational nodes. Finally, the system must be aware of the computational resources available, their status and must be able to monitor the execution of parallel jobs. These operative requirements lead to design a middleware to be specialized using user application modules. It included a graphical user interface in order to access to a node search system, a load balancing system and a transfer optimizer to reduce communication costs. Results A middleware solution prototype and the performance evaluation of it in terms of the speed-up factor is shown. It was written in JAVA on Globus Toolkit 4 to build the grid infrastructure based on GNU/Linux computer grid nodes. A test was carried out and the results are shown for the named entity recognition search of symptoms and pathologies. The search was applied to a collection of 5,000 scientific documents taken from PubMed. Conclusion In this paper we discuss the development of a grid application based on a middleware solution. It has been tested on a knowledge discovery in text process to extract new and useful information about symptoms and pathologies from a large collection of unstructured scientific documents. As an example a computation of Knowledge Discovery in Database was applied on the output produced by the KDT user module to extract new knowledge about symptom and pathology bio-entities. PMID:19534749

  17. A bioinformatics knowledge discovery in text application for grid computing.

    PubMed

    Castellano, Marcello; Mastronardi, Giuseppe; Bellotti, Roberto; Tarricone, Gianfranco

    2009-06-16

    A fundamental activity in biomedical research is Knowledge Discovery which has the ability to search through large amounts of biomedical information such as documents and data. High performance computational infrastructures, such as Grid technologies, are emerging as a possible infrastructure to tackle the intensive use of Information and Communication resources in life science. The goal of this work was to develop a software middleware solution in order to exploit the many knowledge discovery applications on scalable and distributed computing systems to achieve intensive use of ICT resources. The development of a grid application for Knowledge Discovery in Text using a middleware solution based methodology is presented. The system must be able to: perform a user application model, process the jobs with the aim of creating many parallel jobs to distribute on the computational nodes. Finally, the system must be aware of the computational resources available, their status and must be able to monitor the execution of parallel jobs. These operative requirements lead to design a middleware to be specialized using user application modules. It included a graphical user interface in order to access to a node search system, a load balancing system and a transfer optimizer to reduce communication costs. A middleware solution prototype and the performance evaluation of it in terms of the speed-up factor is shown. It was written in JAVA on Globus Toolkit 4 to build the grid infrastructure based on GNU/Linux computer grid nodes. A test was carried out and the results are shown for the named entity recognition search of symptoms and pathologies. The search was applied to a collection of 5,000 scientific documents taken from PubMed. In this paper we discuss the development of a grid application based on a middleware solution. It has been tested on a knowledge discovery in text process to extract new and useful information about symptoms and pathologies from a large collection of unstructured scientific documents. As an example a computation of Knowledge Discovery in Database was applied on the output produced by the KDT user module to extract new knowledge about symptom and pathology bio-entities.

  18. A method for exploring implicit concept relatedness in biomedical knowledge network.

    PubMed

    Bai, Tian; Gong, Leiguang; Wang, Ye; Wang, Yan; Kulikowski, Casimir A; Huang, Lan

    2016-07-19

    Biomedical information and knowledge, structural and non-structural, stored in different repositories can be semantically connected to form a hybrid knowledge network. How to compute relatedness between concepts and discover valuable but implicit information or knowledge from it effectively and efficiently is of paramount importance for precision medicine, and a major challenge facing the biomedical research community. In this study, a hybrid biomedical knowledge network is constructed by linking concepts across multiple biomedical ontologies as well as non-structural biomedical knowledge sources. To discover implicit relatedness between concepts in ontologies for which potentially valuable relationships (implicit knowledge) may exist, we developed a Multi-Ontology Relatedness Model (MORM) within the knowledge network, for which a relatedness network (RN) is defined and computed across multiple ontologies using a formal inference mechanism of set-theoretic operations. Semantic constraints are designed and implemented to prune the search space of the relatedness network. Experiments to test examples of several biomedical applications have been carried out, and the evaluation of the results showed an encouraging potential of the proposed approach to biomedical knowledge discovery.

  19. Total Biosynthesis and Diverse Applications of the Nonribosomal Peptide-Polyketide Siderophore Yersiniabactin

    PubMed Central

    Ahmadi, Mahmoud Kamal; Fawaz, Samar; Jones, Charles H.; Zhang, Guojian

    2015-01-01

    Yersiniabactin (Ybt) is a mixed nonribosomal peptide-polyketide natural product natively produced by the pathogen Yersinia pestis. The compound enables iron scavenging capabilities upon host infection and is biosynthesized by a nonribosomal peptide synthetase featuring a polyketide synthase module. This pathway has been engineered for expression and biosynthesis using Escherichia coli as a heterologous host. In the current work, the biosynthetic process for Ybt formation was improved through the incorporation of a dedicated step to eliminate the need for exogenous salicylate provision. When this improvement was made, the compound was tested in parallel applications that highlight the metal-chelating nature of the compound. In the first application, Ybt was assessed as a rust remover, demonstrating a capacity of ∼40% compared to a commercial removal agent and ∼20% relative to total removal capacity. The second application tested Ybt in removing copper from a variety of nonbiological and biological solution mixtures. Success across a variety of media indicates potential utility in diverse scenarios that include environmental and biomedical settings. PMID:26025901

  20. Strategic design and fabrication of acrylic shape memory polymers

    NASA Astrophysics Data System (ADS)

    Park, Ju Hyuk; Kim, Hansu; Ryoun Youn, Jae; Song, Young Seok

    2017-08-01

    Modulation of thermomechanics nature is a critical issue for an optimized use of shape memory polymers (SMPs). In this study, a strategic approach was proposed to control the transition temperature of SMPs. Free radical vinyl polymerization was employed for tailoring and preparing acrylic SMPs. Transition temperatures of the shape memory tri-copolymers were tuned by changing the composition of monomers. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analyses were carried out to evaluate the chemical structures and compositions of the synthesized SMPs. The thermomechanical properties and shape memory performance of the SMPs were also examined by performing dynamic mechanical thermal analysis. Numerical simulation based on a finite element method provided consistent results with experimental cyclic shape memory tests of the specimens. Transient shape recovery tests were conducted and optical transparence of the samples was identified. We envision that the materials proposed in this study can help develop a new type of shape-memory devices in biomedical and aerospace engineering applications.

  1. Pyramidal Wavefront Sensor Demonstrator at INO

    NASA Astrophysics Data System (ADS)

    Martin, Olivier; Véran, Jean-Pierre; Anctil, Geneviève; Bourqui, Pascal; Châteauneuf, François; Gauvin, Jonny; Goyette, Philippe; Lagacé, François; Turbide, Simon; Wang, Min

    2014-08-01

    Wavefront sensing is one of the key elements of an Adaptive Optics System. Although Shack-Hartmann WFS are the most commonly used whether for astronomical or biomedical applications, the high-sensitivity and large dynamic-range of the Pyramid-WFS (P-WFS) technology is promising and needs to be further investigated for proper justification in future Extremely Large Telescopes (ELT) applications. At INO, center for applied research in optics and technology transfer in Quebec City, Canada, we have recently set to develop a Pyramid wavefront sensor (P-WFS), an option for which no other research group in Canada had any experience. A first version had been built and tested in 2013 in collaboration with NRC-HIA Victoria. Here we present a second iteration of demonstrator with an extended spectral range, fast modulation capability and low-noise, fast-acquisition EMCCD sensor. The system has been designed with compactness and robustness in mind to allow on-sky testing at Mont Mégantic facility, in parallel with a Shack- Hartmann sensor so as to compare both options.

  2. Teaching Modules on Modeling and Control of Piezoactuators for System Dynamics, Controls, and Mechatronics Courses

    ERIC Educational Resources Information Center

    Leang, K. K.; Zou, Q.; Pannozzo, G.

    2010-01-01

    Piezoelectric actuators (or piezoactuators) are known for their nanoresolution and high-speed positioning capabilities. Therefore, they are used in scanning probe microscopes and in the design of innovative surgical tools and biomedical devices. The expected growth of engineering jobs in the nano- and bio-related fields, in which piezoactuators…

  3. Testing Orr's document delivery test on biomedical journals in South Africa.

    PubMed Central

    Steynberg, S; Rossouw, S F

    1995-01-01

    This paper describes the use of a document delivery test (DDT) to measure the availability of biomedical research journals in South African health sciences libraries. The methodology employed was developed twenty years ago by a team of researchers from the Institute for the Advancement of Medical Communication under the direction of R. H. Orr. The testing of the methodology was in itself an objective of the present research. A citation pool consisting of 307 items was constructed from references to journal articles in papers published in 1989 by South African biomedical researchers. The availability of each article was determined at each of seven medical library sites; the performance was measured and presented as an arithmetical value or document delivery capability index (CI). The results of the tests show a high level of availability, ranging from CI = 81.68 to CI = 92.97 for the journals sampled. The DDT methodology was found to be practical, applicable to such studies, and flexible. Its use is recommended for similar studies. Images PMID:7703944

  4. Novel Electrochemical Test Bench for Evaluating the Functional Fatigue Life of Biomedical Alloys

    NASA Astrophysics Data System (ADS)

    Ijaz, M. F.; Dubinskiy, S.; Zhukova, Y.; Korobkova, A.; Pustov, Y.; Brailovski, V.; Prokoshkin, S.

    2017-08-01

    The aim of the present work was first to develop and validate a test bench that simulates the in vitro conditions to which the biomedical implants will be actually subjected in vivo. For the preliminary application assessments, the strain-controlled fatigue tests of biomedically pure Ti and Ti-Nb-Zr alloy in simulated body fluid were undertaken. The in situ open-circuit potential measurements from the test bench demonstrated a strong dependence on the dynamic cycling and kind of material under testing. The results showed that during fatigue cycling, the passive oxide film formed on the surface of Ti-Nb-Zr alloy was more resistant to fatigue degradation when compared with pure Ti. The Ti-Nb-Zr alloy exhibited prolonged fatigue life when compared with pure Ti. The fractographic features of both materials were also characterized using scanning electron microscopy. The electrochemical results and the fractographic evidence confirmed that the prolonged functional fatigue life of the Ti-Nb-Zr alloy is apparently ascribable to the reversible martensitic phase transformation.

  5. Applications of conducting polymers and their issues in biomedical engineering

    PubMed Central

    Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram

    2010-01-01

    Conducting polymers (CPs) have attracted much interest as suitable matrices of biomolecules and have been used to enhance the stability, speed and sensitivity of various biomedical devices. Moreover, CPs are inexpensive, easy to synthesize and versatile because their properties can be readily modulated by (i) surface functionalization techniques and (ii) the use of a wide range of molecules that can be entrapped or used as dopants. This paper discusses the various surface modifications of the CP that can be employed in order to impart physico-chemical and biological guidance cues that promote cell adhesion/proliferation at the polymer–tissue interface. This ability of the CP to induce various cellular mechanisms widens its applications in medical fields and bioengineering. PMID:20610422

  6. STS-32 crewmembers test DSO 0478 lower body negative pressure (LBNP) device

    NASA Image and Video Library

    1989-11-29

    STS-32 crewmembers test the inflight lower body negative pressure (LBNP) device. Mission Specialist (MS) Bonnie J. Dunbar (lying down) inside the cylindrical LBNP device prepares for testing as principal investigator Dr. John Charles, a cardiovascular scientist in JSC's Space Biomedical Research Institute, and Michele Jones, a KRUG International biomedical engineer, review procedures with MS G. David Low. The inflight LBNP will be part of detailed supplementary objective (DSO) 0478. Photo taken by JSC photographer Jack Jacob.

  7. An Approach to Integrating Health Disparities within Undergraduate Biomedical Engineering Education.

    PubMed

    Vazquez, Maribel; Marte, Otto; Barba, Joseph; Hubbard, Karen

    2017-11-01

    Health disparities are preventable differences in the incidence, prevalence and burden of disease among communities targeted by gender, geographic location, ethnicity and/or socio-economic status. While biomedical research has identified partial origin(s) of divergent burden and impact of disease, the innovation needed to eradicate health disparities in the United States requires unique engagement from biomedical engineers. Increasing awareness of the prevalence and consequences of health disparities is particularly attractive to today's undergraduates, who have undauntedly challenged paradigms believed to foster inequality. Here, the Department of Biomedical Engineering at The City College of New York (CCNY) has leveraged its historical mission of access-and-excellence to integrate the study of health disparities into undergraduate BME curricula. This article describes our novel approach in a multiyear study that: (i) Integrated health disparities modules at all levels of the required undergraduate BME curriculum; (ii) Developed opportunities to include impacts of health disparities into undergraduate BME research projects and mentored High School summer STEM training; and (iii) Established health disparities-based challenges as BME capstone design and/or independent entrepreneurship projects. Results illustrate the rising awareness of health disparities among the youngest BMEs-to-be, as well as abundant undergraduate desire to integrate health disparities within BME education and training.

  8. The center for causal discovery of biomedical knowledge from big data

    PubMed Central

    Bahar, Ivet; Becich, Michael J; Benos, Panayiotis V; Berg, Jeremy; Espino, Jeremy U; Glymour, Clark; Jacobson, Rebecca Crowley; Kienholz, Michelle; Lee, Adrian V; Lu, Xinghua; Scheines, Richard

    2015-01-01

    The Big Data to Knowledge (BD2K) Center for Causal Discovery is developing and disseminating an integrated set of open source tools that support causal modeling and discovery of biomedical knowledge from large and complex biomedical datasets. The Center integrates teams of biomedical and data scientists focused on the refinement of existing and the development of new constraint-based and Bayesian algorithms based on causal Bayesian networks, the optimization of software for efficient operation in a supercomputing environment, and the testing of algorithms and software developed using real data from 3 representative driving biomedical projects: cancer driver mutations, lung disease, and the functional connectome of the human brain. Associated training activities provide both biomedical and data scientists with the knowledge and skills needed to apply and extend these tools. Collaborative activities with the BD2K Consortium further advance causal discovery tools and integrate tools and resources developed by other centers. PMID:26138794

  9. Biomedical support systems. [use and verification of biomedical hardware in altitude test

    NASA Technical Reports Server (NTRS)

    Brockett, R. M.; Ferguson, J. M.; Luczkowski, S. M.

    1973-01-01

    Biomedical support hardware for SMEAT consisted basically of two systems, the inflight medical support system, and the operational bioinstrumentation system. The former is essentially a diagnostic and therapeutic kit; the latter is a belt equipped with sensors worn by the crewman to permit monitoring of his vital signs. Special attention was given during to the use and verification of the items in the systems so that changes required in the equipment could be pinpointed and effected prior to the Skylab mission. During the in-chamber testing, evaluations were made of the effectiveness of the proposed microbiology procedures, techniques, equipment, and the stability of media and reagents over the extended period of storage.

  10. Optical cell stimulation for neuronal excitation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Johannsmeier, Sonja; Heeger, Patrick; Terakawa, Mitsuhiro; Heisterkamp, Alexander; Ripken, Tammo; Heinemann, Dag

    2017-02-01

    Optical manipulation of cellular functions represents a growing field in biomedical sciences. The possibility to modulate specific targets with high spatial and temporal precision in a contactless manner allows a broad range of applications. Here, we present a study on stimulation of neuronal cells by optical means. As a long-term objective, we seek to improve the performance of current electric neurostimulation, especially in the context of cochlear implants. Firstly, we tested a gold nanoparticle mediated approach to modulate transmembrane conductivity by irradiation using a picosecond pulsed Nd:YAG laser at 532 nm for 40 ms in a neuroblastoma cell line (N2A) and primary murine neurons. The light absorption leads to a rapid temperature increase of the gold nanoparticles, which can induce an increased permeabilisation of the cellular membrane. Calcium transients were recorded as an indicator of neuronal activity. Although calcium signals were reliably detected upon laser irradiation, the temporal behavior did not resemble action potentials. The origin of these signals was investigated by an inhibitor study. These results indicate calcium induced calcium release (CICR) as the major source of the calcium transients. Consecutively, we tested alternative approaches for cell stimulation, such as glutamate release and optogenetics, and evaluated the potential of these methods for the application in a cochlear implant. Compared to the gold nanoparticle approach, both techniques induce less cellular stress and reliably produce action potentials.

  11. [A web-based biomedical image mosaicing system].

    PubMed

    Zhang, Meng; Yan, Zhuang-zhi; Pan, Zhi-jun; Shao, Shi-jie

    2006-11-01

    This paper describes a web service for biomedical image mosaicing. A web site based on CGI (Common Gateway Interface) is implemented. The system is based on Browser/Server model and is tested in www. Finally implementation examples and experiment results are provided.

  12. A Wireless Biomedical Signal Interface System-on-Chip for Body Sensor Networks.

    PubMed

    Lei Wang; Guang-Zhong Yang; Jin Huang; Jinyong Zhang; Li Yu; Zedong Nie; Cumming, D R S

    2010-04-01

    Recent years have seen the rapid development of biosensor technology, system-on-chip design, wireless technology. and ubiquitous computing. When assembled into an autonomous body sensor network (BSN), the technologies become powerful tools in well-being monitoring, medical diagnostics, and personal connectivity. In this paper, we describe the first demonstration of a fully customized mixed-signal silicon chip that has most of the attributes required for use in a wearable or implantable BSN. Our intellectual-property blocks include low-power analog sensor interface for temperature and pH, a data multiplexing and conversion module, a digital platform based around an 8-b microcontroller, data encoding for spread-spectrum wireless transmission, and a RF section requiring very few off-chip components. The chip has been fully evaluated and tested by connection to external sensors, and it satisfied typical system requirements.

  13. Development of wireless brain computer interface with embedded multitask scheduling and its application on real-time driver's drowsiness detection and warning.

    PubMed

    Lin, Chin-Teng; Chen, Yu-Chieh; Huang, Teng-Yi; Chiu, Tien-Ting; Ko, Li-Wei; Liang, Sheng-Fu; Hsieh, Hung-Yi; Hsu, Shang-Hwa; Duann, Jeng-Ren

    2008-05-01

    Biomedical signal monitoring systems have been rapidly advanced with electronic and information technologies in recent years. However, most of the existing physiological signal monitoring systems can only record the signals without the capability of automatic analysis. In this paper, we proposed a novel brain-computer interface (BCI) system that can acquire and analyze electroencephalogram (EEG) signals in real-time to monitor human physiological as well as cognitive states, and, in turn, provide warning signals to the users when needed. The BCI system consists of a four-channel biosignal acquisition/amplification module, a wireless transmission module, a dual-core signal processing unit, and a host system for display and storage. The embedded dual-core processing system with multitask scheduling capability was proposed to acquire and process the input EEG signals in real time. In addition, the wireless transmission module, which eliminates the inconvenience of wiring, can be switched between radio frequency (RF) and Bluetooth according to the transmission distance. Finally, the real-time EEG-based drowsiness monitoring and warning algorithms were implemented and integrated into the system to close the loop of the BCI system. The practical online testing demonstrates the feasibility of using the proposed system with the ability of real-time processing, automatic analysis, and online warning feedback in real-world operation and living environments.

  14. Parallel generation of uniform fine droplets at hundreds of kilohertz in a flow-focusing module.

    PubMed

    Bardin, David; Kendall, Michael R; Dayton, Paul A; Lee, Abraham P

    2013-01-01

    Droplet-based microfluidic systems enable a variety of biomedical applications from point-of-care diagnostics with third world implications, to targeted therapeutics alongside medical ultrasound, to molecular screening and genetic testing. Though these systems maintain the key advantage of precise control of the size and composition of the droplet as compared to conventional methods of production, the low rates at which droplets are produced limits translation beyond the laboratory setting. As well, previous attempts to scale up shear-based microfluidic systems focused on increasing the volumetric throughput and formed large droplets, negating many practical applications of emulsions such as site-specific therapeutics. We present the operation of a parallel module with eight flow-focusing orifices in the dripping regime of droplet formation for the generation of uniform fine droplets at rates in the hundreds of kilohertz. Elevating the capillary number to access dripping, generation of monodisperse droplets of liquid perfluoropentane in the parallel module exceeded 3.69 × 10(5) droplets per second, or 1.33 × 10(9) droplets per hour, at a mean diameter of 9.8 μm. Our microfluidic method offers a novel means to amass uniform fine droplets in practical amounts, for instance, to satisfy clinical needs, with the potential for modification to form massive amounts of more complex droplets.

  15. Using Google Blogs and Discussions to Recommend Biomedical Resources: A Case Study

    PubMed Central

    Reed, Robyn B.; Chattopadhyay, Ansuman; Iwema, Carrie L.

    2013-01-01

    This case study investigated whether data gathered from discussions within the social media provide a reliable basis for a biomedical resources recommendation system. Using a search query to mine text from Google Blogs and Discussions, a ranking of biomedical resources was determined based on those most frequently mentioned. To establish quality, these results were compared to rankings by subject experts. An overall agreement between the frequency of social media discussions and subject expert recommendations was observed when identifying key bioinformatics and consumer health resources. Testing the method in more than one biomedical area implies this procedure could be employed across different subjects. PMID:24180648

  16. Small-signal modulation characteristics of a polariton laser

    PubMed Central

    Zunaid Baten, Md; Frost, Thomas; Iorsh, Ivan; Deshpande, Saniya; Kavokin, Alexey; Bhattacharya, Pallab

    2015-01-01

    Use of large bandgap materials together with electrical injection makes the polariton laser an attractive low-power coherent light source for medical and biomedical applications or short distance plastic fiber communication at short wavelengths (violet and ultra-violet), where a conventional laser is difficult to realize. The dynamic properties of a polariton laser have not been investigated experimentally. We have measured, for the first time, the small signal modulation characteristics of a GaN-based electrically pumped polariton laser operating at room temperature. A maximum −3 dB modulation bandwidth of 1.18 GHz is measured. The experimental results have been analyzed with a theoretical model based on the Boltzmann kinetic equations and the agreement is very good. We have also investigated frequency chirping during such modulation. Gain compression phenomenon in a polariton laser is interpreted and a value is obtained for the gain compression factor. PMID:26154681

  17. Prevalence of Hepatitis B surface antigen among biomedical students of African descent in Usmanu Danfodiyo University, Sokoto, Nigeria.

    PubMed

    Okwesili, A N; Onuigwe, F U; Ibrahim, K; Buhari, H; Ibrahim, A; Jafaru, H; Erhabor, O; Onuigwe, F U; Isaac, Z; Ahmed, M H; Mainasara, M Y; Adias, T C; Yeldu, M H; Uko, E K; Udoma, F

    2015-12-23

    Hepatitis B (HB) is a serious global public health problem that put health professionals particularly at risk. The aim of this study was to investigate the prevalence of Hepatitis B surface antigen (HBsAg) among Biomedical Students of African descent attending Usmanu Danfodiyo University Sokoto in North-Western Nigeria. The Onsite HBsAg (CTK Biotech, USA) was used to detect the presence of hepatitis B surface antigen. We tested 186 consecutively-recruited students consisting of 147 males and 39 females aged 18-35 years (mean age 26 ± 2.0 years). Of the 186 students tested, 25 (13.4%) were positive for HBsAg. The prevalence of HBsAg was significantly higher among students in the 21-25 years age group. Hepatitis B vaccination uptake among students was 7%. Majority of subjects were single 173(93.1%) compared to married 13 (6.9%). Ethnic distribution of the subjects indicated that 104(55.9%) were Hausa compared to Yoruba 32 (17.2%), other ethnic groups 21(11.3%), Fulani 20(10.8%) and Igbo 9(4.8%). This study indicates a high prevalence of hepatitis B virus infection among Biomedical students in Sokoto, North Western, Nigeria. Finding from this study is enough justification for the implementation of a policy to routinely test students entering into the biomedical professions for Hepatitis B virus infection. There is the need to provide hepatitis B vaccination universally to all those who are found negative prior to commencement of their biomedical training. There is also need to educate students entering biomedical professions and healthcare workers on the modes of transmission and prevention, importance of being compliant with protective vaccination as well as the need to observe universal precaution and infection control guidelines during their training and future professional practice.

  18. Wireless and batteryless biomedical microsystem for neural recording and epilepsy suppression based on brain focal cooling.

    PubMed

    Hou, K-C; Chang, C-W; Chiou, J-C; Huang, Y-H; Shaw, F-Z

    2011-12-01

    This work presents a biomedical microsystem with a wireless radiofrequency (RF)-powered electronics and versatile sensors/actuators for use in nanomedicinal diagnosis and therapy. The cooling of brain tissue has the potential to reduce the frequency and severity of epilepsy. Miniaturised spiral coils as a wireless power module with low-dropout linear regulator circuit convert RF signals into a DC voltage, can be implanted without a battery in monitoring free behaviour. A thermoelectric (TE) cooler is an actuator that is employed to cool down brain tissue to suppress epilepsy. Electroencephalogram (EEG) electrodes and TE coolers are integrated to form module that is placed inside the head of a rat and fastened with a bio-compatible material. EEG signals are used to identify waveforms associated with epilepsy and are measured using readout circuits. The wireless part of the presented design achieves a low quiescent current and line/load regulation and high antenna/current efficiency with thermal protection to avoid damage to the implanted tissue. Epilepsy is suppressed by reducing the temperature to reduce the duration of this epileptic episode. Related characterisations demonstrate that the proposed design can be adopted in an effective nanomedicine microsystem.

  19. A multi-ontology approach to annotate scientific documents based on a modularization technique.

    PubMed

    Gomes, Priscilla Corrêa E Castro; Moura, Ana Maria de Carvalho; Cavalcanti, Maria Cláudia

    2015-12-01

    Scientific text annotation has become an important task for biomedical scientists. Nowadays, there is an increasing need for the development of intelligent systems to support new scientific findings. Public databases available on the Web provide useful data, but much more useful information is only accessible in scientific texts. Text annotation may help as it relies on the use of ontologies to maintain annotations based on a uniform vocabulary. However, it is difficult to use an ontology, especially those that cover a large domain. In addition, since scientific texts explore multiple domains, which are covered by distinct ontologies, it becomes even more difficult to deal with such task. Moreover, there are dozens of ontologies in the biomedical area, and they are usually big in terms of the number of concepts. It is in this context that ontology modularization can be useful. This work presents an approach to annotate scientific documents using modules of different ontologies, which are built according to a module extraction technique. The main idea is to analyze a set of single-ontology annotations on a text to find out the user interests. Based on these annotations a set of modules are extracted from a set of distinct ontologies, and are made available for the user, for complementary annotation. The reduced size and focus of the extracted modules tend to facilitate the annotation task. An experiment was conducted to evaluate this approach, with the participation of a bioinformatician specialist of the Laboratory of Peptides and Proteins of the IOC/Fiocruz, who was interested in discovering new drug targets aiming at the combat of tropical diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. ADEpedia: a scalable and standardized knowledge base of Adverse Drug Events using semantic web technology.

    PubMed

    Jiang, Guoqian; Solbrig, Harold R; Chute, Christopher G

    2011-01-01

    A source of semantically coded Adverse Drug Event (ADE) data can be useful for identifying common phenotypes related to ADEs. We proposed a comprehensive framework for building a standardized ADE knowledge base (called ADEpedia) through combining ontology-based approach with semantic web technology. The framework comprises four primary modules: 1) an XML2RDF transformation module; 2) a data normalization module based on NCBO Open Biomedical Annotator; 3) a RDF store based persistence module; and 4) a front-end module based on a Semantic Wiki for the review and curation. A prototype is successfully implemented to demonstrate the capability of the system to integrate multiple drug data and ontology resources and open web services for the ADE data standardization. A preliminary evaluation is performed to demonstrate the usefulness of the system, including the performance of the NCBO annotator. In conclusion, the semantic web technology provides a highly scalable framework for ADE data source integration and standard query service.

  1. Space Station Freedom biomedical monitoring and countermeasures: Biomedical facility hardware catalog

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This hardware catalog covers that hardware proposed under the Biomedical Monitoring and Countermeasures Development Program supported by the Johnson Space Center. The hardware items are listed separately by item, and are in alphabetical order. Each hardware item specification consists of four pages. The first page describes background information with an illustration, definition and a history/design status. The second page identifies the general specifications, performance, rack interface requirements, problems, issues, concerns, physical description, and functional description. The level of hardware design reliability is also identified under the maintainability and reliability category. The third page specifies the mechanical design guidelines and assumptions. Described are the material types and weights, modules, and construction methods. Also described is an estimation of percentage of construction which utilizes a particular method, and the percentage of required new mechanical design is documented. The fourth page analyzes the electronics, the scope of design effort, and the software requirements. Electronics are described by percentages of component types and new design. The design effort, as well as, the software requirements are identified and categorized.

  2. Designing high-quality interactive multimedia learning modules.

    PubMed

    Huang, Camillan

    2005-01-01

    Modern research has broadened scientific knowledge and revealed the interdisciplinary nature of the sciences. For today's students, this advance translates to learning a more diverse range of concepts, usually in less time, and without supporting resources. Students can benefit from technology-enhanced learning supplements that unify concepts and are delivered on-demand over the Internet. Such supplements, like imaging informatics databases, serve as innovative references for biomedical information, but could improve their interaction interfaces to support learning. With information from these digital datasets, multimedia learning tools can be designed to transform learning into an active process where students can visualize relationships over time, interact with dynamic content, and immediately test their knowledge. This approach bridges knowledge gaps, fosters conceptual understanding, and builds problem-solving and critical thinking skills-all essential components to informatics training for science and medicine. Additional benefits include cost-free access and ease of dissemination over the Internet or CD-ROM. However, current methods for the design of multimedia learning modules are not standardized and lack strong instructional design. Pressure from administrators at the top and students from the bottom are pushing faculty to use modern technology to address the learning needs and expectations of contemporary students. Yet, faculty lack adequate support and training to adopt this new approach. So how can faculty learn to create educational multimedia materials for their students? This paper provides guidelines on best practices in educational multimedia design, derived from the Virtual Labs Project at Stanford University. The development of a multimedia module consists of five phases: (1) understand the learning problem and the users needs; (2) design the content to harness the enabling technologies; (3) build multimedia materials with web style standards and human factors principles; (4) user testing; (5) evaluate and improve design.

  3. Role of plasma fibronectin in the foreign body response to biomaterials.

    PubMed

    Keselowsky, Benjamin G; Bridges, Amanda W; Burns, Kellie L; Tate, Ciara C; Babensee, Julia E; LaPlaca, Michelle C; García, Andrés J

    2007-09-01

    Host responses to biomaterials control the biological performance of implanted medical devices. Upon implantation, synthetic materials adsorb biomolecules, which trigger an inflammatory cascade comprising coagulation, leukocyte recruitment/adhesion, and foreign body reaction. The foreign body reaction and ensuing fibrous encapsulation severely limit the in vivo performance of numerous biomedical devices. While it is well established that plasma fibrinogen and secreted cytokines modulate leukocyte recruitment and maturation into foreign body giant cells, mediators of chronic inflammation and fibrous encapsulation of implanted biomaterials remain poorly understood. Using plasma fibronectin (pFN) conditional knock-out mice, we demonstrate that pFN modulates the foreign body response to polyethylene terephthalate disks implanted subcutaneously. Fibrous collagenous capsules were two-fold thicker in mice depleted of pFN compared to controls. In contrast, deletion of pFN did not alter acute leukocyte recruitment to the biomaterial, indicating that pFN modulates chronic fibrotic responses. The number of foreign body giant cells associated with the implant was three times higher in the absence of pFN while macrophage numbers were not different, suggesting that pFN regulates the formation of biomaterial-associated foreign body giant cells. Interestingly, cellular FN (cFN) was present in the capsules of both normal and pFN-depleted mice, suggesting that cFN could not compensate for the loss of pFN. These results implicate pFN in the host response to implanted materials and identify a potential target for therapeutic intervention to enhance the biological performance of biomedical devices.

  4. Carbon Nanotubes Reinforced Composites for Biomedical Applications

    PubMed Central

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo. PMID:24707488

  5. Carbon nanotubes reinforced composites for biomedical applications.

    PubMed

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo.

  6. Psychiatrists and Their Role in an Integrative Approach to Sexual Problems.

    PubMed

    Raisi, Firoozeh; Yahyavi, Seyyed Taha

    2015-03-01

    Sexuality is a unit part of humans that has been evaluated as several fragmented particles for years. Although many biomedical and psychosocial approaches have been developed in the field of sex, these approaches usually have not been led to the complete satisfaction of the patients. It seems that for a comprehensive evaluation and management of the sexual problems, the unity of sex should be respected and the biopsychosocial multilayer aspects of the sex should be apprehended. Psychiatry is a unique point that both biomedical and psychosocial sciences reach each other. Therefore, psychiatrists should play a critical role as a modulator in the multidisciplinary team for management of the sexual problems. In this regard, comprehensive training of psychiatrists is highly recommended. One of the primary steps could be developing the psychosexual fellowship.

  7. Wireless image-data transmission from an implanted image sensor through a living mouse brain by intra body communication

    NASA Astrophysics Data System (ADS)

    Hayami, Hajime; Takehara, Hiroaki; Nagata, Kengo; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2016-04-01

    Intra body communication technology allows the fabrication of compact implantable biomedical sensors compared with RF wireless technology. In this paper, we report the fabrication of an implantable image sensor of 625 µm width and 830 µm length and the demonstration of wireless image-data transmission through a brain tissue of a living mouse. The sensor was designed to transmit output signals of pixel values by pulse width modulation (PWM). The PWM signals from the sensor transmitted through a brain tissue were detected by a receiver electrode. Wireless data transmission of a two-dimensional image was successfully demonstrated in a living mouse brain. The technique reported here is expected to provide useful methods of data transmission using micro sized implantable biomedical sensors.

  8. Biomedical informatics research network: building a national collaboratory to hasten the derivation of new understanding and treatment of disease.

    PubMed

    Grethe, Jeffrey S; Baru, Chaitan; Gupta, Amarnath; James, Mark; Ludaescher, Bertram; Martone, Maryann E; Papadopoulos, Philip M; Peltier, Steven T; Rajasekar, Arcot; Santini, Simone; Zaslavsky, Ilya N; Ellisman, Mark H

    2005-01-01

    Through support from the National Institutes of Health's National Center for Research Resources, the Biomedical Informatics Research Network (BIRN) is pioneering the use of advanced cyberinfrastructure for medical research. By synchronizing developments in advanced wide area networking, distributed computing, distributed database federation, and other emerging capabilities of e-science, the BIRN has created a collaborative environment that is paving the way for biomedical research and clinical information management. The BIRN Coordinating Center (BIRN-CC) is orchestrating the development and deployment of key infrastructure components for immediate and long-range support of biomedical and clinical research being pursued by domain scientists in three neuroimaging test beds.

  9. Focusing light into desired patterns through turbid media by feedback-based wavefront shaping

    NASA Astrophysics Data System (ADS)

    Wan, Lipeng; Chen, Ziyang; Huang, Huiling; Pu, Jixiong

    2016-07-01

    We demonstrate that the focusing of light into desired patterns through turbid media can be realized using feedback-based wavefront shaping. Three desired focused patterns—a triangle, a circle, and a rectangle—are used as examples to study this ability. During the process of modulating scattered light, the Pearson's correlation coefficient is introduced as a feedback signal. It is found that the speckle field formed by the turbid media gradually transforms into the desired pattern through a process of modulation of the input beam wave front. The proposed approach has potential applications in biomedical treatment and laser material processing.

  10. The mouse thermoregulatory system: Its impact on translating biomedical data to humans

    EPA Science Inventory

    The laboratory mouse has become the predominant test species in biomedical research. The number of papers that translate or extrapolate data from mouse to human has grown exponentially since the year 2000. There are many physiological and anatomical factors to consider in the pro...

  11. Biomedical image classification based on a cascade of an SVM with a reject option and subspace analysis.

    PubMed

    Lin, Dongyun; Sun, Lei; Toh, Kar-Ann; Zhang, Jing Bo; Lin, Zhiping

    2018-05-01

    Automated biomedical image classification could confront the challenges of high level noise, image blur, illumination variation and complicated geometric correspondence among various categorical biomedical patterns in practice. To handle these challenges, we propose a cascade method consisting of two stages for biomedical image classification. At stage 1, we propose a confidence score based classification rule with a reject option for a preliminary decision using the support vector machine (SVM). The testing images going through stage 1 are separated into two groups based on their confidence scores. Those testing images with sufficiently high confidence scores are classified at stage 1 while the others with low confidence scores are rejected and fed to stage 2. At stage 2, the rejected images from stage 1 are first processed by a subspace analysis technique called eigenfeature regularization and extraction (ERE), and then classified by another SVM trained in the transformed subspace learned by ERE. At both stages, images are represented based on two types of local features, i.e., SIFT and SURF, respectively. They are encoded using various bag-of-words (BoW) models to handle biomedical patterns with and without geometric correspondence, respectively. Extensive experiments are implemented to evaluate the proposed method on three benchmark real-world biomedical image datasets. The proposed method significantly outperforms several competing state-of-the-art methods in terms of classification accuracy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Summer Institute in Biomedical Engineering, 1973

    NASA Technical Reports Server (NTRS)

    Deloatch, E. M.; Coble, A. J.

    1974-01-01

    Bioengineering of medical equipment is detailed. Equipment described includes: an environmental control system for a surgical suite; surface potential mapping for an electrode system; the use of speech-modulated-white-noise to differentiate hearers and feelers among the profoundly deaf; the design of an automatic weight scale for an isolette; and an internal tibial torsion correction study. Graphs and charts are included with design specifications of this equipment.

  13. [The analysis of threshold effect using Empower Stats software].

    PubMed

    Lin, Lin; Chen, Chang-zhong; Yu, Xiao-dan

    2013-11-01

    In many studies about biomedical research factors influence on the outcome variable, it has no influence or has a positive effect within a certain range. Exceeding a certain threshold value, the size of the effect and/or orientation will change, which called threshold effect. Whether there are threshold effects in the analysis of factors (x) on the outcome variable (y), it can be observed through a smooth curve fitting to see whether there is a piecewise linear relationship. And then using segmented regression model, LRT test and Bootstrap resampling method to analyze the threshold effect. Empower Stats software developed by American X & Y Solutions Inc has a threshold effect analysis module. You can input the threshold value at a given threshold segmentation simulated data. You may not input the threshold, but determined the optimal threshold analog data by the software automatically, and calculated the threshold confidence intervals.

  14. Advancement of Women in the Biomedical Workforce: Insights for Success

    PubMed Central

    Barfield, Whitney L.; Plank-Bazinet, Jennifer L.; Clayton, Janine Austin

    2016-01-01

    Women continue to face unique barriers in the biomedical workforce that affect their advancement and retention in this field. The National Institutes of Health (NIH) formed the Working Group on Women in Biomedical Careers to address these issues. Through the efforts of the Working Group, the NIH funded 14 research grants to identify barriers or to develop and/or test interventions to support women in the biomedical workforce. The grantees that were funded through this endeavor later established the grassroots Research Partnership on Women in Biomedical Careers, and they continue to conduct research and disseminate information on the state of women in academic medicine. This Commentary explores the themes introduced in a collection of articles organized by the Research Partnership and published in this issue of Academic Medicine. The authors highlight the role government plays in the advancement of women in academic medicine and highlight the findings put forward in this collection. PMID:27306970

  15. Functionalized carbon nanotubes: biomedical applications

    PubMed Central

    Vardharajula, Sandhya; Ali, Sk Z; Tiwari, Pooja M; Eroğlu, Erdal; Vig, Komal; Dennis, Vida A; Singh, Shree R

    2012-01-01

    Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity. PMID:23091380

  16. Advancement of Women in the Biomedical Workforce: Insights for Success.

    PubMed

    Barfield, Whitney L; Plank-Bazinet, Jennifer L; Austin Clayton, Janine

    2016-08-01

    Women continue to face unique barriers in the biomedical workforce that affect their advancement and retention in this field. The National Institutes of Health (NIH) formed the Working Group on Women in Biomedical Careers to address these issues. Through the efforts of the working group, the NIH funded 14 research grants to identify barriers or to develop and/or test interventions to support women in the biomedical workforce. The grantees that were funded through this endeavor later established the grassroots Research Partnership on Women in Biomedical Careers, and they continue to conduct research and disseminate information on the state of women in academic medicine. This Commentary explores the themes introduced in a collection of articles organized by the research partnership and published in this issue of Academic Medicine. The authors highlight the role that government plays in the advancement of women in academic medicine and highlight the findings put forward in this collection.

  17. Functionalized carbon nanotubes: biomedical applications.

    PubMed

    Vardharajula, Sandhya; Ali, Sk Z; Tiwari, Pooja M; Eroğlu, Erdal; Vig, Komal; Dennis, Vida A; Singh, Shree R

    2012-01-01

    Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity.

  18. BioStar models of clinical and genomic data for biomedical data warehouse design

    PubMed Central

    Wang, Liangjiang; Ramanathan, Murali

    2008-01-01

    Biomedical research is now generating large amounts of data, ranging from clinical test results to microarray gene expression profiles. The scale and complexity of these datasets give rise to substantial challenges in data management and analysis. It is highly desirable that data warehousing and online analytical processing technologies can be applied to biomedical data integration and mining. The major difficulty probably lies in the task of capturing and modelling diverse biological objects and their complex relationships. This paper describes multidimensional data modelling for biomedical data warehouse design. Since the conventional models such as star schema appear to be insufficient for modelling clinical and genomic data, we develop a new model called BioStar schema. The new model can capture the rich semantics of biomedical data and provide greater extensibility for the fast evolution of biological research methodologies. PMID:18048122

  19. Advances in Electronic-Nose Technologies Developed for Biomedical Applications

    PubMed Central

    Wilson, Alphus D.; Baietto, Manuela

    2011-01-01

    The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry. PMID:22346620

  20. Biomedical Results of ISS Expeditions 1-12

    NASA Technical Reports Server (NTRS)

    Fogarty, Jennifer; Sams, Clarence F.

    2007-01-01

    A viewgraph presentation on biomedical data from International Space Station (ISS) Expeditions 1-12 is shown. The topics include: 1) ISS Expeditions 1-12; 2) Biomedical Data; 3) Physiological Assessments; 4) Bone Mineral Density; 5) Bone Mineral Density Recovery; 6) Orthostatic Tolerance; 7) Postural Stability Set of Sensory Organ Test 6; 8) Performance Assessment; 9) Aerobic Capacity of the Astronaut Corps; 10) Pre-flight Aerobic Fitness of ISS Astronauts; 11) In-flight and Post-flight Aerobic Capacity of the Astronaut Corps; and 12) ISS Functional Fitness Expeditions 1-12.

  1. See the Math behind the Medicine

    ERIC Educational Resources Information Center

    Saunders, Marnie M.

    2010-01-01

    To promote math and science, this author designed an activity to show students that biomedical fields are within their reach. The activity has three distinct goals: (1) To introduce the field of biomedical engineering to students and encourage them in these career pursuits; (2) To give them hands-on experience conducting a biomechanical test; and…

  2. Bacterial inclusion bodies as potential synthetic devices for pathogen recognition and a therapeutic substance release.

    PubMed

    Talafová, Klaudia; Hrabárová, Eva; Chorvát, Dušan; Nahálka, Jozef

    2013-02-07

    Adhesins of pathogens recognise the glycans on the host cell and mediate adherence. They are also crucial for determining the tissue preferences of pathogens. Currently, glyco-nanomaterials provide potential tool for antimicrobial therapy. We demonstrate that properly glyco-tailored inclusion bodies can specifically bind pathogen adhesins and release therapeutic substances. In this paper, we describe the preparation of tailored inclusion bodies via the conjugation of indicator protein aggregated to form inclusion bodies with soluble proteins. Whereas the indicator protein represents a remedy, the soluble proteins play a role in pathogen recognition. For conjugation, glutaraldehyde was used as linker. The treatment of conjugates with polar lysine, which was used to inactivate the residual glutaraldehyde, inhibited unwanted hydrophobic interactions between inclusion bodies. The tailored inclusion bodies specifically interacted with the SabA adhesin from Helicobacter pylori aggregated to form inclusion bodies that were bound to the sialic acids decorating the surface of human erythrocytes. We also tested the release of indicator proteins from the inclusion bodies using sortase A and Ssp DNAB intein self-cleaving modules, respectively. Sortase A released proteins in a relatively short period of time, whereas the intein cleavage took several weeks. The tailored inclusion bodies are promising "nanopills" for biomedical applications. They are able to specifically target the pathogen, while a self-cleaving module releases a soluble remedy. Various self-cleaving modules can be enabled to achieve the diverse pace of remedy release.

  3. Bacterial inclusion bodies as potential synthetic devices for pathogen recognition and a therapeutic substance release

    PubMed Central

    2013-01-01

    Background Adhesins of pathogens recognise the glycans on the host cell and mediate adherence. They are also crucial for determining the tissue preferences of pathogens. Currently, glyco-nanomaterials provide potential tool for antimicrobial therapy. We demonstrate that properly glyco-tailored inclusion bodies can specifically bind pathogen adhesins and release therapeutic substances. Results In this paper, we describe the preparation of tailored inclusion bodies via the conjugation of indicator protein aggregated to form inclusion bodies with soluble proteins. Whereas the indicator protein represents a remedy, the soluble proteins play a role in pathogen recognition. For conjugation, glutaraldehyde was used as linker. The treatment of conjugates with polar lysine, which was used to inactivate the residual glutaraldehyde, inhibited unwanted hydrophobic interactions between inclusion bodies. The tailored inclusion bodies specifically interacted with the SabA adhesin from Helicobacter pylori aggregated to form inclusion bodies that were bound to the sialic acids decorating the surface of human erythrocytes. We also tested the release of indicator proteins from the inclusion bodies using sortase A and Ssp DNAB intein self-cleaving modules, respectively. Sortase A released proteins in a relatively short period of time, whereas the intein cleavage took several weeks. Conclusions The tailored inclusion bodies are promising “nanopills” for biomedical applications. They are able to specifically target the pathogen, while a self-cleaving module releases a soluble remedy. Various self-cleaving modules can be enabled to achieve the diverse pace of remedy release. PMID:23391325

  4. Modulated evaluation metrics for drug-based ontologies.

    PubMed

    Amith, Muhammad; Tao, Cui

    2017-04-24

    Research for ontology evaluation is scarce. If biomedical ontological datasets and knowledgebases are to be widely used, there needs to be quality control and evaluation for the content and structure of the ontology. This paper introduces how to effectively utilize a semiotic-inspired approach to ontology evaluation, specifically towards drug-related ontologies hosted on the National Center for Biomedical Ontology BioPortal. Using the semiotic-based evaluation framework for drug-based ontologies, we adjusted the quality metrics based on the semiotic features of drug ontologies. Then, we compared the quality scores before and after tailoring. The scores revealed a more precise measurement and a closer distribution compared to the before-tailoring. The results of this study reveal that a tailored semiotic evaluation produced a more meaningful and accurate assessment of drug-based ontologies, lending to the possible usefulness of semiotics in ontology evaluation.

  5. KSC-05PD-0375

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, a worker inside the Multi-Purpose Logistics Module Raffaello is ready for installation of the Human Research Facility-2 (HRF-2) science rack. Raffaello will fly on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  6. KSC-05PD-0369

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, workers prepare the Human Research Facility-2 (HRF-2) science rack for installation into the Multi-Purpose Logistics Module Raffaello for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  7. KSC-05PD-0372

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, the Rack Insertion Device moves the Human Research Facility-2 (HRF-2) science rack toward the Multi-Purpose Logistics Module Raffaello (at left) for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  8. KSC-05PD-0368

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, the Human Research Facility-2 (HRF-2) science rack sits on a stand waiting to be installed into the Multi-Purpose Logistics Module Raffaello for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  9. Peptide-mediated vectorization of metal complexes: conjugation strategies and biomedical applications.

    PubMed

    Soler, Marta; Feliu, Lidia; Planas, Marta; Ribas, Xavi; Costas, Miquel

    2016-08-16

    The rich chemical and structural versatility of transition metal complexes provides numerous novel paths to be pursued in the design of molecules that exert particular chemical or physicochemical effects that could operate over specific biological targets. However, the poor cell permeability of metallodrugs represents an important barrier for their therapeutic use. The conjugation between metal complexes and a functional peptide vector can be regarded as a versatile and potential strategy to improve their bioavailability and accumulation inside cells, and the site selectivity of their effect. This perspective lies in reviewing the recent advances in the design of metallopeptide conjugates for biomedical applications. Additionally, we highlight the studies where this approach has been directed towards the incorporation of redox active metal centers into living organisms for modulating the cellular redox balance, as a tool with application in anticancer therapy.

  10. Edited course of biomedical research: leaping forward with CRISPR.

    PubMed

    Collins, Patrick J; Hale, Christopher M; Xu, Han

    2017-11-01

    Within the short few years since the report of its application in precise genome editing, CRISPR technology has become the method of choice to modify and modulate gene expression in biomedical research and therapeutic development. Subsequently, a variety of research, diagnostic, and therapeutic tools have been developed based upon CRISPR's mechanism of action. Such tools have helped to deepen the understanding of fundamental biology and broaden the horizon in the search for treatments for diseases that have been considered hard or impossible to cure. As CRISPR technology advances closer to clinical applications, its short comings are becoming more apparent, thus creating opportunities to improve the technology's efficacy, specificity, and safety profile in this setting. We will summarize the current status of CRISPR technology and discuss its future impact in this review. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The center for causal discovery of biomedical knowledge from big data.

    PubMed

    Cooper, Gregory F; Bahar, Ivet; Becich, Michael J; Benos, Panayiotis V; Berg, Jeremy; Espino, Jeremy U; Glymour, Clark; Jacobson, Rebecca Crowley; Kienholz, Michelle; Lee, Adrian V; Lu, Xinghua; Scheines, Richard

    2015-11-01

    The Big Data to Knowledge (BD2K) Center for Causal Discovery is developing and disseminating an integrated set of open source tools that support causal modeling and discovery of biomedical knowledge from large and complex biomedical datasets. The Center integrates teams of biomedical and data scientists focused on the refinement of existing and the development of new constraint-based and Bayesian algorithms based on causal Bayesian networks, the optimization of software for efficient operation in a supercomputing environment, and the testing of algorithms and software developed using real data from 3 representative driving biomedical projects: cancer driver mutations, lung disease, and the functional connectome of the human brain. Associated training activities provide both biomedical and data scientists with the knowledge and skills needed to apply and extend these tools. Collaborative activities with the BD2K Consortium further advance causal discovery tools and integrate tools and resources developed by other centers. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Commercial opportunities in bioseparations and physiological testing aboard Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1992-01-01

    The Center for Cell Research (CCR) is a NASA Center for the Commercial Development of Space which has as its main goal encouraging industry-driven biomedical/biotechnology space projects. Space Station Freedom (SSF) will provide long duration, crew-tended microgravity environments which will enhance the opportunities for commercial biomedical/biotechnology projects in bioseparations and physiological testing. The CCR bioseparations program, known as USCEPS (for United States Commercial Electrophoresis Program in Space), is developing access for American industry to continuous-flow electrophoresis aboard SSF. In space, considerable scale-up of continuous free-flow electrophoresis is possible for cells, sub cellular particles, proteins, growth factors, and other biological products. The lack of sedemination and buoyancy-driven convection flow enhances purity of separations and the amount of material processed/time. Through the CCR's physiological testing program, commercial organizations will have access aboard SSF to physiological systems experiments (PSE's); the Penn State Biomodule; and telemicroscopy. Physiological systems experiments involve the use of live animals for pharmaceutical product testing and discovery research. The Penn State Biomodule is a computer-controlled mini lab useful for projects involving live cells or tissues and macro molecular assembly studies, including protein crystallization. Telemicroscopy will enable staff on Earth to manipulate and monitor microscopic specimens on SSF for product development and discovery research or for medical diagnosis of astronaut health problems. Space-based product processing, testing, development, and discovery research using USCEPS and CCR's physiological testing program offer new routes to improved health on Earth. Direct crew involvement-in biomedical/biotechnology projects aboard SSF will enable better experimental outcomes. The current data base shows that there is reason for considerable optimism regarding what the CCDS program and the biomedical/biotechnology industry can expect to gain from a permanent manned presence in space.

  13. DBMap: a TreeMap-based framework for data navigation and visualization of brain research registry

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Zhang, Hong; Tjandra, Donny; Wong, Stephen T. C.

    2003-05-01

    The purpose of this study is to investigate and apply a new, intuitive and space-conscious visualization framework to facilitate efficient data presentation and exploration of large-scale data warehouses. We have implemented the DBMap framework for the UCSF Brain Research Registry. Such a novel utility would facilitate medical specialists and clinical researchers in better exploring and evaluating a number of attributes organized in the brain research registry. The current UCSF Brain Research Registry consists of a federation of disease-oriented database modules, including Epilepsy, Brain Tumor, Intracerebral Hemorrphage, and CJD (Creuzfeld-Jacob disease). These database modules organize large volumes of imaging and non-imaging data to support Web-based clinical research. While the data warehouse supports general information retrieval and analysis, there lacks an effective way to visualize and present the voluminous and complex data stored. This study investigates whether the TreeMap algorithm can be adapted to display and navigate categorical biomedical data warehouse or registry. TreeMap is a space constrained graphical representation of large hierarchical data sets, mapped to a matrix of rectangles, whose size and color represent interested database fields. It allows the display of a large amount of numerical and categorical information in limited real estate of computer screen with an intuitive user interface. The paper will describe, DBMap, the proposed new data visualization framework for large biomedical databases. Built upon XML, Java and JDBC technologies, the prototype system includes a set of software modules that reside in the application server tier and provide interface to backend database tier and front-end Web tier of the brain registry.

  14. Functionalization of alkyne-terminated thermally hydrocarbonized porous silicon nanoparticles with targeting peptides and antifouling polymers: effect on the human plasma protein adsorption.

    PubMed

    Wang, Chang-Fang; Mäkilä, Ermei M; Bonduelle, Colin; Rytkönen, Jussi; Raula, Janne; Almeida, Sérgio; Närvänen, Ale; Salonen, Jarno J; Lecommandoux, Sebastien; Hirvonen, Jouni T; Santos, Hélder A

    2015-01-28

    Porous silicon (PSi) nanomaterials combine a high drug loading capacity and tunable surface chemistry with various surface modifications to meet the requirements for biomedical applications. In this work, alkyne-terminated thermally hydrocarbonized porous silicon (THCPSi) nanoparticles were fabricated and postmodified using five bioactive molecules (targeting peptides and antifouling polymers) via a single-step click chemistry to modulate the bioactivity of the THCPSi nanoparticles, such as enhancing the cellular uptake and reducing the plasma protein association. The size of the nanoparticles after modification was increased from 176 to 180-220 nm. Dextran 40 kDa modified THCPSi nanoparticles showed the highest stability in aqueous buffer. Both peptide- and polymer-functionalized THCPSi nanoparticles showed an extensive cellular uptake which was dependent on the functionalized moieties presented on the surface of the nanoparticles. The plasma protein adsorption study showed that the surface modification with different peptides or polymers induced different protein association profiles. Dextran 40 kDa functionalized THCPSi nanoparticles presented the least protein association. Overall, these results demonstrate that the "click" conjugation of the biomolecules onto the alkyne-terminated THCPSi nanoparticles is a versatile and simple approach to modulate the surface chemistry, which has high potential for biomedical applications.

  15. Interactive instruction of cellular physiology for remote learning.

    PubMed

    Huang, C; Huang, H K

    2003-12-01

    The biomedical sciences are a rapidly changing discipline that have adapted to innovative technological advances. Despite these many advances, we face two major challenges: a) the number of experts in the field is vastly outnumbered by the number of students, many of whom are separated geographically or temporally and b) the teaching methods used to instruct students and learners have not changed. Today's students have adapted to technology--they use the web as a source of information and communicate via email and chat rooms. Teaching in the biomedical sciences should adopt these new information technologies (IT), but has thus far failed to capitalize on technological opportunity. Creating a "digital textbook" of the traditional learning material is not sufficient for dynamic processes such as cellular physiology. This paper describes innovative teaching techniques that incorporate familiar IT and high-quality interactive learning content with user-centric instruction design models. The Virtual Labs Project from Stanford University has created effective interactive online teaching modules in physiology (simPHYSIO) and delivered them over broadband networks to their undergraduate and medical students. Evaluation results of the modules are given as a measure of success of such innovative teaching method. This learning media strategically merges IT innovations with pedagogy to produce user-driven animations of processes and engaging interactive simulations.

  16. MORAL ENHANCEMENT VIA DIRECT EMOTION MODULATION: A REPLY TO JOHN HARRIS

    PubMed Central

    Douglas, Thomas

    2013-01-01

    Some argue that humans should enhance their moral capacities by adopting institutions that facilitate morally good motives and behaviour. I have defended a parallel claim: that we could permissibly use biomedical technologies to enhance our moral capacities, for example by attenuating certain counter-moral emotions. John Harris has recently responded to my argument by raising three concerns about the direct modulation of emotions as a means to moral enhancement. He argues (1) that such means will be relatively ineffective in bringing about moral improvements, (2) that direct modulation of emotions would invariably come at an unacceptable cost to our freedom, and (3) that we might end up modulating emotions in ways that actually lead to moral decline. In this article I outline some counter-intuitive potential implications of Harris' claims. I then respond individually to his three concerns, arguing that they license only the very weak conclusion that moral enhancement via direct emotion modulation is sometimes impermissible. However I acknowledge that his third concern might, with further argument, be developed into a more troubling objection to such enhancements. PMID:22092503

  17. Moral enhancement via direct emotion modulation: a reply to John Harris.

    PubMed

    Douglas, Thomas

    2013-03-01

    Some argue that humans should enhance their moral capacities by adopting institutions that facilitate morally good motives and behaviour. I have defended a parallel claim: that we could permissibly use biomedical technologies to enhance our moral capacities, for example by attenuating certain counter-moral emotions. John Harris has recently responded to my argument by raising three concerns about the direct modulation of emotions as a means to moral enhancement. He argues (1) that such means will be relatively ineffective in bringing about moral improvements, (2) that direct modulation of emotions would invariably come at an unacceptable cost to our freedom, and (3) that we might end up modulating emotions in ways that actually lead to moral decline. In this article I outline some counter-intuitive potential implications of Harris' claims. I then respond individually to his three concerns, arguing that they license only the very weak conclusion that moral enhancement via direct emotion modulation is sometimes impermissible. However I acknowledge that his third concern might, with further argument, be developed into a more troubling objection to such enhancements. © 2011 Blackwell Publishing Ltd.

  18. Exploring protein structure and dynamics through a project-oriented biochemistry laboratory module.

    PubMed

    Lipchock, James M; Ginther, Patrick S; Douglas, Bonnie B; Bird, Kelly E; Patrick Loria, J

    2017-09-01

    Here, we present a 10-week project-oriented laboratory module designed to provide a course-based undergraduate research experience in biochemistry that emphasizes the importance of biomolecular structure and dynamics in enzyme function. This module explores the impact of mutagenesis on an important active site loop for a biomedically-relevant human enzyme, protein tyrosine phosphatase 1B (PTP1B). Over the course of the semester students guide their own mutant of PTP1B from conception to characterization in a cost-effective manner and gain exposure to fundamental techniques in biochemistry, including site-directed DNA mutagenesis, bacterial recombinant protein expression, affinity column purification, protein quantitation, SDS-PAGE, and enzyme kinetics. This project-based approach allows an instructor to simulate a research setting and prepare students for productive research beyond the classroom. Potential modifications to expand or contract this module are also provided. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):403-410, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  19. Developing research competencies through a project-based tissue-engineering module in the biomedical engineering undergraduate curriculum.

    PubMed

    Wallen, M; Pandit, A

    2009-05-01

    In addressing the task of developing an undergraduate module in the field of tissue engineering, the greatest challenge lies in managing to capture what is a growing and rapidly changing field. Acknowledging the call for the development of greater critical thinking and interpersonal skills among the next generation of engineers as well as encouraging students to engage actively with the dynamic nature of research in the field, the module was developed to include both project-based and cooperative-learning experiences. These learning activities include developing hypotheses for the application of newly introduced laboratory procedures, a collaborative mock grant submission, and debates on ethical issues in which students are assigned roles as various stakeholders. Feedback from module evaluations has indicated that, while students find the expectations challenging, they are able to gain an advanced insight into a dynamic field. More importantly, students develop research competencies by engaging in activities that require them to link current research directions with their own development of hypotheses for future tissue-engineering applications.

  20. Microcontroller-based wireless recorder for biomedical signals.

    PubMed

    Chien, C-N; Hsu, H-W; Jang, J-K; Rau, C-L; Jaw, F-S

    2005-01-01

    A portable multichannel system is described for the recording of biomedical signals wirelessly. Instead of using the conversional time-division analog-modulation method, the technique of digital multiplexing was applied to increase the number of signal channels to 4. Detailed design considerations and functional allocation of the system is discussed. The frontend unit was modularly designed to condition the input signal in an optimal manner. Then, the microcontroller handled the tasks of data conversion, wireless transmission, as well as providing the ability of simple preprocessing such as waveform averaging or rectification. The low-power nature of this microcontroller affords the benefit of battery operation and hence, patient isolation of the system. Finally, a single-chip receiver, which compatible with the RF transmitter of the microcontroller, was used to implement a compact interface with the host computer. An application of this portable recorder for low-back pain studies is shown. This device can simultaneously record one ECG and two surface EMG wirelessly, thus, is helpful in relieving patients' anxiety devising clinical measurement. Such an approach, microcontroller-based wireless measurement, could be an important trend for biomedical instrumentation and we help that this paper could be useful for other colleagues.

  1. Placebo studies and ritual theory: a comparative analysis of Navajo, acupuncture and biomedical healing

    PubMed Central

    Kaptchuk, Ted J.

    2011-01-01

    Using a comparative analysis of Navajo healing ceremonials, acupuncture and biomedical treatment, this essay examines placebo studies and ritual theory as mutually interpenetrating disciplines. Healing rituals create a receptive person susceptible to the influences of authoritative culturally sanctioned ‘powers’. The healer provides the sufferer with imaginative, emotional, sensory, moral and aesthetic input derived from the palpable symbols and procedures of the ritual process—in the process fusing the sufferer's idiosyncratic narrative unto a universal cultural mythos. Healing rituals involve a drama of evocation, enactment, embodiment and evaluation in a charged atmosphere of hope and uncertainty. Experimental research into placebo effects demonstrates that routine biomedical pharmacological and procedural interventions contain significant ritual dimensions. This research also suggests that ritual healing not only represents changes in affect, self-awareness and self-appraisal of behavioural capacities, but involves modulations of symptoms through neurobiological mechanisms. Recent scientific investigations into placebo acupuncture suggest several ways that observations from ritual studies can be verified experimentally. Placebo effects are often described as ‘non-specific’; the analysis presented here suggests that placebo effects are the ‘specific’ effects of healing rituals. PMID:21576142

  2. In vitro and ex vivo evaluation of silica-coated super paramagnetic iron oxide nanoparticles (SPION) as biomedical photoacoustic contrast agent

    NASA Astrophysics Data System (ADS)

    Alwi, Rudolf; Telenkov, Sergey A.; Mandelis, Andreas; Leshuk, Timothy; Gu, Frank; Oladepo, Sulayman; Michaelian, Kirk; Dickie, Kristopher

    2013-03-01

    The employment of contrast agents in photoacoustic imaging has gained significant attention within the past few years for their biomedical applications. In this study, the use of silica-coated superparamagnetic iron oxide (Fe3O4) nanoparticles (SPION) was investigated as a contrast agent in biomedical photoacoustic imaging. SPIONs have been widely used as Food-and-Drug-Administration (FDA)-approved contrast agents for magnetic resonance imaging (MRI) and are known to have an excellent safety profile. Using our frequency-domain photoacoustic correlation technique ("the photoacoustic radar") with modulated laser excitation, we examined the effects of nanoparticle size, concentration and biological medium (e.g. serum, sheep blood) on its photoacoustic response in turbid media (intralipid solution). Maximum detection depth and minimum measurable SPION concentration were determined experimentally. The detection was performed using a single element transducer. The nanoparticle-induced optical contrast ex vivo in dense muscular tissues (avian pectus) was evaluated using a phased array photoacoustic probe and the strong potential of silicacoated SPION as a possible photoacoustic contrast agent was demonstrated. This study opens the way for future clinical applications of nanoparticle-enhanced photoacoustic imaging in cancer therapy.

  3. BioEve Search: A Novel Framework to Facilitate Interactive Literature Search

    PubMed Central

    Ahmed, Syed Toufeeq; Davulcu, Hasan; Tikves, Sukru; Nair, Radhika; Zhao, Zhongming

    2012-01-01

    Background. Recent advances in computational and biological methods in last two decades have remarkably changed the scale of biomedical research and with it began the unprecedented growth in both the production of biomedical data and amount of published literature discussing it. An automated extraction system coupled with a cognitive search and navigation service over these document collections would not only save time and effort, but also pave the way to discover hitherto unknown information implicitly conveyed in the texts. Results. We developed a novel framework (named “BioEve”) that seamlessly integrates Faceted Search (Information Retrieval) with Information Extraction module to provide an interactive search experience for the researchers in life sciences. It enables guided step-by-step search query refinement, by suggesting concepts and entities (like genes, drugs, and diseases) to quickly filter and modify search direction, and thereby facilitating an enriched paradigm where user can discover related concepts and keywords to search while information seeking. Conclusions. The BioEve Search framework makes it easier to enable scalable interactive search over large collection of textual articles and to discover knowledge hidden in thousands of biomedical literature articles with ease. PMID:22693501

  4. Three axis vector atomic magnetometer utilizing polarimetric technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, Swarupananda, E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com

    2016-09-15

    The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity fieldmore » gradient measurement as required for biomedical application.« less

  5. High-speed wavefront modulation in complex media (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Turtaev, Sergey; Leite, Ivo T.; Cizmár, TomáÅ.¡

    2017-02-01

    Using spatial light modulators(SLM) to control light propagation through scattering media is a critical topic for various applications in biomedical imaging, optical micromanipulation, and fibre endoscopy. Having limited switching rate, typically 10-100Hz, current liquid-crystal SLM can no longer meet the growing demands of high-speed imaging. A new way based on binary-amplitude holography implemented on digital micromirror devices(DMD) has been introduced recently, allowing to reach refreshing rates of 30kHz. Here, we summarise the advantages and limitations in speed, efficiency, scattering noise, and pixel cross-talk for each device in ballistic and diffusive regimes, paving the way for high-speed imaging through multimode fibres.

  6. Physiology and the Biomedical Engineering Curriculum: Utilizing Emerging Instructional Technologies to Promote Development of Adaptive Expertise in Undergraduate Students

    ERIC Educational Resources Information Center

    Nelson, Regina K.

    2013-01-01

    A mixed-methods research study was designed to test whether undergraduate engineering students were better prepared to learn advanced topics in biomedical engineering if they learned physiology via a quantitative, concept-based approach rather than a qualitative, system-based approach. Experiments were conducted with undergraduate engineering…

  7. Biomedical Results of Apollo

    NASA Technical Reports Server (NTRS)

    Johnston, R. S. (Editor); Dietlein, L. F. (Editor); Berry, C. A. (Editor); Parker, James F. (Compiler); West, Vita (Compiler)

    1975-01-01

    The biomedical program developed for Apollo is described in detail. The findings are listed of those investigations which are conducted to assess the effects of space flight on man's physiological and functional capacities, and significant medical events in Apollo are documented. Topics discussed include crew health and inflight monitoring, preflight and postflight medical testing, inflight experiments, quarantine, and life support systems.

  8. From Bench to Bedside: A Communal Utility Value Intervention to Enhance Students' Biomedical Science Motivation

    ERIC Educational Resources Information Center

    Brown, Elizabeth R.; Smith, Jessi L.; Thoman, Dustin B.; Allen, Jill M.; Muragishi, Gregg

    2015-01-01

    Motivating students to pursue science careers is a top priority among many science educators. We add to the growing literature by examining the impact of a utility value intervention to enhance student's perceptions that biomedical science affords important utility work values. Using an expectancy-value perspective, we identified and tested 2…

  9. A theoretical-experimental methodology for assessing the sensitivity of biomedical spectral imaging platforms, assays, and analysis methods.

    PubMed

    Leavesley, Silas J; Sweat, Brenner; Abbott, Caitlyn; Favreau, Peter; Rich, Thomas C

    2018-01-01

    Spectral imaging technologies have been used for many years by the remote sensing community. More recently, these approaches have been applied to biomedical problems, where they have shown great promise. However, biomedical spectral imaging has been complicated by the high variance of biological data and the reduced ability to construct test scenarios with fixed ground truths. Hence, it has been difficult to objectively assess and compare biomedical spectral imaging assays and technologies. Here, we present a standardized methodology that allows assessment of the performance of biomedical spectral imaging equipment, assays, and analysis algorithms. This methodology incorporates real experimental data and a theoretical sensitivity analysis, preserving the variability present in biomedical image data. We demonstrate that this approach can be applied in several ways: to compare the effectiveness of spectral analysis algorithms, to compare the response of different imaging platforms, and to assess the level of target signature required to achieve a desired performance. Results indicate that it is possible to compare even very different hardware platforms using this methodology. Future applications could include a range of optimization tasks, such as maximizing detection sensitivity or acquisition speed, providing high utility for investigators ranging from design engineers to biomedical scientists. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Biomedical technical transfer. Applications of NASA science and technology

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Lower body negative pressure testing in cardiac patients has been completed as well as the design and construction of a new leg negative unit for evaluating heart patients. This technology is based on NASA research, using vacuum chambers to stress the cardiovascular system during space flight. Additional laboratory tests of an intracranial pressure transducer, have been conducted. Three new biomedical problems to which NASA technology is applicable are also identified. These are: a communication device for the speech impaired, the NASA development liquid-cooled garment, and miniature force transducers for heart research.

  11. How to locate & hire clinical/biomedical engineers, supervisors, managers & biomedical equipment technicians.

    PubMed

    Pacela, A F; Brush, L C

    1993-01-01

    This article has described the process and the resources available for locating and hiring clinical/biomedical engineers, supervisors, managers, and biomedical equipment technicians. First, the employer must determine the qualifications for the position, including job titles, descriptions, pay scales, and certification requirements. Next, the employer must find qualified applicants. The most common way to do this is to use "outside" contacts, such as help-wanted advertising, specialized job placement agencies, schools and colleges, military resources, regional biomedical societies, and nationwide societies. An "inside" search involves limited internal advertising of the position and using personal referrals for candidates. Finally, the employer must screen the applicants. The position description is the obvious first step in this process, but there are other pre-screening techniques, such as employment testing. Interviewing is the most common way to hire for job positions, but the interviewer needs to know about the position and ask the right questions. Post-interview screening is a final step to help determine the best job-person match.

  12. KNODWAT: A scientific framework application for testing knowledge discovery methods for the biomedical domain

    PubMed Central

    2013-01-01

    Background Professionals in the biomedical domain are confronted with an increasing mass of data. Developing methods to assist professional end users in the field of Knowledge Discovery to identify, extract, visualize and understand useful information from these huge amounts of data is a huge challenge. However, there are so many diverse methods and methodologies available, that for biomedical researchers who are inexperienced in the use of even relatively popular knowledge discovery methods, it can be very difficult to select the most appropriate method for their particular research problem. Results A web application, called KNODWAT (KNOwledge Discovery With Advanced Techniques) has been developed, using Java on Spring framework 3.1. and following a user-centered approach. The software runs on Java 1.6 and above and requires a web server such as Apache Tomcat and a database server such as the MySQL Server. For frontend functionality and styling, Twitter Bootstrap was used as well as jQuery for interactive user interface operations. Conclusions The framework presented is user-centric, highly extensible and flexible. Since it enables methods for testing using existing data to assess suitability and performance, it is especially suitable for inexperienced biomedical researchers, new to the field of knowledge discovery and data mining. For testing purposes two algorithms, CART and C4.5 were implemented using the WEKA data mining framework. PMID:23763826

  13. KNODWAT: a scientific framework application for testing knowledge discovery methods for the biomedical domain.

    PubMed

    Holzinger, Andreas; Zupan, Mario

    2013-06-13

    Professionals in the biomedical domain are confronted with an increasing mass of data. Developing methods to assist professional end users in the field of Knowledge Discovery to identify, extract, visualize and understand useful information from these huge amounts of data is a huge challenge. However, there are so many diverse methods and methodologies available, that for biomedical researchers who are inexperienced in the use of even relatively popular knowledge discovery methods, it can be very difficult to select the most appropriate method for their particular research problem. A web application, called KNODWAT (KNOwledge Discovery With Advanced Techniques) has been developed, using Java on Spring framework 3.1. and following a user-centered approach. The software runs on Java 1.6 and above and requires a web server such as Apache Tomcat and a database server such as the MySQL Server. For frontend functionality and styling, Twitter Bootstrap was used as well as jQuery for interactive user interface operations. The framework presented is user-centric, highly extensible and flexible. Since it enables methods for testing using existing data to assess suitability and performance, it is especially suitable for inexperienced biomedical researchers, new to the field of knowledge discovery and data mining. For testing purposes two algorithms, CART and C4.5 were implemented using the WEKA data mining framework.

  14. Graphene patterns supported terahertz tunable plasmon induced transparency.

    PubMed

    He, Xiaoyong; Liu, Feng; Lin, Fangting; Shi, Wangzhou

    2018-04-16

    The tunable plasmonic induced transparency has been theoretically investigated based on graphene patterns/SiO 2 /Si/polymer multilayer structure in the terahertz regime, including the effects of graphene Fermi level, structural parameters and operation frequency. The results manifest that obvious Fano peak can be observed and efficiently modulated because of the strong coupling between incident light and graphene pattern structures. As Fermi level increases, the peak amplitude of Fano resonance increases, and the resonant peak position shifts to high frequency. The amplitude modulation depth of Fano curves is about 40% on condition that the Fermi level changes in the scope of 0.2-1.0 eV. With the distance between cut wire and double semi-circular patterns increases, the peak amplitude and figure of merit increases. The results are very helpful to develop novel graphene plasmonic devices (e.g. sensors, modulators, and antenna) and find potential applications in the fields of biomedical sensing and wireless communications.

  15. Wireless power using magnetic resonance coupling for neural sensing applications

    NASA Astrophysics Data System (ADS)

    Yoon, Hargsoon; Kim, Hyunjung; Choi, Sang H.; Sanford, Larry D.; Geddis, Demetris; Lee, Kunik; Kim, Jaehwan; Song, Kyo D.

    2012-04-01

    Various wireless power transfer systems based on electromagnetic coupling have been investigated and applied in many biomedical applications including functional electrical stimulation systems and physiological sensing in humans and animals. By integrating wireless power transfer modules with wireless communication devices, electronic systems can deliver data and control system operation in untethered freely-moving conditions without requiring access through the skin, a potential source of infection. In this presentation, we will discuss a wireless power transfer module using magnetic resonance coupling that is specifically designed for neural sensing systems and in-vivo animal models. This research presents simple experimental set-ups and circuit models of magnetic resonance coupling modules and discusses advantages and concerns involved in positioning and sizing of source and receiver coils compared to conventional inductive coupling devices. Furthermore, the potential concern of tissue heating in the brain during operation of the wireless power transfer systems will also be addressed.

  16. 3D silicon neural probe with integrated optical fibers for optogenetic modulation.

    PubMed

    Kim, Eric G R; Tu, Hongen; Luo, Hao; Liu, Bin; Bao, Shaowen; Zhang, Jinsheng; Xu, Yong

    2015-07-21

    Optogenetics is a powerful modality for neural modulation that can be useful for a wide array of biomedical studies. Penetrating microelectrode arrays provide a means of recording neural signals with high spatial resolution. It is highly desirable to integrate optics with neural probes to allow for functional study of neural tissue by optogenetics. In this paper, we report the development of a novel 3D neural probe coupled simply and robustly to optical fibers using a hollow parylene tube structure. The device shanks are hollow tubes with rigid silicon tips, allowing the insertion and encasement of optical fibers within the shanks. The position of the fiber tip can be precisely controlled relative to the electrodes on the shank by inherent design features. Preliminary in vivo rat studies indicate that these devices are capable of optogenetic modulation simultaneously with 3D neural signal recording.

  17. País de gordos/país de muertos: Obesity, death and nation in biomedical and forensic genetics in Mexico

    PubMed Central

    García-Deister, Vivette; López-Beltrán, Carlos

    2015-01-01

    This article provides a comparison between genomic medicine and forensic genetics in Mexico, in light of recent depictions of the nation as a ‘país de gordos’ (country of the fat) and a ‘país de muertos’ (country of the dead). We examine the continuities and ruptures in the public image of genetics in these two areas of attention, health and security, focusing especially on how the relevant publics of genetic science are assembled in each case. Publics of biomedical and forensic genetics are assembled through processes of recruitment and interpellation, in ways that modulate current theorizations of co-production. The comparison also provides a vista onto discussions regarding the involvement of genetics in regimes of governance and citizenship and about the relationship between the state and biopower in a context of perceived health crisis and war-like violence. PMID:27479997

  18. Swimming by reciprocal motion at low Reynolds number.

    PubMed

    Qiu, Tian; Lee, Tung-Chun; Mark, Andrew G; Morozov, Konstantin I; Münster, Raphael; Mierka, Otto; Turek, Stefan; Leshansky, Alexander M; Fischer, Peer

    2014-11-04

    Biological microorganisms swim with flagella and cilia that execute nonreciprocal motions for low Reynolds number (Re) propulsion in viscous fluids. This symmetry requirement is a consequence of Purcell's scallop theorem, which complicates the actuation scheme needed by microswimmers. However, most biomedically important fluids are non-Newtonian where the scallop theorem no longer holds. It should therefore be possible to realize a microswimmer that moves with reciprocal periodic body-shape changes in non-Newtonian fluids. Here we report a symmetric 'micro-scallop', a single-hinge microswimmer that can propel in shear thickening and shear thinning (non-Newtonian) fluids by reciprocal motion at low Re. Excellent agreement between our measurements and both numerical and analytical theoretical predictions indicates that the net propulsion is caused by modulation of the fluid viscosity upon varying the shear rate. This reciprocal swimming mechanism opens new possibilities in designing biomedical microdevices that can propel by a simple actuation scheme in non-Newtonian biological fluids.

  19. Epigenetic Regulation: A New Frontier for Biomedical Engineers.

    PubMed

    Chen, Zhen; Li, Shuai; Subramaniam, Shankar; Shyy, John Y-J; Chien, Shu

    2017-06-21

    Gene expression in mammalian cells depends on the epigenetic status of the chromatin, including DNA methylation, histone modifications, promoter-enhancer interactions, and noncoding RNA-mediated regulation. The coordinated actions of these multifaceted regulations determine cell development, cell cycle regulation, cell state and fate, and the ultimate responses in health and disease. Therefore, studies of epigenetic modulations are critical for our understanding of gene regulation mechanisms at the molecular, cellular, tissue, and organ levels. The aim of this review is to provide biomedical engineers with an overview of the principles of epigenetics, methods of study, recent findings in epigenetic regulation in health and disease, and computational and sequencing tools for epigenetics analysis, with an emphasis on the cardiovascular system. This review concludes with the perspectives of the application of bioengineering to advance epigenetics and the utilization of epigenetics to translate bioengineering research into clinical medicine.

  20. KSC-05PD-0371

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, the Human Research Facility-2 (HRF-2) science rack is attached to the Rack Insertion Device that will install it into the Multi-Purpose Logistics Module Raffaello (at left) for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  1. KSC-05PD-0374

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, a worker watches as the Rack Insertion Device slowly moves the Human Research Facility-2 (HRF-2) science rack into the Multi-Purpose Logistics Module Raffaello for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  2. KSC-05PD-0370

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, workers prepare to attach the Human Research Facility-2 (HRF-2) science rack onto the Rack Insertion Device. HRF-2 will be installed into the Multi-Purpose Logistics Module Raffaello (at left) for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  3. KSC-05PD-0373

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, a worker stands by as the Rack Insertion Device slowly moves the Human Research Facility-2 (HRF-2) science rack into the Multi-Purpose Logistics Module Raffaello for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  4. País de gordos/país de muertos: Obesity, death and nation in biomedical and forensic genetics in Mexico.

    PubMed

    García-Deister, Vivette; López-Beltrán, Carlos

    2015-12-01

    This article provides a comparison between genomic medicine and forensic genetics in Mexico, in light of recent depictions of the nation as a 'país de gordos' (country of the fat) and a 'país de muertos' (country of the dead). We examine the continuities and ruptures in the public image of genetics in these two areas of attention, health and security, focusing especially on how the relevant publics of genetic science are assembled in each case. Publics of biomedical and forensic genetics are assembled through processes of recruitment and interpellation, in ways that modulate current theorizations of co-production. The comparison also provides a vista onto discussions regarding the involvement of genetics in regimes of governance and citizenship and about the relationship between the state and biopower in a context of perceived health crisis and war-like violence.

  5. The importance of Zebrafish in biomedical research.

    PubMed

    Tavares, Bárbara; Santos Lopes, Susana

    2013-01-01

    Zebrafish (Danio rerio) is an ideal model organism for the study of vertebrate development. This is due to the large clutches that each couple produces, with up to 200 embryos every 7 days, and to the fact that the embryos and larvae are small, transparent and undergo rapid external development. Using scientific literature research tools available online and the keywords Zebrafish, biomedical research, human disease, and drug screening, we reviewed original studies and reviews indexed in PubMed. In this review we summarized work conducted with this model for the advancement of our knowledge related to several human diseases. We also focused on the biomedical research being performed in Portugal with the zebrafish model. Powerful live imaging and genetic tools are currently available for zebrafish making it a valuable model in biomedical research. The combination of these properties with the optimization of automated systems for drug screening has transformed the zebrafish into "a top model" in biomedical research, drug discovery and toxicity testing. Furthermore, with the optimization of xenografts technology it will be possible to use zebrafish to aide in the choice of the best therapy for each patient. Zebrafish is an excellent model organism in biomedical research, drug development and in clinical therapy.

  6. [Biomedical foundation for human safety in aviation].

    PubMed

    Ushakov, I B

    2004-01-01

    According to the author, preventive medical issues of providing human safety in aviation are related to the fundamental biomedical and socio-psychological problems of human beings in the present-day world. Factual material for analysis was compiled in the study performed at the State Research and Test Institute of Military Medicine. Outlined are main vectors of the future attack on the problem.

  7. Incorporating domain knowledge in chemical and biomedical named entity recognition with word representations.

    PubMed

    Munkhdalai, Tsendsuren; Li, Meijing; Batsuren, Khuyagbaatar; Park, Hyeon Ah; Choi, Nak Hyeon; Ryu, Keun Ho

    2015-01-01

    Chemical and biomedical Named Entity Recognition (NER) is an essential prerequisite task before effective text mining can begin for biochemical-text data. Exploiting unlabeled text data to leverage system performance has been an active and challenging research topic in text mining due to the recent growth in the amount of biomedical literature. We present a semi-supervised learning method that efficiently exploits unlabeled data in order to incorporate domain knowledge into a named entity recognition model and to leverage system performance. The proposed method includes Natural Language Processing (NLP) tasks for text preprocessing, learning word representation features from a large amount of text data for feature extraction, and conditional random fields for token classification. Other than the free text in the domain, the proposed method does not rely on any lexicon nor any dictionary in order to keep the system applicable to other NER tasks in bio-text data. We extended BANNER, a biomedical NER system, with the proposed method. This yields an integrated system that can be applied to chemical and drug NER or biomedical NER. We call our branch of the BANNER system BANNER-CHEMDNER, which is scalable over millions of documents, processing about 530 documents per minute, is configurable via XML, and can be plugged into other systems by using the BANNER Unstructured Information Management Architecture (UIMA) interface. BANNER-CHEMDNER achieved an 85.68% and an 86.47% F-measure on the testing sets of CHEMDNER Chemical Entity Mention (CEM) and Chemical Document Indexing (CDI) subtasks, respectively, and achieved an 87.04% F-measure on the official testing set of the BioCreative II gene mention task, showing remarkable performance in both chemical and biomedical NER. BANNER-CHEMDNER system is available at: https://bitbucket.org/tsendeemts/banner-chemdner.

  8. A comparison of traditional anti-inflammation and anti-infection medicinal plants with current evidence from biomedical research: Results from a regional study

    PubMed Central

    Vieira, A.

    2010-01-01

    Background: In relation to pharmacognosy, an objective of many ethnobotanical studies is to identify plant species to be further investigated, for example, tested in disease models related to the ethnomedicinal application. To further warrant such testing, research evidence for medicinal applications of these plants (or of their major phytochemical constituents and metabolic derivatives) is typically analyzed in biomedical databases. Methods: As a model of this process, the current report presents novel information regarding traditional anti-inflammation and anti-infection medicinal plant use. This information was obtained from an interview-based ethnobotanical study; and was compared with current biomedical evidence using the Medline® database. Results: Of the 8 anti-infection plant species identified in the ethnobotanical study, 7 have related activities reported in the database; and of the 6 anti-inflammation plants, 4 have related activities in the database. Conclusion: Based on novel and complimentary results from the ethnobotanical and biomedical database analyses, it is suggested that some of these plants warrant additional investigation of potential anti-inflammatory or anti-infection activities in related disease models, and also additional studies in other population groups. PMID:21589754

  9. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters

    PubMed Central

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-01

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis. PMID:26805819

  10. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters.

    PubMed

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-21

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis.

  11. Testing an integrated behavioural and biomedical model of disability in N-of-1 studies with chronic pain.

    PubMed

    Quinn, Francis; Johnston, Marie; Johnston, Derek W

    2013-01-01

    Previous research has supported an integrated biomedical and behavioural model explaining activity limitations. However, further tests of this model are required at the within-person level, because while it proposes that the constructs are related within individuals, it has primarily been tested between individuals in large group studies. We aimed to test the integrated model at the within-person level. Six correlational N-of-1 studies in participants with arthritis, chronic pain and walking limitations were carried out. Daily measures of theoretical constructs were collected using a hand-held computer (PDA), the activity was assessed by self-report and accelerometer and the data were analysed using time-series analysis. The biomedical model was not supported as pain impairment did not predict activity, so the integrated model was supported partially. Impairment predicted intention to move around, while perceived behavioural control (PBC) and intention predicted activity. PBC did not predict activity limitation in the expected direction. The integrated model of disability was partially supported within individuals, especially the behavioural elements. However, results suggest that different elements of the model may drive activity (limitations) for different individuals. The integrated model provides a useful framework for understanding disability and suggests interventions, and the utility of N-of-1 methodology for testing theory is illustrated.

  12. Spatiotemporal integration of molecular and anatomical data in virtual reality using semantic mapping.

    PubMed

    Soh, Jung; Turinsky, Andrei L; Trinh, Quang M; Chang, Jasmine; Sabhaney, Ajay; Dong, Xiaoli; Gordon, Paul Mk; Janzen, Ryan Pw; Hau, David; Xia, Jianguo; Wishart, David S; Sensen, Christoph W

    2009-01-01

    We have developed a computational framework for spatiotemporal integration of molecular and anatomical datasets in a virtual reality environment. Using two case studies involving gene expression data and pharmacokinetic data, respectively, we demonstrate how existing knowledge bases for molecular data can be semantically mapped onto a standardized anatomical context of human body. Our data mapping methodology uses ontological representations of heterogeneous biomedical datasets and an ontology reasoner to create complex semantic descriptions of biomedical processes. This framework provides a means to systematically combine an increasing amount of biomedical imaging and numerical data into spatiotemporally coherent graphical representations. Our work enables medical researchers with different expertise to simulate complex phenomena visually and to develop insights through the use of shared data, thus paving the way for pathological inference, developmental pattern discovery and biomedical hypothesis testing.

  13. Bio-media Citizenship and Chronic Kidney Disease of Unknown Etiology in Sri Lanka.

    PubMed

    de Silva, M W Amarasiri

    2018-04-01

    In this article, I examine the crucial role of the biomedical industry, epidemiological and biomedical research, and the media in forming attitudes to and the understanding of chronic kidney disease of unknown etiology (CKDu) in Sri Lanka. Local conceptions of CKDu have been shaped by the circulation in the media of epidemiological research findings pertaining to the disease, biomedical interventions in the management of the disease in hospitals and clinics, community programs involving mass blood surveys and the testing of well water, and local food and health education programs carried out through village health committees. This process of circulation I identify as bio-media citizenship.

  14. Comprehensive study of unexpected microscope condensers formed in sample arrangements commonly used in optical microscopy.

    PubMed

    Desai, Darshan B; Aldawsari, Mabkhoot Mudith S; Alharbi, Bandar Mohammed H; Sen, Sanchari; Grave de Peralta, Luis

    2015-09-01

    We show that various setups for optical microscopy which are commonly used in biomedical laboratories behave like efficient microscope condensers that are responsible for observed subwavelength resolution. We present a series of experiments and simulations that reveal how inclined illumination from such unexpected condensers occurs when the sample is perpendicularly illuminated by a microscope's built-in white-light source. In addition, we demonstrate an inexpensive add-on optical module that serves as an efficient and lightweight microscope condenser. Using such add-on optical module in combination with a low-numerical-aperture objective lens and Fourier plane imaging microscopy technique, we demonstrate detection of photonic crystals with a period nearly eight times smaller than the Rayleigh resolution limit.

  15. Towards a web-based decision support tool for selecting appropriate statistical test in medical and biological sciences.

    PubMed

    Suner, Aslı; Karakülah, Gökhan; Dicle, Oğuz

    2014-01-01

    Statistical hypothesis testing is an essential component of biological and medical studies for making inferences and estimations from the collected data in the study; however, the misuse of statistical tests is widely common. In order to prevent possible errors in convenient statistical test selection, it is currently possible to consult available test selection algorithms developed for various purposes. However, the lack of an algorithm presenting the most common statistical tests used in biomedical research in a single flowchart causes several problems such as shifting users among the algorithms, poor decision support in test selection and lack of satisfaction of potential users. Herein, we demonstrated a unified flowchart; covers mostly used statistical tests in biomedical domain, to provide decision aid to non-statistician users while choosing the appropriate statistical test for testing their hypothesis. We also discuss some of the findings while we are integrating the flowcharts into each other to develop a single but more comprehensive decision algorithm.

  16. Representation of Biomedical Expertise in Ontologies: a Case Study about Knowledge Acquisition on HTLV viruses and their clinical manifestations.

    PubMed

    Cardoso Coelho, Kátia; Barcellos Almeida, Maurício

    2015-01-01

    In this paper, we introduce a set of methodological steps for knowledge acquisition applied to the organization of biomedical information through ontologies. Those steps are tested in a real case involving Human T Cell Lymphotropic Virus (HTLV), which causes myriad infectious diseases. We hope to contribute to providing suitable knowledge representation of scientific domains.

  17. Complex effect of hydroxyapatite nanoparticles on the differentiation and functional activity of human pre-osteoclastic cells.

    PubMed

    Costa-Rodrigues, João; Silva, Ana; Santos, Catarina; Almeida, Maria Margarida; Costa, Maria Elisabete; Fernandes, Maria Helena

    2014-12-01

    Nanosized hydroxyapatite (HA) is a promising material in clinical applications targeting the bone tissue. NanoHA is able to modulate bone cellular events, which accounts for its potential utility, but also raises safety concerns regarding the maintenance of the bone homeostasis. This work analyses the effects of HA nanoparticles (HAnp) on osteoclastic differentiation and activity, an issue that has been barely addressed. Rod-like HAnp, produced by a hydrothermal precipitation method, were tested on peripheral blood mononuclear cells (PBMC), which contains the CD14+ osteoclastic precursors, in unstimulated or osteoclastogenic-induced conditions. HAnp were added at three time-points during the osteoclastic differentiation pathway, and cell response was evaluated for osteoclastic related parameters. Results showed that HAnp modulated the differentiation and function of osteoclastic cells in a dose- and time-dependent manner. In addition, the effects were dependent on the stage of osteoclastic differentiation. In unstimulated PBMC, HAnp significantly increased osteoclastogenesis, leading to the formation of mature osteoclasts, as evident by the significant increase of TRAP activity, number of TRAP-positive multinucleated cells, osteoclastic gene expression and resorbing ability. However, in a population of mature osteoclasts (formed in osteoclastogenic-induced PBMC cultures), HAnp caused a dose-dependent decrease on the osteoclastic-related parameters. These results highlight the complex effects of HAnp in osteoclastic differentiation and activity, and suggest the possibility of HAnp to modulate/disrupt osteoclastic behavior, with eventual imbalances in the bone metabolism. This should be carefully considered in bone-related and other established and prospective biomedical applications of HAnp.

  18. A poly(glycerol sebacate) based photo/thermo dual curable biodegradable and biocompatible polymer for biomedical applications.

    PubMed

    Wang, Min; Lei, Dong; Liu, Zenghe; Chen, Shuo; Sun, Lijie; Lv, Ziying; Huang, Peng; Jiang, Zhongxing; You, Zhengwei

    2017-10-01

    Due to its biomimetic mechanical properties to soft tissues, excellent biocompatibility and biodegradability, poly (glycerol sebacate) (PGS) has emerged as a representative bioelastomer and been widely used in biomedical engineering. However, the typical curing of PGS needs high temperature (>120 °C), high vacuum (>1 Torr), and long duration (>12 h), which limit its further applications. Accordingly, we designed, synthesized and characterized a photo/thermo dual curable polymer based on PGS. Treatment of PGS with 2-isocyanatoethyl methacrylate without additional reagents readily produced a methacrylated PGS (PGS-IM). Photo-curing of PGS-IM for 10 min at room temperature using salt leaching method efficiently produced porous scaffolds with a thickness up to 1 mm. PGS-IM was adapt to thermo-curing as well. The combination of photo and thermo curing provided a further way to modulate the properties of resultant porous scaffolds. Interestingly, photo-cured scaffolds exhibited hierarchical porous structures carrying extensive micropores with a diameter from several to hundreds micrometers. All the scaffolds showed good elasticity and biodegradability. In addition, PGS-IM exhibited good compatibility with L929 fibroblast cells. We expect this new PGS based biomaterial will have a wide range of biomedical applications.

  19. Layer-by-layer assembly for biomedical applications in the last decade

    NASA Astrophysics Data System (ADS)

    Gentile, P.; Carmagnola, I.; Nardo, T.; Chiono, V.

    2015-10-01

    In the past two decades, the design and manufacture of nanostructured materials has been of tremendous interest to the scientific community for their application in the biomedical field. Among the available techniques, layer-by-layer (LBL) assembly has attracted considerable attention as a convenient method to fabricate functional coatings. Nowadays, more than 1000 scientific papers are published every year, tens of patents have been deposited and some commercial products based on LBL technology have become commercially available. LBL presents several advantages, such as (1): a precise control of the coating properties; (2) environmentally friendly, mild conditions and low-cost manufacturing; (3) versatility for coating all available surfaces; (4) obtainment of homogeneous film with controlled thickness; and (5) incorporation and controlled release of biomolecules/drugs. This paper critically reviews the scientific challenge of the last 10 years—functionalizing biomaterials by LBL to obtain appropriate properties for biomedical applications, in particular in tissue engineering (TE). The analysis of the state-of-the-art highlights the current techniques and the innovative materials for scaffold and medical device preparation that are opening the way for the preparation of LBL-functionalized substrates capable of modifying their surface properties for modulating cell interaction to improve substitution, repair or enhancement of tissue function.

  20. The Limitations of the GRE in Predicting Success in Biomedical Graduate School

    PubMed Central

    Moneta-Koehler, Liane; Brown, Abigail M.; Petrie, Kimberly A.; Evans, Brent J.; Chalkley, Roger

    2017-01-01

    Historically, admissions committees for biomedical Ph.D. programs have heavily weighed GRE scores when considering applications for admission. The predictive validity of GRE scores on graduate student success is unclear, and there have been no recent investigations specifically on the relationship between general GRE scores and graduate student success in biomedical research. Data from Vanderbilt University Medical School’s biomedical umbrella program were used to test to what extent GRE scores can predict outcomes in graduate school training when controlling for other admissions information. Overall, the GRE did not prove useful in predicating who will graduate with a Ph.D., pass the qualifying exam, have a shorter time to defense, deliver more conference presentations, publish more first author papers, or obtain an individual grant or fellowship. GRE scores were found to be moderate predictors of first semester grades, and weak to moderate predictors of graduate GPA and some elements of a faculty evaluation. These findings suggest admissions committees of biomedical doctoral programs should consider minimizing their reliance on GRE scores to predict the important measures of progress in the program and student productivity. PMID:28076356

  1. The role of a creative "joint assignment" project in biomedical engineering bachelor degree education.

    PubMed

    Jiehui Jiang; Yuting Zhang; Mi Zhou; Xiaosong Zheng; Zhuangzhi Yan

    2017-07-01

    Biomedical Engineering (BME) bachelor education aims to train qualified engineers who devote themselves to addressing biological and medical problems by integrating the technological, medical and biological knowledge. Design thinking and teamwork with other disciplines are necessary for biomedical engineers. In the current biomedical engineering education system of Shanghai University (SHU), however, such design thinking and teamwork through a practical project is lacking. This paper describes a creative "joint assignment" project in Shanghai University, China, which has provided BME bachelor students a two-year practical experience to work with students from multidisciplinary departments including sociology, mechanics, computer sciences, business and art, etc. To test the feasibility of this project, a twenty-month pilot project has been carried out from May 2015 to December 2016. The results showed that this pilot project obviously enhanced competitive power of BME students in Shanghai University, both in the capabilities of design thinking and teamwork.

  2. A compact high resolution flat panel PET detector based on the new 4-side buttable MPPC for biomedical applications

    PubMed Central

    Wang, Qiang; Wen, Jie; Ravindranath, Bosky; O’Sullivan, Andrew W.; Catherall, David; Li, Ke; Wei, Shouyi; Komarov, Sergey; Tai, Yuan-Chuan

    2015-01-01

    Compact high-resolution panel detectors using virtual pinhole (VP) PET geometry can be inserted into existing clinical or pre-clinical PET systems to improve regional spatial resolution and sensitivity. Here we describe a compact panel PET detector built using the new Though Silicon Via (TSV) multi-pixel photon counters (MPPC) detector. This insert provides high spatial resolution and good timing performance for multiple bio-medical applications. Because the TSV MPPC design eliminates wire bonding and has a package dimension which is very close to the MPPC’s active area, it is 4-side buttable. The custom designed MPPC array (based on Hamamatsu S12641-PA-50(x)) used in the prototype is composed of 4 × 4 TSV-MPPC cells with a 4.46 mm pitch in both directions. The detector module has 16 × 16 lutetium yttrium oxyorthosilicate (LYSO) crystal array, with each crystal measuring 0.92 × 0.92 × 3 mm3 with 1.0 mm pitch. The outer diameter of the detector block is 16.8 × 16.8 mm2. Thirty-two such blocks will be arranged in a 4 × 8 array with 1 mm gaps to form a panel detector with detection area around 7 cm × 14 cm in the full-size detector. The flood histogram acquired with Ge-68 source showed excellent crystal separation capability with all 256 crystals clearly resolved. The detector module’s mean, standard deviation, minimum (best) and maximum (worst) energy resolution were 10.19%, +/−0.68%, 8.36% and 13.45% FWHM, respectively. The measured coincidence time resolution between the block detector and a fast reference detector (around 200 ps single photon timing resolution) was 0.95 ns. When tested with Siemens Cardinal electronics the performance of the detector blocks remain consistent. These results demonstrate that the TSV-MPPC is a promising photon sensor for use in a flat panel PET insert composed of many high resolution compact detector modules. PMID:26085702

  3. Raman spectra of single cells with autofluorescence suppression by modulated wavelength excitation

    NASA Astrophysics Data System (ADS)

    Krafft, Christoph; Dochow, Sebastian; Bergner, Norbert; Clement, Joachim H.; Praveen, Bavishna B.; Mazilu, Michael; Marchington, Rob; Dholakia, Kishan; Popp, Jürgen

    2012-01-01

    Raman spectroscopy is a non-invasive technique offering great potential in the biomedical field for label-free discrimination between normal and tumor cells based on their biochemical composition. First, this contribution describes Raman spectra of lymphocytes after drying, in laser tweezers, and trapped in a microfluidic environment. Second, spectral differences between lymphocytes and acute myeloid leukemia cells (OCI-AML3) are compared for these three experimental conditions. Significant similarities of difference spectra are consistent with the biological relevance of the spectral features. Third, modulated wavelength Raman spectroscopy has been applied to this model system to demonstrate background suppression. Here, the laser excitation wavelength of 785 nm was modulated with a frequency of 40 mHz by 0.6 nm. 40 spectra were accumulated with an exposure time of 5 seconds each. These data were subjected to principal component analysis to calculate modulated Raman signatures. The loading of the principal component shows characteristics of first derivatives with derivative like band shapes. The derivative of this loading corresponds to a pseudo-second derivative spectrum and enables to determine band positions.

  4. Efficient single-pixel multispectral imaging via non-mechanical spatio-spectral modulation.

    PubMed

    Li, Ziwei; Suo, Jinli; Hu, Xuemei; Deng, Chao; Fan, Jingtao; Dai, Qionghai

    2017-01-27

    Combining spectral imaging with compressive sensing (CS) enables efficient data acquisition by fully utilizing the intrinsic redundancies in natural images. Current compressive multispectral imagers, which are mostly based on array sensors (e.g, CCD or CMOS), suffer from limited spectral range and relatively low photon efficiency. To address these issues, this paper reports a multispectral imaging scheme with a single-pixel detector. Inspired by the spatial resolution redundancy of current spatial light modulators (SLMs) relative to the target reconstruction, we design an all-optical spectral splitting device to spatially split the light emitted from the object into several counterparts with different spectrums. Separated spectral channels are spatially modulated simultaneously with individual codes by an SLM. This no-moving-part modulation ensures a stable and fast system, and the spatial multiplexing ensures an efficient acquisition. A proof-of-concept setup is built and validated for 8-channel multispectral imaging within 420~720 nm wavelength range on both macro and micro objects, showing a potential for efficient multispectral imager in macroscopic and biomedical applications.

  5. The Perseus computational platform for comprehensive analysis of (prote)omics data.

    PubMed

    Tyanova, Stefka; Temu, Tikira; Sinitcyn, Pavel; Carlson, Arthur; Hein, Marco Y; Geiger, Tamar; Mann, Matthias; Cox, Jürgen

    2016-09-01

    A main bottleneck in proteomics is the downstream biological analysis of highly multivariate quantitative protein abundance data generated using mass-spectrometry-based analysis. We developed the Perseus software platform (http://www.perseus-framework.org) to support biological and biomedical researchers in interpreting protein quantification, interaction and post-translational modification data. Perseus contains a comprehensive portfolio of statistical tools for high-dimensional omics data analysis covering normalization, pattern recognition, time-series analysis, cross-omics comparisons and multiple-hypothesis testing. A machine learning module supports the classification and validation of patient groups for diagnosis and prognosis, and it also detects predictive protein signatures. Central to Perseus is a user-friendly, interactive workflow environment that provides complete documentation of computational methods used in a publication. All activities in Perseus are realized as plugins, and users can extend the software by programming their own, which can be shared through a plugin store. We anticipate that Perseus's arsenal of algorithms and its intuitive usability will empower interdisciplinary analysis of complex large data sets.

  6. Predictors of Student Productivity in Biomedical Graduate School Applications.

    PubMed

    Hall, Joshua D; O'Connell, Anna B; Cook, Jeanette G

    2017-01-01

    Many US biomedical PhD programs receive more applications for admissions than they can accept each year, necessitating a selective admissions process. Typical selection criteria include standardized test scores, undergraduate grade point average, letters of recommendation, a resume and/or personal statement highlighting relevant research or professional experience, and feedback from interviews with training faculty. Admissions decisions are often founded on assumptions that these application components correlate with research success in graduate school, but these assumptions have not been rigorously tested. We sought to determine if any application components were predictive of student productivity measured by first-author student publications and time to degree completion. We collected productivity metrics for graduate students who entered the umbrella first-year biomedical PhD program at the University of North Carolina at Chapel Hill from 2008-2010 and analyzed components of their admissions applications. We found no correlations of test scores, grades, amount of previous research experience, or faculty interview ratings with high or low productivity among those applicants who were admitted and chose to matriculate at UNC. In contrast, ratings from recommendation letter writers were significantly stronger for students who published multiple first-author papers in graduate school than for those who published no first-author papers during the same timeframe. We conclude that the most commonly used standardized test (the general GRE) is a particularly ineffective predictive tool, but that qualitative assessments by previous mentors are more likely to identify students who will succeed in biomedical graduate research. Based on these results, we conclude that admissions committees should avoid over-reliance on any single component of the application and de-emphasize metrics that are minimally predictive of student productivity. We recommend continual tracking of desired training outcomes combined with retrospective analysis of admissions practices to guide both application requirements and holistic application review.

  7. A Multilayer Secure Biomedical Data Management System for Remotely Managing a Very Large Number of Diverse Personal Healthcare Devices.

    PubMed

    Park, KeeHyun; Lim, SeungHyeon

    2015-01-01

    In this paper, a multilayer secure biomedical data management system for managing a very large number of diverse personal health devices is proposed. The system has the following characteristics: the system supports international standard communication protocols to achieve interoperability. The system is integrated in the sense that both a PHD communication system and a remote PHD management system work together as a single system. Finally, the system proposed in this paper provides user/message authentication processes to securely transmit biomedical data measured by PHDs based on the concept of a biomedical signature. Some experiments, including the stress test, have been conducted to show that the system proposed/constructed in this study performs very well even when a very large number of PHDs are used. For a stress test, up to 1,200 threads are made to represent the same number of PHD agents. The loss ratio of the ISO/IEEE 11073 messages in the normal system is as high as 14% when 1,200 PHD agents are connected. On the other hand, no message loss occurs in the multilayered system proposed in this study, which demonstrates the superiority of the multilayered system to the normal system with regard to heavy traffic.

  8. Management and analysis of genomic functional and phenotypic controlled annotations to support biomedical investigation and practice.

    PubMed

    Masseroli, Marco

    2007-07-01

    The growing available genomic information provides new opportunities for novel research approaches and original biomedical applications that can provide effective data management and analysis support. In fact, integration and comprehensive evaluation of available controlled data can highlight information patterns leading to unveil new biomedical knowledge. Here, we describe Genome Function INtegrated Discover (GFINDer), a Web-accessible three-tier multidatabase system we developed to automatically enrich lists of user-classified genes with several functional and phenotypic controlled annotations, and to statistically evaluate them in order to identify annotation categories significantly over- or underrepresented in each considered gene class. Genomic controlled annotations from Gene Ontology (GO), KEGG, Pfam, InterPro, and Online Mendelian Inheritance in Man (OMIM) were integrated in GFINDer and several categorical tests were implemented for their analysis. A controlled vocabulary of inherited disorder phenotypes was obtained by normalizing and hierarchically structuring disease accompanying signs and symptoms from OMIM Clinical Synopsis sections. GFINDer modular architecture is well suited for further system expansion and for sustaining increasing workload. Testing results showed that GFINDer analyses can highlight gene functional and phenotypic characteristics and differences, demonstrating its value in supporting genomic biomedical approaches aiming at understanding the complex biomolecular mechanisms underlying patho-physiological phenotypes, and in helping the transfer of genomic results to medical practice.

  9. A Multilayer Secure Biomedical Data Management System for Remotely Managing a Very Large Number of Diverse Personal Healthcare Devices

    PubMed Central

    Lim, SeungHyeon

    2015-01-01

    In this paper, a multilayer secure biomedical data management system for managing a very large number of diverse personal health devices is proposed. The system has the following characteristics: the system supports international standard communication protocols to achieve interoperability. The system is integrated in the sense that both a PHD communication system and a remote PHD management system work together as a single system. Finally, the system proposed in this paper provides user/message authentication processes to securely transmit biomedical data measured by PHDs based on the concept of a biomedical signature. Some experiments, including the stress test, have been conducted to show that the system proposed/constructed in this study performs very well even when a very large number of PHDs are used. For a stress test, up to 1,200 threads are made to represent the same number of PHD agents. The loss ratio of the ISO/IEEE 11073 messages in the normal system is as high as 14% when 1,200 PHD agents are connected. On the other hand, no message loss occurs in the multilayered system proposed in this study, which demonstrates the superiority of the multilayered system to the normal system with regard to heavy traffic. PMID:26247034

  10. Potential commercial use of the International Space Station by the biotechnology/pharmaceutical/biomedical sector

    NASA Astrophysics Data System (ADS)

    Morgenthaler, George W.; Stodieck, Louis

    1999-01-01

    The International Space Station (ISS) is the linch-pin of NASA's future space plans. It emphasizes scientific research by providing a world-class scientific laboratory in which to perform long-term basic science experiments in the space environment of microgravity, radiation, vacuum, vantage-point, etc. It will serve as a test-bed for determining human system response to long-term space flight and for developing the life support equipment necessary for NASA's Human Exploration and Development of Space (HEDS) enterprise. The ISS will also provide facilities (up to 30% of the U.S. module) for testing material, agricultural, cellular, human, aquatic, and plant/animal systems to reveal phenomena heretofore shrouded by the veil of 1-g. These insights will improve life on Earth and will provide a commercial basis for new products and services. In fact, some products, e.g., rare metal-alloys, semiconductor chips, or protein crystals that cannot now be produced on Earth may be found to be sufficiently valuable to be manufactured on-orbit. Biotechnology, pharmaceutical and biomedical experiments have been regularly flown on 10-16 day Space Shuttle flights and on three-month Mir flights for basic science knowledge and for life support system and commercial product development. Since 1985, NASA has created several Commercial Space Centers (CSCs) for the express purpose of bringing university, government and industrial researchers together to utilize space flight and space technology to develop new industrial products and processes. BioServe Space Technologies at the University of Colorado at Boulder and Kansas State University, Manhattan, Kansas, is such a NASA sponsored CSC that has worked with over 65 companies and institutions in the Biotech Sector in the past 11 years and has successfully discovered and transferred new product and process information to its industry partners. While tests in the space environment have been limited to about two weeks on Shuttle or a few months on Mir, tests on ISS can be performed over many months, or even years. More importantly, a test can be regularly scheduled so that the effects of microgravity and other space environment parameters can be thoroughly researched and quantified. This paper attempts to envision the potential benefits of this soon-to-be-available orbital laboratory and the broad commercial utilization of ISS that will likely occur.

  11. National Space Biomedical Research Institute Annual Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This report summarizes the activities of the National Space Biomedical Research Institute (NSBRI) during FY 2000. The NSBRI is responsible for the development of countermeasures against the deleterious effects of long-duration space flight and performs fundamental and applied space biomedical research directed towards this specific goal. Its mission is to lead a world-class, national effort in integrated, critical path space biomedical research that supports NASA's Human Exploration and Development of Space (HEDS) Strategic Plan by focusing on the enabling of long-term human presence in, development of, and exploration of space. This is accomplished by: designing, testing and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight; defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures; establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level, and deliver quality medical care; transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the general benefit of mankind, including the treatment of patients suffering from gravity- and radiation-related conditions on Earth; and ensuring open involvement of the scientific community, industry and the public at large in the Institute's activities and fostering a robust collaboration with NASA, particularly through NASA's Lyndon B. Johnson Space Center. Attachment:Appendices (A,B,C,D,E,F,G,H,I,J,K,L,M,N,O, and P.).

  12. Skylab Medical Experiments Altitude Test (SMEAT)

    NASA Technical Reports Server (NTRS)

    Johnston, R. S. (Compiler)

    1973-01-01

    The Skylab 56-day environment simulation test provided baseline biomedical data on medical experiments to be included in the Skylab program. Also identified are problems in operating life support systems and medical equipment.

  13. Simulation study of a high power density rectenna array for biomedical implantable devices

    NASA Astrophysics Data System (ADS)

    Day, John; Yoon, Hargsoon; Kim, Jaehwan; Choi, Sang H.; Song, Kyo D.

    2016-04-01

    The integration of wireless power transmission devices using microwaves into the biomedical field is close to a practical reality. Implanted biomedical devices need a long lasting power source or continuous power supply. Recent development of high efficiency rectenna technology enables continuous power supply to these implanted devices. Due to the size limit of most of medical devices, it is imperative to minimize the rectenna as well. The research reported in this paper reviews the effects of close packing the rectenna elements which show the potential of directly empowering the implanted devices, especially within a confined area. The rectenna array is tested in the X band frequency range.

  14. Prostaglandin E2 Receptor Expression by Osteoblasts is Modulated by Implant Surface Roughness and Prostaglandin E2

    DTIC Science & Technology

    2006-05-01

    al. 1996; Trancik et al. 1989). Thus, it is of vital importance to the field of dental implantology to investigate how prostaglandins mediate their...of Texas Graduate School of Biomedical Sciences at San Antonio Supervising Professor: David D. Dean, Ph.D. While the predictability of dental implants...control media lacking PGE2. Cells were incubated for an additional 3, 6, or 120 hrs to simulate the early response after dental implant placement, after

  15. When Null Hypothesis Significance Testing Is Unsuitable for Research: A Reassessment.

    PubMed

    Szucs, Denes; Ioannidis, John P A

    2017-01-01

    Null hypothesis significance testing (NHST) has several shortcomings that are likely contributing factors behind the widely debated replication crisis of (cognitive) neuroscience, psychology, and biomedical science in general. We review these shortcomings and suggest that, after sustained negative experience, NHST should no longer be the default, dominant statistical practice of all biomedical and psychological research. If theoretical predictions are weak we should not rely on all or nothing hypothesis tests. Different inferential methods may be most suitable for different types of research questions. Whenever researchers use NHST they should justify its use, and publish pre-study power calculations and effect sizes, including negative findings. Hypothesis-testing studies should be pre-registered and optimally raw data published. The current statistics lite educational approach for students that has sustained the widespread, spurious use of NHST should be phased out.

  16. When Null Hypothesis Significance Testing Is Unsuitable for Research: A Reassessment

    PubMed Central

    Szucs, Denes; Ioannidis, John P. A.

    2017-01-01

    Null hypothesis significance testing (NHST) has several shortcomings that are likely contributing factors behind the widely debated replication crisis of (cognitive) neuroscience, psychology, and biomedical science in general. We review these shortcomings and suggest that, after sustained negative experience, NHST should no longer be the default, dominant statistical practice of all biomedical and psychological research. If theoretical predictions are weak we should not rely on all or nothing hypothesis tests. Different inferential methods may be most suitable for different types of research questions. Whenever researchers use NHST they should justify its use, and publish pre-study power calculations and effect sizes, including negative findings. Hypothesis-testing studies should be pre-registered and optimally raw data published. The current statistics lite educational approach for students that has sustained the widespread, spurious use of NHST should be phased out. PMID:28824397

  17. Financial conflicts of interest in biomedical human subject research.

    PubMed

    Goldstein, Nathan

    2006-01-01

    The purpose of this paper is to examine the past, present and future of financial conflict of interest regulation in biomedical human subject testing. Part I will briefly review the forces giving rise to the current controversy. Part II will examine the more influential ethical codes on human subject testing and argue that they are inconclusive on the subject of financial conflicts of interest. Part III will examine the various regulations now in place and identify their serious flaws. Part IV will critique the leading proposals for reform. The Conclusion will synthesize the best features of the various proposals for reform and suggest improvements left unaddressed by these proposals.

  18. Monitoring game-based motor rehabilitation of patients at home for better plans of care and quality of life.

    PubMed

    Ponte, S; Gabrielli, S; Jonsdottir, J; Morando, M; Dellepiane, S

    2015-01-01

    This paper describes the biomedical, remote monitoring infrastructure developed and currently tested in the EU REHAB@HOME project to support home rehabilitation of the upper extremity of persons post-stroke and in persons with other neurological disorders, such as Multiple Sclerosis patients, in order to track their progress over therapy and improve their Quality of Life. The paper will specifically focus on describing the initial testing of the tele-rehabilitation system's components for patients' biomedical monitoring over therapy, which support the delivery and monitoring of more personalized, engaging plans of care by rehabilitation centers and services.

  19. The Effect of Surface Patterning on Corrosion Resistance of Biomedical Devices

    NASA Astrophysics Data System (ADS)

    Guo, Mengnan; Toloei, Alisina; Rotermund, Harm H.

    2016-10-01

    In this study, two styles of surface topographies have been created on stainless steel wires to test their corrosion resistance as simulated implanted biomedical devices. Grade 316 LVM stainless steel wire was initially polished to G1500 surface finish before treatment to produce the two different topographies: 1. Unidirectional roughness was created using SiC papers and 2. Various patterns were created with specific hole diameter and inter-hole spacing using focused ion beam (FIB). In order to simulate the environment of implanted biomedical devices, a three-electrode electrochemical cell with 0.9% (by mass) NaCl solution has been used to test the corrosion resistance of the samples by potentiodynamic polarization test method. SEM and EDS analyzed the appearance and chemical composition of different elements including oxygen on the surface. The potential of stable pitting, time related to the initiation of the stable pitting, and the highest corrosion current associated with stable pitting have been compared for samples with the two styles of topography. It was found that surfaces with patterns have a relatively higher pitting potential and it takes longer time to initiate stable pitting than the surface without any patterns.

  20. Chemical and Colloidal Stability of Carboxylated Core-Shell Magnetite Nanoparticles Designed for Biomedical Applications

    PubMed Central

    Szekeres, Márta; Tóth, Ildikó Y.; Illés, Erzsébet; Hajdú, Angéla; Zupkó, István; Farkas, Katalin; Oszlánczi, Gábor; Tiszlavicz, László; Tombácz, Etelka

    2013-01-01

    Despite the large efforts to prepare super paramagnetic iron oxide nanoparticles (MNPs) for biomedical applications, the number of FDA or EMA approved formulations is few. It is not known commonly that the approved formulations in many instances have already been withdrawn or discontinued by the producers; at present, hardly any approved formulations are produced and marketed. Literature survey reveals that there is a lack for a commonly accepted physicochemical practice in designing and qualifying formulations before they enter in vitro and in vivo biological testing. Such a standard procedure would exclude inadequate formulations from clinical trials thus improving their outcome. Here we present a straightforward route to assess eligibility of carboxylated MNPs for biomedical tests applied for a series of our core-shell products, i.e., citric acid, gallic acid, poly(acrylic acid) and poly(acrylic acid-co-maleic acid) coated MNPs. The discussion is based on physicochemical studies (carboxylate adsorption/desorption, FTIR-ATR, iron dissolution, zeta potential, particle size, coagulation kinetics and magnetization measurements) and involves in vitro and in vivo tests. Our procedure can serve as an example to construct adequate physico-chemical selection strategies for preparation of other types of core-shell nanoparticles as well. PMID:23857054

  1. Predictive validity of the Biomedical Admissions Test: an evaluation and case study.

    PubMed

    McManus, I C; Ferguson, Eamonn; Wakeford, Richard; Powis, David; James, David

    2011-01-01

    There has been an increase in the use of pre-admission selection tests for medicine. Such tests need to show good psychometric properties. Here, we use a paper by Emery and Bell [2009. The predictive validity of the Biomedical Admissions Test for pre-clinical examination performance. Med Educ 43:557-564] as a case study to evaluate and comment on the reporting of psychometric data in the field of medical student selection (and the comments apply to many papers in the field). We highlight pitfalls when reliability data are not presented, how simple zero-order associations can lead to inaccurate conclusions about the predictive validity of a test, and how biases need to be explored and reported. We show with BMAT that it is the knowledge part of the test which does all the predictive work. We show that without evidence of incremental validity it is difficult to assess the value of any selection tests for medicine.

  2. Numerical and experimental characterization of solid-state micropore-based cytometer for detection and enumeration of biological cells.

    PubMed

    Guo, Jinhong; Chen, Liang; Ai, Ye; Cheng, Yuanbing; Li, Chang Ming; Kang, Yuejun; Wang, Zhiming

    2015-03-01

    Portable diagnostic devices have emerged as important tools in various biomedical applications since they can provide an effective solution for low-cost and rapid clinical diagnosis. In this paper, we present a micropore-based resistive cytometer for the detection and enumeration of biological cells. The proposed device was fabricated on a silicon wafer by a standard microelectromechanical system processing technology, which enables a mass production of the proposed chip. The working principle of this cytometer is based upon a bias potential modulated pulse, originating from the biological particle's physical blockage of the micropore. Polystyrene particles of different sizes (7, 10, and 16 μm) were used to test and calibrate the proposed device. A finite element simulation was developed to predict the bias potential modulated pulse (peak amplitude vs. pulse bandwidth), which can provide critical insight into the design of this microfluidic flow cytometer. Furthermore, HeLa cells (a type of tumor cell lines) spiked in a suspension of blood cells, including red blood cells and white blood cells, were used to assess the performance for detecting and counting tumor cells. The proposed microfluidic flow cytometer is able to provide a promising platform to address the current unmet need for point-of-care clinical diagnosis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A hybrid approach of gene sets and single genes for the prediction of survival risks with gene expression data.

    PubMed

    Seok, Junhee; Davis, Ronald W; Xiao, Wenzhong

    2015-01-01

    Accumulated biological knowledge is often encoded as gene sets, collections of genes associated with similar biological functions or pathways. The use of gene sets in the analyses of high-throughput gene expression data has been intensively studied and applied in clinical research. However, the main interest remains in finding modules of biological knowledge, or corresponding gene sets, significantly associated with disease conditions. Risk prediction from censored survival times using gene sets hasn't been well studied. In this work, we propose a hybrid method that uses both single gene and gene set information together to predict patient survival risks from gene expression profiles. In the proposed method, gene sets provide context-level information that is poorly reflected by single genes. Complementarily, single genes help to supplement incomplete information of gene sets due to our imperfect biomedical knowledge. Through the tests over multiple data sets of cancer and trauma injury, the proposed method showed robust and improved performance compared with the conventional approaches with only single genes or gene sets solely. Additionally, we examined the prediction result in the trauma injury data, and showed that the modules of biological knowledge used in the prediction by the proposed method were highly interpretable in biology. A wide range of survival prediction problems in clinical genomics is expected to benefit from the use of biological knowledge.

  4. A Hybrid Approach of Gene Sets and Single Genes for the Prediction of Survival Risks with Gene Expression Data

    PubMed Central

    Seok, Junhee; Davis, Ronald W.; Xiao, Wenzhong

    2015-01-01

    Accumulated biological knowledge is often encoded as gene sets, collections of genes associated with similar biological functions or pathways. The use of gene sets in the analyses of high-throughput gene expression data has been intensively studied and applied in clinical research. However, the main interest remains in finding modules of biological knowledge, or corresponding gene sets, significantly associated with disease conditions. Risk prediction from censored survival times using gene sets hasn’t been well studied. In this work, we propose a hybrid method that uses both single gene and gene set information together to predict patient survival risks from gene expression profiles. In the proposed method, gene sets provide context-level information that is poorly reflected by single genes. Complementarily, single genes help to supplement incomplete information of gene sets due to our imperfect biomedical knowledge. Through the tests over multiple data sets of cancer and trauma injury, the proposed method showed robust and improved performance compared with the conventional approaches with only single genes or gene sets solely. Additionally, we examined the prediction result in the trauma injury data, and showed that the modules of biological knowledge used in the prediction by the proposed method were highly interpretable in biology. A wide range of survival prediction problems in clinical genomics is expected to benefit from the use of biological knowledge. PMID:25933378

  5. PIPE: a protein–protein interaction passage extraction module for BioCreative challenge

    PubMed Central

    Chu, Chun-Han; Su, Yu-Chen; Chen, Chien Chin; Hsu, Wen-Lian

    2016-01-01

    Identifying the interactions between proteins mentioned in biomedical literatures is one of the frequently discussed topics of text mining in the life science field. In this article, we propose PIPE, an interaction pattern generation module used in the Collaborative Biocurator Assistant Task at BioCreative V (http://www.biocreative.org/) to capture frequent protein-protein interaction (PPI) patterns within text. We also present an interaction pattern tree (IPT) kernel method that integrates the PPI patterns with convolution tree kernel (CTK) to extract PPIs. Methods were evaluated on LLL, IEPA, HPRD50, AIMed and BioInfer corpora using cross-validation, cross-learning and cross-corpus evaluation. Empirical evaluations demonstrate that our method is effective and outperforms several well-known PPI extraction methods. Database URL: PMID:27524807

  6. MARVIN: a medical research application framework based on open source software.

    PubMed

    Rudolph, Tobias; Puls, Marc; Anderegg, Christoph; Ebert, Lars; Broehan, Martina; Rudin, Adrian; Kowal, Jens

    2008-08-01

    This paper describes the open source framework MARVIN for rapid application development in the field of biomedical and clinical research. MARVIN applications consist of modules that can be plugged together in order to provide the functionality required for a specific experimental scenario. Application modules work on a common patient database that is used to store and organize medical data as well as derived data. MARVIN provides a flexible input/output system with support for many file formats including DICOM, various 2D image formats and surface mesh data. Furthermore, it implements an advanced visualization system and interfaces to a wide range of 3D tracking hardware. Since it uses only highly portable libraries, MARVIN applications run on Unix/Linux, Mac OS X and Microsoft Windows.

  7. Mercury Project

    NASA Image and Video Library

    1960-01-21

    The Little Joe launch vehicle for the LJ1 mission on the launch pad at the wallops Flight Facility, Wallops Island, Virginia, on January 21, 1960. This mission achieved the suborbital Mercury cupsule test, testing of the escape system, and biomedical tests by using a monkey, named Miss Sam.

  8. Design of real-time encryption module for secure data protection of wearable healthcare devices.

    PubMed

    Kim, Jungchae; Lee, Byuck Jin; Yoo, Sun K

    2013-01-01

    Wearable devices for biomedical instrumentation could generate the medical data and transmit to a repository on cloud service through wireless networks. In this process, the private medical data will be disclosed by man in the middle attack. Thus, the archived data for healthcare services would be protected by non-standardized security policy by healthcare service provider (HSP) because HIPAA only defines the security rules. In this paper, we adopted the Advanced Encryption Standard (AES) for security framework on wearable devices, so healthcare applications using this framework could support the confidentiality easily. The framework developed as dynamic loadable module targeted for lightweight microcontroller such as msp430 within embedded operating system. The performance was shown that the module can support the real-time encryption using electrocardiogram and photoplethysmogram. In this regard, the processing load for enabling security is distributed to wearable devices, and the customized data protection method could be composed by HSP for a trusted healthcare service.

  9. The possibility of a universal declaration of biomedical ethics

    PubMed Central

    Hedayat, K M

    2007-01-01

    Statements on issues in biomedical ethics, purporting to represent international interests, have been put forth by numerous groups. Most of these groups are composed of thinkers in the tradition of European secularism, and do not take into account the values of other ethical systems. One fifth of the world's population is accounted for by Islam, which is a universal religion, with more than 1400 years of scholarship. Although many values are held in common by secular ethical systems and Islam, their inferences are different. The question, “Is it possible to derive a truly universal declaration of biomedical ethics?” is discussed here by examining the value and extent of personal autonomy in Western and Islamic biomedical ethical constructs. These constructs are then tested vis‐à‐vis the issue of abortion. It is concluded that having a universal declaration of biomedical ethics in practice is not possible, although there are many conceptual similarities and agreements between secular and Islamic value systems, unless a radical paradigm shift occurs in segments of the world's deliberative bodies. The appellation “universal” should not be used on deliberative statements unless the ethical values of all major schools of thought are satisfied. PMID:17209104

  10. A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools

    PubMed Central

    2012-01-01

    Background We introduce the linguistic annotation of a corpus of 97 full-text biomedical publications, known as the Colorado Richly Annotated Full Text (CRAFT) corpus. We further assess the performance of existing tools for performing sentence splitting, tokenization, syntactic parsing, and named entity recognition on this corpus. Results Many biomedical natural language processing systems demonstrated large differences between their previously published results and their performance on the CRAFT corpus when tested with the publicly available models or rule sets. Trainable systems differed widely with respect to their ability to build high-performing models based on this data. Conclusions The finding that some systems were able to train high-performing models based on this corpus is additional evidence, beyond high inter-annotator agreement, that the quality of the CRAFT corpus is high. The overall poor performance of various systems indicates that considerable work needs to be done to enable natural language processing systems to work well when the input is full-text journal articles. The CRAFT corpus provides a valuable resource to the biomedical natural language processing community for evaluation and training of new models for biomedical full text publications. PMID:22901054

  11. Desiderata for ontologies to be used in semantic annotation of biomedical documents.

    PubMed

    Bada, Michael; Hunter, Lawrence

    2011-02-01

    A wealth of knowledge valuable to the translational research scientist is contained within the vast biomedical literature, but this knowledge is typically in the form of natural language. Sophisticated natural-language-processing systems are needed to translate text into unambiguous formal representations grounded in high-quality consensus ontologies, and these systems in turn rely on gold-standard corpora of annotated documents for training and testing. To this end, we are constructing the Colorado Richly Annotated Full-Text (CRAFT) Corpus, a collection of 97 full-text biomedical journal articles that are being manually annotated with the entire sets of terms from select vocabularies, predominantly from the Open Biomedical Ontologies (OBO) library. Our efforts in building this corpus has illuminated infelicities of these ontologies with respect to the semantic annotation of biomedical documents, and we propose desiderata whose implementation could substantially improve their utility in this task; these include the integration of overlapping terms across OBOs, the resolution of OBO-specific ambiguities, the integration of the BFO with the OBOs and the use of mid-level ontologies, the inclusion of noncanonical instances, and the expansion of relations and realizable entities. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. The Dental Solid Waste Management in Different Categories of Dental Laboratories in Abha City, Saudi Arabia

    PubMed Central

    Haralur, Satheesh B.; Al-Qahtani, Ali S.; Al-Qarni, Marie M.; Al-Homrany, Rami M.; Aboalkhair, Ayyob E.; Madalakote, Sujatha S.

    2015-01-01

    Aim: To study the awareness, attitude, practice and facilities among the different categories of dental laboratories in Abha city. Materials and Methods: A total of 80 dental technicians were surveyed in the study. The dental laboratories included in the study were teaching institute (Group I), Government Hospital (Group II), Private Dental Clinic (Group III) and Independent laboratory (Group IV). The pre-tested anonymous questionnaire was used to understand knowledge, attitude, facilities, practice and orientation regarding biomedical waste management. Results: The knowledge of biomedical waste categories, colour coding and segregation was better among Group I (55-65%) and Group II (65-75%). The lowest standard of waste disposal was practiced at Group IV (15-20%) and Group III (25-35%). The availability of disposal facilities was poor at Group IV. The continuous education on biomedical waste management lacked in all the Groups. Conclusion: The significant improvement in disposal facilities was required at Group III and Group IV laboratories. All dental technicians were in need of regular training of biomedical waste management. Clinical Significance: The dental laboratories are an integral part of dental practice. The dental laboratories are actively involved in the generation, handling and disposal of biomedical waste. Hence, it is important to assess the biomedical waste management knowledge, attitude, facilities and practice among different categories of dental laboratories. PMID:26962373

  13. Microgravity

    NASA Image and Video Library

    2004-04-15

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  14. Microgravity

    NASA Image and Video Library

    2004-04-15

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc. has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc. is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  15. BioC implementations in Go, Perl, Python and Ruby

    PubMed Central

    Liu, Wanli; Islamaj Doğan, Rezarta; Kwon, Dongseop; Marques, Hernani; Rinaldi, Fabio; Wilbur, W. John; Comeau, Donald C.

    2014-01-01

    As part of a communitywide effort for evaluating text mining and information extraction systems applied to the biomedical domain, BioC is focused on the goal of interoperability, currently a major barrier to wide-scale adoption of text mining tools. BioC is a simple XML format, specified by DTD, for exchanging data for biomedical natural language processing. With initial implementations in C++ and Java, BioC provides libraries of code for reading and writing BioC text documents and annotations. We extend BioC to Perl, Python, Go and Ruby. We used SWIG to extend the C++ implementation for Perl and one Python implementation. A second Python implementation and the Ruby implementation use native data structures and libraries. BioC is also implemented in the Google language Go. BioC modules are functional in all of these languages, which can facilitate text mining tasks. BioC implementations are freely available through the BioC site: http://bioc.sourceforge.net. Database URL: http://bioc.sourceforge.net/ PMID:24961236

  16. Swimming by reciprocal motion at low Reynolds number

    PubMed Central

    Qiu, Tian; Lee, Tung-Chun; Mark, Andrew G.; Morozov, Konstantin I.; Münster, Raphael; Mierka, Otto; Turek, Stefan; Leshansky, Alexander M.; Fischer, Peer

    2014-01-01

    Biological microorganisms swim with flagella and cilia that execute nonreciprocal motions for low Reynolds number (Re) propulsion in viscous fluids. This symmetry requirement is a consequence of Purcell’s scallop theorem, which complicates the actuation scheme needed by microswimmers. However, most biomedically important fluids are non-Newtonian where the scallop theorem no longer holds. It should therefore be possible to realize a microswimmer that moves with reciprocal periodic body-shape changes in non-Newtonian fluids. Here we report a symmetric ‘micro-scallop’, a single-hinge microswimmer that can propel in shear thickening and shear thinning (non-Newtonian) fluids by reciprocal motion at low Re. Excellent agreement between our measurements and both numerical and analytical theoretical predictions indicates that the net propulsion is caused by modulation of the fluid viscosity upon varying the shear rate. This reciprocal swimming mechanism opens new possibilities in designing biomedical microdevices that can propel by a simple actuation scheme in non-Newtonian biological fluids. PMID:25369018

  17. Smartphone home monitoring of ECG

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Hsu, Charles; Moon, Gyu; Landa, Joseph; Nakajima, Hiroshi; Hata, Yutaka

    2012-06-01

    A system of ambulatory, halter, electrocardiography (ECG) monitoring system has already been commercially available for recording and transmitting heartbeats data by the Internet. However, it enjoys the confidence with a reservation and thus a limited market penetration, our system was targeting at aging global villagers having an increasingly biomedical wellness (BMW) homecare needs, not hospital related BMI (biomedical illness). It was designed within SWaP-C (Size, Weight, and Power, Cost) using 3 innovative modules: (i) Smart Electrode (lowpower mixed signal embedded with modern compressive sensing and nanotechnology to improve the electrodes' contact impedance); (ii) Learnable Database (in terms of adaptive wavelets transform QRST feature extraction, Sequential Query Relational database allowing home care monitoring retrievable Aided Target Recognition); (iii) Smartphone (touch screen interface, powerful computation capability, caretaker reporting with GPI, ID, and patient panic button for programmable emergence procedure). It can provide a supplementary home screening system for the post or the pre-diagnosis care at home with a build-in database searchable with the time, the place, and the degree of urgency happened, using in-situ screening.

  18. Neurotrophic Natural Products: Chemistry and Biology

    PubMed Central

    Xu, Jing; Lacoske, Michelle H.

    2014-01-01

    Neurodegenerative diseases and spinal cord injury affect approximately 50 million people worldwide, bringing the total healthcare cost to over 600 billion dollars per year. Nervous system growth factors, that is, neurotrophins, are a potential solution to these disorders, since they could promote nerve regeneration. An average of 500 publications per year attests to the significance of neurotrophins in biomedical sciences and underlines their potential for therapeutic applications. Nonetheless, the poor pharmacokinetic profile of neurotrophins severely restricts their clinical use. On the other hand, small molecules that modulate neurotrophic activity offer a promising therapeutic approach against neurological disorders. Nature has provided an impressive array of natural products that have potent neurotrophic activities. This Review highlights the current synthetic strategies toward these compounds and summarizes their ability to induce neuronal growth and rehabilitation. It is anticipated that neurotrophic natural products could be used not only as starting points in drug design but also as tools to study the next frontier in biomedical sciences: the brain activity map project. PMID:24353244

  19. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering.

    PubMed

    Gentile, Piergiorgio; Chiono, Valeria; Carmagnola, Irene; Hatton, Paul V

    2014-02-28

    Poly(lactic-co-glycolic) acid (PLGA) has attracted considerable interest as a base material for biomedical applications due to its: (i) biocompatibility; (ii) tailored biodegradation rate (depending on the molecular weight and copolymer ratio); (iii) approval for clinical use in humans by the U.S. Food and Drug Administration (FDA); (iv) potential to modify surface properties to provide better interaction with biological materials; and (v) suitability for export to countries and cultures where implantation of animal-derived products is unpopular. This paper critically reviews the scientific challenge of manufacturing PLGA-based materials with suitable properties and shapes for specific biomedical applications, with special emphasis on bone tissue engineering. The analysis of the state of the art in the field reveals the presence of current innovative techniques for scaffolds and material manufacturing that are currently opening the way to prepare biomimetic PLGA substrates able to modulate cell interaction for improved substitution, restoration, or enhancement of bone tissue function.

  20. Development of an information retrieval tool for biomedical patents.

    PubMed

    Alves, Tiago; Rodrigues, Rúben; Costa, Hugo; Rocha, Miguel

    2018-06-01

    The volume of biomedical literature has been increasing in the last years. Patent documents have also followed this trend, being important sources of biomedical knowledge, technical details and curated data, which are put together along the granting process. The field of Biomedical text mining (BioTM) has been creating solutions for the problems posed by the unstructured nature of natural language, which makes the search of information a challenging task. Several BioTM techniques can be applied to patents. From those, Information Retrieval (IR) includes processes where relevant data are obtained from collections of documents. In this work, the main goal was to build a patent pipeline addressing IR tasks over patent repositories to make these documents amenable to BioTM tasks. The pipeline was developed within @Note2, an open-source computational framework for BioTM, adding a number of modules to the core libraries, including patent metadata and full text retrieval, PDF to text conversion and optical character recognition. Also, user interfaces were developed for the main operations materialized in a new @Note2 plug-in. The integration of these tools in @Note2 opens opportunities to run BioTM tools over patent texts, including tasks from Information Extraction, such as Named Entity Recognition or Relation Extraction. We demonstrated the pipeline's main functions with a case study, using an available benchmark dataset from BioCreative challenges. Also, we show the use of the plug-in with a user query related to the production of vanillin. This work makes available all the relevant content from patents to the scientific community, decreasing drastically the time required for this task, and provides graphical interfaces to ease the use of these tools. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Unified Tri-service Cognitive Performance Assessment Battery (UTC-PAB). Part 1: Design and specification of the battery

    NASA Astrophysics Data System (ADS)

    Englund, C. E.; Reeves, D. L.; Shingledecker, C. A.; Thorne, D. R.; Wilson, K. P.

    1987-02-01

    The Unified Tri-Service Cognitive Performance Assessment Battery (UTC-PAB) represents the primary metric for a Level 2 evaluation of cognitive performance in the JWGD3 MILPERF chemical defense biomedical drug screening program. Emphasis for UTC-PAB development has been on the standardization of test batteries across participating laboratories with respect to content, computer-based administration, test scoring, and data formatting. This effort has produced a 25-test UTC-PAB that represents the consolidation and unification of independent developments by the Tri-service membership. Test selection was based on established test validity and relevance of military performance. Sensitivity to effects of hostile environments and sustained operations were also considerations involved in test selection. Information processing, decision making, perception, and mental workload capacity are among the processes and abilities addressed in the battery. The UTC-PAB represents a dynamic approach to battery development. The nature of the biomedical drugs screened and information from performance centered task analyses will direct the form of future versions of the battery.

  2. From Bench to Bedside: A communal utility value intervention to enhance students' biomedical science motivation.

    PubMed

    Brown, Elizabeth R; Smith, Jessi L; Thoman, Dustin B; Allen, Jill M; Muragishi, Gregg

    2015-11-01

    Motivating students to pursue science careers is a top priority among many science educators. We add to the growing literature by examining the impact of a utility value intervention to enhance student's perceptions that biomedical science affords important utility work values. Using an expectancy-value perspective we identify and test two types of utility value: communal (other-oriented) and agentic (self-oriented). The culture of science is replete with examples emphasizing high levels of agentic value, but communal values are often (stereotyped as) absent from science. However, people in general want an occupation that has communal utility. We predicted and found that an intervention emphasizing the communal utility value of biomedical research increased students' motivation for biomedical science (Studies 1-3). We refined whether different types of communal utility value (working with, helping, and forming relationships with others) might be more or less important, demonstrating that helping others was an especially important predictor of student motivation (Study 2). Adding agentic utility value to biomedical research did not further increase student motivation (Study 3). Furthermore, the communal value intervention indirectly impacted students' motivation because students believed that biomedical research was communal and thus subsequently more important (Studies 1-3). This is key, because enhancing student communal value beliefs about biomedical research (Studies 1-3) and science (Study 4) was associated both with momentary increases in motivation in experimental settings (Studies 1-3) and increased motivation over time among students highly identified with biomedicine (Study 4). We discuss recommendations for science educators, practitioners, and faculty mentors who want to broaden participation in science.

  3. A novel framework for assessing metadata quality in epidemiological and public health research settings

    PubMed Central

    McMahon, Christiana; Denaxas, Spiros

    2016-01-01

    Metadata are critical in epidemiological and public health research. However, a lack of biomedical metadata quality frameworks and limited awareness of the implications of poor quality metadata renders data analyses problematic. In this study, we created and evaluated a novel framework to assess metadata quality of epidemiological and public health research datasets. We performed a literature review and surveyed stakeholders to enhance our understanding of biomedical metadata quality assessment. The review identified 11 studies and nine quality dimensions; none of which were specifically aimed at biomedical metadata. 96 individuals completed the survey; of those who submitted data, most only assessed metadata quality sometimes, and eight did not at all. Our framework has four sections: a) general information; b) tools and technologies; c) usability; and d) management and curation. We evaluated the framework using three test cases and sought expert feedback. The framework can assess biomedical metadata quality systematically and robustly. PMID:27570670

  4. A novel framework for assessing metadata quality in epidemiological and public health research settings.

    PubMed

    McMahon, Christiana; Denaxas, Spiros

    2016-01-01

    Metadata are critical in epidemiological and public health research. However, a lack of biomedical metadata quality frameworks and limited awareness of the implications of poor quality metadata renders data analyses problematic. In this study, we created and evaluated a novel framework to assess metadata quality of epidemiological and public health research datasets. We performed a literature review and surveyed stakeholders to enhance our understanding of biomedical metadata quality assessment. The review identified 11 studies and nine quality dimensions; none of which were specifically aimed at biomedical metadata. 96 individuals completed the survey; of those who submitted data, most only assessed metadata quality sometimes, and eight did not at all. Our framework has four sections: a) general information; b) tools and technologies; c) usability; and d) management and curation. We evaluated the framework using three test cases and sought expert feedback. The framework can assess biomedical metadata quality systematically and robustly.

  5. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NSBRI partners with NASA to develop countermeasures against the deleterious effects of long duration space flight. NSBRI's science and technology projects are directed toward this goal, which is accomplished by: 1. Designing, testing and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight. 2. Defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures. 3. Establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level and deliver quality medical care. 4. Transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the general benefit of humankind; including the treatment of patients suffering from gravity- and radiation-related conditions on Earth. and 5. ensuring open involvement of the scientific community,industry and the public in the Institute's activities and fostering a robust collaboration with NASA, particularly through JSC.

  6. A practical implementation of multi-frequency widefield frequency-domain FLIM

    PubMed Central

    Chen, Hongtao

    2013-01-01

    Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime, especially in kinetic studies in biomedical researches. However, the small range of modulation frequencies available in commercial instruments makes this technique limited in its applications. Here we describe a practical implementation of multi-frequency widefield FD-FLIM using a pulsed supercontinuum laser and a direct digital synthesizer. In this instrument we use a pulse to modulate the image intensifier rather than the more conventional sine wave modulation. This allows parallel multi-frequency FLIM measurement using the Fast Fourier Transform and the cross-correlation technique, which permits precise and simultaneous isolation of individual frequencies. In addition, the pulse modulation at the cathode of image intensifier restored the loss of optical resolution caused by the defocusing effect when the voltage at the cathode is sinusoidally modulated. Furthermore, in our implementation of this technique, data can be graphically analyzed by the phasor method while data are acquired, which allows easy fit-free lifetime analysis of FLIM images. Here our measurements of standard fluorescent samples and a Föster resonance energy transfer pair demonstrate that the widefield multi-frequency FLIM system is a valuable and simple tool in fluorescence imaging studies. PMID:23296945

  7. A natural fit: home healthcare and biomedical engineering.

    PubMed

    Damasco, Nestor; Abe, Chris

    2010-01-01

    The involvement of Biomed in management of home care equipment has become a natural fit for Rady Children's Hospital. Managing all aspects of home care equipment through an in-house biomedical engineering department is cost-effective, efficient, provides excellent customer service, and enhances the relationship with the clinical staff and patients. It develops a sense of security for patients and staff that home care equipment is tested and maintained in a stringent manner that promotes safety.

  8. Effects of Microgravity On Oxidative and Antioxidant Enzymes In Mouse Hindlimb Muscle

    NASA Technical Reports Server (NTRS)

    Girten, B.; Hoopes, R.; Steele, M.; Morony, S.; Bateman, T. A.; Sun, S. (Technical Monitor)

    2002-01-01

    Gastrocnemius muscle of mice were analyzed in order to examine the effects of 12 days of microgravity on the oxidative enzyme climate synthase (CS) and the antioxidant enzyme superoxide dismutase (SOD). The female C57BL/6J mice utilized for this study were part of the Commercial Biomedical Testing Module (CBTM) payload that flew aboard STS-108. Mice were housed in Animal Enclosure Modules (AEMs) provided by NASA Ames. The flight (FLT) group and the ground control (CON) group each had 12 mice per group. The AEMs that held the CON group operated on a 48-hour delay from the FLT group and were located inside the Orbital Environmental Simulator (OES) at Kennedy Space Center. The temperature, CO2 and relative humidity inside the OES was regulated based on downlinked information from the shuttle middeck. Student T tests were used to compare groups and a p < 0.05 was used to determine statistical significance. Results indicated that CS levels for the FLT group were significantly lower than the CON group while the SOD levels were significantly higher. The CS FLT mean was 19% lower and the SOD FLT mean was 17% higher than the respective CON group means. Although these findings are among the first muscle enzyme values reported for mice from a shuttle mission, these results are similar to some results previously reported for rats exposed to microgravity or hindlimb suspension. The changes seen during the CBTM payload are reflective of the deconditioning that takes place with disuse of the hindlimbs and indicate that muscle enzyme changes induced by disuse deconditioning are similar in both rodent species.

  9. Healthy Eating and Harambee: curriculum development for a culturally-centered bio-medically oriented nutrition education program to reach African American women of childbearing age.

    PubMed

    Kannan, Srimathi; Sparks, Arlene V; Webster, J DeWitt; Krishnakumar, Ambika; Lumeng, Julie

    2010-07-01

    The purpose was to develop, implement and evaluate a peer-led nutrition curriculum Healthy Eating and Harambee that addresses established objectives of maternal and infant health and to shift the stage for African American women of childbearing age in Genesee County toward healthier dietary patterns using a socio-cultural and biomedical orientation. The PEN-3 model, which frames culture in the context of health promotion interventions, was integrated with the Transtheoretical Model to guide this 13-week pre-test/post-test curriculum. Materials developed included soul food plate visuals, a micronutrient availability worksheet, a fruit stand, and gardening kits. Learning activities included affirmations, stories, case-scenarios, point-of-purchase product recognition, church health teams, and community health fairs. We investigated health-promoting dietary behaviors (consumption of more fruits and vegetables (F&V), serving more F&V to their families, and moderating dietary sodium and fat intakes), and biomedical behaviors (self-monitoring blood pressure and exercising) across five stages of change. Session attendance and program satisfaction were assessed. N = 102 women participated (mean age = 27.5 years). A majority (77%) reported adopting at least one healthy eating behavior (moderating sodium, serving more F&V to their families), 23% adopted at least two such behaviors (reading food labels for sodium; using culinary herbs/spices; serving more F&V to their families), and 45% adopted both dietary (moderating sodium; eating more fruits) and biomedical behaviors. Participants and facilitators favorably evaluated the curriculum and suggested improvements. A multi-conceptual approach coupled with cultural and biomedical tailoring has potential to promote young African American women's movement to more advanced stages of change and improve self-efficacy for fruit and vegetable intake, dietary sodium moderation, and self-monitoring blood pressure and physical activity.

  10. Document Delivery Capabilities of Major Biomedical Libraries in 1968: Results of a National Survey Employing Standardized Tests *

    PubMed Central

    Orr, Richard H.; Schless, Arthur P.

    1972-01-01

    The standardized Document Delivery Tests (DDT's) developed earlier (Bulletin 56: 241-267, July 1968) were employed to assess the capability of ninety-two medical school libraries for meeting the document needs of biomedical researchers, and the capability of fifteen major resource libraries for filling I-L requests from biomedical libraries. The primary test data are summarized as statistics on the observed availability status of the 300 plus documents in the test samples, and as measures expressing capability as a function of the mean time that would be required for users to obtain test sample documents. A mathematical model is developed in which the virtual capability of a library, as seen by its users, equals the algebraic sum of the basic capability afforded by its holdings; the combined losses attributable to use of its collection, processing, relative inacessibility, and housekeeping problems; and the gain realized by coupling with other resources (I-L borrowing). For a particular library, or group of libraries, empirical values for each of these variables can be calculated easily from the capability measures and the status statistics. Regression equations are derived that provide useful predictions of basic capability from collection size. The most important result of this work is that cost-effectiveness analyses can now be used as practical decision aids in managing a basic library service. A program of periodic surveys and further development of DDT's is recommended as appropriate for the Medical Library Association. PMID:5054305

  11. USNCTAM perspectives on mechanics in medicine

    PubMed Central

    Bao, Gang; Bazilevs, Yuri; Chung, Jae-Hyun; Decuzzi, Paolo; Espinosa, Horacio D.; Ferrari, Mauro; Gao, Huajian; Hossain, Shaolie S.; Hughes, Thomas J. R.; Kamm, Roger D.; Liu, Wing Kam; Marsden, Alison; Schrefler, Bernhard

    2014-01-01

    Over decades, the theoretical and applied mechanics community has developed sophisticated approaches for analysing the behaviour of complex engineering systems. Most of these approaches have targeted systems in the transportation, materials, defence and energy industries. Applying and further developing engineering approaches for understanding, predicting and modulating the response of complicated biomedical processes not only holds great promise in meeting societal needs, but also poses serious challenges. This report, prepared for the US National Committee on Theoretical and Applied Mechanics, aims to identify the most pressing challenges in biological sciences and medicine that can be tackled within the broad field of mechanics. This echoes and complements a number of national and international initiatives aiming at fostering interdisciplinary biomedical research. This report also comments on cultural/educational challenges. Specifically, this report focuses on three major thrusts in which we believe mechanics has and will continue to have a substantial impact. (i) Rationally engineering injectable nano/microdevices for imaging and therapy of disease. Within this context, we discuss nanoparticle carrier design, vascular transport and adhesion, endocytosis and tumour growth in response to therapy, as well as uncertainty quantification techniques to better connect models and experiments. (ii) Design of biomedical devices, including point-of-care diagnostic systems, model organ and multi-organ microdevices, and pulsatile ventricular assistant devices. (iii) Mechanics of cellular processes, including mechanosensing and mechanotransduction, improved characterization of cellular constitutive behaviour, and microfluidic systems for single-cell studies. PMID:24872502

  12. Mercury Project

    NASA Image and Video Library

    1960-01-21

    The launch of the Little Joe booster for the LJ1B mission on the launch pad from the wallops Flight Facility, Wallops Island, Virginia, on January 21, 1960. This mission achieved the suborbital Mercury capsule test, testing of the escape system, and biomedical tests by using a monkey, named Miss Sam.

  13. Integration of Social, Cultural, and Biomedical Strategies into an Existing Couple-Based Behavioral HIV/STI Prevention Intervention: Voices of Latino Male Couples.

    PubMed

    Martinez, Omar; Wu, Elwin; Levine, Ethan C; Muñoz-Laboy, Miguel; Fernandez, M Isabel; Bass, Sarah Bauerle; Moya, Eva M; Frasca, Timothy; Chavez-Baray, Silvia; Icard, Larry D; Ovejero, Hugo; Carballo-Diéguez, Alex; Rhodes, Scott D

    2016-01-01

    Successful HIV prevention and treatment requires evidence-based approaches that combine biomedical strategies with behavioral interventions that are socially and culturally appropriate for the population or community being prioritized. Although there has been a push for a combination approach, how best to integrate different strategies into existing behavioral HIV prevention interventions remains unclear. The need to develop effective combination approaches is of particular importance for men who have sex with men (MSM), who face a disproportionately high risk of HIV acquisition. We collaborated with Latino male couples and providers to adapt Connect 'n Unite, an evidence-based intervention for Black male couples, for Latino male couples. We conducted a series of three focus groups, each with two cohorts of couples, and one focus group with providers. A purposive stratified sample of 20 couples (N = 40, divided into two cohorts) and 10 providers provided insights into how to adapt and integrate social, cultural, and biomedical approaches in a couples-based HIV/AIDS behavioral intervention. The majority (N = 37) of the couple participants had no prior knowledge of the following new biomedical strategies: non-occupational post-exposure prophylaxis (nPEP); pre-exposure prophylaxis (PrEP); and HIV self-testing kits. After they were introduced to these biomedical interventions, all participants expressed a need for information and empowerment through knowledge and awareness of these interventions. In particular, participants suggested that we provide PrEP and HIV self-testing kits by the middle or end of the intervention. Providers suggested a need to address behavioral, social and structural issues, such as language barriers; and the promotion of client-centered approaches to increase access to, adaptation of, and adherence to biomedical strategies. Corroborating what couple participants suggested, providers agreed that biomedical strategies should be offered after providing information about these tools. Regarding culturally sensitive and responsive approaches, participants identified stigma and discrimination associated with HIV and sexual identity as barriers to care, language barriers and documentation status as further barriers to care, the couple-based approach as ideal to health promotion, and the need to include family topics in the intervention. We successfully adapted an evidence-based behavioral HIV prevention intervention for Latino male couples. The adapted intervention, called Conectando Latinos en Pareja, integrates social, cultural, behavioral and biomedical strategies to address the HIV epidemic among Latino MSM. The study highlights the promise regarding the feasibility of implementing a combination approach to HIV prevention in this population.

  14. Integration of Social, Cultural, and Biomedical Strategies into an Existing Couple-Based Behavioral HIV/STI Prevention Intervention: Voices of Latino Male Couples

    PubMed Central

    Martinez, Omar; Wu, Elwin; Levine, Ethan C.; Muñoz-Laboy, Miguel; Fernandez, M. Isabel; Bass, Sarah Bauerle; Moya, Eva M.; Frasca, Timothy; Chavez-Baray, Silvia; Icard, Larry D.; Ovejero, Hugo; Carballo-Diéguez, Alex; Rhodes, Scott D.

    2016-01-01

    Introduction Successful HIV prevention and treatment requires evidence-based approaches that combine biomedical strategies with behavioral interventions that are socially and culturally appropriate for the population or community being prioritized. Although there has been a push for a combination approach, how best to integrate different strategies into existing behavioral HIV prevention interventions remains unclear. The need to develop effective combination approaches is of particular importance for men who have sex with men (MSM), who face a disproportionately high risk of HIV acquisition. Materials and Methods We collaborated with Latino male couples and providers to adapt Connect ‘n Unite, an evidence-based intervention for Black male couples, for Latino male couples. We conducted a series of three focus groups, each with two cohorts of couples, and one focus group with providers. A purposive stratified sample of 20 couples (N = 40, divided into two cohorts) and 10 providers provided insights into how to adapt and integrate social, cultural, and biomedical approaches in a couples-based HIV/AIDS behavioral intervention. Results The majority (N = 37) of the couple participants had no prior knowledge of the following new biomedical strategies: non-occupational post-exposure prophylaxis (nPEP); pre-exposure prophylaxis (PrEP); and HIV self-testing kits. After they were introduced to these biomedical interventions, all participants expressed a need for information and empowerment through knowledge and awareness of these interventions. In particular, participants suggested that we provide PrEP and HIV self-testing kits by the middle or end of the intervention. Providers suggested a need to address behavioral, social and structural issues, such as language barriers; and the promotion of client-centered approaches to increase access to, adaptation of, and adherence to biomedical strategies. Corroborating what couple participants suggested, providers agreed that biomedical strategies should be offered after providing information about these tools. Regarding culturally sensitive and responsive approaches, participants identified stigma and discrimination associated with HIV and sexual identity as barriers to care, language barriers and documentation status as further barriers to care, the couple-based approach as ideal to health promotion, and the need to include family topics in the intervention. Discussion We successfully adapted an evidence-based behavioral HIV prevention intervention for Latino male couples. The adapted intervention, called Conectando Latinos en Pareja, integrates social, cultural, behavioral and biomedical strategies to address the HIV epidemic among Latino MSM. The study highlights the promise regarding the feasibility of implementing a combination approach to HIV prevention in this population. PMID:27028873

  15. In Situ Caging of Biomolecules in Graphene Hybrids for Light Modulated Bioactivity.

    PubMed

    Cheng, Gong; Han, Xiao-Hui; Hao, Si-Jie; Nisic, Merisa; Zheng, Si-Yang

    2018-01-31

    Remote and noninvasive modulation of protein activity is essential for applications in biotechnology and medicine. Optical control has emerged as the most attractive approach owing to its high spatial and temporal resolutions; however, it is challenging to engineer light responsive proteins. In this work, a near-infrared (NIR) light-responsive graphene-silica-trypsin (GST) nanoreactor is developed for modulating the bioactivity of trypsin molecules. Biomolecules are spatially confined and protected in the rationally designed compartment architecture, which not only reduces the possible interference but also boosts the bioreaction efficiency. Upon NIR irradiation, the photothermal effect of the GST nanoreactor enables the ultrafast in situ heating for remote activation and tuning of the bioactivity. We apply the GST nanoreactor for remote and ultrafast proteolysis of proteins, which remarkably enhances the proteolysis efficiency and reduces the bioreaction time from the overnight of using free trypsin to seconds. We envision that this work not only provides a promising tool of ultrafast and remotely controllable proteolysis for in vivo proteomics in study of tissue microenvironment and other biomedical applications but also paves the way for exploring smart artificial nanoreactors in biomolecular modulation to gain insight in dynamic biological transformation.

  16. Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network.

    PubMed

    Qin, Tingting; Matmati, Nabil; Tsoi, Lam C; Mohanty, Bidyut K; Gao, Nan; Tang, Jijun; Lawson, Andrew B; Hannun, Yusuf A; Zheng, W Jim

    2014-10-01

    To enhance our knowledge regarding biological pathway regulation, we took an integrated approach, using the biomedical literature, ontologies, network analyses and experimental investigation to infer novel genes that could modulate biological pathways. We first constructed a novel gene network via a pairwise comparison of all yeast genes' Ontology Fingerprints--a set of Gene Ontology terms overrepresented in the PubMed abstracts linked to a gene along with those terms' corresponding enrichment P-values. The network was further refined using a Bayesian hierarchical model to identify novel genes that could potentially influence the pathway activities. We applied this method to the sphingolipid pathway in yeast and found that many top-ranked genes indeed displayed altered sphingolipid pathway functions, initially measured by their sensitivity to myriocin, an inhibitor of de novo sphingolipid biosynthesis. Further experiments confirmed the modulation of the sphingolipid pathway by one of these genes, PFA4, encoding a palmitoyl transferase. Comparative analysis showed that few of these novel genes could be discovered by other existing methods. Our novel gene network provides a unique and comprehensive resource to study pathway modulations and systems biology in general. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network

    PubMed Central

    Qin, Tingting; Matmati, Nabil; Tsoi, Lam C.; Mohanty, Bidyut K.; Gao, Nan; Tang, Jijun; Lawson, Andrew B.; Hannun, Yusuf A.; Zheng, W. Jim

    2014-01-01

    To enhance our knowledge regarding biological pathway regulation, we took an integrated approach, using the biomedical literature, ontologies, network analyses and experimental investigation to infer novel genes that could modulate biological pathways. We first constructed a novel gene network via a pairwise comparison of all yeast genes’ Ontology Fingerprints—a set of Gene Ontology terms overrepresented in the PubMed abstracts linked to a gene along with those terms’ corresponding enrichment P-values. The network was further refined using a Bayesian hierarchical model to identify novel genes that could potentially influence the pathway activities. We applied this method to the sphingolipid pathway in yeast and found that many top-ranked genes indeed displayed altered sphingolipid pathway functions, initially measured by their sensitivity to myriocin, an inhibitor of de novo sphingolipid biosynthesis. Further experiments confirmed the modulation of the sphingolipid pathway by one of these genes, PFA4, encoding a palmitoyl transferase. Comparative analysis showed that few of these novel genes could be discovered by other existing methods. Our novel gene network provides a unique and comprehensive resource to study pathway modulations and systems biology in general. PMID:25063300

  18. Bridging the social and the biomedical: engaging the social and political sciences in HIV research.

    PubMed

    Kippax, Susan C; Holt, Martin; Friedman, Samuel R

    2011-09-27

    This supplement to the Journal of the International AIDS Society focuses on the engagement of the social and political sciences within HIV research and, in particular, maintaining a productive relationship between social and biomedical perspectives on HIV. It responds to a number of concerns raised primarily by social scientists, but also recognized as important by biomedical and public health researchers. These concerns include how best to understand the impact of medical technologies (such as HIV treatments, HIV testing, viral load testing, male circumcision, microbicides, and pre-and post-exposure prophylaxis) on sexual cultures, drug practices, relationships and social networks in different cultural, economic and political contexts. The supplement is also concerned with how we might examine the relationship between HIV prevention and treatment, understand the social and political mobilization required to tackle HIV, and sustain the range of disciplinary approaches needed to inform and guide responses to the global pandemic. The six articles included in the supplement demonstrate the value of fostering high quality social and political research to inform, guide and challenge our collaborative responses to HIV/AIDS.

  19. 78 FR 3019 - Privacy Act of 1974; Science & Technology Directorate-001 Research, Development, Test, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... biomedical and life sciences research; and subject matter experts who voluntarily consent to be included in a... 1974; Science & Technology Directorate-001 Research, Development, Test, and Evaluation Records System.../Science and Technology Directorate-001 Research, Development, Test, and Evaluation System of Records...

  20. A systems approach to water recovery testing for space life support - Initial biomedical results from the ECLSS Water Recovery Test and plans for testbed utilization

    NASA Technical Reports Server (NTRS)

    Aten, Laurie A.; Crump, William J.; Sauer, Richard L.

    1992-01-01

    Among the challenges of designing and constructing Space Station Freedom is the development of the water system. A review of past efforts in reclaiming waste water in enclosed environments reveals that there are many gaps in the biomedical understanding of this process. Some of the key uncertainties of human interaction with a closed water system include determining potential contaminants and establishing safe levels of multiple compounds in the enclosed system of Space Station. Another uncertainty is the microbial constituency of such a system and what impact it could have on crew health and performance. The use of iodine as the passive biocide may have both an indirect and direct impact on the crew. In this paper the initial results of the Water Recovery Test are reviewed from a biomedical perspective, revealing areas where more information is needed to develop the ECLSS water system. By including the approach of 'man as a subsystem', consideration is given to how man interacts with the total water system. Taking this systems approach to providing the crew with a safe source of water gives useful insight into the most efficient design and utilization of closed system testbeds.

  1. A dynamic system with digital lock-in-photon-counting for pharmacokinetic diffuse fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Yin, Guoyan; Zhang, Limin; Zhang, Yanqi; Liu, Han; Du, Wenwen; Ma, Wenjuan; Zhao, Huijuan; Gao, Feng

    2018-02-01

    Pharmacokinetic diffuse fluorescence tomography (DFT) can describe the metabolic processes of fluorescent agents in biomedical tissue and provide helpful information for tumor differentiation. In this paper, a dynamic DFT system was developed by employing digital lock-in-photon-counting with square wave modulation, which predominates in ultra-high sensitivity and measurement parallelism. In this system, 16 frequency-encoded laser diodes (LDs) driven by self-designed light source system were distributed evenly in the imaging plane and irradiated simultaneously. Meanwhile, 16 detection fibers collected emission light in parallel by the digital lock-in-photon-counting module. The fundamental performances of the proposed system were assessed with phantom experiments in terms of stability, linearity, anti-crosstalk as well as images reconstruction. The results validated the availability of the proposed dynamic DFT system.

  2. Do you also have problems with the file format syndrome?

    PubMed

    De Cuyper, B; Nyssen, E; Christophe, Y; Cornelis, J

    1991-11-01

    In a biomedical data processing environment, an essential requirement is the ability to integrate a large class of standard modules for the acquisition, processing and display of the (image) data. Our approach to the management and manipulation of the different data formats is based on the specification of a common standard for the representation of data formats, called 'data nature descriptions' to emphasise that this representation not only specifies the structure but also the contents of data objects (files). The idea behind this concept is to associate each hardware and software component that produces or uses medical data with a description of the data objects manipulated by that component. In our approach a special software module (a format convertor generator) takes care of the appropriate data format conversions, required when two or more components of the system exchange data.

  3. Integration of relational and textual biomedical sources. A pilot experiment using a semi-automated method for logical schema acquisition.

    PubMed

    García-Remesal, M; Maojo, V; Billhardt, H; Crespo, J

    2010-01-01

    Bringing together structured and text-based sources is an exciting challenge for biomedical informaticians, since most relevant biomedical sources belong to one of these categories. In this paper we evaluate the feasibility of integrating relational and text-based biomedical sources using: i) an original logical schema acquisition method for textual databases developed by the authors, and ii) OntoFusion, a system originally designed by the authors for the integration of relational sources. We conducted an integration experiment involving a test set of seven differently structured sources covering the domain of genetic diseases. We used our logical schema acquisition method to generate schemas for all textual sources. The sources were integrated using the methods and tools provided by OntoFusion. The integration was validated using a test set of 500 queries. A panel of experts answered a questionnaire to evaluate i) the quality of the extracted schemas, ii) the query processing performance of the integrated set of sources, and iii) the relevance of the retrieved results. The results of the survey show that our method extracts coherent and representative logical schemas. Experts' feedback on the performance of the integrated system and the relevance of the retrieved results was also positive. Regarding the validation of the integration, the system successfully provided correct results for all queries in the test set. The results of the experiment suggest that text-based sources including a logical schema can be regarded as equivalent to structured databases. Using our method, previous research and existing tools designed for the integration of structured databases can be reused - possibly subject to minor modifications - to integrate differently structured sources.

  4. Legacy of Biomedical Research During the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Hayes, Judith C.

    2011-01-01

    The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over 30 years and represented the longest and largest US human spaceflight program. Outcomes of the research were understanding the effect of spaceflight on human physiology and performance, countermeasures, operational protocols, and hardware. The Shuttle flights were relatively short, < 16 days and routinely had 4 to 6 crewmembers for a total of 135 flights. Biomedical research was conducted on the Space Shuttle using various vehicle resources. Specially constructed pressurized laboratories called Spacelab and SPACEHAB housed many laboratory instruments to accomplish experiments in the Shuttle s large payload bay. In addition to these laboratory flights, nearly every mission had dedicated human life science research experiments conducted in the Shuttle middeck. Most Shuttle astronauts participated in some life sciences research experiments either as test subjects or test operators. While middeck experiments resulted in a low sample per mission compared to many Earth-based studies, this participation allowed investigators to have repetition of tests over the years on successive Shuttle flights. In addition, as a prelude to the International Space Station (ISS), NASA used the Space Shuttle as a platform for assessing future ISS hardware systems and procedures. The purpose of this panel is to provide an understanding of science integration activities required to implement Shuttle research, review biomedical research, characterize countermeasures developed for Shuttle and ISS as well as discuss lessons learned that may support commercial crew endeavors. Panel topics include research integration, cardiovascular physiology, neurosciences, skeletal muscle, and exercise physiology. Learning Objective: The panel provides an overview from the Space Shuttle Program regarding research integration, scientific results, lessons learned from biomedical research and countermeasure development.

  5. Joint inflight biomedical experiments performed during the ASTP spaceflight. [bacteriological experiments

    NASA Technical Reports Server (NTRS)

    Taylor, G. R.; Rogers, T. D.; Brower, M. E.; Kropp, K.

    1976-01-01

    Two joint inflight biomedical experiments were conducted during the unique Apollo-Soyuz Test Project (ASTP) spaceflight. One experiment evaluated rhythmicity of spore production of Streptomyces levoris. The other evaluated components of the infectious disease process by measuring alteration in: (1) the composition of the microbial population inhabiting USA and USSR crewmembers and spacecraft; (2) the ability of each crewmember's defense mechanism to resist infection; and (3) the ability of certain microorganisms to originate infections. These two experiments are described and the major results discussed.

  6. Polymers in life sciences: Pharmaceutical and biomedical applications

    NASA Astrophysics Data System (ADS)

    Barba, Anna Angela; Dalmoro, Annalisa; d'Amore, Matteo; Lamberti, Gaetano; Cascone, Sara; Titomanlio, Giuseppe

    2015-12-01

    This paper deals with the work done by prof. Titomanlio and his group in the fields of pharmaceutical and biomedical applications of polymers. In particular, the main topics covered are: i) controlled drug release from pharmaceuticals based on hydrogel for oral delivery of drugs; ii) production and characterization of micro and nanoparticles based on stimuli-responsive polymers; iii) use of polymers for coronary stent gel-paving; iv) design and realization of novel methods (in-vitro and in-silico) to test polymer-based pharmaceuticals.

  7. Use of Nonhuman Primates in Research in North America

    PubMed Central

    Turner, Patricia V; Mullan, Robert J; Galland, G Gale

    2014-01-01

    In North America, the biomedical research community faces social and economic challenges to nonhuman primate (NHP) importation that could reduce the number of NHP available for research needs. The effect of such limitations on specific biomedical research topics is unknown. The Association of Primate Veterinarians (APV), with assistance from the Centers for Disease Control and Prevention, developed a survey regarding biomedical research involving NHP in the United States and Canada. The survey sought to determine the number and species of NHP maintained at APV members’ facilities, current uses of NHP to identify the types of biomedical research that rely on imported animals, and members’ perceived trends in NHP research. Of the 149 members contacted, 33 (22%) replied, representing diverse facility sizes and types. Cynomolgus and rhesus macaques were the most common species housed at responding institutions and comprised the majority of newly acquired and imported NHP. The most common uses for NHP included pharmaceutical research and development and neuroscience, neurology, or neuromuscular disease research. Preclinical safety testing and cancer research projects usually involved imported NHP, whereas research on aging or degenerative disease, reproduction or reproductive disease, and organ or tissue transplantation typically used domestic-bred NHP. The current results improve our understanding of the research uses for imported NHP in North America and may facilitate estimating the potential effect of any future changes in NHP accessibility for research purposes. Ensuring that sufficient NHP are available for critical biomedical research remains a pressing concern for the biomedical research community in North America. PMID:24827570

  8. Enhancing Graduate and Postdoctoral Education To Create a Sustainable Biomedical Workforce

    PubMed Central

    Fuhrmann, Cynthia N.

    2016-01-01

    PhD-trained biomedical scientists are moving into an increasingly diverse variety of careers within the sciences. However, graduate and postdoctoral training programs have historically focused on academic career preparation, and have not sufficiently prepared trainees for transitioning into other scientific careers. Advocates for science have raised the concern that the collective disregard of the broader career-development needs for predoctoral and postdoctoral trainees could drive talent away from science in upcoming generations. A shift is occurring, wherein universities are increasingly investing in centralized career development programs to address this need. In this Perspective, I reflect on the movement that brought biomedical PhD career development to the spotlight in recent years, and how this movement has influenced both the academic biomedical community and the field of career development. I offer recommendations for universities looking to establish or strengthen their career development programs, including recommendations for how to develop a campus culture that values career development as part of pre- and postdoctoral training. I also suggest steps that faculty might take to facilitate the career development of their mentees, regardless of the mentee's career aspirations. Finally, I reflect on recent national efforts to incentivize innovation, evaluation, and research in the field of biomedical PhD career development, and propose actions that the scientific community can take to support biomedical career development further as a scholarly discipline. These investments will enable new approaches to be rigorously tested and efficiently disseminated to support this rapidly growing field. Ultimately, strengthening biomedical career development will be essential for attracting the best talent to science and helping them efficiently move into careers that will sustain our nation's scientific enterprise. PMID:27762630

  9. From Bench to Bedside: A communal utility value intervention to enhance students’ biomedical science motivation

    PubMed Central

    Brown, Elizabeth R.; Smith, Jessi L.; Thoman, Dustin B.; Allen, Jill M.; Muragishi, Gregg

    2015-01-01

    Motivating students to pursue science careers is a top priority among many science educators. We add to the growing literature by examining the impact of a utility value intervention to enhance student’s perceptions that biomedical science affords important utility work values. Using an expectancy-value perspective we identify and test two types of utility value: communal (other-oriented) and agentic (self-oriented). The culture of science is replete with examples emphasizing high levels of agentic value, but communal values are often (stereotyped as) absent from science. However, people in general want an occupation that has communal utility. We predicted and found that an intervention emphasizing the communal utility value of biomedical research increased students’ motivation for biomedical science (Studies 1–3). We refined whether different types of communal utility value (working with, helping, and forming relationships with others) might be more or less important, demonstrating that helping others was an especially important predictor of student motivation (Study 2). Adding agentic utility value to biomedical research did not further increase student motivation (Study 3). Furthermore, the communal value intervention indirectly impacted students’ motivation because students believed that biomedical research was communal and thus subsequently more important (Studies 1–3). This is key, because enhancing student communal value beliefs about biomedical research (Studies 1–3) and science (Study 4) was associated both with momentary increases in motivation in experimental settings (Studies 1–3) and increased motivation over time among students highly identified with biomedicine (Study 4). We discuss recommendations for science educators, practitioners, and faculty mentors who want to broaden participation in science. PMID:26617417

  10. Enhancing Graduate and Postdoctoral Education To Create a Sustainable Biomedical Workforce.

    PubMed

    Fuhrmann, Cynthia N

    2016-11-01

    PhD-trained biomedical scientists are moving into an increasingly diverse variety of careers within the sciences. However, graduate and postdoctoral training programs have historically focused on academic career preparation, and have not sufficiently prepared trainees for transitioning into other scientific careers. Advocates for science have raised the concern that the collective disregard of the broader career-development needs for predoctoral and postdoctoral trainees could drive talent away from science in upcoming generations. A shift is occurring, wherein universities are increasingly investing in centralized career development programs to address this need. In this Perspective, I reflect on the movement that brought biomedical PhD career development to the spotlight in recent years, and how this movement has influenced both the academic biomedical community and the field of career development. I offer recommendations for universities looking to establish or strengthen their career development programs, including recommendations for how to develop a campus culture that values career development as part of pre- and postdoctoral training. I also suggest steps that faculty might take to facilitate the career development of their mentees, regardless of the mentee's career aspirations. Finally, I reflect on recent national efforts to incentivize innovation, evaluation, and research in the field of biomedical PhD career development, and propose actions that the scientific community can take to support biomedical career development further as a scholarly discipline. These investments will enable new approaches to be rigorously tested and efficiently disseminated to support this rapidly growing field. Ultimately, strengthening biomedical career development will be essential for attracting the best talent to science and helping them efficiently move into careers that will sustain our nation's scientific enterprise.

  11. Designing a mobile augmented reality tool for the locative visualisation of biomedical knowledge.

    PubMed

    Kilby, Jess; Gray, Kathleen; Elliott, Kristine; Waycott, Jenny; Sanchez, Fernando Martin; Dave, Bharat

    2013-01-01

    Mobile augmented reality (MAR) may offer new and engaging ways to support consumer participation in health. We report on design-based research into a MAR application for smartphones and tablets, intended to improve public engagement with biomedical research in a specific urban precinct. Following a review of technical capabilities and organizational and locative design considerations, we worked with staff of four research institutes to elicit their ideas about information and interaction functionalities of a shared MAR app. The results were promising, supporting the development of a prototype and initial field testing with these staff. Evidence from this project may point the way toward user-centred design of MAR services that will enable more widespread adoption of the technology in other healthcare and biomedical research contexts.

  12. Fatigue behaviour of boron free and boron containing heat treated Ti-13Zr-13Nb alloy for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majumdar, P., E-mail: m.pallab@gmail.com; Singh, S.B.; Chakraborty, M.

    2010-12-15

    Fatigue behaviour of heat treated Ti-13Zr-13Nb (TZN) and Ti-13Zr-13Nb-0.5B (TZNB) alloys for biomedical implants has been investigated by rotating bending test. It was found that fatigue strength of TZN and TZNB alloys is comparable with that of conventionally used biomedical titanium alloys. Addition of boron to TZN alloy deteriorates fatigue strength. - Research Highlights: {yields}The microstructure of the aged TZN consists of {alpha} phase in {beta} matrix. {yields}Addition of boron to TZN leads to the formation of dispersed acicular TiB. {yields}Presence of TiB deteriorates the fatigue strength of TZN alloy. {yields}Fatigue strength of aged TZN/TZNB alloys is comparable with biomedicalmore » Ti-alloys.« less

  13. Strategies for Derisking Translational Processes for Biomedical Technologies.

    PubMed

    Abou-El-Enein, Mohamed; Duda, Georg N; Gruskin, Elliott A; Grainger, David W

    2017-02-01

    Inefficient translational processes for technology-oriented biomedical research have led to some prominent and frequent failures in the development of many leading drug candidates, several designated investigational drugs, and some medical devices, as well as documented patient harm and postmarket product withdrawals. Derisking this process, particularly in the early stages, should increase translational efficiency and streamline resource utilization, especially in an academic setting. In this opinion article, we identify a 12-step guideline for reducing risks typically associated with translating medical technologies as they move toward prototypes, preclinical proof of concept, and possible clinical testing. Integrating the described 12-step process should prove valuable for improving how early-stage academic biomedical concepts are cultivated, culled, and manicured toward intended clinical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Using Ontology Fingerprints to disambiguate gene name entities in the biomedical literature

    PubMed Central

    Chen, Guocai; Zhao, Jieyi; Cohen, Trevor; Tao, Cui; Sun, Jingchun; Xu, Hua; Bernstam, Elmer V.; Lawson, Andrew; Zeng, Jia; Johnson, Amber M.; Holla, Vijaykumar; Bailey, Ann M.; Lara-Guerra, Humberto; Litzenburger, Beate; Meric-Bernstam, Funda; Jim Zheng, W.

    2015-01-01

    Ambiguous gene names in the biomedical literature are a barrier to accurate information extraction. To overcome this hurdle, we generated Ontology Fingerprints for selected genes that are relevant for personalized cancer therapy. These Ontology Fingerprints were used to evaluate the association between genes and biomedical literature to disambiguate gene names. We obtained 93.6% precision for the test gene set and 80.4% for the area under a receiver-operating characteristics curve for gene and article association. The core algorithm was implemented using a graphics processing unit-based MapReduce framework to handle big data and to improve performance. We conclude that Ontology Fingerprints can help disambiguate gene names mentioned in text and analyse the association between genes and articles. Database URL: http://www.ontologyfingerprint.org PMID:25858285

  15. BIOSMILE web search: a web application for annotating biomedical entities and relations.

    PubMed

    Dai, Hong-Jie; Huang, Chi-Hsin; Lin, Ryan T K; Tsai, Richard Tzong-Han; Hsu, Wen-Lian

    2008-07-01

    BIOSMILE web search (BWS), a web-based NCBI-PubMed search application, which can analyze articles for selected biomedical verbs and give users relational information, such as subject, object, location, manner, time, etc. After receiving keyword query input, BWS retrieves matching PubMed abstracts and lists them along with snippets by order of relevancy to protein-protein interaction. Users can then select articles for further analysis, and BWS will find and mark up biomedical relations in the text. The analysis results can be viewed in the abstract text or in table form. To date, BWS has been field tested by over 30 biologists and questionnaires have shown that subjects are highly satisfied with its capabilities and usability. BWS is accessible free of charge at http://bioservices.cse.yzu.edu.tw/BWS.

  16. Predictors of Student Productivity in Biomedical Graduate School Applications

    PubMed Central

    O’Connell, Anna B.; Cook, Jeanette G.

    2017-01-01

    Many US biomedical PhD programs receive more applications for admissions than they can accept each year, necessitating a selective admissions process. Typical selection criteria include standardized test scores, undergraduate grade point average, letters of recommendation, a resume and/or personal statement highlighting relevant research or professional experience, and feedback from interviews with training faculty. Admissions decisions are often founded on assumptions that these application components correlate with research success in graduate school, but these assumptions have not been rigorously tested. We sought to determine if any application components were predictive of student productivity measured by first-author student publications and time to degree completion. We collected productivity metrics for graduate students who entered the umbrella first-year biomedical PhD program at the University of North Carolina at Chapel Hill from 2008–2010 and analyzed components of their admissions applications. We found no correlations of test scores, grades, amount of previous research experience, or faculty interview ratings with high or low productivity among those applicants who were admitted and chose to matriculate at UNC. In contrast, ratings from recommendation letter writers were significantly stronger for students who published multiple first-author papers in graduate school than for those who published no first-author papers during the same timeframe. We conclude that the most commonly used standardized test (the general GRE) is a particularly ineffective predictive tool, but that qualitative assessments by previous mentors are more likely to identify students who will succeed in biomedical graduate research. Based on these results, we conclude that admissions committees should avoid over-reliance on any single component of the application and de-emphasize metrics that are minimally predictive of student productivity. We recommend continual tracking of desired training outcomes combined with retrospective analysis of admissions practices to guide both application requirements and holistic application review. PMID:28076439

  17. Usability-driven pruning of large ontologies: the case of SNOMED CT.

    PubMed

    López-García, Pablo; Boeker, Martin; Illarramendi, Arantza; Schulz, Stefan

    2012-06-01

    To study ontology modularization techniques when applied to SNOMED CT in a scenario in which no previous corpus of information exists and to examine if frequency-based filtering using MEDLINE can reduce subset size without discarding relevant concepts. Subsets were first extracted using four graph-traversal heuristics and one logic-based technique, and were subsequently filtered with frequency information from MEDLINE. Twenty manually coded discharge summaries from cardiology patients were used as signatures and test sets. The coverage, size, and precision of extracted subsets were measured. Graph-traversal heuristics provided high coverage (71-96% of terms in the test sets of discharge summaries) at the expense of subset size (17-51% of the size of SNOMED CT). Pre-computed subsets and logic-based techniques extracted small subsets (1%), but coverage was limited (24-55%). Filtering reduced the size of large subsets to 10% while still providing 80% coverage. Extracting subsets to annotate discharge summaries is challenging when no previous corpus exists. Ontology modularization provides valuable techniques, but the resulting modules grow as signatures spread across subhierarchies, yielding a very low precision. Graph-traversal strategies and frequency data from an authoritative source can prune large biomedical ontologies and produce useful subsets that still exhibit acceptable coverage. However, a clinical corpus closer to the specific use case is preferred when available.

  18. Advanced biosensing methodologies developed for evaluating performance quality and safety of emerging biophotonics technologies and medical devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ilev, Ilko K.; Walker, Bennett; Calhoun, William; Hassan, Moinuddin

    2016-03-01

    Biophotonics is an emerging field in modern biomedical technology that has opened up new horizons for transfer of state-of-the-art techniques from the areas of lasers, fiber optics and biomedical optics to the life sciences and medicine. This field continues to vastly expand with advanced developments across the entire spectrum of biomedical applications ranging from fundamental "bench" laboratory studies to clinical patient "bedside" diagnostics and therapeutics. However, in order to translate these technologies to clinical device applications, the scientific and industrial community, and FDA are facing the requirement for a thorough evaluation and review of laser radiation safety and efficacy concerns. In many cases, however, the review process is complicated due the lack of effective means and standard test methods to precisely analyze safety and effectiveness of some of the newly developed biophotonics techniques and devices. There is, therefore, an immediate public health need for new test protocols, guidance documents and standard test methods to precisely evaluate fundamental characteristics, performance quality and safety of these technologies and devices. Here, we will overview our recent developments of novel test methodologies for safety and efficacy evaluation of some emerging biophotonics technologies and medical devices. These methodologies are based on integrating the advanced features of state-of-the-art optical sensor technologies and approaches such as high-resolution fiber-optic sensing, confocal and optical coherence tomography imaging, and infrared spectroscopy. The presentation will also illustrate some methodologies developed and implemented for testing intraocular lens implants, biochemical contaminations of medical devices, ultrahigh-resolution nanoscopy, and femtosecond laser therapeutics.

  19. Development of a pyramidal wavefront sensor test-bench at INO

    NASA Astrophysics Data System (ADS)

    Turbide, Simon; Wang, Min; Gauvin, Jonny; Martin, Olivier; Savard, Maxime; Bourqui, Pascal; Veran, Jean-Pierre; Deschenes, William; Anctil, Genevieve; Chateauneuf, François

    2013-12-01

    The key technical element of the adaptive optics in astronomy is the wavefront sensing (WFS). One of the advantages of the pyramid wavefront sensor (P-WFS) over the widely used Shack-Hartmann wavefront sensor seems to be the increased sensitivity in closed-loop applications. A high-sensitivity and large dynamic-range WFS, such as P-WFS technology, still needs to be further investigated for proper justification in future Extremely Large Telescopes application. At INO, we have recently carried out the optical design, testing and performance evaluation of a P-WFS bench setup. The optical design of the bench setup mainly consists of the super-LED fiber source, source collimator, spatial light modulator (SLM), relay lenses, tip-tilt mirror, Fourier-transforming lens, and a four-faceted glass pyramid with a large vertex angle as well as pupil re-imaged optics. The phase-only SLM has been introduced in the bench setup to generate atmospheric turbulence with a maximum phase shift of more than 2π at each pixel (256 grey levels). Like a modified Foucault knife-edge test, the refractive pyramid element is used to produce four images of the entrance pupil on a CCD camera. The Fourier-transforming lens, which is used before the pyramid prism, is designed for telecentric output to allow dynamic modulation (rotation of the beam around the pyramid-prism center) from a tip-tilt mirror. Furthermore, a P-WFS diffraction-based model has been developed. This model includes most of the system limitations such as the SLM discrete voltage steps and the CCD pixel pitch. The pyramid effects (edges and tip) are considered as well. The modal wavefront reconstruction algorithm relies on the construction of an interaction matrix (one for each modulation's amplitude). Each column of the interaction matrix represents the combination of the four pupil images for a given wavefront aberration. The nice agreement between the data and the model suggest that the limitation of the system is not the P-WFS itself, but rather its environment such as source intensity fluctuation and vibration of the optical bench. Finally, the phase-reconstruction errors of the P-WFS have been compared to those of a Shack-Hartmann, showing the regions of interest of the former system. The bench setup will be focusing on the astronomy application as well as commercial applications, such as bio-medical application etc.

  20. Kennedy's Biomedical Laboratory Makes Multi-Tasking Look Easy

    NASA Technical Reports Server (NTRS)

    Dunn, Carol Anne

    2009-01-01

    If it is one thing that Florida has in abundance, it is sunshine and with that sunshine heat and humidity. For workers at the Kennedy Space Center that have to work outside in the heat and humidity, heat exhaustion/stroke is a real possibility. It might help people to know that Kennedy's Biomedical Laboratory has been testing some new Koolvests(Trademark) that can be worn underneath SCAPE suits. They have also been working on how to block out high noise levels; in fact, Don Doerr, chief of the Biomedical Lab, says, "The most enjoyable aspect is knowing that the Biomedical Lab and the skills of its employees have been used to support safe space flight, not only for the astronaut flight crew, but just as important for the ground processing personnel as well." The NASA Biomedical Laboratory has existed in the John F. Kennedy's Operations and Checkout Building since the Apollo Program. The primary mission of this laboratory has been the biomedical support to major, manned space programs that have included Apollo, Apollo-Soyuz, Skylab, and Shuttle. In this mission, the laboratory has been responsible in accomplishing much of the technical design, planning, provision, fabrication, and maintenance of flight and ground biomedical monitoring instrumentation. This includes the electronics in the launch flight suit and similar instrumentation systems in the spacecraft. (Note: The Lab checked out the system for STS-128 at Pad A using Firing room 4 and ground support equipment in the lab.) During Apollo, there were six engineers and ten technicians in the facility. This has evolved today to two NASA engineers and two NASA technicians, a Life Science Support contract physiologist and part-time support from an LSSC nurse and physician. Over the years, the lab has enjoyed collaboration with outside agencies and investigators. These have included on-site support to the Ames Research Center bed rest studies (seven years) and the European Space Agency studies in Toulouse, France (two years). The lab has also actively collaborated with the US Army Institute for Surgical Research, the USAF School of Aerospace Medicine, and the USN Naval Experimental Diving Unit. Because the lab often evaluates various forms of commercial-off-the-shelf life support equipment, the laboratory works closely with private companies, both domestic and foreign. The European companies seem to be more proactive and participatory with the advancement of personal protective equipment. Because these companies have viewed the space program's unique need for advanced forms of personal protective equipment, some have responded with new designs based on the prediction that these advances will soon find markets in the commercial sector. Using much of the same skills and equipment, the laboratory also addresses physiological testing of humans by supporting flight experiments and personnel involved with ground processing. While Johnson Space Center is primarily responsible for flight experiments, the Kennedy's Biomedical Lab provides the local support. However, as stated above, there are many challenges facing KSC workers that gain the attention of this lab in the measurement of the problem and the selection and testing of countermeasures. These include respiratory protection, whole body suits, hearing protection and heat stress, among many others.

  1. Environmental testing of block 3 solar cell modules. Part 1: Qualification testing of standard production modules

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.

    1979-01-01

    Qualification tests of solar cell modules are described. These modules continue to show improvement over earlier type modules tested. Cell cracking and delamination are less prevalent, and interconnect problems and electrical degradation from environmental testing are now rare.

  2. The design of automatic software testing module for civil aviation information system

    NASA Astrophysics Data System (ADS)

    Qi, Qi; Sun, Yang

    2018-05-01

    In this paper, the practical innovation design is carried out according to the urgent needs of the automatic testing module of civil aviation information system. Firstly, the background and significance of the automatic testing module of civil aviation information system is expounded, and the current research status of automatic testing module and the advantages and disadvantages of related software are analyzed. Then, from the three aspects of macro demand, module functional requirement and module nonfunctional demand, we further study the needs of automatic testing module of civil aviation information system. Finally, from the four aspects of module structure, module core function, database and security, we have made an innovative plan for the automatic testing module of civil aviation information system.

  3. Intermediate load modules for test and evaluation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Photovoltaic modules were tested for qualification. Tests involved the following: (1) delivery of 20 solar cells for use as reference cells; (2) module documentation and inspection plans specifying the 10 Group I modules; (3) design review of module documentation from Group I modules; (4) revise module documentation to overcome any problems of deficiencies associated with the Group I modules; (5) delivery of 10 Group II modules built to revised specifications; (6) testing of Group II modules to the criteria as outlined in qualification specification. It is found that the solarvolt MSP43E40B satisfies the design criteria of qualification specification for intermediate load modules. Design changes were made in the Group I modules to overcome the deficiencies which allowed Group II modules to pass the qualification tests.

  4. Monitoring activities of daily living based on wearable wireless body sensor network.

    PubMed

    Kańtoch, E; Augustyniak, P; Markiewicz, M; Prusak, D

    2014-01-01

    With recent advances in microprocessor chip technology, wireless communication, and biomedical engineering it is possible to develop miniaturized ubiquitous health monitoring devices that are capable of recording physiological and movement signals during daily life activities. The aim of the research is to implement and test the prototype of health monitoring system. The system consists of the body central unit with Bluetooth module and wearable sensors: the custom-designed ECG sensor, the temperature sensor, the skin humidity sensor and accelerometers placed on the human body or integrated with clothes and a network gateway to forward data to a remote medical server. The system includes custom-designed transmission protocol and remote web-based graphical user interface for remote real time data analysis. Experimental results for a group of humans who performed various activities (eg. working, running, etc.) showed maximum 5% absolute error compared to certified medical devices. The results are promising and indicate that developed wireless wearable monitoring system faces challenges of multi-sensor human health monitoring during performing daily activities and opens new opportunities in developing novel healthcare services.

  5. Text processing through Web services: calling Whatizit.

    PubMed

    Rebholz-Schuhmann, Dietrich; Arregui, Miguel; Gaudan, Sylvain; Kirsch, Harald; Jimeno, Antonio

    2008-01-15

    Text-mining (TM) solutions are developing into efficient services to researchers in the biomedical research community. Such solutions have to scale with the growing number and size of resources (e.g. available controlled vocabularies), with the amount of literature to be processed (e.g. about 17 million documents in PubMed) and with the demands of the user community (e.g. different methods for fact extraction). These demands motivated the development of a server-based solution for literature analysis. Whatizit is a suite of modules that analyse text for contained information, e.g. any scientific publication or Medline abstracts. Special modules identify terms and then link them to the corresponding entries in bioinformatics databases such as UniProtKb/Swiss-Prot data entries and gene ontology concepts. Other modules identify a set of selected annotation types like the set produced by the EBIMed analysis pipeline for proteins. In the case of Medline abstracts, Whatizit offers access to EBI's in-house installation via PMID or term query. For large quantities of the user's own text, the server can be operated in a streaming mode (http://www.ebi.ac.uk/webservices/whatizit).

  6. Optical regulation of protein adsorption and cell adhesion by photoresponsive GaN nanowires.

    PubMed

    Li, Jingying; Han, Qiusen; Zhang, Ying; Zhang, Wei; Dong, Mingdong; Besenbacher, Flemming; Yang, Rong; Wang, Chen

    2013-10-09

    Interfacing nanowires with living cells is attracting more and more interest due to the potential applications, such as cell culture engineering and drug delivery. We report on the feasibility of using photoresponsive semiconductor gallium nitride (GaN) nanowires (NWs) for regulating the behaviors of biomolecules and cells at the nano/biointerface. The GaN NWs have been fabricated by a facile chemical vapor deposition method. The superhydrophobicity to superhydrophilicity transition of the NWs is achieved by UV illumination. Bovine serum albumin adsorption could be modulated by photoresponsive GaN NWs. Tunable cell detachment and adhesion are also observed. The mechanism of the NW surface responsible for modulating both of protein adsorption and cell adhesion is discussed. These observations of the modulation effects on protein adsorption and cell adhesion by GaN NWs could provide a novel approach toward the regulation of the behaviors of biomolecules and cells at the nano/biointerface, which may be of considerable importance in the development of high-performance semiconductor nanowire-based biomedical devices for cell culture engineering, bioseparation, and diagnostics.

  7. Characterization of Heat Treated Titanium-Based Implants by Nondestructive Eddy Current and Ultrasonic Tests

    NASA Astrophysics Data System (ADS)

    Mutlu, Ilven; Ekinci, Sinasi; Oktay, Enver

    2014-06-01

    This study presents nondestructive characterization of microstructure and mechanical properties of heat treated Ti, Ti-Cu, and Ti-6Al-4V titanium-based alloys and 17-4 PH stainless steel alloy for biomedical implant applications. Ti, Ti-Cu, and 17-4 PH stainless steel based implants were produced by powder metallurgy. Ti-6Al-4V alloy was investigated as bulk wrought specimens. Effects of sintering temperature, aging, and grain size on mechanical properties were investigated by nondestructive and destructive tests comparatively. Ultrasonic velocity in specimens was measured by using pulse-echo and transmission methods. Electrical conductivity of specimens was determined by eddy current tests. Determination of Young's modulus and strength is important in biomedical implants. Young's modulus of specimens was calculated by using ultrasonic velocities. Calculated Young's modulus values were compared and correlated with experimental values.

  8. Generating quality word sense disambiguation test sets based on MeSH indexing.

    PubMed

    Fan, Jung-Wei; Friedman, Carol

    2009-11-14

    Word sense disambiguation (WSD) determines the correct meaning of a word that has more than one meaning, and is a critical step in biomedical natural language processing, as interpretation of information in text can be correct only if the meanings of their component terms are correctly identified first. Quality evaluation sets are important to WSD because they can be used as representative samples for developing automatic programs and as referees for comparing different WSD programs. To help create quality test sets for WSD, we developed a MeSH-based automatic sense-tagging method that preferentially annotates terms being topical of the text. Preliminary results were promising and revealed important issues to be addressed in biomedical WSD research. We also suggest that, by cross-validating with 2 or 3 annotators, the method should be able to efficiently generate quality WSD test sets. Online supplement is available at: http://www.dbmi.columbia.edu/~juf7002/AMIA09.

  9. Image segmentation for biomedical applications based on alternating sequential filtering and watershed transformation

    NASA Astrophysics Data System (ADS)

    Gorpas, D.; Yova, D.

    2009-07-01

    One of the major challenges in biomedical imaging is the extraction of quantified information from the acquired images. Light and tissue interaction leads to the acquisition of images that present inconsistent intensity profiles and thus the accurate identification of the regions of interest is a rather complicated process. On the other hand, the complex geometries and the tangent objects that very often are present in the acquired images, lead to either false detections or to the merging, shrinkage or expansion of the regions of interest. In this paper an algorithm, which is based on alternating sequential filtering and watershed transformation, is proposed for the segmentation of biomedical images. This algorithm has been tested over two applications, each one based on different acquisition system, and the results illustrate its accuracy in segmenting the regions of interest.

  10. Using Ontology Fingerprints to disambiguate gene name entities in the biomedical literature.

    PubMed

    Chen, Guocai; Zhao, Jieyi; Cohen, Trevor; Tao, Cui; Sun, Jingchun; Xu, Hua; Bernstam, Elmer V; Lawson, Andrew; Zeng, Jia; Johnson, Amber M; Holla, Vijaykumar; Bailey, Ann M; Lara-Guerra, Humberto; Litzenburger, Beate; Meric-Bernstam, Funda; Jim Zheng, W

    2015-01-01

    Ambiguous gene names in the biomedical literature are a barrier to accurate information extraction. To overcome this hurdle, we generated Ontology Fingerprints for selected genes that are relevant for personalized cancer therapy. These Ontology Fingerprints were used to evaluate the association between genes and biomedical literature to disambiguate gene names. We obtained 93.6% precision for the test gene set and 80.4% for the area under a receiver-operating characteristics curve for gene and article association. The core algorithm was implemented using a graphics processing unit-based MapReduce framework to handle big data and to improve performance. We conclude that Ontology Fingerprints can help disambiguate gene names mentioned in text and analyse the association between genes and articles. Database URL: http://www.ontologyfingerprint.org © The Author(s) 2015. Published by Oxford University Press.

  11. Expert Knowledge Influences Decision-Making for Couples Receiving Positive Prenatal Chromosomal Microarray Testing Results.

    PubMed

    Rubel, M A; Werner-Lin, A; Barg, F K; Bernhardt, B A

    2017-09-01

    To assess how participants receiving abnormal prenatal genetic testing results seek information and understand the implications of results, 27 US female patients and 12 of their male partners receiving positive prenatal microarray testing results completed semi-structured phone interviews. These interviews documented participant experiences with chromosomal microarray testing, understanding of and emotional response to receiving results, factors affecting decision-making about testing and pregnancy termination, and psychosocial needs throughout the testing process. Interview data were analyzed using a modified grounded theory approach. In the absence of certainty about the implications of results, understanding of results is shaped by biomedical expert knowledge (BEK) and cultural expert knowledge (CEK). When there is a dearth of BEK, as in the case of receiving results of uncertain significance, participants rely on CEK, including religious/spiritual beliefs, "gut instinct," embodied knowledge, and social network informants. CEK is a powerful platform to guide understanding of prenatal genetic testing results. The utility of culturally situated expert knowledge during testing uncertainty emphasizes that decision-making occurs within discourses beyond the biomedical domain. These forms of "knowing" may be integrated into clinical consideration of efficacious patient assessment and counseling.

  12. The NIFSTD and BIRNLex Vocabularies: Building Comprehensive Ontologies for Neuroscience

    PubMed Central

    Bug, William J.; Ascoli, Giorgio A.; Grethe, Jeffrey S.; Gupta, Amarnath; Fennema-Notestine, Christine; Laird, Angela R.; Larson, Stephen D.; Rubin, Daniel; Shepherd, Gordon M.; Turner, Jessica A.; Martone, Maryann E.

    2009-01-01

    A critical component of the Neuroscience Information Framework (NIF) project is a consistent, flexible terminology for describing and retrieving neuroscience-relevant resources. Although the original NIF specification called for a loosely structured controlled vocabulary for describing neuroscience resources, as the NIF system evolved, the requirement for a formally structured ontology for neuroscience with sufficient granularity to describe and access a diverse collection of information became obvious. This requirement led to the NIF standardized (NIFSTD) ontology, a comprehensive collection of common neuroscience domain terminologies woven into an ontologically consistent, unified representation of the biomedical domains typically used to describe neuroscience data (e.g., anatomy, cell types, techniques), as well as digital resources (tools, databases) being created throughout the neuroscience community. NIFSTD builds upon a structure established by the BIRNLex, a lexicon of concepts covering clinical neuroimaging research developed by the Biomedical Informatics Research Network (BIRN) project. Each distinct domain module is represented using the Web Ontology Language (OWL). As much as has been practical, NIFSTD reuses existing community ontologies that cover the required biomedical domains, building the more specific concepts required to annotate NIF resources. By following this principle, an extensive vocabulary was assembled in a relatively short period of time for NIF information annotation, organization, and retrieval, in a form that promotes easy extension and modification. We report here on the structure of the NIFSTD, and its predecessor BIRNLex, the principles followed in its construction and provide examples of its use within NIF. PMID:18975148

  13. USNCTAM perspectives on mechanics in medicine.

    PubMed

    Bao, Gang; Bazilevs, Yuri; Chung, Jae-Hyun; Decuzzi, Paolo; Espinosa, Horacio D; Ferrari, Mauro; Gao, Huajian; Hossain, Shaolie S; Hughes, Thomas J R; Kamm, Roger D; Liu, Wing Kam; Marsden, Alison; Schrefler, Bernhard

    2014-08-06

    Over decades, the theoretical and applied mechanics community has developed sophisticated approaches for analysing the behaviour of complex engineering systems. Most of these approaches have targeted systems in the transportation, materials, defence and energy industries. Applying and further developing engineering approaches for understanding, predicting and modulating the response of complicated biomedical processes not only holds great promise in meeting societal needs, but also poses serious challenges. This report, prepared for the US National Committee on Theoretical and Applied Mechanics, aims to identify the most pressing challenges in biological sciences and medicine that can be tackled within the broad field of mechanics. This echoes and complements a number of national and international initiatives aiming at fostering interdisciplinary biomedical research. This report also comments on cultural/educational challenges. Specifically, this report focuses on three major thrusts in which we believe mechanics has and will continue to have a substantial impact. (i) Rationally engineering injectable nano/microdevices for imaging and therapy of disease. Within this context, we discuss nanoparticle carrier design, vascular transport and adhesion, endocytosis and tumour growth in response to therapy, as well as uncertainty quantification techniques to better connect models and experiments. (ii) Design of biomedical devices, including point-of-care diagnostic systems, model organ and multi-organ microdevices, and pulsatile ventricular assistant devices. (iii) Mechanics of cellular processes, including mechanosensing and mechanotransduction, improved characterization of cellular constitutive behaviour, and microfluidic systems for single-cell studies. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Prioritising lexical patterns to increase axiomatisation in biomedical ontologies. The role of localisation and modularity.

    PubMed

    Quesada-Martínez, M; Fernández-Breis, J T; Stevens, R; Mikroyannidi, E

    2015-01-01

    This article is part of the Focus Theme of METHODS of Information in Medicine on "Managing Interoperability and Complexity in Health Systems". In previous work, we have defined methods for the extraction of lexical patterns from labels as an initial step towards semi-automatic ontology enrichment methods. Our previous findings revealed that many biomedical ontologies could benefit from enrichment methods using lexical patterns as a starting point.Here, we aim to identify which lexical patterns are appropriate for ontology enrichment, driving its analysis by metrics to prioritised the patterns. We propose metrics for suggesting which lexical regularities should be the starting point to enrich complex ontologies. Our method determines the relevance of a lexical pattern by measuring its locality in the ontology, that is, the distance between the classes associated with the pattern, and the distribution of the pattern in a certain module of the ontology. The methods have been applied to four significant biomedical ontologies including the Gene Ontology and SNOMED CT. The metrics provide information about the engineering of the ontologies and the relevance of the patterns. Our method enables the suggestion of links between classes that are not made explicit in the ontology. We propose a prioritisation of the lexical patterns found in the analysed ontologies. The locality and distribution of lexical patterns offer insights into the further engineering of the ontology. Developers can use this information to improve the axiomatisation of their ontologies.

  15. The NIFSTD and BIRNLex vocabularies: building comprehensive ontologies for neuroscience.

    PubMed

    Bug, William J; Ascoli, Giorgio A; Grethe, Jeffrey S; Gupta, Amarnath; Fennema-Notestine, Christine; Laird, Angela R; Larson, Stephen D; Rubin, Daniel; Shepherd, Gordon M; Turner, Jessica A; Martone, Maryann E

    2008-09-01

    A critical component of the Neuroscience Information Framework (NIF) project is a consistent, flexible terminology for describing and retrieving neuroscience-relevant resources. Although the original NIF specification called for a loosely structured controlled vocabulary for describing neuroscience resources, as the NIF system evolved, the requirement for a formally structured ontology for neuroscience with sufficient granularity to describe and access a diverse collection of information became obvious. This requirement led to the NIF standardized (NIFSTD) ontology, a comprehensive collection of common neuroscience domain terminologies woven into an ontologically consistent, unified representation of the biomedical domains typically used to describe neuroscience data (e.g., anatomy, cell types, techniques), as well as digital resources (tools, databases) being created throughout the neuroscience community. NIFSTD builds upon a structure established by the BIRNLex, a lexicon of concepts covering clinical neuroimaging research developed by the Biomedical Informatics Research Network (BIRN) project. Each distinct domain module is represented using the Web Ontology Language (OWL). As much as has been practical, NIFSTD reuses existing community ontologies that cover the required biomedical domains, building the more specific concepts required to annotate NIF resources. By following this principle, an extensive vocabulary was assembled in a relatively short period of time for NIF information annotation, organization, and retrieval, in a form that promotes easy extension and modification. We report here on the structure of the NIFSTD, and its predecessor BIRNLex, the principles followed in its construction and provide examples of its use within NIF.

  16. NASA Tech Briefs, July 1999. Volume 23, No. 7

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Topics: Test and Measurement; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Software; Mechanics; Machinery/Automation; Bio-Medical; Books and Reports; Semiconductors/ICs.

  17. Apollo 15 Mission Report

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A detailed discussion is presented of the Apollo 15 mission, which conducted exploration of the moon over longer periods, greater ranges, and with more instruments of scientific data acquisition than previous missions. The topics include trajectory, lunar surface science, inflight science and photography, command and service module performance, lunar module performance, lunar surface operational equipment, pilot's report, biomedical evaluation, mission support performance, assessment of mission objectives, launch phase summary, anomaly summary, and vehicle and equipment descriptions. The capability of transporting larger payloads and extending time on the moon were demonstrated. The ground-controlled TV camera allowed greater real-time participation by earth-bound personnel. The crew operated more as scientists and relied more on ground support team for systems monitoring. The modified pressure garment and portable life support system provided better mobility and extended EVA time. The lunar roving vehicle and the lunar communications relay unit were also demonstrated.

  18. Speckle-modulating optical coherence tomography in living mice and humans.

    PubMed

    Liba, Orly; Lew, Matthew D; SoRelle, Elliott D; Dutta, Rebecca; Sen, Debasish; Moshfeghi, Darius M; Chu, Steven; de la Zerda, Adam

    2017-06-20

    Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise (speckle noise), which imposes significant limitations on its diagnostic capabilities. Here we show speckle-modulating OCT (SM-OCT), a method based purely on light manipulation that virtually eliminates speckle noise originating from a sample. SM-OCT accomplishes this by creating and averaging an unlimited number of scans with uncorrelated speckle patterns without compromising spatial resolution. Using SM-OCT, we reveal small structures in the tissues of living animals, such as the inner stromal structure of a live mouse cornea, the fine structures inside the mouse pinna, and sweat ducts and Meissner's corpuscle in the human fingertip skin-features that are otherwise obscured by speckle noise when using conventional OCT or OCT with current state of the art speckle reduction methods.

  19. Speckle-modulating optical coherence tomography in living mice and humans

    PubMed Central

    Liba, Orly; Lew, Matthew D.; SoRelle, Elliott D.; Dutta, Rebecca; Sen, Debasish; Moshfeghi, Darius M.; Chu, Steven; de la Zerda, Adam

    2017-01-01

    Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise (speckle noise), which imposes significant limitations on its diagnostic capabilities. Here we show speckle-modulating OCT (SM-OCT), a method based purely on light manipulation that virtually eliminates speckle noise originating from a sample. SM-OCT accomplishes this by creating and averaging an unlimited number of scans with uncorrelated speckle patterns without compromising spatial resolution. Using SM-OCT, we reveal small structures in the tissues of living animals, such as the inner stromal structure of a live mouse cornea, the fine structures inside the mouse pinna, and sweat ducts and Meissner’s corpuscle in the human fingertip skin—features that are otherwise obscured by speckle noise when using conventional OCT or OCT with current state of the art speckle reduction methods. PMID:28632205

  20. Speckle-modulating optical coherence tomography in living mice and humans

    NASA Astrophysics Data System (ADS)

    Liba, Orly; Lew, Matthew D.; Sorelle, Elliott D.; Dutta, Rebecca; Sen, Debasish; Moshfeghi, Darius M.; Chu, Steven; de La Zerda, Adam

    2017-06-01

    Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise (speckle noise), which imposes significant limitations on its diagnostic capabilities. Here we show speckle-modulating OCT (SM-OCT), a method based purely on light manipulation that virtually eliminates speckle noise originating from a sample. SM-OCT accomplishes this by creating and averaging an unlimited number of scans with uncorrelated speckle patterns without compromising spatial resolution. Using SM-OCT, we reveal small structures in the tissues of living animals, such as the inner stromal structure of a live mouse cornea, the fine structures inside the mouse pinna, and sweat ducts and Meissner's corpuscle in the human fingertip skin--features that are otherwise obscured by speckle noise when using conventional OCT or OCT with current state of the art speckle reduction methods.

  1. Hybrid GMR Sensor Detecting 950 pT/sqrt(Hz) at 1 Hz and Room Temperature

    PubMed Central

    Guedes, André; Macedo, Rita; Jaramillo, Gerardo; Freitas, Paulo P.; Horsley, David A.

    2018-01-01

    Advances in the magnetic sensing technology have been driven by the increasing demand for the capability of measuring ultrasensitive magnetic fields. Among other emerging applications, the detection of magnetic fields in the picotesla range is crucial for biomedical applications. In this work Picosense reports a millimeter-scale, low-power hybrid magnetoresistive-piezoelectric magnetometer with subnanotesla sensitivity at low frequency. Through an innovative noise-cancelation mechanism, the 1/f noise in the MR sensors is surpassed by the mechanical modulation of the external magnetic fields in the high frequency regime. A modulation efficiency of 13% was obtained enabling a final device’s sensitivity of ~950 pT/Hz1/2 at 1 Hz. This hybrid device proved to be capable of measuring biomagnetic signals generated in the heart in an unshielded environment. This result paves the way for the development of a portable, contactless, low-cost and low-power magnetocardiography device. PMID:29509677

  2. Engineering Cell-Cell Signaling

    PubMed Central

    Milano, Daniel F.; Natividad, Robert J.; Asthagiri, Anand R.

    2014-01-01

    Juxtacrine cell-cell signaling mediated by the direct interaction of adjoining mammalian cells is arguably the mode of cell communication that is most recalcitrant to engineering. Overcoming this challenge is crucial for progress in biomedical applications, such as tissue engineering, regenerative medicine, immune system engineering and therapeutic design. Here, we describe the significant advances that have been made in developing synthetic platforms (materials and devices) and synthetic cells (cell surface engineering and synthetic gene circuits) to modulate juxtacrine cell-cell signaling. In addition, significant progress has been made in elucidating design rules and strategies to modulate juxtacrine signaling based on quantitative, engineering analysis of the mechanical and regulatory role of juxtacrine signals in the context of other cues and physical constraints in the microenvironment. These advances in engineering juxtacrine signaling lay a strong foundation for an integrative approach to utilizing synthetic cells, advanced ‘chassis’ and predictive modeling to engineer the form and function of living tissues. PMID:23856592

  3. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system

    PubMed Central

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro

    2016-01-01

    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion–fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies. PMID:26786848

  4. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system.

    PubMed

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro

    2016-01-20

    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies.

  5. Harnessing and Modulating Inflammation in Strategies for Bone Regeneration

    PubMed Central

    Mountziaris, Paschalia M.; Spicer, Patrick P.; Kasper, F. Kurtis

    2011-01-01

    Inflammation is an immediate response that plays a critical role in healing after fracture or injury to bone. However, in certain clinical contexts, such as in inflammatory diseases or in response to the implantation of a biomedical device, the inflammatory response may become chronic and result in destructive catabolic effects on the bone tissue. Since our previous review 3 years ago, which identified inflammatory signals critical for bone regeneration and described the inhibitory effects of anti-inflammatory agents on bone healing, a multitude of studies have been published exploring various aspects of this emerging field. In this review, we distinguish between regenerative and damaging inflammatory processes in bone, update our discussion of the effects of anti-inflammatory agents on bone healing, summarize recent in vitro and in vivo studies demonstrating how inflammation can be modulated to stimulate bone regeneration, and identify key future directions in the field. PMID:21615330

  6. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms.

    PubMed

    Wei, Min; Li, Song; Le, Weidong

    2017-10-25

    Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells' fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.

  7. Remotely Controlled Mixers for Light Microscopy Module (LMM) Colloid Samples

    NASA Technical Reports Server (NTRS)

    Kurk, Michael A. (Andy)

    2015-01-01

    Developed by NASA Glenn Research Center, the LMM aboard the International Space Station (ISS) is enabling multiple biomedical science experiments. Techshot, Inc., has developed a series of colloid specialty cell systems (C-SPECS) for use in the colloid science experiment module on the LMM. These low-volume mixing devices will enable uniform particle density and remotely controlled repetition of LMM colloid experiments. By automating the experiment process, C-SPECS allow colloid samples to be processed more quickly. In addition, C-SPECS will minimize the time the crew will need to spend on colloid experiments as well as eliminate the need for multiple and costly colloid samples, which are expended after a single examination. This high-throughput capability will lead to more efficient and productive use of the LMM. As commercial launch vehicles begin routine visits to the ISS, C-SPECS could become a significant means to process larger quantities of high-value materials for commercial customers.

  8. National Institute of Biomedical Imaging and Bioengineering Point-of-Care Technology Research Network: Advancing Precision Medicine

    PubMed Central

    Ford Carleton, Penny; Parrish, John A.; Collins, John M.; Crocker, J. Benjamin; Dixon, Ronald F.; Edgman-Levitan, Susan; Lewandrowski, Kent B.; Stahl, James E.; Klapperich, Catherine; Cabodi, Mario; Gaydos, Charlotte A.; Rompalo, Anne M.; Manabe, Yukari; Wang, Tza-Huei; Rothman, Richard; Geddes, Chris D.; Widdice, Lea; Jackman, Joany; Mathura, Rishi A.; Lash, Tiffani Bailey

    2016-01-01

    To advance the development of point-of-care technology (POCT), the National Institute of Biomedical Imaging and Bioengineering established the POCT Research Network (POCTRN), comprised of Centers that emphasize multidisciplinary partnerships and close facilitation to move technologies from an early stage of development into clinical testing and patient use. This paper describes the POCTRN and the three currently funded Centers as examples of academic-based organizations that support collaborations across disciplines, institutions, and geographic regions to successfully drive innovative solutions from concept to patient care. PMID:27730014

  9. Cell Culturing of Cytoskeleton

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  10. Cell Culturing of Cytoskeleton

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc. has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc. is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  11. BioC implementations in Go, Perl, Python and Ruby.

    PubMed

    Liu, Wanli; Islamaj Doğan, Rezarta; Kwon, Dongseop; Marques, Hernani; Rinaldi, Fabio; Wilbur, W John; Comeau, Donald C

    2014-01-01

    As part of a communitywide effort for evaluating text mining and information extraction systems applied to the biomedical domain, BioC is focused on the goal of interoperability, currently a major barrier to wide-scale adoption of text mining tools. BioC is a simple XML format, specified by DTD, for exchanging data for biomedical natural language processing. With initial implementations in C++ and Java, BioC provides libraries of code for reading and writing BioC text documents and annotations. We extend BioC to Perl, Python, Go and Ruby. We used SWIG to extend the C++ implementation for Perl and one Python implementation. A second Python implementation and the Ruby implementation use native data structures and libraries. BioC is also implemented in the Google language Go. BioC modules are functional in all of these languages, which can facilitate text mining tasks. BioC implementations are freely available through the BioC site: http://bioc.sourceforge.net. Database URL: http://bioc.sourceforge.net/ Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US.

  12. Coupling of transient near infrared photonic with magnetic nanoparticle for potential dissipation-free biomedical application in brain

    PubMed Central

    Sagar, Vidya; Atluri, V. S. R.; Tomitaka, A.; Shah, P.; Nagasetti, A.; Pilakka-Kanthikeel, S.; El-Hage, N.; McGoron, A.; Takemura, Y.; Nair, M.

    2016-01-01

    Combined treatment strategies based on magnetic nanoparticles (MNPs) with near infrared ray (NIR) biophotonic possess tremendous potential for non-invasive therapeutic approach. Nonetheless, investigations in this direction have been limited to peripheral body region and little is known about the potential biomedical application of this approach for brain. Here we report that transient NIR exposure is dissipation-free and has no adverse effect on the viability and plasticity of major brain cells in the presence or absence superparamagnetic nanoparticles. The 808 nm NIR laser module with thermocouple was employed for functional studies upon NIR exposure to brain cells. Magnetic nanoparticles were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic laser scattering (DLS), and vibrating sample magnetometer (VSM). Brain cells viability and plasticity were analyzed using electric cell-substrate impedance sensing system, cytotoxicity evaluation, and confocal microscopy. When efficacious non-invasive photobiomodulation and neuro-therapeutical targeting and monitoring to brain remain a formidable task, the discovery of this dissipation-free, transient NIR photonic approach for brain cells possesses remarkable potential to add new dimension. PMID:27465276

  13. Towards an easier creation of three-dimensional data for embedding into scholarly 3D PDF (Portable Document Format) files

    PubMed Central

    2015-01-01

    The Portable Document Format (PDF) allows for embedding three-dimensional (3D) models and is therefore particularly suitable to communicate respective data, especially as regards scholarly articles. The generation of the necessary model data, however, is still challenging, especially for inexperienced users. This prevents an unrestrained proliferation of 3D PDF usage in scholarly communication. This article introduces a new solution for the creation of three of types of 3D geometry (point clouds, polylines and triangle meshes), that is based on MeVisLab, a framework for biomedical image processing. This solution enables even novice users to generate the model data files without requiring programming skills and without the need for an intensive training by simply using it as a conversion tool. Advanced users can benefit from the full capability of MeVisLab to generate and export the model data as part of an overall processing chain. Although MeVisLab is primarily designed for handling biomedical image data, the new module is not restricted to this domain. It can be used for all scientific disciplines. PMID:25780759

  14. Towards an easier creation of three-dimensional data for embedding into scholarly 3D PDF (Portable Document Format) files.

    PubMed

    Newe, Axel

    2015-01-01

    The Portable Document Format (PDF) allows for embedding three-dimensional (3D) models and is therefore particularly suitable to communicate respective data, especially as regards scholarly articles. The generation of the necessary model data, however, is still challenging, especially for inexperienced users. This prevents an unrestrained proliferation of 3D PDF usage in scholarly communication. This article introduces a new solution for the creation of three of types of 3D geometry (point clouds, polylines and triangle meshes), that is based on MeVisLab, a framework for biomedical image processing. This solution enables even novice users to generate the model data files without requiring programming skills and without the need for an intensive training by simply using it as a conversion tool. Advanced users can benefit from the full capability of MeVisLab to generate and export the model data as part of an overall processing chain. Although MeVisLab is primarily designed for handling biomedical image data, the new module is not restricted to this domain. It can be used for all scientific disciplines.

  15. Specialized project in biophotonics

    NASA Astrophysics Data System (ADS)

    Garcia Martin, Agueda L.; Sastriques-Silva, Pedro O.; Martinez-Fundora, Julia N.; Augier Calderin, Angel G.; Lopez-Cepero, Xonia

    2000-06-01

    As science advances, it is more evident the necessity of a health interdisciplinary approach in Medicine. In the case of medical applications of light, the knowledge of the use of dispositives, equipment, diagnostic and treatment means, as well as the bases for the use of this update technologies is required. At the present moment, the outstanding work of specialized professionals of different profiles requires personnel with high professional formation in keeping with the latest trends in science and technology. The authors present here an Specialized Project in Biophotonics, with the aim of increasing the professional preparation of university graduates with an ample profile--physicists and engineers--who work in Biomedical Optics, thus contributing to the specialized formation of medic and paramedic personnel. The course is structured into six-subject-modules and into two phases. As to the basic professional formation, each one attending this course, will select between two variants of the Basic Formation Postgraduate Course: Anatomy and Physiology, Physical Bioenergetics, Clinic Bioenergetics; or Physics in Medicine, Optics and Applied Information Theory, depending on the student's professional profile. In the second phase, the General Formation Postgraduate Course: Biomedical Optics, Optical Bioenergetics and Laser in Medicine.

  16. Ceramide synthases in biomedical research.

    PubMed

    Cingolani, Francesca; Futerman, Anthony H; Casas, Josefina

    2016-05-01

    Sphingolipid metabolism consists of multiple metabolic pathways that converge upon ceramide, one of the key molecules among sphingolipids (SLs). In mammals, ceramide synthesis occurs via N-acylation of sphingoid backbones, dihydrosphingosine (dhSo) or sphingosine (So). The reaction is catalyzed by ceramide synthases (CerS), a family of enzymes with six different isoforms, with each one showing specificity towards a restricted group of acyl-CoAs, thus producing ceramides (Cer) and dihydroceramides (dhCer) with different fatty acid chain lengths. A large body of evidence documents the role of both So and dhSo as bioactive molecules, as well as the involvement of dhCer and Cer in physiological and pathological processes. In particular, the fatty acid composition of Cer has different effects in cell biology and in the onset and progression of different diseases. Therefore, modulation of CerS activity represents an attractive target in biomedical research and in finding new treatment modalities. In this review, we discuss functional, structural and biochemical features of CerS and examine CerS inhibitors that are currently available. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Coupling of transient near infrared photonic with magnetic nanoparticle for potential dissipation-free biomedical application in brain.

    PubMed

    Sagar, Vidya; Atluri, V S R; Tomitaka, A; Shah, P; Nagasetti, A; Pilakka-Kanthikeel, S; El-Hage, N; McGoron, A; Takemura, Y; Nair, M

    2016-07-28

    Combined treatment strategies based on magnetic nanoparticles (MNPs) with near infrared ray (NIR) biophotonic possess tremendous potential for non-invasive therapeutic approach. Nonetheless, investigations in this direction have been limited to peripheral body region and little is known about the potential biomedical application of this approach for brain. Here we report that transient NIR exposure is dissipation-free and has no adverse effect on the viability and plasticity of major brain cells in the presence or absence superparamagnetic nanoparticles. The 808 nm NIR laser module with thermocouple was employed for functional studies upon NIR exposure to brain cells. Magnetic nanoparticles were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic laser scattering (DLS), and vibrating sample magnetometer (VSM). Brain cells viability and plasticity were analyzed using electric cell-substrate impedance sensing system, cytotoxicity evaluation, and confocal microscopy. When efficacious non-invasive photobiomodulation and neuro-therapeutical targeting and monitoring to brain remain a formidable task, the discovery of this dissipation-free, transient NIR photonic approach for brain cells possesses remarkable potential to add new dimension.

  18. A gene catalogue of the Sprague-Dawley rat gut metagenome.

    PubMed

    Pan, Hudan; Guo, Ruijin; Zhu, Jie; Wang, Qi; Ju, Yanmei; Xie, Ying; Zheng, Yanfang; Wang, Zhifeng; Li, Ting; Liu, Zhongqiu; Lu, Linlin; Li, Fei; Tong, Bin; Xiao, Liang; Xu, Xun; Li, Runze; Yuan, Zhongwen; Yang, Huanming; Wang, Jian; Kristiansen, Karsten; Jia, Huijue; Liu, Liang

    2018-05-01

    Laboratory rats such as the Sprague-Dawley (SD) rats are an important model for biomedical studies in relation to human physiological or pathogenic processes. Here we report the first catalog of microbial genes in fecal samples from Sprague-Dawley rats. The catalog was established using 98 fecal samples from 49 SD rats, divided in 7 experimental groups, and collected at different time points 30 days apart. The established gene catalog comprises 5,130,167 non-redundant genes with an average length of 750 bp, among which 64.6% and 26.7% were annotated to phylum and genus levels, respectively. Functionally, 53.1%, 21.8%,and 31% of the genes could be annotated to KEGG orthologous groups, modules, and pathways, respectively. A comparison of rat gut metagenome catalogue with human or mouse revealed a higher pairwise overlap between rats and humans (2.47%) than between mice and humans (1.19%) at the gene level. Ninety-seven percent of the functional pathways in the human catalog were present in the rat catalogue, underscoring the potential use of rats for biomedical research.

  19. Coupling of transient near infrared photonic with magnetic nanoparticle for potential dissipation-free biomedical application in brain

    NASA Astrophysics Data System (ADS)

    Sagar, Vidya; Atluri, V. S. R.; Tomitaka, A.; Shah, P.; Nagasetti, A.; Pilakka-Kanthikeel, S.; El-Hage, N.; McGoron, A.; Takemura, Y.; Nair, M.

    2016-07-01

    Combined treatment strategies based on magnetic nanoparticles (MNPs) with near infrared ray (NIR) biophotonic possess tremendous potential for non-invasive therapeutic approach. Nonetheless, investigations in this direction have been limited to peripheral body region and little is known about the potential biomedical application of this approach for brain. Here we report that transient NIR exposure is dissipation-free and has no adverse effect on the viability and plasticity of major brain cells in the presence or absence superparamagnetic nanoparticles. The 808 nm NIR laser module with thermocouple was employed for functional studies upon NIR exposure to brain cells. Magnetic nanoparticles were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic laser scattering (DLS), and vibrating sample magnetometer (VSM). Brain cells viability and plasticity were analyzed using electric cell-substrate impedance sensing system, cytotoxicity evaluation, and confocal microscopy. When efficacious non-invasive photobiomodulation and neuro-therapeutical targeting and monitoring to brain remain a formidable task, the discovery of this dissipation-free, transient NIR photonic approach for brain cells possesses remarkable potential to add new dimension.

  20. Mesoporous Silica Nanoparticles-Encapsulated Agarose and Heparin as Anticoagulant and Resisting Bacterial Adhesion Coating for Biomedical Silicone.

    PubMed

    Wu, Fan; Xu, Tingting; Zhao, Guangyao; Meng, Shuangshuang; Wan, Mimi; Chi, Bo; Mao, Chun; Shen, Jian

    2017-05-30

    Silicone catheter has been widely used in peritoneal dialysis. The research missions of improving blood compatibility and the ability of resisting bacterial adhesion of silicone catheter have been implemented for the biomedical requirements. However, most of modification methods of surface modification were only able to develop the blood-contacting biomaterials with good hemocompatibility. It is difficult for the biomaterials to resist bacterial adhesion. Here, agarose was selected to resist bacterial adhesion, and heparin was chosen to improve hemocompatibility of materials. Both of them were loaded into mesoporous silica nanoparticles (MSNs), which were successfully modified on the silicone film surface via electrostatic interaction. Structures of the mesoporous coatings were characterized in detail by dynamic light scattering, transmission electron microscopy, Brunauer-Emmett-Teller surface area, thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscope, and water contact angle. Platelet adhesion and aggregation, whole blood contact test, hemolysis and related morphology test of red blood cells, in vitro clotting time tests, and bacterial adhesion assay were performed to evaluate the anticoagulant effect and the ability of resisting bacterial adhesion of the modified silicone films. Results indicated that silicone films modified by MSNs had a good anticoagulant effect and could resist bacterial adhesion. The modified silicone films have potential as blood-contacting biomaterials that were attributed to their biomedical properties.

  1. A simple microbial fuel cell model for improvement of biomedical device powering times.

    PubMed

    Roxby, Daniel N; Tran, Nham; Nguyen, Hung T

    2014-01-01

    This study describes a Matlab based Microbial Fuel Cell (MFC) model for a suspended microbial population, in the anode chamber for the use of the MFC in powering biomedical devices. The model contains three main sections including microbial growth, microbial chemical uptake and secretion and electrochemical modeling. The microbial growth portion is based on a Continuously Stirred Tank Reactor (CSTR) model for the microbial growth with substrate and electron acceptors. Microbial stoichiometry is used to determine chemical concentrations and their rates of change and transfer within the MFC. These parameters are then used in the electrochemical modeling for calculating current, voltage and power. The model was tested for typically exhibited MFC characteristics including increased electrode distances and surface areas, overpotentials and operating temperatures. Implantable biomedical devices require long term powering which is the main objective for MFCs. Towards this end, our model was tested with different initial substrate and electron acceptor concentrations, revealing a four-fold increase in concentrations decreased the power output time by 50%. Additionally, the model also predicts that for a 35.7% decrease in specific growth rate, a 50% increase in power longevity is possible.

  2. On the Mechanical Properties and Microstructure of Nitinol forBiomedical Stent Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Scott W.

    2006-01-01

    This dissertation was motivated by the alarming number of biomedical device failures reported in the literature, coupled with the growing trend towards the use of Nitinol for endovascular stents. The research is aimed at addressing two of the primary failure modes in Nitinol endovascular stents: fatigue-crack growth and overload fracture. The small dimensions of stents, coupled with their complex geometries and variability among manufacturers, make it virtually impossible to determine generic material constants associated with specific devices. Instead, the research utilizes a hybrid of standard test techniques (fracture mechanics and x-ray micro-diffraction) and custom-designed testing apparatus for the determination ofmore » the fracture properties of specimens that are suitable representations of self-expanding Nitinol stents. Specifically, the role of texture (crystallographic alignment of atoms) and the austenite-to-martensite phase transformation on the propagation of cracks in Nitinol was evaluated under simulated body conditions and over a multitude of stresses and strains. The results determined through this research were then used to create conservative safe operating and inspection criteria to be used by the biomedical community for the determination of specific device vulnerability to failure by fracture and/or fatigue.« less

  3. Hotspot Endurance Of Solar-Cell Modules

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Sugimura, R. S.; Ross, R. G., Jr.

    1989-01-01

    Procedure for evaluating modules for use with concentrators now available. Solar simulator illuminates photovoltaic cells through Fresnel lens of concentrator module. Module and test cells inspected visually at 24-h intervals during test and again when test completed. After test, electrical characteristics of module measured for comparison with pretest characteristics.

  4. Amelogenin test: From forensics to quality control in clinical and biochemical genomics.

    PubMed

    Francès, F; Portolés, O; González, J I; Coltell, O; Verdú, F; Castelló, A; Corella, D

    2007-01-01

    The increasing number of samples from the biomedical genetic studies and the number of centers participating in the same involves increasing risk of mistakes in the different sample handling stages. We have evaluated the usefulness of the amelogenin test for quality control in sample identification. Amelogenin test (frequently used in forensics) was undertaken on 1224 individuals participating in a biomedical study. Concordance between referred sex in the database and amelogenin test was estimated. Additional sex-error genetic detecting systems were developed. The overall concordance rate was 99.84% (1222/1224). Two samples showed a female amelogenin test outcome, being codified as males in the database. The first, after checking sex-specific biochemical and clinical profile data was found to be due to a codification error in the database. In the second, after checking the database, no apparent error was discovered because a correct male profile was found. False negatives in amelogenin male sex determination were discarded by additional tests, and feminine sex was confirmed. A sample labeling error was revealed after a new DNA extraction. The amelogenin test is a useful quality control tool for detecting sex-identification errors in large genomic studies, and can contribute to increase its validity.

  5. Amorphous-silicon module hot-spot testing

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.

    1985-01-01

    Hot spot heating occurs when cell short-circuit current is lower than string operating current. Amorphous cell hot spot are tested to develop the techniques required for performing reverse bias testing of amorphous cells. Also, to quantify the response of amorphous cells to reverse biasing. Guidelines are developed from testing for reducing hot spot susceptibility of amorphous modules and to develop a qualification test for hot spot testing of amorphous modules. It is concluded that amorphous cells undergo hot spot heating similarly to crystalline cells. Comparison of results obtained with submodules versus actual modules indicate heating levels lower in actual modules. Module design must address hot spot testing and hot spot qualification test conducted on modules showed no instabilities and minor cell erosion.

  6. Responsive nanoporous metals: recoverable modulations on strength and shape by watering

    NASA Astrophysics Data System (ADS)

    Ye, Xing-Long; Liu, Ling-Zhi; Jin, Hai-Jun

    2016-08-01

    Many biological materials can readily modulate their mechanical properties and shape by interacting with water in the surrounding environment, which is essential to their high performance in application. In contrast, typical inorganic materials (such as the metals) cannot change their strength and shape without involving thermal/mechanical treatments. By introducing nano-scale porous structure and exploiting a simple physical concept—the water-capillarity in nanopores, here we report that a ‘dead’ metal can be transformed into a ‘smart’ material with water-responsive properties. We demonstrate that the apparent strength, volume and shape of nanoporous Au and Au(Pt) can be modulated in situ, dramatically and recoverably, in response to water-dipping and partial-drying. The amplitude of strength-modulation reaches 20 MPa, which is nearly 50% of the yield strength at initial state. This approach also leads to reversible length change up to 1.3% in nanoporous Au and a large reversible bending motion of a bi-layer strip with tip displacement of ˜20 mm, which may be used for actuation. This method is simple and effective, occurring in situ under ambient conditions and requiring no external power, analogous to biological materials. The findings may open up novel applications in many areas such as micro-robotics and bio-medical devices.

  7. NASA Tech Briefs, September 2000. Volume 24, No. 9

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics include: Sensors; Test and Measurement; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Bio-Medical; semiconductors/ICs; Books and Reports.

  8. Biostatistics primer: part I.

    PubMed

    Overholser, Brian R; Sowinski, Kevin M

    2007-12-01

    Biostatistics is the application of statistics to biologic data. The field of statistics can be broken down into 2 fundamental parts: descriptive and inferential. Descriptive statistics are commonly used to categorize, display, and summarize data. Inferential statistics can be used to make predictions based on a sample obtained from a population or some large body of information. It is these inferences that are used to test specific research hypotheses. This 2-part review will outline important features of descriptive and inferential statistics as they apply to commonly conducted research studies in the biomedical literature. Part 1 in this issue will discuss fundamental topics of statistics and data analysis. Additionally, some of the most commonly used statistical tests found in the biomedical literature will be reviewed in Part 2 in the February 2008 issue.

  9. Lipopolysaccharide inhibits or accelerates biomedical titanium corrosion depending on environmental acidity

    PubMed Central

    Yu, Fei; Addison, Owen; Baker, Stephen J; Davenport, Alison J

    2015-01-01

    Titanium and its alloys are routinely used as biomedical implants and are usually considered to be corrosion resistant under physiological conditions. However, during inflammation, chemical modifications of the peri-implant environment including acidification occur. In addition certain biomolecules including lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls and driver of inflammation have been shown to interact strongly with Ti and modify its corrosion resistance. Gram-negative microbes are abundant in biofilms which form on dental implants. The objective was to investigate the influence of LPS on the corrosion properties of relevant biomedical Ti substrates as a function of environmental acidity. Inductively coupled plasma mass spectrometry was used to quantify Ti dissolution following immersion testing in physiological saline for three common biomedical grades of Ti (ASTM Grade 2, Grade 4 and Grade 5). Complementary electrochemical tests including anodic and cathodic polarisation experiments and potentiostatic measurements were also conducted. All three Ti alloys were observed to behave similarly and ion release was sensitive to pH of the immersion solution. However, LPS significantly inhibited Ti release under the most acidic conditions (pH 2), which may develop in localized corrosion sites, but promoted dissolution at pH 4–7, which would be more commonly encountered physiologically. The observed pattern of sensitivity to environmental acidity of the effect of LPS on Ti corrosion has not previously been reported. LPS is found extensively on the surfaces of skin and mucosal penetrating Ti implants and the findings are therefore relevant when considering the chemical stability of Ti implant surfaces in vivo. PMID:25634122

  10. Porous silicon advances in drug delivery and immunotherapy

    PubMed Central

    Savage, D; Liu, X; Curley, S; Ferrari, M; Serda, RE

    2013-01-01

    Biomedical applications of porous silicon include drug delivery, imaging, diagnostics and immunotherapy. This review summarizes new silicon particle fabrication techniques, dynamics of cellular transport, advances in the multistage vector approach to drug delivery, and the use of porous silicon as immune adjuvants. Recent findings support superior therapeutic efficacy of the multistage vector approach over single particle drug delivery systems in mouse models of ovarian and breast cancer. With respect to vaccine development, multivalent presentation of pathogen-associated molecular patterns on the particle surface creates powerful platforms for immunotherapy, with the porous matrix able to carry both antigens and immune modulators. PMID:23845260

  11. Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Meng, Long; Cai, Feiyan; Chen, Juanjuan; Niu, Lili; Li, Yanming; Wu, Junru; Zheng, Hairong

    2012-04-01

    A microfluidic device is developed to transport microbubbles (MBs) along a desired trajectory in fluid by introducing the phase-shift to a planar standing surface acoustic wave (SSAW). The radiation force of SSAW due to the acoustic pressure gradient modulated by a phase-shift can move MBs to anticipated potential wells in a programmable manner. The resolution of the transportation is approximately 2.2 µm and the estimated radiation force on the MBs is on the order of 10-9 N. This device can be used for manipulation of bioparticles, cell sorting, tissue engineering, and other biomedical applications.

  12. Coherent inductive communications link for biomedical applications

    NASA Technical Reports Server (NTRS)

    Hogrefe, Arthur F. (Inventor); Radford, Wade E. (Inventor)

    1985-01-01

    A two-way coherent inductive communications link between an external transceiver and an internal transceiver located in a biologically implanted programmable medical device. Digitally formatted command data and programming data is transmitted to the implanted medical device by frequency shift keying the inductive communications link. Internal transceiver is powered by the inductive field between internal and external transceivers. Digitally formatted data is transmitted to external transceiver by internal transceiver amplitude modulating inductive field. Immediate verification of the establishment of a reliable communications link is provided by determining existence of frequency lock and bit phase lock between internal and external transceivers.

  13. Astronauts Gemar and Allen work with lower body negative pressure experiment

    NASA Image and Video Library

    1994-03-05

    STS062-07-010 (4-18 March 1994) --- Astronaut Andrew M. Allen, pilot, participates in biomedical testing as he does a "soak" in the Lower Body Negative Pressure (LBNP) apparatus on the Columbia's middeck. Astronaut Charles D. (Sam) Gemar, mission specialist, monitors readouts from the test.

  14. Harnessing supramolecular peptide nanotechnology in biomedical applications.

    PubMed

    Chan, Kiat Hwa; Lee, Wei Hao; Zhuo, Shuangmu; Ni, Ming

    2017-01-01

    The harnessing of peptides in biomedical applications is a recent hot topic. This arises mainly from the general biocompatibility of peptides, as well as from the ease of tunability of peptide structure to engineer desired properties. The ease of progression from laboratory testing to clinical trials is evident from the plethora of examples available. In this review, we compare and contrast how three distinct self-assembled peptide nanostructures possess different functions. We have 1) nanofibrils in biomaterials that can interact with cells, 2) nanoparticles that can traverse the bloodstream to deliver its payload and also be bioimaged, and 3) nanotubes that can serve as cross-membrane conduits and as a template for nanowire formation. Through this review, we aim to illustrate how various peptides, in their various self-assembled nanostructures, possess great promise in a wide range of biomedical applications and what more can be expected.

  15. Micro Electromechanical Systems (MEMS) Based Microfluidic Devices for Biomedical Applications

    PubMed Central

    Ashraf, Muhammad Waseem; Tayyaba, Shahzadi; Afzulpurkar, Nitin

    2011-01-01

    Micro Electromechanical Systems (MEMS) based microfluidic devices have gained popularity in biomedicine field over the last few years. In this paper, a comprehensive overview of microfluidic devices such as micropumps and microneedles has been presented for biomedical applications. The aim of this paper is to present the major features and issues related to micropumps and microneedles, e.g., working principles, actuation methods, fabrication techniques, construction, performance parameters, failure analysis, testing, safety issues, applications, commercialization issues and future prospects. Based on the actuation mechanisms, the micropumps are classified into two main types, i.e., mechanical and non-mechanical micropumps. Microneedles can be categorized according to their structure, fabrication process, material, overall shape, tip shape, size, array density and application. The presented literature review on micropumps and microneedles will provide comprehensive information for researchers working on design and development of microfluidic devices for biomedical applications. PMID:21747700

  16. M-HELP: a miniaturized total health examination system launched on a mobile phone platform.

    PubMed

    Yu, Yang; Li, Jingjing; Liu, Jing

    2013-11-01

    A timely health examination is of great significance for incipient disease detection and prevention. However, conventional examinations generally rely heavily on bulky and expensive instrumentation, which is not easily available. To address technical barriers, an innovative, highly miniaturized, and integrated health examination system-Mobile Health Examination Launched on the Phone (M-HELP)-was developed. Based on the design of a multifunctional Android® (Google, Mountain View, CA) application and the development of different wireless biomedical sensor modules, a mobile phone was incorporated into a central terminal for personal health examination. More than 12 parameters, including electrocardiogram, heart sound, and eye test, as well as others, covered the majority of the crucial parameters in a total health examination and have been successfully established and incorporated into the system. Unlike the conventional examination, the M-HELP system could generate electronic health records and send them to physicians via e-mails or multimedia messages. This significantly simplifies the general health examination with much lower cost and fewer temporal and spatial restrictions. For proof of concept, a bench-scale test recruiting 11 volunteer subjects showed that the average time spent on a total health examination with M-HELP system was about 28 min. This article clarifies the basic concept of a total health examination on the platform of a mobile phone, demonstrates the basic features of the M-HELP system with group tests, and suggests the practical future application of the new system and the scientific issues thus raised.

  17. Injectable Chitosan/β-Glycerophosphate System for Sustained Release: Gelation Study, Structural Investigation, and Erosion Tests.

    PubMed

    Dalmoro, Annalisa; Abrami, Michela; Galzerano, Barbara; Bochicchio, Sabrina; Barba, Anna Angela; Grassi, Mario; Larobina, Domenico

    2017-01-01

    Hydrogels can constitute reliable delivery systems of drugs, including those based on nucleic acids (NABDs) such as small interfering ribonucleic acid (siRNA). Their nature, structure, and response to physiological or external stimuli strongly influence the delivery mechanisms of entrapped active molecules, and, in turn, their possible uses in pharmacological and biomedical applications. In this study, a thermo-gelling chitosan/β-glycero-phosphate system has been optimized in order to assess its use as injectable system able to: i) gelling at physiological pH and temperature, and ii) modulate the release of included active ingredients. To this aim, we first analyzed the effect of acetic acid concentration on the gelation temperature. We then found the "optimized composition", namely, the one in which the Tgel is equal to the physiological temperature. The resulting gel was tested, by low field nuclear magnetic resonance (LF-NMR), to evaluate its average mesh-size, which can affect release kinetics of loaded drug. Finally, films of gelled chitosan, loaded with a model drug, have been tested in vitro to monitor their characteristic times, i.e. diffusion and erosion time, when they are exposed to a medium mimicking a physiological environment (buffer solution at pH 7.4). Results display that the optimized system is deemed to be an ideal candidate as injectable gelling material for a sustained release. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Putting Oncology Patients at Risk

    PubMed Central

    CARLSON, BOB

    2012-01-01

    Using genomic tests to personalize oncology treatment is a worthy endeavor. But when the rush to capitalize on biomedical research overcomes the rules of evidence, it’s the patients who suffer. PMID:23091430

  19. Improving validity of informed consent for biomedical research in Zambia using a laboratory exposure intervention.

    PubMed

    Zulu, Joseph Mumba; Lisulo, Mpala Mwanza; Besa, Ellen; Kaonga, Patrick; Chisenga, Caroline C; Chomba, Mumba; Simuyandi, Michelo; Banda, Rosemary; Kelly, Paul

    2014-01-01

    Complex biomedical research can lead to disquiet in communities with limited exposure to scientific discussions, leading to rumours or to high drop-out rates. We set out to test an intervention designed to address apprehensions commonly encountered in a community where literacy is uncommon, and where complex biomedical research has been conducted for over a decade. We aimed to determine if it could improve the validity of consent. Data were collected using focus group discussions, key informant interviews and observations. We designed an intervention that exposed participants to a detailed demonstration of laboratory processes. Each group was interviewed twice in a day, before and after exposure to the intervention in order to assess changes in their views. Factors that motivated people to participate in invasive biomedical research included a desire to stay healthy because of the screening during the recruitment process, regular advice from doctors, free medical services, and trust in the researchers. Inhibiting factors were limited knowledge about samples taken from their bodies during endoscopic procedures, the impact of endoscopy on the function of internal organs, and concerns about the use of biomedical samples. The belief that blood can be used for Satanic practices also created insecurities about drawing of blood samples. Further inhibiting factors included a fear of being labelled as HIV positive if known to consult heath workers repeatedly, and gender inequality. Concerns about the use and storage of blood and tissue samples were overcome by a laboratory exposure intervention. Selecting a group of members from target community and engaging them in a laboratory exposure intervention could be a useful tool for enhancing specific aspects of consent for biomedical research. Further work is needed to determine the extent to which improved understanding permeates beyond the immediate group participating in the intervention.

  20. The Past, Present, and Future of HIV Prevention: Integrating Behavioral, Biomedical, and Structural Intervention Strategies for the Next Generation of HIV Prevention

    PubMed Central

    Rotheram-Borus, Mary Jane; Swendeman, Dallas; Chovnick, Gary

    2010-01-01

    In the past 25 years, the field of HIV prevention research has been transformed repeatedly. Today, effective HIV prevention requires a combination of behavioral, biomedical, and structural intervention strategies. Risk of transmitting or acquiring HIV is reduced by consistent male and female-condom use, reductions in concurrent and/or sequential sexual and needle-sharing partners, male circumcision, and treatment with antiretroviral medications. At least 144 behavioral prevention programs have been found effective in reducing HIV transmission acts; however, scale up of these programs has not occurred outside of the United States. A series of recent failures of HIV-prevention efficacy trials for biomedical innovations such as HIV vaccines, treating herpes simplex 2 and other sexually transmitted infections, and diaphragm and microbicide barriers highlights the need for behavioral strategies to accompany biomedical strategies. This challenges prevention researchers to reconceptualize how cost-effective, useful, realistic, and sustainable prevention programs will be designed, delivered, tested, and diffused. The next generation of HIV prevention science must draw from the successes of existing evidence-based interventions and the expertise of the market sector to integrate preventive innovations and behaviors into everyday routines. PMID:19327028

  1. OpenCL based machine learning labeling of biomedical datasets

    NASA Astrophysics Data System (ADS)

    Amoros, Oscar; Escalera, Sergio; Puig, Anna

    2011-03-01

    In this paper, we propose a two-stage labeling method of large biomedical datasets through a parallel approach in a single GPU. Diagnostic methods, structures volume measurements, and visualization systems are of major importance for surgery planning, intra-operative imaging and image-guided surgery. In all cases, to provide an automatic and interactive method to label or to tag different structures contained into input data becomes imperative. Several approaches to label or segment biomedical datasets has been proposed to discriminate different anatomical structures in an output tagged dataset. Among existing methods, supervised learning methods for segmentation have been devised to easily analyze biomedical datasets by a non-expert user. However, they still have some problems concerning practical application, such as slow learning and testing speeds. In addition, recent technological developments have led to widespread availability of multi-core CPUs and GPUs, as well as new software languages, such as NVIDIA's CUDA and OpenCL, allowing to apply parallel programming paradigms in conventional personal computers. Adaboost classifier is one of the most widely applied methods for labeling in the Machine Learning community. In a first stage, Adaboost trains a binary classifier from a set of pre-labeled samples described by a set of features. This binary classifier is defined as a weighted combination of weak classifiers. Each weak classifier is a simple decision function estimated on a single feature value. Then, at the testing stage, each weak classifier is independently applied on the features of a set of unlabeled samples. In this work, we propose an alternative representation of the Adaboost binary classifier. We use this proposed representation to define a new GPU-based parallelized Adaboost testing stage using OpenCL. We provide numerical experiments based on large available data sets and we compare our results to CPU-based strategies in terms of time and labeling speeds.

  2. Internet-Based HIV Prevention With At-Home Sexually Transmitted Infection Testing for Young Men Having Sex With Men: Study Protocol of a Randomized Controlled Trial of Keep It Up! 2.0

    PubMed Central

    Madkins, Krystal; Greene, George J; Parsons, Jeffrey T; Johnson, Brent A; Sullivan, Patrick; Bass, Michael; Abel, Rebekah

    2017-01-01

    Background Human immunodeficiency virus (HIV) infections are increasing among young men who have sex with men (YMSM), yet few HIV prevention programs have studied this population. Keep It Up! (KIU!), an online HIV prevention program tailored to diverse YMSM, was developed to fill this gap. The KIU! 2.0 randomized controlled trial (RCT) was launched to establish intervention efficacy. Objective The objective of the KIU! study is to advance scientific knowledge of technology-based behavioral HIV prevention, as well as improve public health by establishing the efficacy of an innovative electronic health (eHealth) prevention program for ethnically and racially diverse YMSM. The intervention is initiated upon receipt of a negative HIV test result, based on the theory that testing negative is a teachable moment for future prevention behaviors. Methods This is a two-group, active-control RCT of the online KIU! intervention. The intervention condition includes modules that use videos, animation, games, and interactive exercises to address HIV knowledge, motivation for safer behaviors, self-efficacy, and behavioral skills. The control condition reflects HIV information that is readily available on many websites, with the aim to understand how the KIU! intervention improves upon information that is currently available online. Follow-up assessments are administered at 3, 6, and 12 months for each arm. Testing for urethral and rectal sexually transmitted infections (STIs) is completed at baseline and at 12-month follow-up for all participants, and at 3- and 6-month follow-ups for participants who test positive at baseline. The primary behavioral outcome is unprotected anal sex at all follow-up points, and the primary biomedical outcome is incident STIs at 12-month follow-up. Results Consistent with study aims, the KIU! technology has been successfully integrated into a widely-used health technology platform. Baseline enrollment for the RCT was completed on December 30, 2015 (N=901), and assessment of intervention outcomes is ongoing at 3-, 6-, and 12-month time points. Upon collection of all data, and after the efficacy of the intervention has been evaluated, we will explore whether the KIU! intervention has differential efficacy across subgroups of YMSM based on ethnicity/race and relationship status. Conclusions Our approach is innovative in linking an eHealth solution to HIV and STI home testing, as well as serving as a model for integrating scalable behavioral prevention into other biomedical prevention strategies. Trial Registration Clinicaltrials.gov NCT01836445; https://clinicaltrials.gov/ct2/show/NCT01836445 (Archived by WebCite at http://www.webcitation.org/6myMFlxnC) PMID:28062389

  3. Authentication: A Standard Problem or a Problem of Standards?

    PubMed

    Capes-Davis, Amanda; Neve, Richard M

    2016-06-01

    Reproducibility and transparency in biomedical sciences have been called into question, and scientists have been found wanting as a result. Putting aside deliberate fraud, there is evidence that a major contributor to lack of reproducibility is insufficient quality assurance of reagents used in preclinical research. Cell lines are widely used in biomedical research to understand fundamental biological processes and disease states, yet most researchers do not perform a simple, affordable test to authenticate these key resources. Here, we provide a synopsis of the problems we face and how standards can contribute to an achievable solution.

  4. A miniaturized micro strip antenna based on sinusoidal patch geometry for implantable biomedical applications

    NASA Astrophysics Data System (ADS)

    Ibrahim, Omar A.; Elwi, Taha A.; Islam, Naz E.

    2012-11-01

    A miniaturized microstrip antenna is analyzed for implantable biomedical applications. The antenna is designed using two different commercial software packages, CST Microwave Studio and HFSS, to validate the results. The proposed design operates in the WMTS frequency band. The antenna performance is tested inside the human body, Hugo model. The antenna design is readjusted to get the desired resonant frequency. The resonant frequency, bandwidth, gain, and radiation pattern of the proposed antenna are provided in this paper. Furthermore, the effect of losses inside human body due to the fat layer is recognized.

  5. NASA Johnson Space Center Biomedical Research Resources

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.

    1999-01-01

    Johnson Space Center (JSC) medical sciences laboratories constitute a national resource for support of medical operations and life sciences research enabling a human presence in space. They play a critical role in evaluating, defining, and mitigation the untoward effect of human adaption to space flight. Over the years they have developed the unique facilities and expertise required to perform: biomedical sample analysis and physiological performance tests supporting medical evaluations of space flight crew members and scientific investigations of the operationally relevant medical, physiological, cellular, and biochemical issues associated with human space flight. A general overview of these laboratories is presented in viewgraph form.

  6. NASA Tech Briefs, February 2000. Volume 24, No. 2

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics covered include: Test and Measurement; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Bio-Medical; Mathematics and Information Sciences; Computers and Peripherals.

  7. NASA Tech Briefs, April 2000. Volume 24, No. 4

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics covered include: Imaging/Video/Display Technology; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Bio-Medical; Test and Measurement; Mathematics and Information Sciences; Books and Reports.

  8. Implementation and management of a biomedical observation dictionary in a large healthcare information system.

    PubMed

    Vandenbussche, Pierre-Yves; Cormont, Sylvie; André, Christophe; Daniel, Christel; Delahousse, Jean; Charlet, Jean; Lepage, Eric

    2013-01-01

    This study shows the evolution of a biomedical observation dictionary within the Assistance Publique Hôpitaux Paris (AP-HP), the largest European university hospital group. The different steps are detailed as follows: the dictionary creation, the mapping to logical observation identifier names and codes (LOINC), the integration into a multiterminological management platform and, finally, the implementation in the health information system. AP-HP decided to create a biomedical observation dictionary named AnaBio, to map it to LOINC and to maintain the mapping. A management platform based on methods used for knowledge engineering has been put in place. It aims at integrating AnaBio within the health information system and improving both the quality and stability of the dictionary. This new management platform is now active in AP-HP. The AnaBio dictionary is shared by 120 laboratories and currently includes 50 000 codes. The mapping implementation to LOINC reaches 40% of the AnaBio entries and uses 26% of LOINC records. The results of our work validate the choice made to develop a local dictionary aligned with LOINC. This work constitutes a first step towards a wider use of the platform. The next step will support the entire biomedical production chain, from the clinician prescription, through laboratory tests tracking in the laboratory information system to the communication of results and the use for decision support and biomedical research. In addition, the increase in the mapping implementation to LOINC ensures the interoperability allowing communication with other international health institutions.

  9. Tilting table for ergometer and for other biomedical devices

    NASA Technical Reports Server (NTRS)

    Gause, R. L.; Spier, R. A. (Inventor)

    1973-01-01

    The apparatus is for testing the human body in a variety of positions, ranging from the vertical to the supine, while exercising on an ergometer; and can also be used for angular positioning of other biomedical devices. It includes a floor plate and a hinged plate upon which to fix the ergometer, a back rest and a head rest attached at right angles to said hinged plate and behind the seat of the ergometer, dual hydraulic cylinders for raising and lowering the hinged plate through 90 deg by means of a self contained hydraulic system, with valve means for control and positive stops on the apparatus to prevent over travel. Tests can be made with the subject positioned on the seat of the ergometer, through the various angles, with a substantially normal body attitude relative to the seat and ergometer.

  10. BioSimplify: an open source sentence simplification engine to improve recall in automatic biomedical information extraction.

    PubMed

    Jonnalagadda, Siddhartha; Gonzalez, Graciela

    2010-11-13

    BioSimplify is an open source tool written in Java that introduces and facilitates the use of a novel model for sentence simplification tuned for automatic discourse analysis and information extraction (as opposed to sentence simplification for improving human readability). The model is based on a "shot-gun" approach that produces many different (simpler) versions of the original sentence by combining variants of its constituent elements. This tool is optimized for processing biomedical scientific literature such as the abstracts indexed in PubMed. We tested our tool on its impact to the task of PPI extraction and it improved the f-score of the PPI tool by around 7%, with an improvement in recall of around 20%. The BioSimplify tool and test corpus can be downloaded from https://biosimplify.sourceforge.net.

  11. Bioactive calcium phosphate-based glasses and ceramics and their biomedical applications: A review.

    PubMed

    Islam, Md Towhidul; Felfel, Reda M; Abou Neel, Ensanya A; Grant, David M; Ahmed, Ifty; Hossain, Kazi M Zakir

    2017-01-01

    An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented.

  12. Transcriptome dynamics along axolotl regenerative development are consistent with an extensive reduction in gene expression heterogeneity in dedifferentiated cells

    PubMed Central

    2017-01-01

    Although in recent years the study of gene expression variation in the absence of genetic or environmental cues or gene expression heterogeneity has intensified considerably, many basic and applied biological fields still remain unaware of how useful the study of gene expression heterogeneity patterns might be for the characterization of biological systems and/or processes. Largely based on the modulator effect chromatin compaction has for gene expression heterogeneity and the extensive changes in chromatin compaction known to occur for specialized cells that are naturally or artificially induced to revert to less specialized states or dedifferentiate, I recently hypothesized that processes that concur with cell dedifferentiation would show an extensive reduction in gene expression heterogeneity. The confirmation of the existence of such trend could be of wide interest because of the biomedical and biotechnological relevance of cell dedifferentiation-based processes, i.e., regenerative development, cancer, human induced pluripotent stem cells, or plant somatic embryogenesis. Here, I report the first empirical evidence consistent with the existence of an extensive reduction in gene expression heterogeneity for processes that concur with cell dedifferentiation by analyzing transcriptome dynamics along forearm regenerative development in Ambystoma mexicanum or axolotl. Also, I briefly discuss on the utility of the study of gene expression heterogeneity dynamics might have for the characterization of cell dedifferentiation-based processes, and the engineering of tools that afforded better monitoring and modulating such processes. Finally, I reflect on how a transitional reduction in gene expression heterogeneity for dedifferentiated cells can promote a long-term increase in phenotypic heterogeneity following cell dedifferentiation with potential adverse effects for biomedical and biotechnological applications. PMID:29134148

  13. Desegregating undergraduate mathematics and biology--interdisciplinary instruction with emphasis on ongoing biomedical research.

    PubMed

    Robeva, Raina

    2009-01-01

    The remarkable advances in the field of biology in the last decade, specifically in the areas of biochemistry, genetics, genomics, proteomics, and systems biology, have demonstrated how critically important mathematical models and methods are in addressing questions of vital importance for these disciplines. There is little doubt that the need for utilizing and developing mathematical methods for biology research will only grow in the future. The rapidly increasing demand for scientists with appropriate interdisciplinary skills and knowledge, however, is not being reflected in the way undergraduate mathematics and biology courses are structured and taught in most colleges and universities nationwide. While a number of institutions have stepped forward and addressed this need by creating and offering interdisciplinary courses at the juncture of mathematics and biology, there are still many others at which there is little, if any, interdisciplinary interaction between the curricula. This chapter describes an interdisciplinary course and a textbook in mathematical biology developed collaboratively by faculty from Sweet Briar College and the University of Virginia School of Medicine. The course and textbook are designed to provide a bridge between the mathematical and biological sciences at the lower undergraduate level. The course is developed for and is being taught in a liberal arts setting at Sweet Briar College, Virginia, but some of the advanced modules are used in a course at the University of Virginia for advanced undergraduate and beginning graduate students. The individual modules are relatively independent and can be used as stand-alone projects in conventional mathematics and biology courses. Except for the introductory material, the course and textbook topics are based on current biomedical research.

  14. Assessing the impact of case sensitivity and term information gain on biomedical concept recognition.

    PubMed

    Groza, Tudor; Verspoor, Karin

    2015-01-01

    Concept recognition (CR) is a foundational task in the biomedical domain. It supports the important process of transforming unstructured resources into structured knowledge. To date, several CR approaches have been proposed, most of which focus on a particular set of biomedical ontologies. Their underlying mechanisms vary from shallow natural language processing and dictionary lookup to specialized machine learning modules. However, no prior approach considers the case sensitivity characteristics and the term distribution of the underlying ontology on the CR process. This article proposes a framework that models the CR process as an information retrieval task in which both case sensitivity and the information gain associated with tokens in lexical representations (e.g., term labels, synonyms) are central components of a strategy for generating term variants. The case sensitivity of a given ontology is assessed based on the distribution of so-called case sensitive tokens in its terms, while information gain is modelled using a combination of divergence from randomness and mutual information. An extensive evaluation has been carried out using the CRAFT corpus. Experimental results show that case sensitivity awareness leads to an increase of up to 0.07 F1 against a non-case sensitive baseline on the Protein Ontology and GO Cellular Component. Similarly, the use of information gain leads to an increase of up to 0.06 F1 against a standard baseline in the case of GO Biological Process and Molecular Function and GO Cellular Component. Overall, subject to the underlying token distribution, these methods lead to valid complementary strategies for augmenting term label sets to improve concept recognition.

  15. Experiment for validation of fluid-structure interaction models and algorithms.

    PubMed

    Hessenthaler, A; Gaddum, N R; Holub, O; Sinkus, R; Röhrle, O; Nordsletten, D

    2017-09-01

    In this paper a fluid-structure interaction (FSI) experiment is presented. The aim of this experiment is to provide a challenging yet easy-to-setup FSI test case that addresses the need for rigorous testing of FSI algorithms and modeling frameworks. Steady-state and periodic steady-state test cases with constant and periodic inflow were established. Focus of the experiment is on biomedical engineering applications with flow being in the laminar regime with Reynolds numbers 1283 and 651. Flow and solid domains were defined using computer-aided design (CAD) tools. The experimental design aimed at providing a straightforward boundary condition definition. Material parameters and mechanical response of a moderately viscous Newtonian fluid and a nonlinear incompressible solid were experimentally determined. A comprehensive data set was acquired by using magnetic resonance imaging to record the interaction between the fluid and the solid, quantifying flow and solid motion. Copyright © 2016 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.

  16. Usability-driven pruning of large ontologies: the case of SNOMED CT

    PubMed Central

    Boeker, Martin; Illarramendi, Arantza; Schulz, Stefan

    2012-01-01

    Objectives To study ontology modularization techniques when applied to SNOMED CT in a scenario in which no previous corpus of information exists and to examine if frequency-based filtering using MEDLINE can reduce subset size without discarding relevant concepts. Materials and Methods Subsets were first extracted using four graph-traversal heuristics and one logic-based technique, and were subsequently filtered with frequency information from MEDLINE. Twenty manually coded discharge summaries from cardiology patients were used as signatures and test sets. The coverage, size, and precision of extracted subsets were measured. Results Graph-traversal heuristics provided high coverage (71–96% of terms in the test sets of discharge summaries) at the expense of subset size (17–51% of the size of SNOMED CT). Pre-computed subsets and logic-based techniques extracted small subsets (1%), but coverage was limited (24–55%). Filtering reduced the size of large subsets to 10% while still providing 80% coverage. Discussion Extracting subsets to annotate discharge summaries is challenging when no previous corpus exists. Ontology modularization provides valuable techniques, but the resulting modules grow as signatures spread across subhierarchies, yielding a very low precision. Conclusion Graph-traversal strategies and frequency data from an authoritative source can prune large biomedical ontologies and produce useful subsets that still exhibit acceptable coverage. However, a clinical corpus closer to the specific use case is preferred when available. PMID:22268217

  17. Design, fabrication and test of block 4 design solar cell modules. Part 2: Residential module

    NASA Technical Reports Server (NTRS)

    Jester, T. L.

    1982-01-01

    Design, fabrication and test of the Block IV residential load module are reported. Design changes from the proposed module design through three iterations to the discontinuance of testing are outlined.

  18. Biomedical engineering support. Final report, June 15, 1971--June 30, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolff, W.J.; Sandquist, G.; Olsen, D.B.

    On June 15, 1971 the Institute for Biomedical Engineering at the University of Utah contracted with the USAEC to provide biomedical support for an Artificial Heart Program. The goal of the program was to conceive, design, construct and test a prototype artificial heart system powered by an implantable radioisotope heat source. The system would serve as a total artificial heart for animal experiments and for studies directed at developing a total heart replacement system for humans. The major responsibilities of the Institute during the eight year contract period were to design, construct and test all blood handling components of themore » system and prove in vivo accommodation, performance and adequacy of the system in experimental animals. Upon completion of development of the Implantable Version of the Bench Model Blood Pump, a long series of comprehensive in vitro and in vivo experiments were conducted. In vivo experiments with the system conducted in calves demonstrated the general accommodation, adequate performance and good capacity to sustain the calf as a heart model for up to 36 days. During the more successful in vivo experiments the implanted calves were able to eat, drink, stand, exercise on a treadmill, and exhibited normal blood chemistry and pulmonary function.« less

  19. Design and development of low cost polyurethane biopolymer based on castor oil and glycerol for biomedical applications

    PubMed Central

    Tan, A. C. W.; Polo‐Cambronell, B. J.; Provaggi, E.; Ardila‐Suárez, C.; Ramirez‐Caballero, G. E.; Baldovino‐Medrano, V. G.

    2017-01-01

    Abstract In the current study, we present the synthesis of novel low cost bio‐polyurethane compositions with variable mechanical properties based on castor oil and glycerol for biomedical applications. A detailed investigation of the physicochemical properties of the polymer was carried out by using mechanical testing, ATR‐FTIR, and X‐ray photoelectron spectroscopy (XPS). Polymers were also tested in short term in‐vitro cell culture with human mesenchymal stem cells to evaluate their biocompatibility for potential applications as biomaterial. FTIR analysis confirmed the synthesis of castor oil and glycerol based PU polymers. FTIR also showed that the addition of glycerol as co‐polyol increases crosslinking within the polymer backbone hence enhancing the bulk mechanical properties of the polymer. XPS data showed that glycerol incorporation leads to an enrichment of oxidized organic species on the surface of the polymers. Preliminary investigation into in vitro biocompatibility showed that serum protein adsorption can be controlled by varying the glycerol content with polymer backbone. An alamar blue assay looking at the metabolic activity of the cells indicated that castor oil based PU and its variants containing glycerol are non‐toxic to the cells. This study opens an avenue for using low cost bio‐polyurethane based on castor oil and glycerol for biomedical applications. PMID:29159831

  20. Micro-abrasion-corrosion behaviour of a biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in simulated physiological fluid.

    PubMed

    Wang, Zhenguo; Li, Yan; Huang, Weijiu; Chen, Xiaoli; He, Haoran

    2016-10-01

    The micro-abrasion-corrosion behaviour of the biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in Hank׳s solution with protein has been investigated using electrochemical measurements, tribological tests and scanning electron microscope (SEM) observations. The potentiodynamic polarization tests showed that the corrosion potential (Ecorr) exhibits the maximum value at the abrasive concentration of 0.05gcm(-3) despite of the load level. The tribological results indicated that the total material loss of the Ti-25Nb-3Mo-3Zr-2Sn alloy during micro-abrasion increased with the increasing abrasive concentration at a certain applied load. When the abrasive concentration is no more than 0.15gcm(-3), the total material loss increases with increasing load, while the total material loss exhibits the maximum value at a moderate load in case of higher abrasive concentration levels. This was ascribed to the three-body or two-body micro-abrasion-corrosion at different abrasive concentration levels. The wastage map, abrasion mode map and synergy map associated with the applied load and the abrasive concentration were constructed to evaluate the micro-abrasion-corrosion behaviour of the Ti-25Nb-3Mo-3Zr-2Sn alloy in potential biomedical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Reversible Gating of Plasmonic Coupling for Optical Signal Amplification.

    PubMed

    Khoury, Christopher G; Fales, Andrew M; Vo-Dinh, Tuan

    2016-07-20

    Amplification of optical signals is useful for a wide variety of applications, ranging from data signal transmission to chemical sensing and biomedical diagnostics. One such application in chemical sensing is surface-enhanced Raman scattering (SERS), an important technique for increasing the Raman signal using the plasmonic effect of enhanced electromagnetic fields associated with metallic nanostructures. One of the most important limitations of SERS-based amplification is the difficulty to reproducibly control the SERS signal. Here, we describe the design and implementation of a unique hybrid system capable of producing reversible gating of plasmonic coupling for Raman signal amplification. The hybrid system is composed of two subsystems: (1) colloidal magneto-plasmonic nanoparticles for SERS enhancement and (2) a micromagnet substrate with an externally applied magnetic field to modulate the colloidal nanoparticles. For this proof of concept demonstration, the nanoparticles were labeled with a Raman-active dye, and it was shown that the detected SERS signal could be reproducibly modulated by controlling the externally applied magnetic field. The developed system provides a simple, robust, inexpensive, and reusable device for SERS signal modulation. These properties will open up new possibilities for optical signal amplification and gating as well for high-throughput, reproducible SERS detection.

  2. Physiologic and anti-G suit performance data from YF-16 flight tests

    NASA Technical Reports Server (NTRS)

    Gillingham, K. K.; Winter, W. R.

    1976-01-01

    Biomedical data were collected during high-G portions of 11 YF-16 test flights. Test pilots monitored revealed increased respiratory rate and volume, decreased tidal volume, and increased heart rate at higher G levels, with one pilot exhibiting various cardiac arrhythmias. Anti-G suit inflation and pressurization lags varied inversely with G-onset rate, and suit pressurization slope was near the design value.

  3. A single-cell correlative nanoelectromechanosensing approach to detect cancerous transformation: monitoring the function of F-actin microfilaments in the modulation of the ion channel activity

    NASA Astrophysics Data System (ADS)

    AbdolahadThe Authors With Same Contributions., Mohammad; Saeidi, Ali; Janmaleki, Mohsen; Mashinchian, Omid; Taghinejad, Mohammad; Taghinejad, Hossein; Azimi, Soheil; Mahmoudi, Morteza; Mohajerzadeh, Shams

    2015-01-01

    Cancerous transformation may be dependent on correlation between electrical disruptions in the cell membrane and mechanical disruptions of cytoskeleton structures. Silicon nanotube (SiNT)-based electrical probes, as ultra-accurate signal recorders with subcellular resolution, may create many opportunities for fundamental biological research and biomedical applications. Here, we used this technology to electrically monitor cellular mechanosensing. The SiNT probe was combined with an electrically activated glass micropipette aspiration system to achieve a new cancer diagnostic technique that is based on real-time correlation between mechanical and electrical behaviour of single cells. Our studies demonstrated marked changes in the electrical response following increases in the mechanical aspiration force in healthy cells. In contrast, such responses were extremely weak for malignant cells. Confocal microscopy results showed the impact of actin microfilament remodelling on the reduction of the electrical response for aspirated cancer cells due to the significant role of actin in modulating the ion channel activity in the cell membrane.Cancerous transformation may be dependent on correlation between electrical disruptions in the cell membrane and mechanical disruptions of cytoskeleton structures. Silicon nanotube (SiNT)-based electrical probes, as ultra-accurate signal recorders with subcellular resolution, may create many opportunities for fundamental biological research and biomedical applications. Here, we used this technology to electrically monitor cellular mechanosensing. The SiNT probe was combined with an electrically activated glass micropipette aspiration system to achieve a new cancer diagnostic technique that is based on real-time correlation between mechanical and electrical behaviour of single cells. Our studies demonstrated marked changes in the electrical response following increases in the mechanical aspiration force in healthy cells. In contrast, such responses were extremely weak for malignant cells. Confocal microscopy results showed the impact of actin microfilament remodelling on the reduction of the electrical response for aspirated cancer cells due to the significant role of actin in modulating the ion channel activity in the cell membrane. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06102k

  4. Study designs for identifying risk compensation behavior among users of biomedical HIV prevention technologies: balancing methodological rigor and research ethics.

    PubMed

    Underhill, Kristen

    2013-10-01

    The growing evidence base for biomedical HIV prevention interventions - such as oral pre-exposure prophylaxis, microbicides, male circumcision, treatment as prevention, and eventually prevention vaccines - has given rise to concerns about the ways in which users of these biomedical products may adjust their HIV risk behaviors based on the perception that they are prevented from infection. Known as risk compensation, this behavioral adjustment draws on the theory of "risk homeostasis," which has previously been applied to phenomena as diverse as Lyme disease vaccination, insurance mandates, and automobile safety. Little rigorous evidence exists to answer risk compensation concerns in the biomedical HIV prevention literature, in part because the field has not systematically evaluated the study designs available for testing these behaviors. The goals of this Commentary are to explain the origins of risk compensation behavior in risk homeostasis theory, to reframe risk compensation as a testable response to the perception of reduced risk, and to assess the methodological rigor and ethical justification of study designs aiming to isolate risk compensation responses. Although the most rigorous methodological designs for assessing risk compensation behavior may be unavailable due to ethical flaws, several strategies can help investigators identify potential risk compensation behavior during Phase II, Phase III, and Phase IV testing of new technologies. Where concerns arise regarding risk compensation behavior, empirical evidence about the incidence, types, and extent of these behavioral changes can illuminate opportunities to better support the users of new HIV prevention strategies. This Commentary concludes by suggesting a new way to conceptualize risk compensation behavior in the HIV prevention context. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Study designs for identifying risk compensation behavior among users of biomedical HIV prevention technologies: Balancing methodological rigor and research ethics

    PubMed Central

    Underhill, Kristen

    2014-01-01

    The growing evidence base for biomedical HIV prevention interventions – such as oral pre-exposure prophylaxis, microbicides, male circumcision, treatment as prevention, and eventually prevention vaccines – has given rise to concerns about the ways in which users of these biomedical products may adjust their HIV risk behaviors based on the perception that they are prevented from infection. Known as risk compensation, this behavioral adjustment draws on the theory of “risk homeostasis,” which has previously been applied to phenomena as diverse as Lyme disease vaccination, insurance mandates, and automobile safety. Little rigorous evidence exists to answer risk compensation concerns in the biomedical HIV prevention literature, in part because the field has not systematically evaluated the study designs available for testing these behaviors. The goals of this Commentary are to explain the origins of risk compensation behavior in risk homeostasis theory, to reframe risk compensation as a testable response to the perception of reduced risk, and to assess the methodological rigor and ethical justification of study designs aiming to isolate risk compensation responses. Although the most rigorous methodological designs for assessing risk compensation behavior may be unavailable due to ethical flaws, several strategies can help investigators identify potential risk compensation behavior during Phase II, Phase III, and Phase IV testing of new technologies. Where concerns arise regarding risk compensation behavior, empirical evidence about the incidence, types, and extent of these behavioral changes can illuminate opportunities to better support the users of new HIV prevention strategies. This Commentary concludes by suggesting a new way to conceptualize risk compensation behavior in the HIV prevention context. PMID:23597916

  6. Benefits attained from space flight in pre-clinical evaluation of candidate drugs

    NASA Astrophysics Data System (ADS)

    Stodieck, Louis S.; Bateman, Ted; Ayers, Reed; Ferguson, Virginia; Simske, Steve

    1998-01-01

    Modern medicine has made great strides in recent decades. The promises of biotechnology and advances in gene identification and manipulation offer tremendous potential for treatment of disease. However, developing new drug therapies by biotechnology and pharmaceutical companies is still a very costly and time consuming process. One of the important milestones in drug development is the successful completion of preclinical evaluation. During this phase, drug candidates must be shown to be safe, yet effective as a treatment of the target disease or disorder. Critical for preclinical testing is the availability of biomedical test models that adequately mimic the target disease. A good model will 1) allow confident prediction of a drug's effects before expensive clinical trials are begun, 2) provide convincing data for use in an FDA new drug application and 3) minimize the time required for testing. Space flight may offer a completely unique and new set of biomedical models for use in pharmaceutical testing. This paper highlights some examples of recent experiments done in space to test new compounds for Chiron, (Emmeryville, CA) and discusses the importance of the International Space Station to greatly expand such commercial opportunities.

  7. Apollo Soyuz Mission: 5-Day Report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Apollo Soyuz Test Project mission objectives and technical investigations are summarized. Topics discussed include: spacecraft and crew systems performance; joint flight activities; scientific and applications experiments; in-flight demonstrations; biomedical considerations; and mission support performance.

  8. Categorizing biomedicine images using novel image features and sparse coding representation

    PubMed Central

    2013-01-01

    Background Images embedded in biomedical publications carry rich information that often concisely summarize key hypotheses adopted, methods employed, or results obtained in a published study. Therefore, they offer valuable clues for understanding main content in a biomedical publication. Prior studies have pointed out the potential of mining images embedded in biomedical publications for automatically understanding and retrieving such images' associated source documents. Within the broad area of biomedical image processing, categorizing biomedical images is a fundamental step for building many advanced image analysis, retrieval, and mining applications. Similar to any automatic categorization effort, discriminative image features can provide the most crucial aid in the process. Method We observe that many images embedded in biomedical publications carry versatile annotation text. Based on the locations of and the spatial relationships between these text elements in an image, we thus propose some novel image features for image categorization purpose, which quantitatively characterize the spatial positions and distributions of text elements inside a biomedical image. We further adopt a sparse coding representation (SCR) based technique to categorize images embedded in biomedical publications by leveraging our newly proposed image features. Results we randomly selected 990 images of the JPG format for use in our experiments where 310 images were used as training samples and the rest were used as the testing cases. We first segmented 310 sample images following the our proposed procedure. This step produced a total of 1035 sub-images. We then manually labeled all these sub-images according to the two-level hierarchical image taxonomy proposed by [1]. Among our annotation results, 316 are microscopy images, 126 are gel electrophoresis images, 135 are line charts, 156 are bar charts, 52 are spot charts, 25 are tables, 70 are flow charts, and the remaining 155 images are of the type "others". A serial of experimental results are obtained. Firstly, each image categorizing results is presented, and next image categorizing performance indexes such as precision, recall, F-score, are all listed. Different features which include conventional image features and our proposed novel features indicate different categorizing performance, and the results are demonstrated. Thirdly, we conduct an accuracy comparison between support vector machine classification method and our proposed sparse representation classification method. At last, our proposed approach is compared with three peer classification method and experimental results verify our impressively improved performance. Conclusions Compared with conventional image features that do not exploit characteristics regarding text positions and distributions inside images embedded in biomedical publications, our proposed image features coupled with the SR based representation model exhibit superior performance for classifying biomedical images as demonstrated in our comparative benchmark study. PMID:24565470

  9. Green synthesis of bacterial mediated anti-proliferative gold nanoparticles: inducing mitotic arrest (G2/M phase) and apoptosis (intrinsic pathway)

    NASA Astrophysics Data System (ADS)

    Ganesh Kumar, C.; Poornachandra, Y.; Chandrasekhar, Cheemalamarri

    2015-11-01

    The physiochemical and biological properties of microbial derived gold nanoparticles have potential applications in various biomedical domains as well as in cancer therapy. We have fabricated anti-proliferative bacterial mediated gold nanoparticles (b-Au NPs) using a culture supernatant of Streptomyces clavuligerus and later characterized them by UV-visible, TEM, DLS, XRD and FT-IR spectroscopic techniques. The capping agent responsible for the nanoparticle formation was characterized based on SDS-PAGE and MALDI-TOF-MS analyses. They were tested for anticancer activity in A549, HeLa and DU145 cell lines. The biocompatibility and non-toxic nature of the nanoparticles were tested on normal human lung cell line (MRC-5). The b-Au NPs induced the cell cycle arrest in G2/M phase and also inhibited the microtubule assembly in DU145 cells. Mechanistic studies, such as ROS, MMP, Cyt-c, GSH, caspases 9, 8 and 3 activation and the Annexin V-FITC staining, along with the above parameters tested provided sufficient evidence that the b-Au NPs induced apoptosis through the intrinsic pathway. The results supported the use of b-Au NPs for future therapeutic application in cancer therapy and other biomedical applications.The physiochemical and biological properties of microbial derived gold nanoparticles have potential applications in various biomedical domains as well as in cancer therapy. We have fabricated anti-proliferative bacterial mediated gold nanoparticles (b-Au NPs) using a culture supernatant of Streptomyces clavuligerus and later characterized them by UV-visible, TEM, DLS, XRD and FT-IR spectroscopic techniques. The capping agent responsible for the nanoparticle formation was characterized based on SDS-PAGE and MALDI-TOF-MS analyses. They were tested for anticancer activity in A549, HeLa and DU145 cell lines. The biocompatibility and non-toxic nature of the nanoparticles were tested on normal human lung cell line (MRC-5). The b-Au NPs induced the cell cycle arrest in G2/M phase and also inhibited the microtubule assembly in DU145 cells. Mechanistic studies, such as ROS, MMP, Cyt-c, GSH, caspases 9, 8 and 3 activation and the Annexin V-FITC staining, along with the above parameters tested provided sufficient evidence that the b-Au NPs induced apoptosis through the intrinsic pathway. The results supported the use of b-Au NPs for future therapeutic application in cancer therapy and other biomedical applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04577k

  10. Are figure legends sufficient? Evaluating the contribution of associated text to biomedical figure comprehension.

    PubMed

    Yu, Hong; Agarwal, Shashank; Johnston, Mark; Cohen, Aaron

    2009-01-06

    Biomedical scientists need to access figures to validate research facts and to formulate or to test novel research hypotheses. However, figures are difficult to comprehend without associated text (e.g., figure legend and other reference text). We are developing automated systems to extract the relevant explanatory information along with figures extracted from full text articles. Such systems could be very useful in improving figure retrieval and in reducing the workload of biomedical scientists, who otherwise have to retrieve and read the entire full-text journal article to determine which figures are relevant to their research. As a crucial step, we studied the importance of associated text in biomedical figure comprehension. Twenty subjects evaluated three figure-text combinations: figure+legend, figure+legend+title+abstract, and figure+full-text. Using a Likert scale, each subject scored each figure+text according to the extent to which the subject thought he/she understood the meaning of the figure and the confidence in providing the assigned score. Additionally, each subject entered a free text summary for each figure-text. We identified missing information using indicator words present within the text summaries. Both the Likert scores and the missing information were statistically analyzed for differences among the figure-text types. We also evaluated the quality of text summaries with the text-summarization evaluation method the ROUGE score. Our results showed statistically significant differences in figure comprehension when varying levels of text were provided. When the full-text article is not available, presenting just the figure+legend left biomedical researchers lacking 39-68% of the information about a figure as compared to having complete figure comprehension; adding the title and abstract improved the situation, but still left biomedical researchers missing 30% of the information. When the full-text article is available, figure comprehension increased to 86-97%; this indicates that researchers felt that only 3-14% of the necessary information for full figure comprehension was missing when full text was available to them. Clearly there is information in the abstract and in the full text that biomedical scientists deem important for understanding the figures that appear in full-text biomedical articles. We conclude that the texts that appear in full-text biomedical articles are useful for understanding the meaning of a figure, and an effective figure-mining system needs to unlock the information beyond figure legend. Our work provides important guidance to the figure mining systems that extract information only from figure and figure legend.

  11. Are figure legends sufficient? Evaluating the contribution of associated text to biomedical figure comprehension

    PubMed Central

    2009-01-01

    Background Biomedical scientists need to access figures to validate research facts and to formulate or to test novel research hypotheses. However, figures are difficult to comprehend without associated text (e.g., figure legend and other reference text). We are developing automated systems to extract the relevant explanatory information along with figures extracted from full text articles. Such systems could be very useful in improving figure retrieval and in reducing the workload of biomedical scientists, who otherwise have to retrieve and read the entire full-text journal article to determine which figures are relevant to their research. As a crucial step, we studied the importance of associated text in biomedical figure comprehension. Methods Twenty subjects evaluated three figure-text combinations: figure+legend, figure+legend+title+abstract, and figure+full-text. Using a Likert scale, each subject scored each figure+text according to the extent to which the subject thought he/she understood the meaning of the figure and the confidence in providing the assigned score. Additionally, each subject entered a free text summary for each figure-text. We identified missing information using indicator words present within the text summaries. Both the Likert scores and the missing information were statistically analyzed for differences among the figure-text types. We also evaluated the quality of text summaries with the text-summarization evaluation method the ROUGE score. Results Our results showed statistically significant differences in figure comprehension when varying levels of text were provided. When the full-text article is not available, presenting just the figure+legend left biomedical researchers lacking 39–68% of the information about a figure as compared to having complete figure comprehension; adding the title and abstract improved the situation, but still left biomedical researchers missing 30% of the information. When the full-text article is available, figure comprehension increased to 86–97%; this indicates that researchers felt that only 3–14% of the necessary information for full figure comprehension was missing when full text was available to them. Clearly there is information in the abstract and in the full text that biomedical scientists deem important for understanding the figures that appear in full-text biomedical articles. Conclusion We conclude that the texts that appear in full-text biomedical articles are useful for understanding the meaning of a figure, and an effective figure-mining system needs to unlock the information beyond figure legend. Our work provides important guidance to the figure mining systems that extract information only from figure and figure legend. PMID:19126221

  12. Tissue Acoustoelectric Effect Modeling From Solid Mechanics Theory.

    PubMed

    Song, Xizi; Qin, Yexian; Xu, Yanbin; Ingram, Pier; Witte, Russell S; Dong, Feng

    2017-10-01

    The acoustoelectric (AE) effect is a basic physical phenomenon, which underlies the changes made in the conductivity of a medium by the application of focused ultrasound. Recently, based on the AE effect, several biomedical imaging techniques have been widely studied, such as ultrasound-modulated electrical impedance tomography and ultrasound current source density imaging. To further investigate the mechanism of the AE effect in tissue and to provide guidance for such techniques, we have modeled the tissue AE effect using the theory of solid mechanics. Both bulk compression and thermal expansion of tissue are considered and discussed. Computation simulation shows that the muscle AE effect result, conductivity change rate, is 3.26×10 -3 with 4.3-MPa peak pressure, satisfying the theoretical value. Bulk compression plays the main role for muscle AE effect, while thermal expansion makes almost no contribution to it. In addition, the AE signals of porcine muscle are measured at different focal positions. With the same magnitude order and the same change trend, the experiment result confirms that the simulation result is effective. Both simulation and experimental results validate that tissue AE effect modeling using solid mechanics theory is feasible, which is of significance for the further development of related biomedical imaging techniques.

  13. Estimation of Cardiopulmonary Parameters From Ultra Wideband Radar Measurements Using the State Space Method.

    PubMed

    Naishadham, Krishna; Piou, Jean E; Ren, Lingyun; Fathy, Aly E

    2016-12-01

    Ultra wideband (UWB) Doppler radar has many biomedical applications, including remote diagnosis of cardiovascular disease, triage and real-time personnel tracking in rescue missions. It uses narrow pulses to probe the human body and detect tiny cardiopulmonary movements by spectral analysis of the backscattered electromagnetic (EM) field. With the help of super-resolution spectral algorithms, UWB radar is capable of increased accuracy for estimating vital signs such as heart and respiration rates in adverse signal-to-noise conditions. A major challenge for biomedical radar systems is detecting the heartbeat of a subject with high accuracy, because of minute thorax motion (less than 0.5 mm) caused by the heartbeat. The problem becomes compounded by EM clutter and noise in the environment. In this paper, we introduce a new algorithm based on the state space method (SSM) for the extraction of cardiac and respiration rates from UWB radar measurements. SSM produces range-dependent system poles that can be classified parametrically with spectral peaks at the cardiac and respiratory frequencies. It is shown that SSM produces accurate estimates of the vital signs without producing harmonics and inter-modulation products that plague signal resolution in widely used FFT spectrograms.

  14. Numerical simulations of human tibia osteosynthesis using modular plates based on Nitinol staples.

    PubMed

    Tarniţă, Daniela; Tarniţă, D N; Popa, D; Grecu, D; Tarniţă, Roxana; Niculescu, D; Cismaru, F

    2010-01-01

    The shape memory alloys exhibit a number of remarkable properties, which open new possibilities in engineering and more specifically in biomedical engineering. The most important alloy used in biomedical applications is NiTi. This alloy combines the characteristics of the shape memory effect and superelasticity with excellent corrosion resistance, wear characteristics, mechanical properties and a good biocompatibility. These properties make it an ideal biological engineering material, especially in orthopedic surgery and orthodontics. In this work, modular plates for the osteosynthesis of the long bones fractures are presented. The proposed modular plates are realized from identical modules, completely interchangeable, made of titanium or stainless steel having as connecting elements U-shaped staples made of Nitinol. Using computed tomography (CT) images to provide three-dimensional geometric details and SolidWorks software package, the three dimensional virtual models of the tibia bone and of the modular plates are obtained. The finite element models of the tibia bone and of the modular plate are generated. For numerical simulation, VisualNastran software is used. Finally, displacements diagram, von Misses strain diagram, for the modular plate and for the fractured tibia and modular plate ensemble are obtained.

  15. Adsorption of fibrinogen on a biomedical-grade stainless steel 316LVM surface: a PM-IRRAS study of the adsorption thermodynamics, kinetics and secondary structure changes.

    PubMed

    Desroches, Marie-Josee; Omanovic, Sasha

    2008-05-14

    Polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) was employed to investigate the interaction of serum protein fibrinogen with a biomedical-grade 316LVM stainless steel surface, in terms of the adsorption thermodynamics, kinetics and secondary structure changes of the protein. Apparent Gibbs energy of adsorption values indicated a highly spontaneous and strong adsorption of fibrinogen onto the surface. The kinetics of fibrinogen adsorption were successfully modeled using a pseudo first-order kinetic model. Deconvolution of the amide I bands indicated that the adsorption of fibrinogen on 316LVM results in significant changes in the protein's secondary structure that occur predominantly within the first minute of adsorption. Among the investigated structures, the alpha-helix structure undergoes the smallest changes, while the beta-sheet and beta-turns structures undergo significant changes. It was shown that lateral interactions between the adsorbed molecules do not play a role in controlling the secondary structure changes. An increase in temperature induced changes in the secondary structure of the protein, characterized by a loss of the alpha-helical content and its transformation into the beta-turns structure.

  16. OC-2-KB: A software pipeline to build an evidence-based obesity and cancer knowledge base.

    PubMed

    Lossio-Ventura, Juan Antonio; Hogan, William; Modave, François; Guo, Yi; He, Zhe; Hicks, Amanda; Bian, Jiang

    2017-11-01

    Obesity has been linked to several types of cancer. Access to adequate health information activates people's participation in managing their own health, which ultimately improves their health outcomes. Nevertheless, the existing online information about the relationship between obesity and cancer is heterogeneous and poorly organized. A formal knowledge representation can help better organize and deliver quality health information. Currently, there are several efforts in the biomedical domain to convert unstructured data to structured data and store them in Semantic Web knowledge bases (KB). In this demo paper, we present, OC-2-KB (Obesity and Cancer to Knowledge Base), a system that is tailored to guide the automatic KB construction for managing obesity and cancer knowledge from free-text scientific literature (i.e., PubMed abstracts) in a systematic way. OC-2-KB has two important modules which perform the acquisition of entities and the extraction then classification of relationships among these entities. We tested the OC-2-KB system on a data set with 23 manually annotated obesity and cancer PubMed abstracts and created a preliminary KB with 765 triples. We conducted a preliminary evaluation on this sample of triples and reported our evaluation results.

  17. Frontiers of monoclonal antibodies: Applications in medical practices.

    PubMed

    Ghagane, Shridhar C; Puranik, Sridevi I; Gan, Siew Hua; Hiremath, Murigendra B; Nerli, R B; Ravishankar, M V

    2017-01-01

    With the flourishing of innovation in drug discovery into a new era of personalized therapy, the use of monoclonal antibodies (mAbs) in the treatment of various ailments lies at the forefront. Major improvements in genetic sequencing and biomedical techniques as well as research into mAbs emphasize on determining new targets for advanced therapy while maximizing efficacy for clinical application. However, a balance has to be achieved concerning developing a target with low toxicity combined with high specificity and versatility, to allow a specific antibody to facilitate several biotic effects, ranging from neutralization of virus mechanisms to modulation of immune response and maintaining low global economic cost. Presently, there are approximately 30 mAbs' permitted for therapeutic use with many more being tested in clinical trials. Nevertheless, the heavy cost of mAbs' production, stowage and management as well as the subsequent hindrances to their development are outweighed by mAbs' clinical advantages. Compared to conventional drugs, since mAbs use as pharmacologic iotas have specific physical features and modes of action, they should be considered as a discrete therapeutic category. In this review, the history of mAb generation and the innovative technological applications of mAbs that has advanced in clinical practices is reviewed.

  18. A study on a portable fluorescence imaging system

    NASA Astrophysics Data System (ADS)

    Chang, Han-Chao; Wu, Wen-Hong; Chang, Chun-Li; Huang, Kuo-Cheng; Chang, Chung-Hsing; Chiu, Shang-Chen

    2011-09-01

    The fluorescent reaction is that an organism or dye, excited by UV light (200-405 nm), emits a specific frequency of light; the light is usually a visible or near infrared light (405-900 nm). During the UV light irradiation, the photosensitive agent will be induced to start the photochemical reaction. In addition, the fluorescence image can be used for fluorescence diagnosis and then photodynamic therapy can be given to dental diseases and skin cancer, which has become a useful tool to provide scientific evidence in many biomedical researches. However, most of the methods on acquiring fluorescence biology traces are still stay in primitive stage, catching by naked eyes and researcher's subjective judgment. This article presents a portable camera to obtain the fluorescence image and to make up a deficit from observer competence and subjective judgment. Furthermore, the portable camera offers the 375nm UV-LED exciting light source for user to record fluorescence image and makes the recorded image become persuasive scientific evidence. In addition, when the raising the rate between signal and noise, the signal processing module will not only amplify the fluorescence signal up to 70 %, but also decrease the noise significantly from environmental light on bill and nude mouse testing.

  19. Combined effects of Ag nanoparticles and oxygen plasma treatment on PLGA morphological, chemical, and antibacterial properties.

    PubMed

    Fortunati, Elena; Mattioli, Samantha; Visai, Livia; Imbriani, Marcello; Fierro, Josè Luis G; Kenny, Josè Maria; Armentano, Ilaria

    2013-03-11

    The purpose of this study is to investigate the combined effects of oxygen plasma treatments and silver nanoparticles (Ag) on PLGA in order to modulate the surface antimicrobial properties through tunable bacteria adhesion mechanisms. PLGA nanocomposite films, produced by solvent casting with 1 wt % and 7 wt % of Ag nanoparticles were investigated. The PLGA and PLGA/Ag nanocomposite surfaces were treated with oxygen plasma. Surface properties of PLGA were investigated by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), static contact angle (CA), and high resolution X-ray photoelectron spectroscopy (XPS). Antibacterial tests were performed using an Escherichia coli RB (a Gram negative) and Staphylococcus aureus 8325-4 (a Gram positive). The PLGA surface becomes hydrophilic after the oxygen treatment and its roughness increases with the treatment time. The surface treatment and the Ag nanoparticle introduction have a dominant influence on the bacteria adhesion and growth. Oxygen-treated PLGA/Ag systems promote higher reduction of the bacteria viability in comparison to the untreated samples and neat PLGA. The combination of Ag nanoparticles with the oxygen plasma treatment opens new perspectives for the studied biodegradable systems in biomedical applications.

  20. Acoustic focusing by symmetrical self-bending beams with phase modulations

    NASA Astrophysics Data System (ADS)

    Gao, He; Gu, Zhong-ming; Liang, Bin; Zou, Xin-ye; Yang, Jing; Yang, Jun; Cheng, Jian-chun

    2016-02-01

    We propose a scheme for generating high-efficient acoustic focusing capable of circumventing obstacles in the propagating medium. This distinct feature that is highly desirable for practical applications is realized by employing two symmetrical Airy beams, and a different type of acoustic lens is designed by using a zero-index medium to provide the required phase profile with extremely high resolution. Furthermore, the scheme has the flexibility of generating tunable focal length. We anticipate our design to open possibilities for the design of acoustic lens and have potential applications in various important scenarios such as biomedical imaging/therapy and non-destructive evaluation.

  1. Microgravity

    NASA Image and Video Library

    2000-01-31

    Arn Harris Hoover of Lockheed Martin Company demonstrates an engineering mockup of the Human Research Facility (HRF) that will be installed in Destiny, the U.S. Laboratory Module on the International Space Station (ISS). Using facilities similar to research hardware available in laboratories on Earth, the HRF will enable systematic study of cardiovascular, musculoskeletal, neurosensory, pulmonary, radiation, and regulatory physiology to determine biomedical changes resulting from space flight. Research results obtained using this facility are relevant to the health and the performance of the astronaut as well as future exploration of space. Because this is a mockup, the actual flight hardware may vary as desings are refined. (Credit: NASA/Marshall Space Flight Center)

  2. Porous silicon advances in drug delivery and immunotherapy.

    PubMed

    Savage, David J; Liu, Xuewu; Curley, Steven A; Ferrari, Mauro; Serda, Rita E

    2013-10-01

    Biomedical applications of porous silicon include drug delivery, imaging, diagnostics and immunotherapy. This review summarizes new silicon particle fabrication techniques, dynamics of cellular transport, advances in the multistage vector approach to drug delivery, and the use of porous silicon as immune adjuvants. Recent findings support superior therapeutic efficacy of the multistage vector approach over single particle drug delivery systems in mouse models of ovarian and breast cancer. With respect to vaccine development, multivalent presentation of pathogen-associated molecular patterns on the particle surface creates powerful platforms for immunotherapy, with the porous matrix able to carry both antigens and immune modulators. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Multi-purpose CMOS sensor interface for low-power applications

    NASA Astrophysics Data System (ADS)

    Wouters, P.; de Cooman, M.; Puers, R.

    1994-08-01

    A dedicated low-power CMOS transponder microchip is presented as part of a novel telemetry implant for biomedical applications. This mixed analog-digital circuit contains an identification code and collects information on physiological parameters, i.e., body temperature and physical activity, and on the status of the battery. To minimize the amount of data to be transmitted, a dedicated signal processing algorithm is embedded within its circuitry. All telemetry functions (encoding, modulation, generation of the carrier) are implemented on the integrated circuit. Emphasis is on a high degree of flexibility towards sensor inputs and internal data management, extreme miniaturization, and low-power consumption to allow a long implantation lifetime.

  4. Multifunctional combinatorial-designed nanoparticles for nucleic acid therapy

    NASA Astrophysics Data System (ADS)

    Amiji, Mansoor M.

    2016-05-01

    Recent advances in biomedical sciences, especially in the field of human genetics, is increasingly considered to facilitate a new frontier in development of novel disease-modifying therapeutics. One of major challenges in the development of nucleic acid therapeutics is efficient and specific delivery of the molecules to the target tissue and cell upon systemic administration. In this report, I discuss our strategy to develop combinatorial-designed multifunctional nanoparticle assemblies based on natural biocompatible and biodegradable polymers for nucleic acid delivery in: (1) overcoming tumor drug resistance and (2) genetic modulation of macrophage functional phenotype from M1 to M2 in treatment of inflammatory diseases.

  5. Java and its future in biomedical computing.

    PubMed Central

    Rodgers, R P

    1996-01-01

    Java, a new object-oriented computing language related to C++, is receiving considerable attention due to its use in creating network-sharable, platform-independent software modules (known as "applets") that can be used with the World Wide Web. The Web has rapidly become the most commonly used information-retrieval tool associated with the global computer network known as the Internet, and Java has the potential to further accelerate the Web's application to medical problems. Java's potentially wide acceptance due to its Web association and its own technical merits also suggests that it may become a popular language for non-Web-based, object-oriented computing. PMID:8880677

  6. Polarization switch of four-wave mixing in a lawtunable fiber optical parametric oscillator.

    PubMed

    Yang, Kangwen; Ye, Pengbo; Zheng, Shikai; Jiang, Jieshi; Huang, Kun; Hao, Qiang; Zeng, Heping

    2018-02-05

    We reported the simultaneous generation and selective manipulation of scalar and cross-phase modulation instabilities in a fiber optical parametric oscillator. Numerical and experimental results show independent control of parametric gain by changing the input pump polarization state. The resonant cavity enables power enhancement of 45 dB for the spontaneous sidebands, generating laser pulses tunable from 783 to 791 nm and 896 to 1005 nm due to the combination of four-wave mixing, cascaded Raman scattering and other nonlinear effects. This gain controlled, wavelength tunable, fiber-based laser source may find applications in the fields of nonlinear biomedical imaging and stimulated Raman spectroscopy.

  7. Alternatives to Animal Use in Research, Testing, and Education. Summary.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    With an estimated 17-22 million animals used in laboratories annually in the United States, public interest in animal welfare has sparked an often emotional debate over such uses of animals. Concerns focus on balancing societal needs for continued progress in biomedical and behavioral research, for toxicity testing to safeguard the public, and for…

  8. The Application of Integrated Knowledge-based Systems for the Biomedical Risk Assessment Intelligent Network (BRAIN)

    NASA Technical Reports Server (NTRS)

    Loftin, Karin C.; Ly, Bebe; Webster, Laurie; Verlander, James; Taylor, Gerald R.; Riley, Gary; Culbert, Chris; Holden, Tina; Rudisill, Marianne

    1993-01-01

    One of NASA's goals for long duration space flight is to maintain acceptable levels of crew health, safety, and performance. One way of meeting this goal is through the Biomedical Risk Assessment Intelligent Network (BRAIN), an integrated network of both human and computer elements. The BRAIN will function as an advisor to flight surgeons by assessing the risk of in-flight biomedical problems and recommending appropriate countermeasures. This paper describes the joint effort among various NASA elements to develop BRAIN and an Infectious Disease Risk Assessment (IDRA) prototype. The implementation of this effort addresses the technological aspects of the following: (1) knowledge acquisition; (2) integration of IDRA components; (3) use of expert systems to automate the biomedical prediction process; (4) development of a user-friendly interface; and (5) integration of the IDRA prototype and Exercise Countermeasures Intelligent System (ExerCISys). Because the C Language, CLIPS (the C Language Integrated Production System), and the X-Window System were portable and easily integrated, they were chosen as the tools for the initial IDRA prototype. The feasibility was tested by developing an IDRA prototype that predicts the individual risk of influenza. The application of knowledge-based systems to risk assessment is of great market value to the medical technology industry.

  9. Approaches to the development of biomedical support systems for piloted exploration missions

    NASA Astrophysics Data System (ADS)

    Grigoriev, A. I.; Potapov, A. N.

    2014-01-01

    Many aspects of the biomedical systems developed and realized aboard orbital stations, the International space station in the first place, deserve to be regarded as predecessors of the systems for health monitoring and maintenance of future exploration crews. At the same time, there are issues and tasks which have not been yet fully resolved. Specifically, these are prevention of the adverse changes in body systems and organs due to microgravity, reliable protection from the spectrum of space radiation, and elucidation of possible effects of hypomagnetic environment. We should not walk away from search and development of key biomedical technologies such as a system of automated fitness evaluation and a psychodiagnostic complex for testing and optimization of operator‧s efficiency, and others. We have to address a large number of issues related to designing the composite life support systems of the utmost autonomy, closure and ecological safety of the human environment that will provide transformation of all kinds of waste. Another crucial task is to define a concept of the onboard medical center and dataware including the telemedicine technology. All the above developments should assimilate the most recent achievements in physiology, molecular biology, genetics, and advanced medical technologies. Biomedical researches on biosatellites also do not lose topicality.

  10. Knowledge of the Nigerian Code of Health Research Ethics Among Biomedical Researchers in Southern Nigeria.

    PubMed

    Ogunrin, Olubunmi A; Daniel, Folasade; Ansa, Victor

    2016-12-01

    Responsibility for protection of research participants from harm and exploitation rests on Research Ethics Committees and principal investigators. The Nigerian National Code of Health Research Ethics defines responsibilities of stakeholders in research so its knowledge among researchers will likely aid ethical conduct of research. The levels of awareness and knowledge of the Code among biomedical researchers in southern Nigerian research institutions was assessed. Four institutions were selected using a stratified random sampling technique. Research participants were selected by purposive sampling and completed a pre-tested structured questionnaire. A total of 102 biomedical researchers completed the questionnaires. Thirty percent of the participants were aware of the National Code though 64% had attended at least one training seminar in research ethics. Twenty-five percent had a fairly acceptable knowledge (scores 50%-74%) and 10% had excellent knowledge of the code (score ≥75%). Ninety-five percent expressed intentions to learn more about the National Code and agreed that it is highly relevant to the ethical conduct of research. Awareness and knowledge of the Code were found to be very limited among biomedical researchers in southern Nigeria. There is need to improve awareness and knowledge through ethics seminars and training. Use of existing Nigeria-specific online training resources is also encouraged.

  11. CRISPR editing in biological and biomedical investigation.

    PubMed

    Huang, Jiaojiao; Wang, Yanfang; Zhao, Jianguo

    2018-05-01

    Recently, clustered regularly interspaced short palindromic repeats (CRISPR) based genomic editing technologies have armed researchers with powerful new tools to biological and biomedical investigations. To further improve and expand its functionality, natural, and engineered CRISPR associated nine proteins (Cas9s) have been investigated, various CRISPR delivery strategies have been tested and optimized, and multiple schemes have been developed to ensure precise mammalian genome editing. Benefiting from those in-depth understanding and further development of CRISPR, versatile CRISPR-based platforms for genome editing have been rapidly developed to advance investigations in biology and biomedicine. In biological research area, CRISPR has been widely adopted in both fundamental and applied research fields, such as accurate base editing, transcriptional regulation, and genome-wide screening. In biomedical research area, CRISPR has also shown its extensive applicability in the establishment of animal models for genetic disorders especially those large animals and non-human primates models, and gene therapy to combat virus infectious diseases, to correct monogenic disorders in vivo or in pluripotent cells. In this prospect article, after highlighting recent developments of CRISPR systems, we outline different applications and current limitations of CRISPR use in biological and biomedical investigation. Finally, we provide a perspective for future development and potential risks of this multifunctional technology. © 2017 Wiley Periodicals, Inc.

  12. Utilization of flax fibers for biomedical applications.

    PubMed

    Michel, Sophie A A X; Vogels, Ruben R M; Bouvy, Nicole D; Knetsch, Menno L W; van den Akker, Nynke M S; Gijbels, Marion J J; van der Marel, Cees; Vermeersch, Jan; Molin, Daniel G M; Koole, Leo H

    2014-04-01

    Over the past decades, a large number of animal-derived materials have been introduced for several biomedical applications. Surprisingly, the use of plant-based materials has lagged behind. To study the feasibility of plant-derived biomedical materials, we chose flax (Linum usitatissimum). Flax fibers possess excellent physical-mechanical properties, are nonbiodegradable, and there is extensive know-how on weaving/knitting of them. One area where they could be useful is as implantable mesh structures in surgery, in particular for the repair of incisional hernias of the abdominal wall. Starting with a bleached flax thread, a prototype mesh was specifically knitted for this study, and its cytocompatibility was studied in vitro and in vivo. The experimental data revealed that application of flax in surgery first requires a robust method to remove endotoxins and purify the flax fiber. Such a method was developed, and purified meshes did not cause loss of cell viability in vitro. In addition, endotoxins determined using limulus amebocyte lysate test were at acceptable levels. In vivo, the flax meshes showed only mild inflammation, comparable to commercial polypropylene meshes. This study revealed that plant-derived biomaterials can provide a new class of implantable materials that could be used as surgical meshes or for other biomedical applications. Copyright © 2013 Wiley Periodicals, Inc.

  13. Launch of Mercury-Redstone vehicle 2 on Jan. 21, 1961

    NASA Image and Video Library

    1961-08-10

    S61-01942 (31 Jan. 1961) --- Launch of the Mercury-Redstone 2 (MR-2) vehicle on Jan. 31, 1961. The 16-minute suborbital flight carried biomedical test subject chimpanzee (Ham) aboard. Photo credit: NASA

  14. Hybrid Enhanced Epidermal SpaceSuit Design Approaches

    NASA Astrophysics Data System (ADS)

    Jessup, Joseph M.

    A Space suit that does not rely on gas pressurization is a multi-faceted problem that requires major stability controls to be incorporated during design and construction. The concept of Hybrid Epidermal Enhancement space suit integrates evolved human anthropomorphic and physiological adaptations into its functionality, using commercially available bio-medical technologies to address shortcomings of conventional gas pressure suits, and the impracticalities of MCP suits. The prototype HEE Space Suit explored integumentary homeostasis, thermal control and mobility using advanced bio-medical materials technology and construction concepts. The goal was a space suit that functions as an enhanced, multi-functional bio-mimic of the human epidermal layer that works in attunement with the wearer rather than as a separate system. In addressing human physiological requirements for design and construction of the HEE suit, testing regimes were devised and integrated into the prototype which was then subject to a series of detailed tests using both anatomical reproduction methods and human subject.

  15. Biomedical technology transfer: Applications of NASA science and technology

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The major efforts of the Stanford Biomedical Applications Team Program at the Stanford University School of Medicine for the period from October 1, 1975 to September 31, 1976 are covered. A completed EMG biotelemetry system which monitors the physiological signals of man and animals in space related research is discussed. The results of a pilot study involving lower body negative pressure testing in cardiac patients has been completed as well as the design and construction of a new leg negative pressure unit for evaluating heart patients. This technology utilizes vacuum chambers to stress the cardiovascular system during space flight. Laboratory tests of an intracranial pressure transducer, have been conducted. Extremely stable long term data using capacative pressure sensors has lead to the order of commercially manufactured monitoring systems base. Projects involving commercialization are: flexible medical electrodes, an echocardioscope, a miniature biotelemetry system, and an on-line ventricular contour detector.

  16. Bioactive calcium phosphate–based glasses and ceramics and their biomedical applications: A review

    PubMed Central

    Islam, Md Towhidul; Felfel, Reda M; Abou Neel, Ensanya A; Grant, David M; Ahmed, Ifty; Hossain, Kazi M Zakir

    2017-01-01

    An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented. PMID:28794848

  17. The application of biomedical engineering techniques to the diagnosis and management of tropical diseases: a review.

    PubMed

    Ibrahim, Fatimah; Thio, Tzer Hwai Gilbert; Faisal, Tarig; Neuman, Michael

    2015-03-23

    This paper reviews a number of biomedical engineering approaches to help aid in the detection and treatment of tropical diseases such as dengue, malaria, cholera, schistosomiasis, lymphatic filariasis, ebola, leprosy, leishmaniasis, and American trypanosomiasis (Chagas). Many different forms of non-invasive approaches such as ultrasound, echocardiography and electrocardiography, bioelectrical impedance, optical detection, simplified and rapid serological tests such as lab-on-chip and micro-/nano-fluidic platforms and medical support systems such as artificial intelligence clinical support systems are discussed. The paper also reviewed the novel clinical diagnosis and management systems using artificial intelligence and bioelectrical impedance techniques for dengue clinical applications.

  18. KSC-04pd1497

    NASA Image and Video Library

    2004-07-07

    KENNEDY SPACE CENTER, FLA. - The boat with NEEMO-6 personnel ties up at the dock in Key Largo after a training session offshore at NASA’s undersea research station, named Aquarius. At right is Bill Todd, project lead. The NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission involves spacewalk-like diving excursions and field-testing a variety of biomedical equipment designed to help astronauts living aboard the International Space Station. The NEEMO-6 team comprises astronaut John Herrington, mission commander, astronauts Doug Wheelock and Nick Patrick, and biomedical engineer Tara Ruttley. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  19. KSC-04PD-2497

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Joe Mounts, with Boeing, monitors the Payload Test and Checkout System for the Human Research Facility (HRF) Rack -2 payload. The HRF-2 is scheduled to fly on Return to Flight Space Shuttle mission STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF Rack 1 contains an ultrasound unit and gas analyzer system and has been operational in the U.S. Lab since May 2001. HRF-2 will also be installed in the U. S. Lab and will provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U. S. Lab.

  20. New contrasts for x-ray imaging and synergy with optical imaging

    NASA Astrophysics Data System (ADS)

    Wang, Ge

    2017-02-01

    Due to its penetrating power, fine resolution, unique contrast, high-speed, and cost-effectiveness, x-ray imaging is one of the earliest and most popular imaging modalities in biomedical applications. Current x-ray radiographs and CT images are mostly on gray-scale, since they reflect overall energy attenuation. Recent advances in x-ray detection, contrast agent, and image reconstruction technologies have changed our perception and expectation of x-ray imaging capabilities, and generated an increasing interest in imaging biological soft tissues in terms of energy-sensitive material decomposition, phase-contrast, small angle scattering (also referred to as dark-field), x-ray fluorescence and luminescence properties. These are especially relevant to preclinical and mesoscopic studies, and potentially mendable for hybridization with optical molecular tomography. In this article, we review new x-ray imaging techniques as related to optical imaging, suggest some combined x-ray and optical imaging schemes, and discuss our ideas on micro-modulated x-ray luminescence tomography (MXLT) and x-ray modulated opto-genetics (X-Optogenetics).

  1. Phenotypes of organ involvement in sarcoidosis.

    PubMed

    Schupp, Jonas Christian; Freitag-Wolf, Sandra; Bargagli, Elena; Mihailović-Vučinić, Violeta; Rottoli, Paola; Grubanovic, Aleksandar; Müller, Annegret; Jochens, Arne; Tittmann, Lukas; Schnerch, Jasmin; Olivieri, Carmela; Fischer, Annegret; Jovanovic, Dragana; Filipovic, Snežana; Videnovic-Ivanovic, Jelica; Bresser, Paul; Jonkers, René; O'Reilly, Kate; Ho, Ling-Pei; Gaede, Karoline I; Zabel, Peter; Dubaniewicz, Anna; Marshall, Ben; Kieszko, Robert; Milanowski, Janusz; Günther, Andreas; Weihrich, Anette; Petrek, Martin; Kolek, Vitezslav; Keane, Michael P; O'Beirne, Sarah; Donnelly, Seamas; Haraldsdottir, Sigridur Olina; Jorundsdottir, Kristin B; Costabel, Ulrich; Bonella, Francesco; Wallaert, Benoît; Grah, Christian; Peroš-Golubičić, Tatjana; Luisetti, Mauritio; Kadija, Zamir; Pabst, Stefan; Grohé, Christian; Strausz, János; Vašáková, Martina; Sterclova, Martina; Millar, Ann; Homolka, Jiří; Slováková, Alena; Kendrick, Yvonne; Crawshaw, Anjali; Wuyts, Wim; Spencer, Lisa; Pfeifer, Michael; Valeyre, Dominique; Poletti, Venerino; Wirtz, Hubertus; Prasse, Antje; Schreiber, Stefan; Krawczak, Michael; Müller-Quernheim, Joachim

    2018-01-01

    Sarcoidosis is a highly variable, systemic granulomatous disease of hitherto unknown aetiology. The GenPhenReSa (Genotype-Phenotype Relationship in Sarcoidosis) project represents a European multicentre study to investigate the influence of genotype on disease phenotypes in sarcoidosis.The baseline phenotype module of GenPhenReSa comprised 2163 Caucasian patients with sarcoidosis who were phenotyped at 31 study centres according to a standardised protocol.From this module, we found that patients with acute onset were mainly female, young and of Scadding type I or II. Female patients showed a significantly higher frequency of eye and skin involvement, and complained more of fatigue. Based on multidimensional correspondence analysis and subsequent cluster analysis, patients could be clearly stratified into five distinct, yet undescribed, subgroups according to predominant organ involvement: 1) abdominal organ involvement, 2) ocular-cardiac-cutaneous-central nervous system disease involvement, 3) musculoskeletal-cutaneous involvement, 4) pulmonary and intrathoracic lymph node involvement, and 5) extrapulmonary involvement.These five new clinical phenotypes will be useful to recruit homogenous cohorts in future biomedical studies. Copyright ©ERS 2018.

  2. Estimation in a semi-Markov transformation model

    PubMed Central

    Dabrowska, Dorota M.

    2012-01-01

    Multi-state models provide a common tool for analysis of longitudinal failure time data. In biomedical applications, models of this kind are often used to describe evolution of a disease and assume that patient may move among a finite number of states representing different phases in the disease progression. Several authors developed extensions of the proportional hazard model for analysis of multi-state models in the presence of covariates. In this paper, we consider a general class of censored semi-Markov and modulated renewal processes and propose the use of transformation models for their analysis. Special cases include modulated renewal processes with interarrival times specified using transformation models, and semi-Markov processes with with one-step transition probabilities defined using copula-transformation models. We discuss estimation of finite and infinite dimensional parameters of the model, and develop an extension of the Gaussian multiplier method for setting confidence bands for transition probabilities. A transplant outcome data set from the Center for International Blood and Marrow Transplant Research is used for illustrative purposes. PMID:22740583

  3. Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis.

    PubMed

    Praveen, Bavishna B; Ashok, Praveen C; Mazilu, Michael; Riches, Andrew; Herrington, Simon; Dholakia, Kishan

    2012-07-01

    In the field of biomedical optics, Raman spectroscopy is a powerful tool for probing the chemical composition of biological samples. In particular, fiber Raman probes play a crucial role for in vivo and ex vivo tissue analysis. However, the high-fluorescence background typically contributed by the auto fluorescence from both a tissue sample and the fiber-probe interferes strongly with the relatively weak Raman signal. Here we demonstrate the implementation of wavelength-modulated Raman spectroscopy (WMRS) to suppress the fluorescence background while analyzing tissues using fiber Raman probes. We have observed a significant signal-to-noise ratio enhancement in the Raman bands of bone tissue, which have a relatively high fluorescence background. Implementation of WMRS in fiber-probe-based bone tissue study yielded usable Raman spectra in a relatively short acquisition time (∼30  s), notably without any special sample preparation stage. Finally, we have validated its capability to suppress fluorescence on other tissue samples such as adipose tissue derived from four different species.

  4. Design of affordable and ruggedized biomedical devices using virtual instrumentation.

    PubMed

    Mathern, Ryan Michael; Schopman, Sarah; Kalchthaler, Kyle; Mehta, Khanjan; Butler, Peter

    2013-05-01

    Abstract This paper presents the designs of four low-cost and ruggedized biomedical devices, including a blood pressure monitor, thermometer, weighing scale and spirometer, designed for the East African context. The design constraints included a mass-production price point of $10, accuracy and precision comparable to commercial devices and ruggedness to function effectively in the harsh environment of East Africa. The blood pressure device, thermometer and weighing scale were field-tested in Kenya and each recorded data within 6% error of the measurements from commercial devices and withstood the adverse climate and rough handling. The spirometer functioned according to specifications, but a re-design is needed to improve operability and usability by patients. This article demonstrates the feasibility of designing and commercializing virtual instrumentation-based biomedical devices in resource-constrained environments through context-driven design. The next steps for the devices include designing them such that they can be more easily manufactured, use standardized materials, are easily calibrated in the field and have more user-friendly software programs that can be updated remotely.

  5. A unified architecture for biomedical search engines based on semantic web technologies.

    PubMed

    Jalali, Vahid; Matash Borujerdi, Mohammad Reza

    2011-04-01

    There is a huge growth in the volume of published biomedical research in recent years. Many medical search engines are designed and developed to address the over growing information needs of biomedical experts and curators. Significant progress has been made in utilizing the knowledge embedded in medical ontologies and controlled vocabularies to assist these engines. However, the lack of common architecture for utilized ontologies and overall retrieval process, hampers evaluating different search engines and interoperability between them under unified conditions. In this paper, a unified architecture for medical search engines is introduced. Proposed model contains standard schemas declared in semantic web languages for ontologies and documents used by search engines. Unified models for annotation and retrieval processes are other parts of introduced architecture. A sample search engine is also designed and implemented based on the proposed architecture in this paper. The search engine is evaluated using two test collections and results are reported in terms of precision vs. recall and mean average precision for different approaches used by this search engine.

  6. LOCAL ORTHOGONAL CUTTING METHOD FOR COMPUTING MEDIAL CURVES AND ITS BIOMEDICAL APPLICATIONS

    PubMed Central

    Einstein, Daniel R.; Dyedov, Vladimir

    2010-01-01

    Medial curves have a wide range of applications in geometric modeling and analysis (such as shape matching) and biomedical engineering (such as morphometry and computer assisted surgery). The computation of medial curves poses significant challenges, both in terms of theoretical analysis and practical efficiency and reliability. In this paper, we propose a definition and analysis of medial curves and also describe an efficient and robust method called local orthogonal cutting (LOC) for computing medial curves. Our approach is based on three key concepts: a local orthogonal decomposition of objects into substructures, a differential geometry concept called the interior center of curvature (ICC), and integrated stability and consistency tests. These concepts lend themselves to robust numerical techniques and result in an algorithm that is efficient and noise resistant. We illustrate the effectiveness and robustness of our approach with some highly complex, large-scale, noisy biomedical geometries derived from medical images, including lung airways and blood vessels. We also present comparisons of our method with some existing methods. PMID:20628546

  7. Nitric oxide-releasing antibacterial albumin plastic for biomedical applications.

    PubMed

    Jones, Alexander; Pant, Jitendra; Lee, Eliza; Goudie, Marcus J; Gruzd, Alexey; Mansfield, Joel; Mandal, Abhyuday; Sharma, Suraj; Handa, Hitesh

    2018-06-01

    Designing innovative materials for biomedical applications is desired to prevent surface fouling and risk of associated infections arising in the surgical care patient. In the present study, albumin plastic was fabricated and nitric oxide (NO) donor, S-nitroso-N-acetylpenicillamine (SNAP), was incorporated through a solvent swelling process. The albumin-SNAP plastic was evaluated in terms of mechanical and thermal properties, and bacterial adhesion to the plastic surface. Thermal and viscoelastic analyses showed no significant difference between albumin-SNAP plastics and pure, water-plasticized albumin samples. Bacteria adhesion tests revealed that albumin-SNAP plastic can significantly reduce the surface-bound viable gram-positive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa bacterial cells by 98.7 and 98.5%, respectively, when compared with the traditional polyvinyl chloride medical grade tubing material. The results from this study demonstrate NO-releasing albumin plastic's potential as a material for biomedical device applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1535-1542, 2018. © 2018 Wiley Periodicals, Inc.

  8. Recognising discourse causality triggers in the biomedical domain.

    PubMed

    Mihăilă, Claudiu; Ananiadou, Sophia

    2013-12-01

    Current domain-specific information extraction systems represent an important resource for biomedical researchers, who need to process vast amounts of knowledge in a short time. Automatic discourse causality recognition can further reduce their workload by suggesting possible causal connections and aiding in the curation of pathway models. We describe here an approach to the automatic identification of discourse causality triggers in the biomedical domain using machine learning. We create several baselines and experiment with and compare various parameter settings for three algorithms, i.e. Conditional Random Fields (CRF), Support Vector Machines (SVM) and Random Forests (RF). We also evaluate the impact of lexical, syntactic, and semantic features on each of the algorithms, showing that semantics improves the performance in all cases. We test our comprehensive feature set on two corpora containing gold standard annotations of causal relations, and demonstrate the need for more gold standard data. The best performance of 79.35% F-score is achieved by CRFs when using all three feature types.

  9. Quantitative phase microscopy via optimized inversion of the phase optical transfer function.

    PubMed

    Jenkins, Micah H; Gaylord, Thomas K

    2015-10-01

    Although the field of quantitative phase imaging (QPI) has wide-ranging biomedical applicability, many QPI methods are not well-suited for such applications due to their reliance on coherent illumination and specialized hardware. By contrast, methods utilizing partially coherent illumination have the potential to promote the widespread adoption of QPI due to their compatibility with microscopy, which is ubiquitous in the biomedical community. Described herein is a new defocus-based reconstruction method that utilizes a small number of efficiently sampled micrographs to optimally invert the partially coherent phase optical transfer function under assumptions of weak absorption and slowly varying phase. Simulation results are provided that compare the performance of this method with similar algorithms and demonstrate compatibility with large phase objects. The accuracy of the method is validated experimentally using a microlens array as a test phase object. Lastly, time-lapse images of live adherent cells are obtained with an off-the-shelf microscope, thus demonstrating the new method's potential for extending QPI capability widely in the biomedical community.

  10. Noise-assisted data processing with empirical mode decomposition in biomedical signals.

    PubMed

    Karagiannis, Alexandros; Constantinou, Philip

    2011-01-01

    In this paper, a methodology is described in order to investigate the performance of empirical mode decomposition (EMD) in biomedical signals, and especially in the case of electrocardiogram (ECG). Synthetic ECG signals corrupted with white Gaussian noise are employed and time series of various lengths are processed with EMD in order to extract the intrinsic mode functions (IMFs). A statistical significance test is implemented for the identification of IMFs with high-level noise components and their exclusion from denoising procedures. Simulation campaign results reveal that a decrease of processing time is accomplished with the introduction of preprocessing stage, prior to the application of EMD in biomedical time series. Furthermore, the variation in the number of IMFs according to the type of the preprocessing stage is studied as a function of SNR and time-series length. The application of the methodology in MIT-BIH ECG records is also presented in order to verify the findings in real ECG signals.

  11. Map of biomedical research in Cameroon; a documentary review of approved protocols from 1997 to 2012.

    PubMed

    Walter, Ebile Akoh; Jerome, Ateudjieu; Marceline, Djuidje Ngounoue; Yakum, Martin Ndinakie; Pierre, Watcho

    2017-11-21

    Over the last decade, there has been a rapid increase in biomedical research in Cameroon. However, the question of whether these research projects target major health priorities, vulnerable populations and geographic locations at risk remains to be answered. The aim of this paper is to describe the state of biomedical research in Cameroon which is a key determinant that would guide future health care policies and promote equitable access to healthcare. A documentary review of all approved protocols (proposals) of biomedical research projects, from 1997 through 2012, at the Cameroon National Ethics Committee. Protocols were reviewed systematically by independent reviewers and data were extracted on a grid. Data were analyzed by calculating proportions at 95% confidence interval, chi-square test (chi2) and p-values. Two thousand one hundred seventy two protocols were reviewed for data extraction. One thousand three hundred ninety-five (64.7%) were student projects, 369 (17.0%) projects had international sponsors, and 1528 (72.4%) were hospital-based studies. The most targeted domain was the fight against diseases 1323 (61.3%); mostly HIV 342 (25.8%) and Malaria 136 (10.3%). Over half of the studies were concentrated in the Centre region 1242 (57.2%), with the least projects conducted in the Northern region 15 (0.7%). There was strong evidence that international and local sponsors would influence the research site (p-value = 0.01) and population targets (p-value = 0.00). Although biomedical research targets some important diseases that pose a great burden to Cameroonians, the most vulnerable populations are excluded from research. Biomedical research scarcely addresses other components of the health system and emerging diseases of vital public health importance. We recommend that the government should play a central role, between researchers from academic institutions, sponsors, NGOs and research institutions, to ensure that biomedical research addresses the health priorities of Cameroonians. It should include vulnerable populations, and address other components of the health system for a balance. These recommendations are critical to ensuring that future research informed health policies reflect the health needs of the populations and promote equity in healthcare access.

  12. An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition.

    PubMed

    Tsatsaronis, George; Balikas, Georgios; Malakasiotis, Prodromos; Partalas, Ioannis; Zschunke, Matthias; Alvers, Michael R; Weissenborn, Dirk; Krithara, Anastasia; Petridis, Sergios; Polychronopoulos, Dimitris; Almirantis, Yannis; Pavlopoulos, John; Baskiotis, Nicolas; Gallinari, Patrick; Artiéres, Thierry; Ngomo, Axel-Cyrille Ngonga; Heino, Norman; Gaussier, Eric; Barrio-Alvers, Liliana; Schroeder, Michael; Androutsopoulos, Ion; Paliouras, Georgios

    2015-04-30

    This article provides an overview of the first BIOASQ challenge, a competition on large-scale biomedical semantic indexing and question answering (QA), which took place between March and September 2013. BIOASQ assesses the ability of systems to semantically index very large numbers of biomedical scientific articles, and to return concise and user-understandable answers to given natural language questions by combining information from biomedical articles and ontologies. The 2013 BIOASQ competition comprised two tasks, Task 1a and Task 1b. In Task 1a participants were asked to automatically annotate new PUBMED documents with MESH headings. Twelve teams participated in Task 1a, with a total of 46 system runs submitted, and one of the teams performing consistently better than the MTI indexer used by NLM to suggest MESH headings to curators. Task 1b used benchmark datasets containing 29 development and 282 test English questions, along with gold standard (reference) answers, prepared by a team of biomedical experts from around Europe and participants had to automatically produce answers. Three teams participated in Task 1b, with 11 system runs. The BIOASQ infrastructure, including benchmark datasets, evaluation mechanisms, and the results of the participants and baseline methods, is publicly available. A publicly available evaluation infrastructure for biomedical semantic indexing and QA has been developed, which includes benchmark datasets, and can be used to evaluate systems that: assign MESH headings to published articles or to English questions; retrieve relevant RDF triples from ontologies, relevant articles and snippets from PUBMED Central; produce "exact" and paragraph-sized "ideal" answers (summaries). The results of the systems that participated in the 2013 BIOASQ competition are promising. In Task 1a one of the systems performed consistently better from the NLM's MTI indexer. In Task 1b the systems received high scores in the manual evaluation of the "ideal" answers; hence, they produced high quality summaries as answers. Overall, BIOASQ helped obtain a unified view of how techniques from text classification, semantic indexing, document and passage retrieval, question answering, and text summarization can be combined to allow biomedical experts to obtain concise, user-understandable answers to questions reflecting their real information needs.

  13. Can SNOMED CT be squeezed without losing its shape?

    PubMed

    López-García, Pablo; Schulz, Stefan

    2016-09-21

    In biomedical applications where the size and complexity of SNOMED CT become problematic, using a smaller subset that can act as a reasonable substitute is usually preferred. In a special class of use cases-like ontology-based quality assurance, or when performing scaling experiments for real-time performance-it is essential that modules show a similar shape than SNOMED CT in terms of concept distribution per sub-hierarchy. Exactly how to extract such balanced modules remains unclear, as most previous work on ontology modularization has focused on other problems. In this study, we investigate to what extent extracting balanced modules that preserve the original shape of SNOMED CT is possible, by presenting and evaluating an iterative algorithm. We used a graph-traversal modularization approach based on an input signature. To conform to our definition of a balanced module, we implemented an iterative algorithm that carefully bootstraped and dynamically adjusted the signature at each step. We measured the error for each sub-hierarchy and defined convergence as a residual sum of squares <1. Using 2000 concepts as an initial signature, our algorithm converged after seven iterations and extracted a module 4.7 % the size of SNOMED CT. Seven sub-hierarhies were either over or under-represented within a range of 1-8 %. Our study shows that balanced modules from large terminologies can be extracted using ontology graph-traversal modularization techniques under certain conditions: that the process is repeated a number of times, the input signature is dynamically adjusted in each iteration, and a moderate under/over-representation of some hierarchies is tolerated. In the case of SNOMED CT, our results conclusively show that it can be squeezed to less than 5 % of its size without any sub-hierarchy losing its shape more than 8 %, which is likely sufficient in most use cases.

  14. Evaluation of Acoustic Emission NDE of Composite Crew Module Service Module/Alternate Launch Abort System (CCM SM/ALAS) Test Article Failure Tests

    NASA Technical Reports Server (NTRS)

    Horne, Michael R.; Madaras, Eric I.

    2010-01-01

    Failure tests of CCM SM/ALAS (Composite Crew Module Service Module / Alternate Launch Abort System) composite panels were conducted during July 10, 2008 and July 24, 2008 at Langley Research Center. This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests.

  15. Factors affecting the effectiveness of biomedical document indexing and retrieval based on terminologies.

    PubMed

    Dinh, Duy; Tamine, Lynda; Boubekeur, Fatiha

    2013-02-01

    The aim of this work is to evaluate a set of indexing and retrieval strategies based on the integration of several biomedical terminologies on the available TREC Genomics collections for an ad hoc information retrieval (IR) task. We propose a multi-terminology based concept extraction approach to selecting best concepts from free text by means of voting techniques. We instantiate this general approach on four terminologies (MeSH, SNOMED, ICD-10 and GO). We particularly focus on the effect of integrating terminologies into a biomedical IR process, and the utility of using voting techniques for combining the extracted concepts from each document in order to provide a list of unique concepts. Experimental studies conducted on the TREC Genomics collections show that our multi-terminology IR approach based on voting techniques are statistically significant compared to the baseline. For example, tested on the 2005 TREC Genomics collection, our multi-terminology based IR approach provides an improvement rate of +6.98% in terms of MAP (mean average precision) (p<0.05) compared to the baseline. In addition, our experimental results show that document expansion using preferred terms in combination with query expansion using terms from top ranked expanded documents improve the biomedical IR effectiveness. We have evaluated several voting models for combining concepts issued from multiple terminologies. Through this study, we presented many factors affecting the effectiveness of biomedical IR system including term weighting, query expansion, and document expansion models. The appropriate combination of those factors could be useful to improve the IR performance. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Implementation and management of a biomedical observation dictionary in a large healthcare information system

    PubMed Central

    Vandenbussche, Pierre-Yves; Cormont, Sylvie; André, Christophe; Daniel, Christel; Delahousse, Jean; Charlet, Jean; Lepage, Eric

    2013-01-01

    Objective This study shows the evolution of a biomedical observation dictionary within the Assistance Publique Hôpitaux Paris (AP-HP), the largest European university hospital group. The different steps are detailed as follows: the dictionary creation, the mapping to logical observation identifier names and codes (LOINC), the integration into a multiterminological management platform and, finally, the implementation in the health information system. Methods AP-HP decided to create a biomedical observation dictionary named AnaBio, to map it to LOINC and to maintain the mapping. A management platform based on methods used for knowledge engineering has been put in place. It aims at integrating AnaBio within the health information system and improving both the quality and stability of the dictionary. Results This new management platform is now active in AP-HP. The AnaBio dictionary is shared by 120 laboratories and currently includes 50 000 codes. The mapping implementation to LOINC reaches 40% of the AnaBio entries and uses 26% of LOINC records. The results of our work validate the choice made to develop a local dictionary aligned with LOINC. Discussion and Conclusions This work constitutes a first step towards a wider use of the platform. The next step will support the entire biomedical production chain, from the clinician prescription, through laboratory tests tracking in the laboratory information system to the communication of results and the use for decision support and biomedical research. In addition, the increase in the mapping implementation to LOINC ensures the interoperability allowing communication with other international health institutions. PMID:23635601

  17. Design of EPON far-end equipment based on FTTH

    NASA Astrophysics Data System (ADS)

    Feng, Xiancheng; Yun, Xiang

    2008-12-01

    Now, most favors fiber access is mainly the EPON fiber access system. Inheriting from the low cost of Ethernet, usability and bandwidth of optical network, EPON technology is one of the best technologies in fiber access and is adopted by the carriers all over the world widely. According to the scheme analysis to FTTH fan-end equipment, hardware design of ONU is proposed in this paper. The FTTH far-end equipment software design deference modulation design concept, it divides the software designment into 5 function modules: the module of low-layer driver, the module of system management, the module of master/slave communication, and the module of main/Standby switch and the module of command line. The software flow of the host computer is also analyzed. Finally, test is made for Ethernet service performance of FTTH far-end equipment, E1 service performance and the optical path protection switching, and so on. The results of test indicates that all the items are accordance with technical request of far-end ONU equipment and possess good quality and fully reach the requirement of telecommunication level equipment. The far-end equipment of FTTH divides into several parts based on the function: the control module, the exchange module, the UNI interface module, the ONU module, the EPON interface module, the network management debugging module, the voice processing module, the circuit simulation module, the CATV module. In the downstream direction, under the protect condition, we design 2 optical modules. The system can set one group optical module working and another group optical module closure when it is initialized. When the optical fiber line is cut off, the LOS warning comes out. It will cause MUX to replace another group optical module, simultaneously will reset module 3701/3711 and will make it again test the distance, and will give the plug board MPC850 report through the GPIO port. During normal mode, the downstream optical signal is transformed into the electrical signal by the optical module. In the upstream direction, the upstream Ethernet data is retransmitted through the exchange chip BCM5380 to the GMII/MII in module 3701/3711, and then is transmitted to EPON port. The 2MB data are transformed the Ethernet data packet in the plug board TDM, then it's transmitted to the interface MII of the module 3701/3711. The software design of FTTH far-end equipment compiles with modulation design concept. According to the system realization duty, the software is divided into 5 function modules: low-level driver module, system management module, master/slave communication module, the man/Standby switch module and the command line module. The FTTH far-end equipment test, is mainly the Ethernet service performance test, E1 service performance test and the optical path protection switching test and so on the key specification test.

  18. NASA Tech Briefs, May 2009

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Topics covered include: Valve-"Health"-Monitoring System; Microstrip Antenna for Remote Sensing of Soil Moisture and Sea Surface Salinity; Biomedical Wireless Ambulatory Crew Monitor; Wireless Avionics Packet to Support Fault Tolerance for Flight Applications; Aerobot Autonomy Architecture; Submillimeter Confocal Imaging Active Module; Traveling-Wave Maser for 32 GHz; System Synchronizes Recordings from Separated Video Cameras; Piecewise-Planar Parabolic Reflectarray Antenna; Reducing Interference in ATC Voice Communication; EOS MLS Level 1B Data Processing, Version 2.2; Auto-Generated Semantic Processing Services; Geospatial Authentication; Maneuver Automation Software; Event Driven Messaging with Role-Based Subscriptions; Estimating Relative Positions of Outer-Space Structures; Fabricating PFPE Membranes for Capillary Electrophoresis; Linear Actuator Has Long Stroke and High Resolution; Installing a Test Tap on a Metal Battery Case; Fabricating PFPE Membranes for Microfluidic Valves and Pumps; Room-Temperature-Cured Copolymers for Lithium Battery Gel Electrolytes; Catalysts for Efficient Production of Carbon Nanotubes; Amorphous Silk Fibroin Membranes for Separation of CO2; "Zero-Mass" Noninvasive Pressure Transducers; Radial-Electric-Field Piezoelectric Diaphragm Pumps; Ejector-Enhanced, Pulsed, Pressure-Gain Combustor; Suppressing Ghost Diffraction in E-Beam-Written Gratings; Target-Tracking Camera for a Metrology System; Polarimetric Imaging using Two Photoelastic Modulators; Miniature Wide-Angle Lens for Small-Pixel Electronic Camera; Modal Filters for Infrared Interferometry; Mo(3)Sb(7-x)Te(x) for Thermoelectric Power Generation; Two-Dimensional Quantum Model of a Nanotransistor; Scanning Miniature Microscopes without Lenses; Manipulating Neutral Atoms in Chip-Based Magnetic Traps; Expansion Compression Contacts for Thermoelectric Legs; Processing Electromyographic Signals to Recognize Words; Physical Principle for Generation of Randomness; DSN Beowulf Cluster-Based VLBI Correlator; Hybrid NN/SVM Computational System for Optimizing Designs; Criteria for Modeling in LES of Multicomponent Fuel Flow; Computerized Machine for Cutting Space Shuttle Thermal Tiles; Orbiting Depot and Reusable Lander for Lunar Transportation; FPGA-Based Networked Phasemeter for a Heterodyne Interferometer; Aquarius Digital Processing Unit; Three-Dimensional Optical Coherence Tomography; Benchtop Antigen Detection Technique using Nanofiltration and Fluorescent Dyes; Isolation of Precursor Cells from Waste Solid Fat Tissue; Identification of Bacteria and Determination of Biological Indicators; Further Development of Scaffolds for Regeneration of Nerves; Chemically Assisted Photocatalytic Oxidation System; Use of Atomic Oxygen for Increased Water Contact Angles of Various Polymers for Biomedical Applications; Crashworthy Seats Would Afford Superior Protection; Open-Access, Low-Magnetic-Field MRI System for Lung Research; Microfluidic Mixing Technology for a Universal Health Sensor; Microfluidic Extraction of Biomarkers using Water as Solvent; Microwell Arrays for Studying Many Individual Cells; Droplet-Based Production of Liposomes; and Identifying and Inactivating Bacterial Spores

  19. Effects of gamma ray and electron beam irradiation on the mechanical, thermal, structural and physicochemical properties of poly (ether-block-amide) thermoplastic elastomers.

    PubMed

    Murray, Kieran A; Kennedy, James E; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L

    2013-01-01

    Both gamma ray and electron beam irradiation are widely used as a means of medical device sterilisation. However, it is known that the radiation produced by both processes can lead to undesirable changes within biomedical polymers. The main objective of this research was to conduct a comparative study on the two key radiosterilisation methods (gamma ray and electron beam) in order to identify the more detrimental process in terms of the mechanical, structural, chemical and thermal properties of a common biomedical grade polymer. Poly (ether-block-amide) (PEBA) was prepared by injection moulding ASTM testing specimens and these were exposed to an extensive range of irradiation doses (5-200 kGy) in an air atmosphere. The effect of varying the irradiation dose concentration on the resultant PEBA properties was apparent. For instance, the tensile strength, percentage elongation at break and shore D hardness can be increased/decreased by controlling the aforementioned criteria. In addition, it was observed that the stiffness of the material increased with incremental irradiation doses as anticipated. Melt flow index demonstrated a dramatic increase in the melting strength of the material indicating a sharp increase in molecular weight. Conversely, modulated differential scanning calorimetry established that there were no significant alterations to the thermal transitions. Noteworthy trends were observed for the dynamic frequency sweeps of the material, where the crosslink density increased according to an increase in electron beam irradiation dose. Trans-vinylene unsaturations and the carbonyl group concentration increased with an increment in irradiation dose for both processes when observed by FTIR. The relationship between the irradiation dose rate, mechanical properties and the subsequent surface properties of PEBA material is further elucidated throughout this paper. This study revealed that the gamma irradiation process produced more adverse effects in the PEBA material in contrast to the electron beam irradiation process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. New graduate students' baseline knowledge of the responsible conduct of research.

    PubMed

    Heitman, Elizabeth; Olsen, Cara H; Anestidou, Lida; Bulger, Ruth Ellen

    2007-09-01

    To assess (1) new biomedical science graduate students' baseline knowledge of core concepts and standards in responsible conduct of research (RCR), (2) differences in graduate students' baseline knowledge overall and across the Office of Research Integrity's nine core areas, and (3) demographic and educational factors in these differences. A 30-question, computer-scored multiple-choice test on core concepts and standards of RCR was developed following content analysis of 20 United States-published RCR texts, and combined with demographic questions on undergraduate experience with RCR developed from graduate student focus groups. Four hundred two new graduate students at three health science universities were recruited for Scantron and online testing before beginning RCR instruction. Two hundred fifty-one of 402 eligible trainees (62%) at three universities completed the test; scores ranged from 26.7% to 83.3%, with a mean of 59.5%. Only seven (3%) participants scored 80% or above. Students who received their undergraduate education outside the United States scored significantly lower (mean 52.0%) than those with U.S. bachelor's degrees (mean 60.5%, P < .001). Participants with prior graduate biomedical or health professions education scored marginally higher than new students, but both groups' mean scores were well below 80%. The mean score of 16 participants who reported previous graduate-level RCR instruction was 67.7%. Participants' specific knowledge varied, but overall scores were universally low. New graduate biomedical sciences students have inadequate and inconsistent knowledge of RCR, irrespective of their prior education or experience. Incoming trainees with previous graduate RCR education may also have gaps in core knowledge.

  1. Proposed acceptance, qualification, and characterization tests for thin-film PV modules

    NASA Technical Reports Server (NTRS)

    Waddington, D.; Mrig, L.; Deblasio, R.; Ross, R.

    1988-01-01

    Details of a proposed test program for PV thin-film modules which the Department of Energy has directed the Solar Energy Research Institute (SERI) to prepare are presented. Results of one of the characterization tests that SERI has performed are also presented. The objective is to establish a common approach to testing modules that will be acceptable to both users and manufacturers. The tests include acceptance, qualification, and characterization tests. Acceptance tests verify that randomly selected modules have similar characteristics. Qualification tests are based on accelerated test methods designed to simulate adverse conditions. Characterization tests provide data on performance in a predefined environment.

  2. EVA Physiology, Systems and Performance [EPSP] Project

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.

    2010-01-01

    This viewgraph presentation gives a general overview of the biomedical and technological challenges of Extravehicular Activity (EVA). The topics covered include: 1) Prebreathe Protocols; 2) Lunar Suit Testing and Development; and 3) Lunar Electric Rover and Exploration Operations Concepts.

  3. Biomedical programs operations plans

    NASA Technical Reports Server (NTRS)

    Walbrecher, H. F.

    1974-01-01

    Operational guidelines for the space shuttle life sciences payloads are presented. An operational assessment of the medical experimental altitude test for Skylab, and Skylab life sciences documentation are discussed along with the operations posture and collection of space shuttle operational planning data.

  4. Improving Validity of Informed Consent for Biomedical Research in Zambia Using a Laboratory Exposure Intervention

    PubMed Central

    Zulu, Joseph Mumba; Lisulo, Mpala Mwanza; Besa, Ellen; Kaonga, Patrick; Chisenga, Caroline C.; Chomba, Mumba; Simuyandi, Michelo; Banda, Rosemary; Kelly, Paul

    2014-01-01

    Background Complex biomedical research can lead to disquiet in communities with limited exposure to scientific discussions, leading to rumours or to high drop-out rates. We set out to test an intervention designed to address apprehensions commonly encountered in a community where literacy is uncommon, and where complex biomedical research has been conducted for over a decade. We aimed to determine if it could improve the validity of consent. Methods Data were collected using focus group discussions, key informant interviews and observations. We designed an intervention that exposed participants to a detailed demonstration of laboratory processes. Each group was interviewed twice in a day, before and after exposure to the intervention in order to assess changes in their views. Results Factors that motivated people to participate in invasive biomedical research included a desire to stay healthy because of the screening during the recruitment process, regular advice from doctors, free medical services, and trust in the researchers. Inhibiting factors were limited knowledge about samples taken from their bodies during endoscopic procedures, the impact of endoscopy on the function of internal organs, and concerns about the use of biomedical samples. The belief that blood can be used for Satanic practices also created insecurities about drawing of blood samples. Further inhibiting factors included a fear of being labelled as HIV positive if known to consult heath workers repeatedly, and gender inequality. Concerns about the use and storage of blood and tissue samples were overcome by a laboratory exposure intervention. Conclusion Selecting a group of members from target community and engaging them in a laboratory exposure intervention could be a useful tool for enhancing specific aspects of consent for biomedical research. Further work is needed to determine the extent to which improved understanding permeates beyond the immediate group participating in the intervention. PMID:25254378

  5. Understanding the impact of grain structure in austenitic stainless steel from a nanograined regime to a coarse-grained regime on osteoblast functions using a novel metal deformation-annealing sequence.

    PubMed

    Misra, R D K; Nune, C; Pesacreta, T C; Somani, M C; Karjalainen, L P

    2013-04-01

    Metallic biomedical devices with nanometer-sized grains (NGs) provide surfaces that are different from their coarse-grained (CG) (tens of micrometer) counterparts in terms of increased fraction of grain boundaries (NG>50%; CG<2-3%). The novel concept of 'phase-reversion' involving a controlled deformation-annealing sequence is used to obtain a wide range of grain structures, starting from the NG regime to the CG regime, to demonstrate that the grain structure significantly impacts cellular interactions and osteoblast functions. The uniqueness of this concept is the ability to address the critical aspect of cellular activity in nanostructured materials, because a range of grain sizes from NG to CG are obtained in a single material using an identical set of parameters. This is in addition to a high strength/weight ratio and superior wear and corrosion resistance. These multiple attributes are important for the long-term stability of biomedical devices. Experiments on the interplay between grain structure from the NG regime to CG in austenitic stainless steel on osteoblast functions indicated that cell attachment, proliferation, viability, morphology and spread varied with grain size and were favorably modulated on the NG and ultrafine-grain structure. Furthermore, immunofluorescence studies demonstrated stronger vinculin signals associated with actin stress fibers in the outer regions of the cells and cellular extensions on the NG surface. The differences in the cellular response with change in grain structure are attributed to grain structure and degree of hydrophilicity. The study lays the foundation for a new branch of nanostructured materials for biomedical applications. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Optimizing Ti:Sapphire laser for quantitative biomedical imaging

    NASA Astrophysics Data System (ADS)

    James, Jeemol; Thomsen, Hanna; Hanstorp, Dag; Alemán Hérnandez, Felipe Ademir; Rothe, Sebastian; Enger, Jonas; Ericson, Marica B.

    2018-02-01

    Ti:Sapphire lasers are powerful tools in the field of scientific research and industry for a wide range of applications such as spectroscopic studies and microscopic imaging where tunable near-infrared light is required. To push the limits of the applicability of Ti:Sapphire lasers, fundamental understanding of the construction and operation is required. This paper presents two projects, (i) dealing with the building and characterization of custom built tunable narrow linewidth Ti:Sapphire laser for fundamental spectroscopy studies; and the second project (ii) the implementation of a fs-pulsed commercial Ti:Sapphire laser in an experimental multiphoton microscopy platform. For the narrow linewidth laser, a gold-plated diffraction grating with a Littrow geometry was implemented for highresolution wavelength selection. We demonstrate that the laser is tunable between 700 to 950 nm, operating in a pulsed mode with a repetition rate of 1 kHz and maximum average output power around 350 mW. The output linewidth was reduced from 6 GHz to 1.5 GHz by inserting an additional 6 mm thick etalon. The bandwidth was measured by means of a scanning Fabry Perot interferometer. Future work will focus on using a fs-pulsed commercial Ti:Sapphire laser (Tsunami, Spectra physics), operating at 80 MHz and maximum average output power around 1 W, for implementation in an experimental multiphoton microscopy set up dedicated for biomedical applications. Special focus will be on controlling pulse duration and dispersion in the optical components and biological tissue using pulse compression. Furthermore, time correlated analysis of the biological samples will be performed with the help of time correlated single photon counting module (SPCM, Becker&Hickl) which will give a novel dimension in quantitative biomedical imaging.

  7. The 1.06 micrometer wideband laser modulator: Fabrication and life testing

    NASA Technical Reports Server (NTRS)

    Teague, J. R.

    1975-01-01

    The design, fabrication, testing and delivery of an optical modulator which will operate with a mode-locked Nd:YAG laser at 1.06 micrometers were performed. The system transfers data at a nominal rate of 400 Mbps. This wideband laser modulator can transmit either Pulse Gated Binary Modulation (PGBM) or Pulse Polarization Binary Modulation (PPBM) formats. The laser beam enters the modulator and passes through both crystals; approximately 1% of the transmitted beam is split from the main beam and analyzed for the AEC signal; the remaining part of the beam exits the modulator. The delivered modulator when initially aligned and integrated with laser and electronics performed very well. The optical transmission was 69.5%. The static extinction ratio was 69:1. A 1000 hour life test was conducted with the delivered modulator. A 63 bit pseudorandom code signal was used as a driver input. At the conclusion of the life test the modulator optical transmission was 71.5% and the static extinction ratio 65:1.

  8. [Results of testing of MINISKAN mobile gamma-ray camera and specific features of its design].

    PubMed

    Utkin, V M; Kumakhov, M A; Blinov, N N; Korsunskiĭ, V N; Fomin, D K; Kolesnikova, N V; Tultaev, A V; Nazarov, A A; Tararukhina, O B

    2007-01-01

    The main results of engineering, biomedical, and clinical testing of MINISKAN mobile gamma-ray camera are presented. Specific features of the camera hardware and software, as well as the main technical specifications, are described. The gamma-ray camera implements a new technology based on reconstructive tomography, aperture encoding, and digital processing of signals.

  9. Design and development of low cost polyurethane biopolymer based on castor oil and glycerol for biomedical applications.

    PubMed

    Tan, A C W; Polo-Cambronell, B J; Provaggi, E; Ardila-Suárez, C; Ramirez-Caballero, G E; Baldovino-Medrano, V G; Kalaskar, D M

    2018-02-01

    In the current study, we present the synthesis of novel low cost bio-polyurethane compositions with variable mechanical properties based on castor oil and glycerol for biomedical applications. A detailed investigation of the physicochemical properties of the polymer was carried out by using mechanical testing, ATR-FTIR, and X-ray photoelectron spectroscopy (XPS). Polymers were also tested in short term in-vitro cell culture with human mesenchymal stem cells to evaluate their biocompatibility for potential applications as biomaterial. FTIR analysis confirmed the synthesis of castor oil and glycerol based PU polymers. FTIR also showed that the addition of glycerol as co-polyol increases crosslinking within the polymer backbone hence enhancing the bulk mechanical properties of the polymer. XPS data showed that glycerol incorporation leads to an enrichment of oxidized organic species on the surface of the polymers. Preliminary investigation into in vitro biocompatibility showed that serum protein adsorption can be controlled by varying the glycerol content with polymer backbone. An alamar blue assay looking at the metabolic activity of the cells indicated that castor oil based PU and its variants containing glycerol are non-toxic to the cells. This study opens an avenue for using low cost bio-polyurethane based on castor oil and glycerol for biomedical applications. © 2017 The Authors Biopolymers Published by Wiley Periodicals, Inc.

  10. Large-scale online semantic indexing of biomedical articles via an ensemble of multi-label classification models.

    PubMed

    Papanikolaou, Yannis; Tsoumakas, Grigorios; Laliotis, Manos; Markantonatos, Nikos; Vlahavas, Ioannis

    2017-09-22

    In this paper we present the approach that we employed to deal with large scale multi-label semantic indexing of biomedical papers. This work was mainly implemented within the context of the BioASQ challenge (2013-2017), a challenge concerned with biomedical semantic indexing and question answering. Our main contribution is a MUlti-Label Ensemble method (MULE) that incorporates a McNemar statistical significance test in order to validate the combination of the constituent machine learning algorithms. Some secondary contributions include a study on the temporal aspects of the BioASQ corpus (observations apply also to the BioASQ's super-set, the PubMed articles collection) and the proper parametrization of the algorithms used to deal with this challenging classification task. The ensemble method that we developed is compared to other approaches in experimental scenarios with subsets of the BioASQ corpus giving positive results. In our participation in the BioASQ challenge we obtained the first place in 2013 and the second place in the four following years, steadily outperforming MTI, the indexing system of the National Library of Medicine (NLM). The results of our experimental comparisons, suggest that employing a statistical significance test to validate the ensemble method's choices, is the optimal approach for ensembling multi-label classifiers, especially in contexts with many rare labels.

  11. Patterning of polymer nanofiber meshes by electrospinning for biomedical applications

    PubMed Central

    Neves, Nuno M; Campos, Rui; Pedro, Adriano; Cunha, José; Macedo, Francisco; Reis, Rui L

    2007-01-01

    The end-product of the electrospinning process is typically a randomly aligned fiber mesh or membrane. This is a result of the electric field generated between the drop of polymer solution at the needle and the collector. The developed electric field causes the stretching of the fibers and their random deposition. By judicious selection of the collector architecture, it is thus possible to develop other morphologies on the nanofiber meshes. The aim of this work is to prepare fiber meshes using various patterned collectors with specific dimensions and designs and to evaluate how those patterns can affect the properties of the meshes relevant to biomedical applications. This study aims at verifying whether it is possible to control the architecture of the fiber meshes by tailoring the geometry of the collector. Three different metallic collector topographies are used to test this hypothesis. Electrospun nonwoven patterned meshes of polyethylene oxide (PEO) and poly(ε-capro-lactone) (PCL) were successfully prepared. Those fiber meshes were analyzed by scanning electron microscopy (SEM). Both mechanical properties of the meshes and cell contacting experiments were performed to test the effect of the produced patterns over the properties of the meshes relevant for biomedical applications. The present study will evaluate cell adhesion sensitivity to the patterns generated and the effect of those patterns on the tensile properties of the fiber meshes. PMID:18019842

  12. Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg-Nd-Zn-Zr alloy with different extrusion ratios.

    PubMed

    Zhang, Xiaobo; Yuan, Guangyin; Niu, Jialin; Fu, Penghuai; Ding, Wenjiang

    2012-05-01

    Recently, commercial magnesium (Mg) alloys containing Al (such as AZ31 and AZ91) or Y (such as WE43) have been studied extensively for biomedical applications. However, these Mg alloys were developed as structural materials, not as biomaterials. In this study, a patented Mg-Nd-Zn-Zr (denoted as JDBM) alloy was investigated as a biomedical material. The microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of the alloy extruded at 320 °C with extrusion ratios of 8 and 25 were studied. The results show that the lower extrusion ratio results in finer grains and higher strength, but lower elongation, while the higher extrusion ratio results in coarser grains and lower strength, but higher elongation. The biocorrosion behavior of the alloy was investigated by hydrogen evolution and mass loss tests in simulated body fluid (SBF). The results show that the alloy extruded with lower extrusion ratio exhibits better corrosion resistance. The corrosion mode of the alloy is uniform corrosion, which is favorable for biomedical applications. Aging treatment on the as-extruded alloy improves the strength and decreases the elongation at room temperature, and has a small positive influence on the corrosion resistance in SBF. The cytotoxicity test indicates that the as-extruded JDBM alloy meets the requirement of cell toxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Galleria mellonella L. as model organism used in biomedical and other studies

    PubMed

    Mikulak, Ewa; Gliniewicz, Aleksandra; Przygodzka, Marta; Solecka, Jolanta

    2018-01-01

    Comparative of studies of genomes of invertebrates and humans shows that in invertebrates including insects there are numerous homologues of human’s genes coding proteins involved in recognition pathogens or transduction of the expression signal. Thanks this features, insects such as Drosophila melanogaster M., Blattella germanica L., Culex quinquefasciatus S., Bombyx mori L. and Galleria mellonella L. are used in studies on virulence, host resistance or in assessing the in vivo efficacy of antibiotics, fungicides and other biologically active substances. G. mellonella (greater wax moth) are rapid growth, high fertility, size and short life cycle insects- these are features that should be met by good model organisms; therefore the number of researches with larvae of wax moth as the model organism for pathogens assays grows from year to year. This is showing by number of scientific publications about infection’s model of G. mellonella. An obstacle in the wide use of G. mellonella caterpillars as a model in biomedical research is the lack of standardized breeding of these insects, which would guarantee the reproducibility of the obtained results and lack of procedures and standards according to which biomedical research will be carried out. Despite this, the G. mellonella model can be used in the initial analysis before conventional in vivo tests and to reduce the number of tests performed on mammals.

  14. Statistics in biomedical laboratory and clinical science: applications, issues and pitfalls.

    PubMed

    Ludbrook, John

    2008-01-01

    This review is directed at biomedical scientists who want to gain a better understanding of statistics: what tests to use, when, and why. In my view, even during the planning stage of a study it is very important to seek the advice of a qualified biostatistician. When designing and analyzing a study, it is important to construct and test global hypotheses, rather than to make multiple tests on the data. If the latter cannot be avoided, it is essential to control the risk of making false-positive inferences by applying multiple comparison procedures. For comparing two means or two proportions, it is best to use exact permutation tests rather then the better known, classical, ones. For comparing many means, analysis of variance, often of a complex type, is the most powerful approach. The correlation coefficient should never be used to compare the performances of two methods of measurement, or two measures, because it does not detect bias. Instead the Altman-Bland method of differences or least-products linear regression analysis should be preferred. Finally, the educational value to investigators of interaction with a biostatistician, before, during and after a study, cannot be overemphasized. (c) 2007 S. Karger AG, Basel.

  15. In vitro platelet activation, aggregation and platelet-granulocyte complex formation induced by surface modified single-walled carbon nanotubes.

    PubMed

    Fent, János; Bihari, Péter; Vippola, Minnamari; Sarlin, Essi; Lakatos, Susan

    2015-08-01

    Surface modification of single-walled carbon nanotubes (SWCNTs) such as carboxylation, amidation, hydroxylation and pegylation is used to reduce the nanotube toxicity and render them more suitable for biomedical applications than their pristine counterparts. Toxicity can be manifested in platelet activation as it has been shown for SWCNTs. However, the effect of various surface modifications on the platelet activating potential of SWCNTs has not been tested yet. In vitro platelet activation (CD62P) as well as the platelet-granulocyte complex formation (CD15/CD41 double positivity) in human whole blood were measured by flow cytometry in the presence of 0.1mg/ml of pristine or various surface modified SWCNTs. The effect of various SWCNTs was tested by whole blood impedance aggregometry, too. All tested SWCNTs but the hydroxylated ones activate platelets and promote platelet-granulocyte complex formation in vitro. Carboxylated, pegylated and pristine SWCNTs induce whole blood aggregation as well. Although pegylation is preferred from biomedical point of view, among the samples tested by us pegylated SWCNTs induced far the most prominent activation and a well detectable aggregation of platelets in whole blood. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The BioMedical Admissions Test for medical student selection: issues of fairness and bias.

    PubMed

    Emery, Joanne L; Bell, John F; Vidal Rodeiro, Carmen L

    2011-01-01

    The BioMedical Admissions Test (BMAT) forms part of the undergraduate medical admission process at the University of Cambridge. The fairness of admissions tests is an important issue. Aims were to investigate the relationships between applicants' background variables and BMAT scores, whether they were offered a place or rejected and, for those admitted, performance on the first year course examinations. Multilevel regression models were employed with data from three combined applicant cohorts. Admission rates for different groups were investigated with and without controlling for BMAT performance. The fairness of the BMAT was investigated by determining, for those admitted, whether scores predicted examination performance equitably. Despite some differences in applicants' BMAT performance (e.g. by school type and gender), BMAT scores predicted mean examination marks equitably for all background variables considered. The probability of achieving a 1st class examination result, however, was slightly under-predicted for those admitted from schools and colleges entering relatively few applicants. Not all differences in admission rates were accounted for by BMAT performance. However, the test constitutes only one part of a compensatory admission system in which other factors, such as interview performance, are important considerations. Results are in support of the equity of the BMAT.

  17. Understanding the Structure-Function Relationships of Dendrimers in Environmental and Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Wang, Bo

    We are living an era wherein nanoparticles (NPs) have been widely applied in our lives. Dendrimers are special polymeric NPs with unique physiochemical properties, which have been intensely explored for a variety of applications. Current studies on dendrimers are bottlenecked by insufficient understandings of their structure and dynamic behaviors from a molecular level. With primarily computational approaches supplemented by many other experimental technics, this dissertation aims to establish structure-function relationships of dendrimers in environmental and biomedical applications. More specifically, it thoroughly investigates the interactions between dendrimers and different biomolecules including carbon-based NPs, metal-based NPs, and proteins/peptides. Those results not only provide profound knowledge for evaluating the impacts of dendrimers on environmental and biological systems but also facilitate designing next-generation functional polymeric nanomaterials. The dissertation is organized as following. Chapter 1 provides an overview of current progresses on dendrimer studies, where methodology of Discrete Molecular Dynamics (DMD), my major research tool, is also introduced. Two directions of utilizing dendrimers will be discussed in following chapters. Chapter 2 will focus on environmental applications of dendrimers, where two back-to-back studies are presented. I will start from describing some interesting observations from experiments i.e. dendrimers dispersed model oil molecules. Then, I will reveal why surface chemistries of dendrimers lead to different remediation efficiencies by computational modelings. Finally, I will demonstrate different scenarios of dendrimer-small molecules association. Chapter 3 is centered on dendrimers in the biomedical applications including two subtopics. In the first topic, we will discuss dendrimers as surfactants that modulating the interactions between proteins and NPs. Some fundamental concepts regarding to NPs-Protein interactions such as NP-protein corona are also explained. In the following topic, I will look into amyloid protein aggregation mediated by dendrimers, which is of high expectations for combating amyloidogenic-related diseases. Chapter 4 concludes the whole dissertation. It also briefly introduces my ongoing projects and future research directions about dendrimers. This dissertation has presented a systematic study of dendrimers in environmental and biomedical applications which might provide valuable information for future dendrimer design thus benefit the nanobiotechnology.

  18. The impact of anticipated HIV stigma on delays in HIV testing behaviors: findings from a community-based sample of men who have sex with men and transgender women in New York City.

    PubMed

    Golub, Sarit A; Gamarel, Kristi E

    2013-11-01

    Treatment as prevention (TaSP) is a critical component of biomedical interventions to prevent HIV transmission. However, its success is predicated on testing and identifying undiagnosed individuals to ensure linkage and retention in HIV care. Research has examined the impact of HIV-associated stigma on HIV-positive individuals, but little work has explored how anticipated HIV stigma-the expectation of rejection or discrimination against by others in the event of seroconversion-may serve as a barrier to HIV testing behaviors. This study examined the association between anticipated stigma and HIV testing behaviors among a sample of 305 men who have sex with men (MSM) and transgender women living in New York City. Participants' mean age was 33.0; 65.5% were racial/ethnic minority; and 50.2% earned <$20,000 per year. Overall, 32% of participants had not had an HIV test in the past 6 months. Anticipated stigma was negatively associated with risk perception. In multivariate models, anticipated stigma, risk perception, and younger age were significant predictors of HIV testing behaviors. Anti-HIV stigma campaigns targeting HIV-negative individuals may have the potential to significantly impact social norms around HIV testing and other biomedical strategies, such pre-exposure prophylaxis, at a critical moment for the redefinition of HIV prevention.

  19. Block 4 solar cell module design and test specification for intermediate load center applications

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Requirements for performance of terrestrial solar cell modules intended for use in various test applications are established. During the 1979-80 time period, such applications are expected to be in the 20 to 500 kilowatt size range. A series of characterization and qualification tests necessary to certify the module design for production, and the necessary performance test for acceptance of modules are specified.

  20. Hot-spot qualification testing of concentrator modules

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Sugimura, R. S.; Ross, R. G., Jr.

    1987-01-01

    Results of a study to determine the hot-spot susceptibility of concentrator cells, to provide a hot-spot qualification test for concentrator modules, and to provide guidelines for reducing hot-spot susceptibility are presented. Hot-spot heating occurs in a photovoltaic module when the short-circuit current of a cell is lower than the string operating current, forcing the cell into reverse bias with a concurrent power dissipation. Although the basis for the concentrator-module hot-spot qualification test is the test developed for flat-plate modules, issues such as providing cell illumination introduce additional complexities into the testing procedure. The results indicate that the same general guidelines apply to protecting concentrator modules from hot-spot stressing as apply to flat-plate modules, and recommendations are made on the number of bypass diodes required per given number of series cells per module or source circuit. A method for determining the cell temperature in the laboratory or in the field is discussed.

  1. Environmental testing of CIS based modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willett, D.

    1995-11-01

    This report describes environmental testing of Siemen`s CIS modules. Charts and diagrams are presented on data concerning: temporary power loss of laminated mini-modules; the 50 thermal cycle test; the 10 humidity freeze cycle test; results after 1000 hours of exposure to damp heat; and interconnect test structures in damp heat testing. It is concluded that moisture ingress causes permanent increases in the series resistance of modules, and that improved packaging is needed for better high humidity reliability. Also, dry dark heat caused temporary power losses which were recovered in sunlight.

  2. The Human Volunteer in Military Biomedical Research (Military Medical Ethics. Volume 2, Chapter 19)

    DTIC Science & Technology

    2002-10-01

    was not de- classified until 1975. It applied only to human re- search in the fields of atomic, biological , and/or chemical warfare.11 In 1954 the Army...memo- randum applied to all human research, not only atomic, biological , or chemical testing.11 Even though this memorandum applied only to the Army...first peacetime nuclear weapons tests in the Bikini Atoll, until 1963, when atmospheric test- ing was halted by the Limited Test Ban Treaty, nu

  3. Concentrator hot-spot testing, phase 1

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.

    1987-01-01

    Results of a study to determine the hot-spot susceptibility of concentrator cells, to provide a hot-spot qualification test for concentrator modules, and to provide guidelines for reducing hot-spot susceptibility are presented. Hot-spot heating occurs in a photovoltaic module when the short-circuit current of a cell is lower than the string operating current forcing the cell into reverse bias with a concurrent power dissipation. Although the basis for the concentrator module hot-spot qualification test is the test developed for flat-plate modules, issues, such as providing cell illumination, introduce additional complexities into the testing procedure. The same general guidelines apply for protecting concentrator modules from hot-spot stressing as apply to flat-plate modules. Therefore, recommendations are made on the number of bypass diodes required per given number of series cells per module or source circuit. In addition, a new method for determining the cell temperature in the laboratory or in the field is discussed.

  4. Implantable biomedical devices on bioresorbable substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, John A.; Kim, Dae-Hyeong; Omenetto, Fiorenzo

    Provided herein are implantable biomedical devices and methods of administering implantable biomedical devices, making implantable biomedical devices, and using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment.

  5. Development and testing of advanced fire-resistant photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Sugimura, R. S.; Otth, D. H.; Ross, R. G., Jr.

    1985-01-01

    The evaluation of back-surface materials flammability in order to identify fire resistant module designs is examined. The fire test apparatus, burning-brand test sequence, and spread-of-flame test sequence are described. Video recordings and time-temperature profiles of module back surfaces are utilized to study the flammability failure mechanism and identify high-temperature materials. A table of flammability test results for various module designs is provided. The data reveals that 2-mil kapton, fiberglass cloth coated or impregnated with a material to plug pores, and metal foil back-surface materials achieve class A and B fire-resistance levels, and are applicable for photovoltaic module designs.

  6. Long term thermoelectric module testing system.

    PubMed

    D'Angelo, Jonathan; Hogan, Timothy

    2009-10-01

    Thermoelectric generators can be used for converting waste heat into electric power. Significant interest in developing new materials in recent years has led to the discovery of several promising thermoelectrics, however, there can be considerable challenges in developing the materials into working devices. Testing and feedback is needed at each step to gain valuable information for identification of difficulties, quality of the materials and modules, repeatability in fabrication, and longevity of the devices. This paper describes a long-term module testing system for monitoring the output power of a module over extended testing times. To evaluate the system, we have tested commercially available thermoelectric modules over a one month time period.

  7. Optimizing biomedical science learning in a veterinary curriculum: a review.

    PubMed

    Warren, Amy L; Donnon, Tyrone

    2013-01-01

    As veterinary medical curricula evolve, the time dedicated to biomedical science teaching, as well as the role of biomedical science knowledge in veterinary education, has been scrutinized. Aside from being mandated by accrediting bodies, biomedical science knowledge plays an important role in developing clinical, diagnostic, and therapeutic reasoning skills in the application of clinical skills, in supporting evidence-based veterinary practice and life-long learning, and in advancing biomedical knowledge and comparative medicine. With an increasing volume and fast pace of change in biomedical knowledge, as well as increased demands on curricular time, there has been pressure to make biomedical science education efficient and relevant for veterinary medicine. This has lead to a shift in biomedical education from fact-based, teacher-centered and discipline-based teaching to applicable, student-centered, integrated teaching. This movement is supported by adult learning theories and is thought to enhance students' transference of biomedical science into their clinical practice. The importance of biomedical science in veterinary education and the theories of biomedical science learning will be discussed in this article. In addition, we will explore current advances in biomedical teaching methodologies that are aimed to maximize knowledge retention and application for clinical veterinary training and practice.

  8. FSA field test

    NASA Technical Reports Server (NTRS)

    Jaffe, P.; Weaver, R. W.; Lee, R. E.

    1981-01-01

    The 12 continental remote sites were decommissioned. Testing was consolidated into a five-site network consisting of the four Southern California sites and a new Florida site. 16 kW of new state-of-the-art modules were deployed at the five sites. Testing of the old modules continued at the Goldstone site but as a low-priority item. Array testing of modules is considered. Additional new testing capabilities were added. A battery-powered array data logger is discussed. A final set of failure and degradation data was obtained from the modules.

  9. Preparation of electromechanically active silicone composites and some evaluations of their suitability for biomedical applications.

    PubMed

    Iacob, Mihail; Bele, Adrian; Patras, Xenia; Pasca, Sorin; Butnaru, Maria; Alexandru, Mihaela; Ovezea, Dragos; Cazacu, Maria

    2014-10-01

    Some films based on electromechanically active polymer composites have been prepared. Polydimethylsiloxane-α,ω-diols (PDMSs) having different molecular masses (Mv=60 700 and Mv=44 200) were used as matrix in which two different active fillers were incorporated: titanium dioxide in situ generated from its titanium isopropoxide precursor and silica particles functionalized with polar aminopropyl groups on surface. A reference sample based on simple crosslinked PDMS was also prepared. The composites processed as films were investigated to evaluate their ability to act as efficient electromechanical actuators for potential biomedical application. Thus, the surface morphology of interest for electrodes compliance was analysed by atomic force microscopy. Mechanical and dielectric characteristics were evaluated by tensile tests and dielectric spectroscopy, respectively. Electromechanical actuation responses were measured by interferometry. The biocompatibility of the obtained materials has been verified through tests in vitro and, for valuable films, in vivo. The experimental, clinical and anatomopathological evaluation of the in vivo tested samples did not reveal significant pathological modifications. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Examination of the Structural Response of the Orion European Service Module to Reverberant and Direct Field Acoustic Testing

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Hughes, William O.; Larko, Jeffrey M.; Bittinger, Samantha A.; Le-Plenier, Cyprien; Fogt, Vincent A.; Ngan, Ivan; Thirkettle, Anthony C.; Skinner, Mitch; Larkin, Paul

    2017-01-01

    The NASA Orion Multi-Purpose Crew Vehicle (MPCV), comprised of the Service Module, the Crew Module, and the Launch Abort System, is the next generation human spacecraft designed and built for deep space exploration. Orion will launch on NASAs new heavy-lift rocket, the Space Launch System. The European Space Agency (ESA) is responsible for providing the propulsion sub-assembly of the Service Module to NASA, called the European Service Module (ESM). The ESM is being designed and built by Airbus Safran Launchers for ESA. Traditionally, NASA has utilized reverberant acoustic testing for qualification of spaceflight hardware. The ESM Structural Test Article (E-STA) was tested at the NASA Plum Brook Stations (PBS) Reverberant Acoustic Test Facility in April-May 2016. However, Orion is evaluating an alternative acoustic test method, using direct field acoustic excitation, for the MPCVs Service Module and Crew Module. Lockheed Martin is responsible for the Orion proof-of-concept direct field acoustic test program. The E-STA was exposed to direct field acoustic testing at NASA PBS in February 2017. This paper compares the dynamic response of the E-STA structure and its components to both the reverberant and direct field acoustic test excitations. Advantages and disadvantages of direct field acoustic test excitation method are discussed.

  11. NASA CF6 jet engine diagnostics program: Long-term CF6-6D low-pressure turbine deterioration

    NASA Technical Reports Server (NTRS)

    Smith, J. J.

    1979-01-01

    Back-to-back performance tests were run on seven airline low pressure turbine (LPT) modules and four new CF6-6D modules. Back-to-back test cell runs, in which an airline LPT module was directly compared to a new production module, were included. The resulting change, measured in fuel burn, equaled the level of LPT module deterioration. Three of the LPT modules were analytically inspected followed by a back-to-back test cell run to evaluate current refurbishment techniques.

  12. Design, fabrication, test qualification and price analysis of a third generation solar cell module

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The design, fabrication, test, and qualification of a third generation intermediate load solar cell module are presented. A technical discussion of the detailed module design, preliminary design review, design modifications, and environmental testing are included. A standardized pricing system is utilized to establish the cost competitiveness of this module design.

  13. Test-Enhanced Learning in an Immunology and Infectious Disease Medicinal Chemistry/Pharmacology Course.

    PubMed

    Hernick, Marcy

    2015-09-25

    Objective. To develop a series of active-learning modules that would improve pharmacy students' performance on summative assessments. Design. A series of optional online active-learning modules containing questions with multiple formats for topics in a first-year (P1) course was created using a test-enhanced learning approach. A subset of module questions was modified and included on summative assessments. Assessment. Student performance on module questions improved with repeated attempts and was predictive of student performance on summative assessments. Performance on examination questions was higher for students with access to modules than for those without access to modules. Module use appeared to have the most impact on low performing students. Conclusion. Test-enhanced learning modules with immediate feedback provide pharmacy students with a learning tool that improves student performance on summative assessments and also may improve metacognitive and test-taking skills.

  14. Test-Enhanced Learning in an Immunology and Infectious Disease Medicinal Chemistry/Pharmacology Course

    PubMed Central

    2015-01-01

    Objective. To develop a series of active-learning modules that would improve pharmacy students’ performance on summative assessments. Design. A series of optional online active-learning modules containing questions with multiple formats for topics in a first-year (P1) course was created using a test-enhanced learning approach. A subset of module questions was modified and included on summative assessments. Assessment. Student performance on module questions improved with repeated attempts and was predictive of student performance on summative assessments. Performance on examination questions was higher for students with access to modules than for those without access to modules. Module use appeared to have the most impact on low performing students. Conclusion. Test-enhanced learning modules with immediate feedback provide pharmacy students with a learning tool that improves student performance on summative assessments and also may improve metacognitive and test-taking skills. PMID:27168610

  15. Biomedical image segmentation using geometric deformable models and metaheuristics.

    PubMed

    Mesejo, Pablo; Valsecchi, Andrea; Marrakchi-Kacem, Linda; Cagnoni, Stefano; Damas, Sergio

    2015-07-01

    This paper describes a hybrid level set approach for medical image segmentation. This new geometric deformable model combines region- and edge-based information with the prior shape knowledge introduced using deformable registration. Our proposal consists of two phases: training and test. The former implies the learning of the level set parameters by means of a Genetic Algorithm, while the latter is the proper segmentation, where another metaheuristic, in this case Scatter Search, derives the shape prior. In an experimental comparison, this approach has shown a better performance than a number of state-of-the-art methods when segmenting anatomical structures from different biomedical image modalities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. The Application of Biomedical Engineering Techniques to the Diagnosis and Management of Tropical Diseases: A Review

    PubMed Central

    Ibrahim, Fatimah; Thio, Tzer Hwai Gilbert; Faisal, Tarig; Neuman, Michael

    2015-01-01

    This paper reviews a number of biomedical engineering approaches to help aid in the detection and treatment of tropical diseases such as dengue, malaria, cholera, schistosomiasis, lymphatic filariasis, ebola, leprosy, leishmaniasis, and American trypanosomiasis (Chagas). Many different forms of non-invasive approaches such as ultrasound, echocardiography and electrocardiography, bioelectrical impedance, optical detection, simplified and rapid serological tests such as lab-on-chip and micro-/nano-fluidic platforms and medical support systems such as artificial intelligence clinical support systems are discussed. The paper also reviewed the novel clinical diagnosis and management systems using artificial intelligence and bioelectrical impedance techniques for dengue clinical applications. PMID:25806872

  17. KSC-04pd1496

    NASA Image and Video Library

    2004-07-07

    KENNEDY SPACE CENTER, FLA. - A boat returns to the dock in Key Largo from a training session offshore at NASA’s undersea research station, named Aquarius. At left is Marc Reagan, lead on the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission. In the bow is astronaut John Herrington, mission commander. The others are support personnel. Members of the team also include astronauts Doug Wheelock and Nick Patrick, and biomedical engineer Tara Ruttley. To prepare for their 10-day stay, the team had dive training twice a day. While stationed in Aquarius, the team conducted spacewalk-like diving excursions and field-testing a variety of biomedical equipment designed to help astronauts living aboard the International Space Station.

  18. KSC-04PD-2495

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Nancy Lowry (left) and Mikiko Ujihara, with Boeing, monitor the Payload Test and Checkout System for the Human Research Facility (HRF) Rack -2 payload. The HRF-2 is scheduled to fly on Return to Flight Space Shuttle mission STS- 114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF Rack 1 contains an ultrasound unit and gas analyzer system and has been operational in the U.S. Lab since May 2001. HRF-2 will also be installed in the U. S. Lab and will provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U. S. Lab.

  19. Biomedical effects of low-power laser controlled by electroacupuncture

    NASA Astrophysics Data System (ADS)

    Kalenchits, Nadezhda I.; Nicolaenko, Andrej A.; Shpilevoj, Boris N.

    1997-12-01

    The methods and technical facilities of testing the biomedical effects caused by the influence of low-power laser radiation in the process of laser therapy are presented. Described studies have been conducted by means of the complex of fireware facilities consisting of the system of electroacupuncture diagnostics (EA) and a system of laser therapy on the basis of multichannel laser and magneto-laser devices. The task of laser therapy was concluded in undertaking acupuncture anaesthetization, achievement of antioedemic and dispersional actions, raising tone of musculus and nervous system, normalization of immunity factors under the control of system EA. The 82 percent to 95 percent agreement of the result of an electroacupuncture diagnostics with clinical diagnoses were achieved.

  20. The European DISABKIDS project: development of seven condition-specific modules to measure health related quality of life in children and adolescents

    PubMed Central

    Baars, Rolanda M; Atherton, Clare I; Koopman, Hendrik M; Bullinger, Monika; Power, Mick

    2005-01-01

    Background The European DISABKIDS project aims to enhance the Health Related Quality of Life (HRQoL) of children and adolescents with chronic medical conditions and their families. We describe the development of the seven cross-nationally tested condition-specific modules of the European DISABKIDS HRQoL instrument in a population of children and adolescents. The condition-specific modules are intended for use in conjunction with the DISABKIDS chronic generic module. Methods Focus groups were used to construct the pilot version of the DISABKIDS condition-specific HRQoL modules for asthma, juvenile idiopathic arthritis, atopic dermatitis, cerebral palsy, cystic fibrosis, diabetes and epilepsy. Analyses were conducted on pilot test data in order to construct field test versions of the modules. A series of factor analyses were run, first, to determine potential structures for each condition-specific module, and, secondly, to select a reduced number of items from the pilot test to be included in the field test. Post-field test analyses were conducted to retest the domain structure for the final DISABKIDS condition-specific modules. Results The DISABKIDS condition-specific modules were tested in a pilot study of 360 respondents, and subsequently in a field test of 1152 respondents in 7 European countries. The final condition-specific modules consist of an 'Impact' domain and an additional domain (e.g. worry, stigma, treatment) with between 10 to 12 items in total. The Cronbach's alpha of the final domains was found to vary from 0.71 to 0.90. Conclusion The condition-specific modules of the DISABKIDS instrument were developed through a step-by-step process including cognitive interview, clinical expertise, factor analysis, correlations and internal consistency. A cross-national pilot and field test were necessary to collect these data. In general, the internal consistency of the domains was satisfactory to high. In future, the DISABKIDS instrument may serve as a useful tool with which to assess HRQoL in children and adolescents with a chronic condition. The condition-specific modules can be used in conjunction with the DISABKIDS chronic generic module. PMID:16283947

Top