Sample records for bionic ear system

  1. Bionic Design of Wind Turbine Blade Based on Long-Eared Owl's Airfoil

    PubMed Central

    Li, Ming

    2017-01-01

    The main purpose of this paper is to demonstrate a bionic design for the airfoil of wind turbines inspired by the morphology of Long-eared Owl's wings. Glauert Model was adopted to design the standard blade and the bionic blade, respectively. Numerical analysis method was utilized to study the aerodynamic characteristics of the airfoils as well as the blades. Results show that the bionic airfoil inspired by the airfoil at the 50% aspect ratio of the Long-eared Owl's wing gives rise to a superior lift coefficient and stalling performance and thus can be beneficial to improving the performance of the wind turbine blade. Also, the efficiency of the bionic blade in wind turbine blades tests increases by 12% or above (up to 44%) compared to that of the standard blade. The reason lies in the bigger pressure difference between the upper and lower surface which can provide stronger lift. PMID:28243053

  2. Bionic Design of Wind Turbine Blade Based on Long-Eared Owl's Airfoil.

    PubMed

    Tian, Weijun; Yang, Zhen; Zhang, Qi; Wang, Jiyue; Li, Ming; Ma, Yi; Cong, Qian

    2017-01-01

    The main purpose of this paper is to demonstrate a bionic design for the airfoil of wind turbines inspired by the morphology of Long-eared Owl's wings. Glauert Model was adopted to design the standard blade and the bionic blade, respectively. Numerical analysis method was utilized to study the aerodynamic characteristics of the airfoils as well as the blades. Results show that the bionic airfoil inspired by the airfoil at the 50% aspect ratio of the Long-eared Owl's wing gives rise to a superior lift coefficient and stalling performance and thus can be beneficial to improving the performance of the wind turbine blade. Also, the efficiency of the bionic blade in wind turbine blades tests increases by 12% or above (up to 44%) compared to that of the standard blade. The reason lies in the bigger pressure difference between the upper and lower surface which can provide stronger lift.

  3. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  4. 3D Printed Bionic Ears

    PubMed Central

    Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.

    2013-01-01

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  5. Bionic Nanosystems

    NASA Astrophysics Data System (ADS)

    Sebastian Mannoor, Manu

    Direct multidimensional integration of functional electronics and mechanical elements with viable biological systems could allow for the creation of bionic systems and devices possessing unique and advanced capabilities. For example, the ability to three dimensionally integrate functional electronic and mechanical components with biological cells and tissue could enable the creation of bionic systems that can have tremendous impact in regenerative medicine, prosthetics, and human-machine interfaces. However, as a consequence of the inherent dichotomy in material properties and limitations of conventional fabrication methods, the attainment of truly seamless integration of electronic and/or mechanical components with biological systems has been challenging. Nanomaterials engineering offers a general route for overcoming these dichotomies, primarily due to the existence of a dimensional compatibility between fundamental biological functional units and abiotic nanomaterial building blocks. One area of compelling interest for bionic systems is in the field of biomedical sensing, where the direct interfacing of nanosensors onto biological tissue or the human body could stimulate exciting opportunities such as on-body health quality monitoring and adaptive threat detection. Further, interfacing of antimicrobial peptide based bioselective probes onto the bionic nanosensors could offer abilities to detect pathogenic bacteria with bio-inspired selectivity. Most compellingly, when paired with additive manufacturing techniques such as 3D printing, these characteristics enable three dimensional integration and merging of a variety of functional materials including electronic, structural and biomaterials with viable biological cells, in the precise anatomic geometries of human organs, to form three dimensionally integrated, multi-functional bionic hybrids and cyborg devices with unique capabilities. In this thesis, we illustrate these approaches using three representative bionic systems: 1) Bionic Nanosensors: featuring bio-integrated graphene nanosensors for ubiquitous sensing, 2) Bionic Organs: featuring 3D printed bionic ears with three dimensionally integrated electronics and 3) Bionic Leaves: describing ongoing work in the direction of the creation of a bionic leaf enabled by the integration of plant derived photosynthetic functional units with electronic materials and components into a leaf-shaped hierarchical structure for harvesting photosynthetic bioelectricity.

  6. Close-field electroporation gene delivery using the cochlear implant electrode array enhances the bionic ear.

    PubMed

    Pinyon, Jeremy L; Tadros, Sherif F; Froud, Kristina E; Y Wong, Ann C; Tompson, Isabella T; Crawford, Edward N; Ko, Myungseo; Morris, Renée; Klugmann, Matthias; Housley, Gary D

    2014-04-23

    The cochlear implant is the most successful bionic prosthesis and has transformed the lives of people with profound hearing loss. However, the performance of the "bionic ear" is still largely constrained by the neural interface itself. Current spread inherent to broad monopolar stimulation of the spiral ganglion neuron somata obviates the intrinsic tonotopic mapping of the cochlear nerve. We show in the guinea pig that neurotrophin gene therapy integrated into the cochlear implant improves its performance by stimulating spiral ganglion neurite regeneration. We used the cochlear implant electrode array for novel "close-field" electroporation to transduce mesenchymal cells lining the cochlear perilymphatic canals with a naked complementary DNA gene construct driving expression of brain-derived neurotrophic factor (BDNF) and a green fluorescent protein (GFP) reporter. The focusing of electric fields by particular cochlear implant electrode configurations led to surprisingly efficient gene delivery to adjacent mesenchymal cells. The resulting BDNF expression stimulated regeneration of spiral ganglion neurites, which had atrophied 2 weeks after ototoxic treatment, in a bilateral sensorineural deafness model. In this model, delivery of a control GFP-only vector failed to restore neuron structure, with atrophied neurons indistinguishable from unimplanted cochleae. With BDNF therapy, the regenerated spiral ganglion neurites extended close to the cochlear implant electrodes, with localized ectopic branching. This neural remodeling enabled bipolar stimulation via the cochlear implant array, with low stimulus thresholds and expanded dynamic range of the cochlear nerve, determined via electrically evoked auditory brainstem responses. This development may broadly improve neural interfaces and extend molecular medicine applications.

  7. Review of the research on “structural bionic” method of large sculpture

    NASA Astrophysics Data System (ADS)

    Yin, Jiang; Yang, Wenchang

    2017-09-01

    This paper presented the basic concept of bionic sculpture and summarized the application status of “structural bionic”theory in large bionic sculpture field. Introduced the development trend and challenges of large bionic sculpture and pointed out that the sculpture's “structural bionic” can bring higher mechanical performance of the new structure and system, The evaluation method and structure design for large bionic sculpture are urgently needed.Finally prospected the market of the large bionic sculpture.

  8. Study on the Impact Resistance of Bionic Layered Composite of TiC-TiB2/Al from Al-Ti-B4C System

    PubMed Central

    Zhao, Qian; Liang, Yunhong; Zhang, Zhihui; Li, Xiujuan; Ren, Luquan

    2016-01-01

    Mechanical property and impact resistance mechanism of bionic layered composite was investigated. Due to light weight and high strength property, white clam shell was chosen as bionic model for design of bionic layered composite. The intercoupling model between hard layer and soft layer was identical to the layered microstructure and hardness tendency of the white clam shell, which connected the bionic design and fabrication. TiC-TiB2 reinforced Al matrix composites fabricated from Al-Ti-B4C system with 40 wt. %, 50 wt. % and 30 wt. % Al contents were treated as an outer layer, middle layer and inner layer in hard layers. Pure Al matrix was regarded as a soft layer. Compared with traditional homogenous Al-Ti-B4C composite, bionic layered composite exhibited high mechanical properties including flexural strength, fracture toughness, compressive strength and impact toughness. The intercoupling effect of layered structure and combination model of hard and soft played a key role in high impact resistance of the bionic layered composite, proving the feasibility and practicability of the bionic model of a white clam shell. PMID:28773827

  9. Bionic Modeling of Knowledge-Based Guidance in Automated Underwater Vehicles.

    DTIC Science & Technology

    1987-06-24

    bugs and their foraging movements are heard by the sound of rustling leaves or rhythmic wing beats . ASYMMETRY OF EARS The faces of owls have captured...sound source without moving. The barn owl has binaural and monaural cues as well as cues that operate in relative motion when either the target or the...owl moves. Table 1 lists the cues. 7 TM No. 87- 2068 fTable 1. Sound Localization Parameters Used by the Barn Owl I BINAURAL PARAMETERS: 1. the

  10. SELECTED ANNOTATED BIBLIOGRAPHY ON SYSTEMS OF THEORETICAL DEVICES,

    DTIC Science & Technology

    BIONICS, BIBLIOGRAPHIES), (*BIBLIOGRAPHIES, BIONICS), (*CYBERNETICS, BIBLIOGRAPHIES), MATHEMATICS, COMPUTER LOGIC, NETWORKS, NERVOUS SYSTEM , THEORY , SEQUENCE SWITCHES, SWITCHING CIRCUITS, REDUNDANT COMPONENTS, LEARNING, MATHEMATICAL MODELS, BEHAVIOR, NERVES, SIMULATION, NERVE CELLS

  11. Coming Soon: The Bionic Man

    ERIC Educational Resources Information Center

    Woodard, Colin

    2006-01-01

    This article describes the latest advancement in the development of prosthetic arms. Bionic researchers are making significant advances in creating more agile prosthetics that users can control via their own nervous system. The bionic arm, which is still under development, can not only execute complex, thought-controlled movements, but also can…

  12. Speech perception for adult cochlear implant recipients in a realistic background noise: effectiveness of preprocessing strategies and external options for improving speech recognition in noise.

    PubMed

    Gifford, René H; Revit, Lawrence J

    2010-01-01

    Although cochlear implant patients are achieving increasingly higher levels of performance, speech perception in noise continues to be problematic. The newest generations of implant speech processors are equipped with preprocessing and/or external accessories that are purported to improve listening in noise. Most speech perception measures in the clinical setting, however, do not provide a close approximation to real-world listening environments. To assess speech perception for adult cochlear implant recipients in the presence of a realistic restaurant simulation generated by an eight-loudspeaker (R-SPACE) array in order to determine whether commercially available preprocessing strategies and/or external accessories yield improved sentence recognition in noise. Single-subject, repeated-measures design with two groups of participants: Advanced Bionics and Cochlear Corporation recipients. Thirty-four subjects, ranging in age from 18 to 90 yr (mean 54.5 yr), participated in this prospective study. Fourteen subjects were Advanced Bionics recipients, and 20 subjects were Cochlear Corporation recipients. Speech reception thresholds (SRTs) in semidiffuse restaurant noise originating from an eight-loudspeaker array were assessed with the subjects' preferred listening programs as well as with the addition of either Beam preprocessing (Cochlear Corporation) or the T-Mic accessory option (Advanced Bionics). In Experiment 1, adaptive SRTs with the Hearing in Noise Test sentences were obtained for all 34 subjects. For Cochlear Corporation recipients, SRTs were obtained with their preferred everyday listening program as well as with the addition of Focus preprocessing. For Advanced Bionics recipients, SRTs were obtained with the integrated behind-the-ear (BTE) mic as well as with the T-Mic. Statistical analysis using a repeated-measures analysis of variance (ANOVA) evaluated the effects of the preprocessing strategy or external accessory in reducing the SRT in noise. In addition, a standard t-test was run to evaluate effectiveness across manufacturer for improving the SRT in noise. In Experiment 2, 16 of the 20 Cochlear Corporation subjects were reassessed obtaining an SRT in noise using the manufacturer-suggested "Everyday," "Noise," and "Focus" preprocessing strategies. A repeated-measures ANOVA was employed to assess the effects of preprocessing. The primary findings were (i) both Noise and Focus preprocessing strategies (Cochlear Corporation) significantly improved the SRT in noise as compared to Everyday preprocessing, (ii) the T-Mic accessory option (Advanced Bionics) significantly improved the SRT as compared to the BTE mic, and (iii) Focus preprocessing and the T-Mic resulted in similar degrees of improvement that were not found to be significantly different from one another. Options available in current cochlear implant sound processors are able to significantly improve speech understanding in a realistic, semidiffuse noise with both Cochlear Corporation and Advanced Bionics systems. For Cochlear Corporation recipients, Focus preprocessing yields the best speech-recognition performance in a complex listening environment; however, it is recommended that Noise preprocessing be used as the new default for everyday listening environments to avoid the need for switching programs throughout the day. For Advanced Bionics recipients, the T-Mic offers significantly improved performance in noise and is recommended for everyday use in all listening environments. American Academy of Audiology.

  13. Drug Delivery to the Inner Ear

    PubMed Central

    Wise, Andrew K; Gillespie, Lisa N

    2012-01-01

    Bionic devices electrically activate neural populations to partially restore lost function. Of fundamental importance is the functional integrity of the targeted neurons. However, in many conditions the ongoing pathology can lead to continued neural degeneration and death that may compromise the effectiveness of the device and limit future strategies to improve performance. The use of drugs that can prevent nerve cell degeneration and promote their regeneration may improve clinical outcomes. In this paper we focus on strategies of delivering neuroprotective drugs to the auditory system in a way that is safe and clinically relevant for use in combination with a cochlear implant. The aim of this approach is to prevent neural degeneration and promote nerve regrowth in order to improve outcomes for cochlear implant recipients using techniques that can be translated to the clinic. PMID:23186937

  14. Design of a hydraulically-driven bionic folding wing.

    PubMed

    Zhang, Zhijun; Sun, Xuwei; Du, Pengyu; Sun, Jiyu; Wu, Yongfeng

    2018-06-01

    Membranous hind wings of the beetles can be folded under the elytra when they are at rest, and rotate and lift the elytra up only when they need to fly. This characteristic provides excellent flying capability and good environment adaptability. Inspired by the beetles, the new type of the bionic folding wing for the flapping wing Micro Air Vehicle (MAV) was designed. This flapping wing can be unfolded to get a sufficient lift in flight, and can be folded off flight to reduce the wing area and risk of the wing damage. The relationship between the internal pressures of the hydraulic system for the bionic wing folding varies and temperature was analyzed, the results show that the pressure within the system tends to increase with temperature, which proves the feasibility of the schematic design in theory. Stress analysis of the bionic wing was conducted, it was shown that stress distributions and deformation of the bionic wing under the positive and negative side loading are basically the same, which demonstrates that the strength of the bionic folding wing meets the requirements and further proves the feasibility of the schematic design. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Speech Perception for Adult Cochlear Implant Recipients in a Realistic Background Noise: Effectiveness of Preprocessing Strategies and External Options for Improving Speech Recognition in Noise

    PubMed Central

    Gifford, René H.; Revit, Lawrence J.

    2014-01-01

    Background Although cochlear implant patients are achieving increasingly higher levels of performance, speech perception in noise continues to be problematic. The newest generations of implant speech processors are equipped with preprocessing and/or external accessories that are purported to improve listening in noise. Most speech perception measures in the clinical setting, however, do not provide a close approximation to real-world listening environments. Purpose To assess speech perception for adult cochlear implant recipients in the presence of a realistic restaurant simulation generated by an eight-loudspeaker (R-SPACE™) array in order to determine whether commercially available preprocessing strategies and/or external accessories yield improved sentence recognition in noise. Research Design Single-subject, repeated-measures design with two groups of participants: Advanced Bionics and Cochlear Corporation recipients. Study Sample Thirty-four subjects, ranging in age from 18 to 90 yr (mean 54.5 yr), participated in this prospective study. Fourteen subjects were Advanced Bionics recipients, and 20 subjects were Cochlear Corporation recipients. Intervention Speech reception thresholds (SRTs) in semidiffuse restaurant noise originating from an eight-loudspeaker array were assessed with the subjects’ preferred listening programs as well as with the addition of either Beam™ preprocessing (Cochlear Corporation) or the T-Mic® accessory option (Advanced Bionics). Data Collection and Analysis In Experiment 1, adaptive SRTs with the Hearing in Noise Test sentences were obtained for all 34 subjects. For Cochlear Corporation recipients, SRTs were obtained with their preferred everyday listening program as well as with the addition of Focus preprocessing. For Advanced Bionics recipients, SRTs were obtained with the integrated behind-the-ear (BTE) mic as well as with the T-Mic. Statistical analysis using a repeated-measures analysis of variance (ANOVA) evaluated the effects of the preprocessing strategy or external accessory in reducing the SRT in noise. In addition, a standard t-test was run to evaluate effectiveness across manufacturer for improving the SRT in noise. In Experiment 2, 16 of the 20 Cochlear Corporation subjects were reassessed obtaining an SRT in noise using the manufacturer-suggested “Everyday,” “Noise,” and “Focus” preprocessing strategies. A repeated-measures ANOVA was employed to assess the effects of preprocessing. Results The primary findings were (i) both Noise and Focus preprocessing strategies (Cochlear Corporation) significantly improved the SRT in noise as compared to Everyday preprocessing, (ii) the T-Mic accessory option (Advanced Bionics) significantly improved the SRT as compared to the BTE mic, and (iii) Focus preprocessing and the T-Mic resulted in similar degrees of improvement that were not found to be significantly different from one another. Conclusion Options available in current cochlear implant sound processors are able to significantly improve speech understanding in a realistic, semidiffuse noise with both Cochlear Corporation and Advanced Bionics systems. For Cochlear Corporation recipients, Focus preprocessing yields the best speech-recognition performance in a complex listening environment; however, it is recommended that Noise preprocessing be used as the new default for everyday listening environments to avoid the need for switching programs throughout the day. For Advanced Bionics recipients, the T-Mic offers significantly improved performance in noise and is recommended for everyday use in all listening environments. PMID:20807480

  16. Design and Test Research on Cutting Blade of Corn Harvester Based on Bionic Principle.

    PubMed

    Tian, Kunpeng; Li, Xianwang; Zhang, Bin; Chen, Qiaomin; Shen, Cheng; Huang, Jicheng

    2017-01-01

    Existing corn harvester cutting blades have problems associated with large cutting resistance, high energy consumption, and poor cut quality. Using bionics principles, a bionic blade was designed by extracting the cutting tooth profile curve of the B. horsfieldi palate. Using a double-blade cutting device testing system, a single stalk cutting performance contrast test for corn stalks obtained at harvest time was carried out. Results show that bionic blades have superior performance, demonstrated by strong cutting ability and good cut quality. Using statistical analysis of two groups of cutting test data, the average cutting force and cutting energy of bionic blades and ordinary blades were obtained as 480.24 N and 551.31 N and 3.91 J and 4.38 J, respectively. Average maximum cutting force and cutting energy consumption for the bionic blade were reduced by 12.89% and 10.73%, respectively. Variance analysis showed that both blade types had a significant effect on maximum cutting energy and cutting energy required to cut a corn stalk. This demonstrates that bionic blades have better cutting force and energy consumption reduction performance than ordinary blades.

  17. BIOCONAID System (Bionic Control of Acceleration Induced Dimming). Final Report.

    ERIC Educational Resources Information Center

    Rogers, Dana B.; And Others

    The system described represents a new technique for enhancing the fidelity of flight simulators during high acceleration maneuvers. This technique forces the simulator pilot into active participation and energy expenditure similar to the aircraft pilot undergoing actual accelerations. The Bionic Control of Acceleration Induced Dimming (BIOCONAID)…

  18. Engineering derivatives from biological systems for advanced aerospace applications

    NASA Technical Reports Server (NTRS)

    Winfield, Daniel L.; Hering, Dean H.; Cole, David

    1991-01-01

    The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs.

  19. Symmetrical optical imaging system with bionic variable-focus lens for off-axis aberration correction

    NASA Astrophysics Data System (ADS)

    Wang, Xuan-Yin; Du, Jia-Wei; Zhu, Shi-Qiang

    2017-09-01

    A bionic variable-focus lens with symmetrical layered structure was designed to mimic the crystalline lens. An optical imaging system based on this lens and with a symmetrical structure that mimics the human eye structure was proposed. The refractive index of the bionic variable-focus lens increases from outside to inside. The two PDMS lenses with a certain thickness were designed to improve the optical performance of the optical imaging system and minimise the gravity effect of liquid. The paper presents the overall structure of the optical imaging system and the detailed description of the bionic variable-focus lens. By pumping liquid in or out of the cavity, the surface curvatures of the rear PDMS lens were varied, resulting in a change in the focal length. The focal length range of the optical imaging system was 20.71-24.87 mm. The optical performance of the optical imaging system was evaluated by imaging experiments and analysed by ray tracing simulations. On the basis of test and simulation results, the optical performance of the system was quite satisfactory. Off-axis aberrations were well corrected, and the image quality was greatly improved.

  20. Cochlear implant – state of the art

    PubMed Central

    Lenarz, Thomas

    2018-01-01

    Cochlear implants are the treatment of choice for auditory rehabilitation of patients with sensory deafness. They restore the missing function of inner hair cells by transforming the acoustic signal into electrical stimuli for activation of auditory nerve fibers. Due to the very fast technology development, cochlear implants provide open-set speech understanding in the majority of patients including the use of the telephone. Children can achieve a near to normal speech and language development provided their deafness is detected early after onset and implantation is performed quickly thereafter. The diagnostic procedure as well as the surgical technique have been standardized and can be adapted to the individual anatomical and physiological needs both in children and adults. Special cases such as cochlear obliteration might require special measures and re-implantation, which can be done in most cases in a straight forward way. Technology upgrades count for better performance. Future developments will focus on better electrode-nerve interfaces by improving electrode technology. An increased number of electrical contacts as well as the biological treatment with regeneration of the dendrites growing onto the electrode will increase the number of electrical channels. This will give room for improved speech coding strategies in order to create the bionic ear, i.e. to restore the process of natural hearing by means of technology. The robot-assisted surgery will allow for high precision surgery and reliable hearing preservation. Biological therapies will support the bionic ear. Methods are bio-hybrid electrodes, which are coded by stem cells transplanted into the inner ear to enhance auto-production of neurotrophins. Local drug delivery will focus on suppression of trauma reaction and local regeneration. Gene therapy by nanoparticles will hopefully lead to the preservation of residual hearing in patients being affected by genetic hearing loss. Overall the cochlear implant is a very powerful tool to rehabilitate patients with sensory deafness. More than 1 million of candidates in Germany today could benefit from this high technology auditory implant. Only 50,000 are implanted so far. In the future, the procedure can be done under local anesthesia, will be minimally invasive and straight forward. Hearing preservation will be routine. PMID:29503669

  1. Research on the Integration of Bionic Geometry Modeling and Simulation of Robot Foot Based on Characteristic Curve

    NASA Astrophysics Data System (ADS)

    He, G.; Zhu, H.; Xu, J.; Gao, K.; Zhu, D.

    2017-09-01

    The bionic research of shape is an important aspect of the research on bionic robot, and its implementation cannot be separated from the shape modeling and numerical simulation of the bionic object, which is tedious and time-consuming. In order to improve the efficiency of shape bionic design, the feet of animals living in soft soil and swamp environment are taken as bionic objects, and characteristic skeleton curve, section curve, joint rotation variable, position and other parameters are used to describe the shape and position information of bionic object’s sole, toes and flipper. The geometry modeling of the bionic object is established by using the parameterization of characteristic curves and variables. Based on this, the integration framework of parametric modeling and finite element modeling, dynamic analysis and post-processing of sinking process in soil is proposed in this paper. The examples of bionic ostrich foot and bionic duck foot are also given. The parametric modeling and integration technique can achieve rapid improved design based on bionic object, and it can also greatly improve the efficiency and quality of robot foot bionic design, and has important practical significance to improve the level of bionic design of robot foot’s shape and structure.

  2. Presenting Bionic: Broader Impacts and Outreach Network for Institutional Collaboration

    NASA Astrophysics Data System (ADS)

    Storm, K.

    2014-12-01

    Broader Impact plans are required of all NSF proposals. In 2011 the National Science Board, which oversees NSF, reconfirmed NSF's commitment to Broader Impacts in its task force report on the merit review system. At many institutions there are professionals that focus their work on supporting the Broader Impact work of researchers. This session will share the Broader Impacts and Outreach Network for Institutional Collaboration (BIONIC) plan to create a professional network of individuals and offices committed to planning and carrying out effective Broader Impact programming. BIONIC is an NSF Research Coordination Network that is recommended for funding through the Biology Directorate. In this session we will share the goals of BIONIC, and the progress to date in reaching those goals (of which one aspect is the curating of effective Broader Impact initiatives).

  3. Crashworthiness Design for Bionic Bumper Structures Inspired by Cattail and Bamboo.

    PubMed

    Xu, Tao; Liu, Nian; Yu, Zhenglei; Xu, Tianshuang; Zou, Meng

    2017-01-01

    Many materials in nature exhibit excellent mechanical properties. In this study, we evaluated the bionic bumper structure models by using nonlinear finite element (FE) simulations for their crashworthiness under full-size impact loading. The structure contained the structural characteristics of cattail and bamboo. The results indicated that the bionic design enhances the specific energy absorption (SEA) of the bumper. The numerical results showed that the bionic cross-beam and bionic box of the bionic bumper have a significant effect on the crashworthiness of the structure. The crush deformation of bionic cross-beam and box bumper model was reduced by 33.33%, and the total weight was reduced by 44.44%. As the energy absorption capacity under lateral impact, the bionic design can be used in the future bumper body.

  4. Crashworthiness Design for Bionic Bumper Structures Inspired by Cattail and Bamboo

    PubMed Central

    Xu, Tao; Liu, Nian

    2017-01-01

    Many materials in nature exhibit excellent mechanical properties. In this study, we evaluated the bionic bumper structure models by using nonlinear finite element (FE) simulations for their crashworthiness under full-size impact loading. The structure contained the structural characteristics of cattail and bamboo. The results indicated that the bionic design enhances the specific energy absorption (SEA) of the bumper. The numerical results showed that the bionic cross-beam and bionic box of the bionic bumper have a significant effect on the crashworthiness of the structure. The crush deformation of bionic cross-beam and box bumper model was reduced by 33.33%, and the total weight was reduced by 44.44%. As the energy absorption capacity under lateral impact, the bionic design can be used in the future bumper body. PMID:29118571

  5. Bionic models for identification of biological systems

    NASA Astrophysics Data System (ADS)

    Gerget, O. M.

    2017-01-01

    This article proposes a clinical decision support system that processes biomedical data. For this purpose a bionic model has been designed based on neural networks, genetic algorithms and immune systems. The developed system has been tested on data from pregnant women. The paper focuses on the approach to enable selection of control actions that can minimize the risk of adverse outcome. The control actions (hyperparameters of a new type) are further used as an additional input signal. Its values are defined by a hyperparameter optimization method. A software developed with Python is briefly described.

  6. EDITORIAL: Special issue on medical bionics Special issue on medical bionics

    NASA Astrophysics Data System (ADS)

    Shepherd, Robert K.; D, Ph

    2009-12-01

    This special section of the Journal of Neural Engineering contains eight invited papers presented as part of the inaugural conference `Medical Bionics: A New Paradigm for Human Health' held in the beautiful seaside village of Lorne, Victoria, Australia from 16-19 November 2008. This meeting formed part of the Sir Mark Oliphant International Conference Series (www.oliphant.org.au) and was generously supported by the Department of Innovation, Industry, Science and Research of the Australian Government, the Australian Academy of Science and the Australian Academy of Technological Sciences and Engineering. This meeting was designed to bring experts from a variety of scientific, engineering and clinical disciplines together in a unique environment to discuss current progress in the field of medical bionics and to develop the concepts and techniques required to build the next generation of devices. The field is rapidly expanding, with new engineering solutions for neurological disorders being developed at an astonishing rate. Successful application of emerging engineering technologies into medical bionics devices requires a multidisciplinary research environment in order to deliver clinical solutions that are both safe and effective. Clinical success stories to date include spinal cord stimulators for the management of chronic neurological pain; auditory prostheses that allow the profoundly deaf to hear; and deep brain stimulation to negate movement disorders in Parkinson's disease. Other research programs currently undergoing clinical trials include devices that allow paraplegics to stand and even walk; brain-machine interfaces that provide quadriplegic patients with rudimentary control of a computer but may ultimately provide control of wheel chairs and artificial limbs; devices that detect and suppress epileptic seizures using brief trains of electrical stimulation; and retinal prostheses that will provide vision to the blind. The future for medical bionics is indeed stimulating! A key component to developing successful medical bionic solutions is a good understanding of the technological developments in the many enabling technologies that contribute to this field. Meetings such as this one are designed to provide that cross-discipline background. Conference themes included: smarter devices—the role of information and communication, and other enabling, technologies in medical bionics; smarter materials—intelligent polymers and nanotechnology in medical bionics; neural interfaces for central nervous system and spinal cord stimulation; retinal and auditory prostheses; and cell-based therapies for neural generation and protection. The eight articles arising from this meeting cover these broad research themes. Neural prostheses typically stimulate neural tissue that has undergone atrophic or pathological changes as a result of an underlying disease process, therefore technologies designed to minimise ongoing degenerative changes and improve the electrode-neural interface are important for improving device efficacy. Skinner and colleagues describe the use of cell-based therapies designed to deliver neurotrophic factors for long-term treatment of degenerative neurological disorders. A unique aspect of their research is the incorporation of neurotrophin releasing xenografts within alginate capsules designed to allow nutrients and neurotrophins to move freely across the alginate barrier while providing immunological isolation. Liu and colleagues describe the characterization of organic conducting polymers. These materials are attractive candidates for a number of biomedical applications including electrodes due to the inherent electrical conductivity, ease of fabrication and high surface area which facilitates ion exchange between the electrodes and surrounding tissues. These researchers demonstrate such materials can support and enhanced nerve cell differentiation via electrical stimulation in vitro. Shivdasani et al used sophisticated multichannel electrophysiological recordings of neurons within the ventral cochlear nucleus—part of the first relay centre within the auditory pathway—to demonstrate that neural synchrony in these neuron populations is predominantly a result of common excitatory input from the auditory nerve. Based on these studies the authors propose improved stimulation strategies for use in auditory brainstem implants. Ng and colleagues discuss various technologies needed to develop retinal prostheses with wireless power and data telemetry operation. They then describe the use of integrated circuits and microfabrication technologies for implementing these inductive links. Stieglitz summarizes the fundamental steps during the design and development of a micro-machined epiretinal vision prosthesis with emphasis on the electrode design, the cytotoxicity evaluation and hybrid assembly of the system. Seligman then uses the cochlear implant as a case study for the development of a commercial neural prosthesis. This overview considers issues of biocompatibility, extreme reliability, safety, patient fitting and surgical placement, and emphasises the importance of operating in a multidisciplinary environment. McDermott and Varsavsky applied perceptual models of acoustic and electric stimulation to estimate the loudness of sound signals when presented via a cochlear implant or hearing aid. The models' outputs were compared with published data from relevant psychophysical experiments. The findings led to better fitting and sound processing, particularly in cases where cochlear implants and hearing aids are used simultaneously by individuals with some residual hearing. Finally, Fallon and colleagues review the evidence of plastic changes in the central auditory system that contribute to improved performance with a cochlear implant, and discuss how these changes relate to electrophysiological and functional imaging studies in humans. This review finishes by examining the role of brain plasticity in neural prostheses in general. I would like to acknowledge our conference sponsors MiniFAB, National ICT Australia, School of Engineering University of Melbourne, Hearing CRC and the Bionic Ear Institute. Thanks to our conference participants, many of whom travelled great distances to be with us, the Scientific Advisory committee, the authors of the enclosed papers, the reviewers who ensured the publications were of high quality and the staff of IOP—particularly Jane Roscoe and Andrew Malloy—-who supported this conference from its outset and were instrumental in bringing this special section to fruition. Finally, I look forward to welcoming you to our next meeting scheduled for late 2012. Conference delegates

  7. Adaptive algorithm of selecting optimal variant of errors detection system for digital means of automation facility of oil and gas complex

    NASA Astrophysics Data System (ADS)

    Poluyan, A. Y.; Fugarov, D. D.; Purchina, O. A.; Nesterchuk, V. V.; Smirnova, O. V.; Petrenkova, S. B.

    2018-05-01

    To date, the problems associated with the detection of errors in digital equipment (DE) systems for the automation of explosive objects of the oil and gas complex are extremely actual. Especially this problem is actual for facilities where a violation of the accuracy of the DE will inevitably lead to man-made disasters and essential material damage, at such facilities, the diagnostics of the accuracy of the DE operation is one of the main elements of the industrial safety management system. In the work, the solution of the problem of selecting the optimal variant of the errors detection system of errors detection by a validation criterion. Known methods for solving these problems have an exponential valuation of labor intensity. Thus, with a view to reduce time for solving the problem, a validation criterion is compiled as an adaptive bionic algorithm. Bionic algorithms (BA) have proven effective in solving optimization problems. The advantages of bionic search include adaptability, learning ability, parallelism, the ability to build hybrid systems based on combining. [1].

  8. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials.

    PubMed

    Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing

    2014-06-01

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.

  9. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shupeng; Zhang, Zhihui, E-mail: zhzh@jlu.edu.cn; Ren, Luquan

    2014-06-15

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principlemore » of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.« less

  10. Study on the Mechanical Properties of Bionic Coupling Layered B4C/5083Al Composite Materials

    PubMed Central

    Zhao, Qian; Liang, Yunhong; Liu, Qingping; Zhang, Zhihui; Yu, Zhenglei; Ren, Luquan

    2018-01-01

    Based on microstructure characteristics of Meretrix lusoria shell and Rapana venosa shell, bionic coupling layered B4C/5083Al composites with different layered structures and hard/soft combination models were fabricated via hot pressed sintering. The simplified bionic coupling models with hard and soft layers were similar to layered structure and hardness tendency of shells, guiding the bionic design and fabrication. B4C/5083Al composites with various B4C contents and pure 5083Al were treated as hard and soft layers, respectively. Hot pressed sintering maintained the designed bionic structure and enhanced high bonding strength between ceramics and matrix. Compared with B4C/5083Al composites, bionic layered composites exhibited high mechanical properties including flexural strength, fracture toughness, compressive strength and impact toughness. The hard layers absorbed applied loads in the form of intergranular fracture. Besides connection role, soft layers restrained slabbing phenomenon and reset extension direction of cracks among layers. The coupling functions of bionic composites proved the feasibility and practicability of bionic fabrication, providing a new method for improvement of ceramic/Al composite with properties of being lightweight and high mechanical strength. PMID:29701707

  11. Investigation of the Effect of Dimple Bionic Nonsmooth Surface on Tire Antihydroplaning.

    PubMed

    Zhou, Haichao; Wang, Guolin; Ding, Yangmin; Yang, Jian; Zhai, Huihui

    2015-01-01

    Inspired by the idea that bionic nonsmooth surfaces (BNSS) reduce fluid adhesion and resistance, the effect of dimple bionic nonsmooth structure arranged in tire circumferential grooves surface on antihydroplaning performance was investigated by using Computational Fluid Dynamics (CFD). The physical model of the object (model of dimple bionic nonsmooth surface distribution, hydroplaning model) and SST k - ω turbulence model are established for numerical analysis of tire hydroplaning. By virtue of the orthogonal table L16(4(5)), the parameters of dimple bionic nonsmooth structure design compared to the smooth structure were analyzed, and the priority level of the experimental factors as well as the best combination within the scope of the experiment was obtained. The simulation results show that dimple bionic nonsmooth structure can reduce water flow resistance by disturbing the eddy movement in boundary layers. Then, optimal type of dimple bionic nonsmooth structure is arranged on the bottom of tire circumferential grooves for hydroplaning performance analysis. The results show that the dimple bionic nonsmooth structure effectively decreases the tread hydrodynamic pressure when driving on water film and increases the tire hydroplaning velocity, thus improving tire antihydroplaning performance.

  12. Investigation of the Effect of Dimple Bionic Nonsmooth Surface on Tire Antihydroplaning

    PubMed Central

    Zhou, Haichao; Wang, Guolin; Ding, Yangmin; Yang, Jian; Zhai, Huihui

    2015-01-01

    Inspired by the idea that bionic nonsmooth surfaces (BNSS) reduce fluid adhesion and resistance, the effect of dimple bionic nonsmooth structure arranged in tire circumferential grooves surface on antihydroplaning performance was investigated by using Computational Fluid Dynamics (CFD). The physical model of the object (model of dimple bionic nonsmooth surface distribution, hydroplaning model) and SST k − ω turbulence model are established for numerical analysis of tire hydroplaning. By virtue of the orthogonal table L16(45), the parameters of dimple bionic nonsmooth structure design compared to the smooth structure were analyzed, and the priority level of the experimental factors as well as the best combination within the scope of the experiment was obtained. The simulation results show that dimple bionic nonsmooth structure can reduce water flow resistance by disturbing the eddy movement in boundary layers. Then, optimal type of dimple bionic nonsmooth structure is arranged on the bottom of tire circumferential grooves for hydroplaning performance analysis. The results show that the dimple bionic nonsmooth structure effectively decreases the tread hydrodynamic pressure when driving on water film and increases the tire hydroplaning velocity, thus improving tire antihydroplaning performance. PMID:27018311

  13. A pneumatic Bionic Voice prosthesis-Pre-clinical trials of controlling the voice onset and offset.

    PubMed

    Ahmadi, Farzaneh; Noorian, Farzad; Novakovic, Daniel; van Schaik, André

    2018-01-01

    Despite emergent progress in many fields of bionics, a functional Bionic Voice prosthesis for laryngectomy patients (larynx amputees) has not yet been achieved, leading to a lifetime of vocal disability for these patients. This study introduces a novel framework of Pneumatic Bionic Voice Prostheses as an electronic adaptation of the Pneumatic Artificial Larynx (PAL) device. The PAL is a non-invasive mechanical voice source, driven exclusively by respiration with an exceptionally high voice quality, comparable to the existing gold standard of Tracheoesophageal (TE) voice prosthesis. Following PAL design closely as the reference, Pneumatic Bionic Voice Prostheses seem to have a strong potential to substitute the existing gold standard by generating a similar voice quality while remaining non-invasive and non-surgical. This paper designs the first Pneumatic Bionic Voice prosthesis and evaluates its onset and offset control against the PAL device through pre-clinical trials on one laryngectomy patient. The evaluation on a database of more than five hours of continuous/isolated speech recordings shows a close match between the onset/offset control of the Pneumatic Bionic Voice and the PAL with an accuracy of 98.45 ±0.54%. When implemented in real-time, the Pneumatic Bionic Voice prosthesis controller has an average onset/offset delay of 10 milliseconds compared to the PAL. Hence it addresses a major disadvantage of previous electronic voice prostheses, including myoelectric Bionic Voice, in meeting the short time-frames of controlling the onset/offset of the voice in continuous speech.

  14. A pneumatic Bionic Voice prosthesis—Pre-clinical trials of controlling the voice onset and offset

    PubMed Central

    Noorian, Farzad; Novakovic, Daniel; van Schaik, André

    2018-01-01

    Despite emergent progress in many fields of bionics, a functional Bionic Voice prosthesis for laryngectomy patients (larynx amputees) has not yet been achieved, leading to a lifetime of vocal disability for these patients. This study introduces a novel framework of Pneumatic Bionic Voice Prostheses as an electronic adaptation of the Pneumatic Artificial Larynx (PAL) device. The PAL is a non-invasive mechanical voice source, driven exclusively by respiration with an exceptionally high voice quality, comparable to the existing gold standard of Tracheoesophageal (TE) voice prosthesis. Following PAL design closely as the reference, Pneumatic Bionic Voice Prostheses seem to have a strong potential to substitute the existing gold standard by generating a similar voice quality while remaining non-invasive and non-surgical. This paper designs the first Pneumatic Bionic Voice prosthesis and evaluates its onset and offset control against the PAL device through pre-clinical trials on one laryngectomy patient. The evaluation on a database of more than five hours of continuous/isolated speech recordings shows a close match between the onset/offset control of the Pneumatic Bionic Voice and the PAL with an accuracy of 98.45 ±0.54%. When implemented in real-time, the Pneumatic Bionic Voice prosthesis controller has an average onset/offset delay of 10 milliseconds compared to the PAL. Hence it addresses a major disadvantage of previous electronic voice prostheses, including myoelectric Bionic Voice, in meeting the short time-frames of controlling the onset/offset of the voice in continuous speech. PMID:29466455

  15. Effect of bionic coupling units' forms on wear resistance of gray cast iron under dry linear reciprocating sliding condition

    NASA Astrophysics Data System (ADS)

    Pang, Zuobo; Zhou, Hong; Xie, Guofeng; Cong, Dalong; Meng, Chao; Ren, Luquan

    2015-07-01

    In order to get close to the wear form of guide rails, the homemade linear reciprocating wear testing machine was used for the wear test. In order to improve the wear-resistance of gray cast iron guide rail, bionic coupling units of different forms were manufactured by a laser. Wear behavior of gray-cast-iron with bionic-coupling units has been studied under dry sliding condition at room temperature using the wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that bionic coupling unit could improve the wear resistance of gray cast iron. The wear resistance of gray cast iron with reticulation bionic coupling unit is the best. When the load and speed changed, reticulation bionic coupling unit still has excellent performance in improving the wear resistance of gray cast iron.

  16. BIonic system: Extraction of Lovelock gravity from a Born-Infeld-type theory

    NASA Astrophysics Data System (ADS)

    Naimi, Yaghoob; Sepehri, Alireza; Ghaffary, Tooraj; Ghaforyan, Hossein; Ebrahimzadeh, Majid

    It was shown that both Lovelock gravity and Born-Infeld (BI) electrodynamics can be obtained from low effective limit of string theory. Motivated by the mentioned unique origin of the gauge-gravity theories, we are going to find a close relation between them. In this research, we start from the Lagrangian of a BI-type nonlinear electrodynamics with an exponential form to extract the action of Lovelock gravity. We investigate the origin of Lovelock gravity in a system of branes which are connected with each other by different wormholes through a BIonic system. These wormholes are produced as due to the nonlinear electrodynamics which are emerged on the interacting branes. By approaching branes, wormholes dissolve into branes and Lovelock gravity is generated. Also, throats of some wormholes become smaller than their horizons and they transit to black holes. Generalizing calculations to M-theory, it is found that by compacting Mp-branes, Lovelock gravity changes to nonlinear electrodynamics and thus both of them have the same origin. This result is consistent with the prediction of BIonic model in string theory.

  17. The Vienna psychosocial assessment procedure for bionic reconstruction in patients with global brachial plexus injuries

    PubMed Central

    Sturma, Agnes

    2018-01-01

    Background Global brachial plexopathies cause major sensory and motor deficits in the affected arm and hand. Many patients report of psychosocial consequences including chronic pain, decreased self-sufficiency, and poor body image. Bionic reconstruction, which includes the amputation and prosthetic replacement of the functionless limb, has been shown to restore hand function in patients where classic reconstructions have failed. Patient selection and psychological evaluation before such a life-changing procedure are crucial for optimal functional outcomes. In this paper we describe a psychosocial assessment procedure for bionic reconstruction in patients with complete brachial plexopathies and present psychosocial outcome variables associated with bionic reconstruction. Methods Between 2013 and 2017 psychosocial assessments were performed in eight patients with global brachial plexopathies. We conducted semi-structured interviews exploring the psychosocial adjustment related to the accident, the overall psychosocial status, as well as motivational aspects related to an anticipated amputation and expectations of functional prosthetic outcome. During the interview patients were asked to respond freely. Their answers were transcribed verbatim by the interviewer and analyzed afterwards on the basis of a pre-defined item scoring system. The interview was augmented by quantitative evaluation of self-reported mental health and social functioning (SF-36 Health Survey), body image (FKB-20) and deafferentation pain (VAS). Additionally, psychosocial outcome variables were presented for seven patients before and after bionic reconstruction. Results Qualitative data revealed several psychological stressors with long-term negative effects on patients with complete brachial plexopathies. 88% of patients felt functionally limited to a great extent due to their disability, and all of them reported constant, debilitating pain in the deafferented hand. After bionic reconstruction the physical component summary scale increased from 30.80 ± 5.31 to 37.37 ± 8.41 (p-value = 0.028), the mental component summary scale improved from 43.19 ± 8.32 to 54.76 ± 6.78 (p-value = 0.018). VAS scores indicative of deafferentation pain improved from 7.8 to 5.6 after prosthetic hand replacement (p-value = 0.018). Negative body evaluation improved from 60.71 ± 12.12 to 53.29 ± 11.03 (p-value = 0.075). Vital body dynamics increased from 38.57 ± 13.44 to 44.43 ± 16.15 (p-value = 0.109). Conclusions Bionic reconstruction provides hope for patients with complete brachial plexopathies who have lived without hand function for years or even decades. Critical patient selection is crucial and the psychosocial assessment procedure including a semi-structured interview helps identify unresolved psychological issues, which could preclude or delay bionic reconstruction. Bionic reconstruction improves overall quality of life, restores an intact self-image and reduces deafferentation pain. PMID:29298304

  18. The Vienna psychosocial assessment procedure for bionic reconstruction in patients with global brachial plexus injuries.

    PubMed

    Hruby, Laura Antonia; Pittermann, Anna; Sturma, Agnes; Aszmann, Oskar Christian

    2018-01-01

    Global brachial plexopathies cause major sensory and motor deficits in the affected arm and hand. Many patients report of psychosocial consequences including chronic pain, decreased self-sufficiency, and poor body image. Bionic reconstruction, which includes the amputation and prosthetic replacement of the functionless limb, has been shown to restore hand function in patients where classic reconstructions have failed. Patient selection and psychological evaluation before such a life-changing procedure are crucial for optimal functional outcomes. In this paper we describe a psychosocial assessment procedure for bionic reconstruction in patients with complete brachial plexopathies and present psychosocial outcome variables associated with bionic reconstruction. Between 2013 and 2017 psychosocial assessments were performed in eight patients with global brachial plexopathies. We conducted semi-structured interviews exploring the psychosocial adjustment related to the accident, the overall psychosocial status, as well as motivational aspects related to an anticipated amputation and expectations of functional prosthetic outcome. During the interview patients were asked to respond freely. Their answers were transcribed verbatim by the interviewer and analyzed afterwards on the basis of a pre-defined item scoring system. The interview was augmented by quantitative evaluation of self-reported mental health and social functioning (SF-36 Health Survey), body image (FKB-20) and deafferentation pain (VAS). Additionally, psychosocial outcome variables were presented for seven patients before and after bionic reconstruction. Qualitative data revealed several psychological stressors with long-term negative effects on patients with complete brachial plexopathies. 88% of patients felt functionally limited to a great extent due to their disability, and all of them reported constant, debilitating pain in the deafferented hand. After bionic reconstruction the physical component summary scale increased from 30.80 ± 5.31 to 37.37 ± 8.41 (p-value = 0.028), the mental component summary scale improved from 43.19 ± 8.32 to 54.76 ± 6.78 (p-value = 0.018). VAS scores indicative of deafferentation pain improved from 7.8 to 5.6 after prosthetic hand replacement (p-value = 0.018). Negative body evaluation improved from 60.71 ± 12.12 to 53.29 ± 11.03 (p-value = 0.075). Vital body dynamics increased from 38.57 ± 13.44 to 44.43 ± 16.15 (p-value = 0.109). Bionic reconstruction provides hope for patients with complete brachial plexopathies who have lived without hand function for years or even decades. Critical patient selection is crucial and the psychosocial assessment procedure including a semi-structured interview helps identify unresolved psychological issues, which could preclude or delay bionic reconstruction. Bionic reconstruction improves overall quality of life, restores an intact self-image and reduces deafferentation pain.

  19. Home use of a bihormonal bionic pancreas versus insulin pump therapy in adults with type 1 diabetes: a multicentre randomised crossover trial

    PubMed Central

    El-Khatib, Firas H; Balliro, Courtney; Hillard, Mallory A; Magyar, Kendra L; Ekhlaspour, Laya; Sinha, Manasi; Mondesir, Debbie; Esmaeili, Aryan; Hartigan, Celia; Thompson, Michael J; Malkani, Samir; Lock, J Paul; Harlan, David M; Clinton, Paula; Frank, Eliana; Wilson, Darrell M; DeSalvo, Daniel; Norlander, Lisa; Ly, Trang; Buckingham, Bruce A; Diner, Jamie; Dezube, Milana; Young, Laura A; Goley, April; Kirkman, M Sue; Buse, John B; Zheng, Hui; Selagamsetty, Rajendranath R; Damiano, Edward R; Russell, Steven J

    2017-01-01

    Summary Background The safety and effectiveness of a continuous, day-and-night automated glycaemic control system using insulin and glucagon has not been shown in a free-living, home-use setting. We aimed to assess whether bihormonal bionic pancreas initialised only with body mass can safely reduce mean glycaemia and hypoglycaemia in adults with type 1 diabetes who were living at home and participating in their normal daily routines without restrictions on diet or physical activity. Methods We did a random-order crossover study in volunteers at least 18 years old who had type 1 diabetes and lived within a 30 min drive of four sites in the USA. Participants were randomly assigned (1:1) in blocks of two using sequentially numbered sealed envelopes to glycaemic regulation with a bihormonal bionic pancreas or usual care (conventional or sensor-augmented insulin pump therapy) first, followed by the opposite intervention. Both study periods were 11 days in length, during which time participants continued all normal activities, including athletics and driving. The bionic pancreas was initialised with only the participant’s body mass. Autonomously adaptive dosing algorithms used data from a continuous glucose monitor to control subcutaneous delivery of insulin and glucagon. The coprimary outcomes were the mean glucose concentration and time with continuous glucose monitoring (CGM) glucose concentration less than 3·3 mmol/L, analysed over days 2–11 in participants who completed both periods of the study. This trial is registered with ClinicalTrials.gov, number NCT02092220. Findings We randomly assigned 43 participants between May 6, 2014, and July 3, 2015, 39 of whom completed the study: 20 who were assigned to bionic pancreas first and 19 who were assigned to the comparator first. The mean CGM glucose concentration was 7·8 mmol/L (SD 0·6) in the bionic pancreas period versus 9·0 mmol/L (1·6) in the comparator period (difference 1·1 mmol/L, 95% CI 0·7–1·6; p<0·0001), and the mean time with CGM glucose concentration less than 3·3 mmol/L was 0·6% (0·6) in the bionic pancreas period versus 1·9% (1·7) in the comparator period (difference 1·3%, 95% CI 0·8–1·8; p<0·0001). The mean nausea score on the Visual Analogue Scale (score 0–10) was greater during the bionic pancreas period (0·52 [SD 0·83]) than in the comparator period (0·05 [0·17]; difference 0·47, 95% CI 0·21–0·73; p=0·0024). Body mass and laboratory parameters did not differ between periods. There were no serious or unexpected adverse events in the bionic pancreas period of the study. Interpretation Relative to conventional and sensor-augmented insulin pump therapy, the bihormonal bionic pancreas, initialised only with participant weight, was able to achieve superior glycaemic regulation without the need for carbohydrate counting. Larger and longer studies are needed to establish the long-term benefits and risks of automated glycaemic management with a bihormonal bionic pancreas. Funding National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health, and National Center for Advancing Translational Sciences. PMID:28007348

  20. Home use of a bihormonal bionic pancreas versus insulin pump therapy in adults with type 1 diabetes: a multicentre randomised crossover trial.

    PubMed

    El-Khatib, Firas H; Balliro, Courtney; Hillard, Mallory A; Magyar, Kendra L; Ekhlaspour, Laya; Sinha, Manasi; Mondesir, Debbie; Esmaeili, Aryan; Hartigan, Celia; Thompson, Michael J; Malkani, Samir; Lock, J Paul; Harlan, David M; Clinton, Paula; Frank, Eliana; Wilson, Darrell M; DeSalvo, Daniel; Norlander, Lisa; Ly, Trang; Buckingham, Bruce A; Diner, Jamie; Dezube, Milana; Young, Laura A; Goley, April; Kirkman, M Sue; Buse, John B; Zheng, Hui; Selagamsetty, Rajendranath R; Damiano, Edward R; Russell, Steven J

    2017-01-28

    The safety and effectiveness of a continuous, day-and-night automated glycaemic control system using insulin and glucagon has not been shown in a free-living, home-use setting. We aimed to assess whether bihormonal bionic pancreas initialised only with body mass can safely reduce mean glycaemia and hypoglycaemia in adults with type 1 diabetes who were living at home and participating in their normal daily routines without restrictions on diet or physical activity. We did a random-order crossover study in volunteers at least 18 years old who had type 1 diabetes and lived within a 30 min drive of four sites in the USA. Participants were randomly assigned (1:1) in blocks of two using sequentially numbered sealed envelopes to glycaemic regulation with a bihormonal bionic pancreas or usual care (conventional or sensor-augmented insulin pump therapy) first, followed by the opposite intervention. Both study periods were 11 days in length, during which time participants continued all normal activities, including athletics and driving. The bionic pancreas was initialised with only the participant's body mass. Autonomously adaptive dosing algorithms used data from a continuous glucose monitor to control subcutaneous delivery of insulin and glucagon. The coprimary outcomes were the mean glucose concentration and time with continuous glucose monitoring (CGM) glucose concentration less than 3·3 mmol/L, analysed over days 2-11 in participants who completed both periods of the study. This trial is registered with ClinicalTrials.gov, number NCT02092220. We randomly assigned 43 participants between May 6, 2014, and July 3, 2015, 39 of whom completed the study: 20 who were assigned to bionic pancreas first and 19 who were assigned to the comparator first. The mean CGM glucose concentration was 7·8 mmol/L (SD 0·6) in the bionic pancreas period versus 9·0 mmol/L (1·6) in the comparator period (difference 1·1 mmol/L, 95% CI 0·7-1·6; p<0·0001), and the mean time with CGM glucose concentration less than 3·3 mmol/L was 0·6% (0·6) in the bionic pancreas period versus 1·9% (1·7) in the comparator period (difference 1·3%, 95% CI 0·8-1·8; p<0·0001). The mean nausea score on the Visual Analogue Scale (score 0-10) was greater during the bionic pancreas period (0·52 [SD 0·83]) than in the comparator period (0·05 [0·17]; difference 0·47, 95% CI 0·21-0·73; p=0·0024). Body mass and laboratory parameters did not differ between periods. There were no serious or unexpected adverse events in the bionic pancreas period of the study. Relative to conventional and sensor-augmented insulin pump therapy, the bihormonal bionic pancreas, initialised only with participant weight, was able to achieve superior glycaemic regulation without the need for carbohydrate counting. Larger and longer studies are needed to establish the long-term benefits and risks of automated glycaemic management with a bihormonal bionic pancreas. National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health, and National Center for Advancing Translational Sciences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. "Bionic Woman" (2007): Gender, Disability and Cyborgs

    ERIC Educational Resources Information Center

    Quinlan, Margaret M.; Bates, Benjamin R.

    2009-01-01

    This paper explores a representation of overlapping categories of gender, disability and cyborgs in "Bionic Woman" (2007). The television show "Bionic Woman" (2007) is a popular culture representation that uniquely brings together these categories. Three themes emerged from an analysis of blogger discourse surrounding the show. The themes reveal…

  2. Bionic Design, Materials and Performance of Bone Tissue Scaffolds

    PubMed Central

    Wu, Tong; Yu, Suihuai; Chen, Dengkai; Wang, Yanen

    2017-01-01

    Design, materials, and performance are important factors in the research of bone tissue scaffolds. This work briefly describes the bone scaffolds and their anatomic structure, as well as their biological and mechanical characteristics. Furthermore, we reviewed the characteristics of metal materials, inorganic materials, organic polymer materials, and composite materials. The importance of the bionic design in preoperative diagnosis models and customized bone scaffolds was also discussed, addressing both the bionic structure design (macro and micro structure) and the bionic performance design (mechanical performance and biological performance). Materials and performance are the two main problems in the development of customized bone scaffolds. Bionic design is an effective way to solve these problems, which could improve the clinical application of bone scaffolds, by creating a balance between mechanical performance and biological performance. PMID:29039749

  3. Bionic Design, Materials and Performance of Bone Tissue Scaffolds.

    PubMed

    Wu, Tong; Yu, Suihuai; Chen, Dengkai; Wang, Yanen

    2017-10-17

    Design, materials, and performance are important factors in the research of bone tissue scaffolds. This work briefly describes the bone scaffolds and their anatomic structure, as well as their biological and mechanical characteristics. Furthermore, we reviewed the characteristics of metal materials, inorganic materials, organic polymer materials, and composite materials. The importance of the bionic design in preoperative diagnosis models and customized bone scaffolds was also discussed, addressing both the bionic structure design (macro and micro structure) and the bionic performance design (mechanical performance and biological performance). Materials and performance are the two main problems in the development of customized bone scaffolds. Bionic design is an effective way to solve these problems, which could improve the clinical application of bone scaffolds, by creating a balance between mechanical performance and biological performance.

  4. Recent Progress in Bionic Condensate Microdrop Self-Propelling Surfaces.

    PubMed

    Gong, Xiaojing; Gao, Xuefeng; Jiang, Lei

    2017-12-01

    Bionic condensate microdrop self-propelling (CMDSP) surfaces are attracting increased attention as novel, low-adhesivity superhydrophobic surfaces due to their value in fundamental research and technological innovation, e.g., for enhancing heat transfer, energy-effective antifreezing, and electrostatic energy harvesting. Here, the focus is on recent progress in bionic CMDSP surfaces. Metal-based CMDSP surfaces, which are the most promising in their respective fields, are highlighted for use in future applications. The selected topics are divided into four sections: biological prototypes, mechanism and construction rules, fabrication, and applications of metal-based CMDSP surfaces. Finally, the challenges and future development trends in bionic CMDSP surfaces are envisioned, especially the utilization of potential bionic inspiration in the design of more advanced CMDSP surfaces. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The potential of the second sight system bionic eye implant for partial sight restoration.

    PubMed

    Luo, Yvonne Hsu-Lin; Fukushige, Eka; Da Cruz, Lyndon

    2016-07-01

    Second Sight System bionic eye implant, a commercially available visual prosthesis developed by Second Sight Medical Products, has been implanted in over 125 patients with outer retinal dystrophies such as retinitis pigmentosa. The system has gained regulatory approval in both the USA and Europe, and aims to restore vision by electrical stimulation of the nerve cells of the inner retina. In this review, we present the safety profile of this implant from the international clinical trial and discuss the nature and levels of improvement in visual function achieved by patients implanted with the system. Expert commentary: Future developments for the system will be explored following the discussion of the current usefulness of the device, its limitation as and the areas in which further development is necessary.

  6. Bio-Tribology Properties of Bionic Carp Scale Morphology on Ti6A14V Surface

    NASA Astrophysics Data System (ADS)

    Wang, W.; Y Wei, X.; Meng, K.; Zhong, L. H.; Wang, Y.; Yu, X. H.

    2017-12-01

    In order to improve the bio-tribology properties of Ti6A14V surface, the bionic carp scale appearance pattern on Ti6A14V surface was prepared by laser surface texturing technology. The ball-disc reciprocating linear tribological experiment under different lubricants with dry friction was carried out by MRTR multifunction friction and wear testing machine using ZrO2/Ti6A14V as friction pair. The wear scar morphology of the sample surface was observed by SEM. The results show that for dry friction, the friction factor of the bionic carp scale morphology Ti6A14V reduces by 0.23 than those without bionic carp scale morphology, a decline of 45%. Under different lubrication conditions, the friction factors of samples with the bionic carp scale are increased in varying degrees with the increase of size of bionic texturing. The friction factor with same specimen under different lubrication conditions according to the ascending order are 0.5g/dl of sodium hyaluronate +0.5g/dl-γglobulin and 0.5g/dl mixed aqueous solution of sodium hyaluronate solution and artificial saliva. The wear volume also showed a similar variation.

  7. Research on moving object detection based on frog's eyes

    NASA Astrophysics Data System (ADS)

    Fu, Hongwei; Li, Dongguang; Zhang, Xinyuan

    2008-12-01

    On the basis of object's information processing mechanism with frog's eyes, this paper discussed a bionic detection technology which suitable for object's information processing based on frog's vision. First, the bionics detection theory by imitating frog vision is established, it is an parallel processing mechanism which including pick-up and pretreatment of object's information, parallel separating of digital image, parallel processing, and information synthesis. The computer vision detection system is described to detect moving objects which has special color, special shape, the experiment indicates that it can scheme out the detecting result in the certain interfered background can be detected. A moving objects detection electro-model by imitating biologic vision based on frog's eyes is established, the video simulative signal is digital firstly in this system, then the digital signal is parallel separated by FPGA. IN the parallel processing, the video information can be caught, processed and displayed in the same time, the information fusion is taken by DSP HPI ports, in order to transmit the data which processed by DSP. This system can watch the bigger visual field and get higher image resolution than ordinary monitor systems. In summary, simulative experiments for edge detection of moving object with canny algorithm based on this system indicate that this system can detect the edge of moving objects in real time, the feasibility of bionic model was fully demonstrated in the engineering system, and it laid a solid foundation for the future study of detection technology by imitating biologic vision.

  8. The Bionic Clicker Mark I & II

    PubMed Central

    Magee, Elliott G.; Ourselin, S.; Nikitichev, Daniil; Vercauteren, T.; Vanhoestenberghe, Anne

    2017-01-01

    In this manuscript, we present two 'Bionic Clicker' systems, the first designed to demonstrate electromyography (EMG) based control systems for educational purposes and the second for research purposes. EMG based control systems pick up electrical signals generated by muscle activation and use these as inputs for controllers. EMG controllers are widely used in prosthetics to control limbs. The Mark I (MK I) clicker allows the wearer to change the slide of a presentation by raising their index finger. It is built around a microcontroller and a bio-signals shield. It generated a lot of interest from both the public and research community. The Mark II (MK II) device presented here was designed to be a cheaper, sleeker, and more customizable system that can be easily modified and directly transmit EMG data. It is built using a wireless capable microcontroller and a muscle sensor. PMID:28829413

  9. The Bionic Clicker Mark I & II.

    PubMed

    Magee, Elliott G; Ourselin, S; Nikitichev, Daniil; Vercauteren, T; Vanhoestenberghe, Anne

    2017-08-14

    In this manuscript, we present two 'Bionic Clicker' systems, the first designed to demonstrate electromyography (EMG) based control systems for educational purposes and the second for research purposes. EMG based control systems pick up electrical signals generated by muscle activation and use these as inputs for controllers. EMG controllers are widely used in prosthetics to control limbs. The Mark I (MK I) clicker allows the wearer to change the slide of a presentation by raising their index finger. It is built around a microcontroller and a bio-signals shield. It generated a lot of interest from both the public and research community. The Mark II (MK II) device presented here was designed to be a cheaper, sleeker, and more customizable system that can be easily modified and directly transmit EMG data. It is built using a wireless capable microcontroller and a muscle sensor.

  10. Holographic cosmology from BIonic solutions

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza; Faizal, Mir; Setare, Mohammad Reza; Ali, Ahmed Farag

    2017-02-01

    In this paper, we will use a BIonic solution for analyzing the holographic cosmology. A BIonic solution is a configuration of a D3-brane and an anti-D3-brane connected by a wormhole, and holographic cosmology is a recent proposal to explain cosmic expansion by using the holographic principle. In our model, a BIonic configuration will be produced by the transition of fundamental black strings. The formation of a BIonic configuration will cause inflation. As the D3-brane moves away from the anti-D3-brane, the wormhole will get annihilated, and the inflation will end with the annihilation of this wormhole. However, it is possible for a D3-brane to collide with an anti-D3-brane. Such a collision will occur if the distance between the D3-brane and the anti-D3-brane reduces, and this will create tachyonic states. We will demonstrate that these tachyonic states will lead to the formation of a new wormhole, and this will cause acceleration of the universe before such a collision.

  11. Simulated effect on the compressive and shear mechanical properties of bionic integrated honeycomb plates.

    PubMed

    He, Chenglin; Chen, Jinxiang; Wu, Zhishen; Xie, Juan; Zu, Qiao; Lu, Yun

    2015-05-01

    Honeycomb plates can be applied in many fields, including furniture manufacturing, mechanical engineering, civil engineering, transportation and aerospace. In the present study, we discuss the simulated effect on the mechanical properties of bionic integrated honeycomb plates by investigating the compressive and shear failure modes and the mechanical properties of trabeculae reinforced by long or short fibers. The results indicate that the simulated effect represents approximately 80% and 70% of the compressive and shear strengths, respectively. Compared with existing bionic samples, the mass-specific strength was significantly improved. Therefore, this integrated honeycomb technology remains the most effective method for the trial manufacturing of bionic integrated honeycomb plates. The simulated effect of the compressive rigidity is approximately 85%. The short-fiber trabeculae have an advantage over the long-fiber trabeculae in terms of shear rigidity, which provides new evidence for the application of integrated bionic honeycomb plates. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. [The white coat as a cape: doctors, superheroes and bionics].

    PubMed

    Engelberts, Connie E; Mevius, Lucas

    2013-01-01

    To study the relationship between doctors and comic books, cartoons, superheroes and bionic prosthetic organs. Descriptive survey. For this study, 341 doctors and medical students filled in a digital survey in the autumn of 2013. The questionnaire contained questions about comic books and cartoons, their superheroes, prosthetic organs and about bionic and non-bionic super powers. As a child more than half of the participants read comic books regularly or often, and most watched cartoons regularly or often. Now their childhood interest in this subject has mostly been lost. In their youth, Suske & Wiske were the favourite, and now it is Donald Duck. The number of doctors with a favourite superhero decreased as aged increased from 52% to 37%. The care givers entertain lively fantasies about having bionic superpowers. According to the participants, the idea doctor would have ultrasonic eyes and all sorts of other super senses. Ninety-one per cent thought that 'the development of prosthetic organs is not a waste of money'. If Batman and Superman come to blows, Catwoman wins.

  13. Bionic Design for Mars Sampling Scoop Inspired by Himalayan Marmot Claw

    PubMed Central

    2016-01-01

    Cave animals are often adapted to digging and life underground, with claw toes similar in structure and function to a sampling scoop. In this paper, the clawed toes of the Himalayan marmot were selected as a biological prototype for bionic research. Based on geometric parameter optimization of the clawed toes, a bionic sampling scoop for use on Mars was designed. Using a 3D laser scanner, the point cloud data of the second front claw toe was acquired. Parametric equations and contour curves for the claw were then built with cubic polynomial fitting. We obtained 18 characteristic curve equations for the internal and external contours of the claw. A bionic sampling scoop was designed according to the structural parameters of Curiosity's sampling shovel and the contours of the Himalayan marmot's claw. Verifying test results showed that when the penetration angle was 45° and the sampling speed was 0.33 r/min, the bionic sampling scoops' resistance torque was 49.6% less than that of the prototype sampling scoop. When the penetration angle was 60° and the sampling speed was 0.22 r/min, the resistance torque of the bionic sampling scoop was 28.8% lower than that of the prototype sampling scoop. PMID:28127229

  14. [Design and Preparation of Plant Bionic Materials Based on Optical and Infrared Features Simulation].

    PubMed

    Jiang, Xiao-jun; Lu, Xu-liang; Pan, Jia-liang; Zhang, Shuan-qin

    2015-07-01

    Due to the life characteristics such as physiological structure and transpiration, plants have unique optical and infrared features. In the optical band, because of the common effects of chlorophyll and water, plant leafs show spectral reflectance characteristics change in 550, 680, 1400 and 1900 nm significantly. In the infrared wave band, driven by transpiration, plants could regulate temperature on their own initiative, which make the infrared characteristics of plants different from artificial materials. So palnt bionic materials were proposed to simulate optical and infrared characteristics of plants. By analyzing formation mechanism of optical and infrared features about green plants, the component design and heat-transfer process of plants bionic materials were studied, above these the heat-transfer control formulation was established. Based on water adsorption/release compound, optical pigments and other man-made materials, plant bionic materials preparation methods were designed which could simulate the optical and infrared features of green plants. By chemical casting methods plant bionic material films were prepared, which use polyvinyl alcohol as film forming and water adsorption/release compound, and use optical pigments like chrome green and macromolecule yellow as colouring materials. The research conclusions achieved by testings figured out: water adsorption/release testing showed that the plant bionic materials with a certain thickness could absorb 1.3 kg water per square meter, which could satisfy the water usage of transpiration simulation one day; the optical and infrared simulated effect tests indicated that the plant bionic materials could preferably simulate the spectral reflective performance of green plants in optical wave band (380-2500 nm, expecially in 1400 and 1900 nm which were water absorption wave band of plants), and also it had similar daily infrared radiation variations with green plants, daily average radiation temperature difference was 0.37 degrees C, maximum radiation temperature difference was 0.9 degrees C; so according to the testing results, the materials behave well plant bionic performance.

  15. Ultra-low-power wireless transmitter for neural prostheses with modified pulse position modulation.

    PubMed

    Goodarzy, Farhad; Skafidas, Stan E

    2014-01-01

    An ultra-low-power wireless transmitter for embedded bionic systems is proposed, which achieves 40 pJ/b energy efficiency and delivers 500 kb/s data using the medical implant communication service frequency band (402-405 MHz). It consumes a measured peak power of 200 µW from a 1.2 V supply while occupying an active area of 0.0016 mm(2) in a 130 nm technology. A modified pulse position modulation technique called saturated amplified signal is proposed and implemented, which can reduce the overall and per bit transferred power consumption of the transmitter while reducing the complexity of the transmitter architectures, and hence potentially shrinking the size of the implemented circuitry. The design is capable of being fully integrated on single-chip solutions for surgically implanted bionic systems, wearable devices and neural embedded systems.

  16. Multifocal microlens for bionic compound eye

    NASA Astrophysics Data System (ADS)

    Cao, Axiu; Wang, Jiazhou; Pang, Hui; Zhang, Man; Shi, Lifang; Deng, Qiling; Hu, Song

    2017-10-01

    Bionic compound eye optical element composed of multi-dimensional sub-eye microlenses plays an important role in miniaturizing the volume and weight of an imaging system. In this manuscript, we present a novel structure of the bionic compound eye with multiple focal lengths. By the division of the microlens into two concentric radial zones including the inner zone and the outer zone with independent radius, the sub-eye which is a multi-level micro-scale structure can be formed with multiple focal lengths. The imaging capability of the structure has been simulated. The results show that the optical information in different depths can be acquired by the structure. Meanwhile, the parameters including aperture and radius of the two zones, which have an influence on the imaging quality have been analyzed and discussed. With the increasing of the ratio of inner and outer aperture, the imaging quality of the inner zone is becoming better, and instead the outer zone will become worse. In addition, through controlling the radius of the inner and outer zone independently, the design of sub-eye with different focal lengths can be realized. With the difference between the radius of the inner and outer zone becoming larger, the imaging resolution of the sub-eye will decrease. Therefore, the optimization of the multifocal structure should be carried out according to the actual imaging quality demands. Meanwhile, this study can provide references for the further applications of multifocal microlens in bionic compound eye.

  17. LMSC PUBLISHED CONTRIBUTIONS, 1966 IMPRINTS: A CITATION BIBLIOGRAPHY,

    DTIC Science & Technology

    PHYSICS, BIBLIOGRAPHIES), (*AERONAUTICS, BIBLIOGRAPHIES), (*ASTRONAUTICS, BIBLIOGRAPHIES), (* MATERIALS , BIBLIOGRAPHIES), (*ELECTRONICS...BIBLIOGRAPHIES), (*ENGINEERING, BIBLIOGRAPHIES), ASTROPHYSICS, NUCLEAR PHYSICS, MECHANICS, METALLURGY, CERAMIC MATERIALS , SOLID STATE PHYSICS, INFORMATION RETRIEVAL, PROPULSION SYSTEMS, BIONICS, REPORTS

  18. Three-dimensional polylactic acid@graphene oxide/chitosan sponge bionic filter: Highly efficient adsorption of crystal violet dye.

    PubMed

    Zhou, G; Wang, K P; Liu, H W; Wang, L; Xiao, X F; Dou, D D; Fan, Y B

    2018-07-01

    Owing to low bearing capacity and efficiency, traditional filters or adsorbents for removal of contaminants like crystal violet (CV) dye required frequent replacement. Besides, the combination of three-dimensional (3D) printing and bionics could break the constraints of traditional configuration. In this study, a novel depth-type hybrid polylactic acid (PLA)@graphene oxide (GO)/chitosan (CS) sponge filter with bionic fish-mouth structure was prepared and fabricated, assisted by 3D printing and double freeze-drying technology, according to the theories of vertical cross-step filtration and swirling flow. And GO/CS sponge and its filtering device were characterized by FITR, SEM, water adsorption and so on. Moreover, it was explained that the impact factors on dye removal mechanism, like GO content (or CS content), contact time, pH, temperature and bionic configuration. As a result, the bionic 3D filtering device demonstrated excellent removal efficiency (97.8±0.5% for CV) and GO/CS sponge exhibited higher strength (74.5±3.5MPa) at the condition of GO content of 9wt%, contact time of 46min, pH of 8 and 35°C, respectively. Therefore, the resulting 3D PLA@GO/CS sponge bionic filter via gravity and vortex driving provided new alternatives for effectively dye-water separation, and it showed great promise for application of biological macromolecules in adsorption. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Dynamic bending of bionic flexible body driven by pneumatic artificial muscles(PAMs) for spinning gait of quadruped robot

    NASA Astrophysics Data System (ADS)

    Lei, Jingtao; Yu, Huangying; Wang, Tianmiao

    2016-01-01

    The body of quadruped robot is generally developed with the rigid structure. The mobility of quadruped robot depends on the mechanical properties of the body mechanism. It is difficult for quadruped robot with rigid structure to achieve better mobility walking or running in the unstructured environment. A kind of bionic flexible body mechanism for quadruped robot is proposed, which is composed of one bionic spine and four pneumatic artificial muscles(PAMs). This kind of body imitates the four-legged creatures' kinematical structure and physical properties, which has the characteristic of changeable stiffness, lightweight, flexible and better bionics. The kinematics of body bending is derived, and the coordinated movement between the flexible body and legs is analyzed. The relationship between the body bending angle and the PAM length is obtained. The dynamics of the body bending is derived by the floating coordinate method and Lagrangian method, and the driving force of PAM is determined. The experiment of body bending is conducted, and the dynamic bending characteristic of bionic flexible body is evaluated. Experimental results show that the bending angle of the bionic flexible body can reach 18°. An innovation body mechanism for quadruped robot is proposed, which has the characteristic of flexibility and achieve bending by changing gas pressure of PAMs. The coordinated movement of the body and legs can achieve spinning gait in order to improve the mobility of quadruped robot.

  20. Drag Reduction and Performance Improvement of Hydraulic Torque Converters with Multiple Biological Characteristics.

    PubMed

    Chunbao, Liu; Li, Li; Yulong, Lei; Changsuo, Liu; Yubo, Zhang

    2016-01-01

    Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader.

  1. Experimental Study of Reciprocating Friction between Rape Stalk and Bionic Nonsmooth Surface Units

    PubMed Central

    Ma, Zheng; Li, Yaoming; Xu, Lizhang

    2015-01-01

    Background. China is the largest producer of rape oilseed in the world; however, the mechanization level of rape harvest is relatively low, because rape materials easily adhere to the cleaning screens of combine harvesters, resulting in significant cleaning losses. Previous studies have shown that bionic nonsmooth surface cleaning screens restrain the adhesion of rape materials, but the underlying mechanisms remain unclear. Objective. The reciprocating friction between rape stalk and bionic nonsmooth metal surface was examined. Methods. The short-time Fourier transform method was used to discriminate the stable phase of friction signals and the stick-lag distance was defined to analyze the stable reciprocating friction in a phase diagram. Results. The reciprocating friction between rape stalk and metal surface is a typical stick-slip friction, and the bionic nonsmooth metal surfaces with concave or convex units reduced friction force with increasing reciprocating frequency. The results also showed that the stick-lag distance of convex surface increased with reciprocating frequency, which indicated that convex surface reduces friction force more efficiently. Conclusions. We suggest that bionic nonsmooth surface cleaning screens, especially with convex units, restrain the adhesion of rape materials more efficiently compared to the smooth surface cleaning screens. PMID:27034611

  2. Drag Reduction and Performance Improvement of Hydraulic Torque Converters with Multiple Biological Characteristics

    PubMed Central

    Chunbao, Liu; Changsuo, Liu; Yubo, Zhang

    2016-01-01

    Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader. PMID:27752220

  3. Effects of setting angle and chord length on performance of four blades bionic wind turbine

    NASA Astrophysics Data System (ADS)

    Yang, Z. X.; Li, G. S.; Song, L.; Bai, Y. F.

    2017-11-01

    With the energy crisis and the increasing environmental pollution, more and more efforts have been made about wind power development. In this paper, a four blades bionic wind turbine was proposed, and the outline of wind turbine was constructed by the fitted curve. This paper attempted to research the effects of setting angle and chord length on performance of four blades bionic wind turbine by computational fluid dynamics (CFD) simulation. The results showed that the setting angle and chord length of the bionic wind turbine has some significant effects on the efficiency of the wind turbine, and within the range of wind speed from 7 m/s to 15 m/s, the wind turbine achieved maximum efficiency when the setting angle is 31 degree and the chord length is 125 mm. The conclusion will work as a guideline for the improvement of wind turbine design

  4. Somato stimulation and acupuncture therapy.

    PubMed

    Zhao, Jing-Jun; Rong, Pei-Jing; Shi, Li; Ben, Hui; Zhu, Bing

    2016-05-01

    Acupuncture is an oldest somato stimulus medical technique. As the most representative peripheral nerve stimulation therapy, it has a complete system of theory and application and is applicable to a large population. This paper expounds the bionic origins of acupuncture and analyzes the physiological mechanism by which acupuncture works. For living creatures, functionally sound viscera and effective endurance of pain are essential for survival. This paper discusses the way in which acupuncture increases the pain threshold of living creatures and the underlying mechanism from the perspective of bionics. Acupuncture can also help to adjust visceral functions and works most effectively in facilitating the process of digestion and restraining visceral pain. This paper makes an in-depth overview of peripheral nerve stimulation therapy represented by acupuncture. We look forward to the revival of acupuncture, a long-standing somato stimulus medicine, in the modern medical systems.

  5. Case-study of a user-driven prosthetic arm design: bionic hand versus customized body-powered technology in a highly demanding work environment.

    PubMed

    Schweitzer, Wolf; Thali, Michael J; Egger, David

    2018-01-03

    Prosthetic arm research predominantly focuses on "bionic" but not body-powered arms. However, any research orientation along user needs requires sufficiently precise workplace specifications and sufficiently hard testing. Forensic medicine is a demanding environment, also physically, also for non-disabled people, on several dimensions (e.g., distances, weights, size, temperature, time). As unilateral below elbow amputee user, the first author is in a unique position to provide direct comparison of a "bionic" myoelectric iLimb Revolution (Touch Bionics) and a customized body-powered arm which contains a number of new developments initiated or developed by the user: (1) quick lock steel wrist unit; (2) cable mount modification; (3) cast shape modeled shoulder anchor; (4) suspension with a soft double layer liner (Ohio Willowwood) and tube gauze (Molnlycke) combination. The iLimb is mounted on an epoxy socket; a lanyard fixed liner (Ohio Willowwood) contains magnetic electrodes (Liberating Technologies). An on the job usage of five years was supplemented with dedicated and focused intensive two-week use tests at work for both systems. The side-by-side comparison showed that the customized body-powered arm provides reliable, comfortable, effective, powerful as well as subtle service with minimal maintenance; most notably, grip reliability, grip force regulation, grip performance, center of balance, component wear down, sweat/temperature independence and skin state are good whereas the iLimb system exhibited a number of relevant serious constraints. Research and development of functional prostheses may want to focus on body-powered technology as it already performs on manually demanding and heavy jobs whereas eliminating myoelectric technology's constraints seems out of reach. Relevant testing could be developed to help expediting this. This is relevant as Swiss disability insurance specifically supports prostheses that enable actual work integration. Myoelectric and cosmetic arm improvement may benefit from a less forgiving focus on perfecting anthropomorphic appearance.

  6. [Theory and practice of bionic cultivation of traditional Chinese medicine].

    PubMed

    Liu, Dahui; Huang, Luqi; Guo, Lanping; Shao, Aijuan; Chen, Meilan

    2009-03-01

    The bionic cultivation of medicinal plant is an ecological cultivation pattern, which is adopting ecological engineering and modern agricultural techniques to simulate the natural ecosystem of wild medicinal plant community, and has been given greater attention on the agriculture of traditional Chinese medicine (TCM). It is also the cross subject that combines Chinese traditional medicine, agronomy, horticulture, ecology, agricultural engineering and management. Moreover, it has significant technology advantages of promoting the sustainable utilization of medicinal plant resources, improving the ecological environment and harmonizing man and nature. So it's important to develop the bionic cultivation of TCM.

  7. Effect of counterface roughness on the friction of bionic wall-shaped microstructures for gecko-like attachments.

    PubMed

    Kasem, Haytam; Cohen, Yossi

    2017-08-04

    Hairy adhesive systems involved in gecko locomotion have drawn the interest of many researchers regarding the development of bionic solutions for fast and reversible adhesive technologies. To date, despite extensive efforts to design gecko-inspired adhesive surfaces, adhesion and friction capacities are often evaluated using smooth and rigid counterfaces, in general glass, whereas most natural and artificial surfaces inevitably have a certain level of roughness. For that reason, in this study experiments tested the effects of the substrate roughness on the friction of bionic wale-shaped microstructures for gecko-like attachments. To this end, 12 substrates with different isotropic roughness were prepared using the same Epoxy material. Friction force was measured under various normal loads. It was concluded that classical roughness parameters, considered separately, are not appropriate to explain roughness-related variations in friction force. This has led us to develop a new integrative roughness parameter that combines characteristics of the surface. The parameter is capable of classifying the obtained experimental results in a readable way. An analytical model based on the experimental results has been developed to predict the variation of the friction force as a function of counterface roughness and applied normal load.

  8. Advanced interdisciplinary technologies

    NASA Technical Reports Server (NTRS)

    Anderson, John L.

    1990-01-01

    The following topics are presented in view graph form: (1) breakthrough trust (space research and technology assessment); (2) bionics (technology derivatives from biological systems); (3) biodynamics (modeling of human biomechanical performance based on anatomical data); and (4) tethered atmospheric research probes.

  9. Functional fusion of living systems with synthetic electrode interfaces.

    PubMed

    Staufer, Oskar; Weber, Sebastian; Bengtson, C Peter; Bading, Hilmar; Spatz, Joachim P; Rustom, Amin

    2016-01-01

    The functional fusion of "living" biomaterial (such as cells) with synthetic systems has developed into a principal ambition for various scientific disciplines. In particular, emerging fields such as bionics and nanomedicine integrate advanced nanomaterials with biomolecules, cells and organisms in order to develop novel strategies for applications, including energy production or real-time diagnostics utilizing biomolecular machineries "perfected" during billion years of evolution. To date, hardware-wetware interfaces that sample or modulate bioelectric potentials, such as neuroprostheses or implantable energy harvesters, are mostly based on microelectrodes brought into the closest possible contact with the targeted cells. Recently, the possibility of using electrochemical gradients of the inner ear for technical applications was demonstrated using implanted electrodes, where 1.12 nW of electrical power was harvested from the guinea pig endocochlear potential for up to 5 h (Mercier, P.; Lysaght, A.; Bandyopadhyay, S.; Chandrakasan, A.; Stankovic, K. Nat. Biotech. 2012, 30, 1240-1243). More recent approaches employ nanowires (NWs) able to penetrate the cellular membrane and to record extra- and intracellular electrical signals, in some cases with subcellular resolution (Spira, M.; Hai, A. Nat. Nano. 2013, 8, 83-94). Such techniques include nanoelectric scaffolds containing free-standing silicon NWs (Robinson, J. T.; Jorgolli, M.; Shalek, A. K.; Yoon, M. H.; Gertner, R. S.; Park, H. Nat Nanotechnol. 2012, 10, 180-184) or NW field-effect transistors (Qing, Q.; Jiang, Z.; Xu, L.; Gao, R.; Mai, L.; Lieber, C. Nat. Nano. 2013, 9, 142-147), vertically aligned gallium phosphide NWs (Hällström, W.; Mårtensson, T.; Prinz, C.; Gustavsson, P.; Montelius, L.; Samuelson, L.; Kanje, M. Nano Lett. 2007, 7, 2960-2965) or individually contacted, electrically active carbon nanofibers. The latter of these approaches is capable of recording electrical responses from oxidative events occurring in intercellular regions of neuronal cultures (Zhang, D.; Rand, E.; Marsh, M.; Andrews, R.; Lee, K.; Meyyappan, M.; Koehne, J. Mol. Neurobiol. 2013, 48, 380-385). Employing monocrystalline gold, nanoelectrode interfaces, we have now achieved stable, functional access to the electrochemical machinery of individual Physarum polycephalum slime mold cells. We demonstrate the "symbionic" union, allowing for electrophysiological measurements, functioning as autonomous sensors and capable of producing nanowatts of electric power. This represents a further step towards the future development of groundbreaking, cell-based technologies, such as bionic sensory systems or miniaturized energy sources to power various devices, or even "intelligent implants", constantly refueled by their surrounding nutrients.

  10. Functional fusion of living systems with synthetic electrode interfaces

    PubMed Central

    Staufer, Oskar; Weber, Sebastian; Bengtson, C Peter; Bading, Hilmar; Spatz, Joachim P

    2016-01-01

    Summary The functional fusion of “living” biomaterial (such as cells) with synthetic systems has developed into a principal ambition for various scientific disciplines. In particular, emerging fields such as bionics and nanomedicine integrate advanced nanomaterials with biomolecules, cells and organisms in order to develop novel strategies for applications, including energy production or real-time diagnostics utilizing biomolecular machineries “perfected” during billion years of evolution. To date, hardware–wetware interfaces that sample or modulate bioelectric potentials, such as neuroprostheses or implantable energy harvesters, are mostly based on microelectrodes brought into the closest possible contact with the targeted cells. Recently, the possibility of using electrochemical gradients of the inner ear for technical applications was demonstrated using implanted electrodes, where 1.12 nW of electrical power was harvested from the guinea pig endocochlear potential for up to 5 h (Mercier, P.; Lysaght, A.; Bandyopadhyay, S.; Chandrakasan, A.; Stankovic, K. Nat. Biotech. 2012, 30, 1240–1243). More recent approaches employ nanowires (NWs) able to penetrate the cellular membrane and to record extra- and intracellular electrical signals, in some cases with subcellular resolution (Spira, M.; Hai, A. Nat. Nano. 2013, 8, 83–94). Such techniques include nanoelectric scaffolds containing free-standing silicon NWs (Robinson, J. T.; Jorgolli, M.; Shalek, A. K.; Yoon, M. H.; Gertner, R. S.; Park, H. Nat Nanotechnol. 2012, 10, 180–184) or NW field-effect transistors (Qing, Q.; Jiang, Z.; Xu, L.; Gao, R.; Mai, L.; Lieber, C. Nat. Nano. 2013, 9, 142–147), vertically aligned gallium phosphide NWs (Hällström, W.; Mårtensson, T.; Prinz, C.; Gustavsson, P.; Montelius, L.; Samuelson, L.; Kanje, M. Nano Lett. 2007, 7, 2960–2965) or individually contacted, electrically active carbon nanofibers. The latter of these approaches is capable of recording electrical responses from oxidative events occurring in intercellular regions of neuronal cultures (Zhang, D.; Rand, E.; Marsh, M.; Andrews, R.; Lee, K.; Meyyappan, M.; Koehne, J. Mol. Neurobiol. 2013, 48, 380–385). Employing monocrystalline gold, nanoelectrode interfaces, we have now achieved stable, functional access to the electrochemical machinery of individual Physarum polycephalum slime mold cells. We demonstrate the “symbionic” union, allowing for electrophysiological measurements, functioning as autonomous sensors and capable of producing nanowatts of electric power. This represents a further step towards the future development of groundbreaking, cell-based technologies, such as bionic sensory systems or miniaturized energy sources to power various devices, or even “intelligent implants”, constantly refueled by their surrounding nutrients. PMID:26977386

  11. Application of Bionic Design to FRP T-Joints

    NASA Astrophysics Data System (ADS)

    Luo, Guang-Min; Kuo, Chia-Hung

    2017-09-01

    We applied the concepts of bionics to enhance the mechanical strength of fiberglass reinforced plastic T-joints. The failure modes of the designed arthrosis-like and gum-like joints were determined using three-point bending tests and numerical simulations and compared with those of normal T-joints bonded using structural adhesives. In the simulation, we used cohesive elements to simulate the adhesive interface of the structural adhesive. The experimental and simulation results show that the arthrosis-like joint can effectively delay the failure progress and enhance the bonding strength of T-joints, thus confirming that an appropriate bionic design can effectively control the bonding properties of structural adhesives.

  12. Research on the Bionics Design of Automobile Styling Based on the Form Gene

    NASA Astrophysics Data System (ADS)

    Aili, Zhao; Long, Jiang

    2017-09-01

    From the heritage of form gene point of view, this thesis has analyzed the gene make-up, cultural inheritance and aesthetic features in the evolution and development of forms of brand automobiles and proposed the bionic design concept and methods in the automobile styling design. And this innovative method must be based on the form gene, and the consistency and combination of form element must be maintained during the design. Taking the design of Maserati as an example, the thesis will show you the design method and philosophy in the aspects of form gene expression and bionic design innovation for the future automobile styling.

  13. A new time-adaptive discrete bionic wavelet transform for enhancing speech from adverse noise environment

    NASA Astrophysics Data System (ADS)

    Palaniswamy, Sumithra; Duraisamy, Prakash; Alam, Mohammad Showkat; Yuan, Xiaohui

    2012-04-01

    Automatic speech processing systems are widely used in everyday life such as mobile communication, speech and speaker recognition, and for assisting the hearing impaired. In speech communication systems, the quality and intelligibility of speech is of utmost importance for ease and accuracy of information exchange. To obtain an intelligible speech signal and one that is more pleasant to listen, noise reduction is essential. In this paper a new Time Adaptive Discrete Bionic Wavelet Thresholding (TADBWT) scheme is proposed. The proposed technique uses Daubechies mother wavelet to achieve better enhancement of speech from additive non- stationary noises which occur in real life such as street noise and factory noise. Due to the integration of human auditory system model into the wavelet transform, bionic wavelet transform (BWT) has great potential for speech enhancement which may lead to a new path in speech processing. In the proposed technique, at first, discrete BWT is applied to noisy speech to derive TADBWT coefficients. Then the adaptive nature of the BWT is captured by introducing a time varying linear factor which updates the coefficients at each scale over time. This approach has shown better performance than the existing algorithms at lower input SNR due to modified soft level dependent thresholding on time adaptive coefficients. The objective and subjective test results confirmed the competency of the TADBWT technique. The effectiveness of the proposed technique is also evaluated for speaker recognition task under noisy environment. The recognition results show that the TADWT technique yields better performance when compared to alternate methods specifically at lower input SNR.

  14. 3D Printed Bionic Nanodevices.

    PubMed

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the versatility of extrusion-based 3D printing technologies to interweave nanomaterials and fabricate novel bionic devices.

  15. 3D Printed Bionic Nanodevices

    PubMed Central

    Kong, Yong Lin; Gupta, Maneesh K.; Johnson, Blake N.; McAlpine, Michael C.

    2016-01-01

    Summary The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and ‘living’ platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the versatility of extrusion-based 3D printing technologies to interweave nanomaterials and fabricate novel bionic devices. PMID:27617026

  16. Bionic ankle–foot prosthesis normalizes walking gait for persons with leg amputation

    PubMed Central

    Herr, Hugh M.; Grabowski, Alena M.

    2012-01-01

    Over time, leg prostheses have improved in design, but have been incapable of actively adapting to different walking velocities in a manner comparable to a biological limb. People with a leg amputation using such commercially available passive-elastic prostheses require significantly more metabolic energy to walk at the same velocities, prefer to walk slower and have abnormal biomechanics compared with non-amputees. A bionic prosthesis has been developed that emulates the function of a biological ankle during level-ground walking, specifically providing the net positive work required for a range of walking velocities. We compared metabolic energy costs, preferred velocities and biomechanical patterns of seven people with a unilateral transtibial amputation using the bionic prosthesis and using their own passive-elastic prosthesis to those of seven non-amputees during level-ground walking. Compared with using a passive-elastic prosthesis, using the bionic prosthesis decreased metabolic cost by 8 per cent, increased trailing prosthetic leg mechanical work by 57 per cent and decreased the leading biological leg mechanical work by 10 per cent, on average, across walking velocities of 0.75–1.75 m s−1 and increased preferred walking velocity by 23 per cent. Using the bionic prosthesis resulted in metabolic energy costs, preferred walking velocities and biomechanical patterns that were not significantly different from people without an amputation. PMID:21752817

  17. Born-Infeld extension of Lovelock brane gravity in the system of M0-branes and its application for the emergence of Pauli exclusion principle in BIonic superconductors

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza

    2016-07-01

    Recently, some authors (Cruz and Rojas, 2013 [1]) have constructed a Born-Infeld type action which may be written in terms of the Lovelock brane Lagrangians for a given dimension p. We reconsider their model in M-theory and study the process of birth and growth of nonlinear spinor and bosonic gravity during the construction of Mp-branes. Then, by application of this idea to BIonic system, we construct a BIonic superconductor in the background of nonlinear gravity. In this model, first, M0-branes link to each other and build an M5-brane and an anti-M5-brane connected by an M2-brane. M0-branes are zero dimensional objects that only scalars are attached to them. By constructing higher dimensional branes from M0-branes, gauge fields are produced. Also, if M0-branes don't link to each other completely, the symmetry of system is broken and fermions are created. The curvature produced by fermions has the opposite sign the curvature produced by gauge fields. Fermions on M5-branes and M2 plays the role of bridge between them. By passing time, M2 dissolves in M5's and nonlinear bosonic and spinor gravities are produced. By closing M5-branes towards each other, coupling of two identical fermions on two branes to each other causes that the square mass of their system becomes negative and some tachyonic states are created. For removing these tachyons, M5-branes compact, the sign of gravity between branes reverses, anti-gravity is produced which causes that branes and identical fermions get away from each other. This is the reason for the emergence of Pauli exclusion principle in Bionic system. Also, the spinor gravity vanishes and its energy builds a new M2 between M5-branes. We obtain the resistivity in this system and find that its value decreases by closing M5 branes to each other and shrinks to zero at colliding point of branes. This idea has different applications. For example, in cosmology, universes are located on M5-branes and M2-brane has the role of bridge between universes. When M5-branes become close to each other, this bridge dissolves in universes and causes that they expand. Also, when branes get away from each other, universes are contracted by compacting branes. The reason for flatness of universe in this system may be the neutralizing of curvature produced by gauge and scalar fields by the curvature produced by fermions. Using this idea in cuprates, we show that by decreasing temperature of system, branes which electrons live on it approach to each other in extra dimensions and superconductivity creates. Applying this idea in QCD, we calculate the potential between particles and anti-particles which is in good agreement with predicted potential for confined color particles. This means that one BIonic superconductor between quark and antiquark may be the main reason of confinement in QCD. Finally, in biological system, the emergence of superconductor between two neurons of two different brains via extra dimension leads to transmission of information between them and happening telepathy.

  18. Research on metallic material defect detection based on bionic sensing of human visual properties

    NASA Astrophysics Data System (ADS)

    Zhang, Pei Jiang; Cheng, Tao

    2018-05-01

    Due to the fact that human visual system can quickly lock the areas of interest in complex natural environment and focus on it, this paper proposes an eye-based visual attention mechanism by simulating human visual imaging features based on human visual attention mechanism Bionic Sensing Visual Inspection Model Method to Detect Defects of Metallic Materials in the Mechanical Field. First of all, according to the biologically visually significant low-level features, the mark of defect experience marking is used as the intermediate feature of simulated visual perception. Afterwards, SVM method was used to train the advanced features of visual defects of metal material. According to the weight of each party, the biometrics detection model of metal material defect, which simulates human visual characteristics, is obtained.

  19. Regenerative Engineering and Bionic Limbs.

    PubMed

    James, Roshan; Laurencin, Cato T

    2015-03-01

    Amputations of the upper extremity are severely debilitating, current treatments support very basic limb movement, and patients undergo extensive physiotherapy and psychological counselling. There is no prosthesis that allows the amputees near-normal function. With increasing number of amputees due to injuries sustained in accidents, natural calamities and international conflicts, there is a growing requirement for novel strategies and new discoveries. Advances have been made in technological, material and in prosthesis integration where researchers are now exploring artificial prosthesis that integrate with the residual tissues and function based on signal impulses received from the residual nerves. Efforts are focused on challenging experts in different disciplines to integrate ideas and technologies to allow for the regeneration of injured tissues, recording on tissue signals and feed-back to facilitate responsive movements and gradations of muscle force. A fully functional replacement and regenerative or integrated prosthesis will rely on interface of biological process with robotic systems to allow individual control of movement such as at the elbow, forearm, digits and thumb in the upper extremity. Regenerative engineering focused on the regeneration of complex tissue and organ systems will be realized by the cross-fertilization of advances over the past thirty years in the fields of tissue engineering, nanotechnology, stem cell science, and developmental biology. The convergence of toolboxes crated within each discipline will allow interdisciplinary teams from engineering, science, and medicine to realize new strategies, mergers of disparate technologies, such as biophysics, smart bionics, and the healing power of the mind. Tackling the clinical challenges, interfacing the biological process with bionic technologies, engineering biological control of the electronic systems, and feed-back will be the important goals in regenerative engineering over the next two decades.

  20. Regenerative Engineering and Bionic Limbs

    PubMed Central

    James, Roshan; Laurencin, Cato T.

    2015-01-01

    Amputations of the upper extremity are severely debilitating, current treatments support very basic limb movement, and patients undergo extensive physiotherapy and psychological counselling. There is no prosthesis that allows the amputees near-normal function. With increasing number of amputees due to injuries sustained in accidents, natural calamities and international conflicts, there is a growing requirement for novel strategies and new discoveries. Advances have been made in technological, material and in prosthesis integration where researchers are now exploring artificial prosthesis that integrate with the residual tissues and function based on signal impulses received from the residual nerves. Efforts are focused on challenging experts in different disciplines to integrate ideas and technologies to allow for the regeneration of injured tissues, recording on tissue signals and feed-back to facilitate responsive movements and gradations of muscle force. A fully functional replacement and regenerative or integrated prosthesis will rely on interface of biological process with robotic systems to allow individual control of movement such as at the elbow, forearm, digits and thumb in the upper extremity. Regenerative engineering focused on the regeneration of complex tissue and organ systems will be realized by the cross-fertilization of advances over the past thirty years in the fields of tissue engineering, nanotechnology, stem cell science, and developmental biology. The convergence of toolboxes crated within each discipline will allow interdisciplinary teams from engineering, science, and medicine to realize new strategies, mergers of disparate technologies, such as biophysics, smart bionics, and the healing power of the mind. Tackling the clinical challenges, interfacing the biological process with bionic technologies, engineering biological control of the electronic systems, and feed-back will be the important goals in regenerative engineering over the next two decades. PMID:25983525

  1. Bionic Manufacturing: Towards Cyborg Cells and Sentient Microbots.

    PubMed

    Srivastava, Sarvesh Kumar; Yadav, Vikramaditya G

    2018-05-01

    Bio-inspired engineering applies biological design principles towards developing engineering solutions but is not practical as a manufacturing paradigm. We advocate 'bionic manufacturing', a synergistic fusion of biotic and abiotic components, to transition away from bio-inspiration toward bio-augmentation to address current limitations in bio-inspired manufacturing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Classification of Newborn Ear Malformations and their Treatment with the EarWell Infant Ear Correction System.

    PubMed

    Daniali, Lily N; Rezzadeh, Kameron; Shell, Cheryl; Trovato, Matthew; Ha, Richard; Byrd, H Steve

    2017-03-01

    A single practice's treatment protocol and outcomes following molding therapy on newborn ear deformations and malformations with the EarWell Infant Ear Correction System were reviewed. A classification system for grading the severity of constricted ear malformations was created on the basis of anatomical findings. A retrospective chart/photograph review of a consecutive series of infants treated with the EarWell System from 2011 to 2014 was undertaken. The infants were placed in either deformation or malformation groups. Three classes of malformation were identified. Data regarding treatment induction, duration of treatment, and quality of outcome were collected for all study patients. One hundred seventy-five infant ear malformations and 303 infant ear deformities were treated with the EarWell System. The average age at initiation of treatment was 12 days; the mean duration of treatment was 37 days. An average of six office visits was required. Treated malformations included constricted ears [172 ears (98 percent)] and cryptotia [three ears (2 percent)]. Cup ear (34 ears) was considered a constricted malformation, in contrast to the prominent ear deformity. Constricted ears were assigned to one of three classes, with each subsequent class indicating increasing severity: class I, 77 ears (45 percent); class II, 81 ears (47 percent); and class III, 14 ears (8 percent). Molding therapy with the EarWell System reduced the severity by an average of 1.2 points (p < 0.01). Complications included minor superficial excoriations and abrasions. The EarWell System was shown to be effective in eliminating or reducing the need for surgery in all but the most severe malformations. Therapeutic, IV.

  3. Modular adaptive implant based on smart materials.

    PubMed

    Bîzdoacă, N; Tarniţă, Daniela; Tarniţă, D N

    2008-01-01

    Applications of biological methods and systems found in nature to the study and design of engineering systems and modern technology are defined as Bionics. The present paper describes a bionics application of shape memory alloy in construction of orthopedic implant. The main idea of this paper is related to design modular adaptive implants for fractured bones. In order to target the efficiency of medical treatment, the implant has to protect the fractured bone, for the healing period, undertaking much as is possible from the daily usual load of the healthy bones. After a particular stage of healing period is passed, using implant modularity, the load is gradually transferred to bone, assuring in this manner a gradually recover of bone function. The adaptability of this design is related to medical possibility of the physician to made the implant to correspond to patient specifically anatomy. Using a CT realistic numerical bone models, the mechanical simulation of different types of loading of the fractured bones treated with conventional method are presented. The results are commented and conclusions are formulated.

  4. Prototype to product—developing a commercially viable neural prosthesis

    NASA Astrophysics Data System (ADS)

    Seligman, Peter

    2009-12-01

    The Cochlear implant or 'Bionic ear' is a device that enables people who do not get sufficient benefit from a hearing aid to communicate with the hearing world. The Cochlear implant is not an amplifier, but a device that electrically stimulates the auditory nerve in a way that crudely mimics normal hearing, thus providing a hearing percept. Many recipients are able to understand running speech without the help of lipreading. Cochlear implants have reached a stage of maturity where there are now 170 000 recipients implanted worldwide. The commercial development of these devices has occurred over the last 30 years. This development has been multidisciplinary, including audiologists, engineers, both mechanical and electrical, histologists, materials scientists, physiologists, surgeons and speech pathologists. This paper will trace the development of the device we have today, from the engineering perspective. The special challenges of designing an active device that will work in the human body for a lifetime will be outlined. These challenges include biocompatibility, extreme reliability, safety, patient fitting and surgical issues. It is emphasized that the successful development of a neural prosthesis requires the partnership of academia and industry.

  5. Prototype to product-developing a commercially viable neural prosthesis.

    PubMed

    Seligman, Peter

    2009-12-01

    The Cochlear implant or 'Bionic ear' is a device that enables people who do not get sufficient benefit from a hearing aid to communicate with the hearing world. The Cochlear implant is not an amplifier, but a device that electrically stimulates the auditory nerve in a way that crudely mimics normal hearing, thus providing a hearing percept. Many recipients are able to understand running speech without the help of lipreading. Cochlear implants have reached a stage of maturity where there are now 170 000 recipients implanted worldwide. The commercial development of these devices has occurred over the last 30 years. This development has been multidisciplinary, including audiologists, engineers, both mechanical and electrical, histologists, materials scientists, physiologists, surgeons and speech pathologists. This paper will trace the development of the device we have today, from the engineering perspective. The special challenges of designing an active device that will work in the human body for a lifetime will be outlined. These challenges include biocompatibility, extreme reliability, safety, patient fitting and surgical issues. It is emphasized that the successful development of a neural prosthesis requires the partnership of academia and industry.

  6. Ego-motion based on EM for bionic navigation

    NASA Astrophysics Data System (ADS)

    Yue, Xiaofeng; Wang, L. J.; Liu, J. G.

    2015-12-01

    Researches have proved that flying insects such as bees can achieve efficient and robust flight control, and biologists have explored some biomimetic principles regarding how they control flight. Based on those basic studies and principles acquired from the flying insects, this paper proposes a different solution of recovering ego-motion for low level navigation. Firstly, a new type of entropy flow is provided to calculate the motion parameters. Secondly, EKF, which has been used for navigation for some years to correct accumulated error, and estimation-Maximization, which is always used to estimate parameters, are put together to determine the ego-motion estimation of aerial vehicles. Numerical simulation on MATLAB has proved that this navigation system provides more accurate position and smaller mean absolute error than pure optical flow navigation. This paper has done pioneering work in bionic mechanism to space navigation.

  7. Design and Analysis of Bionic Cutting Blades Using Finite Element Method.

    PubMed

    Li, Mo; Yang, Yuwang; Guo, Li; Chen, Donghui; Sun, Hongliang; Tong, Jin

    2015-01-01

    Praying mantis is one of the most efficient predators in insect world, which has a pair of powerful tools, two sharp and strong forelegs. Its femur and tibia are both armed with a double row of strong spines along their posterior edges which can firmly grasp the prey, when the femur and tibia fold on each other in capturing. These spines are so sharp that they can easily and quickly cut into the prey. The geometrical characteristic of the praying mantis's foreleg, especially its tibia, has important reference value for the design of agricultural soil-cutting tools. Learning from the profile and arrangement of these spines, cutting blades with tooth profile were designed in this work. Two different sizes of tooth structure and arrangement were utilized in the design on the cutting edge. A conventional smooth-edge blade was used to compare with the bionic serrate-edge blades. To compare the working efficiency of conventional blade and bionic blades, 3D finite element simulation analysis and experimental measurement were operated in present work. Both the simulation and experimental results indicated that the bionic serrate-edge blades showed better performance in cutting efficiency.

  8. Design and Analysis of Bionic Cutting Blades Using Finite Element Method

    PubMed Central

    Li, Mo; Yang, Yuwang; Guo, Li; Chen, Donghui; Sun, Hongliang; Tong, Jin

    2015-01-01

    Praying mantis is one of the most efficient predators in insect world, which has a pair of powerful tools, two sharp and strong forelegs. Its femur and tibia are both armed with a double row of strong spines along their posterior edges which can firmly grasp the prey, when the femur and tibia fold on each other in capturing. These spines are so sharp that they can easily and quickly cut into the prey. The geometrical characteristic of the praying mantis's foreleg, especially its tibia, has important reference value for the design of agricultural soil-cutting tools. Learning from the profile and arrangement of these spines, cutting blades with tooth profile were designed in this work. Two different sizes of tooth structure and arrangement were utilized in the design on the cutting edge. A conventional smooth-edge blade was used to compare with the bionic serrate-edge blades. To compare the working efficiency of conventional blade and bionic blades, 3D finite element simulation analysis and experimental measurement were operated in present work. Both the simulation and experimental results indicated that the bionic serrate-edge blades showed better performance in cutting efficiency. PMID:27019583

  9. Innovative Design and Performance Evaluation of Bionic Imprinting Toothed Wheel.

    PubMed

    Zhang, Zhihong; Wang, Xiaoyang; Tong, Jin; Stephen, Carr

    2018-01-01

    A highly efficient soil-burrowing dung beetle possesses an intricate outer contour curve on its foreleg end-tooth. This study was carried out based on evidence that this special outer contour curve has the potential of reducing soil penetration resistance and could enhance soil-burrowing efficiency. A toothed wheel is a typical agricultural implement for soil imprinting, to increase its working efficiency; the approach of the bionic geometrical structure was utilized to optimize the innovative shape of imprinting toothed wheel. Characteristics in the dung beetle's foreleg end-tooth were extracted and studied by the edge detection technique. Then, this special outer contour curve was modeled by a nine-order polynomial function and used for the innovative design of imprinting the tooth's cutting edge. Both the conventional and bionic teeth were manufactured, and traction tests in a soil bin were conducted. Taking required draft force and volume of imprinted microbasin as the evaluating indexes, operating efficiency and quality of different toothed wheels were compared and investigated. Results indicate that compared with the conventional toothed wheel, a bionic toothed wheel possesses a better forward resistance reduction property against soil and, meanwhile, can enhance the quality of soil imprinting by increasing the volume of the created micro-basin.

  10. Research into topology optimization and the FDM method for a space cracked membrane

    NASA Astrophysics Data System (ADS)

    Hu, Qingxi; Li, Wanyuan; Zhang, Haiguang; Liu, Dali; Peng, Fujun; Duan, Yongchao

    2017-07-01

    The problem that the space membranes are easily torn open is the main focus in this paper, and a bionic strengthening-ribs structure is proposed for a space membrane based on interdisciplinary strengths, such as topology optimization, composite materials, and rapid prototyping. The optimization method and modeling method of membranes with bionic strengthening-ribs was studied. The PEEK and SCF/PEEK composite material which are applied to the space environment are chosen, and FDM technology is used. Through topology optimization, bionic strengthening-ribs with good tensile and tear capacities were obtained. Cracked membranes, cracked membranes with PEEK strengthening-ribs and SCF/PEEK strengthening-ribs were tested and test data were obtained. An extension situation and tension fracture were compared for three cases. The experimental results showed that membranes with the bionic strengthening-ribs structure have better mechanical properties, and the strength of the membranes with PEEK and SCF/PEEK strengthening-ribs were raised, respectively, up to 266.9% and 185.9%. The strengthening-ribs structure greatly improves the capacity to halt membrane crack-growth, which has an important significance to avoid membrane tear, and to ensure the spacecraft orbital lifetime.

  11. Effects of bionic units on the fatigue wear of gray cast iron surface with different shapes and distributions

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-kai; Lu, Shu-chao; Song, Xi-bin; Zhang, Haifeng; Yang, Wan-shi; Zhou, Hong

    2015-03-01

    To improve the fatigue wear resistance of gray cast iron (GCI), GCI samples were modified by a laser to imitate the unique structure of some soil animals alternating between soft and hard phases; the hard phase resists the deformation and the soft phase releases the deformation. Using the self-controlled fatigue wear test method, the fatigue wear behaviors of treated and untreated samples were investigated and compared experimentally. The results show that the bionic non-smooth surface obtains a beneficial effect on improving the fatigue wear resistance of a sample, and the fatigue wear resistance of the bionic sample assembled with reticulate units (60°+0°), whose mass loss was reduced by 62%, was superior to the others. Meanwhile, a finite element (FE) was used to simulate the compression and the distributions of strain and stress on the non-smooth surface was inferred. From these results, we understood that the functions of the bionic unit such as reducing strain and stress, and also obstructing the closure and propagation of cracks were the main reasons for improving the fatigue wear property of GCI.

  12. [APPLICATION OF THREE DIMENSIONAL PRINTING ON MANUFACTURING BIONIC SCAFFOLDS OF SPINAL CORD IN RATS].

    PubMed

    Chen, Yisheng; Wang, Jingjing; Chen, Xuyi; Chen, Chong; Tu, Yue; Zhang, Sai; Li, Xiaohong

    2015-03-01

    To fabricate the bionic scaffolds of rat spinal cord by combining three dimensional (3D) printer and 3D software, so as to lay the foundation of theory and technology for the manufacture of scaffolds by using biomaterials. Three female Sprague Dawley rats were scanned by 7.0T MRI to obtain the shape and position data of the cross section and gray matter of T8 to T10 spinal cord. Combined with data of position and shape of nerve conduction beam, the relevant data were obtained via Getdata software. Then the 3D graphics were made and converted to stereolithography (STL) format by using SolidWorks software. Photosensitive resin was used as the materials of spinal cord scaffolds. The bionic scaffolds were fabricated by 3D printer. MRI showed that the section shape of T8 to T10 segments of the spinal cord were approximately oval with a relatively long sagittal diameter of (2.20 ± 0.52) mm and short transverse diameter of (2.05 ± 0.24) mm, and the data of nerve conduction bundle were featured in the STL format. The spinal cord bionic scaffolds of the target segments made by 3D printer were similar to the spinal cord of rat in the morphology and size, and the position of pores simulated normal nerve conduction of rat spinal cord. Spinal cord scaffolds produced by 3D printer which have similar shape and size of normal rat spinal cord are more bionic, and the procedure is simple. This technology combined with biomaterials is also promising in spinal cord repairing after spinal cord injury.

  13. ECG denoising with adaptive bionic wavelet transform.

    PubMed

    Sayadi, Omid; Shamsollahi, Mohammad Bagher

    2006-01-01

    In this paper a new ECG denoising scheme is proposed using a novel adaptive wavelet transform, named bionic wavelet transform (BWT), which had been first developed based on a model of the active auditory system. There has been some outstanding features with the BWT such as nonlinearity, high sensitivity and frequency selectivity, concentrated energy distribution and its ability to reconstruct signal via inverse transform but the most distinguishing characteristic of BWT is that its resolution in the time-frequency domain can be adaptively adjusted not only by the signal frequency but also by the signal instantaneous amplitude and its first-order differential. Besides by optimizing the BWT parameters parallel to modifying a new threshold value, one can handle ECG denoising with results comparing to those of wavelet transform (WT). Preliminary tests of BWT application to ECG denoising were constructed on the signals of MIT-BIH database which showed high performance of noise reduction.

  14. Effects of setting angle on performance of fish-bionic wind wheel

    NASA Astrophysics Data System (ADS)

    Li, G. S.; Yang, Z. X.; Song, L.; Chen, Q.; Li, Y. B.; Chen, W.

    2016-08-01

    With the energy crisis and the increasing environmental pollutionmore and more efforts have been made about wind power development. In this paper, a new type of vertical axis named the fish-bionic wind wheel was proposed, and the outline of wind wheel was constructed by curve of Fourier fitting and polynomial equations. This paper attempted to research the relationship between the setting angle and the wind turbine characteristics by computational fluid dynamics (CFD) simulation. The results showed that the setting angle of the fish-bionic wind wheel has some significant effects on the efficiency of the wind turbine, Within the range of wind speed from 13m/s to 15m/s, wind wheel achieves the maximum efficiency when the setting angle is at 37 degree. The conclusion will work as a guideline for the improvement of wind turbine design.

  15. Drag reduction through self-texturing compliant bionic materials

    PubMed Central

    Liu, Eryong; Li, Longyang; Wang, Gang; Zeng, Zhixiang; Zhao, Wenjie; Xue, Qunji

    2017-01-01

    Compliant fish skin is effectively in reducing drag, thus the design and application of compliant bionic materials may be a good choice for drag reduction. Here we consider the drag reduction of compliant bionic materials. First, ZnO and PDMS mesh modified with n-octadecane were prepared, the drag reduction of self-texturing compliant n-octadecane were studied. The results show that the mesh modified by ZnO and PDMS possess excellent lipophilic and hydrophobic, thus n-octadecane at solid, semisolid and liquid state all have good adhesion with modified mesh. The states of n-octadecane changed with temperature, thus, the surface contact angle and adhesive force all varies obviously at different state. The contact angle decreases with temperature, the adhesive force shows a lower value at semisolid state. Furthermore, the drag testing results show that the compliant n-octadecane film is more effectively in drag reduction than superhydrophobic ZnO/PDMS film, indicating that the drag reduction mechanism of n-octadecane is significantly different with superhydrophobic film. Further research shows that the water flow leads to self-texturing of semisolid state n-octadecane, which is similar with compliant fish skin. Therefore, the compliant bionic materials of semisolid state n-octadecane with regular bulge plays a major role in the drag reduction. PMID:28053309

  16. Drag reduction through self-texturing compliant bionic materials.

    PubMed

    Liu, Eryong; Li, Longyang; Wang, Gang; Zeng, Zhixiang; Zhao, Wenjie; Xue, Qunji

    2017-01-05

    Compliant fish skin is effectively in reducing drag, thus the design and application of compliant bionic materials may be a good choice for drag reduction. Here we consider the drag reduction of compliant bionic materials. First, ZnO and PDMS mesh modified with n-octadecane were prepared, the drag reduction of self-texturing compliant n-octadecane were studied. The results show that the mesh modified by ZnO and PDMS possess excellent lipophilic and hydrophobic, thus n-octadecane at solid, semisolid and liquid state all have good adhesion with modified mesh. The states of n-octadecane changed with temperature, thus, the surface contact angle and adhesive force all varies obviously at different state. The contact angle decreases with temperature, the adhesive force shows a lower value at semisolid state. Furthermore, the drag testing results show that the compliant n-octadecane film is more effectively in drag reduction than superhydrophobic ZnO/PDMS film, indicating that the drag reduction mechanism of n-octadecane is significantly different with superhydrophobic film. Further research shows that the water flow leads to self-texturing of semisolid state n-octadecane, which is similar with compliant fish skin. Therefore, the compliant bionic materials of semisolid state n-octadecane with regular bulge plays a major role in the drag reduction.

  17. Drag reduction through self-texturing compliant bionic materials

    NASA Astrophysics Data System (ADS)

    Liu, Eryong; Li, Longyang; Wang, Gang; Zeng, Zhixiang; Zhao, Wenjie; Xue, Qunji

    2017-01-01

    Compliant fish skin is effectively in reducing drag, thus the design and application of compliant bionic materials may be a good choice for drag reduction. Here we consider the drag reduction of compliant bionic materials. First, ZnO and PDMS mesh modified with n-octadecane were prepared, the drag reduction of self-texturing compliant n-octadecane were studied. The results show that the mesh modified by ZnO and PDMS possess excellent lipophilic and hydrophobic, thus n-octadecane at solid, semisolid and liquid state all have good adhesion with modified mesh. The states of n-octadecane changed with temperature, thus, the surface contact angle and adhesive force all varies obviously at different state. The contact angle decreases with temperature, the adhesive force shows a lower value at semisolid state. Furthermore, the drag testing results show that the compliant n-octadecane film is more effectively in drag reduction than superhydrophobic ZnO/PDMS film, indicating that the drag reduction mechanism of n-octadecane is significantly different with superhydrophobic film. Further research shows that the water flow leads to self-texturing of semisolid state n-octadecane, which is similar with compliant fish skin. Therefore, the compliant bionic materials of semisolid state n-octadecane with regular bulge plays a major role in the drag reduction.

  18. Innovative Design and Performance Evaluation of Bionic Imprinting Toothed Wheel

    PubMed Central

    Wang, Xiaoyang; Tong, Jin; Stephen, Carr

    2018-01-01

    A highly efficient soil-burrowing dung beetle possesses an intricate outer contour curve on its foreleg end-tooth. This study was carried out based on evidence that this special outer contour curve has the potential of reducing soil penetration resistance and could enhance soil-burrowing efficiency. A toothed wheel is a typical agricultural implement for soil imprinting, to increase its working efficiency; the approach of the bionic geometrical structure was utilized to optimize the innovative shape of imprinting toothed wheel. Characteristics in the dung beetle's foreleg end-tooth were extracted and studied by the edge detection technique. Then, this special outer contour curve was modeled by a nine-order polynomial function and used for the innovative design of imprinting the tooth's cutting edge. Both the conventional and bionic teeth were manufactured, and traction tests in a soil bin were conducted. Taking required draft force and volume of imprinted microbasin as the evaluating indexes, operating efficiency and quality of different toothed wheels were compared and investigated. Results indicate that compared with the conventional toothed wheel, a bionic toothed wheel possesses a better forward resistance reduction property against soil and, meanwhile, can enhance the quality of soil imprinting by increasing the volume of the created micro-basin. PMID:29515651

  19. The Age of Information; An Interdisciplinary Survey of Cybernetics.

    ERIC Educational Resources Information Center

    Helvey, T. C.

    A series of essays discuss in a semi-technical way the philosophical, theoretical, and applied aspects of cybernetics and bionics. Of particular interest to educators is the author's discussion of the implications of cybernetics for pedagogical methodology. He predicts that education in the future will concentrate on a teaching systems approach,…

  20. Programmable and functional electrothermal bimorph actuators based on large-area anisotropic carbon nanotube paper

    NASA Astrophysics Data System (ADS)

    Li, Qingwei; Liu, Changhong; Fan, Shoushan

    2018-04-01

    Electro-active polymer (EAP) actuators, such as electronic, ionic and electrothermal (ET) actuators, have become an important branch of next-generation soft actuators in bionic robotics. However, most reported EAP actuators could realize only simple movements, being restricted by the small area of flexible electrodes and simple designs. We prepared large-area flexible electrodes of high anisotropy, made of oriented carbon nanotube (CNT) paper, and carried out artful graphic designs and processing on the electrodes to make functional ET bimorph actuators which can realize large bending deformations (over 220°, curvature > 1.5 cm-1) and bionic movements driven by electricity. The anisotropy of CNT paper benefits electrode designs and multiform actuations for complex actuators. Based on the large-area CNT paper, more interesting and functional actuators can be designed and prepared which will have practical applications in the fields of artificial muscles, complicated actuations, and soft and bionic robotics.

  1. Ear molding in newborn infants with auricular deformities.

    PubMed

    Byrd, H Steve; Langevin, Claude-Jean; Ghidoni, Lorraine A

    2010-10-01

    A review of a single physician's experience in managing over 831 infant ear deformities (488 patients) is presented. The authors' methods of molding have advanced from the use of various tapes, glues, and stents, to a comprehensive yet simple system that shapes the antihelix, the triangular fossa, the helical rim, and the overly prominent conchal-mastoid angle (EarWell Infant Ear Correction System). The types of deformities managed, and their relative occurrence, are as follows: (1) prominent/cup ear, 373 ears (45 percent); (2) lidding/lop ear, 224 ears (27 percent); (3) mixed ear deformities, 83 ears (10 percent) (all had associated conchal crus); (4) Stahl's ear, 66 ears (8 percent); (5) helical rim abnormalities, 58 ears (7 percent); (6) conchal crus, 25 ears (3 percent); and (7) cryptotia, two ears (0.2 percent). Bilateral deformities were present in 340 patients (70 percent), with unilateral deformities in 148 patients (30 percent). Fifty-eight infant ears (34 patients) were treated using the final version of the EarWell Infant Ear Correction System with a success rate exceeding 90 percent (good to excellent results). The system was found to be most successful when begun in the first week of the infant's life. When molding was initiated after 3 weeks from birth, only approximately half of the infants had a good response. Congenital ear deformities are common and only approximately 30 percent self-correct. These deformities can be corrected by initiating appropriate molding in the first week of life. Neonatal molding reduces the need for surgical correction with results that often exceed what can be achieved with the surgical alternative.

  2. Construction of bionic tissue engineering cartilage scaffold based on three-dimensional printing and oriented frozen technology.

    PubMed

    Xu, Yuanyuan; Guo, Xiao; Yang, Shuaitao; Li, Long; Zhang, Peng; Sun, Wei; Liu, Changyong; Mi, Shengli

    2018-06-01

    Articular cartilage (AC) has gradient features in both mechanics and histology as well as a poor regeneration ability. The repair of AC poses difficulties in both research and the clinic. In this paper, a gradient scaffold based on poly(lactic-co-glycolic acid) (PLGA)-extracellular matrix was proposed. Cartilage scaffolds with a three-layer gradient structure were fabricated by PLGA through three-dimensional printing, and the microstructure orientation and pore fabrication were made by decellularized extracellular matrix injection and directional freezing. The manufactured scaffold has a mechanical strength close to that of real cartilage. A quantitative optimization of the Young's modulus and shear modulus was achieved by material mechanics formulas, which achieved a more accurate mechanical bionic and a more stable interface performance because of the one-time molding process. At the same time, the scaffolds have a bionic and gradient microstructure orientation and pore size, and the stratification ratio can be quantitatively optimized by design of the freeze box and temperature simulation. In general, this paper provides a method to optimize AC scaffolds by both mechanics and histology as well as a bionic multimaterial scaffold. This paper is of significance for cell culture and clinical transplantation experiments. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1664-1676, 2018. © 2018 Wiley Periodicals, Inc.

  3. Design and Implementation of a Quadruped Bionic Robot Based on Virtual Prototype Technology

    NASA Astrophysics Data System (ADS)

    Wang, Li

    2017-10-01

    Design out a quadruped bionic robot with nine degrees of freedom. Conduct virtual assembly and trotting gait simulation on the robot by using NX software. Present the angular velocity and angular displacement curves of the diagonal two legs’ hip joints and knee joints, thus to instruct the practical assemble and control of the robot. The fact that the movement effect of the physical model is consistent with the simulation verifies the validity and practicability of virtual assembly and motion simulation. both.

  4. Progress in the clinical development and utilization of vision prostheses: an update

    PubMed Central

    Brandli, Alice; Luu, Chi D; Guymer, Robyn H; Ayton, Lauren N

    2016-01-01

    Vision prostheses, or “bionic eyes”, are implantable medical bionic devices with the potential to restore rudimentary sight to people with profound vision loss or blindness. In the past two decades, this field has rapidly progressed, and there are now two commercially available retinal prostheses in the US and Europe, and a number of next-generation devices in development. This review provides an update on the development of these devices and a discussion on the future directions for the field. PMID:28539798

  5. Inner Ear Drug Delivery for Auditory Applications

    PubMed Central

    Swan, Erin E. Leary; Mescher, Mark J.; Sewell, William F.; Tao, Sarah L.; Borenstein, Jeffrey T.

    2008-01-01

    Many inner ear disorders cannot be adequately treated by systemic drug delivery. A blood-cochlear barrier exists, similar physiologically to the blood-brain barrier, which limits the concentration and size of molecules able to leave the circulation and gain access to the cells of the inner ear. However, research in novel therapeutics and delivery systems has led to significant progress in the development of local methods of drug delivery to the inner ear. Intratympanic approaches, which deliver therapeutics to the middle ear, rely on permeation through tissue for access to the structures of the inner ear, whereas intracochlear methods are able to directly insert drugs into the inner ear. Innovative drug delivery systems to treat various inner ear ailments such as ototoxicity, sudden sensorineural hearing loss, autoimmune inner ear disease, and for preserving neurons and regenerating sensory cells are being explored. PMID:18848590

  6. A Bionic Camera-Based Polarization Navigation Sensor

    PubMed Central

    Wang, Daobin; Liang, Huawei; Zhu, Hui; Zhang, Shuai

    2014-01-01

    Navigation and positioning technology is closely related to our routine life activities, from travel to aerospace. Recently it has been found that Cataglyphis (a kind of desert ant) is able to detect the polarization direction of skylight and navigate according to this information. This paper presents a real-time bionic camera-based polarization navigation sensor. This sensor has two work modes: one is a single-point measurement mode and the other is a multi-point measurement mode. An indoor calibration experiment of the sensor has been done under a beam of standard polarized light. The experiment results show that after noise reduction the accuracy of the sensor can reach up to 0.3256°. It is also compared with GPS and INS (Inertial Navigation System) in the single-point measurement mode through an outdoor experiment. Through time compensation and location compensation, the sensor can be a useful alternative to GPS and INS. In addition, the sensor also can measure the polarization distribution pattern when it works in multi-point measurement mode. PMID:25051029

  7. Biomimetic Interfacial Electron-Induced Electrochemiluminesence.

    PubMed

    Pu, Guiqiang; Zhang, Dongxu; Mao, Xiang; Zhang, Zhen; Wang, Huan; Ning, Xingming; Lu, Xiaoquan

    2018-04-17

    We provide here, for the first time, a new interfacial electron-induced electrochemiluminescence (IEIECL) system, realizing bionic construction of bioluminescence (BL) by exploiting electrochemiluminescence (ECL) and ITIES (the interface between two immiscible electrolyte solutions). Significantly, the superiority of the IEIECL system is embodied with the solution of the two bottlenecks encountered in the conventional ECL innovation: that are (a) the applications of hydrophobic luminophores in more commonly used aqueous solution are inhibited tremendously due to the poor inherent solubility and the instability of radicals and (b) the analytes, insoluble in water, are hard to be discovered in an aqueous system because of too little content. More productive IEIECL radiation, analogous to BL, originates from the triplet excited state porphyrin in comparison to the homogeneous ECL. The mechanism of IEIECL, as well as the interaction mechanism between IEIECL and charge transfer (comprising electron transfer (ET), ion transfer (IT), and facilitated ion transfer (FIT)) at the ITIES, are explored in detail. Finally, we emphasize the actual application potential of the IEIECL system with the detection of cytochrome c (Cyt c); it is a key biomolecule in the electron transport chain in the process of biological oxidation and is also an intermediate species in apoptosis. Potentially, the IEIECL system permits ones to explore the lifetime and diffusion path of free radicals, as well as imparting a possibility for the construction of a bionic sensor.

  8. [Application of in vitro bionic digestion and biomembrane extraction for metal speciation analysis, bioavailability and risk assessment in lianhua qingwen capsule].

    PubMed

    Lin, Lu-Xiu; Li, Shun-Xing; Zheng, Feng-Ying

    2014-06-01

    One of the causes of the high cost of pharmaceuticals and the major obstacles to rapidly assessing the bioavailability and risk of a chemical is the lack of experimental model systems. A new pre-treatment technology, in vitro bionic digestion was designed for metal analysis in Lianhua Qingwen capsule. The capsule was digested on 37 degrees C under the acidity of the stomach or intestine, and with the inorganic and organic compounds (including digestive enzymes) found in the stomach or intestine, and then the chyme was obtained. Being similar to the biomembrane between the gastrointestinal tract and blood vessels, monolayer liposome was used as biomembrane model Affinity-monolayer liposome metals (AMLMs) and water-soluble metals were used for metal speciation analysis in the capsule. Based on the concentration of AMLMs, the main absorption site of trace metals was proposed. The metal total contents or the concentration of AMLMs in the capsule were compared to the nutritional requirements, daily permissible dose and heavy metal total contents from the "import and export of medicinal plants and preparation of green industry state standards". The metal concentrations in the capsule were within the safety baseline levels for human consumption. After in vitro bionic digestion, most of trace metals were absorbed mainly in intestine. The concentration of As, Cd, Pb was 0.38, 0.07, 1.60 mg x kg(-1), respectively, far less than the permissible dose from the "import and export of medicinal plants and preparation of green industry state standards".

  9. Towards Extending Forward Kinematic Models on Hyper-Redundant Manipulator to Cooperative Bionic Arms

    NASA Astrophysics Data System (ADS)

    Singh, Inderjeet; Lakhal, Othman; Merzouki, Rochdi

    2017-01-01

    Forward Kinematics is a stepping stone towards finding an inverse solution and subsequently a dynamic model of a robot. Hence a study and comparison of various Forward Kinematic Models (FKMs) is necessary for robot design. This paper deals with comparison of three FKMs on the same hyper-redundant Compact Bionic Handling Assistant (CBHA) manipulator under same conditions. The aim of this study is to project on modeling cooperative bionic manipulators. Two of these methods are quantitative methods, Arc Geometry HTM (Homogeneous Transformation Matrix) Method and Dual Quaternion Method, while the other one is Hybrid Method which uses both quantitative as well as qualitative approach. The methods are compared theoretically and experimental results are discussed to add further insight to the comparison. HTM is the widely used and accepted technique, is taken as reference and trajectory deviation in other techniques are compared with respect to HTM. Which method allows obtaining an accurate kinematic behavior of the CBHA, controlled in the real-time.

  10. Sugary interfaces mitigate contact damage where stiff meets soft

    PubMed Central

    Yoo, Hee Young; Iordachescu, Mihaela; Huang, Jun; Hennebert, Elise; Kim, Sangsik; Rho, Sangchul; Foo, Mathias; Flammang, Patrick; Zeng, Hongbo; Hwang, Daehee; Waite, J. Herbert; Hwang, Dong Soo

    2016-01-01

    The byssal threads of the fan shell Atrina pectinata are non-living functional materials intimately associated with living tissue, which provide an intriguing paradigm of bionic interface for robust load-bearing device. An interfacial load-bearing protein (A. pectinata foot protein-1, apfp-1) with L-3,4-dihydroxyphenylalanine (DOPA)-containing and mannose-binding domains has been characterized from Atrina's foot. apfp-1 was localized at the interface between stiff byssus and the soft tissue by immunochemical staining and confocal Raman imaging, implying that apfp-1 is an interfacial linker between the byssus and soft tissue, that is, the DOPA-containing domain interacts with itself and other byssal proteins via Fe3+–DOPA complexes, and the mannose-binding domain interacts with the soft tissue and cell membranes. Both DOPA- and sugar-mediated bindings are reversible and robust under wet conditions. This work shows the combination of DOPA and sugar chemistry at asymmetric interfaces is unprecedented and highly relevant to bionic interface design for tissue engineering and bionic devices. PMID:27305949

  11. Sugary interfaces mitigate contact damage where stiff meets soft

    NASA Astrophysics Data System (ADS)

    Yoo, Hee Young; Iordachescu, Mihaela; Huang, Jun; Hennebert, Elise; Kim, Sangsik; Rho, Sangchul; Foo, Mathias; Flammang, Patrick; Zeng, Hongbo; Hwang, Daehee; Waite, J. Herbert; Hwang, Dong Soo

    2016-06-01

    The byssal threads of the fan shell Atrina pectinata are non-living functional materials intimately associated with living tissue, which provide an intriguing paradigm of bionic interface for robust load-bearing device. An interfacial load-bearing protein (A. pectinata foot protein-1, apfp-1) with L-3,4-dihydroxyphenylalanine (DOPA)-containing and mannose-binding domains has been characterized from Atrina's foot. apfp-1 was localized at the interface between stiff byssus and the soft tissue by immunochemical staining and confocal Raman imaging, implying that apfp-1 is an interfacial linker between the byssus and soft tissue, that is, the DOPA-containing domain interacts with itself and other byssal proteins via Fe3+-DOPA complexes, and the mannose-binding domain interacts with the soft tissue and cell membranes. Both DOPA- and sugar-mediated bindings are reversible and robust under wet conditions. This work shows the combination of DOPA and sugar chemistry at asymmetric interfaces is unprecedented and highly relevant to bionic interface design for tissue engineering and bionic devices.

  12. Real-time processing of EMG signals for bionic arm purposes

    NASA Astrophysics Data System (ADS)

    Olid Dominguez, Ferran; Wawrzyniak, Zbigniew M.

    2016-09-01

    This paper is connected with the problem of prostheses, that have always been a necessity for the human being. Bio-physiological signals from muscles, electromyographic signals have been collected, analyzed and processed in order to implement a real-time algorithm which is capable of differentiation of two different states of a bionic hand: open and closed. An algorithm for real-time electromyographic signal processing with almost no false positives is presented and it is explained that in bio-physiological experiments proper signal processing is of great importance.

  13. Anatomy, Physiology and Function of the Auditory System

    NASA Astrophysics Data System (ADS)

    Kollmeier, Birger

    The human ear consists of the outer ear (pinna or concha, outer ear canal, tympanic membrane), the middle ear (middle ear cavity with the three ossicles malleus, incus and stapes) and the inner ear (cochlea which is connected to the three semicircular canals by the vestibule, which provides the sense of balance). The cochlea is connected to the brain stem via the eighth brain nerve, i.e. the vestibular cochlear nerve or nervus statoacusticus. Subsequently, the acoustical information is processed by the brain at various levels of the auditory system. An overview about the anatomy of the auditory system is provided by Figure 1.

  14. Development of BION(TM) Technology for Functional Electrical Stimulation: Bidirectional Telemetry

    DTIC Science & Technology

    2001-10-25

    paralyzed limb , it is necessary to incorporate sensors and back telemetry to provide voluntary control and sensory feedback signals. We describe...requirements. Keywords - neural prostheses, electrical stimulation, implants, telemetry, sensors I. INTRODUCTION BIONs ( BIOnic Neurons) are modular...ents of a paralyzed limb will require a sophisticated control system that must be driven by two types of data from the patient: 1) command signals

  15. Design and preparation of polyurethane-collagen/heparin-conjugated polycaprolactone double-layer bionic small-diameter vascular graft and its preliminary animal tests.

    PubMed

    Lu, Guang; Cui, Shi-Jun; Geng, Xue; Ye, Lin; Chen, Bing; Feng, Zeng-Guo; Zhang, Jian; Li, Zhong-Zhi

    2013-04-01

    People recently realized that it is important for artificial vascular biodegradable graft to bionically mimic the functions of the native vessel. In order to overcome the high risk of thrombosis and keep the patency in the clinical small-diameter vascular graft (SDVG) transplantation, a double-layer bionic scaffold, which can offer anticoagulation and mechanical strength simultaneously, was designed and fabricated via electrospinning technique. Heparin-conjugated polycaprolactone (hPCL) and polyurethane (PU)-collagen type I composite was used as the inner and outer layers, respectively. The porosity and the burst pressure of SDVG were evaluated. Its biocompatibility was demonstrated by the 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H tetrazolium bromide (MTT) test in vitro and subcutaneous implants in vivo respectively. The grafts of diameter 2.5 mm and length 4.0 cm were implanted to replace the femoral artery in Beagle dog model. Then, angiography was performed in the Beagle dogs to investigate the patency and aneurysm of grafts at 2, 4, and 8 weeks post-transplantation. After angiography, the patent grafts were explanted for histological analysis. The double-layer bionic SDVG meet the clinical mechanical demand. Its good biocompatibility was proven by cytotoxicity experiment (the cell's relative growth rates (RGR) of PU-collagen outer layer were 102.8%, 109.2% and 103.5%, while the RGR of hPCL inner layer were 99.0%, 100.0% and 98.0%, on days 1, 3, and 5, respectively) and the subdermal implants experiment in the Beagle dog. Arteriography showed that all the implanted SDVGs were patent without any aneurismal dilatation or obvious anastomotic stenosis at the 2nd, 4th, and 8th week after the operation, except one SDVG that failed at the 2nd week. Histological analysis and SEM showed that the inner layer was covered by new endothelial-like cells. The double-layer bionic SDVG is a promising candidate as a replacement of native small-diameter vascular graft.

  16. Clearance by the mucociliary system in 'simple chronic otitis media'.

    PubMed

    Hadas, E; Sadé, J

    1979-08-01

    This is a study of the rate of middle ear clearance in chronic otitis media and atelectatic ears. The clearance rate was measured with the aid of non-soluble saccharin, introduced into the middle ear through an existing perforation in 'chronic ears', or through a ventilating tube in atelectatic ears. Cholesteatomatous ears were excluded. Altogether 122 ears were examined and about two-thirds of the subjects felt the sweet taste in their mouths thereafter. The average time it took for the saccharin to be transported from the middle ear to the taste buds was 33' 22" minutes in non-infected (i.e. dry) chronic ears (38 patients or 66 per cent). Wet or infected ears with chronic otitis media (30 patients, or 58 per cent) showed a slower transport rate, averaging 54' 22" minutes--the difference was significant at the 0.01 level. 8 (63 per cent) of the atelectatic ears transported the saccharin at an average rate of 50' 25". This study demonstrated that most ears with 'simple' chronic otitis media and atelectatic ears have a patent eustachian tube and that their mucociliary system can transport foreign particles through it. When the ear is infected, transport tends to be slowed down.

  17. The design, hysteresis modeling and control of a novel SMA-fishing-line actuator

    NASA Astrophysics Data System (ADS)

    Xiang, Chaoqun; Yang, Hui; Sun, Zhiyong; Xue, Bangcan; Hao, Lina; Asadur Rahoman, M. D.; Davis, Steve

    2017-03-01

    Fishing line can be combined with shape memory alloy (SMA) to form novel artificial muscle actuators which have low cost, are lightweight and soft. They can be applied in bionic, wearable and rehabilitation robots, and can reduce system weight and cost, increase power-to-weight ratio and offer safer physical human-robot interaction. However, these actuators possess several disadvantages, for example fishing line based actuators possess low strength and are complex to drive, and SMA possesses a low percentage contraction and has high hysteresis. This paper presents a novel artificial actuator (known as an SMA-fishing-line) made of fishing line and SMA twisted then coiled together, which can be driven directly by an electrical voltage. Its output force can reach 2.65 N at 7.4 V drive voltage, and the percentage contraction at 4 V driven voltage with a 3 N load is 7.53%. An antagonistic bionic joint driven by the novel SMA-fishing-line actuators is presented, and based on an extended unparallel Prandtl-Ishlinskii (EUPI) model, its hysteresis behavior is established, and the error ratio of the EUPI model is determined to be 6.3%. A Joule heat model of the SMA-fishing-line is also presented, and the maximum error of the established model is 0.510 mm. Based on this accurate hysteresis model, a composite PID controller consisting of PID and an integral inverse (I-I) compensator is proposed and its performance is compared with a traditional PID controller through simulations and experimentation. These results show that the composite PID controller possesses higher control precision than basic PID, and is feasible for implementation in an SMA-fishing-line driven antagonistic bionic joint.

  18. Humanoid monocular stereo measuring system with two degrees of freedom using bionic optical imaging system

    NASA Astrophysics Data System (ADS)

    Du, Jia-Wei; Wang, Xuan-Yin; Zhu, Shi-Qiang

    2017-10-01

    Based on the process by which the spatial depth clue is obtained by a single eye, a monocular stereo vision to measure the depth information of spatial objects was proposed in this paper and a humanoid monocular stereo measuring system with two degrees of freedom was demonstrated. The proposed system can effectively obtain the three-dimensional (3-D) structure of spatial objects of different distances without changing the position of the system and has the advantages of being exquisite, smart, and flexible. The bionic optical imaging system we proposed in a previous paper, named ZJU SY-I, was employed and its vision characteristic was just like the resolution decay of the eye's vision from center to periphery. We simplified the eye's rotation in the eye socket and the coordinated rotation of other organs of the body into two rotations in the orthogonal direction and employed a rotating platform with two rotation degrees of freedom to drive ZJU SY-I. The structure of the proposed system was described in detail. The depth of a single feature point on the spatial object was deduced, as well as its spatial coordination. With the focal length adjustment of ZJU SY-I and the rotation control of the rotation platform, the spatial coordinates of all feature points on the spatial object could be obtained and then the 3-D structure of the spatial object could be reconstructed. The 3-D structure measurement experiments of two spatial objects with different distances and sizes were conducted. Some main factors affecting the measurement accuracy of the proposed system were analyzed and discussed.

  19. [Design of plant leaf bionic camouflage materials based on spectral analysis].

    PubMed

    Yang, Yu-Jie; Liu, Zhi-Ming; Hu, Bi-Ru; Wu, Wen-Jian

    2011-06-01

    The influence of structure parameters and contents of plant leaves on their reflectance spectra was analyzed using the PROSPECT model. The result showed that the bionic camouflage materials should be provided with coarse surface and spongy inner structure, the refractive index of main content must be close to that of plant leaves, the contents of materials should contain chlorophyll and water, and the content of C-H bond must be strictly controlled. Based on the analysis above, a novel camouflage material, which was constituted by coarse transparent waterproof surface, chlorophyll, water and spongy material, was designed. The result of verifiable experiment showed that the reflectance spectra of camouflage material exhibited the same characteristics as those of plant leaves. The similarity coefficient of reflectance spectrum of the camouflage material and camphor leaves was 0.988 1, and the characteristics of camouflage material did not change after sunlight treatment for three months. The bionic camouflage material, who exhibited a high spectral similarity with plant leaves and a good weather resistance, will be an available method for reconnaissance of hyperspectral imaging hopefully.

  20. Investigation into the efficiency of different bionic algorithm combinations for a COBRA meta-heuristic

    NASA Astrophysics Data System (ADS)

    Akhmedova, Sh; Semenkin, E.

    2017-02-01

    Previously, a meta-heuristic approach, called Co-Operation of Biology-Related Algorithms or COBRA, for solving real-parameter optimization problems was introduced and described. COBRA’s basic idea consists of a cooperative work of five well-known bionic algorithms such as Particle Swarm Optimization, the Wolf Pack Search, the Firefly Algorithm, the Cuckoo Search Algorithm and the Bat Algorithm, which were chosen due to the similarity of their schemes. The performance of this meta-heuristic was evaluated on a set of test functions and its workability was demonstrated. Thus it was established that the idea of the algorithms’ cooperative work is useful. However, it is unclear which bionic algorithms should be included in this cooperation and how many of them. Therefore, the five above-listed algorithms and additionally the Fish School Search algorithm were used for the development of five different modifications of COBRA by varying the number of component-algorithms. These modifications were tested on the same set of functions and the best of them was found. Ways of further improving the COBRA algorithm are then discussed.

  1. Multiadaptive Bionic Wavelet Transform: Application to ECG Denoising and Baseline Wandering Reduction

    NASA Astrophysics Data System (ADS)

    Sayadi, Omid; Shamsollahi, Mohammad B.

    2007-12-01

    We present a new modified wavelet transform, called the multiadaptive bionic wavelet transform (MABWT), that can be applied to ECG signals in order to remove noise from them under a wide range of variations for noise. By using the definition of bionic wavelet transform and adaptively determining both the center frequency of each scale together with the[InlineEquation not available: see fulltext.]-function, the problem of desired signal decomposition is solved. Applying a new proposed thresholding rule works successfully in denoising the ECG. Moreover by using the multiadaptation scheme, lowpass noisy interference effects on the baseline of ECG will be removed as a direct task. The method was extensively clinically tested with real and simulated ECG signals which showed high performance of noise reduction, comparable to those of wavelet transform (WT). Quantitative evaluation of the proposed algorithm shows that the average SNR improvement of MABWT is 1.82 dB more than the WT-based results, for the best case. Also the procedure has largely proved advantageous over wavelet-based methods for baseline wandering cancellation, including both DC components and baseline drifts.

  2. [Effects of Different Planting Direction and Layer Combination on Gastrodia elata f. elata in Bionic Wild Cultivation].

    PubMed

    Liu, Wei; Zhao, Zhi; Wang, Hua-lei; Luo, Fu-lai; Li, Jin-ling; Liu, Hong-chang; Luo, Chun-li

    2015-05-01

    Combination of different planting direction and layer were set to choose the best technology of cultivation of Gastrodia elata f. elata. To improve the yield and quality of Gastrodia elata f. elata, randomized block design experiments were carried out to investigate the yield and quality, and to analyze their economic effectiveness in bionic wild cultivation. Length, width, thickness and weight of southern direction's Gastrodia elata f. elata developed better than the northeast direction. The three planting layer levels on growth effect of Gastrodia elata f. elata was the 3rd layer > the 2nd layer > the 1st layer. In six treatments, combination of southern direction-the 3rd layer was the best technology of cultivation of Gastrodia elata f. elata, which had the best growth condition, the highest yield significantly higher than other treatments, and the best economic benefits. Southern direction associated with the 3rd layer is the best combination to planting Gastrodia elata f. elata in bionic wild cultivation. The planting ways not only improve the yield and quality, but also save land.

  3. EARS: An Online Bibliographic Search and Retrieval System Based on Ordered Explosion.

    ERIC Educational Resources Information Center

    Ramesh, R.; Drury, Colin G.

    1987-01-01

    Provides overview of Ergonomics Abstracts Retrieval System (EARS), an online bibliographic search and retrieval system in the area of human factors engineering. Other online systems are described, the design of EARS based on inverted file organization is explained, and system expansions including a thesaurus are discussed. (Author/LRW)

  4. Healthons: errorless healthcare with bionic hugs and no need for quality control.

    PubMed

    Bushko, Renata G

    2005-01-01

    Errorless, invisible, continuous and infrastructure-free healthcare should become our goal. In order to achieve that goal, we need to rapidly move from current episodic and emergency-driven "healthcare delivery system" to an intelligent and extelligent health environment. That requires introduction of distributed affective Intelligent Caring Creatures (ICCs) consisting of healthons. Healthons are tools combining prevention with diagnosis and treatment based on continuous monitoring and analyzing of vital signs and biochemistry. Unlike humans, who posses only two or three dimensions of thinking, healthons can assure errorless health because of their adaptability, flexibility, and multidimensional reasoning capability. ICCs can do "the right thing" based on (1) state-of-art medical knowledge, (2) data about emotional, physiological, and genetic state of a consumer and (3) moral values of a consumer. The transition to the intelligent health environment based on ICCs requires the solutions to many currently unsolved healthcare problems. This paper lists the unsolved problems (by analogy to mathematical unsolved problems list) and explains why errorless healthcare with bionic hugs and no need for quality control is possible.

  5. Mechanism design and optimization of a bionic kangaroo jumping robot

    NASA Astrophysics Data System (ADS)

    Zhang, Y. H.; Zheng, L.; Ge, W. J.; Zou, Z. H.

    2018-03-01

    Hopping robots have broad application prospects in the fields of military reconnaissance, field search or life rescue. However, current hopping robots still face the problems of weak jumping ability and load bearing. Inspired by the jumping of kangaroo, we design a Kangaroo hopping robot “Zbot”, which has two degrees of freedom and three joints. The geared five-bar mechanism is used to decouple the knee and ankle joints of the robot. In order to get a bionic performance, the coupling mechanism parameters are optimized. The simulation and experiments show that the robot has an excellent jumping ability and load capacity.

  6. A Bionic Neural Link for peripheral nerve repair.

    PubMed

    Xu, Yong Ping; Yen, Shih-Cheng; Ng, Kian Ann; Liu, Xu; Tan, Ter Chyan

    2012-01-01

    Peripheral nerve injuries with large gaps and long nerve regrowth paths are difficult to repair using existing surgical techniques, due to nerve degeneration and muscle atrophy. This paper proposes a Bionic Neural Link (BNL) as an alternative way for peripheral nerve repair. The concept of the BNL is described, along with the hypothetical benefits. A prototype monolithic single channel BNL has been developed, which consists of 16 neural recording channels and one stimulation channel, and is implemented in a 0.35-µm CMOS technology. The BNL has been tested in in-vivo animal experiments. Full function of the BNL chip has been demonstrated.

  7. The quest for the bionic arm.

    PubMed

    Hutchinson, Douglas T

    2014-06-01

    The current state of research of upper extremity prosthetic devices is focused on creating a complete prosthesis with full motor and sensory function that will provide amputees with a near-normal human arm. Although advances are being made rapidly, many hurdles remain to be overcome before a functional, so-called bionic arm is a reality. Acquiring signals via nerve or muscle inputs will require either a reliable wireless device or direct wiring through an osseous-integrated implant. The best way to tap into the "knowledge" present in the peripheral nerve is yet to be determined. Copyright 2014 by the American Academy of Orthopaedic Surgeons.

  8. In vivo imaging of middle-ear and inner-ear microstructures of a mouse guided by SD-OCT combined with a surgical microscope

    PubMed Central

    Cho, Nam Hyun; Jang, Jeong Hun; Jung, Woonggyu; Kim, Jeehyun

    2014-01-01

    We developed an augmented-reality system that combines optical coherence tomography (OCT) with a surgical microscope. By sharing the common optical path in the microscope and OCT, we could simultaneously acquire OCT and microscope views. The system was tested to identify the middle-ear and inner-ear microstructures of a mouse. Considering the probability of clinical application including otorhinolaryngology, diseases such as middle-ear effusion were visualized using in vivo mouse and OCT images simultaneously acquired through the eyepiece of the surgical microscope during surgical manipulation using the proposed system. This system is expected to realize a new practical area of OCT application. PMID:24787787

  9. Systems and methods for biometric identification using the acoustic properties of the ear canal

    DOEpatents

    Bouchard, Ann Marie; Osbourn, Gordon Cecil

    1998-01-01

    The present invention teaches systems and methods for verifying or recognizing a person's identity based on measurements of the acoustic response of the individual's ear canal. The system comprises an acoustic emission device, which emits an acoustic source signal s(t), designated by a computer, into the ear canal of an individual, and an acoustic response detection device, which detects the acoustic response signal f(t). A computer digitizes the response (detected) signal f(t) and stores the data. Computer-implemented algorithms analyze the response signal f(t) to produce ear-canal feature data. The ear-canal feature data obtained during enrollment is stored on the computer, or some other recording medium, to compare the enrollment data with ear-canal feature data produced in a subsequent access attempt, to determine if the individual has previously been enrolled. The system can also be adapted for remote access applications.

  10. Systems and methods for biometric identification using the acoustic properties of the ear canal

    DOEpatents

    Bouchard, A.M.; Osbourn, G.C.

    1998-07-28

    The present invention teaches systems and methods for verifying or recognizing a person`s identity based on measurements of the acoustic response of the individual`s ear canal. The system comprises an acoustic emission device, which emits an acoustic source signal s(t), designated by a computer, into the ear canal of an individual, and an acoustic response detection device, which detects the acoustic response signal f(t). A computer digitizes the response (detected) signal f(t) and stores the data. Computer-implemented algorithms analyze the response signal f(t) to produce ear-canal feature data. The ear-canal feature data obtained during enrollment is stored on the computer, or some other recording medium, to compare the enrollment data with ear-canal feature data produced in a subsequent access attempt, to determine if the individual has previously been enrolled. The system can also be adapted for remote access applications. 5 figs.

  11. Fitting and verification of frequency modulation systems on children with normal hearing.

    PubMed

    Schafer, Erin C; Bryant, Danielle; Sanders, Katie; Baldus, Nicole; Algier, Katherine; Lewis, Audrey; Traber, Jordan; Layden, Paige; Amin, Aneeqa

    2014-06-01

    Several recent investigations support the use of frequency modulation (FM) systems in children with normal hearing and auditory processing or listening disorders such as those diagnosed with auditory processing disorders, autism spectrum disorders, attention-deficit hyperactivity disorder, Friedreich ataxia, and dyslexia. The American Academy of Audiology (AAA) published suggested procedures, but these guidelines do not cite research evidence to support the validity of the recommended procedures for fitting and verifying nonoccluding open-ear FM systems on children with normal hearing. Documenting the validity of these fitting procedures is critical to maximize the potential FM-system benefit in the above-mentioned populations of children with normal hearing and those with auditory-listening problems. The primary goal of this investigation was to determine the validity of the AAA real-ear approach to fitting FM systems on children with normal hearing. The secondary goal of this study was to examine speech-recognition performance in noise and loudness ratings without and with FM systems in children with normal hearing sensitivity. A two-group, cross-sectional design was used in the present study. Twenty-six typically functioning children, ages 5-12 yr, with normal hearing sensitivity participated in the study. Participants used a nonoccluding open-ear FM receiver during laboratory-based testing. Participants completed three laboratory tests: (1) real-ear measures, (2) speech recognition performance in noise, and (3) loudness ratings. Four real-ear measures were conducted to (1) verify that measured output met prescribed-gain targets across the 1000-4000 Hz frequency range for speech stimuli, (2) confirm that the FM-receiver volume did not exceed predicted uncomfortable loudness levels, and (3 and 4) measure changes to the real-ear unaided response when placing the FM receiver in the child's ear. After completion of the fitting, speech recognition in noise at a -5 signal-to-noise ratio and loudness ratings at a +5 signal-to-noise ratio were measured in four conditions: (1) no FM system, (2) FM receiver on the right ear, (3) FM receiver on the left ear, and (4) bilateral FM system. The results of this study suggested that the slightly modified AAA real-ear measurement procedures resulted in a valid fitting of one FM system on children with normal hearing. On average, prescriptive targets were met for 1000, 2000, 3000, and 4000 Hz within 3 dB, and maximum output of the FM system never exceeded and was significantly lower than predicted uncomfortable loudness levels for the children. There was a minimal change in the real-ear unaided response when the open-ear FM receiver was placed into the ear. Use of the FM system on one or both ears resulted in significantly better speech recognition in noise relative to a no-FM condition, and the unilateral and bilateral FM receivers resulted in a comfortably loud signal when listening in background noise. Real-ear measures are critical for obtaining an appropriate fit of an FM system on children with normal hearing. American Academy of Audiology.

  12. COGNITRON THEORY,

    DTIC Science & Technology

    ARTIFICIAL INTELLIGENCE , THEORY), NERVE CELLS, SIMULATION, SENSE ORGANS, SENSES(PHYSIOLOGY), CONDITIONED RESPONSE, MATRICES(MATHEMATICS), MAPPING (TRANSFORMATIONS), MATHEMATICAL MODELS, FEEDBACK, BIONICS

  13. An overview of pharmacology and clinical aspects concerning the therapy of cochleo-vestibular syndromes by intratympanic drug delivery

    PubMed Central

    CHIRTEŞ, FELICIAN; ALBU, SILVIU

    2013-01-01

    Intratympanic drug delivery refers to drug administration in the middle ear, the main advantage being direct diffusion of substances in the inner ear through the round window membrane with subsequent high intralabiryntine drug concentration and very low systemic side effects. The article is a review of literature concerning the inner ear barrier systems, the physiology of inner ear fluids, intralabirinthine pharmacokinetics and the commonest drugs applied in the middle ear for the treatment of cochleo-vestibular syndromes. PMID:26527944

  14. An Effective 3D Ear Acquisition System

    PubMed Central

    Liu, Yahui; Lu, Guangming; Zhang, David

    2015-01-01

    The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition. PMID:26061553

  15. An Effective 3D Ear Acquisition System.

    PubMed

    Liu, Yahui; Lu, Guangming; Zhang, David

    2015-01-01

    The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition.

  16. The role of intracochlear drug delivery devices in the management of inner ear disease.

    PubMed

    Ayoob, Andrew M; Borenstein, Jeffrey T

    2015-03-01

    Diseases of the inner ear include those of the auditory and vestibular systems, and frequently result in disabling hearing loss or vertigo. Despite a rapidly expanding pipeline of potential cochlear therapeutics, the inner ear remains a challenging organ for targeted drug delivery, and new technologies are required to deliver these therapies in a safe and efficacious manner. In addition to traditional approaches for direct inner ear drug delivery, novel microfluidics-based systems are under development, promising improved control over pharmacokinetics over longer periods of delivery, ultimately with application towards hair cell regeneration in humans. Advances in the development of intracochlear drug delivery systems are reviewed, including passive systems, active microfluidic technologies and cochlear prosthesis-mediated delivery. This article provides a description of novel delivery systems and their potential future clinical applications in treating inner ear disease. Recent progresses in microfluidics and miniaturization technologies are enabling the development of wearable and ultimately implantable drug delivery microsystems. Progress in this field is being spurred by the convergence of advances in molecular biology, microfluidic flow control systems and models for drug transport in the inner ear. These advances will herald a new generation of devices, with near-term applications in preclinical models, and ultimately with human clinical use for a range of diseases of the inner ear.

  17. Graphite Oxide to Graphene. Biomaterials to Bionics.

    PubMed

    Thompson, Brianna C; Murray, Eoin; Wallace, Gordon G

    2015-12-09

    The advent of implantable biomaterials has revolutionized medical treatment, allowing the development of the fields of tissue engineering and medical bionic devices (e.g., cochlea implants to restore hearing, vagus nerve stimulators to control Parkinson's disease, and cardiac pace makers). Similarly, future materials developments are likely to continue to drive development in treatment of disease and disability, or even enhancing human potential. The material requirements for implantable devices are stringent. In all cases they must be nontoxic and provide appropriate mechanical integrity for the application at hand. In the case of scaffolds for tissue regeneration, biodegradability in an appropriate time frame may be required, and for medical bionics electronic conductivity is essential. The emergence of graphene and graphene-family composites has resulted in materials and structures highly relevant to the expansion of the biomaterials inventory available for implantable medical devices. The rich chemistries available are able to ensure properties uncovered in the nanodomain are conveyed into the world of macroscopic devices. Here, the inherent properties of graphene, along with how graphene or structures containing it interface with living cells and the effect of electrical stimulation on nerves and cells, are reviewed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Technology that Touches Lives: Teleconsultation to Benefit Persons with Upper Limb Loss

    PubMed Central

    Whelan, Lynsay R.; Wagner, Nathan

    2011-01-01

    While over 1.5 million individuals are living with limb loss in the United States (Ziegler-Graham et al., 2008), only 10% of these individuals have a loss that affects an upper limb. Coincident with the relatively low incidence of upper limb loss, is a shortage of the community-based prosthetic rehabilitation experts that can help prosthetic users to more fully integrate their devices into their daily routines. This article describes how expert prosthetists and occupational therapists at Touch Bionics, a manufacturer of advanced upper limb prosthetic devices, employ Voice over the Internet Protocol (VoIP) videoconferencing software telehealth technologies to engage in remote consultation with users of prosthetic devices and/or their local practitioners. The Touch Bionics staff provide follow-up expertise to local prosthetists, occupational therapists, and other health professionals. Contrasted with prior telephone-based consultations, the video-enabled approach provides enhanced capabilities to benefit persons with upper limb loss. Currently, the opportunities for Touch Bionics occupational therapists to fully engage in patient-based services delivered through telehealth technologies are significantly reduced by their need to obtain and maintain professional licenses in multiple states. PMID:25945186

  19. Biometric recognition using 3D ear shape.

    PubMed

    Yan, Ping; Bowyer, Kevin W

    2007-08-01

    Previous works have shown that the ear is a promising candidate for biometric identification. However, in prior work, the preprocessing of ear images has had manual steps and algorithms have not necessarily handled problems caused by hair and earrings. We present a complete system for ear biometrics, including automated segmentation of the ear in a profile view image and 3D shape matching for recognition. We evaluated this system with the largest experimental study to date in ear biometrics, achieving a rank-one recognition rate of 97.8 percent for an identification scenario and an equal error rate of 1.2 percent for a verification scenario on a database of 415 subjects and 1,386 total probes.

  20. STANFORD ARTIFICIAL INTELLIGENCE PROJECT.

    DTIC Science & Technology

    ARTIFICIAL INTELLIGENCE , GAME THEORY, DECISION MAKING, BIONICS, AUTOMATA, SPEECH RECOGNITION, GEOMETRIC FORMS, LEARNING MACHINES, MATHEMATICAL MODELS, PATTERN RECOGNITION, SERVOMECHANISMS, SIMULATION, BIBLIOGRAPHIES.

  1. Biological Terrorism Preparedness: Evaluating the Performance of the Early Aberration Reporting System (EARS) Syndromic Surveillance Algorithms

    DTIC Science & Technology

    2007-06-01

    PREPAREDNESS: EVALUATING THE PERFORMANCE OF THE EARLY ABERRATION REPORTING SYSTEM (EARS) SYNDROMIC SURVEILLANCE ALGORITHMS by David A...SUBTITLE Biological Terrorism Preparedness: Evaluating the Performance of the Early Aberration Reporting System (EARS) Syndromic Surveillance...Algorithms 6. AUTHOR(S) David Dunfee, Benjamin Hegler 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School

  2. THRESHOLD LOGIC IN ARTIFICIAL INTELLIGENCE

    DTIC Science & Technology

    COMPUTER LOGIC, ARTIFICIAL INTELLIGENCE , BIONICS, GEOMETRY, INPUT OUTPUT DEVICES, LINEAR PROGRAMMING, MATHEMATICAL LOGIC, MATHEMATICAL PREDICTION, NETWORKS, PATTERN RECOGNITION, PROBABILITY, SWITCHING CIRCUITS, SYNTHESIS

  3. BIOCONAID System (Bionic Control of Acceleration Induced Dimming).

    DTIC Science & Technology

    1981-07-01

    Howard, P. , "The Physiology of Positive Acceleration," Chapter 23 in A Textbook of Aviation Physiology, Edited by J. A. Gilles, Pergamon Press...of the Carotid Sinus Baroreceptor Process in a Dog ," IEEE Trans. Biomed. Engineering, BME , Vol. 22, No. 3, pp. 502-507, 1975. 16. Leverett, S. D...Electromyogram, ’ IEEE Transactions on Biomedical Engineering. Vol. BME -24, No. 5, pp. 417-424, 1977. 26. Stoll, Alice M., "Human Tolerance to Positive G as

  4. Artificial Intelligence and Bionics Workshop Held at Stowe, Vermont on 11-15 June 1984.

    DTIC Science & Technology

    1984-11-01

    perform some specific task. This too is hard to deal with in a diverse group, because many of the academic types like myself are not familiar with the...SCHEDULE Approved for public release; distribution unlimited. 4 PERFORMING ORGANIZATION REPORT NUMBERIS) 6 MONITORING ORGANIZAION REPORT NUMBER(S) NOSC TR...10030 So NAME OF PERFORMING ORGANIZATION b OFFICE SYMBOL 7@ NAME OF MONITORING ORGANIIZATION (If~a~e Naval Ocean Systems Center I Be. ADDRESS (Ca

  5. Inner ear disorders.

    PubMed

    Smouha, Eric

    2013-01-01

    To present a framework for the diagnosis and treatment of inner ear disorders, with an emphasis on problems common to neuro-rehabilitation. Disorders of the inner ear can cause hearing loss, tinnitus, vertigo and imbalance. Hearing loss can be conductive, sensorineural, or mixed; conductive hearing loss arises from the ear canal or middle ear, while sensorineural hearing loss arises from the inner ear or auditory nerve. Vertigo is a hallucination of motion, and is the cardinal symptom of vestibular system disease. It should be differentiated from other causes of dizziness: gait imbalance, disequilibrium, lightheadedness (pre-syncope). Vertigo can be caused by problems in the inner ear or central nervous system. The diagnosis of inner ear disorders begins with a targeted physical examination. The initial work-up of hearing loss is made by audiometry, and vertigo by electronystagmography (ENG). Supplemental tests and MRI are obtained when clinically indicated. The clinical pattern and duration of vertigo are the most important clinical features in the diagnosis. Common inner ear causes of vertigo include: vestibular neuritis (sudden, unilateral vestibular loss), Meniere's disease (episodic vertigo), benign paroxysmal positional vertigo (BPPV), and bilateral vestibular loss. Common central nervous system causes of vertigo include: post concussion syndrome, cervical vertigo, vestibular migraine, cerebrovascular disease, and acoustic neuroma. A basic knowledge of vestibular physiology, coupled with a understanding of common vestibular syndromes, will lead to correct diagnosis and treatment in most cases.

  6. [The Six Million Dollar Man: from fiction to reality].

    PubMed

    Langeveld, C H Kees

    2013-01-01

    The term 'bionic' has been in existence since 1958, but only gained general recognition from the television series 'The Six Million Dollar Man'. Following a crash, the central figure in this series - test pilot Steve Austin - has an eye, an arm and both legs replaced by prostheses which make him stronger and faster than a normal person. This story is based on the science fiction book 'Cyborg' by Martin Caidin. In the world of comic books and films there are a number of examples of people who are given superhuman powers by having technological gadgets built in. Although the latter is not yet possible, the bionic human has now become reality.

  7. Immunologic Disorders of the Inner Ear.

    ERIC Educational Resources Information Center

    Kinney, William C.; Hughes, Gordon B.

    1997-01-01

    Immune inner ear disease represents a series of immune system mediated problems that can present with hearing loss, dizziness, or both. The etiology, presentation, testing, and treatment of primary immune inner ear disease is discussed. A review of secondary immune inner ear disease is presented for comparison. (Contains references.) (Author/CR)

  8. A paleo-aerodynamic exploration of the evolution of nature's flyers, man's aircraft, and the needs and options for future technology innovations

    NASA Astrophysics Data System (ADS)

    Kulfan, Brenda M.

    2009-03-01

    Insights and observations of fascinating aspects of birds, bugs and flying seeds, of inspired aerodynamic concepts, and visions of past, present and future aircraft developments are presented. The evolution of nature's flyers, will be compared with the corresponding evolution of commercial aircraft. We will explore similarities between nature's creations and man's inventions. Many critical areas requiring future significant technology based solutions remain. With the advent of UAVs and MAVs, the gap between "possible" and "actual" is again very large. Allometric scaling procedures will be used to explore size implications on limitations and performance capabilities of nature's creations. Biologically related technology development concepts including: bionics, biomimicry, neo-bionic, pseudo-mimicry, cybernetic and non-bionic approaches will be discussed and illustrated with numerous examples. Technology development strategies will be discussed along with the pros and cons for each. Future technology developments should include a synergistic coupling of "discovery driven", "product led" and "technology acceleration" strategies. The objective of this presentation is to inspire the creative nature existing within all of us. This is a summary all text version of the complete report with the same title that report includes approximately 80 figures, photos and charts and much more information.

  9. Influence of different boundary conditions at the tympanic annulus on finite element models of the human middle ear

    NASA Astrophysics Data System (ADS)

    Lobato, Lucas; Paul, Stephan; Cordioli, Júlio

    2018-05-01

    The tympanic annulus is a fibrocartilage ligament that supports the tympanic membrane in a sulcus at the end of the outer ear canal. Among many FE models of the middle ear found in literature, the effect of different boundary conditions at tympanic annulus on middle ear mechanics was not found. In order to investigate the influence of different representations of this detail in FE models, three different ways to connect the tympanic annulus to the outer ear canal were modelled in a reduced middle ear system. This reduced system includes tympanic membrane, tympanic annulus, manubrium, malleus and anterior ligament of malleus. The numerical frequency response function Humbo (umbo velocity vs sound pressure at tympanic membrane) was analyzed through the different boundary conditions and compared to numerical and experimental data from the literature. Also a numerical modal analysis was performed to improve the analysis. It was found that the boundary conditions used to represent the connection between Tympanic Annulus and Outer Ear Canal can change the global stiffness of the system and its natural frequencies as well as change the modal shape of high order modes.

  10. Generation of inner ear organoids containing functional hair cells from human pluripotent stem cells.

    PubMed

    Koehler, Karl R; Nie, Jing; Longworth-Mills, Emma; Liu, Xiao-Ping; Lee, Jiyoon; Holt, Jeffrey R; Hashino, Eri

    2017-06-01

    The derivation of human inner ear tissue from pluripotent stem cells would enable in vitro screening of drug candidates for the treatment of hearing and balance dysfunction and may provide a source of cells for cell-based therapies of the inner ear. Here we report a method for differentiating human pluripotent stem cells to inner ear organoids that harbor functional hair cells. Using a three-dimensional culture system, we modulate TGF, BMP, FGF, and WNT signaling to generate multiple otic-vesicle-like structures from a single stem-cell aggregate. Over 2 months, the vesicles develop into inner ear organoids with sensory epithelia that are innervated by sensory neurons. Additionally, using CRISPR-Cas9, we generate an ATOH1-2A-eGFP cell line to detect hair cell induction and demonstrate that derived hair cells exhibit electrophysiological properties similar to those of native sensory hair cells. Our culture system should facilitate the study of human inner ear development and research on therapies for diseases of the inner ear.

  11. Aural Discrimination of Targets by Human Subjects Using Broadband Sonar Pulses

    DTIC Science & Technology

    1982-10-01

    in;’ Animal Sonai Systems: Biology and Bionics. RE Busnell. ed. Laboratoire de Physiologic.I Jouy-en-Josas 78. France, 1967. 6. Au. WW and KJ Snyder...1970. 11. Welton, PJ, Mde Billy. A Hayman and G Quentin, Backscattering of Short Ultrasonic Pulses by Solid Eastic Cylinders at Large /a, J Acoust Soc... G Quentin, Backscattering of Short Ultrasonic Pulses by Solid Elastic Cylinders at Large ka, J Acoust Soc Amer, 67, p 470-476, 1980. 12. Small, AM and

  12. Comparison of Microbiological Flora in the External Auditory Canal of Normal Ear and an Ear with Acute Otitis Externa.

    PubMed

    Ghanpur, Asheesh Dora; Nayak, Dipak Ranjan; Chawla, Kiran; Shashidhar, V; Singh, Rohit

    2017-09-01

    Acute Otitis Externa (AOE) is also known as swimmer's ear. Investigations initiated during World War II firmly established the role of bacteria in the aetiology of Acute Otitis Externa. To culture the microbiological flora of the normal ear and compare it with the flora causing AOE and to know the role of normal ear canal flora and anaerobes in the aetiology. A prospective observational study was conducted on 64 patients clinically diagnosed with unilateral AOE. Ear swabs were taken from both the ears. Microbiological flora was studied considering diseased ear as test ear and the normal ear as the control. Aerobic and anaerobic cultures were done. Severity of the disease was assessed by subjective and objective scores. Effect of topical treatment with ichthammol glycerine pack was assessed after 48 hours and scores were calculated again. Patients with scores < 4 after pack removal were started on systemic antibiotics and were assessed after seven days of antibiotics course. Data was analysed using Paired t-test, Wilcoxon signed ranks test and Chi-square test. A p-value < 0.05 was considered significant. Pseudomonas aeruginosa (33%) was the most common bacteria cultured from the ear followed by Methicillin Resistant Staphylococcus aureus (MRSA) (18%). Patients with anaerobic organism in the test ear had severe symptoms and needed systemic antibiotic therapy. Most of the cases may respond to empirical antibiotic therapy. In cases with severe symptoms and the ones refractory to empirical treatment, a culture from the ear canal will not be a tax on the patient. This helps in giving a better understanding about the disease, causative organisms and helps in avoiding the use of inappropriate antibiotics that usually result in developing resistant strains of bacteria.

  13. Proposal of a Classification System for the Assessment and Treatment of Prominent Ear Deformity.

    PubMed

    Lee, Youngdae; Kim, Young Seok; Lee, Won Jai; Rha, Dong Kyun; Kim, Jiye

    2018-06-01

    Prominent ear is the most common external ear deformity. To comprehensively treat prominent ear deformity, adequate comprehension of its pathophysiology is crucial. In this article, we analyze cases of prominent ear and suggest a simple classification system and treatment algorithm according to pathophysiology. We retrospectively reviewed a total of 205 Northeast Asian patients' clinical data who underwent an operation for prominent ear deformity. Follow-up assessments were conducted 3, 6, and 12 months after surgery. Prominent ear deformities were classified by diagnostic checkpoints. Class I (simple prominent ear) includes prominent ear that developed with the absence of the antihelix without conchal hypertrophy. Class II (mixed-type prominent ear) is defined as having not only a flat antihelix, but also conchal excess. Class III (conchal-type prominent ear) has an enlarged conchal bowl with a well-developed antihelix. Among the three types of prominent ear, class I was most frequent (162 patients, 81.6%). Class II was observed in 28 patients (13.6%) and class III in 10 patients (4.8%). We used the scaphomastoid suture method for correction of antihelical effacement, the anterior approach conchal resection for correction of conchal hypertrophy, and Bauer's squid incision for lobule prominence. The complication rate was 9.2% including early hematoma, hypersensitivity, and suture extrusion. Unfavorable results occurred in 4% including partial recurrence, overcorrection, and undercorrection. To reduce unfavorable results and avoid recurrence, we propose the use of a classification and treatment algorithm in preoperative evaluation of prominent ear. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  14. A miniaturized laser-Doppler-system in the ear canal

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; Gerhardt, U.; Kupper, C.; Manske, E.; Witte, H.

    2013-03-01

    Gathering vibrational data from the human middle ear is quite difficult. To this date the well-known acoustic probe is used to estimate audiometric parameters, e.g. otoacoustic emissions, wideband reflectance and the measurement of the stapedius reflex. An acoustic probe contains at least one microphone and one loudspeaker. The acoustic parameter determination of the ear canal is essential for the comparability of test-retest measurement situations. Compared to acoustic tubes, the ear canal wall cannot be described as a sound hard boundary. Sound energy is partly absorbed by the ear canal wall. In addition the ear canal features a complex geometric shape (Stinson and Lawton1). Those conditions are one reason for the inter individual variability in input impedance measurement data of the tympanic membrane. The method of Laser-Doppler-Vibrometry is well described in literature. Using this method, the surface velocity of vibrating bodies can be determined contact-free. Conventional Laser-Doppler-Systems (LDS) for auditory research are mounted on a surgical microscope. Assuming a free line of view to the ear drum, the handling of those laser-systems is complicated. We introduce the concept of a miniaturized vibrometer which is supposed to be applied directly in the ear canal for contact-free measurement of the tympanic membrane surface vibration. The proposed interferometer is based on a Fabry-Perot etalon with a DFB laser diode as light source. The fiber-based Fabry-Perot-interferometer is characterized by a reduced size, compared to e.g. Michelson-, or Mach-Zehnder-Systems. For the determination of the phase difference in the interferometer, a phase generated carrier was used. To fit the sensor head in the ear canal, the required shape of the probe was generated by means of the geometrical data of 70 ear molds. The suggested prototype is built up by a singlemode optical fiber with a GRIN-lens, acting as a fiber collimator. The probe has a diameter of 1.8 mm and a length of 5 mm.

  15. Transmission matrix analysis of the chinchilla middle ear

    PubMed Central

    Songer, Jocelyn E.; Rosowski, John J.

    2008-01-01

    Despite the common use of the chinchilla as an animal model in auditory research, a complete characterization of the chinchilla middle ear using transmission matrix analysis has not been performed. In this paper we describe measurements of middle-ear input admittance and stapes velocity in ears with the middle-ear cavity opened under three conditions: intact tympano-ossicular system and cochlea, after the cochlea has been drained, and after the stapes has been fixed. These measurements, made with stimulus frequencies of 100–8000 Hz, are used to define the transmission matrix parameters of the middle ear and to calculate the cochlear input impedance as well as the middle-ear output impedance. This transmission characterization of the chinchilla middle ear will be useful for modeling auditory sensitivity in the normal and pathological chinchilla ear. PMID:17672642

  16. Tuberculous otitis media with mastoiditis and central nervous system involvement.

    PubMed

    Mongkolrattanothai, Kanokporn; Oram, Ronda; Redleaf, Miriam; Bova, Judy; Englund, Janet A

    2003-05-01

    Tuberculosis of the middle ear and mastoid is currently a rare disease in developed countries, but this disease still occurs and may cause serious consequences. We report a case of disseminated tuberculosis involving the middle ear, mastoid, lung and central nervous system. Tuberculosis should be considered in the differential diagnosis of chronic ear drainage, especially in young children.

  17. Acoustic feedback margin improvements in hearing instruments using a prototype DFS (digital feedback suppression) system.

    PubMed

    Dyrlund, O; Bisgaard, N

    1991-01-01

    The properties of a prototype DFS (digital feedback suppression) system have been investigated. 21 ears fitted with behind-the-ear (BTE) hearing instruments and hard acrylic ear-moulds and 4 ears fitted with vented in-the-ear (ITE) hearing instruments were selected for the investigation. Two ITE instruments with different venting were employed to one of the ears. Complex loop gain has been measured in an anechoic room, and from these measurements the improvements in acoustic feedback margin due to the DFS system have been determined. For the BTE group, median values of 13.1 and 10.0 dB of improvement were established for two sets of measurements introducing a 180 degrees phase shift in connection with the last set of measurements. For the ITE group, values from 9.8 to 16.1 dB and from 13.7 to 16.3 dB of improvement were observed for the normal and the 180 degrees phase shift conditions respectively. Beyond this the DFS system may improve the sound quality to some extent, because the amplitude distortion, caused by the external feedback signal, is almost completely eliminated.

  18. Cardiac tissue engineering: from matrix design to the engineering of bionic hearts.

    PubMed

    Fleischer, Sharon; Feiner, Ron; Dvir, Tal

    2017-04-01

    The field of cardiac tissue engineering aims at replacing the scar tissue created after a patient has suffered from a myocardial infarction. Various technologies have been developed toward fabricating a functional engineered tissue that closely resembles that of the native heart. While the field continues to grow and techniques for better tissue fabrication continue to emerge, several hurdles still remain to be overcome. In this review we will focus on several key advances and recent technologies developed in the field, including biomimicking the natural extracellular matrix structure and enhancing the transfer of the electrical signal. We will also discuss recent developments in the engineering of bionic cardiac tissues which integrate the fields of tissue engineering and electronics to monitor and control tissue performance.

  19. Clinician-Focused Overview of Bionic Exoskeleton Use After Spinal Cord Injury.

    PubMed

    Palermo, Anne E; Maher, Jennifer L; Baunsgaard, Carsten Bach; Nash, Mark S

    2017-01-01

    Spinal cord injury (SCI) resulting in paralysis of lower limbs and trunk restricts daily upright activity, work capacity, and ambulation ability, putting persons with an injury at greater risk of developing a myriad of secondary medical issues. Time spent in the upright posture has been shown to decrease the risk of these complications in SCI. Unfortunately, the majority of ambulation assistive technologies are limited by inefficiencies such as high energy demand, lengthy donning and doffing time, and poor gait pattern precluding widespread use. These limitations spurred the development of bionic exoskeletons. These devices are currently being used in rehabilitation settings for gait retraining, and some have been approved for home use. This overview will address the current state of available devices and their utility.

  20. Multi-resolution analysis for ear recognition using wavelet features

    NASA Astrophysics Data System (ADS)

    Shoaib, M.; Basit, A.; Faye, I.

    2016-11-01

    Security is very important and in order to avoid any physical contact, identification of human when they are moving is necessary. Ear biometric is one of the methods by which a person can be identified using surveillance cameras. Various techniques have been proposed to increase the ear based recognition systems. In this work, a feature extraction method for human ear recognition based on wavelet transforms is proposed. The proposed features are approximation coefficients and specific details of level two after applying various types of wavelet transforms. Different wavelet transforms are applied to find the suitable wavelet. Minimum Euclidean distance is used as a matching criterion. Results achieved by the proposed method are promising and can be used in real time ear recognition system.

  1. [Advances in genetics of congenital malformation of external and middle ear].

    PubMed

    Wang, Dayong; Wang, Qiuju

    2013-05-01

    Congenital malformation of external and middle ear is a common disease in ENT department, and the incidence of this disease is second only to cleft lip and palate in the whole congenital malformations of the head and face. The external and middle ear malformations may occur separately, or as an important ear symptom of the systemic syndrome. We systematically review and analysis the genetic research progress of congenital malformation of external and middle ear, which would be helpful to understand the mechanism of external and middle ear development, and to provide clues for the further discovery of new virulence genes.

  2. Evaluation of intratympanic formulations for inner ear delivery: methodology and sustained release formulation testing

    PubMed Central

    Liu, Hongzhuo; Feng, Liang; Tolia, Gaurav; Liddell, Mark R.; Hao, Jinsong; Li, S. Kevin

    2013-01-01

    A convenient and efficient in vitro diffusion cell method to evaluate formulations for inner ear delivery via the intratympanic route is currently not available. The existing in vitro diffusion cell systems commonly used to evaluate drug formulations do not resemble the physical dimensions of the middle ear and round window membrane. The objectives of this study were to examine a modified in vitro diffusion cell system of a small diffusion area for studying sustained release formulations in inner ear drug delivery and to identify a formulation for sustained drug delivery to the inner ear. Four formulations and a control were examined in this study using cidofovir as the model drug. Drug release from the formulations in the modified diffusion cell system was slower than that in the conventional diffusion cell system due to the decrease in the diffusion surface area of the modified diffusion cell system. The modified diffusion cell system was able to show different drug release behaviors among the formulations and allowed formulation evaluation better than the conventional diffusion cell system. Among the formulations investigated, poly(lactic-co-glycolic acid)–poly(ethylene glycol)–poly(lactic-co-glycolic acid) triblock copolymer systems provided the longest sustained drug delivery, probably due to their rigid gel structures and/or polymer-to-cidofovir interactions. PMID:23631539

  3. Nonsurgical correction of congenital ear abnormalities in the newborn: Case series.

    PubMed

    Smith, Wg; Toye, Jw; Reid, A; Smith, Rw

    2005-07-01

    To determine whether a simple, nonsurgical treatment for congenital ear abnormalities (lop-ear, Stahl's ear, protruding ear, cryptotia) improved the appearance of ear abnormalities in newborns at six weeks of age. This is a descriptive case series. All newborns with identified abnormalities were referred by their family physician to one paediatrician (WGS) in a small level 2 perinatal centre. The ears were waxed and taped in a standard manner within 10 days of birth. Pictures were taken before taping and at the end of taping (one month). All patients and pictures were assessed by one plastic surgeon (JWT) at six weeks of age and scored using a standard scoring system. A telephone survey of the nontreatment group was conducted. The total number of ears assessed was 90. Of this total, 69 ears were taped and fully evaluated in the study (77%). The refusal rate was 23%. In the treatment group, 59% had lop-ear, 19% had Stahl's ear, 17% had protruding ear and 3% had cryptotia. Overall correction (excellent/improved) for the treatment group was 90% (100% for lop-ear, 100% for Stahl's ear, 67% for protruding ear and 0% for cryptotia). In the nontreatment (refusal) group, 67% of the ears failed to correct spontaneously. No complications were recognized by the authors or parents by six weeks. The percentage of newborns in one year in the perinatal centre with recognized ear abnormalities was 6% (90 of 1600). A simple, nonsurgical treatment in a Caucasian population appeared to be very effective in correcting congenital ear abnormalities with no complications and high patient/parent satisfaction.

  4. Simulations and Measurements of Human Middle Ear Vibrations Using Multi-Body Systems and Laser-Doppler Vibrometry with the Floating Mass Transducer.

    PubMed

    Böhnke, Frank; Bretan, Theodor; Lehner, Stefan; Strenger, Tobias

    2013-10-22

    The transfer characteristic of the human middle ear with an applied middle ear implant (floating mass transducer) is examined computationally with a Multi-body System approach and compared with experimental results. For this purpose, the geometry of the middle ear was reconstructed from μ-computer tomography slice data and prepared for a Multi-body System simulation. The transfer function of the floating mass transducer, which is the ratio of the input voltage and the generated force, is derived based on a physical context. The numerical results obtained with the Multi-body System approach are compared with experimental results by Laser Doppler measurements of the stapes footplate velocities of five different specimens. Although slightly differing anatomical structures were used for the calculation and the measurement, a high correspondence with respect to the course of stapes footplate displacement along the frequency was found. Notably, a notch at frequencies just below 1 kHz occurred. Additionally, phase courses of stapes footplate displacements were determined computationally if possible and compared with experimental results. The examinations were undertaken to quantify stapes footplate displacements in the clinical practice of middle ear implants and, also, to develop fitting strategies on a physical basis for hearing impaired patients aided with middle ear implants.

  5. 76 FR 62164 - VASRD Improvement Forum-Updating Disability Criteria for the Respiratory System, Cardiovascular...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... Respiratory System, Cardiovascular System, Hearing Impairment, and Ear, Nose and Throat Diseases AGENCY... System, Cardiovascular System, Hearing Impairment, and Ear, Nose and Throat Diseases. The purpose of this...) the Cardiovascular System (38 CFR 4.100-4.104), (3) the Impairment of Auditory Acuity (38 CFR 4.85 and...

  6. Relative size of auditory pathways in symmetrically and asymmetrically eared owls.

    PubMed

    Gutiérrez-Ibáñez, Cristián; Iwaniuk, Andrew N; Wylie, Douglas R

    2011-01-01

    Owls are highly efficient predators with a specialized auditory system designed to aid in the localization of prey. One of the most unique anatomical features of the owl auditory system is the evolution of vertically asymmetrical ears in some species, which improves their ability to localize the elevational component of a sound stimulus. In the asymmetrically eared barn owl, interaural time differences (ITD) are used to localize sounds in azimuth, whereas interaural level differences (ILD) are used to localize sounds in elevation. These two features are processed independently in two separate neural pathways that converge in the external nucleus of the inferior colliculus to form an auditory map of space. Here, we present a comparison of the relative volume of 11 auditory nuclei in both the ITD and the ILD pathways of 8 species of symmetrically and asymmetrically eared owls in order to investigate evolutionary changes in the auditory pathways in relation to ear asymmetry. Overall, our results indicate that asymmetrically eared owls have much larger auditory nuclei than owls with symmetrical ears. In asymmetrically eared owls we found that both the ITD and ILD pathways are equally enlarged, and other auditory nuclei, not directly involved in binaural comparisons, are also enlarged. We suggest that the hypertrophy of auditory nuclei in asymmetrically eared owls likely reflects both an improved ability to precisely locate sounds in space and an expansion of the hearing range. Additionally, our results suggest that the hypertrophy of nuclei that compute space may have preceded that of the expansion of the hearing range and evolutionary changes in the size of the auditory system occurred independently of phylogeny. Copyright © 2011 S. Karger AG, Basel.

  7. It's in the Bag!

    ERIC Educational Resources Information Center

    Renfro, Nancy

    1983-01-01

    Thirteen ideas for using paper bags for class art activities are given. Directions for making bag barracudas, bionic bags, bigfoot bags, bag sculptures, bag beads, and body bag superstars are included. (PP)

  8. Medicalization: Current Concept and Future Directions in a Bionic Society

    PubMed Central

    Maturo, Antonio

    2012-01-01

    The article illustrates the main features of the concept of medicalization, starting from its theoretical roots. Although it is the process of extending the medical gaze on human conditions, it appears that medicalization cannot be strictly connected to medical imperialism anymore. Other “engines” of medicalization are influential: consumers, biotechnology and managed care. The growth of research and theoretical reflections on medicalization has led to the proposal of other parallel concepts like pharmaceuticalization, genetization and biomedicalization. These new theoretical tools could be useful in the analysis of human enhancement. Human enhancement can be considered as the use of biomedical technology to improve performance on a human being who is not in need of a cure: a practice that is increasingly spreading in what might be defined as a “bionic society”. PMID:22654387

  9. Deep features for efficient multi-biometric recognition with face and ear images

    NASA Astrophysics Data System (ADS)

    Omara, Ibrahim; Xiao, Gang; Amrani, Moussa; Yan, Zifei; Zuo, Wangmeng

    2017-07-01

    Recently, multimodal biometric systems have received considerable research interest in many applications especially in the fields of security. Multimodal systems can increase the resistance to spoof attacks, provide more details and flexibility, and lead to better performance and lower error rate. In this paper, we present a multimodal biometric system based on face and ear, and propose how to exploit the extracted deep features from Convolutional Neural Networks (CNNs) on the face and ear images to introduce more powerful discriminative features and robust representation ability for them. First, the deep features for face and ear images are extracted based on VGG-M Net. Second, the extracted deep features are fused by using a traditional concatenation and a Discriminant Correlation Analysis (DCA) algorithm. Third, multiclass support vector machine is adopted for matching and classification. The experimental results show that the proposed multimodal system based on deep features is efficient and achieves a promising recognition rate up to 100 % by using face and ear. In addition, the results indicate that the fusion based on DCA is superior to traditional fusion.

  10. A bio-inspired design of a hand robotic exoskeleton for rehabilitation

    NASA Astrophysics Data System (ADS)

    Ong, Aira Patrice R.; Bugtai, Nilo T.

    2018-02-01

    This paper presents the methodology for the design of a five-degree of freedom wearable robotic exoskeleton for hand rehabilitation. The design is inspired by the biological structure and mechanism of the human hand. One of the distinct features of the device is the cable-driven actuation, which provides the flexion and extension motion. A prototype of the orthotic device has been developed to prove the model of the system and has been tested in a 3D printed mechanical hand. The result showed that the proposed device was consistent with the requirements of bionics and was able to demonstrate the flexion and extension of the system.

  11. Technological inductive power transfer systems

    NASA Astrophysics Data System (ADS)

    Madzharov, Nikolay D.; Nemkov, Valentin S.

    2017-05-01

    Inductive power transfer is a very fast expanding technology with multiple design principles and practical implementations ranging from charging phones and computers to bionic systems, car chargers and continuous power transfer in technological lines. Only a group of devices working in near magnetic field is considered. This article is devoted to overview of different inductive power transfer (IPT) devices. The review of literature in this area showed that industrial IPT are not much discussed and examined. The authors have experience in design and implementation of several types of IPTs belonging to wireless automotive chargers and to industrial application group. Main attention in the article is paid to principles and design of technological IPTs

  12. Can you hear me now? Understanding vertebrate middle ear development

    PubMed Central

    Chapman, Susan Caroline

    2010-01-01

    The middle ear is a composite organ formed from all three germ layers and the neural crest. It provides the link between the outside world and the inner ear, where sound is transduced and routed to the brain for processing. Extensive classical and modern studies have described the complex morphology and origin of the middle ear. Non-mammalian vertebrates have a single ossicle, the columella. Mammals have three functionally equivalent ossicles, designated the malleus, incus and stapes. In this review, I focus on the role of genes known to function in the middle ear. Genetic studies are beginning to unravel the induction and patterning of the multiple middle ear elements including the tympanum, skeletal elements, the air-filled cavity, and the insertion point into the inner ear oval window. Future studies that elucidate the integrated spatio-temporal signaling mechanisms required to pattern the middle ear organ system are needed. The longer-term translational benefits of understanding normal and abnormal ear development will have a direct impact on human health outcomes. PMID:21196256

  13. Bionic limbs: clinical reality and academic promises.

    PubMed

    Farina, Dario; Aszmann, Oskar

    2014-10-08

    Three recent articles in Science Translational Medicine (Tan et al. and Ortiz-Catalan et al., this issue; Raspopovic et al., 5 Feb 2014 issue, 222ra19) present neuroprosthetic systems in which sensory information is delivered through direct nerve stimulation while controlling an action of the prosthesis--in all three cases, arm and hand movement. We discuss such sensory-motor integration and other key issues in prosthetic reconstruction, with an emphasis on the gap existing between clinically available systems and more advanced, custom-designed academic systems. In the near future, osseointegration, implanted muscle, and nerve electrodes for decoding and stimulation may be components of prosthetic systems for clinical use, available to a large patient population. Copyright © 2014, American Association for the Advancement of Science.

  14. Evidence for a Right-Ear Advantage in Newborn Hearing Screening Results.

    PubMed

    Ari-Even Roth, Daphne; Hildesheimer, Minka; Roziner, Ilan; Henkin, Yael

    2016-12-06

    The aim of the present study was to investigate the effect of ear asymmetry, order of testing, and gender on transient-evoked otoacoustic emission (TEOAE) pass rates and response levels in newborn hearing screening. The screening results of 879 newborns, of whom 387 (study group) passed screening successfully in only one ear in the first TEOAE screening, but passed screening successfully in both ears thereafter, and 492 (control group) who passed screening successfully in both ears in the first TEOAE, were retrospectively examined for pass rates and TEOAE characteristics. Results indicated a right-ear advantage, as manifested by significantly higher pass rates in the right ear (61% and 39% for right and left ears, respectively) in the study group, and in 1.75 dB greater TEOAE response amplitudes in the control group. The right-ear advantage was enhanced when the first tested ear was the right ear (76%). When the left ear was tested first, pass rates were comparable in both ears. The right-ear advantage in pass rates was similar in females versus males, but manifested in 1.5 dB higher response amplitudes in females compared with males, regardless of the tested ear and order of testing in both study and control groups. The study provides further evidence for the functional lateralization of the auditory system at the cochlear level already apparent soon after birth in both males and females. While order of testing plays a significant role in the asymmetry in pass rates, the innate right-ear advantage seems to be a more dominant contributor. © The Author(s) 2016.

  15. Evidence for a Right-Ear Advantage in Newborn Hearing Screening Results

    PubMed Central

    Hildesheimer, Minka; Roziner, Ilan; Henkin, Yael

    2016-01-01

    The aim of the present study was to investigate the effect of ear asymmetry, order of testing, and gender on transient-evoked otoacoustic emission (TEOAE) pass rates and response levels in newborn hearing screening. The screening results of 879 newborns, of whom 387 (study group) passed screening successfully in only one ear in the first TEOAE screening, but passed screening successfully in both ears thereafter, and 492 (control group) who passed screening successfully in both ears in the first TEOAE, were retrospectively examined for pass rates and TEOAE characteristics. Results indicated a right-ear advantage, as manifested by significantly higher pass rates in the right ear (61% and 39% for right and left ears, respectively) in the study group, and in 1.75 dB greater TEOAE response amplitudes in the control group. The right-ear advantage was enhanced when the first tested ear was the right ear (76%). When the left ear was tested first, pass rates were comparable in both ears. The right-ear advantage in pass rates was similar in females versus males, but manifested in 1.5 dB higher response amplitudes in females compared with males, regardless of the tested ear and order of testing in both study and control groups. The study provides further evidence for the functional lateralization of the auditory system at the cochlear level already apparent soon after birth in both males and females. While order of testing plays a significant role in the asymmetry in pass rates, the innate right-ear advantage seems to be a more dominant contributor. PMID:27927982

  16. The effects of V2 antagonist (OPC-31260) on endolymphatic hydrops.

    PubMed

    Takeda, Taizo; Sawada, Shoichi; Takeda, Setsuko; Kitano, Hiroya; Suzuki, Mikio; Kakigi, Akinobu; Takeuchi, Shunji

    2003-08-01

    In the present study, two experiments were performed to investigate the influence of OPC-31260 on experimentally induced endolymphatic hydrops in guinea pigs and the regulation of aquaporin-2 (AQP2) mRNA expression in the rat inner ear. In morphological studies, the increases in the ratios of the length of Reissner's membrane (IR-L) and the cross-sectional area of the scala media (IR-S) were quantitatively assessed among normal guinea pigs (normal ears) and three groups with hydropic ears: hydropic ears with no infusion (non-infusion hydropic ears), hydropic ears with an infusion of physiological saline into the scala tympani (saline-infused hydropic ears) and hydropic ears with infusion of 0.3% OPC-31260 into the scala tympani (OPC-infused hydropic ears). IR-Ls in the experimental groups were markedly larger than in the normal ear group, but there was no significant difference among the groups of non-infusion hydropic ears, saline-infused hydropic ears and OPC-infused hydropic ears. The IR-Ss of non-infusion hydropic ears and saline-infused hydropic ears (48.8-49.3%) were statistically different from that of normal ears (6.5%) (Dunnet multiple comparison test, P<0.01). However, IR-S of the OPC-infused hydropic ears (-14.8%) was significantly smaller than those of non-infusion hydropic ears and saline-infused hydropic ears (one-way ANOVA, P<0.01). In the quantitative polymerase chain reaction study, a comparison of the ratio of AQP2 and beta-actin mRNA (MAQP2/Mbeta-actin) was made between water-injected and OPC-31260-injected rats. An intravenous injection of OPC-31260 resulted in a significant decrease in MAQP2/Mbeta-actin both in the cochlea and in the endolymphatic sac (t-test, P<0.001). These results indicate that water homeostasis in the inner ear is regulated via the vasopressin-AQP2 system, and that the vasopressin type-2 antagonist OPC-31260 is a promising drug in the treatment of Meniere's disease.

  17. Biologically inspired toys using artificial muscles

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    2001-01-01

    Recent developments in electroactive polymers, so-called artificial muscles, could one day be used to make bionics possible. Meanwhile, as this technology evolves novel mechanisms are expected to emerge that are biologically inspired.

  18. Update on Middle Ear Barotrauma after Hyperbaric Oxygen Therapy—Insights on Pathophysiology

    PubMed Central

    Lima, Marco Antônio Rios; Farage, Luciano; Cury, Maria Cristina Lancia; Bahamad, Fayez

    2014-01-01

    Introduction Middle ear barotrauma is the most common side effect of hyperbaric oxygen therapy. Knowledge and understanding of its pathophysiology are crucial for an accurate diagnosis and proper decision making about treatment and prevention. Objective Describe up-to-date information on pathophysiology of middle ear barotrauma after hyperbaric oxygen therapy considering the physiology of pressure variation of the middle ear. Data Synthesis Middle ear barotrauma occurs especially during the compression phase of hyperbaric oxygen therapy. The hyperoxic environment in hyperbaric oxygen therapy leads to ventilatory dysfunction of the eustachian tube, especially in monoplace chambers, where the patients are pressurized with 100% O2, favoring middle ear barotrauma. Conclusion The eustachian tube, the tympanic cavity, and mastoid work together in a neural controlled feedback system in which various mechanisms concur for middle ear pressure regulation. PMID:25992091

  19. Stochastic information transfer from cochlear implant electrodes to auditory nerve fibers

    NASA Astrophysics Data System (ADS)

    Gao, Xiao; Grayden, David B.; McDonnell, Mark D.

    2014-08-01

    Cochlear implants, also called bionic ears, are implanted neural prostheses that can restore lost human hearing function by direct electrical stimulation of auditory nerve fibers. Previously, an information-theoretic framework for numerically estimating the optimal number of electrodes in cochlear implants has been devised. This approach relies on a model of stochastic action potential generation and a discrete memoryless channel model of the interface between the array of electrodes and the auditory nerve fibers. Using these models, the stochastic information transfer from cochlear implant electrodes to auditory nerve fibers is estimated from the mutual information between channel inputs (the locations of electrodes) and channel outputs (the set of electrode-activated nerve fibers). Here we describe a revised model of the channel output in the framework that avoids the side effects caused by an "ambiguity state" in the original model and also makes fewer assumptions about perceptual processing in the brain. A detailed comparison of how different assumptions on fibers and current spread modes impact on the information transfer in the original model and in the revised model is presented. We also mathematically derive an upper bound on the mutual information in the revised model, which becomes tighter as the number of electrodes increases. We found that the revised model leads to a significantly larger maximum mutual information and corresponding number of electrodes compared with the original model and conclude that the assumptions made in this part of the modeling framework are crucial to the model's overall utility.

  20. 50 CFR Appendix D to Part 622 - Specifications for Certified BRDs

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... part of the lazy line attachment system (i.e., any mechanism, such as elephant ears or choker straps... is installed, no part of the lazy line attachment system (i.e., any mechanism, such as elephant ears...

  1. 50 CFR Appendix D to Part 622 - Specifications for Certified BRDs

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... part of the lazy line attachment system (i.e., any mechanism, such as elephant ears or choker straps... is installed, no part of the lazy line attachment system (i.e., any mechanism, such as elephant ears...

  2. ["Bionic" arm prostheses. State of the art in research and development].

    PubMed

    Pylatiuk, C; Döderlein, L

    2006-11-01

    A new generation of arm prostheses is being developed worldwide. These so-called bionic prostheses are intended to offer additional functions, such as sensory feedback, extended range of possible movement, intuitive movement control as far as possible, and a more natural cosmetic appearance. In recent years, prosthetic components with much enhanced performance have been developed for use at various levels of the upper limb. Artificial hands that allow for additional grips are are being tested in clinical settings. Innovative methods of signal acquisition and communication with the patient are being intensively researched. Several patients have been provided with prototypes of new arm prostheses. At the moment, the results are limited by the restricted communication between patient and prosthesis. However, we can expect the options for prosthesis control to be extended in the near future.

  3. Estimation of the Age and Amount of Brown Rice Plant Hoppers Based on Bionic Electronic Nose Use

    PubMed Central

    Xu, Sai; Zhou, Zhiyan; Lu, Huazhong; Luo, Xiwen; Lan, Yubin; Zhang, Yang; Li, Yanfang

    2014-01-01

    The brown rice plant hopper (BRPH), Nilaparvata lugens (Stal), is one of the most important insect pests affecting rice and causes serious damage to the yield and quality of rice plants in Asia. This study used bionic electronic nose technology to sample BRPH volatiles, which vary in age and amount. Principal component analysis (PCA), linear discrimination analysis (LDA), probabilistic neural network (PNN), BP neural network (BPNN) and loading analysis (Loadings) techniques were used to analyze the sampling data. The results indicate that the PCA and LDA classification ability is poor, but the LDA classification displays superior performance relative to PCA. When a PNN was used to evaluate the BRPH age and amount, the classification rates of the training set were 100% and 96.67%, respectively, and the classification rates of the test set were 90.67% and 64.67%, respectively. When BPNN was used for the evaluation of the BRPH age and amount, the classification accuracies of the training set were 100% and 48.93%, respectively, and the classification accuracies of the test set were 96.67% and 47.33%, respectively. Loadings for BRPH volatiles indicate that the main elements of BRPHs' volatiles are sulfur-containing organics, aromatics, sulfur- and chlorine-containing organics and nitrogen oxides, which provide a reference for sensors chosen when exploited in specialized BRPH identification devices. This research proves the feasibility and broad application prospects of bionic electronic noses for BRPH recognition. PMID:25268913

  4. Inner Ear Barotrauma After Underwater Pool Competency Training Without the Use of Compressed Air Case and Review.

    PubMed

    McIntire, Sean; Boujie, Lee

    2016-01-01

    Inner ear barotrauma can occur when the gas-filled chambers of the ear have difficulty equalizing pressure with the outside environment after changes in ambient pressure. This can transpire even with small pressure changes. Hypobaric or hyperbaric environments can place significant stress on the structures of the middle and inner ear. If methods to equalize pressure between the middle ear and other connected gas-filled spaces (i.e., Valsalva maneuver) are unsuccessful, middle ear overpressurization can occur. This force can be transmitted to the fluid-filled inner ear, making it susceptible to injury. Damage specifically to the structures of the vestibulocochlear system can lead to symptoms of vertigo, hearing loss, and tinnitus. This article discusses the case of a 23-year-old male Marine who presented with symptoms of nausea and gait instability after performing underwater pool competency exercises to a maximum depth of 13 feet, without breathing compressed air. Diagnosis and management of inner ear barotrauma are reviewed, as is differentiation from inner ear decompression sickness. 2016.

  5. Klippel-Feil syndrome and associated ear anomalies.

    PubMed

    Yildirim, Nadir; Arslanoğlu, Atilla; Mahiroğullari, Mahir; Sahan, Murat; Ozkan, Hüseyin

    2008-01-01

    Klippel-Feil syndrome (KFS) is a congenital segmentation anomaly of the cervical vertebrae that manifests as short neck, low hair line, and limited neck mobility. Various systemic malformations may also accompany the syndrome including wide variety of otopathologies affecting all 3 compartments of the ear (external, middle, and inner ear) as well as internal acoustic canal and vestibular aqueduct. We aimed to investigate these involvements and their clinical correlates in a group of patients with KFS. We present 20 KFS cases, of which 12 (% 60) displayed most of the reported ear abnormalities such as microtia, external ear canal stenosis, chronic ear inflammations and their sequels, anomalies of the tympanic cavity and ossicles, inner ear dysplasies, deformed internal acoustic canal, and wide vestibular aqueduct, which are demonstrated using the methods of otoscopy, audiologic testing, and temporal bone computed tomography. This series represents one of the highest reported rate of ear involvement in KFS. We found no correlation between the identified ear pathologies and the skeletal and extraskeletal malformations. The genetic nature of the syndrome was supported by the existence of affected family members in 4 (20%) of the cases.

  6. Ability to monitor driving under the influence of marijuana among non-fatal motor-vehicle crashes: An evaluation of the Colorado electronic accident reporting system.

    PubMed

    Peterson, Alexis B; Sauber-Schatz, Erin K; Mack, Karin A

    2018-06-01

    As more states legalize medical/recreational marijuana use, it is important to determine if state motor-vehicle surveillance systems can effectively monitor and track driving under the influence (DUI) of marijuana. This study assessed Colorado's Department of Revenue motor-vehicle crash data system, Electronic Accident Reporting System (EARS), to monitor non-fatal crashes involving driving under the influence (DUI) of marijuana. Centers for Disease Control and Prevention guidelines on surveillance system evaluation were used to assess EARS' usefulness, flexibility, timeliness, simplicity, acceptability, and data quality. We assessed system components, interviewed key stakeholders, and analyzed completeness of Colorado statewide 2014 motor-vehicle crash records. EARS contains timely and complete data, but does not effectively monitor non-fatal motor-vehicle crashes related to DUI of marijuana. Information on biological sample type collected from drivers and toxicology results were not recorded into EARS; however, EARS is a flexible system that can incorporate new data without increasing surveillance system burden. States, including Colorado, could consider standardization of drug testing and mandatory reporting policies for drivers involved in motor-vehicle crashes and proactively address the narrow window of time for sample collection to improve DUI of marijuana surveillance. Practical applications: The evaluation of state motor-vehicle crash systems' ability to capture crashes involving drug impaired driving (DUID) is a critical first step for identifying frequency and risk factors for crashes related to DUID. Published by Elsevier Ltd.

  7. Auditory changes in acromegaly.

    PubMed

    Tabur, S; Korkmaz, H; Baysal, E; Hatipoglu, E; Aytac, I; Akarsu, E

    2017-06-01

    The aim of this study is to determine the changes involving auditory system in cases with acromegaly. Otological examinations of 41 cases with acromegaly (uncontrolled n = 22, controlled n = 19) were compared with those of age and gender-matched 24 healthy subjects. Whereas the cases with acromegaly underwent examination with pure tone audiometry (PTA), speech audiometry for speech discrimination (SD), tympanometry, stapedius reflex evaluation and otoacoustic emission tests, the control group did only have otological examination and PTA. Additionally, previously performed paranasal sinus-computed tomography of all cases with acromegaly and control subjects were obtained to measure the length of internal acoustic canal (IAC). PTA values were higher (p < 0.001 for right ears and p = 0.001 for left ears), and SD scores were (p = 0.002 for right ears and p = 0.002 for left ears) lower in acromegalic patients. IAC width in acromegaly group was narrower compared to that in control group (p = 0.03 for right ears and p = 0.02 for left ears). When only cases with acromegaly were taken into consideration, PTA values in left ears had positive correlation with growth hormone and insulin-like growth factor-1 levels (r = 0.4, p = 0.02 and r = 0.3, p = 0.03). Of all cases with acromegaly 13 (32%) had hearing loss in at least one ear, 7 (54%) had sensorineural type and 6 (46%) had conductive type hearing loss. Acromegaly may cause certain changes in the auditory system in cases with acromegaly. The changes in the auditory system may be multifactorial causing both conductive and sensorioneural defects.

  8. 50 CFR Appendix D to Part 622 - Specifications for Certified BRDs

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... attachment system (i.e., any mechanism, such as elephant ears or choker straps, used to attach the lazy line... is installed, no part of the lazy line attachment system (i.e., any mechanism, such as elephant ears...

  9. 50 CFR Appendix D to Part 622 - Specifications for Certified BRDs

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... attachment system (i.e., any mechanism, such as elephant ears or choker straps, used to attach the lazy line... is installed, no part of the lazy line attachment system (i.e., any mechanism, such as elephant ears...

  10. Comparison of visual and electronic devices for individual identification of dromedary camels under different farming conditions.

    PubMed

    Caja, G; Díaz-Medina, E; Salama, A A K; Salama, O A E; El-Shafie, M H; El-Metwaly, H A; Ayadi, M; Aljumaah, R S; Alshaikh, M A; Yahyahoui, M H; Seddik, M M; Hammadi, M; Khorchani, T; Amann, O; Cabrera, S

    2016-08-01

    The camel industry uses traditional (i.e., iron brands and ear tags) and modern (i.e., microchips) identification (ID) systems without having performance results of reference. Previously iron-branded ( = 45; 1 yr) and microchipped ( = 59; 7 yr) camels showed problems of healing (8.6% of brands) and reading (only 42.9% of brands and 69.5% of microchips were readable), which made their use inadvisable. With the aim of proposing suitable ID systems for different farming conditions, an on-field study was performed using a total of 528 dromedaries at 4 different locations (Egypt, = 83; Spain, = 304; Saudi Arabia, = 90; and Tunisia, = 51). The ID devices tested were visual (button ear tags, 28.5 mm diameter, = 178; double flag ear tags, 50 by 15 mm, = 83; both made of polyurethane) and electronic (ear tags, = 90, and rumen boluses, = 555). Electronic ear tags were polyurethane-loop type (75 by 9 mm) with a container in which a 22-mm transponder of full-duplex technology was lodged. Electronic boluses of 7 types, varying in dimensions (50 to 76 mm length, 11 to 21 mm width, and 12.7 to 82.1 g weight) and specific gravity (SG; 1.49 to 3.86) and each of them containing a 31-mm transponder of half-duplex technology, were all administered to the dromedaries at the beginning of the study. When a low-SG bolus was lost, a high-SG bolus was readministered. Readability rates of each ID system were evaluated during 1 to 3 yr, according to device and location, and yearly values were estimated for comparison. On a yearly basis, visual ear tag readability was not fully satisfactory; it was lower for rectangular ear tags (66.3%) than for button ear tags (80.9%). Yearly readability of electronic ear tags was 93.7%. Bolus readability dramatically varied according to their SG; the SG < 2.0 boluses were fully lost after 8 mo. In contrast, the SG > 3.0 boluses were efficiently retained (99.6 to 100%) at all locations. In conclusion, according to the expected long lifespan of camels, low ID performances were observed for iron brands, injectable microchips, and ear tags (visual and electronic), making their use inadvisable as unique ID systems in camels. The high readability of dense electronic boluses recommended their use as a permanent ID device of reference in camels.

  11. Semiautomated Middle Ear Volume Measurement as a Predictor of Postsurgical Outcomes for Congenital Aural Atresia.

    PubMed

    Kabadi, S J; Ruhl, D S; Mukherjee, S; Kesser, B W

    2018-02-01

    Middle ear space is one of the most important components of the Jahrsdoerfer grading system (J-score), which is used to determine surgical candidacy for congenital aural atresia. The purpose of this study was to introduce a semiautomated method for measuring middle ear volume and determine whether middle ear volume, either alone or in combination with the J-score, can be used to predict early postoperative audiometric outcomes. A retrospective analysis was conducted of 18 patients who underwent an operation for unilateral congenital aural atresia at our institution. Using the Livewire Segmentation tool in the Carestream Vue PACS, we segmented middle ear volumes using a semiautomated method for all atretic and contralateral normal ears on preoperative high-resolution CT imaging. Postsurgical audiometric outcome data were then analyzed in the context of these middle ear volumes. Atretic middle ear volumes were significantly smaller than those in contralateral normal ears ( P < .001). Patients with atretic middle ear volumes of >305 mm 3 had significantly better postoperative pure tone average and speech reception thresholds than those with atretic ears below this threshold volume ( P = .01 and P = .006, respectively). Atretic middle ear volume incorporated into the J-score offered the best association with normal postoperative hearing (speech reception threshold ≤ 30 dB; OR = 37.8, P = .01). Middle ear volume, calculated in a semiautomated fashion, is predictive of postsurgical audiometric outcomes, both independently and in combination with the conventional J-score. © 2018 by American Journal of Neuroradiology.

  12. Biophysics of cochlear implant/MRI interactions emphasizing bone biomechanical properties.

    PubMed

    Sonnenburg, Robert E; Wackym, Phillip A; Yoganandan, Narayan; Firszt, Jill B; Prost, Robert W; Pintar, Frank A

    2002-10-01

    The forces exerted during a 1.5-Tesla MRI evaluation on the internal magnet of a cochlear implant (CI) raise concern about the safety for CI recipients. This study determines the magnitude of force required to fracture the floor of a CI receiver bed. Recessed CI beds were drilled to maximum uniform thinness into formalin-fixed and fresh-frozen human calvaria specimens. A Med-El stainless steel CI template mounted to the piston of an electrohydraulic testing device was used to fracture the floor of the implant beds. Force and displacement were measured as a function of time using a digital data acquisition system. Mean force to first failure, displacement to first failure, and minimum thickness, respectively, were: group 1 (formalin-fixed, 0.3-0.4-mm thick [n = 22]), 34.08 N (8.21-59.64 N, standard deviation [SD] 15.41 N), 1.09 mm (0.40-2.16 mm, SD 0.51 mm), 0.36 mm (0.3-0.4 mm, SD 0.05 mm); group 2 (formalin-fixed, 0.5-0.9 mm thick [n = 21]), 52.82 N (20.28-135.53 N, SD 25.29 N), 1.08 mm (0.50-2.28 mm, SD 0.47 mm), 0.58 mm (0.5-0.9 mm, SD 0.12 mm); group 3 (fresh-frozen [n = 9]), 134.13 N (86.44-190.70 N, SD 34.92 N), 1.96 mm (1.47-2.46 mm, SD 0.35 mm), 0.42 mm (0.3-0.6 mm, SD 0.11 mm). The mean magnitude of force required to fracture the floor of a CI bed is significantly greater than those that are generated when a Med-El Combi 40+, CII Bionic Ear CI, or Nucleus Contour CI is placed into a 1.5-Tesla MRI unit.

  13. Cities of the future-bionic systems of new urban environment.

    PubMed

    Krzemińska, Alicja Edyta; Zaręba, Anna Danuta; Dzikowska, Anna; Jarosz, Katarzyna Rozalia

    2017-12-07

    The concepts of the cities we know nowadays, and which we are accustomed to, change at a very rapid pace. The philosophy of their design is also changing. It will base on new standards, entering a completely different, futuristic dimension. This stage is related to changes in the perception of space, location and lack of belonging to definite, national or cultural structures. Cities of the future are cities primarily intelligent, zero-energetic, zero-waste, environmentally sustainable, self-sufficient in terms of both organic food production and symbiosis between the environment and industry. New cities will be able to have new organisational structures-either city states, or, apolitical, jigsaw-like structures that can change their position-like in the case of the city of Artisanopolis, designed as a floating city, close to the land, reminiscent of the legendary Atlantis. This paper is focused on the main issues connected with problems of the contemporary city planning. The purpose of the research was to identify existing technological solutions, whose aim is to use solar energy and urban greenery. The studies were based on literature related to future city development issues and futuristic projects of the architects and city planners. In the paper, the following issues have been verified: futuristic cities and districts, and original bionic buildings, both residential and industrial. The results of the analysis have been presented in a tabular form.

  14. Electroacoustic Evaluation of Frequency-Modulated Receivers Interfaced with Personal Hearing Aids

    ERIC Educational Resources Information Center

    Schafer, Erin C.; Thibodeau, Linda M.; Whalen, Holly S.; Overson, Gary J.

    2007-01-01

    Purpose: The purpose of this study was to compare the electroacoustic outputs of frequency-modulated (FM) systems coupled to hearing aids. Method: Electroacoustic performance of FM systems coupled to hearing aids was determined for 3 FM receivers: body-worn with neck loop, ear-level nonprogrammable, and ear-level programmable. Systems were…

  15. Prospects and features of robotics in russian crop farming

    NASA Astrophysics Data System (ADS)

    Dokin, B. D.; Aletdinova, A. A.; Kravchenko, M. S.

    2017-01-01

    Specificity of agriculture, low levels of technical and technological, information and communication, human resources and managerial capacities of small and medium Russian agricultural producers explain the slow pace of implementation of robotics in plant breeding. Existing models are characterized by low levels of speech understanding technologies, the creation of modern power supplies, bionic systems and the use of micro-robots. Serial production of robotics for agriculture will replace human labor in the future. Also, it will help to solve the problem of hunger, reduce environmental damage and reduce the consumption of non-renewable resources. Creating and using robotics should be based on the generated System of machines and technologies for the perfect machine-tractor fleet.

  16. Treatment of Prominent Ears with an Implantable Clip System: A Pilot Study.

    PubMed

    Kang, Norbert V; Kerstein, Ryan L

    2016-03-01

    The earFold™ implantable clip system is a new treatment for prominent ears using an implant made from nickel-titanium alloy, forged into a predetermined shape. The implant is fixed to the cartilage then released, causing the cartilage to fold back. The study aimed to test the safety and behaviour of the implant in vivo. This was a Phase 1, prospective, nonrandomised study. Thirty-nine patients were recruited, from 7 to 57 years of age (22 adults and 17 children). Thirty-seven patients were followed up for a minimum of 18 months. A total of 131 implants was used to treat 75 ears. All treatments were performed under local anaesthetic. Eighteen patients asked for their implants to be left in place permanently. Twenty-one patients agreed to have their implants removed at 6, 12, or 18 months after insertion. Complications affected 8 patients and included extrusion, infection, hypertrophic scarring, and Spock-ear formation. No new complications have arisen in any of the patients since the conclusion of the study, up to a maximum of 47 months. Patients were overwhelmingly satisfied with the outcome of treatment. earFold can be used as a permanent implant to correct prominence of the human ear. It is best suited for treating prominent ears with a poorly formed or absent antihelical fold. The procedure is quick and predictable with a complication rate comparable to suture-based otoplasty techniques. © 2015 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  17. Treatment of Prominent Ears with an Implantable Clip System: A Pilot Study

    PubMed Central

    Kang, Norbert V.; Kerstein, Ryan L.

    2016-01-01

    Background The earFold™ implantable clip system is a new treatment for prominent ears using an implant made from nickel-titanium alloy, forged into a predetermined shape. The implant is fixed to the cartilage then released, causing the cartilage to fold back. Objectives The study aimed to test the safety and behaviour of the implant in vivo. Methods This was a Phase 1, prospective, nonrandomised study. Thirty-nine patients were recruited, from 7 to 57 years of age (22 adults and 17 children). Thirty-seven patients were followed up for a minimum of 18 months. A total of 131 implants was used to treat 75 ears. All treatments were performed under local anaesthetic. Results Eighteen patients asked for their implants to be left in place permanently. Twenty-one patients agreed to have their implants removed at 6, 12, or 18 months after insertion. Complications affected 8 patients and included extrusion, infection, hypertrophic scarring, and Spock-ear formation. No new complications have arisen in any of the patients since the conclusion of the study, up to a maximum of 47 months. Patients were overwhelmingly satisfied with the outcome of treatment. Conclusions earFold can be used as a permanent implant to correct prominence of the human ear. It is best suited for treating prominent ears with a poorly formed or absent antihelical fold. The procedure is quick and predictable with a complication rate comparable to suture-based otoplasty techniques. PMID:26673575

  18. Contralateral ear occlusion for improving the reliability of otoacoustic emission screening tests.

    PubMed

    Papsin, Emily; Harrison, Adrienne L; Carraro, Mattia; Harrison, Robert V

    2014-01-01

    Newborn hearing screening is an established healthcare standard in many countries and testing is feasible using otoacoustic emission (OAE) recording. It is well documented that OAEs can be suppressed by acoustic stimulation of the ear contralateral to the test ear. In clinical otoacoustic emission testing carried out in a sound attenuating booth, ambient noise levels are low such that the efferent system is not activated. However in newborn hearing screening, OAEs are often recorded in hospital or clinic environments, where ambient noise levels can be 60-70 dB SPL. Thus, results in the test ear can be influenced by ambient noise stimulating the opposite ear. Surprisingly, in hearing screening protocols there are no recommendations for avoiding contralateral suppression, that is, protecting the opposite ear from noise by blocking the ear canal. In the present study we have compared transient evoked and distortion product OAEs measured with and without contralateral ear plugging, in environmental settings with ambient noise levels <25 dB SPL, 45 dB SPL, and 55 dB SPL. We found out that without contralateral ear occlusion, ambient noise levels above 55 dB SPL can significantly attenuate OAE signals. We strongly suggest contralateral ear occlusion in OAE based hearing screening in noisy environments.

  19. Fly-ear inspired acoustic sensors for gunshot localization

    NASA Astrophysics Data System (ADS)

    Liu, Haijun; Currano, Luke; Gee, Danny; Yang, Benjamin; Yu, Miao

    2009-05-01

    The supersensitive ears of the parasitoid fly Ormia ochracea have inspired researchers to develop bio-inspired directional microphone for sound localization. Although the fly ear is optimized for localizing the narrow-band calling song of crickets at 5 kHz, experiments and simulation have shown that it can amplify directional cues for a wide frequency range. In this article, a theoretical investigation is presented to study the use of fly-ear inspired directional microphones for gunshot localization. Using an equivalent 2-DOF model of the fly ear, the time responses of the fly ear structure to a typical shock wave are obtained and the associated time delay is estimated by using cross-correlation. Both near-field and far-field scenarios are considered. The simulation shows that the fly ear can greatly amplify the time delay by ~20 times, which indicates that with an interaural distance of only 1.2 mm the fly ear is able to generate a time delay comparable to that obtained by a conventional microphone pair with a separation as large as 24 mm. Since the parameters of the fly ear structure can also be tuned for muzzle blast and other impulse stimulus, fly-ear inspired acoustic sensors offers great potential for developing portable gunshot localization systems.

  20. Design, Kinematic Optimization, and Evaluation of a Teleoperated System for Middle Ear Microsurgery

    PubMed Central

    Miroir, Mathieu; Nguyen, Yann; Szewczyk, Jérôme; Sterkers, Olivier; Bozorg Grayeli, Alexis

    2012-01-01

    Middle ear surgery involves the smallest and the most fragile bones of the human body. Since microsurgical gestures and a submillimetric precision are required in these procedures, the outcome can be potentially improved by robotic assistance. Today, there is no commercially available device in this field. Here, we describe a method to design a teleoperated assistance robotic system dedicated to the middle ear surgery. Determination of design specifications, the kinematic structure, and its optimization are detailed. The robot-surgeon interface and the command modes are provided. Finally, the system is evaluated by realistic tasks in experimental dedicated settings and in human temporal bone specimens. PMID:22927789

  1. "Bionic Man" Showcases Medical Research | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Wisconsin Implantable Sensors for Prosthesis Control Implantable myoelectric (electrical properties of muscle) sensors detect nerve signals above ... treatments reach the brain. Spinal Stimulation for Paralysis Electrical stimulation of the spinal cord is being used ...

  2. The Bionic Amoeba.

    ERIC Educational Resources Information Center

    Wright, Emmett L.

    1979-01-01

    A demonstration is described that encourages students to engage in inquiry in biology. Using chemicals and an overhead projector, the instructor can simulate a living organism projected onto a screen. The reaction can aid students in defining the characteristics of life. (SA)

  3. Mastoiditis and facial paralysis as initial manifestations of temporal bone systemic diseases - the significance of the histopathological examination.

    PubMed

    Maniu, Alma Aurelia; Harabagiu, Oana; Damian, Laura Otilia; Ştefănescu, Eugen HoraŢiu; FănuŢă, Bogdan Marius; Cătană, Andreea; Mogoantă, Carmen Aurelia

    2016-01-01

    Several systemic diseases, including granulomatous and infectious processes, tumors, bone disorders, collagen-vascular and other autoimmune diseases may involve the middle ear and temporal bone. These diseases are difficult to diagnose when symptoms mimic acute otomastoiditis. The present report describes our experience with three such cases initially misdiagnosed. Their predominating symptoms were otological with mastoiditis, hearing loss, and subsequently facial nerve palsy. The cases were considered an emergency and the patients underwent tympanomastoidectomy, under the suspicion of otitis media with cholesteatoma, in order to remove a possible abscess and to decompress the facial nerve. The common features were the presence of severe granulation tissue filling the mastoid cavity and middle ear during surgery, without cholesteatoma. The definitive diagnoses was made by means of biopsy of the granulation tissue from the middle ear, revealing granulomatosis with polyangiitis (formerly known as Wegener's granulomatosis) in one case, middle ear tuberculosis and diffuse large B-cell lymphoma respectively. After specific associated therapy facial nerve functions improved, and atypical inflammatory states of the ear resolved. As a group, systemic diseases of the middle ear and temporal bone are uncommon, but aggressive lesions. After analyzing these cases and reviewing the literature, we would like to stress upon the importance of microscopic examination of the affected tissue, required for an accurate diagnosis and effective treatment.

  4. Well-ordered polymer nano-fibers with self-cleaning property by disturbing crystallization process.

    PubMed

    Yang, Qin; Luo, Zhuangzhu; Tan, Sheng; Luo, Yimin; Wang, Yunjiao; Zhang, Zhaozhu; Liu, Weimin

    2014-01-01

    Bionic self-cleaning surfaces with well-ordered polymer nano-fibers are firstly fabricated by disturbing crystallization during one-step coating-curing process. Orderly thin (100 nm) and long (5-10 μm) polymer nano-fibers with a certain direction are fabricated by external macroscopic force (F blow) interference introduced by H2 gas flow, leading to superior superhydrophobicity with a water contact angle (WCA) of 170° and a water sliding angle (WSA) of 0-1°. In contrast, nano-wires and nano-bridges (1-8 μm in length/10-80 nm in width) are generated by "spinning/stretching" under internal microscopic force (F T) interference due to significant temperature difference in the non-uniform cooling medium. The findings provide a novel theoretical basis for controllable polymer "bionic lotus" surface and will further promote practical application in many engineering fields such as drag-reduction and anti-icing.

  5. Well-ordered polymer nano-fibers with self-cleaning property by disturbing crystallization process

    NASA Astrophysics Data System (ADS)

    Yang, Qin; Luo, Zhuangzhu; Tan, Sheng; Luo, Yimin; Wang, Yunjiao; Zhang, Zhaozhu; Liu, Weimin

    2014-07-01

    Bionic self-cleaning surfaces with well-ordered polymer nano-fibers are firstly fabricated by disturbing crystallization during one-step coating-curing process. Orderly thin (100 nm) and long (5-10 μm) polymer nano-fibers with a certain direction are fabricated by external macroscopic force ( F blow) interference introduced by H2 gas flow, leading to superior superhydrophobicity with a water contact angle (WCA) of 170° and a water sliding angle (WSA) of 0-1°. In contrast, nano-wires and nano-bridges (1-8 μm in length/10-80 nm in width) are generated by "spinning/stretching" under internal microscopic force ( F T) interference due to significant temperature difference in the non-uniform cooling medium. The findings provide a novel theoretical basis for controllable polymer "bionic lotus" surface and will further promote practical application in many engineering fields such as drag-reduction and anti-icing.

  6. KSC-2011-2271

    NASA Image and Video Library

    2011-03-11

    ORLANDO, Fla. –The Bionic Tigers robot participates in the regional FIRST robotics competition at the University of Central Florida in Orlando. The team is made up of students from Cocoa High School and Holy Trinity Episcopal Academy along the Space Coast in Florida. NASA's Launch Services Program based at Kennedy is a sponsor of the team. The Bionic Tigers finished seventh in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, among about 60 high school teams hoping to advance to the national robotics championship. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson

  7. First-in-Human Trial of a Novel Suprachoroidal Retinal Prosthesis

    PubMed Central

    Ayton, Lauren N.; Blamey, Peter J.; Guymer, Robyn H.; Luu, Chi D.; Nayagam, David A. X.; Sinclair, Nicholas C.; Shivdasani, Mohit N.; Yeoh, Jonathan; McCombe, Mark F.; Briggs, Robert J.; Opie, Nicholas L.; Villalobos, Joel; Dimitrov, Peter N.; Varsamidis, Mary; Petoe, Matthew A.; McCarthy, Chris D.; Walker, Janine G.; Barnes, Nick; Burkitt, Anthony N.; Williams, Chris E.; Shepherd, Robert K.; Allen, Penelope J.

    2014-01-01

    Retinal visual prostheses (“bionic eyes”) have the potential to restore vision to blind or profoundly vision-impaired patients. The medical bionic technology used to design, manufacture and implant such prostheses is still in its relative infancy, with various technologies and surgical approaches being evaluated. We hypothesised that a suprachoroidal implant location (between the sclera and choroid of the eye) would provide significant surgical and safety benefits for patients, allowing them to maintain preoperative residual vision as well as gaining prosthetic vision input from the device. This report details the first-in-human Phase 1 trial to investigate the use of retinal implants in the suprachoroidal space in three human subjects with end-stage retinitis pigmentosa. The success of the suprachoroidal surgical approach and its associated safety benefits, coupled with twelve-month post-operative efficacy data, holds promise for the field of vision restoration. Trial Registration Clinicaltrials.gov NCT01603576 PMID:25521292

  8. A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering.

    PubMed

    Shi, Jianping; Zhu, Liya; Li, Lan; Li, Zongan; Yang, Jiquan; Wang, Xingsong

    2018-05-09

    In the field of bone defect repair, gradient porous scaffolds have received increased attention because they provide a better environment for promoting tissue regeneration. In this study, we propose an effective method to generate bionic porous scaffolds based on the TPMS (triply periodic minimal surface) and SF (sigmoid function) methods. First, cortical bone morphological features (e.g., pore size and distribution) were determined for several regions of a rabbit femoral bone by analyzing CT-scans. A finite element method was used to evaluate the mechanical properties of the bone at these respective areas. These results were used to place different TPMS substructures into one scaffold domain with smooth transitions. The geometrical parameters of the scaffolds were optimized to match the elastic properties of a human bone. With this proposed method, a functional gradient porous scaffold could be designed and produced by an additive manufacturing method.

  9. Zebrafish models of human eye and inner ear diseases.

    PubMed

    Blanco-Sánchez, B; Clément, A; Phillips, J B; Westerfield, M

    2017-01-01

    Eye and inner ear diseases are the most common sensory impairments that greatly impact quality of life. Zebrafish have been intensively employed to understand the fundamental mechanisms underlying eye and inner ear development. The zebrafish visual and vestibulo-acoustic systems are very similar to these in humans, and although not yet mature, they are functional by 5days post-fertilization (dpf). In this chapter, we show how the zebrafish has significantly contributed to the field of biomedical research and how researchers, by establishing disease models and meticulously characterizing their phenotypes, have taken the first steps toward therapies. We review here models for (1) eye diseases, (2) ear diseases, and (3) syndromes affecting eye and/or ear. The use of new genome editing technologies and high-throughput screening systems should increase considerably the speed at which knowledge from zebrafish disease models is acquired, opening avenues for better diagnostics, treatments, and therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Mechanochromic response of the barbules in peacock tail feather

    NASA Astrophysics Data System (ADS)

    Jiang, Yonggang; Wang, Rui; Feng, Lin; Zhang, Deyuan

    2018-01-01

    Peacock tail feathers exhibit diverse striking brilliancy, as the cortex in different colored barbules of the feathers contains a 2-D photonic-crystal structure. The mechanochromic response of the 2-D photonic structure in peacock feather barbules is measured for the first time, by combining an in-situ stretching device and a reflectivity measurement system. The reflectance spectra of the barbule specimen blueshifts own to stretching along its longitudinal direction. A high strain sensitivity of 5.3 nm/% is obtained for green barbules. It could be of great help in bionic design of strain sensors using 2D photonic crystal structures.

  11. Neonatal Hairy Ear Pinnae and Gestational Diabetes: Just a Coincidence?

    PubMed

    Valerio, Enrico; Riello, Laura; Chirico, Michela; Semenzato, Rossella; Cutrone, Mario

    2015-01-01

    A newborn girl of 36 weeks gestation was noted to have several anomalies, including bilateral low ear attachment with ear pinnae hypertrichosis, left preauricular pit, micrognathia, short lingual frenulum, and short neck. Pregnancy history revealed poorly controlled maternal gestational diabetes (GD). Localized hypertrichosis of the ear pinnae may represent a potential marker of GD and thereby alert physicians to suspect other potentially GD-associated conditions such as macrosomia, asphyxia, respiratory distress, hypoglycemia, hypocalcemia, hyperbilirubinemia, polycythemia, hypertrophic cardiomyopathy, and congenital anomalies, particularly those involving the central nervous system. © 2015 Wiley Periodicals, Inc.

  12. EARS: Electronic Access to Reference Service.

    PubMed Central

    Weise, F O; Borgendale, M

    1986-01-01

    Electronic Access to Reference Service (EARS) is a front end to the Health Sciences Library's electronic mail system, with links to the online public catalog. EARS, which became operational in September 1984, is accessed by users at remote sites with either a terminal or microcomputer. It is menu-driven, allowing users to request: a computerized literature search, reference information, a photocopy of a journal article, or a book. This paper traces the history of EARS and discusses its use, its impact on library staff and services, and factors that influence the diffusion of new technology. PMID:3779167

  13. EARS: Electronic Access to Reference Service.

    PubMed

    Weise, F O; Borgendale, M

    1986-10-01

    Electronic Access to Reference Service (EARS) is a front end to the Health Sciences Library's electronic mail system, with links to the online public catalog. EARS, which became operational in September 1984, is accessed by users at remote sites with either a terminal or microcomputer. It is menu-driven, allowing users to request: a computerized literature search, reference information, a photocopy of a journal article, or a book. This paper traces the history of EARS and discusses its use, its impact on library staff and services, and factors that influence the diffusion of new technology.

  14. The effect of superior-canal opening on middle-ear input admittance and air-conducted stapes velocity in chinchilla

    PubMed Central

    Songer, Jocelyn E.; Rosowski, John J.

    2009-01-01

    The recent discovery of superior semicircular canal (SC) dehiscence syndrome as a clinical entity affecting both the auditory and vestibular systems has led to the investigation of the impact of a SC opening on the mechanics of hearing. It is hypothesized that the hole in the SC acts as a “third window” in the inner ear which shunts sound-induced stapes volume velocity away from the cochlea through the opening in the SC. To test the hypothesis and to understand the third window mechanisms the middle-ear input admittance and sound-induced stapes velocity were measured in chinchilla before and after surgically introducing a SC opening and after patching the opening. The extent to which patching returned the system to the presurgical state is used as a control criterion. In eight chinchilla ears a statistically significant, reversible increase in low-frequency middle-ear input admittance magnitude occurred as a result of opening the SC. In six ears a statistically significant reversible increase in stapes velocity was observed. Both of these changes are consistent with the hole creating a shunt pathway that increases the cochlear input admittance. PMID:16875223

  15. The effect of superior-canal opening on middle-ear input admittance and air-conducted stapes velocity in chinchilla.

    PubMed

    Songer, Jocelyn E; Rosowski, John J

    2006-07-01

    The recent discovery of superior semicircular canal (SC) dehiscence syndrome as a clinical entity affecting both the auditory and vestibular systems has led to the investigation of the impact of a SC opening on the mechanics of hearing. It is hypothesized that the hole in the SC acts as a "third window" in the inner ear which shunts sound-induced stapes volume velocity away from the cochlea through the opening in the SC. To test the hypothesis and to understand the third window mechanisms the middle-ear input admittance and sound-induced stapes velocity were measured in chinchilla before and after surgically introducing a SC opening and after patching the opening. The extent to which patching returned the system to the presurgical state is used as a control criterion. In eight chinchilla ears a statistically significant, reversible increase in low-frequency middle-ear input admittance magnitude occurred as a result of opening the SC. In six ears a statistically significant reversible increase in stapes velocity was observed. Both of these changes are consistent with the hole creating a shunt pathway that increases the cochlear input admittance.

  16. Tuberculous otitis media: a difficult diagnosis and report of four cases.

    PubMed

    Vital, Victor; Printza, Athanasia; Zaraboukas, Thomas

    2002-01-01

    Tuberculous otitis media is a rare disease. Due to the condition's rarity and its usually indolent course, the diagnosis is often delayed. This can lead to irreversible complications, such as permanent hearing loss or facial nerve paralysis. Tuberculosis of the middle ear cleft, as this disease's first presentation, is indeed very rare. Surgery may be carried out prior to diagnosis occasionally, i.e., middle ear exploration for chronic middle ear disease. We present four cases of tuberculous otitis media which occurred as the first presentation of the disease. The patients did not present with the classic symptoms of middle ear tuberculosis. The diagnosis was based on the histology following middle ear exploration for chronic middle ear disease. None of the patients presented any other systemic involvement. We present a review of this disease's clinical symptoms and the diagnostic tests available.

  17. Bionic Vision-Based Intelligent Power Line Inspection System

    PubMed Central

    Ma, Yunpeng; He, Feijia; Xu, Jinxin

    2017-01-01

    Detecting the threats of the external obstacles to the power lines can ensure the stability of the power system. Inspired by the attention mechanism and binocular vision of human visual system, an intelligent power line inspection system is presented in this paper. Human visual attention mechanism in this intelligent inspection system is used to detect and track power lines in image sequences according to the shape information of power lines, and the binocular visual model is used to calculate the 3D coordinate information of obstacles and power lines. In order to improve the real time and accuracy of the system, we propose a new matching strategy based on the traditional SURF algorithm. The experimental results show that the system is able to accurately locate the position of the obstacles around power lines automatically, and the designed power line inspection system is effective in complex backgrounds, and there are no missing detection instances under different conditions. PMID:28203269

  18. USSR Space Life Sciences Digest, issue 16

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Siegel, Bette (Editor); Donaldson, P. Lynn (Editor); Leveton, Lauren B. (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the sixteenth issue of NASA's USSR Life Sciences Digest. It contains abstracts of 57 papers published in Russian language periodicals or presented at conferences and of 2 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. An additional feature is the review of a book concerned with metabolic response to the stress of space flight. The abstracts included in this issue are relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, bionics, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, gastrointestinal system, genetics, gravitational biology, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, and space biology.

  19. Extratympanic observation of middle ear structure using a refractive index matching material (glycerol) and an infrared camera.

    PubMed

    Kong, Soo-Keun; Chon, Kyong-Myong; Goh, Eui-Kyung; Lee, Il-Woo; Wang, Soo-Geun

    2014-05-01

    High-resolution computed tomography has been used mainly in the diagnosis of middle ear disease, such as high-jugular bulb, congenital cholesteatoma, and ossicular disruption. However, certain diagnoses are confirmed through exploratory tympanotomy. There are few noninvasive methods available to observe the middle ear. The purpose of this study was to investigate the effect of glycerol as a refractive index matching material and an infrared (IR) camera system for extratympanic observation. 30% glycerol was used as a refractive index matching material in five fresh cadavers. Each material was divided into four subgroups; GN (glycerol no) group, GO (glycerol out) group, GI (glycerol in) group, and GB (glycerol both) group. A printed letter and middle ear structures on the inside tympanic membrane were observed using a visible and IR ray camera system. In the GB group, there were marked a transilluminated letter or an ossicle on the inside tympanic membrane. In particular, a footplate of stapes was even transilluminated using the IR camera system in the GB group. This method can be useful in the diagnosis of diseases of the middle ear if it is clinically applied through further studies.

  20. Extratympanic observation of middle ear structure using a refractive index matching material (glycerol) and an infrared camera

    NASA Astrophysics Data System (ADS)

    Kong, Soo-Keun; Chon, Kyong-Myong; Goh, Eui-Kyung; Lee, Il-Woo; Wang, Soo-Geun

    2014-05-01

    High-resolution computed tomography has been used mainly in the diagnosis of middle ear disease, such as high-jugular bulb, congenital cholesteatoma, and ossicular disruption. However, certain diagnoses are confirmed through exploratory tympanotomy. There are few noninvasive methods available to observe the middle ear. The purpose of this study was to investigate the effect of glycerol as a refractive index matching material and an infrared (IR) camera system for extratympanic observation. 30% glycerol was used as a refractive index matching material in five fresh cadavers. Each material was divided into four subgroups; GN (glycerol no) group, GO (glycerol out) group, GI (glycerol in) group, and GB (glycerol both) group. A printed letter and middle ear structures on the inside tympanic membrane were observed using a visible and IR ray camera system. In the GB group, there were marked a transilluminated letter or an ossicle on the inside tympanic membrane. In particular, a footplate of stapes was even transilluminated using the IR camera system in the GB group. This method can be useful in the diagnosis of diseases of the middle ear if it is clinically applied through further studies.

  1. Bionic multisilicon copolymers used as novel cross-linking agents for preparing anion exchange hybrid membranes.

    PubMed

    Wu, Yonghui; Luo, Jingyi; Wu, Cuiming; Xu, Tongwen; Fu, Yanxun

    2011-05-26

    Bionic multisilicon copolymers have long-main chains and many branched chains, and contain multifunctional groups of -N(+)(CH(3))(3)Cl(-) and -Si(OCH(3))(3), which are similar to the stem, branch, fruit, and acetabula of a vine from bionic aspect, respectively. They have high flexibility, charge density, and cross-linking ability and thus can be used as novel cross-linking agents for preparing anion-exchange hybrid membranes. High content of -Si(OCH(3))(3) groups (68-78%) is suitable to enhance membrane stabilities. The membranes are stable in 65 °C water up to 120 h and can keep integrity in 2 mol/L NaOH for 192 h. High content of -N(+)(CH(3))(3)Cl(-) groups (42-55%) is suitable to enhance membrane electrical properties. The membranes have low membrane resistance (R(m), 0.59-0.94 Ω cm(2)) and high diffusion dialysis performance. The acid (H(+)) dialysis coefficients (U(H)) are in the range of 0.007-0.075 m h(-1) at room temperature and 0.015-0.115 m h(-1) at 40 °C. The separation factor (S(H/Fe)) can reach up to 43 at room temerature and 49 at 40 °C. All of the membranes are highly homogeneous, mechanically stable (21-31 MPa, 25-147%), and thermally stable (227-275 °C for halide form membranes, and 157-172 °C for OH(-) form membranes). Hence, the investigation of multisilicon copolymers will give rise to a new developing field in material and membrane sciences.

  2. Influence of non-smooth surface on tribological properties of glass fiber-epoxy resin composite sliding against stainless steel under natural seawater lubrication

    NASA Astrophysics Data System (ADS)

    Wu, Shaofeng; Gao, Dianrong; Liang, Yingna; Chen, Bo

    2015-11-01

    With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawater lubrication are still very fewer, especially experimental research. The influences of smooth and non-smooth surface on the frictional properties of the glass fiber-epoxy resin composite (GF/EPR) coupled with stainless steel 316L are investigated under natural seawater lubrication in this paper. The tested non-smooth surfaces include the surfaces with semi-spherical pits, the conical pits, the cone-cylinder combined pits, the cylindrical pits and through holes. The friction and wear tests are performed using a ring-on-disc test rig under 60 N load and 1000 r/min rotational speed. The tests results show that GF/EPR with bionic non-smooth surface has quite lower friction coefficient and better wear resistance than GF/EPR with smooth surface without pits. The average friction coefficient of GF/EPR with semi-spherical pits is 0.088, which shows the largest reduction is approximately 63.18% of GF/EPR with smooth surface. In addition, the wear debris on the worn surfaces of GF/EPR are observed by a confocal scanning laser microscope. It is shown that the primary wear mechanism is the abrasive wear. The research results provide some design parameters for non-smooth surface, and the experiment results can serve as a beneficial supplement to non-smooth surface study.

  3. EAR Program Research Results

    DOT National Transportation Integrated Search

    2013-01-01

    The Exploratory Advanced Research (EAR) Program addresses the need for longer term, higher risk research with the potential for longterm improvements to transportation systems-improvements in planning, building, renewing, and operating safe, congesti...

  4. The newborn butterfly project: a shortened treatment protocol for ear molding.

    PubMed

    Doft, Melissa A; Goodkind, Alison B; Diamond, Shawn; DiPace, Jennifer I; Kacker, Ashutosh; LaBruna, Anthony N

    2015-03-01

    Secondary to circulating maternal estrogens, a baby's ear cartilage is unusually plastic during the first few weeks of life, providing an opportunity to correct ear deformities by molding. If molding is initiated during the first days of life with a more rigid molding system than previously described in the literature, the authors hypothesized that treatment time would be reduced and the correction rate would increase. An interdisciplinary team identified and assessed all infants born with ear deformities at New York-Presbyterian Hospital/Weill Cornell Medical Center. The authors conducted a prospective, institutional review board-approved study on the first consecutive 100 infants identified. Parents were surveyed initially, immediately after treatment, and at 6 and 12 months. One hundred fifty-eight ears in 96 patients underwent ear molding using the EarWell Infant Ear Correction System. Eighty-two percent of the children had the device placed in the newborn nursery and 95 percent had it placed before 2 weeks of life. Average treatment time was 14 days, and 96 percent of the deformities were corrected. Complications were limited to mild pressure ulcerations. Ninety-nine percent of parents stated that they would have the procedure repeated. The molding period can be reduced from 6 to 8 weeks to 2 weeks by initiating molding during the first weeks of life and using a more secure and rigid device. Through an interdisciplinary approach, the authors were able to identify patients and to correct the deformity earlier and faster than has been previously published, eliminating the need for surgical correction in many children. Therapeutic, IV.

  5. Better late than never: effective air-borne hearing of toads delayed by late maturation of the tympanic middle ear structures.

    PubMed

    Womack, Molly C; Christensen-Dalsgaard, Jakob; Hoke, Kim L

    2016-10-15

    Most vertebrates have evolved a tympanic middle ear that enables effective hearing of airborne sound on land. Although inner ears develop during the tadpole stages of toads, tympanic middle ear structures are not complete until months after metamorphosis, potentially limiting the sensitivity of post-metamorphic juveniles to sounds in their environment. We tested the hearing of five species of toads to determine how delayed ear development impairs airborne auditory sensitivity. We performed auditory brainstem recordings to test the hearing of the toads and used micro-computed tomography and histology to relate the development of ear structures to hearing ability. We found a large (14-27 dB) increase in hearing sensitivity from 900 to 2500 Hz over the course of ear development. Thickening of the tympanic annulus cartilage and full ossification of the middle ear bone are associated with increased hearing ability in the final stages of ear maturation. Thus, juvenile toads are at a hearing disadvantage, at least in the high-frequency range, throughout much of their development, because late-forming ear elements are critical to middle ear function at these frequencies. We discuss the potential fitness consequences of late hearing development, although research directly addressing selective pressures on hearing sensitivity across ontogeny is lacking. Given that most vertebrate sensory systems function very early in life, toad tympanic hearing may be a sensory development anomaly. © 2016. Published by The Company of Biologists Ltd.

  6. Hearing loss and the central auditory system: Implications for hearing aids

    NASA Astrophysics Data System (ADS)

    Frisina, Robert D.

    2003-04-01

    Hearing loss can result from disorders or damage to the ear (peripheral auditory system) or the brain (central auditory system). Here, the basic structure and function of the central auditory system will be highlighted as relevant to cases of permanent hearing loss where assistive devices (hearing aids) are called for. The parts of the brain used for hearing are altered in two basic ways in instances of hearing loss: (1) Damage to the ear can reduce the number and nature of input channels that the brainstem receives from the ear, causing plasticity of the central auditory system. This plasticity may partially compensate for the peripheral loss, or add new abnormalities such as distorted speech processing or tinnitus. (2) In some situations, damage to the brain can occur independently of the ear, as may occur in cases of head trauma, tumors or aging. Implications of deficits to the central auditory system for speech perception in noise, hearing aid use and future innovative circuit designs will be provided to set the stage for subsequent presentations in this special educational session. [Work supported by NIA-NIH Grant P01 AG09524 and the International Center for Hearing & Speech Research, Rochester, NY.

  7. Hearing and hearing loss: Causes, effects, and treatments

    NASA Astrophysics Data System (ADS)

    Schmiedt, Richard A.

    2003-04-01

    Hearing loss can have multiple causes. The outer and middle ears are conductive pathways for acoustic energy to the inner ear (cochlea) and help shape our spectral sensitivity. Conductive hearing loss is mechanical in nature such that the energy transfer to the cochlea is impeded, often from eardrum perforations or middle ear fluid buildup. Beyond the middle ear, the cochlea comprises three interdependent systems necessary for normal hearing. The first is that of basilar-membrane micromechanics including the outer hair cells. This system forms the basis of the cochlear amplifier and is the most vulnerable to noise and drug exposure. The second system comprises the ion pumps in the lateral wall tissues of the cochlea. These highly metabolic cells provide energy to the cochlear amplifier in the form of electrochemical potentials. This second system is particularly vulnerable to the effects of aging. The third system comprises the inner hair cells and their associated sensory nerve fibers. This system is the transduction stage, changing mechanical vibrations to nerve impulses. New treatments for hearing loss are on the horizon; however, at present the best strategy is avoidance of cochlear trauma and the proper use of hearing aids. [Work supported by NIA and MUSC.

  8. Miniature, minimally invasive, tunable endoscope for investigation of the middle ear.

    PubMed

    Pawlowski, Michal E; Shrestha, Sebina; Park, Jesung; Applegate, Brian E; Oghalai, John S; Tkaczyk, Tomasz S

    2015-06-01

    We demonstrate a miniature, tunable, minimally invasive endoscope for diagnosis of the auditory system. The probe is designed to sharply image anatomical details of the middle ear without the need for physically adjusting the position of the distal end of the endoscope. This is achieved through the addition of an electrowetted, tunable, electronically-controlled lens to the optical train. Morphological imaging is enabled by scanning light emanating from an optical coherence tomography system. System performance was demonstrated by imaging part of the ossicular chain and wall of the middle ear cavity of a normal mouse. During the experiment, we electronically moved the plane of best focus from the incudo-stapedial joint to the stapedial artery. Repositioning the object plane allowed us to image anatomical details of the middle ear beyond the depth of field of a static optical system. We also demonstrated for the first time to our best knowledge, that an optical system with an electrowetted, tunable lens may be successfully employed to measure sound-induced vibrations within the auditory system by measuring the vibratory amplitude of the tympanic membrane in a normal mouse in response to pure tone stimuli.

  9. The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival

    NASA Technical Reports Server (NTRS)

    Wallis, Deeann; Hamblen, Melanie; Zhou, Yi; Venken, Koen J T.; Schumacher, Armin; Grimes, H. Leighton; Zoghbi, Huda Y.; Orkin, Stuart H.; Bellen, Hugo J.

    2003-01-01

    Gfi1 was first identified as causing interleukin 2-independent growth in T cells and lymphomagenesis in mice. Much work has shown that Gfi1 and Gfi1b, a second mouse homolog, play pivotal roles in blood cell lineage differentiation. However, neither Gfi1 nor Gfi1b has been implicated in nervous system development, even though their invertebrate homologues, senseless in Drosophila and pag-3 in C. elegans are expressed and required in the nervous system. We show that Gfi1 mRNA is expressed in many areas that give rise to neuronal cells during embryonic development in mouse, and that Gfi1 protein has a more restricted expression pattern. By E12.5 Gfi1 mRNA is expressed in both the CNS and PNS as well as in many sensory epithelia including the developing inner ear epithelia. At later developmental stages, Gfi1 expression in the ear is refined to the hair cells and neurons throughout the inner ear. Gfi1 protein is expressed in a more restricted pattern in specialized sensory cells of the PNS, including the eye, presumptive Merkel cells, the lung and hair cells of the inner ear. Gfi1 mutant mice display behavioral defects that are consistent with inner ear anomalies, as they are ataxic, circle, display head tilting behavior and do not respond to noise. They have a unique inner ear phenotype in that the vestibular and cochlear hair cells are differentially affected. Although Gfi1-deficient mice initially specify inner ear hair cells, these hair cells are disorganized in both the vestibule and cochlea. The outer hair cells of the cochlea are improperly innervated and express neuronal markers that are not normally expressed in these cells. Furthermore, Gfi1 mutant mice lose all cochlear hair cells just prior to and soon after birth through apoptosis. Finally, by five months of age there is also a dramatic reduction in the number of cochlear neurons. Hence, Gfi1 is expressed in the developing nervous system, is required for inner ear hair cell differentiation, and its loss causes programmed cell death.

  10. Vitamin D receptor deficiency impairs inner ear development in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Hye-Joo; Biology Department, Princess Nourah University, Riyadh 11671

    The biological actions of vitamin D are largely mediated through binding to the vitamin D receptor (VDR), a member of the nuclear hormone receptor family, which regulates gene expression in a wide variety of tissues and cells. Mutations in VDR gene have been implicated in ear disorders (hearing loss and balance disorder) but the mechanisms are not well established. In this study, to investigate the role of VDR in inner ear development, morpholino-mediated gene knockdown approaches were used in zebrafish model system. Two paralogs for VDR, vdra and vdrb, have been identified in zebrafish. Knockdown of vdra had no effectmore » on ear development, whereas knockdown of vdrb displayed morphological ear defects including smaller otic vesicles with malformed semicircular canals and abnormal otoliths. Loss-of-vdrb resulted in down-regulation of pre-otic markers, pax8 and pax2a, indicating impairment of otic induction. Furthermore, zebrafish embryos lacking vdrb produced fewer sensory hair cells in the ears and showed disruption of balance and motor coordination. These data reveal that VDR signaling plays an important role in ear development. - Highlights: • VDR signaling is involved in ear development. • Knockdown of vdrb causes inner ear malformations during embryogenesis. • Knockdown of vdrb affects otic placode induction. • Knockdown of vdrb reduces the number of sensory hair cells in the inner ear. • Knockdown of vdrb disrupts balance and motor coordination.« less

  11. Probe-tube microphone measures in hearing-impaired children and adults.

    PubMed

    Barlow, N L; Auslander, M C; Rines, D; Stelmachowicz, P G

    1988-10-01

    This study was designed to investigate the reliability of real-ear measurements of sound pressure level (SPL) and to compare these values with two coupler measures of SPL. A commercially available probe tube microphone system was used to measure real ear SPL in both children and adults. Test-retest reliability decreased as a function of frequency for both groups and, in general, was slightly poorer for the children. For both groups, coupler to real ear differences were larger for the 2 cm3 coupler than for the reduced volume coupler; however, no significant differences were observed between groups. In addition, a measure of ear canal volume was not found to be a good predictor of coupler to real ear discrepancies.

  12. Ensemble training to improve recognition using 2D ear

    NASA Astrophysics Data System (ADS)

    Middendorff, Christopher; Bowyer, Kevin W.

    2009-05-01

    The ear has gained popularity as a biometric feature due to the robustness of the shape over time and across emotional expression. Popular methods of ear biometrics analyze the ear as a whole, leaving these methods vulnerable to error due to occlusion. Many researchers explore ear recognition using an ensemble, but none present a method for designing the individual parts that comprise the ensemble. In this work, we introduce a method of modifying the ensemble shapes to improve performance. We determine how different properties of an ensemble training system can affect overall performance. We show that ensembles built from small parts will outperform ensembles built with larger parts, and that incorporating a large number of parts improves the performance of the ensemble.

  13. [The effect of OSAHS on middle ear and inner ear vestibule function advances].

    PubMed

    Li, K L; Li, J R

    2016-05-20

    Obstructive sleep apnea hypopnea syndrome(OSAHS) as a common frequentlyoccurring disease, it can cause repeated episodes of hypoxaemia and hypercapnia during sleep. With long period of hypoxaemia, obvious pathological changes and dysfunction emerged in heart,brain and lung then all kinds of clinical symptoms appear. Because of the middle ear and inner ear themselves anatomical characteristics and blood supply of regulating mechanism, they often has been damaged before the other important organ damage. As scholars have indepth study of the auditory system complications in patients with OSAHS, various influence of OSAHS on the middle ear,inner ear also gradually be known.This paper will review the effect of OSAHS on middle ear, inner ear and vestibule function, hope to have some application value for clinical work. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.

  14. Meniere's Disease

    MedlinePlus

    ... are recorded as warm and cool water or air are gently introduced into each ear canal. Since the eyes and ears work in coordination through the nervous system, measurement of eye movements can be used to test ...

  15. Finite element modeling of acousto-mechanical coupling in the cat middle ear

    PubMed Central

    Tuck-Lee, James P.; Pinsky, Peter M.; Steele, Charles R.; Puria, Sunil

    2008-01-01

    The function of the middle ear is to transfer acoustic energy from the ear canal to the cochlea. An essential component of this system is the tympanic membrane. In this paper, a new finite element model of the middle ear of the domestic cat is presented, generated in part from cadaver anatomy via microcomputed tomographic imaging. This model includes a layered composite model of the eardrum, fully coupled with the acoustics in the ear canal and middle-ear cavities. Obtaining the frequency response from 100 Hz to 20 kHz is a computationally challenging task, which has been accomplished by using a new adaptive implementation of the reduced-order matrix Padé-via-Lanczos algorithm. The results are compared to established physiological data. The fully coupled model is applied to study the role of the collagen fiber sublayers of the eardrum and to investigate the relationship between the structure of the middle-ear cavities and its function. Three applications of this model are presented, demonstrating the shift in the middle-ear resonance due to the presence of the septum that divides the middle-ear cavity space, the significance of the radial fiber layer on high frequency transmission, and the importance of the transverse shear modulus in the eardrum microstructure. PMID:18646982

  16. Human middle-ear model with compound eardrum and airway branching in mastoid air cells

    PubMed Central

    Keefe, Douglas H.

    2015-01-01

    An acoustical/mechanical model of normal adult human middle-ear function is described for forward and reverse transmission. The eardrum model included one component bound along the manubrium and another bound by the tympanic cleft. Eardrum components were coupled by a time-delayed impedance. The acoustics of the middle-ear cleft was represented by an acoustical transmission-line model for the tympanic cavity, aditus, antrum, and mastoid air cell system with variable amounts of excess viscothermal loss. Model parameters were fitted to published measurements of energy reflectance (0.25–13 kHz), equivalent input impedance at the eardrum (0.25–11 kHz), temporal-bone pressure in scala vestibuli and scala tympani (0.1–11 kHz), and reverse middle-ear impedance (0.25–8 kHz). Inner-ear fluid motion included cochlear and physiological third-window pathways. The two-component eardrum with time delay helped fit intracochlear pressure responses. A multi-modal representation of the eardrum and high-frequency modeling of the middle-ear cleft helped fit ear-canal responses. Input reactance at the eardrum was small at high frequencies due to multiple modal resonances. The model predicted the middle-ear efficiency between ear canal and cochlea, and the cochlear pressures at threshold. PMID:25994701

  17. Human middle-ear model with compound eardrum and airway branching in mastoid air cells.

    PubMed

    Keefe, Douglas H

    2015-05-01

    An acoustical/mechanical model of normal adult human middle-ear function is described for forward and reverse transmission. The eardrum model included one component bound along the manubrium and another bound by the tympanic cleft. Eardrum components were coupled by a time-delayed impedance. The acoustics of the middle-ear cleft was represented by an acoustical transmission-line model for the tympanic cavity, aditus, antrum, and mastoid air cell system with variable amounts of excess viscothermal loss. Model parameters were fitted to published measurements of energy reflectance (0.25-13 kHz), equivalent input impedance at the eardrum (0.25-11 kHz), temporal-bone pressure in scala vestibuli and scala tympani (0.1-11 kHz), and reverse middle-ear impedance (0.25-8 kHz). Inner-ear fluid motion included cochlear and physiological third-window pathways. The two-component eardrum with time delay helped fit intracochlear pressure responses. A multi-modal representation of the eardrum and high-frequency modeling of the middle-ear cleft helped fit ear-canal responses. Input reactance at the eardrum was small at high frequencies due to multiple modal resonances. The model predicted the middle-ear efficiency between ear canal and cochlea, and the cochlear pressures at threshold.

  18. Speech understanding in noise with the Roger Pen, Naida CI Q70 processor, and integrated Roger 17 receiver in a multi-talker network.

    PubMed

    De Ceulaer, Geert; Bestel, Julie; Mülder, Hans E; Goldbeck, Felix; de Varebeke, Sebastien Pierre Janssens; Govaerts, Paul J

    2016-05-01

    Roger is a digital adaptive multi-channel remote microphone technology that wirelessly transmits a speaker's voice directly to a hearing instrument or cochlear implant sound processor. Frequency hopping between channels, in combination with repeated broadcast, avoids interference issues that have limited earlier generation FM systems. This study evaluated the benefit of the Roger Pen transmitter microphone in a multiple talker network (MTN) for cochlear implant users in a simulated noisy conversation setting. Twelve post-lingually deafened adult Advanced Bionics CII/HiRes 90K recipients were recruited. Subjects used a Naida CI Q70 processor with integrated Roger 17 receiver. The test environment simulated four people having a meal in a noisy restaurant, one the CI user (listener), and three companions (talkers) talking non-simultaneously in a diffuse field of multi-talker babble. Speech reception thresholds (SRTs) were determined without the Roger Pen, with one Roger Pen, and with three Roger Pens in an MTN. Using three Roger Pens in an MTN improved the SRT by 14.8 dB over using no Roger Pen, and by 13.1 dB over using a single Roger Pen (p < 0.0001). The Roger Pen in an MTN provided statistically and clinically significant improvement in speech perception in noise for Advanced Bionics cochlear implant recipients. The integrated Roger 17 receiver made it easy for users of the Naida CI Q70 processor to take advantage of the Roger system. The listening advantage and ease of use should encourage more clinicians to recommend and fit Roger in adult cochlear implant patients.

  19. Otic drug delivery systems: formulation principles and recent developments.

    PubMed

    Liu, Xu; Li, Mingshuang; Smyth, Hugh; Zhang, Feng

    2018-04-25

    Disorders of the ear severely impact the quality of life of millions of people, but the treatment of these disorders is an ongoing, but often overlooked challenge particularly in terms of formulation design and product development. The prevalence of ear disorders has spurred significant efforts to develop new therapeutic agents, but perhaps less innovation has been applied to new drug delivery systems to improve the efficacy of ear disease treatments. This review provides a brief overview of physiology, major diseases, and current therapies used via the otic route of administration. The primary focuses are on the various administration routes and their formulation principles. The article also presents recent advances in otic drug deliveries as well as potential limitations. Otic drug delivery technology will likely evolve in the next decade and more efficient or specific treatments for ear disease will arise from the development of less invasive drug delivery methods, safe and highly controlled drug delivery systems, and biotechnology targeting therapies.

  20. "Hitch-Hiking" on Creativity in Nature.

    ERIC Educational Resources Information Center

    Offner, David

    1990-01-01

    An "Introduction to Bionics" course is described, focusing on objectives, the case study method used in the course, a sample case involving the design of a self-locking spine positioner for a catfish, course coverage, idea-generating techniques, and course benefits. (JDD)

  1. Bionics in textiles: flexible and translucent thermal insulations for solar thermal applications.

    PubMed

    Stegmaier, Thomas; Linke, Michael; Planck, Heinrich

    2009-05-13

    Solar thermal collectors used at present consist of rigid and heavy materials, which are the reasons for their immobility. Based on the solar function of polar bear fur and skin, new collector systems are in development, which are flexible and mobile. The developed transparent heat insulation material consists of a spacer textile based on translucent polymer fibres coated with transparent silicone rubber. For incident light of the visible spectrum the system is translucent, but impermeable for ultraviolet radiation. Owing to its structure it shows a reduced heat loss by convection. Heat loss by the emission of long-wave radiation can be prevented by a suitable low-emission coating. Suitable treatment of the silicone surface protects it against soiling. In combination with further insulation materials and flow systems, complete flexible solar collector systems are in development.

  2. Auditory Spatial Perception: Auditory Localization

    DTIC Science & Technology

    2012-05-01

    cochlear nucleus, TB – trapezoid body, SOC – superior olivary complex, LL – lateral lemniscus, IC – inferior colliculus. Adapted from Aharonson and...Figure 5. Auditory pathways in the central nervous system. LE – left ear, RE – right ear, AN – auditory nerve, CN – cochlear nucleus, TB...fibers leaving the left and right inner ear connect directly to the synaptic inputs of the cochlear nucleus (CN) on the same (ipsilateral) side of

  3. A novel vehicle for local protein delivery to the inner ear: injectable and biodegradable thermosensitive hydrogel loaded with PLGA nanoparticles.

    PubMed

    Dai, Juan; Long, Wei; Liang, Zhongping; Wen, Lu; Yang, Fan; Chen, Gang

    2018-01-01

    Delivery of biomacromolecular drugs into the inner ear is challenging, mainly because of their inherent instability as well as physiological and anatomical barriers. Therefore, protein-friendly, hydrogel-based delivery systems following local administration are being developed for inner ear therapy. Herein, biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) containing interferon α-2 b (IFN α-2 b) were loaded in chitosan/glycerophosphate (CS/GP)-based thermosensitive hydrogel for IFN delivery by intratympanic injection. The injectable hydrogel possessed a physiological pH and formed semi-solid gel at 37 °C, with good swelling and deswelling properties. The CS/GP hydrogel could slowly degrade as visualized by scanning electron microscopy (SEM). The presence of NPs in CS/GP gel largely influenced in vitro drug release. In the guinea pig cochlea, a 1.5- to 3-fold increase in the drug exposure time of NPs-CS/GP was found than those of the solution, NPs and IFN-loaded hydrogel. Most importantly, a prolonged residence time was attained without obvious histological changes in the inner ear. This biodegradable, injectable, and thermosensitive NPs-CS/GP system may allow longer delivery of protein drugs to the inner ear, thus may be a potential novel vehicle for inner ear therapy.

  4. The record of electrical and communication engineering conversazione Tohoku University Volume 63, No. 3

    NASA Astrophysics Data System (ADS)

    1995-05-01

    English abstracts contained are from papers authored by the research staff of the Research Institute of Electrical Communication and the departments of Electrical Engineering, Electrical Communications, Electronic Engineering, and Information Engineering, Tohoku University, which originally appeared in scientific journals in 1994. The abstracts are organized under the following disciplines: electromagnetic theory; physics; fundamental theory of information; communication theory and systems; signal and image processing; systems control; computers; artificial intelligence; recording; acoustics and speech; ultrasonic electronics; antenna, propagation, and transmission; optoelectronics and optical communications; quantum electronics; superconducting materials and applications; magnetic materials and magnetics; semiconductors; electronic materials and parts; electronic devices and integrated circuits; electronic circuits; medical electronics and bionics; measurements and applied electronics; electric power; and miscellaneous.

  5. Preparation of low viscosity epoxy acrylic acid photopolymer prepolymer in light curing system

    NASA Astrophysics Data System (ADS)

    Li, P.; Huang, J. Y.; Liu, G. Z.

    2018-01-01

    With the integration and development of materials engineering, applied mechanics, automatic control and bionics, light cured composite has become one of the most favourite research topics in the field of materials and engineering at home and abroad. In the UV curing system, the prepolymer and the reactive diluent form the backbone of the cured material together. And they account for more than 90% of the total mass. The basic properties of the cured product are mainly determined by the prepolymer. A low viscosity epoxy acrylate photosensitive prepolymer with a viscosity of 6800 mPa • s (25 °C ) was obtained by esterification of 5 hours with bisphenol A epoxy resin with high epoxy value and low viscosity.

  6. A Review of Artificial Lateral Line in Sensor Fabrication and Bionic Applications for Robot Fish.

    PubMed

    Liu, Guijie; Wang, Anyi; Wang, Xinbao; Liu, Peng

    2016-01-01

    Lateral line is a system of sense organs that can aid fishes to maneuver in a dark environment. Artificial lateral line (ALL) imitates the structure of lateral line in fishes and provides invaluable means for underwater-sensing technology and robot fish control. This paper reviews ALL, including sensor fabrication and applications to robot fish. The biophysics of lateral line are first introduced to enhance the understanding of lateral line structure and function. The design and fabrication of an ALL sensor on the basis of various sensing principles are then presented. ALL systems are collections of sensors that include carrier and control circuit. Their structure and hydrodynamic detection are reviewed. Finally, further research trends and existing problems of ALL are discussed.

  7. Auditory Evoked Potential Mismatch Negativity in Normal-Hearing Adults

    PubMed Central

    Schwade, Laura Flach; Didoné, Dayane Domeneghini; Sleifer, Pricila

    2017-01-01

    Introduction  Mismatch Negativity (MMN) corresponds to a response of the central auditory nervous system. Objective  The objective of this study is to analyze MMN latencies and amplitudes in normal-hearing adults and compare the results between ears, gender and hand dominance. Methods  This is a cross-sectional study. Forty subjects participated, 20 women and 20 men, aged 18 to 29 years and having normal auditory thresholds. A frequency of 1000Hz (standard stimuli) and 2000Hz (deviant stimuli) was used to evoked the MMN. Results  Mean latencies in the right ear were 169.4ms and 175.3ms in the left ear, with mean amplitudes of 4.6µV in the right ear and 4.2µV in the left ear. There was no statistically significant difference between ears. The comparison of latencies between genders showed a statistically significant difference for the right ear, being higher in the men than in women. There was no significant statistical difference between ears for both right-handed and left-handed group. However, the results indicated that the latency of the right ear was significantly higher for the left handers than the right handers. We also found a significant result for the latency of the left ear, which was higher for the right handers. Conclusion  It was possible to obtain references of values for the MMN. There are no differences in the MMN latencies and amplitudes between the ears. Regarding gender, the male group presented higher latencies in relation to the female group in the right ear. Some results indicate that there is a significant statistical difference of the MMN between right- and left-handed individuals. PMID:28680490

  8. SENSORY HAIR CELL REGENERATION IN THE ZEBRAFISH LATERAL LINE

    PubMed Central

    Lush, Mark E.; Piotrowski, Tatjana

    2014-01-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. PMID:25045019

  9. Jewelry cleaners

    MedlinePlus

    ... swelling (may also cause breathing difficulty) EYES, EARS, NOSE, AND THROAT Severe pain in the throat Severe pain or burning in the nose, eyes, ears, lips, or tongue Vision loss GASTROINTESTINAL SYSTEM ... pain (severe) Bloody stools Burns and possible holes of ...

  10. Vitamin D receptor deficiency impairs inner ear development in zebrafish.

    PubMed

    Kwon, Hye-Joo

    2016-09-16

    The biological actions of vitamin D are largely mediated through binding to the vitamin D receptor (VDR), a member of the nuclear hormone receptor family, which regulates gene expression in a wide variety of tissues and cells. Mutations in VDR gene have been implicated in ear disorders (hearing loss and balance disorder) but the mechanisms are not well established. In this study, to investigate the role of VDR in inner ear development, morpholino-mediated gene knockdown approaches were used in zebrafish model system. Two paralogs for VDR, vdra and vdrb, have been identified in zebrafish. Knockdown of vdra had no effect on ear development, whereas knockdown of vdrb displayed morphological ear defects including smaller otic vesicles with malformed semicircular canals and abnormal otoliths. Loss-of-vdrb resulted in down-regulation of pre-otic markers, pax8 and pax2a, indicating impairment of otic induction. Furthermore, zebrafish embryos lacking vdrb produced fewer sensory hair cells in the ears and showed disruption of balance and motor coordination. These data reveal that VDR signaling plays an important role in ear development. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. How minute sooglossid frogs hear without a middle ear.

    PubMed

    Boistel, Renaud; Aubin, Thierry; Cloetens, Peter; Peyrin, Françoise; Scotti, Thierry; Herzog, Philippe; Gerlach, Justin; Pollet, Nicolas; Aubry, Jean-François

    2013-09-17

    Acoustic communication is widespread in animals. According to the sensory drive hypothesis [Endler JA (1993) Philos Trans R Soc Lond B Biol Sci 340(1292):215-225], communication signals and perceptual systems have coevolved. A clear illustration of this is the evolution of the tetrapod middle ear, adapted to life on land. Here we report the discovery of a bone conduction-mediated stimulation of the ear by wave propagation in Sechellophryne gardineri, one of the world's smallest terrestrial tetrapods, which lacks a middle ear yet produces acoustic signals. Based on X-ray synchrotron holotomography, we measured the biomechanical properties of the otic tissues and modeled the acoustic propagation. Our models show how bone conduction enhanced by the resonating role of the mouth allows these seemingly deaf frogs to communicate effectively without a middle ear.

  12. An evaluation of a nurse-led ear care service in primary care: benefits and costs.

    PubMed Central

    Fall, M; Walters, S; Read, S; Deverill, M; Lutman, M; Milner, P; Rodgers, R

    1997-01-01

    BACKGROUND: Nurses trained in ear care provide a new model for the provision of services in general practice, with the aim of cost-effective treatment of minor ear and hearing problems that affect well-being and quality of life. AIM: To compare a prospective observational cohort study measuring health outcomes and resource use for patients with ear or hearing problems treated by nurses trained in ear care with similar patients treated by standard practice. METHOD: A total of 438 Rotherham and 196 Barnsley patients aged 16 years or over received two self-completion questionnaires: questionnaire 1 (Q1) on the day of consultation and questionnaire 2 (Q2) after three weeks. Primary measured outcomes were changes in discomfort and pain; secondary outcomes included the effect on normal life, health status, patient satisfaction, and resources used. RESULTS: After adjusting for differences at Q1, by Q2 there was no statistical evidence of a difference in discomfort and pain reduction, or differential change in health status between areas. Satisfaction with treatment was significantly higher (P = 0.0001) in Rotherham (91%) than in Barnsley (82%). Average total general practitioner (GP) consultations were lower in Rotherham at 0.4 per patient with an average cost of 6.28 Pounds compared with Barnsley at 1.4 per patient and an average cost of 22.53 Pounds (P = 0.04). Barnsley GPs prescribed more drugs per case (6% of total costs compared with 1.5%) and used more systemic antibiotics (P = 0.001). CONCLUSIONS: Nurses trained in ear care reduce costs, GP workload, and the use of systemic antibiotics, while increasing patient satisfaction with care. With understanding and support from GPs, such nurses are an example of how expanded nursing roles bring benefits to general practice. Nurses trained in ear care reduce treatment costs, reduce the use of antibiotics, educate patients in ear care, increase patient satisfaction, and raise ear awareness. PMID:9519514

  13. A comprehensive catalogue of the coding and non-coding transcripts of the human inner ear

    PubMed Central

    Corneveaux, Jason J.; Ohmen, Jeffrey; White, Cory; Allen, April N.; Lusis, Aldons J.; Van Camp, Guy; Huentelman, Matthew J.; Friedman, Rick A.

    2015-01-01

    The mammalian inner ear consists of the cochlea and the vestibular labyrinth (utricle, saccule, and semicircular canals), which participate in both hearing and balance. Proper development and life-long function of these structures involves a highly complex coordinated system of spatial and temporal gene expression. The characterization of the inner ear transcriptome is likely important for the functional study of auditory and vestibular components, yet, primarily due to tissue unavailability, detailed expression catalogues of the human inner ear remain largely incomplete. We report here, for the first time, comprehensive transcriptome characterization of the adult human cochlea, ampulla, saccule and utricle of the vestibule obtained from patients without hearing abnormalities. Using RNA-Seq, we measured the expression of >50,000 predicted genes corresponding to approximately 200,000 transcripts, in the adult inner ear and compared it to 32 other human tissues. First, we identified genes preferentially expressed in the inner ear, and unique either to the vestibule or cochlea. Next, we examined expression levels of specific groups of potentially interesting RNAs, such as genes implicated in hearing loss, long non-coding RNAs, pseudogenes and transcripts subject to nonsense mediated decay (NMD). We uncover the spatial specificity of expression of these RNAs in the hearing/balance system, and reveal evidence of tissue specific NMD. Lastly, we investigated the non-syndromic deafness loci to which no gene has been mapped, and narrow the list of potential candidates for each locus. These data represent the first high-resolution transcriptome catalogue of the adult human inner ear. A comprehensive identification of coding and non-coding RNAs in the inner ear will enable pathways of auditory and vestibular function to be further defined in the study of hearing and balance. Expression data are freely accessible at https://www.tgen.org/home/research/research-divisions/neurogenomics/supplementary-data/inner-ear-transcriptome.aspx PMID:26341477

  14. Optimization of programming parameters in children with the advanced bionics cochlear implant.

    PubMed

    Baudhuin, Jacquelyn; Cadieux, Jamie; Firszt, Jill B; Reeder, Ruth M; Maxson, Jerrica L

    2012-05-01

    Cochlear implants provide access to soft intensity sounds and therefore improved audibility for children with severe-to-profound hearing loss. Speech processor programming parameters, such as threshold (or T-level), input dynamic range (IDR), and microphone sensitivity, contribute to the recipient's program and influence audibility. When soundfield thresholds obtained through the speech processor are elevated, programming parameters can be modified to improve soft sound detection. Adult recipients show improved detection for low-level sounds when T-levels are set at raised levels and show better speech understanding in quiet when wider IDRs are used. Little is known about the effects of parameter settings on detection and speech recognition in children using today's cochlear implant technology. The overall study aim was to assess optimal T-level, IDR, and sensitivity settings in pediatric recipients of the Advanced Bionics cochlear implant. Two experiments were conducted. Experiment 1 examined the effects of two T-level settings on soundfield thresholds and detection of the Ling 6 sounds. One program set T-levels at 10% of most comfortable levels (M-levels) and another at 10 current units (CUs) below the level judged as "soft." Experiment 2 examined the effects of IDR and sensitivity settings on speech recognition in quiet and noise. Participants were 11 children 7-17 yr of age (mean 11.3) implanted with the Advanced Bionics High Resolution 90K or CII cochlear implant system who had speech recognition scores of 20% or greater on a monosyllabic word test. Two T-level programs were compared for detection of the Ling sounds and frequency modulated (FM) tones. Differing IDR/sensitivity programs (50/0, 50/10, 70/0, 70/10) were compared using Ling and FM tone detection thresholds, CNC (consonant-vowel nucleus-consonant) words at 50 dB SPL, and Hearing in Noise Test for Children (HINT-C) sentences at 65 dB SPL in the presence of four-talker babble (+8 signal-to-noise ratio). Outcomes were analyzed using a paired t-test and a mixed-model repeated measures analysis of variance (ANOVA). T-levels set 10 CUs below "soft" resulted in significantly lower detection thresholds for all six Ling sounds and FM tones at 250, 1000, 3000, 4000, and 6000 Hz. When comparing programs differing by IDR and sensitivity, a 50 dB IDR with a 0 sensitivity setting showed significantly poorer thresholds for low frequency FM tones and voiced Ling sounds. Analysis of group mean scores for CNC words in quiet or HINT-C sentences in noise indicated no significant differences across IDR/sensitivity settings. Individual data, however, showed significant differences between IDR/sensitivity programs in noise; the optimal program differed across participants. In pediatric recipients of the Advanced Bionics cochlear implant device, manually setting T-levels with ascending loudness judgments should be considered when possible or when low-level sounds are inaudible. Study findings confirm the need to determine program settings on an individual basis as well as the importance of speech recognition verification measures in both quiet and noise. Clinical guidelines are suggested for selection of programming parameters in both young and older children. American Academy of Audiology.

  15. Otic Langerhans' Cell Histiocytosis in an Adult: A Case Report and Review of the Literature

    PubMed Central

    Gungadeen, Anil; Kullar, Peter; Yates, Philip

    2013-01-01

    Objective. To present a case of otic Langerhans' cell histiocytosis in an adult. Also included the diagnosis and management of the condition and a review of the relevant literature. Case Report. We report a case of a 41-year-old man with a history of persistent unilateral ear discharge associated with an aural polyp. Radiological imaging showed bony lesions of the skull and a soft-tissue mass within the middle ear. Histological analysis of the polyp demonstrated Langerhans' cell histiocytosis. His otological symptoms were completely resolved with the systemic therapy. Conclusions. Otic Langerhans' cell histiocytosis can present in adults. Persistent ear symptoms along with evidence of soft-tissue masses within the ear and bony lesions of the skull or elsewhere should prompt the otolaryngologists to include Langerhans' cell histiocytosis in their differential diagnosis. Management should be with systemic therapy rather than local surgical treatment. PMID:23762704

  16. The Role of Zic Genes in Inner Ear Development in the Mouse: Exploring Mutant Mouse Phenotypes

    PubMed Central

    Chervenak, Andrew P.; Bank, Lisa M.; Thomsen, Nicole; Glanville-Jones, Hannah C; Skibo, Jonathan; Millen, Kathleen J.; Arkell, Ruth M.; Barald, Kate F.

    2014-01-01

    Background Murine Zic genes (Zic1-5) are expressed in the dorsal hindbrain and in periotic mesenchyme (POM) adjacent to the developing inner ear. Zic genes are involved in developmental signaling pathways in many organ systems, including the ear, although their exact roles haven't been fully elucidated. This report examines the role of Zic1, Zic2, and Zic4 during inner ear development in mouse mutants in which these Zic genes are affected Results Zic1/Zic4 double mutants don't exhibit any apparent defects in inner ear morphology. By contrast, inner ears from Zic2kd/kd and Zic2Ku/Ku mutants have severe but variable morphological defects in endolymphatic duct/sac and semicircular canal formation and in cochlear extension in the inner ear. Analysis of otocyst patterning in the Zic2Ku/Ku mutants by in situ hybridization showed changes in the expression patterns of Gbx2 and Pax2. Conclusions The experiments provide the first genetic evidence that the Zic genes are required for morphogenesis of the inner ear. Zic2 loss-of-function doesn't prevent initial otocyst patterning but leads to molecular abnormalities concomitant with morphogenesis of the endolymphatic duct. Functional hearing deficits often accompany inner ear dysmorphologies, making Zic2 a novel candidate gene for ongoing efforts to identify the genetic basis of human hearing loss. PMID:25178196

  17. A tricalcium phosphate/polyether ether ketone anchor bionic fixation device for anterior cruciate ligament reconstruction: Safety and efficacy in a beagle model.

    PubMed

    Mao, Genwen; Qin, Zili; Li, Zheng; Li, Xiang; Qiu, Yusheng; Bian, Weiguo

    2018-05-02

    The goal of this study was to develop a bionic fixation device based on the use of a tricalcium phosphate/polyether ether ketone anchor and harvesting of the ulnar carpal flexor muscle tendon for application as a ligament graft in a beagle anterior cruciate ligament (ACL) reconstruction model, with the goal of accelerating the ligament graft-to-bone tunnel healing and providing a robust stability through exploration of this new kind of autologous ligament graft. The safety and efficacy of this fixation device were explored 3 and 6 months after surgery in a beagle ACL reconstruction model using biomechanical tests and comprehensive histological observation. The data were compared using a two-tailed Student's t test and a paired t test. A p value <0.05 was defined as statistically significant. All the models were successfully established. This fixation device possessed the excellent mechanical properties for ACL reconstruction. A comprehensive histological observation revealed that a cartilage layer was visible in the transition zone between the tendon and bone interface at both 3 and 6 months postoperation. The trabecular of the new bone was observed six months after surgery and was found to be similar to a direct connection. This fixation technique provided not only a robust primary mechanical fixation but also a bionic fixation for long-term knee joint stability by accelerating the healing of the tendon to the bone tunnel, showing a high potential for use in clinical practice. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  18. Experimental and theoretical identification of a four- acoustic-inputs/two-vibration-outputs hearing system

    NASA Astrophysics Data System (ADS)

    Balaji, P. A.

    1999-07-01

    A cricket's ear is a directional acoustic sensor. It has a remarkable level of sensitivity to the direction of sound propagation in a narrow frequency bandwidth of 4-5 KHz. Because of its complexity, the directional sensitivity has long intrigued researchers. The cricket's ear is a four-acoustic-inputs/two-vibration-outputs system. In this dissertation, this system is examined in depth, both experimentally and theoretically, with a primary goal to understand the mechanics involved in directional hearing. Experimental identification of the system is done by using random signal processing techniques. Theoretical identification of the system is accomplished by analyzing sound transmission through complex trachea of the ear. Finally, a description of how the cricket achieves directional hearing sensitivity is proposed. The fundamental principle involved in directional heating of the cricket has been utilized to design a device to obtain a directional signal from non- directional inputs.

  19. When avoidance leads to approach: how ear preference interacts with neuroticism to predict disinhibited approach.

    PubMed

    Jackson, Chris J

    2008-07-01

    A series of eight studies focuses on how the avoidance system represented by neuroticism can lead to disinhibited approach tendencies. Based on research which argues that hemispheric preferences predispose the left hemisphere to fast action goal formation, and contralateral pathways between ear and brain, it is proposed that (a) people with a right ear preference will engage in fast action goal formation and (b) disinhibited approach results from neurotic people who reduce anxiety by means of fast action goal formation. Study 1 provides evidence from telesales operators of a link between self-rated ear preference and objective ear preference and provides evidence that disinhibited approach is predicted by a neuroticismxear preference interaction. Studies 2, 3, and 4 provide evidence that ear preference is related to other measures of objective aural preference and action goal formation. Studies 5, 6, 7, and 8 provide evidence that the neuroticismxear preference interaction predicts a variety of different disinhibited approach tendencies.

  20. Development of a novel clinical scoring system for on-farm diagnosis of bovine respiratory disease in pre-weaned dairy calves.

    PubMed

    Love, William J; Lehenbauer, Terry W; Kass, Philip H; Van Eenennaam, Alison L; Aly, Sharif S

    2014-01-01

    Several clinical scoring systems for diagnosis of bovine respiratory disease (BRD) in calves have been proposed. However, such systems were based on subjective judgment, rather than statistical methods, to weight scores. Data from a pair-matched case-control study on a California calf raising facility was used to develop three novel scoring systems to diagnose BRD in preweaned dairy calves. Disease status was assigned using both clinical signs and diagnostic test results for BRD-associated pathogens. Regression coefficients were used to weight score values. The systems presented use nasal and ocular discharge, rectal temperature, ear and head carriage, coughing, and respiratory quality as predictors. The systems developed in this research utilize fewer severity categories of clinical signs, require less calf handling, and had excellent agreement (Kappa > 0.8) when compared to an earlier scoring system. The first scoring system dichotomized all clinical predictors but required inducing a cough. The second scoring system removed induced cough as a clinical abnormality but required distinguishing between three levels of nasal discharge severity. The third system removed induced cough and forced a dichotomized variable for nasal discharge. The first system presented in this study used the following predictors and assigned values: coughing (induced or spontaneous coughing, 2 points), nasal discharge (any discharge, 3 points), ocular discharge (any discharge, 2 points), ear and head carriage (ear droop or head tilt, 5 points), fever (≥39.2°C or 102.5°F, 2 points), and respiratory quality (abnormal respiration, 2 points). Calves were categorized "BRD positive" if their total score was ≥4. This system correctly classified 95.4% cases and 88.6% controls. The second presented system categorized the predictors and assigned weights as follows: coughing (spontaneous only, 2 points), mild nasal discharge (unilateral, serous, or watery discharge, 3 points), moderate to severe nasal discharge (bilateral, cloudy, mucoid, mucopurlent, or copious discharge, 5 points), ocular discharge (any discharge, 1 point), ear and head carriage (ear droop or head tilt, 5 points), fever (≥39.2°C, 2 points), and respiratory quality (abnormal respiration, 2 points). Calves were categorized "BRD positive" if their total score was ≥4. This system correctly classified 89.3% cases and 92.8% controls. The third presented system used the following predictors and scores: coughing (spontaneous only, 2 points), nasal discharge (any, 4 points), ocular discharge (any, 2 points), ear and head carriage (ear droop or head tilt, 5 points), fever (≥39.2°C, 2 points), and respiratory quality (abnormal respiration, 2 points). Calves were categorized "BRD positive" if their total score was ≥5. This system correctly classified 89.4% cases and 90.8% controls. Each of the proposed systems offer few levels of clinical signs and data-based weights for on-farm diagnosis of BRD in dairy calves.

  1. Development of a novel clinical scoring system for on-farm diagnosis of bovine respiratory disease in pre-weaned dairy calves

    PubMed Central

    Love, William J.; Lehenbauer, Terry W.; Kass, Philip H.; Van Eenennaam, Alison L.

    2014-01-01

    Several clinical scoring systems for diagnosis of bovine respiratory disease (BRD) in calves have been proposed. However, such systems were based on subjective judgment, rather than statistical methods, to weight scores. Data from a pair-matched case-control study on a California calf raising facility was used to develop three novel scoring systems to diagnose BRD in preweaned dairy calves. Disease status was assigned using both clinical signs and diagnostic test results for BRD-associated pathogens. Regression coefficients were used to weight score values. The systems presented use nasal and ocular discharge, rectal temperature, ear and head carriage, coughing, and respiratory quality as predictors. The systems developed in this research utilize fewer severity categories of clinical signs, require less calf handling, and had excellent agreement (Kappa > 0.8) when compared to an earlier scoring system. The first scoring system dichotomized all clinical predictors but required inducing a cough. The second scoring system removed induced cough as a clinical abnormality but required distinguishing between three levels of nasal discharge severity. The third system removed induced cough and forced a dichotomized variable for nasal discharge. The first system presented in this study used the following predictors and assigned values: coughing (induced or spontaneous coughing, 2 points), nasal discharge (any discharge, 3 points), ocular discharge (any discharge, 2 points), ear and head carriage (ear droop or head tilt, 5 points), fever (≥39.2°C or 102.5°F, 2 points), and respiratory quality (abnormal respiration, 2 points). Calves were categorized “BRD positive” if their total score was ≥4. This system correctly classified 95.4% cases and 88.6% controls. The second presented system categorized the predictors and assigned weights as follows: coughing (spontaneous only, 2 points), mild nasal discharge (unilateral, serous, or watery discharge, 3 points), moderate to severe nasal discharge (bilateral, cloudy, mucoid, mucopurlent, or copious discharge, 5 points), ocular discharge (any discharge, 1 point), ear and head carriage (ear droop or head tilt, 5 points), fever (≥39.2°C, 2 points), and respiratory quality (abnormal respiration, 2 points). Calves were categorized “BRD positive” if their total score was ≥4. This system correctly classified 89.3% cases and 92.8% controls. The third presented system used the following predictors and scores: coughing (spontaneous only, 2 points), nasal discharge (any, 4 points), ocular discharge (any, 2 points), ear and head carriage (ear droop or head tilt, 5 points), fever (≥39.2°C, 2 points), and respiratory quality (abnormal respiration, 2 points). Calves were categorized “BRD positive” if their total score was ≥5. This system correctly classified 89.4% cases and 90.8% controls. Each of the proposed systems offer few levels of clinical signs and data-based weights for on-farm diagnosis of BRD in dairy calves. PMID:24482759

  2. Missing links in some curious auditory phenomena: a tale from the middle ear.

    PubMed

    Carpenter, Michelle S; Cacace, Anthony T; Mahoney, Marty J

    2012-02-01

    Broadband middle ear power reflectance (BMEPR) is an emerging noninvasive electroacoustic measure that evaluates transmission/reflection properties of the middle ear in high resolution. It is applicable over the entire age continuum and is rapid to perform. However, it remains to be determined if BMEPR is just an incremental step in the evolution of middle ear assessment or a major advance in the way middle ear function can be evaluated. To evaluate effects of age, gender, ear, and frequency on BMEPR measurements in adults without a history of middle ear disease and to assess whether these factors require consideration in test development; to review how these data may influence active physiologic process within the inner ear; to consider how they reconcile with previously published results; and to suggest applications for future research. Prospective, cross-sectional, multivariate analysis to evaluate the effects of age, gender, ear, and frequency on BMEPR in humans without a history of middle ear disease and no air-bone gaps exceeding 10 dB for any frequency. Fifty-six adults in two age groups (Group 1: 18-25 yr, n = 28; Group 2: ≥50 and <66 yr, n = 28). Each age group was stratified by ear and gender in a balanced design. Pure tone air conduction and bone-conduction audiometry was conducted in a commercial sound booth, using a clinical audiometer with standard earphones enclosed in supra-aural ear cushions, and a standard bone-conduction oscillator and headband to evaluate for air-bone gaps. Broadband middle ear power reflectance was measured using a calibrated, commercially available computer-controlled system that incorporated a high quality probe assembly to transduce stimuli and record acoustic responses from the ear canal. Data were analyzed with a four-way (2 × 2 × 2 × 16) repeated measures analysis-of-variance (ANOVA) to evaluate the effects of age group (young vs. old), gender (male vs. female), ear (left vs. right), and frequency (258 to 5040 Hz) on BMEPR. The ANOVA revealed a significant main effect of frequency. There were also gender × ear, gender × frequency, and age × gender × ear interactions. The three-way, age × gender × ear interaction captured the essence of results and revealed lowest power reflectance values in younger females and for right ears. This trend partially reversed in the older age group where higher power reflectance values were observed only in right ears of older females. The significant effects of age, gender, ear, and frequency on BMEPR parallel ear- and gender-related differences in hearing sensitivity, ear, and gender differences in the prevalence of spontaneous otoacoustic emissions (OAEs), gender differences in the magnitude of transient evoked OAEs, and ear differences in transient evoked contralateral OAE suppression effects reported in the literature. While original discussions of these aforementioned effects focused primarily on endocochlear and olivocochlear mechanisms, the BMEPR measurements reported herein suggest that middle ear transmission characteristics may also play a role. American Academy of Audiology.

  3. Numerical and experimental studies of hydrodynamics of flapping foils

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Liu, Jun-kao; Chen, Wei-shan

    2018-04-01

    The flapping foil based on bionics is a sort of simplified models which imitate the motion of wings or fins of fish or birds. In this paper, a universal kinematic model with three degrees of freedom is adopted and the motion parallel to the flow direction is considered. The force coefficients, the torque coefficient, and the flow field characteristics are extracted and analyzed. Then the propulsive efficiency is calculated. The influence of the motion parameters on the hydrodynamic performance of the bionic foil is studied. The results show that the motion parameters play important roles in the hydrodynamic performance of the flapping foil. To validate the reliability of the numerical method used in this paper, an experiment platform is designed and verification experiments are carried out. Through the comparison, it is found that the numerical results compare well with the experimental results, to show that the adopted numerical method is reliable. The results of this paper provide a theoretical reference for the design of underwater vehicles based on the flapping propulsion.

  4. The fabrication and property of hydrophilic and hydrophobic double functional bionic chitosan film.

    PubMed

    Wang, Xiaohong; Xi, Zhen; Liu, Zhongxin; Yang, Liang; Cao, Yang

    2011-11-01

    A new kind of hydrophobic bionic chitosan film was fabricated by simulating the surface structure of lotus leaf. The titanium oxide nanotube array was used as templates. Scanning electron microscopy (SEM) images show that one side of this films have nano-scale rough surface with spherical protrusions alike the surface of lotus leaf. The diameter of the protrusions is about 100 nm, which is equal to diameter of the titanium oxide nanotube. The water contact angle of chitosan films is up to 120 degrees and it is hydrophobic. The other side of the film is flat and the contact angle is 70 degrees. That indicated that the hydrophilism of natural materials is connected with the surface structures. The double functional chitosan films, one side is hydrophilic, the other is hydrophobic, can be made by an easy method. This method is non-toxic and clean. The double functional chitosan film will improve the application of chitosan films in medicine.

  5. Constructing bio-layer of heparin and type IV collagen on titanium surface for improving its endothelialization and blood compatibility.

    PubMed

    Zhang, Kun; Chen, Jun-ying; Qin, Wei; Li, Jing-an; Guan, Fang-xia; Huang, Nan

    2016-04-01

    The modification of cardiovascular stent surface for a better micro-environment has gradually changed to multi-molecule, multi-functional designation. In this study, heparin (Hep) and type IV collagen (IVCol) were used as the functional molecule to construct a bifunctional micro-environment of anticoagulation and promoting endothelialization on titanium (Ti). The surface characterization results (AFM, Alcian Blue 8GX Staining and fluorescence staining of IVCol) indicated that the bio-layer of Hep and IVCol were successfully fabricated on the Ti surface through electrostatic self-assembly. The APTT and platelet adhesion test demonstrated that the bionic layer possessed better blood compatibility compared with Ti surface. The adhesion, proliferation, migration and apoptosis tests of endothelial cells proved that the Hep/IVCol layer was able to enhance the endothelialization of the Ti surface. The in vivo animal implantation results manifested that the bionic surface could encourage new endothelialization. This work provides an important reference for the construction of multifunction micro-environment on the cardiovascular scaffold surface.

  6. KSC-2011-2263

    NASA Image and Video Library

    2011-03-11

    ORLANDO, Fla. – NASA Kennedy Space Center Director Bob Cabana checks out the robot designed by the Bionic Tigers team at the regional FIRST robotics competition at the University of Central Florida in Orlando. The team is made up of students from Cocoa High School and Holy Trinity Episcopal Academy along the Space Coast in Florida. NASA's Launch Services Program based at Kennedy is a sponsor of the team. The Bionic Tigers finished seventh in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, among about 60 high school teams hoping to advance to the national robotics championship. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson

  7. [The bionic hand].

    PubMed

    Surke, Carsten; Ducommun Dit Boudry, Pascal; Vögelin, Esther

    2015-08-01

    The loss of the upper extremity implicates a grave insult in the life of the involved person. To compensate for the loss of function different powered prosthetic devices are available. Ever since their first development 70 years ago numerous improvements in terms of size, weight and wearing comfort have been developed, but issues regarding the control of upper extremity prostheses remain. Slow grasping speed, limited grip positions and especially failure to provide a sensory feedback limit the acceptance in patients. Recent developments are aimed to allow a more intuitive control of the prosthetic device and to provide a sensory feedback to the amputee. Targeted reinnervation reassignes existing muscles to different peripheral nerves thereby enabling them to fulfill alternate functions. Implanting electrodes into muscle bellies of the forearm allows a more accurate control of the prosthesis. Promising results are being achieved by implanting nerve electrodes by establishing bilateral communication between patient and prosthesis. The following review summarizes the current developments of bionic prostheses in the upper extremity.

  8. Physiological artifacts in scalp EEG and ear-EEG.

    PubMed

    Kappel, Simon L; Looney, David; Mandic, Danilo P; Kidmose, Preben

    2017-08-11

    A problem inherent to recording EEG is the interference arising from noise and artifacts. While in a laboratory environment, artifacts and interference can, to a large extent, be avoided or controlled, in real-life scenarios this is a challenge. Ear-EEG is a concept where EEG is acquired from electrodes in the ear. We present a characterization of physiological artifacts generated in a controlled environment for nine subjects. The influence of the artifacts was quantified in terms of the signal-to-noise ratio (SNR) deterioration of the auditory steady-state response. Alpha band modulation was also studied in an open/closed eyes paradigm. Artifacts related to jaw muscle contractions were present all over the scalp and in the ear, with the highest SNR deteriorations in the gamma band. The SNR deterioration for jaw artifacts were in general higher in the ear compared to the scalp. Whereas eye-blinking did not influence the SNR in the ear, it was significant for all groups of scalps electrodes in the delta and theta bands. Eye movements resulted in statistical significant SNR deterioration in both frontal, temporal and ear electrodes. Recordings of alpha band modulation showed increased power and coherence of the EEG for ear and scalp electrodes in the closed-eyes periods. Ear-EEG is a method developed for unobtrusive and discreet recording over long periods of time and in real-life environments. This study investigated the influence of the most important types of physiological artifacts, and demonstrated that spontaneous activity, in terms of alpha band oscillations, could be recorded from the ear-EEG platform. In its present form ear-EEG was more prone to jaw related artifacts and less prone to eye-blinking artifacts compared to state-of-the-art scalp based systems.

  9. Identification of Adeno-Associated Viral Vectors That Target Neonatal and Adult Mammalian Inner Ear Cell Subtypes

    PubMed Central

    Shu, Yilai; Tao, Yong; Wang, Zhengmin; Tang, Yong; Li, Huawei; Dai, Pu; Gao, Guangping; Chen, Zheng-Yi

    2016-01-01

    The mammalian inner ear consists of diverse cell types with important functions. Gene mutations in these diverse cell types have been found to underlie different forms of genetic hearing loss. Targeting these mutations for gene therapy development represents a future therapeutic strategy to treat hearing loss. Adeno-associated viral (AAV) vectors have become the vector of choice for gene delivery in animal models in vivo. To identify AAV vectors that target inner ear cell subtypes, we systemically screened 12 AAV vectors with different serotypes (AAV1, 2, 5, 6, 6.2, 7, 8, 9, rh.8, rh.10, rh.39, and rh.43) that carry a reporter gene GFP in neonatal and adult mice by microinjection in vivo. We found that most AAVs infect both neonatal and adult inner ear, with different specificities and expression levels. The inner ear cochlear sensory epithelial region, which includes auditory hair cells and supporting cells, is most frequently targeted for gene delivery. Expression of the transgene is sustained, and neonatal inner ear delivery does not adversely affect hearing. Adult inner ear injection of AAV has a similar infection pattern as the younger inner ear, with the exception that outer hair cell death caused by the injection procedure can lead to hearing loss. In the adult, more so than in the neonatal mice, cell types infected and efficiency of infection are correlated with the site of injection. Most infected cells survive in neonatal and adult inner ears. The study adds to the list of AAV vectors that transduce the mammalian inner ear efficiently, providing the tools that are important to study inner ear gene function and for the development of gene therapy to treat hearing loss. PMID:27342665

  10. Evolution of the vestibulo-ocular system

    NASA Technical Reports Server (NTRS)

    Fritzsch, B.

    1998-01-01

    The evolutionary and developmental changes in the eye muscle innervation, the inner ear, and the vestibulo-ocular reflex are examined. Three eye muscle patterns, based on the innervation by distinct ocular motoneurons populations, can be identified: a lamprey, an elasmobranch, and a bony fish/tetrapod pattern. Four distinct patterns of variation in the vestibular system are described: a hagfish pattern, a lamprey pattern, an elasmobranch pattern, and a bony fish/tetrapod pattern. Developmental data suggest an influence of the hindbrain on ear pattern formation, thus potentially allowing a concomitant change of eye muscle innervation and ear variation. The connections between the ear and the vestibular nuclei and between the vestibular nuclei and ocular motoneurons are reviewed, and the role of neurotrophins for pattern specification is discussed. Three patterns are recognized in central projections: a hagfish pattern, a lamprey pattern, and a pattern for jawed vertebrates. Second-order connections show both similarities and differences between distantly related species such as lampreys and mammals. For example, elasmobranchs lack an internuclear system, which is at best poorly developed in lampreys. It is suggested that the vestibulo-ocular system shows only a limited degree of variation because of the pronounced functional constraints imposed on it.

  11. Effect Of Electromagnetic Waves Emitted From Mobile Phone On Brain Stem Auditory Evoked Potential In Adult Males.

    PubMed

    Singh, K

    2015-01-01

    Mobile phone (MP) is commonly used communication tool. Electromagnetic waves (EMWs) emitted from MP may have potential health hazards. So, it was planned to study the effect of electromagnetic waves (EMWs) emitted from the mobile phone on brainstem auditory evoked potential (BAEP) in male subjects in the age group of 20-40 years. BAEPs were recorded using standard method of 10-20 system of electrode placement and sound click stimuli of specified intensity, duration and frequency.Right ear was exposed to EMW emitted from MP for about 10 min. On comparison of before and after exposure to MP in right ear (found to be dominating ear), there was significant increase in latency of II, III (p < 0.05) and V (p < 0.001) wave, amplitude of I-Ia wave (p < 0.05) and decrease in IPL of III-V wave (P < 0.05) after exposure to MP. But no significant change was found in waves of BAEP in left ear before vs after MP. On comparison of right (having exposure routinely as found to be dominating ear) and left ears (not exposed to MP), before exposure to MP, IPL of IIl-V wave and amplitude of V-Va is more (< 0.001) in right ear compared to more latency of III and IV wave (< 0.001) in left ear. After exposure to MP, the amplitude of V-Va was (p < 0.05) more in right ear compared to left ear. In conclusion, EMWs emitted from MP affects the auditory potential.

  12. The comparative anatomy of the pig middle ear cavity: a model for middle ear inflammation in the human?

    PubMed Central

    PRACY, J. P.; WHITE, A.; MUSTAFA, Y.; SMITH, D.; PERRY, M. E.

    1998-01-01

    This study was undertaken to develop a functional model of otitis media with effusion (OME) in the pig (Sus scrofa), with the purpose of investigating the origin of lymphocytes populating the middle ear during the course of an inflammatory process. The relevance of the model to the human condition of OME is to a large extent dependent on the anatomical and physiological similarities between the middle ear cavity and the pharyngeal lymphoid tissue of the pig and man. Anatomical specimens were collected from 7 young Large White pigs to determine the gross anatomy of the middle ear cavity and the histological characteristics of the middle ear mucosa. It was found that the anatomy of the 3 parts of the middle ear cavity in man and in the pig is broadly similar, although some minor differences were observed. The porcine eustachian tube was seen to be cartilaginous throughout its length in contrast to the part osseous, part cartilaginous structure found in man; the porcine ossicles were slightly different in shape to those of man and the air cell system was situated inferior to the tympanic cavity in the pig as opposed to posteriorly in man. This paper describes the structure and morphology of the pig middle ear cavity and compares and contrasts it with that of man. The minor differences observed are of anatomical importance but do not diminish the usefulness of the pig middle ear cleft as a potential model for human middle ear disorders. PMID:9688502

  13. Phylogenetic distribution and expression of a penicillin-binding protein homologue, Ear and its significance in virulence of Staphylococcus aureus.

    PubMed

    Singh, Vineet K; Ring, Robert P; Aswani, Vijay; Stemper, Mary E; Kislow, Jennifer; Ye, Zhan; Shukla, Sanjay K

    2017-12-01

    Staphylococcus aureus is an opportunistic human pathogen that can cause serious infections in humans. A plethora of known and putative virulence factors are produced by staphylococci that collectively orchestrate pathogenesis. Ear protein (Escherichia coli ampicillin resistance) in S. aureus is an exoprotein in COL strain, predicted to be a superantigen, and speculated to play roles in antibiotic resistance and virulence. The goal of this study was to determine if expression of ear is modulated by single nucleotide polymorphisms in its promoter and coding sequences and whether this gene plays roles in antibiotic resistance and virulence. Promoter, coding sequences and expression of the ear gene in clinical and carriage S. aureus strains with distinct genetic backgrounds were analysed. The JE2 strain and its isogenic ear mutant were used in a systemic infection mouse model to determine the competiveness of the ear mutant.Results/Key findings. The ear gene showed a variable expression, with USA300FPR3757 showing a high-level expression compared to many of the other strains tested including some showing negligible expression. Higher expression was associated with agr type 1 but not correlated with phylogenetic relatedness of the ear gene based upon single nucleotide polymorphisms in the promoter or coding regions suggesting a complex regulation. An isogenic JE2 (USA300 background) ear mutant showed no significant difference in its growth, antibiotic susceptibility or virulence in a mouse model. Our data suggests that despite being highly expressed in a USA300 genetic background, Ear is not a significant contributor to virulence in that strain.

  14. Possibilities to use tank-mix adjuvants for better fungicide spreading on triticale ears.

    PubMed

    Ryckaert, Bert; Spanoghe, Pieter; Heremans, Betty; Haesaert, Geert; Steurbaut, Walter

    2008-09-10

    Tank-mix adjuvants can increase the overall performance of plant protection products. Their most important ways of action are the improved retention, spreading, wetting, and penetration of the pesticide on the target and the reduction of fine droplets. In this paper, deposition and spreading of the systemic fungicide propiconazole on triticale ears were quantified. A better deposition and spreading of fungicide on the ear may be a possible help for the Fusarium problem in triticale, wheat, and other cereals. Triticale ears were applied with propiconazole in combination with 11 different tank-mix adjuvants. Vegetable oil, alcohol ethoxylates, lactate ester, trisiloxanes, and an amphoteric molecule were included in this experiment. When no tank-mix adjuvant was used, the lower part of the ear was reached five times less by the propiconazole spray than the upper part of the ear. When the tank-mix adjuvant was combined with the propiconazole formulation, an increase in residue on both the upper and the lower part of the ear was observed. A higher residue on the upper half of the ear means a better deposition, while a higher residue on the lower part of the ear is related to a better downward spreading over the grains and the needles of the ear. The combination of those two observations makes it interesting to use tank-mix adjuvants for the prevention of mycotoxin-producing Fusarium species. The advantages are emphasized even more when cost effectiveness was calculated. The use of a proper tank-mix adjuvant can result in 40% lower cost per application per hectare.

  15. Binaural frequency selectivity in humans.

    PubMed

    Verhey, Jesko L; van de Par, Steven

    2018-01-23

    Several behavioural studies in humans have shown that listening to sounds with two ears that is binaural hearing, provides the human auditory system with extra information on the sound source that is not available when sounds are only perceived through one ear that is monaurally. Binaural processing involves the analysis of phase and level differences between the two ear signals. As monaural cochlea processing (in each ear) precedes the neural stages responsible for binaural processing properties it is reasonable to assume that properties of the cochlea may also be observed in binaural processing. A main characteristic of cochlea processing is its frequency selectivity. In psychoacoustics, there is an ongoing discussion on the frequency selectivity of the binaural auditory system. While some psychoacoustic experiments seem to indicate poorer frequency selectivity of the binaural system than that of the monaural processing others seem to indicate the same frequency selectivity for monaural and binaural processing. This study provides an overview of these seemingly controversial results and the different explanations that were provided to account for the different results. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Ear epistheses as an alternative to autogenous reconstruction.

    PubMed

    Federspil, Philipp A

    2009-08-01

    An ear episthesis is an artificial substitute for the auricle. The term EAR PROSTHESIS is used synonymously. The breakthrough came with the introduction of the modern silicones and their colorings. Although there are still indications for noninvasive methods of retention such as medical adhesives, the best and most reliable method of fixation is by bone anchorage. Long-lasting osseointegration with reaction-free skin penetration can be achieved with titanium implants. The first system used extraorally was the Brånemark flange fixture. Later, different solitary titanium implants were introduced, such as the ITI system. A different strategy used the titanium grids (Epitec) or plates (Epiplating) derived from osteosynthesis systems. These systems are fixed subperiosteally with several bone screws and are therefore also labeled as grouped implants. With these modern developments, secure retention can be achieved also in unfavorable anatomic situations. The grouped systems are resistant to torque with abutment insertion. The latest development is the subcutaneously implanted double magnet without skin penetration. The advantages of implant retained ear epistheses include optimal camouflage, predictable cosmetic results, fast rehabilitation, no donor site morbidity, and early detection of tumor recurrence. Depending on the clinical setting, prosthetic rehabilitation may be more than just an alternative to plastic reconstructive surgery. Copyright Thieme Medical Publishers.

  17. Control of a powered prosthetic device via a pinch gesture interface

    NASA Astrophysics Data System (ADS)

    Yetkin, Oguz; Wallace, Kristi; Sanford, Joseph D.; Popa, Dan O.

    2015-06-01

    A novel system is presented to control a powered prosthetic device using a gesture tracking system worn on a user's sound hand in order to detect different grasp patterns. Experiments are presented with two different gesture tracking systems: one comprised of Conductive Thimbles worn on each finger (Conductive Thimble system), and another comprised of a glove which leaves the fingers free (Conductive Glove system). Timing tests were performed on the selection and execution of two grasp patterns using the Conductive Thimble system and the iPhone app provided by the manufacturer. A modified Box and Blocks test was performed using Conductive Glove system and the iPhone app provided by Touch Bionics. The best prosthetic device performance is reported with the developed Conductive Glove system in this test. Results show that these low encumbrance gesture-based wearable systems for selecting grasp patterns may provide a viable alternative to EMG and other prosthetic control modalities, especially for new prosthetic users who are not trained in using EMG signals.

  18. Sensory hair cell regeneration in the zebrafish lateral line.

    PubMed

    Lush, Mark E; Piotrowski, Tatjana

    2014-10-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling, and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. Copyright © 2014 Wiley Periodicals, Inc.

  19. [Basics of Ear Surgery].

    PubMed

    Lailach, S; Zahnert, T

    2016-12-01

    The present article about the basics of ear surgery is a short overview of current indications, the required diagnostics and surgical procedures of common otologic diseases. In addition to plastic and reconstructive surgery of the auricle, principles of surgery of the external auditory canal, basics of middle ear surgery and the tumor surgery of the temporal bone are shown. Additionally, aspects of the surgical hearing rehabilitation (excluding implantable hearing systems) are presented considering current study results. Georg Thieme Verlag KG Stuttgart · New York.

  20. A Review of Artificial Lateral Line in Sensor Fabrication and Bionic Applications for Robot Fish

    PubMed Central

    Wang, Anyi; Wang, Xinbao; Liu, Peng

    2016-01-01

    Lateral line is a system of sense organs that can aid fishes to maneuver in a dark environment. Artificial lateral line (ALL) imitates the structure of lateral line in fishes and provides invaluable means for underwater-sensing technology and robot fish control. This paper reviews ALL, including sensor fabrication and applications to robot fish. The biophysics of lateral line are first introduced to enhance the understanding of lateral line structure and function. The design and fabrication of an ALL sensor on the basis of various sensing principles are then presented. ALL systems are collections of sensors that include carrier and control circuit. Their structure and hydrodynamic detection are reviewed. Finally, further research trends and existing problems of ALL are discussed. PMID:28115825

  1. Comparative study of aural microflora in healthy cats, allergic cats and cats with systemic disease.

    PubMed

    Pressanti, Charline; Drouet, Clémence; Cadiergues, Marie-Christine

    2014-12-01

    Twenty healthy cats (group 1) with clinically normal ears, 15 cats with systemic disease (group 2) and 15 allergic cats (group 3) were included in a prospective study. The experimental unit was the ear. A clinical score was established for each ear canal after otoscopic examination. Microbial population was assessed on cytological examination of smears performed with the cotton-tipped applicator smear technique. Fungal population was significantly more prominent in allergic cats (P <0.001) and in diseased cats compared with healthy cats (P <0.02). Bacterial population was significantly higher in allergic cats than in healthy cats (P <0.001) and cats suffering from systemic disease (P <0.001). Bacterial overgrowth was also higher in cats with systemic disease than healthy cats. In cats from group 2, only fungal overgrowth was associated with otitis severity. In group 3, only bacterial overgrowth was associated with otitis severity. © ISFM and AAFP 2014.

  2. Self-demodulation of amplitude-modulated signal components in amplitude-modulated bone-conducted ultrasonic hearing

    NASA Astrophysics Data System (ADS)

    Ito, Kazuhito; Nakagawa, Seiji

    2015-07-01

    A novel hearing aid system utilizing amplitude-modulated bone-conducted ultrasound (AM-BCU) is being developed for use by profoundly deaf people. However, there is a lack of research on the acoustic aspects of AM-BCU hearing. In this study, acoustic fields in the ear canal under AM-BCU stimulation were examined with respect to the self-demodulation effect of amplitude-modulated signal components generated in the ear canal. We found self-demodulated signals with an audible sound pressure level related to the amplitude-modulated signal components of bone-conducted ultrasonic stimulation. In addition, the increases in the self-demodulated signal levels at low frequencies in the ear canal after occluding the ear canal opening, i.e., the positive occlusion effect, indicate the existence of a pathway by which the self-demodulated signals pass through the aural cartilage and soft tissue, and radiate into the ear canal.

  3. Surgical and Technical Modalities for Hearing Restoration in Ear Malformations.

    PubMed

    Dazert, Stefan; Thomas, Jan Peter; Volkenstein, Stefan

    2015-12-01

    Malformations of the external and middle ear often go along with an aesthetic and functional handicap. Independent of additional aesthetic procedures, a successful functional hearing restoration leads to a tremendous gain in quality of life for affected patients. The introduction of implantable hearing systems (bone conduction and middle ear devices) offers new therapeutic options in this field. We focus on functional rehabilitation of patients with malformations, either by surgical reconstruction or the use of different implantable hearing devices, depending on the disease itself and the severity of malformation as well as hearing impairment. Patients with an open ear canal and minor malformations are good candidates for surgical hearing restoration of middle ear structures with passive titanium or autologous implants. In cases with complete fibrous or bony atresia of the ear canal, the most promising functional outcome and gain in quality of life can be expected with an active middle ear implant or a bone conduction device combined with a surgical aesthetic rehabilitation in a single or multi-step procedure. Although the surgical procedure for bone conduction devices is straightforward and safe, more sophisticated operations for active middle ear implants (e.g., Vibrant Soundbridge, MED-EL, Innsbruck, Austria) provide an improved speech discrimination in noise and the ability of sound localization compared with bone conduction devices where the stimulation reaches both cochleae. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. An in vitro model of murine middle ear epithelium.

    PubMed

    Mulay, Apoorva; Akram, Khondoker M; Williams, Debbie; Armes, Hannah; Russell, Catherine; Hood, Derek; Armstrong, Stuart; Stewart, James P; Brown, Steve D M; Bingle, Lynne; Bingle, Colin D

    2016-11-01

    Otitis media (OM), or middle ear inflammation, is the most common paediatric disease and leads to significant morbidity. Although understanding of underlying disease mechanisms is hampered by complex pathophysiology it is clear that epithelial abnormalities underpin the disease. There is currently a lack of a well-characterised in vitro model of the middle ear (ME) epithelium that replicates the complex cellular composition of the middle ear. Here, we report the development of a novel in vitro model of mouse middle ear epithelial cells (mMECs) at an air-liquid interface (ALI) that recapitulates the characteristics of the native murine ME epithelium. We demonstrate that mMECs undergo differentiation into the varied cell populations seen within the native middle ear. Proteomic analysis confirmed that the cultures secrete a multitude of innate defence proteins from their apical surface. We showed that the mMECs supported the growth of the otopathogen, nontypeable Haemophilus influenzae (NTHi), suggesting that the model can be successfully utilised to study host-pathogen interactions in the middle ear. Overall, our mMEC culture system can help to better understand the cell biology of the middle ear and improve our understanding of the pathophysiology of OM. The model also has the potential to serve as a platform for validation of treatments designed to reverse aspects of epithelial remodelling that underpin OM development. © 2016. Published by The Company of Biologists Ltd.

  5. Long-term evaluation of the effect of middle ear effusion on the vestibular system in children.

    PubMed

    Pazdro-Zastawny, Katarzyna; Pośpiech, Lucyna; Zatoński, Tomasz

    2018-06-01

    Otitis media with effusion (OME) is one of the most common clinical conditions in childhood. Fluid accumulation in the middle ear may impact inner ear. The purpose of this random sample cohort study was to investigate whether the past history of middle ear effusion has a long-term negative impact on the vestibular system in children. The study was carried out on 22 children aged 7-15 years who had undergone drainage of the middle ear 5 years before evaluation. The control group consisted of 29 healthy children aged 4-17 years. Vestibular function was examined using sway posturography and electronystagmography (ENG). The stabilogram parameters of the study group and the control group were compared. The field of developed area (FDA) and the average body sway velocity (ASV) were analyzed. Elevated stabilogram parameters of FDA and ASV, both with eyes open and eyes closed, were found in the study group. Statistically significant values (p < 0.05) were present for ASV with eyes open and with eyes closed. The ENG recordings were analyzed in both groups. In the study group, spontaneous nystagmus was observed in 40.9% of the children and positional nystagmus occurred in 63.6% of the children. According to tests, eye tracking test was impaired in 27.3% of cases. Rotatory chair testing revealed asymmetry in 18.2% of the children. The presence of effusion in the middle ear in the past has a negative impact on the vestibular part of the inner ear. Clinicians should be aware of the possible negative impact of middle ear effusion on the vestibular function in children with a history of otitis media with effusion. With seeimingly asymptomatic children clinicians should inquire parents about symptoms of dysequlibrium and imbalance. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Auditory alert systems with enhanced detectability

    NASA Technical Reports Server (NTRS)

    Begault, Durand R. (Inventor)

    2008-01-01

    Methods and systems for distinguishing an auditory alert signal from a background of one or more non-alert signals. In a first embodiment, a prefix signal, associated with an existing alert signal, is provided that has a signal component in each of three or more selected frequency ranges, with each signal component in each of three or more selected level at least 3-10 dB above an estimated background (non-alert) level in that frequency range. The alert signal may be chirped within one or more frequency bands. In another embodiment, an alert signal moves, continuously or discontinuously, from one location to another over a short time interval, introducing a perceived spatial modulation or jitter. In another embodiment, a weighted sum of background signals adjacent to each ear is formed, and the weighted sum is delivered to each ear as a uniform background; a distinguishable alert signal is presented on top of this weighted sum signal at one ear, or distinguishable first and second alert signals are presented at two ears of a subject.

  7. Use of the 'real-ear to dial difference' to derive real-ear SPL from hearing level obtained with insert earphones.

    PubMed

    Munro, K J; Lazenby, A

    2001-10-01

    The electroacoustic characteristics of a hearing instrument are normally selected for individuals using data obtained during audiological assessment. The precise inter-relationship between the electroacoustic and audiometric variables is most readily appreciated when they have been measured at the same reference point, such as the tympanic membrane. However, it is not always possible to obtain the real-ear sound pressure level (SPL) directly if this is below the noise floor of the probe-tube microphone system or if the subject is unco-operative. The real-ear SPL may be derived by adding the subject's real-ear to dial difference (REDD) acoustic transform to the audiometer dial setting. The aim of the present study was to confirm the validity of the Audioscan RM500 to measure the REDD with the ER-3A insert earphone. A probe-tube microphone was used to measure the real-ear SPL and REDD from the right ears of 16 adult subjects ranging in age from 22 to 41 years (mean age 27 years). Measurements were made from 0.25 kHz to 6 kHz at a dial setting of 70 dB with an ER-3A insert earphone and two earmould configurations: the EAR-LINK foam ear-tip and the subjects' customized skeleton earmoulds. Mean REDD varied as a function of frequency but was typically approximately 12 dB with a standard deviation (SD) of +/- 1.7 dB and +/- 2.7 dB for the foam ear-tip and customized earmould, respectively. The mean test-retest difference of the REDD varied with frequency but was typically 0.5 dB (SD 1 dB). Over the frequency range 0.5-4 kHz, the derived values were found to be within 5 dB of the measured values in 95% of subjects when using the EAR-LINK foam ear-tip and within 4 dB when using the skeleton earmould. The individually measured REDD transform can be used in clinical practice to derive a valid estimate of real-ear SPL when it has not been possible to measure this directly.

  8. Computer-Assisted Law Instruction: Clinical Education's Bionic Sibling

    ERIC Educational Resources Information Center

    Henn, Harry G.; Platt, Robert C.

    1977-01-01

    Computer-assisted instruction (CAI), like clinical education, has considerable potential for legal training. As an initial Cornell Law School experiment, a lesson in applying different corporate statutory dividend formulations, with a cross-section of balance sheets and other financial data, was used to supplement regular class assignments.…

  9. Lethal RPAs: Ethical Implications of Future Airpower Technology

    DTIC Science & Technology

    2013-04-01

    enhancements include cochlear implants, artificial vision, and bionic body parts. Significantly, this is also one of the Air Force goals as stated in...need courage and the warrior ethos in order to lead others into battle. Holding this capability in high esteem and ensuring more cross flow between

  10. Toward Neural Control of Prosthetic Devices

    DTIC Science & Technology

    2007-05-21

    A direct comparison of eye-centered and limb -centered reference frames for reach planning in the dorsal aspect of the premotor cortex. Journal of... Neuroprosthetics : In search of the sixth sense. Nature News Feature, 442:125; Is this the bionic man? Nature Editorial 442:109, 2006). 8) Churchland MM, Yu BM, Ryu

  11. Fluid dynamics vascular theory of brain and inner-ear function in traumatic brain injury: a translational hypothesis for diagnosis and treatment.

    PubMed

    Shulman, Abraham; Strashun, Arnold M

    2009-01-01

    It is hypothesized that in all traumatic brain injury (TBI) patients with a clinical history of closed or penetrating head injury, the initial head trauma is associated with a vibratory sensation and noise exposure, with resultant alteration in vascular supply to the structures and contents of the fluid compartments of brain and ear (i.e., the fluid dynamics vascular theory of brain-inner-ear function [FDVTBE]). The primary etiology-head trauma-results in an initial fluctuation, interference, or interaction in the normal fluid dynamics between brain and labyrinth of the inner ear, with a resultant clinical diversity of complaints varying in time of onset and severity. Normal function of the brain and ear is a reflection of a normal state of homeostasis between the fluid compartments in the brain of cerebrospinal fluid and perilymph-endolymph in the labyrinth of the ear. The normal homeostasis in the structures and contents between the two fluid compartment systems--intracerebral and intralabyrinthine--is controlled by mechanisms involved in the maintenance of normal pressures, water and electrolyte content, and neurotransmitter activities. The initial pathophysiology (a reflection of an alteration in the vascular supply to the brain-ear) is hypothesized to be an initial acute inflammatory response, persistence of which results in ischemia and an irreversible alteration in the involved neural substrates of brain-ear. Clinically, a chronic multisymptom complex becomes manifest. The multisymptom complex, individual for each TBI patient regardless of the diagnostic TBI category (i.e., mild, moderate, or severe), initially reflects processes of inflammation and ischemia which, in brain, result in brain volume loss identified as neurodegeneration and hydrocephalus ex vacuo or an alteration in cerebrospinal fluid production (i.e., pseudotumor cerebri) and, in ear, secondary endolymphatic hydrops with associated cochleovestibular complaints of hearing loss, tinnitus, vertigo, ear blockage, and hyperacusis. The FDVTBE integrates and translates a neurovascular hypothesis for Alzheimer's disease to TBI. This study presents an FDVTBE hypothesis of TBI to explain the clinical association of head trauma (TBI) and central nervous system neurodegeneration with multisensory complaints, highlighted by and focusing on cochleovestibular complaints. A clinical case report, previously published for demonstration of the cerebrovascular medical significance of a particular type of tinnitus, and evidence-based basic science and clinical medicine are cited to provide objective evidence in support and demonstration of the FDVTBE.

  12. Design and development of a ferroelectric micro photo detector for the bionic eye

    NASA Astrophysics Data System (ADS)

    Song, Yang

    Driven by no effective therapy for Retinitis Pigmentosa and Age Related Macular Degeneration, artificial vision through the development of an artificial retina that can be implanted into the human eye, is being addressed by the Bionic Eye. This dissertation focuses on the study of a photoferroelectric micro photo detector as an implantable retinal prosthesis for vision restoration in patients with above disorders. This implant uses an electrical signal to trigger the appropriate ocular cells of the vision system without resorting to wiring or electrode implantation. The research work includes fabrication of photoferroelectric thin film micro detectors, characterization of these photoferroelectric micro devices as photovoltaic cells, and Finite Element Method (FEM) modeling of the photoferroelectrics and their device-neuron interface. A ferroelectric micro detector exhibiting the photovoltaic effect (PVE) directly adds electrical potential to the neuron membrane outer wall at the focal adhesion regions. The electrical potential then generates a retinal cell membrane potential deflection through a newly developed Direct-Electric-Field-Coupling (DEFC) model. This model is quite different from the traditional electric current model because instead of current directly working on the cell membrane, the PVE current is used to generate a localized high electric potential in the focal adhesion region by working together with the anisotropic high internal impedance of ferroelectric thin films. General electrodes and silicon photodetectors do not have such anisotropy and high impedance, and thus they cannot generate DEFC. This mechanism investigation is very valuable, because it clearly shows that our artificial retina works in a way that is totally different from the traditional current stimulation methods.

  13. A Hydrodynamic Model of Transport in the Wheat Ear

    NASA Technical Reports Server (NTRS)

    Stieber, Joseph; Stieber, Joli; Bubenheim, David L.; Kliss, Mark (Technical Monitor)

    1996-01-01

    The vascular arrangement in the main axis (rachis) of the wheat ear, studied and reported in a previous paper by the same, described a circuit-cascade system consisting of capacitance and resistance passages (so-called RC-circuits). Some hydromechanic aspects (e.g., resonance, impulse control) of this asymmetric transport system and their possible role and importance in the fluid supply are discussed. A theoretical analysis of how this system works, as well as samples of practical application are presented.

  14. [Effects of electromagnetic fields emitted by cellular phone on auditory and vestibular labyrinth].

    PubMed

    Sievert, U; Eggert, S; Goltz, S; Pau, H W

    2007-04-01

    It is the subject of this study to investigate the biological effect of the HF radiation produced by the Global System for Mobile Communications-( GSM)-mobile phone on the inner ear with its sensors of the vestibular and auditive systems. Thermographic investigations made on various model materials and on the human temporal bone should show whether mobile phone does induce any increases of temperature which would lead to a relevant stimulus for the auditive and vestibular system or not. We carried out video-nystagmographic recordings of 13 subjects, brainstem electric response audiometry of 24 ears, and recordings of distorsion products of otoacoustic emissions of 20 ears. All tests were made with and without a mobile phone in use. The data was then analyzed for variation patterns in the functional parameters of the hearing and balance system that are subject to the (non)existence of electromagnetic radiation from the mobile phone. The thermographic investigations suggest that the mobile phone does not induce any increases of temperature which would lead to a relevant stimulus for the auditive and vestibular system. Video-nystagmographic recordings under field effect do not furnish any indication of vestibular reactions generated by field effects. Compared with the recording without field, the brainstem electric response audiometry under field effect did not reveal any changes of the parameters investigated, i. e. absolute latency of the peaks I, III, V and the interpeak latency between the peaks I and V. The distorsion products of otoacoustic emissions do not indicate, comparing the three measuring situations, i. e. before field effect, pulsed field and continuous field, any possible impacts of the HF field on the spectrum or levels of emissions for none of the probands. The investigations made show that the electromagnetic fields generated in using the mobile phone do not have an effect on the inner ear and auditive system to the colliculus inferior in the brainstem and on the vestibular receptors in the inner ear and the vestibular system.

  15. Development of a finite element model of the middle ear.

    PubMed

    Williams, K R; Blayney, A W; Rice, H J

    1996-01-01

    A representative finite element model of the healthy ear is developed commencing with a description of the decoupled isotropic tympanic membrane. This model was shown to vibrate in a manner similar to that found both numerically (1, 2) and experimentally (8). The introduction of a fibre system into the membrane matrix significantly altered the modes of vibration. The first mode "remains as a piston like movement as for the isotropic membrane. However, higher modes show a simpler vibration pattern similar to the second mode but with a varying axis of movement and lower amplitudes. The introduction of a malleus and incus does not change the natural frequencies or mode shapes of the membrane for certain support conditions. When constraints are imposed along the ossicular chain by simulation of a cochlear impedance term then significantly altered modes can occur. More recently a revised model of the ear has been developed by the inclusion of the outer ear canal. This discretisation uses geometries extracted from a Nuclear Magnetic resonance scan of a healthy subject and a crude inner ear model using stiffness parameters ultimately fixed through a parameter tuning process. The subsequently tuned model showed behaviour consistent with previous findings and should provide a good basis for subsequent modelling of diseased ears and assessment of the performance of middle ear prostheses.

  16. Non-invasive biophysical measurement of travelling waves in the insect inner ear

    PubMed Central

    2017-01-01

    Frequency analysis in the mammalian cochlea depends on the propagation of frequency information in the form of a travelling wave (TW) across tonotopically arranged auditory sensilla. TWs have been directly observed in the basilar papilla of birds and the ears of bush-crickets (Insecta: Orthoptera) and have also been indirectly inferred in the hearing organs of some reptiles and frogs. Existing experimental approaches to measure TW function in tetrapods and bush-crickets are inherently invasive, compromising the fine-scale mechanics of each system. Located in the forelegs, the bush-cricket ear exhibits outer, middle and inner components; the inner ear containing tonotopically arranged auditory sensilla within a fluid-filled cavity, and externally protected by the leg cuticle. Here, we report bush-crickets with transparent ear cuticles as potential model species for direct, non-invasive measuring of TWs and tonotopy. Using laser Doppler vibrometry and spectroscopy, we show that increased transmittance of light through the ear cuticle allows for effective non-invasive measurements of TWs and frequency mapping. More transparent cuticles allow several properties of TWs to be precisely recovered and measured in vivo from intact specimens. Our approach provides an innovative, non-invasive alternative to measure the natural motion of the sensilla-bearing surface embedded in the intact inner ear fluid. PMID:28573026

  17. Middle-ear velocity transfer function, cochlear input immittance, and middle-ear efficiency in chinchilla.

    PubMed

    Ravicz, Michael E; Rosowski, John J

    2013-10-01

    The transfer function H(V) between stapes velocity V(S) and sound pressure near the tympanic membrane P(TM) is a descriptor of sound transmission through the middle ear (ME). The ME power transmission efficiency (MEE), the ratio of sound power entering the cochlea to power entering the middle ear, was computed from H(V) measured in seven chinchilla ears and previously reported measurements of ME input admittance Y(TM) and ME pressure gain G(MEP) [Ravicz and Rosowski, J. Acoust. Soc. Am. 132, 2437-2454 (2012); J. Acoust. Soc. Am. 133, 2208-2223 (2013)] in the same ears. The ME was open, and a pressure sensor was inserted into the cochlear vestibule for most measurements. The cochlear input admittance Y(C) computed from H(V) and G(MEP) is controlled by a combination of mass and resistance and is consistent with a minimum-phase system up to 27 kHz. The real part Re{Y(C)}, which relates cochlear sound power to inner-ear sound pressure, decreased gradually with frequency up to 25 kHz and more rapidly above that. MEE was about 0.5 between 0.1 and 8 kHz, higher than previous estimates in this species, and decreased sharply at higher frequencies.

  18. Middle-ear velocity transfer function, cochlear input immittance, and middle-ear efficiency in chinchilla

    PubMed Central

    Ravicz, Michael E.; Rosowski, John J.

    2013-01-01

    The transfer function HV between stapes velocity VS and sound pressure near the tympanic membrane PTM is a descriptor of sound transmission through the middle ear (ME). The ME power transmission efficiency (MEE), the ratio of sound power entering the cochlea to power entering the middle ear, was computed from HV measured in seven chinchilla ears and previously reported measurements of ME input admittance YTM and ME pressure gain GMEP [Ravicz and Rosowski, J. Acoust. Soc. Am. 132, 2437–2454 (2012); J. Acoust. Soc. Am. 133, 2208–2223 (2013)] in the same ears. The ME was open, and a pressure sensor was inserted into the cochlear vestibule for most measurements. The cochlear input admittance YC computed from HV and GMEP is controlled by a combination of mass and resistance and is consistent with a minimum-phase system up to 27 kHz. The real part Re{YC}, which relates cochlear sound power to inner-ear sound pressure, decreased gradually with frequency up to 25 kHz and more rapidly above that. MEE was about 0.5 between 0.1 and 8 kHz, higher than previous estimates in this species, and decreased sharply at higher frequencies. PMID:24116422

  19. Gross and fine dissection of inner ear sensory epithelia in adult zebrafish (Danio rerio).

    PubMed

    Liang, Jin; Burgess, Shawn M

    2009-05-08

    Neurosensory epithelia in the inner ear are the crucial structures for hearing and balance functions. Therefore, it is important to understand the cellular and molecular features of the epithelia, which are mainly composed of two types of cells: hair cells (HCs) and supporting cells (SCs). Here we choose to study the inner ear sensory epithelia in adult zebrafish not only because the epithelial structures are highly conserved in all vertebrates studied, but also because the adult zebrafish is able to regenerate HCs, an ability that mammals lose shortly after birth. We use the inner ear of adult zebrafish as a model system to study the mechanisms of inner ear HC regeneration in adult vertebrates that could be helpful for clinical therapy of hearing/balance deficits in human as a result of HC loss. Here we demonstrate how to do gross and fine dissections of inner ear sensory epithelia in adult zebrafish. The gross dissection removes the tissues surrounding the inner ear and is helpful for preparing tissue sections, which allows us to examine the detailed structure of the sensory epithelia. The fine dissection cleans up the non-sensory-epithelial tissues of each individual epithelium and enables us to examine the heterogeneity of the whole epithelium easily in whole-mount epithelial samples.

  20. Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies

    PubMed Central

    Fritzsch, Bernd; Straka, Hans

    2014-01-01

    Among the major distance senses of vertebrates, the ear is unique in its complex morphological changes during evolution. Conceivably, these changes enable the ear to adapt toward sensing various physically well-characterized stimuli. This review develops a scenario that integrates sensory cell with organ evolution. We propose that molecular and cellular evolution of the vertebrate hair cells occurred prior to the formation of the vertebrate ear. We previously proposed that the genes driving hair cell differentiation, were aggregated in the otic region through developmental re-patterning that generated a unique vertebrate embryonic structure, the otic placode. In agreement with the presence of graviceptive receptors in many vertebrate outgroups, it is likely that the vertebrate ear originally functioned as a simple gravity-sensing organ. Based on the rare occurrence of angular acceleration receptors in vertebrate outgroups, we further propose that the canal system evolved with a more sophisticated ear morphogenesis. This evolving morphogenesis obviously turned the initial otocyst into a complex set of canals and recesses, harboring multiple sensory epithelia each adapted to the acquisition of a specific aspect of a given physical stimulus. As support for this evolutionary progression, we provide several details of the molecular basis of ear development. PMID:24281353

  1. Hyperspectral imaging system for whole corn ear surface inspection

    NASA Astrophysics Data System (ADS)

    Yao, Haibo; Kincaid, Russell; Hruska, Zuzana; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2013-05-01

    Aflatoxin is a mycotoxin produced mainly by Aspergillus flavus (A.flavus) and Aspergillus parasitiucus fungi that grow naturally in corn. Very serious health problems such as liver damage and lung cancer can result from exposure to high toxin levels in grain. Consequently, many countries have established strict guidelines for permissible levels in consumables. Conventional chemical-based analytical methods used to screen for aflatoxin such as thin-layer chromatography (TLC) and high performance liquid chromatography (HPLC) are time consuming, expensive, and require the destruction of samples as well as proper training for data interpretation. Thus, it has been a continuing effort within the research community to find a way to rapidly and non-destructively detect and possibly quantify aflatoxin contamination in corn. One of the more recent developments in this area is the use of spectral technology. Specifically, fluorescence hyperspectral imaging offers a potential rapid, and non-invasive method for contamination detection in corn infected with toxigenic A.flavus spores. The current hyperspectral image system is designed for scanning flat surfaces, which is suitable for imaging single or a group of corn kernels. In the case of a whole corn cob, it is preferred to be able to scan the circumference of the corn ear, appropriate for whole ear inspection. This paper discusses the development of a hyperspectral imaging system for whole corn ear imaging. The new instrument is based on a hyperspectral line scanner using a rotational stage to turn the corn ear.

  2. THE POTENTIAL ROLE OF ENDOGENOUS STEM CELLS IN REGENERATION OF THE INNER EAR

    PubMed Central

    Martinez-Monedero, Rodrigo; Oshima, Kazuo; Heller, Stefan; Edge, Albert S.B.

    2007-01-01

    Stem cells in various mammalian tissues retain the capacity to renew themselves and may be able to restore damaged tissue. Their existence has been proven by genetic tracer studies that demonstrate their differentiation into multiple tissue types and by their ability to self-renew through proliferation. Stem cells from the adult nervous system proliferate to form clonal floating colonies called spheres in vitro, and recent studies have demonstrated sphere formation by cells in the cochlea in addition to the vestibular system and the auditory ganglia, indicating that these tissues contain cells with stem cell properties. The presence of stem cells in the inner ear raises the hope of regeneration of mammalian inner ear cells but is difficult to correlate with the lack spontaneous regeneration seen in the inner ear after tissue damage. Loss of stem cells postnatally in the cochlea may correlate with the loss of regenerative capacity and may limit our ability to stimulate regeneration. Retention of sphere forming capacity in adult vestibular tissues suggests that the limited capacity for repair may be attributed to the continued presence of progenitor cells. Future strategies for regeneration must consider the distribution of endogenous stem cells in the inner ear and whether cells with the capacity for regeneration are retained. PMID:17321086

  3. The nature of the autonomic dysfunction in multiple system atrophy

    NASA Technical Reports Server (NTRS)

    Parikh, Samir M.; Diedrich, Andre; Biaggioni, Italo; Robertson, David

    2002-01-01

    The concept that multiple system atrophy (MSA, Shy-Drager syndrome) is a disorder of the autonomic nervous system is several decades old. While there has been renewed interest in the movement disorder associated with MSA, two recent consensus statements confirm the centrality of the autonomic disorder to the diagnosis. Here, we reexamine the autonomic pathophysiology in MSA. Whereas MSA is often thought of as "autonomic failure", new evidence indicates substantial persistence of functioning sympathetic and parasympathetic nerves even in clinically advanced disease. These findings help explain some of the previously poorly understood features of MSA. Recognition that MSA entails persistent, constitutive autonomic tone requires a significant revision of our concepts of its diagnosis and therapy. We will review recent evidence bearing on autonomic tone in MSA and discuss their therapeutic implications, particularly in terms of the possible development of a bionic baroreflex for better control of blood pressure.

  4. Multicentre investigation on electrically evoked compound action potential and stapedius reflex: how do these objective measures relate to implant programming parameters?

    PubMed

    Van Den Abbeele, Thierry; Noël-Petroff, Nathalie; Akin, Istemihan; Caner, Gül; Olgun, Levent; Guiraud, Jeanne; Truy, Eric; Attias, Josef; Raveh, Eyal; Belgin, Erol; Sennaroglu, Gonca; Basta, Dietmar; Ernst, Arneborg; Martini, Alessandro; Rosignoli, Monica; Levi, Haya; Elidan, Joseph; Benghalem, Abdelhamid; Amstutz-Montadert, Isabelle; Lerosey, Yannick; De Vel, Eddy; Dhooge, Ingeborg; Hildesheimer, Minka; Kronenberg, Jona; Arnold, Laure

    2012-02-01

    The aims of this study were to collect data on electrically evoked compound action potential (eCAP) and electrically evoked stapedius reflex thresholds (eSRT) in HiResolution(TM) cochlear implant (CI) users, and to explore the relationships between these objective measures and behavioural measures of comfort levels (M-levels). A prospective study on newly implanted subjects was designed. The eCAP was measured intra-operatively and at first fitting through neural response imaging (NRI), using the SoundWave(TM) fitting software. The eSRT was measured intra-operatively by visual monitoring of the stapes, using both single-electrode stimulation and speech bursts (four electrodes stimulated at the same time). Measures of M-levels were performed according to standard clinical practice and collected at first fitting, 3 and 6 months of CI use. One hundred seventeen subjects from 14 centres, all implanted unilaterally with a HiResolution CII Bionic Ear(®) or HiRes 90K(®), were included in the study. Speech burst stimulation elicited a significantly higher eSRT success rate than single-electrode stimulation, 84 vs. 64% respectively. The NRI success rate was 81% intra-operatively, significantly increasing to 96% after 6 months. Fitting guidelines were defined on the basis of a single NRI measurement. Correlations, analysis of variance, and multiple regression analysis were applied to generate a predictive model for the M-levels. Useful insights were produced into the behaviour of objective measures according to time, electrode location, and fitting parameters. They may usefully assist in programming the CI when no reliable feedback is obtained through standard behavioural procedures.

  5. 15 CFR 30.1 - Purpose and definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in place of a proof of filing citation when the AES or AESDirect computer systems experiences a major... goods and technologies; enforcing export control, antiboycott, and public safety laws; cooperating with... of the EAR. Supplement No. 2 to Part 774 of the EAR contains the General Technology and Software...

  6. 15 CFR 30.1 - Purpose and definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in place of a proof of filing citation when the AES or AESDirect computer systems experiences a major... goods and technologies; enforcing export control, antiboycott, and public safety laws; cooperating with... of the EAR. Supplement No. 2 to Part 774 of the EAR contains the General Technology and Software...

  7. 15 CFR 30.1 - Purpose and definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... in place of a proof of filing citation when the AES or AESDirect computer systems experiences a major... goods and technologies; enforcing export control, antiboycott, and public safety laws; cooperating with... of the EAR. Supplement No. 2 to Part 774 of the EAR contains the General Technology and Software...

  8. 15 CFR 30.1 - Purpose and definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... in place of a proof of filing citation when the AES or AESDirect computer systems experiences a major... goods and technologies; enforcing export control, antiboycott, and public safety laws; cooperating with... of the EAR. Supplement No. 2 to Part 774 of the EAR contains the General Technology and Software...

  9. 15 CFR 30.1 - Purpose and definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... in place of a proof of filing citation when the AES or AESDirect computer systems experiences a major... goods and technologies; enforcing export control, antiboycott, and public safety laws; cooperating with... of the EAR. Supplement No. 2 to Part 774 of the EAR contains the General Technology and Software...

  10. Noise Attenuation Loss Due to Wearing APEL Eye Protection with Ear-Muff Style Headset Systems

    DTIC Science & Technology

    2012-02-14

    USAARL Report No. 2012-09 Noise Attenuation Loss Due to Wearing APEL Eye Protection with Ear-Muff Style Headset Systems By Efrem Reeves Elmaree...Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other person designated to request...not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation

  11. Emergency Victim Care. A Training Manual for Emergency Medical Technicians. Module 10. Injuries of the Eye, Ear, Nose, Abdomen, Central Nervous System and Genitalia. Burns and Environmental Injuries. Revised.

    ERIC Educational Resources Information Center

    Ohio State Dept. of Education, Columbus. Div. of Vocational Education.

    This training manual for emergency medical technicians, one of 14 modules that comprise the Emergency Victim Care textbook, covers injuries of the eyes, ears, nose, abdomen, central nervous system (CNS), and genitalia; burns; and environmental injuries. Objectives stated for the two chapters are for the student to be able to describe procedures…

  12. Role of mantle flow in Nubia-Somalia plate divergence

    NASA Astrophysics Data System (ADS)

    Stamps, D. S.; Iaffaldano, G.; Calais, E.

    2015-01-01

    Present-day continental extension along the East African Rift System (EARS) has often been attributed to diverging sublithospheric mantle flow associated with the African Superplume. This implies a degree of viscous coupling between mantle and lithosphere that remains poorly constrained. Recent advances in estimating present-day opening rates along the EARS from geodesy offer an opportunity to address this issue with geodynamic modeling of the mantle-lithosphere system. Here we use numerical models of the global mantle-plates coupled system to test the role of present-day mantle flow in Nubia-Somalia plate divergence across the EARS. The scenario yielding the best fit to geodetic observations is one where torques associated with gradients of gravitational potential energy stored in the African highlands are resisted by weak continental faults and mantle basal drag. These results suggest that shear tractions from diverging mantle flow play a minor role in present-day Nubia-Somalia divergence.

  13. Congenital atresia of the external ear and tinnitus: a new syndrome.

    PubMed

    Shulman, Abraham; Strashun, Arnold M; Goldstein, Barbara; Lenhardt, Martin L

    2006-01-01

    Congenital atresia of the external ears and severe tinnitus has been reported by two patients to be contralateral to the atretic ear. The use of the nuclear medicine imaging technique of single-photon emission computed tomography (SPECT) of brain has demonstrated hypoperfusion in brain areas supplied by the middle cerebral artery on the side of the atretic ear. Ultrahigh-frequency audiometry (UHFA) has revealed a bilateral loss of hearing greater than expected for the age of affected patients. Quantitative electroencephalography (QEEG) has shown a significant central nervous system electrical dysfunction correlated with the SPECT of brain findings. One case is reported in detail at this time. Completion of the medical audiological tinnitus patient protocol, including SPECT of brain, UHFA, and QEEG, accurately established the clinical tinnitus diagnosis of predominantly a central-type tinnitus, a clinical hypothesis that the medical significance of the tinnitus is a "soft" sign of cerebrovascular disease, and provided a rationale for treatment directed to a presumed ischemia of brain based on a receptor-targeted therapy targeted to the GABA-A receptor, resulting in significant tinnitus relief. Questions that have arisen include (1) the incidence of occurrence of hypoperfusion of the middle cerebral artery in congenital atresia patients; (2) implications and long-term consequences of this finding in this patient population for development of cerebrovascular disease; (3) brain plasticity for tinnitus relief (i.e., neuronal reprogramming, particularly in response to treatment recommendations for complaints of the cochleovestibular system in general and specifically for tinnitus); (4) the clinical significance of the UHFA thresholds of bilateral hearing loss greater than expected for the age of the patient; and (5) whether congenital atresia of the external ear may be part of a syndrome that includes hypoperfusion in brain areas supplied by the middle cerebral artery on the side of the atretic ear, ultra-high-frequency bilateral loss of hearing greater than expected for the age of the patient, and significant central nervous system electrical dysfunction. As far as we can determine, these findings, highlighted by the brain SPECT, have not previously been reported in patients with congenital atresia of the external ear.

  14. Travel in Adverse Weather Using Electronic Mobility Guidance Devices

    ERIC Educational Resources Information Center

    Farmer, Leicester W.

    1975-01-01

    After a discussion of the required characteristics of an ideal aid for blind individuals traveling in adverse weather, four electronic mobility guidance devices- the Mowat Sonar Sensor, the Russell E Model Pathsounder, the Bionic C-5 Laser Cane, and the Mark II Binaural Sensory Aid-are described in detail. (Author/SB)

  15. Research on anti crack mechanism of bionic coupling brake disc

    NASA Astrophysics Data System (ADS)

    Shi, Lifeng; Yang, Xiao; Zheng, Lingnan; Wu, Can; Ni, Jing

    2017-09-01

    According to the biological function of fatigue resistance possessed by biology, this study designed a Bionic Coupling Brake Disc (BCBD) which can inhibit crack propagation as the result of improving fatigue property. Thermal stress field of brake disc was calculated under emergency working condition, and circumferential and radial stress field which lead to fatigue failure of brake disc were investigated simultaneously. Results showed that the maximum temperature of surface reached 890°C and the maximum residual tensile stress was 207 Mpa when the initial velocity of vehicle was 200 km/h. Based on the theory of elastic plastic fracture mechanics, the crack opening displacement and the crack front J integrals of the BCBD and traditional brake disc (TBD) with pre-cracking were calculated, and the strength of crack front was compared. Results revealed the growth behavior of fatigue crack located on surface of brake disc, and proved the anti fatigue resistance of BCBD was better, and the strength of crack resistance of BCBD was much stronger than that of TBD. This simulation research provided significant references for optimization and manufacturing of BCBD.

  16. Cell-Based Strategies for Meniscus Tissue Engineering

    PubMed Central

    Niu, Wei; Guo, Weimin; Han, Shufeng; Zhu, Yun; Liu, Shuyun; Guo, Quanyi

    2016-01-01

    Meniscus injuries remain a significant challenge due to the poor healing potential of the inner avascular zone. Following a series of studies and clinical trials, tissue engineering is considered a promising prospect for meniscus repair and regeneration. As one of the key factors in tissue engineering, cells are believed to be highly beneficial in generating bionic meniscus structures to replace injured ones in patients. Therefore, cell-based strategies for meniscus tissue engineering play a fundamental role in meniscal regeneration. According to current studies, the main cell-based strategies for meniscus tissue engineering are single cell type strategies; cell coculture strategies also were applied to meniscus tissue engineering. Likewise, on the one side, the zonal recapitulation strategies based on mimicking meniscal differing cells and internal architectures have received wide attentions. On the other side, cell self-assembling strategies without any scaffolds may be a better way to build a bionic meniscus. In this review, we primarily discuss cell seeds for meniscus tissue engineering and their application strategies. We also discuss recent advances and achievements in meniscus repair experiments that further improve our understanding of meniscus tissue engineering. PMID:27274735

  17. Acoustical transmission-line model of the middle-ear cavities and mastoid air cells.

    PubMed

    Keefe, Douglas H

    2015-04-01

    An acoustical transmission line model of the middle-ear cavities and mastoid air cell system (MACS) was constructed for the adult human middle ear with normal function. The air-filled cavities comprised the tympanic cavity, aditus, antrum, and MACS. A binary symmetrical airway branching model of the MACS was constructed using an optimization procedure to match the average total volume and surface area of human temporal bones. The acoustical input impedance of the MACS was calculated using a recursive procedure, and used to predict the input impedance of the middle-ear cavities at the location of the tympanic membrane. The model also calculated the ratio of the acoustical pressure in the antrum to the pressure in the middle-ear cavities at the location of the tympanic membrane. The predicted responses were sensitive to the magnitude of the viscothermal losses within the MACS. These predicted input impedance and pressure ratio functions explained the presence of multiple resonances reported in published data, which were not explained by existing MACS models.

  18. Developmental evolutionary biology of the vertebrate ear: conserving mechanoelectric transduction and developmental pathways in diverging morphologies

    NASA Technical Reports Server (NTRS)

    Fritzsch, B.; Beisel, K. W.; Bermingham, N. A.

    2000-01-01

    This brief overview shows that a start has been made to molecularly dissect vertebrate ear development and its evolutionary conservation to the development of the insect hearing organ. However, neither the patterning process of the ear nor the patterning process of insect sensory organs is sufficiently known at the moment to provide more than a first glimpse. Moreover, hardly anything is known about otocyst development of the cephalopod molluscs, another triploblast lineage that evolved complex 'ears'. We hope that the apparent conserved functional and cellular components present in the ciliated sensory neurons/hair cells will also be found in the genes required for vertebrate ear and insect sensory organ morphogenesis (Fig. 3). Likewise, we expect that homologous pre-patterning genes will soon be identified for the non-sensory cell development, which is more than a blocking of neuronal development through the Delta/Notch signaling system. Generation of the apparently unique ear could thus represent a multiplication of non-sensory cells by asymmetric and symmetric divisions as well as modification of existing patterning process by implementing novel developmental modules. In the final analysis, the vertebrate ear may come about by increasing the level of gene interactions in an already existing and highly conserved interactive cascade of bHLH genes. Since this was apparently achieved in all three lineages of triploblasts independently (Fig. 3), we now need to understand how much of the morphogenetic cascades are equally conserved across phyla to generate complex ears. The existing mutations in humans and mice may be able to point the direction of future research to understand the development of specific cell types and morphologies in the formation of complex arthropod, cephalopod, and vertebrate 'ears'.

  19. Characterizing the ear canal acoustic reflectance and impedance by pole-zero fitting

    PubMed Central

    Robinson, Sarah R.; Nguyen, Cac T.; Allen, Jont B.

    2013-01-01

    This study characterizes middle ear complex acoustic reflectance (CAR) and impedance by fitting poles and zeros to real-ear measurements. The goal of this work is to establish a quantitative connection between pole-zero locations and the underlying physical properties of CAR data. Most previous studies have analyzed CAR magnitude; while the magnitude accounts for reflected power, it does not encode latency information. Thus, an analysis that studies the real and imaginary parts of the data together could be more powerful. Pole-zero fitting of CAR data is examined using data compiled from various studies, dating back to Voss and Allen (1994). Recent CAR measurements were taken using a middle ear acoustic power analyzer (MEPA) system (HearID, Mimosa Acoustics), which makes complex acoustic impedance and reflectance measurements in the ear canal over the 0.2 to 6.0 kHz frequency range. Pole-zero fits to measurements over this range are achieved with an average RMS relative error of less than 3% using 12 poles. Factoring the reflectance fit into its all-pass and minimum-phase components approximates the effect of the ear canal, allowing for comparison across measurements. It was found that individual CAR magnitude variations for normal middle ears in the 1 to 4 kHz range often give rise to closely-placed pole-zero pairs, and that the locations of the poles and zeros in the s-plane may differ between normal and pathological middle ears. This study establishes a methodology for examining the physical and mathematical properties of CAR using a concise parametric model. Pole-zero modeling shows promise for precise parameterization of CAR data and for identification of middle ear pathologies. PMID:23524141

  20. Comparison between Scalp EEG and Behind-the-Ear EEG for Development of a Wearable Seizure Detection System for Patients with Focal Epilepsy

    PubMed Central

    Gu, Ying; Cleeren, Evy; Dan, Jonathan; Claes, Kasper; Hunyadi, Borbála

    2017-01-01

    A wearable electroencephalogram (EEG) device for continuous monitoring of patients suffering from epilepsy would provide valuable information for the management of the disease. Currently no EEG setup is small and unobtrusive enough to be used in daily life. Recording behind the ear could prove to be a solution to a wearable EEG setup. This article examines the feasibility of recording epileptic EEG from behind the ear. It is achieved by comparison with scalp EEG recordings. Traditional scalp EEG and behind-the-ear EEG were simultaneously acquired from 12 patients with temporal, parietal, or occipital lobe epilepsy. Behind-the-ear EEG consisted of cross-head channels and unilateral channels. The analysis on Electrooculography (EOG) artifacts resulting from eye blinking showed that EOG artifacts were absent on cross-head channels and had significantly small amplitudes on unilateral channels. Temporal waveform and frequency content during seizures from behind-the-ear EEG visually resembled that from scalp EEG. Further, coherence analysis confirmed that behind-the-ear EEG acquired meaningful epileptic discharges similarly to scalp EEG. Moreover, automatic seizure detection based on support vector machine (SVM) showed that comparable seizure detection performance can be achieved using these two recordings. With scalp EEG, detection had a median sensitivity of 100% and a false detection rate of 1.14 per hour, while, with behind-the-ear EEG, it had a median sensitivity of 94.5% and a false detection rate of 0.52 per hour. These findings demonstrate the feasibility of detecting seizures from EEG recordings behind the ear for patients with focal epilepsy. PMID:29295522

  1. Ear Structures of the Naked Mole-Rat, Heterocephalus glaber, and Its Relatives (Rodentia: Bathyergidae)

    PubMed Central

    Mason, Matthew J.; Cornwall, Hannah L.; Smith, Ewan St. J.

    2016-01-01

    Although increasingly popular as a laboratory species, very little is known about the peripheral auditory system of the naked mole-rat, Heterocephalus glaber. In this study, middle and inner ears of naked mole-rats of a range of ages were examined using micro-computed tomography and dissection. The ears of five other bathyergid species (Bathyergus suillus, Cryptomys hottentotus, Fukomys micklemi, Georychus capensis and Heliophobius argenteocinereus) were examined for comparative purposes. The middle ears of bathyergids show features commonly found in other members of the Ctenohystrica rodent clade, including a fused malleus and incus, a synovial stapedio-vestibular articulation and the loss of the stapedius muscle. Heterocephalus deviates morphologically from the other bathyergids examined in that it has a more complex mastoid cavity structure, poorly-ossified processes of the malleus and incus, a ‘columelliform’ stapes and fewer cochlear turns. Bathyergids have semicircular canals with unusually wide diameters relative to their radii of curvature. How the lateral semicircular canal reaches the vestibule differs between species. Heterocephalus has much more limited high-frequency hearing than would be predicted from its small ear structures. The spongy bone forming its ossicular processes, the weak incudo-stapedial articulation, the columelliform stapes and (compared to other bathyergids) reduced cochlear coiling are all potentially degenerate features which might reflect a lack of selective pressure on its peripheral auditory system. Substantial intraspecific differences were found in certain middle and inner ear structures, which might also result from relaxed selective pressures. However, such interpretations must be treated with caution in the absence of experimental evidence. PMID:27926945

  2. The Auditory System of the Dipteran Parasitoid Emblemasoma auditrix (Sarcophagidae).

    PubMed

    Tron, Nanina; Stölting, Heiko; Kampschulte, Marian; Martels, Gunhild; Stumpner, Andreas; Lakes-Harlan, Reinhard

    2016-01-01

    Several taxa of insects evolved a tympanate ear at different body positions, whereby the ear is composed of common parts: a scolopidial sense organ, a tracheal air space, and a tympanal membrane. Here, we analyzed the anatomy and physiology of the ear at the ventral prothorax of the sarcophagid fly, Emblemasoma auditrix (Soper). We used micro-computed tomography to analyze the ear and its tracheal air space in relation to the body morphology. Both tympana are separated by a small cuticular bridge, face in the same frontal direction, and are backed by a single tracheal enlargement. This enlargement is connected to the anterior spiracles at the dorsofrontal thorax and is continuous with the tracheal network in the thorax and in the abdomen. Analyses of responses of auditory afferents and interneurons show that the ear is broadly tuned, with a sensitivity peak at 5 kHz. Single-cell recordings of auditory interneurons indicate a frequency- and intensity-dependent tuning, whereby some neurons react best to 9 kHz, the peak frequency of the host's calling song. The results are compared to the convergently evolved ear in Tachinidae (Diptera). © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.

  3. The Auditory System of the Dipteran Parasitoid Emblemasoma auditrix (Sarcophagidae)

    PubMed Central

    Tron, Nanina; Stölting, Heiko; Kampschulte, Marian; Martels, Gunhild; Stumpner, Andreas; Lakes-Harlan, Reinhard

    2016-01-01

    Several taxa of insects evolved a tympanate ear at different body positions, whereby the ear is composed of common parts: a scolopidial sense organ, a tracheal air space, and a tympanal membrane. Here, we analyzed the anatomy and physiology of the ear at the ventral prothorax of the sarcophagid fly, Emblemasoma auditrix (Soper). We used micro-computed tomography to analyze the ear and its tracheal air space in relation to the body morphology. Both tympana are separated by a small cuticular bridge, face in the same frontal direction, and are backed by a single tracheal enlargement. This enlargement is connected to the anterior spiracles at the dorsofrontal thorax and is continuous with the tracheal network in the thorax and in the abdomen. Analyses of responses of auditory afferents and interneurons show that the ear is broadly tuned, with a sensitivity peak at 5 kHz. Single-cell recordings of auditory interneurons indicate a frequency- and intensity-dependent tuning, whereby some neurons react best to 9 kHz, the peak frequency of the host’s calling song. The results are compared to the convergently evolved ear in Tachinidae (Diptera). PMID:27538415

  4. A prediction of the minke whale (Balaenoptera acutorostrata) middle-ear transfer function.

    PubMed

    Tubelli, Andrew A; Zosuls, Aleks; Ketten, Darlene R; Yamato, Maya; Mountain, David C

    2012-11-01

    The lack of baleen whale (Cetacea Mysticeti) audiograms impedes the assessment of the impacts of anthropogenic noise on these animals. Estimates of audiograms, which are difficult to obtain behaviorally or electrophysiologically for baleen whales, can be made by simulating the audiogram as a series of components representing the outer, middle, and inner ear (Rosowski, 1991; Ruggero and Temchin, 2002). The middle-ear portion of the system can be represented by the middle-ear transfer function (METF), a measure of the transmission of acoustic energy from the external ear to the cochlea. An anatomically accurate finite element model of the minke whale (Balaenoptera acutorostrata) middle ear was developed to predict the METF for a mysticete species. The elastic moduli of the auditory ossicles were measured by using nanoindentation. Other mechanical properties were estimated from experimental stiffness measurements or from published values. The METF predicted a best frequency range between approximately 30 Hz and 7.5 kHz or between 100 Hz and 25 kHz depending on stimulation location. Parametric analysis found that the most sensitive parameters are the elastic moduli of the glove finger and joints and the Rayleigh damping stiffness coefficient β. The predicted hearing range matches well with the vocalization range.

  5. Isolation of sphere-forming stem cells from the mouse inner ear.

    PubMed

    Oshima, Kazuo; Senn, Pascal; Heller, Stefan

    2009-01-01

    The mammalian inner ear has very limited ability to regenerate lost sensory hair cells. This deficiency becomes apparent when hair cell loss leads to hearing loss as a result of either ototoxic insult or the aging process. Coincidently, with this inability to regenerate lost hair cells, the adult cochlea does not appear to harbor cells with a proliferative capacity that could serve as progenitor cells for lost cells. In contrast, adult mammalian vestibular sensory epithelia display a limited ability for hair cell regeneration, and sphere-forming cells with stem cell features can be isolated from the adult murine vestibular system. The neonatal inner ear, however, does harbor sphere-forming stem cells residing in cochlear and vestibular tissues. Here, we provide protocols to isolate sphere-forming stem cells from neonatal vestibular and cochlear sensory epithelia as well as from the spiral ganglion. We further describe procedures for sphere propagation, cell differentiation, and characterization of inner ear cell types derived from spheres. Sphere-forming stem cells from the mouse inner ear are an important tool for the development of cellular replacement strategies of damaged inner ears and are a bona fide progenitor cell source for transplantation studies.

  6. An insect-inspired bionic sensor for tactile localization and material classification with state-dependent modulation

    PubMed Central

    Patanè, Luca; Hellbach, Sven; Krause, André F.; Arena, Paolo; Dürr, Volker

    2012-01-01

    Insects carry a pair of antennae on their head: multimodal sensory organs that serve a wide range of sensory-guided behaviors. During locomotion, antennae are involved in near-range orientation, for example in detecting, localizing, probing, and negotiating obstacles. Here we present a bionic, active tactile sensing system inspired by insect antennae. It comprises an actuated elastic rod equipped with a terminal acceleration sensor. The measurement principle is based on the analysis of damped harmonic oscillations registered upon contact with an object. The dominant frequency of the oscillation is extracted to determine the distance of the contact point along the probe and basal angular encoders allow tactile localization in a polar coordinate system. Finally, the damping behavior of the registered signal is exploited to determine the most likely material. The tactile sensor is tested in four approaches with increasing neural plausibility: first, we show that peak extraction from the Fourier spectrum is sufficient for tactile localization with position errors below 1%. Also, the damping property of the extracted frequency is used for material classification. Second, we show that the Fourier spectrum can be analysed by an Artificial Neural Network (ANN) which can be trained to decode contact distance and to classify contact materials. Thirdly, we show how efficiency can be improved by band-pass filtering the Fourier spectrum by application of non-negative matrix factorization. This reduces the input dimension by 95% while reducing classification performance by 8% only. Finally, we replace the FFT by an array of spiking neurons with gradually differing resonance properties, such that their spike rate is a function of the input frequency. We show that this network can be applied to detect tactile contact events of a wheeled robot, and how detrimental effects of robot velocity on antennal dynamics can be suppressed by state-dependent modulation of the input signals. PMID:23055967

  7. SU-E-T-570: Management of Radiation Oncology Patients with Cochlear Implant and Other Bionic Devices in the Brain and Head and Neck Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, F.Q; Chen, Z; Nath, R

    Purpose: To investigate the current status of clinical usage of cochlear implant (CI) and other bionic devices (BD) in the brain and head and neck regions (BH and N) and their management in patients during radiotherapy to ensure patient health and safety as well as optimum radiation delivery. Methods: Literature review was performed with both CIs and radiotherapy and their variants as keywords in PubMed, INSPEC and other sources. The focus was on CIs during radiotherapy, but it also included other BDs in BHȦN, such as auditory brainstem implant, bionic retinal implant, and hearing aids, among others. Results: Interactions betweenmore » CIs and radiation may cause CIs malfunction. The presence of CIs may also cause suboptimum dose distribution if a treatment plan was not well designed. A few studies were performed for the hearing functions of CIs under irradiations of 4 MV and 6 MV x-rays. However, x-rays with higher energies (10 to 18 MV) broadly used in radiotherapy have not been explored. These higher energetic beams are more damaging to electronics due to strong penetrating power and also due to neutrons generated in the treatment process. Modern CIs are designed with more and more complicated integrated circuits, which may be more susceptible to radiation damage and malfunction. Therefore, careful management is important for safety and treatment outcomes. Conclusion: Although AAPM TG-34, TG-63, and TG-203 (update of TG-34, not published yet) reports may be referenced for management of CIs and other BDs in the brain and H and N regions, a site- and device-specified guideline should be developed for CIs and other BDs. Additional evaluation of CI functions under clinically relevant set-ups should also be performed to provide clinicians with better knowledge in clinical decision making.« less

  8. Whole-mount Confocal Microscopy for Adult Ear Skin: A Model System to Study Neuro-vascular Branching Morphogenesis and Immune Cell Distribution.

    PubMed

    Yamazaki, Tomoko; Li, Wenling; Mukouyama, Yoh-Suke

    2018-03-29

    Here, we present a protocol of a whole-mount adult ear skin imaging technique to study comprehensive three-dimensional neuro-vascular branching morphogenesis and patterning, as well as immune cell distribution at a cellular level. The analysis of peripheral nerve and blood vessel anatomical structures in adult tissues provides some insights into the understanding of functional neuro-vascular wiring and neuro-vascular degeneration in pathological conditions such as wound healing. As a highly informative model system, we have focused our studies on adult ear skin, which is readily accessible for dissection. Our simple and reproducible protocol provides an accurate depiction of the cellular components in the entire skin, such as peripheral nerves (sensory axons, sympathetic axons, and Schwann cells), blood vessels (endothelial cells and vascular smooth muscle cells), and inflammatory cells. We believe this protocol will pave the way to investigate morphological abnormalities in peripheral nerves and blood vessels as well as the inflammation in the adult ear skin under different pathological conditions.

  9. Auditory Brainstem Circuits That Mediate the Middle Ear Muscle Reflex

    PubMed Central

    Mukerji, Sudeep; Windsor, Alanna Marie; Lee, Daniel J.

    2010-01-01

    The middle ear muscle (MEM) reflex is one of two major descending systems to the auditory periphery. There are two middle ear muscles (MEMs): the stapedius and the tensor tympani. In man, the stapedius contracts in response to intense low frequency acoustic stimuli, exerting forces perpendicular to the stapes superstructure, increasing middle ear impedance and attenuating the intensity of sound energy reaching the inner ear (cochlea). The tensor tympani is believed to contract in response to self-generated noise (chewing, swallowing) and nonauditory stimuli. The MEM reflex pathways begin with sound presented to the ear. Transduction of sound occurs in the cochlea, resulting in an action potential that is transmitted along the auditory nerve to the cochlear nucleus in the brainstem (the first relay station for all ascending sound information originating in the ear). Unknown interneurons in the ventral cochlear nucleus project either directly or indirectly to MEM motoneurons located elsewhere in the brainstem. Motoneurons provide efferent innervation to the MEMs. Although the ascending and descending limbs of these reflex pathways have been well characterized, the identity of the reflex interneurons is not known, as are the source of modulatory inputs to these pathways. The aim of this article is to (a) provide an overview of MEM reflex anatomy and physiology, (b) present new data on MEM reflex anatomy and physiology from our laboratory and others, and (c) describe the clinical implications of our research. PMID:20870664

  10. Bacterial invasion of the inner ear in association with pneumococcal meningitis.

    PubMed

    Møller, Martin Nue; Brandt, Christian; Østergaard, Christian; Caye-Thomasen, Per

    2014-06-01

    To examine the pathways of bacterial invasion and subsequent spreading in the inner ear during pneumococcal meningitis. A well-established adult rat model of Streptococcus pneumoniae meningitis was used. Thirty rats were inoculated intrathecally with S. pneumoniae serotype 1, 3 or 9 V and received no additional treatment. The rats were sacrificed when reaching terminal illness or on Day 7 and then prepared for serial sectioning and PAS-Alcian blue staining for light microscopy. During the first few days after inoculation, bacteria invade the inner ear through the cochlear aqueduct, into the scala tympani of the cochlea (perilymphatic space). From here, bacteria spreads apically toward the helicotrema and subsequently basally through the scala vestibuli, toward the vestibule and the vestibular system. When the bacteria after 5 to 6 days had reached scala vestibuli of the basal turn of the cochlea, hematogenous spreading occurred to the spiral ligament and into the cochlear endolymph, subsequently to the vestibular endolymph. We found no evidence of alternative routes for bacterial invasion in the inner ear. Several internal barriers to bacterial spreading were found within the inner ear. Bacterial elimination was evidenced by engulfment by macrophages within the inner ear. From the meninges, pneumococci invade the inner ear through the cochlear aqueduct during the first days of infection, whereas hematogenous invasion via the spiral ligament capillary bed occur at later stages. Although internal barriers exist within the inner ear, the spreading of bacteria occurs via the natural pathways of the fluid compartments. Bacterial elimination occurs by local macrophage engulfment.

  11. Hyperspectral and chlorophyll fluorescence imaging to analyse the impact of Fusarium culmorum on the photosynthetic integrity of infected wheat ears.

    PubMed

    Bauriegel, Elke; Giebel, Antje; Herppich, Werner B

    2011-01-01

    Head blight on wheat, caused by Fusarium spp., is a serious problem for both farmers and food production due to the concomitant production of highly toxic mycotoxins in infected cereals. For selective mycotoxin analyses, information about the on-field status of infestation would be helpful. Early symptom detection directly on ears, together with the corresponding geographic position, would be important for selective harvesting. Hence, the capabilities of various digital imaging methods to detect head blight disease on winter wheat were tested. Time series of images of healthy and artificially Fusarium-infected ears were recorded with a laboratory hyperspectral imaging system (wavelength range: 400 nm to 1,000 nm). Disease-specific spectral signatures were evaluated with an imaging software. Applying the 'Spectral Angle Mapper' method, healthy and infected ear tissue could be clearly classified. Simultaneously, chlorophyll fluorescence imaging of healthy and infected ears, and visual rating of the severity of disease was performed. Between six and eleven days after artificial inoculation, photosynthetic efficiency of infected compared to healthy ears decreased. The severity of disease highly correlated with photosynthetic efficiency. Above an infection limit of 5% severity of disease, chlorophyll fluorescence imaging reliably recognised infected ears. With this technique, differentiation of the severity of disease was successful in steps of 10%. Depending on the quality of chosen regions of interests, hyperspectral imaging readily detects head blight 7 d after inoculation up to a severity of disease of 50%. After beginning of ripening, healthy and diseased ears were hardly distinguishable with the evaluated methods.

  12. The LuxS/AI-2 Quorum-Sensing System of Streptococcus pneumoniae Is Required to Cause Disease, and to Regulate Virulence- and Metabolism-Related Genes in a Rat Model of Middle Ear Infection.

    PubMed

    Yadav, Mukesh K; Vidal, Jorge E; Go, Yoon Y; Kim, Shin H; Chae, Sung-Won; Song, Jae-Jun

    2018-01-01

    Objective: Streptococcus pneumoniae colonizes the nasopharynx of children, and from nasopharynx it could migrate to the middle ear and causes acute otitis media (AOM). During colonization and AOM, the pneumococcus forms biofilms. In vitro biofilm formation requires a functional LuxS/AI-2 quorum-sensing system. We investigated the role of LuxS/AI-2 signaling in pneumococcal middle ear infection, and identified the genes that are regulated by LuxS/AI-2 during pneumococcal biofilm formation. Methods: Streptococcus pneumoniae D39 wild-type and an isogenic D39Δ luxS strain were utilized to evaluate in vitro biofilm formation, and in vivo colonization and epithelial damage using a microtiter plate assay and a rat model of pneumococcal middle ear infection, respectively. Biofilm structures and colonization and epithelial damage were evaluated at the ultrastructural level by scanning electron microscopy and confocal microscopy. Microarrays were used to investigate the global genes that were regulated by LuxS/AI-2 during biofilm formation. Results: The biofilm biomass and density of D39Δ luxS were significantly ( p < 0.05) lower than those of D39 wild-type. SEM and confocal microscopy revealed that D39Δ luxS formed thin biofilms in vitro compared with D39 wild-type. The in vivo model of middle ear infection showed that D39Δ luxS resulted in ~60% less ( p < 0.05) bacterial colonization than the wild-type. SEM analysis of the rat middle ears revealed dense biofilm-like cell debris deposited on the cilia in wild-type D39-infected rats. However, little cell debris was deposited in the middle ears of the D39Δ luxS -inoculated rats, and the cilia were visible. cDNA-microarray analysis revealed 117 differentially expressed genes in D39Δ luxS compared with D39 wild-type. Among the 66 genes encoding putative proteins and previously characterized proteins, 60 were significantly downregulated, whereas 6 were upregulated. Functional annotation revealed that genes involved in DNA replication and repair, ATP synthesis, capsule biosynthesis, cell division, the cell cycle, signal transduction, transcription regulation, competence, virulence, and carbohydrate metabolism were downregulated in the absence of LuxS/AI-2. Conclusion: The S. pneumoniae LuxS/AI-2 quorum-sensing system is necessary for biofilm formation and the colonization of the ear epithelium, and caused middle ear infection in the rat model. LuxS/AI-2 regulates the expression of the genes involved in virulence and bacterial fitness during pneumococcal biofilm formation.

  13. New Protocol for Skin Landmark Registration in Image-Guided Neurosurgery: Technical Note.

    PubMed

    Gerard, Ian J; Hall, Jeffery A; Mok, Kelvin; Collins, D Louis

    2015-09-01

    Newer versions of the commercial Medtronic StealthStation allow the use of only 8 landmark pairs for patient-to-image registration as opposed to 9 landmarks in older systems. The choice of which landmark pair to drop in these newer systems can have an effect on the quality of the patient-to-image registration. To investigate 4 landmark registration protocols based on 8 landmark pairs and compare the resulting registration accuracy with a 9-landmark protocol. Four different protocols were tested on both phantoms and patients. Two of the protocols involved using 4 ear landmarks and 4 facial landmarks and the other 2 involved using 3 ear landmarks and 5 facial landmarks. Both the fiducial registration error and target registration error were evaluated for each of the different protocols to determine any difference between them and the 9-landmark protocol. No difference in fiducial registration error was found between any of the 8-landmark protocols and the 9-landmark protocol. A significant decrease (P < .05) in target registration error was found when using a protocol based on 4 ear landmarks and 4 facial landmarks compared with the other protocols based on 3 ear landmarks. When using 8 landmarks to perform the patient-to-image registration, the protocol using 4 ear landmarks and 4 facial landmarks greatly outperformed the other 8-landmark protocols and 9-landmark protocol, resulting in the lowest target registration error.

  14. PubMed Central

    LINKE, R.; LEICHTLE, A.; SHEIKH, F.; SCHMIDT, C.; FRENZEL, H.; GRAEFE, H.; WOLLENBERG, B.; MEYER, J.E.

    2013-01-01

    SUMMARY Surgery on the temporal bone is technically challenging due to its complex anatomy. Precise anatomical dissection of the human temporal bone is essential and is fundamental for middle ear surgery. We assessed the possible application of a virtual reality temporal bone surgery simulator to the education of ear surgeons. Seventeen ENT physicians with different levels of surgical training and 20 medical students performed an antrotomy with a computer-based virtual temporal bone surgery simulator. The ease, accuracy and timing of the simulated temporal bone surgery were assessed using the automatic assessment software provided by the simulator device and additionally with a modified Final Product Analysis Scale. Trained ENT surgeons, physicians without temporal bone surgical training and medical students were all able to perform the antrotomy. However, the highly trained ENT surgeons were able to complete the surgery in approximately half the time, with better handling and accuracy as assessed by the significant reduction in injury to important middle ear structures. Trained ENT surgeons achieved significantly higher scores using both dissection analysis methods. Surprisingly, there were no significant differences in the results between medical students and physicians without experience in ear surgery. The virtual temporal bone training system can stratify users of known levels of experience. This system can be used not only to improve the surgical skills of trained ENT surgeons for more successful and injury-free surgeries, but also to train inexperienced physicians/medical students in developing their surgical skills for the ear. PMID:24043916

  15. Recent inner ear specialization for high-speed hunting in cheetahs.

    PubMed

    Grohé, Camille; Lee, Beatrice; Flynn, John J

    2018-02-02

    The cheetah, Acinonyx jubatus, is the fastest living land mammal. Because of its specialized hunting strategy, this species evolved a series of specialized morphological and functional body features to increase its exceptional predatory performance during high-speed hunting. Using high-resolution X-ray computed micro-tomography (μCT), we provide the first analyses of the size and shape of the vestibular system of the inner ear in cats, an organ essential for maintaining body balance and adapting head posture and gaze direction during movement in most vertebrates. We demonstrate that the vestibular system of modern cheetahs is extremely different in shape and proportions relative to other cats analysed (12 modern and two fossil felid species), including a closely-related fossil cheetah species. These distinctive attributes (i.e., one of the greatest volumes of the vestibular system, dorsal extension of the anterior and posterior semicircular canals) correlate with a greater afferent sensitivity of the inner ear to head motions, facilitating postural and visual stability during high-speed prey pursuit and capture. These features are not present in the fossil cheetah A. pardinensis, that went extinct about 126,000 years ago, demonstrating that the unique and highly specialized inner ear of the sole living species of cheetah likely evolved extremely recently, possibly later than the middle Pleistocene.

  16. Interfacing a biosurveillance portal and an international network of institutional analysts to detect biological threats.

    PubMed

    Riccardo, Flavia; Shigematsu, Mika; Chow, Catherine; McKnight, C Jason; Linge, Jens; Doherty, Brian; Dente, Maria Grazia; Declich, Silvia; Barker, Mike; Barboza, Philippe; Vaillant, Laetitia; Donachie, Alastair; Mawudeku, Abla; Blench, Michael; Arthur, Ray

    2014-01-01

    The Early Alerting and Reporting (EAR) project, launched in 2008, is aimed at improving global early alerting and risk assessment and evaluating the feasibility and opportunity of integrating the analysis of biological, chemical, radionuclear (CBRN), and pandemic influenza threats. At a time when no international collaborations existed in the field of event-based surveillance, EAR's innovative approach involved both epidemic intelligence experts and internet-based biosurveillance system providers in the framework of an international collaboration called the Global Health Security Initiative, which involved the ministries of health of the G7 countries and Mexico, the World Health Organization, and the European Commission. The EAR project pooled data from 7 major internet-based biosurveillance systems onto a common portal that was progressively optimized for biological threat detection under the guidance of epidemic intelligence experts from public health institutions in Canada, the European Centre for Disease Prevention and Control, France, Germany, Italy, Japan, the United Kingdom, and the United States. The group became the first end users of the EAR portal, constituting a network of analysts working with a common standard operating procedure and risk assessment tools on a rotation basis to constantly screen and assess public information on the web for events that could suggest an intentional release of biological agents. Following the first 2-year pilot phase, the EAR project was tested in its capacity to monitor biological threats, proving that its working model was feasible and demonstrating the high commitment of the countries and international institutions involved. During the testing period, analysts using the EAR platform did not miss intentional events of a biological nature and did not issue false alarms. Through the findings of this initial assessment, this article provides insights into how the field of epidemic intelligence can advance through an international network and, more specifically, how it was further developed in the EAR project.

  17. Interfacing a Biosurveillance Portal and an International Network of Institutional Analysts to Detect Biological Threats

    PubMed Central

    Shigematsu, Mika; Chow, Catherine; McKnight, C. Jason; Linge, Jens; Doherty, Brian; Dente, Maria Grazia; Declich, Silvia; Barker, Mike; Barboza, Philippe; Vaillant, Laetitia; Donachie, Alastair; Mawudeku, Abla; Blench, Michael; Arthur, Ray

    2014-01-01

    The Early Alerting and Reporting (EAR) project, launched in 2008, is aimed at improving global early alerting and risk assessment and evaluating the feasibility and opportunity of integrating the analysis of biological, chemical, radionuclear (CBRN), and pandemic influenza threats. At a time when no international collaborations existed in the field of event-based surveillance, EAR's innovative approach involved both epidemic intelligence experts and internet-based biosurveillance system providers in the framework of an international collaboration called the Global Health Security Initiative, which involved the ministries of health of the G7 countries and Mexico, the World Health Organization, and the European Commission. The EAR project pooled data from 7 major internet-based biosurveillance systems onto a common portal that was progressively optimized for biological threat detection under the guidance of epidemic intelligence experts from public health institutions in Canada, the European Centre for Disease Prevention and Control, France, Germany, Italy, Japan, the United Kingdom, and the United States. The group became the first end users of the EAR portal, constituting a network of analysts working with a common standard operating procedure and risk assessment tools on a rotation basis to constantly screen and assess public information on the web for events that could suggest an intentional release of biological agents. Following the first 2-year pilot phase, the EAR project was tested in its capacity to monitor biological threats, proving that its working model was feasible and demonstrating the high commitment of the countries and international institutions involved. During the testing period, analysts using the EAR platform did not miss intentional events of a biological nature and did not issue false alarms. Through the findings of this initial assessment, this article provides insights into how the field of epidemic intelligence can advance through an international network and, more specifically, how it was further developed in the EAR project. PMID:25470464

  18. Initial Evaluation of the Dermoskeleton Concept: Application of Biomechatronics and Artificial Intelligence to Address the Soldiers Overload Challenge

    DTIC Science & Technology

    2011-05-01

    leg prosthesis for above-the-knee amputees currently commercialized by Ossur hf and developed by Victhom Human Bionics Inc., a medical device...did not feel they worked as hard when wearing the K-SRDTM version POC during the loaded conditions. However, based on our heart rate measured, there

  19. 32 CFR 250.9 - Notice to accompany the dissemination of export-controlled technical data.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Commerce for items controlled by the Export Administration Regulations (EAR), may constitute a violation of..., the penalty for unlawful export of items or information controlled under the EAR is a fine of up to $1... resulting from manufacture or use for any purpose of any product, article, system, or material involving...

  20. 32 CFR 250.9 - Notice to accompany the dissemination of export-controlled technical data.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Commerce for items controlled by the Export Administration Regulations (EAR), may constitute a violation of..., the penalty for unlawful export of items or information controlled under the EAR is a fine of up to $1... resulting from manufacture or use for any purpose of any product, article, system, or material involving...

  1. 32 CFR 250.9 - Notice to accompany the dissemination of export-controlled technical data.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Commerce for items controlled by the Export Administration Regulations (EAR), may constitute a violation of..., the penalty for unlawful export of items or information controlled under the EAR is a fine of up to $1... resulting from manufacture or use for any purpose of any product, article, system, or material involving...

  2. 32 CFR 250.9 - Notice to accompany the dissemination of export-controlled technical data.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Commerce for items controlled by the Export Administration Regulations (EAR), may constitute a violation of..., the penalty for unlawful export of items or information controlled under the EAR is a fine of up to $1... resulting from manufacture or use for any purpose of any product, article, system, or material involving...

  3. The MIT Lincoln Laboratory RT-04F Diarization Systems: Applications to Broadcast Audio and Telephone Conversations

    DTIC Science & Technology

    2004-11-01

    this paper we describe the systems developed by MITLL and used in DARPA EARS Rich Transcription Fall 2004 (RT-04F) speaker diarization evaluation...many types of audio sources, the focus if the DARPA EARS project and the NIST Rich Transcription evaluations is primarily speaker diarization ...present or samples of any of the speakers . An overview of the general diarization problem and approaches can be found in [1]. In this paper, we

  4. Understanding the translocation mechanism of PLGA nanoparticles across round window membrane into the inner ear: a guideline for inner ear drug delivery based on nanomedicine

    PubMed Central

    Zhang, Liping; Xu, Yuan; Cao, Wenjuan; Xie, Shibao; Wen, Lu; Chen, Gang

    2018-01-01

    Background The round window membrane (RWM) functions as the primary biological barrier for therapeutic agents in the inner ear via local application. Previous studies on inner ear nano-drug delivery systems mostly focused on their pharmacokinetics and distribution in the inner ear, but seldom on the interaction with the RWM. Clarifying the transport mechanism of nanoparticulate carriers across RWM will shed more light on the optimum design of nano-drug delivery systems intended for meeting demands for their clinical application. Methods The poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) encapsulating coumarin-6 were prepared by emulsifying solvent evaporation method. We utilized confocal laser scanning microscope (CLSM) in combination with transmission electron microscope to investigate the transport pathway of PLGA NPs in the RWM. Simultaneously, the concentration and time dependence of NPs across the RWM were also determined. The endocytic mechanism of NPs through this membrane interface was classically analyzed by means of various endocytic inhibitors. The intracellular location of NPs into lysosomes was evaluated using CLSM scanning microscope colocalization analysis. The Golgi-related inhibitors were employed to probe into the function of Golgi and endoplasmic reticulum (ER) in the discharge of NPs out of cells. Results PLGA NPs were herein transported through the RWM of a sandwich-like structure into the perilymph via the transcellular pathway. NPs were internalized predominantly via macropinocytosis and caveolin-mediated endocytic pathways. After being internalized, the endocytosed cargos were entrapped within the lysosomal compartments and/or the endoplasmic reticulum/Golgi apparatus which mediated the exocytotic release of NPs. Conclusion For the first time, we showed the translocation itinerary of NPs in RWM, providing a guideline for the rational fabrication of inner ear nanoparticulate carriers with better therapeutic effects. PMID:29403277

  5. Routine activities and emotion in the life of dairy cows: Integrating body language into an affective state framework

    PubMed Central

    de Oliveira, Daiana

    2018-01-01

    We assessed dairy cows’ body postures while they were performing different stationary activities in a loose housing system and then used the variation within and between individuals to identify potential connections between specific postures and the valence and arousal dimensions of emotion. We observed 72 individuals within a single milking herd focusing on their ear, neck and tail positions while they were: feeding from individual roughage bins, being brushed by a mechanical rotating brush and queuing to enter a single automatic milking system. Cows showed different ear, neck and tail postures depending on the situation. When combined, their body posture during feeding was ears back up and neck down, with tail wags directed towards the body, during queuing their ears were mainly axial and forward, their neck below the horizontal and the tail hanging stationary, and during brushing their ears were backwards and asymmetric, the neck horizontal and the tail wagging vigorously. We then placed these findings about cow body posture during routine activities into an arousal/valence framework used in animal emotion research (dimensional model of core affect). In this way we generate a priori predictions of how the positions of the ears, neck and tail of cows may change in other situations, previously demonstrated to vary in valence and arousal. We propose that this new methodology, with its different steps of integration, could contribute to the identification and validation of behavioural (postural) indicators of how positively or negatively cows experience other activities, or situations, and how calm or aroused they are. Although developed here on dairy cattle, by focusing on relevant postures, this approach could be easily adapted to other species. PMID:29718937

  6. A tympanal insect ear exploits a critical oscillator for active amplification and tuning.

    PubMed

    Mhatre, Natasha; Robert, Daniel

    2013-10-07

    A dominant theme of acoustic communication is the partitioning of acoustic space into exclusive, species-specific niches to enable efficient information transfer. In insects, acoustic niche partitioning is achieved through auditory frequency filtering, brought about by the mechanical properties of their ears. The tuning of the antennal ears of mosquitoes and flies, however, arises from active amplification, a process similar to that at work in the mammalian cochlea. Yet, the presence of active amplification in the other type of insect ears--tympanal ears--has remained uncertain. Here we demonstrate the presence of active amplification and adaptive tuning in the tympanal ear of a phylogenetically basal insect, a tree cricket. We also show that the tree cricket exploits critical oscillator-like mechanics, enabling high auditory sensitivity and tuning to conspecific songs. These findings imply that sophisticated auditory mechanisms may have appeared even earlier in the evolution of hearing and acoustic communication than currently appreciated. Our findings also raise the possibility that frequency discrimination and directional hearing in tympanal systems may rely on physiological nonlinearities, in addition to mechanical properties, effectively lifting some of the physical constraints placed on insects by their small size [6] and prompting an extensive reexamination of invertebrate audition. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  7. A prediction of the minke whale (Balaenoptera acutorostrata) middle-ear transfer functiona)

    PubMed Central

    Tubelli, Andrew A.; Zosuls, Aleks; Ketten, Darlene R.; Yamato, Maya; Mountain, David C.

    2012-01-01

    The lack of baleen whale (Cetacea Mysticeti) audiograms impedes the assessment of the impacts of anthropogenic noise on these animals. Estimates of audiograms, which are difficult to obtain behaviorally or electrophysiologically for baleen whales, can be made by simulating the audiogram as a series of components representing the outer, middle, and inner ear (Rosowski, 1991; Ruggero and Temchin, 2002). The middle-ear portion of the system can be represented by the middle-ear transfer function (METF), a measure of the transmission of acoustic energy from the external ear to the cochlea. An anatomically accurate finite element model of the minke whale (Balaenoptera acutorostrata) middle ear was developed to predict the METF for a mysticete species. The elastic moduli of the auditory ossicles were measured by using nanoindentation. Other mechanical properties were estimated from experimental stiffness measurements or from published values. The METF predicted a best frequency range between approximately 30 Hz and 7.5 kHz or between 100 Hz and 25 kHz depending on stimulation location. Parametric analysis found that the most sensitive parameters are the elastic moduli of the glove finger and joints and the Rayleigh damping stiffness coefficient β. The predicted hearing range matches well with the vocalization range. PMID:23145610

  8. Visualization of human inner ear anatomy with high-resolution MR imaging at 7T: initial clinical assessment.

    PubMed

    van der Jagt, M A; Brink, W M; Versluis, M J; Steens, S C A; Briaire, J J; Webb, A G; Frijns, J H M; Verbist, B M

    2015-02-01

    In many centers, MR imaging of the inner ear and auditory pathway performed on 1.5T or 3T systems is part of the preoperative work-up of cochlear implants. We investigated the applicability of clinical inner ear MR imaging at 7T and compared the visibility of inner ear structures and nerves within the internal auditory canal with images acquired at 3T. Thirteen patients with sensorineural hearing loss eligible for cochlear implantation underwent examinations on 3T and 7T scanners. Two experienced head and neck radiologists evaluated the 52 inner ear datasets. Twenty-four anatomic structures of the inner ear and 1 overall score for image quality were assessed by using a 4-point grading scale for the degree of visibility. The visibility of 11 of the 24 anatomic structures was rated higher on the 7T images. There was no significant difference in the visibility of 13 anatomic structures and the overall quality rating. A higher incidence of artifacts was observed in the 7T images. The gain in SNR at 7T yielded a more detailed visualization of many anatomic structures, especially delicate ones, despite the challenges accompanying MR imaging at a high magnetic field. © 2015 by American Journal of Neuroradiology.

  9. Extracellular and intracellular melanin in inflammatory middle ear disease.

    PubMed

    Fritz, Mark A; Roehm, Pamela C; Bannan, Michael A; Lalwani, Anil K

    2014-06-01

    Melanin is a pigmented polymer with a known role in dermal solar protection. In vertebrates, melanogenesis has been reported in leukocyte populations, suggesting a potential role in innate immunity. In this study, we report the novel finding of melanin associated with chronic inflammation and speculate on its potential role in the middle ear and mastoid. Retrospective review of case series. Medical records of six patients who demonstrated melanin in the ear were reviewed. Six patients from 1 to 63 years of age were identified with extracellular melanin and melanin-laden histiocytes within the middle ear and/or mastoid air cells at time of surgery. Concurrent intraoperative findings included cholesteatoma (n = 3), chronic suppurative otitis media (n = 2), and coalescent mastoiditis (n = 1). Histologically, extracellular melanin and melanin-laden histiocytes were identified by Fontana-Masson stain; absence of melanocytes was confirmed by the absence of Melan-A staining. One patient had a positive stain for CD163 (a marker for macrophages). This case series is the first demonstration of melanin within middle ear mucosa without melanocytes in immediate proximity or metastatic melanocytic lesions. Melanin's presence in the setting of inflammation suggests that there may be a heretofore unreported link between the pigmentary and immune systems in the middle ear. 4.

  10. Enhancing Ear and Hearing Health Access for Children With Technology and Connectivity.

    PubMed

    Swanepoel, De Wet

    2017-10-12

    Technology and connectivity advances are demonstrating increasing potential to improve access of service delivery to persons with hearing loss. This article demonstrates use cases from community-based hearing screening and automated diagnosis of ear disease. This brief report reviews recent evidence for school- and home-based hearing testing in underserved communities using smartphone technologies paired with calibrated headphones. Another area of potential impact facilitated by technology and connectivity is the use of feature extraction algorithms to facilitate automated diagnosis of most common ear conditions from video-otoscopic images. Smartphone hearing screening using calibrated headphones demonstrated equivalent sensitivity and specificity for school-based hearing screening. Automating test sequences with a forced-choice response paradigm allowed persons with minimal training to offer screening in underserved communities. The automated image analysis and diagnosis system for ear disease demonstrated an overall accuracy of 80.6%, which is up to par and exceeds accuracy rates previously reported for general practitioners and pediatricians. The emergence of these tools that capitalize on technology and connectivity advances enables affordable and accessible models of service delivery for community-based ear and hearing care.

  11. Multi-emitter laser multiplexer using a two-mirror beam shaper

    NASA Astrophysics Data System (ADS)

    Cobb, Joshua M.; Brennan, John; Bhatia, Vikram

    2014-12-01

    A system was designed and built to spatially multiplex four broad area laser diodes (BALD) and condense the light into a multi-mode fiber with a core diameter of 105 um and an NA of 0.15. The lasers were efficiently combined with an étendue aspect ratio scaler (EARS) optic. The EARS works under the principle of a two mirror beam shaper. We were able to successfully couple more than 87% of the optical energy into the fiber. The design of the optical system and the results of several built systems are discussed.

  12. Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure.

    PubMed

    Péus, Dominik; Dobrev, Ivo; Prochazka, Lukas; Thoele, Konrad; Dalbert, Adrian; Boss, Andreas; Newcomb, Nicolas; Probst, Rudolf; Röösli, Christof; Sim, Jae Hoon; Huber, Alexander; Pfiffner, Flurin

    2017-08-01

    Animals are frequently used for the development and testing of new hearing devices. Dimensions of the middle ear and cochlea differ significantly between humans and commonly used animals, such as rodents or cats. The sheep cochlea is anatomically more like the human cochlea in size and number of turns. This study investigated the middle-ear ossicular velocities and intracochlear sound pressure (ICSP) in sheep temporal bones, with the aim of characterizing the sheep as an experimental model for implantable hearing devices. Measurements were made on fresh sheep temporal bones. Velocity responses of the middle ear ossicles at the umbo, long process of the incus and stapes footplate were measured in the frequency range of 0.25-8 kHz using a laser Doppler vibrometer system. Results were normalized by the corresponding sound pressure level in the external ear canal (P EC ). Sequentially, ICSPs at the scala vestibuli and tympani were then recorded with custom MEMS-based hydrophones, while presenting identical acoustic stimuli. The sheep middle ear transmitted most effectively around 4.8 kHz, with a maximum stapes velocity of 0.2 mm/s/Pa. At the same frequency, the ICSP measurements in the scala vestibuli and tympani showed the maximum gain relative to the P EC (24 dB and 5 dB, respectively). The greatest pressure difference across the cochlear partition occurred between 4 and 6 kHz. A comparison between the results of this study and human reference data showed middle-ear resonance and best cochlear sensitivity at higher frequencies in sheep. In summary, sheep can be an appropriate large animal model for research and development of implantable hearing devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effectiveness of Ear Splint Therapy for Ear Deformities

    PubMed Central

    2017-01-01

    Objective To present our experience with ear splint therapy for babies with ear deformities, and thereby demonstrate that this therapy is an effective and safe intervention without significant complications. Methods This was a retrospective study of 54 babies (35 boys and 19 girls; 80 ears; age ≤3 months) with ear deformities who had received ear splint therapy at the Center for Torticollis, Department of Physical Medicine and Rehabilitation, Ajou University Hospital between December 2014 and February 2016. Before the initiation of ear splint therapy, ear deformities were classified with reference to the standard terminology. We compared the severity of ear deformity before and after ear splint therapy by using the physician's ratings. We also compared the physician's ratings and the caregiver's ratings on completion of ear splint therapy. Results Among these 54 babies, 41 children (58 ears, 72.5%) completed the ear splint therapy. The mean age at initiation of therapy was 52.91±18.26 days and the treatment duration was 44.27±32.06 days. Satyr ear, forward-facing ear lobe, Darwinian notch, overfolded ear, and cupped ear were the five most common ear deformities. At the completion of therapy, the final physician's ratings of ear deformities were significantly improved compared to the initial ratings (8.28±1.44 vs. 2.51±0.92; p<0.001). There was no significant difference between the physician's ratings and the caregiver's ratings at the completion of ear splint therapy (8.28±1.44 vs. 8.0±1.61; p=0.297). Conclusion We demonstrated that ear splint therapy significantly improved ear deformities in babies, as measured by quantitative rating scales. Ear splint therapy is an effective and safe intervention for babies with ear deformities. PMID:28289646

  14. Morphological effects of nanosecond- and femtosecond-pulsed laser ablation on human middle ear ossicles

    NASA Astrophysics Data System (ADS)

    Ilgner, Justus F.; Wehner, Martin; Lorenzen, Johann; Bovi, Manfred; Westhofen, Martin

    2004-07-01

    Introduction: Since the early 1980's, a considerable number of different laser systems have been introduced into reconstructive middle ear surgery. Depending on the ablation mode, however, pressure transients or thermal load to inner ear structures continue to be subject to discussion. Material and methods: We examined single spot ablations by a nanosecond-pulsed, frequency-tripled Nd:YAG-Laser (355 nm, beam diameter 10 μm, pulse rate 2 kHz, power 250 mW) on isolated human mallei. In a second set-up, a similar system (355 nm, beam diameter 20 μm, pulse rate 10 kHz, power 160-1500 mW) was coupled to a scanner to examine the morphology of bone surface ablation over an area of 1mm2. A third set-up employed a femtosecond-pulsed CrLiSAF-Oscillator (850 nm, pulse duration 100 fs, pulse energy 40μJ, beam diameter 36 μm, pulse rate 1 kHz) to compare these results with the former and with those obtained from a commercially available Er:YAG laser for ear surgery (Zeiss ORL E, 2940 nm, single pulse, energy 10-25 mJ). Results: In set-up 1 and 2, thermal effects in terms of marginal carbonization were visible in all single spot ablations of 1 s and longer. With ablations of 0.5 seconds, precise cutting margins with preservation of surrounding tissue could be observed. Cooling with saline solution resulted in no carbonization at 1500 mW and a scan speed of 500 mm/s. Set-up 3 equally showed no carbonization, although scanning times were longer and ablation less pronounced. Conclusion: Ultrashort pulsed laser systems could potentially aid further refinement of reconstructive microsurgery of the middle ear.

  15. Strategies of immunization against mucosal infections.

    PubMed

    Russell, M W; Martin, M H; Wu, H Y; Hollingshead, S K; Moldoveanu, Z; Mestecky, J

    2000-12-08

    The presence of secretory (S-) IgA in middle-ear fluid and localization of IgA-secreting cells in its mucosae suggest that the middle ear is an effector site of the mucosal immune system. Several strategies have been devised to induce potent, long-lasting, and recallable mucosal S-IgA antibodies, as well as circulating IgG antibodies and Th1- or Th2-type help, according to the most appropriate responses for a particular infection. Application of immunogens to inductive sites in the upper respiratory tract may be most effective for generating responses in the middle ear and nasopharynx for protection against the organisms responsible for otitis media.

  16. Stretchable silicon nanoribbon electronics for skin prosthesis.

    PubMed

    Kim, Jaemin; Lee, Mincheol; Shim, Hyung Joon; Ghaffari, Roozbeh; Cho, Hye Rim; Son, Donghee; Jung, Yei Hwan; Soh, Min; Choi, Changsoon; Jung, Sungmook; Chu, Kon; Jeon, Daejong; Lee, Soon-Tae; Kim, Ji Hoon; Choi, Seung Hong; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2014-12-09

    Sensory receptors in human skin transmit a wealth of tactile and thermal signals from external environments to the brain. Despite advances in our understanding of mechano- and thermosensation, replication of these unique sensory characteristics in artificial skin and prosthetics remains challenging. Recent efforts to develop smart prosthetics, which exploit rigid and/or semi-flexible pressure, strain and temperature sensors, provide promising routes for sensor-laden bionic systems, but with limited stretchability, detection range and spatio-temporal resolution. Here we demonstrate smart prosthetic skin instrumented with ultrathin, single crystalline silicon nanoribbon strain, pressure and temperature sensor arrays as well as associated humidity sensors, electroresistive heaters and stretchable multi-electrode arrays for nerve stimulation. This collection of stretchable sensors and actuators facilitate highly localized mechanical and thermal skin-like perception in response to external stimuli, thus providing unique opportunities for emerging classes of prostheses and peripheral nervous system interface technologies.

  17. Chip-scale hermetic feedthroughs for implantable bionics.

    PubMed

    Guenther, Thomas; Dodds, Christopher W D; Lovell, Nigel H; Suaning, Gregg J

    2011-01-01

    Most implantable medical devices such as cochlear implants and visual prostheses require protection of the stimulating electronics. This is achieved by way of a hermetic feedthrough system which typically features three important attributes: biocompatibility with the human body, device hermeticity and density of feedthrough conductors. On the quest for building a visual neuroprosthesis, a high number of stimulating channels is required. This has encouraged new technologies with higher rates of production yield and further miniaturization. An Al(2)O(3) based feedthrough system has been developed comprising up to 20 platinum feedthroughs per square millimeter. Ceramics substrates are shown to have leak rates below 1 × 10(-12) atm × cc/s, thus exceeding the resolution limits of most commercially available leak detectors. A sheet resistance of 0.05 Ω can be achieved. This paper describes the design, fabrication process and hermeticity testing of high density feedthroughs for use in neuroprosthetic implants.

  18. Investigation of a broadband duct noise control system inspired by the middle ear mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Chunqi; Huang, Lixi

    2012-08-01

    A new duct noise control device is introduced based on the mechanism of human middle ear which functions as a compact, broadband impedance transformer between the air motion in the outer ear and the liquid motion in the inner ear. The system consists of two rigid endplates, simulating the tympanic membrane and the stapes footplate, and they are connected by a single rigid rod, simulating the overall action of the ossicular chain. These three pieces are placed in a side-branch cavity, and the whole device is called an ossicular silencer. A specific configuration is investigated numerically with a two-dimensional finite element model. Results show that broadband noise attenuation can be achieved in the very low frequency regime. Typically, two or more resonance peaks are found and the transmission loss between two neighbouring peaks is maintained at a high level. The cavity length is found to be the most crucial parameter that determines the effective frequency range of the ossicular silencer. The total cavity volume, which is a major controlling factor in most existing noise control devices, becomes less influential. The fluid medium in the enclosed cavity mainly acts like an added mass, while its stiffness effect is negligible. Simplified plane wave analysis is also conducted to reveal the mechanisms of the system resonances. The first resonance is identified as of the mass-spring system with mass contributions from both fluid and the plates, while the second one is of the Herschel-Quincke (HQ) tube resonance.

  19. Red ear syndrome precipitated by a dietary trigger: a case report

    PubMed Central

    2014-01-01

    Introduction Red ear syndrome is a rare condition characterized by episodic attacks of erythema of the ear accompanied by burning ear pain. Symptoms are brought on by touch, exertion, heat or cold, stress, neck movements and washing or brushing of hair. Diagnosis and treatment of this condition are challenging. The case we report here involves a woman whose symptoms were brought on by a dietary trigger: orange juice as well as stress, causing significant physical and psychological morbidity. Avoidance of triggers resulted in symptomatic improvement. Case presentation A 22-year-old Caucasian woman who was a student presented twice to our department with evolving symptoms, the first time with hyperacusis (abnormal sound sensitivity arising from within the auditory system to sounds of moderate volume), intermittent right tinnitus and subjective hearing difficulties. She presented five years later with highly distressing episodes of erythematous ears, which were associated with burning pain around the ear and temporal areas, and intolerance to noise. After keeping a symptom diary, she identified orange juice and stress as triggers of her symptoms. No local head and neck pathology was present. Investigations and imaging were negative. Avoidance of triggers led to great symptomatic improvement. To the best of our knowledge, dietary triggers have not previously been reported as a trigger for this syndrome. This case shows a direct temporal link to a dietary trigger and supports a primary pathogenesis. Recognition and management of primary headache disorder and simple dietary and lifestyle changes brought about symptomatic relief. Conclusion Red ear syndrome is a little-known clinical syndrome of unknown etiology and management. To the best of our knowledge, our present case report is the first to describe primary red ear syndrome triggered by orange juice. Clinical benefit derived from avoidance of this trigger, which is already known to precipitate migraines, gives some insight into the pathogenesis of red ear syndrome. PMID:25303997

  20. Changes in immunostaining of inner ears after antigen challenge into the scala tympani.

    PubMed

    Ichimiya, I; Kurono, Y; Hirano, T; Mogi, G

    1998-04-01

    To study the mechanisms of immune responses and immune injuries in inner ears, labyrinthitis was induced by inoculation of keyhole limpet hemocyanin (KLH) into the scala tympani of systemically sensitized guinea pigs. Inner ears were then immunostained for KLH, immunoglobulin G (IgG), albumin, connexin26 (Cx26), and sodium-potassium adenosine triphosphate (Na,K-ATPase). Inflammatory cells containing KLH were observed in the scala tympani and in the collecting venule of the spiral modiolar vein (SMV). Spiral ligament, spiral limbus, and blood vessels including the SMV were diffusely positive for IgG and albumin. Immunoreactivity for Cx26 and Na,K-ATPase was decreased compared with the normal ears in the fibrocytes of the spiral ligament. These results suggest that inflammatory cells and blood constituents could extravasate into the cochlea from blood vessels and that fibrocyte damage in the spiral ligament could cause cochlear dysfunction.

  1. A practical use of a 16-gauge peripheral angiocatheter as an aspiration cautery in endoscopic ear surgery.

    PubMed

    Ozdek, Ali; Keseroglu, Kemal

    2014-08-01

    To define a technique for the practical use of a 16-gauge peripheral venous catheter as an insulated aspiration cautery in endoscopic ear surgery. Retrospective case review. Tertiary referral center. A 16-gauge intravenous catheter was prepared as a cauterization instrument with aspiration. After simple rearrangement of the exterior plastic portion, it was connected to a suction system. With the help of an unipolar cautery, aspiration of the blood and homeostasis was achieved. Hemorrhage of the external ear canal skin after incision can be easily coagulated with this instrument. During follow-up, there were no wound infection, facial nerve paresis, scar formation, and inadvertent burn of the external canal and auricular skin. With the help of this instrument, bleeding control during incision can be easily maintained. It is a simple, easily prepared, and alternative homeostasis technique in endoscopic ear surgery.

  2. 15 CFR Supplement No. 2 to Part 748 - Unique Application and Submission Requirements

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... tools, dimensional inspection machines, direct numerical control systems, specially designed assemblies... Commerce Control List (§ 774.1 of the EAR)—see Category 5 Part 1 Notes 1 and 2 and Part 2 Note 1. License... containing computers to destinations in Country Group D:1 (See Supplement No. 1 to part 740 of the EAR), or...

  3. 15 CFR Supplement No. 2 to Part 748 - Unique Application and Submission Requirements

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... tools, dimensional inspection machines, direct numerical control systems, specially designed assemblies... Commerce Control List (§ 774.1 of the EAR)—see Category 5 Part 1 Notes 1 and 2 and Part 2 Note 1. License... containing computers to destinations in Country Group D:1 (See Supplement No. 1 to part 740 of the EAR), or...

  4. 15 CFR Supplement No. 2 to Part 748 - Unique Application and Submission Requirements

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... tools, dimensional inspection machines, direct numerical control systems, specially designed assemblies... Commerce Control List (§ 774.1 of the EAR)—see Category 5 Part 1 Notes 1 and 2 and Part 2 Note 1. License... containing computers to destinations in Country Group D:1 (See supplement No. 1 to part 740 of the EAR), or...

  5. Comparative Assessment of Torso and Seat Mounted Restraint Systems using Manikins on the Horizontal Impulse Accelerator

    DTIC Science & Technology

    2017-11-01

    rearward rotation of the head towards the back or shoulder blades ). The y- axis of the head runs from right ear canal to the left ear canal with...PERSON (Monitor) a. REPORT Unclassified b. ABSTRACT Unclassified c . THIS PAGE Unclassified Chris Burneka 19b. TELEPHONE NUMBER...92 APPENDIX C . SAMPLE DATA SHEETS

  6. Exceeding Parents' Expectations in Ear-Nose-Throat Outpatient Facilities: The Development and Analysis of a Questionnaire

    ERIC Educational Resources Information Center

    Margaritis, Eleftherios; Katharaki, Maria; Katharakis, George

    2012-01-01

    The study attempts to develop an outpatient service quality scale by investigating the key dimensions which assess parental satisfaction and provides a recommendation on an improved health service delivery system. The survey was conducted in an Ear-Nose-Throat outpatient clinic of a Greek public pediatric hospital. A total of 127 parents in…

  7. Correlational Study of Diabetic Retinopathy and Hearing Loss.

    PubMed

    Ooley, Caroline; Jun, Weon; Le, Kim; Kim, Allen; Rock, Nathan; Cardenal, Molly; Kline, Rebecca; Aldrich, Drew; Hayes, John

    2017-03-01

    Our research goal was to complete a retrospective chart review to determine if there is a correlation between the level of diabetic retinopathy and diabetic neurosensory hearing loss. A retrospective analysis of 175 Department of Veterans Affairs Computerized Patient Record System charts was completed at the VA Portland Health Care System. Subjects were classified by degree of diabetic retinopathy as follows: no diabetic retinopathy (n = 80), mild nonproliferative diabetic retinopathy (n = 51), moderate nonproliferative diabetic retinopathy (n = 25), and combined severe nonproliferative diabetic retinopathy and proliferative diabetic retinopathy (PDR) (n = 17). Degree of sensorineural hearing was collected for each ear. Additionally, measures of diabetic control, including hemoglobin A1C, and creatinine, were recorded. After controlling for diabetic control, as measured by HbA1C and creatinine, level of diabetic retinopathy was significantly associated with hearing loss severity in both ears (right ear, P = .018 and left ear, P = .007). When adjusted to include diabetes control, the severity of diabetic retinopathy showed a correlation with degree of hearing loss at most levels. Because of this association, recommendation for hearing evaluations may be considered for those with mild, moderate, or severe nonproliferative or proliferative diabetic retinopathy.

  8. Application of the remote microphone method to active noise control in a mobile phone.

    PubMed

    Cheer, Jordan; Elliott, Stephen J; Oh, Eunmi; Jeong, Jonghoon

    2018-04-01

    Mobile phones are used in a variety of situations where environmental noise may interfere with the ability of the near-end user to communicate with the far-end user. To overcome this problem, it might be possible to use active noise control technology to reduce the noise experienced by the near-end user. This paper initially demonstrates that when an active noise control system is used in a practical mobile phone configuration to minimise the noise measured by an error microphone mounted on the mobile phone, the attenuation achieved at the user's ear depends strongly on the position of the source generating the acoustic interference. To help overcome this problem, a remote microphone processing strategy is investigated that estimates the pressure at the user's ear from the pressure measured by the microphone on the mobile phone. Through an experimental implementation, it is demonstrated that this arrangement achieves a significant improvement in the attenuation measured at the ear of the user, compared to the standard active control strategy. The robustness of the active control system to changes in both the interfering sound field and the position of the mobile device relative to the ear of the user is also investigated experimentally.

  9. A Fully-Implantable Cochlear Implant SoC with Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation.

    PubMed

    Yip, Marcus; Jin, Rui; Nakajima, Hideko Heidi; Stankovic, Konstantina M; Chandrakasan, Anantha P

    2015-01-01

    A system-on-chip for an invisible, fully-implantable cochlear implant is presented. Implantable acoustic sensing is achieved by interfacing the SoC to a piezoelectric sensor that detects the sound-induced motion of the middle ear. Measurements from human cadaveric ears demonstrate that the sensor can detect sounds between 40 and 90 dB SPL over the speech bandwidth. A highly-reconfigurable digital sound processor enables system power scalability by reconfiguring the number of channels, and provides programmable features to enable a patient-specific fit. A mixed-signal arbitrary waveform neural stimulator enables energy-optimal stimulation pulses to be delivered to the auditory nerve. The energy-optimal waveform is validated with in-vivo measurements from four human subjects which show a 15% to 35% energy saving over the conventional rectangular waveform. Prototyped in a 0.18 μ m high-voltage CMOS technology, the SoC in 8-channel mode consumes 572 μ W of power including stimulation. The SoC integrates implantable acoustic sensing, sound processing, and neural stimulation on one chip to minimize the implant size, and proof-of-concept is demonstrated with measurements from a human cadaver ear.

  10. Ear-Canal Reflectance, Umbo Velocity and Tympanometry in Normal Hearing Adults

    PubMed Central

    Rosowski, John J; Nakajima, Hideko H.; Hamade, Mohamad A.; Mafoud, Lorice; Merchant, Gabrielle R.; Halpin, Christopher F.; Merchant, Saumil N.

    2011-01-01

    Objective This study compares measurements of ear-canal reflectance (ECR) to other objective measurements of middle-ear function including, audiometry, umbo velocity (VU), and tympanometry in a population of strictly defined normal hearing ears. Design Data were prospectively gathered from 58 ears of 29 normal hearing subjects, 16 female and 13 male, aged 22–64 years. Subjects met all of the following criteria to be considered as having normal hearing. (1) No history of significant middle-ear disease. (2) No history of otologic surgery. (3) Normal tympanic membrane (TM) on otoscopy. (4) Pure-tone audiometric thresholds of 20 dB HL or better for 0.25 – 8 kHz. (5) Air-bone gaps no greater than 15 dB at 0.25 kHz and 10 dB for 0.5 – 4 kHz. (6) Normal, type-A peaked tympanograms. (7) All subjects had two “normal” ears (as defined by these criteria). Measurements included pure-tone audiometry for 0.25 – 8 kHz, standard 226 Hz tympanometry, Ear canal reflectance(ECR) for 0.2 – 6 kHz at 60 dB SPL using the Mimosa Acoustics HearID system, and Umbo Velocity (VU ) for 0.3 – 6 kHz at 70–90 dB SPL using the HLV-1000 laser Doppler vibrometer (Polytec Inc). Results Mean power reflectance (|ECR|2) was near 1.0 at 0.2– 0.3 kHz, decreased to a broad minimum of 0.3 to 0.4 between 1 and 4 kHz, and then sharply increased to almost 0.8 by 6 kHz. The mean pressure reflectance phase angle (∠ECR) plotted on a linear frequency scale showed a group delay of approximately 0.1 ms for 0.2 – 6 kHz. Small significant differences were observed in |ECR|2 at the lowest frequencies between right and left ears, and between males and females at 4 kHz. |ECR|2 decreased with age, but reached significance only at 1 kHz. Our ECR measurements were generally similar to previous published reports. Highly significant negative correlations were found between |ECR|2 and VU for frequencies below 1 kHz. Significant correlations were also found between the tympanometrically determined peak total compliance and |ECR|2 and The results suggest that middle-ear compliance VU at frequencies below 1 kHz. contributes significantly to the measured power reflectance and umbo velocity at frequencies below 1 kHz, but not at higher frequencies. Conclusions This study has established a database of objective measurements of middle ear function (ear-canal reflectance, umbo velocity, tympanometry) in a population of strictly defined normal hearing ears. The data will promote our understanding of normal middle ear function, and will serve as a control for comparison to similar measurements made in pathological ears. PMID:21857517

  11. Physiological correlates of sound localization in a parasitoid fly, Ormia ochracea

    NASA Astrophysics Data System (ADS)

    Oshinsky, Michael Lee

    A major focus of research in the nervous system is the investigation of neural circuits. The question of how neurons connect to form functional units has driven modern neuroscience research from its inception. From the beginning, the neural circuits of the auditory system and specifically sound localization were used as a model system for investigating neural connectivity and computation. Sound localization lends itself to this task because there is no mapping of spatial information on a receptor sheet as in vision. With only one eye, an animal would still have positional information for objects. Since the receptor sheet in the ear is frequency oriented and not spatially oriented, positional information for a sound source does not exist with only one ear. The nervous system computes the location of a sound source based on differences in the physiology of the two ears. In this study, I investigated the neural circuits for sound localization in a fly, Ormia ochracea (Diptera, Tachinidae, Ormiini), which is a parasitoid of crickets. This fly possess a unique mechanically coupled hearing organ. The two ears are contained in one air sac and a cuticular bridge, that has a flexible spring-like structure at its center, connects them. This mechanical coupling preprocesses the sound before it is detected by the nervous system and provides the fly with directional information. The subject of this study is the neural coding of the location of sound stimuli by a mechanically coupled auditory system. In chapter 1, I present the natural history of an acoustic parasitoid and I review the peripheral processing of sound by the Ormian ear. In chapter 2, I describe the anatomy and physiology of the auditory afferents. I present this physiology in the context of sound localization. In chapter 3, I describe the directional dependent physiology for the thoracic local and ascending acoustic interneurons. In chapter 4, I quantify the threshold and I detail the kinematics of the phonotactic walking behavior in Ormia ochracea. I also quantify the angular resolution of the phonotactic turning behavior. Using a model, I show that the temporal coding properties of the afferents provide most of the information required by the fly to localize a singing cricket.

  12. Some Remarks on Imaging of the Inner Ear: Options and Limitations.

    PubMed

    Giesemann, A; Hofmann, E

    2015-10-01

    The temporal bone has a highly complex anatomical structure, in which the sensory organs of the cochlea and the vestibular system are contained within a small space together with the sound-conducting system of the middle ear. Detailed imaging is thus required in this anatomical area. There are a great many clinical aims for which the highest-possible spatial resolution is required. These include the localization of cerebrospinal fluid fistulas, the detection of malformations of the middle and inner ear and the vestibulocochlear nerve, an aberrant course of the facial nerve and anomalies of the arterial and venous structures, the confirmation of dehiscence of the semicircular canals and finally, the verification of endolymphatic hydrops in cases of Ménière's disease. However, the term 'high resolution' is very time dependent. Two milestones in this respect have been (in 1991) the 3D visualization of the inner ear by means of maximum-intensity projection (MIP) of a T2-weighted constructive interference in steady state (CISS) sequence of a 1.5-tesla magnetic resonance imaging (MRI) scanner (Tanioka et al., Radiology 178:141-144, 1991) and (in 1997) imaging of the vestibulocochlear nerve for the diagnosis of hypoplasia inside the internal auditory canal using the same sequence (Casselman et al., Radiology 202:773-781, 1997).The objective of this article is to highlight the options for, and the challenges of, contemporary imaging with regard to some clinical issues relating to the inner ear.

  13. Assessment of skills using a virtual reality temporal bone surgery simulator.

    PubMed

    Linke, R; Leichtle, A; Sheikh, F; Schmidt, C; Frenzel, H; Graefe, H; Wollenberg, B; Meyer, J E

    2013-08-01

    Surgery on the temporal bone is technically challenging due to its complex anatomy. Precise anatomical dissection of the human temporal bone is essential and is fundamental for middle ear surgery. We assessed the possible application of a virtual reality temporal bone surgery simulator to the education of ear surgeons. Seventeen ENT physicians with different levels of surgical training and 20 medical students performed an antrotomy with a computer-based virtual temporal bone surgery simulator. The ease, accuracy and timing of the simulated temporal bone surgery were assessed using the automatic assessment software provided by the simulator device and additionally with a modified Final Product Analysis Scale. Trained ENT surgeons, physicians without temporal bone surgical training and medical students were all able to perform the antrotomy. However, the highly trained ENT surgeons were able to complete the surgery in approximately half the time, with better handling and accuracy as assessed by the significant reduction in injury to important middle ear structures. Trained ENT surgeons achieved significantly higher scores using both dissection analysis methods. Surprisingly, there were no significant differences in the results between medical students and physicians without experience in ear surgery. The virtual temporal bone training system can stratify users of known levels of experience. This system can be used not only to improve the surgical skills of trained ENT surgeons for more successful and injury-free surgeries, but also to train inexperienced physicians/medical students in developing their surgical skills for the ear.

  14. Students' Alternative Conceptions about the Lotus Effect: To Confront or to Ignore?

    ERIC Educational Resources Information Center

    Kubisch, Franziska; Heyne, Thomas

    2016-01-01

    At the botanical garden of the University of Würzburg, we conducted practical lessons on bionics, focused on the lotus effect, with 260 students. Those approx. 14 years old, 8th-grade mid-level students were divided into two groups. During an instructional discussion about the topic, one group was confronted with their alternative conceptions…

  15. Constructing Virtual Training Demonstrations

    DTIC Science & Technology

    2008-12-01

    virtual environments have been shown to be effective for training, and distributed game -based architectures contribute an added benefit of wide...investigation of how a demonstration authoring toolset can be constructed from existing virtual training environments using 3-D multiplayer gaming ...intelligent agents project to create AI middleware for simulations and videogames . The result was SimBionic®, which enables users to graphically author

  16. Bionic Running for Unilateral Transtibial Military Amputees

    DTIC Science & Technology

    2010-01-01

    Bellman, R., 2010, “An Active Ankle-Foot Prosthesis With Biomechanical Energy Regeneration”, Transactions of the ASME Journal...Lefeber, D., 2008, “A Biomechanical Transtibial Prosthesis Powered by Pleated Pneumatic Artificial Muscles,” Model Identification and Control, 4, 394- 405. ...Inc., have designed, built, and demonstrated a first of its kind motor powered, single board computer controlled, running prosthesis for military

  17. Visual Prosthesis: Interfacing Stimulating Electrodes with Retinal Neurons to Restore Vision

    PubMed Central

    Barriga-Rivera, Alejandro; Bareket, Lilach; Goding, Josef; Aregueta-Robles, Ulises A.; Suaning, Gregg J.

    2017-01-01

    The bypassing of degenerated photoreceptors using retinal neurostimulators is helping the blind to recover functional vision. Researchers are investigating new ways to improve visual percepts elicited by these means as the vision produced by these early devices remain rudimentary. However, several factors are hampering the progression of bionic technologies: the charge injection limits of metallic electrodes, the mechanical mismatch between excitable tissue and the stimulating elements, neural and electric crosstalk, the physical size of the implanted devices, and the inability to selectively activate different types of retinal neurons. Electrochemical and mechanical limitations are being addressed by the application of electromaterials such as conducting polymers, carbon nanotubes and nanocrystalline diamonds, among other biomaterials, to electrical neuromodulation. In addition, the use of synthetic hydrogels and cell-laden biomaterials is promising better interfaces, as it opens a door to establishing synaptic connections between the electrode material and the excitable cells. Finally, new electrostimulation approaches relying on the use of high-frequency stimulation and field overlapping techniques are being developed to better replicate the neural code of the retina. All these elements combined will bring bionic vision beyond its present state and into the realm of a viable, mainstream therapy for vision loss. PMID:29184478

  18. Fermentation based carbon nanotube multifunctional bionic composites

    NASA Astrophysics Data System (ADS)

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-06-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal.

  19. Nanocarbon-Coated Porous Anodic Alumina for Bionic Devices

    PubMed Central

    Aramesh, Morteza; Tong, Wei; Fox, Kate; Turnley, Ann; Seo, Dong Han; Prawer, Steven; Ostrikov, Kostya (Ken)

    2015-01-01

    A highly-stable and biocompatible nanoporous electrode is demonstrated herein. The electrode is based on a porous anodic alumina which is conformally coated with an ultra-thin layer of diamond-like carbon. The nanocarbon coating plays an essential role for the chemical stability and biocompatibility of the electrodes; thus, the coated electrodes are ideally suited for biomedical applications. The corrosion resistance of the proposed electrodes was tested under extreme chemical conditions, such as in boiling acidic/alkali environments. The nanostructured morphology and the surface chemistry of the electrodes were maintained after wet/dry chemical corrosion tests. The non-cytotoxicity of the electrodes was tested by standard toxicity tests using mouse fibroblasts and cortical neurons. Furthermore, the cell–electrode interaction of cortical neurons with nanocarbon coated nanoporous anodic alumina was studied in vitro. Cortical neurons were found to attach and spread to the nanocarbon coated electrodes without using additional biomolecules, whilst no cell attachment was observed on the surface of the bare anodic alumina. Neurite growth appeared to be sensitive to nanotopographical features of the electrodes. The proposed electrodes show a great promise for practical applications such as retinal prostheses and bionic implants in general. PMID:28793486

  20. A Wearable Body Controlling Device for Application of Functional Electrical Stimulation

    PubMed Central

    Jeffery, Nicholas D.

    2018-01-01

    In this research, we describe a new balancing device used to stabilize the rear quarters of a patient dog with spinal cord injuries. Our approach uses inertial measurement sensing and direct leg actuation to lay a foundation for eventual muscle control by means of direct functional electrical stimulation (FES). During this phase of development, we designed and built a mechanical test-bed to develop the control and stimulation algorithms before we use the device on our animal subjects. We designed the bionic test-bed to mimic the typical walking gait of a dog and use it to develop and test the functionality of the balancing device for stabilization of patient dogs with hindquarter paralysis. We present analysis for various muscle stimulation and balancing strategies, and our device can be used by veterinarians to tailor the stimulation strength and temporal distribution for any individual patient dog. We develop stabilizing muscle stimulation strategies using the robotic test-bed to enhance walking stability. We present experimental results using the bionic test-bed to demonstrate that the balancing device can provide an effective sensing strategy and deliver the required motion control commands for stabilizing an actual dog with a spinal cord injury. PMID:29670039

  1. Multicentre evaluation of music perception in adult users of Advanced Bionics cochlear implants.

    PubMed

    Adams, Doris; Ajimsha, Khalid Mohamed; Barberá, Manuel Tomás; Gazibegovic, Dzemal; Gisbert, Javier; Gómez, Justo; Raveh, Eyal; Rocca, Christine; Romanet, Philipe; Seebens, Yvonne; Zarowski, Andrzej

    2014-01-01

    To document musical listening and enjoyment in recipients of Advanced Bionics cochlear implants (CIs) and to compare musical perception in those using early coding strategies with subjects using the newer HiRes and HiRes 120 strategies. A questionnaire was completed by 136 adult subjects, including questions on the ability to identify specific musical features. The subjects were in three groups: those using early coding strategies (n = 29), HiRes (n = 59), and HiRes 120 (n = 48), and results were compared with a group of 84 normally hearing (NH) subjects. Of the CI users, 79% reported listening to music. The NH group rated listening frequency and enjoyment higher than the CI users. Thirty-five users reported that they sang and this group had significantly higher overall performance. There were no significant differences in overall perception of specific musical features among the strategy groups, though some individual questions showed significantly higher performance in the HiRes 120 users. Users of current CI technology show a high level of musical appreciation, though still significantly less than NH subjects. Frequency of listening and enjoyment were significantly correlated and active participation in musical activities, specifically singing, resulted in significantly higher overall performance scores.

  2. Fermentation based carbon nanotube multifunctional bionic composites

    PubMed Central

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-01-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal. PMID:27279425

  3. Soft Robotics: Academic Insights and Perspectives Through Bibliometric Analysis.

    PubMed

    Bao, Guanjun; Fang, Hui; Chen, Lingfeng; Wan, Yuehua; Xu, Fang; Yang, Qinghua; Zhang, Libin

    2018-06-01

    Soft robotics is of growing interest in the robot community as well as in public media, and there is an increase in the quality and quantity of publications related to this topic. To formally elaborate this growth, we have used a bibliometric analysis to evaluate the publications in the field from 1990 to 2017 based on the Science Citation Index Expanded database. We present a detailed overview and discussion based on keywords, citation, h-index, year, journal, institution, country, author, and review articles. The results show that the United States takes the leading position in this research field, followed by China and Italy. Harvard University has the most publications, high average number of citations per publication and the highest h-index. IEEE Transactions on Robotics ranks first among the top 20 academic journals publishing articles related to this field, whereas Soft Robotics holds the top position in journals categorized with "ROBOTICS." Actuator, fabrication, control, material, sensing, simulation, bionics, stiffness, modeling, power, motion, and application are the hot topics of soft robotics. Smart materials, bionics, morphological computation, and embodiment control are expected to contribute to this field in the future. Application and commercialization appear to be the initial driving force and final goal for soft robots.

  4. A Wearable Body Controlling Device for Application of Functional Electrical Stimulation.

    PubMed

    Taghavi, Nazita; Luecke, Greg R; Jeffery, Nicholas D

    2018-04-18

    In this research, we describe a new balancing device used to stabilize the rear quarters of a patient dog with spinal cord injuries. Our approach uses inertial measurement sensing and direct leg actuation to lay a foundation for eventual muscle control by means of direct functional electrical stimulation (FES). During this phase of development, we designed and built a mechanical test-bed to develop the control and stimulation algorithms before we use the device on our animal subjects. We designed the bionic test-bed to mimic the typical walking gait of a dog and use it to develop and test the functionality of the balancing device for stabilization of patient dogs with hindquarter paralysis. We present analysis for various muscle stimulation and balancing strategies, and our device can be used by veterinarians to tailor the stimulation strength and temporal distribution for any individual patient dog. We develop stabilizing muscle stimulation strategies using the robotic test-bed to enhance walking stability. We present experimental results using the bionic test-bed to demonstrate that the balancing device can provide an effective sensing strategy and deliver the required motion control commands for stabilizing an actual dog with a spinal cord injury.

  5. 3D finite element model of the chinchilla ear for characterizing middle ear functions

    PubMed Central

    Wang, Xuelin; Gan, Rong Z.

    2016-01-01

    Chinchilla is a commonly used animal model for research of sound transmission through the ear. Experimental measurements of the middle ear transfer function in chinchillas have shown that the middle ear cavity greatly affects the tympanic membrane (TM) and stapes footplate (FP) displacements. However, there is no finite element (FE) model of the chinchilla ear available in the literature to characterize the middle ear functions with the anatomical features of the chinchilla ear. This paper reports a recently completed 3D FE model of the chinchilla ear based on X-ray micro-computed tomography images of a chinchilla bulla. The model consisted of the ear canal, TM, middle ear ossicles and suspensory ligaments, and the middle ear cavity. Two boundary conditions of the middle ear cavity wall were simulated in the model as the rigid structure and the partially flexible surface, and the acoustic-mechanical coupled analysis was conducted with these two conditions to characterize the middle ear function. The model results were compared with experimental measurements reported in the literature including the TM and FP displacements and the middle ear input admittance in chinchilla ear. An application of this model was presented to identify the acoustic role of the middle ear septa - a unique feature of chinchilla middle ear cavity. This study provides the first 3D FE model of the chinchilla ear for characterizing the middle ear functions through the acoustic-mechanical coupled FE analysis. PMID:26785845

  6. Loss of CD28 on Peripheral T Cells Decreases the Risk for Early Acute Rejection after Kidney Transplantation

    PubMed Central

    Dedeoglu, Burç; Meijers, Ruud W. J.; Klepper, Mariska; Hesselink, Dennis A.; Baan, Carla C.; Litjens, Nicolle H. R.; Betjes, Michiel G. H.

    2016-01-01

    Background End-stage renal disease patients have a dysfunctional, prematurely aged peripheral T-cell system. Here we hypothesized that the degree of premature T-cell ageing before kidney transplantation predicts the risk for early acute allograft rejection (EAR). Methods 222 living donor kidney transplant recipients were prospectively analyzed. EAR was defined as biopsy proven acute allograft rejection within 3 months after kidney transplantation. The differentiation status of circulating T cells, the relative telomere length and the number of CD31+ naive T cells were determined as T-cell ageing parameters. Results Of the 222 patients analyzed, 30 (14%) developed an EAR. The donor age and the historical panel reactive antibody score were significantly higher (p = 0.024 and p = 0.039 respectively) and the number of related donor kidney transplantation was significantly lower (p = 0.018) in the EAR group. EAR-patients showed lower CD4+CD28null T-cell numbers (p<0.01) and the same trend was observed for CD8+CD28null T-cell numbers (p = 0.08). No differences regarding the other ageing parameters were found. A multivariate Cox regression analysis showed that higher CD4+CD28null T-cell numbers was associated with a lower risk for EAR (HR: 0.65, p = 0.028). In vitro, a significant lower percentage of alloreactive T cells was observed within CD28null T cells (p<0.001). Conclusion Immunological ageing-related expansion of highly differentiated CD28null T cells is associated with a lower risk for EAR. PMID:26950734

  7. Toxicology study for magnetic injection of prednisolone into the rat cochlea.

    PubMed

    Shimoji, M; Ramaswamy, B; Shukoor, M I; Benhal, P; Broda, A; Kulkarni, S; Malik, P; McCaffrey, B; Lafond, J-F; Nacev, A; Weinberg, I N; Shapiro, B; Depireux, D A

    2018-06-19

    This paper investigates the safety of a novel 'magnetic injection' method of delivering therapy to the cochlea, in a rodent model. In this method of administration, a magnetic field is employed to actively transport drug-eluting iron oxide-core nanoparticles into the cochlea, where they then release their drug payload (we delivered the steroid prednisolone). Our study design and selection of control groups was based on published regulatory guidance for safety studies that involve local drug delivery. We tested for both single and multiple delivery doses to the cochlea, and found that magnetic delivery did not harm hearing. There was no statistical difference in hearing between magnetically treated ears versus ears that received intra-tympanic steroid (a mimic of a standard-of-care for sudden sensorineural hearing loss), both 2 and 30 days after treatment. Since our treatment is local to the ear, the levels of steroid and iron circulating systemically after our treatment were low, below mass-spectrometry detection limits for the steroid and no different from normal for iron. No adverse findings were observed in ear tissue histopathology or in animal gross behavior. At 2 and 30 days after treatment, inflammatory changes in the ear were limited to the middle ear, were very mild in severity, and by day 90 there was ongoing and almost complete reversibility of these changes. There were no ear tissue scarring or hemorrhage trends associated with magnetic delivery. In summary, after conducting a pre-clinical safety study based on FDA guidance documents, no adverse safety issues were observed. Copyright © 2017. Published by Elsevier B.V.

  8. A new perspective on binaural integration using response time methodology: super capacity revealed in conditions of binaural masking release.

    PubMed

    Lentz, Jennifer J; He, Yuan; Townsend, James T

    2014-01-01

    This study applied reaction-time based methods to assess the workload capacity of binaural integration by comparing reaction time (RT) distributions for monaural and binaural tone-in-noise detection tasks. In the diotic contexts, an identical tone + noise stimulus was presented to each ear. In the dichotic contexts, an identical noise was presented to each ear, but the tone was presented to one of the ears 180° out of phase with respect to the other ear. Accuracy-based measurements have demonstrated a much lower signal detection threshold for the dichotic vs. the diotic conditions, but accuracy-based techniques do not allow for assessment of system dynamics or resource allocation across time. Further, RTs allow comparisons between these conditions at the same signal-to-noise ratio. Here, we apply a reaction-time based capacity coefficient, which provides an index of workload efficiency and quantifies the resource allocations for single ear vs. two ear presentations. We demonstrate that the release from masking generated by the addition of an identical stimulus to one ear is limited-to-unlimited capacity (efficiency typically less than 1), consistent with less gain than would be expected by probability summation. However, the dichotic presentation leads to a significant increase in workload capacity (increased efficiency)-most specifically at lower signal-to-noise ratios. These experimental results provide further evidence that configural processing plays a critical role in binaural masking release, and that these mechanisms may operate more strongly when the signal stimulus is difficult to detect, albeit still with nearly 100% accuracy.

  9. Asymmetric Hearing During Development: The Aural Preference Syndrome and Treatment Options.

    PubMed

    Gordon, Karen; Henkin, Yael; Kral, Andrej

    2015-07-01

    Deafness affects ∼2 in 1000 children and is one of the most common congenital impairments. Permanent hearing loss can be treated by fitting hearing aids. More severe to profound deafness is an indication for cochlear implantation. Although newborn hearing screening programs have increased the identification of asymmetric hearing loss, parents and caregivers of children with single-sided deafness are often hesitant to pursue therapy for the deaf ear. Delayed intervention has consequences for recovery of hearing. It has long been reported that asymmetric hearing loss/single-sided deafness compromises speech and language development and educational outcomes in children. Recent studies in animal models of deafness and in children consistently show evidence of an "aural preference syndrome" in which single-sided deafness in early childhood reorganizes the developing auditory pathways toward the hearing ear, with weaker central representation of the deaf ear. Delayed therapy consequently compromises benefit for the deaf ear, with slow rates of improvement measured over time. Therefore, asymmetric hearing needs early identification and intervention. Providing early effective stimulation in both ears through appropriate fitting of auditory prostheses, including hearing aids and cochlear implants, within a sensitive period in development has a cardinal role for securing the function of the impaired ear and for restoring binaural/spatial hearing. The impacts of asymmetric hearing loss on the developing auditory system and on spoken language development have often been underestimated. Thus, the traditional minimalist approach to clinical management aimed at 1 functional ear should be modified on the basis of current evidence. Copyright © 2015 by the American Academy of Pediatrics.

  10. A new perspective on binaural integration using response time methodology: super capacity revealed in conditions of binaural masking release

    PubMed Central

    Lentz, Jennifer J.; He, Yuan; Townsend, James T.

    2014-01-01

    This study applied reaction-time based methods to assess the workload capacity of binaural integration by comparing reaction time (RT) distributions for monaural and binaural tone-in-noise detection tasks. In the diotic contexts, an identical tone + noise stimulus was presented to each ear. In the dichotic contexts, an identical noise was presented to each ear, but the tone was presented to one of the ears 180° out of phase with respect to the other ear. Accuracy-based measurements have demonstrated a much lower signal detection threshold for the dichotic vs. the diotic conditions, but accuracy-based techniques do not allow for assessment of system dynamics or resource allocation across time. Further, RTs allow comparisons between these conditions at the same signal-to-noise ratio. Here, we apply a reaction-time based capacity coefficient, which provides an index of workload efficiency and quantifies the resource allocations for single ear vs. two ear presentations. We demonstrate that the release from masking generated by the addition of an identical stimulus to one ear is limited-to-unlimited capacity (efficiency typically less than 1), consistent with less gain than would be expected by probability summation. However, the dichotic presentation leads to a significant increase in workload capacity (increased efficiency)—most specifically at lower signal-to-noise ratios. These experimental results provide further evidence that configural processing plays a critical role in binaural masking release, and that these mechanisms may operate more strongly when the signal stimulus is difficult to detect, albeit still with nearly 100% accuracy. PMID:25202254

  11. STS-40 MS Jernigan, working at SLS-1 Rack 1, examines Pilot Gutierrez's ear

    NASA Image and Video Library

    1991-06-14

    STS040-206-002 (5-14 June 1991) --- Held in place by the Spacelab Life Sciences (SLS-1) Medical Restraint System (MRS), astronaut Sidney M. Gutierrez, pilot, gets his ears checked by astronaut Tamara E. Jernigan, mission specialist. The two are in the SLS-1 module, onboard the Space Shuttle Columbia. The scene was photographed with a 35mm camera.

  12. The MOC reflex during active listening to speech.

    PubMed

    Garinis, Angela C; Glattke, Theodore; Cone, Barbara K

    2011-10-01

    The purpose of this study was to test the hypothesis that active listening to speech would increase medial olivocochlear (MOC) efferent activity for the right vs. the left ear. Click-evoked otoacoustic emissions (CEOAEs) were evoked by 60-dB p.e. SPL clicks in 13 normally hearing adults in 4 test conditions for each ear: (a) in quiet; (b) with 60-dB SPL contralateral broadband noise; (c) with words embedded (at -3-dB signal-to-noise ratio [SNR]) in 60-dB SPL contralateral noise during which listeners directed attention to the words; and (d) for the same SNR as in the 3rd condition, with words played backwards. There was greater suppression during active listening compared with passive listening that was apparent in the latency range of 6- to 18-ms poststimulus onset. Ear differences in CEOAE amplitude were observed in all conditions, with right-ear amplitudes larger than those for the left. The absolute difference between CEOAE amplitude in quiet and with contralateral noise, a metric of suppression, was equivalent for right and left ears. When the amplitude differences were normalized, suppression was greater for noise presented to the right and the effect measured for a probe in the left ear. The findings support the theory that cortical mechanisms involved in listening to speech affect cochlear function through the MOC efferent system.

  13. Evolution and development of the vertebrate ear

    NASA Technical Reports Server (NTRS)

    Fritzsch, B.; Beisel, K. W.

    2001-01-01

    This review outlines major aspects of development and evolution of the ear, specifically addressing issues of cell fate commitment and the emerging molecular governance of these decisions. Available data support the notion of homology of subsets of mechanosensors across phyla (proprioreceptive mechanosensory neurons in insects, hair cells in vertebrates). It is argued that this conservation is primarily related to the specific transducing environment needed to achieve mechanosensation. Achieving this requires highly conserved transcription factors that regulate the expression of the relevant structural genes for mechanosensory transduction. While conserved at the level of some cell fate assignment genes (atonal and its mammalian homologue), the ear has also radically reorganized its development by implementing genes used for cell fate assignment in other parts of the developing nervous systems (e.g., neurogenin 1) and by evolving novel sets of genes specifically associated with the novel formation of sensory neurons that contact hair cells (neurotrophins and their receptors). Numerous genes have been identified that regulate morphogenesis, but there is only one common feature that emerges at the moment: the ear appears to have co-opted genes from a large variety of other parts of the developing body (forebrain, limbs, kidneys) and establishes, in combination with existing transcription factors, an environment in which those genes govern novel, ear-related morphogenetic aspects. The ear thus represents a unique mix of highly conserved developmental elements combined with co-opted and newly evolved developmental elements.

  14. Diverse patterns of perilymphatic space enhancement in the rat inner ear after intratympanic injection of two different types of gadolinium: a 9.4-tesla magnetic resonance study.

    PubMed

    Park, Mina; Lee, Ho Sun; Choi, Jun-Jae; Kim, Hyeonjin; Lee, Jun Ho; Oh, Seung Ha; Suh, Myung-Whan

    2015-01-01

    To compare the quality of perilymphatic enhancement in the rat inner ear after intratympanic injection of two types of gadolinium with a 9.4-tesla micro-MRI. Gadolinium was injected into the middle ear in 6 Sprague-Dawley rats via the transtympanic route. The left ear was injected with Gd-DO3A-butrol first, and then the right ear was injected with Gd-DOTA. MR images of the inner ear were acquired 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4 h after intratympanic (IT) injection using an Agilent MRI system 9.4T/160/AS. The normalized signal intensity was quantitatively analyzed at the scala vestibuli (SV), scala media, and scala tympani (ST) using a Marosis M-view system. Then the normalized signal intensities (SIs) were compared between the two contrast agents. For Gd-DO3A-butrol, the SI was as low as 1.0-1.5 throughout 1-4 h at the SV and ST of the basal turn. The maximum SI was 1.5 ± 0.5 at the SV (2 h) and 1.3 ± 0.5 at the ST (2 h). For Gd-DOTA, the 1-hour postinjection SI at the basal turn was 2.5 ± 0.5 at the SV, 1.6 ± 0.3 at the ST, and 1.2 ± 0.3 at the scala media. In the apical turn, the maximum SI was reached after 2.5 h. The maximum SI in the apical turn was 1.8 ± 0.4 at the SV (3.5 h), 1.8 ± 0.4 at the ST (4 h), and 1.4 ± 0.3 at the scala media (4 h). We were able to clearly visualize and separate the ST and SV using IT Gd and 9.4-tesla micro-MRI. We recommend using Gd-DO3A-butrol over Gd-DOTA and to perform the MRI 2.5 h after using IT Gd in the rat inner ear. © 2015 S. Karger AG, Basel.

  15. New optical tomographic & topographic techniques for biomedical applications

    NASA Astrophysics Data System (ADS)

    Buytaert, Jan

    The mammalian middle ear contains the eardrum and the three auditory ossicles, and forms an impedance match between sound in air and pressure waves in the fluid of the inner ear. Without this intermediate system, with its unsurpassed efficiency and dynamic range, we would be practically deaf. Physics-based modeling of this extremely complex mechanical system is necessary to help our basic understanding of the functioning of hearing. Highly realistic models will make it possible to predict the outcome of surgical interventions and to optimize design of ossicle prostheses and active middle ear implants. To obtain such models and with realistic output, basic input data is still missing. In this dissertation I developed and used two new optical techniques to obtain two essential sets of data: accurate three-dimensional morphology of the middle ear structures, and elasticity parameters of the eardrum. The first technique is a new method for optical tomography of macroscopic biomedical objects, which makes it possible to measure the three-dimensional geometry of the middle ear ossicles and soft tissues which are connecting and suspending them. I made a new and high-resolution version of this orthogonal-plane fluorescence optical sectioning method, to obtain micrometer resolution in macroscopic specimens. The result is thus a complete 3-D model of the middle (and inner) ear of gerbil in unprecedented quality. On top of high-resolution morphological models of the middle ear structures, I applied the technique in other fields of research as well. The second device works according to a new optical profilometry technique which allows to measure shape and deformations of the eardrum and other membranes or objects. The approach is called projection moire profilometry, and creates moire interference fringes which contain the height information. I developed a setup which uses liquid crystal panels for grid projection and optical demodulation. Hence no moving parts are present and the setup is entirely digitally controlled. This measurement method is developed to determine the elasticity parameters of the eardrum in-situ. Other surface shapes however can also be measured.

  16. [Effect size on resonance of the outer ear canal by simulation of middle ear lesions using a temporal bone preparation].

    PubMed

    Scheinpflug, L; Vorwerk, U; Begall, K

    1995-01-01

    By means of a model of the external and the middle ear it is possible to simulate various, exactly defined pathological conditions of the middle ear and to describe their influence on ear canal resonance. Starting point of the investigations are fresh postmortem preparations of 8 human temporal bones with an intact ear drum and a retained skin of the ear canal. The compliance of the middle ear does not significantly differ from the clinical data of probands with healthy ears. After antrotomy it is possible to simulate pathological conditions of the middle ear one after the other at the same temporal bone. The influence of the changed middle ear conditions on ear drum compliance, ear canal volume and on the resonance curve of the external ear canal was investigated. For example, the middle ear was filled with water to create approximately the same conditions as in acute serous otitis media. In this middle ear condition a significant increase of the sound pressure amplification was found, on an average by 4 decibels compared to the unchanged temporal bone model. A small increase in resonance frequency was also measured. The advantages of this model are the approximately physiological conditions and the constant dimensions of the external and middle ear.

  17. Chronic Tuberculous Otomastoiditis: A Case Report.

    PubMed

    Bruschini, Luca; Ciabotti, Annalisa; Berrettini, Stefano

    2016-08-01

    Worldwide, tuberculosis is a widespread disease, with 8.7 million new cases occurring annually. Its etiologic agent, Mycobacterium tuberculosis, essentially causes pneumonia. However, this organism affects the middle ear in rare cases, accounting for 0.04-0.09% of all chronic middle ear otitis cases in Western countries. In this report, we describe the case of a young woman affected by tuberculosis of the middle ear. In our experience, empiric therapy was not beneficial. Adequate treatment was possible only after obtaining a specific diagnosis through a difficult process requiring surgical sampling for culture examination. We consider surgical sampling to be mandatory in all cases of chronic otitis media that do not respond to prolonged systemic and local therapies.

  18. The design of the layout of faceted multi-channel electro-optical spatial coordinates measuring instrument for point-like bright objects

    NASA Astrophysics Data System (ADS)

    Repin, Vladislav A.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Korotaev, Valery V.

    2017-06-01

    For many applied problems it is necessary to obtain information about the situation in a wide angular field in order to measure various parameters of objects: their spatial coordinates, instantaneous velocities, and so on. In this case, one interesting bionic approach can be used - a mosaic (or discrete, otherwise, facet) angular field. Such electro-optical system constructively imitates the visual apparatus of insects: many photodetectors like ommatidia (elements of the facet eye structure) are located on a non-planar surface. Such devices can be used in photogrammetry and aerial photography systems (if the space is sufficient), in the transport sector as vehicle orientation organs, as systems for monitoring in unmanned aerial vehicles, in endoscopy for obtaining comprehensive information on the state of various cavities, in intelligent robotic systems. In this manuscript discusses the advantages and disadvantages of multi-channeled optoelectronic systems with a mosaic angular field, presents possible options for their use, and discusses some of the design procedures performed when developing a layout of a coordinate measuring device.

  19. Position-dependent hearing in three species of bushcrickets (Tettigoniidae, Orthoptera)

    PubMed Central

    Lakes-Harlan, Reinhard; Scherberich, Jan

    2015-01-01

    A primary task of auditory systems is the localization of sound sources in space. Sound source localization in azimuth is usually based on temporal or intensity differences of sounds between the bilaterally arranged ears. In mammals, localization in elevation is possible by transfer functions at the ear, especially the pinnae. Although insects are able to locate sound sources, little attention is given to the mechanisms of acoustic orientation to elevated positions. Here we comparatively analyse the peripheral hearing thresholds of three species of bushcrickets in respect to sound source positions in space. The hearing thresholds across frequencies depend on the location of a sound source in the three-dimensional hearing space in front of the animal. Thresholds differ for different azimuthal positions and for different positions in elevation. This position-dependent frequency tuning is species specific. Largest differences in thresholds between positions are found in Ancylecha fenestrata. Correspondingly, A. fenestrata has a rather complex ear morphology including cuticular folds covering the anterior tympanal membrane. The position-dependent tuning might contribute to sound source localization in the habitats. Acoustic orientation might be a selective factor for the evolution of morphological structures at the bushcricket ear and, speculatively, even for frequency fractioning in the ear. PMID:26543574

  20. Position-dependent hearing in three species of bushcrickets (Tettigoniidae, Orthoptera).

    PubMed

    Lakes-Harlan, Reinhard; Scherberich, Jan

    2015-06-01

    A primary task of auditory systems is the localization of sound sources in space. Sound source localization in azimuth is usually based on temporal or intensity differences of sounds between the bilaterally arranged ears. In mammals, localization in elevation is possible by transfer functions at the ear, especially the pinnae. Although insects are able to locate sound sources, little attention is given to the mechanisms of acoustic orientation to elevated positions. Here we comparatively analyse the peripheral hearing thresholds of three species of bushcrickets in respect to sound source positions in space. The hearing thresholds across frequencies depend on the location of a sound source in the three-dimensional hearing space in front of the animal. Thresholds differ for different azimuthal positions and for different positions in elevation. This position-dependent frequency tuning is species specific. Largest differences in thresholds between positions are found in Ancylecha fenestrata. Correspondingly, A. fenestrata has a rather complex ear morphology including cuticular folds covering the anterior tympanal membrane. The position-dependent tuning might contribute to sound source localization in the habitats. Acoustic orientation might be a selective factor for the evolution of morphological structures at the bushcricket ear and, speculatively, even for frequency fractioning in the ear.

  1. [Study on an Exoskeleton Hand Function Training Device].

    PubMed

    Hu, Xin; Zhang, Ying; Li, Jicai; Yi, Jinhua; Yu, Hongliu; He, Rongrong

    2016-02-01

    Based on the structure and motion bionic principle of the normal adult fingers, biological characteristics of human hands were analyzed, and a wearable exoskeleton hand function training device for the rehabilitation of stroke patients or patients with hand trauma was designed. This device includes the exoskeleton mechanical structure and the electromyography (EMG) control system. With adjustable mechanism, the device was capable to fit different finger lengths, and by capturing the EMG of the users' contralateral limb, the motion state of the exoskeleton hand was controlled. Then driven by the device, the user's fingers conducting adduction/abduction rehabilitation training was carried out. Finally, the mechanical properties and training effect of the exoskeleton hand were verified through mechanism simulation and the experiments on the experimental prototype of the wearable exoskeleton hand function training device.

  2. Sniffer dogs as part of a bimodal bionic research approach to develop a lung cancer screening.

    PubMed

    Boedeker, Enole; Friedel, Godehard; Walles, Thorsten

    2012-05-01

    Lung cancer (LC) continues to represent a heavy burden for health care systems worldwide. Epidemiological studies predict that its role will increase in the near future. While patient prognosis is strongly associated with tumour stage and early detection of disease, no screening test exists so far. It has been suggested that electronic sensor devices, commonly referred to as 'electronic noses', may be applicable to identify cancer-specific volatile organic compounds in the breath of patients and therefore may represent promising screening technologies. However, three decades of research did not bring forward a clinically applicable device. Here, we propose a new research approach by involving specially trained sniffer dogs into research strategies by making use of their ability to identify LC in the breath sample of patients.

  3. Effect of target-masker similarity on across-ear interference in a dichotic cocktail-party listening task.

    PubMed

    Brungart, Douglas S; Simpson, Brian D

    2007-09-01

    Similarity between the target and masking voices is known to have a strong influence on performance in monaural and binaural selective attention tasks, but little is known about the role it might play in dichotic listening tasks with a target signal and one masking voice in the one ear and a second independent masking voice in the opposite ear. This experiment examined performance in a dichotic listening task with a target talker in one ear and same-talker, same-sex, or different-sex maskers in both the target and the unattended ears. The results indicate that listeners were most susceptible to across-ear interference with a different-sex within-ear masker and least susceptible with a same-talker within-ear masker, suggesting that the amount of across-ear interference cannot be predicted from the difficulty of selectively attending to the within-ear masking voice. The results also show that the amount of across-ear interference consistently increases when the across-ear masking voice is more similar to the target speech than the within-ear masking voice is, but that no corresponding decline in across-ear interference occurs when the across-ear voice is less similar to the target than the within-ear voice. These results are consistent with an "integrated strategy" model of speech perception where the listener chooses a segregation strategy based on the characteristics of the masker present in the target ear and the amount of across-ear interference is determined by the extent to which this strategy can also effectively be used to suppress the masker in the unattended ear.

  4. Otitis

    MedlinePlus

    Ear infection; Infection - ear ... of the ear. The condition can be: Acute ear infection. Starts suddenly and lasts for a short period of time. It is often painful. Chronic ear infection. Occurs when the ear infection does not go ...

  5. Audiological characteristics of infants with abnormal transient evoked otoacoustic emission and normal auditory brainstem response.

    PubMed

    Huang, Lihui; Han, Demin; Guo, Ying; Liu, Sha; Cui, Xiaoyan; Mo, Lingyan; Qi, Beier; Cai, Zhenghua; Liu, Hui; En, Hui; Guo, Liansheng

    2008-10-01

    Audiological characteristics were investigated in 81 ears of 53 infants with abnormal transient evoked otoacoustic emission (TEOAE) and normal auditory brainstem response (ABR). The relationship between ABR and other hearing testing methods, including 40Hz auditory event-related potential (40Hz-AERP), auditory steady state response (ASSR), distortion product otoacoustic emission (DPOAE), tympanometry, and acoustic reflex, was analyzed. Of the 81 ears, 18 ears (22.2%) were normal, while 63 ears (77.8%) were abnormal according to the tests. Testing of the 40 Hz AERP (36 ears) and ASSR (45 ears) revealed that 14 ears (38.9%) and 27 ears (60.0%) were abnormal, respectively. Testing of DPOAE in 68 ears revealed that 50 ears (73.5%) were abnormal. Testing of tympanometry in 50 ears and acoustic reflex in 47 ears revealed that 9 ears (18%) and 27 ears (57.4%) were abnormal, respectively. The present data suggests that the hearing of infants cannot be sufficiently evaluated with ABR only and that it must be evaluated with integrative audiological testing methods.

  6. Development of a Microfluidics-Based Intracochlear Drug Delivery Device

    PubMed Central

    Sewell, William F.; Borenstein, Jeffrey T.; Chen, Zhiqiang; Fiering, Jason; Handzel, Ophir; Holmboe, Maria; Kim, Ernest S.; Kujawa, Sharon G.; McKenna, Michael J.; Mescher, Mark M.; Murphy, Brian; Leary Swan, Erin E.; Peppi, Marcello; Tao, Sarah

    2009-01-01

    Background Direct delivery of drugs and other agents into the inner ear will be important for many emerging therapies, including the treatment of degenerative disorders and guiding regeneration. Methods We have taken a microfluidics/MEMS (MicroElectroMechanical Systems) technology approach to develop a fully implantable reciprocating inner-ear drug-delivery system capable of timed and sequenced delivery of agents directly into perilymph of the cochlea. Iterations of the device were tested in guinea pigs to determine the flow characteristics required for safe and effective delivery. For these tests, we used the glutamate receptor blocker DNQX, which alters auditory nerve responses but not cochlear distortion product otoacoustic emissions. Results We have demonstrated safe and effective delivery of agents into the scala tympani. Equilibration of the drug in the basal turn occurs rapidly (within tens of minutes) and is dependent on reciprocating flow parameters. Conclusion We have described a prototype system for the direct delivery of drugs to the inner ear that has the potential to be a fully implantable means for safe and effective treatment of hearing loss and other diseases. PMID:19923811

  7. Middle ear impedance measurements in large vestibular aqueduct syndrome.

    PubMed

    Bilgen, Cem; Kirkim, Günay; Kirazli, Tayfun

    2009-06-01

    To assess the effect of inner ear pressure on middle ear impedance in patients with large vestibular aqueduct syndrome (LVAS). Data from admittance tympanometry and multifrequency tympanometry on 8 LVAS patients and control subjects were studied. Static acoustic compliance (SAC) values for the ears with stable sensorineural hearing loss (SNHL) were within the limits of the mean values of control groups except for two ears. The resonance frequency (RF) values of the ears with stable SNHL were lower than the mean values of control groups except for three ears. SAC values for the two ears with fluctuating SNHL were lower and the RF values were higher than the mean values of control groups. Decreased SAC values and increased RF values found in the ears with fluctuating SNHL might be an indirect indicator of increased inner ear pressure, while low RF values in the ears with stable SNHL might reflect the decreased inner ear impedance.

  8. Bilateral tympanokeratomas (cholesteatomas) with bilateral otitis media, unilateral otitis interna and acoustic neuritis in a dog.

    PubMed

    Østevik, Liv; Rudlang, Kathrine; Holt Jahr, Tuva; Valheim, Mette; Njaa, Bradley Lyndon

    2018-05-22

    An aural cholesteatoma, more appropriately named tympanokeratoma, is an epidermoid cyst of the middle ear described in several species, including dogs, humans and Mongolian gerbils. The cyst lining consists of stratified, keratinizing squamous epithelium with central accumulation of a keratin debris. This case report describes vestibular ganglioneuritis and perineuritis in a dog with chronic otitis, bilateral tympanokeratomas and presumed extension of otic infection to the central nervous system. An 11-year-old intact male Dalmatian dog with chronic bilateral otitis externa and sudden development of symptoms of vestibular disease was examined. Due to the dog's old age the owner opted for euthanasia without any further examination or treatment and the dog was submitted for necropsy. Transection of the ears revealed grey soft material in the external ear canals and pearly white, dry material consistent with keratin in the tympanic bullae bilaterally. The brain and meninges were grossly unremarkable. Microscopical findings included bilateral otitis externa and media, unilateral otitis interna, ganglioneuritis and perineuritis of the spiral ganglion of the vestibulocochlear nerve and multifocal to coalescing, purulent meningitis. A keratinizing squamous epithelial layer continuous with the external acoustic meatus lined the middle ear compartments, consistent with bilateral tympanokeratomas. Focal bony erosion of the petrous portion of the temporal bone and squamous epithelium and Gram-positive bacterial cocci were evident in the left cochlea. The findings suggest that meningitis developed secondary to erosion of the temporal bone and ganglioneuritis and/or perineuritis of the vestibulocochlear nerve. Middle ear tympanokeratoma is an important and potentially life-threatening otic condition in the dog. Once a tympanokeratoma has developed expansion of the cyst can lead to erosion of bone and extension of otic infection to the inner ear, vestibulocochlear ganglion and nerve potentially leading to bacterial infection of the central nervous system.

  9. Cost-Effectiveness Analysis of a Mobile Ear Screening and Surveillance Service versus an Outreach Screening, Surveillance and Surgical Service for Indigenous Children in Australia

    PubMed Central

    Nguyen, Kim-Huong; Smith, Anthony C.; Armfield, Nigel R.; Bensink, Mark; Scuffham, Paul A.

    2015-01-01

    Indigenous Australians experience a high rate of ear disease and hearing loss, yet they have a lower rate of service access and utilisation compared to their non-Indigenous counterparts. Screening, surveillance and timely access to specialist ear, nose and throat (ENT) services are key components in detecting and preventing the recurrence of ear diseases. To address the low access and utilisation rate by Indigenous Australians, a collaborative, community-based mobile telemedicine-enabled screening and surveillance (MTESS) service was trialled in Cherbourg, the third largest Indigenous community in Queensland, Australia. This paper aims to evaluate the cost-effectiveness of the MTESS service using a lifetime Markov model that compares two options: (i) the Deadly Ears Program alone (current practice involving an outreach ENT surgical service and screening program), and (ii) the Deadly Ears Program supplemented with the MTESS service. Data were obtained from the Deadly Ears Program, a feasibility study of the MTESS service and the literature. Incremental cost-utility ratios were calculated from a societal perspective with both costs (in 2013–14 Australian dollars) and quality-adjusted life years (QALYs) discounted at 5% annually. The model showed that compared with the Deadly Ears Program, the probability of an acceptable cost-utility ratio at a willingness-to-pay threshold of $50,000/QALY was 98% for the MTESS service. This cost effectiveness arises from preventing hearing loss in the Indigenous population and the subsequent reduction in associated costs. Deterministic and probability sensitivity analyses indicated that the model was robust to parameter changes. We concluded that the MTESS service is a cost-effective strategy. It presents an opportunity to resolve major issues confronting Australia’s health system such as the inequitable provision and access to quality healthcare for rural and remotes communities, and for Indigenous Australians. Additionally, it may encourage effective health service delivery at a time when the healthcare funding and workforce capacity are limited. PMID:26406592

  10. Cost-Effectiveness Analysis of a Mobile Ear Screening and Surveillance Service versus an Outreach Screening, Surveillance and Surgical Service for Indigenous Children in Australia.

    PubMed

    Nguyen, Kim-Huong; Smith, Anthony C; Armfield, Nigel R; Bensink, Mark; Scuffham, Paul A

    2015-01-01

    Indigenous Australians experience a high rate of ear disease and hearing loss, yet they have a lower rate of service access and utilisation compared to their non-Indigenous counterparts. Screening, surveillance and timely access to specialist ear, nose and throat (ENT) services are key components in detecting and preventing the recurrence of ear diseases. To address the low access and utilisation rate by Indigenous Australians, a collaborative, community-based mobile telemedicine-enabled screening and surveillance (MTESS) service was trialled in Cherbourg, the third largest Indigenous community in Queensland, Australia. This paper aims to evaluate the cost-effectiveness of the MTESS service using a lifetime Markov model that compares two options: (i) the Deadly Ears Program alone (current practice involving an outreach ENT surgical service and screening program), and (ii) the Deadly Ears Program supplemented with the MTESS service. Data were obtained from the Deadly Ears Program, a feasibility study of the MTESS service and the literature. Incremental cost-utility ratios were calculated from a societal perspective with both costs (in 2013-14 Australian dollars) and quality-adjusted life years (QALYs) discounted at 5% annually. The model showed that compared with the Deadly Ears Program, the probability of an acceptable cost-utility ratio at a willingness-to-pay threshold of $50,000/QALY was 98% for the MTESS service. This cost effectiveness arises from preventing hearing loss in the Indigenous population and the subsequent reduction in associated costs. Deterministic and probability sensitivity analyses indicated that the model was robust to parameter changes. We concluded that the MTESS service is a cost-effective strategy. It presents an opportunity to resolve major issues confronting Australia's health system such as the inequitable provision and access to quality healthcare for rural and remotes communities, and for Indigenous Australians. Additionally, it may encourage effective health service delivery at a time when the healthcare funding and workforce capacity are limited.

  11. Effect of low level laser therapy (LLLT) on vestibular system after gentamicin ototoxicity

    NASA Astrophysics Data System (ADS)

    Rhee, ChungKu; Hyun, Jai-Hwan; Suh, Myung-Whan; Ahn, Jin Chul; Jung, Jae Yun

    2013-03-01

    Aim: To develop a bilateral vestibulopathy animal model induced by gentamicin using RS rat and to see the effect of LLLT on this bilateral vestibulopathy model. Method: RS rats were divided into 3 groups, control group (C), laser group (L), and histology group (H). All animals in the 3 groups received gentamicin (GM) 110 mg/kg, intravenously once daily for 3 days. The animals underwent sinusoidal oscillation about a vertical axis before the GM injection, 1, 3, and 7 days post injections. Transcanal low level laser therapy (LLLT) was irradiated to left ear canal for 7 days, starting 1 day post the GM injection. The H group animals were irradiated into the left ear of L group for 3 days, starting 1 day post GM injections for 3 days. C and L groups were sacrifice on 9th day and H group was sacrificed on 7th day. Results: The gain of the C group was significantly decreased in 3 and 7 days. The gain of the right ear of L group was decreased significantly in 3 and 7 days. The gain of left ear of L group was decreased in 3 days post LLLT but the decreased gain was improved significantly comparing to the level of 7 days gain of right ear and it was much closer to the pre-GM level. The average number of cells in cupula of H group after laser treatment for 3 days was significantly lower in non laser treated right ear comparing to the laser treated left ear and ears of the normal rats. Conclusion: The present study demonstrated that LLLT restores vestibular function and vestibular hair cells in rats post gentamicin induced ototoxic damage. LLLT may have clinical implications in the treatment of various vestibular dysfunction. Further studies are essential to verify the exact mechanisms and the most effective application of LLLT to rescue vestibular dysfunction.

  12. FGF23 Deficiency Leads to Mixed Hearing Loss and Middle Ear Malformation in Mice

    PubMed Central

    Lysaght, Andrew C.; Yuan, Quan; Fan, Yi; Kalwani, Neil; Caruso, Paul; Cunnane, MaryBeth; Lanske, Beate; Stanković, Konstantina M.

    2014-01-01

    Fibroblast growth factor 23 (FGF23) is a circulating hormone important in phosphate homeostasis. Abnormal serum levels of FGF23 result in systemic pathologies in humans and mice, including renal phosphate wasting diseases and hyperphosphatemia. We sought to uncover the role FGF23 plays in the auditory system due to shared molecular mechanisms and genetic pathways between ear and kidney development, the critical roles multiple FGFs play in auditory development and the known hearing phenotype in mice deficient in klotho (KL), a critical co-factor for FGF23 signaling. Using functional assessments of hearing, we demonstrate that Fgf mice are profoundly deaf. Fgf mice have moderate hearing loss above 20 kHz, consistent with mixed conductive and sensorineural pathology of both middle and inner ear origin. Histology and high-voltage X-ray computed tomography of Fgf mice demonstrate dysplastic bulla and ossicles; Fgf mice have near-normal morphology. The cochleae of mutant mice appear nearly normal on gross and microscopic inspection. In wild type mice, FGF23 is ubiquitously expressed throughout the cochlea. Measurements from Fgf mice do not match the auditory phenotype of Kl −/− mice, suggesting that loss of FGF23 activity impacts the auditory system via mechanisms at least partially independent of KL. Given the extensive middle ear malformations and the overlap of initiation of FGF23 activity and Eustachian tube development, this work suggests a possible role for FGF23 in otitis media. PMID:25243481

  13. Sonographic Measurement of Fetal Ear Length in Turkish Women with a Normal Pregnancy

    PubMed Central

    Özdemir, Mucize Eriç; Uzun, Işıl; Karahasanoğlu, Ayşe; Aygün, Mehmet; Akın, Hale; Yazıcıoğlu, Fehmi

    2014-01-01

    Background: Abnormal fetal ear length is a feature of chromosomal disorders. Fetal ear length measurement is a simple measurement that can be obtained during ultrasonographic examinations. Aims: To develop a nomogram for fetal ear length measurements in our population and investigate the correlation between fetal ear length, gestational age, and other standard fetal biometric measurements. Study Design: Cohort study. Methods: Ear lengths of the fetuses were measured in normal singleton pregnancies. The relationship between gestational age and fetal ear length in millimetres was analysed by simple linear regression. In addition, the correlation of fetal ear length measurements with biparietal diameter, head circumference, abdominal circumference, and femur length were evaluated.Ear length measurements were obtained from fetuses in 389 normal singleton pregnancies ranging between 16 and 28 weeks of gestation. Results: A nomogram was developed by linear regression analysis of the parameters ear length and gestational age. Fetal ear length (mm) = y = (1.348 X gestational age)−12.265), where gestational ages is in weeks. A high correlation was found between fetal ear length and gestational age, and a significant correlation was also found between fetal ear length and the biparietal diameter (r=0.962; p<0.001). Similar correlations were found between fetal ear length and head circumference, and fetal ear length and femur length. Conclusion: The results of this study provide a nomogram for fetal ear length. The study also demonstrates the relationship between ear length and other biometric measurements. PMID:25667783

  14. Macrophage migration inhibitory factor acts as a neurotrophin in the developing inner ear.

    PubMed

    Bank, Lisa M; Bianchi, Lynne M; Ebisu, Fumi; Lerman-Sinkoff, Dov; Smiley, Elizabeth C; Shen, Yu-chi; Ramamurthy, Poornapriya; Thompson, Deborah L; Roth, Therese M; Beck, Christine R; Flynn, Matthew; Teller, Ryan S; Feng, Luming; Llewellyn, G Nicholas; Holmes, Brandon; Sharples, Cyrrene; Coutinho-Budd, Jaeda; Linn, Stephanie A; Chervenak, Andrew P; Dolan, David F; Benson, Jennifer; Kanicki, Ariane; Martin, Catherine A; Altschuler, Richard; Koch, Alisa E; Koch, Alicia E; Jewett, Ethan M; Germiller, John A; Barald, Kate F

    2012-12-01

    This study is the first to demonstrate that macrophage migration inhibitory factor (MIF), an immune system 'inflammatory' cytokine that is released by the developing otocyst, plays a role in regulating early innervation of the mouse and chick inner ear. We demonstrate that MIF is a major bioactive component of the previously uncharacterized otocyst-derived factor, which directs initial neurite outgrowth from the statoacoustic ganglion (SAG) to the developing inner ear. Recombinant MIF acts as a neurotrophin in promoting both SAG directional neurite outgrowth and neuronal survival and is expressed in both the developing and mature inner ear of chick and mouse. A MIF receptor, CD74, is found on both embryonic SAG neurons and adult mouse spiral ganglion neurons. Mif knockout mice are hearing impaired and demonstrate altered innervation to the organ of Corti, as well as fewer sensory hair cells. Furthermore, mouse embryonic stem cells become neuron-like when exposed to picomolar levels of MIF, suggesting the general importance of this cytokine in neural development.

  15. A new device for delivering drugs into the inner ear: otoendoscope with microcatheter.

    PubMed

    Kanzaki, Sho; Saito, Hideyuki; Inoue, Yasuhiro; Ogawa, Kaoru

    2012-04-01

    Intratympanic injection (ITI) of drugs into the inner ear is an attractive way to deliver therapy. However, if the round window membrane (RWM) cannot be visualized, adhesions need to be removed first before ITI can be performed. We developed and tested a novel otoendoscopy device that allows visualization of the RWM for the purpose of ITI. Our otoendoscope consists of a catheter channel for delivering drugs and a suction channel. The novel otoendoscope for inner ear drug delivery has a fine needle with catheter, which can be used to remove or perforate round window niche (RWN) mucosal adhesions. The elliptical shape of the otoendoscope effectively captures the field in the light-guided area, resulting in bright images. Our otoendoscope can be used to apply drugs directly onto the surface of the RWM and to verify the correct placement of an inner ear drug delivery system, ensuring that it is safely in place. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Adaptive Wiener filtering for improved acquisition of distortion product otoacoustic emissions.

    PubMed

    Ozdamar, O; Delgado, R E; Rahman, S; Lopez, C

    1998-01-01

    An innovative acoustic noise canceling method using adaptive Wiener filtering (AWF) was developed for improved acquisition of distortion product otoacoustic emissions (DPOAEs). The system used one microphone placed in the test ear for the primary signal. Noise reference signals were obtained from three different sources: (a) pre-stimulus response from the test ear microphone, (b) post-stimulus response from a microphone placed near the head of the subject and (c) post-stimulus response obtained from a microphone placed in the subject's nontest ear. In order to improve spectral estimation, block averaging of a different number of single sweep responses was used. DPOAE data were obtained from 11 ears of healthy newborns in a well-baby nursery of a hospital under typical noise conditions. Simultaneously obtained recordings from all three microphones were digitized, stored and processed off-line to evaluate the effects of AWF with respect to DPOAE detection and signal-to-noise ratio (SNR) improvement. Results show that compared to standard DPOAE processing, AWF improved signal detection and improved SNR.

  17. Radiological differences between HIV-positive and HIV-negative children with cholesteatoma.

    PubMed

    McGuire, J K; Fagan, J J; Wojno, M; Manning, K; Harris, T

    2018-07-01

    HIV-positive children are possibly more prone to developing cholesteatoma. Chronic inflammation of the middle ear cleft may be more common in patients with HIV and this may predispose HIV-positive children to developing cholesteatoma. There are no studies that describe the radiological morphology of the middle ear cleft in HIV-positive compared to HIV-negative children with cholesteatoma. Compare the radiological differences of the middle ear cleft in HIV-positive and HIV-negative children with cholesteatoma. A retrospective, cross-sectional, observational analytical review of patients with cholesteatoma at our institute over a 6 year period. Forty patients were included in the study, 11 of whom had bilateral cholesteatoma and therefore 51 ears were eligible for our evaluation. HIV-positive patients had smaller (p=0.02) mastoid air cell systems (MACS). Forty percent of HIV-positive patients had sclerotic mastoids, whereas the rate was 3% in HIV-negative ears (p<0.02). Eighty-two percent of the HIV-positive patients had bilateral cholesteatoma compared to 7% of the control group (p<0.02). There was no difference between the 2 groups with regards to opacification of the middle ear cleft, bony erosion of middle ear structures, Eustachian tube obstruction or soft tissue occlusion of the post-nasal space. HIV-positive paediatric patients with cholesteatoma are more likely to have smaller, sclerotic mastoids compared to HIV-negative patients. They are significantly more likely to have bilateral cholesteatoma. This may have implications in terms of surveillance of HIV-positive children, as well as, an approach to management, recurrence and follow-up. HIV infection should be flagged as a risk factor for developing cholesteatoma. Copyright © 2018. Published by Elsevier B.V.

  18. The evolutionary origin of auditory receptors in Tettigonioidea: the complex tibial organ of Schizodactylidae

    NASA Astrophysics Data System (ADS)

    Strauß, Johannes; Lakes-Harlan, Reinhard

    2009-01-01

    Audition in insects is of polyphyletic origin. Tympanal ears derived from proprioceptive or vibratory receptor organs, but many questions of the evolution of insect auditory systems are still open. Despite the rather typical bauplan of the insect body, e.g., with a fixed number of segments, tympanal ears evolved at very different places, but only ensiferans have ears at the foreleg tibia, located in the tibial organ. The homology and monophyly of ensiferan ears is controversial, and no precursor organ was unambiguously identified for auditory receptors. The latter can only be identified by comparative study of recent atympanate taxa. These atympanate taxa are poorly investigated. In this paper, we report the neuroanatomy of the tibial organ of Comicus calcaris (Irish 1986), an atympanate Schizodactylid (splay-footed cricket). This representative of a Gondwana relict group has a tripartite sensory organ, homologous to tettigoniid ears. A comparison with morphology-based cladistic phylogeny indicates that the tripartite neuronal organization present in the majority of Tettigonioidea presumably preceded evolution of a hearing sense in the Tettigonioidea. Furthermore, the absence of a tripartite organ in Grylloidea argues against a monophyletic origin and homology of the cricket and katydid ears. The tracheal attachment of sensory neurons typical for ears of Tettigonioidea is present in C. calcaris and may have facilitated cooption for auditory function. The functional auditory organ was presumably formed in evolution by successive non-neural modifications of trachea and tympana. This first investigation of the neuroanatomy of Schizodactylidae suggests a non-auditory chordotonal organ as the precursor for auditory receptors of related tympanate taxa and adds evidence for the phylogenetic position of the group.

  19. Challenges and outcomes of cholesteatoma management in children with Down syndrome.

    PubMed

    Ghadersohi, Saied; Bhushan, Bharat; Billings, Kathleen R

    2018-03-01

    The high incidence of chronic otitis media with effusion and Eustachian tube dysfunction in children with Down syndrome (DS) may predispose them to cholesteatoma formation. Establishing the diagnosis, choosing the appropriate operative intervention, and post-operative care can be challenging. To describe management strategies for cholesteatoma diagnosis, surgical treatment, and post-operative management in children with Down syndrome. Retrospective case series of 14 patients (17 total ears) with Down syndrome diagnosed with cholesteatoma over a 9-year period. A total of 14 patients with cholesteatoma (3 with bilateral disease) were analyzed. Thirteen ears (76.5%) had ≥2 tympanostomy tubes insertions prior to cholesteatoma diagnosis, and otorrhea and hearing loss were the most common presenting symptoms. Common pre-operative CT scan findings included mastoid sclerosis and ossicular erosion. The average age at first surgery was 9.8 years, and the average follow-up was 4.3 years. For acquired cholesteatoma, most ears were managed with canal wall up (CWU) approaches, but ultimately 6/15 (40.0%) required canal wall down (CWD) approaches. Postoperatively, 3 (20.0%) ears developed new tympanic membrane retraction pockets, but no recurrent cholesteatoma. Four (26.7%) ears developed recurrent disease, and 3 (20.0%) had residual disease at secondary procedures. Ossiculoplasty was performed in 4 ears. Twelve (70.6%) ears were rehabilitated with hearing aids or FM systems. The diagnosis of cholesteatoma in Down syndrome was associated with otorrhea, hearing loss, and CT scan findings of ossicular erosion and mastoid sclerosis. Most cases were managed with CWU surgical approaches. Hearing aid use was common post-operatively. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Eustachian Tube Function.

    PubMed

    Ars, Bernard; Dirckx, Joris

    2016-10-01

    The fibrocartilaginous eustachian tube is part of a system of contiguous organs including the nose, palate, rhinopharynx, and middle ear cleft. The middle ear cleft consists of the tympanic cavity, which includes the bony eustachian tube (protympanum) and the mastoid gas cells system. The tympanic cavity and mastoid gas cells are interconnected and allow gaseous exchange and pressure regulation. The fibrocartilaginous eustachian tube is a complex organ consisting of a dynamic conduit with its mucosa, cartilage, surrounding soft tissue, peritubal muscles (ie, tensor and levator veli palatine, salpingopharyngeus and tensor tympani), and superior bony support (the sphenoid sulcus). Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Surgical management of polyotia.

    PubMed

    Pan, Bo; Qie, Shuyan; Zhao, Yanyong; Tang, Xiaojun; Lin, Lin; Yang, Qinghua; Zhuang, Hongxing; Jiang, Haiyue

    2010-08-01

    Polyotia is an extremely rare type of congenital external ear malformation, which is defined as an accessory ear that is large enough to resemble an additional pinna. The terms 'mirror ear' or 'accessory ear' are sometime used. We present our methods in correcting this malformation and summarise the aetiology. The posterior part of the polyotia may presents with a normal ear, a constricted ear or a microtic ear. Free auricular composite tissue transplantation was used to correct the constricted ear. Ear reconstruction was applied in cases of microtia. The anterior auricle was mainly used to form the tragus. 7 cases polyotia were treated between 2004 and 2008. After free auricular composite tissue transplantation the size of the constricted ear and the contralateral ear was similar. In microtia cases the reconstructed ears were natural looking and had a satisfactory three-dimensional contour. The extra tissue of the anterior ear was excised and the tragus was reconstructed. Through operative intervention tailored to the individual case natural-looking and symmetric ears were acquired. The aetiology of polyotia probably relates to abnormal migration of neural crest cell. Copyright 2009 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. A New Intraoperative Real-time Monitoring System for Reconstructive Middle Ear Surgery: An Experimental and Clinical Feasibility Study.

    PubMed

    Zahnert, Thomas; Metasch, Marie-Luise; Seidler, Hannes; Bornitz, Matthias; Lasurashvili, Nicoloz; Neudert, Marcus

    2016-12-01

    Electromagnetical excitation of ossicular vibration is suitable for middle ear transmission measurements in the experimental and clinical setting. Thereby, it can be used as a real-time monitoring system for quality control in ossiculoplasty. Positioning and coupling of middle ear prosthesis are a precondition for good postoperative hearing results, but at the same time completely dependent upon the surgeon's subjective judgment during surgery. We evaluated an electromagnetically driven measurement system that enables for in vitro and in vivo transmission measurements and thus can be used as a real-time monitoring tool in ossicular reconstruction. For electromagnetical excitation a magnet was placed on the umbo of the malleus handle and driven by a magnetic field. The induced stapes displacement was picked up by laser Doppler vibrometry on the footplate. Measurements were performed on the intact ossicular chain in five cadaveric temporal bones and during five cochlear implant surgeries. Additionally, two ossiculoplasties were performed under real-time transmission feedback with the monitoring system. Experimentally, the equivalent sound pressure level of the electromagnetic excitation was about 70 to 80 dB which is 10 to 20 dB less than the acoustic stimulation. In the intraoperative setup the generated stapes displacements were about 5 to 20 dB smaller compared with the temporal bone experiments. Applied as real-time feedback system, an improvement in the middle ear transfer function of 4.5 dB in total and 20 dB in partial ossicular reconstruction were achieved. The electromagnetical excitation and measurement system is comparable to the gold standard with acoustical stimulation in both, the experimental setup in temporal bones as well as in vivo. The technical feasibility of the electromagnetical excitation method has been proven and it is shown that it can be used as a real-time monitoring system for ossiculoplasty in the operation room.

  3. A comparison of dehydration effects of V2-antagonist (OPC-31260) on the inner ear between systemic and round window applications.

    PubMed

    Takeda, Taizo; Takeda, Setsuko; Kakigi, Akinobu; Okada, Teruhiko; Nishioka, Rie; Taguchi, Daizo

    2006-08-01

    V2-antagonist (OPC-31260 (OPC)) application to the scala tympani reduced endolymphatic hydrops. In the present study, we investigated whether systemic administration or local infusion via the round window (RW application) of OPC would be more suitable for clinical use. In Experiment 1, the increase ratios of the cross-sectional area of the scala media of experimentally induced endolymphatic hydrops were quantitatively assessed among four groups of non-OPC application, RW application of xanthan gum, systemic application of OPC and RW application of OPC. In Experiment 2, the effects of systemic and RW applications of OPC on plasma vasopressin (p-VP) concentrations and plasma osmolality (p-OSM) were investigated. In Experiment 3, endocochlear DC potential (EP) was measured in guinea pigs with the RW application of OPC. Electron microscopic observations of the stria vascularis and the hair cells were also made. Both systemic and RW applications of OPC significantly reduced endolymphatic hydrops. However, systemic application resulted in the distension of the Reissner's membrane in the non-operated ear, which seemed to be caused by elevated p-VP levels resulting from the systemic application of OPC. In contrast, RW application of OPC produced no apparent toxic effects in the inner ear, as indicated electrophysiological or morphological changes. Thus, drug delivery via the round window is more useful for the clinical application of OPC for medical decompression.

  4. Development of an infection screening system for entry inspection at airport quarantine stations using ear temperature, heart and respiration rates.

    PubMed

    Sun, Guanghao; Abe, Nobujiro; Sugiyama, Youhei; Nguyen, Quang Vinh; Nozaki, Kohei; Nakayama, Yosuke; Takei, Osamu; Hakozaki, Yukiya; Abe, Shigeto; Matsui, Takemi

    2013-01-01

    After the outbreak of severe acute respiratory syndrome (SARS) in 2003, many international airport quarantine stations conducted fever-based screening to identify infected passengers using infrared thermography for preventing global pandemics. Due to environmental factors affecting measurement of facial skin temperature with thermography, some previous studies revealed the limits of authenticity in detecting infectious symptoms. In order to implement more strict entry screening in the epidemic seasons of emerging infectious diseases, we developed an infection screening system for airport quarantines using multi-parameter vital signs. This system can automatically detect infected individuals within several tens of seconds by a neural-network-based discriminant function using measured vital signs, i.e., heart rate obtained by a reflective photo sensor, respiration rate determined by a 10-GHz non-contact respiration radar, and the ear temperature monitored by a thermography. In this paper, to reduce the environmental effects on thermography measurement, we adopted the ear temperature as a new screening indicator instead of facial skin. We tested the system on 13 influenza patients and 33 normal subjects. The sensitivity of the infection screening system in detecting influenza were 92.3%, which was higher than the sensitivity reported in our previous paper (88.0%) with average facial skin temperature.

  5. Identifying auditory attention with ear-EEG: cEEGrid versus high-density cap-EEG comparison

    NASA Astrophysics Data System (ADS)

    Bleichner, Martin G.; Mirkovic, Bojana; Debener, Stefan

    2016-12-01

    Objective. This study presents a direct comparison of a classical EEG cap setup with a new around-the-ear electrode array (cEEGrid) to gain a better understanding of the potential of ear-centered EEG. Approach. Concurrent EEG was recorded from a classical scalp EEG cap and two cEEGrids that were placed around the left and the right ear. Twenty participants performed a spatial auditory attention task in which three sound streams were presented simultaneously. The sound streams were three seconds long and differed in the direction of origin (front, left, right) and the number of beats (3, 4, 5 respectively), as well as the timbre and pitch. The participants had to attend to either the left or the right sound stream. Main results. We found clear attention modulated ERP effects reflecting the attended sound stream for both electrode setups, which agreed in morphology and effect size. A single-trial template matching classification showed that the direction of attention could be decoded significantly above chance (50%) for at least 16 out of 20 participants for both systems. The comparably high classification results of the single trial analysis underline the quality of the signal recorded with the cEEGrids. Significance. These findings are further evidence for the feasibility of around the-ear EEG recordings and demonstrate that well described ERPs can be measured. We conclude that concealed behind-the-ear EEG recordings can be an alternative to classical cap EEG acquisition for auditory attention monitoring.

  6. Identifying auditory attention with ear-EEG: cEEGrid versus high-density cap-EEG comparison.

    PubMed

    Bleichner, Martin G; Mirkovic, Bojana; Debener, Stefan

    2016-12-01

    This study presents a direct comparison of a classical EEG cap setup with a new around-the-ear electrode array (cEEGrid) to gain a better understanding of the potential of ear-centered EEG. Concurrent EEG was recorded from a classical scalp EEG cap and two cEEGrids that were placed around the left and the right ear. Twenty participants performed a spatial auditory attention task in which three sound streams were presented simultaneously. The sound streams were three seconds long and differed in the direction of origin (front, left, right) and the number of beats (3, 4, 5 respectively), as well as the timbre and pitch. The participants had to attend to either the left or the right sound stream. We found clear attention modulated ERP effects reflecting the attended sound stream for both electrode setups, which agreed in morphology and effect size. A single-trial template matching classification showed that the direction of attention could be decoded significantly above chance (50%) for at least 16 out of 20 participants for both systems. The comparably high classification results of the single trial analysis underline the quality of the signal recorded with the cEEGrids. These findings are further evidence for the feasibility of around the-ear EEG recordings and demonstrate that well described ERPs can be measured. We conclude that concealed behind-the-ear EEG recordings can be an alternative to classical cap EEG acquisition for auditory attention monitoring.

  7. A cardioid oscillator with asymmetric time ratio for establishing CPG models.

    PubMed

    Fu, Q; Wang, D H; Xu, L; Yuan, G

    2018-01-13

    Nonlinear oscillators are usually utilized by bionic scientists for establishing central pattern generator models for imitating rhythmic motions by bionic scientists. In the natural word, many rhythmic motions possess asymmetric time ratios, which means that the forward and the backward motions of an oscillating process sustain different times within one period. In order to model rhythmic motions with asymmetric time ratios, nonlinear oscillators with asymmetric forward and backward trajectories within one period should be studied. In this paper, based on the property of the invariant set, a method to design the closed curve in the phase plane of a dynamic system as its limit cycle is proposed. Utilizing the proposed method and considering that a cardioid curve is a kind of asymmetrical closed curves, a cardioid oscillator with asymmetric time ratios is proposed and realized. Through making the derivation of the closed curve in the phase plane of a dynamic system equal to zero, the closed curve is designed as its limit cycle. Utilizing the proposed limit cycle design method and according to the global invariant set theory, a cardioid oscillator applying a cardioid curve as its limit cycle is achieved. On these bases, the numerical simulations are conducted for analyzing the behaviors of the cardioid oscillator. The example utilizing the established cardioid oscillator to simulate rhythmic motions of the hip joint of a human body in the sagittal plane is presented. The results of the numerical simulations indicate that, whatever the initial condition is and without any outside input, the proposed cardioid oscillator possesses the following properties: (1) The proposed cardioid oscillator is able to generate a series of periodic and anti-interference self-exciting trajectories, (2) the generated trajectories possess an asymmetric time ratio, and (3) the time ratio can be regulated by adjusting the oscillator's parameters. Furthermore, the comparison between the simulated trajectories by the established cardioid oscillator and the measured angle trajectories of the hip angle of a human body show that the proposed cardioid oscillator is fit for imitating the rhythmic motions of the hip of a human body with asymmetric time ratios.

  8. Anomalies of the middle and inner ear.

    PubMed

    Rodriguez, Kimsey; Shah, Rahul K; Kenna, Margaret

    2007-02-01

    The development of the middle and inner ear highlights the intricacy of embryology. As early as 3 weeks after fertilization, the inner ear begins taking form. This process, along with development of the middle ear, continues throughout gestation. At birth, the middle ear, inner ear, and associated structures are almost adult size. An understanding of the embryologic development of the ear serves as a foundation for evaluating and managing congenital malformations of these structures. The focus of this article is the normal, abnormal, and arrested development of the middle and inner ear, with a clinical emphasis on malformed middle and inner ear structures and a discussion of associated syndromes.

  9. Reactivity of Acetylcholine Esterase in inner Ear Maculae of Fish after Development at Hypergravity

    NASA Astrophysics Data System (ADS)

    Feucht, I.; Hilbig, R.; Anken, R.

    It has been shown earlier that the growth of inner ear otoliths of larval fish is (among other environmental factors) guided by the gravity vector. This guidance most probably is effected by the efferent vestibular system in the brainstem, because a transection of the nervus vestibularis has been shown to effect a cessation of the supply of calcium to the otoliths. The efferent innervation of fish inner ear maculae uses the synaptic transmitter acetylcholine (ACh). Therefore, we were - in order to further assess the role of the efferent system for otolith growth - prompted to determine ACh esterase-reactivity in the sensory epithelium of the utricle and the saccule (as well as in a non-gravity relevant brain region for control) in larval cichlid fish (Oreochromis mossambicus), which had been maintained at hypergravity during their development. The respective data will be communicated at the meeting. Acknowledgement: This work was financially supported by the German Aerospace Center (DLR) (FKZ: 50 WB 9997).

  10. Pathogenesis of herpes simplex virus in B cell-suppressed mice: the relative roles of cell-mediated and humoral immunity.

    PubMed

    Kapoor, A K; Nash, A A; Wildy, P

    1982-07-01

    B cell responses of Balb/c mice were suppressed using sheep anti-mouse IgM serum. At 4 weeks, both B cell-suppressed and normal littermates were infected in the ear pinna with herpes simplex virus type 1 (HSV-1). The B cell-suppressed mice failed to produce neutralizing herpes antibodies in their sera but had a normal cell-mediated immunity (CMI) response as measured by a delayed hypersensitivity skin test. Although the infection was eliminated from the ear in both B cell-suppressed and normal mice by day 10 after infection, there was an indication that B cell-suppressed mice had a more florid primary infection of the peripheral and central nervous system and also a higher incidence of a latent infection. These results support the hypothesis that antibody is important in restricting the spread of virus to the central nervous system, whereas CMI is important in clearing the primary infection in the ear pinna.

  11. Successful partial ear replantation after prolonged ischaemia time.

    PubMed

    Shelley, O P; Villafane, O; Watson, S B

    2000-01-01

    We present the case of a 34-year-old male patient who had successful replantation of upper pole of pinna 33 h after amputation. As no vein was anastomosed, systemic heparinisation and subcutaneous injection of heparin to the replanted ear were used to encourage outflow. Complications included arterial spasm and bleeding. Management of similar cases as planned urgent cases rather than emergency cases is discussed. Copyright 2000 The British Association of Plastic Surgeons.

  12. Evidence and evidence gaps in the treatment of Eustachian tube dysfunction and otitis media

    PubMed Central

    Teschner, Magnus

    2016-01-01

    Evidence-based medicine is an approach to medical treatment intended to optimize patient-oriented decision-making on the basis of empirically proven effectiveness. For this purpose, a classification system has been established to categorize studies – and hence therapy options – in respect of associated evidence according to defined criteria. The Eustachian tube connects the nasopharynx with the middle ear cavity. Its key function is to ensure middle ear ventilation. Compromised ventilation results in inflammatory middle ear disorders. Numerous evidence-based therapy options are available for the treatment of impaired middle ear ventilation and otitis media, the main therapeutic approach being antibiotic treatment. More recent procedures such as balloon dilation of the Eustachian tube have also shown initial success but must undergo further evaluation with regard to evidence. There is, as yet, no evidence for some of the other long-established procedures. Owing to the multitude of variables, the classification of evidence levels for various treatment approaches calls for highly diversified assessment. Numerous evidence-based studies are therefore necessary in order to evaluate the evidence pertaining to existing and future therapy solutions for impaired middle ear ventilation and otitis media. If this need is addressed, a wealth of implications can be expected for therapeutic approaches in the years to come. PMID:28025605

  13. Association Between Hearing Loss And Cauliflower Ear in Wrestlers, a Case Control Study Employing Hearing Tests.

    PubMed

    Noormohammadpour, Pardis; Rostami, Mohsen; Nourian, Ruhollah; Mansournia, Mohammad Ali; Sarough Farahani, Saeed; Farahbakhsh, Farzin; Kordi, Ramin

    2015-06-01

    According to anecdotal findings, some wrestling coaches and wrestlers believe that cauliflower ear might lead to hearing loss. Our preliminary study showed that the prevalence of hearing loss reported by the wrestlers with cauliflower ear is significantly higher than this rate among wrestlers without cauliflower ear. To the best of our knowledge, no other study has confirmed this finding employing hearing tests. To evaluate and to compare the prevalence of hearing loss among wrestlers with and without cauliflower ears employing hearing tests. The subjects were randomly selected form 14 wrestling clubs in Tehran. Subjects were 201 wrestlers with cauliflower ears (100 wrestlers with one cauliflower ear and 101 wrestlers with two cauliflower ears) and 139 wrestlers without cauliflower ears. All the participants in this study were interviewed to collect information on demographic factors and medical history of risk factors and diseases related to hearing loss. The subjects in both groups underwent otoscopic and audiologic examinations. Audiometric examination results at the frequency range of 0.5 - 8 KHz showed that the prevalence of hearing loss among cauliflower ears was higher than this rate among non-cauliflower ears. Also, the percentage of positive history of ear infections among cauliflower ears (8.4%) was about two times more than this finding among non-cauliflower ears (4.9%). This difference tended to be significant (OR: 1.86, P = 0.06, 95% CI: 0.98 - 3.53). To the best of our knowledge, this is the first study showing that the prevalence of hearing loss among cauliflower ears is higher than this rate among non-cauliflower ears confirmed by audiological tests. This emphasizes that, more preventive measures such as mandatory ear gear for wrestlers are required.

  14. Association Between Hearing Loss And Cauliflower Ear in Wrestlers, a Case Control Study Employing Hearing Tests

    PubMed Central

    Noormohammadpour, Pardis; Rostami, Mohsen; Nourian, Ruhollah; Mansournia, Mohammad Ali; Sarough Farahani, Saeed; Farahbakhsh, Farzin; Kordi, Ramin

    2015-01-01

    Background: According to anecdotal findings, some wrestling coaches and wrestlers believe that cauliflower ear might lead to hearing loss. Our preliminary study showed that the prevalence of hearing loss reported by the wrestlers with cauliflower ear is significantly higher than this rate among wrestlers without cauliflower ear. To the best of our knowledge, no other study has confirmed this finding employing hearing tests. Objectives: To evaluate and to compare the prevalence of hearing loss among wrestlers with and without cauliflower ears employing hearing tests. Patients and Methods: The subjects were randomly selected form 14 wrestling clubs in Tehran. Subjects were 201 wrestlers with cauliflower ears (100 wrestlers with one cauliflower ear and 101 wrestlers with two cauliflower ears) and 139 wrestlers without cauliflower ears. All the participants in this study were interviewed to collect information on demographic factors and medical history of risk factors and diseases related to hearing loss. The subjects in both groups underwent otoscopic and audiologic examinations. Results: Audiometric examination results at the frequency range of 0.5 - 8 KHz showed that the prevalence of hearing loss among cauliflower ears was higher than this rate among non-cauliflower ears. Also, the percentage of positive history of ear infections among cauliflower ears (8.4%) was about two times more than this finding among non-cauliflower ears (4.9%). This difference tended to be significant (OR: 1.86, P = 0.06, 95% CI: 0.98 - 3.53). Conclusions: To the best of our knowledge, this is the first study showing that the prevalence of hearing loss among cauliflower ears is higher than this rate among non-cauliflower ears confirmed by audiological tests. This emphasizes that, more preventive measures such as mandatory ear gear for wrestlers are required. PMID:26448842

  15. Enzymatic recontouring of auricular cartilage in a rabbit model.

    PubMed

    Massengill, Phillip L; Goco, Paulino E; Norlund, L Layne; Muir-Padilla, Jeanne

    2005-01-01

    To evaluate the effectiveness of contouring auricular cartilage in a rabbit model using biologically active enzymes injected subcutaneously. The first phase determined the most effective volume and concentration required to affect the cartilage. To accomplish this task, we used ex vivo rabbit ears from a slaughterhouse. In the second phase, we injected 1 mL of hyaluronidase (150 U per milliliter of isotonic sodium chloride solution [saline]), elastase (1 mg per milliliter of saline), or saline into the ears of live rabbits. The study took place at the Madigan Army Medical Center (Tacoma, Wash), and included 10 animals. In each rabbit, we injected the test compound in one ear and saline in the other ear (control). We injected hyaluronidase in 5 ears and elastase in 5 ears. After injection, the ears were contoured and splinted for 4 weeks. In the third phase, we changed the injection pathway in 5 animals. At 4 weeks, 4 (80%) of the 5 ears injected with hyaluronidase showed full response and 1 (20%) had a partial response. Of the 5 ears injected with elastase, 4 (80%) showed a full response while 1 (20%) demonstrated a partial response. There was a response in all 10 of the ears injected with a test compound. Of the 10 control ears, 3 (30%) showed a partial response. At 6 weeks, approximately 6 (30%) of the ears had maintained contour demonstrating a full response. The difference between the test ears and the control ears was statistically significant (P = .006). Compared with the control ears, the results were statistically significant for elastase (P = .004) and hyaluronidase (P = .02). Overall, both agents demonstrated a subjective and objective response compared with control ears. This study demonstrates that bioactive enzymes and splinting can be effective in correcting ear deformities in a rabbit model.

  16. Soft Robotics: Academic Insights and Perspectives Through Bibliometric Analysis

    PubMed Central

    Bao, Guanjun; Fang, Hui; Chen, Lingfeng; Xu, Fang; Yang, Qinghua; Zhang, Libin

    2018-01-01

    Abstract Soft robotics is of growing interest in the robot community as well as in public media, and there is an increase in the quality and quantity of publications related to this topic. To formally elaborate this growth, we have used a bibliometric analysis to evaluate the publications in the field from 1990 to 2017 based on the Science Citation Index Expanded database. We present a detailed overview and discussion based on keywords, citation, h-index, year, journal, institution, country, author, and review articles. The results show that the United States takes the leading position in this research field, followed by China and Italy. Harvard University has the most publications, high average number of citations per publication and the highest h-index. IEEE Transactions on Robotics ranks first among the top 20 academic journals publishing articles related to this field, whereas Soft Robotics holds the top position in journals categorized with “ROBOTICS.” Actuator, fabrication, control, material, sensing, simulation, bionics, stiffness, modeling, power, motion, and application are the hot topics of soft robotics. Smart materials, bionics, morphological computation, and embodiment control are expected to contribute to this field in the future. Application and commercialization appear to be the initial driving force and final goal for soft robots. PMID:29782219

  17. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation.

    PubMed

    Lyu, Mingxing; Chen, Weihai; Ding, Xilun; Wang, Jianhua; Bai, Shaoping; Ren, Huichao

    2016-10-01

    This paper proposes a novel bionic model of the human leg according to the theory of physiology. Based on this model, we present a biologically inspired 3-degree of freedom (DOF) lower limb exoskeleton for human gait rehabilitation, showing that the lower limb exoskeleton is fully compatible with the human knee joint. The exoskeleton has a hybrid serial-parallel kinematic structure consisting of a 1-DOF hip joint module and a 2-DOF knee joint module in the sagittal plane. A planar 2-DOF parallel mechanism is introduced in the design to fully accommodate the motion of the human knee joint, which features not only rotation but also relative sliding. Therefore, the design is consistent with the requirements of bionics. The forward and inverse kinematic analysis is studied and the workspace of the exoskeleton is analyzed. The structural parameters are optimized to obtain a larger workspace. The results using MATLAB-ADAMS co-simulation are shown in this paper to demonstrate the feasibility of our design. A prototype of the exoskeleton is also developed and an experiment performed to verify the kinematic analysis. Compared with existing lower limb exoskeletons, the designed mechanism has a large workspace, while allowing knee joint rotation and small amount of sliding.

  18. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation

    NASA Astrophysics Data System (ADS)

    Lyu, Mingxing; Chen, Weihai; Ding, Xilun; Wang, Jianhua; Bai, Shaoping; Ren, Huichao

    2016-10-01

    This paper proposes a novel bionic model of the human leg according to the theory of physiology. Based on this model, we present a biologically inspired 3-degree of freedom (DOF) lower limb exoskeleton for human gait rehabilitation, showing that the lower limb exoskeleton is fully compatible with the human knee joint. The exoskeleton has a hybrid serial-parallel kinematic structure consisting of a 1-DOF hip joint module and a 2-DOF knee joint module in the sagittal plane. A planar 2-DOF parallel mechanism is introduced in the design to fully accommodate the motion of the human knee joint, which features not only rotation but also relative sliding. Therefore, the design is consistent with the requirements of bionics. The forward and inverse kinematic analysis is studied and the workspace of the exoskeleton is analyzed. The structural parameters are optimized to obtain a larger workspace. The results using MATLAB-ADAMS co-simulation are shown in this paper to demonstrate the feasibility of our design. A prototype of the exoskeleton is also developed and an experiment performed to verify the kinematic analysis. Compared with existing lower limb exoskeletons, the designed mechanism has a large workspace, while allowing knee joint rotation and small amount of sliding.

  19. Swimmer's Ear (For Parents)

    MedlinePlus

    ... scratching the ear canal, vigorous ear cleaning with cotton swabs, or putting foreign objects like bobby pins ... Also, never put objects into kids' ears, including cotton-tipped swabs. How Is Swimmer's Ear Treated? Treatment ...

  20. Numerical analysis of ossicular chain lesion of human ear

    NASA Astrophysics Data System (ADS)

    Liu, Yingxi; Li, Sheng; Sun, Xiuzhen

    2009-04-01

    Lesion of ossicular chain is a common ear disease impairing the sense of hearing. A comprehensive numerical model of human ear can provide better understanding of sound transmission. In this study, we propose a three-dimensional finite element model of human ear that incorporates the canal, tympanic membrane, ossicular bones, middle ear suspensory ligaments/muscles, middle ear cavity and inner ear fluid. Numerical analysis is conducted and employed to predict the effects of middle ear cavity, malleus handle defect, hypoplasia of the long process of incus, and stapedial crus defect on sound transmission. The present finite element model is shown to be reasonable in predicting the ossicular mechanics of human ear.

  1. Anthropometric growth study of the ear in a Chinese population.

    PubMed

    Zhao, Shichun; Li, Dianguo; Liu, Zhenzhong; Wang, Yibiao; Liu, Lei; Jiang, Duyin; Pan, Bo

    2018-04-01

    A large number of anthropometric studies of the auricle have been reported in different nations, but little data were available in the Chinese population. The aim of this study was to analyze growth changes in the ear by measuring the width and length of ears in a Chinese population. A total of 480 participants were enrolled and classified into 1-, 3-, 5-, 7-, 9-, 12-, 14-, and 18-year groups (half were boys and half were girls in each group). Ear length, ear width, body weight, and body length were measured and recorded; ear index was calculated according to ear length and ear width. The growth of auricle and differences between genders were analyzed. Growth of ear in relation to body height and weight and the degree of emphasis on the length and width of the auricle were also analyzed. Ear length and width increased with age. Ear length achieved its mature size in both 14-year-old males and females. Ear width reached its mature size in males at 7 years and in females at 5 years. Different trends of ear index were shown between males and females. People in this population paid more attention to the length than the width of the auricle. The data indicated that ear development followed increase in age. There were gender and ethnic difference in the development of ear. These results may have potential implications for the diagnosis of congenital malformations, syndromes, and planning of ear reconstruction surgery. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. The plastic ear and perceptual relearning in auditory spatial perception

    PubMed Central

    Carlile, Simon

    2014-01-01

    The auditory system of adult listeners has been shown to accommodate to altered spectral cues to sound location which presumably provides the basis for recalibration to changes in the shape of the ear over a life time. Here we review the role of auditory and non-auditory inputs to the perception of sound location and consider a range of recent experiments looking at the role of non-auditory inputs in the process of accommodation to these altered spectral cues. A number of studies have used small ear molds to modify the spectral cues that result in significant degradation in localization performance. Following chronic exposure (10–60 days) performance recovers to some extent and recent work has demonstrated that this occurs for both audio-visual and audio-only regions of space. This begs the questions as to the teacher signal for this remarkable functional plasticity in the adult nervous system. Following a brief review of influence of the motor state in auditory localization, we consider the potential role of auditory-motor learning in the perceptual recalibration of the spectral cues. Several recent studies have considered how multi-modal and sensory-motor feedback might influence accommodation to altered spectral cues produced by ear molds or through virtual auditory space stimulation using non-individualized spectral cues. The work with ear molds demonstrates that a relatively short period of training involving audio-motor feedback (5–10 days) significantly improved both the rate and extent of accommodation to altered spectral cues. This has significant implications not only for the mechanisms by which this complex sensory information is encoded to provide spatial cues but also for adaptive training to altered auditory inputs. The review concludes by considering the implications for rehabilitative training with hearing aids and cochlear prosthesis. PMID:25147497

  3. Development of optoelectronic monitoring system for ear arterial pressure waveforms

    NASA Astrophysics Data System (ADS)

    Sasayama, Satoshi; Imachi, Yu; Yagi, Tamotsu; Imachi, Kou; Ono, Toshirou; Man-i, Masando

    1994-02-01

    Invasive intra-arterial blood pressure measurement is the most accurate method but not practical if the subject is in motion. The apparatus developed by Wesseling et al., based on a volume-clamp method of Penaz (Finapres), is able to monitor continuous finger arterial pressure waveforms noninvasively. The limitation of Finapres is the difficulty in measuring the pressure of a subject during work that involves finger or arm action. Because the Finapres detector is attached to subject's finger, the measurements are affected by inertia of blood and hydrostatic effect cause by arm or finger motion. To overcome this problem, the authors made a detector that is attached to subject's ear and developed and optoelectronic monitoring systems for ear arterial pressure waveform (Earpres). An IR LEDs, photodiode, and air cuff comprised the detector. The detector was attached to a subject's ear, and the space adjusted between the air cuff and the rubber plate on which the LED and photodiode were positioned. To evaluate the accuracy of Earpres, the following tests were conducted with participation of 10 healthy male volunteers. The subjects rested for about five minutes, then performed standing and squatting exercises to provide wide ranges of systolic and diastolic arterial pressure. Intra- and inter-individual standard errors were calculated according to the method of van Egmond et al. As a result, average, the averages of intra-individual standard errors for earpres appeared small (3.7 and 2.7 mmHg for systolic and diastolic pressure respectively). The inter-individual standard errors for Earpres were about the same was Finapres for both systolic and diastolic pressure. The results showed the ear monitor was reliable in measuring arterial blood pressure waveforms and might be applicable to various fields such as sports medicine and ergonomics.

  4. Real-ear acoustical characteristics of impulse sound generated by golf drivers and the estimated risk to hearing: a cross-sectional study.

    PubMed

    Zhao, Fei; Bardsley, Barry

    2014-01-21

    This study investigated real-ear acoustical characteristics in terms of the sound pressure levels (SPLs) and frequency responses in situ generated from golf club drivers at impact with a golf ball. The risk of hearing loss caused by hitting a basket of golf balls using various drivers was then estimated. Cross-sectional study. The three driver clubs were chosen on the basis of reflection of the commonality and modern technology of the clubs. The participants were asked to choose the clubs in a random order and hit six two-piece range golf balls with each club. The experiment was carried out at a golf driving range in South Wales, UK. 19 male amateur golfers volunteered to take part in the study, with an age range of 19-54 years. The frequency responses and peak SPLs in situ of the transient sound generated from the club at impact were recorded bilaterally and simultaneously using the GN Otometric Freefit wireless real-ear measurement system. A swing speed radar system was also used to investigate the relationship between noise level and swing speed. Different clubs generated significantly different real-ear acoustical characteristics in terms of SPL and frequency responses. However, they did not differ significantly between the ears. No significant correlation was found between the swing speed and noise intensity. On the basis of the SPLs measured in the present study, the percentage of daily noise exposure for hitting a basket of golf balls using the drivers described above was less than 2%. The immediate danger of noise-induced hearing loss for amateur golfers is quite unlikely. However, it may be dangerous to hearing if the noise level generated by the golf clubs exceeded 116 dBA.

  5. Radiofrequency ablation of liver tumors in combination with local OK-432 injection prolongs survival and suppresses distant tumor growth in the rabbit model with intra- and extrahepatic VX2 tumors.

    PubMed

    Kageyama, Ken; Yamamoto, Akira; Okuma, Tomohisa; Hamamoto, Shinichi; Takeshita, Toru; Sakai, Yukimasa; Nishida, Norifumi; Matsuoka, Toshiyuki; Miki, Yukio

    2013-10-01

    To evaluate survival and distant tumor growth after radiofrequency ablation (RFA) and local OK-432 injection at a single tumor site in a rabbit model with intra- and extrahepatic VX2 tumors and to examine the effect of this combination therapy, which we termed immuno-radiofrequency ablation (immunoRFA), on systemic antitumor immunity in a rechallenge test. Our institutional animal care committee approved all experiments. VX2 tumors were implanted to three sites: two in the liver and one in the left ear. Rabbits were randomized into four groups of seven to receive control, RFA alone, OK-432 alone, and immunoRFA treatments at a single liver tumor at 1 week after implantation. Untreated liver and ear tumor volumes were measured after the treatment. As the rechallenge test, tumors were reimplanted into the right ear of rabbits, which survived the 35 weeks and were followed up without additional treatment. Statistical significance was examined by log-rank test for survival and Student's t test for tumor volume. Survival was significantly prolonged in the immunoRFA group compared to the other three groups (P < 0.05). Untreated liver and ear tumor sizes became significantly smaller after immunoRFA compared to controls (P < 0.05). In the rechallenge test, the reimplanted tumors regressed without further therapy compared to the ear tumors of the control group (P < 0.05). ImmunoRFA led to improved survival and suppression of distant untreated tumor growth. Decreases in size of the distant untreated tumors and reimplanted tumors suggested that systemic antitumor immunity was enhanced by immunoRFA.

  6. Assessment of PLGA-PEG-PLGA Copolymer Hydrogel for Sustained Drug Delivery in the Ear

    PubMed Central

    Feng, Liang; Ward, Jonette A.; Li, S. Kevin; Tolia, Gaurav; Hao, Jinsong; Choo, Daniel I.

    2014-01-01

    Temperature sensitive copolymer systems were previously studied using modified diffusion cells in vitro for intratympanic injection, and the PLGA-PEG-PLGA copolymer systems were found to provide sustained drug delivery for several days. The objectives of the present study were to assess the safety of PLGA-PEG-PLGA copolymers in intratympanic injection in guinea pigs in vivo and to determine the effects of additives glycerol and poloxamer in PLGA-PEG-PLGA upon drug release in the diffusion cells in vitro for sustained inner ear drug delivery. In the experiments, the safety of PLGA-PEG-PLGA copolymers to inner ear was evaluated using auditory brainstem response (ABR). The effects of the additives upon drug release from PLGA-PEG-PLGA hydrogel were investigated in the modified Franz diffusion cells in vitro with cidofovir as the model drug. The phase transition temperatures of the PLGA-PEG-PLGA copolymers in the presence of the additives were also determined. In the ABR safety study, the PLGA-PEG-PLGA copolymer alone did not affect hearing when delivered at 0.05-mL dose but caused hearing loss after 0.1-mL injection. In the drug release study, the incorporation of the bioadhesive additive, poloxamer, in the PLGA-PEG-PLGA formulations was found to decrease the rate of drug release whereas the increase in the concentration of the humectant additive, glycerol, provided the opposite effect. In summary, the PLGA-PEG-PLGA copolymer did not show toxicity to the inner ear at the 0.05-mL dose and could provide sustained release that could be controlled by using the additives for inner ear applications. PMID:24438444

  7. Geodynamics of the East African Rift System ∼30 Ma ago: A stress field model

    NASA Astrophysics Data System (ADS)

    Min, Ge; Hou, Guiting

    2018-06-01

    The East African Rift System (EARS) is thought to be an intra-continental ridge that meets the Red Sea and the Gulf of Aden at the Ethiopian Afar as the failed arm of the Afar triple junction. The geodynamics of EARS is still unclear even though several models have been proposed. One model proposes that the EARS developed in a local tensile stress field derived from far-field loads because of the pushing of oceanic ridges. Alternatively, some scientists suggest that the formation of the EARS can be explained by upwelling mantle plumes beneath the lithospheric weak zone (e.g., the Pan-African suture zone). In our study, a shell model is established to consider the Earth's spherical curvature, the lithospheric heterogeneity of the African continent, and the coupling between the mantle plumes and the mid-ocean ridge. The results are calculated via the finite element method using ANSYS software and fit the geological evidence well. To discuss the effects of the different rock mechanical parameters and the boundary conditions, four comparative models are established with different parameters or boundary conditions. Model I ignores the heterogeneity of the African continent, Model II ignores mid-ocean spreading, Model III ignores the upwelling mantle plumes, and Model IV ignores both the heterogeneity of the African continent and the upwelling mantle plumes. Compared to these models is the original model that shows the best-fit results; this model indicates that the coupling of the upwelling mantle plumes and the mid-ocean ridge spreading causes the initial lithospheric breakup in Afar and East Africa. The extension direction and the separation of the EARS around the Tanzanian craton are attributed to the heterogeneity of the East African basement.

  8. Radiofrequency Ablation of Liver Tumors in Combination with Local OK-432 Injection Prolongs Survival and Suppresses Distant Tumor Growth in the Rabbit Model with Intra- and Extrahepatic VX2 Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kageyama, Ken, E-mail: kageyamaken0112@gmail.com; Yamamoto, Akira, E-mail: loveakirayamamoto@gmail.com; Okuma, Tomohisa, E-mail: o-kuma@msic.med.osaka-cu.ac.jp

    Purpose: To evaluate survival and distant tumor growth after radiofrequency ablation (RFA) and local OK-432 injection at a single tumor site in a rabbit model with intra- and extrahepatic VX2 tumors and to examine the effect of this combination therapy, which we termed immuno-radiofrequency ablation (immunoRFA), on systemic antitumor immunity in a rechallenge test. Methods: Our institutional animal care committee approved all experiments. VX2 tumors were implanted to three sites: two in the liver and one in the left ear. Rabbits were randomized into four groups of seven to receive control, RFA alone, OK-432 alone, and immunoRFA treatments at amore » single liver tumor at 1 week after implantation. Untreated liver and ear tumor volumes were measured after the treatment. As the rechallenge test, tumors were reimplanted into the right ear of rabbits, which survived the 35 weeks and were followed up without additional treatment. Statistical significance was examined by log-rank test for survival and Student's t test for tumor volume. Results: Survival was significantly prolonged in the immunoRFA group compared to the other three groups (P < 0.05). Untreated liver and ear tumor sizes became significantly smaller after immunoRFA compared to controls (P < 0.05). In the rechallenge test, the reimplanted tumors regressed without further therapy compared to the ear tumors of the control group (P < 0.05). Conclusion: ImmunoRFA led to improved survival and suppression of distant untreated tumor growth. Decreases in size of the distant untreated tumors and reimplanted tumors suggested that systemic antitumor immunity was enhanced by immunoRFA.« less

  9. Localization of efferent neurotransmitters in the inner ear of the homozygous Bronx waltzer mutant mouse.

    PubMed

    Kong, W J; Scholtz, A W; Hussl, B; Kammen-Jolly, K; Schrott-Fischer, A

    2002-05-01

    Naturally occurring mutant mice provide an excellent model for the study of genetic malformations of the inner ear. Mice homozygous for the Bronx waltzer (bv/bv) mutation are severely hearing impaired or deaf and exhibit a 'waltzing' gait. Functional aspects of cochlear and vestibular efferents in the bv/bv mutant mouse are not well known. The present study was designed to evaluate several candidates of efferent neurotransmitters or neuromodulators including choline acetyltransferase (ChAT), gamma-aminobutyric acid (GABA), and calcitonin gene-related peptide (CGRP) in the inner ear of the bv/bv mutant mouse. Ultrastructural investigations at both light and electron microscopic level were performed. Ultrastructural morphologic evaluations of the cochlea and the vestibular end-organs were also undertaken. It is demonstrated that ChAT, GABA and CGRP immunoreactivities are present in the cochlea and in vestibular end-organs of bv/bv mutant mice. In the organ of Corti, immunoreactivity of ChAT, GABA and CGRP is confined to the inner spiral fibers, tunnel-crossing fibers, and the vesiculated nerve endings synapsing with outer hair cells. Interestingly, immunoreactivity was detectable even where inner hair cells appeared missing. Results also revealed malformations of the outer hair cells with synaptic contacts to efferent nerve endings consistently intact. In the neurosensory epithelia of the vestibular end-organs, the presence of ChAT, GABA, and CGRP immunoreactivity was localized at the vestibular efferents, with the exception of the macula of saccule. In one 8-month-old macula of utricle where the depletion of hair cells appeared highest, ChAT immunostaining was still discernible. Ultrastructural investigation demonstrated that vesiculated efferent nerve endings make synaptic contact with the outer hair cells in the organ of Corti and with type II hair cells in the vestibular end-organs. The present study provides further support that the efferent system in the bv/bv mutant inner ear is morphologically as well as functionally mature. These findings also demonstrate that if and when the onset of efferent degeneration in the bv/bv mutant inner ear occurs, it transpires subsequent to pathological conditions in the hair cells. The present findings give further indication that the efferent systems of the bv/bv mutant inner ear are independent of the afferent systems in many aspects including development, maturation as well as degeneration.

  10. Analysis of the Junction of the East African Rift and the Cretaceous-Paleogene Rifts in Northern Kenya and Southern Ethiopia

    NASA Astrophysics Data System (ADS)

    Mariita, N. O.; Tadesse, K.; Keller, G. R.

    2003-12-01

    The East African rift (EAR) is a Tertiary-Miocene system that extends from the Middle East, through East Africa, to Mozambique in southern Africa. Much of the present information is from the Ethiopian and Kenyan parts of the rift. Several characteristics of the EAR such as rift-related volcanism, faulting and topographic relief being exposed make it attractive for studying continental rift processes. Structural complexities reflected in the geometries of grabens and half-grabens, the existence of transverse fault zones and accommodation zones, and the influence of pre-existing geologic structures have been documented. In particular, the EAR traverses the Anza graben and related structures near the Kenya/Ethiopian border. The Anza graben is one in a series of Cretaceous-Paleogene failed rifts that trend across Central Africa from Nigeria through Chad to Sudan and Kenya with an overall northwest-southeast trend. In spite of a number of recent studies, we do not understand the interaction of these two rift systems. In both Ethiopia and Kenya, the rift segments share some broad similarities in timing and are related in a geographic sense. For example, volcanism appears to have generally preceded or in some cases have been contemporaneous with major rift faulting. Although, these segments are distinct entities, each with its own tectonic and magmatic evolution, and they do connect in the region crossed by the Anza graben and related structures. In our present study, we are using a combination of recently collected seismic, gravity and remote sensing data to increase our understanding of these two segments of the EAR. We hope that by analysing the satellite data, the variety and differences in the volume of magmatic products extruded along in southern Ethiopia and northern Kenya will be identified. The geometry of structures (in particular, those causing the gravity axial high) will be modelled to study the impact of the older Anza graben structural trends with the younger EAR. For example there is significant crustal thinning in the Lake Turkana area of the northern Kenya segment of the EAR system. In regard to the recent EAGLE experiment in Ethiopia, we are ivestigating if the transition from relatively thick crust (~40 km) to thinned, rifted crust is as abrupt in Ethiopia as it is in Kenya.

  11. Design of a positioning system for a holographic otoscope

    NASA Astrophysics Data System (ADS)

    Dobrev, I.; Flores Moreno, J. M.; Furlong, C.; Harrington, E. J.; Rosowski, J. J.; Scarpino, C.

    2010-08-01

    Current ear examination procedures provide mostly qualitative information which results in insufficient or erroneous description of the patient's hearing. Much more quantitative and accurate results can be achieved with a holographic otoscope system currently under development. Various ways of accurate positioning and stabilization of the system in real-life conditions are being investigated by this project in an attempt to bring this new technology to the hospitals and clinics, in order to improve the quality of the treatments and operations of the human ear. The project is focused at developing a mechatronic system capable of positioning the holographic otoscope to the patient's ear and maintaining its relative orientation during the examination. The system will be able to be guided by the examiner, but it will maintain the chosen position automatically. To achieve that, various trajectories are being measured for existing otoscopes being guided by doctors in real medical conditions. Based on that, various kinematic configurations are to be synthesized and their stability and accuracy will be simulated and optimized with FEA. For simplification, the mechanism will contain no actuators, but only adjustable friction elements in a haptic feedback control system. This renders the positioning system safe and easily applicable to current examination rooms. Other means of stabilization of the system are being investigated such as custom designed packaging of all of the otoscope subsystems, interferometrically compensating for the heartbeat induced vibration of the tympanic membrane as well as methods for monitoring and active response to the motion of the patient's head.

  12. Bilateral globus pallidus internus deep brain stimulation for dyskinetic cerebral palsy supports success of cochlear implantation in a 5-year old ex-24 week preterm twin with absent cerebellar hemispheres.

    PubMed

    Lin, Jean-Pierre; Kaminska, Margaret; Perides, Sarah; Gimeno, Hortensia; Baker, Lesley; Lumsden, Daniel E; Britz, Anzell; Driver, Sandra; Fitzgerald-O'Connor, Alec; Selway, Richard

    2017-01-01

    Early onset dystonia (dyskinesia) and deafness in childhood pose significant challenges for children and carers and are the cause of multiple disability. It is particularly tragic when the child cannot make use of early cochlear implantation (CI) technology to relieve deafness and improve language and communication, because severe cervical and truncal dystonia brushes off the magnetic amplifier behind the ears. Bilateral globus pallidus internus (GPi) deep brain stimulation (DBS) neuromodulation can reduce dyskinesia, thus supporting CI neuromodulation success. We describe the importance of the order of dual neuromodulation surgery for dystonia and deafness. First with bilateral GPi DBS using a rechargeable ACTIVA-RC neurostimulator followed 5 months later by unilateral CI with a Harmony (BTE) Advanced Bionics Hi Res 90 K cochlear device. This double neuromodulation was performed in series in a 12.5 kg 5 year-old ex-24 week gestation-born twin without a cerebellum. Relief of dyskinesia enabled continuous use of the CI amplifier. Language understanding and communication improved. Dystonic storms abated. Tolerance of sitting increased with emergence of manual function. Status dystonicus ensued 10 days after ACTIVA-RC removal for infection-erosion at 3 years and 10 months. He required intensive care and DBS re-implantation 3 weeks later together with 8 months of hospital care. Today he is virtually back to the level of functioning before the DBS removal in 2012 and background medication continues to be slowly weaned. This case illustrates that early neuromodulation with DBS for dystonic cerebral palsy followed by CI for deafness is beneficial. Both should be considered early i.e. under the age of five years. The DBS should precede the CI to maximise dystonia reduction and thus benefits from CI. This requires close working between the paediatric DBS and CI services. Copyright © 2016. Published by Elsevier Ltd.

  13. Sound-power collection by the auditory periphery of the Mongolian gerbil Meriones unguiculatus. I: Middle-ear input impedance.

    PubMed

    Ravicz, M E; Rosowski, J J; Voigt, H F

    1992-07-01

    This is the first paper of a series dealing with sound-power collection by the auditory periphery of the gerbil. The purpose of the series is to quantify the physiological action of the gerbil's relatively large tympanic membrane and middle-ear air cavities. To this end the middle-ear input impedance ZT was measured at frequencies between 10 Hz and 18 kHz before and after manipulations of the middle-ear cavity. The frequency dependence of ZT is consistent with that of the middle-ear transfer function computed from extant data. Comparison of the impedance and transfer function suggests a middle-ear transformer ratio of 50 at frequencies below 1 kHz, substantially smaller than the anatomical value of 90 [Lay, J. Morph. 138, 41-120 (1972)]. Below 1 kHz the data suggest a low-frequency acoustic stiffness KT for the middle ear of 970 Pa/mm3 and a stiffness of the middle-ear cavity of 720 Pa/mm3 (middle-ear volume V MEC of 195 mm3); thus the middle-ear air spaces contribute about 70% of the acoustic stiffness of the auditory periphery. Manipulations of a middle-ear model suggest that decreases in V MEC lead to proportionate increases in KT but that further increases in middle-ear cavity volume produce only limited decreases in middle-ear stiffness. The data and the model point out that the real part of the middle-ear impedance at frequencies below 100 Hz is determined primarily by losses within the middle-ear cavity. The measured impedance is comparable in magnitude and frequency dependence to the impedance in several larger mammalian species commonly used in auditory research. A comparison of low-frequency stiffness and anatomical dimensions among several species suggests that the large middle-ear cavities in gerbil act to reduce the middle-ear stiffness at low frequencies. A description of sound-power collection by the gerbil ear requires a description of the function of the external ear.

  14. Microbiomes of the normal middle ear and ears with chronic otitis media.

    PubMed

    Minami, Shujiro B; Mutai, Hideki; Suzuki, Tomoko; Horii, Arata; Oishi, Naoki; Wasano, Koichiro; Katsura, Motoyasu; Tanaka, Fujinobu; Takiguchi, Tetsuya; Fujii, Masato; Kaga, Kimitaka

    2017-10-01

    The aim of this study was to profile and compare the middle ear microbiomes of human subjects with and without chronic otitis media. Prospective multicenter cohort study. All consecutive patients undergoing tympanoplasty surgery for chronic otitis media or ear surgery for conditions other than otitis media were recruited. Sterile swab samples were collected from the middle ear mucosa during surgery. The variable region 4 of the 16S rRNA gene in each sample were amplified using region-specific primers adapted for the Illumina MiSeq sequencer (Illumina, CA, USA)). The sequences were subjected to local blast and classified using Metagenome@KIN (World Fusion, Tokyo, Japan). In total, 155 participants were recruited from seven medical centers. Of these, 88 and 67 had chronic otitis media and normal middle ears, respectively. The most abundant bacterial phyla on the mucosal surfaces of the normal middle ears were Proteobacteria, followed by Actinobacteria, Firmicutes, and Bacteroidetes. The children and adults with normal middle ears differed significantly in terms of middle ear microbiomes. Subjects with chronic otitis media without active inflammation (dry ear) had similar middle ear microbiomes as the normal middle ears group. Subjects with chronic otitis media with active inflammation (wet ear) had a lower prevalence of Proteobacteria and a higher prevalence of Firmicutes than the normal middle ears. The human middle ear is inhabited by more diverse microbial communities than was previously thought. Alteration of the middle ear microbiome may contribute to the pathogenesis of chronic otitis media with active inflammation. 2b. Laryngoscope, 127:E371-E377, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  15. Knowledge, Attitude and Practice of Ear Care in Coastal Karnataka.

    PubMed

    Dosemane, Deviprasad; Ganapathi, Keerthan; Kanthila, Jayashree

    2015-12-01

    Ear as an organ is necessary for the perception of sound and body balance. Ear infection, diabetes mellitus, hypertension and excessive use of mobile phone for listening to music at high volume all can reduce hearing. No earlier study was available in the costal Karnataka population, regarding the practice of ear care. The study objective was to ascertain the level of knowledge of the community regarding ear care, to find out whether some of the common conditions affecting hearing are known and to find out the common practices involved in maintaining ear hygiene. This cross-sectional study was conducted on 500 subjects in two tertiary care hospitals by convenient sampling, using self-administered questionnaire. Knowledge, Attitude and Practice across the age groups, religion & education background were studied. Across different education groups, 66.7%-90% did not know that 'cold' can cause ear infection and 46.7%-75.0% did not know that diabetes and hypertension can reduce hearing. When there is ear pain or discharge, people put ear drops available at home in 48.3%-75.0% across 3 age groups; 58.5%-61.5% across 3 religions and 44.8%-67.9% across 5 education groups. No statistically significant difference was found in the practice of pouring oil into ears across religions. A total of 58.6%-100% daily clean inside the ear and 70-100% use cotton buds. General perception of the people is that ear is necessary only for hearing. Majority did not know that nasal infection can affect the ear and that DM and hypertension can cause hearing loss. When there is ear pain and discharge, most of the adults put drops that are available at home. Pouring oil into the ears and cleaning inside the ear canals is routinely practiced in costal Karnataka.

  16. Directional Receiver for Biomimetic Sonar System

    NASA Astrophysics Data System (ADS)

    Guarato, Francesco; Andrews, Heather; Windmill, James F.; Jackson, Joseph; Gachagan, Anthony

    An ultrasonic localization method for a sonar system equipped with an emitter and two directional receivers and inspired by bat echolocation uses knowledge of the beam pattern of the receivers to estimate target orientation. Rousettus leschenaultii's left ear constitutes the model for the design of the optimal receiver for this sonar system and 3D printing was used to fabricate receiver structures comprising of two truncated cones with an elliptical external perimeter and a parabolic flare rate in the upper part. Measurements show one receiver has a predominant lobe in the same region and with similar attenuation values as the bat ear model. The final sonar system is to be mounted on vehicular and aerial robots which require remote control for motion and sensors for estimation of each robot's location.

  17. Theory of forward and reverse middle-ear transmission applied to otoacoustic emissions in infant and adult ears

    PubMed Central

    Keefe, Douglas H.; Abdala, Carolina

    2008-01-01

    The purpose of this study is to understand why otoacoustic emission (OAE) levels are higher in normal-hearing human infants relative to adults. In a previous study, distortion product (DP) OAE input/output (I/O) functions were shown to differ at f2=6 kHz in adults compared to infants through 6 months of age. These DPOAE I/O functions were used to noninvasively assess immaturities in forward/reverse transmission through the ear canal and middle ear [Abdala, C., and Keefe, D. H., (2006). J. Acoust Soc. Am. 120, 3832–3842]. In the present study, ear-canal reflectance and DPOAEs measured in the same ears were analyzed using a scattering-matrix model of forward and reverse transmission in the ear canal, middle ear, and cochlea. Reflectance measurements were sensitive to frequency-dependent effects of ear-canal and middle-ear transmission that differed across OAE type and subject age. Results indicated that DPOAE levels were larger in infants mainly because the reverse middle-ear transmittance level varied with ear-canal area, which differed by more than a factor of 7 between term infants and adults. The forward middle-ear transmittance level was −16 dB less in infants, so that the conductive efficiency was poorer in infants than adults. PMID:17348521

  18. Ear asymmetries in middle-ear, cochlear, and brainstem responses in human infants

    PubMed Central

    Keefe, Douglas H.; Gorga, Michael P.; Jesteadt, Walt; Smith, Lynette M.

    2008-01-01

    In 2004, Sininger and Cone-Wesson examined asymmetries in the signal-to-noise ratio (SNR) of otoacoustic emissions (OAE) in infants, reporting that distortion-product (DP)OAE SNR was larger in the left ear, whereas transient-evoked (TE)OAE SNR was larger in the right. They proposed that cochlear and brainstem asymmetries facilitate development of brain-hemispheric specialization for sound processing. Similarly, in 2006 Sininger and Cone-Wesson described ear asymmetries mainly favoring the right ear in infant auditory brainstem responses (ABRs). The present study analyzed 2640 infant responses to further explore these effects. Ear differences in OAE SNR, signal, and noise were evaluated separately and across frequencies (1.5, 2, 3, and 4 kHz), and ABR asymmetries were compared with cochlear asymmetries. Analyses of ear-canal reflectance and admittance showed that asymmetries in middle-ear functioning did not explain cochlear and brainstem asymmetries. Current results are consistent with earlier studies showing right-ear dominance for TEOAE and ABR. Noise levels were higher in the right ear for OAEs and ABRs, causing ear asymmetries in SNR to differ from those in signal level. No left-ear dominance for DPOAE signal was observed. These results do not support a theory that ear asymmetries in cochlear processing mimic hemispheric brain specialization for auditory processing. PMID:18345839

  19. Comparative evaluation of rivastigmine permeation from a transdermal system in the Franz cell using synthetic membranes and pig ear skin with in vivo-in vitro correlation.

    PubMed

    Simon, Alice; Amaro, Maria Inês; Healy, Anne Marie; Cabral, Lucio Mendes; de Sousa, Valeria Pereira

    2016-10-15

    In the present study, in vitro permeation experiments in a Franz diffusion cell were performed using different synthetic polymeric membranes and pig ear skin to evaluate a rivastigmine (RV) transdermal drug delivery system. In vitro-in vivo correlations (IVIVC) were examined to determine the best model membrane. In vitro permeation studies across different synthetic membranes and skin were performed for the Exelon(®) Patch (which contains RV), and the results were compared. Deconvolution of bioavailability data using the Wagner-Nelson method enabled the fraction of RV absorbed to be determined and a point-to-point IVIVC to be established. The synthetic membrane, Strat-M™, showed a RV permeation profile similar to that obtained with pig ear skin (R(2)=0.920). Studies with Strat-M™ resulted in a good and linear IVIVC (R(2)=0.991) when compared with other synthetic membranes that showed R(2) values less than 0.90. The R(2) for pig ear skin was 0.982. Strat-M™ membrane was the only synthetic membrane that adequately simulated skin barrier performance and therefore it can be considered to be a suitable alternative to human or animal skin in evaluating transdermal drug transport, potentially reducing the number of studies requiring human or animal samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Taking Care of Your Ears

    MedlinePlus

    ... Audiologist Perforated Eardrum What's Hearing Loss? Can Loud Music Hurt My Ears? What Is an Ear Infection? Swimmer's Ear Your Ears What's Earwax? View more About Us Contact Us Partners Editorial Policy Permissions Guidelines Privacy Policy & Terms of Use Notice ...

  1. Connecting the ear to the brain: molecular mechanisms of auditory circuit assembly

    PubMed Central

    Appler, Jessica M.; Goodrich, Lisa V.

    2011-01-01

    Our sense of hearing depends on precisely organized circuits that allow us to sense, perceive, and respond to complex sounds in our environment, from music and language to simple warning signals. Auditory processing begins in the cochlea of the inner ear, where sounds are detected by sensory hair cells and then transmitted to the central nervous system by spiral ganglion neurons, which faithfully preserve the frequency, intensity, and timing of each stimulus. During the assembly of auditory circuits, spiral ganglion neurons establish precise connections that link hair cells in the cochlea to target neurons in the auditory brainstem, develop specific firing properties, and elaborate unusual synapses both in the periphery and in the CNS. Understanding how spiral ganglion neurons acquire these unique properties is a key goal in auditory neuroscience, as these neurons represent the sole input of auditory information to the brain. In addition, the best currently available treatment for many forms of deafness is the cochlear implant, which compensates for lost hair cell function by directly stimulating the auditory nerve. Historically, studies of the auditory system have lagged behind other sensory systems due to the small size and inaccessibility of the inner ear. With the advent of new molecular genetic tools, this gap is narrowing. Here, we summarize recent insights into the cellular and molecular cues that guide the development of spiral ganglion neurons, from their origin in the proneurosensory domain of the otic vesicle to the formation of specialized synapses that ensure rapid and reliable transmission of sound information from the ear to the brain. PMID:21232575

  2. Earfold Implantable Clip System for Correction of Prominent Ears: Analysis of Safety in 403 Patients

    PubMed Central

    Sojitra, Nilesh; Glumicic, Sinisa; Vlok, Jacobus A.; O’Toole, Greg; Hannan, S. Alam; Sabbagh, Walid

    2018-01-01

    Background: The Earfold system, a new treatment for the correction of prominent ears, consists of 3 components: the Earfold implant, the Earfold introducer, and the Prefold positioner. Methods: This is an interim report based on an ongoing analysis of safety in a series of patients treated for prominent ears with the Earfold implant between February 2013 and September 2014. Safety was assessed based on adverse event reports and the need for implant revision; follow-up is ongoing. Results: Seven surgeons used 1,200 Earfold implants to treat 403 patients (ages, 7–70 years; 63% male); the time since the initial implant procedure now ranges from 30 to 48 months. To date, 145 patients (36%) have returned for a follow-up visit (mean, 7.7 months [range, 1–34 months]). Adverse events requiring intervention have affected 39 of 403 (9.7%) patients; these include implant revisions (n = 17 [4.2%], most often due to implant visibility), skin erosion over the implant (n = 15 [3.7%]), and infection (n = 7 [1.7%]). Bleeding, recurrence of prominence, hematoma, deformity, or adverse scarring did not occur. Conclusions: This interim analysis has shown that Earfold prominent ear correction system is associated with relatively few adverse events that require intervention; a small number of patients experienced infection, implant extrusion, or implant visibility that required revision. Most adverse events were related to either patient selection or technical errors at implantation. It is expected that with continued use of Earfold by surgeons experienced in otoplasty, the adverse event incidence will decrease. PMID:29464160

  3. Hearing of the African lungfish (Protopterus annectens) suggests underwater pressure detection and rudimentary aerial hearing in early tetrapods.

    PubMed

    Christensen, Christian Bech; Christensen-Dalsgaard, Jakob; Madsen, Peter Teglberg

    2015-02-01

    In the transition from an aquatic to a terrestrial lifestyle, vertebrate auditory systems have undergone major changes while adapting to aerial hearing. Lungfish are the closest living relatives of tetrapods and their auditory system may therefore be a suitable model of the auditory systems of early tetrapods such as Acanthostega. Therefore, experimental studies on the hearing capabilities of lungfish may shed light on the possible hearing capabilities of early tetrapods and broaden our understanding of hearing across the water-to-land transition. Here, we tested the hypotheses that (i) lungfish are sensitive to underwater pressure using their lungs as pressure-to-particle motion transducers and (ii) lungfish can detect airborne sound. To do so, we used neurophysiological recordings to estimate the vibration and pressure sensitivity of African lungfish (Protopterus annectens) in both water and air. We show that lungfish detect underwater sound pressure via pressure-to-particle motion transduction by air volumes in their lungs. The morphology of lungfish shows no specialized connection between these air volumes and the inner ears, and so our results imply that air breathing may have enabled rudimentary pressure detection as early as the Devonian era. Additionally, we demonstrate that lungfish in spite of their atympanic middle ear can detect airborne sound through detection of sound-induced head vibrations. This strongly suggests that even vertebrates with no middle ear adaptations for aerial hearing, such as the first tetrapods, had rudimentary aerial hearing that may have led to the evolution of tympanic middle ears in recent tetrapods. © 2015. Published by The Company of Biologists Ltd.

  4. Sniffer dogs as part of a bimodal bionic research approach to develop a lung cancer screening†

    PubMed Central

    Boedeker, Enole; Friedel, Godehard; Walles, Thorsten

    2012-01-01

    Lung cancer (LC) continues to represent a heavy burden for health care systems worldwide. Epidemiological studies predict that its role will increase in the near future. While patient prognosis is strongly associated with tumour stage and early detection of disease, no screening test exists so far. It has been suggested that electronic sensor devices, commonly referred to as ‘electronic noses’, may be applicable to identify cancer-specific volatile organic compounds in the breath of patients and therefore may represent promising screening technologies. However, three decades of research did not bring forward a clinically applicable device. Here, we propose a new research approach by involving specially trained sniffer dogs into research strategies by making use of their ability to identify LC in the breath sample of patients. PMID:22345057

  5. Effect of Microgravity on Afferent Innervation

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Presentations and publications are: (1) an audiovisual summary web presentation on results from SLM-MIR avian experiments. A color presentation summarizing results from the SLM-MIR and STS-29 avian experiments; (2) color threshold and ratio of S 100B MAP5, NF68/200, GABA and GAD; (3) chicken (Gallus domesticus) inner ear afferents; (4) microgravity in the STS-29 Space Shuttle Discovery affected the vestibular system of chick embryos; (5) expression of S 100B in sensory and secretory cells of the vertebrate inner ear; (6) otoconia biogenesis, phylogeny, composition and functional attributes;(7) the glycan keratin sulfate in inner ear crystals; (8) elliptical-P cells in the avian perilymphatic interface of the tegmentum vasculosum; and (9) LAMP2c and S100B upregulation in brain stem after VIIIth nerve deafferentation.

  6. Early Development of the First Earth Venture Mission: How CYGNSS Is Using Engineering Models to Validate the Design

    NASA Technical Reports Server (NTRS)

    Wells, James; Scherrer, John; Van Noord, Jonathan; Law, Richard

    2015-01-01

    In response to the recommendations made in the National Research Council' s Ear th Science and Applications 2007 Decadal Sur vey, NASA has initiated the Ear th Venture line of mission oppor tunities. The fir st orbital mission chosen for this competitively selected, cost and schedule constrained, Pr incipal Investigator -led oppor tunity is the CYclone Global Navigation Satellite System (CYGNSS). The goal of CYGNSS is to understand the coupling between ocean sur face proper ties, moist atmospher ic thermodynamics, radiation, and convective dynamics in the inner core of a tropical cyclone. The CYGNSS mission is compr ised of eight Low Ear th Obser ving (LEO) micr osatellites that use GPS bi-static scatterometry to measure ocean sur face winds.

  7. Hydrostatic fluid pressure in the vestibular organ of the guinea pig.

    PubMed

    Park, Jonas J-H; Boeven, Jahn J; Vogel, Stefan; Leonhardt, Steffen; Wit, Hero P; Westhofen, Martin

    2012-07-01

    Since inner ear hair cells are mechano-electric transducers the control of hydrostatic pressure in the inner ear is crucial. Most studies analyzing dynamics and regulation of inner ear hydrostatic pressure performed pressure measurements in the cochlea. The present study is the first one reporting about absolute hydrostatic pressure values in the labyrinth. Hydrostatic pressure of the endolymphatic system was recorded in all three semicircular canals. Mean pressure values were 4.06 cmH(2)O ± 0.61 in the posterior, 3.36 cmH(2)O ± 0.94 in the anterior and 3.85 cmH(2)O ± 1.38 in the lateral semicircular canal. Overall hydrostatic pressure in the vestibular organ was 3.76 cmH(2)O ± 0.36. Endolymphatic hydrostatic pressure in all three semicircular canals is the same (p = 0.310). With regard to known endolymphatic pressure values in the cochlea from past studies vestibular pressure values are comparable to cochlear values. Until now it is not known whether the reuniens duct and the Bast's valve which are the narrowest passages in the endolymphatic system are open or closed. Present data show that most likely the endolymphatic system is a functionally open entity.

  8. Visual servoing of a laser ablation based cochleostomy

    NASA Astrophysics Data System (ADS)

    Kahrs, Lüder A.; Raczkowsky, Jörg; Werner, Martin; Knapp, Felix B.; Mehrwald, Markus; Hering, Peter; Schipper, Jörg; Klenzner, Thomas; Wörn, Heinz

    2008-03-01

    The aim of this study is a defined, visually based and camera controlled bone removal by a navigated CO II laser on the promontory of the inner ear. A precise and minimally traumatic opening procedure of the cochlea for the implantation of a cochlear implant electrode (so-called cochleostomy) is intended. Harming the membrane linings of the inner ear can result in damage of remaining organ functions (e.g. complete deafness or vertigo). A precise tissue removal by a laser-based bone ablation system is investigated. Inside the borehole the pulsed laser beam is guided automatically over the bone by using a two mirror galvanometric scanner. The ablation process is controlled by visual servoing. For the detection of the boundary layers of the inner ear the ablation area is monitored by a color camera. The acquired pictures are analyzed by image processing. The results of this analysis are used to control the process of laser ablation. This publication describes the complete system including image processing algorithms and the concept for the resulting distribution of single laser pulses. The system has been tested on human cochleae in ex-vivo studies. Further developments could lead to safe intraoperative openings of the cochlea by a robot based surgical laser instrument.

  9. Should children who use cochlear implants wear hearing aids in the opposite ear?

    PubMed

    Ching, T Y; Psarros, C; Hill, M; Dillon, H; Incerti, P

    2001-10-01

    The aim of this study was to investigate 1) whether a hearing aid needs to be adjusted differently depending on whether a child wears a cochlear implant or another hearing aid in the contralateral ear; 2) whether the use of a hearing aid and a cochlear implant in opposite ears leads to binaural interference; and 3) whether the use of a hearing aid and a cochlear implant in opposite ears leads to binaural benefits in speech perception, localization, and communicative functioning in real life. Sixteen children participated in this study. All children used a Nucleus 22 or Nucleus 24 cochlear implant system programmed with the SPEAK strategy in one ear. The hearing aid amplification requirements in the nonimplanted ear of these children were determined using two procedures. A paired comparison technique was used to identify the frequency response that was best for speech intelligibility in quiet, and a loudness balancing technique was used to match the loudness of speech in the ear with a hearing aid to that with a cochlear implant. Eleven of the 16 children participated in the investigation of binaural effects. Performance in speech perception, localization, and communicative functioning was assessed under four aided conditions: cochlear implant with hearing aid as worn, cochlear implant alone, hearing aid alone, and cochlear implant with hearing aid adjusted according to individual requirements. Fifteen of the 16 children whose amplification requirements were determined preferred a hearing aid frequency response that was within +/-6 dB/octave of the NAL-RP prescription. On average, the children required 6 dB more gain than prescribed to balance the loudness of the implanted ear for a speech signal presented at 65 dB SPL. For all 11 children whose performance was evaluated for investigating binaural effects, there was no indication of significantly poorer performance under bilaterally aided conditions compared with unilaterally aided conditions. On average, there were significant benefits in speech perception, localization, and aural/oral function when the children used cochlear implants with adjusted hearing aids than when they used cochlear implants alone. All individuals showed benefits in at least one of the measures. Hearing aids for children who also use cochlear implants can be selected using the NAL-RP prescription. Adjustment of hearing aid gain to match loudness in the implanted ear can facilitate integration of signals from both ears, leading to better speech perception. Given that there are binaural advantages from using cochlear implants with hearing aids in opposite ears, clinicians should advise parents and other professionals about these potential advantages, and facilitate bilateral amplification by adjusting hearing aids after stable cochlear implant MAPs are established.

  10. Protection Against Hearing Loss in General Aviation Operations, Phase II

    NASA Technical Reports Server (NTRS)

    Parker, J. F., Jr.

    1972-01-01

    An inflight evaluation of four aural protectors is presented. The hearing protection devices studied were ear muffs, plastic ear plugs, rubber ear plugs, and wax ear plugs. It is concluded that ear plugs are satisfactory for providing adequate sound attenuation in general aviation aircraft. However, two problems were found in the use of ear plugs; comfort and interference with cabin communications.

  11. Estimation of outer-middle ear transmission using DPOAEs and fractional-order modeling of human middle ear

    NASA Astrophysics Data System (ADS)

    Naghibolhosseini, Maryam

    Our ability to hear depends primarily on sound waves traveling through the outer and middle ear toward the inner ear. Hence, the characteristics of the outer and middle ear affect sound transmission to/from the inner ear. The role of the middle and outer ear in sound transmission is particularly important for otoacoustic emissions (OAEs), which are sound signals generated in a healthy cochlea, and recorded by a sensitive microphone placed in the ear canal. OAEs are used to evaluate the health and function of the cochlea; however, they are also affected by outer and middle ear characteristics. To better assess cochlear health using OAEs, it is critical to quantify the impact of the outer and middle ear on sound transmission. The reported research introduces a noninvasive approach to estimate outer-middle ear transmission using distortion product otoacoustic emissions (DPOAEs). In addition, the role of the outer and middle ear on sound transmission was investigated by developing a physical/mathematical model, which employed fractional-order lumped elements to include the viscoelastic characteristics of biological tissues. Impedance estimations from wideband refectance measurements were used for parameter fitting of the model. The model was validated comparing its estimates of the outer-middle ear sound transmission with those given by DPOAEs. The outer-middle ear transmission by the model was defined as the sum of forward and reverse outer-middle ear transmissions. To estimate the reverse transmission by the model, the probe-microphone impedance was calculated through estimating the Thevenin-equivalent circuit of the probe-microphone. The Thevenin-equivalent circuit was calculated using measurements in a number of test cavities. Such modeling enhances our understanding of the roles of different parts of the outer and middle ear and how they work together to determine their function. In addition, the model would be potentially helpful in diagnosing pathologies of cochlear or middle ear origin.

  12. Teasing in younger and older children with microtia before and after ear reconstruction.

    PubMed

    Johns, Alexis L; Lewin, Sheryl L; Im, Daniel D

    2017-06-01

    This study prospectively measured teasing and emotional adjustment before and after ear reconstruction in younger and older children with microtia. Participants with isolated microtia (n = 28) were divided into two groups by age at surgery, with a younger group aged 3-5 years (n = 13) with a mean age of 4.0 (0.71) years at the time of surgery and an older group aged 6-10 years old (n = 15) with a mean age of 7.87 (1.30) years. Children and their parents were interviewed preoperatively and a year after surgery about teasing and emotions about their ear(s). Teasing began between the ages of 2.4-4.8 years. A third of the younger group and all of the older group reported preoperative teasing. Before surgery, the older group reported higher rates of negative emotions about their ear(s) and teasing was correlated for all ages with feeling sad, worried, and mad about their ear(s). After surgery, teasing and negative emotions significantly decreased with increased happiness about their ear(s). Postoperative teasing was correlated with trying to hide their ear(s). There were significant interactions from before to after surgery based on surgery age for frequency of teasing, sadness, and feeling mad, with the older group showing relatively greater change postoperatively. Teasing and negative emotions about their ear(s) decreased for all ages after surgery, with a potential protective factor seen in younger surgery age.

  13. Impact of socio-economic status on ear health and behaviour in children: A cross-sectional study in the capital of India.

    PubMed

    Gupta, Divya; Gulati, Achal; Gupta, Umang

    2015-11-01

    Socio-economic differences in the society have been a major cause for the discrepancy in disease and behavioural patterns in society. With 360 million people (32 million children) in the world suffering from disabling hearing losses, it is imperative to gain an insight into the impact of differences in socio-economic strata on children's ear health issues, their knowledge of ear ailments and attitude towards ear health so as to suggest policies addressing ear health issues. The study was carried out in two different school types namely government schools and private schools which represent wide difference in the socio-economic status of the students studying there. A questionnaire was administered to students aged 10 to 13 years to assess the current ear care practices, knowledge regarding ear ailments, attitude towards hearing and their adaptability to reform. The children belonging to higher socio-economic status were found to have lesser incidence of ear diseases and ear abuse, more referrals for ear ailments, lesser indulgence in risky ear health behaviours, better knowledge pool, positive attitude towards ear health and hearing and were more adaptable to change for better hearing. Structures of social disparity are essential determinants of ear health acting both independently and through their influence on behavioural determinants of health. Increasing awareness of ear health issues at the school level itself should be one of the goals of health care providers. Copyright © 2015. Published by Elsevier Ireland Ltd.

  14. Are two ears not better than one?

    PubMed

    McArdle, Rachel A; Killion, Mead; Mennite, Monica A; Chisolm, Theresa H

    2012-03-01

    The decision to fit one or two hearing aids in individuals with binaural hearing loss has been debated for years. Although some 78% of U.S. hearing aid fittings are binaural (Kochkin , 2010), Walden and Walden (2005) presented data showing that 82% (23 of 28 patients) of their sample obtained significantly better speech recognition in noise scores when wearing one hearing aid as opposed to two. To conduct two new experiments to fuel the monaural/binaural debate. The first experiment was a replication of Walden and Walden (2005), whereas the second experiment examined the use of binaural cues to improve speech recognition in noise. A repeated measures experimental design. Twenty veterans (aged 59-85 yr), with mild to moderately severe binaurally symmetrical hearing loss who wore binaural hearing aids were recruited from the Audiology Department at the Bay Pines VA Healthcare System. Experiment 1 followed the procedures of the Walden and Walden study, where signal-to-noise ratio (SNR) loss was measured using the Quick Speech-in-Noise (QuickSIN) test on participants who were aided with their current hearing aids. Signal and noise were presented in the sound booth at 0° azimuth under five test conditions: (1) right ear aided, (2) left ear aided, (3) both ears aided, (4) right ear aided, left ear plugged, and (5) unaided. The opposite ear in (1) and (2) was left open. In Experiment 2, binaural Knowles Electronics Manikin for Acoustic Research (KEMAR) manikin recordings made in Lou Malnati's pizza restaurant during a busy period provided a typical real-world noise, while prerecorded target sentences were presented through a small loudspeaker located in front of the KEMAR manikin. Subjects listened to the resulting binaural recordings through insert earphones under the following four conditions: (1) binaural, (2) diotic, (3) monaural left, and (4) monaural right. Results of repeated measures ANOVAs demonstrated that the best speech recognition in noise performance was obtained by most participants with both ears aided in Experiment 1 and in the binaural condition in Experiment 2. In both experiments, only 20% of our subjects did better in noise with a single ear, roughly similar to the earlier Jerger et al (1993) finding that 8-10% of elderly hearing aid users preferred one hearing aid. American Academy of Audiology.

  15. Middle Ear Infections (For Parents)

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Middle Ear Infections KidsHealth / For Parents / Middle Ear Infections What's ... en español Infecciones del oído medio What Are Middle Ear Infections? Ear infections happen when viruses or bacteria ...

  16. [Experimental investigations of CO2 laser application in middle ear ossicles].

    PubMed

    Dazert, S; Russ, D; Mlynski, R; Brors, D; Greiner, A; Aletsee, C; Helms, J

    2003-07-01

    During the last few years, several laser systems have been applied for procedures in middle ear surgery. In this study, we determined the technical parameters for the dissection of the middle ear ossicles with the CO(2) laser and analyzed the histological findings. The malleus necks of 16 human temporal bones were dissected under standardized conditions using a CO(2) laser with a power output between 35 and 55 kW/cm(2). The specimens were fixed and histological probes of 50- micro m thickness were prepared. The laser outputs led to crater diameters from 0.14 to 0.55 mm. As an analogy between laser energy and thermal tissue destruction, three zones of thermal damage were differentiated: a cinder zone, a carbonization zone, and a zone of dehydration. The metrical dimensions of these zones did not show any correlation to the applied laser energy. The data of this study show that commercially available CO(2) lasers are sufficient for a safe and effective partial resection of middle ear ossicles using a power output of 35 kW/cm(2).

  17. Comparative inner ear transcriptome analysis between the Rickett's big-footed bats (Myotis ricketti) and the greater short-nosed fruit bats (Cynopterus sphinx).

    PubMed

    Dong, Dong; Lei, Ming; Liu, Yang; Zhang, Shuyi

    2013-12-23

    Bats have aroused great interests of researchers for the sake of their advanced echolocation system. However, this highly specialized trait is not characteristic of Old World fruit bats. To comprehensively explore the underlying molecular basis between echolocating and non-echolocating bats, we employed a sequence-based approach to compare the inner ear expression difference between the Rickett's big-footed bat (Myotis ricketti, echolocating bat) and the Greater short-nosed fruit bat (Cynopterus sphinx, non-echolocating bat). De novo sequence assemblies were developed for both species. The results showed that the biological implications of up-regulated genes in M. ricketti were significantly over-represented in biological process categories such as 'cochlea morphogenesis', 'inner ear morphogenesis' and 'sensory perception of sound', which are consistent with the inner ear morphological and physiological differentiation between the two bat species. Moreover, the expression of TMC1 gene confirmed its important function in echolocating bats. Our work presents the first transcriptome comparison between echolocating and non-echolocating bats, and provides information about the genetic basis of their distinct hearing traits.

  18. Diagnosis and medical treatment of otitis externa in the dog and cat.

    PubMed

    Jacobson, L S

    2002-12-01

    Otitis externa is no longer viewed as an isolated disease of the ear canal, but is a syndrome that is often a reflection of underlying dermatological disease. Causes are classified as predisposing (increase the risk of otitis); primary (directly induce otitis), secondary (contribute to otitis only in an abnormal ear or in conjunction with predisposing factors) and perpetuating (result from inflammation and pathology in ear, prevent resolution of otitis). Common primary causes include foreign bodies, hypersensitivity (particularly atopy and food allergy), keratinisation disorders (most commonly primary idiopathic seborrhoea and hypothyroidism) and earmites, particularly in cats. A systematic diagnostic procedure is required to identify causes and contributing factors. This should include history, clinical examination, otoscopy and cytology in all cases and culture and sensitivity as well as otitis media assessment and biopsy in severe and recurrent cases. Ancillary tests may be required depending on the underlying cause. Treatment consists of identifying and addressing predisposing and primary factors; cleaning the ear canal; topical therapy; systemic therapy where necessary; client education; follow-up; and preventive and maintenance therapy as required.

  19. Vestibular regeneration--experimental models and clinical implications.

    PubMed

    Albu, Silviu; Muresanu, Dafin F

    2012-09-01

    Therapies aimed at the protection and/or regeneration of inner ear hair cells are of great interest, given the significant monetary and quality of life impact of balance disorders. Different viral vectors have been shown to transfect various cell types in the inner ear. The past decade has provided tremendous advances in the use of adenoviral vectors to achieve targeted treatment delivery. Several routes of delivery have been identified to introduce vectors into the inner ear while minimizing injury to surrounding structures. Recently, the transcription factor Atoh1 was determined to play a critical role in hair cell differentiation. Adenoviral-mediated overexpression of Atoh1 in culture and in vivo has demonstrated the ability to regenerate vestibular hair cells by causing transdifferentiation of neighbouring epithelial-supporting cells. Functional recovery of the vestibular system has also been documented following adenoviral-induced Atoh1 overexpression. Experiments demonstrating gene transfer in human vestibular epithelial cells reveal that the human inner ear is a suitable target for gene therapy. © 2012 The Authors Journal of Cellular and Molecular Medicine © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  20. Intracochlear Drug Delivery Systems

    PubMed Central

    Borenstein, Jeffrey T.

    2011-01-01

    Introduction Advances in molecular biology and in the basic understanding of the mechanisms associated with sensorineural hearing loss and other diseases of the inner ear, are paving the way towards new approaches for treatments for millions of patients. However, the cochlea is a particularly challenging target for drug therapy, and new technologies will be required to provide safe and efficacious delivery of these compounds. Emerging delivery systems based on microfluidic technologies are showing promise as a means for direct intracochlear delivery. Ultimately, these systems may serve as a means for extended delivery of regenerative compounds to restore hearing in patients suffering from a host of auditory diseases. Areas covered in this review Recent progress in the development of drug delivery systems capable of direct intracochlear delivery is reviewed, including passive systems such as osmotic pumps, active microfluidic devices, and systems combined with currently available devices such as cochlear implants. The aim of this article is to provide a concise review of intracochlear drug delivery systems currently under development, and ultimately capable of being combined with emerging therapeutic compounds for the treatment of inner ear diseases. Expert Opinion Safe and efficacious treatment of auditory diseases will require the development of microscale delivery devices, capable of extended operation and direct application to the inner ear. These advances will require miniaturization and integration of multiple functions, including drug storage, delivery, power management and sensing, ultimately enabling closed-loop control and timed-sequence delivery devices for treatment of these diseases. PMID:21615213

  1. [Transitory evoked otoacoustic emissions and distortion product emissions in disorders of middle ear ventilation].

    PubMed

    Schmuziger, N; Hauser, R; Probst, R

    1996-06-01

    Both the amplitude and power spectra of otoacoustic emissions are affected by the transfer properties of the middle ear. This prospective study examined the influence of eustachian tube dysfunction on transiently evoked otoacoustic emissions (TEOAEs) and distortion-product otoacoustic emissions (DPOAEs). In all, 18 ears were studied that exhibited negative middle ear pressures with or without middle ear fluid. Measurements were performed at the time of diagnosis during the recovery stage, and after the middle ear became normally ventilated. Findings showed that TEOAE and DPOAE levels increased while airbone gaps were reduced by an average of 8 dB after negative middle ear pressures returned from -400 daPa to a normal state. There was a tendency for negative middle ear pressure to affect DPOAEs more in the 1-kHz region than in higher frequencies. By contrast, TEOAEs and airbone gaps were more uniformly affected across the entire frequency range. These results for ears with eustachian tube dysfunction were somewhat different from those results of studies obtained in healthy ears tested during experimental changes in middle ear pressure.

  2. Ear discharge

    MedlinePlus

    ... swabs or other small objects into the ear Middle ear infection Other causes of ear discharge include: Eczema ... tube surgery - what to ask your doctor Images Ear anatomy Eardrum repair - series References Bauer CA, Jenkins HA. Otologic symptoms and syndromes. In: Flint PW, Haughey BH, Lund V, et ...

  3. Responses of the ear to low frequency sounds, infrasound and wind turbines.

    PubMed

    Salt, Alec N; Hullar, Timothy E

    2010-09-01

    Infrasonic sounds are generated internally in the body (by respiration, heartbeat, coughing, etc) and by external sources, such as air conditioning systems, inside vehicles, some industrial processes and, now becoming increasingly prevalent, wind turbines. It is widely assumed that infrasound presented at an amplitude below what is audible has no influence on the ear. In this review, we consider possible ways that low frequency sounds, at levels that may or may not be heard, could influence the function of the ear. The inner ear has elaborate mechanisms to attenuate low frequency sound components before they are transmitted to the brain. The auditory portion of the ear, the cochlea, has two types of sensory cells, inner hair cells (IHC) and outer hair cells (OHC), of which the IHC are coupled to the afferent fibers that transmit "hearing" to the brain. The sensory stereocilia ("hairs") on the IHC are "fluid coupled" to mechanical stimuli, so their responses depend on stimulus velocity and their sensitivity decreases as sound frequency is lowered. In contrast, the OHC are directly coupled to mechanical stimuli, so their input remains greater than for IHC at low frequencies. At very low frequencies the OHC are stimulated by sounds at levels below those that are heard. Although the hair cells in other sensory structures such as the saccule may be tuned to infrasonic frequencies, auditory stimulus coupling to these structures is inefficient so that they are unlikely to be influenced by airborne infrasound. Structures that are involved in endolymph volume regulation are also known to be influenced by infrasound, but their sensitivity is also thought to be low. There are, however, abnormal states in which the ear becomes hypersensitive to infrasound. In most cases, the inner ear's responses to infrasound can be considered normal, but they could be associated with unfamiliar sensations or subtle changes in physiology. This raises the possibility that exposure to the infrasound component of wind turbine noise could influence the physiology of the ear. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  4. Genetic Architecture of Ear Fasciation in Maize (Zea mays) under QTL Scrutiny

    PubMed Central

    Mendes-Moreira, Pedro; Alves, Mara L.; Satovic, Zlatko; dos Santos, João Pacheco; Santos, João Nina; Souza, João Cândido; Pêgo, Silas E.; Hallauer, Arnel R.; Vaz Patto, Maria Carlota

    2015-01-01

    Maize ear fasciation Knowledge of the genes affecting maize ear inflorescence may lead to better grain yield modeling. Maize ear fasciation, defined as abnormal flattened ears with high kernel row number, is a quantitative trait widely present in Portuguese maize landraces. Material and Methods Using a segregating population derived from an ear fasciation contrasting cross (consisting of 149 F2:3 families) we established a two location field trial using a complete randomized block design. Correlations and heritabilities for several ear fasciation-related traits and yield were determined. Quantitative Trait Loci (QTL) involved in the inheritance of those traits were identified and candidate genes for these QTL proposed. Results and Discussion Ear fasciation broad-sense heritability was 0.73. Highly significant correlations were found between ear fasciation and some ear and cob diameters and row number traits. For the 23 yield and ear fasciation-related traits, 65 QTL were identified, out of which 11 were detected in both environments, while for the three principal components, five to six QTL were detected per environment. Detected QTL were distributed across 17 genomic regions and explained individually, 8.7% to 22.4% of the individual traits or principal components phenotypic variance. Several candidate genes for these QTL regions were proposed, such as bearded-ear1, branched silkless1, compact plant1, ramosa2, ramosa3, tasselseed4 and terminal ear1. However, many QTL mapped to regions without known candidate genes, indicating potential chromosomal regions not yet targeted for maize ear traits selection. Conclusions Portuguese maize germplasm represents a valuable source of genes or allelic variants for yield improvement and elucidation of the genetic basis of ear fasciation traits. Future studies should focus on fine mapping of the identified genomic regions with the aim of map-based cloning. PMID:25923975

  5. Ear canal dynamic motion as a source of power for in-ear devices

    NASA Astrophysics Data System (ADS)

    Delnavaz, Aidin; Voix, Jérémie

    2013-02-01

    Ear canal deformation caused by temporomandibular joint (jaw joint) activity, also known as "ear canal dynamic motion," is introduced in this paper as a candidate source of power to possibly recharge hearing aid batteries. The geometrical deformation of the ear canal is quantified in 3D by laser scanning of different custom ear moulds. An experimental setup is proposed to measure the amount of power potentially available from this source. The results show that 9 mW of power is available from a 15 mm3 dynamic change in the ear canal volume. Finally, the dynamic motion and power capability of the ear canal are investigated in a group of 12 subjects.

  6. Ear wax

    MedlinePlus

    See your provider if your ears are blocked with wax and you are unable to remove the wax. Also call if you have an ear wax blockage and you develop new symptoms, such as: Drainage from the ear Ear pain Fever Hearing loss that continues after you clean the wax

  7. A new method for correcting type I and type II constricted (cup and lop) ears.

    PubMed

    Xiaogeng, Hu; Hongxing, Zhuang; Qinghua, Yang; Haiyue, Jiang; Yanyong, Zhao

    2006-01-01

    Tanzer suggested the term "constricted ear," denoting a spectrum of deformities limited to the superior third of the ear. Tanzer classified the constricted ear into three types. Type I ears have involvement of the helix, which usually is flattened. Type II ears show involvement of both the helix and the scapha. With type III ears, the auricle is rolled into a nearly tubular form that some authors regard as a form of microtia. The authors' new method for correcting the constricted ear varies in accordance with the diverse degree of deformity. The new method was used to correct constricted ears through a one-stage operation in eight type I cases. For the remaining six type 2 cases, the methods were combined with composite grafting. Most of the patients were satisfied with the final results. Therefore, the authors conclude that their approach is suitable for the treatment of type I and type II constricted ears.

  8. Handheld tympanometer measurements in conscious dogs for the evaluation of the middle ear and auditory tube.

    PubMed

    Strain, George M; Fernandes, Asia J

    2015-06-01

    Otitis externa is frequently accompanied by otitis media, yet it can be difficult to evaluate the tympanum, middle ear and auditory tube without the use of advanced radiographic imaging. The objective was to develop techniques for tympanometry testing in conscious dogs and to present normative data for clinical use of this equipment to enable assessment of the tympanum, middle ear and auditory tube. Sixteen hounds (14 female) from a school teaching colony. Dogs were gently restrained in a standing position. After cleaning of the ear canal, a tympanometer probe tip extension was placed in the vertical canal and automated testing performed using a handheld device. Both ears were tested in all dogs. Acceptable recordings were obtained from both ears of 13 dogs, from one ear in each of two dogs and from neither ear of one dog, resulting in data from 28 of 32 (88%) ears. Otoscopic examination confirmed the absence of inflammation or any other obvious explanation for the noncompliant dogs. No significant differences were seen between ears for any measure. Normative data are reported for peak compliance, peak compliance pressure, gradient and ear canal volume. Tympanograms can be recorded in conscious dogs to assist in the evaluation of the middle ear structures. © 2015 ESVD and ACVD.

  9. Deriving the real-ear SPL of audiometric data using the "coupler to dial difference" and the "real ear to coupler difference".

    PubMed

    Munro, K J; Davis, J

    2003-04-01

    The purpose of the study was to compare the measured real-ear sound pressure level (SPL) of audiometer output with the derived real-ear SPL obtained by adding the coupler to dial difference (CDD) and real-ear to coupler difference (RECD) to the audiometer dial reading. The real-ear SPL and RECD were measured in one ear of 16 normally hearing subjects using a probe-tube microphone. The CDD transform and the RECD transfer function were measured in an HA1 and an HA2 2-cc coupler using an EAR-LINK foam ear-tip or a customized earmold. The RECD transfer function was measured using the EARTone ER 3A and the Audioscan RE770 insert earphone. The procedures were very reliable with mean differences on retest of less than 1 dB. The mean difference between the measured and derived real-ear SPL was generally less than 1 dB and rarely exceeded 3 dB in any subject. The CDD measured for an individual audiometer and the RECD measured for an individual ear can be used to derive a valid estimate of real-ear SPL when it has not been possible to measure this directly.

  10. Chinchilla middle-ear admittance and sound power: High-frequency estimates and effects of inner-ear modifications

    PubMed Central

    Ravicz, Michael E.; Rosowski, John J.

    2012-01-01

    The middle-ear input admittance relates sound power into the middle ear (ME) and sound pressure at the tympanic membrane (TM). ME input admittance was measured in the chinchilla ear canal as part of a larger study of sound power transmission through the ME into the inner ear. The middle ear was open, and the inner ear was intact or modified with small sensors inserted into the vestibule near the cochlear base. A simple model of the chinchilla ear canal, based on ear canal sound pressure measurements at two points along the canal and an assumption of plane-wave propagation, enables reliable estimates of YTM, the ME input admittance at the TM, from the admittance measured relatively far from the TM. YTM appears valid at frequencies as high as 17 kHz, a much higher frequency than previously reported. The real part of YTM decreases with frequency above 2 kHz. Effects of the inner-ear sensors (necessary for inner ear power computation) were small and generally limited to frequencies below 3 kHz. Computed power reflectance was ∼0.1 below 3.5 kHz, lower than with an intact ME below 2.5 kHz, and nearly 1 above 16 kHz. PMID:23039439

  11. Expression of macrophage migration inhibitory factor and CD74 in the inner ear and middle ear in lipopolysaccharide-induced otitis media.

    PubMed

    Ishihara, Hisashi; Kariya, Shin; Okano, Mitsuhiro; Zhao, Pengfei; Maeda, Yukihide; Nishizaki, Kazunori

    2016-10-01

    Significant expression of macrophage migration inhibitory factor and its receptor (CD74) was observed in both the middle ear and inner ear in experimental otitis media in mice. Modulation of macrophage migration inhibitory factor and its signaling pathway might be useful in the management of inner ear inflammation due to otitis media. Inner ear dysfunction secondary to otitis media has been reported. However, the specific mechanisms involved are not clearly understood. The aim of this study is to investigate the expression of macrophage migration inhibitory factor and CD74 in the middle ear and inner ear in lipopolysaccharide-induced otitis media. BALB/c mice received a transtympanic injection of either lipopolysaccharide or phosphate-buffered saline (PBS). The mice were sacrificed 24 h after injection, and temporal bones were processed for polymerase chain reaction (PCR) analysis, histologic examination, and immunohistochemistry. PCR examination revealed that the lipopolysaccharide-injected mice showed a significant up-regulation of macrophage migration inhibitory factor in both the middle ear and inner ear as compared with the PBS-injected control mice. The immunohistochemical study showed positive reactions for macrophage migration inhibitory factor and CD74 in infiltrating inflammatory cells, middle ear mucosa, and inner ear in the lipopolysaccharide-injected mice.

  12. Thyroid Hormone Receptors Control Developmental Maturation of the Middle Ear and the Size of the Ossicular Bones

    PubMed Central

    Cordas, Emily A.; Ng, Lily; Hernandez, Arturo; Kaneshige, Masahiro; Cheng, Sheue-Yann

    2012-01-01

    Thyroid hormone is critical for auditory development and has well-known actions in the inner ear. However, less is known of thyroid hormone functions in the middle ear, which contains the ossicles (malleus, incus, stapes) that relay mechanical sound vibrations from the outer ear to the inner ear. During the later stages of middle ear development, prior to the onset of hearing, middle ear cavitation occurs, involving clearance of mesenchyme from the middle ear cavity while the immature cartilaginous ossicles attain appropriate size and ossify. Using in situ hybridization, we detected expression of Thra and Thrb genes encoding thyroid hormone receptors α1 and β (TRα1 and TRβ, respectively) in the immature ossicles, surrounding mesenchyme and tympanic membrane in the mouse. Thra+/PV mice that express a dominant-negative TRα1 protein exhibited deafness with elevated auditory thresholds and a range of middle ear abnormalities including chronic persistence of mesenchyme in the middle ear into adulthood, markedly enlarged ossicles, and delayed ossification of the ossicles. Congenitally hypothyroid Tshr−/− mice and TR-deficient Thra1−/−;Thrb−/− mice displayed similar abnormalities. These findings demonstrate that middle ear maturation is TR dependent and suggest that the middle ear is a sensitive target for thyroid hormone in development. PMID:22253431

  13. Optimizing Hearing Loss Prevention and Treatment, Rehabilitation and Re - Integration of Soldiers with Hearing Impairment

    DTIC Science & Technology

    2016-10-01

    for whom hearing loss is more often associated with middle ear disease , but is also relevant to assess the aeration system of the ear in with ...being, the ability to cope with post-traumatic stress and the overall quality of life. Modern Militaries have highly trained and experienced specialists...impaired in that environment. In the case of evaluating the impact of noise-induced hearing loss, this would mean finding trained operators with all

  14. Comparison of packing material in an animal model of middle ear trauma.

    PubMed

    Perez, Enrique; Hachem, Ralph Abi; Carlton, Daniel; Bueno, Isabel; Vernon, Stephen; Van De Water, Thomas R; Angeli, Simon I

    2016-01-01

    To compare the performance of absorbable gelatin sponge (AGS) with polyurethane foam (PUF) as middle ear packing material after mucosal trauma. Using a randomized, controlled and blinded study design fifteen guinea pigs underwent middle ear surgery with mucosal trauma performed on both ears. One ear was packed with either PUF or AGS while the contralateral ear remained untreated and used as non-packed paired controls. Auditory brainstem response (ABR) thresholds were measured pre-operatively and repeated at 1, 2, and 6weeks postoperatively. Histological analysis of middle ear mucosa was done in each group to evaluate the inflammatory reaction and wound healing. Another eighteen animals underwent middle ear wounding and packing in one ear while the contralateral ear was left undisturbed as control. Twelve guinea pigs were euthanized at 2weeks postoperatively, and six were euthanized at 3days post-operatively. Mucosal samples were collected for analysis of TGF-β1 levels by enzyme-linked immunosorbent assay. ABR recordings demonstrate that threshold level changes from baseline were minor in PUF packed and control ears. Threshold levels were higher in the AGS packed ears compared with both control and PUF packed ears for low frequency stimuli. Histological analysis showed persistence of packing material at 6weeks postoperatively, inflammation, granulation tissue formation, foreign body reaction and neo-osteogenesis in both AGS and PUF groups. TGF-β1 protein levels did not differ between groups. PUF and AGS packing cause inflammation and neo-osteogenesis in the middle ear following wounding of the mucosa and packing. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. A simplified method for correcting Tanzer's group II constricted ears: Construction of the superior crus as a strut with cartilage expansion grafting.

    PubMed

    Kim, Young Soo; Chung, Seum

    2016-04-01

    A constricted ear, also known as a cup ear or lop ear, is a deformity characterized by curling of the upper portion of the ear, including the helix, scapha, and antihelix. In Tanzer's classification, group II constricted ears have deformities involving the helix and the scapha. Although partial or total absence of the superior crus of the antihelix has been noted in group II constricted ears, most plastic surgeons have corrected group II constricted ears using the expansion technique and skin flaps, without formation of the superior crus. However, the expansion technique does not always yield satisfactory results in group II constricted ears. Between May 2011 and April 2014, the authors operated on 21 patients with group II constricted ears using the technique described in this study. The follow-up period ranged from 2 months to 2 years. In our procedure for correcting group II constricted ears, we focused on restoring the superior crus of the antihelix. As a strong superior crus acts as a strut in the upper third of the ear, it supports the helical rim and creates the scapha. Eventually, the newly formed superior crus enables the helical rim to expand in the upper third of the constricted ear. In this article, we present our method of correcting group II constricted ears, in which the superior crus is constructed as a strut and cartilage expansion grafts are used. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Barotrauma vis-a-vis the "chronic otitis media syndrome": two conditions with middle ear gas deficiency Is secretory otitis media a contraindication to air travel?

    PubMed

    Sadé, Jacob; Ar, Amos; Fuchs, Camil

    2003-03-01

    We compared 17 patients (29 ears) with barotrauma with 171 patients suffering from "chronic ears" (secretory otitis media, atelectasis, or previously operated cholesteatoma). The patients with "chronic ears" were followed up prospectively, and none were found to suffer from barotrauma after flying on a commercial airplane. The mastoid pneumatization (seen on lateral mastoid radiographs) was significantly larger in ears with barotrauma, averaging 16.85 cm2, versus 12.9 cm2 in normal controls, whereas in "chronic ears" it was only 3.6 cm2. During flight on a commercial airplane, the middle ear has to equalize about 20% of its gas volume with the ambient pressure. This equalization must happen within 15 to 20 minutes of ascent and descent in order to avoid barotrauma. This 20% is a fivefold greater task for ears with a large mastoid pneumatization than for ears with an undeveloped pneumatization; "chronic ears" usually have an undeveloped mastoid pneumatization. The smaller the middle ear (mastoid) volume, the smaller the volume of gas needed to pass through the eustachian tube in order to equalize pressure changes during flying. This factor may explain why "chronic ears" rarely suffer from barotrauma. It also implies that eustachian tubes of secretory otitis, atelectatic, and cholesteatomatous ears have little problem in equalizing large pressure differences (over 2,000 mm H2O) within 15 to 20 minutes of landing, in contrast to what has been traditionally believed. Individuals with "chronic ears" can be advised that they can fly safely.

  17. The Octavolateralis System and Mauthner Cell: Interactions and Questions

    NASA Technical Reports Server (NTRS)

    Eaton, Robert C.; Popper, Arthur N.

    1995-01-01

    This paper is an overview of some of the major points to arise in the accompanying contributions of this special symposium issue. The symposium papers arose out of discussions among investigators interested in the inner ear and Mauthner cell, with the focus on hydrodynamic components that activate the Mauthner cell through the octavolateralis system. The intention of the symposium was to investigate the possibility of using our knowledge of the Mauthner system to help understand acoustic processing by the ear, and of using, our knowledge of fish hearing to better understand Mauthner cell function. This is the first attempt to take a broad look at both systems to see how they might function together. As such, these proceedings can serve as a mini-tutorial for investiaators interested in one system or the other. In this summary paper we also identify some of the major uncertainties in our understanding of the ear-Mauthner connection. These include questions about: (1) the identity of the acoustic stimuli that are neuroethologically relevant to the Mauthner system; (2) the relative importance of the various octavolateralis inputs (acoustic, vestibular, or lateral line); (3) the contribution of the different various acoustic endorgans to the Mauthner system; (4) whether the Mauthner system can distinguish sound source location; and (5) whether Mauthner neurobiology is compatible with the prevailing model (the phase model) for determining sound source location by fishes. We believe these issues provide potentially useful avenues of future investigation that should give important insights into both acoustic processing by fish and the function of the Mauthner system.

  18. Isolating the auditory system from acoustic noise during functional magnetic resonance imaging: Examination of noise conduction through the ear canal, head, and bodya)

    PubMed Central

    Ravicz, Michael E.; Melcher, Jennifer R.

    2007-01-01

    Approaches were examined for reducing acoustic noise levels heard by subjects during functional magnetic resonance imaging (fMRI), a technique for localizing brain activation in humans. Specifically, it was examined whether a device for isolating the head and ear canal from sound (a “helmet”) could add to the isolation provided by conventional hearing protection devices (i.e., earmuffs and earplugs). Both subjective attenuation (the difference in hearing threshold with versus without isolation devices in place) and objective attenuation (difference in ear-canal sound pressure) were measured. In the frequency range of the most intense fMRI noise (1–1.4 kHz), a helmet, earmuffs, and earplugs used together attenuated perceived sound by 55–63 dB, whereas the attenuation provided by the conventional devices alone was substantially less: 30–37 dB for earmuffs, 25–28 dB for earplugs, and 39–41 dB for earmuffs and earplugs used together. The data enabled the clarification of the relative importance of ear canal, head, and body conduction routes to the cochlea under different conditions: At low frequencies (≤500 Hz), the ear canal was the dominant route of sound conduction to the cochlea for all of the device combinations considered. At higher frequencies (>500 Hz), the ear canal was the dominant route when either earmuffs or earplugs were worn. However, the dominant route of sound conduction was through the head when both earmuffs and earplugs were worn, through both ear canal and body when a helmet and earmuffs were worn, and through the body when a helmet, earmuffs, and earplugs were worn. It is estimated that a helmet, earmuffs, and earplugs together will reduce the most intense fMRI noise levels experienced by a subject to 60–65 dB SPL. Even greater reductions in noise should be achievable by isolating the body from the surrounding noise field. PMID:11206150

  19. Anatomy of the lamprey ear: morphological evidence for occurrence of horizontal semicircular ducts in the labyrinth of Petromyzon marinus

    USGS Publications Warehouse

    Maklad, Adel; Reed, Caitlyn; Johnson, Nicholas S.; Fritzsch, Bernd

    2014-01-01

    In jawed (gnathostome) vertebrates, the inner ears have three semicircular canals arranged orthogonally in the three Cartesian planes: one horizontal (lateral) and two vertical canals. They function as detectors for angular acceleration in their respective planes. Living jawless craniates, cyclostomes (hagfish and lamprey) and their fossil records seemingly lack a lateral horizontal canal. The jawless vertebrate hagfish inner ear is described as a torus or doughnut, having one vertical canal, and the jawless vertebrate lamprey having two. These observations on the anatomy of the cyclostome (jawless vertebrate) inner ear have been unchallenged for over a century, and the question of how these jawless vertebrates perceive angular acceleration in the yaw (horizontal) planes has remained open. To provide an answer to this open question we reevaluated the anatomy of the inner ear in the lamprey, using stereoscopic dissection and scanning electron microscopy. The present study reveals a novel observation: the lamprey has two horizontal semicircular ducts in each labyrinth. Furthermore, the horizontal ducts in the lamprey, in contrast to those of jawed vertebrates, are located on the medial surface in the labyrinth rather than on the lateral surface. Our data on the lamprey horizontal duct suggest that the appearance of the horizontal canal characteristic of gnathostomes (lateral) and lampreys (medial) are mutually exclusive and indicate a parallel evolution of both systems, one in cyclostomes and one in gnathostome ancestors.

  20. Ear Pieces

    ERIC Educational Resources Information Center

    DiJulio, Betsy

    2011-01-01

    In this article, the author describes an art project wherein students make fanciful connections between art and medicine. This project challenges students to interpret "ear idioms" (e.g. "blow it out your ear," "in one ear and out the other") by relying almost entirely on realistic ear drawings, the placement of them, marks, and values. In that…

Top